version
stringclasses
25 values
code
stringlengths
75
178k
apis
sequence
full_version
stringlengths
1
6
repo_name
stringlengths
9
78
hexsha
stringlengths
40
40
1.7
import logging from typing import Optional, Union import numpy as np import pandas as pd import torch from anndata import AnnData from pytorch_lightning.callbacks import Callback from pytorch_lightning.callbacks.early_stopping import EarlyStopping import scvi from scvi import _CONSTANTS from scvi.data import register_tensor_from_anndata from scvi.dataloaders import DataSplitter from scvi.external.cellassign._module import CellAssignModule from scvi.lightning import TrainingPlan from scvi.model.base import BaseModelClass, TrainRunner, UnsupervisedTrainingMixin logger = logging.getLogger(__name__) B = 10 class CellAssign(UnsupervisedTrainingMixin, BaseModelClass): """ Reimplementation of CellAssign for reference-based annotation [Zhang19]_. Parameters ---------- adata single-cell AnnData object that has been registered via :func:`~scvi.data.setup_anndata`. The object should be subset to contain the same genes as the cell type marker dataframe. cell_type_markers Binary marker gene DataFrame of genes by cell types. Gene names corresponding to `adata.var_names` should be in DataFrame index, and cell type labels should be the columns. size_factor_key Key in `adata.obs` with continuous valued size factors. **model_kwargs Keyword args for :class:`~scvi.external.cellassign.CellAssignModule` Examples -------- >>> adata = scvi.data.read_h5ad(path_to_anndata) >>> marker_gene_mat = pd.read_csv(path_to_marker_gene_csv) >>> bdata = adata[:, adata.var.index.isin(marker_gene_mat.index)].copy() >>> scvi.data.setup_anndata(bdata) >>> model = CellAssign(bdata, marker_gene_mat, size_factor_key='S') >>> model.train() >>> predictions = model.predict(bdata) """ def __init__( self, adata: AnnData, cell_type_markers: pd.DataFrame, size_factor_key: str, **model_kwargs, ): try: cell_type_markers = cell_type_markers.loc[adata.var_names] except KeyError: raise KeyError( "Anndata and cell type markers do not contain the same genes." ) super().__init__(adata) register_tensor_from_anndata(adata, "_size_factor", "obs", size_factor_key) self.n_genes = self.summary_stats["n_vars"] self.cell_type_markers = cell_type_markers rho = torch.Tensor(cell_type_markers.to_numpy()) n_cats_per_cov = ( self.scvi_setup_dict_["extra_categoricals"]["n_cats_per_key"] if "extra_categoricals" in self.scvi_setup_dict_ else None ) x = scvi.data.get_from_registry(adata, _CONSTANTS.X_KEY) col_means = np.asarray(np.mean(x, 0)).ravel() # (g) col_means_mu, col_means_std = np.mean(col_means), np.std(col_means) col_means_normalized = torch.Tensor((col_means - col_means_mu) / col_means_std) # compute basis means for phi - shape (B) basis_means = np.linspace(np.min(x), np.max(x), B) # (B) self.module = CellAssignModule( n_genes=self.n_genes, rho=rho, basis_means=basis_means, b_g_0=col_means_normalized, n_batch=self.summary_stats["n_batch"], n_cats_per_cov=n_cats_per_cov, n_continuous_cov=self.summary_stats["n_continuous_covs"], **model_kwargs, ) self._model_summary_string = ( "CellAssign Model with params: \nn_genes: {}, n_labels: {}" ).format( self.n_genes, rho.shape[1], ) self.init_params_ = self._get_init_params(locals()) @torch.no_grad() def predict(self) -> pd.DataFrame: """Predict soft cell type assignment probability for each cell.""" adata = self._validate_anndata(None) scdl = self._make_data_loader(adata=adata) predictions = [] for tensors in scdl: generative_inputs = self.module._get_generative_input(tensors, None) outputs = self.module.generative(**generative_inputs) gamma = outputs["gamma"] predictions += [gamma.cpu()] return pd.DataFrame( np.array(torch.cat(predictions)), columns=self.cell_type_markers.columns ) def train( self, max_epochs: int = 400, lr: float = 3e-3, use_gpu: Optional[Union[str, int, bool]] = None, train_size: float = 0.9, validation_size: Optional[float] = None, batch_size: int = 1024, plan_kwargs: Optional[dict] = None, early_stopping: bool = True, early_stopping_patience: int = 15, early_stopping_min_delta: float = 0.0, **kwargs, ): """ Trains the model. Parameters ---------- max_epochs Number of epochs to train for lr Learning rate for optimization. use_gpu Use default GPU if available (if None or True), or index of GPU to use (if int), or name of GPU (if str), or use CPU (if False). train_size Size of training set in the range [0.0, 1.0]. validation_size Size of the test set. If `None`, defaults to 1 - `train_size`. If `train_size + validation_size < 1`, the remaining cells belong to a test set. batch_size Minibatch size to use during training. plan_kwargs Keyword args for :class:`~scvi.lightning.ClassifierTrainingPlan`. Keyword arguments passed to early_stopping Adds callback for early stopping on validation_loss early_stopping_patience Number of times early stopping metric can not improve over early_stopping_min_delta early_stopping_min_delta Threshold for counting an epoch torwards patience `train()` will overwrite values present in `plan_kwargs`, when appropriate. **kwargs Other keyword args for :class:`~scvi.lightning.Trainer`. """ update_dict = {"lr": lr, "weight_decay": 1e-10} if plan_kwargs is not None: plan_kwargs.update(update_dict) else: plan_kwargs = update_dict if "callbacks" in kwargs: kwargs["callbacks"] += [ClampCallback()] else: kwargs["callbacks"] = [ClampCallback()] if early_stopping: early_stopping_callback = [ EarlyStopping( monitor="elbo_validation", min_delta=early_stopping_min_delta, patience=early_stopping_patience, mode="min", ) ] if "callbacks" in kwargs: kwargs["callbacks"] += early_stopping_callback else: kwargs["callbacks"] = early_stopping_callback kwargs["check_val_every_n_epoch"] = 1 if max_epochs is None: n_cells = self.adata.n_obs max_epochs = np.min([round((20000 / n_cells) * 400), 400]) plan_kwargs = plan_kwargs if isinstance(plan_kwargs, dict) else dict() data_splitter = DataSplitter( self.adata, train_size=train_size, validation_size=validation_size, batch_size=batch_size, use_gpu=use_gpu, ) training_plan = TrainingPlan( self.module, len(data_splitter.train_idx), **plan_kwargs ) runner = TrainRunner( self, training_plan=training_plan, data_splitter=data_splitter, max_epochs=max_epochs, use_gpu=use_gpu, **kwargs, ) return runner() class ClampCallback(Callback): def __init__(self): super().__init__() def on_batch_end(self, trainer, pl_module): with torch.no_grad(): pl_module.module.delta_log.clamp_(np.log(pl_module.module.min_delta)) super().on_batch_end(trainer, pl_module)
[ "torch.cat", "torch.no_grad", "torch.Tensor" ]
1.7.1
giovp/scvi-tools
9b9370aa502b308f84e3129a7c940a9bea06426b
1.2
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F #233 import torch.optim as optim from torchvision import datasets,models,transforms from PIL import Image import argparse from deeprobust.image.attack.fgsm import FGSM from deeprobust.image.netmodels.CNN import Net from deeprobust.image.config import attack_params from deeprobust.image.utils import download_model def parameter_parser(): parser = argparse.ArgumentParser(description = "Run attack algorithms.") parser.add_argument("--destination", default = './trained_models/', help = "choose destination to load the pretrained models.") parser.add_argument("--filename", default = "MNIST_CNN_epoch_20.pt") return parser.parse_args() args = parameter_parser() # read argument and creat an argparse object model = Net() model.load_state_dict(torch.load(args.destination + args.filename)) model.eval() print("Finish loading network.") xx = datasets.MNIST('./', download = False).data[999:1000].to('cuda') xx = xx.unsqueeze_(1).float()/255 #print(xx.size()) ## Set Target yy = datasets.MNIST('./', download = False).targets[999:1000].to('cuda') """ Generate adversarial examples """ F1 = FGSM(model, device = "cuda") ### or cuda AdvExArray = F1.generate(xx, yy, **attack_params['FGSM_MNIST']) predict0 = model(xx) predict0= predict0.argmax(dim=1, keepdim=True) predict1 = model(AdvExArray) predict1= predict1.argmax(dim=1, keepdim=True) print("original prediction:") print(predict0) print("attack prediction:") print(predict1) xx = xx.cpu().detach().numpy() AdvExArray = AdvExArray.cpu().detach().numpy() import matplotlib.pyplot as plt plt.imshow(xx[0,0]*255,cmap='gray',vmin=0,vmax=255) plt.savefig('./adversary_examples/mnist_advexample_fgsm_ori.png') plt.imshow(AdvExArray[0,0]*255,cmap='gray',vmin=0,vmax=255) plt.savefig('./adversary_examples/mnist_advexample_fgsm_adv.png')
[ "torch.load" ]
1.2.0
marblet/DeepRobust
276a7048aded2cf3a190d3851ffd4587b7d1dd49
1.0
#These models are dowloaded via the repo https://github.com/Cadene/pretrained-models.pytorch #See licence here: https://github.com/Cadene/pretrained-models.pytorch/blob/master/LICENSE.txt from torch import nn from ..learner import model_meta from ...core import * pretrainedmodels = try_import('pretrainedmodels') if not pretrainedmodels: raise Exception('Error: `pretrainedmodels` is needed. `pip install pretrainedmodels`') __all__ = ['inceptionv4', 'inceptionresnetv2', 'nasnetamobile', 'dpn92', 'xception_cadene', 'se_resnet50', 'se_resnet101', 'se_resnext50_32x4d', 'senet154', 'pnasnet5large'] def get_model(model_name:str, pretrained:bool, seq:bool=False, pname:str='imagenet', **kwargs): pretrained = pname if pretrained else None model = getattr(pretrainedmodels, model_name)(pretrained=pretrained, **kwargs) return nn.Sequential(*model.children()) if seq else model def inceptionv4(pretrained:bool=False): model = get_model('inceptionv4', pretrained) all_layers = list(model.children()) return nn.Sequential(*all_layers[0], *all_layers[1:]) model_meta[inceptionv4] = {'cut': -2, 'split': lambda m: (m[0][11], m[1])} def nasnetamobile(pretrained:bool=False): model = get_model('nasnetamobile', pretrained, num_classes=1000) model.logits = noop return nn.Sequential(model) model_meta[nasnetamobile] = {'cut': noop, 'split': lambda m: (list(m[0][0].children())[8], m[1])} def pnasnet5large(pretrained:bool=False): model = get_model('pnasnet5large', pretrained, num_classes=1000) model.logits = noop return nn.Sequential(model) model_meta[pnasnet5large] = {'cut': noop, 'split': lambda m: (list(m[0][0].children())[8], m[1])} def inceptionresnetv2(pretrained:bool=False): return get_model('inceptionresnetv2', pretrained, seq=True) def dpn92(pretrained:bool=False): return get_model('dpn92', pretrained, pname='imagenet+5k', seq=True) def xception_cadene(pretrained=False): return get_model('xception', pretrained, seq=True) def se_resnet50(pretrained:bool=False): return get_model('se_resnet50', pretrained) def se_resnet101(pretrained:bool=False): return get_model('se_resnet101', pretrained) def se_resnext50_32x4d(pretrained:bool=False): return get_model('se_resnext50_32x4d', pretrained) def se_resnext101_32x4d(pretrained:bool=False): return get_model('se_resnext101_32x4d', pretrained) def senet154(pretrained:bool=False): return get_model('senet154', pretrained) model_meta[inceptionresnetv2] = {'cut': -2, 'split': lambda m: (m[0][9], m[1])} model_meta[dpn92] = {'cut': -1, 'split': lambda m: (m[0][0][16], m[1])} model_meta[xception_cadene] = {'cut': -1, 'split': lambda m: (m[0][11], m[1])} model_meta[senet154] = {'cut': -3, 'split': lambda m: (m[0][3], m[1])} _se_resnet_meta = {'cut': -2, 'split': lambda m: (m[0][3], m[1])} model_meta[se_resnet50] = _se_resnet_meta model_meta[se_resnet101] = _se_resnet_meta model_meta[se_resnext50_32x4d] = _se_resnet_meta model_meta[se_resnext101_32x4d] = _se_resnet_meta # TODO: add "resnext101_32x4d" "resnext101_64x4d" after serialization issue is fixed: # https://github.com/Cadene/pretrained-models.pytorch/pull/128
[ "torch.nn.Sequential" ]
1.0.0
JiahuaWU/fastai
13a2df812d875abf0558004283392ab40d9bdea1
1.9
import torch from torch.utils.data import Dataset, DataLoader import numpy as np class NumpyDataset(Dataset): def __init__(self, data_path, labels_path, transform, three_channels=False): """ Loads image NumPy arrays and labels NumPy arrays and applies transforms to them in a memory-efficient manner. Arguments: ---------- data_path: str Path to image data of shape [number_of_images, 1, height, width]. labels_path: str Path to label data of shape [number_of_labels, 1]. transform: Torchvision transforms Augmentations to be applied on the data. three_channels: bool If True the one-channel image is copied over the other channels, creating a three-channel image. """ self.data = np.load(data_path, mmap_mode='r') self.labels = np.load(labels_path, mmap_mode='r') self.transform = transform self.three_channels = three_channels def __len__(self): return len(self.data) def __getitem__(self, idx): data = self.data[idx] if self.three_channels: data = np.tile(data, (3, 1, 1)) # copies 2d array to the other 3 channels data = data.astype(np.float32) data = self.transform(torch.from_numpy(data)) label = torch.tensor(self.labels[idx], dtype=torch.long) return data, label def get_dataloader(data_path, labels_path, augmentations, bs=100, three_channels=False, num_workers=2, shuffle=False): """ Creates PyTorch DataLoaders that load image NumPy arrays and labels NumPy arrays and applies transforms to them in a memory-efficient manner. Arguments: ---------- data_path: str Path to image data of shape [number_of_images, 1, height, width]. labels_path: str Path to label data of shape [number_of_labels, 1]. transform: Torchvision transforms Augmentations to be applied on the data. bs: int Batch size for loading the data. three_channels: bool If True the one-channel image is copied over the other channels, creating a three-channel image. num_workers: int Number of workers to be used (a number too high may slow down loading). shuffle: bool If True shuffles the data in the DataLoader. Some algorithms (Self-Ensemble & AdaMatch) require different DataLoaders that are not shuffled between one another! """ # create dataset dataset = NumpyDataset(data_path, labels_path, augmentations, three_channels) # create dataloader dataloader = DataLoader(dataset, shuffle=shuffle, batch_size=bs, num_workers=num_workers) return dataloader
[ "torch.from_numpy", "torch.tensor", "torch.utils.data.DataLoader" ]
1.9.1
zysymu/Domain-Adaptation-DeepLense
64d26010d730b4e049a07b58a7234a74de0d292c
1.3
import os from collections import OrderedDict import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel class BaseModel(): def __init__(self, opt): self.opt = opt self.device = torch.device('cuda' if opt['gpu_ids'] is not None else 'cpu') self.is_train = opt['is_train'] self.schedulers = [] self.optimizers = [] def feed_data(self, data): pass def optimize_parameters(self): pass def get_current_visuals(self): pass def get_current_losses(self): pass def print_network(self): pass def save(self, label): pass def load(self): pass def _set_lr(self, lr_groups_l): ''' set learning rate for warmup, lr_groups_l: list for lr_groups. each for a optimizer''' for optimizer, lr_groups in zip(self.optimizers, lr_groups_l): for param_group, lr in zip(optimizer.param_groups, lr_groups): param_group['lr'] = lr def _get_init_lr(self): # get the initial lr, which is set by the scheduler init_lr_groups_l = [] for optimizer in self.optimizers: init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups]) return init_lr_groups_l def update_learning_rate(self, cur_iter, warmup_iter=-1): for scheduler in self.schedulers: scheduler.step() #### set up warm up learning rate if cur_iter < warmup_iter: # get initial lr for each group init_lr_g_l = self._get_init_lr() # modify warming-up learning rates warm_up_lr_l = [] for init_lr_g in init_lr_g_l: warm_up_lr_l.append([v / warmup_iter * cur_iter for v in init_lr_g]) # set learning rate self._set_lr(warm_up_lr_l) def get_current_learning_rate(self): # return self.schedulers[0].get_lr()[0] return self.optimizers[0].param_groups[0]['lr'] def get_network_description(self, network): '''Get the string and total parameters of the network''' if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel): network = network.module s = str(network) n = sum(map(lambda x: x.numel(), network.parameters())) return s, n def save_network(self, network, network_label, iter_label): save_filename = '{}_{}.pth'.format(iter_label, network_label) save_path = os.path.join(self.opt['path']['models'], save_filename) if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel): network = network.module state_dict = network.state_dict() for key, param in state_dict.items(): state_dict[key] = param.cpu() torch.save(state_dict, save_path) def load_network(self, load_path, network, strict=True): if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel): network = network.module load_net = torch.load(load_path) load_net_clean = OrderedDict() # remove unnecessary 'module.' for k, v in load_net.items(): if k.startswith('module.'): load_net_clean[k[7:]] = v else: load_net_clean[k] = v network.load_state_dict(load_net_clean, strict=strict) def save_training_state(self, epoch, iter_step): '''Saves training state during training, which will be used for resuming''' state = {'epoch': epoch, 'iter': iter_step, 'schedulers': [], 'optimizers': []} for s in self.schedulers: state['schedulers'].append(s.state_dict()) for o in self.optimizers: state['optimizers'].append(o.state_dict()) save_filename = '{}.state'.format(iter_step) save_path = os.path.join(self.opt['path']['training_state'], save_filename) torch.save(state, save_path) def resume_training(self, resume_state): '''Resume the optimizers and schedulers for training''' resume_optimizers = resume_state['optimizers'] resume_schedulers = resume_state['schedulers'] assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers' assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers' for i, o in enumerate(resume_optimizers): self.optimizers[i].load_state_dict(o) for i, s in enumerate(resume_schedulers): self.schedulers[i].load_state_dict(s)
[ "torch.device", "torch.save", "torch.load" ]
1.3.1
fanld/HDRTVNet
7ef7f25f55b776b4ca9fa2d7936895a42b0960af
1.7
import torch import torch.nn as nn class CLSA(nn.Module): def __init__(self, base_encoder, args, dim=128, K=65536, m=0.999, T=0.2, mlp=True): """ :param base_encoder: encoder model :param args: config parameters :param dim: feature dimension (default: 128) :param K: queue size; number of negative keys (default: 65536) :param m: momentum of updating key encoder (default: 0.999) :param T: softmax temperature (default: 0.2) :param mlp: use MLP layer to process encoder output or not (default: True) """ super(CLSA, self).__init__() self.args = args self.K = K self.m = m self.T = T self.T2 = self.args.clsa_t # create the encoders # num_classes is the output fc dimension self.encoder_q = base_encoder(num_classes=dim) self.encoder_k = base_encoder(num_classes=dim) if mlp: # hack: brute-force replacement dim_mlp = self.encoder_q.fc.weight.shape[1] self.encoder_q.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_q.fc) self.encoder_k.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.encoder_k.fc) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient self.register_buffer("queue", torch.randn(dim, K)) self.queue = nn.functional.normalize(self.queue, dim=0) # normalize across queue instead of each example self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) # config parameters for CLSA stronger augmentation and multi-crop self.weak_pick = args.pick_weak self.strong_pick = args.pick_strong self.weak_pick = set(self.weak_pick) self.strong_pick = set(self.strong_pick) self.gpu = args.gpu self.sym = self.args.sym @torch.no_grad() def _momentum_update_key_encoder(self): """ Momentum update of the key encoder """ for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.m + param_q.data * (1. - self.m) @torch.no_grad() def _dequeue_and_enqueue(self, queue, queue_ptr, keys): # gather keys before updating queue #keys = concat_all_gather(keys) #already concatenated before batch_size = keys.shape[0] ptr = int(queue_ptr) assert self.K % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) queue[:, ptr:ptr + batch_size] = keys.T ptr = (ptr + batch_size) % self.K # move pointer queue_ptr[0] = ptr @torch.no_grad() def _batch_shuffle_ddp(self, x): """ Batch shuffle, for making use of BatchNorm. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # random shuffle index idx_shuffle = torch.randperm(batch_size_all).cuda() # broadcast to all gpus torch.distributed.broadcast(idx_shuffle, src=0) # index for restoring idx_unshuffle = torch.argsort(idx_shuffle) # shuffled index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this], idx_unshuffle @torch.no_grad() def _batch_unshuffle_ddp(self, x, idx_unshuffle): """ Undo batch shuffle. *** Only support DistributedDataParallel (DDP) model. *** """ # gather from all gpus batch_size_this = x.shape[0] x_gather = concat_all_gather(x) batch_size_all = x_gather.shape[0] num_gpus = batch_size_all // batch_size_this # restored index for this gpu gpu_idx = torch.distributed.get_rank() idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx] return x_gather[idx_this] def forward(self, im_q_list, im_k,im_strong_list): """ :param im_q_list: query image list :param im_k: key image :param im_strong_list: query strong image list :return: weak: logit_list, label_list strong: logit_list, label_list """ if self.sym: q_list = [] for k, im_q in enumerate(im_q_list): # weak forward if k not in self.weak_pick: continue # can't shuffle because it will stop gradient only can be applied for k # im_q, idx_unshuffle = self._batch_shuffle_ddp(im_q) q = self.encoder_q(im_q) # queries: NxC q = nn.functional.normalize(q, dim=1) # q = self._batch_unshuffle_ddp(q, idx_unshuffle) q_list.append(q) # add the encoding of im_k as one of weakly supervised q = self.encoder_q(im_k) q = nn.functional.normalize(q, dim=1) q_list.append(q) q_strong_list = [] for k, im_strong in enumerate(im_strong_list): # im_strong, idx_unshuffle = self._batch_shuffle_ddp(im_strong) if k not in self.strong_pick: continue q_strong = self.encoder_q(im_strong) # queries: NxC q_strong = nn.functional.normalize(q_strong, dim=1) # q_strong = self._batch_unshuffle_ddp(q_strong, idx_unshuffle) q_strong_list.append(q_strong) with torch.no_grad(): # no gradient to keys # if update_key_encoder: self._momentum_update_key_encoder() # update the key encoder # shuffle for making use of BN im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k) k = self.encoder_k(im_k) # keys: NxC k = nn.functional.normalize(k, dim=1) # undo shuffle k = self._batch_unshuffle_ddp(k, idx_unshuffle) k = k.detach() k = concat_all_gather(k) k2 = self.encoder_k(im_q_list[0]) # keys: NxC k2 = nn.functional.normalize(k2, dim=1) # undo shuffle k2 = self._batch_unshuffle_ddp(k2, idx_unshuffle) k2 = k2.detach() k2 = concat_all_gather(k2) logits0_list = [] labels0_list = [] logits1_list = [] labels1_list = [] # first iter the 1st k supervised for choose_idx in range(len(q_list) - 1): q = q_list[choose_idx] # positive logits: NxN l_pos = torch.einsum('nc,ck->nk', [q, k.T]) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators cur_batch_size = logits.shape[0] cur_gpu = self.gpu choose_match = cur_gpu * cur_batch_size labels = torch.arange(choose_match, choose_match + cur_batch_size, dtype=torch.long).cuda() logits0_list.append(logits) labels0_list.append(labels) labels0 = logits.clone().detach() # use previous q as supervision labels0 = labels0 * self.T / self.T2 labels0 = torch.softmax(labels0, dim=1) labels0 = labels0.detach() for choose_idx2 in range(len(q_strong_list)): q_strong = q_strong_list[choose_idx2] # weak strong loss l_pos = torch.einsum('nc,ck->nk', [q_strong, k.T]) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q_strong, self.queue.clone().detach()]) # logits: Nx(1+K) logits0 = torch.cat([l_pos, l_neg], dim=1) # N*(K+1) # apply temperature logits0 /= self.T2 logits0 = torch.softmax(logits0, dim=1) logits1_list.append(logits0) labels1_list.append(labels0) # iter another part, symmetrized k = k2 for choose_idx in range(1, len(q_list)): q = q_list[choose_idx] # positive logits: NxN l_pos = torch.einsum('nc,ck->nk', [q, k.T]) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators cur_batch_size = logits.shape[0] cur_gpu = self.gpu choose_match = cur_gpu * cur_batch_size labels = torch.arange(choose_match, choose_match + cur_batch_size, dtype=torch.long).cuda() logits0_list.append(logits) labels0_list.append(labels) labels0 = logits.clone().detach() # use previous q as supervision labels0 = labels0 * self.T / self.T2 labels0 = torch.softmax(labels0, dim=1) labels0 = labels0.detach() for choose_idx2 in range(len(q_strong_list)): q_strong = q_strong_list[choose_idx2] # weak strong loss l_pos = torch.einsum('nc,ck->nk', [q_strong, k.T]) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q_strong, self.queue.clone().detach()]) # logits: Nx(1+K) logits0 = torch.cat([l_pos, l_neg], dim=1) # N*(K+1) # apply temperature logits0 /= self.T2 logits0 = torch.softmax(logits0, dim=1) logits1_list.append(logits0) labels1_list.append(labels0) # dequeue and enqueue # if update_key_encoder==False: self._dequeue_and_enqueue(self.queue, self.queue_ptr, k) return logits0_list, labels0_list, logits1_list, labels1_list else: q_list = [] for k, im_q in enumerate(im_q_list): # weak forward if k not in self.weak_pick: continue # can't shuffle because it will stop gradient only can be applied for k # im_q, idx_unshuffle = self._batch_shuffle_ddp(im_q) q = self.encoder_q(im_q) # queries: NxC q = nn.functional.normalize(q, dim=1) # q = self._batch_unshuffle_ddp(q, idx_unshuffle) q_list.append(q) q_strong_list = [] for k, im_strong in enumerate(im_strong_list): # im_strong, idx_unshuffle = self._batch_shuffle_ddp(im_strong) if k not in self.strong_pick: continue q_strong = self.encoder_q(im_strong) # queries: NxC q_strong = nn.functional.normalize(q_strong, dim=1) # q_strong = self._batch_unshuffle_ddp(q_strong, idx_unshuffle) q_strong_list.append(q_strong) # compute key features with torch.no_grad(): # no gradient to keys # if update_key_encoder: self._momentum_update_key_encoder() # update the key encoder # shuffle for making use of BN im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k) k = self.encoder_k(im_k) # keys: NxC k = nn.functional.normalize(k, dim=1) # undo shuffle k = self._batch_unshuffle_ddp(k, idx_unshuffle) k = k.detach() k = concat_all_gather(k) # compute logits # Einstein sum is more intuitive logits0_list = [] labels0_list = [] logits1_list = [] labels1_list = [] for choose_idx in range(len(q_list)): q = q_list[choose_idx] # positive logits: Nx1 l_pos = torch.einsum('nc,ck->nk', [q, k.T]) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators cur_batch_size = logits.shape[0] cur_gpu = self.gpu choose_match = cur_gpu * cur_batch_size labels = torch.arange(choose_match, choose_match + cur_batch_size, dtype=torch.long).cuda() logits0_list.append(logits) labels0_list.append(labels) labels0 = logits.clone().detach() # use previous q as supervision labels0 = labels0*self.T/self.T2 labels0 = torch.softmax(labels0, dim=1) labels0 = labels0.detach() for choose_idx2 in range(len(q_strong_list)): q_strong = q_strong_list[choose_idx2] # weak strong loss l_pos = torch.einsum('nc,ck->nk', [q_strong, k.T]) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q_strong, self.queue.clone().detach()]) # logits: Nx(1+K) logits0 = torch.cat([l_pos, l_neg], dim=1) # N*(K+1) # apply temperature logits0 /= self.T2 logits0 = torch.softmax(logits0, dim=1) logits1_list.append(logits0) labels1_list.append(labels0) # dequeue and enqueue # if update_key_encoder==False: self._dequeue_and_enqueue(self.queue, self.queue_ptr, k) return logits0_list, labels0_list, logits1_list, labels1_list @torch.no_grad() def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output
[ "torch.zeros", "torch.nn.functional.normalize", "torch.cat", "torch.nn.Linear", "torch.distributed.get_world_size", "torch.einsum", "torch.arange", "torch.no_grad", "torch.argsort", "torch.distributed.all_gather", "torch.randperm", "torch.softmax", "torch.nn.ReLU", "torch.ones_like", "torch.distributed.get_rank", "torch.randn", "torch.distributed.broadcast" ]
1.7.1
maple-research-lab/CLSA
37df76cf5cb032683e57b70a3a4090f0d524c8fd
1.7
import torch.nn as nn import config as c # custom weights initialization called on netG and netD # based on Neff et al. 2017 parameters def weights_init(model): classname = model.__class__.__name__ if classname.find('Conv') != -1: mean = 0.0 std = 0.05 nn.init.normal_(model.weight.data, mean, std) elif classname.find('BatchNorm') != -1: mean = 0.0 std = 0.05 nn.init.normal_(model.weight.data, mean, std) nn.init.constant_(model.bias.data, 0) # Generator block class Generator(nn.Module): def __init__(self, activation='relu'): super(Generator, self).__init__() self.init_size = c.image_size[0] // 8 self.init_z = c.image_size[-1] // 8 activations = nn.ModuleDict([['lrelu', nn.LeakyReLU(0.2, inplace=True)], ['relu', nn.ReLU(inplace=True)]]) def upsample_conv_block(in_channels, out_channels, activation=activation): if not c.spectral_norm_G: block = [nn.Upsample(scale_factor=2), nn.Conv3d(in_channels, out_channels, c.kg, stride=1, padding=(c.kg-1)//2), nn.BatchNorm3d(out_channels)] else: block = [nn.Upsample(scale_factor=2), nn.utils.spectral_norm(nn.Conv3d(in_channels, out_channels, c.kg, stride=1, padding=(c.kg-1)//2)) ] block.append(activations[activation]) return block self.linear1 = nn.Sequential(nn.Linear(c.nz, c.ngf * (self.init_size ** 2) * self.init_z)) self.batch1 = nn.Sequential(nn.BatchNorm3d(c.ngf), activations[activation]) self.layer2 = nn.Sequential(*upsample_conv_block(c.ngf, c.ngf//2)) self.layer3 = nn.Sequential(*upsample_conv_block(c.ngf//2, c.ngf//4)) self.layer4 = nn.Sequential(*upsample_conv_block(c.ngf//4, c.ngf//8)) self.layer5 = nn.Conv3d(c.ngf // 8, c.nc, c.kg, stride=1, padding=(c.kg-1)//2) self.activationG = nn.Tanh() def forward(self, inp): # print(inp.size()) x = self.linear1(inp.view(inp.size()[0], -1)) x = x.view(x.size()[0], c.ngf, self.init_size, self.init_size, self.init_z) x = self.batch1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) gen_image = self.activationG(x) return gen_image class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() def conv_block(in_channels, out_channels, activation='LeakyReLU'): if not c.spectral_norm_D: block = [nn.Conv3d(in_channels, out_channels, c.kd, stride=2, padding=(c.kd-1)//2), nn.InstanceNorm3d(out_channels)] else: block = [nn.utils.spectral_norm(nn.Conv3d(in_channels, out_channels, c.kd, stride=2, padding=(c.kd-1)//2)) ] if activation == 'LeakyReLU': block.append(nn.LeakyReLU(0.2, inplace=True)) else: block.append(nn.ReLU(inplace=True)) return block self.layer1 = nn.Sequential(*conv_block(c.nc, c.ndf//8)) self.layer2 = nn.Sequential(*conv_block(c.ndf//8, c.ndf//4)) self.layer3 = nn.Sequential(*conv_block(c.ndf//4, c.ndf//2)) self.layer4 = nn.Sequential(*conv_block(c.ndf//2, c.ndf)) self.layer5 = nn.Linear(c.ndf * 8 * 8 * 4, 1) def forward(self, inp): x = self.layer1(inp) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) disc_out = self.layer5(x.view(x.size()[0], -1)) return disc_out
[ "torch.nn.Linear", "torch.nn.init.constant_", "torch.nn.Tanh", "torch.nn.LeakyReLU", "torch.nn.ReLU", "torch.nn.Upsample", "torch.nn.init.normal_", "torch.nn.Conv3d", "torch.nn.InstanceNorm3d", "torch.nn.BatchNorm3d" ]
1.7.0
pooja-subramaniam/3DGAN_synthesis_of_3D_TOF_MRA_with_segmentation_labels
c1142594b3fa0afce46436350b3f80efbb82d7b5
1.6
import math from typing import Any import numpy as np import torch from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader, Dataset from pl_bolts.utils import _SKLEARN_AVAILABLE from pl_bolts.utils.warnings import warn_missing_pkg if _SKLEARN_AVAILABLE: from sklearn.utils import shuffle as sk_shuffle else: # pragma: no cover warn_missing_pkg("sklearn") class SklearnDataset(Dataset): """ Mapping between numpy (or sklearn) datasets to PyTorch datasets. Example: >>> from sklearn.datasets import load_boston >>> from pl_bolts.datamodules import SklearnDataset ... >>> X, y = load_boston(return_X_y=True) >>> dataset = SklearnDataset(X, y) >>> len(dataset) 506 """ def __init__(self, X: np.ndarray, y: np.ndarray, X_transform: Any = None, y_transform: Any = None): """ Args: X: Numpy ndarray y: Numpy ndarray X_transform: Any transform that works with Numpy arrays y_transform: Any transform that works with Numpy arrays """ super().__init__() self.X = X self.Y = y self.X_transform = X_transform self.y_transform = y_transform def __len__(self): return len(self.X) def __getitem__(self, idx): x = self.X[idx].astype(np.float32) y = self.Y[idx] # Do not convert integer to float for classification data if not ((y.dtype == np.int32) or (y.dtype == np.int64)): y = y.astype(np.float32) if self.X_transform: x = self.X_transform(x) if self.y_transform: y = self.y_transform(y) return x, y class TensorDataset(Dataset): """ Prepare PyTorch tensor dataset for data loaders. Example: >>> from pl_bolts.datamodules import TensorDataset ... >>> X = torch.rand(10, 3) >>> y = torch.rand(10) >>> dataset = TensorDataset(X, y) >>> len(dataset) 10 """ def __init__(self, X: torch.Tensor, y: torch.Tensor, X_transform: Any = None, y_transform: Any = None): """ Args: X: PyTorch tensor y: PyTorch tensor X_transform: Any transform that works with PyTorch tensors y_transform: Any transform that works with PyTorch tensors """ super().__init__() self.X = X self.Y = y self.X_transform = X_transform self.y_transform = y_transform def __len__(self): return len(self.X) def __getitem__(self, idx): x = self.X[idx].float() y = self.Y[idx] if self.X_transform: x = self.X_transform(x) if self.y_transform: y = self.y_transform(y) return x, y class SklearnDataModule(LightningDataModule): """ Automatically generates the train, validation and test splits for a Numpy dataset. They are set up as dataloaders for convenience. Optionally, you can pass in your own validation and test splits. Example: >>> from sklearn.datasets import load_boston >>> from pl_bolts.datamodules import SklearnDataModule ... >>> X, y = load_boston(return_X_y=True) >>> loaders = SklearnDataModule(X, y, batch_size=32) ... >>> # train set >>> train_loader = loaders.train_dataloader() >>> len(train_loader.dataset) 355 >>> len(train_loader) 12 >>> # validation set >>> val_loader = loaders.val_dataloader() >>> len(val_loader.dataset) 100 >>> len(val_loader) 4 >>> # test set >>> test_loader = loaders.test_dataloader() >>> len(test_loader.dataset) 51 >>> len(test_loader) 2 """ name = 'sklearn' def __init__( self, X, y, x_val=None, y_val=None, x_test=None, y_test=None, val_split=0.2, test_split=0.1, num_workers=2, random_state=1234, shuffle=True, batch_size: int = 16, pin_memory=False, drop_last=False, *args, **kwargs, ): super().__init__(*args, **kwargs) self.num_workers = num_workers self.batch_size = batch_size self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last # shuffle x and y if shuffle and _SKLEARN_AVAILABLE: X, y = sk_shuffle(X, y, random_state=random_state) elif shuffle and not _SKLEARN_AVAILABLE: # pragma: no cover raise ModuleNotFoundError( 'You want to use shuffle function from `scikit-learn` which is not installed yet.' ) val_split = 0 if x_val is not None or y_val is not None else val_split test_split = 0 if x_test is not None or y_test is not None else test_split hold_out_split = val_split + test_split if hold_out_split > 0: val_split = val_split / hold_out_split hold_out_size = math.floor(len(X) * hold_out_split) x_holdout, y_holdout = X[:hold_out_size], y[:hold_out_size] test_i_start = int(val_split * hold_out_size) x_val_hold_out, y_val_holdout = x_holdout[:test_i_start], y_holdout[:test_i_start] x_test_hold_out, y_test_holdout = x_holdout[test_i_start:], y_holdout[test_i_start:] X, y = X[hold_out_size:], y[hold_out_size:] # if don't have x_val and y_val create split from X if x_val is None and y_val is None and val_split > 0: x_val, y_val = x_val_hold_out, y_val_holdout # if don't have x_test, y_test create split from X if x_test is None and y_test is None and test_split > 0: x_test, y_test = x_test_hold_out, y_test_holdout self._init_datasets(X, y, x_val, y_val, x_test, y_test) def _init_datasets(self, X, y, x_val, y_val, x_test, y_test): self.train_dataset = SklearnDataset(X, y) self.val_dataset = SklearnDataset(x_val, y_val) self.test_dataset = SklearnDataset(x_test, y_test) def train_dataloader(self): loader = DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=self.shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory ) return loader def val_dataloader(self): loader = DataLoader( self.val_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory ) return loader def test_dataloader(self): loader = DataLoader( self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory ) return loader # TODO: this seems to be wrong, something missing here, another inherit class? # class TensorDataModule(SklearnDataModule): # """ # Automatically generates the train, validation and test splits for a PyTorch tensor dataset. They are set up as # dataloaders for convenience. Optionally, you can pass in your own validation and test splits. # # Example: # # >>> from pl_bolts.datamodules import TensorDataModule # >>> import torch # ... # >>> # create dataset # >>> X = torch.rand(100, 3) # >>> y = torch.rand(100) # >>> loaders = TensorDataModule(X, y) # ... # >>> # train set # >>> train_loader = loaders.train_dataloader(batch_size=10) # >>> len(train_loader.dataset) # 70 # >>> len(train_loader) # 7 # >>> # validation set # >>> val_loader = loaders.val_dataloader(batch_size=10) # >>> len(val_loader.dataset) # 20 # >>> len(val_loader) # 2 # >>> # test set # >>> test_loader = loaders.test_dataloader(batch_size=10) # >>> len(test_loader.dataset) # 10 # >>> len(test_loader) # 1 # """
[ "torch.utils.data.DataLoader" ]
1.6
oke-aditya/pytorch-lightning-bolts
268df20bb442e7385b709b1488d37fd2767aba3c
1.1
# Copyright 2021 Tomoki Hayashi # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """HiFi-GAN Modules. This code is modified from https://github.com/kan-bayashi/ParallelWaveGAN. """ import copy import logging from typing import Any from typing import Dict from typing import List from typing import Optional import numpy as np import torch import torch.nn.functional as F from espnet2.gan_tts.hifigan.residual_block import ResidualBlock class HiFiGANGenerator(torch.nn.Module): """HiFiGAN generator module.""" def __init__( self, in_channels: int = 80, out_channels: int = 1, channels: int = 512, global_channels: int = -1, kernel_size: int = 7, upsample_scales: List[int] = [8, 8, 2, 2], upsample_kernel_sizes: List[int] = [16, 16, 4, 4], resblock_kernel_sizes: List[int] = [3, 7, 11], resblock_dilations: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], use_additional_convs: bool = True, bias: bool = True, nonlinear_activation: str = "LeakyReLU", nonlinear_activation_params: Dict[str, Any] = {"negative_slope": 0.1}, use_weight_norm: bool = True, ): """Initialize HiFiGANGenerator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. channels (int): Number of hidden representation channels. global_channels (int): Number of global conditioning channels. kernel_size (int): Kernel size of initial and final conv layer. upsample_scales (List[int]): List of upsampling scales. upsample_kernel_sizes (List[int]): List of kernel sizes for upsample layers. resblock_kernel_sizes (List[int]): List of kernel sizes for residual blocks. resblock_dilations (List[List[int]]): List of list of dilations for residual blocks. use_additional_convs (bool): Whether to use additional conv layers in residual blocks. bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (Dict[str, Any]): Hyperparameters for activation function. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() # check hyperparameters are valid assert kernel_size % 2 == 1, "Kernel size must be odd number." assert len(upsample_scales) == len(upsample_kernel_sizes) assert len(resblock_dilations) == len(resblock_kernel_sizes) # define modules self.upsample_factor = int(np.prod(upsample_scales)) self.num_upsamples = len(upsample_kernel_sizes) self.num_blocks = len(resblock_kernel_sizes) self.input_conv = torch.nn.Conv1d( in_channels, channels, kernel_size, 1, padding=(kernel_size - 1) // 2, ) self.upsamples = torch.nn.ModuleList() self.blocks = torch.nn.ModuleList() for i in range(len(upsample_kernel_sizes)): assert upsample_kernel_sizes[i] == 2 * upsample_scales[i] self.upsamples += [ torch.nn.Sequential( getattr(torch.nn, nonlinear_activation)( **nonlinear_activation_params ), torch.nn.ConvTranspose1d( channels // (2 ** i), channels // (2 ** (i + 1)), upsample_kernel_sizes[i], upsample_scales[i], padding=upsample_scales[i] // 2 + upsample_scales[i] % 2, output_padding=upsample_scales[i] % 2, ), ) ] for j in range(len(resblock_kernel_sizes)): self.blocks += [ ResidualBlock( kernel_size=resblock_kernel_sizes[j], channels=channels // (2 ** (i + 1)), dilations=resblock_dilations[j], bias=bias, use_additional_convs=use_additional_convs, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, ) ] self.output_conv = torch.nn.Sequential( # NOTE(kan-bayashi): follow official implementation but why # using different slope parameter here? (0.1 vs. 0.01) torch.nn.LeakyReLU(), torch.nn.Conv1d( channels // (2 ** (i + 1)), out_channels, kernel_size, 1, padding=(kernel_size - 1) // 2, ), torch.nn.Tanh(), ) if global_channels > 0: self.global_conv = torch.nn.Conv1d(global_channels, channels, 1) # apply weight norm if use_weight_norm: self.apply_weight_norm() # reset parameters self.reset_parameters() def forward( self, c: torch.Tensor, g: Optional[torch.Tensor] = None ) -> torch.Tensor: """Calculate forward propagation. Args: c (Tensor): Input tensor (B, in_channels, T). g (Optional[Tensor]): Global conditioning tensor (B, global_channels, 1). Returns: Tensor: Output tensor (B, out_channels, T). """ c = self.input_conv(c) if g is not None: c = c + self.global_conv(g) for i in range(self.num_upsamples): c = self.upsamples[i](c) cs = 0.0 # initialize for j in range(self.num_blocks): cs += self.blocks[i * self.num_blocks + j](c) c = cs / self.num_blocks c = self.output_conv(c) return c def reset_parameters(self): """Reset parameters. This initialization follows the official implementation manner. https://github.com/jik876/hifi-gan/blob/master/models.py """ def _reset_parameters(m: torch.nn.Module): if isinstance(m, (torch.nn.Conv1d, torch.nn.ConvTranspose1d)): m.weight.data.normal_(0.0, 0.01) logging.debug(f"Reset parameters in {m}.") self.apply(_reset_parameters) def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m: torch.nn.Module): try: logging.debug(f"Weight norm is removed from {m}.") torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm) def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m: torch.nn.Module): if isinstance(m, torch.nn.Conv1d) or isinstance( m, torch.nn.ConvTranspose1d ): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) def inference( self, c: torch.Tensor, g: Optional[torch.Tensor] = None ) -> torch.Tensor: """Perform inference. Args: c (torch.Tensor): Input tensor (T, in_channels). g (Optional[Tensor]): Global conditioning tensor (global_channels, 1). Returns: Tensor: Output tensor (T ** upsample_factor, out_channels). """ if g is not None: g = g.unsqueeze(0) c = self.forward(c.transpose(1, 0).unsqueeze(0), g=g) return c.squeeze(0).transpose(1, 0) class HiFiGANPeriodDiscriminator(torch.nn.Module): """HiFiGAN period discriminator module.""" def __init__( self, in_channels: int = 1, out_channels: int = 1, period: int = 3, kernel_sizes: List[int] = [5, 3], channels: int = 32, downsample_scales: List[int] = [3, 3, 3, 3, 1], max_downsample_channels: int = 1024, bias: bool = True, nonlinear_activation: str = "LeakyReLU", nonlinear_activation_params: Dict[str, Any] = {"negative_slope": 0.1}, use_weight_norm: bool = True, use_spectral_norm: bool = False, ): """Initialize HiFiGANPeriodDiscriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. period (int): Period. kernel_sizes (list): Kernel sizes of initial conv layers and the final conv layer. channels (int): Number of initial channels. downsample_scales (List[int]): List of downsampling scales. max_downsample_channels (int): Number of maximum downsampling channels. use_additional_convs (bool): Whether to use additional conv layers in residual blocks. bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (Dict[str, Any]): Hyperparameters for activation function. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_spectral_norm (bool): Whether to use spectral norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() assert len(kernel_sizes) == 2 assert kernel_sizes[0] % 2 == 1, "Kernel size must be odd number." assert kernel_sizes[1] % 2 == 1, "Kernel size must be odd number." self.period = period self.convs = torch.nn.ModuleList() in_chs = in_channels out_chs = channels for downsample_scale in downsample_scales: self.convs += [ torch.nn.Sequential( torch.nn.Conv2d( in_chs, out_chs, (kernel_sizes[0], 1), (downsample_scale, 1), padding=((kernel_sizes[0] - 1) // 2, 0), ), getattr(torch.nn, nonlinear_activation)( **nonlinear_activation_params ), ) ] in_chs = out_chs # NOTE(kan-bayashi): Use downsample_scale + 1? out_chs = min(out_chs * 4, max_downsample_channels) self.output_conv = torch.nn.Conv2d( out_chs, out_channels, (kernel_sizes[1] - 1, 1), 1, padding=((kernel_sizes[1] - 1) // 2, 0), ) if use_weight_norm and use_spectral_norm: raise ValueError("Either use use_weight_norm or use_spectral_norm.") # apply weight norm if use_weight_norm: self.apply_weight_norm() # apply spectral norm if use_spectral_norm: self.apply_spectral_norm() def forward(self, x: torch.Tensor) -> torch.Tensor: """Calculate forward propagation. Args: c (Tensor): Input tensor (B, in_channels, T). Returns: list: List of each layer's tensors. """ # transform 1d to 2d -> (B, C, T/P, P) b, c, t = x.shape if t % self.period != 0: n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t += n_pad x = x.view(b, c, t // self.period, self.period) # forward conv outs = [] for layer in self.convs: x = layer(x) outs += [x] x = self.output_conv(x) x = torch.flatten(x, 1, -1) outs += [x] return outs def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m: torch.nn.Module): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) def apply_spectral_norm(self): """Apply spectral normalization module from all of the layers.""" def _apply_spectral_norm(m: torch.nn.Module): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.spectral_norm(m) logging.debug(f"Spectral norm is applied to {m}.") self.apply(_apply_spectral_norm) class HiFiGANMultiPeriodDiscriminator(torch.nn.Module): """HiFiGAN multi-period discriminator module.""" def __init__( self, periods: List[int] = [2, 3, 5, 7, 11], discriminator_params: Dict[str, Any] = { "in_channels": 1, "out_channels": 1, "kernel_sizes": [5, 3], "channels": 32, "downsample_scales": [3, 3, 3, 3, 1], "max_downsample_channels": 1024, "bias": True, "nonlinear_activation": "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, "use_weight_norm": True, "use_spectral_norm": False, }, ): """Initialize HiFiGANMultiPeriodDiscriminator module. Args: periods (List[int]): List of periods. discriminator_params (Dict[str, Any]): Parameters for hifi-gan period discriminator module. The period parameter will be overwritten. """ super().__init__() self.discriminators = torch.nn.ModuleList() for period in periods: params = copy.deepcopy(discriminator_params) params["period"] = period self.discriminators += [HiFiGANPeriodDiscriminator(**params)] def forward(self, x: torch.Tensor) -> torch.Tensor: """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List: List of list of each discriminator outputs, which consists of each layer output tensors. """ outs = [] for f in self.discriminators: outs += [f(x)] return outs class HiFiGANScaleDiscriminator(torch.nn.Module): """HiFi-GAN scale discriminator module.""" def __init__( self, in_channels: int = 1, out_channels: int = 1, kernel_sizes: List[int] = [15, 41, 5, 3], channels: int = 128, max_downsample_channels: int = 1024, max_groups: int = 16, bias: int = True, downsample_scales: List[int] = [2, 2, 4, 4, 1], nonlinear_activation: str = "LeakyReLU", nonlinear_activation_params: Dict[str, Any] = {"negative_slope": 0.1}, use_weight_norm: bool = True, use_spectral_norm: bool = False, ): """Initilize HiFiGAN scale discriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_sizes (List[int]): List of four kernel sizes. The first will be used for the first conv layer, and the second is for downsampling part, and the remaining two are for the last two output layers. channels (int): Initial number of channels for conv layer. max_downsample_channels (int): Maximum number of channels for downsampling layers. bias (bool): Whether to add bias parameter in convolution layers. downsample_scales (List[int]): List of downsampling scales. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (Dict[str, Any]): Hyperparameters for activation function. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_spectral_norm (bool): Whether to use spectral norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() self.layers = torch.nn.ModuleList() # check kernel size is valid assert len(kernel_sizes) == 4 for ks in kernel_sizes: assert ks % 2 == 1 # add first layer self.layers += [ torch.nn.Sequential( torch.nn.Conv1d( in_channels, channels, # NOTE(kan-bayashi): Use always the same kernel size kernel_sizes[0], bias=bias, padding=(kernel_sizes[0] - 1) // 2, ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), ) ] # add downsample layers in_chs = channels out_chs = channels # NOTE(kan-bayashi): Remove hard coding? groups = 4 for downsample_scale in downsample_scales: self.layers += [ torch.nn.Sequential( torch.nn.Conv1d( in_chs, out_chs, kernel_size=kernel_sizes[1], stride=downsample_scale, padding=(kernel_sizes[1] - 1) // 2, groups=groups, bias=bias, ), getattr(torch.nn, nonlinear_activation)( **nonlinear_activation_params ), ) ] in_chs = out_chs # NOTE(kan-bayashi): Remove hard coding? out_chs = min(in_chs * 2, max_downsample_channels) # NOTE(kan-bayashi): Remove hard coding? groups = min(groups * 4, max_groups) # add final layers out_chs = min(in_chs * 2, max_downsample_channels) self.layers += [ torch.nn.Sequential( torch.nn.Conv1d( in_chs, out_chs, kernel_size=kernel_sizes[2], stride=1, padding=(kernel_sizes[2] - 1) // 2, bias=bias, ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), ) ] self.layers += [ torch.nn.Conv1d( out_chs, out_channels, kernel_size=kernel_sizes[3], stride=1, padding=(kernel_sizes[3] - 1) // 2, bias=bias, ), ] if use_weight_norm and use_spectral_norm: raise ValueError("Either use use_weight_norm or use_spectral_norm.") # apply weight norm if use_weight_norm: self.apply_weight_norm() # apply spectral norm if use_spectral_norm: self.apply_spectral_norm() def forward(self, x: torch.Tensor) -> List[torch.Tensor]: """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List[Tensor]: List of output tensors of each layer. """ outs = [] for f in self.layers: x = f(x) outs += [x] return outs def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m: torch.nn.Module): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) def apply_spectral_norm(self): """Apply spectral normalization module from all of the layers.""" def _apply_spectral_norm(m: torch.nn.Module): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.spectral_norm(m) logging.debug(f"Spectral norm is applied to {m}.") self.apply(_apply_spectral_norm) class HiFiGANMultiScaleDiscriminator(torch.nn.Module): """HiFi-GAN multi-scale discriminator module.""" def __init__( self, scales: int = 3, downsample_pooling: str = "AvgPool1d", # follow the official implementation setting downsample_pooling_params: Dict[str, Any] = { "kernel_size": 4, "stride": 2, "padding": 2, }, discriminator_params: Dict[str, Any] = { "in_channels": 1, "out_channels": 1, "kernel_sizes": [15, 41, 5, 3], "channels": 128, "max_downsample_channels": 1024, "max_groups": 16, "bias": True, "downsample_scales": [2, 2, 4, 4, 1], "nonlinear_activation": "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, }, follow_official_norm: bool = False, ): """Initilize HiFiGAN multi-scale discriminator module. Args: scales (int): Number of multi-scales. downsample_pooling (str): Pooling module name for downsampling of the inputs. downsample_pooling_params (Dict[str, Any]): Parameters for the above pooling module. discriminator_params (Dict[str, Any]): Parameters for hifi-gan scale discriminator module. follow_official_norm (bool): Whether to follow the norm setting of the official implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm. """ super().__init__() self.discriminators = torch.nn.ModuleList() # add discriminators for i in range(scales): params = copy.deepcopy(discriminator_params) if follow_official_norm: if i == 0: params["use_weight_norm"] = False params["use_spectral_norm"] = True else: params["use_weight_norm"] = True params["use_spectral_norm"] = False self.discriminators += [HiFiGANScaleDiscriminator(**params)] self.pooling = None if scales > 1: self.pooling = getattr(torch.nn, downsample_pooling)( **downsample_pooling_params ) def forward(self, x: torch.Tensor) -> List[List[torch.Tensor]]: """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List[List[torch.Tensor]]: List of list of each discriminator outputs, which consists of eachlayer output tensors. """ outs = [] for f in self.discriminators: outs += [f(x)] if self.pooling is not None: x = self.pooling(x) return outs class HiFiGANMultiScaleMultiPeriodDiscriminator(torch.nn.Module): """HiFi-GAN multi-scale + multi-period discriminator module.""" def __init__( self, # Multi-scale discriminator related scales: int = 3, scale_downsample_pooling: str = "AvgPool1d", scale_downsample_pooling_params: Dict[str, Any] = { "kernel_size": 4, "stride": 2, "padding": 2, }, scale_discriminator_params: Dict[str, Any] = { "in_channels": 1, "out_channels": 1, "kernel_sizes": [15, 41, 5, 3], "channels": 128, "max_downsample_channels": 1024, "max_groups": 16, "bias": True, "downsample_scales": [2, 2, 4, 4, 1], "nonlinear_activation": "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, }, follow_official_norm: bool = True, # Multi-period discriminator related periods: List[int] = [2, 3, 5, 7, 11], period_discriminator_params: Dict[str, Any] = { "in_channels": 1, "out_channels": 1, "kernel_sizes": [5, 3], "channels": 32, "downsample_scales": [3, 3, 3, 3, 1], "max_downsample_channels": 1024, "bias": True, "nonlinear_activation": "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, "use_weight_norm": True, "use_spectral_norm": False, }, ): """Initilize HiFiGAN multi-scale + multi-period discriminator module. Args: scales (int): Number of multi-scales. scale_downsample_pooling (str): Pooling module name for downsampling of the inputs. scale_downsample_pooling_params (dict): Parameters for the above pooling module. scale_discriminator_params (dict): Parameters for hifi-gan scale discriminator module. follow_official_norm (bool): Whether to follow the norm setting of the official implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm. periods (list): List of periods. period_discriminator_params (dict): Parameters for hifi-gan period discriminator module. The period parameter will be overwritten. """ super().__init__() self.msd = HiFiGANMultiScaleDiscriminator( scales=scales, downsample_pooling=scale_downsample_pooling, downsample_pooling_params=scale_downsample_pooling_params, discriminator_params=scale_discriminator_params, follow_official_norm=follow_official_norm, ) self.mpd = HiFiGANMultiPeriodDiscriminator( periods=periods, discriminator_params=period_discriminator_params, ) def forward(self, x: torch.Tensor) -> List[List[torch.Tensor]]: """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List[List[Tensor]]: List of list of each discriminator outputs, which consists of each layer output tensors. Multi scale and multi period ones are concatenated. """ msd_outs = self.msd(x) mpd_outs = self.mpd(x) return msd_outs + mpd_outs
[ "torch.nn.ConvTranspose1d", "torch.nn.ModuleList", "torch.nn.Conv1d", "torch.nn.utils.remove_weight_norm", "torch.nn.Tanh", "torch.nn.LeakyReLU", "torch.nn.utils.weight_norm", "torch.nn.Conv2d", "torch.nn.utils.spectral_norm", "torch.flatten", "torch.nn.functional.pad" ]
1.1.0
Gold-Sea/espnet
f31fc9a832801ef725a003e97ab7a5496046dc66
1.2
import torch.nn as nn class Actor(nn.Module): """Actor neural network. Parameters ---------- nn : class Torch neural network class Returns ------- array 1-D An array containing the action for a given state """ def __init__(self, n_states, n_actions, config): super(Actor, self).__init__() self.net = nn.Sequential(nn.Linear(n_states, 128), nn.Linear(128, 128), nn.Linear(128, 128), nn.Linear(128, n_actions)) def forward(self, state): action = self.net(state) return action class Critic(nn.Module): """A critic neural network. Parameters ---------- nn : class Torch neural network class Returns ------- float The value of a given state """ def __init__(self, n_states, config): super(Critic, self).__init__() self.net = nn.Sequential(nn.Linear(n_states, 128), nn.Linear(128, 128), nn.Linear(128, 128), nn.Linear(128, 1)) def forward(self, state): value = self.net(state) return value
[ "torch.nn.Linear" ]
1.2.0
janiapurv/swarm-reinforcement-learning
118c952f96e0c6cc093996fa1c76e7cc8a544bad
1.6
# author: github/zabir-nabil # relevant imports import os import cv2 import pydicom import pandas as pd import numpy as np # import tensorflow as tf # import matplotlib.pyplot as plt # torch dataset import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import random from tqdm import tqdm # k-fold from sklearn.model_selection import KFold # hyperparam object from config import HyperP hyp = HyperP(model_type = "singlemodal_ct") # slope prediction # seed seed = hyp.seed random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) # tf.random.set_seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # path root_path = hyp.data_folder # ../input/osic-pulmonary-fibrosis-progression train = pd.read_csv(f'{root_path}/train.csv') train_vol = pd.read_csv(f'{hyp.ct_tab_feature_csv}') train['Volume'] = 2000. for i in range(len(train)): pid = train.iloc[i]['Patient'] try: train.at[i, 'Volume'] = train_vol[train_vol['Patient']==pid].iloc[0]['Volume'] except: print('bug at volume') # tabular feature generation def get_tab(df): # passing a zero vector, no features encoded return np.zeros(5, dtype=np.float) vector = [(df.Age.values[0] - train.Age.values.mean()) / train.Age.values.std()] # df.Age.values[0].mean(), df.Age.values[0].std() if df.Sex.values[0] == 'Male': vector.append(0) else: vector.append(1) if df.SmokingStatus.values[0] == 'Never smoked': vector.extend([0,0]) elif df.SmokingStatus.values[0] == 'Ex-smoker': vector.extend([1,1]) elif df.SmokingStatus.values[0] == 'Currently smokes': vector.extend([0,1]) else: vector.extend([1,0]) # this is useless vector.append((df.Volume.values[0] - train.Volume.values.mean()) / train.Volume.values.std()) return np.array(vector) A = {} # the slopes TAB = {} # tabular features P = [] # patient IDs for i, p in tqdm(enumerate(train.Patient.unique())): sub = train.loc[train.Patient == p, :] fvc = sub.FVC.values weeks = sub.Weeks.values c = np.vstack([weeks, np.ones(len(weeks))]).T a, _ = np.linalg.lstsq(c, fvc)[0] # we calculate the best slope with least square # ref: https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html A[p] = a TAB[p] = get_tab(sub) P.append(p) class OSICData(Dataset): BAD_ID = ['ID00011637202177653955184', 'ID00052637202186188008618'] def __init__(self, keys, a, tab): self.keys = [k for k in keys if k not in self.BAD_ID] self.a = a self.tab = tab self.train_data = {} for p in train.Patient.values: p_n = len(os.listdir(f'{root_path}/train/{p}/')) self.train_data[p] = os.listdir(f'{root_path}/train/{p}/')[int( hyp.strip_ct * p_n):-int( hyp.strip_ct * p_n)] # removing first and last 15% slices def __len__(self): return len(self.keys) def get_img(self, path): d = pydicom.dcmread(path) return cv2.resize(d.pixel_array / 2**11, (512, 512)) # maybe bug in resize def __getitem__(self, idx): x = [] a, tab = [], [] k = self.keys[idx] # instead of random id send a specific id # np.random.choice(self.keys, 1)[0] try: i = np.random.choice(self.train_data[k], size=1)[0] # print(i) cp = f'{root_path}/train/{k}/{i}' #print(cp) img = self.get_img(cp) x.append(img) a.append(self.a[k]) tab.append(self.tab[k]) except: print('failed') print(k, i) x, a, tab = torch.tensor(x, dtype=torch.float32), torch.tensor(a, dtype=torch.float32), torch.tensor(tab, dtype=torch.float32) tab = torch.squeeze(tab, axis=0) return [x, tab] , a, k # k for patient id from torchvision import models from torch import nn from efficientnet_pytorch import EfficientNet from efficientnet_pytorch.utils import Conv2dStaticSamePadding class Identity(nn.Module): # credit: ptrblck def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Self_Attn(nn.Module): """ Self attention Layer""" def __init__(self,in_dim): super(Self_Attn,self).__init__() self.chanel_in = in_dim self.query_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1) self.key_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim//8 , kernel_size= 1) self.value_conv = nn.Conv2d(in_channels = in_dim , out_channels = in_dim , kernel_size= 1) self.gamma = nn.Parameter(torch.rand(1)) # random initialization self.softmax = nn.Softmax(dim=-1) # def forward(self,x): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ m_batchsize,C,width ,height = x.size() proj_query = self.query_conv(x).view(m_batchsize,-1,width*height).permute(0,2,1) # B X CX(N) proj_key = self.key_conv(x).view(m_batchsize,-1,width*height) # B X C x (*W*H) energy = torch.bmm(proj_query,proj_key) # transpose check attention = self.softmax(energy) # BX (N) X (N) proj_value = self.value_conv(x).view(m_batchsize,-1,width*height) # B X C X N out = torch.bmm(proj_value,attention.permute(0,2,1) ) out = out.view(m_batchsize,C,width,height) out = self.gamma*out + x return out # , attention # only based on best config of b2 class TabCT(nn.Module): def __init__(self, cnn, attn_filters, fc_dim, n_attn_layers): super(TabCT, self).__init__() # CT features cnn_dict = {'resnet18': models.resnet18, 'resnet34': models.resnet34, 'resnet50': models.resnet50, 'resnet101': models.resnet101, 'resnet152': models.resnet152, 'resnext50': models.resnext50_32x4d, 'resnext101': models.resnext101_32x8d} # feature dim self.out_dict = {'resnet18': 512, 'resnet34': 512, 'resnet50': 2048, 'resnet101': 2048, 'resnet152': 2048, 'resnext50': 2048, 'resnext101': 2048, "efnb0": 1280, "efnb1": 1280, "efnb2": 1408, "efnb3": 1536, "efnb4": 1792, "efnb5": 2048, "efnb6": 2304, "efnb7": 2560} self.n_tab = hyp.n_tab # n tabular features self.attn_filters = attn_filters self.fc_dim = fc_dim self.n_attn_layers = n_attn_layers # efficient net b2 base if cnn in cnn_dict.keys(): self.ct_cnn = cnn_dict[cnn](pretrained = True) # make single channel self.ct_cnn.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) self.ct_cnn.avgpool = nn.Conv2d(self.out_dict[cnn], self.attn_filters, kernel_size=(1, 1), bias=False) self.ct_cnn.fc = nn.Identity() # 1 self attn layer [stacked] self.attn = nn.ModuleList() for _ in range(self.n_attn_layers): self.attn.append(Self_Attn(self.attn_filters)) elif 'efn' in cnn: if 'b0' in cnn: self.ct_cnn = EfficientNet.from_pretrained('efficientnet-b0') self.ct_cnn._conv_stem = Conv2dStaticSamePadding(1, 32, kernel_size = (3,3), stride = (2,2), bias = False, image_size = 512) elif 'b1' in cnn: self.ct_cnn = EfficientNet.from_pretrained('efficientnet-b1') self.ct_cnn._conv_stem = Conv2dStaticSamePadding(1, 32, kernel_size = (3,3), stride = (2,2), bias = False, image_size = 512) elif 'b2' in cnn: self.ct_cnn = EfficientNet.from_pretrained('efficientnet-b2') self.ct_cnn._conv_stem = Conv2dStaticSamePadding(1, 32, kernel_size = (3,3), stride = (2,2), bias = False, image_size = 512) elif 'b3' in cnn: self.ct_cnn = EfficientNet.from_pretrained('efficientnet-b3') self.ct_cnn._conv_stem = Conv2dStaticSamePadding(1, 40, kernel_size = (3,3), stride = (2,2), bias = False, image_size = 512) elif 'b4' in cnn: self.ct_cnn = EfficientNet.from_pretrained('efficientnet-b4') self.ct_cnn._conv_stem = Conv2dStaticSamePadding(1, 48, kernel_size = (3,3), stride = (2,2), bias = False, image_size = 512) # replace avg_pool layer # 1408 is the number of filters in last conv self.ct_cnn._avg_pooling = Conv2dStaticSamePadding(self.out_dict[ cnn.split('_')[0] ], self.attn_filters, kernel_size = (1,1), stride = (1,1), bias = False, image_size = 512) self.ct_cnn._dropout = nn.Identity() self.ct_cnn._fc = nn.Identity() self.ct_cnn._swish = nn.Identity() # 1 self attn layer [stacked] self.attn = nn.ModuleList() for _ in range(self.n_attn_layers): self.attn.append(Self_Attn(self.attn_filters)) else: raise ValueError("cnn not recognized") self.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.dropout = nn.Dropout(p=0.25) self.fc_inter = nn.Linear(self.attn_filters + self.n_tab, self.fc_dim) self.fc = nn.Linear(self.fc_dim, 1) def forward(self, x_ct, x_tab): print(x_ct.shape) ct_f = self.ct_cnn(x_ct).view(-1, self.attn_filters, 16, 16) # ct features #print(ct_f.shape) for ii in range(len(self.attn)): ct_f = self.attn[ii](ct_f) #print(ct_f.shape) ct_f = self.avgpool(ct_f).view(-1, self.attn_filters) #print(ct_f.shape) # print(x_tab.shape) # concatenate x = torch.cat((ct_f, x_tab), -1) # concat on last axis # dropout if self.training: x = self.dropout(x) x = self.fc_inter(x) x = self.fc(x) return x from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error # score calculation def score(fvc_true, fvc_pred, sigma): sigma_clip = np.maximum(sigma, 70) delta = np.abs(fvc_true - fvc_pred) delta = np.minimum(delta, 1000) sq2 = np.sqrt(2) metric = (delta / sigma_clip)*sq2 + np.log(sigma_clip* sq2) return np.mean(metric) def score_avg(p, a): # patient id, predicted a percent_true = train.Percent.values[train.Patient == p] fvc_true = train.FVC.values[train.Patient == p] weeks_true = train.Weeks.values[train.Patient == p] fvc = a * (weeks_true - weeks_true[0]) + fvc_true[0] percent = percent_true[0] - a * abs(weeks_true - weeks_true[0]) return score(fvc_true, fvc, percent) def rmse_avg(p, a): # patient id, predicted a percent_true = train.Percent.values[train.Patient == p] fvc_true = train.FVC.values[train.Patient == p] weeks_true = train.Weeks.values[train.Patient == p] fvc = a * (weeks_true - weeks_true[0]) + fvc_true[0] return mean_squared_error(fvc_true, fvc, squared = False) # hyperparams result_dir = hyp.results_dir # training only resnet models on gpu 0 train_models = hyp.train_models # 'resnext101' -> seems too heavy for 1080 # 'efnb0', 'efnb1', 'efnb2', 'efnb3', 'efnb4', 'efnb5', 'efnb6', 'efnb7' # device gpu = torch.device(f"cuda:{hyp.gpu_index}" if torch.cuda.is_available() else "cpu") nfold = hyp.nfold # hyper # removing noisy data P = [p for p in P if p not in ['ID00011637202177653955184', 'ID00052637202186188008618']] for model in train_models: for fd in hyp.fc_dim: for af in hyp.attn_filters: for nal in hyp.n_attn_layers: log = open(f"{result_dir}/{model}_fd_{fd}_af_{af}_nal_{nal}.txt", "a+") kfold =KFold(n_splits=nfold) ifold = 0 for train_index, test_index in kfold.split(P): # print(train_index, test_index) p_train = np.array(P)[train_index] p_test = np.array(P)[test_index] osic_train = OSICData(p_train, A, TAB) train_loader = DataLoader(osic_train, batch_size=hyp.batch_size, shuffle=True, num_workers=hyp.num_workers) osic_val = OSICData(p_test, A, TAB) val_loader = DataLoader(osic_val, batch_size=hyp.batch_size, shuffle=True, num_workers=hyp.num_workers) tabct = TabCT(cnn = model, fc_dim = fd, attn_filters = af, n_attn_layers = nal).to(gpu) print(f"creating {model} with {fd} feature_dim, {af} attn_filters, and {nal} n_attn_layers") print(f"fold: {ifold}") log.write(f"fold: {ifold}\n") ifold += 1 n_epochs = hyp.n_epochs # max 30 epochs, patience 5, find the suitable epoch number for later final training best_epoch = n_epochs # 30 optimizer = torch.optim.AdamW(tabct.parameters()) criterion = torch.nn.L1Loss() max_score = 99999999.0000 # here, max score ]= minimum score for epoch in range(n_epochs): # loop over the dataset multiple times running_loss = 0.0 tabct.train() for i, data in tqdm(enumerate(train_loader, 0)): [x, t], a, _ = data print(x.shape) print(t.shape) x = x.to(gpu) t = t.to(gpu) a = a.to(gpu) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = tabct(x, t) loss = criterion(outputs, a) loss.backward() optimizer.step() # print statistics running_loss += loss.item() print(f"epoch {epoch+1} train: {running_loss}") log.write(f"epoch {epoch+1} train: {running_loss}\n") running_loss = 0.0 pred_a = {} tabct.eval() for i, data in tqdm(enumerate(val_loader, 0)): [x, t], a, pid = data x = x.to(gpu) t = t.to(gpu) a = a.to(gpu) # forward outputs = tabct(x, t) loss = criterion(outputs, a) pids = pid preds_a = outputs.detach().cpu().numpy().flatten() for j, p_d in enumerate(pids): pred_a[p_d] = preds_a[j] # print statistics running_loss += loss.item() print(f"epoch {epoch+1} val: {running_loss}") log.write(f"epoch {epoch+1} val: {running_loss}\n") # score calculation print(pred_a) print(len(pred_a)) print(p_test) print(len(p_test)) score_v = 0. rmse = 0. for p in p_test: score_v += (score_avg(p, pred_a[p]))/len(p_test) rmse += (rmse_avg(p, pred_a[p]))/len(p_test) print(f"val score: {score_v}") log.write(f"val score: {score_v}\n") log.write(f"val rmse: {rmse}\n") if score_v <= max_score: torch.save({ 'epoch': epoch, 'model_state_dict': tabct.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'score': score_v }, f"{result_dir}/{model}_fd_{fd}_af_{af}_nal_{nal}.tar") max_score = score_v best_epoch = epoch + 1 # destroy model del tabct torch.cuda.empty_cache() # final training with optimized setting osic_all = OSICData(P, A, TAB) all_loader = DataLoader(osic_all, batch_size=8, shuffle=True, num_workers=hyp.num_workers) # load the best model tabct = TabCT(cnn = model, fc_dim = fd, attn_filters = af, n_attn_layers = nal).to(gpu) tabct.load_state_dict(torch.load(f"{result_dir}/{model}_fd_{fd}_af_{af}_nal_{nal}.tar")["model_state_dict"]) optimizer = torch.optim.AdamW(tabct.parameters(), lr = hyp.final_lr) # very small learning rate criterion = torch.nn.L1Loss() print(f"Final training") log.write(f"Final training\n") for epoch in range(best_epoch + 2): # loop over the dataset multiple times running_loss = 0.0 tabct.train() for i, data in tqdm(enumerate(all_loader, 0)): [x, t], a, _ = data x = x.to(gpu) t = t.to(gpu) a = a.to(gpu) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = tabct(x, t) loss = criterion(outputs, a) loss.backward() optimizer.step() # print statistics running_loss += loss.item() print(f"epoch {epoch+1} train: {running_loss}") log.write(f"epoch {epoch+1} train: {running_loss}\n") torch.save({ 'epoch': best_epoch, 'model_state_dict': tabct.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, f"{result_dir}/{model}.tar") print('Finished Training') # destroy model del tabct torch.cuda.empty_cache() # ref: https://www.kaggle.com/miklgr500/linear-decay-based-on-resnet-cnn # https://pytorch.org/docs/stable/index.html
[ "torch.nn.Linear", "torch.cat", "torch.nn.ModuleList", "torch.bmm", "torch.squeeze", "torch.cuda.is_available", "torch.load", "torch.nn.Softmax", "torch.manual_seed", "torch.tensor", "torch.utils.data.DataLoader", "torch.nn.Identity", "torch.nn.Conv2d", "torch.cuda.empty_cache", "torch.rand", "torch.nn.Dropout", "torch.nn.L1Loss", "torch.nn.AdaptiveAvgPool2d" ]
1.6.0
greenFantasy/Fibro-CoSANet
d7b472a93ae70a7355b221a820d0254c590fdf03
1.7
from argparse import ArgumentParser from typing import Tuple from warnings import warn import torch import torch.nn as nn from torch import Tensor from lasaft.data.musdb_wrapper import SingleTrackSet from lasaft.source_separation.conditioned.separation_framework import Spectrogram_based from lasaft.utils.functions import get_activation_by_name, string_to_list class Dense_CUNet(nn.Module): def __init__(self, n_fft, input_channels, internal_channels, n_blocks, n_internal_layers, mk_block_f, mk_ds_f, mk_us_f, first_conv_activation, last_activation, t_down_layers, f_down_layers, # Conditional Mechanism # control_vector_type, control_input_dim, embedding_dim, condition_to ): first_conv_activation = get_activation_by_name(first_conv_activation) last_activation = get_activation_by_name(last_activation) super(Dense_CUNet, self).__init__() '''num_block should be an odd integer''' assert n_blocks % 2 == 1 dim_f, t_down_layers, f_down_layers = self.mk_overall_structure(n_fft, internal_channels, input_channels, n_blocks, n_internal_layers, last_activation, first_conv_activation, t_down_layers, f_down_layers) self.mk_blocks(dim_f, internal_channels, mk_block_f, mk_ds_f, mk_us_f, t_down_layers) ######################### # Conditional Mechanism # ######################### assert control_vector_type in ['one_hot_mode', 'embedding'] if control_vector_type == 'one_hot_mode': if control_input_dim != embedding_dim: warn('in one_hot_mode, embedding_dim should be the same as num_targets. auto correction') embedding_dim = control_input_dim with torch.no_grad(): one_hot_weight = torch.zeros((control_input_dim, embedding_dim)) for i in range(control_input_dim): one_hot_weight[i, i] = 1. self.embedding = nn.Embedding(control_input_dim, embedding_dim, _weight=one_hot_weight) self.embedding.weight.requires_grad = True elif control_vector_type == 'embedding': self.embedding = nn.Embedding(control_input_dim, embedding_dim) # Where to condition assert condition_to in ['encoder', 'decoder', 'full'] self.is_encoder_conditioned = self.is_middle_conditioned = self.is_decoder_conditioned = False if condition_to == 'encoder': self.is_encoder_conditioned = True elif condition_to == 'decoder': self.is_decoder_conditioned = True elif condition_to == 'full': self.is_encoder_conditioned = self.is_middle_conditioned = self.is_decoder_conditioned = True else: raise NotImplementedError self.activation = self.last_conv[-1] def mk_blocks(self, dim_f, internal_channels, mk_block_f, mk_ds_f, mk_us_f, t_down_layers): f = dim_f for i in range(self.n): self.encoders.append(mk_block_f(internal_channels, internal_channels, f)) ds_layer, f = mk_ds_f(internal_channels, i, f, t_down_layers) self.downsamplings.append(ds_layer) self.mid_block = mk_block_f(internal_channels, internal_channels, f) for i in range(self.n): us_layer, f = mk_us_f(internal_channels, i, f, self.n, t_down_layers) self.upsamplings.append(us_layer) self.decoders.append(mk_block_f(2 * internal_channels, internal_channels, f)) def mk_overall_structure(self, n_fft, internal_channels, input_channels, n_blocks, n_internal_layers, last_activation, first_conv_activation, t_down_layers, f_down_layers): dim_f = n_fft // 2 input_channels = input_channels self.first_conv = nn.Sequential( nn.Conv2d( in_channels=input_channels, out_channels=internal_channels, kernel_size=(1, 2), stride=1 ), nn.BatchNorm2d(internal_channels), first_conv_activation(), ) self.encoders = nn.ModuleList() self.downsamplings = nn.ModuleList() self.decoders = nn.ModuleList() self.upsamplings = nn.ModuleList() self.last_conv = nn.Sequential( nn.Conv2d( in_channels=internal_channels, out_channels=input_channels, kernel_size=(1, 2), stride=1, padding=(0, 1) ), last_activation() ) self.n = n_blocks // 2 if t_down_layers is None: t_down_layers = list(range(self.n)) elif n_internal_layers == 'None': t_down_layers = list(range(self.n)) else: t_down_layers = string_to_list(t_down_layers) if f_down_layers is None: f_down_layers = list(range(self.n)) elif n_internal_layers == 'None': f_down_layers = list(range(self.n)) else: f_down_layers = string_to_list(f_down_layers) return dim_f, t_down_layers, f_down_layers def forward(self, input_spec, input_condition): condition_embedding = self.embedding(input_condition) gammas, betas = self.condition_generator(condition_embedding) x = self.first_conv(input_spec) encoding_outputs = [] for encoder, downsampling, gamma, beta in zip(self.encoders, self.downsamplings, gammas, betas): x = encoder(x) x = self.film(x, gamma, beta) encoding_outputs.append(x) x = downsampling(x) x = self.mid_block(x) for i in range(self.n): x = self.upsamplings[i](x) x = torch.cat((x, encoding_outputs[-i - 1]), 1) x = self.decoders[i](x) return self.last_conv(x) class Dense_CUNet_Framework(Spectrogram_based): def __init__(self, n_fft, hop_length, num_frame, spec_type, spec_est_mode, spec2spec, optimizer, lr, train_loss, val_loss ): super(Dense_CUNet_Framework, self).__init__( n_fft, hop_length, num_frame, spec_type, spec_est_mode, spec2spec, optimizer, lr, train_loss, val_loss ) def to_spec(self, input_signal) -> torch.Tensor: if self.magnitude_based: return self.stft.to_mag(input_signal).transpose(-1, -3) else: spec_complex = self.stft.to_spec_complex(input_signal) # *, N, T, 2, ch spec_complex = torch.flatten(spec_complex, start_dim=-2) # *, N, T, 2ch return spec_complex.transpose(-1, -3) # *, 2ch, T, N def forward(self, input_signal, input_condition) -> torch.Tensor: input_spec = self.to_spec(input_signal) output_spec = self.spec2spec(input_spec, input_condition) if self.masking_based: output_spec = input_spec * output_spec return output_spec def separate(self, input_signal, input_condition) -> torch.Tensor: phase = None if self.magnitude_based: mag, phase = self.stft.to_mag_phase(input_signal) input_spec = mag.transpose(-1, -3) else: spec_complex = self.stft.to_spec_complex(input_signal) # *, N, T, 2, ch spec_complex = torch.flatten(spec_complex, start_dim=-2) # *, N, T, 2ch input_spec = spec_complex.transpose(-1, -3) # *, 2ch, T, N output_spec = self.spec2spec(input_spec, input_condition) if self.masking_based: output_spec = input_spec * output_spec else: pass # Use the original output_spec output_spec = output_spec.transpose(-1, -3) if self.magnitude_based: restored = self.stft.restore_mag_phase(output_spec, phase) else: # output_spec: *, N, T, 2ch output_spec = output_spec.view(list(output_spec.shape)[:-1] + [2, -1]) # *, N, T, 2, ch restored = self.stft.restore_complex(output_spec) return restored def separate_and_return_spec(self, input_signal, input_condition) -> Tuple[Tensor, Tensor]: phase = None if self.magnitude_based: mag, phase = self.stft.to_mag_phase(input_signal) input_spec = mag.transpose(-1, -3) else: spec_complex = self.stft.to_spec_complex(input_signal) # *, N, T, 2, ch spec_complex = torch.flatten(spec_complex, start_dim=-2) # *, N, T, 2ch input_spec = spec_complex.transpose(-1, -3) # *, 2ch, T, N output_spec = self.spec2spec(input_spec, input_condition) if self.masking_based: output_spec = input_spec * output_spec else: pass # Use the original output_spec output_spec_cache = output_spec output_spec = output_spec.transpose(-1, -3) if self.magnitude_based: restored = self.stft.restore_mag_phase(output_spec, phase) else: # output_spec: *, N, T, 2ch output_spec = output_spec.view(list(output_spec.shape)[:-1] + [2, -1]) # *, N, T, 2, ch restored = self.stft.restore_complex(output_spec) return restored, output_spec_cache def separate_track(self, input_signal, target) -> torch.Tensor: import numpy as np self.eval() with torch.no_grad(): db = SingleTrackSet(input_signal, self.hop_length, self.num_frame) assert target in db.source_names separated = [] input_condition = np.array(db.source_names.index(target)) input_condition = torch.tensor(input_condition, dtype=torch.long, device=self.device).view(1) for item in db: separated.append(self.separate(item.unsqueeze(0).to(self.device), input_condition)[0] [self.trim_length:-self.trim_length].detach().cpu().numpy()) separated = np.concatenate(separated, axis=0) import soundfile soundfile.write('temp.wav', separated, 44100) return soundfile.read('temp.wav')[0] @staticmethod def add_model_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--n_blocks', type=int, default=7) parser.add_argument('--input_channels', type=int, default=4) parser.add_argument('--internal_channels', type=int, default=24) parser.add_argument('--first_conv_activation', type=str, default='relu') parser.add_argument('--last_activation', type=str, default='identity') parser.add_argument('--t_down_layers', type=tuple, default=None) parser.add_argument('--f_down_layers', type=tuple, default=None) parser.add_argument('--control_vector_type', type=str, default='embedding') parser.add_argument('--control_input_dim', type=int, default=4) parser.add_argument('--embedding_dim', type=int, default=32) parser.add_argument('--condition_to', type=str, default='decoder') return Spectrogram_based.add_model_specific_args(parser)
[ "torch.zeros", "torch.cat", "torch.nn.ModuleList", "torch.nn.BatchNorm2d", "torch.no_grad", "torch.nn.Conv2d", "torch.tensor", "torch.flatten", "torch.nn.Embedding" ]
1.7.1
YeongSeokJeong/Conditioned-Source-Separation-LaSAFT
fc06d200de0f369d447b247ca007c686583ec87a
1.7
"""recur_cnn.py Recurrent CNN models. """ import torch import torch.nn as nn class RecurCNN(nn.Module): def __init__(self, num_outputs, width, depth, in_channels): super().__init__() self.num_outputs = num_outputs self.width = width self.iters = depth - 3 self.first_layers = nn.Sequential(nn.Conv2d(in_channels, int(self.width / 2), kernel_size=3, stride=1), nn.ReLU(), nn.Conv2d(int(self.width / 2), self.width, kernel_size=3, stride=1), nn.ReLU()) self.recur_block = nn.Sequential(nn.Conv2d(self.width, self.width, kernel_size=3, stride=1, padding=1), nn.ReLU()) self.last_layers = nn.Sequential(nn.MaxPool2d(3), nn.Conv2d(self.width, 2*self.width, kernel_size=3, stride=1), nn.ReLU(), nn.MaxPool2d(3)) self.linear = nn.Linear(8 * width, num_outputs) def forward(self, x): self.thoughts = torch.zeros((self.iters, x.shape[0], self.num_outputs)).to(x.device) out = self.first_layers(x) for i in range(self.iters): out = self.recur_block(out) thought = self.last_layers(out) thought = thought.view(thought.size(0), -1) self.thoughts[i] = self.linear(thought) return self.thoughts[-1] def recur_cnn(num_outputs, depth, width, dataset): in_channels = {"CIFAR10": 3, "SVHN": 3, "EMNIST": 1}[dataset.upper()] return RecurCNN(num_outputs, width, depth, in_channels)
[ "torch.nn.Linear", "torch.zeros", "torch.nn.MaxPool2d", "torch.nn.ReLU", "torch.nn.Conv2d" ]
1.7.0
Arjung27/DeepThinking
13a2ce534bcb0b9379a22fffef52d975d650adb2
1.4
import os import time import argparse import math from numpy import finfo import torch from distributed import apply_gradient_allreduce import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler from torch.utils.data import DataLoader from model import Tacotron2 from data_utils import TextMelLoader, TextMelCollate from loss_function import Tacotron2Loss from logger import Tacotron2Logger from hparams import create_hparams from text import sequence_to_text def reduce_tensor(tensor, n_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= n_gpus return rt def init_distributed(hparams, n_gpus, rank, group_name): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group( backend=hparams.dist_backend, init_method=hparams.dist_url, world_size=n_gpus, rank=rank, group_name=group_name) print("Done initializing distributed") def prepare_dataloaders(hparams): # Get data, data loaders and collate function ready trainset = TextMelLoader(hparams.training_files, hparams) valset = TextMelLoader(hparams.validation_files, hparams) collate_fn = TextMelCollate(hparams.n_frames_per_step) if hparams.distributed_run: train_sampler = DistributedSampler(trainset) shuffle = False else: train_sampler = None shuffle = True train_loader = DataLoader(trainset, num_workers=0, shuffle=shuffle, sampler=train_sampler, batch_size=hparams.batch_size, pin_memory=False, drop_last=True, collate_fn=collate_fn) return train_loader, valset, collate_fn def prepare_directories_and_logger(output_directory, log_directory, rank): if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) logger = Tacotron2Logger(os.path.join(output_directory, log_directory)) else: logger = None return logger def load_model(hparams): model = Tacotron2(hparams).cuda() if hparams.fp16_run: model.decoder.attention_layer.score_mask_value = finfo('float16').min if hparams.distributed_run: model = apply_gradient_allreduce(model) return model def warm_start_model(checkpoint_path, model, ignore_layers): assert os.path.isfile(checkpoint_path) print("Warm starting model from checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model_dict = checkpoint_dict['state_dict'] if len(ignore_layers) > 0: model_dict = {k: v for k, v in model_dict.items() if k not in ignore_layers} dummy_dict = model.state_dict() dummy_dict.update(model_dict) model_dict = dummy_dict model.load_state_dict(model_dict) return model def load_checkpoint(checkpoint_path, model, optimizer): assert os.path.isfile(checkpoint_path) print("Loading checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model.load_state_dict(checkpoint_dict['state_dict']) optimizer.load_state_dict(checkpoint_dict['optimizer']) learning_rate = checkpoint_dict['learning_rate'] iteration = checkpoint_dict['iteration'] print("Loaded checkpoint '{}' from iteration {}" .format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, filepath): print("Saving model and optimizer state at iteration {} to {}".format( iteration, filepath)) torch.save({'iteration': iteration, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, filepath) def validate(model, criterion, valset, iteration, batch_size, n_gpus, collate_fn, logger, distributed_run, rank): """Handles all the validation scoring and printing""" model.eval() with torch.no_grad(): val_sampler = DistributedSampler(valset) if distributed_run else None val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1, shuffle=False, batch_size=batch_size, pin_memory=False, collate_fn=collate_fn) val_loss = 0.0 for i, batch in enumerate(val_loader): x, y = model.parse_batch(batch) padded_sequences = x[2].cpu().numpy() seqs = [[v for v in padded_sequence if v != 0] for padded_sequence in padded_sequences] txts = [sequence_to_text(txt) for txt in seqs] y_pred = model(x) loss = criterion(y_pred, y) if distributed_run: reduced_val_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_val_loss = loss.item() val_loss += reduced_val_loss print(f'validation step {i} -- loss: {loss}') val_loss = val_loss / (i + 1) model.train() if rank == 0: print("Validation loss {}: {:9f} ".format(iteration, val_loss)) logger.log_validation(val_loss, model, y, y_pred, iteration, txts) def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, rank, group_name, hparams): """Training and validation logging results to tensorboard and stdout Params ------ output_directory (string): directory to save checkpoints log_directory (string) directory to save tensorboard logs checkpoint_path(string): checkpoint path n_gpus (int): number of gpus rank (int): rank of current gpu hparams (object): comma separated list of "name=value" pairs. """ if hparams.distributed_run: init_distributed(hparams, n_gpus, rank, group_name) torch.manual_seed(hparams.seed) torch.cuda.manual_seed(hparams.seed) model = load_model(hparams) learning_rate = hparams.learning_rate optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=hparams.weight_decay) if hparams.fp16_run: from apex import amp model, optimizer = amp.initialize( model, optimizer, opt_level='O2') if hparams.distributed_run: model = apply_gradient_allreduce(model) criterion = Tacotron2Loss() logger = prepare_directories_and_logger( output_directory, log_directory, rank) train_loader, valset, collate_fn = prepare_dataloaders(hparams) # Load checkpoint if one exists iteration = 0 epoch_offset = 0 if checkpoint_path is not None: if warm_start: model = warm_start_model(checkpoint_path, model, hparams.ignore_layers) else: model, optimizer, _learning_rate, iteration = load_checkpoint(checkpoint_path, model, optimizer) if hparams.use_saved_learning_rate: learning_rate = _learning_rate iteration += 1 # next iteration is iteration + 1 epoch_offset = max(0, int(iteration / len(train_loader))) model.train() is_overflow = False import random # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, hparams.epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): start = time.perf_counter() for param_group in optimizer.param_groups: param_group['lr'] = learning_rate model.zero_grad() x, y = model.parse_batch(batch) if random.randint(0,50) == 34: padded_sequences = x[2].cpu().numpy() languageid = x[0].cpu().numpy() speakerid= x[1].cpu().numpy() seqs = [[v for v in padded_sequence if v != 0] for padded_sequence in padded_sequences] txts = [sequence_to_text(txt) for txt in seqs] print(f'lang: {languageid[0]}\n speakerid: {speakerid[0]}\n input_text: {txts[0]}') y_pred = model(x) loss = criterion(y_pred, y) if hparams.distributed_run: reduced_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_loss = loss.item() if hparams.fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if hparams.fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), hparams.grad_clip_thresh) is_overflow = math.isnan(grad_norm) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), hparams.grad_clip_thresh) optimizer.step() if not is_overflow and rank == 0: duration = time.perf_counter() - start print("step:{} -- train lost {:.6f} -- Grad Norm {:.6f} -- speed {:.2f}s/it".format( iteration, reduced_loss, grad_norm, duration)) logger.log_training( reduced_loss, grad_norm, learning_rate, duration, iteration) if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0) and (iteration > 100): validate(model, criterion, valset, iteration, hparams.batch_size, n_gpus, collate_fn, logger, hparams.distributed_run, rank) if rank == 0: checkpoint_path = os.path.join( output_directory, "checkpoint_{}".format(iteration)) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-o', '--output_directory', type=str,default='outdir', help='directory to save checkpoints') parser.add_argument('-l', '--log_directory', type=str,default='logdir', help='directory to save tensorboard logs') parser.add_argument('-c', '--checkpoint_path', type=str, default=None, required=False, help='checkpoint path') parser.add_argument('--warm_start', action='store_true', help='load model weights only, ignore specified layers') parser.add_argument('--n_gpus', type=int, default=1, required=False, help='number of gpus') parser.add_argument('--rank', type=int, default=0, required=False, help='rank of current gpu') parser.add_argument('--group_name', type=str, default='group_name', required=False, help='Distributed group name') parser.add_argument('--hparams', type=str, required=False, help='comma separated name=value pairs') args = parser.parse_args() hparams = create_hparams(args.hparams) torch.backends.cudnn.enabled = hparams.cudnn_enabled torch.backends.cudnn.benchmark = hparams.cudnn_benchmark print("FP16 Run:", hparams.fp16_run) print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling) print("Distributed Run:", hparams.distributed_run) print("cuDNN Enabled:", hparams.cudnn_enabled) print("cuDNN Benchmark:", hparams.cudnn_benchmark) train(args.output_directory, args.log_directory, args.checkpoint_path, args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)
[ "torch.cuda.manual_seed", "torch.distributed.init_process_group", "torch.no_grad", "torch.cuda.device_count", "torch.manual_seed", "torch.cuda.is_available", "torch.distributed.all_reduce", "torch.load", "torch.utils.data.DataLoader", "torch.utils.data.distributed.DistributedSampler" ]
1.4.0
Thien223/Multilanguage_Tacotron_2
ee93c23117b317e5f7bda95aea45bf3095893c0a
0.1
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, List, Optional, Tuple import torch from ax.core.types import TConfig, TGenMetadata from ax.models.model_utils import get_observed from ax.models.torch.botorch import BotorchModel, get_rounding_func from ax.models.torch.utils import _get_X_pending_and_observed from ax.models.torch_base import TorchModel from ax.utils.common.docutils import copy_doc from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.analytic import PosteriorMean from botorch.acquisition.cost_aware import InverseCostWeightedUtility from botorch.acquisition.fixed_feature import FixedFeatureAcquisitionFunction from botorch.acquisition.max_value_entropy_search import ( qMaxValueEntropy, qMultiFidelityMaxValueEntropy, ) from botorch.acquisition.objective import ScalarizedObjective from botorch.acquisition.utils import ( expand_trace_observations, project_to_target_fidelity, ) from botorch.exceptions.errors import UnsupportedError from botorch.models.cost import AffineFidelityCostModel from botorch.models.model import Model from botorch.optim.optimize import optimize_acqf from torch import Tensor class MaxValueEntropySearch(BotorchModel): r"""Max-value entropy search. Args: cost_intercept: The cost intercept for the affine cost of the form `cost_intercept + n`, where `n` is the number of generated points. Only used for multi-fidelity optimzation (i.e., if fidelity_features are present). linear_truncated: If `False`, use an alternate downsampling + exponential decay Kernel instead of the default `LinearTruncatedFidelityKernel` (only relevant for multi-fidelity optimization). kwargs: Model-specific kwargs. """ def __init__( self, cost_intercept: float = 1.0, linear_truncated: bool = True, **kwargs: Any ) -> None: super().__init__(linear_truncated=linear_truncated, **kwargs) self.cost_intercept = cost_intercept @copy_doc(TorchModel.gen) def gen( self, n: int, bounds: List, objective_weights: Tensor, outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, linear_constraints: Optional[Tuple[Tensor, Tensor]] = None, fixed_features: Optional[Dict[int, float]] = None, pending_observations: Optional[List[Tensor]] = None, model_gen_options: Optional[TConfig] = None, rounding_func: Optional[Callable[[Tensor], Tensor]] = None, target_fidelities: Optional[Dict[int, float]] = None, ) -> Tuple[Tensor, Tensor, TGenMetadata]: if linear_constraints is not None or outcome_constraints is not None: raise UnsupportedError( "Constraints are not yet supported by max-value entropy search!" ) if len(objective_weights) > 1: raise UnsupportedError( "Models with multiple outcomes are not yet supported by MES!" ) options = model_gen_options or {} acf_options = options.get("acquisition_function_kwargs", {}) optimizer_options = options.get("optimizer_kwargs", {}) X_pending, X_observed = _get_X_pending_and_observed( Xs=self.Xs, pending_observations=pending_observations, objective_weights=objective_weights, outcome_constraints=outcome_constraints, bounds=bounds, linear_constraints=linear_constraints, fixed_features=fixed_features, ) # get the acquisition function num_fantasies = acf_options.get("num_fantasies", 16) num_mv_samples = acf_options.get("num_mv_samples", 10) num_y_samples = acf_options.get("num_y_samples", 128) candidate_size = acf_options.get("candidate_size", 1000) num_restarts = optimizer_options.get("num_restarts", 40) raw_samples = optimizer_options.get("raw_samples", 1024) # generate the discrete points in the design space to sample max values bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device) bounds_ = bounds_.transpose(0, 1) candidate_set = torch.rand(candidate_size, bounds_.size(1)) candidate_set = bounds_[0] + (bounds_[1] - bounds_[0]) * candidate_set acq_function = _instantiate_MES( model=self.model, # pyre-ignore: [6] candidate_set=candidate_set, num_fantasies=num_fantasies, num_trace_observations=options.get("num_trace_observations", 0), num_mv_samples=num_mv_samples, num_y_samples=num_y_samples, X_pending=X_pending, maximize=True if objective_weights[0] == 1 else False, target_fidelities=target_fidelities, fidelity_weights=options.get("fidelity_weights"), cost_intercept=self.cost_intercept, ) # optimize and get new points botorch_rounding_func = get_rounding_func(rounding_func) candidates, _ = optimize_acqf( acq_function=acq_function, bounds=bounds_, q=n, inequality_constraints=None, fixed_features=fixed_features, post_processing_func=botorch_rounding_func, num_restarts=num_restarts, raw_samples=raw_samples, options={ "batch_limit": optimizer_options.get("batch_limit", 8), "maxiter": optimizer_options.get("maxiter", 200), "method": "L-BFGS-B", "nonnegative": optimizer_options.get("nonnegative", False), }, sequential=True, ) new_x = candidates.detach().cpu() return new_x, torch.ones(n, dtype=self.dtype), {} def best_point( self, bounds: List[Tuple[float, float]], objective_weights: Tensor, outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, linear_constraints: Optional[Tuple[Tensor, Tensor]] = None, fixed_features: Optional[Dict[int, float]] = None, model_gen_options: Optional[TConfig] = None, target_fidelities: Optional[Dict[int, float]] = None, ) -> Optional[Tensor]: """ Identify the current best point, satisfying the constraints in the same format as to gen. Return None if no such point can be identified. Args: bounds: A list of (lower, upper) tuples for each column of X. objective_weights: The objective is to maximize a weighted sum of the columns of f(x). These are the weights. outcome_constraints: A tuple of (A, b). For k outcome constraints and m outputs at f(x), A is (k x m) and b is (k x 1) such that A f(x) <= b. linear_constraints: A tuple of (A, b). For k linear constraints on d-dimensional x, A is (k x d) and b is (k x 1) such that A x <= b. fixed_features: A map {feature_index: value} for features that should be fixed to a particular value in the best point. model_gen_options: A config dictionary that can contain model-specific options. target_fidelities: A map {feature_index: value} of fidelity feature column indices to their respective target fidelities. Used for multi-fidelity optimization. Returns: d-tensor of the best point. """ if linear_constraints is not None or outcome_constraints is not None: raise UnsupportedError( "Constraints are not yet supported by max-value entropy search!" ) options = model_gen_options or {} fixed_features = fixed_features or {} optimizer_options = options.get("optimizer_kwargs", {}) X_observed = get_observed( Xs=self.Xs, objective_weights=objective_weights, outcome_constraints=outcome_constraints, ) acq_function, non_fixed_idcs = self._get_best_point_acqf( X_observed=X_observed, # pyre-ignore: [6] objective_weights=objective_weights, fixed_features=fixed_features, target_fidelities=target_fidelities, ) return_best_only = optimizer_options.get("return_best_only", True) bounds_ = torch.tensor(bounds, dtype=self.dtype, device=self.device) bounds_ = bounds_.transpose(0, 1) if non_fixed_idcs is not None: bounds_ = bounds_[..., non_fixed_idcs] candidates, _ = optimize_acqf( acq_function=acq_function, bounds=bounds_, q=1, num_restarts=optimizer_options.get("num_restarts", 60), raw_samples=optimizer_options.get("raw_samples", 1024), inequality_constraints=None, fixed_features=None, # handled inside the acquisition function options={ "batch_limit": optimizer_options.get("batch_limit", 8), "maxiter": optimizer_options.get("maxiter", 200), "nonnegative": optimizer_options.get("nonnegative", False), "method": "L-BFGS-B", }, return_best_only=return_best_only, ) rec_point = candidates.detach().cpu() if isinstance(acq_function, FixedFeatureAcquisitionFunction): rec_point = acq_function._construct_X_full(rec_point) if return_best_only: rec_point = rec_point.view(-1) return rec_point def _get_best_point_acqf( self, X_observed: Tensor, objective_weights: Tensor, fixed_features: Optional[Dict[int, float]] = None, target_fidelities: Optional[Dict[int, float]] = None, ) -> Tuple[AcquisitionFunction, Optional[List[int]]]: fixed_features = fixed_features or {} target_fidelities = target_fidelities or {} objective = ScalarizedObjective(weights=objective_weights) acq_function = PosteriorMean( model=self.model, objective=objective # pyre-ignore: [6] ) if self.fidelity_features: # we need to optimize at the target fidelities if any(f in self.fidelity_features for f in fixed_features): raise RuntimeError("Fixed features cannot also be fidelity features") elif not set(self.fidelity_features) == set(target_fidelities): raise RuntimeError( "Must provide a target fidelity for every fidelity feature" ) # make sure to not modify fixed_features in-place fixed_features = {**fixed_features, **target_fidelities} elif target_fidelities: raise RuntimeError( "Must specify fidelity_features in fit() when using target fidelities" ) if fixed_features: acq_function = FixedFeatureAcquisitionFunction( acq_function=acq_function, d=X_observed.size(-1), columns=list(fixed_features.keys()), values=list(fixed_features.values()), ) non_fixed_idcs = [ i for i in range(self.Xs[0].size(-1)) if i not in fixed_features ] else: non_fixed_idcs = None return acq_function, non_fixed_idcs def _instantiate_MES( model: Model, candidate_set: Tensor, num_fantasies: int = 16, num_mv_samples: int = 10, num_y_samples: int = 128, use_gumbel: bool = True, X_pending: Optional[Tensor] = None, maximize: bool = True, num_trace_observations: int = 0, target_fidelities: Optional[Dict[int, float]] = None, fidelity_weights: Optional[Dict[int, float]] = None, cost_intercept: float = 1.0, ) -> qMaxValueEntropy: if target_fidelities: if fidelity_weights is None: fidelity_weights = {f: 1.0 for f in target_fidelities} if not set(target_fidelities) == set(fidelity_weights): raise RuntimeError( "Must provide the same indices for target_fidelities " f"({set(target_fidelities)}) and fidelity_weights " f" ({set(fidelity_weights)})." ) cost_model = AffineFidelityCostModel( fidelity_weights=fidelity_weights, fixed_cost=cost_intercept ) cost_aware_utility = InverseCostWeightedUtility(cost_model=cost_model) def project(X: Tensor) -> Tensor: return project_to_target_fidelity(X=X, target_fidelities=target_fidelities) def expand(X: Tensor) -> Tensor: return expand_trace_observations( X=X, fidelity_dims=sorted(target_fidelities), # pyre-ignore: [6] num_trace_obs=num_trace_observations, ) return qMultiFidelityMaxValueEntropy( model=model, candidate_set=candidate_set, num_fantasies=num_fantasies, num_mv_samples=num_mv_samples, num_y_samples=num_y_samples, X_pending=X_pending, maximize=maximize, cost_aware_utility=cost_aware_utility, project=project, expand=expand, ) return qMaxValueEntropy( model=model, candidate_set=candidate_set, num_fantasies=num_fantasies, num_mv_samples=num_mv_samples, num_y_samples=num_y_samples, X_pending=X_pending, maximize=maximize, )
[ "torch.tensor", "torch.ones" ]
0.1.3
xiecong/Ax
f6501807bbc6bb952d636391231ebeb10646769a
1.7
import random import torch from torch import nn from recbole.model.abstract_recommender import SequentialRecommender from recbole.model.loss import BPRLoss import torch.nn.functional as F class ComiRec_SA(SequentialRecommender): r"""ComiRec_SA is a model that incorporate Capsule Network for recommendation. Note: Regarding the innovation of this article,we can only achieve the data augmentation mentioned in the paper and directly output the embedding of the item, in order that the generation method we used is common to other sequential models. """ def __init__(self, config, dataset): super(ComiRec_SA, self).__init__(config, dataset) # load parameters info # self.ITEM_SEQ = self.ITEM_ID + config['LIST_SUFFIX'] # self.ITEM_SEQ_LEN = config['ITEM_LIST_LENGTH_FIELD'] # self.embedding_size = config['embedding_size'] self.hidden_size = config['hidden_size'] # hidden_size就是embedding_size self.interest_num = config['interest_num'] self.num_heads = config['interest_num'] self.loss_type = config['loss_type'] self.hard_readout = config['hard_readout'] self.add_pos = True # self.add_pos = config['add_pos'] # bool值, 默认为True self.item_embedding = nn.Embedding(self.n_items, self.hidden_size, padding_idx=0) if self.add_pos: self.position_embedding = nn.Parameter( torch.Tensor(1, self.max_seq_length, self.hidden_size)) # 论文中max_seq_len是50 self.linear1 = nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size * 4, bias=False), nn.Tanh() ) self.linear2 = nn.Linear(self.hidden_size * 4, self.num_heads, bias=False) if self.loss_type == 'BPR': self.loss_fct = BPRLoss() elif self.loss_type == 'CE': self.loss_fct = nn.CrossEntropyLoss() else: raise NotImplementedError("Make sure 'loss_type' in ['BPR', 'CE']!") for weight in self.parameters(): torch.nn.init.kaiming_normal_(weight) def forward(self, item_seq): mask = item_seq.clone() mask[mask != 0] = 1 # batch_size * max_len item_seq_emb = self.item_embedding(item_seq) # [batch_size, max_len, embedding_size] item_seq_emb = item_seq_emb * torch.reshape(mask, (-1, self.max_seq_length, 1)) # mask_shape = batch_size * max_seq_len item_seq_emb = torch.reshape(item_seq_emb, (-1, self.max_seq_length, self.hidden_size)) if self.add_pos: # 位置嵌入堆叠一个batch,然后历史物品嵌入相加 item_seq_emb_pos = item_seq_emb + self.position_embedding.repeat(item_seq_emb.shape[0], 1, 1) else: item_seq_emb_pos = item_seq_emb # shape=(batch_size, maxlen, hidden_size*4) item_hidden = self.linear1(item_seq_emb_pos) # shape=(batch_size, maxlen, interest_num) item_att_w = self.linear2(item_hidden) # shape=(batch_size, interest_num, maxlen) item_att_w = torch.transpose(item_att_w, 2, 1).contiguous() # shape=(batch_size, interest_num, maxlen) atten_mask = torch.unsqueeze(mask, dim=1).repeat(1, self.interest_num, 1) paddings = torch.ones_like(atten_mask, dtype=torch.float) * (-2 ** 32 + 1) # softmax之后无限接近于0 item_att_w = torch.where(torch.eq(atten_mask, 0), paddings, item_att_w) item_att_w = F.softmax(item_att_w, dim=-1) # 矩阵A,shape=(batch_size, interest_num, maxlen) ''' torch.where(condition, x, y)-->Tensor condition是条件,x和y是同shape的矩阵,针对矩阵的某个位置元素,满足条件就返回x,不满足就返回y torch.eq(a, b) 比较两个矩阵中所有对应位置的元素是否相同 举例: torch.eq(a, b) tensor([[False, False, False], [False, False, False]]) ''' # interest_emb,即论文中的部分 interest_emb = torch.matmul(item_att_w, item_seq_emb) # item_att_w shape=(batch_size, interest_num, maxlen) # item_seq_emb shape=(batch_size, maxlen, embedding_dim) embedding_dim 就是 hidden_size # shape=(batch_size, interest_num, embedding_dim) # 用户多兴趣向量 user_eb = interest_emb # shape=(batch_size, interest_num, embedding_dim) return user_eb def calculate_loss(self, interaction): item_seq = interaction[self.ITEM_SEQ] # 这是一个tensor item_seq_len = interaction[self.ITEM_SEQ_LEN] # 这是一个tensor ''' 关于interaction: interaction是一个字典, 举个例子: interaction=Interaction({'4': torch.zeros(5), '3': torch.zeros(7)})(Interaction在recbole.data.interaction中) 输出: The batch_size of interaction: 7 4, torch.Size([5]), cpu, torch.float32 3, torch.Size([7]), cpu, torch.float32 interaction['4'] ==>形式等价于上面 interaction[self.ITEM_SEQ] = tensor([0., 0., 0., 0., 0.]) batch_size取最大值,这里最大的是7,取7【注:batch_size表示第0维】 ''' # seq_output = self.forward(item_seq, item_seq_len) # k = random.choice((range(4, item_seq.shape[0]) # k = random.choice((range(4, len(list(item_seq))))) seq_output = self.forward(item_seq) pos_items = interaction[self.POS_ITEM_ID] # POS_ITEM_ID就是item_id, 就是labels if self.loss_type == 'BPR': neg_items = interaction[self.NEG_ITEM_ID] pos_items_emb = self.item_embedding(pos_items) neg_items_emb = self.item_embedding(neg_items) pos_score = torch.sum(seq_output * pos_items_emb, dim=-1) # [B] neg_score = torch.sum(seq_output * neg_items_emb, dim=-1) # [B] loss = self.loss_fct(pos_score, neg_score) return loss else: # self.loss_type = 'CE' test_item_emb = self.item_embedding.weight logits = torch.matmul(seq_output, test_item_emb.transpose(0, 1)) loss = self.loss_fct(logits.sum(1), pos_items) # loss = self.loss_fct(logits, pos_items.unsqueeze(0).repeat(1683, 1).T) return loss def predict(self, interaction): item_seq = interaction[self.ITEM_SEQ] # shape=(batch_size,max_len) test_item = interaction[self.ITEM_ID] seq_output = self.forward(item_seq) label_eb = self.item_embedding(test_item) atten = torch.matmul(seq_output, # shape=(batch_size, interest_num, hidden_size) torch.reshape(label_eb, (-1, self.hidden_size, 1)) # shape=(batch_size, hidden_size, 1) ) # shape=(batch_size, interest_num, 1) atten = F.softmax(torch.pow(torch.reshape(atten, (-1, self.interest_num)), 1), dim=-1) # shape=(batch_size, interest_num) if self.hard_readout: # 选取interest_num个兴趣胶囊中的一个,MIND和ComiRec都是用的这种方式 readout = torch.reshape(seq_output, (-1, self.hidden_size))[ (torch.argmax(atten, dim=-1) + torch.arange(label_eb.shape[0]) * self.interest_num).long()] else: # 综合interest_num个兴趣胶囊,论文及代码实现中没有使用这种方法 readout = torch.matmul(torch.reshape(atten, (label_eb.shape[0], 1, self.interest_num)), seq_output) # shape=(batch_size, 1, interest_num) # shape=(batch_size, interest_num, hidden_size) # shape=(batch_size, 1, hidden_size) readout = torch.reshape(readout, (seq_output.shape[0], self.hidden_size)) # shape=(batch_size, hidden_size) # scores是vu堆叠成的矩阵(一个batch的vu)(vu可以说就是最终的用户嵌入) scores = readout.sum(dim=1) # [B] return scores def full_sort_predict(self, interaction): # interaction是一个字典 item_seq = interaction[self.ITEM_SEQ] # shape=(batch_size,max_len) test_item = interaction[self.ITEM_ID] # batch_size * n item_seq_len = interaction[self.ITEM_SEQ_LEN] # shape=(batch_size, seq_len) # k = random.choice((range(4, item_seq.shape[0]) # k = random.choice(range(4, item_seq.shape[0])) # label_seq = [] # mask = [] # if k >= item_seq_len: # label_seq.append(list(item_seq.numpy().keys())[k - item_seq_len:k]) # mask.append(list(item_seq.numpy().keys())[[1.0] * item_seq_len]) # else: # label_seq.append(list(item_seq.numpy().keys())[:k] + [0] * (item_seq_len - k)) # mask.append(list(item_seq.numpy().keys())[[1.0] * k + [0.0] * (item_seq_len - k)]) # label_seq = list(map(float, label_seq)) # mask = list(map(float, mask)) # label_seq = torch.tensor(label_seq) # mask = torch.tensor(mask) seq_output = self.forward(item_seq) # 这里seq_output就是user_eb # 这个模型训练过程中label是可见的,此处的item_eb就是label物品的嵌入 label_eb = self.item_embedding(test_item) atten = torch.matmul(seq_output, # shape=(batch_size, interest_num, hidden_size) torch.reshape(label_eb, (-1, self.hidden_size, 1)) # shape=(batch_size, hidden_size, 1) ) # shape=(batch_size, interest_num, 1) atten = F.softmax(torch.pow(torch.reshape(atten, (-1, self.interest_num)), 1), dim=-1) # shape=(batch_size, interest_num) if self.hard_readout: # 选取interest_num个兴趣胶囊中的一个,MIND和ComiRec都是用的这种方式 readout = torch.reshape(seq_output, (-1, self.hidden_size))[ (torch.argmax(atten, dim=-1) + torch.arange(label_eb.shape[0]) * self.interest_num).long()] else: # 综合interest_num个兴趣胶囊,论文及代码实现中没有使用这种方法 readout = torch.matmul(torch.reshape(atten, (label_eb.shape[0], 1, self.interest_num)), seq_output) # shape=(batch_size, 1, interest_num) # shape=(batch_size, interest_num, hidden_size) # shape=(batch_size, 1, hidden_size) readout = torch.reshape(readout, (seq_output.shape[0], self.hidden_size)) # shape=(batch_size, hidden_size) # scores是vu堆叠成的矩阵(一个batch的vu)(vu可以说就是最终的用户嵌入) all_items = self.item_embedding.weight scores = torch.matmul(readout, all_items.transpose(1, 0)) # (batch_size, n) return scores
[ "torch.nn.Linear", "torch.argmax", "torch.eq", "torch.arange", "torch.nn.Tanh", "torch.nn.CrossEntropyLoss", "torch.nn.init.kaiming_normal_", "torch.unsqueeze", "torch.sum", "torch.ones_like", "torch.nn.functional.softmax", "torch.transpose", "torch.Tensor", "torch.matmul", "torch.nn.Embedding", "torch.reshape" ]
1.7.0
leelige/RecBole
66eb93d7b6f416cd0f603a0a5cf2bef94e80f658
1.1
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Shigeki Karita # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Decoder definition.""" import logging from typing import Any from typing import List from typing import Tuple import torch from espnet.nets.pytorch_backend.nets_utils import rename_state_dict from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention from espnet.nets.pytorch_backend.transformer.decoder_layer import DecoderLayer from espnet.nets.pytorch_backend.transformer.dynamic_conv import DynamicConvolution from espnet.nets.pytorch_backend.transformer.dynamic_conv2d import DynamicConvolution2D from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm from espnet.nets.pytorch_backend.transformer.lightconv import LightweightConvolution from espnet.nets.pytorch_backend.transformer.lightconv2d import LightweightConvolution2D from espnet.nets.pytorch_backend.transformer.mask import subsequent_mask from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import ( PositionwiseFeedForward, # noqa: H301 ) from espnet.nets.pytorch_backend.transformer.repeat import repeat from espnet.nets.scorer_interface import BatchScorerInterface def _pre_hook( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): # https://github.com/espnet/espnet/commit/3d422f6de8d4f03673b89e1caef698745ec749ea#diff-bffb1396f038b317b2b64dd96e6d3563 rename_state_dict(prefix + "output_norm.", prefix + "after_norm.", state_dict) class Decoder(BatchScorerInterface, torch.nn.Module): """Transfomer decoder module. Args: odim (int): Output diminsion. self_attention_layer_type (str): Self-attention layer type. attention_dim (int): Dimention of attention. attention_heads (int): The number of heads of multi head attention. conv_wshare (int): The number of kernel of convolution. Only used in self_attention_layer_type == "lightconv*" or "dynamiconv*". conv_kernel_length (Union[int, str]): Kernel size str of convolution (e.g. 71_71_71_71_71_71). Only used in self_attention_layer_type == "lightconv*" or "dynamiconv*". conv_usebias (bool): Whether to use bias in convolution. Only used in self_attention_layer_type == "lightconv*" or "dynamiconv*". linear_units (int): The number of units of position-wise feed forward. num_blocks (int): The number of decoder blocks. dropout_rate (float): Dropout rate. positional_dropout_rate (float): Dropout rate after adding positional encoding. self_attention_dropout_rate (float): Dropout rate in self-attention. src_attention_dropout_rate (float): Dropout rate in source-attention. input_layer (Union[str, torch.nn.Module]): Input layer type. use_output_layer (bool): Whether to use output layer. pos_enc_class (torch.nn.Module): Positional encoding module class. `PositionalEncoding `or `ScaledPositionalEncoding` normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) """ def __init__( self, odim, selfattention_layer_type="selfattn", attention_dim=256, attention_heads=4, conv_wshare=4, conv_kernel_length=11, conv_usebias=False, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, self_attention_dropout_rate=0.0, src_attention_dropout_rate=0.0, input_layer="embed", use_output_layer=True, pos_enc_class=PositionalEncoding, normalize_before=True, concat_after=False, ): """Construct an Decoder object.""" torch.nn.Module.__init__(self) self._register_load_state_dict_pre_hook(_pre_hook) if input_layer == "embed": self.embed = torch.nn.Sequential( torch.nn.Embedding(odim, attention_dim), pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer == "linear": self.embed = torch.nn.Sequential( torch.nn.Linear(odim, attention_dim), torch.nn.LayerNorm(attention_dim), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), pos_enc_class(attention_dim, positional_dropout_rate), ) elif isinstance(input_layer, torch.nn.Module): self.embed = torch.nn.Sequential( input_layer, pos_enc_class(attention_dim, positional_dropout_rate) ) else: raise NotImplementedError("only `embed` or torch.nn.Module is supported.") self.normalize_before = normalize_before # self-attention module definition if selfattention_layer_type == "selfattn": logging.info("decoder self-attention layer type = self-attention") decoder_selfattn_layer = MultiHeadedAttention decoder_selfattn_layer_args = [ ( attention_heads, attention_dim, self_attention_dropout_rate, ) ] * num_blocks elif selfattention_layer_type == "lightconv": logging.info("decoder self-attention layer type = lightweight convolution") decoder_selfattn_layer = LightweightConvolution decoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, self_attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), True, conv_usebias, ) for lnum in range(num_blocks) ] elif selfattention_layer_type == "lightconv2d": logging.info( "decoder self-attention layer " "type = lightweight convolution 2-dimentional" ) decoder_selfattn_layer = LightweightConvolution2D decoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, self_attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), True, conv_usebias, ) for lnum in range(num_blocks) ] elif selfattention_layer_type == "dynamicconv": logging.info("decoder self-attention layer type = dynamic convolution") decoder_selfattn_layer = DynamicConvolution decoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, self_attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), True, conv_usebias, ) for lnum in range(num_blocks) ] elif selfattention_layer_type == "dynamicconv2d": logging.info( "decoder self-attention layer type = dynamic convolution 2-dimentional" ) decoder_selfattn_layer = DynamicConvolution2D decoder_selfattn_layer_args = [ ( conv_wshare, attention_dim, self_attention_dropout_rate, int(conv_kernel_length.split("_")[lnum]), True, conv_usebias, ) for lnum in range(num_blocks) ] self.decoders = repeat( num_blocks, lambda lnum: DecoderLayer( attention_dim, decoder_selfattn_layer(*decoder_selfattn_layer_args[lnum]), MultiHeadedAttention( attention_heads, attention_dim, src_attention_dropout_rate ), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), dropout_rate, normalize_before, concat_after, ), ) self.selfattention_layer_type = selfattention_layer_type if self.normalize_before: self.after_norm = LayerNorm(attention_dim) if use_output_layer: self.output_layer = torch.nn.Linear(attention_dim, odim) else: self.output_layer = None def forward(self, tgt, tgt_mask, memory, memory_mask): #print("in forward") """Forward decoder. Args: tgt (torch.Tensor): Input token ids, int64 (#batch, maxlen_out) if input_layer == "embed". In the other case, input tensor (#batch, maxlen_out, odim). tgt_mask (torch.Tensor): Input token mask (#batch, maxlen_out). dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+ (include 1.2). memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, feat). memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+ (include 1.2). Returns: torch.Tensor: Decoded token score before softmax (#batch, maxlen_out, odim) if use_output_layer is True. In the other case,final block outputs (#batch, maxlen_out, attention_dim). torch.Tensor: Score mask before softmax (#batch, maxlen_out). """ x = self.embed(tgt) x, tgt_mask, memory, memory_mask = self.decoders( x, tgt_mask, memory, memory_mask ) if self.normalize_before: x = self.after_norm(x) if self.output_layer is not None: x = self.output_layer(x) #logging.info( "Shape x{}".format(x.shape)) #logging.info( "Shape mask {}".format(tgt_mask.shape)) return x, tgt_mask def forward_one_step(self, tgt, tgt_mask, memory, cache=None): """Forward one step. Args: tgt (torch.Tensor): Input token ids, int64 (#batch, maxlen_out). tgt_mask (torch.Tensor): Input token mask (#batch, maxlen_out). dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+ (include 1.2). memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, feat). cache (List[torch.Tensor]): List of cached tensors. Each tensor shape should be (#batch, maxlen_out - 1, size). Returns: torch.Tensor: Output tensor (batch, maxlen_out, odim). List[torch.Tensor]: List of cache tensors of each decoder layer. """ #print("in forward") x = self.embed(tgt) if cache is None: cache = [None] * len(self.decoders) new_cache = [] for c, decoder in zip(cache, self.decoders): x, tgt_mask, memory, memory_mask = decoder( x, tgt_mask, memory, None, cache=c ) new_cache.append(x) if self.normalize_before: y = self.after_norm(x[:, -1]) else: y = x[:, -1] if self.output_layer is not None: y = torch.log_softmax(self.output_layer(y), dim=-1) #logging.info( "Shape x{}".format(x.shape)) #logging.info( "Shape mask {}".format(tgt_mask.shape)) return y, new_cache # beam search API (see ScorerInterface) def score(self, ys, state, x): """Score.""" ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0) if self.selfattention_layer_type != "selfattn": # TODO(karita): implement cache logging.warning( f"{self.selfattention_layer_type} does not support cached decoding." ) state = None logp, state = self.forward_one_step( ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state ) return logp.squeeze(0), state # batch beam search API (see BatchScorerInterface) def batch_score( self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor ) -> Tuple[torch.Tensor, List[Any]]: """Score new token batch (required). Args: ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen). states (List[Any]): Scorer states for prefix tokens. xs (torch.Tensor): The encoder feature that generates ys (n_batch, xlen, n_feat). Returns: tuple[torch.Tensor, List[Any]]: Tuple of batchfied scores for next token with shape of `(n_batch, n_vocab)` and next state list for ys. """ # merge states n_batch = len(ys) n_layers = len(self.decoders) if states[0] is None: batch_state = None else: # transpose state of [batch, layer] into [layer, batch] batch_state = [ torch.stack([states[b][i] for b in range(n_batch)]) for i in range(n_layers) ] # batch decoding ys_mask = subsequent_mask(ys.size(-1), device=xs.device).unsqueeze(0) logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state) # transpose state of [layer, batch] into [batch, layer] state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)] return logp, state_list
[ "torch.nn.Linear", "torch.nn.Dropout", "torch.nn.LayerNorm", "torch.nn.Module.__init__", "torch.nn.ReLU", "torch.nn.Embedding" ]
1.1.0
drumilT/espnet
944de63aa9ede23cefca7b3d092150ea52e7f1b2
1.3
import numpy as np import scipy.signal from gym.spaces import Box, Discrete import torch import torch.nn as nn from torch.distributions.normal import Normal from torch.distributions.categorical import Categorical def combined_shape(length, shape=None): if shape is None: return (length,) return (length, shape) if np.isscalar(shape) else (length, *shape) def count_vars(module): return sum([np.prod(p.shape) for p in module.parameters()]) def discount_cumsum(x, discount): """ magic from rllab for computing discounted cumulative sums of vectors. input: vector x, [x0, x1, x2] output: [x0 + discount * x1 + discount^2 * x2, x1 + discount * x2, x2] """ return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1] class Actor(nn.Module): def _distribution(self, obs): raise NotImplementedError def _log_prob_from_distribution(self, pi, act): raise NotImplementedError def forward(self, obs, act=None): # Produce action distributions for given observations, and # optionally compute the log likelihood of given actions under # those distributions. pi = self._distribution(obs) logp_a = None if act is not None: logp_a = self._log_prob_from_distribution(pi, act) return pi, logp_a class CategoricalActor(Actor): def __init__(self, obs_dim, act_dim, model, model_kwargs): super().__init__() model_kwargs["input_sizes"] = [obs_dim] + model_kwargs["input_sizes"] model_kwargs["output_sizes"] += [act_dim] self.logits_net = model(**model_kwargs) def _distribution(self, obs): logits = self.logits_net(obs) return Categorical(logits=logits) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act) class GaussianActor(Actor): def __init__(self, obs_dim, act_dim, model, model_kwargs): super().__init__() log_std = -0.5 * np.ones(act_dim, dtype=np.float32) self.log_std = torch.nn.Parameter(torch.as_tensor(log_std)) model_kwargs["input_sizes"] = [obs_dim] + model_kwargs["input_sizes"] model_kwargs["output_sizes"] += [act_dim] self.mu_net = model(**model_kwargs) def _distribution(self, obs): mu = self.mu_net(obs) std = torch.exp(self.log_std) return Normal(mu, std) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act).sum(axis=-1) # Last axis sum needed for Torch Normal distribution class Critic(nn.Module): def __init__(self, obs_dim, model, model_kwargs): super().__init__() model_kwargs["input_sizes"] = [obs_dim] + model_kwargs["input_sizes"] model_kwargs["output_sizes"] += [1] self.v_net = model(**model_kwargs) def forward(self, obs): return torch.squeeze(self.v_net(obs), -1) # Critical to ensure v has right shape. class ActorCritic(nn.Module): def __init__(self, observation_space, action_space, model, model_kwargs_getter): super().__init__() obs_dim = observation_space.shape[0] # policy builder depends on action space if isinstance(action_space, Box): self.pi = GaussianActor(obs_dim, action_space.shape[0], model, model_kwargs_getter()) elif isinstance(action_space, Discrete): self.pi = CategoricalActor(obs_dim, action_space.n, model, model_kwargs_getter()) # build value function self.v = Critic(obs_dim, model, model_kwargs_getter()) def step(self, obs): with torch.no_grad(): pi = self.pi._distribution(obs) a = pi.sample() logp_a = self.pi._log_prob_from_distribution(pi, a) v = self.v(obs) return a.cpu().numpy(), v.cpu().numpy(), logp_a.cpu().numpy() def act(self, obs): return self.step(obs)[0]
[ "torch.no_grad", "torch.distributions.normal.Normal", "torch.distributions.categorical.Categorical", "torch.as_tensor", "torch.exp" ]
1.3.1
florianHoidn/spinningup
419ca30849aae11ac53b9421094d2212d4cad652
1.5
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from parameterized import parameterized from monai.networks.nets import HighResNet from tests.utils import test_script_save device = "cuda" if torch.cuda.is_available() else "cpu" TEST_CASE_1 = [ # single channel 3D, batch 16 {"spatial_dims": 3, "in_channels": 1, "out_channels": 3, "norm_type": "instance"}, (16, 1, 32, 24, 48), (16, 3, 32, 24, 48), ] TEST_CASE_2 = [ # 4-channel 3D, batch 1 {"spatial_dims": 3, "in_channels": 4, "out_channels": 3, "acti_type": "relu6"}, (1, 4, 17, 64, 48), (1, 3, 17, 64, 48), ] TEST_CASE_3 = [ # 4-channel 2D, batch 7 {"spatial_dims": 2, "in_channels": 4, "out_channels": 3}, (7, 4, 64, 48), (7, 3, 64, 48), ] TEST_CASE_4 = [ # 4-channel 1D, batch 16 {"spatial_dims": 1, "in_channels": 4, "out_channels": 3, "dropout_prob": 0.1}, (16, 4, 63), (16, 3, 63), ] class TestHighResNet(unittest.TestCase): @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4]) def test_shape(self, input_param, input_shape, expected_shape): net = HighResNet(**input_param).to(device) net.eval() with torch.no_grad(): result = net.forward(torch.randn(input_shape).to(device)) self.assertEqual(result.shape, expected_shape) def test_script(self): input_param, input_shape, expected_shape = TEST_CASE_1 net = HighResNet(**input_param) test_data = torch.randn(input_shape) out_orig, out_reloaded = test_script_save(net, test_data) assert torch.allclose(out_orig, out_reloaded) if __name__ == "__main__": unittest.main()
[ "torch.allclose", "torch.no_grad", "torch.cuda.is_available", "torch.randn" ]
1.5
LucasFidon/MONAI
a7ef9d567775dd7a222f93bab08191c0e3532c92
1.0
""" Config class for search/augment """ import argparse import os import genotypes as gt from functools import partial import torch def get_parser(name): """ make default formatted parser """ parser = argparse.ArgumentParser(name, formatter_class=argparse.ArgumentDefaultsHelpFormatter) # print default value always parser.add_argument = partial(parser.add_argument, help=' ') return parser def parse_gpus(gpus): if gpus == 'all': return list(range(torch.cuda.device_count())) else: return [int(s) for s in gpus.split(',')] class BaseConfig(argparse.Namespace): def print_params(self, prtf=print): prtf("") prtf("Parameters:") for attr, value in sorted(vars(self).items()): prtf("{}={}".format(attr.upper(), value)) prtf("") def as_markdown(self): """ Return configs as markdown format """ text = "|name|value| \n|-|-| \n" for attr, value in sorted(vars(self).items()): text += "|{}|{}| \n".format(attr, value) return text class SearchConfig(BaseConfig): def build_parser(self): parser = get_parser("Search config") parser.add_argument('--name', required=True) parser.add_argument('--dataset', required=True, help='CIFAR10 / MNIST / FashionMNIST') parser.add_argument('--batch_size', type=int, default=64, help='batch size') parser.add_argument('--w_lr', type=float, default=0.025, help='lr for weights') parser.add_argument('--w_lr_min', type=float, default=0.001, help='minimum lr for weights') parser.add_argument('--w_momentum', type=float, default=0.9, help='momentum for weights') parser.add_argument('--w_weight_decay', type=float, default=3e-4, help='weight decay for weights') parser.add_argument('--w_grad_clip', type=float, default=5., help='gradient clipping for weights') parser.add_argument('--print_freq', type=int, default=50, help='print frequency') parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. ' '`all` indicates use all gpus.') parser.add_argument('--epochs', type=int, default=50, help='# of training epochs') parser.add_argument('--init_channels', type=int, default=16) parser.add_argument('--layers', type=int, default=8, help='# of layers') parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--workers', type=int, default=4, help='# of workers') parser.add_argument('--alpha_lr', type=float, default=3e-4, help='lr for alpha') parser.add_argument('--alpha_weight_decay', type=float, default=1e-3, help='weight decay for alpha') parser.add_argument('--n_nodes', type=int, default=4, help='nodes count in searched cell (without input)') parser.add_argument('--ops_set', type=int, default=1, help='operations set') parser.add_argument('--hv_type', type=int, default=1, help='') parser.add_argument('--multi_avg_rank', type=int, default=0, help='') parser.add_argument('--multi_avg_size', type=int, default=0, help='') parser.add_argument('--proxyless', action = "store_true", help='') parser.add_argument('--sbp', action = "store_true", help='') parser.add_argument('--az', action = "store_true", help='') parser.add_argument('--smart_sample', action = "store_true", help='') return parser def __init__(self): parser = self.build_parser() args = parser.parse_args() super().__init__(**vars(args)) self.data_path = './data/' self.path = os.path.join('searchs', self.name) self.plot_path = os.path.join(self.path, 'plots') self.gpus = parse_gpus(self.gpus) class AugmentConfig(BaseConfig): def build_parser(self): parser = get_parser("Augment config") parser.add_argument('--name', required=True) parser.add_argument('--dataset', required=True, help='CIFAR10 / MNIST / FashionMNIST') parser.add_argument('--batch_size', type=int, default=96, help='batch size') parser.add_argument('--lr', type=float, default=0.025, help='lr for weights') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay') parser.add_argument('--grad_clip', type=float, default=5., help='gradient clipping for weights') parser.add_argument('--print_freq', type=int, default=200, help='print frequency') parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. ' '`all` indicates use all gpus.') parser.add_argument('--epochs', type=int, default=600, help='# of training epochs') parser.add_argument('--init_channels', type=int, default=36) parser.add_argument('--layers', type=int, default=20, help='# of layers') parser.add_argument('--seed', type=int, default=2, help='random seed') parser.add_argument('--workers', type=int, default=4, help='# of workers') parser.add_argument('--aux_weight', type=float, default=0.4, help='auxiliary loss weight') parser.add_argument('--cutout_length', type=int, default=16, help='cutout length') parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path prob') parser.add_argument('--genotype', required=True, help='Cell genotype') parser.add_argument('--ops_set', type=int, default=1, help='operations set') return parser def __init__(self): parser = self.build_parser() args = parser.parse_args() super().__init__(**vars(args)) self.data_path = './data/' self.path = os.path.join('augments', self.name) self.genotype = gt.from_str(self.genotype) self.gpus = parse_gpus(self.gpus)
[ "torch.cuda.device_count" ]
1.0.0
IlyaTrofimov/pt.darts
7cda57ad6b0e5802f852c3908619ffa066b277a7
1.7
from typing import Generator, List, Union, Any import torch from torch import nn, optim, Tensor from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from torchtext.data import BucketIterator from tqdm import tqdm from src.config import Config from src.early_stopping import EarlyStopping class TrainingLoop: def __init__(self, config: Config, model: nn.Module, optimizer: optim.Optimizer, train_iterator: DataLoader, val_iterator: DataLoader): self.config = config self.model = model self.train_iterator = train_iterator self.val_iterator = val_iterator self.optimizer = optimizer # Learning rate scheduler self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, self.config.learning_rate_step_size, gamma=self.config.learning_rate_decay) # Initialize loss function self.train_losses = [] self.val_losses = [] self.test_losses = [] self.num_epochs = self.config.num_epochs # Initialize early stopping criteria self.early_stopping = EarlyStopping( model_path=self.config.model_best_checkpoint_path, patience=self.config.patience ) # update learning rate print(f"Learning rate: {self.scheduler.get_lr()[0]}") self.scheduler.step() # initialize tensorboard writer self.writer = SummaryWriter(self.config.model_checkpoint_dir) def save_latest_model_checkpoint(self, epoch: int): torch.save({ 'epoch': epoch, 'model_state_dict': self.model.state_dict(), 'optimizer_state_dict': self.optimizer.state_dict(), 'train_loss': self.train_losses[-1], 'val_loss': self.val_losses[-1], }, self.config.model_latest_checkpoint_path) def iterate_epoch(self) -> Generator[int, None, None]: for epoch in range(self.num_epochs): print(f'Starting epoch {epoch}') # Iterate over the epochs and train model here yield epoch print(f'Train loss: {self.train_losses[-1]}') print(f'Val loss: {self.val_losses[-1]}') self.early_stopping.check_early_stopping_criteria(self.model, self.optimizer, epoch, train_loss=self.train_losses[-1], val_loss=self.val_losses[-1]) if self.early_stopping.early_stop: # End epoch iteration if we meet the early stopping criteria print(f"Triggered early stopping criteria. Stopping after the {epoch}th iteration") break # Save latest model (not best) self.save_latest_model_checkpoint(epoch) def compute_loss_from_batch(self, batch: Any) -> Tensor: raise NotImplementedError("Should be implemented by parent class.") def iterate_train(self, epoch: int) -> None: epoch_train_loss = 0 self.model.train() for batch in tqdm(self.train_iterator): # batch is of type torchtext.data.batch.Batch # batch has dimension X x N where X is the max sequence length and N is the batch_size # the values in batch are the indices of the word in data_manager.source_vocab.itos # Before passing in a new instance, you need to zero out the gradients from the old instance self.model.zero_grad() loss = self.compute_loss_from_batch(batch) # Do the backward pass and update the gradient loss.backward() self.optimizer.step() # Update the total loss for the current epoch epoch_train_loss += loss.item() self.writer.add_scalar('Loss/train', epoch_train_loss, epoch) self.writer.add_scalar('Avg Loss/train', epoch_train_loss / len(self.train_iterator), epoch) # Record this epochs total loss self.train_losses.append(epoch_train_loss) def compute_loss(self, data_iterator: Union[BucketIterator, DataLoader], losses: List[int]) -> float: self.model.eval() epoch_loss = 0 for batch in tqdm(data_iterator): # Do a forward pass and compute the loss loss = self.compute_loss_from_batch(batch) epoch_loss += loss.item() losses.append(epoch_loss) return epoch_loss def compute_validation_loss(self, epoch: int) -> None: loss = self.compute_loss(self.val_iterator, self.val_losses) self.writer.add_scalar('Loss/val', loss, epoch) self.writer.add_scalar('Avg Loss/val', loss / len(self.val_iterator), epoch) def train(self): for epoch in self.iterate_epoch(): # Forward and backward pass on training data self.iterate_train(epoch) # Forward pass on validation data self.compute_validation_loss(epoch)
[ "torch.optim.lr_scheduler.StepLR", "torch.utils.tensorboard.SummaryWriter" ]
1.7.1
BushMinusZero/deep-learning-skunk-works
9178455c460940adbe6943e2b657c994da4af231
1.6
import torch from torch import nn from einops import rearrange, repeat ################################## # Linformer ################################## def get_EF(input_size, dim, method="learnable", head_dim=None, bias=True): """ Retuns the E or F matrix, initialized via xavier initialization. This is the recommended way to do it according to the authors of the paper. Includes a method for convolution, as well as a method for no additional params. """ assert method == "learnable" or method == "convolution" or method == "no_params", "The method flag needs to be either 'learnable', 'convolution', or 'no_params'!" if method == "convolution": conv = nn.Conv1d(head_dim, head_dim, kernel_size=int(input_size/dim), stride=int(input_size/dim)) return conv if method == "no_params": mat = torch.zeros((input_size, dim)) torch.nn.init.normal_(mat, mean=0.0, std=1/dim) return mat lin = nn.Linear(input_size, dim, bias) torch.nn.init.xavier_normal_(lin.weight) return lin class linformerAttention(nn.Module): def __init__( self, dim, dropout, input_size, dim_k = 20, # Probably 20? Maybe the dimantion we want K and V be full_attention = False, # If False it will use linformer implementation parameter_sharing = None, # The `parameter_sharing` flag has to be either 'none', 'headwise', 'kv', or 'layerwise'." ): super().__init__() self.dim = dim self.dropout = nn.Dropout(dropout) self.dim_k = dim_k self.full_attention = full_attention self.input_size = input_size self.print_dim = False self.E = get_EF(input_size, dim = self.dim_k, method = "learnable", head_dim = self.dim) self.F = get_EF(input_size, dim = self.dim_k, method = "learnable", head_dim = self.dim) if parameter_sharing == "none" or parameter_sharing == "headwise" else self.E self.is_proj_tensor = isinstance(self.E, torch.Tensor) def forward(self, q, k, v): if self.print_dim: print("matmul(k, e)") print("k:"+str(k.shape)) print("E:"+str(self.input_size)+", "+str(self.dim_k)) if not self.full_attention: if self.is_proj_tensor: # Always go to else self.E = self.E.to(k.device) #k = torch.matmul(k, self.E) b, h, *_ = q.shape projection_E = repeat(self.E, 'j d -> b h j d', b = b, h = h) k = torch.einsum('...di,...dj->...ij', k, projection_E) else: k = torch.einsum('...ij->...ji', k) k = self.E(k) if self.print_dim: print("matmul(q, k)") print("q:"+str(q.shape)) print("K:"+str(k.shape)) q = torch.einsum('...id,...dj->...ij', q, k) P_bar = q/torch.sqrt(torch.tensor(self.dim_k).type(q.type())).to(q.device) P_bar = P_bar.softmax(dim=-1) P_bar = self.dropout(P_bar) if not self.full_attention: if self.is_proj_tensor: # WRONG! self.F = self.F.to(v.device) v = torch.matmul(v, self.F) else: v = torch.einsum('...ij->...ji', v) v = self.F(v) out = torch.einsum('...id,...jd->...ij', P_bar, v) return out
[ "torch.nn.Linear", "torch.zeros", "torch.nn.Dropout", "torch.einsum", "torch.nn.init.normal_", "torch.tensor", "torch.nn.init.xavier_normal_", "torch.matmul" ]
1.6
MohammadrezaRezvani/performer-pytorch
347dd58111f4f79b8991f7609552203609856b4b
1.8
import numpy as np import os os.environ["TOKENIZERS_PARALLELISM"] = "false" # disable warning when using smart batching import pandas as pd from torch.utils.data import Dataset from sklearn.model_selection import StratifiedKFold from torch.utils.data import Dataset from pytorch_lightning.callbacks import ModelCheckpoint import pytorch_lightning as pl import torch from transformers import AutoTokenizer import yaml from argparse import ArgumentParser from config import CFG def prepare_args(): parser = ArgumentParser() parser.add_argument( "--config", action="store", dest="config", help="Configuration scheme", default=None, ) args = parser.parse_args() print(f'[INFO] Using configuration for {args.config}') with open(CFG.finetune_config_path) as f: cfg = yaml.load(f, Loader=yaml.FullLoader) for k, v in cfg[args.config].items(): setattr(CFG, k, v) # reference: https://www.kaggle.com/abhishek/step-1-create-folds def create_folds(df, num_splits, random_seed): # we create a new column called kfold and fill it with -1 df["kfold"] = -1 # calculate number of bins by Sturge's rule # I take the floor of the value, you can also # just round it num_bins = int(np.floor(1 + np.log2(len(df)))) # Bin values into discrete intervals. df.loc[:, "bins"] = pd.cut( df["target"], bins=num_bins, labels=False ) # initiate the kfold class from model_selection module kf = StratifiedKFold(n_splits=num_splits, shuffle=True, random_state=random_seed) # fill the new kfold column # note that, instead of targets, we use bins! for f, (t_, v_) in enumerate(kf.split(X=df, y=df.bins.values)): df.loc[v_, 'kfold'] = f # drop the bins column # df = df.drop("bins", axis=1) # return dfframe with folds return df def get_tokenizer(model_name_or_path): try: print('[INFO] Using cached tokenizer...') return AutoTokenizer.from_pretrained(model_name_or_path, local_files_only=True) except: print('[INFO] Downloading tokenizer...') return AutoTokenizer.from_pretrained(model_name_or_path) class CommonLitDataset(Dataset): def __init__(self, df, tokenizer, shuffle=False): self.df = df if shuffle: self.df = self.df.sample(frac=1, random_state=CFG.train_seed).reset_index(drop=True) self.labeled = 'target' in df.columns self.tokenizer = tokenizer def __len__(self): return len(self.df) def __getitem__(self, idx): item = self.df.iloc[idx] text = item['excerpt'] token = self.tokenizer(text, return_tensors='pt', truncation=True, padding='max_length', max_length=CFG.max_len) if self.labeled: target = item['target'] target = torch.tensor(target, dtype=torch.float) return token['input_ids'].squeeze(), token['attention_mask'].squeeze(), target else: return token['input_ids'].squeeze(), token['attention_mask'].squeeze() def log_message(msg, exp_id): dir_path = [CFG.output_dir, CFG.params_dir] if CFG.env == 'colab' else [CFG.output_dir] for path in dir_path: log_file = os.path.join(path, f'exp_{str(exp_id).zfill(3)}', f'{CFG.model_name}.txt') with open(log_file, 'a') as f: f.write(msg + '\n') if CFG.env == 'local': ''' Custom checkpoint class wrappers. ''' from typing import Any, Optional, Union from pathlib import Path from pytorch_lightning.utilities import rank_zero_deprecation # import error in kaggle from pytorch_lightning.utilities.types import STEP_OUTPUT class CustomModelCheckpointDelayedEval(ModelCheckpoint): def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, monitor: Optional[str] = None, verbose: bool = False, save_last: Optional[bool] = None, save_top_k: Optional[int] = None, save_weights_only: bool = False, mode: str = "min", auto_insert_metric_name: bool = True, every_n_train_steps: Optional[int] = None, every_n_val_epochs: Optional[int] = None, period: Optional[int] = None, train_steps = 0 ): super().__init__(dirpath=dirpath, filename=filename, monitor=monitor, verbose=verbose, save_last=save_last, save_top_k=save_top_k, save_weights_only=save_weights_only, mode=mode, auto_insert_metric_name=auto_insert_metric_name, every_n_train_steps=every_n_train_steps, every_n_val_epochs=every_n_val_epochs, period=period) # self.eval_schedule = [(0.50, 16), (0.49, 8), (0.48, 4), (0.47, 2), (-1., 1)] self.eval_interval = CFG.delayed_val_check_interval self.last_eval_step = 0 # make sure the result is consistant with different `delayed_val_check_ep` self.delayed_steps = (int(CFG.delayed_val_check_ep * train_steps) // self.eval_interval) * self.eval_interval print(f'[INFO] Delayed steps before evaluation: {self.delayed_steps}') self.val_check_mode = False def on_train_batch_end( self, trainer: 'pl.Trainer', pl_module: 'pl.LightningModule', outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: """ Save checkpoint on train batch end if we meet the criteria for `every_n_train_steps` """ if self._should_skip_saving_checkpoint(trainer): return step = trainer.global_step if step == self.delayed_steps: self.val_check_mode = True self.last_eval_step = step print('[INFO] The val check mode is turned on!') if self.val_check_mode and step == self.last_eval_step + self.eval_interval: self.last_eval_step = step trainer.run_evaluation()
[ "torch.tensor" ]
1.8.1
ofnt/Kaggle-CommonLit-Readability-6th-Place-Solution
61f5df662d8b5dfb3f80734e4444d52fe0f478cd
1.4
import torch from torchaudio_unittest.common_utils import PytorchTestCase from torchaudio_unittest.prototype.emformer_test_impl import EmformerTestImpl class EmformerFloat32CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cpu") class EmformerFloat64CPUTest(EmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cpu")
[ "torch.device" ]
1.4.0
popcornell/audio
7b6b2d000023e2aa3365b769866c5f375e0d5fda
1.4
import json import torch from parameterized import parameterized from torchaudio.models.wav2vec2 import ( wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, ) from torchaudio.models.wav2vec2.utils import import_huggingface_model from torchaudio_unittest.common_utils import ( get_asset_path, skipIfNoModule, TorchaudioTestCase, ) def _load_config(*paths): with open(f'{get_asset_path("wav2vec2", "huggingface", *paths)}.json', "r") as file_: return json.load(file_) def _name_func(testcase_func, i, param): return f"{testcase_func.__name__}_{i}_{param[0][1].__name__}" # Pretrained HF_BASE = _load_config("wav2vec2-base") HF_LARGE = _load_config("wav2vec2-large") HF_LARGE_LV60 = _load_config("wav2vec2-large-lv60") HF_LARGE_XLSR_53 = _load_config("wav2vec2-large-xlsr-53") HF_BASE_10K_VOXPOPULI = _load_config("wav2vec2-base-10k-voxpopuli") # Finetuned HF_BASE_960H = _load_config("wav2vec2-base-960h") HF_LARGE_960H = _load_config("wav2vec2-large-960h") HF_LARGE_LV60_960H = _load_config("wav2vec2-large-960h-lv60") HF_LARGE_LV60_SELF_960H = _load_config("wav2vec2-large-960h-lv60-self") HF_LARGE_XLSR_DE = _load_config("wav2vec2-large-xlsr-53-german") # Config and corresponding factory functions PRETRAIN_CONFIGS = parameterized.expand( [ (HF_BASE, wav2vec2_base), (HF_LARGE, wav2vec2_large), (HF_LARGE_LV60, wav2vec2_large_lv60k), (HF_LARGE_XLSR_53, wav2vec2_large_lv60k), (HF_BASE_10K_VOXPOPULI, wav2vec2_base), ], name_func=_name_func, ) FINETUNE_CONFIGS = parameterized.expand( [ (HF_BASE_960H, wav2vec2_base), (HF_LARGE_960H, wav2vec2_large), (HF_LARGE_LV60_960H, wav2vec2_large_lv60k), (HF_LARGE_LV60_SELF_960H, wav2vec2_large_lv60k), (HF_LARGE_XLSR_DE, wav2vec2_large_lv60k), ], name_func=_name_func, ) @skipIfNoModule("transformers") class TestHFIntegration(TorchaudioTestCase): """Test the process of importing the models from Hugging Face Transformers Test methods in this test suite check the following things 1. Models loaded with Hugging Face Transformers cane be imported. 2. The same model can be recreated without Hugging Face Transformers. """ def _get_model(self, config): # Helper function to avoid importing transformers on module scope. # Normally, we use `is_module_available` helper function to check if # the library is available, and import it on module scope if available. # However, somehow, once "transformers" is imported, `is_module_available` # starts to fail. Therefore, we defer importing "transformers" until # the actual tests are started. from transformers.models.wav2vec2 import ( Wav2Vec2Config, Wav2Vec2Model, Wav2Vec2ForCTC, ) if config["architectures"] == ["Wav2Vec2Model"]: return Wav2Vec2Model(Wav2Vec2Config(**config)) if config["architectures"] == ["Wav2Vec2ForCTC"]: return Wav2Vec2ForCTC(Wav2Vec2Config(**config)) raise ValueError(f'Unexpected arch: {config["architectures"]}') def _test_import_pretrain(self, original, imported, config): torch.manual_seed(0) # FeatureExtractor x = torch.randn(3, 1024) ref = original.feature_extractor(x).transpose(1, 2) hyp, _ = imported.feature_extractor(x, None) self.assertEqual(ref, hyp) # Feature projection x = torch.randn(3, 10, config["conv_dim"][-1]) ref = original.feature_projection(x)[0] hyp = imported.encoder.feature_projection(x) self.assertEqual(ref, hyp) # Convolutional Positional Encoder x = torch.randn(3, 256, config["hidden_size"]) ref = original.encoder.pos_conv_embed(x) hyp = imported.encoder.transformer.pos_conv_embed(x) self.assertEqual(ref, hyp) # Encoder Transformer Layer for original_, imported_ in zip(original.encoder.layers, imported.encoder.transformer.layers): b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) mask = torch.randn(b, 1, l, l) (ref,) = original_(x, attention_mask=mask, output_attentions=False) hyp = imported_(x, mask) self.assertEqual(ref, hyp) # The whole Encoder Transformer b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) ref = original.encoder(x).last_hidden_state hyp = imported.encoder.transformer(x) self.assertEqual(ref, hyp) def _test_import_finetune(self, original, imported, config): # Aux x = torch.randn(3, 10, config["hidden_size"]) ref = original.lm_head(x) hyp = imported.aux(x) self.assertEqual(ref, hyp) # The whole model without mask x = torch.randn(3, 1024) ref = original(x).logits hyp, _ = imported(x) self.assertEqual(ref, hyp) # The whole model without mask batch_size, num_frames = 3, 1024 x = torch.randn(batch_size, num_frames) ref = original(x).logits hyp, _ = imported(x) self.assertEqual(ref, hyp) # The whole model with mask batch_size, num_frames = 3, 1024 x = torch.randn(batch_size, num_frames) lengths = torch.randint( low=0, high=num_frames, size=[ batch_size, ], ) mask = torch.arange(num_frames).expand(batch_size, num_frames) < lengths[:, None] ref = original(x, attention_mask=mask).logits hyp, output_lengths = imported(x, lengths) for i, l in enumerate(output_lengths): self.assertEqual(ref[i, :l, ...], hyp[i, :l, ...]) @PRETRAIN_CONFIGS def test_import_pretrain(self, config, _): """wav2vec2 models from HF transformers can be imported and yields the same results""" original = self._get_model(config).eval() imported = import_huggingface_model(original).eval() self._test_import_pretrain(original, imported, config) @FINETUNE_CONFIGS def test_import_finetune(self, config, _): """wav2vec2 models from HF transformers can be imported and yields the same results""" original = self._get_model(config).eval() imported = import_huggingface_model(original).eval() self._test_import_pretrain(original.wav2vec2, imported, config) self._test_import_finetune(original, imported, config) def _test_recreate(self, imported, reloaded, config): torch.manual_seed(0) # FeatureExtractor x = torch.randn(3, 1024) ref, _ = imported.feature_extractor(x, None) hyp, _ = reloaded.feature_extractor(x, None) self.assertEqual(ref, hyp) # Feature projection x = torch.randn(3, 10, config["conv_dim"][-1]) ref = imported.encoder.feature_projection(x) hyp = reloaded.encoder.feature_projection(x) self.assertEqual(ref, hyp) # Convolutional Positional Encoder x = torch.randn(3, 256, config["hidden_size"]) ref = imported.encoder.transformer.pos_conv_embed(x) hyp = reloaded.encoder.transformer.pos_conv_embed(x) self.assertEqual(ref, hyp) # Encoder Transformer Layer for imported_, reloaded_ in zip(imported.encoder.transformer.layers, reloaded.encoder.transformer.layers): b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) mask = torch.randn(b, 1, l, l) ref = imported_(x, mask) hyp = reloaded_(x, mask) self.assertEqual(ref, hyp) # The whole Encoder Transformer # TODO: Add mask pattern. Expected mask shapes and values are different. b, l, e = 16, 3, config["hidden_size"] x = torch.randn(b, l, e) mask = torch.randn(b, 1, l, l) ref = imported.encoder.transformer(x) hyp = reloaded.encoder.transformer(x) self.assertEqual(ref, hyp) # Aux if imported.aux is not None: x = torch.randn(3, 10, config["hidden_size"]) ref = imported.aux(x) hyp = reloaded.aux(x) self.assertEqual(ref, hyp) # The whole model x = torch.randn(3, 1024) ref, _ = imported(x) hyp, _ = reloaded(x) self.assertEqual(ref, hyp) @PRETRAIN_CONFIGS def test_recreate_pretrain(self, config, factory_func): """Imported models can be recreated via a factory function without Hugging Face transformers.""" imported = import_huggingface_model(self._get_model(config)).eval() reloaded = factory_func() reloaded.load_state_dict(imported.state_dict()) reloaded.eval() self._test_recreate(imported, reloaded, config) @FINETUNE_CONFIGS def test_recreate_finetune(self, config, factory_func): """Imported models can be recreated via a factory function without Hugging Face transformers.""" imported = import_huggingface_model(self._get_model(config)).eval() reloaded = factory_func(aux_num_out=imported.aux.out_features) reloaded.load_state_dict(imported.state_dict()) reloaded.eval() self._test_recreate(imported, reloaded, config)
[ "torch.manual_seed", "torch.randint", "torch.randn", "torch.arange" ]
1.4.0
popcornell/audio
7b6b2d000023e2aa3365b769866c5f375e0d5fda
1.0
# coding=utf-8 # Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Longformer model. """ import math from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.nn as nn from torch.nn import CrossEntropyLoss, MSELoss from torch.nn import functional as F from ...activations import ACT2FN, gelu from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_longformer import LongformerConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LongformerConfig" _TOKENIZER_FOR_DOC = "LongformerTokenizer" LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "allenai/longformer-base-4096", "allenai/longformer-large-4096", "allenai/longformer-large-4096-finetuned-triviaqa", "allenai/longformer-base-4096-extra.pos.embd.only", "allenai/longformer-large-4096-extra.pos.embd.only", # See all Longformer models at https://huggingface.co/models?filter=longformer ] @dataclass class LongformerBaseModelOutput(ModelOutput): """ Base class for Longformer's outputs, with potential hidden states, local and global attentions. Args: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ last_hidden_state: torch.FloatTensor hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None global_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LongformerBaseModelOutputWithPooling(ModelOutput): """ Base class for Longformer's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ last_hidden_state: torch.FloatTensor pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None global_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LongformerMaskedLMOutput(ModelOutput): """ Base class for masked language models outputs. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Masked language modeling (MLM) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None global_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LongformerQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering Longformer models. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): Span-end scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None global_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LongformerSequenceClassifierOutput(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None global_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LongformerMultipleChoiceModelOutput(ModelOutput): """ Base class for outputs of multiple choice Longformer models. Args: loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): Classification loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): `num_choices` is the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None global_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LongformerTokenClassifierOutput(ModelOutput): """ Base class for outputs of token classification models. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : Classification loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None global_attentions: Optional[Tuple[torch.FloatTensor]] = None def _get_question_end_index(input_ids, sep_token_id): """ Computes the index of the first occurance of `sep_token_id`. """ sep_token_indices = (input_ids == sep_token_id).nonzero() batch_size = input_ids.shape[0] assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions" assert ( sep_token_indices.shape[0] == 3 * batch_size ), f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You might also consider to set `global_attention_mask` manually in the forward function to avoid this error." return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1] def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True): """ Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is True` else after `sep_token_id`. """ question_end_index = _get_question_end_index(input_ids, sep_token_id) question_end_index = question_end_index.unsqueeze(dim=1) # size: batch_size x 1 # bool attention mask with True in locations of global attention attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device) if before_sep_token is True: attention_mask = (attention_mask.expand_as(input_ids) < question_end_index).to(torch.uint8) else: # last token is separation token and should not be counted and in the middle are two separation tokens attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.uint8) * ( attention_mask.expand_as(input_ids) < input_ids.shape[-1] ).to(torch.uint8) return attention_mask # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask return incremental_indices.long() + padding_idx class LongformerEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor inputs_embeds: Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class LongformerSelfAttention(nn.Module): def __init__(self, config, layer_id): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_heads = config.num_attention_heads self.head_dim = int(config.hidden_size / config.num_attention_heads) self.embed_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.embed_dim) self.key = nn.Linear(config.hidden_size, self.embed_dim) self.value = nn.Linear(config.hidden_size, self.embed_dim) # separate projection layers for tokens with global attention self.query_global = nn.Linear(config.hidden_size, self.embed_dim) self.key_global = nn.Linear(config.hidden_size, self.embed_dim) self.value_global = nn.Linear(config.hidden_size, self.embed_dim) self.dropout = config.attention_probs_dropout_prob self.layer_id = layer_id attention_window = config.attention_window[self.layer_id] assert ( attention_window % 2 == 0 ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" assert ( attention_window > 0 ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" self.one_sided_attn_window_size = attention_window // 2 def forward( self, hidden_states, attention_mask=None, is_index_masked=None, is_index_global_attn=None, is_global_attn=None ): """ LongformerSelfAttention expects `len(hidden_states)` to be multiple of `attention_window`. Padding to `attention_window` happens in LongformerModel.forward to avoid redoing the padding on each layer. The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to -ve: no attention 0: local attention +ve: global attention """ hidden_states = hidden_states.transpose(0, 1) # project hidden states query_vectors = self.query(hidden_states) key_vectors = self.key(hidden_states) value_vectors = self.value(hidden_states) seq_len, batch_size, embed_dim = hidden_states.size() assert ( embed_dim == self.embed_dim ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" # normalize query query_vectors /= math.sqrt(self.head_dim) query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) attn_scores = self._sliding_chunks_query_key_matmul( query_vectors, key_vectors, self.one_sided_attn_window_size ) # values to pad for attention probs remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None] # cast to fp32/fp16 then replace 1's with -inf float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill( remove_from_windowed_attention_mask, -10000.0 ) # diagonal mask with zeros everywhere and -inf inplace of padding diagonal_mask = self._sliding_chunks_query_key_matmul( float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size ) # pad local attention probs attn_scores += diagonal_mask assert list(attn_scores.size()) == [ batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1, ], f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}" # compute local attention probs from global attention keys and contact over window dim if is_global_attn: # compute global attn indices required through out forward fn ( max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ) = self._get_global_attn_indices(is_index_global_attn) # calculate global attn probs from global key global_key_attn_scores = self._concat_with_global_key_attn_probs( query_vectors=query_vectors, key_vectors=key_vectors, max_num_global_attn_indices=max_num_global_attn_indices, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, ) # concat to local_attn_probs # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1) # free memory del global_key_attn_scores local_attn_probs_fp32 = F.softmax(attn_scores, dim=-1, dtype=torch.float32) # use fp32 for numerical stability local_attn_probs = local_attn_probs_fp32.type_as(attn_scores) # free memory del local_attn_probs_fp32 # softmax sometimes inserts NaN if all positions are masked, replace them with 0 local_attn_probs = torch.masked_fill(local_attn_probs, is_index_masked[:, :, None, None], 0.0) # apply dropout local_attn_probs = F.dropout(local_attn_probs, p=self.dropout, training=self.training) value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) # compute local attention output with global attention value and add if is_global_attn: # compute sum of global and local attn attn_output = self._compute_attn_output_with_global_indices( value_vectors=value_vectors, attn_probs=local_attn_probs, max_num_global_attn_indices=max_num_global_attn_indices, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, ) else: # compute local attn only attn_output = self._sliding_chunks_matmul_attn_probs_value( local_attn_probs, value_vectors, self.one_sided_attn_window_size ) assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size" attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous() # compute value for global attention and overwrite to attention output # TODO: remove the redundant computation if is_global_attn: global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( hidden_states=hidden_states, max_num_global_attn_indices=max_num_global_attn_indices, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, is_index_masked=is_index_masked, ) # get only non zero global attn output nonzero_global_attn_output = global_attn_output[ is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1] ] # overwrite values with global attention attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view( len(is_local_index_global_attn_nonzero[0]), -1 ) # The attention weights for tokens with global attention are # just filler values, they were never used to compute the output. # Fill with 0 now, the correct values are in 'global_attn_probs'. local_attn_probs[is_index_global_attn_nonzero] = 0 outputs = (attn_output.transpose(0, 1), local_attn_probs) return outputs + (global_attn_probs,) if is_global_attn else outputs @staticmethod def _pad_and_transpose_last_two_dims(hidden_states_padded, padding): """pads rows and then flips rows and columns""" hidden_states_padded = F.pad( hidden_states_padded, padding ) # padding value is not important because it will be overwritten hidden_states_padded = hidden_states_padded.view( *hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2) ) return hidden_states_padded @staticmethod def _pad_and_diagonalize(chunked_hidden_states): """ shift every row 1 step right, converting columns into diagonals. Example:: chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492, -1.8348, 0.7672, 0.2986, 0.0285, -0.7584, 0.4206, -0.0405, 0.1599, 2.0514, -1.1600, 0.5372, 0.2629 ] window_overlap = num_rows = 4 (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] """ total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size() chunked_hidden_states = F.pad( chunked_hidden_states, (0, window_overlap + 1) ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten chunked_hidden_states = chunked_hidden_states.view( total_num_heads, num_chunks, -1 ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap chunked_hidden_states = chunked_hidden_states[ :, :, :-window_overlap ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap chunked_hidden_states = chunked_hidden_states.view( total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] return chunked_hidden_states @staticmethod def _chunk(hidden_states, window_overlap): """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" # non-overlapping chunks of size = 2w hidden_states = hidden_states.view( hidden_states.size(0), hidden_states.size(1) // (window_overlap * 2), window_overlap * 2, hidden_states.size(2), ) # use `as_strided` to make the chunks overlap with an overlap size = window_overlap chunk_size = list(hidden_states.size()) chunk_size[1] = chunk_size[1] * 2 - 1 chunk_stride = list(hidden_states.stride()) chunk_stride[1] = chunk_stride[1] // 2 return hidden_states.as_strided(size=chunk_size, stride=chunk_stride) @staticmethod def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor: beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) beginning_mask = beginning_mask_2d[None, :, None, :] ending_mask = beginning_mask.flip(dims=(1, 3)) beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] beginning_mask = beginning_mask.expand(beginning_input.size()) beginning_input.masked_fill_(beginning_mask == 1, -float("inf")) # `== 1` converts to bool or uint8 ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] ending_mask = ending_mask.expand(ending_input.size()) ending_input.masked_fill_(ending_mask == 1, -float("inf")) # `== 1` converts to bool or uint8 def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int): """ Matrix multiplication of query and key tensors using with a sliding window attention pattern. This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an overlap of size window_overlap """ batch_size, seq_len, num_heads, head_dim = query.size() assert ( seq_len % (window_overlap * 2) == 0 ), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}" assert query.size() == key.size() chunks_count = seq_len // window_overlap - 1 # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 query = query.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) key = key.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) chunked_query = self._chunk(query, window_overlap) chunked_key = self._chunk(key, window_overlap) # matrix multiplication # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcxy: batch_size * num_heads x chunks x 2window_overlap x window_overlap chunked_attention_scores = torch.einsum("bcxd,bcyd->bcxy", (chunked_query, chunked_key)) # multiply # convert diagonals into columns diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( chunked_attention_scores, padding=(0, 0, 0, 1) ) # allocate space for the overall attention matrix where the chunks are combined. The last dimension # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to # window_overlap previous words). The following column is attention score from each word to itself, then # followed by window_overlap columns for the upper triangle. diagonal_attention_scores = diagonal_chunked_attention_scores.new_empty( (batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1) ) # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions # - copying the main diagonal and the upper triangle diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ :, :, :window_overlap, : window_overlap + 1 ] diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ :, -1, window_overlap:, : window_overlap + 1 ] # - copying the lower triangle diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ :, :, -(window_overlap + 1) : -1, window_overlap + 1 : ] diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ :, 0, : window_overlap - 1, 1 - window_overlap : ] # separate batch_size and num_heads dimensions again diagonal_attention_scores = diagonal_attention_scores.view( batch_size, num_heads, seq_len, 2 * window_overlap + 1 ).transpose(2, 1) self._mask_invalid_locations(diagonal_attention_scores, window_overlap) return diagonal_attention_scores def _sliding_chunks_matmul_attn_probs_value( self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int ): """ Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the same shape as `attn_probs` """ batch_size, seq_len, num_heads, head_dim = value.size() assert seq_len % (window_overlap * 2) == 0 assert attn_probs.size()[:3] == value.size()[:3] assert attn_probs.size(3) == 2 * window_overlap + 1 chunks_count = seq_len // window_overlap - 1 # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap chunked_attn_probs = attn_probs.transpose(1, 2).reshape( batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1 ) # group batch_size and num_heads dimensions into one value = value.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) # pad seq_len with w at the beginning of the sequence and another window overlap at the end padded_value = F.pad(value, (0, 0, window_overlap, window_overlap), value=-1) # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim) chunked_value_stride = padded_value.stride() chunked_value_stride = ( chunked_value_stride[0], window_overlap * chunked_value_stride[1], chunked_value_stride[1], chunked_value_stride[2], ) chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride) chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) @staticmethod def _get_global_attn_indices(is_index_global_attn): """ compute global attn indices required throughout forward pass """ # helper variable num_global_attn_indices = is_index_global_attn.long().sum(dim=1) # max number of global attn indices in batch max_num_global_attn_indices = num_global_attn_indices.max() # indices of global attn is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True) # helper variable is_local_index_global_attn = torch.arange( max_num_global_attn_indices, device=is_index_global_attn.device ) < num_global_attn_indices.unsqueeze(dim=-1) # location of the non-padding values within global attention indices is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True) # location of the padding values within global attention indices is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True) return ( max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ) def _concat_with_global_key_attn_probs( self, key_vectors, query_vectors, max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ): batch_size = key_vectors.shape[0] # create only global key vectors key_vectors_only_global = key_vectors.new_zeros( batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim ) key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero] # (batch_size, seq_len, num_heads, max_num_global_attn_indices) attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global)) attn_probs_from_global_key[ is_local_index_no_global_attn_nonzero[0], :, :, is_local_index_no_global_attn_nonzero[1] ] = -10000.0 return attn_probs_from_global_key def _compute_attn_output_with_global_indices( self, value_vectors, attn_probs, max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, ): batch_size = attn_probs.shape[0] # cut local attn probs to global only attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices) # get value vectors for global only value_vectors_only_global = value_vectors.new_zeros( batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim ) value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero] # use `matmul` because `einsum` crashes sometimes with fp16 # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) # compute attn output only global attn_output_only_global = torch.matmul( attn_probs_only_global.transpose(1, 2), value_vectors_only_global.transpose(1, 2) ).transpose(1, 2) # reshape attn probs attn_probs_without_global = attn_probs.narrow( -1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices ).contiguous() # compute attn output with global attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( attn_probs_without_global, value_vectors, self.one_sided_attn_window_size ) return attn_output_only_global + attn_output_without_global def _compute_global_attn_output_from_hidden( self, hidden_states, max_num_global_attn_indices, is_local_index_global_attn_nonzero, is_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, is_index_masked, ): seq_len, batch_size = hidden_states.shape[:2] # prepare global hidden states global_attn_hidden_states = hidden_states.new_zeros(max_num_global_attn_indices, batch_size, self.embed_dim) global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[ is_index_global_attn_nonzero[::-1] ] # global key, query, value global_query_vectors_only_global = self.query_global(global_attn_hidden_states) global_key_vectors = self.key_global(hidden_states) global_value_vectors = self.value_global(hidden_states) # normalize global_query_vectors_only_global /= math.sqrt(self.head_dim) # reshape global_query_vectors_only_global = ( global_query_vectors_only_global.contiguous() .view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim) .transpose(0, 1) ) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim) global_key_vectors = ( global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) ) # batch_size * self.num_heads, seq_len, head_dim) global_value_vectors = ( global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) ) # batch_size * self.num_heads, seq_len, head_dim) # compute attn scores global_attn_scores = torch.bmm(global_query_vectors_only_global, global_key_vectors.transpose(1, 2)) assert list(global_attn_scores.size()) == [ batch_size * self.num_heads, max_num_global_attn_indices, seq_len, ], f"global_attn_scores have the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is {global_attn_scores.size()}." global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) global_attn_scores[ is_local_index_no_global_attn_nonzero[0], :, is_local_index_no_global_attn_nonzero[1], : ] = -10000.0 global_attn_scores = global_attn_scores.masked_fill( is_index_masked[:, None, None, :], -10000.0, ) global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len) # compute global attn probs global_attn_probs_float = F.softmax( global_attn_scores, dim=-1, dtype=torch.float32 ) # use fp32 for numerical stability global_attn_probs = F.dropout( global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training ) # global attn output global_attn_output = torch.bmm(global_attn_probs, global_value_vectors) assert list(global_attn_output.size()) == [ batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim, ], f"global_attn_output tensor has the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is {global_attn_output.size()}." global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) global_attn_output = global_attn_output.view( batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim ) return global_attn_output, global_attn_probs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class LongformerSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LongformerAttention(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.self = LongformerSelfAttention(config, layer_id) self.output = LongformerSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, is_index_masked=None, is_index_global_attn=None, is_global_attn=None ): self_outputs = self.self( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, ) attn_output = self.output(self_outputs[0], hidden_states) outputs = (attn_output,) + self_outputs[1:] return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LongformerIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class LongformerOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LongformerLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.attention = LongformerAttention(config, layer_id) self.intermediate = LongformerIntermediate(config) self.output = LongformerOutput(config) self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 def forward( self, hidden_states, attention_mask=None, is_index_masked=None, is_index_global_attn=None, is_global_attn=None ): self_attn_outputs = self.attention( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, ) attn_output = self_attn_outputs[0] outputs = self_attn_outputs[1:] layer_output = apply_chunking_to_forward( self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output ) outputs = (layer_output,) + outputs return outputs def ff_chunk(self, attn_output): intermediate_output = self.intermediate(attn_output) layer_output = self.output(intermediate_output, attn_output) return layer_output class LongformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): is_index_masked = attention_mask < 0 is_index_global_attn = attention_mask > 0 is_global_attn = is_index_global_attn.flatten().any().item() all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # All local attentions. all_global_attentions = () if (output_attentions and is_global_attn) else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if getattr(self.config, "gradient_checkpointing", False): def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, is_global_attn) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, is_index_masked, is_index_global_attn, ) else: layer_outputs = layer_module( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, ) hidden_states = layer_outputs[0] if output_attentions: # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) all_attentions = all_attentions + (layer_outputs[1].transpose(1, 2),) if is_global_attn: # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn all_global_attentions = all_global_attentions + (layer_outputs[2].transpose(2, 3),) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None ) return LongformerBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, global_attentions=all_global_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LongformerPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Longformer class LongformerLMHead(nn.Module): """Longformer Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x class LongformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LongformerConfig base_model_prefix = "longformer" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() LONGFORMER_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.LongformerConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ LONGFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.LongformerTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to decide the attention given on each token, local attention or global attention. Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is important for task-specific finetuning because it makes the model more flexible at representing the task. For example, for classification, the <s> token should be given global attention. For QA, all question tokens should also have global attention. Please refer to the `Longformer paper <https://arxiv.org/abs/2004.05150>`__ for more details. Mask values selected in ``[0, 1]``: - 0 for local attention (a sliding window attention), - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare Longformer Model outputting raw hidden-states without any specific head on top.", LONGFORMER_START_DOCSTRING, ) class LongformerModel(LongformerPreTrainedModel): """ This class copied code from :class:`~transformers.RobertaModel` and overwrote standard self-attention with longformer self-attention to provide the ability to process long sequences following the self-attention approach described in `Longformer: the Long-Document Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer self-attention combines a local (sliding window) and global attention to extend to long documents without the O(n^2) increase in memory and compute. The self-attention module :obj:`LongformerSelfAttention` implemented here supports the combination of local and global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA kernel to be memory and compute efficient. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config if isinstance(config.attention_window, int): assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" assert config.attention_window > 0, "`config.attention_window` has to be positive" config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer else: assert len(config.attention_window) == config.num_hidden_layers, ( "`len(config.attention_window)` should equal `config.num_hidden_layers`. " f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" ) self.embeddings = LongformerEmbeddings(config) self.encoder = LongformerEncoder(config) self.pooler = LongformerPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def _pad_to_window_size( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: torch.Tensor, position_ids: torch.Tensor, inputs_embeds: torch.Tensor, pad_token_id: int, ): """A helper function to pad tokens and mask to work with implementation of Longformer self-attention.""" # padding attention_window = ( self.config.attention_window if isinstance(self.config.attention_window, int) else max(self.config.attention_window) ) assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape batch_size, seq_len = input_shape[:2] padding_len = (attention_window - seq_len % attention_window) % attention_window if padding_len > 0: logger.info( "Input ids are automatically padded from {} to {} to be a multiple of `config.attention_window`: {}".format( seq_len, seq_len + padding_len, attention_window ) ) if input_ids is not None: input_ids = F.pad(input_ids, (0, padding_len), value=pad_token_id) if position_ids is not None: # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings position_ids = F.pad(position_ids, (0, padding_len), value=pad_token_id) if inputs_embeds is not None: input_ids_padding = inputs_embeds.new_full( (batch_size, padding_len), self.config.pad_token_id, dtype=torch.long, ) inputs_embeds_padding = self.embeddings(input_ids_padding) inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) attention_mask = F.pad(attention_mask, (0, padding_len), value=False) # no attention on the padding tokens token_type_ids = F.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor): # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) # (global_attention_mask + 1) => 1 for local attention, 2 for global attention # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention if attention_mask is not None: attention_mask = attention_mask * (global_attention_mask + 1) else: # simply use `global_attention_mask` as `attention_mask` # if no `attention_mask` is given attention_mask = global_attention_mask + 1 return attention_mask @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples:: >>> import torch >>> from transformers import LongformerModel, LongformerTokenizer >>> model = LongformerModel.from_pretrained('allenai/longformer-base-4096') >>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096') >>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000) # long input document >>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 >>> # Attention mask values -- 0: no attention, 1: local attention, 2: global attention >>> attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to local attention >>> global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to global attention to be deactivated for all tokens >>> global_attention_mask[:, [1, 4, 21,]] = 1 # Set global attention to random tokens for the sake of this example ... # Usually, set global attention based on the task. For example, ... # classification: the <s> token ... # QA: question tokens ... # LM: potentially on the beginning of sentences and paragraphs >>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask) >>> sequence_output = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # merge `global_attention_mask` and `attention_mask` if global_attention_mask is not None: attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, pad_token_id=self.config.pad_token_id, ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)[ :, 0, 0, : ] embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None # undo padding if padding_len > 0: # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1) sequence_output = sequence_output[:, :-padding_len] if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return LongformerBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, global_attentions=encoder_outputs.global_attentions, ) @add_start_docstrings("""Longformer Model with a `language modeling` head on top. """, LONGFORMER_START_DOCSTRING) class LongformerForMaskedLM(LongformerPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.longformer = LongformerModel(config, add_pooling_layer=False) self.lm_head = LongformerLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Examples:: >>> import torch >>> from transformers import LongformerForMaskedLM, LongformerTokenizer >>> model = LongformerForMaskedLM.from_pretrained('allenai/longformer-base-4096') >>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096') >>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000) # long input document >>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 >>> attention_mask = None # default is local attention everywhere, which is a good choice for MaskedLM ... # check ``LongformerModel.forward`` for more details how to set `attention_mask` >>> outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids) >>> loss = outputs.loss >>> prediction_logits = output.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.longformer( input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return LongformerMaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, LONGFORMER_START_DOCSTRING, ) class LongformerForSequenceClassification(LongformerPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.longformer = LongformerModel(config, add_pooling_layer=False) self.classifier = LongformerClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="allenai/longformer-base-4096", output_type=LongformerSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if global_attention_mask is None: logger.info("Initializing global attention on CLS token...") global_attention_mask = torch.zeros_like(input_ids) # global attention on cls token global_attention_mask[:, 0] = 1 outputs = self.longformer( input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return LongformerSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class LongformerClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, hidden_states, **kwargs): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) output = self.out_proj(hidden_states) return output @add_start_docstrings( """ Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, LONGFORMER_START_DOCSTRING, ) class LongformerForQuestionAnswering(LongformerPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.longformer = LongformerModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples:: >>> from transformers import LongformerTokenizer, LongformerForQuestionAnswering >>> import torch >>> tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") >>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> encoding = tokenizer(question, text, return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> # default is local attention everywhere >>> # the forward method will automatically set global attention on question tokens >>> attention_mask = encoding["attention_mask"] >>> outputs = model(input_ids, attention_mask=attention_mask) >>> start_logits = outputs.start_logits >>> end_logits = outputs.end_logits >>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) >>> answer_tokens = all_tokens[torch.argmax(start_logits) :torch.argmax(end_logits)+1] >>> answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # remove space prepending space token """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if global_attention_mask is None: if input_ids is None: logger.warning( "It is not possible to automatically generate the `global_attention_mask` because input_ids is None. Please make sure that it is correctly set." ) else: # set global attention on question tokens automatically global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id) outputs = self.longformer( input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return LongformerQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) @add_start_docstrings( """ Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, LONGFORMER_START_DOCSTRING, ) class LongformerForTokenClassification(LongformerPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.longformer = LongformerModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="allenai/longformer-base-4096", output_type=LongformerTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.longformer( input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return LongformerTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, LONGFORMER_START_DOCSTRING, ) class LongformerForMultipleChoice(LongformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.longformer = LongformerModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward( LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="allenai/longformer-base-4096", output_type=LongformerMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, token_type_ids=None, attention_mask=None, global_attention_mask=None, labels=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] return_dict = return_dict if return_dict is not None else self.config.use_return_dict # set global attention on question tokens if global_attention_mask is None and input_ids is not None: logger.info("Initializing global attention on multiple choice...") # put global attention on all tokens after `config.sep_token_id` global_attention_mask = torch.stack( [ _compute_global_attention_mask(input_ids[:, i], self.config.sep_token_id, before_sep_token=False) for i in range(num_choices) ], dim=1, ) flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_global_attention_mask = ( global_attention_mask.view(-1, global_attention_mask.size(-1)) if global_attention_mask is not None else None ) flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.longformer( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, global_attention_mask=flat_global_attention_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return LongformerMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, )
[ "torch.nn.Linear", "torch.cat", "torch.einsum", "torch.bmm", "torch.ones", "torch.masked_fill", "torch.nn.functional.pad", "torch.nn.CrossEntropyLoss", "torch.nn.LayerNorm", "torch.tensor", "torch.zeros_like", "torch.zeros", "torch.nn.Tanh", "torch.nn.functional.dropout", "torch.nn.functional.softmax", "torch.cumsum", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.arange", "torch.tanh", "torch.nn.Embedding" ]
1.0
cgravill/transformers
90d5ab3bfe8c20d9beccfe89fdfd62a8e5ac31e5
1.7
# PyTorch import torch from torch.utils.data import IterableDataset, DataLoader from donkeycar.utils import train_test_split from donkeycar.parts.tub_v2 import Tub from torchvision import transforms from typing import List, Any from donkeycar.pipeline.types import TubRecord, TubDataset from donkeycar.pipeline.sequence import TubSequence import pytorch_lightning as pl def get_default_transform(for_video=False, for_inference=False): """ Creates a default transform to work with torchvision models Video transform: All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W), where H and W are expected to be 112, and T is a number of video frames in a clip. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.43216, 0.394666, 0.37645] and std = [0.22803, 0.22145, 0.216989]. """ mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] input_size = (224, 224) if for_video: mean = [0.43216, 0.394666, 0.37645] std = [0.22803, 0.22145, 0.216989] input_size = (112, 112) transform = transforms.Compose([ transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) return transform class TorchTubDataset(IterableDataset): ''' Loads the dataset, and creates a train/test split. ''' def __init__(self, config, records: List[TubRecord], transform=None): """Create a PyTorch Tub Dataset Args: config (object): the configuration information records (List[TubRecord]): a list of tub records transform (function, optional): a transform to apply to the data """ self.config = config # Handle the transforms if transform: self.transform = transform else: self.transform = get_default_transform() self.sequence = TubSequence(records) self.pipeline = self._create_pipeline() def _create_pipeline(self): """ This can be overridden if more complicated pipelines are required """ def y_transform(record: TubRecord): angle: float = record.underlying['user/angle'] throttle: float = record.underlying['user/throttle'] predictions = torch.tensor([angle, throttle], dtype=torch.float) # Normalize to be between [0, 1] # angle and throttle are originally between [-1, 1] predictions = (predictions + 1) / 2 return predictions def x_transform(record: TubRecord): # Loads the result of Image.open() img_arr = record.image(cached=True, as_nparray=False) return self.transform(img_arr) # Build pipeline using the transformations pipeline = self.sequence.build_pipeline(x_transform=x_transform, y_transform=y_transform) return pipeline def __iter__(self): return iter(self.pipeline) class TorchTubDataModule(pl.LightningDataModule): def __init__(self, config: Any, tub_paths: List[str], transform=None): """Create a PyTorch Lightning Data Module to contain all data loading logic Args: config (object): the configuration information tub_paths (List[str]): a list of paths to the tubs to use (minimum size of 1). Each tub path corresponds to another training run. transform (function, optional): a transform to apply to the data """ super().__init__() self.config = config self.tub_paths = tub_paths # Handle the transforms if transform: self.transform = transform else: self.transform = get_default_transform() self.tubs: List[Tub] = [Tub(tub_path, read_only=True) for tub_path in self.tub_paths] self.records: List[TubRecord] = [] self.setup() def setup(self, stage=None): """Load all the tub data and set up the datasets. Args: stage ([string], optional): setup expects a string arg stage. It is used to separate setup logic for trainer.fit and trainer.test. Defaults to None. """ # Loop through all the different tubs and load all the records for each of them for tub in self.tubs: for underlying in tub: record = TubRecord(self.config, tub.base_path, underlying=underlying) self.records.append(record) train_records, val_records = train_test_split( self.records, test_size=(1. - self.config.TRAIN_TEST_SPLIT)) assert len(val_records) > 0, "Not enough validation data. Add more data" self.train_dataset = TorchTubDataset( self.config, train_records, transform=self.transform) self.val_dataset = TorchTubDataset( self.config, val_records, transform=self.transform) def train_dataloader(self): # The number of workers are set to 0 to avoid errors on Macs and Windows # See: https://github.com/rusty1s/pytorch_geometric/issues/366#issuecomment-498022534 return DataLoader(self.train_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0) def val_dataloader(self): # The number of workers are set to 0 to avoid errors on Macs and Windows # See: https://github.com/rusty1s/pytorch_geometric/issues/366#issuecomment-498022534 return DataLoader(self.val_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0)
[ "torch.tensor", "torch.utils.data.DataLoader" ]
1.7.1
DavidMeda/donkeycar
1e42e40cb07d6f15c22461dc3f00182a7279cf0c
1.4
import torch from torch import jit class ComputeReturns(jit.ScriptModule): __constants__ = ['gamma', 'T', 'B'] def __init__(self, target_actor_net, target_critic_net, num_processes, reward_steps, batch_size, device, gamma=0.99): super(ComputeReturns, self).__init__() self.gamma = gamma self.T = reward_steps self.B = batch_size * num_processes self.register_buffer("targets", torch.zeros(self.T + 1, self.B, device=device)) self.target_actor_net = target_actor_net self.target_critic_net = target_critic_net @jit.script_method def forward(self, obs, reward_batch, mask_batch): last_action = self.target_actor_net(obs) last_value = self.target_critic_net(obs, last_action) reward_batch = (reward_batch - reward_batch.mean()) / (reward_batch.std() + 1e-6) self.targets[-1] = last_value.squeeze(-1) idx = self.T - 1 for i in range(self.T): self.targets[idx - i] = reward_batch[idx - i] + \ self.gamma * self.targets[idx - i + 1] * mask_batch[idx - i] return self.targets[:-1].detach()
[ "torch.zeros" ]
1.4.0
fengredrum/Batch_D3PG
b1128db2b22ce6ba94665a066b1cc401f33145b5
1.8
import torch import numpy as np def get_ntk_n(xloader, networks, recalbn=0, train_mode=False, num_batch=-1): device = torch.cuda.current_device() # if recalbn > 0: # network = recal_bn(network, xloader, recalbn, device) # if network_2 is not None: # network_2 = recal_bn(network_2, xloader, recalbn, device) ntks = [] for network in networks: if train_mode: network.train() else: network.eval() ###### grads = [[] for _ in range(len(networks))] for i, (inputs, _) in enumerate(xloader): if num_batch > 0 and i >= num_batch: break inputs = inputs.cuda(device=device, non_blocking=True) for net_idx, network in enumerate(networks): network.zero_grad() inputs_ = inputs.clone().cuda(device=device, non_blocking=True) logit = network(inputs_) if isinstance(logit, tuple): logit = logit[1] # 201 networks: return features and logits for _idx in range(len(inputs_)): logit[_idx:_idx+1].backward(torch.ones_like(logit[_idx:_idx+1]), retain_graph=True) grad = [] for name, W in network.named_parameters(): if 'weight' in name and W.grad is not None: grad.append(W.grad.view(-1).detach()) grads[net_idx].append(torch.cat(grad, -1)) torch.cuda.empty_cache() ###### grads = [torch.stack(_grads, 0) for _grads in grads] ntks = [torch.einsum('nc,mc->nm', [_grads, _grads]) for _grads in grads] conds = [] for ntk in ntks: eigenvalues, _ = torch.symeig(ntk) # ascending conds.append(np.nan_to_num((eigenvalues[-1] / eigenvalues[0]).item(), copy=True, nan=np.inf)) return conds
[ "torch.symeig", "torch.cat", "torch.stack", "torch.einsum", "torch.cuda.current_device", "torch.cuda.empty_cache", "torch.ones_like" ]
1.8.0
2Dooh/TF-MOENAS
edd6ec8c3f89cfbe9674873425c5056e72899edb
1.2
import time from typing import Tuple, Dict, Any import torch from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from models.forward_tacotron import ForwardTacotron from trainer.common import Averager, TTSSession, MaskedL1, to_device, np_now from utils.checkpoints import save_checkpoint from utils.dataset import get_tts_datasets from utils.decorators import ignore_exception from utils.display import stream, simple_table, plot_mel, plot_pitch from utils.dsp import DSP from utils.files import parse_schedule from utils.paths import Paths class ForwardTrainer: def __init__(self, paths: Paths, dsp: DSP, config: Dict[str, Any]) -> None: self.paths = paths self.dsp = dsp self.config = config self.train_cfg = config['forward_tacotron']['training'] self.writer = SummaryWriter(log_dir=paths.forward_log, comment='v1') self.l1_loss = MaskedL1() def train(self, model: ForwardTacotron, optimizer: Optimizer) -> None: forward_schedule = self.train_cfg['schedule'] forward_schedule = parse_schedule(forward_schedule) for i, session_params in enumerate(forward_schedule, 1): lr, max_step, bs = session_params if model.get_step() < max_step: train_set, val_set = get_tts_datasets( path=self.paths.data, batch_size=bs, r=1, model_type='forward', max_mel_len=self.train_cfg['max_mel_len'], filter_attention=self.train_cfg['filter_attention'], filter_min_alignment=self.train_cfg['min_attention_alignment'], filter_min_sharpness=self.train_cfg['min_attention_sharpness']) session = TTSSession( index=i, r=1, lr=lr, max_step=max_step, bs=bs, train_set=train_set, val_set=val_set) self.train_session(model, optimizer, session) def train_session(self, model: ForwardTacotron, optimizer: Optimizer, session: TTSSession) -> None: current_step = model.get_step() training_steps = session.max_step - current_step total_iters = len(session.train_set) epochs = training_steps // total_iters + 1 simple_table([(f'Steps', str(training_steps // 1000) + 'k Steps'), ('Batch Size', session.bs), ('Learning Rate', session.lr)]) for g in optimizer.param_groups: g['lr'] = session.lr m_loss_avg = Averager() dur_loss_avg = Averager() duration_avg = Averager() pitch_loss_avg = Averager() device = next(model.parameters()).device # use same device as model parameters for e in range(1, epochs + 1): for i, batch in enumerate(session.train_set, 1): batch = to_device(batch, device=device) start = time.time() model.train() pitch_zoneout_mask = torch.rand(batch['x'].size()) > self.train_cfg['pitch_zoneout'] energy_zoneout_mask = torch.rand(batch['x'].size()) > self.train_cfg['energy_zoneout'] pitch_target = batch['pitch'].detach().clone() energy_target = batch['energy'].detach().clone() batch['pitch'] = batch['pitch'] * pitch_zoneout_mask.to(device).float() batch['energy'] = batch['energy'] * energy_zoneout_mask.to(device).float() pred = model(batch) m1_loss = self.l1_loss(pred['mel'], batch['mel'], batch['mel_len']) m2_loss = self.l1_loss(pred['mel_post'], batch['mel'], batch['mel_len']) dur_loss = self.l1_loss(pred['dur'].unsqueeze(1), batch['dur'].unsqueeze(1), batch['x_len']) pitch_loss = self.l1_loss(pred['pitch'], pitch_target.unsqueeze(1), batch['x_len']) energy_loss = self.l1_loss(pred['energy'], energy_target.unsqueeze(1), batch['x_len']) loss = m1_loss + m2_loss \ + self.train_cfg['dur_loss_factor'] * dur_loss \ + self.train_cfg['pitch_loss_factor'] * pitch_loss \ + self.train_cfg['energy_loss_factor'] * energy_loss optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), self.train_cfg['clip_grad_norm']) optimizer.step() m_loss_avg.add(m1_loss.item() + m2_loss.item()) dur_loss_avg.add(dur_loss.item()) step = model.get_step() k = step // 1000 duration_avg.add(time.time() - start) pitch_loss_avg.add(pitch_loss.item()) speed = 1. / duration_avg.get() msg = f'| Epoch: {e}/{epochs} ({i}/{total_iters}) | Mel Loss: {m_loss_avg.get():#.4} ' \ f'| Dur Loss: {dur_loss_avg.get():#.4} | Pitch Loss: {pitch_loss_avg.get():#.4} ' \ f'| {speed:#.2} steps/s | Step: {k}k | ' if step % self.train_cfg['checkpoint_every'] == 0: save_checkpoint(model=model, optim=optimizer, config=self.config, path=self.paths.forward_checkpoints / f'forward_step{k}k.pt') if step % self.train_cfg['plot_every'] == 0: self.generate_plots(model, session) self.writer.add_scalar('Mel_Loss/train', m1_loss + m2_loss, model.get_step()) self.writer.add_scalar('Pitch_Loss/train', pitch_loss, model.get_step()) self.writer.add_scalar('Energy_Loss/train', energy_loss, model.get_step()) self.writer.add_scalar('Duration_Loss/train', dur_loss, model.get_step()) self.writer.add_scalar('Params/batch_size', session.bs, model.get_step()) self.writer.add_scalar('Params/learning_rate', session.lr, model.get_step()) stream(msg) val_out = self.evaluate(model, session.val_set) self.writer.add_scalar('Mel_Loss/val', val_out['mel_loss'], model.get_step()) self.writer.add_scalar('Duration_Loss/val', val_out['dur_loss'], model.get_step()) self.writer.add_scalar('Pitch_Loss/val', val_out['pitch_loss'], model.get_step()) self.writer.add_scalar('Energy_Loss/val', val_out['energy_loss'], model.get_step()) save_checkpoint(model=model, optim=optimizer, config=self.config, path=self.paths.forward_checkpoints / 'latest_model.pt') m_loss_avg.reset() duration_avg.reset() pitch_loss_avg.reset() print(' ') def evaluate(self, model: ForwardTacotron, val_set: DataLoader) -> Dict[str, float]: model.eval() m_val_loss = 0 dur_val_loss = 0 pitch_val_loss = 0 energy_val_loss = 0 device = next(model.parameters()).device for i, batch in enumerate(val_set, 1): batch = to_device(batch, device=device) with torch.no_grad(): pred = model(batch) m1_loss = self.l1_loss(pred['mel'], batch['mel'], batch['mel_len']) m2_loss = self.l1_loss(pred['mel_post'], batch['mel'], batch['mel_len']) dur_loss = self.l1_loss(pred['dur'].unsqueeze(1), batch['dur'].unsqueeze(1), batch['x_len']) pitch_loss = self.l1_loss(pred['pitch'], batch['pitch'].unsqueeze(1), batch['x_len']) energy_loss = self.l1_loss(pred['energy'], batch['energy'].unsqueeze(1), batch['x_len']) pitch_val_loss += pitch_loss energy_val_loss += energy_loss m_val_loss += m1_loss.item() + m2_loss.item() dur_val_loss += dur_loss.item() return { 'mel_loss': m_val_loss / len(val_set), 'dur_loss': dur_val_loss / len(val_set), 'pitch_loss': pitch_val_loss / len(val_set), 'energy_loss': energy_val_loss / len(val_set) } @ignore_exception def generate_plots(self, model: ForwardTacotron, session: TTSSession) -> None: model.eval() device = next(model.parameters()).device batch = session.val_sample batch = to_device(batch, device=device) pred = model(batch) m1_hat = np_now(pred['mel'])[0, :600, :] m2_hat = np_now(pred['mel_post'])[0, :600, :] m_target = np_now(batch['mel'])[0, :600, :] m1_hat_fig = plot_mel(m1_hat) m2_hat_fig = plot_mel(m2_hat) m_target_fig = plot_mel(m_target) pitch_fig = plot_pitch(np_now(batch['pitch'][0])) pitch_gta_fig = plot_pitch(np_now(pred['pitch'].squeeze()[0])) energy_fig = plot_pitch(np_now(batch['energy'][0])) energy_gta_fig = plot_pitch(np_now(pred['energy'].squeeze()[0])) self.writer.add_figure('Pitch/target', pitch_fig, model.step) self.writer.add_figure('Pitch/ground_truth_aligned', pitch_gta_fig, model.step) self.writer.add_figure('Energy/target', energy_fig, model.step) self.writer.add_figure('Energy/ground_truth_aligned', energy_gta_fig, model.step) self.writer.add_figure('Ground_Truth_Aligned/target', m_target_fig, model.step) self.writer.add_figure('Ground_Truth_Aligned/linear', m1_hat_fig, model.step) self.writer.add_figure('Ground_Truth_Aligned/postnet', m2_hat_fig, model.step) m2_hat_wav = self.dsp.griffinlim(m2_hat) target_wav = self.dsp.griffinlim(m_target) self.writer.add_audio( tag='Ground_Truth_Aligned/target_wav', snd_tensor=target_wav, global_step=model.step, sample_rate=self.dsp.sample_rate) self.writer.add_audio( tag='Ground_Truth_Aligned/postnet_wav', snd_tensor=m2_hat_wav, global_step=model.step, sample_rate=self.dsp.sample_rate) gen = model.generate(batch['x'][0:1, :batch['x_len'][0]]) m1_hat_fig = plot_mel(gen['mel']) m2_hat_fig = plot_mel(gen['mel_post']) pitch_gen_fig = plot_pitch(np_now(gen['pitch'].squeeze())) energy_gen_fig = plot_pitch(np_now(gen['energy'].squeeze())) self.writer.add_figure('Pitch/generated', pitch_gen_fig, model.step) self.writer.add_figure('Energy/generated', energy_gen_fig, model.step) self.writer.add_figure('Generated/target', m_target_fig, model.step) self.writer.add_figure('Generated/linear', m1_hat_fig, model.step) self.writer.add_figure('Generated/postnet', m2_hat_fig, model.step) m2_hat_wav = self.dsp.griffinlim(m2_hat) self.writer.add_audio( tag='Generated/target_wav', snd_tensor=target_wav, global_step=model.step, sample_rate=self.dsp.sample_rate) self.writer.add_audio( tag='Generated/postnet_wav', snd_tensor=m2_hat_wav, global_step=model.step, sample_rate=self.dsp.sample_rate)
[ "torch.no_grad", "torch.utils.tensorboard.SummaryWriter" ]
1.2.0
anh/ForwardTacotron
a58d9244844b4512f5655e154f08f934760c88b3
2.9
import json as _json import multiprocessing as _mp import os as _os from collections import Callable from functools import partial as _partial from os import sep as _sep import numpy as _np import torch as _torch import torch.utils.data as _data from torch.utils.data import DataLoader as _DataLoader, Dataset as _Dataset from torch.utils.data._utils.collate import default_collate as _default_collate import dad_torch.data.datautils as _du import dad_torch.utils as _etutils from dad_torch.utils.logger import * from .datautils import UnPaddedDDPSampler def _job(total, func, i, f): print(f"Working on: [ {i}/{total} ]", end='\r') return func(f) def multiRun(nproc: int, data_list: list, func: Callable) -> list: _files = [] for ix, file in enumerate(data_list, 1): _files.append([ix, file]) with _mp.Pool(processes=nproc) as pool: return list( pool.starmap(_partial(_job, len(_files), func), _files) ) def safe_collate(batch): r"""Safely select batches/skip dataset_cls(errors in file loading.""" return _default_collate([b for b in batch if b]) def num_workers(args, loader_args, distributed=False): if distributed: return (loader_args['num_workers'] + args['num_gpus'] - 1) // args['num_gpus'] return loader_args['num_workers'] def batch_size(args, loader_args, distributed=False): if distributed: loader_args['batch_size'] = loader_args['batch_size'] // args['num_gpus'] return loader_args['batch_size'] def _seed_worker(worker_id): seed = (int(_torch.initial_seed()) + worker_id) % (2 ** 32 - 1) _np.random.seed(seed) def _et_data_job_func(mode, file, dataspec, args, dataset_cls): test_dataset = dataset_cls(mode=mode, **args) test_dataset.add(files=[file], verbose=False, **dataspec) return test_dataset def _et_data_job(mode, arg, dspec, cls, total, func, verbose, i, file): if verbose: print(f"Working on: [ {i} / {total} ]", end='\r') return func(mode, file, dspec, arg, cls) class DTDataHandle: def __init__(self, args=None, dataloader_args=None, **kw): self.args = _etutils.FrozenDict(args) self.dataloader_args = _etutils.FrozenDict(dataloader_args) def get_dataset(self, handle_key, files, dataspec: dict, dataset_cls=None): dataset = dataset_cls(mode=handle_key, limit=self.args['load_limit'], **self.args) dataset.add(files=files, verbose=self.args['verbose'], **dataspec) return dataset def get_train_dataset(self, split_file, dataspec: dict, dataset_cls=None): if dataset_cls is None or self.dataloader_args.get('train', {}).get('dataset'): return self.dataloader_args.get('train', {}).get('dataset') r"""Load the train data from current fold/split.""" with open(dataspec['split_dir'] + _sep + split_file) as file: split = _json.loads(file.read()) train_dataset = self.get_dataset('train', split.get('train', []), dataspec, dataset_cls=dataset_cls) return train_dataset def get_validation_dataset(self, split_file, dataspec: dict, dataset_cls=None): if dataset_cls is None or self.dataloader_args.get('validation', {}).get('dataset'): return self.dataloader_args.get('validation', {}).get('dataset') r""" Load the validation data from current fold/split.""" with open(dataspec['split_dir'] + _sep + split_file) as file: split = _json.loads(file.read()) val_dataset = self.get_dataset('validation', split.get('validation', []), dataspec, dataset_cls=dataset_cls) if val_dataset and len(val_dataset) > 0: return val_dataset def get_test_dataset(self, split_file, dataspec: dict, dataset_cls=None): if dataset_cls is None or self.dataloader_args.get('test', {}).get('dataset'): return self.dataloader_args.get('test', {}).get('dataset') with open(dataspec['split_dir'] + _sep + split_file) as file: _files = _json.loads(file.read()).get('test', [])[:self.args['load_limit']] if self.args['load_sparse'] and len(_files) > 1: datasets = DTDataHandle.multi_load('test', _files, dataspec, self.args, dataset_cls) success(f'\n{len(datasets)} sparse dataset loaded.', self.args['verbose']) else: datasets = self.get_dataset('test', _files, dataspec, dataset_cls=dataset_cls) if len(datasets) > 0 and sum([len(t) for t in datasets if t]) > 0: return datasets def get_loader(self, handle_key='', distributed=False, use_unpadded_sampler=False, **kw): args = {**self.args} args['distributed'] = distributed args['use_unpadded_sampler'] = use_unpadded_sampler args.update(self.dataloader_args.get(handle_key, {})) args.update(**kw) if args.get('dataset') is None: return None loader_args = { 'dataset': None, 'batch_size': 1, 'sampler': None, 'shuffle': False, 'batch_sampler': None, 'num_workers': 0, 'pin_memory': False, 'drop_last': False, 'timeout': 0, 'worker_init_fn': _seed_worker if args.get('seed_all') else None } for k in loader_args.keys(): loader_args[k] = args.get(k, loader_args.get(k)) if args['distributed']: sampler_args = { 'num_replicas': args.get('replicas'), 'rank': args.get('rank'), 'shuffle': args.get('shuffle'), 'seed': args.get('seed') } if loader_args.get('sampler') is None: loader_args['shuffle'] = False # Shuffle is mutually exclusive with sampler if args['use_unpadded_sampler']: loader_args['sampler'] = UnPaddedDDPSampler(loader_args['dataset'], **sampler_args) else: loader_args['sampler'] = _data.distributed.DistributedSampler(loader_args['dataset'], **sampler_args) loader_args['num_workers'] = num_workers(args, loader_args, True) loader_args['batch_size'] = batch_size(args, loader_args, True) return _DataLoader(collate_fn=safe_collate, **loader_args) def create_splits(self, dataspec, out_dir): if _du.should_create_splits_(out_dir, dataspec, self.args): _du.default_data_splitter_(dspec=dataspec, args=self.args) info(f"{len(_os.listdir(dataspec['split_dir']))} split(s) created in '{dataspec['split_dir']}' directory.", self.args['verbose']) else: splits_len = len(_os.listdir(dataspec['split_dir'])) info(f"{splits_len} split(s) loaded from '{dataspec['split_dir']}' directory.", self.args['verbose'] and splits_len > 0) def init_dataspec_(self, dataspec: dict): for k in dataspec: if '_dir' in k: path = _os.path.join(self.args['dataset_dir'], dataspec[k]) path = path.replace(f"{_sep}{_sep}", _sep) if path.endswith(_sep): path = path[:-1] dataspec[k] = path @staticmethod def multi_load(mode, files, dataspec, args, dataset_cls, func=_et_data_job_func) -> list: r"""Note: Only works with dad_torch's default args from dad_torch import args""" _files = [] for ix, f in enumerate(files, 1): _files.append([ix, f]) nw = min(num_workers(args, args, args['use_ddp']), len(_files)) with _mp.Pool(processes=max(1, nw)) as pool: dataset_list = list( pool.starmap( _partial(_et_data_job, mode, args, dataspec, dataset_cls, len(_files), func, args['verbose']), _files) ) return [_d for _d in dataset_list if len(_d) >= 1] class DTDataset(_Dataset): def __init__(self, mode='init', limit=None, **kw): self.mode = mode self.limit = limit self.indices = [] self.data = {} self.args = _etutils.FrozenDict(kw) self.dataspecs = _etutils.FrozenDict({}) def load_index(self, dataset_name, file): r""" Logic to load indices of a single file. -Sometimes one image can have multiple indices like U-net where we have to get multiple patches of images. """ self.indices.append([dataset_name, file]) def _load_indices(self, dataspec_name, files, verbose=True): r""" We load the proper indices/names(whatever is called) of the files in order to prepare minibatches. Only load lim numbr of files so that it is easer to debug(Default is infinite, -lim/--load-lim argument). """ _files = files[:self.limit] if len(_files) > 1: dataset_objs = DTDataHandle.multi_load( self.mode, _files, self.dataspecs[dataspec_name], self.args, self.__class__ ) self.gather(dataset_objs) else: for f in _files: self.load_index(dataspec_name, f) success(f'\n{dataspec_name}, {self.mode}, {len(self)} indices Loaded.', verbose) def gather(self, dataset_objs): for d in dataset_objs: attributes = vars(d) for k, v in attributes.items(): if isinstance(v, _etutils.FrozenDict): continue if isinstance(v, list): self.__getattribute__(f"{k}").extend(v) elif isinstance(attributes[f"{k}"], dict): self.__getattribute__(f"{k}").update(**v) elif isinstance(attributes[f"{k}"], set): self.__getattribute__(f"{k}").union(v) def __getitem__(self, index): r""" Logic to load one file and send to model. The mini-batch generation will be handled by Dataloader. Here we just need to write logic to deal with single file. """ raise NotImplementedError('Must be implemented by child class.') def __len__(self): return len(self.indices) def transforms(self, **kw): return None def add(self, files, verbose=True, **kw): r""" An extra layer for added flexibility.""" self.dataspecs[kw['name']] = kw self._load_indices(dataspec_name=kw['name'], files=files, verbose=verbose)
[ "torch.initial_seed", "torch.utils.data._utils.collate.default_collate", "torch.utils.data.DataLoader", "torch.utils.data.distributed.DistributedSampler" ]
2.9.2
trendscenter/easytorch
0faf6c7f09701c8f73ed4061214ca724c83d82aa
1.5
from ast import parse from torch.autograd.grad_mode import no_grad from torch.functional import Tensor from torch.nn.modules.loss import BCELoss, CrossEntropyLoss from dataset import WakeWordDataset from model import CNNNetwork from torch.utils.data import DataLoader from tqdm import tqdm from typing import Tuple import argparse import torch import torchaudio.transforms as T import torch.nn as nn import torch.optim as optim def binary_accuracy(preds: torch.Tensor, y: torch.Tensor) -> None: # round predictions to the closest integer return (preds == y).sum() / len(y) def train(model:nn.Module,dataloader:Tuple[torch.tensor,torch.tensor],criterion,optimizer:optim,device:str,epochs:int)->torch.Tensor: losses = [] preds = [] labels = [] pbar = tqdm(dataloader, desc="TRAIN") for (input, label) in pbar: input, label = input.to(device), label.to(device) pred = model(input) loss = criterion(pred, label) optimizer.zero_grad() loss.backward() optimizer.step() #acc = binary_accuracy(pred, label).item() losses.append(loss.item()) preds.append(pred.detach().cpu()) labels.append(label.detach().cpu()) # print("Epoch: {}, Iteration: {}/{}, loss:{}".format(epoch, # idx, len(train_loader), loss)) pbar.set_postfix(loss=loss) avg_train_loss = sum(losses)/len(losses) #acc = binary_accuracy(torch.cat(preds), torch.cat(labels)) #print('avg train loss:', avg_train_loss, "avg train acc", acc) #report = classification_report(torch.cat(labels), torch.cat(preds)) #print(report) #return acc @torch.no_grad() def test(model:nn.Module,dataloader:Tuple[torch.tensor,torch.tensor],criterion,optimizer:optim,device:str,epochs:int)->None: losses = [] preds = [] labels = [] pbar = tqdm(dataloader, desc="TEST") for (input, label) in pbar: input, label = input.to(device), label.to(device) pred = model(input) loss = criterion(pred, label) #acc = binary_accuracy(pred, label).item() losses.append(loss.item()) preds.append(pred.detach().cpu()) labels.append(label.detach().cpu()) # print("Epoch: {}, Iteration: {}/{}, loss:{}".format(epoch, # idx, len(train_loader), loss)) pbar.set_postfix(loss=loss) avg_train_loss = sum(losses)/len(losses) #acc = binary_accuracy(torch.cat(preds), torch.cat(labels)) #print('avg train loss:', avg_train_loss, "avg train acc", acc) #report = classification_report(torch.cat(labels), torch.cat(preds)) #print(report) #return acc def main(args) -> None: if (not args.no_cuda) and torch.cuda.is_available(): device = "cuda" else: device = "cpu" print(f"Using {device}") mel_spectrogram = T.MelSpectrogram( sample_rate=args.sample_rate, n_fft=1024, hop_length=512, n_mels=64 ) train_dataset = WakeWordDataset( args.train_data_json, audio_transformation=mel_spectrogram, device=device) train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size) test_dataset = WakeWordDataset( args.test_data_json, audio_transformation=mel_spectrogram, device=device) test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size) model_cnn = CNNNetwork().to(device) criterion = CrossEntropyLoss().to(device) optimizer = optim.AdamW(model_cnn.parameters(), lr=args.lr) for epoch in tqdm(range(args.epochs), desc="Epoch"): # train model train(model_cnn, train_dataloader, criterion, optimizer, device, epoch) test(model_cnn, test_dataloader, criterion, optimizer, device, epoch) # save model torch.save(model_cnn.state_dict(), args.save_path) if __name__ == "__main__": parser = argparse.ArgumentParser(description=""" Script to train the Wake Word Detection and save the model """, formatter_class=argparse.RawTextHelpFormatter ) parser.add_argument('--sample_rate', type=int, default=8000, help='the number of samples collected per second, default at 8000') parser.add_argument('--epochs', type=int, default=100, help='epoch size') parser.add_argument('--batch_size', type=int, default=32, help='size of batch') parser.add_argument('--lr', type=float, default=1e-3, help="learning rate") parser.add_argument('--save_path', type=str, default=None, help='path to save the train model') parser.add_argument('--train_data_json', type=str, default=None, required=True, help='path to train dat json file') parser.add_argument('--test_data_json', type=str, default=None, required=True, help='path to train dat json file') parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') args = parser.parse_args() main(args)
[ "torch.nn.modules.loss.CrossEntropyLoss", "torch.no_grad", "torch.cuda.is_available", "torch.utils.data.DataLoader" ]
1.5.0
wimausberlin/voice-assistant-system
2d92fa0989109279b3959bc6d5ea32777d50cbac
1.1
import torch from torch import multiprocessing, cuda from torch.utils.data import DataLoader import torch.nn.functional as F from torch.backends import cudnn import numpy as np import importlib import os import voc12.dataloader from misc import torchutils, imutils cudnn.enabled = True def _work(process_id, model, dataset, args): databin = dataset[process_id] n_gpus = torch.cuda.device_count() data_loader = DataLoader(databin, shuffle=False, num_workers=args.num_workers // n_gpus, pin_memory=False) #data_loader = DataLoader(databin, shuffle=False, num_workers=0, pin_memory=False) with torch.no_grad(), cuda.device(process_id): model.cuda() for iter, pack in enumerate(data_loader): img_name = pack['name'][0] label = pack['label'][0] size = pack['size'] strided_size = imutils.get_strided_size(size, 4) strided_up_size = imutils.get_strided_up_size(size, 16) outputs = [model(img[0].cuda(non_blocking=True)) for img in pack['img']] strided_cam = torch.sum(torch.stack( [F.interpolate(torch.unsqueeze(o, 0), strided_size, mode='bilinear', align_corners=False)[0] for o in outputs]), 0) highres_cam = [F.interpolate(torch.unsqueeze(o, 1), strided_up_size, mode='bilinear', align_corners=False) for o in outputs] highres_cam = torch.sum(torch.stack(highres_cam, 0), 0)[:, 0, :size[0], :size[1]] valid_cat = torch.nonzero(label)[:, 0] strided_cam = strided_cam[valid_cat] try: strided_cam /= F.adaptive_max_pool2d(strided_cam, (1, 1)) + 1e-5 highres_cam = highres_cam[valid_cat] highres_cam /= F.adaptive_max_pool2d(highres_cam, (1, 1)) + 1e-5 # save cams np.save(os.path.join(args.cam_out_dir, img_name.replace('/', '_') + '.npy'), {"keys": valid_cat, "cam": strided_cam.cpu(), "high_res": highres_cam.cpu().numpy()}) if process_id == n_gpus - 1 and iter % (len(databin) // 20) == 0: print("%d " % ((5*iter+1)//(len(databin) // 20)), end='') except: print("worked") continue def run(args): model = getattr(importlib.import_module(args.cam_network), 'CAM')() model.load_state_dict(torch.load(args.cam_weights_name + '.pth'), strict=True) model.eval() n_gpus = torch.cuda.device_count() dataset = voc12.dataloader.VOC12ClassificationDatasetMSF(args.train_list, voc12_root=args.voc12_root, scales=args.cam_scales) dataset = torchutils.split_dataset(dataset, n_gpus) print('[ ', end='') multiprocessing.spawn(_work, nprocs=n_gpus, args=(model, dataset, args), join=True) #_work(0, model, dataset, args) print(']') torch.cuda.empty_cache()
[ "torch.nonzero", "torch.stack", "torch.nn.functional.adaptive_max_pool2d", "torch.no_grad", "torch.multiprocessing.spawn", "torch.cuda.device", "torch.cuda.device_count", "torch.unsqueeze", "torch.cuda.empty_cache", "torch.utils.data.DataLoader", "torch.load" ]
1.1.0
saramsv/CCT
27b4fd838a174a3c0fca582aa163e5bd426b055a
1.10
import torch from torchvision.models.segmentation import fcn_resnet50 from torchvision.utils import draw_segmentation_masks from PIL import Image import io from torchvision.transforms import transforms from torchvision.utils import save_image import torchvision.transforms.functional as F def get_model(): model = fcn_resnet50(pretrained=True, progress=True) model = model.eval() return model def transform_image(image_bytes): my_transforms = transforms.Compose([transforms.Resize(255), transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image = Image.open(io.BytesIO(image_bytes)) image.convert("RGB") image.save("static/org_pil.jpg") print("Saved Original image successfully") return my_transforms(image).unsqueeze(0) sem_classes = [ '__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] sem_class_to_idx = {cls: idx for (idx, cls) in enumerate(sem_classes)} def get_prediction(image_bytes): try: print('Entered here') tensor = transform_image(image_bytes=image_bytes) model = get_model() output = model(tensor)['out'] print(output.shape) except Exception: return 0, 'Failed' print(output.shape, output.min().item(), output.max().item()) normalized_masks = torch.nn.functional.softmax(output, dim=1) num_classes = normalized_masks.shape[1] class_dim = 1 all_classes_masks = normalized_masks.argmax(class_dim) == torch.arange(num_classes)[:, None, None, None] all_classes_masks = all_classes_masks.swapaxes(0, 1) dogs_with_masks = [ draw_segmentation_masks(img, masks=mask, alpha=.6) for img, mask in zip(tensor.to(dtype=torch.uint8), all_classes_masks) ] img = dogs_with_masks[0] img = img.detach() img = F.to_pil_image(img) img.save("static/masked.jpg") print("Saved masked image successfully") return None
[ "torch.arange", "torch.nn.functional.softmax" ]
1.10.2
ummadiviany/image-segmenter
906457a16765f7e1995a8dca7b222ba3abd13a3f
1.2
# Author: Robin Ru @ University of Oxford # This is an implementation of zero-cost estimators based on: # https://github.com/BayesWatch/nas-without-training (Jacov) # and https://github.com/gahaalt/SNIP-pruning (SNIP) import numpy as np import torch import logging import gc from naslib.predictors.predictor import Predictor from naslib.predictors.utils.build_nets import get_cell_based_tiny_net from naslib.utils.utils import get_project_root, get_train_val_loaders from naslib.predictors.utils.build_nets.build_darts_net import NetworkCIFAR from naslib.search_spaces.darts.conversions import convert_compact_to_genotype logger = logging.getLogger(__name__) def get_batch_jacobian(net, x, target): net.zero_grad() x.requires_grad_(True) _, y = net(x) y.backward(torch.ones_like(y)) jacob = x.grad.detach() return jacob, target.detach() def eval_score(jacob, labels=None): corrs = np.corrcoef(jacob) v, _ = np.linalg.eig(corrs) k = 1e-5 return -np.sum(np.log(v + k) + 1. / (v + k)) class ZeroCostEstimators(Predictor): def __init__(self, config, batch_size = 64, method_type='jacov'): torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False self.batch_size = batch_size self.method_type = method_type self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") config.data = "{}/data".format(get_project_root()) self.config = config if method_type == 'jacov': self.num_classes = 1 else: num_classes_dic = {'cifar10': 10, 'cifar100': 100, 'ImageNet16-120': 120} self.num_classes = num_classes_dic[self.config.dataset] def pre_process(self): self.train_loader, _, _, _, _ = get_train_val_loaders(self.config, mode='train') def query(self, xtest, info=None): test_set_scores = [] count = 0 for test_arch in xtest: count += 1 logger.info('zero cost: {} of {}'.format(count, len(xtest))) if 'nasbench201' in self.config.search_space: ops_to_nb201 = {'AvgPool1x1': 'avg_pool_3x3', 'ReLUConvBN1x1': 'nor_conv_1x1', 'ReLUConvBN3x3': 'nor_conv_3x3', 'Identity': 'skip_connect', 'Zero': 'none',} # convert the naslib representation to nasbench201 cell = test_arch.edges[2, 3].op edge_op_dict = {(i, j): ops_to_nb201[cell.edges[i, j]['op'].get_op_name] for i, j in cell.edges} op_edge_list = ['{}~{}'.format(edge_op_dict[(i, j)], i - 1) for i, j in sorted(edge_op_dict, key=lambda x: x[1])] arch_str = '|{}|+|{}|{}|+|{}|{}|{}|'.format(*op_edge_list) arch_config = {'name': 'infer.tiny', 'C': 16, 'N':5, 'arch_str': arch_str, 'num_classes': self.num_classes} network = get_cell_based_tiny_net(arch_config) # create the network from configuration elif 'darts' in self.config.search_space: test_genotype = convert_compact_to_genotype(test_arch.compact) arch_config = {'name': 'darts', 'C': 32, 'layers': 8, 'genotype': test_genotype, 'num_classes': self.num_classes, 'auxiliary': False} network = NetworkCIFAR(arch_config) data_iterator = iter(self.train_loader) x, target = next(data_iterator) x, target = x.to(self.device), target.to(self.device) network = network.to(self.device) if self.method_type == 'jacov': jacobs, labels = get_batch_jacobian(network, x, target) # print('done get jacobs') jacobs = jacobs.reshape(jacobs.size(0), -1).cpu().numpy() try: score = eval_score(jacobs, labels) except Exception as e: print(e) score = -10e8 elif self.method_type == 'snip': criterion = torch.nn.CrossEntropyLoss() network.zero_grad() _, y = network(x) loss = criterion(y, target) loss.backward() grads = [p.grad.detach().clone().abs() for p in network.parameters() if p.grad is not None] with torch.no_grad(): saliences = [(grad * weight).view(-1).abs() for weight, grad in zip(network.parameters(), grads)] score = torch.sum(torch.cat(saliences)).cpu().numpy() if hasattr(self, 'ss_type') and self.ss_type == 'darts': score = -score # print(f'nclass={self.num_classes}, scores={score}') test_set_scores.append(score) network, data_iterator, x, target, jacobs, labels = None, None, None, None, None, None torch.cuda.empty_cache() gc.collect() return np.array(test_set_scores)
[ "torch.cat", "torch.no_grad", "torch.cuda.empty_cache", "torch.cuda.is_available", "torch.ones_like", "torch.nn.CrossEntropyLoss" ]
1.2.0
shenyann/NASLib
6fad875f21e41bb9c91647bbd0620aa6e6dc8c7f
0.4
import torch import random def bce_loss(input, target): """ Numerically stable version of the binary cross-entropy loss function. As per https://github.com/pytorch/pytorch/issues/751 See the TensorFlow docs for a derivation of this formula: https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Input: - input: PyTorch Tensor of shape (N, ) giving scores. - target: PyTorch Tensor of shape (N,) containing 0 and 1 giving targets. Output: - A PyTorch Tensor containing the mean BCE loss over the minibatch of input data. """ neg_abs = -input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.mean() def gan_g_loss(scores_fake): """ Input: - scores_fake: Tensor of shape (N,) containing scores for fake samples Output: - loss: Tensor of shape (,) giving GAN generator loss """ y_fake = torch.ones_like(scores_fake) * random.uniform(0.7, 1.2) return bce_loss(scores_fake, y_fake) def gan_d_loss(scores_real, scores_fake): """ Input: - scores_real: Tensor of shape (N,) giving scores for real samples - scores_fake: Tensor of shape (N,) giving scores for fake samples Output: - loss: Tensor of shape (,) giving GAN discriminator loss """ y_real = torch.ones_like(scores_real) * random.uniform(0.7, 1.2) y_fake = torch.zeros_like(scores_fake) * random.uniform(0, 0.3) loss_real = bce_loss(scores_real, y_real) loss_fake = bce_loss(scores_fake, y_fake) return loss_real + loss_fake def l2_loss(pred_traj, pred_traj_gt, loss_mask, random=0, mode='average'): """ Input: - pred_traj: Tensor of shape (seq_len, batch, 2). Predicted trajectory. - pred_traj_gt: Tensor of shape (seq_len, batch, 2). Groud truth predictions. - loss_mask: Tensor of shape (batch, seq_len) - mode: Can be one of sum, average, raw Output: - loss: l2 loss depending on mode """ seq_len, batch, _ = pred_traj.size() # print("l2 loss") # print(loss_mask.unsqueeze(dim=0).transpose_(1,2).shape) # print(pred_traj_gt.permute(1, 0, 2).shape) # print(pred_traj.permute(1, 0, 2).shape) print("loss_mask:", loss_mask.shape) print(loss_mask.unsqueeze(dim=2).shape) print("pred_seq: ", pred_traj.shape) loss = (loss_mask.unsqueeze(dim=2) * (pred_traj_gt.permute(1, 0, 2) - pred_traj.permute(1, 0, 2))**2) if mode == 'sum': return torch.sum(loss) elif mode == 'average': return torch.sum(loss) / torch.numel(loss_mask.data) elif mode == 'raw': return loss.sum(dim=2).sum(dim=1) def displacement_error(pred_traj, pred_traj_gt, consider_ped=None, mode='sum'): """ Input: - pred_traj: Tensor of shape (seq_len, batch, 2). Predicted trajectory. - pred_traj_gt: Tensor of shape (seq_len, batch, 2). Ground truth predictions. - consider_ped: Tensor of shape (batch) - mode: Can be one of sum, raw Output: - loss: gives the eculidian displacement error """ seq_len, _, _ = pred_traj.size() loss = pred_traj_gt.permute(1, 0, 2) - pred_traj.permute(1, 0, 2) loss = loss**2 # print("consider_ped: ", consider_ped) if consider_ped is not None: loss = torch.sqrt(loss.sum(dim=2)).sum(dim=1) * consider_ped else: loss = torch.sqrt(loss.sum(dim=2)).sum(dim=1) if mode == 'sum': return torch.sum(loss) elif mode == 'raw': return loss def final_displacement_error( pred_pos, pred_pos_gt, consider_ped=None, mode='sum' ): """ Input: - pred_pos: Tensor of shape (batch, 2). Predicted last pos. - pred_pos_gt: Tensor of shape (seq_len, batch, 2). Groud truth last pos - consider_ped: Tensor of shape (batch) Output: - loss: gives the eculidian displacement error """ loss = pred_pos_gt - pred_pos loss = loss**2 if consider_ped is not None: loss = torch.sqrt(loss.sum(dim=1)) * consider_ped else: loss = torch.sqrt(loss.sum(dim=1)) if mode == 'raw': return loss else: return torch.sum(loss)
[ "torch.zeros_like", "torch.numel", "torch.ones_like", "torch.sum" ]
0.4.0
sapan-ostic/deep_prediction
e4709e4a66477755e6afe39849597ae1e3e969b5
1.0
import argparse import torch import onmt import onmt.model_builder import onmt.inputters as inputters import onmt.opts from onmt.utils.misc import use_gpu from onmt.utils.logging import init_logger, logger parser = argparse.ArgumentParser(description='translate.py') parser.add_argument('-model', required=True, help='Path to model .pt file') parser.add_argument('-output_dir', default='.', help="""Path to output the embeddings""") parser.add_argument('-gpu', type=int, default=-1, help="Device to run on") def write_embeddings(filename, dict, embeddings): with open(filename, 'wb') as file: for i in range(min(len(embeddings), len(dict.itos))): str = dict.itos[i].encode("utf-8") for j in range(len(embeddings[0])): str = str + (" %5f" % (embeddings[i][j])).encode("utf-8") file.write(str + b"\n") def main(): dummy_parser = argparse.ArgumentParser(description='train.py') onmt.opts.model_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] opt = parser.parse_args() opt.cuda = opt.gpu > -1 if opt.cuda: torch.cuda.set_device(opt.gpu) # Add in default model arguments, possibly added since training. checkpoint = torch.load(opt.model, map_location=lambda storage, loc: storage) model_opt = checkpoint['opt'] vocab = checkpoint['vocab'] if inputters.old_style_vocab(vocab): fields = onmt.inputters.load_old_vocab(vocab) else: fields = vocab src_dict = fields['src'][0][1].base_field.vocab # assumes src is text tgt_dict = fields['tgt'][0][1].base_field.vocab model_opt = checkpoint['opt'] for arg in dummy_opt.__dict__: if arg not in model_opt: model_opt.__dict__[arg] = dummy_opt.__dict__[arg] model = onmt.model_builder.build_base_model( model_opt, fields, use_gpu(opt), checkpoint) encoder = model.encoder decoder = model.decoder encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist() decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist() logger.info("Writing source embeddings") write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict, encoder_embeddings) logger.info("Writing target embeddings") write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict, decoder_embeddings) logger.info('... done.') logger.info('Converting model...') if __name__ == "__main__": init_logger('extract_embeddings.log') main()
[ "torch.cuda.set_device", "torch.load" ]
1.0
cocoxu/OpenNMT-py
820ad912dda0b5cbe49c53762374deb6bedd1299
0.6
"""LVQMLN example using all four dimensions of the Iris dataset.""" import argparse import prototorch as pt import pytorch_lightning as pl import torch class Backbone(torch.nn.Module): def __init__(self, input_size=4, hidden_size=10, latent_size=2): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.latent_size = latent_size self.dense1 = torch.nn.Linear(self.input_size, self.hidden_size) self.dense2 = torch.nn.Linear(self.hidden_size, self.latent_size) self.activation = torch.nn.Sigmoid() def forward(self, x): x = self.activation(self.dense1(x)) out = self.activation(self.dense2(x)) return out if __name__ == "__main__": # Command-line arguments parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # Dataset train_ds = pt.datasets.Iris() # Reproducibility pl.utilities.seed.seed_everything(seed=42) # Dataloaders train_loader = torch.utils.data.DataLoader(train_ds, batch_size=150) # Hyperparameters hparams = dict( distribution=[3, 4, 5], proto_lr=0.001, bb_lr=0.001, ) # Initialize the backbone backbone = Backbone() # Initialize the model model = pt.models.LVQMLN( hparams, prototypes_initializer=pt.initializers.SSCI( train_ds, transform=backbone, ), backbone=backbone, ) # Model summary print(model) # Callbacks vis = pt.models.VisSiameseGLVQ2D( data=train_ds, map_protos=False, border=0.1, resolution=500, axis_off=True, ) pruning = pt.models.PruneLoserPrototypes( threshold=0.01, idle_epochs=20, prune_quota_per_epoch=2, frequency=10, verbose=True, ) # Setup trainer trainer = pl.Trainer.from_argparse_args( args, callbacks=[ vis, pruning, ], ) # Training loop trainer.fit(model, train_loader)
[ "torch.nn.Linear", "torch.utils.data.DataLoader", "torch.nn.Sigmoid" ]
0.6.0
dmoebius-dm/prototorch_models
71602bf38a09148eab13d98c9f89589b345ac570
1.6
""" This script was made by soeque1 at 24/07/20. To implement code for training your model. """ import logging from argparse import ArgumentParser, Namespace from logging import getLogger import pytorch_lightning as pl import torch import torch.nn.functional as F from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger from transformers.optimization import AdamW from src.core.build_data import Config from src.data import UbuntuDataLoader, UbuntuDataSet, collate from src.metric import bleuS_4 from src.model.net import ReCoSA from src.utils.prepare import build logger = getLogger(__name__) logging.basicConfig(level=logging.INFO) class RecoSAPL(pl.LightningModule): def __init__(self, config: dict, len_train_dataloader: int = None) -> None: super().__init__() self.config = config self._device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = ReCoSA(config=self.config.model, _device=self._device) self.pred = [] self.target = [] self.len_train_dataloader = len_train_dataloader self.lr_scale = 1.0 def forward(self, x): return self.model.forward() def inference(self, ctx: torch.Tensor, response: torch.Tensor) -> torch.Tensor: return self.model.inference(ctx, response) def generate(self, ctx: torch.Tensor) -> str: return self.model.generate(ctx) def training_step(self, batch, batch_idx): ctx, response, target = batch pred = self.model(ctx, response) if batch_idx % 1000 == 0: logger.info(self.model.tokenizer.decode(torch.argmax(pred[0], dim=0))) logger.info(self.model.tokenizer.decode(response[0])) loss = F.cross_entropy( pred, target, ignore_index=self.model.tokenizer.pad_token_id ) ppl = torch.exp(loss) self.log( "lr", self.lr_scale * self.config.trainer.lr, on_step=True, on_epoch=False, prog_bar=False, logger=True, ) self.log_dict( {"tr_loss": loss, "tr_ppl": ppl}, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True, logger=True, ) return loss def validation_step(self, batch, batch_idx): ctx, response, target = batch pred = self.model(ctx, response) loss = F.cross_entropy( pred, target, ignore_index=self.model.tokenizer.pad_token_id ) ppl = torch.exp(loss) if batch_idx % 100 == 0: pred_sen = torch.argmax(pred, dim=1) pred_sentence = [ self.model.tokenizer.decode(i) .split(self.model.tokenizer.eos_token)[0] .split() + [self.model.tokenizer.eos_token] for i in pred_sen ] target_sentence = [ self.model.tokenizer.decode(i) .split(self.model.tokenizer.eos_token)[0] .split() + [self.model.tokenizer.eos_token] for i in target ] logger.info("idx: " + str(batch_idx)) logger.info("pred: " + " ".join(pred_sentence[0])) logger.info("target: " + " ".join(target_sentence[0])) self.log_dict( {"val_loss": loss, "val_ppl": ppl}, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True, logger=True, ) return loss def configure_optimizers(self): # https://github.com/huggingface/transformers/blob/a75c64d80c76c3dc71f735d9197a4a601847e0cd/examples/contrib/run_openai_gpt.py param_optimizer = list(self.model.named_parameters()) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], "weight_decay": self.config.trainer.weight_decay, }, { "params": [ p for n, p in param_optimizer if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] return AdamW(optimizer_grouped_parameters, lr=self.config.trainer.lr, eps=1e-8) def optimizer_step( self, current_epoch, batch_nb, optimizer, optimizer_idx, second_order_closure=None, on_tpu=False, using_native_amp=False, using_lbfgs=False, ): # warm up lr if self.trainer.global_step < float(self.config.trainer.warmup_steps): self.lr_scale = min( 1.0, float(self.trainer.global_step + 1) / float(self.config.trainer.warmup_steps), ) for pg in optimizer.param_groups: pg["lr"] = self.lr_scale * self.config.trainer.lr else: self.lr_scale = 1.0 # update params optimizer.step() optimizer.zero_grad() def test_step(self, batch, batch_idx): ctx, _, target = batch pred, pred_sen = self.model.generate(ctx, max_seq=ctx.shape[2]) loss = F.cross_entropy( pred, target, ignore_index=self.model.tokenizer.pad_token_id ) ppl = torch.exp(loss) pred_sentence = [ self.model.tokenizer.decode(i) .split(self.model.tokenizer.eos_token)[0] .split() + [self.model.tokenizer.eos_token] for i in pred_sen ] target_sentence = [ self.model.tokenizer.decode(i) .split(self.model.tokenizer.eos_token)[0] .split() + [self.model.tokenizer.eos_token] for i in target ] target_sentence_list = [[i] for i in target_sentence] self.pred.extend(pred_sentence) self.target.extend(target_sentence_list) bleu_score = bleuS_4(pred_sentence, target_sentence_list).to(ppl.device) if batch_idx % 10 == 0: logger.info("idx: " + str(batch_idx)) ctx_decoded = [ self.model.tokenizer.decode(i).split(self.model.tokenizer.eos_token)[0] + self.model.tokenizer.eos_token for i in ctx[0] ] logger.info("idx: " + " ".join(ctx_decoded)) logger.info("pred: " + " ".join(pred_sentence[0])) logger.info("target: " + " ".join(target_sentence[0])) self.log_dict( {"val_loss_gen": loss, "val_ppl_gen": ppl, "val_bleu_gen": bleu_score}, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True, logger=True, ) return loss def main( config_data_file: str, config_model_file: str, config_trainer_file: str, version: str, ) -> None: # TODO: to be removed _ = build({"data_config": config_data_file, "version": version}) cfg = Config() cfg.add_dataset(config_data_file) cfg.add_model(config_model_file) cfg.add_trainer(config_trainer_file) train_data = UbuntuDataSet( cfg.dataset.root + cfg.dataset.target, cfg.dataset.raw.train, cfg.model.max_seq, cfg.dataset.target, cfg.model.max_turns, ) val_data = UbuntuDataSet( cfg.dataset.root + cfg.dataset.target, cfg.dataset.raw.val, cfg.model.max_seq, cfg.dataset.target, cfg.model.max_turns, ) train_dataloader = UbuntuDataLoader( train_data, batch_size=cfg.model.batch_size, shuffle=True, num_workers=8, collate_fn=collate, ) val_dataloader = UbuntuDataLoader( val_data, batch_size=cfg.model.batch_size, shuffle=False, num_workers=8, collate_fn=collate, ) logger = TensorBoardLogger(save_dir="exp", name=cfg.dataset.target, version=version) prefix = f"exp/{cfg.dataset.target}/{version}/" suffix = "{epoch:02d}-{val_loss:.4f}" filepath = prefix + suffix checkpoint_callback = ModelCheckpoint( filepath=filepath, save_top_k=1, monitor="val_loss", save_weights_only=True, verbose=True, ) model = RecoSAPL(cfg, len(train_data)) trainer = pl.Trainer( **cfg.trainer.pl, logger=logger, checkpoint_callback=checkpoint_callback, ) trainer.fit(model, train_dataloader, val_dataloader) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--config_data_file", default="./conf/dataset/ubuntu.yml", type=str ) parser.add_argument( "--config_model_file", default="./conf/model/ReCoSa.yml", type=str ) parser.add_argument( "--config_trainer_file", default="./conf/trainer/ReCoSa.yml", type=str ) parser.add_argument("--version", default="v0.0.1", type=str) args = parser.parse_args() main( args.config_data_file, args.config_model_file, args.config_trainer_file, args.version, )
[ "torch.nn.functional.cross_entropy", "torch.cuda.is_available", "torch.exp", "torch.argmax" ]
1.6.0
HephaestusProject/pytorch-ReCoSa
eca171582a9021845009ade542cd99c2e5ddf701
1.5
""" Text generation using a character LSTM, specifically we want to generate new names as inspiration for those having a baby :) Although this is for name generation, the code is general in the way that you can just send in any large text file (shakespear text, etc) and it will generate it. Programmed by Aladdin Persson <aladdin.persson at hotmail dot com> * 2020-05-09 Initial coding """ import torch import torch.nn as nn import string import random import sys import unidecode # Device configuration device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Get characters from string.printable all_characters = string.printable n_characters = len(all_characters) # Read large text file (Note can be any text file: not limited to just names) file = unidecode.unidecode(open("data/names.txt").read()) class RNN(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.embed = nn.Embedding(input_size, hidden_size) self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, hidden, cell): out = self.embed(x) out, (hidden, cell) = self.lstm(out.unsqueeze(1), (hidden, cell)) out = self.fc(out.reshape(out.shape[0], -1)) return out, (hidden, cell) def init_hidden(self, batch_size): hidden = torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device) cell = torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device) return hidden, cell class Generator: def __init__(self): self.chunk_len = 250 self.num_epochs = 5000 self.batch_size = 1 self.print_every = 50 self.hidden_size = 256 self.num_layers = 2 self.lr = 0.003 def char_tensor(self, string): tensor = torch.zeros(len(string)).long() for c in range(len(string)): tensor[c] = all_characters.index(string[c]) return tensor def get_random_batch(self): start_idx = random.randint(0, len(file) - self.chunk_len) end_idx = start_idx + self.chunk_len + 1 text_str = file[start_idx:end_idx] text_input = torch.zeros(self.batch_size, self.chunk_len) text_target = torch.zeros(self.batch_size, self.chunk_len) for i in range(self.batch_size): text_input[i, :] = self.char_tensor(text_str[:-1]) text_target[i, :] = self.char_tensor(text_str[1:]) return text_input.long(), text_target.long() def generate(self, initial_str="A", predict_len=100, temperature=0.85): hidden, cell = self.rnn.init_hidden(batch_size=self.batch_size) initial_input = self.char_tensor(initial_str) predicted = initial_str for p in range(len(initial_str) - 1): _, (hidden, cell) = self.rnn( initial_input[p].view(1).to(device), hidden, cell ) last_char = initial_input[-1] for p in range(predict_len): output, (hidden, cell) = self.rnn( last_char.view(1).to(device), hidden, cell ) output_dist = output.data.view(-1).div(temperature).exp() top_char = torch.multinomial(output_dist, 1)[0] predicted_char = all_characters[top_char] predicted += predicted_char last_char = self.char_tensor(predicted_char) return predicted # input_size, hidden_size, num_layers, output_size def train(self): self.rnn = RNN( n_characters, self.hidden_size, self.num_layers, n_characters ).to(device) optimizer = torch.optim.Adam(self.rnn.parameters(), lr=self.lr) criterion = nn.CrossEntropyLoss() writer = SummaryWriter(f"runs/names0") # for tensorboard print("=> Starting training") for epoch in range(1, self.num_epochs + 1): inp, target = self.get_random_batch() hidden, cell = self.rnn.init_hidden(batch_size=self.batch_size) self.rnn.zero_grad() loss = 0 inp = inp.to(device) target = target.to(device) for c in range(self.chunk_len): output, (hidden, cell) = self.rnn(inp[:, c], hidden, cell) loss += criterion(output, target[:, c]) loss.backward() optimizer.step() loss = loss.item() / self.chunk_len if epoch % self.print_every == 0: print(f"Loss: {loss}") print(self.generate()) writer.add_scalar("Training loss", loss, global_step=epoch) gennames = Generator() gennames.train()
[ "torch.nn.Linear", "torch.zeros", "torch.nn.LSTM", "torch.nn.CrossEntropyLoss", "torch.multinomial", "torch.cuda.is_available", "torch.nn.Embedding" ]
1.5.0
xuyannus/Machine-Learning-Collection
425d196e9477dbdbbd7cc0d19d29297571746ab5
1.8
from collections import OrderedDict from typing import List import torch from torch import nn from torchvision.models import densenet121, densenet161, densenet169, densenet201, DenseNet from .common import EncoderModule, _take, make_n_channel_input __all__ = ["DenseNetEncoder", "DenseNet121Encoder", "DenseNet169Encoder", "DenseNet161Encoder", "DenseNet201Encoder"] class DenseNetEncoder(EncoderModule): def __init__( self, densenet: DenseNet, strides: List[int], channels: List[int], layers: List[int], first_avg_pool=False ): if layers is None: layers = [1, 2, 3, 4] super().__init__(channels, strides, layers) def except_pool(block: nn.Module): del block.pool return block self.layer0 = nn.Sequential( OrderedDict( [ ("conv0", densenet.features.conv0), ("bn0", densenet.features.norm0), ("act0", densenet.features.relu0), ] ) ) self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) self.pool0 = self.avg_pool if first_avg_pool else densenet.features.pool0 self.layer1 = nn.Sequential(densenet.features.denseblock1, except_pool(densenet.features.transition1)) self.layer2 = nn.Sequential(densenet.features.denseblock2, except_pool(densenet.features.transition2)) self.layer3 = nn.Sequential(densenet.features.denseblock3, except_pool(densenet.features.transition3)) self.layer4 = nn.Sequential(densenet.features.denseblock4) self._output_strides = _take(strides, layers) self._output_filters = _take(channels, layers) @property def encoder_layers(self): return [self.layer0, self.layer1, self.layer2, self.layer3, self.layer4] @property @torch.jit.unused def strides(self): return self._output_strides @property @torch.jit.unused def channels(self): return self._output_filters def forward(self, x): output_features = [] for layer in self.encoder_layers: output = layer(x) output_features.append(output) if layer == self.layer0: # Fist maxpool operator is not a part of layer0 because we want that layer0 output to have stride of 2 output = self.pool0(output) else: output = self.avg_pool(output) x = output # Return only features that were requested return _take(output_features, self._layers) @torch.jit.unused def change_input_channels(self, input_channels: int, mode="auto", **kwargs): self.layer0.conv0 = make_n_channel_input(self.layer0.conv0, input_channels, mode=mode, **kwargs) return self class DenseNet121Encoder(DenseNetEncoder): def __init__(self, layers=None, pretrained=True, memory_efficient=False, first_avg_pool=False): densenet = densenet121(pretrained=pretrained, memory_efficient=memory_efficient) strides = [2, 4, 8, 16, 32] channels = [64, 128, 256, 512, 1024] super().__init__(densenet, strides, channels, layers, first_avg_pool) class DenseNet161Encoder(DenseNetEncoder): def __init__(self, layers=None, pretrained=True, memory_efficient=False, first_avg_pool=False): densenet = densenet161(pretrained=pretrained, memory_efficient=memory_efficient) strides = [2, 4, 8, 16, 32] channels = [96, 192, 384, 1056, 2208] super().__init__(densenet, strides, channels, layers, first_avg_pool) class DenseNet169Encoder(DenseNetEncoder): def __init__(self, layers=None, pretrained=True, memory_efficient=False, first_avg_pool=False): densenet = densenet169(pretrained=pretrained, memory_efficient=memory_efficient) strides = [2, 4, 8, 16, 32] channels = [64, 128, 256, 640, 1664] super().__init__(densenet, strides, channels, layers, first_avg_pool) class DenseNet201Encoder(DenseNetEncoder): def __init__(self, layers=None, pretrained=True, memory_efficient=False, first_avg_pool=False): densenet = densenet201(pretrained=pretrained, memory_efficient=memory_efficient) strides = [2, 4, 8, 16, 32] channels = [64, 128, 256, 896, 1920] super().__init__(densenet, strides, channels, layers, first_avg_pool)
[ "torch.nn.Sequential", "torch.nn.AvgPool2d" ]
1.8.1
azkalot1/pytorch-toolbelt
9d7544fa32a6c6588f9f8c4525ba702700ac01cc
1.4
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" import logging import os from typing import Callable, Tuple import torch from torch import Tensor, device, dtype, nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F from .activations import get_activation from .configuration_utils import PretrainedConfig from .file_utils import ( DUMMY_INPUTS, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME, cached_path, hf_bucket_url, is_remote_url, ) logger = logging.getLogger(__name__) try: from torch.nn import Identity except ImportError: # Older PyTorch compatibility class Identity(nn.Module): r"""A placeholder identity operator that is argument-insensitive. """ def __init__(self, *args, **kwargs): super().__init__() def forward(self, input): return input class ModuleUtilsMixin: """ A few utilities for torch.nn.Modules, to be used as a mixin. """ def num_parameters(self, only_trainable: bool = False) -> int: """ Get number of (optionally, trainable) parameters in the module. """ params = filter(lambda x: x.requires_grad, self.parameters()) if only_trainable else self.parameters() return sum(p.numel() for p in params) @staticmethod def _hook_rss_memory_pre_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_pre_forward = mem.rss return None @staticmethod def _hook_rss_memory_post_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_post_forward = mem.rss mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) return None def add_memory_hooks(self): """ Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero with `model.reset_memory_hooks_state()` """ for module in self.modules(): module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) module.register_forward_hook(self._hook_rss_memory_post_forward) self.reset_memory_hooks_state() def reset_memory_hooks_state(self): for module in self.modules(): module.mem_rss_diff = 0 module.mem_rss_post_forward = 0 module.mem_rss_pre_forward = 0 @property def device(self) -> device: return next(self.parameters()).device @property def dtype(self) -> dtype: return next(self.parameters()).dtype def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: """type: torch.Tensor -> torch.Tensor""" if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 return encoder_extended_attention_mask def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: tuple, device: device): """Makes broadcastable attention mask and causal mask so that future and maked tokens are ignored. Arguments: attention_mask: torch.Tensor with 1 indicating tokens to ATTEND to input_shape: tuple, shape of input_ids device: torch.Device, usually self.device Returns: torch.Tensor with dtype of attention_mask.dtype """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self, head_mask, num_hidden_layers): """ # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head attention_probs has shape bsz x n_heads x N x N Arguments: head_mask: torch.Tensor or None: has shape [num_heads] or [num_hidden_layers x num_heads] num_hidden_layers: int Returns: Tensor of shape shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] or list with [None] for each layer """ if head_mask is not None: head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) else: head_mask = [None] * num_hidden_layers return head_mask def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" head_mask = head_mask.to(dtype=self.dtype) # switch to fload if need + fp16 compatibility return head_mask class PreTrainedModel(nn.Module, ModuleUtilsMixin): r""" Base class for all models. :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models as well as a few methods common to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads. Class attributes (overridden by derived classes): - ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values. - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: - ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`, - ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`, - ``path``: a path (string) to the TensorFlow checkpoint. - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. """ config_class = None pretrained_model_archive_map = {} base_model_prefix = "" @property def dummy_inputs(self): """ Dummy inputs to do a forward pass in the network. Returns: torch.Tensor with dummy inputs """ return {"input_ids": torch.tensor(DUMMY_INPUTS)} def __init__(self, config, *inputs, **kwargs): super().__init__() if not isinstance(config, PretrainedConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " "To create a model from a pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ ) ) # Save config in model self.config = config @property def base_model(self): return getattr(self, self.base_model_prefix, self) def get_input_embeddings(self): """ Returns the model's input embeddings. Returns: :obj:`nn.Module`: A torch module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: return base_model.get_input_embeddings() else: raise NotImplementedError def set_input_embeddings(self, value): """ Set model's input embeddings Args: value (:obj:`nn.Module`): A module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: base_model.set_input_embeddings(value) else: raise NotImplementedError def get_output_embeddings(self): """ Returns the model's output embeddings. Returns: :obj:`nn.Module`: A torch module mapping hidden states to vocabulary. """ return None # Overwrite for models with output embeddings def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ output_embeddings = self.get_output_embeddings() if output_embeddings is not None: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) def _tie_or_clone_weights(self, output_embeddings, input_embeddings): """ Tie or clone module weights depending of whether we are using TorchScript or not """ if self.config.torchscript: output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) else: output_embeddings.weight = input_embeddings.weight if getattr(output_embeddings, "bias", None) is not None: output_embeddings.bias.data = torch.nn.functional.pad( output_embeddings.bias.data, (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],), "constant", 0, ) if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings def resize_token_embeddings(self, new_num_tokens=None): """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. Arguments: new_num_tokens: (`optional`) int: New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model. Return: ``torch.nn.Embeddings`` Pointer to the input tokens Embeddings Module of the model """ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed model_embeds = base_model._resize_token_embeddings(new_num_tokens) if new_num_tokens is None: return model_embeds # Update base model and current model config self.config.vocab_size = new_num_tokens base_model.vocab_size = new_num_tokens # Tie weights again if needed self.tie_weights() return model_embeds def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.get_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.set_input_embeddings(new_embeddings) return self.get_input_embeddings() def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None): """ Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly initialized vectors at the end Reducing the size will remove vectors from the end Args: new_num_tokens: (`optional`) int New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end Reducing the size will remove vectors from the end If not provided or None: return the provided token Embedding Module. Return: ``torch.nn.Embeddings`` Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None """ if new_num_tokens is None: return old_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() if old_num_tokens == new_num_tokens: return old_embeddings # Build new embeddings new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) new_embeddings.to(old_embeddings.weight.device) # initialize all new embeddings (in particular added tokens) self._init_weights(new_embeddings) # Copy token embeddings from the previous weights num_tokens_to_copy = min(old_num_tokens, new_num_tokens) new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] return new_embeddings def init_weights(self): """ Initialize and prunes weights if needed. """ # Initialize weights self.apply(self._init_weights) # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) # Tie weights if needed self.tie_weights() def prune_heads(self, heads_to_prune): """ Prunes heads of the base model. Arguments: heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads for layer, heads in heads_to_prune.items(): union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON self.base_model._prune_heads(heads_to_prune) def save_pretrained(self, save_directory): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. Arguments: save_directory: directory to which to save. """ assert os.path.isdir( save_directory ), "Saving path should be a directory where the model and configuration can be saved" # Only save the model itself if we are using distributed training model_to_save = self.module if hasattr(self, "module") else self # Attach architecture to the config model_to_save.config.architectures = [model_to_save.__class__.__name__] # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(save_directory, WEIGHTS_NAME) if getattr(self.config, "xla_device", False): import torch_xla.core.xla_model as xm if xm.is_master_ordinal(): # Save configuration file model_to_save.config.save_pretrained(save_directory) # xm.save takes care of saving only from master xm.save(model_to_save.state_dict(), output_model_file) else: model_to_save.config.save_pretrained(save_directory) torch.save(model_to_save.state_dict(), output_model_file) logger.info("Model weights saved in {}".format(output_model_file)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r"""Instantiate a pretrained pytorch model from a pre-trained model configuration. The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with ``model.train()`` The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``) model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) one of: - an instance of a class derived from :class:`~transformers.PretrainedConfig`, or - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()` Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: # For example purposes. Not runnable. model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) state_dict = kwargs.pop("state_dict", None) cache_dir = kwargs.pop("cache_dir", None) from_tf = kwargs.pop("from_tf", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) local_files_only = kwargs.pop("local_files_only", False) # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, *model_args, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, **kwargs, ) else: model_kwargs = kwargs # Load model if pretrained_model_name_or_path is not None: if pretrained_model_name_or_path in cls.pretrained_model_archive_map: archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path] elif os.path.isdir(pretrained_model_name_or_path): if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): # Load from a TF 1.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): # Load from a TF 2.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} or `from_tf` set to False".format( [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], pretrained_model_name_or_path, ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): assert ( from_tf ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( pretrained_model_name_or_path + ".index" ) archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, postfix=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME), ) # redirect to the cache, if necessary try: resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) except EnvironmentError: if pretrained_model_name_or_path in cls.pretrained_model_archive_map: msg = "Couldn't reach server at '{}' to download pretrained weights.".format(archive_file) else: msg = ( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url to model weight files named one of {} but " "couldn't find any such file at this path or url.".format( pretrained_model_name_or_path, ", ".join(cls.pretrained_model_archive_map.keys()), archive_file, [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME], ) ) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None # Instantiate model. model = cls(config, *model_args, **model_kwargs) if state_dict is None and not from_tf: try: state_dict = torch.load(resolved_archive_file, map_location="cpu") except Exception: raise OSError( "Unable to load weights from pytorch checkpoint file. " "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " ) missing_keys = [] unexpected_keys = [] error_msgs = [] if from_tf: if resolved_archive_file.endswith(".index"): # Load from a TensorFlow 1.X checkpoint - provided by original authors model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' else: # Load from our TensorFlow 2.0 checkpoints try: from transformers import load_tf2_checkpoint_in_pytorch_model model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True) except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise else: # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module: nn.Module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs, ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") # Make sure we are able to load base models as well as derived models (with heads) start_prefix = "" model_to_load = model has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()) if not hasattr(model, cls.base_model_prefix) and has_prefix_module: start_prefix = cls.base_model_prefix + "." if hasattr(model, cls.base_model_prefix) and not has_prefix_module: model_to_load = getattr(model, cls.base_model_prefix) load(model_to_load, prefix=start_prefix) if model.__class__.__name__ != model_to_load.__class__.__name__: base_model_state_dict = model_to_load.state_dict().keys() head_model_state_dict_without_base_prefix = [ key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() ] missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) if len(missing_keys) > 0: logger.info( "Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys ) ) if len(unexpected_keys) > 0: logger.info( "Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys ) ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(error_msgs) ) ) model.tie_weights() # make sure token embedding weights are still tied if needed # Set model in evaluation mode to deactivate DropOut modules by default model.eval() if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs, } return model, loading_info if hasattr(config, "xla_device") and config.xla_device: import torch_xla.core.xla_model as xm model = xm.send_cpu_data_to_device(model, xm.xla_device()) model = model.to(xm.xla_device()) return model def prepare_inputs_for_generation(self, input_ids, **kwargs): return {"input_ids": input_ids} def prepare_scores_for_generation(self, scores, **kwargs): return scores def _use_cache(self, outputs, use_cache): """During generation, decide whether to pass the `past` variable to the next forward pass.""" if len(outputs) <= 1 or use_cache is False: return False if hasattr(self.config, "mem_len") and self.config.mem_len == 0: return False return True def enforce_repetition_penalty_(self, lprobs, batch_size, num_beams, prev_output_tokens, repetition_penalty): """repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """ for i in range(batch_size * num_beams): for previous_token in set(prev_output_tokens[i].tolist()): # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if lprobs[i, previous_token] < 0: lprobs[i, previous_token] *= repetition_penalty else: lprobs[i, previous_token] /= repetition_penalty @torch.no_grad() def generate( self, input_ids=None, max_length=None, min_length=None, do_sample=None, early_stopping=None, num_beams=None, temperature=None, top_k=None, top_p=None, repetition_penalty=None, bad_words_ids=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, length_penalty=None, no_repeat_ngram_size=None, num_return_sequences=None, attention_mask=None, decoder_start_token_id=None, use_cache=None, ): r""" Generates sequences for models with a LM head. The method currently supports greedy decoding, beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling. Adapted in part from `Facebook's XLM beam search code`_. .. _`Facebook's XLM beam search code`: https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529 Parameters: input_ids: (`optional`) `torch.LongTensor` of shape `(batch_size, sequence_length)` The sequence used as a prompt for the generation. If `None` the method initializes it as an empty `torch.LongTensor` of shape `(1,)`. max_length: (`optional`) int The max length of the sequence to be generated. Between `min_length` and infinity. Default to 20. min_length: (`optional`) int The min length of the sequence to be generated. Between 0 and infinity. Default to 0. do_sample: (`optional`) bool If set to `False` greedy decoding is used. Otherwise sampling is used. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`. early_stopping: (`optional`) bool if set to `True` beam search is stopped when at least `num_beams` sentences finished per batch. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`. num_beams: (`optional`) int Number of beams for beam search. Must be between 1 and infinity. 1 means no beam search. Default to 1. temperature: (`optional`) float The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. top_k: (`optional`) int The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. top_p: (`optional`) float The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. repetition_penalty: (`optional`) float The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0. pad_token_id: (`optional`) int Padding token. Default to specicic model pad_token_id or None if it does not exist. bos_token_id: (`optional`) int BOS token. Defaults to `bos_token_id` as defined in the models config. eos_token_id: (`optional`) int EOS token. Defaults to `eos_token_id` as defined in the models config. length_penalty: (`optional`) float Exponential penalty to the length. Default to 1. no_repeat_ngram_size: (`optional`) int If set to int > 0, all ngrams of size `no_repeat_ngram_size` can only occur once. bad_words_ids: (`optional`) list of lists of int `bad_words_ids` contains tokens that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`. num_return_sequences: (`optional`) int The number of independently computed returned sequences for each element in the batch. Default to 1. attention_mask (`optional`) obj: `torch.LongTensor` of same shape as `input_ids` Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. Defaults to `None`. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_start_token_id=None: (`optional`) int If an encoder-decoder model starts decoding with a different token than BOS. Defaults to `None` and is changed to `BOS` later. use_cache: (`optional`) bool If `use_cache` is True, past key values are used to speed up decoding if applicable to model. Defaults to `True`. Return: output: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)` sequence_length is either equal to max_length or shorter if all batches finished early due to the `eos_token_id` Examples:: tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. outputs = model.generate(max_length=40) # do greedy decoding print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog' for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3) # 3 generate sequences using by sampling for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from S3 and cache. input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache. input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']] input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated """ # We cannot generate if the model does not have a LM head if self.get_output_embeddings() is None: raise AttributeError( "You tried to generate sequences with a model that does not have a LM Head." "Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`, `XLMWithLMHeadModel`, `BartForConditionalGeneration` )" ) max_length = max_length if max_length is not None else self.config.max_length min_length = min_length if min_length is not None else self.config.min_length do_sample = do_sample if do_sample is not None else self.config.do_sample early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping use_cache = use_cache if use_cache is not None else self.config.use_cache num_beams = num_beams if num_beams is not None else self.config.num_beams temperature = temperature if temperature is not None else self.config.temperature top_k = top_k if top_k is not None else self.config.top_k top_p = top_p if top_p is not None else self.config.top_p repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty no_repeat_ngram_size = ( no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size ) bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id ) if input_ids is not None: batch_size = input_ids.shape[0] # overriden by the input batch_size else: batch_size = 1 assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer." assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer." assert isinstance(do_sample, bool), "`do_sample` should be a boolean." assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean." assert isinstance(use_cache, bool), "`use_cache` should be a boolean." assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer." assert temperature > 0, "`temperature` should be strictly positive." assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer." assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1." assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1." assert input_ids is not None or ( isinstance(bos_token_id, int) and bos_token_id >= 0 ), "If input_ids is not defined, `bos_token_id` should be a positive integer." assert pad_token_id is None or ( isinstance(pad_token_id, int) and (pad_token_id >= 0) ), "`pad_token_id` should be a positive integer." assert (eos_token_id is None) or ( isinstance(eos_token_id, int) and (eos_token_id >= 0) ), "`eos_token_id` should be a positive integer." assert length_penalty > 0, "`length_penalty` should be strictly positive." assert ( isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0 ), "`no_repeat_ngram_size` should be a positive integer." assert ( isinstance(num_return_sequences, int) and num_return_sequences > 0 ), "`num_return_sequences` should be a strictly positive integer." assert ( bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list) ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated" if input_ids is None: assert isinstance(bos_token_id, int) and bos_token_id >= 0, ( "you should either supply a context to complete as `input_ids` input " "or a `bos_token_id` (integer >= 0) as a first token to start the generation." ) input_ids = torch.full( (batch_size, 1), bos_token_id, dtype=torch.long, device=next(self.parameters()).device, ) else: assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)." # not allow to duplicate outputs when greedy decoding if do_sample is False: if num_beams == 1: # no_beam_search greedy generation conditions assert ( num_return_sequences == 1 ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1" else: # beam_search greedy generation conditions assert ( num_beams >= num_return_sequences ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences" # create attention mask if necessary # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140 if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids): attention_mask = input_ids.ne(pad_token_id).long() elif attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) # set pad_token_id to eos_token_id if not set. Important that this is done after # attention_mask is created if pad_token_id is None and eos_token_id is not None: logger.warning( "Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id) ) pad_token_id = eos_token_id # current position and vocab size if hasattr(self.config, "vocab_size"): vocab_size = self.config.vocab_size elif ( self.config.is_encoder_decoder and hasattr(self.config, "decoder") and hasattr(self.config.decoder, "vocab_size") ): vocab_size = self.config.decoder.vocab_size # set effective batch size and effective batch multiplier according to do_sample if do_sample: effective_batch_size = batch_size * num_return_sequences effective_batch_mult = num_return_sequences else: effective_batch_size = batch_size effective_batch_mult = 1 if self.config.is_encoder_decoder: if decoder_start_token_id is None: decoder_start_token_id = bos_token_id assert ( decoder_start_token_id is not None ), "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation" assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self) assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder) # get encoder and store encoder outputs encoder = self.get_encoder() encoder_outputs: tuple = encoder(input_ids, attention_mask=attention_mask) # Expand input ids if num_beams > 1 or num_return_sequences > 1 if num_return_sequences > 1 or num_beams > 1: input_ids_len = input_ids.shape[-1] input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len) attention_mask = attention_mask.unsqueeze(1).expand( batch_size, effective_batch_mult * num_beams, input_ids_len ) input_ids = input_ids.contiguous().view( effective_batch_size * num_beams, input_ids_len ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) attention_mask = attention_mask.contiguous().view( effective_batch_size * num_beams, input_ids_len ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) if self.config.is_encoder_decoder: # create empty decoder_input_ids input_ids = torch.full( (effective_batch_size * num_beams, 1), decoder_start_token_id, dtype=torch.long, device=next(self.parameters()).device, ) cur_len = 1 assert ( batch_size == encoder_outputs[0].shape[0] ), f"expected encoder_outputs[0] to have 1st dimension bs={batch_size}, got {encoder_outputs[0].shape[0]} " # expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1) expanded_batch_idxs = ( torch.arange(batch_size) .view(-1, 1) .repeat(1, num_beams * effective_batch_mult) .view(-1) .to(input_ids.device) ) # expand encoder_outputs encoder_outputs = (encoder_outputs[0].index_select(0, expanded_batch_idxs), *encoder_outputs[1:]) else: encoder_outputs = None cur_len = input_ids.shape[-1] if num_beams > 1: output = self._generate_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, early_stopping=early_stopping, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, bos_token_id=bos_token_id, pad_token_id=pad_token_id, decoder_start_token_id=decoder_start_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, num_return_sequences=num_return_sequences, length_penalty=length_penalty, num_beams=num_beams, vocab_size=vocab_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, use_cache=use_cache, ) else: output = self._generate_no_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, bos_token_id=bos_token_id, pad_token_id=pad_token_id, decoder_start_token_id=decoder_start_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, use_cache=use_cache, ) return output def _generate_no_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, decoder_start_token_id, batch_size, encoder_outputs, attention_mask, use_cache, ): """ Generate sequences for each example without beam search (num_beams == 1). All returned sequence are generated independantly. """ # length of generated sentences / unfinished sentences unfinished_sents = input_ids.new(batch_size).fill_(1) sent_lengths = input_ids.new(batch_size).fill_(max_length) past = encoder_outputs # defined for encoder-decoder models, None for decoder-only models while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache ) outputs = self(**model_inputs) next_token_logits = outputs[0][:, -1, :] # if model has past, then set the past variable to speed up decoding if self._use_cache(outputs, use_cache): past = outputs[1] # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: self.enforce_repetition_penalty_(next_token_logits, batch_size, 1, input_ids, repetition_penalty) if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_tokens = calc_banned_ngram_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len) for batch_idx in range(batch_size): next_token_logits[batch_idx, banned_tokens[batch_idx]] = -float("inf") if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) for batch_idx in range(batch_size): next_token_logits[batch_idx, banned_tokens[batch_idx]] = -float("inf") # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: next_token_logits[:, eos_token_id] = -float("inf") if do_sample: # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: next_token_logits = next_token_logits / temperature # Top-p/top-k filtering next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) # Sample probs = F.softmax(next_token_logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1).squeeze(1) else: # Greedy decoding next_token = torch.argmax(next_token_logits, dim=-1) # update generations and finished sentences if eos_token_id is not None: # pad finished sentences if eos_token_id exist tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents) else: tokens_to_add = next_token input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1) if eos_token_id is not None: eos_in_sents = tokens_to_add == eos_token_id # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool() sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len + 1) # unfinished_sents is set to zero if eos in sentence unfinished_sents.mul_((~eos_in_sents).long()) # stop when there is a </s> in each sentence, or if we exceed the maximul length if unfinished_sents.max() == 0: break # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) cur_len = cur_len + 1 # if there are different sentences lengths in the batch, some batches have to be padded if sent_lengths.min().item() != sent_lengths.max().item(): assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths" # finished sents are filled with pad_token decoded = input_ids.new(batch_size, sent_lengths.max().item()).fill_(pad_token_id) else: decoded = input_ids for hypo_idx, hypo in enumerate(input_ids): decoded[hypo_idx, : sent_lengths[hypo_idx]] = hypo[: sent_lengths[hypo_idx]] return decoded def _generate_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, early_stopping, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, decoder_start_token_id, batch_size, num_return_sequences, length_penalty, num_beams, vocab_size, encoder_outputs, attention_mask, use_cache, ): """ Generate sequences for each example with beam search. """ # generated hypotheses generated_hyps = [ BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping) for _ in range(batch_size) ] # scores for each sentence in the beam beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) # for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times if do_sample is False: beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,) # cache compute states past = encoder_outputs # defined for encoder-decoder models, None for decoder-only models # done sentences done = [False for _ in range(batch_size)] while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache ) outputs = self(**model_inputs) # (batch_size * num_beams, cur_len, vocab_size) next_token_logits = outputs[0][:, -1, :] # (batch_size * num_beams, vocab_size) # if model has past, then set the past variable to speed up decoding if self._use_cache(outputs, use_cache): past = outputs[1] # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: self.enforce_repetition_penalty_( next_token_logits, batch_size, num_beams, input_ids, repetition_penalty, ) if temperature != 1.0: next_token_logits = next_token_logits / temperature scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size) if self.config.is_encoder_decoder and do_sample is False: # TODO (PVP) still a bit hacky here - there might be a better solutino scores = self.prepare_scores_for_generation(scores, cur_len=cur_len, max_length=max_length) # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: scores[:, eos_token_id] = -float("inf") if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams num_batch_hypotheses = batch_size * num_beams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_batch_tokens = calc_banned_ngram_tokens( input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len ) for i, banned_tokens in enumerate(banned_batch_tokens): scores[i, banned_tokens] = -float("inf") if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) for i, banned_tokens in enumerate(banned_tokens): scores[i, banned_tokens] = -float("inf") assert scores.shape == (batch_size * num_beams, vocab_size), "Shapes of scores: {} != {}".format( scores.shape, (batch_size * num_beams, vocab_size) ) if do_sample: _scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) # Top-p/top-k filtering _scores = top_k_top_p_filtering( _scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2 ) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together to sample from all beam_idxs _scores = _scores.contiguous().view( batch_size, num_beams * vocab_size ) # (batch_size, num_beams * vocab_size) # Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search) probs = F.softmax(_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=2 * num_beams) # (batch_size, num_beams * 2) # Compute next scores next_scores = torch.gather(_scores, -1, next_tokens) # (batch_size, num_beams * 2) # sort the sampled vector to make sure that the first num_beams samples are the best next_scores, next_scores_indices = torch.sort(next_scores, descending=True, dim=1) next_tokens = torch.gather(next_tokens, -1, next_scores_indices) # (batch_size, num_beams * 2) else: next_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together (we are keeping top hypothesis accross beams) next_scores = next_scores.view( batch_size, num_beams * vocab_size ) # (batch_size, num_beams * vocab_size) next_scores, next_tokens = torch.topk(next_scores, 2 * num_beams, dim=1, largest=True, sorted=True) assert next_scores.size() == next_tokens.size() == (batch_size, 2 * num_beams) # next batch beam content next_batch_beam = [] # for each sentence for batch_idx in range(batch_size): # if we are done with this sentence if done[batch_idx]: assert ( len(generated_hyps[batch_idx]) >= num_beams ), "Batch can only be done if at least {} beams have been generated".format(num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams) # pad the batch continue # next sentence beam content next_sent_beam = [] # next tokens for this sentence for beam_token_rank, (beam_token_id, beam_token_score) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx]) ): # get beam and token IDs beam_id = beam_token_id // vocab_size token_id = beam_token_id % vocab_size effective_beam_id = batch_idx * num_beams + beam_id # add to generated hypotheses if end of sentence or last iteration if (eos_token_id is not None) and (token_id.item() == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams if is_beam_token_worse_than_top_num_beams: continue generated_hyps[batch_idx].add( input_ids[effective_beam_id].clone(), beam_token_score.item(), ) else: # add next predicted token if it is not eos_token next_sent_beam.append((beam_token_score, token_id, effective_beam_id)) # the beam for next step is full if len(next_sent_beam) == num_beams: break # Check if were done so that we can save a pad step if all(done) done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done( next_scores[batch_idx].max().item(), cur_len=cur_len ) # update next beam content assert len(next_sent_beam) == num_beams, "Beam should always be full" next_batch_beam.extend(next_sent_beam) assert len(next_batch_beam) == num_beams * (batch_idx + 1) # stop when we are done with each sentence if all(done): break # sanity check / prepare next batch assert len(next_batch_beam) == batch_size * num_beams beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_tokens = input_ids.new([x[1] for x in next_batch_beam]) beam_idx = input_ids.new([x[2] for x in next_batch_beam]) # re-order batch input_ids = input_ids[beam_idx, :] input_ids = torch.cat([input_ids, beam_tokens.unsqueeze(1)], dim=-1) # re-order internal states if past is not None: past = self._reorder_cache(past, beam_idx) # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) # update current length cur_len = cur_len + 1 # finalize all open beam hypotheses and end to generated hypotheses for batch_idx in range(batch_size): if done[batch_idx]: continue # test that beam scores match previously calculated scores if not eos and batch_idx not done if eos_token_id is not None and all( (token_id % vocab_size).item() is not eos_token_id for token_id in next_tokens[batch_idx] ): assert torch.all( next_scores[batch_idx, :num_beams] == beam_scores.view(batch_size, num_beams)[batch_idx] ), "If batch_idx is not done, final next scores: {} have to equal to accumulated beam_scores: {}".format( next_scores[:, :num_beams][batch_idx], beam_scores.view(batch_size, num_beams)[batch_idx], ) # need to add best num_beams hypotheses to generated hyps for beam_id in range(num_beams): effective_beam_id = batch_idx * num_beams + beam_id final_score = beam_scores[effective_beam_id].item() final_tokens = input_ids[effective_beam_id] generated_hyps[batch_idx].add(final_tokens, final_score) # depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch output_batch_size = batch_size if do_sample else batch_size * num_return_sequences output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences # select the best hypotheses sent_lengths = input_ids.new(output_batch_size) best = [] # retrieve best hypotheses for i, hypotheses in enumerate(generated_hyps): sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0]) for j in range(output_num_return_sequences_per_batch): effective_batch_idx = output_num_return_sequences_per_batch * i + j best_hyp = sorted_hyps.pop()[1] sent_lengths[effective_batch_idx] = len(best_hyp) best.append(best_hyp) # shorter batches are filled with pad_token if sent_lengths.min().item() != sent_lengths.max().item(): assert pad_token_id is not None, "`Pad_token_id` has to be defined" sent_max_len = min(sent_lengths.max().item() + 1, max_length) decoded = input_ids.new(output_batch_size, sent_max_len).fill_(pad_token_id) # fill with hypothesis and eos_token_id if necessary for i, hypo in enumerate(best): decoded[i, : sent_lengths[i]] = hypo if sent_lengths[i] < max_length: decoded[i, sent_lengths[i]] = eos_token_id else: # none of the hypotheses have an eos_token assert (len(hypo) == max_length for hypo in best) decoded = torch.stack(best).type(torch.long).to(next(self.parameters()).device) return decoded # force one of token_ids to be generated by setting prob of all other tokens to 0. def _force_token_ids_generation(self, scores, token_ids) -> None: if isinstance(token_ids, int): token_ids = [token_ids] all_but_token_ids_mask = torch.tensor( [x for x in range(self.config.vocab_size) if x not in token_ids], dtype=torch.long, device=next(self.parameters()).device, ) assert len(scores.shape) == 2, "scores should be of rank 2 with shape: [batch_size, vocab_size]" scores[:, all_but_token_ids_mask] = -float("inf") @staticmethod def _reorder_cache(past: Tuple, beam_idx: Tensor) -> Tuple[Tensor]: return tuple(layer_past.index_select(1, beam_idx) for layer_past in past) def calc_banned_ngram_tokens(prev_input_ids: Tensor, num_hypos: int, no_repeat_ngram_size: int, cur_len: int) -> None: """Copied from fairseq for no_repeat_ngram in beam_search""" if cur_len + 1 < no_repeat_ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - no_repeat_ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids): banned_tokens = [] def _tokens_match(prev_tokens, tokens): if len(tokens) == 0: # if bad word tokens is just one token always ban it return True if len(tokens) > len(prev_input_ids): # if bad word tokens are longer then prev input_ids they can't be equal return False if prev_tokens[-len(tokens) :] == tokens: # if tokens match return True else: return False for prev_input_ids_slice in prev_input_ids: banned_tokens_slice = [] for banned_token_seq in bad_words_ids: assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format( bad_words_ids ) if _tokens_match(prev_input_ids_slice.tolist(), banned_token_seq[:-1]) is False: # if tokens do not match continue continue banned_tokens_slice.append(banned_token_seq[-1]) banned_tokens.append(banned_tokens_slice) return banned_tokens def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits class BeamHypotheses(object): def __init__(self, num_beams, max_length, length_penalty, early_stopping): """ Initialize n-best list of hypotheses. """ self.max_length = max_length - 1 # ignoring bos_token self.length_penalty = length_penalty self.early_stopping = early_stopping self.num_beams = num_beams self.beams = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.beams) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ score = sum_logprobs / len(hyp) ** self.length_penalty if len(self) < self.num_beams or score > self.worst_score: self.beams.append((score, hyp)) if len(self) > self.num_beams: sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)]) del self.beams[sorted_scores[0][1]] self.worst_score = sorted_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len=None): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.num_beams: return False elif self.early_stopping: return True else: if cur_len is None: cur_len = self.max_length cur_score = best_sum_logprobs / cur_len ** self.length_penalty ret = self.worst_score >= cur_score return ret class Conv1D(nn.Module): def __init__(self, nf, nx): """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2) Basically works like a Linear layer but the weights are transposed """ super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = nn.Parameter(w) self.bias = nn.Parameter(torch.zeros(nf)) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(*size_out) return x class PoolerStartLogits(nn.Module): """ Compute SQuAD start_logits from sequence hidden states. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, 1) def forward(self, hidden_states, p_mask=None): """ Args: **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)` invalid position mask such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerEndLogits(nn.Module): """ Compute SQuAD end_logits from sequence hidden states and start token hidden state. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1) def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None): """ Args: One of ``start_states``, ``start_positions`` should be not None. If both are set, ``start_positions`` overrides ``start_states``. **start_states**: ``torch.LongTensor`` of shape identical to hidden_states hidden states of the first tokens for the labeled span. **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span: **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` Mask of invalid position such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerAnswerClass(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None): """ Args: One of ``start_states``, ``start_positions`` should be not None. If both are set, ``start_positions`` overrides ``start_states``. **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``. hidden states of the first tokens for the labeled span. **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span. **cls_index**: torch.LongTensor of shape ``(batch_size,)`` position of the CLS token. If None, take the last token. note(Original repo): no dependency on end_feature so that we can obtain one single `cls_logits` for each sample """ hsz = hidden_states.shape[-1] assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x class SQuADHead(nn.Module): r""" A SQuAD head inspired by XLNet. Parameters: config (:class:`~transformers.XLNetConfig`): Model configuration class with all the parameters of the model. Inputs: **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)`` hidden states of sequence tokens **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span. **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the last token for the labeled span. **cls_index**: torch.LongTensor of shape ``(batch_size,)`` position of the CLS token. If None, take the last token. **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)`` Whether the question has a possible answer in the paragraph or not. **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` Mask of invalid position such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)`` Log probabilities for the top config.start_n_top start token possibilities (beam-search). **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)`` Indices for the top config.start_n_top start token possibilities (beam-search). **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.FloatTensor`` of shape ``(batch_size,)`` Log probabilities for the ``is_impossible`` label of the answers. """ def __init__(self, config): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) def forward( self, hidden_states, start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None, ): outputs = () start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 outputs = (total_loss,) + outputs else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits,) + outputs # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits # or (if labels are provided) (total_loss,) return outputs class SequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states according to various possibilities: Args of the config class: summary_type: - 'last' => [default] take the last token hidden state (like XLNet) - 'first' => take the first token hidden state (like Bert) - 'mean' => take the mean of all tokens hidden states - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) - 'attn' => Not implemented now, use multi-head attention summary_use_proj: Add a projection after the vector extraction summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. summary_activation: 'tanh' or another string => add an activation to the output, Other => no activation. Default summary_first_dropout: Add a dropout before the projection and activation summary_last_dropout: Add a dropout after the projection and activation """ def __init__(self, config: PretrainedConfig): super().__init__() self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) activation_string = getattr(config, "summary_activation", None) self.activation: Callable = (get_activation(activation_string) if activation_string else Identity()) self.first_dropout = Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward(self, hidden_states, cls_index=None): """ hidden_states: float Tensor in shape [bsz, ..., seq_len, hidden_size], the hidden-states of the last layer. cls_index: [optional] position of the classification token if summary_type == 'cls_index', shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states. if summary_type == 'cls_index' and cls_index is None: we take the last token of the sequence as classification token """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long,) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor: """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask return incremental_indices.long() + padding_idx def prune_linear_layer(layer, index, dim=0): """ Prune a linear layer (a model parameters) to keep only entries in index. Return the pruned layer as a new layer with requires_grad=True. Used to remove heads. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_conv1d_layer(layer, index, dim=1): """ Prune a Conv1D layer (a model parameters) to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. Return the pruned layer as a new layer with requires_grad=True. Used to remove heads. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if dim == 0: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_layer(layer, index, dim=None): """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index. Return the pruned layer as a new layer with requires_grad=True. Used to remove heads. """ if isinstance(layer, nn.Linear): return prune_linear_layer(layer, index, dim=0 if dim is None else dim) elif isinstance(layer, Conv1D): return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) else: raise ValueError("Can't prune layer of class {}".format(layer.__class__))
[ "torch.nn.Linear", "torch.cat", "torch.stack", "torch.einsum", "torch.nn.Parameter", "torch.multinomial", "torch.load", "torch.nn.BCEWithLogitsLoss", "torch.nn.functional.pad", "torch.nn.CrossEntropyLoss", "torch.topk", "torch.nn.LayerNorm", "torch.gather", "torch.nn.init.normal_", "torch.tensor", "torch.empty", "torch.zeros", "torch.nn.Identity", "torch.nn.Tanh", "torch.nn.functional.log_softmax", "torch.full_like", "torch.nn.functional.softmax", "torch.sort", "torch.argmax", "torch.cumsum", "torch.nn.Dropout", "torch.arange", "torch.no_grad", "torch.nn.Embedding" ]
1.4.0
HebatallaTarek/Empathy-Mental-Health
16e2a5f93aabd22803bb39805f8e76c8bea0ccf2
1.0
# coding=utf-8 # Copyright 2020-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task. """ import collections import inspect import math import os import random import re import shutil import sys import tempfile import time import warnings from logging import StreamHandler from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union from tqdm.auto import tqdm # Integrations must be imported before ML frameworks: from .integrations import ( # isort: split default_hp_search_backend, get_reporting_integration_callbacks, hp_params, is_fairscale_available, is_optuna_available, is_ray_tune_available, run_hp_search_optuna, run_hp_search_ray, deepspeed_init, is_deepspeed_zero3_enabled, ) import numpy as np import torch from packaging import version from torch import nn from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset, IterableDataset from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import RandomSampler, SequentialSampler from . import __version__ from .configuration_utils import PretrainedConfig from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator from .debug_utils import DebugOption, DebugUnderflowOverflow from .dependency_versions_check import dep_version_check from .file_utils import ( CONFIG_NAME, WEIGHTS_NAME, PushToHubMixin, is_apex_available, is_datasets_available, is_in_notebook, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_torch_tpu_available, is_training_run_on_sagemaker, ) from .modelcard import TrainingSummary from .modeling_utils import PreTrainedModel, unwrap_model from .optimization import Adafactor, AdamW, get_scheduler from .tokenization_utils_base import PreTrainedTokenizerBase from .trainer_callback import ( CallbackHandler, DefaultFlowCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from .trainer_pt_utils import ( DistributedLengthGroupedSampler, DistributedSamplerWithLoop, DistributedTensorGatherer, IterableDatasetShard, LabelSmoother, LengthGroupedSampler, SequentialDistributedSampler, ShardSampler, distributed_broadcast_scalars, distributed_concat, find_batch_size, get_parameter_names, nested_concat, nested_detach, nested_numpify, nested_truncate, nested_xla_mesh_reduce, reissue_pt_warnings, ) from .trainer_utils import ( PREFIX_CHECKPOINT_DIR, BestRun, EvalLoopOutput, EvalPrediction, HPSearchBackend, PredictionOutput, ShardedDDPOption, TrainerMemoryTracker, TrainOutput, default_compute_objective, default_hp_space, denumpify_detensorize, get_last_checkpoint, set_seed, speed_metrics, ) from .training_args import ParallelMode, TrainingArguments from .utils import logging from .utils.modeling_auto_mapping import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES _is_torch_generator_available = False _is_native_amp_available = False DEFAULT_CALLBACKS = [DefaultFlowCallback] DEFAULT_PROGRESS_CALLBACK = ProgressCallback if is_in_notebook(): from .utils.notebook import NotebookProgressCallback DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback if is_apex_available(): from apex import amp if version.parse(torch.__version__) >= version.parse("1.6"): _is_torch_generator_available = True _is_native_amp_available = True from torch.cuda.amp import autocast if is_datasets_available(): import datasets if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met import torch_xla.distributed.parallel_loader as pl if is_fairscale_available(): dep_version_check("fairscale") import fairscale from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP from fairscale.nn.wrap import auto_wrap from fairscale.optim import OSS from fairscale.optim.grad_scaler import ShardedGradScaler if is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.distributed as dist from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP else: import torch.distributed as dist if is_sagemaker_mp_enabled(): import smdistributed.modelparallel.torch as smp from .trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat if is_training_run_on_sagemaker(): logging.add_handler(StreamHandler(sys.stdout)) if TYPE_CHECKING: import optuna logger = logging.get_logger(__name__) class Trainer: """ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers. Args: model (:class:`~transformers.PreTrainedModel` or :obj:`torch.nn.Module`, `optional`): The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed. .. note:: :class:`~transformers.Trainer` is optimized to work with the :class:`~transformers.PreTrainedModel` provided by the library. You can still use your own models defined as :obj:`torch.nn.Module` as long as they work the same way as the 🤗 Transformers models. args (:class:`~transformers.TrainingArguments`, `optional`): The arguments to tweak for training. Will default to a basic instance of :class:`~transformers.TrainingArguments` with the ``output_dir`` set to a directory named `tmp_trainer` in the current directory if not provided. data_collator (:obj:`DataCollator`, `optional`): The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`. Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of :func:`~transformers.DataCollatorWithPadding` otherwise. train_dataset (:obj:`torch.utils.data.dataset.Dataset` or :obj:`torch.utils.data.dataset.IterableDataset`, `optional`): The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Note that if it's a :obj:`torch.utils.data.dataset.IterableDataset` with some randomization and you are training in a distributed fashion, your iterable dataset should either use a internal attribute :obj:`generator` that is a :obj:`torch.Generator` for the randomization that must be identical on all processes (and the Trainer will manually set the seed of this :obj:`generator` at each epoch) or have a :obj:`set_epoch()` method that internally sets the seed of the RNGs used. eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. tokenizer (:class:`PreTrainedTokenizerBase`, `optional`): The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`): A function that instantiates the model to be used. If provided, each call to :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function. The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be able to choose different architectures according to hyper parameters (such as layer count, sizes of inner layers, dropout probabilities etc). compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`): The function that will be used to compute metrics at evaluation. Must take a :class:`~transformers.EvalPrediction` and return a dictionary string to metric values. callbacks (List of :obj:`~transformers.TrainerCallback`, `optional`): A list of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in :doc:`here <callback>`. If you want to remove one of the default callbacks used, use the :meth:`Trainer.remove_callback` method. optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`): A tuple containing the optimizer and the scheduler to use. Will default to an instance of :class:`~transformers.AdamW` on your model and a scheduler given by :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`. Important attributes: - **model** -- Always points to the core model. If using a transformers model, it will be a :class:`~transformers.PreTrainedModel` subclass. - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the original model. This is the model that should be used for the forward pass. For example, under ``DeepSpeed``, the inner model is wrapped in ``DeepSpeed`` and then again in ``torch.nn.DistributedDataParallel``. If the inner model hasn't been wrapped, then ``self.model_wrapped`` is the same as ``self.model``. - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from data parallelism, this means some of the model layers are split on different GPUs). - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set to :obj:`False` if model parallel or deepspeed is used, or if the default ``TrainingArguments.place_model_on_device`` is overridden to return :obj:`False` . - **is_in_train** -- Whether or not a model is currently running ``train`` (e.g. when ``evaluate`` is called while in ``train``) """ from .trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state def __init__( self, model: Union[PreTrainedModel, torch.nn.Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Dataset] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, model_init: Callable[[], PreTrainedModel] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), ): if args is None: output_dir = "tmp_trainer" logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.") args = TrainingArguments(output_dir=output_dir) self.args = args # Seed must be set before instantiating the model when using model set_seed(self.args.seed) self.hp_name = None self.deepspeed = None self.is_in_train = False # memory metrics - must set up as early as possible self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics) self._memory_tracker.start() # force device and distributed setup init explicitly args._setup_devices if model is None: if model_init is not None: self.model_init = model_init model = self.call_model_init() else: raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument") else: if model_init is not None: warnings.warn( "`Trainer` requires either a `model` or `model_init` argument, but not both. " "`model_init` will overwrite your model when calling the `train` method. This will become a fatal error in the next release.", FutureWarning, ) self.model_init = model_init if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel: self.is_model_parallel = True else: self.is_model_parallel = False # Setup Sharded DDP training self.sharded_ddp = None if len(args.sharded_ddp) > 0: if args.deepspeed: raise ValueError( "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags." ) if args.local_rank == -1: raise ValueError("Using sharded DDP only works in distributed training.") elif not is_fairscale_available(): raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.") elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None: raise ImportError( "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found " f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`." ) elif ShardedDDPOption.SIMPLE in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.SIMPLE elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_2 elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp: self.sharded_ddp = ShardedDDPOption.ZERO_DP_3 # one place to sort out whether to place the model on device or not # postpone switching model to cuda when: # 1. MP - since we are trying to fit a much bigger than 1 gpu model # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway, # and we only use deepspeed for training at the moment # 3. full fp16 eval - since the model needs to be half'ed first # 4. Sharded DDP - same as MP self.place_model_on_device = args.place_model_on_device if ( self.is_model_parallel or args.deepspeed or (args.fp16_full_eval and not args.do_train) or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3]) ): self.place_model_on_device = False default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer) self.data_collator = data_collator if data_collator is not None else default_collator self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.tokenizer = tokenizer if self.place_model_on_device: model = model.to(args.device) # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs if self.is_model_parallel: self.args._n_gpu = 1 # later use `self.model is self.model_wrapped` to check if it's wrapped or not self.model_wrapped = model self.model = model self.compute_metrics = compute_metrics self.optimizer, self.lr_scheduler = optimizers if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None): raise RuntimeError( "Passing a `model_init` is incompatible with providing the `optimizers` argument." "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method." ) default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks self.callback_handler = CallbackHandler( callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler ) self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) # Will be set to True by `self._setup_loggers()` on first call to `self.log()`. self._loggers_initialized = False # Create output directory if needed if self.is_world_process_zero(): os.makedirs(self.args.output_dir, exist_ok=True) if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)): raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).") if args.max_steps > 0: logger.info("max_steps is given, it will override any value given in num_train_epochs") if train_dataset is not None and not isinstance(train_dataset, collections.abc.Sized) and args.max_steps <= 0: raise ValueError("train_dataset does not implement __len__, max_steps has to be specified") self._signature_columns = None # Mixed precision setup self.use_apex = False self.use_amp = False self.fp16_backend = None if args.fp16: if args.fp16_backend == "auto": self.fp16_backend = "amp" if _is_native_amp_available else "apex" else: self.fp16_backend = args.fp16_backend logger.info(f"Using {self.fp16_backend} fp16 backend") if args.fp16 and not args.deepspeed: # deepspeed manages its own fp16 if self.fp16_backend == "amp": self.use_amp = True if is_sagemaker_mp_enabled(): self.scaler = smp.amp.GradScaler() elif self.sharded_ddp is not None: self.scaler = ShardedGradScaler() else: self.scaler = torch.cuda.amp.GradScaler() else: if not is_apex_available(): raise ImportError( "Using FP16 with APEX but APEX is not installed, please refer to https://www.github.com/nvidia/apex." ) self.use_apex = True # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error. if is_sagemaker_mp_enabled() and self.use_amp and args.max_grad_norm is not None and args.max_grad_norm > 0: raise ValueError( "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass " "along 'max_grad_norm': 0 in your hyperparameters." ) # Label smoothing if self.args.label_smoothing_factor != 0: self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor) else: self.label_smoother = None self.state = TrainerState() self.control = TrainerControl() # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then # returned to 0 every time flos need to be logged self.current_flos = 0 self.hp_search_backend = None self.use_tune_checkpoints = False default_label_names = ( ["start_positions", "end_positions"] if type(self.model).__name__ in MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES.values() else ["labels"] ) self.label_names = default_label_names if self.args.label_names is None else self.args.label_names self.control = self.callback_handler.on_init_end(self.args, self.state, self.control) # very last self._memory_tracker.stop_and_update_metrics() def add_callback(self, callback): """ Add a callback to the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will instantiate a member of that class. """ self.callback_handler.add_callback(callback) def pop_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback` and returns it. If the callback is not found, returns :obj:`None` (and no error is raised). Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will pop the first member of that class found in the list of callbacks. Returns: :class:`~transformer.TrainerCallback`: The callback removed, if found. """ return self.callback_handler.pop_callback(callback) def remove_callback(self, callback): """ Remove a callback from the current list of :class:`~transformer.TrainerCallback`. Args: callback (:obj:`type` or :class:`~transformer.TrainerCallback`): A :class:`~transformer.TrainerCallback` class or an instance of a :class:`~transformer.TrainerCallback`. In the first case, will remove the first member of that class found in the list of callbacks. """ self.callback_handler.remove_callback(callback) def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None): if not self.args.remove_unused_columns: return dataset if self._signature_columns is None: # Inspect model forward signature to keep only the arguments it accepts. signature = inspect.signature(self.model.forward) self._signature_columns = list(signature.parameters.keys()) # Labels may be named label or label_ids, the default data collator handles that. self._signature_columns += ["label", "label_ids"] columns = [k for k in self._signature_columns if k in dataset.column_names] ignored_columns = list(set(dataset.column_names) - set(self._signature_columns)) if len(ignored_columns) > 0: dset_description = "" if description is None else f"in the {description} set " logger.info( f"The following columns {dset_description} don't have a corresponding argument in " f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}." ) if version.parse(datasets.__version__) < version.parse("1.4.0"): dataset.set_format( type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"] ) return dataset else: return dataset.remove_columns(ignored_columns) def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]: if not isinstance(self.train_dataset, collections.abc.Sized): return None generator = None if self.args.world_size <= 1 and _is_torch_generator_available: generator = torch.Generator() generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item())) # Build the sampler. if self.args.group_by_length: if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset): lengths = ( self.train_dataset[self.args.length_column_name] if self.args.length_column_name in self.train_dataset.column_names else None ) else: lengths = None model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None if self.args.world_size <= 1: return LengthGroupedSampler( self.train_dataset, self.args.train_batch_size, lengths=lengths, model_input_name=model_input_name, generator=generator, ) else: return DistributedLengthGroupedSampler( self.train_dataset, self.args.train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, lengths=lengths, model_input_name=model_input_name, seed=self.args.seed, ) else: if self.args.world_size <= 1: if _is_torch_generator_available: return RandomSampler(self.train_dataset, generator=generator) return RandomSampler(self.train_dataset) elif ( self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL] and not self.args.dataloader_drop_last ): # Use a loop for TPUs when drop_last is False to have all batches have the same size. return DistributedSamplerWithLoop( self.train_dataset, batch_size=self.args.per_device_train_batch_size, num_replicas=self.args.world_size, rank=self.args.process_index, seed=self.args.seed, ) else: return DistributedSampler( self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index, seed=self.args.seed, ) def get_train_dataloader(self) -> DataLoader: """ Returns the training :class:`~torch.utils.data.DataLoader`. Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted to distributed training if necessary) otherwise. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") train_dataset = self.train_dataset if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): train_dataset = self._remove_unused_columns(train_dataset, description="training") if isinstance(train_dataset, torch.utils.data.dataset.IterableDataset): if self.args.world_size > 1: train_dataset = IterableDatasetShard( train_dataset, batch_size=self.args.train_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( train_dataset, batch_size=self.args.train_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) train_sampler = self._get_train_sampler() return DataLoader( train_dataset, batch_size=self.args.train_batch_size, sampler=train_sampler, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]: # Deprecated code if self.args.use_legacy_prediction_loop: if is_torch_tpu_available(): return SequentialDistributedSampler( eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal() ) elif is_sagemaker_mp_enabled(): return SequentialDistributedSampler( eval_dataset, num_replicas=smp.dp_size(), rank=smp.dp_rank(), batch_size=self.args.per_device_eval_batch_size, ) elif self.args.local_rank != -1: return SequentialDistributedSampler(eval_dataset) else: return SequentialSampler(eval_dataset) if self.args.world_size <= 1: return SequentialSampler(eval_dataset) else: return ShardSampler( eval_dataset, batch_size=self.args.per_device_eval_batch_size, num_processes=self.args.world_size, process_index=self.args.process_index, ) def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: """ Returns the evaluation :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.") eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset): eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation") if isinstance(eval_dataset, torch.utils.data.dataset.IterableDataset): if self.args.world_size > 1: eval_dataset = IterableDatasetShard( eval_dataset, batch_size=self.args.eval_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( eval_dataset, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) eval_sampler = self._get_eval_sampler(eval_dataset) return DataLoader( eval_dataset, sampler=eval_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader: """ Returns the test :class:`~torch.utils.data.DataLoader`. Subclass and override this method if you want to inject some custom behavior. Args: test_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`): The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`. """ if is_datasets_available() and isinstance(test_dataset, datasets.Dataset): test_dataset = self._remove_unused_columns(test_dataset, description="test") if isinstance(test_dataset, torch.utils.data.dataset.IterableDataset): if self.args.world_size > 1: test_dataset = IterableDatasetShard( test_dataset, batch_size=self.args.eval_batch_size, drop_last=self.args.dataloader_drop_last, num_processes=self.args.world_size, process_index=self.args.process_index, ) return DataLoader( test_dataset, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.dataloader_pin_memory, ) test_sampler = self._get_eval_sampler(test_dataset) # We use the same batch_size as for eval. return DataLoader( test_dataset, sampler=test_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.data_collator, drop_last=self.args.dataloader_drop_last, pin_memory=self.args.dataloader_pin_memory, ) def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method (or :obj:`create_optimizer` and/or :obj:`create_scheduler`) in a subclass. """ self.create_optimizer() self.create_scheduler(num_training_steps) def create_optimizer(self): """ Setup the optimizer. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: decay_parameters = get_parameter_names(self.model, [torch.nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if n in decay_parameters], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if is_sagemaker_mp_enabled(): self.optimizer = smp.DistributedOptimizer(self.optimizer) def create_scheduler(self, num_training_steps: int): """ Setup the scheduler. The optimizer of the trainer must have been set up before this method is called. Args: num_training_steps (int): The number of training steps to do. """ if self.lr_scheduler is None: warmup_steps = ( self.args.warmup_steps if self.args.warmup_steps > 0 else math.ceil(num_training_steps * self.args.warmup_ratio) ) self.lr_scheduler = get_scheduler( self.args.lr_scheduler_type, self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps, ) def num_examples(self, dataloader: DataLoader) -> int: """ Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset. Will raise an exception if the underlying dataset does not implement method :obj:`__len__` """ return len(dataloader.dataset) def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]): """HP search setup code""" self._trial = trial if self.hp_search_backend is None or trial is None: return if self.hp_search_backend == HPSearchBackend.OPTUNA: params = self.hp_space(trial) elif self.hp_search_backend == HPSearchBackend.RAY: params = trial params.pop("wandb", None) for key, value in params.items(): if not hasattr(self.args, key): raise AttributeError( f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`." ) old_attr = getattr(self.args, key, None) # Casting value to the proper type if old_attr is not None: value = type(old_attr)(value) setattr(self.args, key, value) if self.hp_search_backend == HPSearchBackend.OPTUNA: logger.info("Trial:", trial.params) if self.args.deepspeed: # Rebuild the deepspeed config to reflect the updated training parameters from transformers.integrations import DeepSpeedConfigHF self.args.deepspeed_config_hf = DeepSpeedConfigHF(self.args) def _report_to_hp_search( self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float] ): if self.hp_search_backend is None or trial is None: return self.objective = self.compute_objective(metrics.copy()) if self.hp_search_backend == HPSearchBackend.OPTUNA: import optuna trial.report(self.objective, epoch) if trial.should_prune(): raise optuna.TrialPruned() elif self.hp_search_backend == HPSearchBackend.RAY: from ray import tune if self.control.should_save: self._tune_save_checkpoint() tune.report(objective=self.objective, **metrics) def _tune_save_checkpoint(self): from ray import tune if not self.use_tune_checkpoints: return with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir: output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}") self.save_model(output_dir) if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) def call_model_init(self, trial=None): model_init_argcount = len(inspect.signature(self.model_init).parameters) if model_init_argcount == 0: model = self.model_init() elif model_init_argcount == 1: model = self.model_init(trial) else: raise RuntimeError("model_init should have 0 or 1 argument.") if model is None: raise RuntimeError("model_init should not return None.") return model def _wrap_model(self, model, training=True): if is_sagemaker_mp_enabled(): # Wrapping the base model twice in a DistributedModel will raise an error. if isinstance(self.model_wrapped, smp.model.DistributedModel): return self.model_wrapped return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps) # already initialized its own DDP and AMP if self.deepspeed: return self.deepspeed # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again if unwrap_model(model) is not model: return model # Mixed precision training with apex (torch < 1.6) if self.use_apex and training: model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level) # Multi-gpu training (should be after apex fp16 initialization) if self.args.n_gpu > 1: model = torch.nn.DataParallel(model) # Note: in torch.distributed mode, there's no point in wrapping the model # inside a DistributedDataParallel as we'll be under `no_grad` anyways. if not training: return model # Distributed training (should be after apex fp16 initialization) if self.sharded_ddp is not None: # Sharded DDP! if self.sharded_ddp == ShardedDDPOption.SIMPLE: model = ShardedDDP(model, self.optimizer) else: mixed_precision = self.args.fp16 cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3 # XXX: Breaking the self.model convention but I see no way around it for now. if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp: model = auto_wrap(model) self.model = model = FullyShardedDDP( model, mixed_precision=mixed_precision, reshard_after_forward=zero_3, cpu_offload=cpu_offload, ).to(self.args.device) elif is_sagemaker_dp_enabled(): model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False) elif self.args.local_rank != -1: if self.args.ddp_find_unused_parameters is not None: find_unused_parameters = self.args.ddp_find_unused_parameters elif isinstance(model, PreTrainedModel): # find_unused_parameters breaks checkpointing as per # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021 find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False) else: find_unused_parameters = True model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[self.args.local_rank], output_device=self.args.local_rank, find_unused_parameters=find_unused_parameters, ) return model def train( self, resume_from_checkpoint: Optional[Union[str, bool]] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None, **kwargs, ): """ Main training entry point. Args: resume_from_checkpoint (:obj:`str` or :obj:`bool`, `optional`): If a :obj:`str`, local path to a saved checkpoint as saved by a previous instance of :class:`~transformers.Trainer`. If a :obj:`bool` and equals `True`, load the last checkpoint in `args.output_dir` as saved by a previous instance of :class:`~transformers.Trainer`. If present, training will resume from the model/optimizer/scheduler states loaded here. trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`): The trial run or the hyperparameter dictionary for hyperparameter search. kwargs: Additional keyword arguments used to hide deprecated arguments """ # memory metrics - must set up as early as possible self._memory_tracker.start() args = self.args self.is_in_train = True # do_train is not a reliable argument, as it might not be set and .train() still called, so # the following is a workaround: if args.fp16_full_eval and not args.do_train: self.model = self.model.to(args.device) if "model_path" in kwargs: resume_from_checkpoint = kwargs.pop("model_path") warnings.warn( "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " "instead.", FutureWarning, ) if len(kwargs) > 0: raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") # This might change the seed so needs to run first. self._hp_search_setup(trial) # Model re-init model_reloaded = False if self.model_init is not None: # Seed must be set before instantiating the model when using model_init. set_seed(args.seed) self.model = self.call_model_init(trial) model_reloaded = True # Reinitializes optimizer and scheduler self.optimizer, self.lr_scheduler = None, None # Load potential model checkpoint if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: resume_from_checkpoint = get_last_checkpoint(args.output_dir) if resume_from_checkpoint is None: raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})") if resume_from_checkpoint is not None: if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)): raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}") logger.info(f"Loading model from {resume_from_checkpoint}).") if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)): config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME)) checkpoint_version = config.transformers_version if checkpoint_version is not None and checkpoint_version != __version__: logger.warn( f"You are resuming training from a checkpoint trained with {checkpoint_version} of " f"Transformers but your current version is {__version__}. This is not recommended and could " "yield to errors or unwanted behaviors." ) if args.deepspeed: # will be resumed in deepspeed_init pass else: # We load the model state dict on the CPU to avoid an OOM error. state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu") # If the model is on the GPU, it still works! self._load_state_dict_in_model(state_dict) # If model was re-initialized, put it on the right device and update self.model_wrapped if model_reloaded: if self.place_model_on_device: self.model = self.model.to(args.device) self.model_wrapped = self.model # Keeping track whether we can can len() on the dataset or not train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized) # Data loader and number of training steps train_dataloader = self.get_train_dataloader() # Setting up training control variables: # number of training epochs: num_train_epochs # number of training steps per epoch: num_update_steps_per_epoch # total number of training steps to execute: max_steps total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size if train_dataset_is_sized: num_update_steps_per_epoch = len(train_dataloader) // args.gradient_accumulation_steps num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) if args.max_steps > 0: max_steps = args.max_steps num_train_epochs = args.max_steps // num_update_steps_per_epoch + int( args.max_steps % num_update_steps_per_epoch > 0 ) # May be slightly incorrect if the last batch in the training datalaoder has a smaller size but it's # the best we can do. num_train_samples = args.max_steps * total_train_batch_size else: max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch) num_train_epochs = math.ceil(args.num_train_epochs) num_train_samples = len(self.train_dataset) * args.num_train_epochs else: # see __init__. max_steps is set when the dataset has no __len__ max_steps = args.max_steps num_train_epochs = int(args.num_train_epochs) num_update_steps_per_epoch = max_steps num_train_samples = args.max_steps * total_train_batch_size if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug: debug_overflow = DebugUnderflowOverflow(self.model) # noqa delay_optimizer_creation = self.sharded_ddp is not None and self.sharded_ddp != ShardedDDPOption.SIMPLE if args.deepspeed: deepspeed_engine, optimizer, lr_scheduler = deepspeed_init( self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint ) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine self.optimizer = optimizer self.lr_scheduler = lr_scheduler elif not delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) self.state = TrainerState() self.state.is_hyper_param_search = trial is not None model = self._wrap_model(self.model_wrapped) # for the rest of this function `model` is the outside model, whether it was wrapped or not if model is not self.model: self.model_wrapped = model if delay_optimizer_creation: self.create_optimizer_and_scheduler(num_training_steps=max_steps) # Check if saved optimizer or scheduler states exist self._load_optimizer_and_scheduler(resume_from_checkpoint) # important: at this point: # self.model is the Transformers Model # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc. # Train! num_examples = ( self.num_examples(train_dataloader) if train_dataset_is_sized else total_train_batch_size * args.max_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {max_steps}") self.state.epoch = 0 start_time = time.time() epochs_trained = 0 steps_trained_in_current_epoch = 0 steps_trained_progress_bar = None # Check if continuing training from a checkpoint if resume_from_checkpoint is not None and os.path.isfile( os.path.join(resume_from_checkpoint, "trainer_state.json") ): self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json")) epochs_trained = self.state.global_step // num_update_steps_per_epoch if not args.ignore_data_skip: steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) steps_trained_in_current_epoch *= args.gradient_accumulation_steps else: steps_trained_in_current_epoch = 0 logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(f" Continuing training from epoch {epochs_trained}") logger.info(f" Continuing training from global step {self.state.global_step}") if not args.ignore_data_skip: logger.info( f" Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} " "batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` " "flag to your launch command, but you will resume the training on data already seen by your model." ) if self.is_local_process_zero() and not args.disable_tqdm: steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch) steps_trained_progress_bar.set_description("Skipping the first batches") # Update the references self.callback_handler.model = self.model self.callback_handler.optimizer = self.optimizer self.callback_handler.lr_scheduler = self.lr_scheduler self.callback_handler.train_dataloader = train_dataloader self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None self.state.trial_params = hp_params(trial) if trial is not None else None # This should be the same if the state has been saved but in case the training arguments changed, it's safer # to set this after the load. self.state.max_steps = max_steps self.state.num_train_epochs = num_train_epochs self.state.is_local_process_zero = self.is_local_process_zero() self.state.is_world_process_zero = self.is_world_process_zero() # tr_loss is a tensor to avoid synchronization of TPUs through .item() tr_loss = torch.tensor(0.0).to(args.device) # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses self._total_loss_scalar = 0.0 self._globalstep_last_logged = self.state.global_step model.zero_grad() self.control = self.callback_handler.on_train_begin(args, self.state, self.control) # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point. if not args.ignore_data_skip: for epoch in range(epochs_trained): # We just need to begin an iteration to create the randomization of the sampler. for _ in train_dataloader: break for epoch in range(epochs_trained, num_train_epochs): if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler): train_dataloader.sampler.set_epoch(epoch) elif isinstance(train_dataloader.dataset, IterableDatasetShard): train_dataloader.dataset.set_epoch(epoch) if is_torch_tpu_available(): parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device) epoch_iterator = parallel_loader else: epoch_iterator = train_dataloader # Reset the past mems state at the beginning of each epoch if necessary. if args.past_index >= 0: self._past = None steps_in_epoch = ( len(epoch_iterator) if train_dataset_is_sized else args.max_steps * args.gradient_accumulation_steps ) self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control) for step, inputs in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 if steps_trained_progress_bar is not None: steps_trained_progress_bar.update(1) if steps_trained_in_current_epoch == 0: self._load_rng_state(resume_from_checkpoint) continue elif steps_trained_progress_bar is not None: steps_trained_progress_bar.close() steps_trained_progress_bar = None if step % args.gradient_accumulation_steps == 0: self.control = self.callback_handler.on_step_begin(args, self.state, self.control) if ( ((step + 1) % args.gradient_accumulation_steps != 0) and args.local_rank != -1 and args._no_sync_in_gradient_accumulation ): # Avoid unnecessary DDP synchronization since there will be no backward pass on this example. with model.no_sync(): tr_loss += self.training_step(model, inputs) else: tr_loss += self.training_step(model, inputs) self.current_flos += float(self.floating_point_ops(inputs)) # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps if self.deepspeed: self.deepspeed.step() if (step + 1) % args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps steps_in_epoch <= args.gradient_accumulation_steps and (step + 1) == steps_in_epoch ): # Gradient clipping if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed: # deepspeed does its own clipping if self.use_amp: # AMP: gradients need unscaling self.scaler.unscale_(self.optimizer) if hasattr(self.optimizer, "clip_grad_norm"): # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping self.optimizer.clip_grad_norm(args.max_grad_norm) elif hasattr(model, "clip_grad_norm_"): # Some models (like FullyShardedDDP) have a specific way to do gradient clipping model.clip_grad_norm_(args.max_grad_norm) else: # Revert to normal clipping otherwise, handling Apex or full precision torch.nn.utils.clip_grad_norm_( amp.master_params(self.optimizer) if self.use_apex else model.parameters(), args.max_grad_norm, ) # Optimizer step optimizer_was_run = True if self.deepspeed: pass # called outside the loop elif is_torch_tpu_available(): xm.optimizer_step(self.optimizer) elif self.use_amp: scale_before = self.scaler.get_scale() self.scaler.step(self.optimizer) self.scaler.update() scale_after = self.scaler.get_scale() optimizer_was_run = scale_before <= scale_after else: self.optimizer.step() if optimizer_was_run and not self.deepspeed: self.lr_scheduler.step() model.zero_grad() self.state.global_step += 1 self.state.epoch = epoch + (step + 1) / steps_in_epoch self.control = self.callback_handler.on_step_end(args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if self.control.should_epoch_stop or self.control.should_training_stop: break self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) self._maybe_log_save_evaluate(tr_loss, model, trial, epoch) if DebugOption.TPU_METRICS_DEBUG in self.args.debug: if is_torch_tpu_available(): # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) else: logger.warning( "You enabled PyTorch/XLA debug metrics but you don't have a TPU " "configured. Check your training configuration if this is unexpected." ) if self.control.should_training_stop: break if args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") if args.load_best_model_at_end and self.state.best_model_checkpoint is not None: # Wait for everyone to get here so we are sur the model has been saved by process 0. if is_torch_tpu_available(): xm.rendezvous("load_best_model_at_end") elif args.local_rank != -1: dist.barrier() logger.info( f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})." ) # We load the model state dict on the CPU to avoid an OOM error. state_dict = torch.load(os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME), map_location="cpu") # If the model is on the GPU, it still works! self._load_state_dict_in_model(state_dict) if self.deepspeed: self.deepspeed.load_checkpoint( self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False ) metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps) self.store_flos() metrics["total_flos"] = self.state.total_flos self.log(metrics) self.control = self.callback_handler.on_train_end(args, self.state, self.control) # add remaining tr_loss self._total_loss_scalar += tr_loss.item() self.is_in_train = False self._memory_tracker.stop_and_update_metrics(metrics) return TrainOutput(self.state.global_step, self._total_loss_scalar / self.state.global_step, metrics) def _load_state_dict_in_model(self, state_dict): load_result = self.model.load_state_dict(state_dict, strict=False) if len(load_result.missing_keys) != 0: if set(load_result.missing_keys) == set(self.model._keys_to_ignore_on_save): self.model.tie_weights() else: logger.warn(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.") if len(load_result.unexpected_keys) != 0: logger.warn(f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}.") def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch): if self.control.should_log: logs: Dict[str, float] = {} tr_loss_scalar = tr_loss.item() # reset tr_loss to zero tr_loss -= tr_loss logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) logs["learning_rate"] = self._get_learning_rate() self._total_loss_scalar += tr_loss_scalar self._globalstep_last_logged = self.state.global_step self.store_flos() self.log(logs) metrics = None if self.control.should_evaluate: metrics = self.evaluate() self._report_to_hp_search(trial, epoch, metrics) if self.control.should_save: self._save_checkpoint(model, trial, metrics=metrics) self.control = self.callback_handler.on_save(self.args, self.state, self.control) def _load_rng_state(self, checkpoint): # Load RNG states from `checkpoint` if checkpoint is None: return local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank if local_rank != -1: rng_file = os.path.join(checkpoint, f"rng_state_{local_rank}.pth") if not os.path.isfile(os.path.join(checkpoint, rng_file)): logger.info( f"Didn't find an RNG file for process {local_rank}, if you are resuming a training that " "wasn't launched in a distributed fashion, reproducibility is not guaranteed." ) return else: rng_file = os.path.join(checkpoint, "rng_state.pth") if not os.path.isfile(os.path.join(checkpoint, rng_file)): logger.info( "Didn't find an RNG file, if you are resuming a training that was launched in a distributed " "fashion, reproducibility is not guaranteed." ) return checkpoint_rng_state = torch.load(rng_file) random.setstate(checkpoint_rng_state["python"]) np.random.set_state(checkpoint_rng_state["numpy"]) torch.random.set_rng_state(checkpoint_rng_state["cpu"]) if torch.cuda.is_available(): if self.args.local_rank != -1: torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"]) else: torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"]) if is_torch_tpu_available(): xm.set_rng_state(checkpoint_rng_state["xla"]) def _save_checkpoint(self, model, trial, metrics=None): # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we # want to save except FullyShardedDDP. # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model" # Save model checkpoint checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" if self.hp_search_backend is not None and trial is not None: if self.hp_search_backend == HPSearchBackend.OPTUNA: run_id = trial.number else: from ray import tune run_id = tune.get_trial_id() run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}" run_dir = os.path.join(self.args.output_dir, run_name) else: run_dir = self.args.output_dir self.store_flos() output_dir = os.path.join(run_dir, checkpoint_folder) self.save_model(output_dir) if self.deepspeed: # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed # config `stage3_gather_fp16_weights_on_model_save` is True self.deepspeed.save_checkpoint(output_dir) # Save optimizer and scheduler if self.sharded_ddp == ShardedDDPOption.SIMPLE: self.optimizer.consolidate_state_dict() if is_torch_tpu_available(): xm.rendezvous("saving_optimizer_states") xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) elif is_sagemaker_mp_enabled(): if smp.dp_rank() == 0: # Consolidate the state dict on all processed of dp_rank 0 opt_state_dict = self.optimizer.state_dict() # Save it and the scheduler on the main process if self.is_world_process_zero(): torch.save(opt_state_dict, os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) if self.use_amp: torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt")) elif self.is_world_process_zero() and not self.deepspeed: # deepspeed.save_checkpoint above saves model/optim/sched torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) with warnings.catch_warnings(record=True) as caught_warnings: torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) reissue_pt_warnings(caught_warnings) if self.use_amp: torch.save(self.scaler.state_dict(), os.path.join(output_dir, "scaler.pt")) # Determine the new best metric / best model checkpoint if metrics is not None and self.args.metric_for_best_model is not None: metric_to_check = self.args.metric_for_best_model if not metric_to_check.startswith("eval_"): metric_to_check = f"eval_{metric_to_check}" metric_value = metrics[metric_to_check] operator = np.greater if self.args.greater_is_better else np.less if ( self.state.best_metric is None or self.state.best_model_checkpoint is None or operator(metric_value, self.state.best_metric) ): self.state.best_metric = metric_value self.state.best_model_checkpoint = output_dir # Save the Trainer state if self.is_world_process_zero(): self.state.save_to_json(os.path.join(output_dir, "trainer_state.json")) # Save RNG state in non-distributed training rng_states = { "python": random.getstate(), "numpy": np.random.get_state(), "cpu": torch.random.get_rng_state(), } if torch.cuda.is_available(): if self.args.local_rank == -1: # In non distributed, we save the global CUDA RNG state (will take care of DataParallel) rng_states["cuda"] = torch.cuda.random.get_rng_state_all() else: rng_states["cuda"] = torch.cuda.random.get_rng_state() if is_torch_tpu_available(): rng_states["xla"] = xm.get_rng_state() # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may # not yet exist. os.makedirs(output_dir, exist_ok=True) local_rank = xm.get_local_ordinal() if is_torch_tpu_available() else self.args.local_rank if local_rank == -1: torch.save(rng_states, os.path.join(output_dir, "rng_state.pth")) else: torch.save(rng_states, os.path.join(output_dir, f"rng_state_{local_rank}.pth")) # Maybe delete some older checkpoints. if self.is_world_process_zero(): self._rotate_checkpoints(use_mtime=True, output_dir=run_dir) def _load_optimizer_and_scheduler(self, checkpoint): """If optimizer and scheduler states exist, load them.""" if checkpoint is None: return if self.deepspeed: # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init return if os.path.isfile(os.path.join(checkpoint, "optimizer.pt")) and os.path.isfile( os.path.join(checkpoint, "scheduler.pt") ): # Load in optimizer and scheduler states if is_torch_tpu_available(): # On TPU we have to take some extra precautions to properly load the states on the right device. optimizer_state = torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location="cpu") with warnings.catch_warnings(record=True) as caught_warnings: lr_scheduler_state = torch.load(os.path.join(checkpoint, "scheduler.pt"), map_location="cpu") reissue_pt_warnings(caught_warnings) xm.send_cpu_data_to_device(optimizer_state, self.args.device) xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device) self.optimizer.load_state_dict(optimizer_state) self.lr_scheduler.load_state_dict(lr_scheduler_state) else: map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device self.optimizer.load_state_dict( torch.load(os.path.join(checkpoint, "optimizer.pt"), map_location=map_location) ) with warnings.catch_warnings(record=True) as caught_warnings: self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, "scheduler.pt"))) reissue_pt_warnings(caught_warnings) if self.use_amp and os.path.isfile(os.path.join(checkpoint, "scaler.pt")): self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, "scaler.pt"))) def hyperparameter_search( self, hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None, compute_objective: Optional[Callable[[Dict[str, float]], float]] = None, n_trials: int = 20, direction: str = "minimize", backend: Optional[Union["str", HPSearchBackend]] = None, hp_name: Optional[Callable[["optuna.Trial"], str]] = None, **kwargs, ) -> BestRun: """ Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by :obj:`compute_objective`, which defaults to a function returning the evaluation loss when no metric is provided, the sum of all metrics otherwise. .. warning:: To use this method, you need to have provided a ``model_init`` when initializing your :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler. Args: hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`): A function that defines the hyperparameter search space. Will default to :func:`~transformers.trainer_utils.default_hp_space_optuna` or :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend. compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`): A function computing the objective to minimize or maximize from the metrics returned by the :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`. n_trials (:obj:`int`, `optional`, defaults to 100): The number of trial runs to test. direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`): Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or several metrics. backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`): The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which one is installed. If both are installed, will default to optuna. kwargs: Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For more information see: - the documentation of `optuna.create_study <https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html>`__ - the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__ Returns: :class:`transformers.trainer_utils.BestRun`: All the information about the best run. """ if backend is None: backend = default_hp_search_backend() if backend is None: raise RuntimeError( "At least one of optuna or ray should be installed. " "To install optuna run `pip install optuna`." "To install ray run `pip install ray[tune]`." ) backend = HPSearchBackend(backend) if backend == HPSearchBackend.OPTUNA and not is_optuna_available(): raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.") if backend == HPSearchBackend.RAY and not is_ray_tune_available(): raise RuntimeError( "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`." ) self.hp_search_backend = backend if self.model_init is None: raise RuntimeError( "To use hyperparameter search, you need to pass your model through a model_init function." ) self.hp_space = default_hp_space[backend] if hp_space is None else hp_space self.hp_name = hp_name self.compute_objective = default_compute_objective if compute_objective is None else compute_objective run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray best_run = run_hp_search(self, n_trials, direction, **kwargs) self.hp_search_backend = None return best_run def log(self, logs: Dict[str, float]) -> None: """ Log :obj:`logs` on the various objects watching training. Subclass and override this method to inject custom behavior. Args: logs (:obj:`Dict[str, float]`): The values to log. """ if self.state.epoch is not None: logs["epoch"] = round(self.state.epoch, 2) output = {**logs, **{"step": self.state.global_step}} self.state.log_history.append(output) self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs) def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]: """ Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and handling potential state. """ for k, v in inputs.items(): if isinstance(v, torch.Tensor): inputs[k] = v.to(self.args.device) if self.args.past_index >= 0 and self._past is not None: inputs["mems"] = self._past return inputs def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """ Perform a training step on a batch of inputs. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to train. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. Return: :obj:`torch.Tensor`: The tensor with training loss on this batch. """ model.train() inputs = self._prepare_inputs(inputs) if is_sagemaker_mp_enabled(): scaler = self.scaler if self.use_amp else None loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps, scaler=scaler) return loss_mb.reduce_mean().detach().to(self.args.device) if self.use_amp: with autocast(): loss = self.compute_loss(model, inputs) else: loss = self.compute_loss(model, inputs) if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if self.args.gradient_accumulation_steps > 1 and not self.deepspeed: # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward` loss = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(loss).backward() elif self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: # loss gets scaled under gradient_accumulation_steps in deepspeed loss = self.deepspeed.backward(loss) else: loss.backward() return loss.detach() def compute_loss(self, model, inputs, return_outputs=False): """ How the loss is computed by Trainer. By default, all models return the loss in the first element. Subclass and override for custom behavior. """ if self.label_smoother is not None and "labels" in inputs: labels = inputs.pop("labels") else: labels = None outputs = model(**inputs) # Save past state if it exists # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index] if labels is not None: loss = self.label_smoother(outputs, labels) else: # We don't use .loss here since the model may return tuples instead of ModelOutput. try: loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0] except IndexError: loss = outputs["loss"] if isinstance(outputs, dict) else outputs.item() return (loss, outputs) if return_outputs else loss def is_local_process_zero(self) -> bool: """ Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process. """ return self.args.local_process_index == 0 def is_world_process_zero(self) -> bool: """ Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be :obj:`True` for one process). """ # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global # process index. if is_sagemaker_mp_enabled(): return smp.rank() == 0 else: return self.args.process_index == 0 def save_model(self, output_dir: Optional[str] = None): """ Will save the model, so you can reload it using :obj:`from_pretrained()`. Will only save from the main process. """ if output_dir is None: output_dir = self.args.output_dir if is_torch_tpu_available(): self._save_tpu(output_dir) elif is_sagemaker_mp_enabled(): # Calling the state_dict needs to be done on the wrapped model and on all processes. state_dict = self.model_wrapped.state_dict() if self.is_world_process_zero(): self._save(output_dir, state_dict=state_dict) elif ( ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp ): state_dict = self.model.state_dict() if self.is_world_process_zero(): self._save(output_dir, state_dict=state_dict) elif self.deepspeed: # this takes care of everything as long as we aren't under zero3 if self.is_world_process_zero(): self._save(output_dir) if is_deepspeed_zero3_enabled(): # It's too complicated to try to override different places where the weights dump gets # saved, so since under zero3 the file is bogus, simply delete it. The user should # either user deepspeed checkpoint to resume or to recover full weights use # zero_to_fp32.py stored in the checkpoint. if self.is_world_process_zero(): file = os.path.join(output_dir, WEIGHTS_NAME) if os.path.isfile(file): # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights") os.remove(file) # now save the real model if stage3_gather_fp16_weights_on_model_save=True # if false it will not be saved. # This must be called on all ranks self.deepspeed.save_fp16_model(output_dir, WEIGHTS_NAME) elif self.is_world_process_zero(): self._save(output_dir) def _save_tpu(self, output_dir: Optional[str] = None): output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info(f"Saving model checkpoint to {output_dir}") if xm.is_master_ordinal(): os.makedirs(output_dir, exist_ok=True) torch.save(self.args, os.path.join(output_dir, "training_args.bin")) # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` xm.rendezvous("saving_checkpoint") if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): unwrap_model(self.model).save_pretrained( output_dir, save_config=self.is_world_process_zero(), state_dict=self.model.state_dict(), save_function=xm.save, ) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") state_dict = self.model.state_dict() xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, save_config=self.is_world_process_zero(), save_function=xm.save) if self.tokenizer is not None and self.is_world_process_zero(): self.tokenizer.save_pretrained(output_dir) def _save(self, output_dir: Optional[str] = None, state_dict=None): # If we are executing this function, we are the process zero, so we don't check for that. output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info(f"Saving model checkpoint to {output_dir}") # Save a trained model and configuration using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` if not isinstance(self.model, PreTrainedModel): if isinstance(unwrap_model(self.model), PreTrainedModel): if state_dict is None: state_dict = self.model.state_dict() unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict) else: logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") if state_dict is None: state_dict = self.model.state_dict() torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) else: self.model.save_pretrained(output_dir, state_dict=state_dict) if self.tokenizer is not None: self.tokenizer.save_pretrained(output_dir) # Good practice: save your training arguments together with the trained model torch.save(self.args, os.path.join(output_dir, "training_args.bin")) def store_flos(self): # Storing the number of floating-point operations that went into the model if self.args.local_rank != -1: self.state.total_flos += distributed_broadcast_scalars([self.current_flos]).sum().item() self.current_flos = 0 else: self.state.total_flos += self.current_flos self.current_flos = 0 def _sorted_checkpoints( self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False ) -> List[str]: ordering_and_checkpoint_path = [] glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*")] for path in glob_checkpoints: if use_mtime: ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) else: regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) if regex_match is not None and regex_match.groups() is not None: ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] # Make sure we don't delete the best model. if self.state.best_model_checkpoint is not None: best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint))) for i in range(best_model_index, len(checkpoints_sorted) - 2): checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i] return checkpoints_sorted def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None: if self.args.save_total_limit is None or self.args.save_total_limit <= 0: return # Check if we should delete older checkpoint(s) checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir) if len(checkpoints_sorted) <= self.args.save_total_limit: return # If save_total_limit=1 with load_best_mode_at_end=True, we could end up deleting the last checkpoint, which # we don't do to allow resuming. save_total_limit = self.args.save_total_limit if ( self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1 and checkpoints_sorted[-1] != self.state.best_model_checkpoint ): save_total_limit = 2 number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] for checkpoint in checkpoints_to_be_deleted: logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") shutil.rmtree(checkpoint) def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (:obj:`Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the :obj:`__len__` method. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ # memory metrics - must set up as early as possible self._memory_tracker.start() eval_dataloader = self.get_eval_dataloader(eval_dataset) start_time = time.time() eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop output = eval_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if self.compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) total_batch_size = self.args.eval_batch_size * self.args.world_size output.metrics.update( speed_metrics( metric_key_prefix, start_time, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), ) ) self.log(output.metrics) if DebugOption.TPU_METRICS_DEBUG in self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics) self._memory_tracker.stop_and_update_metrics(output.metrics) return output.metrics def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test" ) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in :obj:`evaluate()`. Args: test_dataset (:obj:`Dataset`): Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. Has to implement the method :obj:`__len__` ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"test"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "test_bleu" if the prefix is "test" (default) .. note:: If your predictions or labels have different sequence length (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. Returns: `NamedTuple` A namedtuple with the following keys: - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`. - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some). - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset contained labels). """ # memory metrics - must set up as early as possible self._memory_tracker.start() test_dataloader = self.get_test_dataloader(test_dataset) start_time = time.time() eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop output = eval_loop( test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix ) total_batch_size = self.args.eval_batch_size * self.args.world_size output.metrics.update( speed_metrics( metric_key_prefix, start_time, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), ) ) self._memory_tracker.stop_and_update_metrics(output.metrics) return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics) def evaluation_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> EvalLoopOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) # if eval is called w/o train init deepspeed here if self.args.deepspeed and not self.deepspeed: # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval # from the checkpoint eventually deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since # for example the Z3-optimizer is a must for zero3 to work even for inference - what we # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer deepspeed_engine.optimizer.optimizer = None deepspeed_engine.lr_scheduler = None model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, halve it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size logger.info(f"***** Running {description} *****") if isinstance(dataloader.dataset, collections.abc.Sized): logger.info(f" Num examples = {self.num_examples(dataloader)}") else: logger.info(" Num examples: Unknown") logger.info(f" Batch size = {batch_size}") model.eval() self.callback_handler.eval_dataloader = dataloader # Do this before wrapping. eval_dataset = dataloader.dataset if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None # Initialize containers # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps) losses_host = None preds_host = None labels_host = None # losses/preds/labels on CPU (final containers) all_losses = None all_preds = None all_labels = None # Will be useful when we have an iterable dataset so don't know its length. observed_num_examples = 0 # Main evaluation loop for step, inputs in enumerate(dataloader): # Update the observed num examples observed_batch_size = find_batch_size(inputs) if observed_batch_size is not None: observed_num_examples += observed_batch_size # Prediction step loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) # Update containers on host if loss is not None: losses = self._nested_gather(loss.repeat(batch_size)) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: logits = self._pad_across_processes(logits) logits = self._nested_gather(logits) preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels = self._pad_across_processes(labels) labels = self._nested_gather(labels) labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = ( labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) ) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU if losses_host is not None: losses = nested_numpify(losses_host) all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0) if preds_host is not None: logits = nested_numpify(preds_host) all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if labels_host is not None: labels = nested_numpify(labels_host) all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100) # Number of samples if not isinstance(eval_dataset, IterableDataset): num_samples = len(eval_dataset) elif isinstance(eval_dataset, IterableDatasetShard): num_samples = eval_dataset.num_examples else: num_samples = observed_num_examples # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of # samplers has been rounded to a multiple of batch_size, so we truncate. if all_losses is not None: all_losses = all_losses[:num_samples] if all_preds is not None: all_preds = nested_truncate(all_preds, num_samples) if all_labels is not None: all_labels = nested_truncate(all_labels, num_samples) # Metrics! if self.compute_metrics is not None and all_preds is not None and all_labels is not None: metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels)) else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if all_losses is not None: metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples) def _nested_gather(self, tensors, name=None): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): if name is None: name = "nested_gather" tensors = nested_xla_mesh_reduce(tensors, name) elif is_sagemaker_mp_enabled(): tensors = smp_gather(tensors) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return tensors # Copied from Accelerate. def _pad_across_processes(self, tensor, pad_index=-100): """ Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they can safely be gathered. """ if isinstance(tensor, (list, tuple)): return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor) elif isinstance(tensor, dict): return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()}) elif not isinstance(tensor, torch.Tensor): raise TypeError( f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors." ) if len(tensor.shape) < 2: return tensor # Gather all sizes size = torch.tensor(tensor.shape, device=tensor.device)[None] sizes = self._nested_gather(size).cpu() max_size = max(s[1] for s in sizes) if tensor.shape[1] == max_size: return tensor # Then pad to the maximum size old_size = tensor.shape new_size = list(old_size) new_size[1] = max_size new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index new_tensor[:, : old_size[1]] = tensor return new_tensor def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. Return: Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ has_labels = all(inputs.get(k) is not None for k in self.label_names) inputs = self._prepare_inputs(inputs) if ignore_keys is None: if hasattr(self.model, "config"): ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) else: ignore_keys = [] # labels may be popped when computing the loss (label smoothing for instance) so we grab them first. if has_labels: labels = nested_detach(tuple(inputs.get(name) for name in self.label_names)) if len(labels) == 1: labels = labels[0] else: labels = None with torch.no_grad(): if is_sagemaker_mp_enabled(): raw_outputs = smp_forward_only(model, inputs) if has_labels: if isinstance(raw_outputs, dict): loss_mb = raw_outputs["loss"] logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"]) else: loss_mb = raw_outputs[0] logits_mb = raw_outputs[1:] loss = loss_mb.reduce_mean().detach().cpu() logits = smp_nested_concat(logits_mb) else: loss = None if isinstance(raw_outputs, dict): logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys) else: logits_mb = raw_outputs logits = smp_nested_concat(logits_mb) else: if has_labels: loss, outputs = self.compute_loss(model, inputs, return_outputs=True) loss = loss.mean().detach() if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"]) else: logits = outputs[1:] else: loss = None if self.use_amp: with autocast(): outputs = model(**inputs) else: outputs = model(**inputs) if isinstance(outputs, dict): logits = tuple(v for k, v in outputs.items() if k not in ignore_keys) else: logits = outputs # TODO: this needs to be fixed and made cleaner later. if self.args.past_index >= 0: self._past = outputs[self.args.past_index - 1] if prediction_loss_only: return (loss, None, None) logits = nested_detach(logits) if len(logits) == 1: logits = logits[0] return (loss, logits, labels) def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]): """ For models that inherit from :class:`~transformers.PreTrainedModel`, uses that method to compute the number of floating point operations for every backward + forward pass. If using another model, either implement such a method in the model or subclass and override this method. Args: inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. Returns: :obj:`int`: The number of floating-point operations. """ if hasattr(self.model, "floating_point_ops"): return self.model.floating_point_ops(inputs) else: return 0 def create_model_card( self, language: Optional[str] = None, license: Optional[str] = None, tags: Optional[str] = None, model_name: Optional[str] = None, finetuned_from: Optional[str] = None, dataset_tags: Optional[Union[str, List[str]]] = None, dataset: Optional[Union[str, List[str]]] = None, dataset_args: Optional[Union[str, List[str]]] = None, ): training_summary = TrainingSummary.from_trainer( self, language=language, license=license, tags=tags, model_name=model_name, finetuned_from=finetuned_from, dataset_tags=dataset_tags, dataset=dataset, dataset_args=dataset_args, ) model_card = training_summary.to_model_card() with open(os.path.join(self.args.output_dir, "README.md"), "w") as f: f.write(model_card) def push_to_hub( self, repo_name: Optional[str] = None, repo_url: Optional[str] = None, commit_message: Optional[str] = "add model", organization: Optional[str] = None, private: bool = None, use_auth_token: Optional[Union[bool, str]] = None, **kwargs, ): """ Upload `self.model` to the 🤗 model hub. Parameters: repo_name (:obj:`str`, `optional`): Repository name for your model or tokenizer in the hub. If not specified and :obj:`repo_url` is not specified either, will default to the stem of :obj:`self.args.output_dir`. repo_url (:obj:`str`, `optional`): Specify this in case you want to push to an existing repository in the hub. If unspecified, a new repository will be created in your namespace (unless you specify an :obj:`organization`) with :obj:`repo_name`. commit_message (:obj:`str`, `optional`, defaults to :obj:`"add model"`): Message to commit while pushing. organization (:obj:`str`, `optional`): Organization in which you want to push your model or tokenizer (you must be a member of this organization). private (:obj:`bool`, `optional`): Whether or not the repository created should be private (requires a paying subscription). use_auth_token (:obj:`bool` or :obj:`str`, `optional`): The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). Will default to :obj:`True` if :obj:`repo_url` is not specified. kwargs: Additional keyword arguments passed along to :meth:`~transformers.Trainer.create_model_card`. Returns: The url of the commit of your model in the given repository. """ if not self.is_world_process_zero(): return if not isinstance(unwrap_model(self.model), PushToHubMixin): raise ValueError( "The `upload_model_to_hub` method only works for models that inherit from `PushToHubMixin` models." ) if repo_url is None and repo_name is None: repo_name = Path(self.args.output_dir).name if repo_name is not None: model_name = repo_name elif repo_url is not None: model_name = repo_url.split("/")[-1] else: model_name = None self.create_model_card(model_name=model_name, **kwargs) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy(os.path.join(self.args.output_dir, "README.md"), os.path.join(tmp_dir, "README.md")) unwrap_model(self.model).save_pretrained(tmp_dir) if self.tokenizer is not None: self.tokenizer.save_pretrained(tmp_dir) return unwrap_model(self.model)._push_to_hub( save_directory=tmp_dir, repo_name=repo_name, repo_url=repo_url, commit_message=commit_message, organization=organization, private=private, use_auth_token=use_auth_token, ) # # Deprecated code # def prediction_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ if not isinstance(dataloader.dataset, collections.abc.Sized): raise ValueError("dataset must implement __len__") prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) # if eval is called w/o train init deepspeed here if self.args.deepspeed and not self.deepspeed: # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval # from the checkpoint eventually deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None) self.model = deepspeed_engine.module self.model_wrapped = deepspeed_engine self.deepspeed = deepspeed_engine # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since # for example the Z3-optimizer is a must for zero3 to work even for inference - what we # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer deepspeed_engine.optimizer.optimizer = None deepspeed_engine.lr_scheduler = None model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, halve it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size num_examples = self.num_examples(dataloader) logger.info(f"***** Running {description} *****") logger.info(f" Num examples = {num_examples}") logger.info(f" Batch size = {batch_size}") losses_host: torch.Tensor = None preds_host: Union[torch.Tensor, List[torch.Tensor]] = None labels_host: Union[torch.Tensor, List[torch.Tensor]] = None world_size = max(1, self.args.world_size) eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size) if not prediction_loss_only: # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass # a batch size to the sampler) make_multiple_of = None if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler): make_multiple_of = dataloader.sampler.batch_size preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of) labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of) model.eval() if is_torch_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) if self.args.past_index >= 0: self._past = None self.callback_handler.eval_dataloader = dataloader for step, inputs in enumerate(dataloader): loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) if loss is not None: losses = loss.repeat(batch_size) losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0) if logits is not None: preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100) if labels is not None: labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100) self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) # Gather all tensors and put them back on the CPU if we have done enough accumulation steps. if self.args.eval_accumulation_steps is not None and (step + 1) % self.args.eval_accumulation_steps == 0: eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) # Set back to None to begin a new accumulation losses_host, preds_host, labels_host = None, None, None if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of the evaluation loop delattr(self, "_past") # Gather all remaining tensors and put them back on the CPU eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses")) if not prediction_loss_only: preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds")) labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids")) eval_loss = eval_losses_gatherer.finalize() preds = preds_gatherer.finalize() if not prediction_loss_only else None label_ids = labels_gatherer.finalize() if not prediction_loss_only else None if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} # To be JSON-serializable, we need to remove numpy types or zero-d tensors metrics = denumpify_detensorize(metrics) if eval_loss is not None: metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item() # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def _gather_and_numpify(self, tensors, name): """ Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before concatenating them to `gathered` """ if tensors is None: return if is_torch_tpu_available(): tensors = nested_xla_mesh_reduce(tensors, name) elif is_sagemaker_mp_enabled(): tensors = smp_gather(tensors) elif self.args.local_rank != -1: tensors = distributed_concat(tensors) return nested_numpify(tensors)
[ "torch.cat", "torch.cuda.amp.autocast", "torch.Generator", "torch.cuda.random.set_rng_state", "torch.random.get_rng_state", "torch.cuda.random.set_rng_state_all", "torch.cuda.is_available", "torch.load", "torch.cuda.random.get_rng_state_all", "torch.nn.DataParallel", "torch.utils.data.sampler.RandomSampler", "torch.tensor", "torch.empty", "torch.random.set_rng_state", "torch.nn.parallel.DistributedDataParallel", "torch.utils.data.sampler.SequentialSampler", "torch.cuda.amp.GradScaler", "torch.distributed.barrier", "torch.cuda.random.get_rng_state", "torch.distributed.get_local_rank", "torch.utils.data.dataloader.DataLoader", "torch.no_grad", "torch.utils.data.distributed.DistributedSampler" ]
1.0
boubakerwa/transformers
8ed998f6456a60999d6f9a8a6b0094ab2da7473d
0.4
import torch.nn as nn import torch.nn.functional as F import torch import argparse class UPDeT(nn.Module): def __init__(self, input_shape, args): super(UPDeT, self).__init__() self.args = args self.transformer = Transformer(args.token_dim, args.emb, args.heads, args.depth, args.emb) self.q_basic = nn.Linear(args.emb, 6) def init_hidden(self): # make hidden states on same device as model return torch.zeros(1, self.args.emb).cuda() def forward(self, inputs, hidden_state, task_enemy_num, task_ally_num): outputs, _ = self.transformer.forward(inputs, hidden_state, None) # first output for 6 action (no_op stop up down left right) q_basic_actions = self.q_basic(outputs[:, 0, :]) # last dim for hidden state h = outputs[:, -1:, :] q_enemies_list = [] # each enemy has an output Q for i in range(task_enemy_num): q_enemy = self.q_basic(outputs[:, 1 + i, :]) q_enemy_mean = torch.mean(q_enemy, 1, True) q_enemies_list.append(q_enemy_mean) # concat enemy Q over all enemies q_enemies = torch.stack(q_enemies_list, dim=1).squeeze() # concat basic action Q with enemy attack Q q = torch.cat((q_basic_actions, q_enemies), 1) return q, h class SelfAttention(nn.Module): def __init__(self, emb, heads=8, mask=False): super().__init__() self.emb = emb self.heads = heads self.mask = mask self.tokeys = nn.Linear(emb, emb * heads, bias=False) self.toqueries = nn.Linear(emb, emb * heads, bias=False) self.tovalues = nn.Linear(emb, emb * heads, bias=False) self.unifyheads = nn.Linear(heads * emb, emb) def forward(self, x, mask): b, t, e = x.size() h = self.heads keys = self.tokeys(x).view(b, t, h, e) queries = self.toqueries(x).view(b, t, h, e) values = self.tovalues(x).view(b, t, h, e) # compute scaled dot-product self-attention # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries.transpose(1, 2).contiguous().view(b * h, t, e) values = values.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries / (e ** (1 / 4)) keys = keys / (e ** (1 / 4)) # - Instead of dividing the dot products by sqrt(e), we scale the keys and values. # This should be more memory efficient # - get dot product of queries and keys, and scale dot = torch.bmm(queries, keys.transpose(1, 2)) assert dot.size() == (b * h, t, t) if self.mask: # mask out the upper half of the dot matrix, excluding the diagonal mask_(dot, maskval=float('-inf'), mask_diagonal=False) if mask is not None: dot = dot.masked_fill(mask == 0, -1e9) dot = F.softmax(dot, dim=2) # - dot now has row-wise self-attention probabilities # apply the self attention to the values out = torch.bmm(dot, values).view(b, h, t, e) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * e) return self.unifyheads(out) class TransformerBlock(nn.Module): def __init__(self, emb, heads, mask, ff_hidden_mult=4, dropout=0.0): super().__init__() self.attention = SelfAttention(emb, heads=heads, mask=mask) self.mask = mask self.norm1 = nn.LayerNorm(emb) self.norm2 = nn.LayerNorm(emb) self.ff = nn.Sequential( nn.Linear(emb, ff_hidden_mult * emb), nn.ReLU(), nn.Linear(ff_hidden_mult * emb, emb) ) self.do = nn.Dropout(dropout) def forward(self, x_mask): x, mask = x_mask attended = self.attention(x, mask) x = self.norm1(attended + x) x = self.do(x) fedforward = self.ff(x) x = self.norm2(fedforward + x) x = self.do(x) return x, mask class Transformer(nn.Module): def __init__(self, input_dim, emb, heads, depth, output_dim): super().__init__() self.num_tokens = output_dim self.token_embedding = nn.Linear(input_dim, emb) tblocks = [] for i in range(depth): tblocks.append( TransformerBlock(emb=emb, heads=heads, mask=False)) self.tblocks = nn.Sequential(*tblocks) self.toprobs = nn.Linear(emb, output_dim) def forward(self, x, h, mask): tokens = self.token_embedding(x) tokens = torch.cat((tokens, h), 1) b, t, e = tokens.size() x, mask = self.tblocks((tokens, mask)) x = self.toprobs(x.view(b * t, e)).view(b, t, self.num_tokens) return x, tokens def mask_(matrices, maskval=0.0, mask_diagonal=True): b, h, w = matrices.size() indices = torch.triu_indices(h, w, offset=0 if mask_diagonal else 1) matrices[:, indices[0], indices[1]] = maskval if __name__ == '__main__': parser = argparse.ArgumentParser(description='Unit Testing') parser.add_argument('--token_dim', default='5', type=int) parser.add_argument('--emb', default='32', type=int) parser.add_argument('--heads', default='3', type=int) parser.add_argument('--depth', default='2', type=int) parser.add_argument('--ally_num', default='5', type=int) parser.add_argument('--enemy_num', default='5', type=int) parser.add_argument('--episode', default='20', type=int) args = parser.parse_args() # testing the agent agent = UPDeT(None, args).cuda() hidden_state = agent.init_hidden().cuda().expand(args.ally_num, 1, -1) tensor = torch.rand(args.ally_num, args.ally_num+args.enemy_num, args.token_dim).cuda() q_list = [] for _ in range(args.episode): q, hidden_state = agent.forward(tensor, hidden_state, args.ally_num, args.enemy_num) q_list.append(q)
[ "torch.nn.Linear", "torch.rand", "torch.cat", "torch.nn.LayerNorm", "torch.nn.Dropout", "torch.zeros", "torch.triu_indices", "torch.stack", "torch.nn.Sequential", "torch.bmm", "torch.nn.ReLU", "torch.nn.functional.softmax", "torch.mean" ]
0.4.1
DH-O/UPDeT
5c73feef31bebed59b0a35873a7133f319ec868b
1.2
import os import hydra import torch import logging import torch.nn as nn from torch import optim from hydra import utils import matplotlib.pyplot as plt from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter # self import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))) import DeepKE.models as models from DeepKE.tools import preprocess, CustomDataset, collate_fn, train, validate from DeepKE.utils import manual_seed, load_pkl logger = logging.getLogger(__name__) @hydra.main(config_path='../conf/config.yaml') def main(cfg): cwd = utils.get_original_cwd() cwd = cwd[0:-5] cfg.cwd = cwd cfg.pos_size = 2 * cfg.pos_limit + 2 logger.info(f'\n{cfg.pretty()}') __Model__ = { 'cnn': models.PCNN, 'rnn': models.BiLSTM, 'transformer': models.Transformer, 'gcn': models.GCN, 'capsule': models.Capsule, 'lm': models.LM, } # device if cfg.use_gpu and torch.cuda.is_available(): device = torch.device('cuda', cfg.gpu_id) else: device = torch.device('cpu') logger.info(f'device: {device}') # 如果不修改预处理的过程,这一步最好注释掉,不用每次运行都预处理数据一次 if cfg.preprocess: preprocess(cfg) train_data_path = os.path.join(cfg.cwd, cfg.out_path, 'train.pkl') valid_data_path = os.path.join(cfg.cwd, cfg.out_path, 'valid.pkl') test_data_path = os.path.join(cfg.cwd, cfg.out_path, 'test.pkl') vocab_path = os.path.join(cfg.cwd, cfg.out_path, 'vocab.pkl') if cfg.model_name == 'lm': vocab_size = None else: vocab = load_pkl(vocab_path) vocab_size = vocab.count cfg.vocab_size = vocab_size train_dataset = CustomDataset(train_data_path) valid_dataset = CustomDataset(valid_data_path) test_dataset = CustomDataset(test_data_path) train_dataloader = DataLoader(train_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=collate_fn(cfg)) valid_dataloader = DataLoader(valid_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=collate_fn(cfg)) test_dataloader = DataLoader(test_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=collate_fn(cfg)) model = __Model__[cfg.model_name](cfg) model.to(device) logger.info(f'\n {model}') optimizer = optim.Adam(model.parameters(), lr=cfg.learning_rate, weight_decay=cfg.weight_decay) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=cfg.lr_factor, patience=cfg.lr_patience) criterion = nn.CrossEntropyLoss() best_f1, best_epoch = -1, 0 es_loss, es_f1, es_epoch, es_patience, best_es_epoch, best_es_f1, \ es_path, best_es_path = 1e8, -1, 0, 0, 0, -1, '', '' train_losses, valid_losses = [], [] if cfg.show_plot and cfg.plot_utils == 'tensorboard': writer = SummaryWriter('tensorboard') else: writer = None logger.info('=' * 10 + ' Start training ' + '=' * 10) for epoch in range(1, cfg.epoch + 1): manual_seed(cfg.seed + epoch) train_loss = train(epoch, model, train_dataloader, optimizer, criterion, device, writer, cfg) valid_f1, valid_loss = validate(epoch, model, valid_dataloader, criterion, device, cfg) scheduler.step(valid_loss) model_path = model.save(epoch, cfg) # logger.info(model_path) train_losses.append(train_loss) valid_losses.append(valid_loss) if best_f1 < valid_f1: best_f1 = valid_f1 best_epoch = epoch # 使用 valid loss 做 early stopping 的判断标准 if es_loss > valid_loss: es_loss = valid_loss es_f1 = valid_f1 es_epoch = epoch es_patience = 0 es_path = model_path else: es_patience += 1 if es_patience >= cfg.early_stopping_patience: best_es_epoch = es_epoch best_es_f1 = es_f1 best_es_path = es_path if cfg.show_plot: if cfg.plot_utils == 'matplot': plt.plot(train_losses, 'x-') plt.plot(valid_losses, '+-') plt.legend(['train', 'valid']) plt.title('train/valid comparison loss') plt.show() if cfg.plot_utils == 'tensorboard': for i in range(len(train_losses)): writer.add_scalars('train/valid_comparison_loss', { 'train': train_losses[i], 'valid': valid_losses[i] }, i) writer.close() logger.info( f'best(valid loss quota) early stopping epoch: {best_es_epoch}, ' f'this epoch macro f1: {best_es_f1:0.4f}') logger.info(f'this model save path: {best_es_path}') logger.info( f'total {cfg.epoch} epochs, best(valid macro f1) epoch: {best_epoch}, ' f'this epoch macro f1: {best_f1:.4f}') logger.info('=====end of training====') logger.info('') logger.info('=====start test performance====') validate(-1, model, test_dataloader, criterion, device, cfg) logger.info('=====ending====') if __name__ == '__main__': main()
[ "torch.device", "torch.utils.tensorboard.SummaryWriter", "torch.cuda.is_available", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.nn.CrossEntropyLoss" ]
1.2
dongyingname/DeepKE
e5511bdad739a36cabd8439faebfceee22aebccb
1.4
# Adapted from code from the book "Deep Reinforcement Learning" by Maxim Lapan import numpy as np import torch from lib import environ def validation_run(env, net, episodes=100, device="cpu", epsilon=0.02, comission=0.1): stats = { "episode_reward": [], "episode_steps": [], "order_profits": [], "order_steps": [], } for episode in range(episodes): obs = env.reset() total_reward = 0.0 position = None position_steps = None episode_steps = 0 while True: obs_v = torch.tensor([obs]).to(device) out_v = net(obs_v) action_idx = out_v.max(dim=1)[1].item() if np.random.random() < epsilon: action_idx = env.action_space.sample() action = environ.Actions(action_idx) close_price = env._state._cur_close() if action == environ.Actions.Buy and position is None: position = close_price position_steps = 0 elif action == environ.Actions.Close and position is not None: profit = ( close_price - position - (close_price + position) * comission / 100 ) profit = 100.0 * profit / position stats["order_profits"].append(profit) stats["order_steps"].append(position_steps) position = None position_steps = None obs, reward, done, _ = env.step(action_idx) total_reward += reward episode_steps += 1 if position_steps is not None: position_steps += 1 if done: if position is not None: profit = ( close_price - position - (close_price + position) * comission / 100 ) profit = 100.0 * profit / position stats["order_profits"].append(profit) stats["order_steps"].append(position_steps) break stats["episode_reward"].append(total_reward) stats["episode_steps"].append(episode_steps) return {key: np.mean(vals) for key, vals in stats.items()}
[ "torch.tensor" ]
1.4.0
ankile/reinforcement-trading
849ba30d8be05abf1e9eae919463c4eebe812ce8
1.9
import heapq import pathlib import pickle import string from collections import defaultdict from typing import List, Tuple import click import matplotlib.pyplot as plt import networkx as nx import numpy as np import torch from pydantic import BaseModel from spacy.lang.en.stop_words import STOP_WORDS from tqdm.auto import tqdm from src import preprocess from src.helpers import constants from src.models import TrainAll, ours BAD_WORDS = ( STOP_WORDS | set(string.punctuation) | {"‘", '"', "’", "“", "”", "–", "...", "nt", "10", "20"} ) class ADGConfig(BaseModel): num_top_words: int = 20 num_connections: int = 3 node_size_range: Tuple[int, int] = (300, 3000) edge_size_range: Tuple[float, float] = (0.0, 0.8) # between zero and one DEFAULTS = { "soccer": ADGConfig( num_top_words=30, ), } def build_config(subreddit: str) -> ADGConfig: assert subreddit in DEFAULTS, "No config found. Please add it to DEFAULTS!" return DEFAULTS[subreddit] def generate_attention_weights(name: str) -> List[Tuple[str, torch.Tensor]]: device = next(iter(constants.DEVICES)) # Pick any GPU. with (constants.MODELS_DIR / f"{name}.model").open("rb") as f: wrapper = pickle.load(f) model = wrapper.model.to(device) config = wrapper.config assert isinstance( config.training_scheme, TrainAll ), "Top k models should be TrainAll!" rows, _ = preprocess.load(config.subreddit) row_tokens, title_tokens, _ = ours._tokenize(rows, config.subreddit) result = [] model.eval() # Disable dropout with torch.no_grad(): for title, vec in zip( title_tokens, tqdm(row_tokens, desc="Collecting weights") ): vec = vec.to(device).float() vec = model.attn(vec, vec, vec)[1].cpu().numpy() result.append((title, vec[0])) # vec is 1 x n x n return result def _compute_graph(weights, config: ADGConfig): word_to_words_weight = defaultdict(lambda: defaultdict(int)) word_to_word_freq = defaultdict(int) for title, title_weights in tqdm(weights, desc="Calculating word weights"): for i, out_word in enumerate(title): out_word = out_word.lower() if out_word not in BAD_WORDS: for j, in_word in enumerate(title): in_word = in_word.lower() if in_word not in BAD_WORDS: word_to_words_weight[out_word][in_word] += title_weights[i][j] word_to_word_freq[out_word] += 1 word_to_words_avg_weight = defaultdict(dict) for out_word in tqdm(word_to_words_weight, desc="Normalizing"): for in_word in word_to_words_weight[out_word]: word_to_words_avg_weight[out_word][in_word] = ( word_to_words_weight[out_word][in_word] / word_to_word_freq[out_word] ) # This will be populated soon! nodes = [] # (node, frequency) edges = [] # (x, y, weight) # Generate the graph, solely of words that "make the cut"/ _node_names = set() _top_words = heapq.nlargest( config.num_top_words, word_to_word_freq.keys(), key=word_to_word_freq.get ) for out_word in _top_words: _connections = heapq.nlargest( config.num_connections, set(word_to_words_avg_weight[out_word].keys()) - {out_word}, key=word_to_words_avg_weight[out_word].get, ) for in_word in _connections: weight = word_to_words_avg_weight[out_word][in_word] edges.append((out_word, in_word, weight)) _node_names |= {out_word, in_word} # Compute all mentioned nodes nodes = [(n, word_to_word_freq[n]) for n in _node_names] # Normalize nodes: _node_weights = np.array([w for n, w in nodes], dtype=np.float32) _node_weights = np.interp( _node_weights, (_node_weights.min(), _node_weights.max()), config.node_size_range, ) nodes = [(n, w) for (n, _), w in zip(nodes, _node_weights)] # Normalize edges: _edge_weights = np.array([w for _, _, w in edges], dtype=np.float32) _edge_weights = np.interp( _edge_weights, (_edge_weights.min(), _edge_weights.max()), config.edge_size_range, ) edges = [(a, b, w) for (a, b, _), w in zip(edges, _edge_weights)] return nodes, edges def _visualize(nodes, edges, output_path: str): k = 5 nodes = nodes[k:] + nodes[:k] G = nx.DiGraph() G.add_nodes_from([n for n, _ in nodes]) G.add_weighted_edges_from(edges) plt.figure(1, figsize=(8, 8), dpi=200) nx.draw( G, nx.circular_layout(G), node_size=[w for _, w in nodes], edge_color=[(w, w, w) for _, _, w in edges], with_labels=True, font_size=15, alpha=0.9, node_color="#B4CDED", arrowstyle="->", ) plt.savefig(output_path) @click.command() @click.option( "--subreddit", type=str, required=True, help="Subreddit we are running on (for config)", ) @click.option( "--model_name", type=str, required=True, help="Model to load for processing title.", ) @click.option( "--output_name", type=str, required=True, help="Output file name for visualization.", ) def generate(subreddit: str, model_name: str, output_name: str): output_path = constants.FIGURES_DIR / output_name config = build_config(subreddit) weights = generate_attention_weights(model_name) nodes, edges = _compute_graph(weights, config) _visualize(nodes, edges, output_path) if __name__ == "__main__": generate()
[ "torch.no_grad" ]
1.9.1
evanweissburg/judging-a-book
b273988485047e1496387e91529ed25b6688b88f
1.0
# Copyright (c) 2020 mingruimingrui # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the MIT-style license found in the # LICENSE file in the root directory of this source tree. """LASER LSTM sequence encoder""" import torch from torch import nn from typing import NamedTuple, Optional, Tuple class EncoderOuts(NamedTuple): sentemb: torch.Tensor encoder_out: Optional[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]] encoder_padding_mask: Optional[torch.Tensor] class Encoder(nn.Module): def __init__( self, num_embeddings: int, padding_idx: int, embed_dim: int = 320, hidden_size: int = 512, num_layers: int = 1, bidirectional: bool = False, padding_value: float = 0.0 ): """LSTM based sequence encoder Arguments: num_embeddings {int} -- Number of unique token embeddings padding_idx {int} -- Padding token id Keyword Arguments: embed_dim {int} -- Embedding dimension size (default: {320}) hidden_size {int} -- Hidden layer dimension size (default: {512}) num_layers {int} -- Number of LSTM layers (default: {1}) bidirectional {bool} -- Use Bidirectional LSTM (default: {False}) padding_value {float} -- Value to pad hidden layers (default: {0.0}) """ super().__init__() self.num_embeddings = int(num_embeddings) self.padding_idx = int(padding_idx) self.embed_dim = int(embed_dim) self.hidden_size = int(hidden_size) self.num_layers = int(num_layers) self.bidirectional = bool(bidirectional) self.padding_value = float(padding_value) self.embed_tokens = nn.Embedding( num_embeddings=self.num_embeddings, embedding_dim=self.embed_dim, padding_idx=self.padding_idx ) self.lstm = nn.LSTM( input_size=self.embed_dim, hidden_size=self.hidden_size, num_layers=self.num_layers, bidirectional=self.bidirectional ) self.num_directions = 2 if self.bidirectional else 1 self.output_units = self.num_directions * self.hidden_size def forward( self, src_tokens: torch.LongTensor, src_lengths: torch.LongTensor, return_encoder_out: bool = False, return_encoder_padding_mask: bool = False, ) -> EncoderOuts: """Encode a batch of sequences Arguments: src_tokens {torch.LongTensor} -- [batch_size, seq_len] src_lengths {torch.LongTensor} -- [batch_size] Keyword Arguments: return_encoder_out {bool} -- Return output tensors? (default: {False}) return_encoder_padding_mask {bool} -- Return encoder padding mask? (default: {False}) Returns: [type] -- [description] """ bsz, seqlen = src_tokens.size() x = self.embed_tokens(src_tokens) x = x.transpose(0, 1) # BTC -> TBC # Pack then apply LSTM packed_x = nn.utils.rnn.pack_padded_sequence( x, src_lengths, batch_first=False, enforce_sorted=True) packed_outs, (final_hiddens, final_cells) = \ self.lstm.forward(packed_x) x, _ = nn.utils.rnn.pad_packed_sequence( packed_outs, padding_value=self.padding_value) assert list(x.size()) == [seqlen, bsz, self.output_units] # Set padded outputs to -inf so they are not selected by max-pooling padding_mask = src_tokens.eq(self.padding_idx).t() if padding_mask.any(): x = x.float().masked_fill_( mask=padding_mask.unsqueeze(-1), value=float('-inf'), ).type_as(x) # Build the sentence embedding by max-pooling over the encoder outputs sentemb = x.max(dim=0)[0] encoder_out = None if return_encoder_out: final_hiddens = self._combine_outs(final_hiddens) final_cells = self._combine_outs(final_cells) encoder_out = (x, final_hiddens, final_cells) encoder_padding_mask = None if return_encoder_padding_mask: encoder_padding_mask = src_tokens.eq(self.padding_idx).t() return EncoderOuts( sentemb=sentemb, encoder_out=encoder_out, encoder_padding_mask=encoder_padding_mask ) def _combine_outs(self, x: torch.Tensor) -> torch.Tensor: """Combines outputs for same layer same entry in batch. Only used for BiLSTM. Arguments: outs {torch.Tensor} -- [num_layers * num_dir, bsz, hidden_size] Returns: torch.Tensor -- [num_layers, bsz, num_dir * hidden_size] """ # [num_layers * num_dir, bsz, hidden_size] # -> [num_layers, num_dir, bsz, hidden_size] # -> [num_layers, bsz, num_dir, hidden_size] # -> [num_layers, bsz, num_dir * hidden_size] if self.num_directions == 1: return x x = x.reshape( self.num_layers, self.num_directions, -1, self.hidden_size ).transpose(1, 2) x = x.transpose(1, 2) return x.reshape(self.num_layers, -1, self.output_units) def load_encoder_from_file(model_path: str) -> Tuple[Encoder, dict]: # Load state_dict state_dict = torch.load(model_path, map_location='cpu') if 'left_pad' in state_dict['params']: del state_dict['params']['left_pad'] # Create encoder encoder = Encoder(**state_dict['params']) encoder.load_state_dict(state_dict['model']) encoder.eval() return encoder, state_dict['dictionary']
[ "torch.nn.LSTM", "torch.nn.utils.rnn.pad_packed_sequence", "torch.nn.utils.rnn.pack_padded_sequence", "torch.load", "torch.nn.Embedding" ]
1.0
mingruimingrui/laser-keep-alive
9f06ec825d7a8aadf46f1f1c96dae2537b101b17
1.10
import torch from torch import nn import torch.nn.functional as F import math from backbone.repvgg import get_RepVGG_func_by_name import utils class SixDRepNet(nn.Module): def __init__(self, backbone_name, backbone_file, deploy, bins=(1, 2, 3, 6), droBatchNorm=nn.BatchNorm2d, pretrained=True): super(SixDRepNet, self).__init__() repvgg_fn = get_RepVGG_func_by_name(backbone_name) backbone = repvgg_fn(deploy) if pretrained: checkpoint = torch.load(backbone_file) if 'state_dict' in checkpoint: checkpoint = checkpoint['state_dict'] ckpt = {k.replace('module.', ''): v for k, v in checkpoint.items()} # strip the names backbone.load_state_dict(ckpt) self.layer0, self.layer1, self.layer2, self.layer3, self.layer4 = backbone.stage0, backbone.stage1, backbone.stage2, backbone.stage3, backbone.stage4 self.gap = nn.AdaptiveAvgPool2d(output_size=1) last_channel = 0 for n, m in self.layer4.named_modules(): if ('rbr_dense' in n or 'rbr_reparam' in n) and isinstance(m, nn.Conv2d): last_channel = m.out_channels fea_dim = last_channel self.linear_reg = nn.Linear(fea_dim, 6) def forward(self, x): x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x= self.gap(x) x = torch.flatten(x, 1) x = self.linear_reg(x) return utils.compute_rotation_matrix_from_ortho6d(x) class SixDRepNet2(nn.Module): def __init__(self, block, layers, fc_layers=1): self.inplanes = 64 super(SixDRepNet2, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.linear_reg = nn.Linear(512*block.expansion,6) # Vestigial layer from previous experiments self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.linear_reg(x) out = utils.compute_rotation_matrix_from_ortho6d(x) return out
[ "torch.nn.Linear", "torch.flatten", "torch.nn.MaxPool2d", "torch.nn.Sequential", "torch.nn.AvgPool2d", "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.load", "torch.nn.AdaptiveAvgPool2d" ]
1.10.1
arsalan0004/6DRepNet
aa28f95516cacb1cac31313b981b9fd3f51f5c28
1.7
import os import argparse import gc from PIL import Image import numpy as np import torch from torchvision.transforms.functional import to_tensor, to_pil_image from model import Generator gc.collect() torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def load_image(image_path, x32=False): img = Image.open(image_path).convert("RGB") if x32: def to_32s(x): return 256 if x < 256 else x - x % 32 w, h = img.size img = img.resize((to_32s(w), to_32s(h))) return img def test(args): device = args.device net = Generator() net.load_state_dict(torch.load(args.checkpoint, map_location="cpu")) net.to(device).eval() print(f"model loaded: {args.checkpoint}") os.makedirs(args.output_dir, exist_ok=True) for image_name in sorted(os.listdir(args.input_dir)): if os.path.splitext(image_name)[-1].lower() not in [".jpg", ".png", ".bmp", ".tiff"]: continue image = load_image(os.path.join(args.input_dir, image_name), args.x32) with torch.no_grad(): image = to_tensor(image).unsqueeze(0) * 2 - 1 out = net(image.to(device), args.upsample_align).cpu() out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5 out = to_pil_image(out) out.save(os.path.join(args.output_dir, image_name)) print(f"image saved: {image_name}") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--checkpoint', type=str, default='./weights/paprika.pt', ) parser.add_argument( '--input_dir', type=str, default='./samples/inputs', ) parser.add_argument( '--output_dir', type=str, default='./samples/results', ) parser.add_argument( '--device', type=str, default='cuda:0', ) parser.add_argument( '--upsample_align', type=bool, default=False, help="Align corners in decoder upsampling layers" ) parser.add_argument( '--x32', action="store_true", help="Resize images to multiple of 32" ) args = parser.parse_args() test(args)
[ "torch.no_grad", "torch.load" ]
1.7.1
codetyphon/AnimeGAN-web
6a49296cc039bd86d133a8d023ad94199c19ed2b
1.4
#!/usr/bin/env python3 """ ImageNet Training Script This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet training results with some of the latest networks and training techniques. It favours canonical PyTorch and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. This script was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples (https://github.com/NVIDIA/apex/tree/master/examples/imagenet) Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import argparse import time import yaml import os import logging from collections import OrderedDict from contextlib import suppress from datetime import datetime import torch import torch.nn as nn import torch.distributed as dist import torchvision.utils from torch.nn.parallel import DistributedDataParallel as NativeDDP from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint,\ convert_splitbn_model, model_parameters from timm.utils import * from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy from timm.optim import create_optimizer_v2, optimizer_kwargs from timm.scheduler import create_scheduler from timm.utils import ApexScaler, NativeScaler try: from apex import amp from apex.parallel import DistributedDataParallel as ApexDDP from apex.parallel import convert_syncbn_model has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: import wandb has_wandb = True except ImportError: has_wandb = False torch.backends.cudnn.benchmark = True _logger = logging.getLogger('train') # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False) parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') # Dataset / Model parameters parser.add_argument('data_dir', metavar='DIR', help='path to dataset') parser.add_argument('--dataset', '-d', metavar='NAME', default='', help='dataset type (default: ImageFolder/ImageTar if empty)') parser.add_argument('--train-split', metavar='NAME', default='train', help='dataset train split (default: train)') parser.add_argument('--val-split', metavar='NAME', default='validation', help='dataset validation split (default: validation)') parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL', help='Name of model to train (default: "countception"') parser.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Initialize model from this checkpoint (default: none)') parser.add_argument('--pretrained-path', default='', type=str, metavar='PATH', help='Load from original checkpoint and pretrain (default: none) (with --pretrained)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') parser.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') parser.add_argument('--num-classes', type=int, default=None, metavar='N', help='number of label classes (Model default if None)') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--img-size', type=int, default=None, metavar='N', help='Image patch size (default: None => model default)') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop percent (for validation only)') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N', help='input batch size for training (default: 32)') parser.add_argument('-vb', '--validation-batch-size-multiplier', type=int, default=1, metavar='N', help='ratio of validation batch size to training batch size (default: 1)') # Optimizer parameters parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd"') parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.0001, help='weight decay (default: 0.0001)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') # Learning rate schedule parameters parser.add_argument('--sched', default='step', type=str, metavar='SCHEDULER', help='LR scheduler (default: "step"') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit') parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR', help='warmup learning rate (default: 0.0001)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--epochs', type=int, default=200, metavar='N', help='number of epochs to train (default: 2)') parser.add_argument('--epoch-repeats', type=float, default=0., metavar='N', help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).') parser.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation & regularization parameters parser.add_argument('--no-aug', action='store_true', default=False, help='Disable all training augmentation, override other train aug args') parser.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT', help='Random resize scale (default: 0.08 1.0)') parser.add_argument('--ratio', type=float, nargs='+', default=[3./4., 4./3.], metavar='RATIO', help='Random resize aspect ratio (default: 0.75 1.33)') parser.add_argument('--hflip', type=float, default=0.5, help='Horizontal flip training aug probability') parser.add_argument('--vflip', type=float, default=0., help='Vertical flip training aug probability') parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + \ "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--aug-splits', type=int, default=0, help='Number of augmentation splits (default: 0, valid: 0 or >=2)') parser.add_argument('--jsd', action='store_true', default=False, help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.') parser.add_argument('--reprob', type=float, default=0., metavar='PCT', help='Random erase prob (default: 0.)') parser.add_argument('--remode', type=str, default='const', help='Random erase mode (default: "const")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') parser.add_argument('--mixup', type=float, default=0.0, help='mixup alpha, mixup enabled if > 0. (default: 0.)') parser.add_argument('--cutmix', type=float, default=0.0, help='cutmix alpha, cutmix enabled if > 0. (default: 0.)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') parser.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N', help='Turn off mixup after this epoch, disabled if 0 (default: 0)') parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT', help='Drop connect rate, DEPRECATED, use drop-path (default: None)') parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') parser.add_argument('--repeated-aug', action='store_true') parser.set_defaults(repeated_aug=True) # Batch norm parameters (only works with gen_efficientnet based models currently) parser.add_argument('--bn-tf', action='store_true', default=False, help='Use Tensorflow BatchNorm defaults for models that support it (default: False)') parser.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)') parser.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)') parser.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') parser.add_argument('--dist-bn', type=str, default="reduce", help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') parser.add_argument('--split-bn', action='store_true', help='Enable separate BN layers per augmentation split.') # Model Exponential Moving Average parser.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights') parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.') parser.add_argument('--model-ema-decay', type=float, default=0.9998, help='decay factor for model weights moving average (default: 0.9998)') # Misc parser.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') parser.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') parser.add_argument('--checkpoint-hist', type=int, default=10, metavar='N', help='number of checkpoints to keep (default: 10)') parser.add_argument('-j', '--workers', type=int, default=4, metavar='N', help='how many training processes to use (default: 1)') parser.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--apex-amp', action='store_true', default=False, help='Use NVIDIA Apex AMP mixed precision') parser.add_argument('--native-amp', action='store_true', default=False, help='Use Native Torch AMP mixed precision') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') parser.add_argument('--experiment', default='', type=str, metavar='NAME', help='name of train experiment, name of sub-folder for output') parser.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC', help='Best metric (default: "top1"') parser.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') parser.add_argument('--use-multi-epochs-loader', action='store_true', default=False, help='use the multi-epochs-loader to save time at the beginning of every epoch') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') parser.add_argument('--log-wandb', action='store_true', default=False, help='log training and validation metrics to wandb') parser.add_argument('--fake-separated-loss-log', action='store_true', default=False, help='log loss separated by fake or not') parser.add_argument('--pause', type=int, default=None, help='pause training at the epoch') # distributed training parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument("--local_rank", default=0, type=int) parser.add_argument("--global_rank", default=0, type=int) parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--device', default=None, type=int, help='GPU id to use.') # original params parser.add_argument('--separate-rate', type=float, default=1.0, help='Ratio of how much of the sorting task to consider') def _parse_args(): # Do we have a config file to parse? args_config, remaining = config_parser.parse_known_args() if args_config.config: with open(args_config.config, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) # The main arg parser parses the rest of the args, the usual # defaults will have been overridden if config file specified. args = parser.parse_args(remaining) # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text def main(): setup_default_logging() args, args_text = _parse_args() args.prefetcher = not args.no_prefetcher args.distributed = True if args.device is not None: print("Use GPU: {} for training".format(args.device)) if args.distributed: # initialize torch.distributed using MPI # from mpi4py import MPI # comm = MPI.COMM_WORLD # world_size = comm.Get_size() # rank = comm.Get_rank() # init_method = 'tcp://{}:23456'.format(args.dist_url) master_addr = os.getenv("MASTER_ADDR", default="localhost") master_port = os.getenv('MASTER_PORT', default='8888') method = "tcp://{}:{}".format(master_addr, master_port) rank = int(os.getenv('OMPI_COMM_WORLD_RANK', '0')) world_size = int(os.getenv('OMPI_COMM_WORLD_SIZE', '1')) ngpus_per_node = torch.cuda.device_count() device = rank % ngpus_per_node torch.cuda.set_device(device) torch.distributed.init_process_group('nccl', init_method=method, world_size=world_size, rank=rank) args.local_rank = device args.global_rank = rank args.device = device args.world_size = world_size _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.' % (args.global_rank, args.world_size)) # resolve AMP arguments based on PyTorch / Apex availability use_amp = None if args.amp: # `--amp` chooses native amp before apex (APEX ver not actively maintained) if has_native_amp: args.native_amp = True elif has_apex: args.apex_amp = True if args.apex_amp and has_apex: use_amp = 'apex' elif args.native_amp and has_native_amp: use_amp = 'native' elif args.apex_amp or args.native_amp: _logger.warning("Neither APEX or native Torch AMP is available, using float32. " "Install NVIDA apex or upgrade to PyTorch 1.6") random_seed(args.seed, args.global_rank) if args.log_wandb and args.global_rank == 0: if has_wandb: wandb.init(project="pytorch-image-models", name=args.experiment, config=args) else: _logger.warning("You've requested to log metrics to wandb but package not found. " "Metrics not being logged to wandb, try `pip install wandb`") model = create_model( args.model, pretrained=args.pretrained, num_classes=args.num_classes, drop_rate=args.drop, drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path drop_path_rate=args.drop_path, drop_block_rate=args.drop_block, global_pool=args.gp, bn_tf=args.bn_tf, bn_momentum=args.bn_momentum, bn_eps=args.bn_eps, scriptable=args.torchscript, checkpoint_path=args.initial_checkpoint, pretrained_path=args.pretrained_path, separate_flg=True) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly if args.global_rank == 0: _logger.info( f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}') data_config = resolve_data_config(vars(args), model=model, verbose=args.global_rank == 0) # setup augmentation batch splits for contrastive loss or split bn num_aug_splits = 0 if args.aug_splits > 0: assert args.aug_splits > 1, 'A split of 1 makes no sense' num_aug_splits = args.aug_splits # enable split bn (separate bn stats per batch-portion) if args.split_bn: assert num_aug_splits > 1 or args.resplit model = convert_splitbn_model(model, max(num_aug_splits, 2)) # move model to GPU, enable channels last layout if set model.cuda() if args.channels_last: model = model.to(memory_format=torch.channels_last) # setup synchronized BatchNorm for distributed training if args.distributed and args.sync_bn: assert not args.split_bn if has_apex and use_amp != 'native': # Apex SyncBN preferred unless native amp is activated model = convert_syncbn_model(model) else: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) if args.global_rank == 0: _logger.info( 'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using ' 'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.') if args.torchscript: assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model' model = torch.jit.script(model) optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args)) # setup automatic mixed-precision (AMP) loss scaling and op casting amp_autocast = suppress # do nothing loss_scaler = None if use_amp == 'apex': model, optimizer = amp.initialize(model, optimizer, opt_level='O1') loss_scaler = ApexScaler() if args.global_rank == 0: _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.') elif use_amp == 'native': amp_autocast = torch.cuda.amp.autocast loss_scaler = NativeScaler() if args.global_rank == 0: _logger.info('Using native Torch AMP. Training in mixed precision.') else: if args.global_rank == 0: _logger.info('AMP not enabled. Training in float32.') # optionally resume from a checkpoint resume_epoch = None if args.resume: resume_epoch = resume_checkpoint( model, args.resume, optimizer=None if args.no_resume_opt else optimizer, loss_scaler=None if args.no_resume_opt else loss_scaler, log_info=args.global_rank == 0) # setup exponential moving average of model weights, SWA could be used here too model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEmaV2( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None) if args.resume: load_checkpoint(model_ema.module, args.resume, use_ema=True) # setup distributed training if args.distributed: if has_apex and use_amp != 'native': # Apex DDP preferred unless native amp is activated if args.global_rank == 0: _logger.info("Using NVIDIA APEX DistributedDataParallel.") model = ApexDDP(model, delay_allreduce=True) else: if args.global_rank == 0: _logger.info("Using native Torch DistributedDataParallel.") model = NativeDDP(model, device_ids=[args.local_rank]) # can use device str in Torch >= 1.1 # NOTE: EMA model does not need to be wrapped by DDP # setup learning rate schedule and starting epoch lr_scheduler, num_epochs = create_scheduler(args, optimizer) start_epoch = 0 if args.start_epoch is not None: # a specified start_epoch will always override the resume epoch start_epoch = args.start_epoch elif resume_epoch is not None: start_epoch = resume_epoch if lr_scheduler is not None and start_epoch > 0: lr_scheduler.step(start_epoch) if args.global_rank == 0: _logger.info('Scheduled epochs: {}'.format(num_epochs)) # if needed, load dataset from torch if args.dataset == 'CIFAR10': args.data_dir = f'{args.data_dir}/cifar10_data' elif args.dataset == 'CIFAR100': args.data_dir = f'{args.data_dir}/cifar100_data' # create the train and eval datasets dataset_train = create_dataset( args.dataset, root=args.data_dir, split=args.train_split, is_training=True, batch_size=args.batch_size, repeats=args.epoch_repeats) dataset_eval = create_dataset( args.dataset, root=args.data_dir, split=args.val_split, is_training=False, batch_size=args.batch_size) # setup mixup / cutmix collate_fn = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_args = dict( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.num_classes) if args.prefetcher: assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup) collate_fn = FastCollateMixup(**mixup_args) else: mixup_fn = Mixup(**mixup_args) # wrap dataset in AugMix helper if num_aug_splits > 1: dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits) # create data loaders w/ augmentation pipeiine train_interpolation = args.train_interpolation if args.no_aug or not train_interpolation: train_interpolation = data_config['interpolation'] loader_train = create_loader( dataset_train, input_size=data_config['input_size'], batch_size=args.batch_size, is_training=True, use_prefetcher=args.prefetcher, no_aug=args.no_aug, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, re_split=args.resplit, scale=args.scale, ratio=args.ratio, hflip=args.hflip, vflip=args.vflip, color_jitter=args.color_jitter, auto_augment=args.aa, num_aug_splits=num_aug_splits, interpolation=train_interpolation, mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, collate_fn=collate_fn, pin_memory=args.pin_mem, use_multi_epochs_loader=args.use_multi_epochs_loader, repeated_aug=args.repeated_aug, ) loader_eval = create_loader( dataset_eval, input_size=data_config['input_size'], batch_size=args.validation_batch_size_multiplier * args.batch_size, is_training=False, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, crop_pct=data_config['crop_pct'], pin_memory=args.pin_mem, ) # setup loss function if args.jsd: assert num_aug_splits > 1 # JSD only valid with aug splits set train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda() elif mixup_active: # smoothing is handled with mixup target transform train_loss_fn = SoftTargetCrossEntropy().cuda() elif args.smoothing: train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda() else: train_loss_fn = nn.CrossEntropyLoss().cuda() validate_loss_fn = nn.CrossEntropyLoss().cuda() label_loss_fn = nn.BCEWithLogitsLoss().cuda() # setup checkpoint saver and eval metric tracking eval_metric = args.eval_metric best_metric = None best_epoch = None saver = None output_dir = None if args.global_rank == 0: if args.experiment: exp_name = args.experiment else: exp_name = '-'.join([ datetime.now().strftime("%Y%m%d-%H%M%S"), safe_model_name(args.model), str(data_config['input_size'][-1]) ]) output_dir = get_outdir(args.output if args.output else './output/train', exp_name) decreasing = True if eval_metric == 'loss' else False saver = CheckpointSaver( model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler, checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.checkpoint_hist) with open(os.path.join(output_dir, 'args.yaml'), 'w') as f: f.write(args_text) try: for epoch in range(start_epoch, num_epochs): if args.distributed and hasattr(loader_train.sampler, 'set_epoch'): loader_train.sampler.set_epoch(epoch) train_metrics = train_one_epoch( epoch, model, loader_train, optimizer, train_loss_fn, label_loss_fn, args, lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir, amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn) if args.distributed and args.dist_bn in ('broadcast', 'reduce'): if args.global_rank == 0: _logger.info("Distributing BatchNorm running means and vars") distribute_bn(model, args.world_size, args.dist_bn == 'reduce') eval_metrics = validate(model, loader_eval, validate_loss_fn, label_loss_fn, args, amp_autocast=amp_autocast) if model_ema is not None and not args.model_ema_force_cpu: if args.distributed and args.dist_bn in ('broadcast', 'reduce'): distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce') ema_eval_metrics = validate( model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)') eval_metrics = ema_eval_metrics if lr_scheduler is not None: # step LR for next epoch lr_scheduler.step(epoch + 1, eval_metrics[eval_metric]) if output_dir is not None and args.global_rank == 0: update_summary( epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'), write_header=best_metric is None, log_wandb=args.log_wandb and has_wandb) if saver is not None: # save proper checkpoint with eval metric save_metric = eval_metrics[eval_metric] best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric) if args.pause is not None: if epoch - start_epoch >= args.pause: break except KeyboardInterrupt: pass if best_metric is not None: _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch)) def train_one_epoch( epoch, model, loader, optimizer, loss_fn, label_loss_fn, args, lr_scheduler=None, saver=None, output_dir=None, amp_autocast=suppress, loss_scaler=None, model_ema=None, mixup_fn=None): if args.mixup_off_epoch and epoch >= args.mixup_off_epoch: if args.prefetcher and loader.mixup_enabled: loader.mixup_enabled = False elif mixup_fn is not None: mixup_fn.mixup_enabled = False second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order batch_time_m = AverageMeter() data_time_m = AverageMeter() losses_label_m = AverageMeter() losses_class_m = AverageMeter() losses_m = AverageMeter() top1_label_m = AverageMeter() if args.fake_separated_loss_log: fake_losses_m = AverageMeter() origin_losses_m = AverageMeter() model.train() end = time.time() last_idx = len(loader) - 1 num_updates = epoch * len(loader) # ここでとってくるローダーを二種類に ここで fake と original をここで input と target にまーじ (後回し) # import pdb; pdb.set_trace() for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_idx data_time_m.update(time.time() - end) mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if not mixup_active: # mixupがoffの場合,label形式でtargetが入ってくる(mixup系消去,ラベルターゲット) target_label = (target < args.num_classes).to(dtype=torch.float32).unsqueeze(1) target_class = target else: # mixupがonの場合,one-hot形式でtargetが入ってくる target_class = target target_label = torch.sum(target, 1).unsqueeze(1) # realの方を横方法にたす([128, 1000] -> [128, 1]) 1->real, 0->fake # if args.global_rank == 0 and batch_idx%200 == 0: # print(f"target:{target.shape}") # print(target) # print(f"target_label:{target_label.shape}") # print(target_label) if not args.prefetcher: input, target_class = input.cuda(), target_class.cuda() if mixup_fn is not None: input, target_class = mixup_fn(input, target_class) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output, output_label = model(input) # if args.fake_separated_loss_log: # # calc loss splited with [0-999], [1000-1999] # target_labels = torch.argmax(target, axis=1).cuda() # fake_output = output[target_labels < args.num_classes//2] # fake_target = target[target_labels < args.num_classes//2] # origin_output = output[target_labels >= args.num_classes//2] # origin_target = target[target_labels >= args.num_classes//2] # fake_loss = loss_fn(fake_output, fake_target) # origin_loss = loss_fn(origin_output, origin_target) # if len(fake_target) == 0: # fake_loss = torch.zeros(1, dtype=torch.float32).cuda() # if len(origin_target) == 0: # origin_loss = torch.zeros(1, dtype=torch.float32).cuda() # if args.global_rank == 0 and (last_batch or batch_idx % args.log_interval == 0): # print(f'fake_target_shape: {fake_target.shape}, origin_target_shape: {origin_target.shape}') # print(f'fake_loss: {fake_loss}, origin_loss: {origin_loss}') loss_class = loss_fn(output, target_class) loss_label = label_loss_fn(output_label, target_label) # batch size 混ぜるときに気を付ける # loss = (loss_class + loss_label)/2 # args.separate_rate = 1.0 の時,クラス分類タスクとfake判別タスクを毎回同等の価値とみなしてバックワードを回す.0.5なら,fake判別タスクの価値はクラス分類タスクの価値の半分 # rate_loss = (loss_class/loss_label).item() loss = (loss_class + 0*loss_label) acc1_label = accuracy_label(output_label, target_label) if not args.distributed: losses_m.update(loss.item(), input.size(0)) losses_class_m.update(loss_class.item(), input.size(0)) losses_label_m.update(loss_label.item(), input.size(0)) top1_label_m.update(acc1_label.item(), output.size(0)) # if args.fake_separated_loss_log: # if len(fake_target) > 0: # fake_losses_m.update(fake_loss.item(), len(fake_target)) # if len(origin_target) > 0: # origin_losses_m.update(origin_loss.item(), len(origin_target)) optimizer.zero_grad() if loss_scaler is not None: loss_scaler( loss, optimizer, clip_grad=args.clip_grad, clip_mode=args.clip_mode, parameters=model_parameters(model, exclude_head='agc' in args.clip_mode), create_graph=second_order) else: loss.backward(create_graph=second_order) if args.clip_grad is not None: dispatch_clip_grad( model_parameters(model, exclude_head='agc' in args.clip_mode), value=args.clip_grad, mode=args.clip_mode) optimizer.step() if model_ema is not None: model_ema.update(model) torch.cuda.synchronize() if args.distributed: reduced_loss = reduce_tensor(loss.data, args.world_size) reduced_loss_class = reduce_tensor(loss_class.data, args.world_size) reduced_loss_label = reduce_tensor(loss_label.data, args.world_size) acc1_label = reduce_tensor(acc1_label, args.world_size) losses_m.update(reduced_loss.item(), input.size(0)) losses_class_m.update(reduced_loss_class.item(), input.size(0)) losses_label_m.update(reduced_loss_label.item(), input.size(0)) top1_label_m.update(acc1_label.item(), output.size(0)) # if args.fake_separated_loss_log: # # len(fake_target)やlen(origin_target)を全プロセスで足し合わせて考慮する必要あり # fake_local_sum_loss = torch.tensor([len(fake_target)*fake_loss.item()], dtype=torch.float32).cuda() # dist.all_reduce(fake_local_sum_loss.data, op=dist.ReduceOp.SUM) # fake_nums = torch.tensor([len(fake_target)], dtype=torch.int64).cuda() # dist.all_reduce(fake_nums.data, op=dist.ReduceOp.SUM) # if fake_nums.item() > 0: # fake_losses_m.update(fake_local_sum_loss.item()/fake_nums.item(), fake_nums.item()) # origin_local_sum_loss = torch.tensor([len(origin_target)*origin_loss.item()], dtype=torch.float32).cuda() # dist.all_reduce(origin_local_sum_loss.data, op=dist.ReduceOp.SUM) # origin_nums = torch.tensor([len(origin_target)], dtype=torch.int64).cuda() # dist.all_reduce(origin_nums.data, op=dist.ReduceOp.SUM) # if origin_nums.item() > 0: # origin_losses_m.update(origin_local_sum_loss.item()/origin_nums.item(), origin_nums.item()) num_updates += 1 batch_time_m.update(time.time() - end) if last_batch or batch_idx % args.log_interval == 0: lrl = [param_group['lr'] for param_group in optimizer.param_groups] lr = sum(lrl) / len(lrl) if args.global_rank == 0: _logger.info( 'Train: {} [{:>4d}/{} ({:>3.0f}%)] ' 'Loss: {loss.val:>9.6f} ({loss.avg:>6.4f}) ' 'Loss_Class: {loss_class.val:>7.4f} ({loss_class.avg:>6.4f}) ' 'Loss_Label: {loss_label.val:>7.4f} ({loss_label.avg:>6.4f}) ' 'Acc@label: {top1_label.val:>7.4f} ({top1_label.avg:>7.4f}) ' 'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s ' '({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' 'LR: {lr:.3e} ' 'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format( epoch, batch_idx, len(loader), 100. * batch_idx / last_idx, loss=losses_m, loss_class=losses_class_m, loss_label=losses_label_m, top1_label=top1_label_m, batch_time=batch_time_m, rate=input.size(0) * args.world_size / batch_time_m.val, rate_avg=input.size(0) * args.world_size / batch_time_m.avg, lr=lr, data_time=data_time_m)) if args.save_images and output_dir: torchvision.utils.save_image( input, os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), padding=0, normalize=True) if saver is not None and args.recovery_interval and ( last_batch or (batch_idx + 1) % args.recovery_interval == 0): saver.save_recovery(epoch, batch_idx=batch_idx) if lr_scheduler is not None: lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) end = time.time() # end for if hasattr(optimizer, 'sync_lookahead'): optimizer.sync_lookahead() if args.fake_separated_loss_log: return OrderedDict([('loss', losses_m.avg), ('fake_loss', fake_losses_m.avg), ('origin_loss', origin_losses_m.avg)]) else: return OrderedDict([('loss', losses_m.avg), ('loss_class', losses_class_m.avg), ('loss_label', losses_label_m.avg), ('top1_label', top1_label_m.avg)]) def validate(model, loader, loss_fn, label_loss_fn, args, amp_autocast=suppress, log_suffix=''): batch_time_m = AverageMeter() losses_class_m = AverageMeter() losses_label_m = AverageMeter() top1_m = AverageMeter() top5_m = AverageMeter() top1_label_m = AverageMeter() model.eval() end = time.time() last_idx = len(loader) - 1 with torch.no_grad(): for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_idx if not args.prefetcher: input = input.cuda() target = target.cuda() if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) target_label = (target < args.num_classes).to(dtype=torch.float32).unsqueeze(1) target_class = target # if args.global_rank == 0 and batch_idx == 0: # print(f"target:{target_class.shape}") # print(target_class) # print(f"target_label:{target_label.shape}") # print(target_label) with amp_autocast(): output, output_label = model(input) if isinstance(output, (tuple, list)): output = output[0] # augmentation reduction reduce_factor = args.tta if reduce_factor > 1: output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2) output_label = output_label.unfold(0, reduce_factor, reduce_factor).mean(dim=2) target_class = target_class[0:target.size(0):reduce_factor] target_label = target_label[0:target_label.size(0):reduce_factor] loss_class = loss_fn(output, target_class) loss_label = label_loss_fn(output_label, target_label) acc1, acc5 = accuracy(output, target_class, topk=(1, 5)) acc1_label = accuracy_label(output_label, target_label) if args.distributed: reduced_loss_class = reduce_tensor(loss_class.data, args.world_size) reduced_loss_label = reduce_tensor(loss_label.data, args.world_size) acc1 = reduce_tensor(acc1, args.world_size) acc5 = reduce_tensor(acc5, args.world_size) acc1_label = reduce_tensor(acc1_label, args.world_size) else: reduced_loss_class = loss_class.data reduced_loss_label = loss_label.data torch.cuda.synchronize() losses_class_m.update(reduced_loss_class.item(), input.size(0)) losses_label_m.update(reduced_loss_label.item(), input.size(0)) top1_m.update(acc1.item(), output.size(0)) top5_m.update(acc5.item(), output.size(0)) top1_label_m.update(acc1_label.item(), output.size(0)) batch_time_m.update(time.time() - end) end = time.time() if args.global_rank == 0 and (last_batch or batch_idx % args.log_interval == 0): log_name = 'Test' + log_suffix _logger.info( '{0}: [{1:>4d}/{2}] ' 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) ' 'Loss_Class: {loss_class.val:>7.4f} ({loss_class.avg:>6.4f}) ' 'Loss_Label: {loss_label.val:>7.4f} ({loss_label.avg:>6.4f}) ' 'Acc@1: {top1.val:>7.4f} ({top1.avg:>7.4f}) ' 'Acc@5: {top5.val:>7.4f} ({top5.avg:>7.4f}) ' 'Acc@label: {top1_label.val:>7.4f} ({top1_label.avg:>7.4f})'.format( log_name, batch_idx, last_idx, batch_time=batch_time_m, loss_class=losses_class_m, loss_label=losses_label_m, top1=top1_m, top5=top5_m, top1_label=top1_label_m)) metrics = OrderedDict([('loss_class', losses_class_m.avg), ('loss_label', losses_label_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg), ('top1_label', top1_label_m.avg)]) return metrics if __name__ == '__main__': main()
[ "torch.cuda.synchronize", "torch.nn.SyncBatchNorm.convert_sync_batchnorm", "torch.distributed.init_process_group", "torch.no_grad", "torch.nn.parallel.DistributedDataParallel", "torch.cuda.device_count", "torch.cuda.set_device", "torch.nn.BCEWithLogitsLoss", "torch.jit.script", "torch.nn.CrossEntropyLoss", "torch.sum" ]
1.4.0
Daweek/Edgar-pytorch-image-models
ca3398c64a8fb8b2e01f7057679440ff6a6c6672
1.0
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import warnings from dataclasses import dataclass from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union import torch from torch.nn.utils.rnn import pad_sequence from ..tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTrainedTokenizerBase InputDataClass = NewType("InputDataClass", Any) """ A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary of Tensors. """ DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, torch.Tensor]]) def default_data_collator(features: List[InputDataClass]) -> Dict[str, torch.Tensor]: """ Very simple data collator that simply collates batches of dict-like objects and performs special handling for potential keys named: - ``label``: handles a single value (int or float) per object - ``label_ids``: handles a list of values per object Does not do any additional preprocessing: property names of the input object will be used as corresponding inputs to the model. See glue and ner for example of how it's useful. """ # In this function we'll make the assumption that all `features` in the batch # have the same attributes. # So we will look at the first element as a proxy for what attributes exist # on the whole batch. if not isinstance(features[0], (dict, BatchEncoding)): features = [vars(f) for f in features] first = features[0] batch = {} # Special handling for labels. # Ensure that tensor is created with the correct type # (it should be automatically the case, but let's make sure of it.) if "label" in first and first["label"] is not None: label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"] dtype = torch.long if isinstance(label, int) else torch.float batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype) elif "label_ids" in first and first["label_ids"] is not None: if isinstance(first["label_ids"], torch.Tensor): batch["labels"] = torch.stack([f["label_ids"] for f in features]) else: dtype = torch.long if type(first["label_ids"][0]) is int else torch.float batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype) # Handling of all other possible keys. # Again, we will use the first element to figure out which key/values are not None for this model. for k, v in first.items(): if k not in ("label", "label_ids") and v is not None and not isinstance(v, str): if isinstance(v, torch.Tensor): batch[k] = torch.stack([f[k] for f in features]) else: batch[k] = torch.tensor([f[k] for f in features]) return batch @dataclass class DataCollatorWithPadding: """ Data collator that will dynamically pad the inputs received. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: batch = self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) if "label" in batch: batch["labels"] = batch["label"] del batch["label"] if "label_ids" in batch: batch["labels"] = batch["label_ids"] del batch["label_ids"] return batch @dataclass class DataCollatorForTokenClassification: """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). label_pad_token_id (:obj:`int`, `optional`, defaults to -100): The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 def __call__(self, features): label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None batch = self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, # Conversion to tensors will fail if we have labels as they are not of the same length yet. return_tensors="pt" if labels is None else None, ) if labels is None: return batch sequence_length = torch.tensor(batch["input_ids"]).shape[1] padding_side = self.tokenizer.padding_side if padding_side == "right": batch["labels"] = [label + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels] else: batch["labels"] = [[self.label_pad_token_id] * (sequence_length - len(label)) + label for label in labels] batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()} return batch def _collate_batch(examples, tokenizer): """Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.""" # Tensorize if necessary. if isinstance(examples[0], (list, tuple)): examples = [torch.tensor(e, dtype=torch.long) for e in examples] # Check if padding is necessary. length_of_first = examples[0].size(0) are_tensors_same_length = all(x.size(0) == length_of_first for x in examples) if are_tensors_same_length: return torch.stack(examples, dim=0) # If yes, check if we have a `pad_token`. if tokenizer._pad_token is None: raise ValueError( "You are attempting to pad samples but the tokenizer you are using" f" ({tokenizer.__class__.__name__}) does not have a pad token." ) # Creating the full tensor and filling it with our data. max_length = max(x.size(0) for x in examples) result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id) for i, example in enumerate(examples): if tokenizer.padding_side == "right": result[i, : example.shape[0]] = example else: result[i, -example.shape[0] :] = example return result def tolist(x: Union[List[Any], torch.Tensor]): return x.tolist() if isinstance(x, torch.Tensor) else x @dataclass class DataCollatorForSeq2Seq: """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence is provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). label_pad_token_id (:obj:`int`, `optional`, defaults to -100): The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions). """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 def __call__(self, features): labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the # same length to return tensors. if labels is not None: max_label_length = max(len(l) for l in labels) padding_side = self.tokenizer.padding_side for feature in features: remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"])) feature["labels"] = ( feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"] ) return self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) @dataclass class DataCollatorForLanguageModeling: """ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they are not all of the same length. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. mlm (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to use masked language modeling. If set to :obj:`False`, the labels are the same as the inputs with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for non-masked tokens and the value to predict for the masked token. mlm_probability (:obj:`float`, `optional`, defaults to 0.15): The probability with which to (randomly) mask tokens in the input, when :obj:`mlm` is set to :obj:`True`. .. note:: For best performance, this data collator should be used with a dataset having items that are dictionaries or BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the argument :obj:`return_special_tokens_mask=True`. """ tokenizer: PreTrainedTokenizerBase mlm: bool = True mlm_probability: float = 0.15 def __post_init__(self): if self.mlm and self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. " "You should pass `mlm=False` to train on causal language modeling instead." ) def __call__( self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # Handle dict or lists with proper padding and conversion to tensor. if isinstance(examples[0], (dict, BatchEncoding)): batch = self.tokenizer.pad(examples, return_tensors="pt") else: batch = {"input_ids": _collate_batch(examples, self.tokenizer)} # If special token mask has been preprocessed, pop it from the dict. special_tokens_mask = batch.pop("special_tokens_mask", None) if self.mlm: batch["input_ids"], batch["labels"] = self.mask_tokens( batch["input_ids"], special_tokens_mask=special_tokens_mask ) else: labels = batch["input_ids"].clone() if self.tokenizer.pad_token_id is not None: labels[labels == self.tokenizer.pad_token_id] = -100 batch["labels"] = labels return batch def mask_tokens( self, inputs: torch.Tensor, special_tokens_mask: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ labels = inputs.clone() # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) probability_matrix = torch.full(labels.shape, self.mlm_probability) if special_tokens_mask is None: special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool) else: special_tokens_mask = special_tokens_mask.bool() probability_matrix.masked_fill_(special_tokens_mask, value=0.0) masked_indices = torch.bernoulli(probability_matrix).bool() labels[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) inputs[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels @dataclass class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling): """ Data collator used for language modeling. - collates batches of tensors, honoring their tokenizer's pad_token - preprocesses batches for masked language modeling """ def __call__( self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]] ) -> Dict[str, torch.Tensor]: if isinstance(examples[0], (dict, BatchEncoding)): input_ids = [e["input_ids"] for e in examples] else: input_ids = examples examples = [{"input_ids": e} for e in examples] batch_input = _collate_batch(input_ids, self.tokenizer) mask_labels = [] for e in examples: ref_tokens = [] for id in tolist(e["input_ids"]): token = self.tokenizer._convert_id_to_token(id) ref_tokens.append(token) # For Chinese tokens, we need extra inf to mark sub-word, e.g [喜,欢]-> [喜,##欢] if "chinese_ref" in e: ref_pos = tolist(e["chinese_ref"]) len_seq = e["input_ids"].size(0) for i in range(len_seq): if i in ref_pos: ref_tokens[i] = "##" + ref_tokens[i] mask_labels.append(self._whole_word_mask(ref_tokens)) batch_mask = _collate_batch(mask_labels, self.tokenizer) inputs, labels = self.mask_tokens(batch_input, batch_mask) return {"input_ids": inputs, "labels": labels} def _whole_word_mask(self, input_tokens: List[str], max_predictions=512): """ Get 0/1 labels for masked tokens with whole word mask proxy """ cand_indexes = [] for (i, token) in enumerate(input_tokens): if token == "[CLS]" or token == "[SEP]": continue if len(cand_indexes) >= 1 and token.startswith("##"): cand_indexes[-1].append(i) else: cand_indexes.append([i]) random.shuffle(cand_indexes) num_to_predict = min(max_predictions, max(1, int(round(len(input_tokens) * self.mlm_probability)))) masked_lms = [] covered_indexes = set() for index_set in cand_indexes: if len(masked_lms) >= num_to_predict: break # If adding a whole-word mask would exceed the maximum number of # predictions, then just skip this candidate. if len(masked_lms) + len(index_set) > num_to_predict: continue is_any_index_covered = False for index in index_set: if index in covered_indexes: is_any_index_covered = True break if is_any_index_covered: continue for index in index_set: covered_indexes.add(index) masked_lms.append(index) assert len(covered_indexes) == len(masked_lms) mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))] return mask_labels def mask_tokens(self, inputs: torch.Tensor, mask_labels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set 'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref. """ if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer." ) labels = inputs.clone() # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) probability_matrix = mask_labels special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) if self.tokenizer._pad_token is not None: padding_mask = labels.eq(self.tokenizer.pad_token_id) probability_matrix.masked_fill_(padding_mask, value=0.0) masked_indices = probability_matrix.bool() labels[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) inputs[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels @dataclass class DataCollatorForSOP(DataCollatorForLanguageModeling): """ Data collator used for sentence order prediction task. - collates batches of tensors, honoring their tokenizer's pad_token - preprocesses batches for both masked language modeling and sentence order prediction """ def __init__(self, *args, **kwargs): warnings.warn( "DataCollatorForSOP is deprecated and will be removed in a future version, you can now use " "DataCollatorForLanguageModeling instead.", FutureWarning, ) def __call__(self, examples: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]: input_ids = [example["input_ids"] for example in examples] input_ids = _collate_batch(input_ids, self.tokenizer) input_ids, labels, attention_mask = self.mask_tokens(input_ids) token_type_ids = [example["token_type_ids"] for example in examples] # size of segment_ids varied because randomness, padding zero to the end as the original implementation token_type_ids = pad_sequence(token_type_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) sop_label_list = [example["sentence_order_label"] for example in examples] sentence_order_label = torch.stack(sop_label_list) return { "input_ids": input_ids, "labels": labels, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "sentence_order_label": sentence_order_label, } def mask_tokens(self, inputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10% original. N-gram not applied yet. """ if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer." ) labels = inputs.clone() # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) probability_matrix = torch.full(labels.shape, self.mlm_probability) special_tokens_mask = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0) if self.tokenizer._pad_token is not None: padding_mask = labels.eq(self.tokenizer.pad_token_id) probability_matrix.masked_fill_(padding_mask, value=0.0) masked_indices = torch.bernoulli(probability_matrix).bool() # probability be `1` (masked), however in albert model attention mask `0` means masked, revert the value attention_mask = (~masked_indices).float() if self.tokenizer._pad_token is not None: attention_padding_mask = labels.eq(self.tokenizer.pad_token_id) attention_mask.masked_fill_(attention_padding_mask, value=1.0) labels[~masked_indices] = -100 # We only compute loss on masked tokens, -100 is default for CE compute # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long) inputs[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels, attention_mask @dataclass class DataCollatorForPermutationLanguageModeling: """ Data collator used for permutation language modeling. - collates batches of tensors, honoring their tokenizer's pad_token - preprocesses batches for permutation language modeling with procedures specific to XLNet """ tokenizer: PreTrainedTokenizerBase plm_probability: float = 1 / 6 max_span_length: int = 5 # maximum length of a span of masked tokens def __call__( self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]] ) -> Dict[str, torch.Tensor]: if isinstance(examples[0], (dict, BatchEncoding)): examples = [e["input_ids"] for e in examples] batch = _collate_batch(examples, self.tokenizer) inputs, perm_mask, target_mapping, labels = self.mask_tokens(batch) return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels} def mask_tokens(self, inputs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ The masked tokens to be predicted for a particular sequence are determined by the following algorithm: 0. Start from the beginning of the sequence by setting ``cur_len = 0`` (number of tokens processed so far). 1. Sample a ``span_length`` from the interval ``[1, max_span_length]`` (length of span of tokens to be masked) 2. Reserve a context of length ``context_length = span_length / plm_probability`` to surround span to be masked 3. Sample a starting point ``start_index`` from the interval ``[cur_len, cur_len + context_length - span_length]`` and mask tokens ``start_index:start_index + span_length`` 4. Set ``cur_len = cur_len + context_length``. If ``cur_len < max_len`` (i.e. there are tokens remaining in the sequence to be processed), repeat from Step 1. """ if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for permutation language modeling. Please add a mask token if you want to use this tokenizer." ) if inputs.size(1) % 2 != 0: raise ValueError( "This collator requires that sequence lengths be even to create a leakage-free perm_mask. Please see relevant comments in source code for details." ) labels = inputs.clone() # Creating the mask and target_mapping tensors masked_indices = torch.full(labels.shape, 0, dtype=torch.bool) target_mapping = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32) for i in range(labels.size(0)): # Start from the beginning of the sequence by setting `cur_len = 0` (number of tokens processed so far). cur_len = 0 max_len = labels.size(1) while cur_len < max_len: # Sample a `span_length` from the interval `[1, max_span_length]` (length of span of tokens to be masked) span_length = torch.randint(1, self.max_span_length + 1, (1,)).item() # Reserve a context of length `context_length = span_length / plm_probability` to surround the span to be masked context_length = int(span_length / self.plm_probability) # Sample a starting point `start_index` from the interval `[cur_len, cur_len + context_length - span_length]` and mask tokens `start_index:start_index + span_length` start_index = cur_len + torch.randint(context_length - span_length + 1, (1,)).item() masked_indices[i, start_index : start_index + span_length] = 1 # Set `cur_len = cur_len + context_length` cur_len += context_length # Since we're replacing non-masked tokens with -100 in the labels tensor instead of skipping them altogether, # the i-th predict corresponds to the i-th token. target_mapping[i] = torch.eye(labels.size(1)) special_tokens_mask = torch.tensor( [self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()], dtype=torch.bool, ) masked_indices.masked_fill_(special_tokens_mask, value=0.0) if self.tokenizer._pad_token is not None: padding_mask = labels.eq(self.tokenizer.pad_token_id) masked_indices.masked_fill_(padding_mask, value=0.0) # Mask indicating non-functional tokens, where functional tokens are [SEP], [CLS], padding, etc. non_func_mask = ~(padding_mask | special_tokens_mask) inputs[masked_indices] = self.tokenizer.mask_token_id labels[~masked_indices] = -100 # We only compute loss on masked tokens perm_mask = torch.zeros((labels.size(0), labels.size(1), labels.size(1)), dtype=torch.float32) for i in range(labels.size(0)): # Generate permutation indices i.e. sample a random factorisation order for the sequence. This will # determine which tokens a given token can attend to (encoded in `perm_mask`). # Note: Length of token sequence being permuted has to be less than or equal to reused sequence length # (see documentation for `mems`), otherwise information may leak through due to reuse. In this implementation, # we assume that reused length is half of sequence length and permutation length is equal to reused length. # This requires that the sequence length be even. # Create a linear factorisation order perm_index = torch.arange(labels.size(1)) # Split this into two halves, assuming that half the sequence is reused each time perm_index = perm_index.reshape((-1, labels.size(1) // 2)).transpose(0, 1) # Permute the two halves such that they do not cross over perm_index = perm_index[torch.randperm(labels.size(1) // 2)] # Flatten this out into the desired permuted factorisation order perm_index = torch.flatten(perm_index.transpose(0, 1)) # Set the permutation indices of non-masked (non-functional) tokens to the # smallest index (-1) so that: # (1) They can be seen by all other positions # (2) They cannot see masked positions, so there won't be information leak perm_index.masked_fill_(~masked_indices[i] & non_func_mask[i], -1) # The logic for whether the i-th token can attend on the j-th token based on the factorisation order: # 0 (can attend): If perm_index[i] > perm_index[j] or j is neither masked nor a functional token # 1 (cannot attend): If perm_index[i] <= perm_index[j] and j is either masked or a functional token perm_mask[i] = ( perm_index.reshape((labels.size(1), 1)) <= perm_index.reshape((1, labels.size(1))) ) & masked_indices[i] return inputs.long(), perm_mask, target_mapping, labels.long()
[ "torch.stack", "torch.nn.utils.rnn.pad_sequence", "torch.randint", "torch.full", "torch.tensor", "torch.bernoulli" ]
1.0
suakow/transformers
0ec3619bb2c212737d2472cccaf6658317d2bfa1
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for named entity recognition on CoNLL-2003. """ import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score from torch import nn import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) task_type: Optional[str] = field( default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) labels: Optional[str] = field( default=None, metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, ) max_seq_length: int = field( default=128, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) module = import_module("tasks") try: token_classification_task_clazz = getattr(module, model_args.task_type) token_classification_task: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Prepare CONLL-2003 task labels = token_classification_task.get_labels(data_args.labels) label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)} num_labels = len(labels) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, id2label=label_map, label2id={label: i for i, label in enumerate(labels)}, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) model = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets train_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) eval_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: preds = np.argmax(predictions, axis=2) batch_size, seq_len = preds.shape out_label_list = [[] for _ in range(batch_size)] preds_list = [[] for _ in range(batch_size)] for i in range(batch_size): for j in range(seq_len): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def compute_metrics(p: EvalPrediction) -> Dict: preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) return { "accuracy_score": accuracy_score(out_label_list, preds_list), "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) # Predict if training_args.do_predict: test_dataset = TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) predictions, label_ids, metrics = trainer.predict(test_dataset) preds_list, _ = align_predictions(predictions, label_ids) output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") if trainer.is_world_process_zero(): with open(output_test_results_file, "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) # Save predictions output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") if trainer.is_world_process_zero(): with open(output_test_predictions_file, "w") as writer: with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: token_classification_task.write_predictions_to_file(writer, f, preds_list) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
[ "torch.nn.CrossEntropyLoss" ]
1.0
suakow/transformers
0ec3619bb2c212737d2472cccaf6658317d2bfa1
1.7
import os import sys sys.path.append(os.path.abspath(".") + "/../") sys.path.append(os.path.abspath(".")) import clip import torch import json from PIL import Image # Load the model device = "cuda" if torch.cuda.is_available() else "cpu" #model, preprocess = clip.load('ViT-B/32', device) # 华为云项目 model, preprocess = clip.load('/home/featurize/work/CLIP/save/CLIP-concept-finetune.ckpt', device, jit=False) #model, preprocess = clip.load('/home/featurize/work/CLIP/save/checkpoints_new/CLIP-concept-finetune_train_20.ckpt', device, jit=False) #model, preprocess = clip.load('/home/featurize/work/CLIP/save/contrastive_learning_checkpoints/CLIP-concept-finetune_clustering_modified_classified_0_8_xueyao_finetune.ckpt', device, jit=False) def load_zh_en_concepts(infilename): concept_dict = {} with open(infilename, "r", encoding = "utf-8") as infile: for line in infile: line_list = line.strip("\n").split("\t") if len(line_list) >= 2: concept_dict[line_list[0]] = line_list[1] return concept_dict def load_concept_image_pair(infilename): image_conept_pair = {} with open(infilename, "r", encoding = "utf-8") as infile: line = infile.readline() concept_dict = json.loads(line.strip()) for key, value_list in concept_dict.items(): for value in value_list: if str(value) not in image_conept_pair: image_conept_pair[str(value)] = key return image_conept_pair def load_common_concepts(infilename): concept_dict = {} with open(infilename, "r", encoding = "utf-8") as infile: for line in infile: line = line.strip("\n") if line not in concept_dict: concept_dict[line] = None return concept_dict def main(): topK = 50 concepts_dict = load_zh_en_concepts("validates/zh_en_concepts.txt") concepts_list = concepts_dict.keys() image_concept_pair = load_concept_image_pair("validates/concept_image.json") #for image, concept in image_concept_pair.items(): # print (image, concept) #validate_en_concepts_dict = load_common_concepts("validate_concepts.txt") validate_en_concepts_dict = load_common_concepts("human_validate_concepts.txt") pos_label_count = 0 neg_label_count = 0 for key, value in image_concept_pair.items(): #print (key, value) image_fielpath_jpg = "validates/images/" + key + ".jpg" image_fielpath_png = "validates/images/" + key + ".png" if os.path.isfile(image_fielpath_jpg): image_filepath = image_fielpath_jpg elif os.path.isfile(image_fielpath_png): image_filepath = image_fielpath_png else: print ("Path not exist.") continue concept = value #print (image_filepath, concept) image = Image.open(image_filepath) image_input = preprocess(image).unsqueeze(0).to(device) # assure the concept in validate datasets if concepts_dict[concept] not in validate_en_concepts_dict: print ("concept %s-%s not in validate concept dataset" % (concept, concepts_dict[concept])) continue # Prepare the inputs candidate_concept = [concepts_dict[concept]] + [concepts_dict[ele] for ele in concepts_list if ele != concept] #print (candidate_concept[0:topK]) text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in candidate_concept]).to(device) # Calculate features with torch.no_grad(): image_features = model.encode_image(image_input) text_features = model.encode_text(text_inputs) # Pick the top 5 most similar labels for the image image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) values, indices = similarity[0].topk(topK) #values, indices = similarity[0].topk(50) longest_index = 0 ratio = values[0]/20.0 gap_flag = False for index in range(len(values)): if values[index] < ratio: longest_index = index gap_flag = True break if gap_flag == False: longest_index = -1 values, indices = values[:longest_index], indices[:longest_index] #print (values, indices) # Print the result #print("\nTop predictions:\n") #for value, index in zip(values, indices): # print(f"{candidate_concept[index]:>16s}: {100 * value.item():.2f}%") print ("ground: image_path=%s, concept=%s" % (image_filepath, concepts_dict[concept])) #print (indices) print ("predict: concept=%s" % candidate_concept[indices[0]]) result_concept_set = set() for index in indices: result_concept_set.add(candidate_concept[index]) if concepts_dict[concept] in result_concept_set: #print ("yes") pos_label_count += 1 else: #print ("no") neg_label_count += 1 print ("pos_label_count=", pos_label_count) print ("neg_label_count=", neg_label_count) total_label_count = pos_label_count + neg_label_count acc = pos_label_count / total_label_count print ("acc=", acc) if __name__ == '__main__': main()
[ "torch.no_grad", "torch.cuda.is_available" ]
1.7.1
zhuxiangru/CLIP-finetune-v1
48bbe2c203667d94bcc82ea3fcdd2acec7ada8ab
0.4
import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler ############################################################################### # Helper Functions ############################################################################### def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.niter> epochs and linearly decay the rate to zero over the next <opt.niter_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) # apply the initialization function <init_func> def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) elif netG == 'unet_128': net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'unet_256': net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you cna specify the number of conv layers in the discriminator with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % net) return init_net(net, init_type, init_gain, gpu_ids) ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) alpha = alpha.to(device) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer user_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.InstanceNorm2d else: use_bias = norm_layer != nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input)
[ "torch.optim.lr_scheduler.StepLR", "torch.optim.lr_scheduler.CosineAnnealingLR", "torch.nn.LeakyReLU", "torch.nn.init.kaiming_normal_", "torch.cuda.is_available", "torch.nn.BCEWithLogitsLoss", "torch.nn.DataParallel", "torch.nn.init.constant_", "torch.nn.ConvTranspose2d", "torch.nn.init.normal_", "torch.tensor", "torch.nn.ReflectionPad2d", "torch.nn.init.orthogonal_", "torch.nn.init.xavier_normal_", "torch.nn.ReplicationPad2d", "torch.nn.Sequential", "torch.nn.Tanh", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.rand", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.optim.lr_scheduler.LambdaLR" ]
0.4.1
spongezhang/pytorch-CycleGAN-and-pix2pix
01875b21d537512c304f37fb0eb65fea7f57f4ba
1.9
import os import torch import numpy as np import math import scipy from htvlearn.lattice import Lattice from htvlearn.delaunay import Delaunay from htvlearn.grid import Grid class Hex(): """Hexagonal lattice vectors""" v1 = Lattice.hexagonal_matrix[:, 0].numpy() v2 = Lattice.hexagonal_matrix[:, 1].numpy() class BoxSpline(): """Three-directional hexagonal box spline""" center_points = np.array([0., 0.]) border_points = np.array([Hex.v1, Hex.v2, -Hex.v1 + Hex.v2, -Hex.v1, -Hex.v2, -Hex.v2 + Hex.v1]) points = np.vstack((center_points, border_points, 2 * border_points)) values = np.array([math.sqrt(3) / 2, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) htv = 12 class SimplicialSpline(): """Simplicial spline with randomly positioned vertices""" np.random.seed(3) center_points = np.array([0., 0.]) + np.random.uniform(-0.2, 0.2, (2, )) border_points = np.array([Hex.v1, Hex.v2, -Hex.v1 + Hex.v2, -Hex.v1, -Hex.v2, -Hex.v2 + Hex.v1]) + \ np.random.uniform(-0.2, 0.2, (6, 2)) points = np.vstack((center_points, border_points, 2 * border_points)) values = np.array([math.sqrt(3) / 2, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) class CutPyramid(): """Pyramid with flat top""" points = np.vstack((BoxSpline.center_points, BoxSpline.border_points, 2 * BoxSpline.border_points, 3 * BoxSpline.border_points)) values = np.array([1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ]) htv = 16 * math.sqrt(3) class SimpleJunction(): """A simple two-polytope junction""" points = np.array([[0., 0.], [1., 0.], [0., 1.], [1., 1.], [0., 3. / 4], [1., 1. / 4]]) values = np.array([0., 2. / 3, 2. / 3, 0., 1., 1.]) # gradients of each polytope a1_affine_coeff = np.array([2. / 3, 4. / 3., 0.]) a2_affine_coeff = np.array([-2. / 3, -4. / 3., 2.]) htv = 10. / 3 def init_distorted_grid(size_=(3, 3), range_=(-1, 1)): """ Initialize a distorted grid. Args: size (2-tuple): grid size. range (2-tuple): range of points in each dimension before distortion. Returns: points (np.array): distorted grid points. size: (size_[0]*size_[1]) x 2. """ assert isinstance(size_, tuple) assert len(size_) == 2 # initialize undistorted grid points (u, v) vec1 = np.linspace(*range_, size_[0]) * 1. vec2 = np.linspace(*range_, size_[1]) * 1. u, v = np.meshgrid(vec1, vec2) u = u.flatten() v = v.flatten() # add noise to the interior vertices of the grid mask = np.ma.mask_or(np.abs(u) == u.max(), np.abs(v) == v.max()) points = np.hstack((u[:, np.newaxis], v[:, np.newaxis])).copy() # the noise is scaled according to the grid spacing noise = (np.random.rand(*points.shape) - 0.5) * (u[1] - u[0]) # don't add noise to boundary vertices points[~mask] = points[~mask] + noise[~mask] return points class DistortedGrid: """Dataset with random values in a distorted random grid""" points = init_distorted_grid(size_=(3, 3)) values = (np.random.rand(points.shape[0], ) - 0.5) class Data(): """Data class for algorithms""" def __init__(self, data_from_ckpt=None, dataset_name=None, num_train=None, data_dir='./data', valid_fraction=0.2, test_as_valid=False, non_uniform=False, noise_ratio=0., seed=-1, verbose=False, **kwargs): """ Args: data_from_ckpt (dict): dictionary with 'train', 'valid' and 'test' data loaded from a checkpoint. dataset_name (str) num_train (int): number of training+valid samples. The effective number of training samples is a multiple of 1000. Further, if the dataset has gaps the data inside the gaps will also removed. data_dir (int): data directory (for face dataset) valid_fraction (float [0,1]): fraction of num_train samples that is used for validation test_as_valid (bool): if True, use test set in validation. non_uniform (bool): if True, perform non-uniform data sampling (face dataset only). noise_ratio (float >= 0): noise that should be applied to the samples as a fraction of the data range. seed (int): seed for random generation. If negative, no seed is set. verbose (bool): print more info. """ self.data_from_ckpt = data_from_ckpt self.dataset_name = dataset_name self.num_train = num_train if self.data_from_ckpt is None: assert self.dataset_name is not None if not self.dataset_name.startswith('pyramid'): assert self.num_train is not None self.data_dir = data_dir self.valid_fraction = valid_fraction self.test_as_valid = test_as_valid self.non_uniform = non_uniform self.noise_ratio = noise_ratio self.seed = seed self.verbose = verbose # if not overwritten, computed in add_noise_to_values() # from self.noise_ratio and dataset height range self.noise_std = None if self.seed >= 0: # set seed torch.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) np.random.seed(self.seed) self.train, self.valid, self.test = {}, {}, {} self.delaunay = {} # points and values for delaunay triangulation if self.data_from_ckpt is not None: # load data from self.data_from_ckpt assert 'train' in self.data_from_ckpt assert 'valid' in self.data_from_ckpt self.train = self.data_from_ckpt['train'] self.valid = self.data_from_ckpt['valid'] if 'delaunay' in self.data_from_ckpt: assert 'points' in self.data_from_ckpt['delaunay'] assert 'values' in self.data_from_ckpt['delaunay'] self.delaunay['points'] = \ self.data_from_ckpt['delaunay']['points'] self.delaunay['values'] = \ self.data_from_ckpt['delaunay']['values'] self.init_data() def init_data(self): """Initialize cpwl dataset, and train/test/valid sets""" if not bool(self.delaunay): if self.dataset_name.startswith('pyramid'): self.delaunay['points'], self.delaunay['values'] = \ self.init_pyramid() # training is made of all pyramid's points except apex self.train['input'] = \ torch.from_numpy(self.delaunay['points'][:-1]).clone() self.train['values'] = \ torch.from_numpy(self.delaunay['values'][:-1]).clone() # force validation set to be equal to test set self.test_as_valid = True elif self.dataset_name.endswith('planes'): self.delaunay['points'], self.delaunay['values'] = \ self.init_planes() elif 'face' in self.dataset_name: self.delaunay['points'], self.delaunay['values'] = \ self.init_face(self.data_dir, cut=True if 'cut' in self.dataset_name else False) self.cpwl = Delaunay(points=self.delaunay['points'], values=self.delaunay['values']) if not self.cpwl.has_rectangular_range: if self.dataset_name.endswith('planes'): h = (self.cpwl.tri.points[:, 0].max() - self.cpwl.tri.points[:, 0].min()) / 400 self.test['input'] = \ Grid(x1_min=self.cpwl.tri.points[:, 0].min(), x1_max=self.cpwl.tri.points[:, 0].max(), x2_min=self.cpwl.tri.points[:, 1].min(), x2_max=self.cpwl.tri.points[:, 1].max(), h=h, to_numpy=False, to_float32=True).x # discard samples outside convex set idx = self.cpwl.tri.find_simplex(self.test['input']) self.test['input'] = self.test['input'][idx >= 0] else: # generate uniformly distributed samples in cpwl convex set # the final number of test samples will be smaller because # samples outside lattice are discarded nb_samples = 160000 # 400*400 self.test['input'] = \ self.generate_random_samples(nb_samples) else: # test set is sampled on a grid inside the convex hull of cpwl # this gives a test grid 500 x 500 samples self.test['input'] = self.cpwl.get_grid(h=0.0025, to_numpy=False, to_float32=True).x self.test['values'] = self.cpwl.evaluate(self.test['input']) print(f'\nnb. of test data points : {self.test["input"].size(0)}') if (not bool(self.valid)) and (self.test_as_valid is True): self.valid['input'] = self.test['input'].clone() self.valid['values'] = self.test['values'].clone() if not bool(self.train): num_train_valid_samples = int(self.num_train) if self.dataset_name.endswith('planes'): # generate grid in lattice reference x_lat = torch.empty((num_train_valid_samples, 2)) x_lat.uniform_(-0.5, 0.5) # convert to standard coordinates x = (Lattice.hexagonal_matrix @ x_lat.t()).t() elif self.non_uniform is True: hull_points = \ self.cpwl.tri.points[self.cpwl.convex_hull_points_idx] # compute largest distance max_dist = np.amax(np.sqrt(np.sum(hull_points ** 2, axis=1))) # radius r = (torch.empty((num_train_valid_samples, 1)) .uniform_(0., max_dist * 0.8)) # angle theta = (torch.empty((num_train_valid_samples, 1)) .uniform_(0., 2 * np.pi)) # points x = torch.cat((r * theta.cos(), r * theta.sin()), dim=1) # Only keep points inside cpwl convex hull x_simplices_idx = self.cpwl.tri.find_simplex(x) x = x[x_simplices_idx >= 0] else: # generate num_train_valid_samples uniformly distributed # in cpwl convex set x = self.generate_random_samples(num_train_valid_samples) # training / validation split indices if not self.test_as_valid: split_idx = int((1 - self.valid_fraction) * x.size(0)) else: # full training set, validation set = test set split_idx = x.size(0) self.train['input'] = x[0:split_idx] self.train['values'] = self.cpwl.evaluate(self.train['input']) if self.dataset_name.endswith('gaps'): # [(gap_x_min, gap_x_max)...] gap_x_range = [[0.108, 0.234], [-0.07, 0.226], [-0.234, -0.108]] # [(gap_y_min, gap_y_max)...] gap_y_range = [[-0.21, 0.07], [0.19, 0.311], [-0.21, 0.063]] # remove data inside gaps for i in range(len(gap_x_range)): gap_mask = ( (self.train['input'][:, 0] >= gap_x_range[i][0]) * (self.train['input'][:, 0] <= gap_x_range[i][1]) * (self.train['input'][:, 1] >= gap_y_range[i][0]) * (self.train['input'][:, 1] <= gap_y_range[i][1])) self.train['input'] = self.train['input'][~gap_mask] self.train['values'] = self.train['values'][~gap_mask] if not np.allclose(self.noise_ratio, 0.): # add noise to training data self.train['values'] = \ self.add_noise_to_values(self.train['values']) if self.train['input'].size(0) >= 3000: # effective number of samples (rounded to 1000) num = int(np.floor(self.train['input'].size(0) / 1000.) * 1000) idx = torch.randperm(self.train['input'].size(0))[:num] self.train['input'] = self.train['input'][idx] self.train['values'] = self.train['values'][idx] print('nb. of training data points : ' f'{self.train["input"].size(0)}') if not bool(self.valid): self.valid['input'] = x[(split_idx + 1)::] self.valid['values'] = \ self.cpwl.evaluate(self.valid['input']) @staticmethod def add_lattice_vertices(points, values, eps=0.): """Add lattice vertices (up to eps distance away) Args: points (torch.Tensor or np.ndarray): size (m, 2) values (torch.Tensor or np.ndarray): size (m,) eps (float): buffer distance from boundaries of lattice. """ nparray = False if isinstance(points, np.ndarray): nparray = True # convert to torch points = torch.from_numpy(points) values = torch.from_numpy(values) # add lattice corners br = Lattice.bottom_right_std ur = Lattice.upper_right_std a, b = eps * np.sqrt(3) / 2., eps * .5 lat_points = \ torch.tensor([[-ur[0] + a, -ur[1] + b], [br[0] - b, br[1] + a], [-br[0] + b, -br[1] - a], [ur[0] - a, ur[1] - b]]) points = torch.cat((points, lat_points), dim=0) values = torch.cat((values, torch.zeros(4))) if nparray is True: # convert to numpy points = points.numpy() values = values.numpy() return points, values def generate_random_samples(self, num_samples): """ Generate uniformly distributed data inside convex set. Works by generating num_samples points and then rejecting the ones outside the convex set. Args: num_samples (int) (before possible rejection) Returns: x (torch.tensor) """ x = torch.empty((num_samples, 2)) x[:, 0].uniform_(self.cpwl.tri.points[:, 0].min(), self.cpwl.tri.points[:, 0].max()) x[:, 1].uniform_(self.cpwl.tri.points[:, 1].min(), self.cpwl.tri.points[:, 1].max()) # reject samples outside convex set idx = self.cpwl.tri.find_simplex(x) x = x[idx >= 0] return x def add_noise_to_values(self, values): """ Add gaussian noise to values. if self.noise_std exists, it is used as the noise standard deviation, otherwise noise_std is computed from self.noise_ratio and the data height range. Args: values (torch.tensor): values to add noise to. Returns the noisy values. """ noise_std = self.noise_std if noise_std is None: noise_std = self.noise_ratio * (values.max() - values.min()) if self.verbose: print('Adding noise of standard deviation ' 'sigma = {:.2E}'.format(noise_std)) noise = torch.empty_like(values).normal_(std=noise_std) return values + noise @staticmethod def init_pyramid(): """ Initialize the pyramid dataset. Returns: points (np.array): size (M, 2). values (np.array): size (M,) """ # points in lattice coordinates h = 0.1 points = torch.tensor([[2 * h, 0.], [0., 2 * h], [2 * h, -2 * h], [0., -2 * h], [-2 * h, 0.], [-2 * h, 2 * h], [h, 0.], [0., h], [h, -h], [0., -h], [-h, 0.], [-h, h], [0., 0.]]) # last element -> apex values = torch.tensor([.0, .0, .0, .0, .0, .0, .1, .1, .1, .1, .1, .1, .2]) # convert to standard coordinates points = (Lattice.hexagonal_matrix @ points.t()).t() return points.numpy(), values.numpy() @classmethod def init_zero_boundary_planes(cls): """ Initialize the planes dataset with zero boundaries. Returns: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) """ # fit planes function in the lattice pad = 0.08 x_min, _, x_max, _ = cls.get_data_boundaries(hw_ratio=0.01, pad=pad) _, y_min, _, y_max = cls.get_data_boundaries(hw_ratio=100, pad=pad) dx = (x_max - x_min) / 100 # delta x step dy = (y_max - y_min) / 100 # delta y step # control points with values - (x1, x2, val) vert = \ torch.tensor([[x_min + 30 * dx, y_min + 35 * dy, dx * 20], # 0 [x_max - 40 * dx, y_min + 30 * dy, dx * 20], # 1 [x_max - 35 * dx, y_max - 30 * dy, dx * 20], # 2 [x_min + 40 * dx, y_max - 30 * dy, dx * 20], # 3 [x_max - 25 * dx, y_min + 5 * dy, 0.], # 4 [x_min + 25 * dx, y_max - 5 * dy, 0.]]) # 5 # auxiliary triangulation of the function # size (num_simplices, vertices) simplices = torch.tensor([[0, 1, 3], [1, 2, 3], [4, 1, 0], [0, 3, 5], [4, 2, 1], [3, 2, 5]]) # check values of vertices so that there is a seamless plane junction x_v6 = cls.get_zero_loc(vert, simplices, 2, 3) x_v7 = cls.get_zero_loc(vert, simplices, 4, 5) br = Lattice.bottom_right_std ur = Lattice.upper_right_std # add x_v6, x_v7, and lattice corners new_vert = torch.tensor([[x_v6[0], x_v6[1], 0.], # 6 [x_v7[0], x_v7[1], 0.], # 7 [-ur[0], -ur[1], 0.], # 8 [br[0], br[1], 0.], # 9 [-br[0], -br[1], 0.], # 10 [ur[0], ur[1], 0.]]) # 11 vert = torch.cat((vert, new_vert), dim=0) points, values = vert[:, 0:2], vert[:, 2] return points, values @staticmethod def add_linear_func(points, values): """ Add a linear term to the dataset. Args: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) Returns: values (torch.tensor): size (M,). """ # add linear term to vertices a = torch.tensor([0.1, 0.05]) b = torch.tensor([-0.05]) values += (points * a.unsqueeze(0)).sum(1) + b return values def init_planes(self): """ Initialize the planes dataset. Set self.noise_std. Returns: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) """ # initialize planes dataset with zero boundaries points, values = self.init_zero_boundary_planes() # overwrite noise standard deviation self.noise_std = (self.noise_ratio * values.max()) # add linear function to dataset values = self.add_linear_func(points, values) # convert to numpy points, values = points.numpy(), values.numpy() return points, values @staticmethod def get_zero_loc(vert, simplices, idx1, idx2): """ Get zero locations of vertices for a seamless junction of the planes. Args: vert (np.array): size: (M, 3) (points in the first two columns, values in the third) simplices (np.array): indexes of vertices for each simplex (row). size: (P, 3). idx1, idx2 (int>=0): indices of simplices to join. Returns: x (torch.tensor): size (2,) """ # size (2, 3, 3) idx_vec = [idx1, idx2] simplices_vert = \ torch.cat(tuple(vert[simplices[i]].unsqueeze(0) for i in idx_vec), dim=0) plane_coeff = Lattice.solve_method(simplices_vert) affine_coeff = Lattice.get_affine_coeff_from_plane_coeff(plane_coeff) assert affine_coeff.size() == (2, 3) B = -affine_coeff[:, -1:] A = affine_coeff[:, 0:2] x = torch.linalg.solve(A, B) return x.squeeze(-1) @staticmethod def read_face(data_dir, cut_eps=0.6): """ Read the 3D face dataset and construct a function from it by cutting and eliminating duplicates. Args: cut_eps (float in [0,1]): what height to cut face relative to its maximum height. Returns: cleaned_vert (np.array): with vertices below cut_eps and duplicates removed and zero mean. size: (M, 3) (points in the first two columns, values in the third) """ obj_file = os.path.join(data_dir, 'obj_free_male_head.obj') V = [] with open(obj_file, "r") as file1: for line in file1.readlines(): f_list = [i for i in line.split(" ") if i.strip()] if len(f_list) == 0: continue if f_list[0] != 'v': continue V += [float(i) for i in f_list[1::]] # vertices vert = np.array(V).reshape(-1, 3) # sort vertices by z coordinates in descending direction sort_vert = vert[vert[:, 2].argsort()][::-1] # get unique_idx of first occurences (largest height) _, unique_dx = np.unique(sort_vert[:, 0:2], return_index=True, axis=0) unique_sort_vert = sort_vert[unique_dx] # eliminate vertices whose height is below cutoff min_height = unique_sort_vert[:, 2].min() max_height = unique_sort_vert[:, 2].max() cutoff_val = min_height + (max_height - min_height) * cut_eps cutoff_mask = np.where(unique_sort_vert[:, 2] > cutoff_val)[0] cleaned_vert = unique_sort_vert[cutoff_mask] cleaned_vert[:, 2] = cleaned_vert[:, 2] - \ cutoff_val # shift z.min() to z = 0 x_mean = cleaned_vert[:, 0].min() / 2. + cleaned_vert[:, 0].max() / 2. y_mean = cleaned_vert[:, 1].min() / 2. + cleaned_vert[:, 1].max() / 2. cleaned_vert[:, 0] = cleaned_vert[:, 0] - x_mean # shift x around 0 cleaned_vert[:, 1] = cleaned_vert[:, 1] - y_mean # shift t around 0 return cleaned_vert @classmethod def init_face(cls, data_dir, cut=False): """ Initialize the face dataset. Args: cut (bool): if True, use only a smaller section of the face. Otherwise, use full face with zero boundaries. Returns: points (torch.tensor): size (M, 2). values (torch.tensor): size (M,) """ vert = cls.read_face(data_dir) # normalize face to fit in [-0.8, 0.8]^2 square max_ = max(np.abs(vert[:, 0]).max(), np.abs(vert[:, 1]).max()) vert = vert / max_ * 0.8 if cut is True: # cut a smaller portion of the face cpwl_aux = Delaunay(points=vert[:, 0:2].copy(), values=vert[:, 2].copy()) x_min, x_max = -0.324, 0.324 y_min, y_max = -0.45, 0.419 mask = (vert[:, 0] > x_min) * (vert[:, 0] < x_max) * \ (vert[:, 1] > y_min) * (vert[:, 1] < y_max) vert = vert[mask] # add extreme points of the convex hull to vertices hull_points = np.array([[x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max]]) hull_values = cpwl_aux.evaluate(hull_points) new_vertices = np.concatenate( (hull_points, hull_values[:, np.newaxis]), axis=1) vert = np.concatenate((vert, new_vertices), axis=0) else: points = vert[:, 0:2] hull = scipy.spatial.ConvexHull(points) hull_points = points[hull.vertices] # add points along the convex hull for i in range(hull_points.shape[0]): frac = np.linspace(0.01, 0.99, num=99)[:, np.newaxis] next_vert = i + 1 if i != hull_points.shape[0] - 1 else 0 new_points = hull_points[next_vert][np.newaxis, :] * frac + \ hull_points[i][np.newaxis, :] * (1 - frac) if cut is True: # evaluate on convex hull of face new_values = cpwl_aux.evaluate(new_points) else: # add zeros around face (to its convex hull contour) new_values = np.zeros(new_points.shape[0]) new_vertices = np.concatenate( (new_points, new_values[:, np.newaxis]), axis=1) vert = np.concatenate((vert, new_vertices), axis=0) if cut is False: # create grid of points with zero value around face h = 0.01 x_r = vert[:, 0].max() * 10. / 8. y_r = vert[:, 1].max() * 9.5 / 8. fine_grid = Grid(x1_min=-x_r, x1_max=x_r + h, x2_min=-y_r, x2_max=y_r + h, h=h, to_float32=True).x # only retain points outside face convex hull aux_delaunay = scipy.spatial.Delaunay(points) fine_grid = fine_grid[aux_delaunay.find_simplex(fine_grid) < 0] # add zeros around face new_vertices = np.concatenate( (fine_grid, np.zeros((fine_grid.shape[0], 1))), axis=1) vert = np.concatenate((vert, new_vertices), axis=0) vert = cls.fit_in_lattice(vert) points, values = vert[:, 0:2], vert[:, 2] return points, values @classmethod def fit_in_lattice(cls, vert): """ Fit points in lattice. Args: vert (np.array): size: (M, 3) (points in the first two columns, values in the third) Returns: vert (np.array): scaled vertices that fit in lattice. """ # normalize face to fit in lattice hw_ratio = (vert[:, 1].max() - vert[:, 1].min()) / \ (vert[:, 0].max() - vert[:, 0].min()) _, _, x_max, y_max = cls.get_data_boundaries(hw_ratio=hw_ratio, pad=0.03) # recenter data x_mean = (vert[:, 0].max() + vert[:, 0].min()) / 2 y_mean = (vert[:, 1].max() + vert[:, 1].min()) / 2 vert[:, 0] = vert[:, 0] - x_mean vert[:, 1] = vert[:, 1] - y_mean # x,y scaling factors # vert[i,0] should be within (-x_max, x_max) # vert[i,1] should be within (-y_max, y_max) x_norm = x_max / vert[:, 0].max() y_norm = y_max / vert[:, 1].max() if x_norm < y_norm: vert = vert * x_norm else: vert = vert * y_norm return vert @staticmethod def get_data_boundaries(hw_ratio=math.sqrt(3), pad=0.1): """ Get the data boundaries that allow fitting the data in centered rectangular region of the lattice with a specified height/width ratio, so as to maximize occupied space within the interior lattice. Pad a given distance from the limits if pad > 0. Takes into account geometry of hexagonal lattice: if hw_ratio > math.sqrt(3), the data touches the upper and bottom interior border; otherwise, it touch the left and right borders. Args: hw_ratio (float>0): height/width ratio of rectangular region. pad (float>=0): distance to pad from the limits of the region. Returns: 4-tuple (x_min, x_max, y_min, y_max): data boundaries """ # requires that lattice is hexagonal and lsize*h = 1 (enforced) bottom_right_std = Lattice.bottom_right_std if hw_ratio > math.sqrt(3): # from geometry maximize space usage y_min = bottom_right_std[1] x_min = y_min * (1. / hw_ratio) else: a = (bottom_right_std[0] * 2) / (1 + hw_ratio * math.sqrt(3) / 3) x_min = -a y_min = x_min * hw_ratio x_min, y_min = x_min + pad, y_min + pad x_max, y_max = -x_min, -y_min return x_min.item(), y_min.item(), x_max.item(), y_max.item()
[ "torch.cat", "torch.manual_seed", "torch.tensor", "torch.empty", "torch.zeros", "torch.cuda.manual_seed_all", "torch.from_numpy", "torch.linalg.solve", "torch.empty_like" ]
1.9.0
joaquimcampos/HTV-Learn
dfc6c3b022ba010e18316d941af44d87c98cfa98
1.6
import torch import torch.nn.functional as F from rl_algorithms.common.abstract.learner import TensorTuple import rl_algorithms.common.helper_functions as common_utils from rl_algorithms.registry import LEARNERS from rl_algorithms.sac.learner import SACLearner @LEARNERS.register_module class BCSACLearner(SACLearner): """Learner for BCSAC Agent. Attributes: hyper_params (ConfigDict): hyper-parameters log_cfg (ConfigDict): configuration for saving log and checkpoint """ def update_model( self, experience: TensorTuple, demos: TensorTuple ) -> TensorTuple: # type: ignore """Train the model after each episode.""" self.update_step += 1 states, actions, rewards, next_states, dones = experience demo_states, demo_actions, _, _, _ = demos new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states) pred_actions, _, _, _, _ = self.actor(demo_states) # train alpha if self.hyper_params.auto_entropy_tuning: alpha_loss = ( -self.log_alpha * (log_prob + self.target_entropy).detach() ).mean() self.alpha_optim.zero_grad() alpha_loss.backward() self.alpha_optim.step() alpha = self.log_alpha.exp() else: alpha_loss = torch.zeros(1) alpha = self.hyper_params.w_entropy # Q function loss masks = 1 - dones states_actions = torch.cat((states, actions), dim=-1) q_1_pred = self.qf_1(states_actions) q_2_pred = self.qf_2(states_actions) v_target = self.vf_target(next_states) q_target = rewards + self.hyper_params.gamma * v_target * masks qf_1_loss = F.mse_loss(q_1_pred, q_target.detach()) qf_2_loss = F.mse_loss(q_2_pred, q_target.detach()) # V function loss states_actions = torch.cat((states, new_actions), dim=-1) v_pred = self.vf(states) q_pred = torch.min(self.qf_1(states_actions), self.qf_2(states_actions)) v_target = q_pred - alpha * log_prob vf_loss = F.mse_loss(v_pred, v_target.detach()) # update actor actor_loss = torch.zeros(1) n_qf_mask = 0 if self.update_step % self.hyper_params.policy_update_freq == 0: # bc loss qf_mask = torch.gt( self.qf_1(torch.cat((demo_states, demo_actions), dim=-1)), self.qf_1(torch.cat((demo_states, pred_actions), dim=-1)), ).to(self.device) qf_mask = qf_mask.float() n_qf_mask = int(qf_mask.sum().item()) if n_qf_mask == 0: bc_loss = torch.zeros(1, device=self.device) else: bc_loss = ( torch.mul(pred_actions, qf_mask) - torch.mul(demo_actions, qf_mask) ).pow(2).sum() / n_qf_mask # actor loss advantage = q_pred - v_pred.detach() actor_loss = (alpha * log_prob - advantage).mean() actor_loss = ( self.hyper_params.lambda1 * actor_loss + self.hyper_params.lambda2 * bc_loss ) # regularization mean_reg, std_reg = ( self.hyper_params.w_mean_reg * mu.pow(2).mean(), self.hyper_params.w_std_reg * std.pow(2).mean(), ) pre_activation_reg = self.hyper_params.w_pre_activation_reg * ( pre_tanh_value.pow(2).sum(dim=-1).mean() ) actor_reg = mean_reg + std_reg + pre_activation_reg # actor loss + regularization actor_loss += actor_reg # train actor self.actor_optim.zero_grad() actor_loss.backward() self.actor_optim.step() # update target networks common_utils.soft_update(self.vf, self.vf_target, self.hyper_params.tau) # train Q functions self.qf_1_optim.zero_grad() qf_1_loss.backward() self.qf_1_optim.step() self.qf_2_optim.zero_grad() qf_2_loss.backward() self.qf_2_optim.step() # train V function self.vf_optim.zero_grad() vf_loss.backward() self.vf_optim.step() return ( actor_loss.item(), qf_1_loss.item(), qf_2_loss.item(), vf_loss.item(), alpha_loss.item(), n_qf_mask, )
[ "torch.zeros", "torch.cat", "torch.mul" ]
1.6.0
krishanrana/rl_algorithms
c12fe447a70f2f99f37f6c1157907755d38fde81
1.8
# PyTorch utils import logging import math import os import subprocess import time from contextlib import contextmanager from copy import deepcopy from pathlib import Path import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torchvision try: import thop # for FLOPS computation except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): """ Decorator to make all processes in distributed training wait for each local_master to do something. """ if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html torch.manual_seed(seed) if seed == 0: # slower, more reproducible cudnn.benchmark, cudnn.deterministic = False, True else: # faster, less reproducible cudnn.benchmark, cudnn.deterministic = True, False def git_describe(): # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe if Path('.git').exists(): return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1] else: return '' def select_device(device='', batch_size=None): # device = 'cpu' or '0' or '0,1,2,3' s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability cuda = not cpu and torch.cuda.is_available() if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB else: s += 'CPU\n' #logger.info(s) # skip a line return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): # pytorch-accurate time if torch.cuda.is_available(): torch.cuda.synchronize() return time.time() def profile(x, ops, n=100, device=None): # profile a pytorch module or list of modules. Example usage: # x = torch.randn(16, 3, 640, 640) # input # m1 = lambda x: x * torch.sigmoid(x) # m2 = nn.SiLU() # profile(x, [m1, m2], n=100) # profile speed over 100 iterations device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') x = x.to(device) x.requires_grad = True print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") for m in ops if isinstance(ops, list) else [ops]: m = m.to(device) if hasattr(m, 'to') else m # device m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward try: flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS except: flops = 0 for _ in range(n): t[0] = time_synchronized() y = m(x) t[1] = time_synchronized() try: _ = y.sum().backward() t[2] = time_synchronized() except: # no backward method t[2] = float('nan') dtf += (t[1] - t[0]) * 1000 / n # ms per op forward dtb += (t[2] - t[1]) * 1000 / n # ms per op backward s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') def is_parallel(model): return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) def intersect_dicts(da, db, exclude=()): # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} def initialize_weights(model): for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: m.inplace = True def find_modules(model, mclass=nn.Conv2d): # Finds layer indices matching module class 'mclass' return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] def sparsity(model): # Return global model sparsity a, b = 0., 0. for p in model.parameters(): a += p.numel() b += (p == 0).sum() return b / a def prune(model, amount=0.3): # Prune model to requested global sparsity import torch.nn.utils.prune as prune print('Pruning model... ', end='') for name, m in model.named_modules(): if isinstance(m, nn.Conv2d): prune.l1_unstructured(m, name='weight', amount=amount) # prune prune.remove(m, 'weight') # make permanent print(' %.3g global sparsity' % sparsity(model)) def fuse_conv_and_bn(conv, bn): # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ fusedconv = nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True).requires_grad_(False).to(conv.weight.device) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) # prepare spatial bias b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def model_info(model, verbose=False, img_size=640): # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if verbose: print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) try: # FLOPS from thop import profile stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS except (ImportError, Exception): fs = '' #logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") def load_classifier(name='resnet101', n=2): # Loads a pretrained model reshaped to n-class output model = torchvision.models.__dict__[name](pretrained=True) # ResNet model properties # input_size = [3, 224, 224] # input_space = 'RGB' # input_range = [0, 1] # mean = [0.485, 0.456, 0.406] # std = [0.229, 0.224, 0.225] # Reshape output to n classes filters = model.fc.weight.shape[1] model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) model.fc.out_features = n return model def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) # scales img(bs,3,y,x) by ratio constrained to gs-multiple if ratio == 1.0: return img else: h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize if not same_shape: # pad/crop img h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def copy_attr(a, b, include=(), exclude=()): # Copy attributes from b to a, options to only include [...] and to exclude [...] for k, v in b.__dict__.items(): if (len(include) and k not in include) or k.startswith('_') or k in exclude: continue else: setattr(a, k, v) class ModelEMA: """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. """ def __init__(self, model, decay=0.9999, updates=0): # Create EMA self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA # if next(model.parameters()).device.type != 'cpu': # self.ema.half() # FP16 EMA self.updates = updates # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) for p in self.ema.parameters(): p.requires_grad_(False) def update(self, model): # Update EMA parameters with torch.no_grad(): self.updates += 1 d = self.decay(self.updates) msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict for k, v in self.ema.state_dict().items(): if v.dtype.is_floating_point: v *= d v += (1. - d) * msd[k].detach() def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): # Update EMA attributes copy_attr(self.ema, model, include, exclude)
[ "torch.zeros", "torch.device", "torch.nn.utils.prune.l1_unstructured", "torch.sqrt", "torch.cuda.synchronize", "torch.nn.functional.interpolate", "torch.cuda.get_device_properties", "torch.no_grad", "torch.nn.utils.prune.remove", "torch.cuda.device_count", "torch.manual_seed", "torch.mm", "torch.nn.Conv2d", "torch.cuda.is_available", "torch.nn.functional.pad", "torch.distributed.barrier" ]
1.8.1
AndrewLaird/ChessTutorModels
c4fd960417d5b9918e430d040deb89fed3f4b73b
1.7
from torch.nn import Conv2d, MaxPool2d from torch import no_grad, round from torch.nn.functional import interpolate from itertools import chain class PRISM: _excitations = [] _hook_handlers = [] _is_orig_image = True def _excitation_hook(module, input, output): # for better output sharpness we collect input images if PRISM._is_orig_image: PRISM._excitations.append(input[0]) PRISM._is_orig_image = False PRISM._excitations.append(output) def register_hooks(model, recursive=False): if not recursive and PRISM._hook_handlers: print("Hooks can only be registered to one model at once. Please use: `prune_old_hooks()`") return for i, layer in enumerate(model.children()): if list(layer.children()): PRISM.register_hooks(layer, recursive=True) elif isinstance(layer, MaxPool2d): PRISM._hook_handlers.append( layer.register_forward_hook(PRISM._excitation_hook) ) elif isinstance(layer, Conv2d) and layer.stride > (1, 1): PRISM._hook_handlers.append( layer.register_forward_hook(PRISM._excitation_hook) ) def prune_old_hooks(model): if not PRISM._hook_handlers: print("No hooks to remove") for hook in PRISM._hook_handlers: hook.remove() PRISM._hook_handlers = [] ############################################### def _svd(final_excitation): final_layer_input = final_excitation.permute(0, 2, 3, 1).reshape( -1, final_excitation.shape[1] ) normalized_final_layer_input = final_layer_input - final_layer_input.mean(0) # normalized_final_layer_input = final_layer_input u, s, v = normalized_final_layer_input.svd(compute_uv=True) raw_features = u[:, :3].matmul(s[:3].diag()) return raw_features.view( final_excitation.shape[0], final_excitation.shape[2], final_excitation.shape[3], 3 ).permute(0, 3, 1, 2) def _quantize(maps): # h,w,c maps = PRISM._normalize_to_rgb(maps).permute(0, 2, 3, 1) quant_maps = 0.5 * round(maps / 0.5) image_colors = [] for img in quant_maps: colors_set = set() for row in img: for pixel in row: colors_set.add(pixel.numpy().tostring()) image_colors.append(colors_set) return quant_maps, image_colors def _intersection(maps): quant_maps, image_colors = PRISM._quantize(maps) common_colors = set.intersection(*image_colors) for img in quant_maps: for row in img: for pixel in row: if pixel.numpy().tostring() not in common_colors: pixel *= 0.0 return quant_maps.permute(0, 3, 1, 2) def _difference(maps): quant_maps, image_colors = PRISM._quantize(maps) all_colors= set(chain.from_iterable(image_colors)) exclusive_colors = all_colors - set.intersection(*image_colors) for img in quant_maps: for row in img: for pixel in row: if pixel.numpy().tostring() not in exclusive_colors: pixel *= 0.0 return quant_maps.permute(0, 3, 1, 2) def _upsampling(extracted_features, pre_excitations): for e in pre_excitations[::-1]: extracted_features = interpolate( extracted_features, size=(e.shape[2], e.shape[3]), mode="bilinear", align_corners=False, ) extracted_features *= e.mean(dim=1, keepdim=True) return extracted_features def _normalize_to_rgb(features): scaled_features = (features - features.mean()) / features.std() scaled_features = scaled_features.clip(-1, 1) scaled_features = (scaled_features - scaled_features.min()) / ( scaled_features.max() - scaled_features.min() ) return scaled_features def get_maps(grad_extrap=True, inclusive=False, exclusive=False): if not PRISM._excitations: print("No data in hooks. Have You used `register_hooks(model)` method?") return # [print(e.shape) for e in PRISM._excitations] with no_grad(): extracted_features = PRISM._svd(PRISM._excitations.pop()) if inclusive and exclusive: rgb_features_map, _ = PRISM._quantize(extracted_features) rgb_features_map = rgb_features_map.permute(0, 3, 1, 2) elif exclusive: rgb_features_map = PRISM._difference(extracted_features) elif inclusive: rgb_features_map = PRISM._intersection(extracted_features) else: rgb_features_map = extracted_features if grad_extrap: rgb_features_map = PRISM._upsampling( rgb_features_map, PRISM._excitations ) rgb_features_map = PRISM._normalize_to_rgb(rgb_features_map) # prune old PRISM._excitations PRISM.reset_excitations() return rgb_features_map def reset_excitations(): PRISM._is_orig_image = True PRISM._excitations = []
[ "torch.round", "torch.nn.functional.interpolate", "torch.no_grad" ]
1.7.1
szandala/PRISM
7f40e9ebdb5e53c1343cd3d358933861b24573da
1.10
import torch.nn as nn # Fully connected neural network with one hidden layer class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, num_classes) self.relu = nn.ReLU() def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) out = self.relu(out) out = self.fc3(out) return out
[ "torch.nn.Linear", "torch.nn.ReLU" ]
1.10.1
magalhaesdavi/ai-chatbot
810740fbbd694539d6fd4ddc6f482e5d8f26b52d
1.8
import math from functools import partial from typing import Tuple import torch from torch.quantization.observer import _ObserverBase from mqbench.utils import sync_tensor, pot_quantization, is_symmetric_quant from mqbench.utils.logger import logger class ObserverBase(_ObserverBase): ''' Support per-tensor / per-channel. dtype: quant min/max can be infered using dtype, we actually do not need this. qscheme: quantization scheme reduce_range: special for fbgemm to avoid overflow quant_min: fix point value min quant_max: fix point value max ch_axis: per-channel axis or per-tensor(-1) above is similiar to torch observer. pot_scale: indecate wheather scale is power of two. ''' min_val: torch.Tensor max_val: torch.Tensor def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, factory_kwargs=None): self.not_calc_quant_min_max = factory_kwargs.pop('not_calc_quant_min_max', False) if isinstance(factory_kwargs, dict) else False super(ObserverBase, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max) self.ch_axis = ch_axis self.pot_scale = pot_scale self.register_buffer("min_val", torch.tensor(float("inf"))) self.register_buffer("max_val", torch.tensor(float("-inf"))) class PerChannelLoadHook: def __init__(self, module): self.hook = module._register_load_state_dict_pre_hook(partial(self.hook_fn, module=module)) def hook_fn(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, module): if module.ch_axis == -1: # no per-channel parameters return for module_key, param in module._buffers.items(): if module_key not in ['min_val', 'max_val']: continue candidate = prefix + module_key if candidate in state_dict: input_param = state_dict[candidate] if param.shape != input_param.shape: param.data = torch.ones_like(input_param, dtype=param.dtype, device=param.device) def close(self): self.hook.remove() self.load_state_dict_hook = PerChannelLoadHook(self) @torch.jit.export def calculate_qparams(self) -> Tuple[torch.Tensor, torch.Tensor]: r"""Calculates the quantization parameters.""" scale, zero_point = self._calculate_qparams(self.min_val, self.max_val) if self.pot_scale: scale = pot_quantization(scale) scale.data = sync_tensor(scale).data zero_point.data = sync_tensor(zero_point).data return scale, zero_point @torch.jit.export def _calculate_qmin_qmax(self) -> Tuple[int, int]: r"""Calculates actual qmin and qmax based on the quantization range, observer datatype and if range is reduced. """ if self.has_customized_qrange: # This initialization here is to be resolve TorchScript compilation issues and allow # using of refinement to decouple initial_qmin and initial_qmax from quantization range. # The actual values of initial_qmin and initial_qmax will be reset below. initial_quant_min, initial_quant_max = 0, 255 # The following assignment of self.qmin and self.qmax to the local variables and the if check refine the # attribute from Optional valid integers for use, based on TorchScript's requirements. custom_quant_min, custom_quant_max = self.quant_min, self.quant_max if custom_quant_min is not None and custom_quant_max is not None: initial_quant_min, initial_quant_max = ( custom_quant_min, custom_quant_max, ) qrange_len = initial_quant_max - initial_quant_min + 1 if is_symmetric_quant(self.qscheme): quant_min, quant_max = -qrange_len // 2, qrange_len // 2 - 1 else: quant_min, quant_max = 0, qrange_len - 1 if self.reduce_range: quant_min, quant_max = quant_min // 2, quant_max // 2 if self.not_calc_quant_min_max: quant_min, quant_max = self.quant_min, self.quant_max else: # Fallback onto default 8-bit qmin and qmax calculation if dynamic range is not used. if self.dtype == torch.qint8: if self.reduce_range: quant_min, quant_max = -64, 63 else: quant_min, quant_max = -128, 127 elif self.dtype == torch.quint8: if self.reduce_range: quant_min, quant_max = 0, 127 else: quant_min, quant_max = 0, 255 else: quant_min, quant_max = 0, 15 return quant_min, quant_max @torch.jit.export def extra_repr(self): return "min_val={}, max_val={} ch_axis={} pot={}".format(self.min_val if self.ch_axis == -1 else 'List', self.max_val if self.ch_axis == -1 else 'List', self.ch_axis, self.pot_scale) class MinMaxObserver(ObserverBase): ''' Calculate minmax of whole calibration dataset. ''' def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, factory_kwargs=None): super(MinMaxObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) if self.ch_axis == -1: min_val_cur, max_val_cur = torch._aminmax(x) else: x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis y = x.permute(new_axis_list) y = torch.flatten(y, start_dim=1) min_val_cur, max_val_cur = torch._aminmax(y, 1) self.min_val = torch.min(self.min_val, min_val_cur) self.max_val = torch.max(self.max_val, max_val_cur) return x class MinMaxFloorObserver(ObserverBase): ''' Calculate minmax of whole calibration dataset with floor but round. ''' def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, factory_kwargs=None): super(MinMaxFloorObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) ''' The quant_type could be 'input', 'param', 'tensor', the co-responding range is 1, 5, 5, mth is 2, 3, 2 ''' self.quant_type = None def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) if self.ch_axis == -1: min_val_cur, max_val_cur = torch._aminmax(x) else: logger.warn('The per-tensor observer does not support per-channel min-max!') min_val_cur, max_val_cur = torch._aminmax(x) self.min_val = min_val_cur self.max_val = max_val_cur self._x = x return x def calculate_qparams(self): if self.quant_type is None: raise ValueError('You should set the observer type before forward!') else: scale_range = 1 if self.quant_type == 'input' else 5 mth = 3 if self.quant_type == 'param' else 2 scale, zero_point = self._calculate_qparams(self.min_val, self.max_val) scale.data = scale.data * 0 + max(self.min_val / self.quant_min, self.max_val / self.quant_max) if scale < 2 ** -15: max_scale = 0 else: max_scale = 1 / scale max_scale = torch.floor(max_scale.log2()) min_loss = torch.tensor([float('inf')]) final_scale = max_scale max_scale = int(max_scale) for s in range(max_scale, max_scale + scale_range): _s = 1 / 2 ** s if mth == 3: new_x = _s * torch.clamp(torch.round(self._x / _s), self.quant_min, self.quant_max) elif mth == 2: new_x = torch.clamp(self._x / _s, self.quant_min, self.quant_max) new_x = torch.where((new_x < 0) & (new_x - new_x.floor() == 0.5), new_x.ceil(), new_x.round()) new_x *= _s loss = ((new_x - self._x)**2).sum() min_loss = min_loss.to(loss.device) if loss < min_loss: min_loss = loss final_scale = s final_scale = min(final_scale, 12) scale = scale.data * 0 + 1 / (2 ** final_scale) zero_point = torch.zeros_like(zero_point) if not is_symmetric_quant(self.qscheme): if self.min_val >= 0.: zero_point = self.quant_min - torch.round(self.min_val / scale) sync_tensor(scale) sync_tensor(zero_point) return scale, zero_point def set_quant_type(self, qtype): self.quant_type = qtype class EMAMinMaxObserver(ObserverBase): """Moving average min/max among batches. """ def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, ema_ratio=0.9, factory_kwargs=None): super(EMAMinMaxObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) self.ema_ratio = ema_ratio def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) if self.ch_axis == -1: min_val_cur, max_val_cur = torch._aminmax(x) else: x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] # noqa: C416 new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis y = x.permute(new_axis_list) y = torch.flatten(y, start_dim=1) min_val_cur, max_val_cur = torch._aminmax(y, 1) if self.max_val.numel() <= 1 and self.max_val.isinf(): self.min_val = min_val_cur self.max_val = max_val_cur else: self.min_val = self.min_val * self.ema_ratio + min_val_cur * (1.0 - self.ema_ratio) self.max_val = self.max_val * self.ema_ratio + max_val_cur * (1.0 - self.ema_ratio) return x class EMAMinMaxFloorObserver(ObserverBase): """Moving average min/max among batches. """ def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, ema_ratio=0.9, factory_kwargs=None): super(EMAMinMaxFloorObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) self.ema_ratio = ema_ratio self.quant_type = None def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) self._x = x if self.ch_axis == -1: min_val_cur, max_val_cur = torch._aminmax(x) else: logger.warn('The per-tensor observer does not support per-channel min-max!') min_val_cur, max_val_cur = torch._aminmax(x) if self.max_val.numel() <= 1 and self.max_val.isinf(): self.min_val = min_val_cur self.max_val = max_val_cur else: self.min_val = self.min_val * self.ema_ratio + min_val_cur * (1.0 - self.ema_ratio) self.max_val = self.max_val * self.ema_ratio + max_val_cur * (1.0 - self.ema_ratio) return x def calculate_qparams(self): if self.quant_type is None: raise ValueError('You should set the observer type before forward!') else: scale_range = 1 if self.quant_type == 'input' else 5 mth = 3 if self.quant_type == 'param' else 2 scale, zero_point = self._calculate_qparams(self.min_val, self.max_val) scale.data = scale.data * 0 + max(self.min_val / self.quant_min, self.max_val / self.quant_max) if scale < 2 ** -15: max_scale = 0 else: max_scale = 1 / scale max_scale = torch.floor(max_scale.log2()) max_scale = 1 / scale max_scale = torch.floor(max_scale.log2()) min_loss = torch.tensor([float('inf')]) final_scale = max_scale max_scale = int(max_scale) for s in range(max_scale, max_scale + scale_range): _s = 1 / 2 ** s if mth == 3: new_x = _s * torch.clamp(torch.round(self._x / _s), self.quant_min, self.quant_max) elif mth == 2: new_x = torch.clamp(self._x / _s, self.quant_min, self.quant_max) new_x = torch.where((new_x < 0) & (new_x - new_x.floor() == 0.5), new_x.ceil(), new_x.round()) new_x *= _s loss = ((new_x - self._x)**2).sum() min_loss = min_loss.to(loss.device) if loss < min_loss: min_loss = loss final_scale = s final_scale = min(final_scale, 12) scale = scale.data * 0 + 1 / (2 ** final_scale) zero_point = torch.zeros_like(zero_point) if not is_symmetric_quant(self.qscheme): if self.min_val >= 0.: zero_point = self.quant_min - torch.round(self.min_val / scale) sync_tensor(scale) sync_tensor(zero_point) return scale, zero_point def set_quant_type(self, qtype): self.quant_type = qtype class EMAQuantileObserver(ObserverBase): """Moving average quantile among batches. """ def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, ema_ratio=0.9, threshold=0.99999, bins=2048, factory_kwargs=None): super(EMAQuantileObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) assert self.ch_axis == -1, "Quantile observer only support in per-tensor scheme." self.ema_ratio = ema_ratio self.threshold = threshold self.bins = bins def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) min_val_cur, max_val_cur = torch._aminmax(x) hist = torch.histc(torch.abs(x), bins=self.bins, min=0., max=torch.max(-min_val_cur, max_val_cur)) cur_total = 0 clip_value = torch.max(-min_val_cur, max_val_cur) for i, cnt in enumerate(hist): if cur_total + cnt >= self.threshold * x.numel(): clip_value = (i + 0.5) * (max_val_cur / self.bins) break if self.max_val.numel() <= 1 and self.max_val.isinf(): self.min_val = max(min_val_cur, -clip_value) self.max_val = min(max_val_cur, clip_value) else: self.min_val = self.min_val * self.ema_ratio + max(min_val_cur, -clip_value) * (1.0 - self.ema_ratio) self.max_val = self.max_val * self.ema_ratio + min(max_val_cur, clip_value) * (1.0 - self.ema_ratio) return x class ClipStdObserver(ObserverBase): """Clip std. """ def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, std_scale=2.6, factory_kwargs=None): super(ClipStdObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs=None) self.std_scale = std_scale def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) if self.ch_axis == -1: min_val_cur, max_val_cur = torch._aminmax(x) mean = x.mean() std = x.std() else: x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis y = x.permute(new_axis_list) y = torch.flatten(y, start_dim=1) min_val_cur, max_val_cur = torch._aminmax(y, 1) mean = y.mean(1) std = y.std(1) # using statistics to clip min and max min_val = torch.minimum(mean - self.std_scale * std, min_val_cur) max_val = torch.maximum(mean + self.std_scale * std, max_val_cur) self.min_val = min_val self.max_val = max_val return x class LSQObserver(ObserverBase): ''' LSQ observer. ''' def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, factory_kwargs=None): super(LSQObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) self.tensor_norm = None def forward(self, x_orig): if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) if self.ch_axis == -1: self.tensor_norm = x.abs().mean() self.min_val, self.max_val = torch._aminmax(x) else: # compute channel-wise mean x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis y = x.permute(new_axis_list) y = torch.flatten(y, start_dim=1) self.tensor_norm = y.abs().mean(1) self.min_val, self.max_val = torch._aminmax(y) return x def calculate_qparams(self): scale = 2 * self.tensor_norm / math.sqrt(self.quant_max) if self.pot_scale: scale = pot_quantization(scale) zero_point = torch.zeros_like(self.tensor_norm) if not is_symmetric_quant(self.qscheme): if self.min_val >= 0.: zero_point = self.quant_min - torch.round(self.min_val / scale) sync_tensor(scale) sync_tensor(zero_point) return scale, zero_point class LSQPlusObserver(ObserverBase): ''' LSQ+ observer. ''' def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, factory_kwargs=None): super(LSQPlusObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) self.mean = None self.std = None def forward(self, x_orig): if x_orig.numel() == 0: return x_orig x = x_orig.to(self.min_val.dtype) if self.ch_axis == -1: self.mean = x.mean() self.std = x.std() self.min_val, self.max_val = torch._aminmax(x) else: # compute channel-wise mean x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] # noqa: C416 new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis y = x.permute(new_axis_list) y = torch.flatten(y, start_dim=1) self.mean = y.mean(1) self.std = y.std(1) self.min_val, self.max_val = torch._aminmax(y) return x def calculate_qparams(self): scale = torch.maximum((self.mean - 3 * self.std).abs(), (self.mean + 3 * self.std).abs()) / (self.quant_max - self.quant_min + 1) if self.pot_scale: scale = pot_quantization(scale) zero_point = torch.zeros_like(self.mean) if not is_symmetric_quant(self.qscheme): if self.min_val >= 0.: zero_point = self.quant_min - torch.round(self.min_val / scale) sync_tensor(scale) sync_tensor(zero_point) return scale, zero_point class MSEObserver(ObserverBase): ''' Calculate mseobserver of whole calibration dataset. ''' def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, p=2.0, factory_kwargs=None): super(MSEObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) self.p = p def lp_loss(self, pred, tgt): """ loss function measured in L_p Norm """ return (pred - tgt).abs().pow(self.p).mean() def mse(self, x: torch.Tensor, x_min: torch.Tensor, x_max: torch.Tensor, iter=80): best_score = 1e+10 best_min, best_max = torch.tensor([1.0], dtype=torch.float), torch.tensor([1.0], dtype=torch.float) best_min.copy_(x_min) best_max.copy_(x_max) for i in range(iter): new_min = x_min * (1.0 - (i * 0.01)) new_max = x_max * (1.0 - (i * 0.01)) scale, zero_point = self._calculate_qparams(new_min, new_max) x_q = torch.fake_quantize_per_tensor_affine( x, scale.item(), int(zero_point.item()), self.quant_min, self.quant_max) score = self.lp_loss(x_q, x) if score < best_score: best_score = score best_min, best_max = new_min, new_max return best_min, best_max def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.clone().detach().to(self.min_val.dtype) if self.ch_axis == -1: min_val_cur, max_val_cur = torch._aminmax(x) min_val_cur, max_val_cur = self.mse(x, min_val_cur, max_val_cur, iter=95) else: x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis x_channel = x.permute(new_axis_list) y = torch.flatten(x_channel, start_dim=1) min_val_cur, max_val_cur = torch._aminmax(y, 1) for ch, val in enumerate(min_val_cur): min_val_cur[ch], max_val_cur[ch] = self.mse(x_channel[ch], min_val_cur[ch], max_val_cur[ch], iter=80) self.min_val = torch.min(self.min_val, min_val_cur) self.max_val = torch.max(self.max_val, max_val_cur) return x class EMAMSEObserver(ObserverBase): ''' Calculate mseobserver of whole calibration dataset. ''' def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, ch_axis=-1, pot_scale=False, p=2.0, ema_ratio=0.9, factory_kwargs=None): super(EMAMSEObserver, self).__init__(dtype, qscheme, reduce_range, quant_min, quant_max, ch_axis, pot_scale, factory_kwargs) self.ema_ratio = ema_ratio self.p = p def lp_loss(self, pred, tgt): """ loss function measured in L_p Norm """ return (pred - tgt).abs().pow(self.p).mean() def mse(self, x: torch.Tensor, x_min: torch.Tensor, x_max: torch.Tensor, iter=80): best_score = 1e+10 best_min, best_max = torch.tensor([1.0], dtype=torch.float), torch.tensor([1.0], dtype=torch.float) best_min.copy_(x_min) best_max.copy_(x_max) for i in range(iter): new_min = x_min * (1.0 - (i * 0.01)) new_max = x_max * (1.0 - (i * 0.01)) scale, zero_point = self._calculate_qparams(new_min, new_max) x_q = torch.fake_quantize_per_tensor_affine( x, scale.item(), int(zero_point.item()), self.quant_min, self.quant_max) score = self.lp_loss(x_q, x) if score < best_score: best_score = score best_min, best_max = new_min, new_max return best_min, best_max def forward(self, x_orig): r"""Records the running minimum and maximum of ``x``.""" if x_orig.numel() == 0: return x_orig x = x_orig.clone().detach().to(self.min_val.dtype) if self.ch_axis == -1: min_val_cur, max_val_cur = torch._aminmax(x) min_val_cur, max_val_cur = self.mse(x, min_val_cur, max_val_cur, iter=95) else: x_dim = x.size() new_axis_list = [i for i in range(len(x_dim))] new_axis_list[self.ch_axis] = 0 new_axis_list[0] = self.ch_axis x_channel = x.permute(new_axis_list) y = torch.flatten(x_channel, start_dim=1) min_val_cur, max_val_cur = torch._aminmax(y, 1) for ch, val in enumerate(min_val_cur): min_val_cur[ch], max_val_cur[ch] = self.mse(x_channel[ch], min_val_cur[ch], max_val_cur[ch], iter=80) if self.max_val.numel() <= 1 and self.max_val.isinf(): self.min_val = min_val_cur self.max_val = max_val_cur else: self.min_val = self.min_val * self.ema_ratio + min_val_cur * (1.0 - self.ema_ratio) self.max_val = self.max_val * self.ema_ratio + max_val_cur * (1.0 - self.ema_ratio) return x
[ "torch.round", "torch.min", "torch.max", "torch.maximum", "torch.minimum", "torch.clamp", "torch.abs", "torch.tensor", "torch._aminmax", "torch.ones_like", "torch.zeros_like", "torch.flatten" ]
1.8.1
thb1314/mqbench-openvino
476d64a18a009fa5c001895343929c0332224e1a
1.2
from typing import Tuple, Callable, Union, Type, List, Dict, Any from itertools import combinations import torch import torch.nn as nn import torch.nn.functional as F from mars_gym.torch.init import lecun_normal_init from mars_gym.model.abstract import RecommenderModule import numpy as np from mars_gym.meta_config import ProjectConfig, IOType, Column class LogisticRegression(RecommenderModule): def __init__( self, project_config: ProjectConfig, index_mapping: Dict[str, Dict[Any, int]], n_factors: int, weight_init: Callable = lecun_normal_init, ): super().__init__(project_config, index_mapping) self.user_embeddings = nn.Embedding(self._n_users, n_factors) self.item_embeddings = nn.Embedding(self._n_items, n_factors) weight_init(self.user_embeddings.weight) weight_init(self.item_embeddings.weight) self.linear = nn.Linear(n_factors * 2, 1) self.weight_init = weight_init self.apply(self.init_weights) def init_weights(self, module: nn.Module): if type(module) == nn.Linear: self.weight_init(module.weight) module.bias.data.fill_(0.1) def none_tensor(self, x): return type(x) == type(None) def forward(self, user_ids, item_ids, context_representation=None): x: torch.Tensor = context_representation # Geral embs user_emb = self.user_embeddings(user_ids) item_emb = self.item_embeddings(item_ids) x = torch.cat((user_emb, item_emb), dim=1,) return torch.sigmoid(self.linear(x))
[ "torch.nn.Linear", "torch.cat", "torch.nn.Embedding" ]
1.2
engsoares/mars-gym
c58605180a3f5fb16edbe8bd8954095b9f00a446
1.2
import torch import torch.nn as nn import os import torchvision import torchvision.transforms as transforms from tqdm import tqdm as pbar import numpy as np import time from tqdm import tqdm import scipy.linalg import random from random import shuffle is_print = True def _print(*args, **kwargs): if is_print: print(*args, **kwargs) rand_mat = None cashed = {} def flatten(x): return x.view(-1) def make_dataloaders(params, raw=False, train=False, merge=False, permutate=False, train_size=1, map_dic=None): if map_dic is None: if merge: label_vals = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] shuffle(label_vals) map_dic = {k: v for k, v in zip(range(10), label_vals)} else: map_dic = {i: i for i in range(10)} if raw: transform_train = transforms.Compose([transforms.ToTensor()]) transform_validation = transforms.Compose([transforms.ToTensor()]) else: if train: transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) else: transform_train = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) transform_validation = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) # def target_tranform(labels): if permutate: def randomize(_): random.randint(0, 9) target_tranform = np.vectorize(randomize) else: target_tranform = np.vectorize(map_dic.get) trainset = torchvision.datasets.CIFAR10(root=params['path'], train=True, transform=transform_train, target_transform=target_tranform, download=True) testset = torchvision.datasets.CIFAR10(root=params['path'], train=False, transform=transform_validation, target_transform=target_tranform) if train_size == 1: trainloader = torch.utils.data.DataLoader(trainset, batch_size=params['batch_size'], shuffle=train) train_idxs = np.arange(len(trainset)) else: train_idxs = np.random.permutation(np.arange(len(trainset)))[:int(len(trainset) * train_size)] train = [trainset[i] for i in train_idxs] trainloader = torch.utils.data.DataLoader(train, batch_size=params['batch_size'], shuffle=train) testloader = torch.utils.data.DataLoader(testset, batch_size=params['batch_size'], shuffle=False) return trainloader, testloader, (train_idxs, map_dic) class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True) ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, num_classes=10, width_mult=1.0): super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 ## CIFAR10 inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 1], # Stride 2 -> 1 for CIFAR-10 [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] ## END # building first layer input_channel = int(input_channel * width_mult) self.last_channel = int(last_channel * max(1.0, width_mult)) # CIFAR10: stride 2 -> 1 features = [ConvBNReLU(3, input_channel, stride=1)] # END # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) # make it nn.Sequential self.features = nn.Sequential(*features) # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes), ) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def forward(self, x): x = self.features(x) x = x.mean([2, 3]) x = self.classifier(x) return x def get_x(self, x): return x.view(x.size()[0], -1).cpu().numpy() def get_top_h(self, x): x = self.features(x) x = x.mean([2, 3]) return x.cpu().numpy() def get_all_h(self, x): tmp = x tmps = [] for layer in self.features: tmp = layer(tmp) tmps.append(tmp.view(tmp.size()[0], -1)) tmp = tmp.mean([2, 3]) tmps.append(tmp.view(tmp.size()[0], -1)) all_h = torch.cat(tmps, dim=1) return all_h.cpu().numpy() def get_flat_param(self): return torch.cat([flatten(p) for p in self.parameters()]) def get_flat_param_grad(self): return torch.cat([flatten(p.grad) for p in self.parameters()]) # def get_flat_param_grad_var(self): # return torch.cat([flatten(p.grad_var) for p in self.parameters()]) def get_grad_loss(self, test_data): criterion = nn.CrossEntropyLoss() image, label = test_data image = image.to(self.device) label = label.to(self.device) logit = self.forward(image) loss = criterion(logit, label) self.zero_grad() loss.backward() grad = self.get_flat_param_grad() return grad.cpu().numpy() def get_grad_output(self, test_data): image, label = test_data image = image.to(self.device) logit = self.forward(image) preds = nn.functional.softmax(logit) assert len(preds) == 1 preds = preds[0] grads = [] for p in preds: self.zero_grad() p.backward(retain_graph=True) grad = self.get_flat_param_grad() grads.append(grad.cpu().numpy()) return np.vstack(grads) def get_influence_on_test_loss(self, test_data, train_data, test_description='', approx_type='cg', approx_params={}, force_refresh=False, matrix='none', sim_func=np.dot): self.train_data = train_data test_grad = self.get_grad_loss(test_data).astype(np.float32) if matrix == 'none': inverse_hvp = test_grad else: assert False start_time = time.time() predicted_loss_diffs = [] train_grad_filename = os.path.join(self.out_dir, 'train-grad-on-loss-all.npy') if train_grad_filename in cashed: train_grads = cashed[train_grad_filename] elif os.path.exists(train_grad_filename): train_grads = np.load(train_grad_filename).astype(np.float32) _print('Loaded train grads from {}'.format(train_grad_filename)) else: train_grad_list = [] for counter, remove_data in enumerate(tqdm(train_data)): train_grad = self.get_grad_loss(remove_data) train_grad_list.append(train_grad.astype(np.float16)) train_grads = np.vstack(train_grad_list) np.save(train_grad_filename, train_grads) _print('Saved train grads to {}'.format(train_grad_filename)) if train_grad_filename not in cashed: cashed[train_grad_filename] = train_grads for counter, train_grad in enumerate(tqdm(train_grads)): predicted_loss_diffs.append(sim_func(inverse_hvp, train_grad)) duration = time.time() - start_time _print('Multiplying by all train examples took {} sec'.format(duration)) return predicted_loss_diffs def get_influence_by_hsim(self, test_data, train_data, h_fn, batch_size=100, sim_func=np.dot): with torch.no_grad(): if h_fn == 'top_h': h_func = self.get_top_h elif h_fn == 'all_h': h_func = self.get_all_h elif h_fn == 'x': h_func = self.get_x else: assert False image, label = test_data image = image.to(self.device) test_feature = h_func(image).astype(np.float32)[0] feature_sims = [] train_feature_filename = os.path.join(self.out_dir, 'train-{}-all.npy'.format(h_fn)) if train_feature_filename in cashed: train_features = cashed[train_feature_filename] elif os.path.exists(train_feature_filename): train_features = np.load(train_feature_filename).astype(np.float32) _print('Loaded train features from {}'.format(train_feature_filename)) else: train_feature_list = [] for batch in tqdm(train_data): image, label = batch image = image.to(self.device) features = h_func(image).astype(np.float32) train_feature_list.append(features) train_features = np.vstack(train_feature_list) np.save(train_feature_filename, train_features) _print('Saved train features to {}'.format(train_feature_filename)) if train_feature_filename not in cashed: cashed[train_feature_filename] = train_features for counter, train_feature in enumerate(tqdm(train_features)): feature_sims.append(sim_func(test_feature, train_feature)) return feature_sims def mobilenet_v2(pretrained=False, progress=True, device='cpu', model_path='', **kwargs): model = MobileNetV2(**kwargs) if pretrained: script_dir = os.path.dirname(__file__) state_dict = torch.load(model_path, map_location=device) model.load_state_dict(state_dict) return model def test_model(model, params): model = model.to(params['device']).eval() phase = 'validation' logs = {'Accuracy': 0.0} # Iterate over data for image, label in pbar(params[phase + '_loader']): image = image.to(params['device']) label = label.to(params['device']) prediction = model(image) accuracy = torch.sum(torch.max(prediction, 1)[1] == label.data).item() logs['Accuracy'] += accuracy logs['Accuracy'] /= len(params[phase + '_loader'].dataset) return logs['Accuracy']
[ "torch.nn.Linear", "torch.cat", "torch.nn.BatchNorm2d", "torch.nn.init.kaiming_normal_", "torch.load", "torch.nn.CrossEntropyLoss", "torch.nn.init.normal_", "torch.utils.data.DataLoader", "torch.nn.init.zeros_", "torch.max", "torch.nn.Sequential", "torch.nn.Conv2d", "torch.nn.functional.softmax", "torch.nn.Dropout", "torch.no_grad", "torch.nn.init.ones_", "torch.nn.ReLU6" ]
1.2.0
k-hanawa/criteria_for_instance_based_explanation
bb6ae19a9164748e1fac08f8a7a1ad0adf28a94c
1.6
# -*- coding: utf-8 -*- import unittest from argparse import Namespace from io import StringIO from comet.models import CometRanker from comet.models.utils import average_pooling, max_pooling import torch class TestCometRanker(unittest.TestCase): hparams = Namespace( **{"encoder_model": "LASER", "pretrained_model": None, "nr_frozen_epochs": 0} ) ranker = CometRanker(hparams) def test_read_csv(self): csv_file = StringIO( "src,ref,pos,neg\n" "ola mundo,hi world,hey world,hey world!\n" ) expected = [ { "src": "ola mundo", "ref": "hi world", "pos": "hey world", "neg": "hey world!", } ] data = self.ranker.read_csv(csv_file) self.assertListEqual(data, expected) # Test ignore extra columns csv_file = StringIO( "src,ref,pos,neg,id\n" "ola mundo,hi world,hey world,hey world!,10293\n" ) data = self.ranker.read_csv(csv_file) self.assertListEqual(data, expected) def test_compute_metrics(self): dummy_outputs = [ { "val_prediction": { "src_sentemb": torch.tensor( [[0.4963, 0.7682, 0.0885], [0.1320, 0.3074, 0.6341]] ), "ref_sentemb": torch.tensor( [[0.4901, 0.8964, 0.4556], [0.6323, 0.3489, 0.4017]] ), "pos_sentemb": torch.tensor( [[0.0223, 0.1689, 0.2939], [0.5185, 0.6977, 0.8000]] ), "neg_sentemb": torch.tensor( [[0.1610, 0.2823, 0.6816], [0.9152, 0.3971, 0.8742]] ), } } ] # Distance from positive embedding to source: [0.7912, 0.5738] # Distance from positive embedding to reference: [0.8800, 0.5415] # Harmonic mean: [0.8332, 0.5572] # Distance from negative embedding to source: [0.8369, 0.8240] # Distance from positive embedding to reference: [0.7325, 0.5528] # Harmonic mean: [0.7812, 0.6617] expected = {"kendall": torch.tensor(0.0)} metrics = self.ranker.compute_metrics(dummy_outputs) self.assertDictEqual(metrics, expected) def test_prepare_sample_to_forward(self): """ Test compatability between prepare_sample and forward functions. """ sample = [ { "src": "hello world", "ref": "ola mundo", "pos": "ola mundo", "neg": "oi mundo", } ] model_input, target = self.ranker.prepare_sample(sample) model_output = self.ranker(**model_input) self.assertTrue(model_output["src_sentemb"].shape[0] == 1) self.assertTrue(model_output["ref_sentemb"].shape[0] == 1) self.assertTrue(model_output["pos_sentemb"].shape[0] == 1) self.assertTrue(model_output["neg_sentemb"].shape[0] == 1) self.assertTrue(model_output["src_sentemb"].shape[1] == 1024) self.assertTrue(model_output["ref_sentemb"].shape[1] == 1024) self.assertTrue(model_output["pos_sentemb"].shape[1] == 1024) self.assertTrue(model_output["neg_sentemb"].shape[1] == 1024) def test_get_sentence_embedding(self): self.ranker.scalar_mix = None self.ranker.layer = 0 # tokens from ["hello world", "how are your?"] tokens = torch.tensor([[29733, 4139, 1, 1], [2231, 137, 57374, 8]]) lengths = torch.tensor([2, 4]) encoder_out = self.ranker.encoder(tokens, lengths) # Expected sentence output with pool = 'default' hparams = Namespace(**{"encoder_model": "LASER", "pool": "default"}) self.ranker.hparams = hparams expected = encoder_out["sentemb"] sentemb = self.ranker.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected)) # Expected sentence output with pool = 'max' hparams = Namespace( # LASER always used default... we need to pretend our encoder is another one **{"encoder_model": "other", "pool": "max"} ) self.ranker.hparams = hparams # Max pooling is tested in test_utils.py expected = max_pooling(tokens, encoder_out["wordemb"], 1) sentemb = self.ranker.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected)) # Expected sentence output with pool = 'avg' hparams = Namespace( # LASER always used default... we need to pretend our encoder is another one **{"encoder_model": "other", "pool": "avg"} ) self.ranker.hparams = hparams # AVG pooling is tested in test_utils.py expected = average_pooling( tokens, encoder_out["wordemb"], encoder_out["mask"], 1 ) sentemb = self.ranker.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected)) # Expected sentence output with pool = 'cls' hparams = Namespace( # LASER always used default... we need to pretend our encoder is another one **{"encoder_model": "other", "pool": "cls"} ) self.ranker.hparams = hparams expected = encoder_out["wordemb"][:, 0, :] sentemb = self.ranker.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected))
[ "torch.equal", "torch.tensor" ]
1.6
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
1.6
# -*- coding: utf-8 -*- import unittest from argparse import Namespace from io import StringIO import numpy as np import torch from comet.models import CometEstimator from comet.models.utils import average_pooling, max_pooling class TestCometEstimator(unittest.TestCase): hparams = Namespace( **{ "encoder_model": "LASER", "pretrained_model": None, "nr_frozen_epochs": 0, "loss": "mse", # FeedForward Definition "pool": "default", "hidden_sizes": "1024", "activations": "Tanh", "dropout": 0.1, "final_activation": False, } ) estimator = CometEstimator(hparams) def test_read_csv(self): csv_file = StringIO("src,ref,mt,score\n" "ola mundo,hi world,hey world!,0.8\n") expected = [ {"src": "ola mundo", "ref": "hi world", "mt": "hey world!", "score": 0.8} ] data = self.estimator.read_csv(csv_file) self.assertListEqual(data, expected) # Test ignore extra columns csv_file = StringIO( "src,ref,mt,score,id\n" "ola mundo,hi world,hey world!,0.8,10299\n" ) data = self.estimator.read_csv(csv_file) self.assertListEqual(data, expected) def test_compute_metrics(self): dummy_outputs = [ { "val_prediction": { "score": torch.tensor(np.array([0, 0, 0, 1, 1, 1, 1])), }, "val_target": { "score": torch.tensor(np.arange(7)), }, } ] expected = { "pearson": torch.tensor(0.8660254, dtype=torch.float32), "kendall": torch.tensor(0.7559289, dtype=torch.float32), "spearman": torch.tensor(0.866025, dtype=torch.float32), } metrics = self.estimator.compute_metrics(dummy_outputs) self.assertDictEqual( {k: round(v.item(), 4) for k, v in metrics.items()}, {k: round(v.item(), 4) for k, v in expected.items()}, ) def test_prepare_sample_to_forward(self): """ Test compatability between prepare_sample and forward functions. """ sample = [ {"src": "ola mundo", "ref": "hi world", "mt": "hey world!", "score": 0.8}, {"src": "ola mundo", "ref": "hi world", "mt": "hey world!", "score": 0.8}, ] model_input, target = self.estimator.prepare_sample(sample) model_output = self.estimator(**model_input) self.assertTrue(model_output["score"].shape[0] == 2) self.assertTrue(model_output["score"].shape[1] == 1) def test_get_sentence_embedding(self): self.estimator.scalar_mix = None self.estimator.layer = 0 # tokens from ["hello world", "how are your?"] tokens = torch.tensor([[29733, 4139, 1, 1], [2231, 137, 57374, 8]]) lengths = torch.tensor([2, 4]) encoder_out = self.estimator.encoder(tokens, lengths) # Expected sentence output with pool = 'max' hparams = Namespace( # LASER always used default... we need to pretend our encoder is another one **{"encoder_model": "other", "pool": "max"} ) self.estimator.hparams = hparams # Max pooling is tested in test_utils.py expected = max_pooling(tokens, encoder_out["wordemb"], 1) sentemb = self.estimator.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected)) # Expected sentence output with pool = 'avg' hparams = Namespace( # LASER always used default... we need to pretend our encoder is another one **{"encoder_model": "other", "pool": "avg"} ) self.estimator.hparams = hparams # AVG pooling is tested in test_utils.py expected = average_pooling( tokens, encoder_out["wordemb"], encoder_out["mask"], 1 ) sentemb = self.estimator.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected)) # Expected sentence output with pool = 'cls' hparams = Namespace( # LASER always used default... we need to pretend our encoder is another one **{"encoder_model": "other", "pool": "cls"} ) self.estimator.hparams = hparams expected = encoder_out["wordemb"][:, 0, :] sentemb = self.estimator.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected)) # Expected sentence output with pool = 'cls+avg' hparams = Namespace( # LASER always used default... we need to pretend our encoder is another one **{"encoder_model": "other", "pool": "cls+avg"} ) self.estimator.hparams = hparams cls_embedding = encoder_out["wordemb"][:, 0, :] avg_embedding = average_pooling( tokens, encoder_out["wordemb"], encoder_out["mask"], 1 ) expected = torch.cat((cls_embedding, avg_embedding), dim=1) sentemb = self.estimator.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected)) # Expected sentence output with pool = 'default' hparams = Namespace(**{"encoder_model": "LASER", "pool": "default"}) self.estimator.hparams = hparams expected = encoder_out["sentemb"] sentemb = self.estimator.get_sentence_embedding(tokens, lengths) self.assertTrue(torch.equal(sentemb, expected))
[ "torch.cat", "torch.tensor", "torch.equal" ]
1.6
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
1.3
#! /usr/bin/env python # coding: utf-8 # # Copyright (c) 2019 JR Oakes # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import config as cfg import torch import pandas as pd from tqdm import tqdm from torch import nn import transformers from transformers import BertTokenizer, BertModel, DistilBertTokenizer, DistilBertModel import logging logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) logging.getLogger("transformers.configuration_utils").setLevel(logging.WARN) class BERT: def __init__(self, dims = None): if 'distilbert' in cfg.transformer_model: self.model = DistilBertModel.from_pretrained(cfg.transformer_model) self.tokenizer = DistilBertTokenizer.from_pretrained(cfg.transformer_model) self.model_dims = self.model.config.dim else: self.model = BertModel.from_pretrained(cfg.transformer_model) self.tokenizer = BertTokenizer.from_pretrained(cfg.transformer_model) self.model_dims = self.model.config.hidden_size # Make sure model is in Eval mode. self.model.eval() self.terms = [] self.embeddings = torch.FloatTensor([]) self.reduce = nn.Linear(self.model_dims, dims) if dims else None self.activation = nn.Tanh() self.sim_fn = torch.nn.CosineSimilarity(dim=-1, eps=1e-6) def add_terms(self, texts): for t in texts: self.add_term(t) def add_term(self, text): if text not in self.terms: emb = self.get_embedding(text) self.terms.append(text) self.embeddings = torch.cat((self.embeddings, emb), dim=0) def get_embedding(self, text): with torch.no_grad(): input_ids = torch.LongTensor(self.tokenizer.encode(text)).unsqueeze(0) lh = self.model(input_ids)[0] emb = torch.mean(lh, dim=1) if self.reduce is not None: emb = self.reduce(emb) return self.activation(emb) def get_most_similar(self, term): emb = self.get_embedding(term) comp = emb.repeat(len(self.embeddings), 1) sim = self.sim_fn(self.embeddings, comp) best = sim.argmax().item() return self.terms[best], sim[best].item() def get_similar_df(self, term): emb = self.get_embedding(term) comp = emb.repeat(len(self.embeddings), 1) sim = self.sim_fn(self.embeddings, comp) df = pd.DataFrame(columns=['terms', 'sim']) df['terms'] = self.terms df['sim'] = sim.tolist() return df
[ "torch.nn.Linear", "torch.cat", "torch.nn.Tanh", "torch.FloatTensor", "torch.no_grad", "torch.nn.CosineSimilarity", "torch.mean" ]
1.3.1
jroakes/tech-seo-crawler
c60619cb6517069665e229917cfbc4fd0614d36f
1.4
"""DAgger (https://arxiv.org/pdf/1011.0686.pdf). Interactively trains policy by collecting some demonstrations, doing BC, collecting more demonstrations, doing BC again, etc. Initially the demonstrations just come from the expert's policy; over time, they shift to be drawn more and more from the imitator's policy. """ import abc import dataclasses import logging import os import pathlib from typing import Callable, List, Mapping, Optional, Sequence, Tuple, Union import numpy as np import torch as th from stable_baselines3.common import policies, utils, vec_env from torch.utils import data as th_data from imitation.algorithms import base, bc from imitation.data import rollout, types from imitation.util import logger, util class BetaSchedule(abc.ABC): """Computes beta (% of time demonstration action used) from training round.""" @abc.abstractmethod def __call__(self, round_num: int) -> float: """Computes the value of beta for the current round. Args: round_num: the current round number. Rounds are assumed to be sequentially numbered from 0. Returns: The fraction of the time to sample a demonstrator action. Robot actions will be sampled the remainder of the time. """ # noqa: DAR202 class LinearBetaSchedule(BetaSchedule): """Linearly-decreasing schedule for beta.""" def __init__(self, rampdown_rounds: int): """Builds LinearBetaSchedule. Args: rampdown_rounds: number of rounds over which to anneal beta. """ self.rampdown_rounds = rampdown_rounds def __call__(self, round_num: int) -> float: """Computes beta value. Args: round_num: the current round number. Returns: beta linearly decreasing from `1` to `0` between round `0` and `self.rampdown_rounds`. After that, it is 0. """ assert round_num >= 0 return min(1, max(0, (self.rampdown_rounds - round_num) / self.rampdown_rounds)) def reconstruct_trainer( scratch_dir: types.AnyPath, venv: vec_env.VecEnv, custom_logger: Optional[logger.HierarchicalLogger] = None, device: Union[th.device, str] = "auto", ) -> "DAggerTrainer": """Reconstruct trainer from the latest snapshot in some working directory. Requires vectorized environment and (optionally) a logger, as these objects cannot be serialized. Args: scratch_dir: path to the working directory created by a previous run of this algorithm. The directory should contain `checkpoint-latest.pt` and `policy-latest.pt` files. venv: Vectorized training environment. custom_logger: Where to log to; if None (default), creates a new logger. device: device on which to load the trainer. Returns: A deserialized `DAggerTrainer`. """ custom_logger = custom_logger or logger.configure() checkpoint_path = pathlib.Path(scratch_dir, "checkpoint-latest.pt") trainer = th.load(checkpoint_path, map_location=utils.get_device(device)) trainer.venv = venv trainer._logger = custom_logger return trainer def _save_dagger_demo( trajectory: types.Trajectory, save_dir: types.AnyPath, prefix: str = "", ) -> None: # TODO(shwang): This is possibly redundant with types.save(). Note # however that NPZ save here is likely more space efficient than # pickle from types.save(), and types.save only accepts # TrajectoryWithRew right now (subclass of Trajectory). save_dir = pathlib.Path(save_dir) assert isinstance(trajectory, types.Trajectory) actual_prefix = f"{prefix}-" if prefix else "" timestamp = util.make_unique_timestamp() filename = f"{actual_prefix}dagger-demo-{timestamp}.npz" save_dir.mkdir(parents=True, exist_ok=True) npz_path = pathlib.Path(save_dir, filename) np.savez_compressed(npz_path, **dataclasses.asdict(trajectory)) logging.info(f"Saved demo at '{npz_path}'") def _load_trajectory(npz_path: str) -> types.Trajectory: """Load a single trajectory from a compressed Numpy file.""" np_data = np.load(npz_path, allow_pickle=True) has_rew = "rews" in np_data dict_data = dict(np_data.items()) # infos=None is saved as array(None) which leads to a type checking error upon # `Trajectory` initialization. Convert to None to prevent error. infos = dict_data["infos"] if infos.shape == (): assert infos.item() is None dict_data["infos"] = None cls = types.TrajectoryWithRew if has_rew else types.Trajectory return cls(**dict_data) class InteractiveTrajectoryCollector(vec_env.VecEnvWrapper): """DAgger VecEnvWrapper for querying and saving expert actions. Every call to `.step(actions)` accepts and saves expert actions to `self.save_dir`, but only forwards expert actions to the wrapped VecEnv with probability `self.beta`. With probability `1 - self.beta`, a "robot" action (i.e an action from the imitation policy) is forwarded instead. Demonstrations are saved as `TrajectoryWithRew` to `self.save_dir` at the end of every episode. """ def __init__( self, venv: vec_env.VecEnv, get_robot_acts: Callable[[np.ndarray], np.ndarray], beta: float, save_dir: types.AnyPath, ): """Builds InteractiveTrajectoryCollector. Args: venv: vectorized environment to sample trajectories from. get_robot_acts: get robot actions that can be substituted for human actions. Takes a vector of observations as input & returns a vector of actions. beta: fraction of the time to use action given to .step() instead of robot action. The choice of robot or human action is independently randomized for each individual `Env` at every timestep. save_dir: directory to save collected trajectories in. """ super().__init__(venv) self.get_robot_acts = get_robot_acts assert 0 <= beta <= 1 self.beta = beta self.traj_accum = None self.save_dir = save_dir self._last_obs = None self._done_before = True self._is_reset = False self._last_user_actions = None self.rng = np.random.RandomState() def seed(self, seed=Optional[int]) -> List[Union[None, int]]: """Set the seed for the DAgger random number generator and wrapped VecEnv. The DAgger RNG is used along with `self.beta` to determine whether the expert or robot action is forwarded to the wrapped VecEnv. Args: seed: The random seed. May be None for completely random seeding. Returns: A list containing the seeds for each individual env. Note that all list elements may be None, if the env does not return anything when seeded. """ self.rng = np.random.RandomState(seed=seed) return self.venv.seed(seed) def reset(self) -> np.ndarray: """Resets the environment. Returns: obs: first observation of a new trajectory. """ self.traj_accum = rollout.TrajectoryAccumulator() obs = self.venv.reset() for i, ob in enumerate(obs): self.traj_accum.add_step({"obs": ob}, key=i) self._last_obs = obs self._is_reset = True self._last_user_actions = None return obs def step_async(self, actions: np.ndarray) -> None: """Steps with a `1 - beta` chance of using `self.get_robot_acts` instead. DAgger needs to be able to inject imitation policy actions randomly at some subset of time steps. This method has a `self.beta` chance of keeping the `actions` passed in as an argument, and a `1 - self.beta` chance of will forwarding an actions generated by `self.get_robot_acts` instead. "robot" (i.e. imitation policy) action if necessary. At the end of every episode, a `TrajectoryWithRew` is saved to `self.save_dir`, where every saved action is the expert action, regardless of whether the robot action was used during that timestep. Args: actions: the _intended_ demonstrator/expert actions for the current state. This will be executed with probability `self.beta`. Otherwise, a "robot" (typically a BC policy) action will be sampled and executed instead via `self.get_robot_act`. """ assert self._is_reset, "call .reset() before .step()" # Replace each given action with a robot action 100*(1-beta)% of the time. actual_acts = np.array(actions) mask = self.rng.uniform(0, 1, size=(self.num_envs,)) > self.beta if np.sum(mask) != 0: actual_acts[mask] = self.get_robot_acts(self._last_obs[mask]) self._last_user_actions = actions self.venv.step_async(actual_acts) def step_wait(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray, dict]: """Returns observation, reward, etc after previous `step_async()` call. Stores the transition, and saves trajectory as demo once complete. Returns: Observation, reward, dones (is terminal?) and info dict. """ next_obs, rews, dones, infos = self.venv.step_wait() self._last_obs = next_obs fresh_demos = self.traj_accum.add_steps_and_auto_finish( obs=next_obs, acts=self._last_user_actions, rews=rews, infos=infos, dones=dones, ) for traj in fresh_demos: _save_dagger_demo(traj, self.save_dir) return next_obs, rews, dones, infos class NeedsDemosException(Exception): """Signals demos need to be collected for current round before continuing.""" class DAggerTrainer(base.BaseImitationAlgorithm): """DAgger training class with low-level API suitable for interactive human feedback. In essence, this is just BC with some helpers for incrementally resuming training and interpolating between demonstrator/learnt policies. Interaction proceeds in "rounds" in which the demonstrator first provides a fresh set of demonstrations, and then an underlying `BC` is invoked to fine-tune the policy on the entire set of demonstrations collected in all rounds so far. Demonstrations and policy/trainer checkpoints are stored in a directory with the following structure:: scratch-dir-name/ checkpoint-001.pkl checkpoint-002.pkl … checkpoint-XYZ.pkl checkpoint-latest.pkl demos/ round-000/ demos_round_000_000.npz demos_round_000_001.npz … round-001/ demos_round_001_000.npz … … round-XYZ/ … """ DEFAULT_N_EPOCHS: int = 4 """The default number of BC training epochs in `extend_and_update`.""" def __init__( self, *, venv: vec_env.VecEnv, scratch_dir: types.AnyPath, beta_schedule: Callable[[int], float] = None, bc_trainer: bc.BC, custom_logger: Optional[logger.HierarchicalLogger] = None, ): """Builds DAggerTrainer. Args: venv: Vectorized training environment. scratch_dir: Directory to use to store intermediate training information (e.g. for resuming training). beta_schedule: Provides a value of `beta` (the probability of taking expert action in any given state) at each round of training. If `None`, then `linear_beta_schedule` will be used instead. bc_trainer: A `BC` instance used to train the underlying policy. custom_logger: Where to log to; if None (default), creates a new logger. """ super().__init__(custom_logger=custom_logger) if beta_schedule is None: beta_schedule = LinearBetaSchedule(15) self.beta_schedule = beta_schedule self.scratch_dir = pathlib.Path(scratch_dir) self.venv = venv self.round_num = 0 self._last_loaded_round = -1 self._all_demos = [] utils.check_for_correct_spaces( self.venv, bc_trainer.observation_space, bc_trainer.action_space, ) self.bc_trainer = bc_trainer self.bc_trainer.logger = custom_logger def __getstate__(self): """Return state excluding non-pickleable objects.""" d = dict(self.__dict__) del d["venv"] del d["_logger"] return d @base.BaseImitationAlgorithm.logger.setter def logger(self, value: logger.HierarchicalLogger) -> None: # DAgger and inner-BC logger should stay in sync self._logger = value self.bc_trainer.logger = value @property def policy(self) -> policies.BasePolicy: return self.bc_trainer.policy @property def batch_size(self) -> int: return self.bc_trainer.batch_size def _load_all_demos(self): num_demos_by_round = [] for round_num in range(self._last_loaded_round + 1, self.round_num + 1): round_dir = self._demo_dir_path_for_round(round_num) demo_paths = self._get_demo_paths(round_dir) self._all_demos.extend(_load_trajectory(p) for p in demo_paths) num_demos_by_round.append(len(demo_paths)) logging.info(f"Loaded {len(self._all_demos)} total") demo_transitions = rollout.flatten_trajectories(self._all_demos) return demo_transitions, num_demos_by_round def _get_demo_paths(self, round_dir): return [ os.path.join(round_dir, p) for p in os.listdir(round_dir) if p.endswith(".npz") ] def _demo_dir_path_for_round(self, round_num: Optional[int] = None) -> pathlib.Path: if round_num is None: round_num = self.round_num return self.scratch_dir / "demos" / f"round-{round_num:03d}" def _try_load_demos(self) -> None: """Load the dataset for this round into self.bc_trainer as a DataLoader.""" demo_dir = self._demo_dir_path_for_round() demo_paths = self._get_demo_paths(demo_dir) if os.path.isdir(demo_dir) else [] if len(demo_paths) == 0: raise NeedsDemosException( f"No demos found for round {self.round_num} in dir '{demo_dir}'. " f"Maybe you need to collect some demos? See " f".get_trajectory_collector()", ) if self._last_loaded_round < self.round_num: transitions, num_demos = self._load_all_demos() logging.info( f"Loaded {sum(num_demos)} new demos from {len(num_demos)} rounds", ) if len(transitions) < self.batch_size: raise ValueError( "Not enough transitions to form a single batch: " f"self.batch_size={self.batch_size} > " f"len(transitions)={len(transitions)}", ) data_loader = th_data.DataLoader( transitions, self.batch_size, drop_last=True, shuffle=True, collate_fn=types.transitions_collate_fn, ) self.bc_trainer.set_demonstrations(data_loader) self._last_loaded_round = self.round_num def extend_and_update(self, bc_train_kwargs: Optional[Mapping] = None) -> int: """Extend internal batch of data and train BC. Specifically, this method will load new transitions (if necessary), train the model for a while, and advance the round counter. If there are no fresh demonstrations in the demonstration directory for the current round, then this will raise a `NeedsDemosException` instead of training or advancing the round counter. In that case, the user should call `.get_trajectory_collector()` and use the returned `InteractiveTrajectoryCollector` to produce a new set of demonstrations for the current interaction round. Arguments: bc_train_kwargs: Keyword arguments for calling `BC.train()`. If the `log_rollouts_venv` key is not provided, then it is set to `self.venv` by default. If neither of the `n_epochs` and `n_batches` keys are provided, then `n_epochs` is set to `self.DEFAULT_N_EPOCHS`. Returns: New round number after advancing the round counter. """ if bc_train_kwargs is None: bc_train_kwargs = {} else: bc_train_kwargs = dict(bc_train_kwargs) user_keys = bc_train_kwargs.keys() if "log_rollouts_venv" not in user_keys: bc_train_kwargs["log_rollouts_venv"] = self.venv if "n_epochs" not in user_keys and "n_batches" not in user_keys: bc_train_kwargs["n_epochs"] = self.DEFAULT_N_EPOCHS logging.info("Loading demonstrations") self._try_load_demos() logging.info(f"Training at round {self.round_num}") self.bc_trainer.train(**bc_train_kwargs) self.round_num += 1 logging.info(f"New round number is {self.round_num}") return self.round_num def get_trajectory_collector(self) -> InteractiveTrajectoryCollector: """Create trajectory collector to extend current round's demonstration set. Returns: A collector configured with the appropriate beta, imitator policy, etc. for the current round. Refer to the documentation for `InteractiveTrajectoryCollector` to see how to use this. """ save_dir = self._demo_dir_path_for_round() beta = self.beta_schedule(self.round_num) collector = InteractiveTrajectoryCollector( venv=self.venv, get_robot_acts=lambda acts: self.bc_trainer.policy.predict(acts)[0], beta=beta, save_dir=save_dir, ) return collector def save_trainer(self) -> Tuple[pathlib.Path, pathlib.Path]: """Create a snapshot of trainer in the scratch/working directory. The created snapshot can be reloaded with `reconstruct_trainer()`. In addition to saving one copy of the policy in the trainer snapshot, this method saves a second copy of the policy in its own file. Having a second copy of the policy is convenient because it can be loaded on its own and passed to evaluation routines for other algorithms. Returns: checkpoint_path: a path to one of the created `DAggerTrainer` checkpoints. policy_path: a path to one of the created `DAggerTrainer` policies. """ self.scratch_dir.mkdir(parents=True, exist_ok=True) # save full trainer checkpoints checkpoint_paths = [ self.scratch_dir / f"checkpoint-{self.round_num:03d}.pt", self.scratch_dir / "checkpoint-latest.pt", ] for checkpoint_path in checkpoint_paths: th.save(self, checkpoint_path) # save policies separately for convenience policy_paths = [ self.scratch_dir / f"policy-{self.round_num:03d}.pt", self.scratch_dir / "policy-latest.pt", ] for policy_path in policy_paths: self.save_policy(policy_path) return checkpoint_paths[0], policy_paths[0] def save_policy(self, policy_path: types.AnyPath) -> None: """Save the current policy only (and not the rest of the trainer). Args: policy_path: path to save policy to. """ self.bc_trainer.save_policy(policy_path) class SimpleDAggerTrainer(DAggerTrainer): """Simpler subclass of DAggerTrainer for training with synthetic feedback.""" def __init__( self, *, venv: vec_env.VecEnv, scratch_dir: types.AnyPath, expert_policy: policies.BasePolicy, expert_trajs: Optional[Sequence[types.Trajectory]] = None, **dagger_trainer_kwargs, ): """Builds SimpleDAggerTrainer. Args: venv: Vectorized training environment. Note that when the robot action is randomly injected (in accordance with `beta_schedule` argument), every individual environment will get a robot action simultaneously for that timestep. scratch_dir: Directory to use to store intermediate training information (e.g. for resuming training). expert_policy: The expert policy used to generate synthetic demonstrations. expert_trajs: Optional starting dataset that is inserted into the round 0 dataset. dagger_trainer_kwargs: Other keyword arguments passed to the superclass initializer `DAggerTrainer.__init__`. Raises: ValueError: The observation or action space does not match between `venv` and `expert_policy`. """ super().__init__(venv=venv, scratch_dir=scratch_dir, **dagger_trainer_kwargs) self.expert_policy = expert_policy if expert_policy.observation_space != self.venv.observation_space: raise ValueError( "Mismatched observation space between expert_policy and venv", ) if expert_policy.action_space != self.venv.action_space: raise ValueError("Mismatched action space between expert_policy and venv") # TODO(shwang): # Might welcome Transitions and DataLoaders as sources of expert data # in the future too, but this will require some refactoring, so for # now we just have `expert_trajs`. if expert_trajs is not None: # Save each initial expert trajectory into the "round 0" demonstration # data directory. for traj in expert_trajs: _save_dagger_demo( traj, self._demo_dir_path_for_round(), prefix="initial_data", ) def train( self, total_timesteps: int, *, rollout_round_min_episodes: int = 3, rollout_round_min_timesteps: int = 500, bc_train_kwargs: Optional[dict] = None, ) -> None: """Train the DAgger agent. The agent is trained in "rounds" where each round consists of a dataset aggregation step followed by BC update step. During a dataset aggregation step, `self.expert_policy` is used to perform rollouts in the environment but there is a `1 - beta` chance (beta is determined from the round number and `self.beta_schedule`) that the DAgger agent's action is used instead. Regardless of whether the DAgger agent's action is used during the rollout, the expert action and corresponding observation are always appended to the dataset. The number of environment steps in the dataset aggregation stage is determined by the `rollout_round_min*` arguments. During a BC update step, `BC.train()` is called to update the DAgger agent on all data collected so far. Args: total_timesteps: The number of timesteps to train inside the environment. In practice this is a lower bound, because the number of timesteps is rounded up to finish the minimum number of episdoes or timesteps in the last DAgger training round, and the environment timesteps are executed in multiples of `self.venv.num_envs`. rollout_round_min_episodes: The number of episodes the must be completed completed before a dataset aggregation step ends. rollout_round_min_timesteps: The number of environment timesteps that must be completed before a dataset aggregation step ends. Also, that any round will always train for at least `self.batch_size` timesteps, because otherwise BC could fail to receive any batches. bc_train_kwargs: Keyword arguments for calling `BC.train()`. If the `log_rollouts_venv` key is not provided, then it is set to `self.venv` by default. If neither of the `n_epochs` and `n_batches` keys are provided, then `n_epochs` is set to `self.DEFAULT_N_EPOCHS`. """ total_timestep_count = 0 round_num = 0 while total_timestep_count < total_timesteps: collector = self.get_trajectory_collector() round_episode_count = 0 round_timestep_count = 0 sample_until = rollout.make_sample_until( min_timesteps=max(rollout_round_min_timesteps, self.batch_size), min_episodes=rollout_round_min_episodes, ) trajectories = rollout.generate_trajectories( policy=self.expert_policy, venv=collector, sample_until=sample_until, deterministic_policy=True, rng=collector.rng, ) for traj in trajectories: _save_dagger_demo(traj, collector.save_dir) self._logger.record_mean( "dagger/mean_episode_reward", np.sum(traj.rews), ) round_timestep_count += len(traj) total_timestep_count += len(traj) round_episode_count += len(trajectories) self._logger.record("dagger/total_timesteps", total_timestep_count) self._logger.record("dagger/round_num", round_num) self._logger.record("dagger/round_episode_count", round_episode_count) self._logger.record("dagger/round_timestep_count", round_timestep_count) # `logger.dump` is called inside BC.train within the following fn call: self.extend_and_update(bc_train_kwargs) round_num += 1
[ "torch.save", "torch.utils.data.DataLoader" ]
1.4.0
jadecastro/imitation
e05d7f5a4adfb021699647b80576c74ba6bd9443
0.0
import os os.environ['PYOPENGL_PLATFORM'] = 'osmesa' import glob import numpy as np import torch import yaml import trimesh import numbers import pickle as pkl from torch.utils import data from scipy.spatial import cKDTree as KDTree from scipy.spatial.transform import Rotation as R # from human_body_prior.mesh import MeshViewer from im2mesh.utils.libmesh import check_mesh_contains SMPL2IPNET_IDX = np.array([11, 12, 13, 11, 3, 8, 11, 1, 6, 11, 1, 6, 0, 11, 11, 0, 5, 10, 4, 9, 2, 7, 2, 7]) IPNET2SMPL_IDX = np.array([12, 7, 20, 4, 18, 16, 8, 21, 5, 19, 17, 0, 1, 2]) SMPL_parents = np.array([-1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21], dtype=np.int32) IPNet_parents = np.array([11, 3, 4, 12, 5, 11, 8, 9, 13, 10, 11, -1, 11, 11], dtype=np.int32) IPNet_parents_in_SMPL = np.array([9, 4, 18, 1, 16, 13, 5, 19, 2, 17, 14, -1, 0, 0], dtype=np.int32) ''' Copied from IPNet''' def get_3DSV(mesh): from opendr.camera import ProjectPoints from opendr.renderer import DepthRenderer WIDTH, HEIGHT = 250, 250 rt = R.from_euler('xyz', [np.pi, 0, 0]).as_rotvec() rt_mat = R.from_euler('xyz', [np.pi, 0, 0]).as_matrix() camera = ProjectPoints(v=mesh.vertices, f=np.array([WIDTH, WIDTH]), c=np.array([WIDTH, HEIGHT]) / 2., t=np.array([0, 0, 3.0]), rt=rt, k=np.zeros(5)) frustum = {'near': 1., 'far': 10., 'width': WIDTH, 'height': HEIGHT} rn = DepthRenderer(camera=camera, frustum=frustum, f=mesh.faces, overdraw=False) # import cv2 depth_image = rn.depth_image.copy() mask = depth_image < depth_image.max() - 0.01 depth_image[~mask] = 0 depth_image[mask] = 255 - (depth_image[mask] - depth_image[mask].min()) / (depth_image[mask].max() - depth_image[mask].min()) * 255 points3d = camera.unproject_depth_image(rn.r) mask = points3d[:, :, 2] > np.min(points3d[:, :, 2]) + 0.01 points3d = points3d[mask] return points3d, depth_image class CAPESingleViewDataset(data.Dataset): ''' CAPE dataset class. ''' def __init__(self, dataset_folder, subjects=['00032', '00096', '00122', '00127', '00134', '00145', '00159', '00215', '02474', '03223', '03284', '03331', '03375', '03383', '03394'], mode='train', input_type='pointcloud', voxel_res=128, double_layer=False, use_aug=False, use_v_template=False, use_abs_bone_transforms=False, num_joints=24, input_pointcloud_n=5000, input_pointcloud_noise=0.001, points_size=2048, points_uniform_ratio=0.5, use_global_trans=False, normalized_scale=False, query_on_clothed=False, points_sigma=0.05, sequence_idx=None, subject_idx=None): ''' Initialization of the the 3D shape dataset. Args: dataset_folder (str): dataset folder ''' # Attributes self.cape_path = '/cluster/home/shawang/Datasets/CAPE' self.dataset_folder = dataset_folder self.subjects = subjects self.use_global_trans = use_global_trans self.use_aug = use_aug self.mode = mode self.normalized_scale = normalized_scale self.input_type = input_type self.voxel_res = voxel_res self.double_layer = double_layer self.num_joints = num_joints self.query_on_clothed = query_on_clothed self.use_abs_bone_transforms = use_abs_bone_transforms # if normalized_scale: # assert ( not use_global_trans ) self.points_size = points_size if self.mode in ['train', 'test'] else 100000 # self.points_padding = 0.1 self.points_padding = 1 / 3 # For IPNet, mesh is normalized to [-0.75, 0.75] while sampling space is [-1, 1] self.points_uniform_ratio = points_uniform_ratio if self.mode in ['train', 'test'] else 0.5 self.points_sigma = points_sigma # 5cm standard deviation for surface points if input_type == 'pointcloud': self.input_pointcloud_n = input_pointcloud_n self.input_pointcloud_noise = input_pointcloud_noise else: self.input_pointcloud_n = self.input_pointcloud_noise = 0 self.faces = np.load('body_models/misc/faces.npz')['faces'] self.skinning_weights = dict(np.load('body_models/misc/skinning_weights_all.npz')) self.posedirs = dict(np.load('body_models/misc/posedirs_all.npz')) if self.use_abs_bone_transforms: self.J_regressors = dict(np.load('body_models/misc/J_regressors.npz')) with open('body_models/misc/smpl_parts_dense.pkl', 'rb') as f: part_labels = pkl.load(f) labels = np.zeros(6890, dtype=np.int32) for idx, k in enumerate(part_labels): labels[part_labels[k]] = idx self.part_labels = labels self.use_v_template = use_v_template if use_v_template: self.v_templates = dict(np.load('body_models/misc/v_templates.npz')) # Get all data self.data = [] if subject_idx is not None: subjects = [subjects[subject_idx]] with open(os.path.join(self.cape_path, 'cape_release/misc/subj_genders.pkl'), 'rb') as f: genders = pkl.load(f) for subject in subjects: subject_dir = os.path.join(dataset_folder, subject) sequence_dirs = glob.glob(os.path.join(subject_dir, '*')) sequences = set() for sequence_dir in sequence_dirs: sequences.add(os.path.basename(sequence_dir).split('.')[0]) sequences = sorted(list(sequences)) if sequence_idx is not None: sequences = [sequences[sequence_idx]] for sequence in sequences: points_dir = os.path.join(subject_dir, sequence) points_files = sorted(glob.glob(os.path.join(points_dir, '*.npz'))) self.data += [ {'subset': 'cape', 'subject': subject, 'gender': genders[subject], 'sequence': sequence, 'data_path': points_file} for points_file in points_files ] # self.data = [self.data[200]] def augm_params(self): """Get augmentation parameters.""" if self.mode == 'train' and self.use_aug: # The rotation is a number in the area [-2*rotFactor, 2*rotFactor] # Roll rot_x = min(2*90, max(-2*90, np.random.randn()*90)) sn, cs = np.sin(np.pi / 180 * rot_x), np.cos(np.pi / 180 * rot_x) rot_x = np.eye(4) rot_x[1, 1] = cs rot_x[1, 2] = -sn rot_x[2, 1] = sn rot_x[2, 2] = cs rot_y = min(2*90, max(-2*90, np.random.randn()*90)) # Pitch sn, cs = np.sin(np.pi / 180 * rot_y), np.cos(np.pi / 180 * rot_y) rot_y = np.eye(4) rot_y[0, 0] = cs rot_y[0, 2] = sn rot_y[2, 0] = -sn rot_y[2, 2] = cs rot_z = min(2*90, max(-2*90, np.random.randn()*90)) # Yaw sn, cs = np.sin(np.pi / 180 * rot_z), np.cos(np.pi / 180 * rot_z) rot_z = np.eye(4) rot_z[0, 0] = cs rot_z[0, 1] = -sn rot_z[1, 0] = sn rot_z[1, 1] = cs rot_mat = np.dot(rot_x, np.dot(rot_y, rot_z)) # but it is identity with probability 3/5 if np.random.uniform() <= 0.6: rot_mat = np.eye(4) else: rot_mat = np.eye(4) return rot_mat def __len__(self): ''' Returns the length of the dataset. ''' return len(self.data) def __getitem__(self, idx): ''' Returns an item of the dataset. Args: idx (int): ID of data point ''' data_path = self.data[idx]['data_path'] subject = self.data[idx]['subject'] gender = self.data[idx]['gender'] data = {} aug_rot = self.augm_params().astype(np.float32) points_dict = np.load(data_path) # 3D models and points loc = points_dict['loc'].astype(np.float32) trans = points_dict['trans'].astype(np.float32) root_loc = points_dict['Jtr'][0].astype(np.float32) scale = points_dict['scale'].astype(np.float32) # Also get GT SMPL poses pose_body = points_dict['pose_body'] pose_hand = points_dict['pose_hand'] pose = np.concatenate([pose_body, pose_hand], axis=-1) pose = R.from_rotvec(pose.reshape([-1, 3])) body_mesh_a_pose = points_dict['a_pose_mesh_points'] # Break symmetry if given in float16: if body_mesh_a_pose.dtype == np.float16: body_mesh_a_pose = body_mesh_a_pose.astype(np.float32) body_mesh_a_pose += 1e-4 * np.random.randn(*body_mesh_a_pose.shape) else: body_mesh_a_pose = body_mesh_a_pose.astype(np.float32) n_smpl_points = body_mesh_a_pose.shape[0] bone_transforms = points_dict['bone_transforms'].astype(np.float32) # Apply rotation augmentation to bone transformations bone_transforms_aug = np.matmul(np.expand_dims(aug_rot, axis=0), bone_transforms) bone_transforms_aug[:, :3, -1] += root_loc - trans - np.dot(aug_rot[:3, :3], root_loc - trans) bone_transforms = bone_transforms_aug # Get augmented posed-mesh skinning_weights = self.skinning_weights[gender] if self.use_abs_bone_transforms: J_regressor = self.J_regressors[gender] T = np.dot(skinning_weights, bone_transforms.reshape([-1, 16])).reshape([-1, 4, 4]) homogen_coord = np.ones([n_smpl_points, 1], dtype=np.float32) a_pose_homo = np.concatenate([body_mesh_a_pose - trans, homogen_coord], axis=-1).reshape([n_smpl_points, 4, 1]) body_mesh = np.matmul(T, a_pose_homo)[:, :3, 0].astype(np.float32) + trans posed_trimesh = trimesh.Trimesh(vertices=body_mesh, faces=self.faces) input_pointcloud, _ = get_3DSV(posed_trimesh) noise = self.input_pointcloud_noise * np.random.randn(*input_pointcloud.shape) input_pointcloud = (input_pointcloud + noise).astype(np.float32) # Get extents of model. bb_min = np.min(input_pointcloud, axis=0) bb_max = np.max(input_pointcloud, axis=0) # total_size = np.sqrt(np.square(bb_max - bb_min).sum()) total_size = (bb_max - bb_min).max() # Scales all dimensions equally. scale = max(1.6, total_size) # 1.6 is the magic number from IPNet loc = np.array( [(bb_min[0] + bb_max[0]) / 2, (bb_min[1] + bb_max[1]) / 2, (bb_min[2] + bb_max[2]) / 2], dtype=np.float32 ) if self.input_pointcloud_n <= input_pointcloud.shape[0]: rand_inds = np.random.choice(input_pointcloud.shape[0], size=self.input_pointcloud_n, replace=False) else: rand_inds = np.random.choice(input_pointcloud.shape[0], size=self.input_pointcloud_n, replace=True) input_pointcloud = input_pointcloud[rand_inds, :] n_points_uniform = int(self.points_size * self.points_uniform_ratio) n_points_surface = self.points_size - n_points_uniform boxsize = 1 + self.points_padding points_uniform = np.random.rand(n_points_uniform, 3) points_uniform = boxsize * (points_uniform - 0.5) # Scale points in (padded) unit box back to the original space points_uniform *= scale points_uniform += loc # Sample points around posed-mesh surface n_points_surface_cloth = n_points_surface // 2 if self.double_layer else n_points_surface points_surface = posed_trimesh.sample(n_points_surface_cloth) points_surface += np.random.normal(scale=self.points_sigma, size=points_surface.shape) if self.double_layer: n_points_surface_minimal = n_points_surface // 2 posedir = self.posedirs[gender] minimal_shape_path = os.path.join(self.cape_path, 'cape_release', 'minimal_body_shape', subject, subject + '_minimal.npy') minimal_shape = np.load(minimal_shape_path) pose_mat = pose.as_matrix() ident = np.eye(3) pose_feature = (pose_mat - ident).reshape([207, 1]) pose_offsets = np.dot(posedir.reshape([-1, 207]), pose_feature).reshape([6890, 3]) minimal_shape += pose_offsets if self.use_abs_bone_transforms: Jtr_cano = np.dot(J_regressor, minimal_shape) Jtr_cano = Jtr_cano[IPNET2SMPL_IDX, :] a_pose_homo = np.concatenate([minimal_shape, homogen_coord], axis=-1).reshape([n_smpl_points, 4, 1]) minimal_body_mesh = np.matmul(T, a_pose_homo)[:, :3, 0].astype(np.float32) + trans minimal_posed_trimesh = trimesh.Trimesh(vertices=minimal_body_mesh, faces=self.faces) # Sample points around minimally clothed posed-mesh surface points_surface_minimal = minimal_posed_trimesh.sample(n_points_surface_minimal) points_surface_minimal += np.random.normal(scale=self.points_sigma, size=points_surface_minimal.shape) points_surface = np.vstack([points_surface, points_surface_minimal]) # Check occupancy values for sampled ponits query_points = np.vstack([points_uniform, points_surface]).astype(np.float32) if self.double_layer: # Double-layer occupancies, as was done in IPNet # 0: outside, 1: between body and cloth, 2: inside body mesh occupancies_cloth = check_mesh_contains(posed_trimesh, query_points) occupancies_minimal = check_mesh_contains(minimal_posed_trimesh, query_points) occupancies = occupancies_cloth.astype(np.int64) occupancies[occupancies_minimal] = 2 else: occupancies = check_mesh_contains(posed_trimesh, query_points).astype(np.float32) # Skinning inds by querying nearest SMPL vertex on the clohted mesh kdtree = KDTree(body_mesh if self.query_on_clothed else minimal_body_mesh) _, p_idx = kdtree.query(query_points) pts_W = skinning_weights[p_idx, :] skinning_inds_ipnet = self.part_labels[p_idx] # skinning inds (14 parts) skinning_inds_smpl = pts_W.argmax(1) # full skinning inds (24 parts) if self.num_joints == 14: skinning_inds = skinning_inds_ipnet else: skinning_inds = skinning_inds_smpl # Invert LBS to get query points in A-pose space T = np.dot(pts_W, bone_transforms.reshape([-1, 16])).reshape([-1, 4, 4]) T = np.linalg.inv(T) homogen_coord = np.ones([self.points_size, 1], dtype=np.float32) posed_homo = np.concatenate([query_points - trans, homogen_coord], axis=-1).reshape([self.points_size, 4, 1]) query_points_a_pose = np.matmul(T, posed_homo)[:, :3, 0].astype(np.float32) + trans if self.use_abs_bone_transforms: assert (not self.use_v_template and self.num_joints == 24) query_points_a_pose -= Jtr_cano[SMPL2IPNET_IDX[skinning_inds], :] if self.use_v_template: v_template = self.v_templates[gender] pose_shape_offsets = v_template - minimal_shape query_points_template = query_points_a_pose + pose_shape_offsets[p_idx, :] sc_factor = 1.0 / scale * 1.5 if self.normalized_scale else 1.0 # 1.5 is the magic number from IPNet offset = loc bone_transforms_inv = bone_transforms.copy() bone_transforms_inv[:, :3, -1] += trans - loc bone_transforms_inv = np.linalg.inv(bone_transforms_inv) bone_transforms_inv[:, :3, -1] *= sc_factor data = { None: (query_points - offset) * sc_factor, 'occ': occupancies, 'trans': trans, 'root_loc': root_loc, 'pts_a_pose': (query_points_a_pose - (trans if self.use_global_trans else offset)) * sc_factor, 'skinning_inds': skinning_inds, 'skinning_inds_ipnet': skinning_inds_ipnet, 'skinning_inds_smpl': skinning_inds_smpl, 'loc': loc, 'scale': scale, 'bone_transforms': bone_transforms, 'bone_transforms_inv': bone_transforms_inv, } if self.use_v_template: data.update({'pts_template': (query_points_template - (trans if self.use_global_trans else offset)) * sc_factor}) if self.mode in ['test']: data.update({'smpl_vertices': body_mesh, 'smpl_a_pose_vertices': body_mesh_a_pose}) if self.double_layer: data.update({'minimal_smpl_vertices': minimal_body_mesh}) data_out = {} field_name = 'points' if self.mode in ['train', 'test'] else 'points_iou' for k, v in data.items(): if k is None: data_out[field_name] = v else: data_out['%s.%s' % (field_name, k)] = v if self.input_type == 'pointcloud': data_out.update( {'inputs': (input_pointcloud - offset) * sc_factor, 'idx': idx, } ) elif self.input_type == 'voxel': voxels = np.unpackbits(points_dict['voxels_occ']).astype(np.float32) voxels = np.reshape(voxels, [self.voxel_res] * 3) data_out.update( {'inputs': voxels, 'idx': idx, } ) else: raise ValueError('Unsupported input type: {}'.format(self.input_type)) return data_out def get_model_dict(self, idx): return self.data[idx]
[ "torch.utils.data.items", "torch.utils.data.update" ]
0.0.8
taconite/PTF
a8789c9f752aea2944c2a75e04cc2aa21c7e4a00
1.0
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, The HugginFace Inc. team and University of Washington. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import json import logging import random import h5py import six import torch from tqdm import tqdm import copy import numpy as np import tokenization from post import _improve_answer_span, _check_is_max_context logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) class SquadExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, qas_id=None, question_text=None, doc_tokens=None, orig_answer_text=None, start_position=None, end_position=None, title="", doc_idx=0, pid=0): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.title = title self.doc_idx = doc_idx self.pid = pid def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) return s class ContextFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, start_position=None, end_position=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.start_position = start_position self.end_position = end_position class QuestionFeatures(object): def __init__(self, unique_id, example_index, input_ids, input_mask, tokens): self.unique_id = unique_id self.example_index = example_index self.input_ids = input_ids self.input_mask = input_mask self.tokens = tokens def read_squad_examples(input_file, is_training, context_only=False, question_only=False, draft=False, draft_num_examples=12, tokenizer=None): """Read a SQuAD json file into a list of SquadExample.""" print("reading", input_file) with open(input_file, "r") as reader: input_data = json.load(reader)["data"] examples = [] for doc_idx, entry in enumerate(input_data): title = entry['title'] for pid, paragraph in enumerate(entry["paragraphs"]): if not question_only: paragraph_text = paragraph["context"] doc_tokens, char_to_word_offset = context_to_tokens_and_offset(paragraph_text, tokenizer=tokenizer) if context_only: example = SquadExample( doc_tokens=doc_tokens, title=title, doc_idx=doc_idx, pid=pid) examples.append(example) if draft and len(examples) == draft_num_examples: return examples continue else: for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None if is_training: if False: # len(qa["answers"]) > 1: raise ValueError( "For training, each question should have exactly 1 answer.") elif len(qa["answers"]) == 0: orig_answer_text = "" start_position = -1 end_position = -1 else: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( tokenization.whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue if question_only: example = SquadExample( qas_id=qas_id, question_text=question_text) else: example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, title=title, pid=pid) examples.append(example) if draft and len(examples) == draft_num_examples: return examples return examples # This is for training and direct evaluation (slow eval) def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 features = [] question_features = [] for (example_index, example) in enumerate(tqdm(examples, desc='converting')): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - 2 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] tokens_ = [] token_to_orig_map = {} token_is_max_context = {} tokens.append("[CLS]") tokens_.append("[CLS]") for token in query_tokens: tokens_.append(token) tokens_.append("[SEP]") for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) tokens.append("[SEP]") input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids_ = tokenizer.convert_tokens_to_ids(tokens_) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) input_mask_ = [1] * len(input_ids_) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length while len(input_ids_) < max_query_length + 2: input_ids_.append(0) input_mask_.append(0) assert len(input_ids_) == max_query_length + 2 assert len(input_mask_) == max_query_length + 2 start_position = None end_position = None if example.start_position is not None and example.start_position < 0: start_position, end_position = -1, -1 elif is_training: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 if (example.start_position < doc_start or example.end_position < doc_start or example.start_position > doc_end or example.end_position > doc_end): continue doc_offset = 1 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if example_index < 20: logger.info("*** Example ***") logger.info("unique_id: %s" % (unique_id)) logger.info("example_index: %s" % (example_index)) logger.info("doc_span_index: %s" % (doc_span_index)) logger.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) logger.info("token_to_orig_map: %s" % " ".join( ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) logger.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) if is_training: answer_text = " ".join(tokens[start_position:(end_position + 1)]) logger.info("start_position: %d" % (start_position)) logger.info("end_position: %d" % (end_position)) logger.info( "answer: %s" % (tokenization.printable_text(answer_text))) features.append( ContextFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, start_position=start_position, end_position=end_position)) question_features.append( QuestionFeatures( unique_id=unique_id, example_index=example_index, input_ids=input_ids_, input_mask=input_mask_, tokens=tokens_)) unique_id += 1 return features, question_features # This is for embedding questions def convert_questions_to_features(examples, tokenizer, max_query_length=None): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 question_features = [] for (example_index, example) in enumerate(tqdm(examples, desc='converting')): query_tokens = tokenizer.tokenize(example.question_text) if max_query_length is None: max_query_length = len(query_tokens) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] for _ in enumerate(range(1)): tokens_ = [] tokens_.append("[CLS]") for token in query_tokens: tokens_.append(token) tokens_.append("[SEP]") input_ids_ = tokenizer.convert_tokens_to_ids(tokens_) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask_ = [1] * len(input_ids_) # Zero-pad up to the sequence length. while len(input_ids_) < max_query_length + 2: input_ids_.append(0) input_mask_.append(0) assert len(input_ids_) == max_query_length + 2 assert len(input_mask_) == max_query_length + 2 if example_index < 20: logger.info("*** Example ***") logger.info("unique_id: %s" % (unique_id)) logger.info("example_index: %s" % (example_index)) logger.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in query_tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids_])) logger.info( "input_mask: %s" % " ".join([str(x) for x in input_mask_])) question_features.append( QuestionFeatures( unique_id=unique_id, example_index=example_index, input_ids=input_ids_, input_mask=input_mask_, tokens=tokens_)) unique_id += 1 return question_features def convert_documents_to_features(examples, tokenizer, max_seq_length, doc_stride): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 features = [] for (example_index, example) in enumerate(tqdm(examples, desc='converting')): tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - 2 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} tokens.append("[CLS]") for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) tokens.append("[SEP]") input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length if example_index < 20: logger.info("*** Example ***") logger.info("unique_id: %s" % (unique_id)) logger.info("example_index: %s" % (example_index)) logger.info("doc_span_index: %s" % (doc_span_index)) logger.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) logger.info("token_to_orig_map: %s" % " ".join( ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) logger.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) features.append( ContextFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask)) unique_id += 1 return features def _context_to_tokens_and_offset(context): def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in context: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) return doc_tokens, char_to_word_offset def context_to_tokens_and_offset(context, tokenizer=None): if tokenizer is None: return _context_to_tokens_and_offset(context) # Tokenizer must be content-preserving (e.g. PTB changes " to '', which is not acceptable) doc_tokens = tokenizer(context) char_to_word_offset = [] cur_pos = 0 for word_pos, token in enumerate(doc_tokens): new_pos = context.find(token, cur_pos) # set previous word's offset assert cur_pos >= 0, "cannot find `%s` in `%s`" % (token, context) char_to_word_offset.extend([max(0, word_pos - 1)] * (new_pos - cur_pos)) assert context[len(char_to_word_offset)] == token[0] char_to_word_offset.extend([word_pos] * len(token)) cur_pos = new_pos + len(token) return doc_tokens, char_to_word_offset def inject_noise(input_ids, input_mask, clamp=False, clamp_prob=0.5, min_len=0, max_len=300, pad=0, replace=False, replace_prob=0.3, unk_prob=0.1, vocab_size=30522, unk=100, min_id=999, shuffle=False, shuffle_prob=0.2): input_ids = input_ids[:] input_mask = input_mask[:] if clamp and random.random() < clamp_prob: len_ = sum(input_mask) - 2 new_len = random.choice(range(min_len, max_len + 1)) if new_len < len_: input_ids[new_len + 1] = input_ids[len_ + 1] for i in range(new_len + 2, len(input_ids)): input_ids[i] = pad input_mask[i] = 0 len_ = sum(input_mask) - 2 if replace: for i in range(1, len_ + 1): if random.random() < replace_prob: if random.random() < unk_prob: new_id = unk else: new_id = random.choice(range(min_id, vocab_size)) input_ids[i] = new_id if shuffle: for i in range(1, len_ + 1): if random.random() < shuffle_prob: new_id = random.choice(input_ids[1:len_ + 1]) input_ids[i] = new_id return input_ids, input_mask def inject_noise_to_neg_features(features, clamp=False, clamp_prob=1.0, min_len=0, max_len=300, pad=0, replace=False, replace_prob=1.0, unk_prob=1.0, vocab_size=30522, unk=100, min_id=999, shuffle=False, shuffle_prob=1.0): features = copy.deepcopy(features) input_ids = features.input_ids input_mask = features.input_mask if clamp and random.random() < clamp_prob: len_ = sum(input_mask) - 2 new_len = random.choice(range(min_len, min(len_, max_len) + 1)) input_ids[new_len + 1] = input_ids[len_ + 1] for i in range(new_len + 2, len(input_ids)): input_ids[i] = pad input_mask[i] = 0 len_ = sum(input_mask) - 2 if replace: for i in range(1, len_ + 1): if random.random() < replace_prob: if random.random() < unk_prob: new_id = unk else: new_id = random.choice(range(min_id, vocab_size)) input_ids[i] = new_id if shuffle: for i in range(1, len_ + 1): if random.random() < shuffle_prob: new_id = random.choice(input_ids[1:len_ + 1]) input_ids[i] = new_id return features def inject_noise_to_neg_features_list(features_list, noise_prob=1.0, **kwargs): out = [inject_noise_to_neg_features(features, **kwargs) if random.random() < noise_prob else features for features in features_list] return out def sample_similar_questions(examples, features, question_emb_file, cuda=False): with h5py.File(question_emb_file, 'r') as fp: ids = [] mats = [] for id_, mat in fp.items(): ids.append(id_) mats.append(mat[:]) id2idx = {id_: idx for idx, id_ in enumerate(ids)} large_mat = np.concatenate(mats, axis=0) large_mat = torch.tensor(large_mat).float() if cuda: large_mat = large_mat.to(torch.device('cuda')) """ sim = large_mat.matmul(large_mat.t()) sim_argsort = (-sim).argsort(dim=1).cpu().numpy() """ id2features = collections.defaultdict(list) for feature in features: id_ = examples[feature.example_index].qas_id id2features[id_].append(feature) sampled_features = [] for feature in tqdm(features, desc='sampling'): example = examples[feature.example_index] example_tup = (example.title, example.doc_idx, example.pid) id_ = example.qas_id idx = id2idx[id_] similar_feature = None sim = (large_mat.matmul(large_mat[idx:idx+1, :].t()).squeeze(1)) sim_argsort = (-sim).argsort(dim=0).cpu().numpy() for target_idx in sim_argsort: target_features = id2features[ids[target_idx]] for target_feature in target_features: target_example = examples[target_feature.example_index] target_tup = (target_example.title, target_example.doc_idx, target_example.pid) if example_tup != target_tup: similar_feature = target_feature break if similar_feature is not None: break assert similar_feature is not None sampled_features.append(similar_feature) return sampled_features
[ "torch.device", "torch.tensor" ]
1.0
soheeyang/denspi
f540b6a547f012823fc6c2bb10077df6bccc13a6
0.3
import torch from torch import nn, optim from torch.nn import functional as F EPS = 1e-12 class VAE(nn.Module): def __init__(self, img_size, latent_spec, temperature=.67, use_cuda=False): """ Class which defines model and forward pass. Parameters ---------- img_size : tuple of ints Size of images. E.g. (1, 32, 32) or (3, 64, 64). latent_spec : dict Specifies latent distribution. For example: {'cont': 10, 'disc': [10, 4, 3]} encodes 10 normal variables and 3 gumbel softmax variables of dimension 10, 4 and 3. A latent spec can include both 'cont' and 'disc' or only 'cont' or only 'disc'. temperature : float Temperature for gumbel softmax distribution. use_cuda : bool If True moves model to GPU """ super(VAE, self).__init__() self.use_cuda = use_cuda # Parameters self.img_size = img_size self.is_continuous = 'cont' in latent_spec self.is_discrete = 'disc' in latent_spec self.latent_spec = latent_spec self.num_pixels = img_size[1] * img_size[2] self.temperature = temperature self.hidden_dim = 256 # Hidden dimension of linear layer self.reshape = (64, 4, 4) # Shape required to start transpose convs # Calculate dimensions of latent distribution self.latent_cont_dim = 0 self.latent_disc_dim = 0 self.num_disc_latents = 0 if self.is_continuous: self.latent_cont_dim = self.latent_spec['cont'] if self.is_discrete: self.latent_disc_dim += sum([dim for dim in self.latent_spec['disc']]) self.num_disc_latents = len(self.latent_spec['disc']) self.latent_dim = self.latent_cont_dim + self.latent_disc_dim # Define encoder layers # Intial layer encoder_layers = [ nn.Conv2d(self.img_size[0], 32, (4, 4), stride=2, padding=1), nn.ReLU() ] # Add additional layer if (64, 64) images if self.img_size[1:] == (64, 64): encoder_layers += [ nn.Conv2d(32, 32, (4, 4), stride=2, padding=1), nn.ReLU() ] elif self.img_size[1:] == (32, 32): # (32, 32) images are supported but do not require an extra layer pass else: raise RuntimeError("{} sized images not supported. Only (None, 32, 32) and (None, 64, 64) supported. Build your own architecture or reshape images!".format(img_size)) # Add final layers encoder_layers += [ nn.Conv2d(32, 64, (4, 4), stride=2, padding=1), nn.ReLU(), nn.Conv2d(64, 64, (4, 4), stride=2, padding=1), nn.ReLU() ] # Define encoder self.img_to_features = nn.Sequential(*encoder_layers) # Map encoded features into a hidden vector which will be used to # encode parameters of the latent distribution self.features_to_hidden = nn.Sequential( nn.Linear(64 * 4 * 4, self.hidden_dim), nn.ReLU() ) # Encode parameters of latent distribution if self.is_continuous: self.fc_mean = nn.Linear(self.hidden_dim, self.latent_cont_dim) self.fc_log_var = nn.Linear(self.hidden_dim, self.latent_cont_dim) if self.is_discrete: # Linear layer for each of the categorical distributions fc_alphas = [] for disc_dim in self.latent_spec['disc']: fc_alphas.append(nn.Linear(self.hidden_dim, disc_dim)) self.fc_alphas = nn.ModuleList(fc_alphas) # Map latent samples to features to be used by generative model self.latent_to_features = nn.Sequential( nn.Linear(self.latent_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, 64 * 4 * 4), nn.ReLU() ) # Define decoder decoder_layers = [] # Additional decoding layer for (64, 64) images if self.img_size[1:] == (64, 64): decoder_layers += [ nn.ConvTranspose2d(64, 64, (4, 4), stride=2, padding=1), nn.ReLU() ] decoder_layers += [ nn.ConvTranspose2d(64, 32, (4, 4), stride=2, padding=1), nn.ReLU(), nn.ConvTranspose2d(32, 32, (4, 4), stride=2, padding=1), nn.ReLU(), nn.ConvTranspose2d(32, self.img_size[0], (4, 4), stride=2, padding=1), nn.Sigmoid() ] # Define decoder self.features_to_img = nn.Sequential(*decoder_layers) def encode(self, x): """ Encodes an image into parameters of a latent distribution defined in self.latent_spec. Parameters ---------- x : torch.Tensor Batch of data, shape (N, C, H, W) """ batch_size = x.size()[0] # Encode image to hidden features features = self.img_to_features(x) hidden = self.features_to_hidden(features.view(batch_size, -1)) # Output parameters of latent distribution from hidden representation latent_dist = {} if self.is_continuous: latent_dist['cont'] = [self.fc_mean(hidden), self.fc_log_var(hidden)] if self.is_discrete: latent_dist['disc'] = [] for fc_alpha in self.fc_alphas: latent_dist['disc'].append(F.softmax(fc_alpha(hidden), dim=1)) return latent_dist def reparameterize(self, latent_dist): """ Samples from latent distribution using the reparameterization trick. Parameters ---------- latent_dist : dict Dict with keys 'cont' or 'disc' or both, containing the parameters of the latent distributions as torch.Tensor instances. """ latent_sample = [] if self.is_continuous: mean, logvar = latent_dist['cont'] cont_sample = self.sample_normal(mean, logvar) latent_sample.append(cont_sample) if self.is_discrete: for alpha in latent_dist['disc']: disc_sample = self.sample_gumbel_softmax(alpha) latent_sample.append(disc_sample) # Concatenate continuous and discrete samples into one large sample return torch.cat(latent_sample, dim=1) def sample_normal(self, mean, logvar): """ Samples from a normal distribution using the reparameterization trick. Parameters ---------- mean : torch.Tensor Mean of the normal distribution. Shape (N, D) where D is dimension of distribution. logvar : torch.Tensor Diagonal log variance of the normal distribution. Shape (N, D) """ if self.training: std = torch.exp(0.5 * logvar) eps = torch.zeros(std.size()).normal_() if self.use_cuda: eps = eps.cuda() return mean + std * eps else: # Reconstruction mode return mean def sample_gumbel_softmax(self, alpha): """ Samples from a gumbel-softmax distribution using the reparameterization trick. Parameters ---------- alpha : torch.Tensor Parameters of the gumbel-softmax distribution. Shape (N, D) """ if self.training: # Sample from gumbel distribution unif = torch.rand(alpha.size()) if self.use_cuda: unif = unif.cuda() gumbel = -torch.log(-torch.log(unif + EPS) + EPS) # Reparameterize to create gumbel softmax sample log_alpha = torch.log(alpha + EPS) logit = (log_alpha + gumbel) / self.temperature return F.softmax(logit, dim=1) else: # In reconstruction mode, pick most likely sample _, max_alpha = torch.max(alpha, dim=1) one_hot_samples = torch.zeros(alpha.size()) # On axis 1 of one_hot_samples, scatter the value 1 at indices # max_alpha. Note the view is because scatter_ only accepts 2D # tensors. one_hot_samples.scatter_(1, max_alpha.view(-1, 1).data.cpu(), 1) if self.use_cuda: one_hot_samples = one_hot_samples.cuda() return one_hot_samples def decode(self, latent_sample): """ Decodes sample from latent distribution into an image. Parameters ---------- latent_sample : torch.Tensor Sample from latent distribution. Shape (N, L) where L is dimension of latent distribution. """ features = self.latent_to_features(latent_sample) return self.features_to_img(features.view(-1, *self.reshape)) def forward(self, x): """ Forward pass of model. Parameters ---------- x : torch.Tensor Batch of data. Shape (N, C, H, W) """ latent_dist = self.encode(x) latent_sample = self.reparameterize(latent_dist) return self.decode(latent_sample), latent_dist
[ "torch.nn.Linear", "torch.cat", "torch.nn.ModuleList", "torch.nn.Sigmoid", "torch.nn.Sequential", "torch.max", "torch.nn.ConvTranspose2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.functional.softmax", "torch.log", "torch.exp" ]
0.3.1
7wik/joint-vae
4ba1ba7c202cb7c2dd8f1467e1f1b82ef5efd344
1.7
# Loss functions import torch import torch.nn as nn from utils.metrics import bbox_iou from utils.torch_utils import is_parallel def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps class BCEBlurWithLogitsLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=0.05): super(BCEBlurWithLogitsLoss, self).__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() self.alpha = alpha def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred = torch.sigmoid(pred) # prob from logits dx = pred - true # reduce only missing label effects # dx = (pred - true).abs() # reduce missing label and false label effects alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) loss *= alpha_factor return loss.mean() class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class QFocalLoss(nn.Module): # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(QFocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred_prob = torch.sigmoid(pred) # prob from logits alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = torch.abs(true - pred_prob) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class ComputeLoss: # Compute losses def __init__(self, model, autobalance=False): super(ComputeLoss, self).__init__() self.sort_obj_iou = False device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance for k in 'na', 'nc', 'nl', 'anchors': setattr(self, k, getattr(det, k)) def __call__(self, p, targets): # predictions, targets, model device = targets.device lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets # Losses for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0], device=device) # target obj n = b.shape[0] # number of targets if n: ps = pi[b, a, gj, gi] # prediction subset corresponding to targets # Regression pxy = ps[:, :2].sigmoid() * 2. - 0.5 pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) lbox += (1.0 - iou).mean() # iou loss # Objectness score_iou = iou.detach().clamp(0).type(tobj.dtype) if self.sort_obj_iou: sort_id = torch.argsort(score_iou) b, a, gj, gi, score_iou = b[sort_id], a[sort_id], gj[sort_id], gi[sort_id], score_iou[sort_id] tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * score_iou # iou ratio # Classification if self.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets t[range(n), tcls[i]] = self.cp lcls += self.BCEcls(ps[:, 5:], t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] obji = self.BCEobj(pi[..., 4], tobj) lobj += obji * self.balance[i] # obj loss if self.autobalance: self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() if self.autobalance: self.balance = [x / self.balance[self.ssi] for x in self.balance] lbox *= self.hyp['box'] lobj *= self.hyp['obj'] lcls *= self.hyp['cls'] bs = tobj.shape[0] # batch size return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach() def build_targets(self, p, targets): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(7, device=targets.device) # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(self.nl): anchors = self.anchors[i] gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch
[ "torch.zeros", "torch.sigmoid", "torch.cat", "torch.arange", "torch.max", "torch.argsort", "torch.ones", "torch.abs", "torch.full_like", "torch.tensor", "torch.nn.BCEWithLogitsLoss", "torch.ones_like", "torch.zeros_like", "torch.exp" ]
1.7.0
Daesung-Jung/baseball_pitchdesign
d4dc1eb5fb42bbf0bb3564be8def0492b80a0074
1.0
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning XLNet for question answering with beam search using 🤗 Accelerate. """ # You can also adapt this script on your own question answering task. Pointers for this are left as comments. import argparse import logging import math import os import random from pathlib import Path import datasets import numpy as np import torch from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from accelerate import Accelerator from huggingface_hub import Repository from transformers import ( AdamW, DataCollatorWithPadding, EvalPrediction, SchedulerType, XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizerFast, default_data_collator, get_scheduler, set_seed, ) from transformers.file_utils import get_full_repo_name from transformers.utils import check_min_version from transformers.utils.versions import require_version from utils_qa import postprocess_qa_predictions_with_beam_search # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.14.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt") logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a Question Answering task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--do_predict", action="store_true", help="Eval the question answering model") parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--test_file", type=str, default=None, help="A csv or a json file containing the Prediction data." ) parser.add_argument( "--max_seq_length", type=int, default=384, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_lengh` is passed.", ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_seq_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--doc_stride", type=int, default=128, help="When splitting up a long document into chunks how much stride to take between chunks.", ) parser.add_argument( "--n_best_size", type=int, default=20, help="The total number of n-best predictions to generate when looking for an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="The threshold used to select the null answer: if the best answer has a score that is less than " "the score of the null answer minus this threshold, the null answer is selected for this example. " "Only useful when `version_2_with_negative=True`.", ) parser.add_argument( "--version_2_with_negative", type=bool, default=False, help="If true, some of the examples do not have an answer.", ) parser.add_argument( "--max_answer_length", type=int, default=30, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.", ) parser.add_argument( "--max_train_samples", type=int, default=None, help="For debugging purposes or quicker training, truncate the number of training examples to this " "value if set.", ) parser.add_argument( "--max_eval_samples", type=int, default=None, help="For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set.", ) parser.add_argument( "--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--max_predict_samples", type=int, default=None, help="For debugging purposes or quicker training, truncate the number of prediction examples to this", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") args = parser.parse_args() # Sanity checks if ( args.dataset_name is None and args.train_file is None and args.validation_file is None and args.test_file is None ): raise ValueError("Need either a dataset name or a training/validation/test file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.test_file is not None: extension = args.test_file.split(".")[-1] assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file if args.test_file is not None: data_files["test"] = args.test_file extension = args.train_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files, field="data") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = XLNetConfig.from_pretrained(args.model_name_or_path) tokenizer = XLNetTokenizerFast.from_pretrained(args.model_name_or_path) model = XLNetForQuestionAnswering.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config ) # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. column_names = raw_datasets["train"].column_names question_column_name = "question" if "question" in column_names else column_names[0] context_column_name = "context" if "context" in column_names else column_names[1] answer_column_name = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). pad_on_right = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(args.max_seq_length, tokenizer.model_max_length) # Training preprocessing def prepare_train_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, return_token_type_ids=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers). special_tokens = tokenized_examples.pop("special_tokens_mask") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] tokenized_examples["is_impossible"] = [] tokenized_examples["cls_index"] = [] tokenized_examples["p_mask"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) tokenized_examples["cls_index"].append(cls_index) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples["token_type_ids"][i] for k, s in enumerate(special_tokens[i]): if s: sequence_ids[k] = 3 context_idx = 1 if pad_on_right else 0 # Build the p_mask: non special tokens and context gets 0.0, the others get 1.0. # The cls token gets 1.0 too (for predictions of empty answers). tokenized_examples["p_mask"].append( [ 0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0 for k, s in enumerate(sequence_ids) ] ) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) tokenized_examples["is_impossible"].append(1.0) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != context_idx: token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != context_idx: token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) tokenized_examples["is_impossible"].append(1.0) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) tokenized_examples["is_impossible"].append(0.0) return tokenized_examples if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if args.max_train_samples is not None: # We will select sample from whole data if agument is specified train_dataset = train_dataset.select(range(args.max_train_samples)) # Create train feature from dataset with accelerator.main_process_first(): train_dataset = train_dataset.map( prepare_train_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on train dataset", ) if args.max_train_samples is not None: # Number of samples might increase during Feature Creation, We select only specified max samples train_dataset = train_dataset.select(range(args.max_train_samples)) # Validation preprocessing def prepare_validation_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, return_token_type_ids=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers). special_tokens = tokenized_examples.pop("special_tokens_mask") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] # We still provide the index of the CLS token and the p_mask to the model, but not the is_impossible label. tokenized_examples["cls_index"] = [] tokenized_examples["p_mask"] = [] for i, input_ids in enumerate(tokenized_examples["input_ids"]): # Find the CLS token in the input ids. cls_index = input_ids.index(tokenizer.cls_token_id) tokenized_examples["cls_index"].append(cls_index) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples["token_type_ids"][i] for k, s in enumerate(special_tokens[i]): if s: sequence_ids[k] = 3 context_idx = 1 if pad_on_right else 0 # Build the p_mask: non special tokens and context gets 0.0, the others 1.0. tokenized_examples["p_mask"].append( [ 0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0 for k, s in enumerate(sequence_ids) ] ) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_idx else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_examples = raw_datasets["validation"] if args.max_eval_samples is not None: # We will select sample from whole data eval_examples = eval_examples.select(range(args.max_eval_samples)) # Validation Feature Creation with accelerator.main_process_first(): eval_dataset = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) if args.max_eval_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again eval_dataset = eval_dataset.select(range(args.max_eval_samples)) if args.do_predict: if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_examples = raw_datasets["test"] if args.max_predict_samples is not None: # We will select sample from whole data predict_examples = predict_examples.select(range(args.max_predict_samples)) # Predict Feature Creation with accelerator.main_process_first(): predict_dataset = predict_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on prediction dataset", ) if args.max_predict_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again predict_dataset = predict_dataset.select(range(args.max_predict_samples)) # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataset_for_model = eval_dataset.remove_columns(["example_id", "offset_mapping"]) eval_dataloader = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) if args.do_predict: predict_dataset_for_model = predict_dataset.remove_columns(["example_id", "offset_mapping"]) predict_dataloader = DataLoader( predict_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) # Post-processing: def post_processing_function(examples, features, predictions, stage="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. predictions, scores_diff_json = postprocess_qa_predictions_with_beam_search( examples=examples, features=features, predictions=predictions, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, start_n_top=model.config.start_n_top, end_n_top=model.config.end_n_top, output_dir=args.output_dir, prefix=stage, ) # Format the result to the format the metric expects. if args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": scores_diff_json[k]} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=formatted_predictions, label_ids=references) metric = load_metric("squad_v2" if args.version_2_with_negative else "squad") def create_and_fill_np_array(start_or_end_logits, dataset, max_len): """ Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor Args: start_or_end_logits(:obj:`tensor`): This is the output predictions of the model. We can only enter either start or end logits. eval_dataset: Evaluation dataset max_len(:obj:`int`): The maximum length of the output tensor. ( See the model.eval() part for more details ) """ step = 0 # create a numpy array and fill it with -100. logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float32) # Now since we have create an array now we will populate it with the outputs gathered using accelerator.gather for i, output_logit in enumerate(start_or_end_logits): # populate columns # We have to fill it such that we have to take the whole tensor and replace it on the newly created array # And after every iteration we have to change the step batch_size = output_logit.shape[0] cols = output_logit.shape[1] if step + batch_size < len(dataset): logits_concat[step : step + batch_size, :cols] = output_logit else: logits_concat[step:, :cols] = output_logit[: len(dataset) - step] step += batch_size return logits_concat # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be # shorter in multiprocess) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) # intialize all lists to collect the batches all_start_top_log_probs = [] all_start_top_index = [] all_end_top_log_probs = [] all_end_top_index = [] all_cls_logits = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) start_top_log_probs = outputs.start_top_log_probs start_top_index = outputs.start_top_index end_top_log_probs = outputs.end_top_log_probs end_top_index = outputs.end_top_index cls_logits = outputs.cls_logits if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered start_top_log_probs = accelerator.pad_across_processes(start_top_log_probs, dim=1, pad_index=-100) start_top_index = accelerator.pad_across_processes(start_top_index, dim=1, pad_index=-100) end_top_log_probs = accelerator.pad_across_processes(end_top_log_probs, dim=1, pad_index=-100) end_top_index = accelerator.pad_across_processes(end_top_index, dim=1, pad_index=-100) cls_logits = accelerator.pad_across_processes(cls_logits, dim=1, pad_index=-100) all_start_top_log_probs.append(accelerator.gather(start_top_log_probs).cpu().numpy()) all_start_top_index.append(accelerator.gather(start_top_index).cpu().numpy()) all_end_top_log_probs.append(accelerator.gather(end_top_log_probs).cpu().numpy()) all_end_top_index.append(accelerator.gather(end_top_index).cpu().numpy()) all_cls_logits.append(accelerator.gather(cls_logits).cpu().numpy()) max_len = max([x.shape[1] for x in all_end_top_log_probs]) # Get the max_length of the tensor # concatenate all numpy arrays collected above start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, eval_dataset, max_len) start_top_index_concat = create_and_fill_np_array(all_start_top_index, eval_dataset, max_len) end_top_log_probs_concat = create_and_fill_np_array(all_end_top_log_probs, eval_dataset, max_len) end_top_index_concat = create_and_fill_np_array(all_end_top_index, eval_dataset, max_len) cls_logits_concat = np.concatenate(all_cls_logits, axis=0) # delete the list of numpy arrays del start_top_log_probs del start_top_index del end_top_log_probs del end_top_index del cls_logits outputs_numpy = ( start_top_log_probs_concat, start_top_index_concat, end_top_log_probs_concat, end_top_index_concat, cls_logits_concat, ) prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) eval_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}") if args.do_predict: # intialize all lists to collect the batches all_start_top_log_probs = [] all_start_top_index = [] all_end_top_log_probs = [] all_end_top_index = [] all_cls_logits = [] for step, batch in enumerate(predict_dataloader): with torch.no_grad(): outputs = model(**batch) start_top_log_probs = outputs.start_top_log_probs start_top_index = outputs.start_top_index end_top_log_probs = outputs.end_top_log_probs end_top_index = outputs.end_top_index cls_logits = outputs.cls_logits if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered start_top_log_probs = accelerator.pad_across_processes(start_top_log_probs, dim=1, pad_index=-100) start_top_index = accelerator.pad_across_processes(start_top_index, dim=1, pad_index=-100) end_top_log_probs = accelerator.pad_across_processes(end_top_log_probs, dim=1, pad_index=-100) end_top_index = accelerator.pad_across_processes(end_top_index, dim=1, pad_index=-100) cls_logits = accelerator.pad_across_processes(cls_logits, dim=1, pad_index=-100) all_start_top_log_probs.append(accelerator.gather(start_top_log_probs).cpu().numpy()) all_start_top_index.append(accelerator.gather(start_top_index).cpu().numpy()) all_end_top_log_probs.append(accelerator.gather(end_top_log_probs).cpu().numpy()) all_end_top_index.append(accelerator.gather(end_top_index).cpu().numpy()) all_cls_logits.append(accelerator.gather(cls_logits).cpu().numpy()) max_len = max([x.shape[1] for x in all_end_top_log_probs]) # Get the max_length of the tensor # concatenate all numpy arrays collected above start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, predict_dataset, max_len) start_top_index_concat = create_and_fill_np_array(all_start_top_index, predict_dataset, max_len) end_top_log_probs_concat = create_and_fill_np_array(all_end_top_log_probs, predict_dataset, max_len) end_top_index_concat = create_and_fill_np_array(all_end_top_index, predict_dataset, max_len) cls_logits_concat = np.concatenate(all_cls_logits, axis=0) # delete the list of numpy arrays del start_top_log_probs del start_top_index del end_top_log_probs del end_top_index del cls_logits outputs_numpy = ( start_top_log_probs_concat, start_top_index_concat, end_top_log_probs_concat, end_top_index_concat, cls_logits_concat, ) prediction = post_processing_function(predict_examples, predict_dataset, outputs_numpy) predict_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Predict metrics: {predict_metric}") if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) if __name__ == "__main__": main()
[ "torch.no_grad", "torch.utils.data.DataLoader" ]
1.0
jecoz/transformers
cbfda413389830fc2788f82f49279c4c566b4194
1.5
import torch def repeat_parameter(parameter, *sizes): parameter.data = parameter.data.repeat(*sizes) if parameter.grad is not None: parameter.grad = parameter.grad.repeat(*sizes) def qkv_weight_repeat(parameter, ratio): q, k, v = torch.chunk(parameter, 3, dim=0) q = q.repeat(ratio, ratio) k = k.repeat(ratio, ratio) v = v.repeat(ratio, ratio) return torch.cat([q, k, v], dim=0) def expand_qkv(qkv_net, ratio): qkv_net.weight.data = qkv_weight_repeat(qkv_net.weight.data, ratio) if qkv_net.weight.grad is not None: qkv_net.weight.grad = qkv_weight_repeat(qkv_net.weight.grad, ratio) def openai_compute(n_params, batch_size, training_steps): # given in PF/s (hence the / 24 / 3600) return 6 * n_params * batch_size * training_steps / 24 / 3600 def excluded_from_params(parameter: torch.nn.Parameter, vocab_size=-1): return vocab_size in parameter.shape def non_emb_param_count(model: torch.nn.Module, vocab_size=-1): return sum(p.numel() for p in model.parameters() if not excluded_from_params(p, vocab_size))
[ "torch.cat", "torch.chunk" ]
1.5.0
TevenLeScao/transformer-xl
f15c845d83fe7952e841cda92e277919e8ec10fe
1.5
import torch import torch.nn.functional as F import torch.autograd import a3t.diffai.helpers as h def catNonNullErrors(op, ref_errs=None): # the way of things is ugly def doop(er1, er2): erS, erL = (er1, er2) sS, sL = (erS.size()[0], erL.size()[0]) if sS == sL: # TODO: here we know we used transformers on either side which didnt introduce new error terms (this is a hack for hybrid zonotopes and doesn't work with adaptive error term adding). return op(erS, erL) if ref_errs is not None: sz = ref_errs.size()[0] else: sz = min(sS, sL) p1 = op(erS[:sz], erL[:sz]) erSrem = erS[sz:] erLrem = erS[sz:] p2 = op(erSrem, h.zeros(erSrem.shape)) p3 = op(h.zeros(erLrem.shape), erLrem) return torch.cat((p1, p2, p3), dim=0) return doop def creluBoxy(dom): if dom.errors is None: if dom.beta is None: return dom.new(F.relu(dom.head), None, None) er = dom.beta mx = F.relu(dom.head + er) mn = F.relu(dom.head - er) return dom.new((mn + mx) / 2, (mx - mn) / 2, None) aber = torch.abs(dom.errors) sm = torch.sum(aber, 0) if not dom.beta is None: sm += dom.beta mx = dom.head + sm mn = dom.head - sm should_box = mn.lt(0) * mx.gt(0) gtz = dom.head.gt(0).to_dtype() mx /= 2 newhead = h.ifThenElse(should_box, mx, gtz * dom.head) newbeta = h.ifThenElse(should_box, mx, gtz * (dom.beta if not dom.beta is None else 0)) newerr = (1 - should_box.to_dtype()) * gtz * dom.errors return dom.new(newhead, newbeta, newerr) def creluBoxySound(dom): if dom.errors is None: if dom.beta is None: return dom.new(F.relu(dom.head), None, None) er = dom.beta mx = F.relu(dom.head + er) mn = F.relu(dom.head - er) return dom.new((mn + mx) / 2, (mx - mn) / 2 + 2e-6, None) aber = torch.abs(dom.errors) sm = torch.sum(aber, 0) if not dom.beta is None: sm += dom.beta mx = dom.head + sm mn = dom.head - sm should_box = mn.lt(0) * mx.gt(0) gtz = dom.head.gt(0).to_dtype() mx /= 2 newhead = h.ifThenElse(should_box, mx, gtz * dom.head) newbeta = h.ifThenElse(should_box, mx + 2e-6, gtz * (dom.beta if not dom.beta is None else 0)) newerr = (1 - should_box.to_dtype()) * gtz * dom.errors return dom.new(newhead, newbeta, newerr) def creluSwitch(dom): if dom.errors is None: if dom.beta is None: return dom.new(F.relu(dom.head), None, None) er = dom.beta mx = F.relu(dom.head + er) mn = F.relu(dom.head - er) return dom.new((mn + mx) / 2, (mx - mn) / 2, None) aber = torch.abs(dom.errors) sm = torch.sum(aber, 0) if not dom.beta is None: sm += dom.beta mn = dom.head - sm mx = sm mx += dom.head should_box = mn.lt(0) * mx.gt(0) gtz = dom.head.gt(0) mn.neg_() should_boxer = mn.gt(mx) mn /= 2 newhead = h.ifThenElse(should_box, h.ifThenElse(should_boxer, mx / 2, dom.head + mn), gtz.to_dtype() * dom.head) zbet = dom.beta if not dom.beta is None else 0 newbeta = h.ifThenElse(should_box, h.ifThenElse(should_boxer, mx / 2, mn + zbet), gtz.to_dtype() * zbet) newerr = h.ifThenElseL(should_box, 1 - should_boxer, gtz).to_dtype() * dom.errors return dom.new(newhead, newbeta, newerr) def creluSmooth(dom): if dom.errors is None: if dom.beta is None: return dom.new(F.relu(dom.head), None, None) er = dom.beta mx = F.relu(dom.head + er) mn = F.relu(dom.head - er) return dom.new((mn + mx) / 2, (mx - mn) / 2, None) aber = torch.abs(dom.errors) sm = torch.sum(aber, 0) if not dom.beta is None: sm += dom.beta mn = dom.head - sm mx = sm mx += dom.head nmn = F.relu(-1 * mn) zbet = (dom.beta if not dom.beta is None else 0) newheadS = dom.head + nmn / 2 newbetaS = zbet + nmn / 2 newerrS = dom.errors mmx = F.relu(mx) newheadB = mmx / 2 newbetaB = newheadB newerrB = 0 eps = 0.0001 t = nmn / (mmx + nmn + eps) # mn.lt(0).to_dtype() * F.sigmoid(nmn - nmx) shouldnt_zero = mx.gt(0).to_dtype() newhead = shouldnt_zero * ((1 - t) * newheadS + t * newheadB) newbeta = shouldnt_zero * ((1 - t) * newbetaS + t * newbetaB) newerr = shouldnt_zero * ((1 - t) * newerrS + t * newerrB) return dom.new(newhead, newbeta, newerr) def creluNIPS(dom): if dom.errors is None: if dom.beta is None: return dom.new(F.relu(dom.head), None, None) er = dom.beta mx = F.relu(dom.head + er) mn = F.relu(dom.head - er) return dom.new((mn + mx) / 2, (mx - mn) / 2, None) sm = torch.sum(torch.abs(dom.errors), 0) if not dom.beta is None: sm += dom.beta mn = dom.head - sm mx = dom.head + sm mngz = mn >= 0.0 zs = h.zeros(dom.head.shape) diff = mx - mn lam = torch.where((mx > 0) & (diff > 0.0), mx / diff, zs) mu = lam * mn * (-0.5) betaz = zs if dom.beta is None else dom.beta newhead = torch.where(mngz, dom.head, lam * dom.head + mu) mngz += diff <= 0.0 newbeta = torch.where(mngz, betaz, lam * betaz + mu) # mu is always positive on this side newerr = torch.where(mngz, dom.errors, lam * dom.errors) return dom.new(newhead, newbeta, newerr) class MaxTypes: @staticmethod def ub(x): return x.ub() @staticmethod def only_beta(x): return x.beta if x.beta is not None else x.head * 0 @staticmethod def head_beta(x): return MaxTypes.only_beta(x) + x.head class HybridZonotope: def isSafe(self, target): od, _ = torch.min(h.preDomRes(self, target).lb(), 1) return od.gt(0.0).long() def isPoint(self): return False def labels(self): target = torch.max(self.ub(), 1)[1] l = list(h.preDomRes(self, target).lb()[0]) return [target.item()] + [i for i, v in zip(range(len(l)), l) if v <= 0] def relu(self): return self.customRelu(self) def __init__(self, head, beta, errors, customRelu=creluBoxy, **kargs): self.head = head self.errors = errors self.beta = beta self.customRelu = creluBoxy if customRelu is None else customRelu def new(self, *args, customRelu=None, **kargs): return self.__class__(*args, **kargs, customRelu=self.customRelu if customRelu is None else customRelu).checkSizes() def zono_to_hybrid(self, *args, **kargs): # we are already a hybrid zono. return self.new(self.head, self.beta, self.errors, **kargs) def hybrid_to_zono(self, *args, correlate=True, customRelu=None, **kargs): beta = self.beta errors = self.errors if correlate and beta is not None: batches = beta.shape[0] num_elem = h.product(beta.shape[1:]) ei = h.getEi(batches, num_elem) if len(beta.shape) > 2: ei = ei.contiguous().view(num_elem, *beta.shape) err = ei * beta errors = torch.cat((err, errors), dim=0) if errors is not None else err beta = None return Zonotope(self.head, beta, errors if errors is not None else (self.beta * 0).unsqueeze(0), customRelu=self.customRelu if customRelu is None else None) def abstractApplyLeaf(self, foo, *args, **kargs): return getattr(self, foo)(*args, **kargs) def decorrelate(self, cc_indx_batch_err): # keep these errors if self.errors is None: return self batch_size = self.head.shape[0] num_error_terms = self.errors.shape[0] beta = h.zeros(self.head.shape).to_dtype() if self.beta is None else self.beta errors = h.zeros([0] + list(self.head.shape)).to_dtype() if self.errors is None else self.errors inds_i = torch.arange(self.head.shape[0], device=h.device).unsqueeze(1).long() errors = errors.to_dtype().permute(1, 0, *list(range(len(self.errors.shape)))[2:]) sm = errors.clone() sm[inds_i, cc_indx_batch_err] = 0 beta = beta.to_dtype() + sm.abs().sum(dim=1) errors = errors[inds_i, cc_indx_batch_err] errors = errors.permute(1, 0, *list(range(len(self.errors.shape)))[2:]).contiguous() return self.new(self.head, beta, errors) def dummyDecorrelate(self, num_decorrelate): if num_decorrelate == 0 or self.errors is None: return self elif num_decorrelate >= self.errors.shape[0]: beta = self.beta if self.errors is not None: errs = self.errors.abs().sum(dim=0) if beta is None: beta = errs else: beta += errs return self.new(self.head, beta, None) return None def stochasticDecorrelate(self, num_decorrelate, choices=None, num_to_keep=False): dummy = self.dummyDecorrelate(num_decorrelate) if dummy is not None: return dummy num_error_terms = self.errors.shape[0] batch_size = self.head.shape[0] ucc_mask = h.ones([batch_size, self.errors.shape[0]]).long() cc_indx_batch_err = h.cudify(torch.multinomial(ucc_mask.to_dtype(), num_decorrelate if num_to_keep else num_error_terms - num_decorrelate, replacement=False)) if choices is None else choices return self.decorrelate(cc_indx_batch_err) def decorrelateMin(self, num_decorrelate, num_to_keep=False): dummy = self.dummyDecorrelate(num_decorrelate) if dummy is not None: return dummy num_error_terms = self.errors.shape[0] batch_size = self.head.shape[0] error_sum_b_e = self.errors.abs().view(self.errors.shape[0], batch_size, -1).sum(dim=2).permute(1, 0) cc_indx_batch_err = error_sum_b_e.topk(num_decorrelate if num_to_keep else num_error_terms - num_decorrelate)[1] return self.decorrelate(cc_indx_batch_err) def correlate(self, cc_indx_batch_beta): # given in terms of the flattened matrix. num_correlate = h.product(cc_indx_batch_beta.shape[1:]) beta = h.zeros(self.head.shape).to_dtype() if self.beta is None else self.beta errors = h.zeros([0] + list(self.head.shape)).to_dtype() if self.errors is None else self.errors batch_size = beta.shape[0] new_errors = h.zeros([num_correlate] + list(self.head.shape)).to_dtype() inds_i = torch.arange(batch_size, device=h.device).unsqueeze(1).long() nc = torch.arange(num_correlate, device=h.device).unsqueeze(1).long() new_errors = new_errors.permute(1, 0, *list(range(len(new_errors.shape)))[2:]).contiguous().view(batch_size, num_correlate, -1) new_errors[inds_i, nc.unsqueeze(0).expand([batch_size] + list(nc.shape)).squeeze(2), cc_indx_batch_beta] = \ beta.view(batch_size, -1)[inds_i, cc_indx_batch_beta] new_errors = new_errors.permute(1, 0, *list(range(len(new_errors.shape)))[2:]).contiguous().view(num_correlate, batch_size, *beta.shape[ 1:]) errors = torch.cat((errors, new_errors), dim=0) beta.view(batch_size, -1)[inds_i, cc_indx_batch_beta] = 0 return self.new(self.head, beta, errors) def stochasticCorrelate(self, num_correlate, choices=None): if num_correlate == 0: return self domshape = self.head.shape batch_size = domshape[0] num_pixs = h.product(domshape[1:]) num_correlate = min(num_correlate, num_pixs) ucc_mask = h.ones([batch_size, num_pixs]).long() cc_indx_batch_beta = h.cudify( torch.multinomial(ucc_mask.to_dtype(), num_correlate, replacement=False)) if choices is None else choices return self.correlate(cc_indx_batch_beta) def correlateMaxK(self, num_correlate): if num_correlate == 0: return self domshape = self.head.shape batch_size = domshape[0] num_pixs = h.product(domshape[1:]) num_correlate = min(num_correlate, num_pixs) concrete_max_image = self.ub().view(batch_size, -1) cc_indx_batch_beta = concrete_max_image.topk(num_correlate)[1] return self.correlate(cc_indx_batch_beta) def correlateMaxPool(self, *args, max_type=MaxTypes.ub, max_pool=F.max_pool2d, **kargs): domshape = self.head.shape batch_size = domshape[0] num_pixs = h.product(domshape[1:]) concrete_max_image = max_type(self) cc_indx_batch_beta = max_pool(concrete_max_image, *args, return_indices=True, **kargs)[1].view(batch_size, -1) return self.correlate(cc_indx_batch_beta) def checkSizes(self): if not self.errors is None: if not self.errors.size()[1:] == self.head.size(): raise Exception("Such bad sizes on error:", self.errors.shape, " head:", self.head.shape) if torch.isnan(self.errors).any(): raise Exception("Such nan in errors") if not self.beta is None: if not self.beta.size() == self.head.size(): raise Exception("Such bad sizes on beta") if torch.isnan(self.beta).any(): raise Exception("Such nan in errors") if self.beta.lt(0.0).any(): self.beta = self.beta.abs() return self def __mul__(self, flt): return self.new(self.head * flt, None if self.beta is None else self.beta * abs(flt), None if self.errors is None else self.errors * flt) def __truediv__(self, flt): flt = 1. / flt return self.new(self.head * flt, None if self.beta is None else self.beta * abs(flt), None if self.errors is None else self.errors * flt) def __add__(self, other): if isinstance(other, HybridZonotope): return self.new(self.head + other.head, h.msum(self.beta, other.beta, lambda a, b: a + b), h.msum(self.errors, other.errors, catNonNullErrors(lambda a, b: a + b))) else: # other has to be a standard variable or tensor return self.new(self.head + other, self.beta, self.errors) def addPar(self, a, b): return self.new(a.head + b.head, h.msum(a.beta, b.beta, lambda a, b: a + b), h.msum(a.errors, b.errors, catNonNullErrors(lambda a, b: a + b, self.errors))) def __sub__(self, other): if isinstance(other, HybridZonotope): return self.new(self.head - other.head , h.msum(self.beta, other.beta, lambda a, b: a + b) , h.msum(self.errors, None if other.errors is None else -other.errors, catNonNullErrors(lambda a, b: a + b))) else: # other has to be a standard variable or tensor return self.new(self.head - other, self.beta, self.errors) def bmm(self, other): hd = self.head.bmm(other) bet = None if self.beta is None else self.beta.bmm(other.abs()) if self.errors is None: er = None else: er = self.errors.matmul(other) return self.new(hd, bet, er) def getBeta(self): return self.head * 0 if self.beta is None else self.beta def getErrors(self): return (self.head * 0).unsqueeze(0) if self.beta is None else self.errors def merge(self, other, ref=None): # the vast majority of the time ref should be none here. Not for parallel computation with powerset s_beta = self.getBeta() # so that beta is never none sbox_u = self.head + s_beta sbox_l = self.head - s_beta o_u = other.ub() o_l = other.lb() o_in_s = (o_u <= sbox_u) & (o_l >= sbox_l) s_err_mx = self.errors.abs().sum(dim=0) if not isinstance(other, HybridZonotope): new_head = (self.head + other.center()) / 2 new_beta = torch.max(sbox_u + s_err_mx, o_u) - new_head return self.new(torch.where(o_in_s, self.head, new_head), torch.where(o_in_s, self.beta, new_beta), o_in_s.float() * self.errors) # TODO: could be more efficient if one of these doesn't have beta or errors but thats okay for now. s_u = sbox_u + s_err_mx s_l = sbox_l - s_err_mx obox_u = o_u - other.head obox_l = o_l + other.head s_in_o = (s_u <= obox_u) & (s_l >= obox_l) # TODO: could theoretically still do something better when one is contained partially in the other new_head = (self.head + other.center()) / 2 new_beta = torch.max(sbox_u + self.getErrors().abs().sum(dim=0), o_u) - new_head return self.new(torch.where(o_in_s, self.head, torch.where(s_in_o, other.head, new_head)) , torch.where(o_in_s, s_beta, torch.where(s_in_o, other.getBeta(), new_beta)) , h.msum(o_in_s.float() * self.errors, s_in_o.float() * other.errors, catNonNullErrors(lambda a, b: a + b, ref_errs=ref.errors if ref is not None else ref))) # these are both zero otherwise def conv(self, conv, weight, bias=None, **kargs): h = self.errors inter = h if h is None else h.view(-1, *h.size()[2:]) hd = conv(self.head, weight, bias=bias, **kargs) res = h if h is None else conv(inter, weight, bias=None, **kargs) return self.new(hd , None if self.beta is None else conv(self.beta, weight.abs(), bias=None, **kargs) , h if h is None else res.view(h.size()[0], h.size()[1], *res.size()[1:])) def conv1d(self, *args, **kargs): return self.conv(lambda x, *args, **kargs: x.conv1d(*args, **kargs), *args, **kargs) def conv2d(self, *args, **kargs): return self.conv(lambda x, *args, **kargs: x.conv2d(*args, **kargs), *args, **kargs) def conv3d(self, *args, **kargs): return self.conv(lambda x, *args, **kargs: x.conv3d(*args, **kargs), *args, **kargs) def conv_transpose1d(self, *args, **kargs): return self.conv(lambda x, *args, **kargs: x.conv_transpose1d(*args, **kargs), *args, **kargs) def conv_transpose2d(self, *args, **kargs): return self.conv(lambda x, *args, **kargs: x.conv_transpose2d(*args, **kargs), *args, **kargs) def conv_transpose3d(self, *args, **kargs): return self.conv(lambda x, *args, **kargs: x.conv_transpose3d(*args, **kargs), *args, **kargs) def matmul(self, other): return self.new(self.head.matmul(other), None if self.beta is None else self.beta.matmul(other.abs()), None if self.errors is None else self.errors.matmul(other)) def unsqueeze(self, i): return self.new(self.head.unsqueeze(i), None if self.beta is None else self.beta.unsqueeze(i), None if self.errors is None else self.errors.unsqueeze(i + 1)) def squeeze(self, dim): return self.new(self.head.squeeze(dim), None if self.beta is None else self.beta.squeeze(dim), None if self.errors is None else self.errors.squeeze(dim + 1 if dim >= 0 else dim)) def double(self): return self.new(self.head.double(), self.beta.double() if self.beta is not None else None, self.errors.double() if self.errors is not None else None) def float(self): return self.new(self.head.float(), self.beta.float() if self.beta is not None else None, self.errors.float() if self.errors is not None else None) def to_dtype(self): return self.new(self.head.to_dtype(), self.beta.to_dtype() if self.beta is not None else None, self.errors.to_dtype() if self.errors is not None else None) def sum(self, dim=1): return self.new(torch.sum(self.head, dim=dim), None if self.beta is None else torch.sum(self.beta, dim=dim), None if self.errors is None else torch.sum(self.errors, dim=dim + 1 if dim >= 0 else dim)) def view(self, *newshape): return self.new(self.head.view(*newshape), None if self.beta is None else self.beta.view(*newshape), None if self.errors is None else self.errors.view(self.errors.size()[0], *newshape)) def gather(self, dim, index): return self.new(self.head.gather(dim, index), None if self.beta is None else self.beta.gather(dim, index), None if self.errors is None else self.errors.gather(dim + 1, index.expand( [self.errors.size()[0]] + list(index.size())))) def concretize(self): if self.errors is None: return self return self.new(self.head, torch.sum(self.concreteErrors().abs(), 0), None) # maybe make a box? def cat(self, other, dim=0): return self.new(self.head.cat(other.head, dim=dim), h.msum(other.beta, self.beta, lambda a, b: a.cat(b, dim=dim)), h.msum(self.errors, other.errors, catNonNullErrors(lambda a, b: a.cat(b, dim + 1)))) def split(self, split_size, dim=0): heads = list(self.head.split(split_size, dim)) betas = list(self.beta.split(split_size, dim)) if not self.beta is None else None errorss = list(self.errors.split(split_size, dim + 1)) if not self.errors is None else None def makeFromI(i): return self.new(heads[i], None if betas is None else betas[i], None if errorss is None else errorss[i]) return tuple(makeFromI(i) for i in range(len(heads))) def concreteErrors(self): if self.beta is None and self.errors is None: raise Exception("shouldn't have both beta and errors be none") if self.errors is None: return self.beta.unsqueeze(0) if self.beta is None: return self.errors return torch.cat([self.beta.unsqueeze(0), self.errors], dim=0) def applyMonotone(self, foo, *args, **kargs): if self.beta is None and self.errors is None: return self.new(foo(self.head), None, None) beta = self.concreteErrors().abs().sum(dim=0) tp = foo(self.head + beta, *args, **kargs) bt = foo(self.head - beta, *args, **kargs) new_hybrid = self.new((tp + bt) / 2, (tp - bt) / 2, None) if self.errors is not None: return new_hybrid.correlateMaxK(self.errors.shape[0]) return new_hybrid def avg_pool2d(self, *args, **kargs): nhead = F.avg_pool2d(self.head, *args, **kargs) return self.new(nhead, None if self.beta is None else F.avg_pool2d(self.beta, *args, **kargs), None if self.errors is None else F.avg_pool2d(self.errors.view(-1, *self.head.shape[1:]), *args, **kargs).view(-1, *nhead.shape)) def adaptive_avg_pool2d(self, *args, **kargs): nhead = F.adaptive_avg_pool2d(self.head, *args, **kargs) return self.new(nhead, None if self.beta is None else F.adaptive_avg_pool2d(self.beta, *args, **kargs), None if self.errors is None else F.adaptive_avg_pool2d( self.errors.view(-1, *self.head.shape[1:]), *args, **kargs).view(-1, *nhead.shape)) def elu(self): return self.applyMonotone(F.elu) def selu(self): return self.applyMonotone(F.selu) def sigm(self): return self.applyMonotone(F.sigmoid) def softplus(self): if self.errors is None: if self.beta is None: return self.new(F.softplus(self.head), None, None) tp = F.softplus(self.head + self.beta) bt = F.softplus(self.head - self.beta) return self.new((tp + bt) / 2, (tp - bt) / 2, None) errors = self.concreteErrors() o = h.ones(self.head.size()) def sp(hd): return F.softplus(hd) # torch.log(o + torch.exp(hd)) # not very stable def spp(hd): ehd = torch.exp(hd) return ehd.div(ehd + o) def sppp(hd): ehd = torch.exp(hd) md = ehd + o return ehd.div(md.mul(md)) fa = sp(self.head) fpa = spp(self.head) a = self.head k = torch.sum(errors.abs(), 0) def evalG(r): return r.mul(r).mul(sppp(a + r)) m = torch.max(evalG(h.zeros(k.size())), torch.max(evalG(k), evalG(-k))) m = h.ifThenElse(a.abs().lt(k), torch.max(m, torch.max(evalG(a), evalG(-a))), m) m /= 2 return self.new(fa, m if self.beta is None else m + self.beta.mul(fpa), None if self.errors is None else self.errors.mul(fpa)) def center(self): return self.head def vanillaTensorPart(self): return self.head def lb(self): return self.head - self.concreteErrors().abs().sum(dim=0) def ub(self): return self.head + self.concreteErrors().abs().sum(dim=0) def size(self): return self.head.size() def diameter(self): abal = torch.abs(self.concreteErrors()).transpose(0, 1) return abal.sum(1).sum(1) # perimeter def loss(self, target, **args): r = -h.preDomRes(self, target).lb() return F.softplus(r.max(1)[0]) def deep_loss(self, act=F.relu, *args, **kargs): batch_size = self.head.shape[0] inds = torch.arange(batch_size, device=h.device).unsqueeze(1).long() def dl(l, u): ls, lsi = torch.sort(l, dim=1) ls_u = u[inds, lsi] def slidingMax(a): # using maxpool k = a.shape[1] ml = a.min(dim=1)[0].unsqueeze(1) inp = torch.cat((h.zeros([batch_size, k]), a - ml), dim=1) mpl = F.max_pool1d(inp.unsqueeze(1), kernel_size=k, stride=1, padding=0, return_indices=False).squeeze( 1) return mpl[:, :-1] + ml return act(slidingMax(ls_u) - ls).sum(dim=1) l = self.lb().view(batch_size, -1) u = self.ub().view(batch_size, -1) return (dl(l, u) + dl(-u, -l)) / (2 * l.shape[1]) # make it easier to regularize against class Zonotope(HybridZonotope): def applySuper(self, ret): batches = ret.head.size()[0] num_elem = h.product(ret.head.size()[1:]) ei = h.getEi(batches, num_elem) if len(ret.head.size()) > 2: ei = ei.contiguous().view(num_elem, *ret.head.size()) ret.errors = torch.cat((ret.errors, ei * ret.beta)) if not ret.beta is None else ret.errors ret.beta = None return ret.checkSizes() def zono_to_hybrid(self, *args, customRelu=None, **kargs): # we are already a hybrid zono. return HybridZonotope(self.head, self.beta, self.errors, customRelu=self.customRelu if customRelu is None else customRelu) def hybrid_to_zono(self, *args, **kargs): return self.new(self.head, self.beta, self.errors, **kargs) def applyMonotone(self, *args, **kargs): return self.applySuper(super(Zonotope, self).applyMonotone(*args, **kargs)) def softplus(self): return self.applySuper(super(Zonotope, self).softplus()) def relu(self): return self.applySuper(super(Zonotope, self).relu()) def splitRelu(self, *args, **kargs): return [self.applySuper(a) for a in super(Zonotope, self).splitRelu(*args, **kargs)] def mysign(x): e = x.eq(0).to_dtype() r = x.sign().to_dtype() return r + e def mulIfEq(grad, out, target): pred = out.max(1, keepdim=True)[1] is_eq = pred.eq(target.view_as(pred)).to_dtype() is_eq = is_eq.view([-1] + [1 for _ in grad.size()[1:]]).expand_as(grad) return is_eq def stdLoss(out, target): if torch.__version__[0] == "0": return F.cross_entropy(out, target, reduce=False) else: return F.cross_entropy(out, target, reduction='none') class ListDomain(object): def __init__(self, al, *args, **kargs): self.al = list(al) def new(self, *args, **kargs): return self.__class__(*args, **kargs) def isSafe(self, *args, **kargs): raise Exception("Domain Not Suitable For Testing") def labels(self): raise Exception("Domain Not Suitable For Testing") def isPoint(self): return all(a.isPoint() for a in self.al) def __mul__(self, flt): return self.new(a.__mul__(flt) for a in self.al) def __truediv__(self, flt): return self.new(a.__truediv__(flt) for a in self.al) def __add__(self, other): if isinstance(other, ListDomain): return self.new(a.__add__(o) for a, o in zip(self.al, other.al)) else: return self.new(a.__add__(other) for a in self.al) def merge(self, other, ref=None): if ref is None: return self.new(a.merge(o) for a, o in zip(self.al, other.al)) return self.new(a.merge(o, ref=r) for a, o, r in zip(self.al, other.al, ref.al)) def addPar(self, a, b): return self.new(s.addPar(av, bv) for s, av, bv in zip(self.al, a.al, b.al)) def __sub__(self, other): if isinstance(other, ListDomain): return self.new(a.__sub__(o) for a, o in zip(self.al, other.al)) else: return self.new(a.__sub__(other) for a in self.al) def abstractApplyLeaf(self, *args, **kargs): return self.new(a.abstractApplyLeaf(*args, **kargs) for a in self.al) def bmm(self, other): return self.new(a.bmm(other) for a in self.al) def matmul(self, other): return self.new(a.matmul(other) for a in self.al) def conv(self, *args, **kargs): return self.new(a.conv(*args, **kargs) for a in self.al) def conv1d(self, *args, **kargs): return self.new(a.conv1d(*args, **kargs) for a in self.al) def conv2d(self, *args, **kargs): return self.new(a.conv2d(*args, **kargs) for a in self.al) def conv3d(self, *args, **kargs): return self.new(a.conv3d(*args, **kargs) for a in self.al) def max_pool2d(self, *args, **kargs): return self.new(a.max_pool2d(*args, **kargs) for a in self.al) def avg_pool2d(self, *args, **kargs): return self.new(a.avg_pool2d(*args, **kargs) for a in self.al) def adaptive_avg_pool2d(self, *args, **kargs): return self.new(a.adaptive_avg_pool2d(*args, **kargs) for a in self.al) def unsqueeze(self, *args, **kargs): return self.new(a.unsqueeze(*args, **kargs) for a in self.al) def squeeze(self, *args, **kargs): return self.new(a.squeeze(*args, **kargs) for a in self.al) def view(self, *args, **kargs): return self.new(a.view(*args, **kargs) for a in self.al) def gather(self, *args, **kargs): return self.new(a.gather(*args, **kargs) for a in self.al) def sum(self, *args, **kargs): return self.new(a.sum(*args, **kargs) for a in self.al) def double(self): return self.new(a.double() for a in self.al) def float(self): return self.new(a.float() for a in self.al) def to_dtype(self): return self.new(a.to_dtype() for a in self.al) def vanillaTensorPart(self): return self.al[0].vanillaTensorPart() def center(self): return self.new(a.center() for a in self.al) def ub(self): return self.new(a.ub() for a in self.al) def lb(self): return self.new(a.lb() for a in self.al) def relu(self): return self.new(a.relu() for a in self.al) def splitRelu(self, *args, **kargs): return self.new(a.splitRelu(*args, **kargs) for a in self.al) def softplus(self): return self.new(a.softplus() for a in self.al) def elu(self): return self.new(a.elu() for a in self.al) def selu(self): return self.new(a.selu() for a in self.al) def sigm(self): return self.new(a.sigm() for a in self.al) def cat(self, other, *args, **kargs): return self.new(a.cat(o, *args, **kargs) for a, o in zip(self.al, other.al)) def split(self, *args, **kargs): return [self.new(*z) for z in zip(a.split(*args, **kargs) for a in self.al)] def size(self): return self.al[0].size() def loss(self, *args, **kargs): return sum(a.loss(*args, **kargs) for a in self.al) def deep_loss(self, *args, **kargs): return sum(a.deep_loss(*args, **kargs) for a in self.al) def checkSizes(self): for a in self.al: a.checkSizes() return self class TaggedDomain(object): def __init__(self, a, tag=None): self.tag = tag self.a = a def isSafe(self, *args, **kargs): return self.a.isSafe(*args, **kargs) def isPoint(self): return self.a.isPoint() def labels(self): raise Exception("Domain Not Suitable For Testing") def __mul__(self, flt): return TaggedDomain(self.a.__mul__(flt), self.tag) def __truediv__(self, flt): return TaggedDomain(self.a.__truediv__(flt), self.tag) def __add__(self, other): if isinstance(other, TaggedDomain): return TaggedDomain(self.a.__add__(other.a), self.tag) else: return TaggedDomain(self.a.__add__(other), self.tag) def addPar(self, a, b): return TaggedDomain(self.a.addPar(a.a, b.a), self.tag) def __sub__(self, other): if isinstance(other, TaggedDomain): return TaggedDomain(self.a.__sub__(other.a), self.tag) else: return TaggedDomain(self.a.__sub__(other), self.tag) def bmm(self, other): return TaggedDomain(self.a.bmm(other), self.tag) def matmul(self, other): return TaggedDomain(self.a.matmul(other), self.tag) def conv(self, *args, **kargs): return TaggedDomain(self.a.conv(*args, **kargs), self.tag) def conv1d(self, *args, **kargs): return TaggedDomain(self.a.conv1d(*args, **kargs), self.tag) def conv2d(self, *args, **kargs): return TaggedDomain(self.a.conv2d(*args, **kargs), self.tag) def conv3d(self, *args, **kargs): return TaggedDomain(self.a.conv3d(*args, **kargs), self.tag) def max_pool2d(self, *args, **kargs): return TaggedDomain(self.a.max_pool2d(*args, **kargs), self.tag) def avg_pool2d(self, *args, **kargs): return TaggedDomain(self.a.avg_pool2d(*args, **kargs), self.tag) def adaptive_avg_pool2d(self, *args, **kargs): return TaggedDomain(self.a.adaptive_avg_pool2d(*args, **kargs), self.tag) def unsqueeze(self, *args, **kargs): return TaggedDomain(self.a.unsqueeze(*args, **kargs), self.tag) def squeeze(self, *args, **kargs): return TaggedDomain(self.a.squeeze(*args, **kargs), self.tag) def abstractApplyLeaf(self, *args, **kargs): return TaggedDomain(self.a.abstractApplyLeaf(*args, **kargs), self.tag) def view(self, *args, **kargs): return TaggedDomain(self.a.view(*args, **kargs), self.tag) def gather(self, *args, **kargs): return TaggedDomain(self.a.gather(*args, **kargs), self.tag) def sum(self, *args, **kargs): return TaggedDomain(self.a.sum(*args, **kargs), self.tag) def double(self): return TaggedDomain(self.a.double(), self.tag) def float(self): return TaggedDomain(self.a.float(), self.tag) def to_dtype(self): return TaggedDomain(self.a.to_dtype(), self.tag) def vanillaTensorPart(self): return self.a.vanillaTensorPart() def center(self): return TaggedDomain(self.a.center(), self.tag) def ub(self): return TaggedDomain(self.a.ub(), self.tag) def lb(self): return TaggedDomain(self.a.lb(), self.tag) def relu(self): return TaggedDomain(self.a.relu(), self.tag) def splitRelu(self, *args, **kargs): return TaggedDomain(self.a.splitRelu(*args, **kargs), self.tag) def diameter(self): return self.a.diameter() def softplus(self): return TaggedDomain(self.a.softplus(), self.tag) def elu(self): return TaggedDomain(self.a.elu(), self.tag) def selu(self): return TaggedDomain(self.a.selu(), self.tag) def sigm(self): return TaggedDomain(self.a.sigm(), self.tag) def cat(self, other, *args, **kargs): return TaggedDomain(self.a.cat(other.a, *args, **kargs), self.tag) def split(self, *args, **kargs): return [TaggedDomain(z, self.tag) for z in self.a.split(*args, **kargs)] def size(self): return self.a.size() def loss(self, *args, **kargs): return self.tag.loss(self.a, *args, **kargs) def deep_loss(self, *args, **kargs): return self.a.deep_loss(*args, **kargs) def checkSizes(self): self.a.checkSizes() return self def merge(self, other, ref=None): return TaggedDomain(self.a.merge(other.a, ref=None if ref is None else ref.a), self.tag) class ListConjDomain(ListDomain): def __init__(self, al, *args, **kargs): super(ListConjDomain, self).__init__(al, args, kargs) def isSafe(self, target): assert len(self.al) > 0 od, _ = torch.min(h.preDomRes(self.al[0], target).lb(), 1) for a in self.al[1:]: od1, _ = torch.min(h.preDomRes(a, target).lb(), 1) od = torch.max(od, od1) return od.gt(0.0).long() def labels(self): raise NotImplementedError() def loss(self, target): r = self.al[0].ub() inds = torch.arange(r.shape[0], device=h.device, dtype=h.ltype) for a in self.al[1:]: r1 = a.ub() r = torch.min(r, r1) t = self.al[0].lb()[inds, target] for a in self.al[1:]: t1 = a.lb()[inds, target] t = torch.max(t, t1) r[inds, target] = t return r.loss(target) class ListDisjDomain(ListDomain): def __init__(self, al, *args, **kargs): super(ListDisjDomain, self).__init__(al, args, kargs) def isSafe(self, target): assert len(self.al) > 0 od, _ = torch.min(h.preDomRes(self.al[0], target).lb(), 1) for a in self.al[1:]: od1, _ = torch.min(h.preDomRes(a, target).lb(), 1) od = torch.min(od, od1) return od.gt(0.0).long() def labels(self): raise NotImplementedError() def loss(self, target): assert len(self.al) > 0 r = self.al[0].ub() inds = torch.arange(r.shape[0], device=h.device, dtype=h.ltype) for a in self.al[1:]: r1 = a.ub() r = torch.max(r, r1) t = self.al[0].lb()[inds, target] for a in self.al[1:]: t1 = a.lb()[inds, target] t = torch.min(t, t1) r[inds, target] = t return r.loss(target) class LabeledDomain(object): def __init__(self, label): self.label = label def box(self, o): self.o = o def to_dtype(self): return self def center(self): return self.o
[ "torch.cat", "torch.nn.functional.avg_pool2d", "torch.nn.functional.softplus", "torch.min", "torch.arange", "torch.max", "torch.isnan", "torch.nn.functional.adaptive_avg_pool2d", "torch.abs", "torch.nn.functional.cross_entropy", "torch.nn.functional.relu", "torch.exp", "torch.sort", "torch.where", "torch.sum" ]
1.5
ForeverZyh/NLP_training_framework
d5cc28bf389a3f57439a5650a614e341ea333bb8
1.10
# coding=utf-8 # Copyright (c) DIRECT Contributors """MRI model engine of DIRECT.""" import gc import pathlib import time from abc import abstractmethod from collections import defaultdict from os import PathLike from typing import Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import direct.data.transforms as T from direct.config import BaseConfig from direct.engine import DoIterationOutput, Engine from direct.functionals import SSIMLoss from direct.utils import communication, merge_list_of_dicts, multiply_function, reduce_list_of_dicts from direct.utils.communication import reduce_tensor_dict def _crop_volume( source: torch.Tensor, target: torch.Tensor, resolution: Union[List[int], Tuple[int, ...]] ) -> Tuple[torch.Tensor, torch.Tensor]: """2D source/target cropper. Parameters ---------- source: torch.Tensor Has shape (batch, height, width) target: torch.Tensor Has shape (batch, height, width) resolution: list of ints or tuple of ints Target resolution. Returns ------- (torch.Tensor, torch.Tensor) """ if not resolution or all(_ == 0 for _ in resolution): return source.unsqueeze(1), target.unsqueeze(1) # Added channel dimension. source_abs = T.center_crop(source, resolution).unsqueeze(1) # Added channel dimension. target_abs = T.center_crop(target, resolution).unsqueeze(1) # Added channel dimension. return source_abs, target_abs class MRIModelEngine(Engine): """Engine for MRI models. Each child class should implement their own :meth:`_do_iteration` method. """ def __init__( self, cfg: BaseConfig, model: nn.Module, device: str, forward_operator: Optional[Callable] = None, backward_operator: Optional[Callable] = None, mixed_precision: bool = False, **models: nn.Module, ): """Inits :class:`MRIModelEngine`. Parameters ---------- cfg: BaseConfig Configuration file. model: nn.Module Model. device: str Device. Can be "cuda" or "cpu". forward_operator: Callable, optional The forward operator. Default: None. backward_operator: Callable, optional The backward operator. Default: None. mixed_precision: bool Use mixed precision. Default: False. **models: nn.Module Additional models. """ super().__init__( cfg, model, device, forward_operator=forward_operator, backward_operator=backward_operator, mixed_precision=mixed_precision, **models, ) self._complex_dim = -1 self._coil_dim = 1 @abstractmethod def _do_iteration( self, data: Dict[str, torch.Tensor], loss_fns: Optional[Dict[str, Callable]] = None, regularizer_fns: Optional[Dict[str, Callable]] = None, ) -> DoIterationOutput: """To be implemented by child class. Should output a :meth:`DoIterationOutput` object with `output_image`, `sensitivity_map` and `data_dict` attributes. """ def build_loss(self) -> Dict: # TODO: Cropper is a processing output tool. def get_resolution(**data): """Be careful that this will use the cropping size of the FIRST sample in the batch.""" return _compute_resolution(self.cfg.training.loss.crop, data.get("reconstruction_size", None)) # TODO(jt) Ideally this is also configurable: # - Do in steps (use insertation order) # Crop -> then loss. def l1_loss(source: torch.Tensor, reduction: str = "mean", **data) -> torch.Tensor: """Calculate L1 loss given source and target. Parameters ---------- source: torch.Tensor Has shape (batch, [complex=2,] height, width) reduction: str Reduction type. Can be "sum" or "mean". data: Dict[str, torch.Tensor] Contains key "target" with value a tensor of shape (batch, height, width) Returns ------- l1_loss: torch.Tensor L1 loss. """ resolution = get_resolution(**data) l1_loss = F.l1_loss( *_crop_volume( T.modulus_if_complex(source, complex_axis=self._complex_dim), data["target"], resolution ), reduction=reduction, ) return l1_loss def l2_loss(source: torch.Tensor, reduction: str = "mean", **data) -> torch.Tensor: """Calculate L2 loss (MSE) given source and target. Parameters ---------- source: torch.Tensor Has shape (batch, [complex=2,] height, width) reduction: str Reduction type. Can be "sum" or "mean". data: Dict[str, torch.Tensor] Contains key "target" with value a tensor of shape (batch, height, width) Returns ------- l2_loss: torch.Tensor L2 loss. """ resolution = get_resolution(**data) l2_loss = F.mse_loss( *_crop_volume( T.modulus_if_complex(source, complex_axis=self._complex_dim), data["target"], resolution ), reduction=reduction, ) return l2_loss def ssim_loss(source: torch.Tensor, reduction: str = "mean", **data) -> torch.Tensor: """Calculate SSIM loss given source and target. Parameters ---------- source: torch.Tensor Has shape (batch, [complex=2,] height, width) reduction: str Reduction type. Can be "sum" or "mean". data: Dict[str, torch.Tensor] Contains key "target" with value a tensor of shape (batch, height, width) Returns ------- ssim_loss: torch.Tensor SSIM loss. """ resolution = get_resolution(**data) if reduction != "mean": raise AssertionError( f"SSIM loss can only be computed with reduction == 'mean'." f" Got reduction == {reduction}." ) source_abs, target_abs = _crop_volume( T.modulus_if_complex(source, complex_axis=self._complex_dim), data["target"], resolution ) data_range = torch.tensor([target_abs.max()], device=target_abs.device) ssim_loss = SSIMLoss().to(source_abs.device).forward(source_abs, target_abs, data_range=data_range) return ssim_loss # Build losses loss_dict = {} for curr_loss in self.cfg.training.loss.losses: # type: ignore loss_fn = curr_loss.function if loss_fn == "l1_loss": loss_dict[loss_fn] = multiply_function(curr_loss.multiplier, l1_loss) elif loss_fn == "l2_loss": loss_dict[loss_fn] = multiply_function(curr_loss.multiplier, l2_loss) elif loss_fn == "ssim_loss": loss_dict[loss_fn] = multiply_function(curr_loss.multiplier, ssim_loss) else: raise ValueError(f"{loss_fn} not permissible.") return loss_dict def compute_sensitivity_map(self, sensitivity_map: torch.Tensor) -> torch.Tensor: """Computes sensitivity maps :math:`\{S^k\}_{k=1}^{n_c}` if `sensitivity_model` is available. :math:`\{S^k\}_{k=1}^{n_c}` are normalized such that .. math:: \sum_{k=1}^{n_c}S^k {S^k}^* = I. Parameters ---------- sensitivity_map: torch.Tensor Sensitivity maps of shape (batch, coil, height, width, complex=2). Returns ------- sensitivity_map: torch.Tensor Normalized and refined sensitivity maps of shape (batch, coil, height, width, complex=2). """ # Some things can be done with the sensitivity map here, e.g. apply a u-net if "sensitivity_model" in self.models: # Move channels to first axis sensitivity_map = sensitivity_map.permute( (0, 1, 4, 2, 3) ) # shape (batch, coil, complex=2, height, width) sensitivity_map = self.compute_model_per_coil("sensitivity_model", sensitivity_map).permute( (0, 1, 3, 4, 2) ) # has channel last: shape (batch, coil, height, width, complex=2) # The sensitivity map needs to be normalized such that # So \sum_{i \in \text{coils}} S_i S_i^* = 1 sensitivity_map_norm = torch.sqrt( ((sensitivity_map**2).sum(self._complex_dim)).sum(self._coil_dim) ) # shape (batch, height, width) sensitivity_map_norm = sensitivity_map_norm.unsqueeze(self._coil_dim).unsqueeze(self._complex_dim) return T.safe_divide(sensitivity_map, sensitivity_map_norm) @torch.no_grad() def reconstruct_volumes( # type: ignore self, data_loader: DataLoader, loss_fns: Optional[Dict[str, Callable]] = None, regularizer_fns: Optional[Dict[str, Callable]] = None, add_target: bool = True, crop: Optional[str] = None, ): """Validation process. Assumes that each batch only contains slices of the same volume *AND* that these are sequentially ordered. Parameters ---------- data_loader: DataLoader loss_fns: Dict[str, Callable], optional regularizer_fns: Dict[str, Callable], optional add_target: bool If true, will add the target to the output crop: str, optional Crop type. Yields ------ (curr_volume, [curr_target,] loss_dict_list, filename): torch.Tensor, [torch.Tensor,], dict, pathlib.Path # TODO(jt): visualization should be a namedtuple or a dict or so """ # pylint: disable=too-many-locals, arguments-differ self.models_to_device() self.models_validation_mode() torch.cuda.empty_cache() # Let us inspect this data all_filenames = list(data_loader.dataset.volume_indices.keys()) # type: ignore num_for_this_process = len(list(data_loader.batch_sampler.sampler.volume_indices.keys())) # type: ignore self.logger.info( "Reconstructing a total of %s volumes. This process has %s volumes (world size: %s).", len(all_filenames), num_for_this_process, communication.get_world_size(), ) last_filename = None # At the start of evaluation, there are no filenames. curr_volume = None curr_target = None slice_counter = 0 filenames_seen = 0 # Loop over dataset. This requires the use of direct.data.sampler.DistributedSequentialSampler as this sampler # splits the data over the different processes, and outputs the slices linearly. The implicit assumption here is # that the slices are outputted from the Dataset *sequentially* for each volume one by one, and each batch only # contains data from one volume. time_start = time.time() loss_dict_list = [] # TODO: Use iter_idx to keep track of volume for _, data in enumerate(data_loader): torch.cuda.empty_cache() gc.collect() filename = _get_filename_from_batch(data) if last_filename is None: last_filename = filename # First iteration last_filename is not set. if last_filename != filename: curr_volume = None curr_target = None slice_counter = 0 last_filename = filename scaling_factors = data["scaling_factor"].clone() resolution = _compute_resolution( key=crop, reconstruction_size=data.get("reconstruction_size", None), ) # Compute output iteration_output = self._do_iteration(data, loss_fns=loss_fns, regularizer_fns=regularizer_fns) output = iteration_output.output_image loss_dict = iteration_output.data_dict # Output can be complex-valued, and has to be cropped. This holds for both output and target. output_abs = _process_output( output, scaling_factors, resolution=resolution, complex_axis=self._complex_dim, ) if add_target: target_abs = _process_output( data["target"], scaling_factors, resolution=resolution, complex_axis=self._complex_dim, ) if curr_volume is None: volume_size = len(data_loader.batch_sampler.sampler.volume_indices[filename]) # type: ignore curr_volume = torch.zeros(*(volume_size, *output_abs.shape[1:]), dtype=output_abs.dtype) loss_dict_list.append(loss_dict) if add_target: curr_target = curr_volume.clone() curr_volume[slice_counter : slice_counter + output_abs.shape[0], ...] = output_abs.cpu() if add_target: curr_target[slice_counter : slice_counter + output_abs.shape[0], ...] = target_abs.cpu() # type: ignore slice_counter += output_abs.shape[0] # Check if we had the last batch if slice_counter == volume_size: filenames_seen += 1 self.logger.info( "%i of %i volumes reconstructed: %s (shape = %s) in %.3fs.", filenames_seen, num_for_this_process, last_filename, list(curr_volume.shape), time.time() - time_start, ) # Maybe not needed. del data yield (curr_volume, curr_target, reduce_list_of_dicts(loss_dict_list), filename) if add_target else ( curr_volume, reduce_list_of_dicts(loss_dict_list), filename, ) @torch.no_grad() def evaluate( # type: ignore self, data_loader: DataLoader, loss_fns: Optional[Dict[str, Callable]], ): """Validation process. Assumes that each batch only contains slices of the same volume *AND* that these are sequentially ordered. Parameters ---------- data_loader: DataLoader loss_fns: Dict[str, Callable], optional Returns ------- loss_dict, all_gathered_metrics, visualize_slices, visualize_target """ # TODO(jt): visualization should be a namedtuple or a dict or so # TODO(gy): Implement visualization of extra keys. E.g. sensitivity_map. # pylint: disable=arguments-differ, too-many-locals self.models_to_device() self.models_validation_mode() torch.cuda.empty_cache() volume_metrics = self.build_metrics(self.cfg.validation.metrics) # type: ignore val_losses = [] val_volume_metrics: Dict[PathLike, Dict] = defaultdict(dict) # Container to for the slices which can be visualized in TensorBoard. visualize_slices: List[np.ndarray] = [] visualize_target: List[np.ndarray] = [] for _, output in enumerate( self.reconstruct_volumes( data_loader, loss_fns=loss_fns, add_target=True, crop=self.cfg.validation.crop # type: ignore ) ): volume, target, volume_loss_dict, filename = output curr_metrics = { metric_name: metric_fn(target, volume).clone() for metric_name, metric_fn in volume_metrics.items() } curr_metrics_string = ", ".join([f"{x}: {float(y)}" for x, y in curr_metrics.items()]) self.logger.info("Metrics for %s: %s", filename, curr_metrics_string) # TODO: Path can be tricky if it is not unique (e.g. image.h5) val_volume_metrics[filename.name] = curr_metrics val_losses.append(volume_loss_dict) # Log the center slice of the volume if len(visualize_slices) < self.cfg.logging.tensorboard.num_images: # type: ignore visualize_slices.append(volume[volume.shape[0] // 2]) visualize_target.append(target[target.shape[0] // 2]) # Average loss dict loss_dict = reduce_list_of_dicts(val_losses) reduce_tensor_dict(loss_dict) communication.synchronize() torch.cuda.empty_cache() # TODO: Does not work yet with normal gather. all_gathered_metrics = merge_list_of_dicts(communication.all_gather(val_volume_metrics)) return loss_dict, all_gathered_metrics, visualize_slices, visualize_target def compute_model_per_coil(self, model_name: str, data: torch.Tensor) -> torch.Tensor: """Performs forward pass of model `model_name` in `self.models` per coil. Parameters ---------- model_name: str Model to run. data: torch.Tensor Multi-coil data of shape (batch, coil, complex=2, height, width). Returns ------- output: torch.Tensor Computed output per coil. """ output = [] for idx in range(data.size(self._coil_dim)): subselected_data = data.select(self._coil_dim, idx) output.append(self.models[model_name](subselected_data)) return torch.stack(output, dim=self._coil_dim) def _process_output( data: torch.Tensor, scaling_factors: Optional[torch.Tensor] = None, resolution: Optional[Union[List[int], Tuple[int]]] = None, complex_axis: Optional[int] = -1, ) -> torch.Tensor: """Crops and scales input tensor. Parameters ---------- data: torch.Tensor scaling_factors: Optional[torch.Tensor] Scaling factor. Default: None. resolution: Optional[Union[List[int], Tuple[int]]] Resolution. Default: None. complex_axis: Optional[int] Dimension along which modulus of `data` will be computed (if it's complex). Default: -1 (last). Returns ------- torch.Tensor """ # data is of shape (batch, complex=2, height, width) if scaling_factors is not None: data = data * scaling_factors.view(-1, *((1,) * (len(data.shape) - 1))).to(data.device) data = T.modulus_if_complex(data, complex_axis=complex_axis) if len(data.shape) == 3: # (batch, height, width) data = data.unsqueeze(1) # Added channel dimension. if resolution is not None: data = T.center_crop(data, resolution).contiguous() return data def _compute_resolution( key: Optional[str], reconstruction_size: Optional[Union[List[int], Tuple[int]]] = None ) -> Union[List[int], None]: """Computes resolution. Parameters ---------- key: str Can be `header` or None. reconstruction_size: Optional[Union[List[int], Tuple[int]]] Reconstruction size. Default: None. Returns ------- resolution: Union[str, List[int], None] Resolution of reconstruction. """ if key == "header": # This will be of the form [tensor(x_0, x_1, ...), tensor(y_0, y_1,...), tensor(z_0, z_1, ...)] over # batches. resolution = [_.detach().cpu().numpy().tolist() for _ in reconstruction_size] # type: ignore # The volume sampler should give validation indices belonging to the *same* volume, so it should be # safe taking the first element, the matrix size are in x,y,z (we work in z,x,y). resolution = [_[0] for _ in resolution][:-1] return resolution elif not key: return None else: raise ValueError("Cropping should be either set to `header` to get the values from the header or None.") def _get_filename_from_batch(data: dict) -> pathlib.Path: filenames = data.pop("filename") if len(set(filenames)) != 1: raise ValueError( f"Expected a batch during validation to only contain filenames of one case. " f"Got {set(filenames)}." ) # This can be fixed when there is a custom collate_fn return pathlib.Path(filenames[0])
[ "torch.zeros", "torch.no_grad", "torch.stack", "torch.cuda.empty_cache" ]
1.10.2
NKI-AI/direct
7c9d59345b68ea70bc20a5cea2c895c6059f8e46
0.2
#!/usr/bin/env python3 """ An entry into the ml4seti signal classifier competition. This entry is simply a large densenet architecture convolutional neural network. For more information, see "Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf> """ import argparse import time import sklearn.metrics import numpy as np import torch import torch.nn as nn from torch.autograd import Variable import torch.optim.lr_scheduler import tabulate from dataset import Dataset from model import DenseNet from util import tprint, stats class Experiment(object): def __init__(self, directory, epochs=1, cuda=False, save=False, log_interval=30, load=None, split=(0.6, 0.2, 0.2), cache=False, minibatch_size=10, pretrained=False): self.dataset = Dataset(directory, split=split, cache=cache, minibatch_size=minibatch_size) self.epochs = epochs self.cuda = cuda self.save = save self.log_interval = log_interval self.model = DenseNet(pretrained) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.01) if load is not None: state = torch.load(load) self.model.load_state_dict(state['model']) self.optimizer.load_state_dict(state['optim']) if cuda: self.model = self.model.cuda() def train(self): print('Training %s epochs.' % self.epochs) loss_fun = nn.CrossEntropyLoss() scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, 'min', verbose=True, patience=3 ) last_print = time.time() for epoch in range(self.epochs): tprint('Starting epoch: %s' % epoch) self.model.train() self.optimizer.zero_grad() for minibatch, targets in self.dataset.train: minibatch = Variable(torch.stack(minibatch)) targets = Variable(torch.LongTensor(targets)) if self.cuda: minibatch = minibatch.cuda() targets = targets.cuda() out = self.model.forward(minibatch) loss = loss_fun(out, targets) loss.backward() self.optimizer.step() self.optimizer.zero_grad() if time.time() - last_print > self.log_interval: last_print = time.time() numer, denom = self.dataset.train.progress() tprint('Training: %s, %s/%s' % (epoch, numer, denom)) tprint('Training complete. Beginning validation.') self.dataset.train.reload() self.model.eval() last_print = time.time() for minibatch, targets in self.dataset.validate: minibatch = Variable(torch.stack(minibatch), volatile=True) targets = Variable(torch.LongTensor(targets), volatile=True) if self.cuda: minibatch = minibatch.cuda() targets = targets.cuda() out = self.model.forward(minibatch) validation_loss = loss_fun(out, targets) if time.time() - last_print > self.log_interval: last_print = time.time() numer, denom = self.dataset.validate.progress() tprint('Validating: %s, %s/%s' % (epoch, numer, denom)) self.dataset.validate.reload() scheduler.step(validation_loss.data[0]) if self.save: torch.save({ 'model': self.model.state_dict(), 'optim': self.optimizer.state_dict(), }, 'signet.%s.pth' % int(time.time())) def test(self): tprint('Beginning testing.') confusion_matrix = np.zeros((7, 7)).astype(np.int) last_print = time.time() for minibatch, targets in self.dataset.test: minibatch = Variable(torch.stack(minibatch), volatile=True) targets = Variable(torch.LongTensor(targets), volatile=True) if self.cuda: minibatch = minibatch.cuda() targets = targets.cuda() out = self.model.forward(minibatch) _, predicted = torch.max(out.data, 1) predicted = predicted.cpu().numpy() targets = targets.data.cpu().numpy() confusion_matrix += sklearn.metrics.confusion_matrix( predicted, targets, labels=[0, 1, 2, 3, 4, 5, 6] ).astype(np.int) if time.time() - last_print > self.log_interval: last_print = time.time() numer, denom = self.dataset.test.progress() tprint('Testing: %s/%s' % (numer, denom)) tprint('Testing complete.') print(confusion_matrix) print(tabulate.tabulate(stats(confusion_matrix))) def valid_split(arg): split = arg.split(',') if len(split) != 3: raise argparse.ArgumentTypeError("invalid split argument") try: train = float(split[0]) valid = float(split[1]) test = float(split[2]) except ValueError: raise argparse.ArgumentTypeError("split args must be numbers") denom = train + valid + test return train/denom, valid/denom, test/denom def main(): parser = argparse.ArgumentParser() parser.add_argument('directory', help='Directory containing full dataset') parser.add_argument( '-e', '--epochs', type=int, default=1, help='Number of epochs to train') parser.add_argument('-c', '--cuda', action='store_true', default=False) parser.add_argument( '--train', action='store_true', default=False, help='flag to signal script should train the model') parser.add_argument( '--test', action='store_true', default=False, help='flag to signal script should test the model') parser.add_argument( '-s', '--save', action='store_true', default=False, help='Will cause model to be saved at end of training') parser.add_argument( '-l', '--log-interval', type=int, default=30, help='# of seconds between log line prints') parser.add_argument( '-m', '--model', default=None, help='path to a pretrained model') parser.add_argument( '-p', '--split', default=(0.6, 0.2, 0.2), type=valid_split, help='train/validation/test set split') parser.add_argument( '--cache', default=False, action='store_true', help='flag to cache processed spectrograms') parser.add_argument( '-b', '--minibatch-size', type=int, default=10, help='size of each minibatch') parser.add_argument( '--pretrained', default=False, action='store_true', help='use DenseNet pretrained on ImageNet') args = parser.parse_args() if args.train or args.test: experiment = Experiment( args.directory, epochs=args.epochs, cuda=args.cuda, save=args.save, log_interval=args.log_interval, load=args.model, split=args.split, cache=args.cache, minibatch_size=args.minibatch_size, pretrained=args.pretrained) if args.train: experiment.train() if args.test: experiment.test() if __name__ == '__main__': main()
[ "torch.stack", "torch.max", "torch.LongTensor", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.load", "torch.nn.CrossEntropyLoss" ]
0.2.0
sagelywizard/ml4seti
d56ffd46ca598ff4d44d2bc274acb7dc59389acd
1.6
import os import time import glob import argparse import os.path as osp from tqdm import tqdm from typing import Optional, List, NamedTuple import numpy as np import torch from torch import Tensor import torch.nn.functional as F from torch.nn import ModuleList, Sequential, Linear, BatchNorm1d, ReLU, Dropout from torch.optim.lr_scheduler import StepLR from pytorch_lightning.metrics import Accuracy from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning import (LightningDataModule, LightningModule, Trainer, seed_everything) from torch_sparse import SparseTensor from torch_geometric.nn import SAGEConv, GATConv from torch_geometric.data import NeighborSampler from ogb.lsc import MAG240MDataset, MAG240MEvaluator from root import ROOT class Batch(NamedTuple): x: Tensor y: Tensor adjs_t: List[SparseTensor] def to(self, *args, **kwargs): return Batch( x=self.x.to(*args, **kwargs), y=self.y.to(*args, **kwargs), adjs_t=[adj_t.to(*args, **kwargs) for adj_t in self.adjs_t], ) def get_col_slice(x, start_row_idx, end_row_idx, start_col_idx, end_col_idx): outs = [] chunk = 100000 for i in tqdm(range(start_row_idx, end_row_idx, chunk)): j = min(i + chunk, end_row_idx) outs.append(x[i:j, start_col_idx:end_col_idx].copy()) return np.concatenate(outs, axis=0) def save_col_slice(x_src, x_dst, start_row_idx, end_row_idx, start_col_idx, end_col_idx): assert x_src.shape[0] == end_row_idx - start_row_idx assert x_src.shape[1] == end_col_idx - start_col_idx chunk, offset = 100000, start_row_idx for i in tqdm(range(0, end_row_idx - start_row_idx, chunk)): j = min(i + chunk, end_row_idx - start_row_idx) x_dst[offset + i:offset + j, start_col_idx:end_col_idx] = x_src[i:j] class MAG240M(LightningDataModule): def __init__(self, data_dir: str, batch_size: int, sizes: List[int], in_memory: bool = False): super().__init__() self.data_dir = data_dir self.batch_size = batch_size self.sizes = sizes self.in_memory = in_memory @property def num_features(self) -> int: return 768 @property def num_classes(self) -> int: return 153 @property def num_relations(self) -> int: return 5 def prepare_data(self): dataset = MAG240MDataset(self.data_dir) path = f'{dataset.dir}/paper_to_paper_symmetric.pt' if not osp.exists(path): # Will take approximately 5 minutes... t = time.perf_counter() print('Converting adjacency matrix...', end=' ', flush=True) edge_index = dataset.edge_index('paper', 'cites', 'paper') edge_index = torch.from_numpy(edge_index) adj_t = SparseTensor( row=edge_index[0], col=edge_index[1], sparse_sizes=(dataset.num_papers, dataset.num_papers), is_sorted=True) torch.save(adj_t.to_symmetric(), path) print(f'Done! [{time.perf_counter() - t:.2f}s]') path = f'{dataset.dir}/full_adj_t.pt' if not osp.exists(path): # Will take approximately 16 minutes... t = time.perf_counter() print('Merging adjacency matrices...', end=' ', flush=True) row, col, _ = torch.load( f'{dataset.dir}/paper_to_paper_symmetric.pt').coo() rows, cols = [row], [col] edge_index = dataset.edge_index('author', 'writes', 'paper') row, col = torch.from_numpy(edge_index) row += dataset.num_papers rows += [row, col] cols += [col, row] edge_index = dataset.edge_index('author', 'institution') row, col = torch.from_numpy(edge_index) row += dataset.num_papers col += dataset.num_papers + dataset.num_authors rows += [row, col] cols += [col, row] edge_types = [ torch.full(x.size(), i, dtype=torch.int8) for i, x in enumerate(rows) ] row = torch.cat(rows, dim=0) del rows col = torch.cat(cols, dim=0) del cols N = (dataset.num_papers + dataset.num_authors + dataset.num_institutions) perm = (N * row).add_(col).numpy().argsort() perm = torch.from_numpy(perm) row = row[perm] col = col[perm] edge_type = torch.cat(edge_types, dim=0)[perm] del edge_types full_adj_t = SparseTensor(row=row, col=col, value=edge_type, sparse_sizes=(N, N), is_sorted=True) torch.save(full_adj_t, path) print(f'Done! [{time.perf_counter() - t:.2f}s]') path = f'{dataset.dir}/full_feat.npy' done_flag_path = f'{dataset.dir}/full_feat_done.txt' if not osp.exists(done_flag_path): # Will take ~3 hours... t = time.perf_counter() print('Generating full feature matrix...') node_chunk_size = 100000 dim_chunk_size = 64 N = (dataset.num_papers + dataset.num_authors + dataset.num_institutions) paper_feat = dataset.paper_feat x = np.memmap(path, dtype=np.float16, mode='w+', shape=(N, self.num_features)) print('Copying paper features...') for i in tqdm(range(0, dataset.num_papers, node_chunk_size)): j = min(i + node_chunk_size, dataset.num_papers) x[i:j] = paper_feat[i:j] edge_index = dataset.edge_index('author', 'writes', 'paper') row, col = torch.from_numpy(edge_index) adj_t = SparseTensor( row=row, col=col, sparse_sizes=(dataset.num_authors, dataset.num_papers), is_sorted=True) # Processing 64-dim subfeatures at a time for memory efficiency. print('Generating author features...') for i in tqdm(range(0, self.num_features, dim_chunk_size)): j = min(i + dim_chunk_size, self.num_features) inputs = get_col_slice(paper_feat, start_row_idx=0, end_row_idx=dataset.num_papers, start_col_idx=i, end_col_idx=j) inputs = torch.from_numpy(inputs) outputs = adj_t.matmul(inputs, reduce='mean').numpy() del inputs save_col_slice( x_src=outputs, x_dst=x, start_row_idx=dataset.num_papers, end_row_idx=dataset.num_papers + dataset.num_authors, start_col_idx=i, end_col_idx=j) del outputs edge_index = dataset.edge_index('author', 'institution') row, col = torch.from_numpy(edge_index) adj_t = SparseTensor( row=col, col=row, sparse_sizes=(dataset.num_institutions, dataset.num_authors), is_sorted=False) print('Generating institution features...') # Processing 64-dim subfeatures at a time for memory efficiency. for i in tqdm(range(0, self.num_features, dim_chunk_size)): j = min(i + dim_chunk_size, self.num_features) inputs = get_col_slice( x, start_row_idx=dataset.num_papers, end_row_idx=dataset.num_papers + dataset.num_authors, start_col_idx=i, end_col_idx=j) inputs = torch.from_numpy(inputs) outputs = adj_t.matmul(inputs, reduce='mean').numpy() del inputs save_col_slice( x_src=outputs, x_dst=x, start_row_idx=dataset.num_papers + dataset.num_authors, end_row_idx=N, start_col_idx=i, end_col_idx=j) del outputs x.flush() del x print(f'Done! [{time.perf_counter() - t:.2f}s]') with open(done_flag_path, 'w') as f: f.write('done') def setup(self, stage: Optional[str] = None): t = time.perf_counter() print('Reading dataset...', end=' ', flush=True) dataset = MAG240MDataset(self.data_dir) self.train_idx = torch.from_numpy(dataset.get_idx_split('train')) self.train_idx = self.train_idx self.train_idx.share_memory_() self.val_idx = torch.from_numpy(dataset.get_idx_split('valid')) self.val_idx.share_memory_() self.test_idx = torch.from_numpy(dataset.get_idx_split('test')) self.test_idx.share_memory_() N = dataset.num_papers + dataset.num_authors + dataset.num_institutions x = np.memmap(f'{dataset.dir}/full_feat.npy', dtype=np.float16, mode='r', shape=(N, self.num_features)) if self.in_memory: self.x = np.empty((N, self.num_features), dtype=np.float16) self.x[:] = x self.x = torch.from_numpy(self.x).share_memory_() else: self.x = x self.y = torch.from_numpy(dataset.all_paper_label) path = f'{dataset.dir}/full_adj_t.pt' self.adj_t = torch.load(path) print(f'Done! [{time.perf_counter() - t:.2f}s]') def train_dataloader(self): return NeighborSampler(self.adj_t, node_idx=self.train_idx, sizes=self.sizes, return_e_id=False, transform=self.convert_batch, batch_size=self.batch_size, shuffle=True, num_workers=4) def val_dataloader(self): return NeighborSampler(self.adj_t, node_idx=self.val_idx, sizes=self.sizes, return_e_id=False, transform=self.convert_batch, batch_size=self.batch_size, num_workers=2) def test_dataloader(self): # Test best validation model once again. return NeighborSampler(self.adj_t, node_idx=self.val_idx, sizes=self.sizes, return_e_id=False, transform=self.convert_batch, batch_size=self.batch_size, num_workers=2) def hidden_test_dataloader(self): return NeighborSampler(self.adj_t, node_idx=self.test_idx, sizes=self.sizes, return_e_id=False, transform=self.convert_batch, batch_size=self.batch_size, num_workers=3) def convert_batch(self, batch_size, n_id, adjs): if self.in_memory: x = self.x[n_id].to(torch.float) else: x = torch.from_numpy(self.x[n_id.numpy()]).to(torch.float) y = self.y[n_id[:batch_size]].to(torch.long) return Batch(x=x, y=y, adjs_t=[adj_t for adj_t, _, _ in adjs]) class RGNN(LightningModule): def __init__(self, model: str, in_channels: int, out_channels: int, hidden_channels: int, num_relations: int, num_layers: int, heads: int = 4, dropout: float = 0.5): super().__init__() self.save_hyperparameters() self.model = model.lower() self.num_relations = num_relations self.dropout = dropout self.convs = ModuleList() self.norms = ModuleList() self.skips = ModuleList() if self.model == 'rgat': self.convs.append( ModuleList([ GATConv(in_channels, hidden_channels // heads, heads, add_self_loops=False) for _ in range(num_relations) ])) for _ in range(num_layers - 1): self.convs.append( ModuleList([ GATConv(hidden_channels, hidden_channels // heads, heads, add_self_loops=False) for _ in range(num_relations) ])) elif self.model == 'rgraphsage': self.convs.append( ModuleList([ SAGEConv(in_channels, hidden_channels, root_weight=False) for _ in range(num_relations) ])) for _ in range(num_layers - 1): self.convs.append( ModuleList([ SAGEConv(hidden_channels, hidden_channels, root_weight=False) for _ in range(num_relations) ])) for _ in range(num_layers): self.norms.append(BatchNorm1d(hidden_channels)) self.skips.append(Linear(in_channels, hidden_channels)) for _ in range(num_layers - 1): self.skips.append(Linear(hidden_channels, hidden_channels)) self.mlp = Sequential( Linear(hidden_channels, hidden_channels), BatchNorm1d(hidden_channels), ReLU(inplace=True), Dropout(p=self.dropout), Linear(hidden_channels, out_channels), ) self.train_acc = Accuracy() self.val_acc = Accuracy() self.test_acc = Accuracy() def forward(self, x: Tensor, adjs_t: List[SparseTensor]) -> Tensor: for i, adj_t in enumerate(adjs_t): x_target = x[:adj_t.size(0)] out = self.skips[i](x_target) for j in range(self.num_relations): edge_type = adj_t.storage.value() == j subadj_t = adj_t.masked_select_nnz(edge_type, layout='coo') if subadj_t.nnz() > 0: out += self.convs[i][j]((x, x_target), subadj_t) x = self.norms[i](out) x = F.elu(x) if self.model == 'rgat' else F.relu(x) x = F.dropout(x, p=self.dropout, training=self.training) return self.mlp(x) def training_step(self, batch, batch_idx: int): y_hat = self(batch.x, batch.adjs_t) train_loss = F.cross_entropy(y_hat, batch.y) self.train_acc(y_hat.softmax(dim=-1), batch.y) self.log('train_acc', self.train_acc, prog_bar=True, on_step=False, on_epoch=True) return train_loss def validation_step(self, batch, batch_idx: int): y_hat = self(batch.x, batch.adjs_t) self.val_acc(y_hat.softmax(dim=-1), batch.y) self.log('val_acc', self.val_acc, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True) def test_step(self, batch, batch_idx: int): y_hat = self(batch.x, batch.adjs_t) self.test_acc(y_hat.softmax(dim=-1), batch.y) self.log('test_acc', self.test_acc, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=0.001) scheduler = StepLR(optimizer, step_size=25, gamma=0.25) return [optimizer], [scheduler] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--hidden_channels', type=int, default=1024) parser.add_argument('--batch_size', type=int, default=1024) parser.add_argument('--dropout', type=float, default=0.5) parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--model', type=str, default='rgat', choices=['rgat', 'rgraphsage']) parser.add_argument('--sizes', type=str, default='25-15') parser.add_argument('--in-memory', action='store_true') parser.add_argument('--device', type=str, default='0') parser.add_argument('--evaluate', action='store_true') args = parser.parse_args() args.sizes = [int(i) for i in args.sizes.split('-')] print(args) seed_everything(42) datamodule = MAG240M(ROOT, args.batch_size, args.sizes, args.in_memory) if not args.evaluate: model = RGNN(args.model, datamodule.num_features, datamodule.num_classes, args.hidden_channels, datamodule.num_relations, num_layers=len(args.sizes), dropout=args.dropout) print(f'#Params {sum([p.numel() for p in model.parameters()])}') checkpoint_callback = ModelCheckpoint(monitor='val_acc', save_top_k=1) trainer = Trainer(gpus=args.device, max_epochs=args.epochs, callbacks=[checkpoint_callback], default_root_dir=f'logs/{args.model}') trainer.fit(model, datamodule=datamodule) if args.evaluate: dirs = glob.glob(f'logs/{args.model}/lightning_logs/*') version = max([int(x.split(os.sep)[-1].split('_')[-1]) for x in dirs]) logdir = f'logs/{args.model}/lightning_logs/version_{version}' print(f'Evaluating saved model in {logdir}...') ckpt = glob.glob(f'{logdir}/checkpoints/*')[0] trainer = Trainer(gpus=args.device, resume_from_checkpoint=ckpt) model = RGNN.load_from_checkpoint( checkpoint_path=ckpt, hparams_file=f'{logdir}/hparams.yaml') datamodule.batch_size = 16 datamodule.sizes = [160] * len(args.sizes) # (Almost) no sampling... trainer.test(model=model, datamodule=datamodule) evaluator = MAG240MEvaluator() loader = datamodule.hidden_test_dataloader() model.eval() y_preds = [] for batch in tqdm(loader): batch = batch.to(int(args.device)) with torch.no_grad(): out = model(batch.x, batch.adjs_t).argmax(dim=-1).cpu() y_preds.append(out) res = {'y_pred': torch.cat(y_preds, dim=0)} evaluator.save_test_submission(res, f'results/{args.model}')
[ "torch.nn.Linear", "torch.cat", "torch.nn.Dropout", "torch.optim.lr_scheduler.StepLR", "torch.nn.ModuleList", "torch.save", "torch.nn.functional.dropout", "torch.nn.functional.elu", "torch.no_grad", "torch.from_numpy", "torch.nn.ReLU", "torch.nn.functional.cross_entropy", "torch.nn.BatchNorm1d", "torch.load", "torch.nn.functional.relu" ]
1.6.0
tsotfsk/ogb
3c24dd5f67a13426d5f39c7a71a460499713631a
1.2
from typing import Callable import pytest import torch from rainy.net import GruBlock, LstmBlock, RnnBlock from rainy.utils import Device @pytest.mark.parametrize("rnn_gen", [GruBlock, LstmBlock]) def test_rnn(rnn_gen: Callable[[int, int], RnnBlock]) -> None: TIME_STEP = 10 BATCH_SIZE = 5 INPUT_DIM = 20 OUTPUT_DIM = 3 rnn = rnn_gen(INPUT_DIM, OUTPUT_DIM) device = Device() rnn.to(device.unwrapped) hidden = rnn.initial_state(BATCH_SIZE, device) cached_inputs = [] for i in range(TIME_STEP): inputs = torch.randn(BATCH_SIZE, INPUT_DIM, device=device.unwrapped) cached_inputs.append(inputs.detach()) out, hidden = rnn(inputs, hidden) assert tuple(out.shape) == (BATCH_SIZE, OUTPUT_DIM) batch_inputs = torch.cat(cached_inputs) hidden = rnn.initial_state(BATCH_SIZE, device) out, _ = rnn(batch_inputs, hidden) assert tuple(out.shape) == (TIME_STEP * BATCH_SIZE, OUTPUT_DIM)
[ "torch.cat", "torch.randn" ]
1.2
kngwyu/Rainy
535f8f49d9efe0324a8480d0165ab1b35d83dc19
1.2
""" This module has an implementation of ACKTR, which is described in - Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation - URL: https://arxiv.org/abs/1708.05144 """ import torch from ..config import Config from ..net import Policy from .a2c import A2CAgent class ACKTRAgent(A2CAgent): def __init__(self, config: Config) -> None: super().__init__(config) if self.net.is_recurrent: raise NotImplementedError("K-FAC for RNN is not implemented!") self.precond = config.preconditioner(self.net) def _pre_backward(self, policy: Policy, value: torch.Tensor) -> None: """Calculate emprical fisher loss""" self.net.zero_grad() policy_fisher_loss = -policy.log_prob().mean() sample_value = torch.randn_like(value) + value.detach() value_fisher_loss = -(value - sample_value).pow(2).mean() fisher_loss = policy_fisher_loss + value_fisher_loss with self.precond.save_grad(): fisher_loss.backward(retain_graph=True) def _step_optimizer(self) -> None: """Approximates F^-1∇h and apply it.""" self.precond.step() self.optimizer.step() self.lr_cooler.lr_decay(self.optimizer)
[ "torch.randn_like" ]
1.2
kngwyu/Rainy
535f8f49d9efe0324a8480d0165ab1b35d83dc19
1.10
import os import torch from torch import nn from torch.nn.functional import interpolate, softmax from torch.cuda.amp import autocast from .base import BaseNet norm_layer = nn.BatchNorm2d class DFF(BaseNet): """ Reference: - Hu, Yuan, et.al "Dynamic Feature Fusion for Semantic Edge Detection", AAAI 2019 """ def __init__(self, backbone, amp=False): super(DFF, self).__init__(backbone, amp) self.side0 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1), norm_layer(1)) self.side0_residual = SideResidual(in_channels=128, inter_channels=128 // 8, upsample_rate=1) self.side1 = nn.Sequential(nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1), norm_layer(1), nn.ConvTranspose2d(1, 1, 4, stride=2, padding=1, bias=False)) self.side1_residual = SideResidual(in_channels=256, inter_channels=256 // 8, upsample_rate=2) self.side2 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1), norm_layer(1), nn.ConvTranspose2d(1, 1, 4, stride=2, padding=1, bias=False)) self.side2_residual = SideResidual(in_channels=512, inter_channels=512 // 8, upsample_rate=2) self.side3 = nn.Sequential(nn.Conv2d(in_channels=1024, out_channels=1, kernel_size=1), norm_layer(1), nn.ConvTranspose2d(1, 1, 8, stride=4, padding=2, bias=False)) self.side3_residual = SideResidual(in_channels=1024, inter_channels=1024 // 8, upsample_rate=4) self.side4 = nn.Sequential(nn.Conv2d(in_channels=2048, out_channels=1, kernel_size=1), norm_layer(1), nn.ConvTranspose2d(1, 1, 16, stride=8, padding=4, bias=False)) self.side4_residual = SideResidual(in_channels=2048, inter_channels=2048 // 8, upsample_rate=8) self.side4_weight = nn.Sequential(nn.Conv2d(in_channels=2048, out_channels=5, kernel_size=1), norm_layer(5), nn.ConvTranspose2d(5, 5, 16, stride=8, padding=4, bias=False)) self.bn = norm_layer(5) self.sigmoid = nn.Sigmoid() self.ada_learner = LocationAdaptiveLearner(1, 5, 5, norm_layer=norm_layer) def forward(self, x): with autocast(enabled=self.amp): x, c1, c2, c3, c4 = self.backbone.base_forward(x) side0 = self.side0(x) + self.side0_residual(x) side1 = self.side1(c1) + self.side1_residual(c1) side2 = self.side2(c2) + self.side2_residual(c2) side3 = self.side3(c3) + self.side3_residual(c3) side4 = self.side4(c4) + self.side4_residual(c4) side4_weight = self.side4_weight(c4) ada_weights = self.ada_learner(side4_weight) fused = torch.cat((side0, side1, side2, side3, side4), dim=1) fused = self.bn(fused) fused = fused.view(fused.size(0), 1, -1, fused.size(2), fused.size(3)) fused = torch.mul(fused, ada_weights) fused = torch.sum(fused, 2) out = self.sigmoid(fused) return fused, out class LocationAdaptiveLearner(nn.Module): """docstring for LocationAdaptiveLearner""" def __init__(self, nclass, in_channels, out_channels, norm_layer=nn.BatchNorm2d): super(LocationAdaptiveLearner, self).__init__() self.nclass = nclass self.conv1 = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=True), norm_layer(out_channels), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential(nn.Conv2d(out_channels, out_channels, 1, bias=True), norm_layer(out_channels), nn.ReLU(inplace=True)) self.conv3 = nn.Sequential(nn.Conv2d(out_channels, out_channels, 1, bias=True), norm_layer(out_channels)) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = x.view(x.size(0), self.nclass, -1, x.size(2), x.size(3)) return x class SideResidual(nn.Module): def __init__(self, in_channels, inter_channels, upsample_rate): super(SideResidual, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=inter_channels, kernel_size=1) self.bn1 = norm_layer(inter_channels) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(in_channels=inter_channels, out_channels=inter_channels, kernel_size=3, padding=1) self.bn2 = norm_layer(inter_channels) self.conv3 = nn.Conv2d(in_channels=inter_channels, out_channels=1, kernel_size=1) self.bn3 = norm_layer(1) self.upsample_rate = upsample_rate if upsample_rate == 2: self.upsample = nn.ConvTranspose2d(1, 1, 4, stride=2, padding=1, bias=False) elif upsample_rate == 4: self.upsample = nn.ConvTranspose2d(1, 1, 8, stride=4, padding=2, bias=False) elif upsample_rate == 8: self.upsample = nn.ConvTranspose2d(1, 1, 16, stride=8, padding=4, bias=False) def forward(self, x): out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) if self.upsample_rate != 1: out = self.upsample(out) return out
[ "torch.cat", "torch.mul", "torch.cuda.amp.autocast", "torch.nn.Sigmoid", "torch.nn.ConvTranspose2d", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.sum" ]
1.10.0
Theia-4869/U-RISC
c493b11ab525b39a5ac029c3f83e059d703abaae
1.0
import torch from abstract_rl.src.data_structures.abstract_conf.model_configuration import ModelConfiguration from abstract_rl.src.operator.trajectory_operator import TrajectoryOperator class ResampleOperator(TrajectoryOperator): """ Samples for each state additional actionsa and equips """ def __repr__(self): return "resample" def __init__(self, mc): """ Initializes a new retrace operator. :param mc: The model configuration with env and so on. """ assert isinstance(mc, ModelConfiguration) conf = mc.get('conf') self.conf = conf self.add_act = conf['add_acts'] self.mc = mc self.policy = mc.get('policy', True) self.q_net = mc.get('q_network', True) env = mc['env'] self.discount = env.discount() def transform(self, trajectory): """ Transform a trajectory with the current instance of the operator. """ # sample actions for sample based t_states = torch.Tensor(trajectory.states) f_stats = self.policy.forward(t_states) sampled_actions = self.policy.sample_actions(suff_stats=f_stats, num_actions=self.add_act) ll = self.policy.log_prob(sampled_actions, suff_stats=f_stats) q_vals = self.q_net.q_val(t_states.repeat([self.add_act, 1]), sampled_actions.view([-1, 1])) q_vals = q_vals.view(sampled_actions.size()) act_rew = sampled_actions.detach().numpy() q_vals = q_vals.detach().numpy() ll = ll.detach().numpy() trajectory['add_act'] = act_rew trajectory['add_q'] = q_vals trajectory['add_pi'] = ll
[ "torch.Tensor" ]
1.0.1
kosmitive/abstract_rl
13038a1a5a93c78374ba869c9e75221c2b73d290
1.3
import os import cv2 import glob import numpy as np from PIL import Image import torch import torchvision from torch.utils import data from torchvision import transforms import torch from torch import nn import torchvision import torch.nn.functional as F def get_char_dict(): char_dict = {} char_dict["pad"] = 0 char_dict["sos"] = 1 char_dict["eos"] = 2 for i in range(32, 127): char_dict[chr(i)] = len(char_dict) inverse_char_dict = {v: k for k, v in char_dict.items()} return char_dict, inverse_char_dict def resize_image(image, desired_size): ''' Helper function to resize an image while keeping the aspect ratio. Parameter --------- image: np.array The image to be resized. desired_size: (int, int) The (height, width) of the resized image Return ------ image: np.array The image of size = desired_size bounding box: (int, int, int, int) (x, y, w, h) in percentages of the resized image of the original ''' size = image.shape[:2] if size[0] > desired_size[0] or size[1] > desired_size[1]: ratio_w = float(desired_size[0]) / size[0] ratio_h = float(desired_size[1]) / size[1] ratio = min(ratio_w, ratio_h) new_size = tuple([int(x * ratio) for x in size]) image = cv2.resize(image, (new_size[1], new_size[0])) size = image.shape delta_w = max(0, desired_size[1] - size[1]) delta_h = max(0, desired_size[0] - size[0]) top, bottom = delta_h // 2, delta_h - (delta_h // 2) left, right = delta_w // 2, delta_w - (delta_w // 2) color = image[0][0] if color < 230: color = 230 image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=float(color)) crop_bb = (left / image.shape[1], top / image.shape[0], (image.shape[1] - right - left) / image.shape[1], (image.shape[0] - bottom - top) / image.shape[0]) image[image > 230] = 255 return image, crop_bb def get_transform(phase="train"): transfrom_PIL_list = [ transforms.RandomAffine((-2, 2), fillcolor=255), transforms.ColorJitter(brightness=0.5), transforms.ColorJitter(contrast=0.5), transforms.ColorJitter(saturation=0.5), ] transfrom_tensor_list = [ transforms.RandomErasing(p=0.5, scale=(0.02, 0.1), value=0), ] if phase == "train": transform = transforms.Compose([ transforms.RandomApply(transfrom_PIL_list), transforms.ToTensor(), # transforms.RandomApply(transfrom_tensor_list), transforms.Normalize( mean=[0.5], std=[0.5]), ]) else: transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=[0.5], std=[0.5]), ]) return transform def read_img(img, inference_transform,desired_size=(128, 1024)): img_resize, crop_cc = resize_image(img, desired_size) img_resize = Image.fromarray(img_resize) img_tensor = inference_transform(img_resize) return img_tensor class IAM_Dataset_line(data.Dataset): """ pytorch dataset for IAM handwritten dataset """ def __init__(self, dataset_path, tokenizer, phase="train", padding=128): """ inital dataset with path, tokenizer, when you want to train phase is "train", for test and valid phase is "test" and "valid", padding is the max length of your input text. """ self.phase = phase self.dataset_path = dataset_path self.padding = padding self.tokenizer = tokenizer self.line_imgs = self.read_train_valid_test_files() self.label_dict = self.read_label_dict() self.transform = get_transform(self.phase) def __len__(self): return len(self.line_imgs) def read_label_dict(self): """ Read the line ground truth data from txt as dict key is file name, values is texts """ line_txt_path = os.path.join(self.dataset_path, "ascii/lines.txt") with open(line_txt_path, "r") as f: lines = f.readlines() ground_truth_dict = {} for line in lines: if line.startswith("#"): continue line = line.strip() line_blocks = line.split(" ") key = line_blocks[0] texts = line_blocks[-1].replace("|", " ") ground_truth_dict[key] = texts return ground_truth_dict def read_train_valid_test_files(self): """ Split all line imgs into train,valid,test set. These sets are divided based on file level, which means line imgs from same file will not be divided into different set """ np.random.seed(55) folder_path = os.path.join(self.dataset_path, "lines") folders = glob.glob(os.path.join(folder_path, "*")) files = [] for folder in folders: files_in_folder = glob.glob(os.path.join(folder, "*")) files.extend(files_in_folder) train_file_num = int(len(files) * 0.9) valid_file_num = int(len(files) * 0.05) files_permute = np.random.permutation(files) train_files = files_permute[:train_file_num] valid_files = files_permute[train_file_num:train_file_num + valid_file_num] test_files = files_permute[train_file_num + valid_file_num:] train_lines = [] valid_lines = [] test_lines = [] files_tuple = [(train_lines, train_files), (valid_lines, valid_files), (test_lines, test_files)] for phase_lines, phase_files in files_tuple: for file_folder in phase_files: file_imgs = glob.glob(os.path.join(file_folder, "*.png")) for img_path in file_imgs: phase_lines.append((img_path, os.path.basename(img_path).split(".")[0])) print("Total files: ", len(files)) print("Train files: ", len(train_files)) print("Valid files: ", len(valid_files)) print("Test files: ", len(test_files)) if self.phase == "train": return train_lines elif self.phase == "valid": return valid_lines else: return test_lines def read_img(self, img_path, desired_size=(128, 1024)): img = cv2.imread(img_path, 0) img_resize, crop_cc = resize_image(img, desired_size) img_resize = Image.fromarray(img_resize) img_tensor = self.transform(img_resize) return img_tensor def read_label(self, label_key): text = self.label_dict[label_key] line_label = self.tokenizer.encode(text) input_lengths = len(line_label) if self.padding > 0: padded_line = np.ones(self.padding)*-1 max_len = min(self.padding, input_lengths) padded_line[:max_len] = line_label[:max_len] line_label = padded_line input_lengths = max_len label_tensor = torch.from_numpy(line_label) input_lengths = torch.tensor(input_lengths) return label_tensor, input_lengths def __getitem__(self, index): image_path, label_key = self.line_imgs[index] X = self.read_img(image_path) y, lengths = self.read_label(label_key) return X.float(), y.long(), lengths.long()
[ "torch.from_numpy", "torch.tensor" ]
1.3.1
guanjianyu/pytorch_hand_written_recognition
b9804ee1213fa744430ee7c25a52b04ab295747a
1.6
# Copyright (c) Facebook, Inc. and its affiliates. import math import os from copy import deepcopy from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from mmf.common.registry import registry from mmf.models import BaseModel from mmf.modules.hf_layers import replace_with_jit from mmf.utils.configuration import get_mmf_cache_dir from mmf.utils.modeling import get_optimizer_parameters_for_bert from omegaconf import OmegaConf from torch import Tensor, nn from torch.nn import CrossEntropyLoss from transformers.modeling_bert import ( ACT2FN, BertConfig, BertEmbeddings, BertIntermediate, BertLMPredictionHead, BertOutput, BertPredictionHeadTransform, BertPreTrainedModel, BertSelfOutput, ) from mmf.utils.checkpoint import load_pretrained_model from mmf.models.interfaces.feature_models import FeatureModelInterface class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.visualization = config.visualization self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: Tensor, attention_mask: Tensor ) -> Tuple[Tensor, Dict[str, Tensor]]: mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw # attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in # BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) if self.visualization: attn_data = { "attn": attention_probs, "queries": query_layer, "keys": key_layer, } else: attn_data = {} return context_layer, attn_data class BertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward( self, input_tensor: Tensor, attention_mask: Tensor ) -> Tuple[Tensor, Dict[str, Tensor]]: self_output, attention_probs = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output, attention_probs class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states: Tensor, attention_mask: Tensor ) -> Tuple[Tensor, Dict[str, Tensor]]: attention_output, attention_probs = self.attention( hidden_states, attention_mask ) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output, attention_probs @torch.no_grad() def forward_no_grad(self, hidden_states, attention_mask): return self.forward(hidden_states, attention_mask) class BertImageSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.v_hidden_size % config.v_num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.v_hidden_size, config.v_num_attention_heads) ) self.dynamic_attention = config.dynamic_attention self.num_attention_heads = config.v_num_attention_heads self.attention_head_size = int( config.v_hidden_size / config.v_num_attention_heads ) self.visualization = config.visualization self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.v_hidden_size, self.all_head_size) self.key = nn.Linear(config.v_hidden_size, self.all_head_size) self.value = nn.Linear(config.v_hidden_size, self.all_head_size) if self.dynamic_attention: self.dyLinear_q = nn.Linear(config.hidden_size, self.all_head_size) self.dyLinear_k = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.v_attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: Tensor, attention_mask: Tensor, txt_embedding: Tensor, txt_attention_mask: Tensor, ) -> Tuple[Tensor, Dict[str, Tensor]]: mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) if ( self.dynamic_attention and hasattr(self, "dyLinear_q") and hasattr(self, "dyLinear_k") ): pool_embedding = (txt_embedding * txt_attention_mask).sum(1) pool_embedding = pool_embedding / txt_attention_mask.sum(1) # given pool embedding, Linear and Sigmoid layer. gate_q = 1 + torch.sigmoid(self.dyLinear_q(pool_embedding)) gate_k = 1 + torch.sigmoid(self.dyLinear_k(pool_embedding)) mixed_query_layer = mixed_query_layer * gate_q.unsqueeze(1) mixed_key_layer = mixed_key_layer * gate_k.unsqueeze(1) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the # raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel # forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) if self.visualization: attn_data = { "attn": attention_probs, "queries": query_layer, "keys": key_layer, } else: attn_data = {} return context_layer, attn_data class BertImageSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.v_hidden_size, config.v_hidden_size) self.LayerNorm = nn.LayerNorm(config.v_hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.v_hidden_dropout_prob) def forward(self, hidden_states: Tensor, input_tensor: Tensor) -> Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertImageAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BertImageSelfAttention(config) self.output = BertImageSelfOutput(config) def forward( self, input_tensor: Tensor, attention_mask: Tensor, txt_embedding: Tensor, txt_attention_mask: Tensor, ) -> Tuple[Tensor, Dict[str, Tensor]]: self_output, attention_probs = self.self( input_tensor, attention_mask, txt_embedding, txt_attention_mask ) attention_output = self.output(self_output, input_tensor) return attention_output, attention_probs class BertImageIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.v_hidden_size, config.v_intermediate_size) if isinstance(config.v_hidden_act, str): self.intermediate_act_fn = ACT2FN[config.v_hidden_act] else: self.intermediate_act_fn = config.v_hidden_act def forward(self, hidden_states: Tensor) -> Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertImageOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.v_intermediate_size, config.v_hidden_size) self.LayerNorm = nn.LayerNorm(config.v_hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.v_hidden_dropout_prob) def forward(self, hidden_states: Tensor, input_tensor: Tensor) -> Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertImageLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = BertImageAttention(config) self.intermediate = BertImageIntermediate(config) self.output = BertImageOutput(config) def forward( self, hidden_states: Tensor, attention_mask: Tensor, txt_embedding: Tensor, txt_attention_mask: Tensor, ) -> Tuple[Tensor, Dict[str, Tensor]]: attention_output, attention_probs = self.attention( hidden_states, attention_mask, txt_embedding, txt_attention_mask ) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output, attention_probs @torch.no_grad() def forward_no_grad( self, hidden_states: Tensor, attention_mask: Tensor, txt_embedding: Tensor, txt_attention_mask: Tensor, ) -> Tuple[Tensor, Dict[str, Tensor]]: return self.forward( hidden_states, attention_mask, txt_embedding, txt_attention_mask ) class BertBiAttention(nn.Module): def __init__(self, config): super().__init__() if config.bi_hidden_size % config.bi_num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.bi_hidden_size, config.bi_num_attention_heads) ) self.visualization = config.visualization self.num_attention_heads = config.bi_num_attention_heads self.attention_head_size = int( config.bi_hidden_size / config.bi_num_attention_heads ) self.all_head_size = self.num_attention_heads * self.attention_head_size # self.scale = nn.Linear(1, self.num_attention_heads, bias=False) # self.scale_act_fn = ACT2FN['relu'] self.query1 = nn.Linear(config.v_hidden_size, self.all_head_size) self.key1 = nn.Linear(config.v_hidden_size, self.all_head_size) self.value1 = nn.Linear(config.v_hidden_size, self.all_head_size) # self.logit1 = nn.Linear(config.hidden_size, self.num_attention_heads) self.dropout1 = nn.Dropout(config.v_attention_probs_dropout_prob) self.query2 = nn.Linear(config.hidden_size, self.all_head_size) self.key2 = nn.Linear(config.hidden_size, self.all_head_size) self.value2 = nn.Linear(config.hidden_size, self.all_head_size) # self.logit2 = nn.Linear(config.hidden_size, self.num_attention_heads) self.dropout2 = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, input_tensor1: Tensor, attention_mask1: Tensor, input_tensor2: Tensor, attention_mask2: Tensor, co_attention_mask: Optional[Tensor] = None, use_co_attention_mask: bool = False, ) -> Tuple[Tensor, Tensor, Dict[str, Tensor]]: # for vision input. mixed_query_layer1 = self.query1(input_tensor1) mixed_key_layer1 = self.key1(input_tensor1) mixed_value_layer1 = self.value1(input_tensor1) # mixed_logit_layer1 = self.logit1(input_tensor1) query_layer1 = self.transpose_for_scores(mixed_query_layer1) key_layer1 = self.transpose_for_scores(mixed_key_layer1) value_layer1 = self.transpose_for_scores(mixed_value_layer1) # logit_layer1 = self.transpose_for_logits(mixed_logit_layer1) # for text input: mixed_query_layer2 = self.query2(input_tensor2) mixed_key_layer2 = self.key2(input_tensor2) mixed_value_layer2 = self.value2(input_tensor2) # mixed_logit_layer2 = self.logit2(input_tensor2) query_layer2 = self.transpose_for_scores(mixed_query_layer2) key_layer2 = self.transpose_for_scores(mixed_key_layer2) value_layer2 = self.transpose_for_scores(mixed_value_layer2) # logit_layer2 = self.transpose_for_logits(mixed_logit_layer2) # Take the dot product between "query2" and "key1" to get the raw # attention scores for value 1. attention_scores1 = torch.matmul(query_layer2, key_layer1.transpose(-1, -2)) attention_scores1 = attention_scores1 / math.sqrt(self.attention_head_size) attention_scores1 = attention_scores1 + attention_mask1 # if use_co_attention_mask: # attention_scores1 = attention_scores1 + co_attention_mask.permute(0,1,3,2) # Normalize the attention scores to probabilities. attention_probs1 = nn.functional.softmax(attention_scores1, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs1 = self.dropout1(attention_probs1) context_layer1 = torch.matmul(attention_probs1, value_layer1) context_layer1 = context_layer1.permute(0, 2, 1, 3).contiguous() new_context_layer_shape1 = context_layer1.size()[:-2] + (self.all_head_size,) context_layer1 = context_layer1.view(new_context_layer_shape1) # Take the dot product between "query1" and "key2" to get the # raw attention scores for value 2. attention_scores2 = torch.matmul(query_layer1, key_layer2.transpose(-1, -2)) attention_scores2 = attention_scores2 / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel # forward() function) # we can comment this line for single flow. attention_scores2 = attention_scores2 + attention_mask2 # if use_co_attention_mask: # attention_scores2 = attention_scores2 + co_attention_mask # Normalize the attention scores to probabilities. attention_probs2 = nn.functional.softmax(attention_scores2, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs2 = self.dropout2(attention_probs2) context_layer2 = torch.matmul(attention_probs2, value_layer2) context_layer2 = context_layer2.permute(0, 2, 1, 3).contiguous() new_context_layer_shape2 = context_layer2.size()[:-2] + (self.all_head_size,) context_layer2 = context_layer2.view(new_context_layer_shape2) attn_data = {} if self.visualization: attn_data = { "attn1": attention_probs1, "queries1": query_layer2, "keys1": key_layer1, "attn2": attention_probs2, "querues2": query_layer1, "keys2": key_layer2, } return context_layer1, context_layer2, attn_data class BertBiOutput(nn.Module): def __init__(self, config): super().__init__() self.dense1 = nn.Linear(config.bi_hidden_size, config.v_hidden_size) self.LayerNorm1 = nn.LayerNorm(config.v_hidden_size, eps=1e-12) self.dropout1 = nn.Dropout(config.v_hidden_dropout_prob) self.q_dense1 = nn.Linear(config.bi_hidden_size, config.v_hidden_size) self.q_dropout1 = nn.Dropout(config.v_hidden_dropout_prob) self.dense2 = nn.Linear(config.bi_hidden_size, config.hidden_size) self.LayerNorm2 = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout2 = nn.Dropout(config.hidden_dropout_prob) self.q_dense2 = nn.Linear(config.bi_hidden_size, config.hidden_size) self.q_dropout2 = nn.Dropout(config.hidden_dropout_prob) def forward( self, hidden_states1: Tensor, input_tensor1: Tensor, hidden_states2: Tensor, input_tensor2: Tensor, ) -> Tuple[Tensor, Tensor]: context_state1 = self.dense1(hidden_states1) context_state1 = self.dropout1(context_state1) context_state2 = self.dense2(hidden_states2) context_state2 = self.dropout2(context_state2) hidden_states1 = self.LayerNorm1(context_state1 + input_tensor1) hidden_states2 = self.LayerNorm2(context_state2 + input_tensor2) return hidden_states1, hidden_states2 class BertConnectionLayer(nn.Module): def __init__(self, config): super().__init__() self.biattention = BertBiAttention(config) self.biOutput = BertBiOutput(config) self.v_intermediate = BertImageIntermediate(config) self.v_output = BertImageOutput(config) self.t_intermediate = BertIntermediate(config) self.t_output = BertOutput(config) def forward( self, input_tensor1: Tensor, attention_mask1: Tensor, input_tensor2: Tensor, attention_mask2: Tensor, co_attention_mask: Optional[Tensor] = None, use_co_attention_mask: bool = False, ) -> Tuple[Tensor, Tensor, Dict[str, Tensor]]: bi_output1, bi_output2, co_attention_probs = self.biattention( input_tensor1, attention_mask1, input_tensor2, attention_mask2, co_attention_mask, use_co_attention_mask, ) attention_output1, attention_output2 = self.biOutput( bi_output2, input_tensor1, bi_output1, input_tensor2 ) intermediate_output1 = self.v_intermediate(attention_output1) layer_output1 = self.v_output(intermediate_output1, attention_output1) intermediate_output2 = self.t_intermediate(attention_output2) layer_output2 = self.t_output(intermediate_output2, attention_output2) return layer_output1, layer_output2, co_attention_probs class BertEncoder(nn.Module): def __init__(self, config): super().__init__() # in the bert encoder, we need to extract three things here. # text bert layer: BertLayer # vision bert layer: BertImageLayer # Bi-Attention: Given the output of two bertlayer, perform bi-directional # attention and add on two layers. self.FAST_MODE = config.fast_mode self.with_coattention = config.with_coattention self.v_biattention_id = config.v_biattention_id self.t_biattention_id = config.t_biattention_id self.in_batch_pairs = config.in_batch_pairs self.fixed_t_layer = config.fixed_t_layer self.fixed_v_layer = config.fixed_v_layer layer = BertLayer(config) v_layer = BertImageLayer(config) connect_layer = BertConnectionLayer(config) self.layer = nn.ModuleList( [deepcopy(layer) for _ in range(config.num_hidden_layers)] ) self.v_layer = nn.ModuleList( [deepcopy(v_layer) for _ in range(config.v_num_hidden_layers)] ) self.c_layer = nn.ModuleList( [deepcopy(connect_layer) for _ in range(len(config.v_biattention_id))] ) def forward( self, txt_embedding: Tensor, image_embedding: Tensor, txt_attention_mask: Tensor, txt_attention_mask2: Tensor, image_attention_mask: Tensor, co_attention_mask: Tensor, output_all_encoded_layers: bool = True, output_all_attention_masks: bool = False, ) -> Tuple[ List[Tensor], List[Tensor], Tuple[List[Tensor], List[Tensor], List[Tuple[Tensor, Tensor]]], ]: v_start = 0 t_start = 0 count = 0 all_encoder_layers_t: List[Tensor] = [] all_encoder_layers_v: List[Tensor] = [] all_attention_mask_t: List[Tensor] = [] all_attnetion_mask_v: List[Tensor] = [] all_attention_mask_c: List[Tuple[Tensor, Tensor]] = [] batch_size, num_words, t_hidden_size = txt_embedding.size() # should be num_samples * num_objects * dim _, num_regions, v_hidden_size = image_embedding.size() use_co_attention_mask = False for v_layer_id, t_layer_id in zip(self.v_biattention_id, self.t_biattention_id): v_end = v_layer_id t_end = t_layer_id assert self.fixed_t_layer <= t_end assert self.fixed_v_layer <= v_end cur_idx = 0 for cur_layer in self.layer: if t_start <= cur_idx < self.fixed_t_layer: txt_embedding, txt_attention_probs = cur_layer.forward_no_grad( txt_embedding, txt_attention_mask ) t_start = self.fixed_t_layer if output_all_attention_masks and "attn" in txt_attention_probs: all_attention_mask_t.append(txt_attention_probs["attn"]) cur_idx += 1 cur_idx = 0 for cur_layer in self.layer: if t_start <= cur_idx < t_end: txt_embedding, txt_attention_probs = cur_layer( txt_embedding, txt_attention_mask ) if output_all_attention_masks and "attn" in txt_attention_probs: all_attention_mask_t.append(txt_attention_probs["attn"]) cur_idx += 1 cur_v_idx = 0 for cur_v_layer in self.v_layer: if v_start <= cur_v_idx < self.fixed_v_layer: ( image_embedding, image_attention_probs, ) = cur_v_layer.forward_no_grad( image_embedding, image_attention_mask, txt_embedding, txt_attention_mask2, ) v_start = self.fixed_v_layer if output_all_attention_masks and "attn" in image_attention_probs: all_attnetion_mask_v.append(image_attention_probs["attn"]) cur_v_idx += 1 cur_v_idx = 0 for cur_v_layer in self.v_layer: if v_start <= cur_v_idx < v_end: image_embedding, image_attention_probs = cur_v_layer( image_embedding, image_attention_mask, txt_embedding, txt_attention_mask2, ) if output_all_attention_masks and "attn" in image_attention_probs: all_attnetion_mask_v.append(image_attention_probs["attn"]) cur_v_idx += 1 if count == 0 and self.in_batch_pairs: # new batch size is the batch_size ^2 image_embedding = ( image_embedding.unsqueeze(0) .expand(batch_size, batch_size, num_regions, v_hidden_size) .contiguous() .view(batch_size * batch_size, num_regions, v_hidden_size) ) image_attention_mask = ( image_attention_mask.unsqueeze(0) .expand(batch_size, batch_size, 1, 1, num_regions) .contiguous() .view(batch_size * batch_size, 1, 1, num_regions) ) txt_embedding = ( txt_embedding.unsqueeze(1) .expand(batch_size, batch_size, num_words, t_hidden_size) .contiguous() .view(batch_size * batch_size, num_words, t_hidden_size) ) txt_attention_mask = ( txt_attention_mask.unsqueeze(1) .expand(batch_size, batch_size, 1, 1, num_words) .contiguous() .view(batch_size * batch_size, 1, 1, num_words) ) co_attention_mask = ( co_attention_mask.unsqueeze(1) .expand(batch_size, batch_size, 1, num_regions, num_words) .contiguous() .view(batch_size * batch_size, 1, num_regions, num_words) ) if count == 0 and self.FAST_MODE: txt_embedding = txt_embedding.expand( image_embedding.size(0), txt_embedding.size(1), txt_embedding.size(2), ) txt_attention_mask = txt_attention_mask.expand( image_embedding.size(0), txt_attention_mask.size(1), txt_attention_mask.size(2), txt_attention_mask.size(3), ) if self.with_coattention: cur_c_idx = 0 for cur_c_layer in self.c_layer: if cur_c_idx == count: # do the bi attention. ( image_embedding, txt_embedding, co_attention_probs, ) = cur_c_layer( image_embedding, image_attention_mask, txt_embedding, txt_attention_mask, co_attention_mask, use_co_attention_mask, ) if ( output_all_attention_masks and "attn1" in co_attention_probs and "attn2" in co_attention_probs ): all_attention_mask_c.append( ( co_attention_probs["attn1"], co_attention_probs["attn2"], ) ) cur_c_idx += 1 v_start = v_end t_start = t_end count += 1 if output_all_encoded_layers: all_encoder_layers_t.append(txt_embedding) all_encoder_layers_v.append(image_embedding) cur_v_idx = 0 for cur_v_layer in self.v_layer: if cur_v_idx >= v_start: image_embedding, image_attention_probs = cur_v_layer( image_embedding, image_attention_mask, txt_embedding, txt_attention_mask2, ) if output_all_attention_masks and "attn" in image_attention_probs: all_attnetion_mask_v.append(image_attention_probs["attn"]) cur_v_idx += 1 cur_idx = 0 for cur_layer in self.layer: if cur_idx >= t_start: txt_embedding, txt_attention_probs = cur_layer( txt_embedding, txt_attention_mask ) if output_all_attention_masks and "attn" in txt_attention_probs: all_attention_mask_t.append(txt_attention_probs["attn"]) cur_idx += 1 # add the end part to finish. if not output_all_encoded_layers: all_encoder_layers_t.append(txt_embedding) all_encoder_layers_v.append(image_embedding) return ( all_encoder_layers_t, all_encoder_layers_v, (all_attention_mask_t, all_attnetion_mask_v, all_attention_mask_c), ) class BertTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.bi_hidden_size) self.activation = nn.ReLU() def forward(self, hidden_states: Tensor) -> Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertImagePooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.v_hidden_size, config.bi_hidden_size) self.activation = nn.ReLU() def forward(self, hidden_states: Tensor) -> Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertImgPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.v_hidden_size, config.v_hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.v_hidden_act self.LayerNorm = nn.LayerNorm(config.v_hidden_size, eps=1e-12) def forward(self, hidden_states: Tensor) -> Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertImagePredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BertImgPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.v_hidden_size, config.v_target_size) def forward(self, hidden_states: Tensor) -> Tensor: hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.bi_seq_relationship = nn.Linear(config.bi_hidden_size, 2) self.imagePredictions = BertImagePredictionHead(config) self.fusion_method = config.fusion_method self.dropout = nn.Dropout(0.1) def forward( self, sequence_output_t: Tensor, sequence_output_v: Tensor, pooled_output_t: Tensor, pooled_output_v: Tensor, ) -> Tuple[Tensor, Tensor, Tensor]: if self.fusion_method == "sum": pooled_output = self.dropout(pooled_output_t + pooled_output_v) elif self.fusion_method == "mul": pooled_output = self.dropout(pooled_output_t * pooled_output_v) else: raise AssertionError prediction_scores_t = self.predictions(sequence_output_t) seq_relationship_score = self.bi_seq_relationship(pooled_output) prediction_scores_v = self.imagePredictions(sequence_output_v) return prediction_scores_t, prediction_scores_v, seq_relationship_score class BertImageFeatureEmbeddings(nn.Module): """Construct the embeddings from image, spatial location (omit now) and token_type embeddings. """ def __init__(self, config): super().__init__() self.image_embeddings = nn.Linear(config.v_feature_size, config.v_hidden_size) self.image_location_embeddings = nn.Linear(5, config.v_hidden_size) self.LayerNorm = nn.LayerNorm(config.v_hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, image_feature: Tensor, image_location: Tensor) -> Tensor: img_embeddings = self.image_embeddings(image_feature) loc_embeddings = self.image_location_embeddings(image_location) # TODO: we want to make the padding_idx==0, however, with custom initilization, # it seems it will have a bias. Let's do masking for now embeddings = self.LayerNorm(img_embeddings + loc_embeddings) embeddings = self.dropout(embeddings) return embeddings class ViLBERTBase(BertPreTrainedModel): def __init__(self, config): super().__init__(config) # Replace transformer layers with scriptable JIT layers replace_with_jit() # initilize word embedding self.embeddings = BertEmbeddings(config) self.task_specific_tokens = config.task_specific_tokens # initlize the vision embedding self.v_embeddings = BertImageFeatureEmbeddings(config) self.encoder = BertEncoder(config) self.t_pooler = BertTextPooler(config) self.v_pooler = BertImagePooler(config) self.init_weights() def forward( self, input_txt: Tensor, image_feature: Tensor, image_location: Tensor, token_type_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, image_attention_mask: Optional[Tensor] = None, co_attention_mask: Optional[Tensor] = None, task_ids: Optional[Tensor] = None, output_all_encoded_layers: bool = False, output_all_attention_masks: bool = False, ) -> Tuple[ Tensor, Tensor, Tensor, Tensor, Optional[Tuple[List[Tensor], List[Tensor], List[Tuple[Tensor, Tensor]]]], Optional[List[Tensor]], Optional[List[Tensor]], ]: if attention_mask is None: attention_mask = torch.ones_like(input_txt) if token_type_ids is None: token_type_ids = torch.zeros_like(input_txt) if image_attention_mask is None: image_attention_mask = torch.ones( image_feature.size(0), image_feature.size(1) ).type_as(input_txt) all_attention_mask_output: Optional[ Tuple[List[Tensor], List[Tensor], List[Tuple[Tensor, Tensor]]] ] = None encoded_layers_t_output: Optional[List[Tensor]] = None encoded_layers_v_output: Optional[List[Tensor]] = None if self.task_specific_tokens: # extend the mask mask_tokens = torch.ones(input_txt.size(0), 1, device=input_txt.device) attention_mask = torch.cat([mask_tokens, attention_mask], dim=1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of # causal attention used in OpenAI GPT, we just need to prepare the # broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_image_attention_mask = image_attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask2 = attention_mask.unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. if not torch.jit.is_scripting(): extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if not torch.jit.is_scripting(): extended_attention_mask2 = extended_attention_mask2.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility extended_image_attention_mask = extended_image_attention_mask.to( dtype=next(self.parameters()).dtype ) extended_image_attention_mask = (1.0 - extended_image_attention_mask) * -10000.0 if co_attention_mask is None: co_attention_mask = torch.zeros( input_txt.size(0), image_feature.size(1), input_txt.size(1) ).type_as(extended_image_attention_mask) extended_co_attention_mask = co_attention_mask.unsqueeze(1) # extended_co_attention_mask = co_attention_mask.unsqueeze(-1) extended_co_attention_mask = extended_co_attention_mask * 5.0 if not torch.jit.is_scripting(): extended_co_attention_mask = extended_co_attention_mask.to( dtype=next(self.parameters()).dtype ) embedding_output = self.embeddings(input_txt, token_type_ids, task_ids) v_embedding_output = self.v_embeddings(image_feature, image_location) encoded_layers_t, encoded_layers_v, all_attention_mask = self.encoder( embedding_output, v_embedding_output, extended_attention_mask, extended_attention_mask2, extended_image_attention_mask, extended_co_attention_mask, output_all_encoded_layers=output_all_encoded_layers, output_all_attention_masks=output_all_attention_masks, ) sequence_output_t = encoded_layers_t[-1] sequence_output_v = encoded_layers_v[-1] pooled_output_t = self.t_pooler(sequence_output_t) pooled_output_v = self.v_pooler(sequence_output_v) if output_all_attention_masks: all_attention_mask_output = all_attention_mask if output_all_encoded_layers: encoded_layers_t_output = encoded_layers_t encoded_layers_v_output = encoded_layers_v return ( sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v, all_attention_mask_output, encoded_layers_t_output, encoded_layers_v_output, ) class ViLBERTForPretraining(nn.Module): def __init__(self, config): super().__init__() self.config = config self.bert = ViLBERTBase.from_pretrained( self.config.bert_model_name, config=BertConfig.from_dict( OmegaConf.to_container(self.config, resolve=True) ), cache_dir=os.path.join(get_mmf_cache_dir(), "distributed_{}".format(-1)), ) self.cls = BertPreTrainingHeads(config) self.vocab_size = self.config.vocab_size self.visual_target = config.visual_target self.num_negative = config.num_negative self.loss_fct = CrossEntropyLoss(ignore_index=-1) if self.visual_target == 0: self.vis_criterion = nn.KLDivLoss(reduction="none") elif self.visual_target == 1: self.vis_criterion = nn.MSELoss(reduction="none") elif self.visual_target == 2: self.vis_criterion = CrossEntropyLoss() def init_weights(self): if self.config.random_initialize is False: if self.config.bert_model_name is None: # No pretrained model, init weights self.bert.init_weights() self.cls.apply(self.bert._init_weights) self.tie_weights() def tie_weights(self): """Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights( self.cls.predictions.decoder, self.bert.embeddings.word_embeddings ) def forward( self, input_ids: Tensor, image_feature: Tensor, image_location: Tensor, token_type_ids: Tensor, attention_mask: Tensor, image_attention_mask: Tensor, masked_lm_labels: Optional[Tensor] = None, image_label: Optional[Tensor] = None, image_target: Optional[Tensor] = None, output_all_attention_masks: bool = False, ) -> Dict[str, Tensor]: masked_img_loss: Optional[Tensor] = None ( sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v, attention_weights, _encoded_layers_t_output, _encoded_layers_v_output, ) = self.bert( input_ids, image_feature, image_location, token_type_ids, attention_mask, image_attention_mask, output_all_encoded_layers=False, output_all_attention_masks=output_all_attention_masks, ) prediction_scores_t, prediction_scores_v, seq_relationship_score = self.cls( sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v ) output = {} if not torch.jit.is_scripting() and output_all_attention_masks: output["attention_weights"] = attention_weights if image_label is not None and image_target is not None: if self.visual_target == 1: img_loss = self.vis_criterion(prediction_scores_v, image_target) masked_img_loss = torch.sum( img_loss * torch.eq(image_label, 1).unsqueeze(2).float() ) / max( torch.sum( torch.eq(image_label, 1).unsqueeze(2).expand_as(img_loss) ), 1, ) elif self.visual_target == 0: img_loss = self.vis_criterion( F.log_softmax(prediction_scores_v, dim=2), image_target ) masked_img_loss = torch.sum( img_loss * torch.eq(image_label, 1).unsqueeze(2).float() ) / max(torch.sum(torch.eq(image_label, 1)), 0) elif self.visual_target == 2: # generate negative sampled index. num_across_batch = int(self.num_negative * 0.7) num_inside_batch = int(self.num_negative * 0.3) batch_size, num_regions, _ = prediction_scores_v.size() assert batch_size != 0 # random negative across batches. row_across_index = torch.ones( batch_size, num_regions, num_across_batch, dtype=input_ids.dtype, device=input_ids.device, ).random_(0, batch_size - 1) col_across_index = torch.ones( batch_size, num_regions, num_across_batch, dtype=input_ids.dtype, device=input_ids.device, ).random_(0, num_regions) for i in range(batch_size - 1): row_across_index[i][row_across_index[i] == i] = batch_size - 1 final_across_index = row_across_index * num_regions + col_across_index # random negative inside batches. row_inside_index = torch.zeros( batch_size, num_regions, num_inside_batch, dtype=input_ids.dtype, device=input_ids.device, ) col_inside_index = torch.ones( batch_size, num_regions, num_inside_batch, dtype=input_ids.dtype, device=input_ids.device, ).random_(0, num_regions - 1) for i in range(batch_size): row_inside_index[i] = i for i in range(num_regions - 1): col_inside_index[:, i, :][col_inside_index[:, i, :] == i] = ( num_regions - 1 ) final_inside_index = row_inside_index * num_regions + col_inside_index final_index = torch.cat((final_across_index, final_inside_index), dim=2) # Let's first sample where we need to compute. predict_v = prediction_scores_v[image_label == 1] neg_index_v = final_index[image_label == 1] flat_image_target = image_target.view(batch_size * num_regions, -1) # we also need to append the target feature at the beginning. negative_v = flat_image_target[neg_index_v] positive_v = image_target[image_label == 1] sample_v = torch.cat((positive_v.unsqueeze(1), negative_v), dim=1) # calculate the loss. score = torch.bmm(sample_v, predict_v.unsqueeze(2)).squeeze(2) masked_img_loss = self.vis_criterion( score, torch.zeros( score.size(0), dtype=input_ids.dtype, device=input_ids.device ), ) if masked_img_loss is not None: output["masked_img_loss"] = masked_img_loss.unsqueeze(0) if masked_lm_labels is not None: masked_lm_loss = self.loss_fct( prediction_scores_t.view(-1, self.vocab_size), masked_lm_labels.view(-1) ) output["masked_lm_loss"] = masked_lm_loss.unsqueeze(0) # next_sentence_loss = self.loss_fct( # seq_relationship_score.view(-1, 2), next_sentence_label.view(-1) # ) # output["next_sentence_loss"] = next_sentence_loss.unsqueeze(0) return output class ViLBERTForClassification(nn.Module): def __init__(self, config): super().__init__() self.config = config self.bert = ViLBERTBase.from_pretrained( self.config.bert_model_name, config=BertConfig.from_dict( OmegaConf.to_container(self.config, resolve=True) ), cache_dir=os.path.join(get_mmf_cache_dir(), "distributed_{}".format(-1)), ) self.training_head_type = self.config.training_head_type self.num_labels = self.config.num_labels self.fusion_method = config.fusion_method self.dropout = nn.Dropout(self.config.hidden_dropout_prob) # Create a copy of config since struct mode won't allow direct overrides # classifier_config is only needed for initializing the classifier classifier_config = deepcopy(config) classifier_config.hidden_size = config.bi_hidden_size if self.config.training_head_type == "nlvr2": classifier_config.hidden_size *= 2 self.classifier = nn.Sequential( BertPredictionHeadTransform(classifier_config), nn.Linear(classifier_config.hidden_size, self.num_labels), ) self.init_weights() def init_weights(self): if self.config.random_initialize is False: if self.config.bert_model_name is None: # No pretrained model, init weights self.bert.init_weights() # Classifier needs to be initialized always as it is task specific self.classifier.apply(self.bert._init_weights) def forward( self, input_ids: Tensor, image_feature: Tensor, image_location: Tensor, token_type_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, image_attention_mask: Optional[Tensor] = None, masked_lm_labels: Optional[Tensor] = None, image_label: Optional[Tensor] = None, image_target: Optional[Tensor] = None, next_sentence_label: Optional[Tensor] = None, output_all_attention_masks: bool = False, ) -> Dict[str, Tensor]: ( sequence_output_t, sequence_output_v, pooled_output_t, pooled_output_v, attention_weights, _encoded_layers_t_output, _encoded_layers_v_output, ) = self.bert( input_ids, image_feature, image_location, token_type_ids, attention_mask, image_attention_mask, output_all_encoded_layers=False, output_all_attention_masks=output_all_attention_masks, ) output = {} if not torch.jit.is_scripting() and output_all_attention_masks: output["attention_weights"] = attention_weights if self.fusion_method == "sum": pooled_output = self.dropout(pooled_output_t + pooled_output_v) elif self.fusion_method == "mul": pooled_output = self.dropout(pooled_output_t * pooled_output_v) else: raise AssertionError if self.training_head_type == "nlvr2": pooled_output = pooled_output.view(-1, pooled_output.size(1) * 2) logits = self.classifier(pooled_output) reshaped_logits = logits.contiguous().view(-1, self.num_labels) output["scores"] = reshaped_logits return output @registry.register_model("vilbert") class ViLBERT(BaseModel): def __init__(self, config): super().__init__(config) @classmethod def config_path(cls): return "configs/models/vilbert/pretrain.yaml" # Backward compatibility @classmethod def format_state_key(cls, key): return ( key.replace("bert.bert", "model.bert") .replace("bert.cls", "model.cls") .replace("bert.classifier", "model.classifier") ) def build(self): if self.config.training_head_type == "pretraining": self.model = ViLBERTForPretraining(self.config) else: self.model = ViLBERTForClassification(self.config) if getattr(self.config, "freeze_base", False): for p in self.model.bert.parameters(): p.requires_grad = False def get_image_and_text_features(self, sample_list): bert_input_ids = sample_list.input_ids bert_input_mask = sample_list.input_mask bert_input_type_ids = sample_list.segment_ids if sample_list.dataset_name == "nlvr2": bert_input_ids = torch.cat([bert_input_ids, bert_input_ids]) bert_input_mask = torch.cat([bert_input_mask, bert_input_mask]) bert_input_type_ids = torch.cat([bert_input_type_ids, bert_input_type_ids]) # image input img0 = getattr(sample_list, "img0", {}) image_info = getattr(img0, "image_info_0", {}) image_dim_variable_0 = getattr(image_info, "max_features", None) image_feature_variable_0 = getattr(img0, "image_feature_0", None) image_location_variable_0 = getattr(image_info, "bbox", None) img1 = getattr(sample_list, "img1", {}) image_info = getattr(img1, "image_info_0", {}) image_dim_variable_1 = getattr(image_info, "max_features", None) image_feature_variable_1 = getattr(img1, "image_feature_0", None) image_location_variable_1 = getattr(image_info, "bbox", None) image_feature_variable = torch.cat( [image_feature_variable_0, image_feature_variable_1] ) image_location_variable = torch.cat( [image_location_variable_0, image_location_variable_1] ) image_dim_variable = torch.cat([image_dim_variable_0, image_dim_variable_1]) image_label_variable = None image_target_variable = None else: image_info = getattr(sample_list, "image_info_0", {}) image_dim_variable = getattr(image_info, "max_features", None) image_feature_variable = getattr(sample_list, "image_feature_0", None) image_label_variable = getattr(sample_list, "image_labels", None) image_location_variable = getattr(image_info, "bbox", None) cls_prob = getattr(image_info, "cls_prob", None).cpu() image_target = np.array(cls_prob, dtype=np.float32) image_target_variable = torch.tensor( image_target, dtype=torch.float, device=bert_input_ids.device ) # add image dim variable image_dim_variable = sample_list["image_feature_0"].new_full( size=(image_feature_variable.size(0), 1), fill_value=image_feature_variable.size(1)) return { "input_ids": bert_input_ids, "attention_mask": bert_input_mask, "token_type_ids": bert_input_type_ids, "image_dim": image_dim_variable, "image_feature": image_feature_variable, "image_location": image_location_variable, "image_target": image_target_variable, "image_label": image_label_variable, } def get_optimizer_parameters(self, config): return get_optimizer_parameters_for_bert(self.model, config) def forward(self, sample_list): # see the difference in sample list for vilbert and visual bert ''' mmf_predict config=projects/hateful_memes/configs/vilbert/defaults.yaml model=vilbert dataset=hateful_memes run_type=test checkpoint.resume_file=/Users/JQJiang/.cache/torch/mmf/data/models/vilbert.finetuned.hateful_memes.direct/model.pth checkpoint.resume_pretrained=False :param sample_list: :return: ''' params = self.get_image_and_text_features(sample_list) # pretraining labels params["masked_lm_labels"] = getattr(sample_list, "lm_label_ids", None) # is_random_next = getattr(sample_list, "is_correct", None) # TODO(aps): Fix on dataset side # params["is_random_next"] = None # Prepare Mask if params["image_feature"] is not None and params["image_dim"] is not None: image_mask = torch.arange( params["image_feature"].size(-2), device=params["image_feature"].device ).expand(*params["image_feature"].size()[:-1]) if len(params["image_dim"].size()) < len(image_mask.size()): params["image_dim"] = params["image_dim"].unsqueeze(-1) assert len(params["image_dim"].size()) == len(image_mask.size()) image_mask = image_mask < params["image_dim"] params["image_attention_mask"] = image_mask.long() else: params["image_attention_mask"] = None params.pop("image_dim") output_dict = self.model( params["input_ids"], params["image_feature"], params["image_location"], params["token_type_ids"], params["attention_mask"], params["image_attention_mask"], params["masked_lm_labels"], params["image_label"], params["image_target"], ) if self.config.training_head_type == "pretraining": loss_key = "{}/{}".format( sample_list.dataset_name, sample_list.dataset_type ) output_dict["losses"] = {} output_dict["losses"][loss_key + "/masked_lm_loss"] = output_dict.pop( "masked_lm_loss" ) output_dict["losses"][loss_key + "/masked_img_loss"] = output_dict.pop( "masked_img_loss" ) return output_dict @classmethod def from_pretrained(cls, model_name, *args, **kwargs): model = super().from_pretrained(model_name, *args, **kwargs) config = load_pretrained_model(model_name)["full_config"] OmegaConf.set_struct(config, True) return FeatureModelInterface(model, config, "vilbert")
[ "torch.nn.Linear", "torch.cat", "torch.ones", "torch.jit.is_scripting", "torch.nn.CrossEntropyLoss", "torch.nn.LayerNorm", "torch.tensor", "torch.nn.KLDivLoss", "torch.zeros_like", "torch.zeros", "torch.nn.functional.log_softmax", "torch.nn.ReLU", "torch.nn.functional.softmax", "torch.matmul", "torch.nn.Dropout", "torch.nn.MSELoss", "torch.eq", "torch.no_grad", "torch.ones_like" ]
1.6.0
junqi-jiang/mmf
c8f47a23b85a87d14616c2f53e81693a25ea929a
1.4
#!/usr/bin/env python # -*- coding: utf-8 -*- import typer import time import gym import torch import collections import numpy as np import pandas as pd from pathlib import Path import matplotlib.pyplot as plt from sklearn.manifold import TSNE import pygame from pygame.locals import VIDEORESIZE import gym.wrappers as gymwr from models import wrappers from models import dqn_model class ModelAgent(object): """Acts acording to loaded Pytorch model.""" def __init__(self, env, model_path): # Load the model and set it to inference. self.model = dqn_model.DQN(env.observation_space.shape, env.action_space.n) self.model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) self.model.eval() def act(self, observation): obs = torch.tensor(np.array([observation], copy=False)) q_values = self.model(obs).data.numpy()[0] action = np.argmax(q_values) return action def value(self, observation, action): obs = torch.tensor(np.array([observation], copy=False)) q_values = self.model(obs).data.numpy()[0] return q_values[action] class ModelEmbeddings(object): """Returns the values from the last hidden layer of a model.""" def __init__(self, env, model_path): # Load the model and set it to inference. self.model = dqn_model.DQN_emb(env.observation_space.shape, env.action_space.n) state_dict = torch.load(model_path, map_location=torch.device("cpu")) del state_dict["fc.2.weight"] del state_dict["fc.2.bias"] self.model.load_state_dict(state_dict) self.model.eval() def embeddings(self, observation): obs = torch.tensor(np.array([observation], copy=False)) embeddings = self.model(obs).data.numpy()[0] return embeddings def play_gym_model( game: str = typer.Argument("PongNoFrameskip-v4"), model: Path = typer.Argument("models/DQL-PongNoFrameskip-v4-mr18.pt"), episodes: int = typer.Option( 1, show_default=True, help="Number of runs of the environment to simulate.", ), fps: int = typer.Option( 30, show_default=True, help="Frames per second (approximately)." ), verbose: bool = typer.Option( False, show_default=True, help="Print action, reward and observation at every step.", ), plot_tsne: bool = typer.Option( False, show_default=True, help="Record last layer embeddings for a tSNE representation." ), monitor: bool = typer.Option( False, show_default=True, help="Activate a monitor to record a video of the results." ), logger: str = typer.Option( "WARN", show_default=True, help="Select logger option, from INFO, WARN or DEBUG.", ), outdir: Path = typer.Option( Path.cwd()/"reports/videos", help=("Output directory for the results of the monitor."+ "[default: ./reports/videos]"), ), ): """Play an OpenAI Gym game using a DQL agent previously trained. This module creates an OpenAI Gym environment and executes actions as dictated from a learned policy. The game is rendered on screen, and the results can be recorded. The default game is "PongNoFrameskip-v4". """ typer.echo(f"Playing {game} with a trained agent.") # Set the logger level if logger == "INFO": gym.logger.set_level(gym.logger.INFO) elif logger == "DEBUG": gym.logger.set_level(gym.logger.DEBUG) elif logger == "WARN": gym.logger.set_level(gym.logger.WARN) # Make and wrap the environment env = wrappers.make_env(game) if monitor: env = gymwr.Monitor(env, directory=outdir, force=True) # Set up the agent agent = ModelAgent(env, model) if plot_tsne: embnet = ModelEmbeddings(env, model) embeddings = [] actions = [] rewards = [] q_values = [] # Make it so you can zoom on the window rendered = env.render(mode='rgb_array') zoom = 1.0 video_size=[rendered.shape[1], rendered.shape[0]] video_size = int(video_size[0] * zoom), int(video_size[1] * zoom) screen = pygame.display.set_mode(video_size) done = False for ep in range(episodes): typer.echo(f"Starting episode {ep}.") total_reward = 0 state = env.reset() state_count = 0 action_counter = collections.Counter() while True: start_ts = time.time() if not monitor: env.render() action = agent.act(state) action_counter[action] += 1 new_state, reward, done, _ = env.step(action) total_reward += reward if plot_tsne: embeddings.append(embnet.embeddings(state)) actions.append(action) rewards.append(reward) q_values.append(agent.value(state, action)) if verbose: typer.echo(f"{action} {reward} {state}") if done: typer.echo(f"Game reached end-state in frame {state_count}, " f"achieving a total reward of {total_reward}.") break # Stop for a bit to make gameplay slower in the renderer delta = 1/fps - (time.time() - start_ts) if (delta > 0) and not monitor: time.sleep(delta) state_count += 1 state = new_state env.env.close() if plot_tsne: import matplotlib as mpl typer.echo("Performing t-SNE embedding.") X_tsne = TSNE(n_components=2).fit_transform(np.array(embeddings)) data = pd.DataFrame(data = {"tsne0": X_tsne[:, 0], "tsne1": X_tsne[:, 1], "action": actions, "reward": rewards, "q_value": q_values, }) meanings = ['NOOP', 'FIRE', 'RIGHT', 'LEFT', 'RIGHTFIRE', 'LEFTFIRE'] markers = ["o", "x", "^", "v", "^", "v"] data["Action"] = data["action"].apply(lambda x: meanings[x]) cmap = mpl.colors.Colormap("viridis") norm = mpl.colors.Normalize(vmin=0, vmax=max(data["q_value"])) scmap = mpl.cm.ScalarMappable(norm, cmap) fig, ax = plt.subplots(figsize=(10, 10)) ax.set_title("Two-dimensional t-SNE embedding of the representations\n" "in the last hidden layer assigned by DQN to game states") for marker, action in zip(markers, meanings): a_data = data[data["Action"]==action] plt.scatter(a_data["tsne0"], a_data["tsne1"], c=a_data["q_value"], cmap="viridis", norm=norm, alpha=0.7, s=50.0, marker=marker) plt.savefig(Path.cwd()/"reports/figures/tsne_q_values.png") plt.close() if __name__ == "__main__": typer.run(play_gym_model)
[ "torch.device" ]
1.4.0
miguel-bm/ai6rl
cd751b734e485784e0d42bf4af7068860635ea91
1.7
import pytest import torch from flash.core.serve.types import Label def test_path(session_global_datadir): label = Label(path=str(session_global_datadir / "imagenet_labels.txt")) assert label.deserialize("chickadee") == torch.tensor(19) assert label.serialize(torch.tensor(19)) == "chickadee" def test_list(): label = Label(classes=["classA", "classB"]) assert label.deserialize("classA") == torch.tensor(0) def test_dict(): label = Label(classes={56: "classA", 48: "classB"}) assert label.deserialize("classA") == torch.tensor(56) with pytest.raises(TypeError): Label(classes={"wrongtype": "classA"}) def test_wrong_type(): with pytest.raises(TypeError): Label(classes=set()) with pytest.raises(ValueError): Label(classes=None)
[ "torch.tensor" ]
1.7.1
Actis92/lightning-flash
49972268cfc0f95f1bd2b8fbf25036970cc44b59
0.3
import os import torch import datasets import translation_models.model as tmm import translation_models.help_fun as transl_hf import onmt import model_manager import quantization import copy import pickle import functools import quantization.help_functions as qhf import helpers.functions as mhf cuda_devices = os.environ['CUDA_VISIBLE_DEVICES'].split(',') print('CUDA_VISIBLE_DEVICES: {} for a total of {}'.format(cuda_devices, len(cuda_devices))) datasets.BASE_DATA_FOLDER = '...' SAVED_MODELS_FOLDER = '...' USE_CUDA = torch.cuda.is_available() NUM_GPUS = len(cuda_devices) TRAIN_TEACHER_MODEL=False TRAIN_SMALLER_MODEL=False TRAIN_SEQUENCE_DISTILLED=False TRAIN_WORD_DISTILLED=False TRAIN_QUANTIZED_DISTILLED=False TRAIN_DIFFERENTIABLE_QUANTIZATION=False CREATE_DISTILLATION_DATASET=False COMPUTE_BLEU_MODELS = False CHECK_PM_QUANTIZATION = True COMPUTE_WORD_PERCENTAGE_SIMILARITY = True try: os.mkdir(datasets.BASE_DATA_FOLDER) except:pass try: os.mkdir(SAVED_MODELS_FOLDER) except:pass epochsToTrainOnmtIntegDataset = 15 onmtManager = model_manager.ModelManager('model_manager_integ_dataset.tst', 'model_manager', create_new_model_manager=False) for x in onmtManager.list_models(): if onmtManager.get_num_training_runs(x) > 0: print(x, onmtManager.load_metadata(x)[1]['perplexity'][-1]) integ_dataset_saved_models_folder = os.path.join(SAVED_MODELS_FOLDER, 'integ_dataset') try: os.mkdir(integ_dataset_saved_models_folder) except:pass #load the data batch_size = 64 * NUM_GPUS if batch_size % NUM_GPUS != 0: raise ValueError('Batch size: {} must be a multiple of the number of gpus:{}'.format(batch_size, NUM_GPUS)) transl_dataset = datasets.onmt_integ_dataset(pin_memory=True) train_loader, test_loader = transl_dataset.getTrainLoader(batch_size), transl_dataset.getTestLoader(batch_size) #Teacher model teacherOptions = copy.deepcopy(onmt.standard_options.stdOptions) #it only matter in the creation of the distillation dataset teacherOptions['rnn_size'] = 500 teacherOptions['epochs'] = epochsToTrainOnmtIntegDataset teacherModel_name = 'integ_dataset_teacherModel' teacherModelPath = os.path.join(integ_dataset_saved_models_folder, teacherModel_name) teacherModel = tmm.create_model(transl_dataset.fields, options=teacherOptions) if USE_CUDA: teacherModel = teacherModel.cuda() if teacherModel_name not in onmtManager.saved_models: onmtManager.add_new_model(teacherModel_name, teacherModelPath, arguments_creator_function=teacherOptions) if TRAIN_TEACHER_MODEL: onmtManager.train_model(teacherModel, model_name=teacherModel_name, train_function=tmm.train_model, arguments_train_function={'options':teacherOptions}, train_loader=train_loader, test_loader=test_loader) if onmtManager.get_num_training_runs(teacherModel_name) > 0: teacherModel.load_state_dict(onmtManager.load_model_state_dict(teacherModel_name)) #now create a distillation dataset standardTranslateOptions = onmt.standard_options.standardTranslationOptions create_distilled_dataset_options = copy.deepcopy(teacherOptions) folder_distillation_dataset = os.path.join(transl_dataset.dataFolder, 'distilled_dataset_' + teacherModel_name) if CREATE_DISTILLATION_DATASET: print('Creating distillation dataset from scratch') transl_hf.create_distillation_dataset(teacherModel, create_distilled_dataset_options, standardTranslateOptions, transl_dataset, folder_distillation_dataset) print('Distillation dataset created') try: distilled_dataset = datasets.translation_datasets.TranslationDataset(folder_distillation_dataset, src_language='de', tgt_language='en', pin_memory=True) train_distilled_loader, test_distilled_loader = distilled_dataset.getTrainLoader(batch_size), distilled_dataset.getTestLoader(batch_size) print('Distillation dataset loaded') except: print('Problems loading the distillation dataset') #just so they don't raise errors.. distilled_dataset = transl_dataset train_distilled_loader = train_loader test_distilled_loader = test_loader # quick last minute experiment of distill vs normal loss # smallerOptions = copy.deepcopy(onmt.standard_options.stdOptions) # #if not specified, it was trained with 2 layers (2 for encoder and 2 for decoder, that is) with rnn size of 200 # smallerOptions['batch_size'] = batch_size # smallerOptions['rnn_size'] = 512 # smallerOptions['layers'] = 1 # smallerOptions['epochs'] = epochsToTrainOnmtIntegDataset # for numBit in [4]: # model_name = 'integ_dataset_smallerModel_{}rnn_size1_layer_quantized{}bits'.format(512, numBit) # smallerModelPath = os.path.join(integ_dataset_saved_models_folder, model_name) # smallerModel = tmm.create_model(transl_dataset.fields, options=smallerOptions) # if USE_CUDA: smallerModel = smallerModel.cuda() # if model_name not in onmtManager.saved_models: # onmtManager.add_new_model(model_name, smallerModelPath, # arguments_creator_function=smallerOptions) # onmtManager.train_model(smallerModel, model_name=model_name, # train_function=tmm.train_model, # arguments_train_function={'options':smallerOptions, # 'quantizeWeights': True, # 'numBits':numBit, # 'bucket_size':256}, # train_loader=train_loader, test_loader=test_loader) # if onmtManager.get_num_training_runs(model_name) > 0: # smallerModel.load_state_dict(onmtManager.load_model_state_dict(model_name)) # print('finished training, computing BLEU') # bleu = transl_hf.get_bleu_model(smallerModel, transl_dataset, smallerOptions, standardTranslateOptions) # bleu='not computed' # ppl = tmm.evaluate_model(smallerModel, test_loader).ppl() # print('BLEU is : {}'.format(bleu)) del teacherModel rnn_sizes = [128, 256, 512] numBits = [2,4,8] # for rnn_size in rnn_sizes: # #smaller model # smallerOptions = copy.deepcopy(onmt.standard_options.stdOptions) # #if not specified, it was trained with 2 layers (2 for encoder and 2 for decoder, that is) with rnn size of 200 # smallerOptions['batch_size'] = batch_size # smallerOptions['rnn_size'] = rnn_size # smallerOptions['layers'] = 1 # smallerOptions['epochs'] = epochsToTrainOnmtIntegDataset # model_name = 'integ_dataset_smallerModel_{}rnn_size1_layer'.format(rnn_size) # smallerModelPath = os.path.join(integ_dataset_saved_models_folder, model_name) # smallerModel = tmm.create_model(transl_dataset.fields, options=smallerOptions) # if USE_CUDA: smallerModel = smallerModel.cuda() # if model_name not in onmtManager.saved_models: # onmtManager.add_new_model(model_name, smallerModelPath, # arguments_creator_function=smallerOptions) # if TRAIN_SMALLER_MODEL: # onmtManager.train_model(smallerModel, model_name=model_name, # train_function=tmm.train_model, # arguments_train_function={'options':smallerOptions}, # train_loader=train_loader, test_loader=test_loader) # if onmtManager.get_num_training_runs(model_name) > 0: # smallerModel.load_state_dict(onmtManager.load_model_state_dict(model_name)) # del smallerModel # # #Distilled model with word-level knowledge distillation # teacherModel = tmm.create_model(transl_dataset.fields, options=teacherOptions) # if USE_CUDA: teacherModel = teacherModel.cuda() # teacherModel.load_state_dict(onmtManager.load_model_state_dict(teacherModel_name)) # # distilledOptions = copy.deepcopy(smallerOptions) # distilled_model_name = 'integ_dataset_distilledModel_word_level_{}rnn_size1_layer'.format(rnn_size) # distilled_model_word_level = tmm.create_model(transl_dataset.fields, options=distilledOptions) # if USE_CUDA: distilled_model_word_level = distilled_model_word_level.cuda() # distilledModelPath = os.path.join(integ_dataset_saved_models_folder, distilled_model_name) # if distilled_model_name not in onmtManager.saved_models: # onmtManager.add_new_model(distilled_model_name, distilledModelPath, # arguments_creator_function=distilledOptions) # if TRAIN_WORD_DISTILLED: # onmtManager.train_model(distilled_model_word_level, model_name=distilled_model_name, # train_function=tmm.train_model, # arguments_train_function={'options':distilledOptions, # 'teacher_model': teacherModel, # 'use_distillation_loss':True}, # train_loader=train_loader, test_loader=test_loader) # if onmtManager.get_num_training_runs(distilled_model_name) > 0: # distilled_model_word_level.load_state_dict(onmtManager.load_model_state_dict(distilled_model_name)) # del distilled_model_word_level # # #Quantized word level distillation # for numBit in numBits: # distilled_model_name_quantized = 'integ_dataset_distilledModel_word_level_quantized{}bits{}rnn_size1_layer'.format( # numBit, rnn_size) # distilled_model_word_level = tmm.create_model(transl_dataset.fields, options=distilledOptions) # if USE_CUDA: distilled_model_word_level = distilled_model_word_level.cuda() # distilledModelPath = os.path.join(integ_dataset_saved_models_folder, distilled_model_name_quantized) # if distilled_model_name_quantized not in onmtManager.saved_models: # onmtManager.add_new_model(distilled_model_name_quantized, distilledModelPath, # arguments_creator_function=distilledOptions) # if TRAIN_WORD_DISTILLED and TRAIN_QUANTIZED_DISTILLED: # onmtManager.train_model(distilled_model_word_level, model_name=distilled_model_name_quantized, # train_function=tmm.train_model, # arguments_train_function={'options':distilledOptions, # 'teacher_model': teacherModel, # 'use_distillation_loss':True, # 'quantizeWeights':True, # 'numBits':numBit, # 'bucket_size':256}, # train_loader=train_loader, test_loader=test_loader) # if onmtManager.get_num_training_runs(distilled_model_name_quantized) > 0: # distilled_model_word_level.load_state_dict(onmtManager.load_model_state_dict(distilled_model_name_quantized)) # del distilled_model_word_level # # #optimize quantization points # if numBit == 8:#but no 8 bits with differentiable quantization # continue # # optQuanPointOptions = copy.deepcopy(onmt.standard_options.stdOptions) # optQuanPointOptions['learning_rate'] = 1e-4 # optQuanPointOptions['epochs'] = 3 # learning_rate_str = str(optQuanPointOptions['learning_rate']) # save_path = onmtManager.get_model_base_path(distilled_model_name) + \ # 'quant_points_{}bit_bucket_size256'.format(numBit) # if TRAIN_DIFFERENTIABLE_QUANTIZATION: # distilledModel = tmm.create_model(transl_dataset.fields, options=distilledOptions) # distilledModel.load_state_dict(onmtManager.load_model_state_dict(distilled_model_name)) # if USE_CUDA: distilledModel = distilledModel.cuda() # points, infoDict = tmm.optimize_quantization_points(distilledModel, train_loader, test_loader, # optQuanPointOptions, numPointsPerTensor=2**numBit, # bucket_size=256, assignBitsAutomatically=True, # use_distillation_loss=True) # quantization_points = [x.data.view(1, -1).cpu().numpy().tolist()[0] for x in points] # with open(save_path, 'wb') as p: # pickle.dump((quantization_points, infoDict), p) #print bleu for the models example_translations=False file_results = 'results_file_BLEU_models' if COMPUTE_BLEU_MODELS or COMPUTE_WORD_PERCENTAGE_SIMILARITY: with open(file_results, 'a') as fr: fr.write('\n\n== New Testing Run == \n\n') if COMPUTE_WORD_PERCENTAGE_SIMILARITY: #we need the ref file with the teacher teacherModelOptions = onmtManager.load_metadata('integ_dataset_teacherModel', 0)[0] for key, val in teacherModelOptions.items(): #remeding to an old bug in save_metadata function if val == 'None': teacherModelOptions[key] = None teacherModel = tmm.create_model(transl_dataset.fields, options=teacherModelOptions) if USE_CUDA: teacherModel = teacherModel.cuda() teacherModel.load_state_dict(onmtManager.load_model_state_dict('integ_dataset_teacherModel', 1)) pathTeacherTranslation = transl_hf.get_translation_file_model(teacherModel, transl_dataset, teacherModelOptions, standardTranslateOptions) for x in onmtManager.list_models(): if onmtManager.get_num_training_runs(x) == 0: continue modelOptions = onmtManager.load_metadata(x, 0)[0] for key, val in modelOptions.items(): #remeding to an old bug in save_metadata function if val == 'None': modelOptions[key] = None if 'distilled' in x and 'word' not in x: dataset = distilled_dataset else: dataset = transl_dataset model = tmm.create_model(dataset.fields, options=modelOptions) if USE_CUDA: model = model.cuda() model.load_state_dict(onmtManager.load_model_state_dict(x, 1)) if example_translations: print('Example of translation for model: "{}"'.format(x)) num_examples = 5 linesToTranslate, translated_lines, referenceLines = transl_hf.get_translation_examples(model, dataset, num_examples, modelOptions, standardTranslateOptions, shuffle_examples=False) print('Original Sentences == Translation == Ref Translation') print('\n'.join(' == '.join(x) for x in zip(linesToTranslate, translated_lines, referenceLines))) if COMPUTE_BLEU_MODELS or COMPUTE_WORD_PERCENTAGE_SIMILARITY: if COMPUTE_WORD_PERCENTAGE_SIMILARITY is False or (COMPUTE_WORD_PERCENTAGE_SIMILARITY and x != 'integ_dataset_teacherModel'): file_translation_model = transl_hf.get_translation_file_model(model, dataset, modelOptions, standardTranslateOptions) else: file_translation_model = pathTeacherTranslation if COMPUTE_BLEU_MODELS: bleu = transl_hf.get_bleu_moses(file_translation_model, dataset.testFilesPath[1], file_input=True) else: bleu = 'Not computed' if COMPUTE_WORD_PERCENTAGE_SIMILARITY and x != 'integ_dataset_teacherModel': percentage_word_similarity = transl_hf.compute_percentage_word_similarity(pathTeacherTranslation, file_translation_model, file_input=True) else: percentage_word_similarity = 'not computed' else: bleu = 'Not computed' percentage_word_similarity = 'not computed' perplexity = onmtManager.load_metadata(x,1)[1]['perplexity'][-1] str_to_save = 'Model "{}" ==> Perplexity: {}, BLEU: {} Percentage word similarity with teacher: {}'.format(x, perplexity, bleu, percentage_word_similarity) if COMPUTE_BLEU_MODELS or COMPUTE_WORD_PERCENTAGE_SIMILARITY: with open(file_results, 'a') as fr: fr.write(str_to_save + '\n') print(str_to_save) curr_num_bit = onmtManager.load_metadata(x)[0].get('numBits', None) if curr_num_bit is not None: quant_fun = functools.partial(quantization.uniformQuantization, s=2**curr_num_bit, bucket_size=256) actual_bit_huffmman = qhf.get_huffman_encoding_mean_bit_length(model.parameters(), quant_fun, 'uniform', s=2**curr_num_bit) print('Effective bit Huffman: {} - Size reduction: {}'.format(actual_bit_huffmman, mhf.get_size_reduction(actual_bit_huffmman, bucket_size=256))) if CHECK_PM_QUANTIZATION: if 'distilledModel_word_level' in x and 'quantized' not in x: for numBit in numBits: model.load_state_dict(onmtManager.load_model_state_dict(x, 1)) for p in model.parameters(): p.data = quantization.uniformQuantization(p.data, s=2**numBit, type_of_scaling='linear', bucket_size=256)[0] perplexity = tmm.evaluate_model(model, test_loader).ppl() if COMPUTE_BLEU_MODELS or COMPUTE_WORD_PERCENTAGE_SIMILARITY: file_translation_model = transl_hf.get_translation_file_model(model, dataset, modelOptions, standardTranslateOptions) if COMPUTE_BLEU_MODELS: bleu = transl_hf.get_bleu_moses(file_translation_model, dataset.testFilesPath[1], file_input=True) else: bleu = 'Not computed' if COMPUTE_WORD_PERCENTAGE_SIMILARITY: percentage_word_similarity = transl_hf.compute_percentage_word_similarity( pathTeacherTranslation, file_translation_model, file_input=True) else: percentage_word_similarity = 'not computed' else: bleu = 'Not computed' percentage_word_similarity = 'not computed' str_to_save = 'PM quantization of model "{}" with "{}" bits and bucket size 256: Perplexity : {}, BLEU: {}'.format( x, numBit, perplexity, bleu) str_to_save += 'Percentage word similarity with teacher:{}'.format(percentage_word_similarity) if COMPUTE_BLEU_MODELS or COMPUTE_WORD_PERCENTAGE_SIMILARITY: with open(file_results, 'a') as fr: fr.write(str_to_save + '\n') print(str_to_save) quant_fun = functools.partial(quantization.uniformQuantization, s=2**numBit, bucket_size=256) actual_bit_huffmman = qhf.get_huffman_encoding_mean_bit_length(model.parameters(), quant_fun, 'uniform', s=2**numBit) print('Effective bit Huffman: {} - Size reduction: {}'.format(actual_bit_huffmman, mhf.get_size_reduction( actual_bit_huffmman, bucket_size=256))) #now for the models trained with the differentiable quantization algorithm list_distilled_models = ['integ_dataset_distilledModel_word_level_{}rnn_size1_layer'.format(x) for x in rnn_sizes] optQuanPointOptions = copy.deepcopy(onmt.onmt.standard_options.stdOptions) for idx_model_distilled, distilled_model_name_to_quantize in enumerate(list_distilled_models): modelOptions = onmtManager.load_metadata(distilled_model_name_to_quantize, 0)[0] for key, val in modelOptions.items(): # remeding to an old bug in save_metadata function if val == 'None': modelOptions[key] = None dataset = transl_dataset #since we don't use sequence level distillation for numBit in numBits: if numBit == 8: continue save_path = onmtManager.get_model_base_path(distilled_model_name_to_quantize) + \ 'quant_points_{}bit_bucket_size256'.format(numBit) with open(save_path, 'rb') as p: quantization_points, infoDict = pickle.load(p) distilledModel = tmm.create_model(dataset.fields, options=modelOptions) distilledModel.load_state_dict(onmtManager.load_model_state_dict(distilled_model_name_to_quantize)) if USE_CUDA: distilledModel = distilledModel.cuda() for idx, p in enumerate(distilledModel.parameters()): p.data = quantization.nonUniformQuantization(p.data, quantization_points[idx], bucket_size=256)[0] reported_perplexity = infoDict['perplexity'][-1] perplexity = tmm.evaluate_model(distilledModel, test_loader).ppl() if COMPUTE_BLEU_MODELS or COMPUTE_WORD_PERCENTAGE_SIMILARITY: file_translation_model = transl_hf.get_translation_file_model(distilledModel, dataset, modelOptions, standardTranslateOptions) if COMPUTE_BLEU_MODELS: bleu = transl_hf.get_bleu_moses(file_translation_model, dataset.testFilesPath[1], file_input=True) else: bleu = 'Not computed' if COMPUTE_WORD_PERCENTAGE_SIMILARITY: percentage_word_similarity = transl_hf.compute_percentage_word_similarity( pathTeacherTranslation, file_translation_model, file_input=True) else: percentage_word_similarity = 'not computed' else: bleu = 'Not computed' percentage_word_similarity = 'not computed' str_to_save = 'Model "{}" ==> Reported perplexity : {}, Actual perplexity: {}, BLEU: {}'.format( distilled_model_name_to_quantize + 'quant_points_{}bit_bucket_size256'.format(numBit), reported_perplexity, perplexity, bleu) str_to_save += 'Percentage word similarity with teacher:{}'.format(percentage_word_similarity) if COMPUTE_BLEU_MODELS or COMPUTE_WORD_PERCENTAGE_SIMILARITY: with open(file_results, 'a') as fr: fr.write(str_to_save + '\n') print(str_to_save) quantization_functions = [functools.partial(quantization.nonUniformQuantization, listQuantizationPoints=qp, bucket_size=256) for qp in quantization_points] actual_bit_huffmman = qhf.get_huffman_encoding_mean_bit_length(distilledModel.parameters(), quantization_functions, 'nonUniform') print('Effective bit Huffman: {} - Size reduction: {}'.format(actual_bit_huffmman, mhf.get_size_reduction( actual_bit_huffmman, bucket_size=256))) try: os.remove(pathTeacherTranslation) except:pass try: os.remove(file_translation_model) except:pass
[ "torch.cuda.is_available" ]
0.3.1
lijian10086/quantized_distillation
bb500b7ae48a3f6751d6434126de9845b58d2d65
0.4
########################################################################### # Created by: Hang Zhang # Email: [email protected] # Copyright (c) 2017 ########################################################################### import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.functional import upsample from torch.nn.parallel.data_parallel import DataParallel from torch.nn.parallel.parallel_apply import parallel_apply from torch.nn.parallel.scatter_gather import scatter from .. import dilated as resnet from ..utils import batch_pix_accuracy, batch_intersection_union up_kwargs = {'mode': 'bilinear', 'align_corners': True} __all__ = ['BaseNet', 'MultiEvalModule'] class BaseNet(nn.Module): def __init__(self, nclass, backbone, aux, se_loss, dilated=True, norm_layer=None, mean=[.485, .456, .406], std=[.229, .224, .225], root='~/.encoding/models'): super(BaseNet, self).__init__() self.nclass = nclass self.aux = aux self.se_loss = se_loss self.mean = mean self.std = std # copying modules from pretrained models if backbone == 'resnet50': self.pretrained = resnet.resnet50(pretrained=True, dilated=dilated, norm_layer=norm_layer, root=root) elif backbone == 'resnet101': self.pretrained = resnet.resnet101(pretrained=True, dilated=dilated, norm_layer=norm_layer, root=root) elif backbone == 'resnet152': self.pretrained = resnet.resnet152(pretrained=True, dilated=dilated, norm_layer=norm_layer, root=root) else: raise RuntimeError('unknown backbone: {}'.format(backbone)) # bilinear upsample options self._up_kwargs = up_kwargs def base_forward(self, x): x = self.pretrained.conv1(x) x = self.pretrained.bn1(x) x = self.pretrained.relu(x) x = self.pretrained.maxpool(x) c1 = self.pretrained.layer1(x) c2 = self.pretrained.layer2(c1) c3 = self.pretrained.layer3(c2) c4 = self.pretrained.layer4(c3) return c1, c2, c3, c4 def evaluate(self, x, target=None): pred = self.forward(x) if isinstance(pred, (tuple, list)): pred = pred[0] if target is None: return pred correct, labeled = batch_pix_accuracy(pred.data, target.data) inter, union = batch_intersection_union(pred.data, target.data, self.nclass) return correct, labeled, inter, union class MultiEvalModule(DataParallel): """Multi-size Segmentation Eavluator""" def __init__(self, module, nclass, device_ids=None, base_size=520, crop_size=480, flip=True, scales=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]): super(MultiEvalModule, self).__init__(module, device_ids) self.nclass = nclass self.base_size = base_size self.crop_size = crop_size self.scales = scales self.flip = flip def parallel_forward(self, inputs, **kwargs): """Multi-GPU Mult-size Evaluation Args: inputs: list of Tensors """ inputs = [(input.unsqueeze(0).cuda(device),) for input, device in zip(inputs, self.device_ids)] replicas = self.replicate(self, self.device_ids[:len(inputs)]) kwargs = scatter(kwargs, target_gpus, dim) if kwargs else [] if len(inputs) < len(kwargs): inputs.extend([() for _ in range(len(kwargs) - len(inputs))]) elif len(kwargs) < len(inputs): kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))]) outputs = self.parallel_apply(replicas, inputs, kwargs) return outputs def forward(self, image): """Mult-size Evaluation""" # only single image is supported for evaluation batch, _, h, w = image.size() assert(batch == 1) stride_rate = 2.0/3.0 crop_size = self.crop_size stride = int(crop_size * stride_rate) with torch.cuda.device_of(image): scores = image.new().resize_(batch,self.nclass,h,w).zero_().cuda() for scale in self.scales: long_size = int(math.ceil(self.base_size * scale)) if h > w: height = long_size width = int(1.0 * w * long_size / h + 0.5) short_size = width else: width = long_size height = int(1.0 * h * long_size / w + 0.5) short_size = height # resize image to current size cur_img = resize_image(image, height, width, **self.module._up_kwargs) if long_size <= crop_size: pad_img = pad_image(cur_img, self.module.mean, self.module.std, crop_size) outputs = module_inference(self.module, pad_img, self.flip) outputs = crop_image(outputs, 0, height, 0, width) else: if short_size < crop_size: # pad if needed pad_img = pad_image(cur_img, self.module.mean, self.module.std, crop_size) else: pad_img = cur_img _,_,ph,pw = pad_img.size() assert(ph >= height and pw >= width) # grid forward and normalize h_grids = int(math.ceil(1.0*(ph-crop_size)/stride)) + 1 w_grids = int(math.ceil(1.0*(pw-crop_size)/stride)) + 1 with torch.cuda.device_of(image): outputs = image.new().resize_(batch,self.nclass,ph,pw).zero_().cuda() count_norm = image.new().resize_(batch,1,ph,pw).zero_().cuda() # grid evaluation for idh in range(h_grids): for idw in range(w_grids): h0 = idh * stride w0 = idw * stride h1 = min(h0 + crop_size, ph) w1 = min(w0 + crop_size, pw) crop_img = crop_image(pad_img, h0, h1, w0, w1) # pad if needed pad_crop_img = pad_image(crop_img, self.module.mean, self.module.std, crop_size) output = module_inference(self.module, pad_crop_img, self.flip) outputs[:,:,h0:h1,w0:w1] += crop_image(output, 0, h1-h0, 0, w1-w0) count_norm[:,:,h0:h1,w0:w1] += 1 assert((count_norm==0).sum()==0) outputs = outputs / count_norm outputs = outputs[:,:,:height,:width] score = resize_image(outputs, h, w, **self.module._up_kwargs) scores += score return scores def module_inference(module, image, flip=True): output = module.evaluate(image) if flip: fimg = flip_image(image) foutput = module.evaluate(fimg) output += flip_image(foutput) return output.exp() def resize_image(img, h, w, **up_kwargs): return F.upsample(img, (h, w), **up_kwargs) def pad_image(img, mean, std, crop_size): b,c,h,w = img.size() assert(c==3) padh = crop_size - h if h < crop_size else 0 padw = crop_size - w if w < crop_size else 0 pad_values = -np.array(mean) / np.array(std) img_pad = img.new().resize_(b,c,h+padh,w+padw) for i in range(c): # note that pytorch pad params is in reversed orders img_pad[:,i,:,:] = F.pad(img[:,i,:,:], (0, padw, 0, padh), value=pad_values[i]) assert(img_pad.size(2)>=crop_size and img_pad.size(3)>=crop_size) return img_pad def crop_image(img, h0, h1, w0, w1): return img[:,:,h0:h1,w0:w1] def flip_image(img): assert(img.dim()==4) with torch.cuda.device_of(img): idx = torch.arange(img.size(3)-1, -1, -1).type_as(img).long() return img.index_select(3, idx)
[ "torch.nn.functional.upsample", "torch.cuda.device_of", "torch.nn.parallel.scatter_gather.scatter", "torch.nn.functional.pad" ]
0.4.0
youansheng/PyTorch-Encoding
dc501d28d478dbf668186f721c8600387c32859c
0.4
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CppExtension setup( name='enclib_cpu', ext_modules=[ CppExtension('enclib_cpu', [ 'roi_align.cpp', 'roi_align_cpu.cpp', ]), ], cmdclass={ 'build_ext': BuildExtension })
[ "torch.utils.cpp_extension.CppExtension" ]
0.4.0
youansheng/PyTorch-Encoding
dc501d28d478dbf668186f721c8600387c32859c
1.8
import os import argparse import json import torch from torch.optim.lr_scheduler import ReduceLROnPlateau import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from asteroid.models import ConvTasNet from asteroid.engine.optimizers import make_optimizer from asteroid.engine.system_kinect_wsj import System from asteroid.losses import PITLossWrapper, pairwise_neg_sisdr from asteroid.data.kinect_wsj import make_dataloaders # Keys which are not in the conf.yml file can be added here. # In the hierarchical dictionary created when parsing, the key `key` can be # found at dic['main_args'][key] # By default train.py will use all available GPUs. The `id` option in run.sh # will limit the number of available GPUs for train.py . parser = argparse.ArgumentParser() parser.add_argument("--exp_dir", default="exp/tmp", help="Full path to save best validation model") def main(conf): exp_dir = conf["main_args"]["exp_dir"] # Define Dataloader train_loader, val_loader = make_dataloaders(**conf["data"], **conf["training"]) conf["masknet"].update({"n_src": conf["data"]["n_src"]}) model = ConvTasNet(**conf["filterbank"], **conf["masknet"], sample_rate=conf["data"]["sample_rate"]) optimizer = make_optimizer(model.parameters(), **conf["optim"]) # Define scheduler scheduler = None if conf["training"]["half_lr"]: scheduler = ReduceLROnPlateau(optimizer=optimizer, factor=0.5, patience=5) # Just after instantiating, save the args. Easy loading in the future. os.makedirs(exp_dir, exist_ok=True) conf_path = os.path.join(exp_dir, "conf.yml") with open(conf_path, "w") as outfile: yaml.safe_dump(conf, outfile) # Define Loss function. loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") system = System( model=model, loss_func=loss_func, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader, scheduler=scheduler, config=conf, ) # Define callbacks callbacks = [] checkpoint_dir = os.path.join(exp_dir, "checkpoints/") checkpoint = ModelCheckpoint(checkpoint_dir, monitor="val_loss", mode="min", save_top_k=5, verbose=True) callbacks.append(checkpoint) if conf["training"]["early_stop"]: callbacks.append( EarlyStopping(monitor="val_loss", mode="min", patience=30, verbose=True)) # Don't ask GPU if they are not available. gpus = -1 if torch.cuda.is_available() else None distributed_backend = "ddp" if torch.cuda.is_available() else None trainer = pl.Trainer( max_epochs=conf["training"]["epochs"], callbacks=callbacks, default_root_dir=exp_dir, gpus=gpus, distributed_backend=distributed_backend, limit_train_batches=1.0, # Useful for fast experiment gradient_clip_val=5.0, ) trainer.fit(system) best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()} with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f: json.dump(best_k, f, indent=0) state_dict = torch.load(checkpoint.best_model_path) system.load_state_dict(state_dict=state_dict["state_dict"]) system.cpu() to_save = system.model.serialize() #to_save.update(train_set.get_infos()) torch.save(to_save, os.path.join(exp_dir, "best_model.pth")) if __name__ == "__main__": import yaml from pprint import pprint from asteroid.utils import prepare_parser_from_dict, parse_args_as_dict # We start with opening the config file conf.yml as a dictionary from # which we can create parsers. Each top level key in the dictionary defined # by the YAML file creates a group in the parser. with open("local/conf.yml") as f: def_conf = yaml.safe_load(f) parser = prepare_parser_from_dict(def_conf, parser=parser) # Arguments are then parsed into a hierarchical dictionary (instead of # flat, as returned by argparse) to facilitate calls to the different # asteroid methods (see in main). # plain_args is the direct output of parser.parse_args() and contains all # the attributes in an non-hierarchical structure. It can be useful to also # have it so we included it here but it is not used. arg_dic, plain_args = parse_args_as_dict(parser, return_plain_args=True) pprint(arg_dic) main(arg_dic)
[ "torch.cuda.is_available", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.load" ]
1.8.0
ccan1995/asteroid
782e95be17b6c16ed2b292d11b9063bf274ca346
1.9
import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision.datasets as dsets # datasets train_dataset = dsets.MNIST(root='../../../_data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='../../../_data', train=False, transform=transforms.ToTensor()) # normalize dataset batch_size = 100 n_iters = 3000 n_epochs = int(n_iters / (len(train_dataset) / batch_size)) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) class FeedforwardNeuralNetModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(FeedforwardNeuralNetModel, self).__init__() # Linear function self.fc1 = nn.Linear(input_dim, hidden_dim) # Non-linearity self.tanh = nn.Tanh() # Linear function (readout) self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): # Linear function out = self.fc1(x) # Non-linearity out = self.tanh(out) # Linear function (readout) out = self.fc2(out) return out # define network learning_rate = 0.1 input_dim = 28*28 hidden_dim = 100 output_dim = 10 network = FeedforwardNeuralNetModel(input_dim, hidden_dim, output_dim) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(network.parameters(), lr=learning_rate) # trian network for epoch in range(n_epochs): for i, (images, labels) in enumerate(train_loader): # Load images with gradient accumulation capabilities images = images.view(-1, 28*28).requires_grad_() # Clear gradients w.r.t. parameters optimizer.zero_grad() # Forward pass to get output/logits outputs = network(images) # Calculate Loss: softmax --> cross entropy loss loss = criterion(outputs, labels) # Getting gradients w.r.t. parameters loss.backward() # Updating parameters optimizer.step() if epoch % 500 == 0: # Calculate Accuracy correct = 0 total = 0 # Iterate through test dataset for images, labels in test_loader: # Load images with gradient accumulation capabilities images = images.view(-1, 28*28).requires_grad_() # Forward pass only to get logits/output outputs = network(images) # Get predictions from the maximum value _, predicted = torch.max(outputs.data, 1) # Total number of labels total += labels.size(0) # Total correct predictions correct += (predicted == labels).sum() accuracy = 100 * correct / total # Print Loss print(f'[{epoch}/{n_epochs}] Loss: {loss.item()}. Accuracy: {accuracy}')
[ "torch.nn.Linear", "torch.max", "torch.nn.Tanh", "torch.utils.data.DataLoader", "torch.nn.CrossEntropyLoss" ]
1.9.0
niektuytel/Machine_Learning
0cd5656ca8076c383fd81c5e32a49969a20ad042
0.4
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch.nn.functional as F from . import FairseqCriterion, register_criterion @register_criterion('adaptive_loss') class AdaptiveLoss(FairseqCriterion): """This is an implementation of the loss function accompanying the adaptive softmax approximation for graphical processing units (GPU), described in the paper "Efficient softmax approximation for GPUs" (http://arxiv.org/abs/1609.04309).""" def __init__(self, args, target_vocabulary): super().__init__(args, target_vocabulary) def forward(self, model, sample, reduction='sum'): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert hasattr(model.decoder, 'adaptive_softmax') and model.decoder.adaptive_softmax is not None adaptive_softmax = model.decoder.adaptive_softmax # net_output = model(*sample['net_input']) net_output = model(*sample['net_input']) target = model.get_targets(sample).view(-1) bsz = target.size(0) logits, target = adaptive_softmax(net_output[0], target) assert len(target) == len(logits) loss = net_output[0].new(1 if reduction == 'sum' else bsz).zero_() for i in range(len(target)): if target[i] is not None: assert (target[i].min() >= 0 and target[i].max() <= logits[i].size(1)) loss += F.cross_entropy(logits[i], target[i], ignore_index=self.padding_idx, reduction=reduction) sample_size = sample['target'].size(0) if self.args.batch_by_sentence else sample['ntokens'] logging_output = { 'loss': loss.data.item() if reduction != 'none' else loss.data, 'ntokens': sample['ntokens'], 'sample_size': sample_size, } return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get('loss', 0) for log in logging_outputs) ntokens = sum(log.get('ntokens', 0) for log in logging_outputs) sample_size = sum(log.get('sample_size', 0) for log in logging_outputs) agg_output = { 'loss': loss_sum / sample_size, 'sample_size': sample_size, } if sample_size != ntokens: # agg_output['nll_loss'] = loss_sum / ntokens / math.log(2) agg_output['per_word_loss'] = loss_sum / ntokens else: agg_output['per_word_loss'] = agg_output['loss'] return agg_output
[ "torch.nn.functional.cross_entropy" ]
0.4.1
DeepLearnXMU/ABDNMT-RNMT
c3b20e4afdbfee5741e95a42bbd31329bb9bb93d
1.10
import os import json import sys import time import torch from torch import nn from torch import optim import torchvision as tv from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader from PIL import Image import numpy as np EPS = 1e-6 ALPHA_RECONSTRUCT_IMAGE = 1 ALPHA_RECONSTRUCT_LATENT = 0.5 ALPHA_DISCRIMINATE_IMAGE = 0.005 ALPHA_DISCRIMINATE_LATENT = 0.1 class Generator(nn.Module): """A generator for mapping a latent space to a sample space. Input shape: (?, latent_dim) Output shape: (?, 3, 96, 96) """ def __init__(self, latent_dim: int = 16): """Initialize generator. Args: latent_dim (int): latent dimension ("noise vector") """ super().__init__() self.latent_dim = latent_dim self._init_modules() def build_colourspace(self, input_dim: int, output_dim: int): """Build a small module for selecting colours.""" colourspace = nn.Sequential( nn.Linear( input_dim, 128, bias=True), nn.BatchNorm1d(128), nn.LeakyReLU(), nn.Linear( 128, 64, bias=True), nn.BatchNorm1d(64), nn.LeakyReLU(), nn.Linear( 64, output_dim, bias=True), nn.Tanh(), ) return colourspace def _init_modules(self): """Initialize the modules.""" projection_widths = [8, 8, 8, 8, 8, 8, 8] self.projection_dim = sum(projection_widths) + self.latent_dim self.projection = nn.ModuleList() for index, i in enumerate(projection_widths): self.projection.append( nn.Sequential( nn.Linear( self.latent_dim + sum(projection_widths[:index]), i, bias=True, ), nn.BatchNorm1d(8), nn.LeakyReLU(), ) ) self.projection_upscaler = nn.Upsample(scale_factor=3) self.colourspace_r = self.build_colourspace(self.projection_dim, 16) self.colourspace_g = self.build_colourspace(self.projection_dim, 16) self.colourspace_b = self.build_colourspace(self.projection_dim, 16) self.colourspace_upscaler = nn.Upsample(scale_factor=96) self.seed = nn.Sequential( nn.Linear( self.projection_dim, 512*3*3, bias=True), nn.BatchNorm1d(512*3*3), nn.LeakyReLU(), ) self.upscaling = nn.ModuleList() self.conv = nn.ModuleList() self.upscaling.append(nn.Upsample(scale_factor=2)) self.conv.append(nn.Sequential( nn.ZeroPad2d((1, 1, 1, 1)), nn.Conv2d( in_channels=(512)//4, out_channels=512, kernel_size=3, stride=1, padding=0, bias=True ), nn.BatchNorm2d(512), nn.LeakyReLU(), )) self.upscaling.append(nn.Upsample(scale_factor=2)) self.conv.append(nn.Sequential( nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d( in_channels=(512 + self.projection_dim)//4, out_channels=256, kernel_size=4, stride=1, padding=0, bias=True ), nn.BatchNorm2d(256), nn.LeakyReLU(), )) self.upscaling.append(nn.Upsample(scale_factor=2)) self.conv.append(nn.Sequential( nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d( in_channels=(256 + self.projection_dim)//4, out_channels=256, kernel_size=4, stride=1, padding=0, bias=True ), nn.BatchNorm2d(256), nn.LeakyReLU(), )) self.upscaling.append(nn.Upsample(scale_factor=2)) self.conv.append(nn.Sequential( nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d( in_channels=(256 + self.projection_dim)//4, out_channels=256, kernel_size=4, stride=1, padding=0, bias=True ), nn.BatchNorm2d(256), nn.LeakyReLU(), )), self.upscaling.append(nn.Upsample(scale_factor=2)) self.conv.append(nn.Sequential( nn.ZeroPad2d((1, 2, 1, 2)), nn.Conv2d( in_channels=(256 + self.projection_dim)//4, out_channels=64, kernel_size=4, stride=1, padding=0, bias=True ), nn.BatchNorm2d(64), nn.LeakyReLU(), )) self.upscaling.append(nn.Upsample(scale_factor=1)) self.conv.append(nn.Sequential( nn.ZeroPad2d((2, 2, 2, 2)), nn.Conv2d( in_channels=64, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True ), nn.Softmax(dim=1), )) def forward(self, input_tensor): """Forward pass; map latent vectors to samples.""" last = input_tensor for module in self.projection: projection = module(last) last = torch.cat((last, projection), -1) projection = last intermediate = self.seed(projection) intermediate = intermediate.view((-1, 512, 3, 3)) projection_2d = projection.view((-1, self.projection_dim, 1, 1)) projection_2d = self.projection_upscaler(projection_2d) for i, (conv, upscaling) in enumerate(zip(self.conv, self.upscaling)): if i + 1 != len(self.upscaling): if i > 0: intermediate = torch.cat((intermediate, projection_2d), 1) intermediate = torch.nn.functional.pixel_shuffle(intermediate, 2) intermediate = conv(intermediate) projection_2d = upscaling(projection_2d) r_space = self.colourspace_r(projection) r_space = r_space.view((-1, 16, 1, 1)) r_space = self.colourspace_upscaler(r_space) r_space = intermediate * r_space r_space = torch.sum(r_space, dim=1, keepdim=True) g_space = self.colourspace_g(projection) g_space = g_space.view((-1, 16, 1, 1)) g_space = self.colourspace_upscaler(g_space) g_space = intermediate * g_space g_space = torch.sum(g_space, dim=1, keepdim=True) b_space = self.colourspace_b(projection) b_space = b_space.view((-1, 16, 1, 1)) b_space = self.colourspace_upscaler(b_space) b_space = intermediate * b_space b_space = torch.sum(b_space, dim=1, keepdim=True) output = torch.cat((r_space, g_space, b_space), dim=1) return output class Encoder(nn.Module): """An Encoder for encoding images as latent vectors. Input shape: (?, 3, 96, 96) Output shape: (?, latent_dim) """ def __init__(self, device: str = "cpu", latent_dim: int = 8): """Initialize encoder. Args: device: chich GPU or CPU to use. latent_dim: output dimension """ super().__init__() self.device = device self.latent_dim = latent_dim self._init_modules() def _init_modules(self): """Initialize the modules.""" down_channels = [3, 64, 128, 256, 512] self.down = nn.ModuleList() for i in range(len(down_channels)-1): self.down.append( nn.Sequential( nn.Conv2d( in_channels=down_channels[i], out_channels=down_channels[i+1], kernel_size=3, stride=2, padding=1, bias=True, ), nn.BatchNorm2d(down_channels[i+1]), nn.LeakyReLU(), ) ) self.reducer = nn.Sequential( nn.Conv2d( in_channels=down_channels[-1], out_channels=down_channels[-2], kernel_size=3, stride=1, padding=1, bias=True, ), nn.BatchNorm2d(down_channels[-2]), nn.LeakyReLU(), nn.Upsample(scale_factor=2) ) up_channels = [256, 128, 64, 64, 64] scale_factors = [2, 2, 2, 1] self.up = nn.ModuleList() for i in range(len(up_channels)-1): self.up.append( nn.Sequential( nn.Conv2d( in_channels=up_channels[i] + down_channels[-2-i], out_channels=up_channels[i+1], kernel_size=3, stride=1, padding=1, bias=True, ), nn.BatchNorm2d(up_channels[i+1]), nn.LeakyReLU(), nn.Upsample(scale_factor=scale_factors[i]), ) ) down_again_channels = [64+3, 64, 64, 64, 64] self.down_again = nn.ModuleList() for i in range(len(down_again_channels)-1): self.down_again.append( nn.Conv2d( in_channels=down_again_channels[i], out_channels=down_again_channels[i+1], kernel_size=3, stride=2, padding=1, bias=True, ) ) self.down_again.append(nn.BatchNorm2d(down_again_channels[i+1])) self.down_again.append(nn.LeakyReLU()) self.projection = nn.Sequential( nn.Linear( 512*6*6 + 64*6*6, 256, bias=True, ), nn.BatchNorm1d(256), nn.LeakyReLU(), nn.Linear( 256, 128, bias=True, ), nn.BatchNorm1d(128), nn.LeakyReLU(), nn.Linear( 128, self.latent_dim, bias=True, ), ) def forward(self, input_tensor): """Forward pass; map latent vectors to samples.""" rv = torch.randn(input_tensor.size(), device=self.device) * 0.02 augmented_input = input_tensor + rv intermediate = augmented_input intermediates = [augmented_input] for module in self.down: intermediate = module(intermediate) intermediates.append(intermediate) intermediates = intermediates[:-1][::-1] down = intermediate.view(-1, 6*6*512) intermediate = self.reducer(intermediate) for index, module in enumerate(self.up): intermediate = torch.cat((intermediate, intermediates[index]), 1) intermediate = module(intermediate) intermediate = torch.cat((intermediate, input_tensor), 1) for module in self.down_again: intermediate = module(intermediate) intermediate = intermediate.view(-1, 6*6*64) intermediate = torch.cat((down, intermediate), -1) projected = self.projection(intermediate) return projected class DiscriminatorImage(nn.Module): """A discriminator for discerning real from generated images. Input shape: (?, 3, 96, 96) Output shape: (?, 1) """ def __init__(self, device="cpu"): """Initialize the discriminator.""" super().__init__() self.device = device self._init_modules() def _init_modules(self): """Initialize the modules.""" down_channels = [3, 64, 128, 256, 512] self.down = nn.ModuleList() leaky_relu = nn.LeakyReLU() for i in range(4): self.down.append( nn.Conv2d( in_channels=down_channels[i], out_channels=down_channels[i+1], kernel_size=3, stride=2, padding=1, bias=True, ) ) self.down.append(nn.BatchNorm2d(down_channels[i+1])) self.down.append(leaky_relu) self.classifier = nn.ModuleList() self.width = down_channels[-1] * 6**2 self.classifier.append(nn.Linear(self.width, 1)) self.classifier.append(nn.Sigmoid()) def forward(self, input_tensor): """Forward pass; map latent vectors to samples.""" rv = torch.randn(input_tensor.size(), device=self.device) * 0.02 intermediate = input_tensor + rv for module in self.down: intermediate = module(intermediate) rv = torch.randn(intermediate.size(), device=self.device) * 0.02 + 1 intermediate *= rv intermediate = intermediate.view(-1, self.width) for module in self.classifier: intermediate = module(intermediate) return intermediate class DiscriminatorLatent(nn.Module): """A discriminator for discerning real from generated vectors. Input shape: (?, latent_dim) Output shape: (?, 1) """ def __init__(self, latent_dim=8, device="cpu"): """Initialize the Discriminator.""" super().__init__() self.latent_dim = latent_dim self.device = device self._init_modules() def _init_modules(self, depth=7, width=8): """Initialize the modules.""" self.pyramid = nn.ModuleList() for i in range(depth): self.pyramid.append( nn.Sequential( nn.Linear( self.latent_dim + width*i, width, bias=True, ), nn.BatchNorm1d(width), nn.LeakyReLU(), ) ) self.classifier = nn.ModuleList() self.classifier.append(nn.Linear(depth*width + self.latent_dim, 1)) self.classifier.append(nn.Sigmoid()) def forward(self, input_tensor): """Forward pass; map latent vectors to samples.""" last = input_tensor for module in self.pyramid: projection = module(last) rv = torch.randn(projection.size(), device=self.device) * 0.02 + 1 projection *= rv last = torch.cat((last, projection), -1) for module in self.classifier: last = module(last) return last class AEGAN(): """An Autoencoder Generative Adversarial Network for making pokemon.""" def __init__(self, latent_dim, noise_fn, dataloader, batch_size=32, device='cpu'): """Initialize the AEGAN. Args: latent_dim: latent-space dimension. Must be divisible by 4. noise_fn: function f(num: int) -> pytorch tensor, (latent vectors) dataloader: a pytorch dataloader for loading images batch_size: training batch size. Must match that of dataloader device: cpu or CUDA """ assert latent_dim % 4 == 0 self.latent_dim = latent_dim self.device = device self.noise_fn = noise_fn self.dataloader = dataloader self.batch_size = batch_size self.criterion_gen = nn.BCELoss() self.criterion_recon_image = nn.L1Loss() self.criterion_recon_latent = nn.MSELoss() self.target_ones = torch.ones((batch_size, 1), device=device) self.target_zeros = torch.zeros((batch_size, 1), device=device) self._init_generator() self._init_encoder() self._init_dx() self._init_dz() def _init_generator(self): self.generator = Generator(latent_dim=self.latent_dim) self.generator = self.generator.to(self.device) self.optim_g = optim.Adam(self.generator.parameters(), lr=2e-4, betas=(0.5, 0.999), weight_decay=1e-8) def _init_encoder(self): self.encoder = Encoder(latent_dim=self.latent_dim, device=self.device) self.encoder = self.encoder.to(self.device) self.optim_e = optim.Adam(self.encoder.parameters(), lr=2e-4, betas=(0.5, 0.999), weight_decay=1e-8) def _init_dx(self): self.discriminator_image = DiscriminatorImage(device=self.device).to(self.device) self.optim_di = optim.Adam(self.discriminator_image.parameters(), lr=1e-4, betas=(0.5, 0.999), weight_decay=1e-8) def _init_dz(self): self.discriminator_latent = DiscriminatorLatent( latent_dim=self.latent_dim, device=self.device, ).to(self.device) self.optim_dl = optim.Adam(self.discriminator_latent.parameters(), lr=1e-4, betas=(0.5, 0.999), weight_decay=1e-8) def generate_samples(self, latent_vec=None, num=None): """Sample images from the generator. Images are returned as a 4D tensor of values between -1 and 1. Dimensions are (number, channels, height, width). Returns the tensor on cpu. Args: latent_vec: A pytorch latent vector or None num: The number of samples to generate if latent_vec is None If latent_vec and num are None then use self.batch_size random latent vectors. """ num = self.batch_size if num is None else num latent_vec = self.noise_fn(num) if latent_vec is None else latent_vec with torch.no_grad(): samples = self.generator(latent_vec) samples = samples.cpu() # move images to cpu return samples def train_step_generators(self, X): """Train the generator one step and return the loss.""" self.generator.zero_grad() self.encoder.zero_grad() Z = self.noise_fn(self.batch_size) X_hat = self.generator(Z) Z_hat = self.encoder(X) X_tilde = self.generator(Z_hat) Z_tilde = self.encoder(X_hat) X_hat_confidence = self.discriminator_image(X_hat) Z_hat_confidence = self.discriminator_latent(Z_hat) X_tilde_confidence = self.discriminator_image(X_tilde) Z_tilde_confidence = self.discriminator_latent(Z_tilde) X_hat_loss = self.criterion_gen(X_hat_confidence, self.target_ones) Z_hat_loss = self.criterion_gen(Z_hat_confidence, self.target_ones) X_tilde_loss = self.criterion_gen(X_tilde_confidence, self.target_ones) Z_tilde_loss = self.criterion_gen(Z_tilde_confidence, self.target_ones) X_recon_loss = self.criterion_recon_image(X_tilde, X) * ALPHA_RECONSTRUCT_IMAGE Z_recon_loss = self.criterion_recon_latent(Z_tilde, Z) * ALPHA_RECONSTRUCT_LATENT X_loss = (X_hat_loss + X_tilde_loss) / 2 * ALPHA_DISCRIMINATE_IMAGE Z_loss = (Z_hat_loss + Z_tilde_loss) / 2 * ALPHA_DISCRIMINATE_LATENT loss = X_loss + Z_loss + X_recon_loss + Z_recon_loss loss.backward() self.optim_e.step() self.optim_g.step() return X_loss.item(), Z_loss.item(), X_recon_loss.item(), Z_recon_loss.item() def train_step_discriminators(self, X): """Train the discriminator one step and return the losses.""" self.discriminator_image.zero_grad() self.discriminator_latent.zero_grad() Z = self.noise_fn(self.batch_size) with torch.no_grad(): X_hat = self.generator(Z) Z_hat = self.encoder(X) X_tilde = self.generator(Z_hat) Z_tilde = self.encoder(X_hat) X_confidence = self.discriminator_image(X) X_hat_confidence = self.discriminator_image(X_hat) X_tilde_confidence = self.discriminator_image(X_tilde) Z_confidence = self.discriminator_latent(Z) Z_hat_confidence = self.discriminator_latent(Z_hat) Z_tilde_confidence = self.discriminator_latent(Z_tilde) X_loss = 2 * self.criterion_gen(X_confidence, self.target_ones) X_hat_loss = self.criterion_gen(X_hat_confidence, self.target_zeros) X_tilde_loss = self.criterion_gen(X_tilde_confidence, self.target_zeros) Z_loss = 2 * self.criterion_gen(Z_confidence, self.target_ones) Z_hat_loss = self.criterion_gen(Z_hat_confidence, self.target_zeros) Z_tilde_loss = self.criterion_gen(Z_tilde_confidence, self.target_zeros) loss_images = (X_loss + X_hat_loss + X_tilde_loss) / 4 loss_latent = (Z_loss + Z_hat_loss + Z_tilde_loss) / 4 loss = loss_images + loss_latent loss.backward() self.optim_di.step() self.optim_dl.step() return loss_images.item(), loss_latent.item() def train_epoch(self, print_frequency=1, max_steps=0): """Train both networks for one epoch and return the losses. Args: print_frequency (int): print stats every `print_frequency` steps. max_steps (int): End epoch after `max_steps` steps, or set to 0 to do the full epoch. """ ldx, ldz, lgx, lgz, lrx, lrz = 0, 0, 0, 0, 0, 0 eps = 1e-9 for batch, (real_samples, _) in enumerate(self.dataloader): real_samples = real_samples.to(self.device) ldx_, ldz_ = self.train_step_discriminators(real_samples) ldx += ldx_ ldz += ldz_ lgx_, lgz_, lrx_, lrz_ = self.train_step_generators(real_samples) lgx += lgx_ lgz += lgz_ lrx += lrx_ lrz += lrz_ if print_frequency and (batch+1) % print_frequency == 0: print(f"{batch+1}/{len(self.dataloader)}:" f" G={lgx / (eps + (batch+1) * ALPHA_DISCRIMINATE_IMAGE):.3f}," f" E={lgz / (eps + (batch+1) * ALPHA_DISCRIMINATE_LATENT):.3f}," f" Dx={ldx / (eps + (batch+1)):.3f}," f" Dz={ldz / (eps + (batch+1)):.3f}", f" Rx={lrx / (eps + (batch+1) * ALPHA_RECONSTRUCT_IMAGE):.3f}", f" Rz={lrz / (eps + (batch+1) * ALPHA_RECONSTRUCT_LATENT):.3f}", end='\r', flush=True) if max_steps and batch == max_steps: break if print_frequency: print() lgx /= batch lgz /= batch ldx /= batch ldz /= batch lrx /= batch lrz /= batch return lgx, lgz, ldx, ldz, lrx, lrz
[ "torch.nn.Linear", "torch.cat", "torch.nn.ModuleList", "torch.nn.LeakyReLU", "torch.nn.BatchNorm2d", "torch.ones", "torch.sum", "torch.nn.Softmax", "torch.nn.functional.pixel_shuffle", "torch.nn.BCELoss", "torch.zeros", "torch.nn.Tanh", "torch.nn.Conv2d", "torch.nn.MSELoss", "torch.nn.Sigmoid", "torch.no_grad", "torch.nn.L1Loss", "torch.nn.Upsample", "torch.nn.BatchNorm1d", "torch.nn.ZeroPad2d" ]
1.10.0
godomainz/PokeGAN
253c267a89e7545524bcd0db3859fdfa801e303e
1.4
import util import numpy as np import random from transformers import BertTokenizer, AutoTokenizer import os from os.path import join import json import pickle import logging import torch import itertools logger = logging.getLogger(__name__) class CorefDataProcessor: def __init__(self, config, language='english'): self.config = config self.language = language self.max_seg_len = config['max_segment_len'] self.max_training_seg = config['max_training_sentences'] self.data_dir = config['data_dir'] # Get tensorized samples cache_path = self.get_cache_path() if os.path.exists(cache_path): # Load cached tensors if exists with open(cache_path, 'rb') as f: self.tensor_samples, self.stored_info = pickle.load(f) logger.info('Loaded tensorized examples from cache') else: # Generate tensorized samples self.tensor_samples = {} tensorizer = Tensorizer(self.config) paths = { 'trn': join(self.data_dir, f'{language}-train.{self.max_seg_len}.jsonlines'), 'dev': join(self.data_dir, f'{language}-dev.{self.max_seg_len}.jsonlines'), # 'tst': join(self.data_dir, f'{language}-test.{self.max_seg_len}.jsonlines') } for split, path in paths.items(): logger.info('Tensorizing examples from %s; results will be cached)' % path) is_training = (split == 'trn') with open(path, 'r') as f: samples = [json.loads(line) for line in f.readlines()] print(util.count_singletons(samples)) tensor_samples = [tensorizer.tensorize_example(sample, is_training) for sample in samples] self.tensor_samples[split] = [(doc_key, self.convert_to_torch_tensor(*tensor)) for doc_key, tensor in tensor_samples] self.stored_info = tensorizer.stored_info # Cache tensorized samples with open(cache_path, 'wb') as f: pickle.dump((self.tensor_samples, self.stored_info), f) @classmethod def convert_to_torch_tensor(cls, input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, is_training, gold_starts, gold_ends, gold_mention_cluster_map): input_ids = torch.tensor(input_ids, dtype=torch.long) input_mask = torch.tensor(input_mask, dtype=torch.long) speaker_ids = torch.tensor(speaker_ids, dtype=torch.long) sentence_len = torch.tensor(sentence_len, dtype=torch.long) genre = torch.tensor(genre, dtype=torch.long) sentence_map = torch.tensor(sentence_map, dtype=torch.long) is_training = torch.tensor(is_training, dtype=torch.bool) gold_starts = torch.tensor(gold_starts, dtype=torch.long) gold_ends = torch.tensor(gold_ends, dtype=torch.long) gold_mention_cluster_map = torch.tensor(gold_mention_cluster_map, dtype=torch.long) return input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, \ is_training, gold_starts, gold_ends, gold_mention_cluster_map, def get_tensor_examples(self): # For each split, return list of tensorized samples to allow variable length input (batch size = 1) return self.tensor_samples['trn'], self.tensor_samples['dev'] def get_stored_info(self): return self.stored_info def get_cache_path(self): cache_path = join(self.data_dir, f'cached.tensors.{self.language}.{self.max_seg_len}.{self.max_training_seg}.bin') return cache_path class Tensorizer: def __init__(self, config): self.config = config self.tokenizer = AutoTokenizer.from_pretrained(config['bert_tokenizer_name']) # Will be used in evaluation self.stored_info = {} self.stored_info['tokens'] = {} # {doc_key: ...} self.stored_info['subtoken_maps'] = {} # {doc_key: ...}; mapping back to tokens self.stored_info['gold'] = {} # {doc_key: ...} self.stored_info['genre_dict'] = {genre: idx for idx, genre in enumerate(config['genres'])} def _tensorize_spans(self, spans): if len(spans) > 0: starts, ends = zip(*spans) else: starts, ends = [], [] return np.array(starts), np.array(ends) def _tensorize_span_w_labels(self, spans, label_dict): if len(spans) > 0: starts, ends, labels = zip(*spans) else: starts, ends, labels = [], [], [] return np.array(starts), np.array(ends), np.array([label_dict[label] for label in labels]) def _get_speaker_dict(self, speakers): speaker_dict = {'UNK': 0, '[SPL]': 1} for speaker in speakers: if len(speaker_dict) > self.config['max_num_speakers']: pass # 'break' to limit # speakers if speaker not in speaker_dict: speaker_dict[speaker] = len(speaker_dict) return speaker_dict def tensorize_example(self, example, is_training): # Mentions and clusters clusters = example['clusters'] gold_mentions = sorted(tuple(mention) for mention in util.flatten(clusters)) gold_mention_map = {mention: idx for idx, mention in enumerate(gold_mentions)} gold_mention_cluster_map = np.zeros(len(gold_mentions)) # 0: no cluster for cluster_id, cluster in enumerate(clusters): for mention in cluster: gold_mention_cluster_map[gold_mention_map[tuple(mention)]] = cluster_id + 1 # Speakers speakers = example['speakers'] speaker_dict = self._get_speaker_dict(util.flatten(speakers)) # Sentences/segments sentences = example['sentences'] # Segments sentence_map = example['sentence_map'] num_words = sum([len(s) for s in sentences]) max_sentence_len = self.config['max_segment_len'] sentence_len = np.array([len(s) for s in sentences]) # Bert input input_ids, input_mask, speaker_ids = [], [], [] for idx, (sent_tokens, sent_speakers) in enumerate(zip(sentences, speakers)): sent_input_ids = self.tokenizer.convert_tokens_to_ids(sent_tokens) sent_input_mask = [1] * len(sent_input_ids) sent_speaker_ids = [speaker_dict[speaker] for speaker in sent_speakers] while len(sent_input_ids) < max_sentence_len: sent_input_ids.append(0) sent_input_mask.append(0) sent_speaker_ids.append(0) input_ids.append(sent_input_ids) input_mask.append(sent_input_mask) speaker_ids.append(sent_speaker_ids) input_ids = np.array(input_ids) input_mask = np.array(input_mask) speaker_ids = np.array(speaker_ids) assert num_words == np.sum(input_mask), (num_words, np.sum(input_mask)) # Keep info to store doc_key = example['doc_key'] self.stored_info['subtoken_maps'][doc_key] = example.get('subtoken_map', None) self.stored_info['gold'][doc_key] = example['clusters'] # self.stored_info['tokens'][doc_key] = example['tokens'] # Construct example genre = self.stored_info['genre_dict'].get(doc_key[:2], 0) gold_starts, gold_ends = self._tensorize_spans(gold_mentions) example_tensor = (input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, is_training, gold_starts, gold_ends, gold_mention_cluster_map) if is_training and len(sentences) > self.config['max_training_sentences']: return doc_key, self.truncate_example(*example_tensor) else: return doc_key, example_tensor def truncate_example(self, input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, is_training, gold_starts=None, gold_ends=None, gold_mention_cluster_map=None, sentence_offset=None): max_sentences = self.config["max_training_sentences"] num_sentences = input_ids.shape[0] assert num_sentences > max_sentences sent_offset = sentence_offset if sent_offset is None: sent_offset = random.randint(0, num_sentences - max_sentences) word_offset = sentence_len[:sent_offset].sum() num_words = sentence_len[sent_offset: sent_offset + max_sentences].sum() input_ids = input_ids[sent_offset: sent_offset + max_sentences, :] input_mask = input_mask[sent_offset: sent_offset + max_sentences, :] speaker_ids = speaker_ids[sent_offset: sent_offset + max_sentences, :] sentence_len = sentence_len[sent_offset: sent_offset + max_sentences] sentence_map = sentence_map[word_offset: word_offset + num_words] if gold_starts is None: return input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, is_training gold_spans = (gold_starts < word_offset + num_words) & (gold_ends >= word_offset) gold_starts = gold_starts[gold_spans] - word_offset gold_ends = gold_ends[gold_spans] - word_offset gold_mention_cluster_map = gold_mention_cluster_map[gold_spans] return input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, \ is_training, gold_starts, gold_ends, gold_mention_cluster_map def split_example(self, input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, is_training, gold_starts=None, gold_ends=None, gold_mention_cluster_map=None, sentence_offset=None): max_sentences = self.config["max_training_sentences"] if "max_pred_sentences" not in self.config else self.config["max_pred_sentences"] num_sentences = input_ids.shape[0] offset = 0 splits = [] while offset < num_sentences: splits.append(self.truncate_example(input_ids, input_mask, speaker_ids, sentence_len, genre, sentence_map, is_training, gold_starts, gold_ends, gold_mention_cluster_map, sentence_offset=offset)) offset += max_sentences return splits
[ "torch.tensor" ]
1.4.0
ondfa/coref-multiling
ac4ccf4ddb3187939525c5e7076057e7fdce55a4
1.0
import torch.nn as nn from simplecv.interface import ConfigurableMixin from simplecv.module._hrnet import hrnetv2_w18 from simplecv.module._hrnet import hrnetv2_w32 from simplecv.module._hrnet import hrnetv2_w40 from simplecv.module._hrnet import hrnetv2_w48 from simplecv.module import context_block from simplecv.module import se_block from simplecv import registry from torch.utils import checkpoint as cp from simplecv.util import logger _logger = logger.get_logger() registry.MODEL.register('hrnetv2_w18', hrnetv2_w18) registry.MODEL.register('hrnetv2_w32', hrnetv2_w32) registry.MODEL.register('hrnetv2_w40', hrnetv2_w40) registry.MODEL.register('hrnetv2_w48', hrnetv2_w48) defalut_config = dict( hrnet_type='hrnetv2_w18', pretrained=False, weight_path=None, norm_eval=False, frozen_stages=-1, with_cp=False ) @registry.MODEL.register('HRNetEncoder') class HRNetEncoder(nn.Module, ConfigurableMixin): def __init__(self, config=defalut_config): super(HRNetEncoder, self).__init__() ConfigurableMixin.__init__(self, config) self.hrnet = registry.MODEL[self.config.hrnet_type](pretrained=self.config.pretrained, weight_path=self.config.weight_path, norm_eval=self.config.norm_eval, frozen_stages=self.config.frozen_stages) _logger.info('HRNetEncoder: pretrained = {}'.format(self.config.pretrained)) def forward(self, x): if self.config.with_cp and not self.training: return cp.checkpoint(self.hrnet, x) return self.hrnet(x) # stage 1 @property def stage1(self): return self.hrnet.stage1 @stage1.setter def stage1(self, value): del self.hrnet.stage1 self.hrnet.stage1 = value # stage 2 @property def stage2(self): return self.hrnet.stage2 @stage2.setter def stage2(self, value): del self.hrnet.stage2 self.hrnet.stage2 = value # stage 3 @property def stage3(self): return self.hrnet.stage3 @stage3.setter def stage3(self, value): del self.hrnet.stage3 self.hrnet.stage3 = value # stage 4 @property def stage4(self): return self.hrnet.stage4 @stage4.setter def stage4(self, value): del self.hrnet.stage4 self.hrnet.stage4 = value def set_defalut_config(self): self.config.update(defalut_config) def output_channels(self): if self.config.hrnet_type == 'hrnetv2_w18': return 18, 36, 72, 144 elif self.config.hrnet_type == 'hrnetv2_w32': return 32, 64, 128, 256 elif self.config.hrnet_type == 'hrnetv2_w40': return 40, 80, 160, 320 elif self.config.hrnet_type == 'hrnetv2_w48': return 48, 96, 192, 384 else: raise NotImplementedError('{} is not implemented.'.format(self.config.hrnet_type)) def with_context_block(self, ratio): _logger.info('With context block (ratio = {})'.format(ratio)) assert ratio in [1 / 16., 1 / 8.] self.stage2 = context_block.plugin_to_basicblock(self.stage2, ratio) self.stage3 = context_block.plugin_to_basicblock(self.stage3, ratio) self.stage4 = context_block.plugin_to_basicblock(self.stage4, ratio) def with_squeeze_excitation(self, inv_ratio): _logger.info('With squeeze_excitation block (inv_ratio = {})'.format(inv_ratio)) assert inv_ratio in [16, 8] self.stage2 = se_block.plugin_to_basicblock(self.stage2, inv_ratio) self.stage3 = se_block.plugin_to_basicblock(self.stage3, inv_ratio) self.stage4 = se_block.plugin_to_basicblock(self.stage4, inv_ratio)
[ "torch.utils.checkpoint.checkpoint" ]
1.0
Bobholamovic/SimpleCV
f4edacf088d0155725a469e227de847820bdfa53
1.0
from __future__ import division from models import * from utils.utils import * from utils.datasets import * import os import sys import time import datetime import argparse from PIL import Image import torch from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.ticker import NullLocator if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--image_folder", type=str, default="data/samples", help="path to dataset") parser.add_argument("--model_def", type=str, default="config/yolov3-custom.cfg", help="path to model definition file") parser.add_argument("--weights_path", type=str, default="checkpoints/yolov3.pth", help="path to weights file") parser.add_argument("--class_path", type=str, default="data/custom/classes.names", help="path to class label file") parser.add_argument("--conf_thres", type=float, default=0.9, help="object confidence threshold") parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression") parser.add_argument("--batch_size", type=int, default=1, help="size of the batches") parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation") parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") parser.add_argument("--checkpoint_model", type=str, help="path to checkpoint model") opt = parser.parse_args() print(opt) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") os.makedirs("output", exist_ok=True) # Set up model model = Darknet(opt.model_def, img_size=opt.img_size).to(device) if opt.weights_path.endswith(".weights"): # Load darknet weights model.load_darknet_weights(opt.weights_path) else: # Load checkpoint weights model.load_state_dict(torch.load(opt.weights_path)) model.eval() # Set in evaluation mode dataloader = DataLoader( ImageFolder(opt.image_folder, img_size=opt.img_size), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu, ) classes = load_classes(opt.class_path) # Extracts class labels from file Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor imgs = [] # Stores image paths img_detections = [] # Stores detections for each image index print("\nPerforming object detection:") prev_time = time.time() for batch_i, (img_paths, input_imgs) in enumerate(dataloader): # Configure input input_imgs = Variable(input_imgs.type(Tensor)) # Get detections with torch.no_grad(): detections = model(input_imgs) detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres) # Log progress current_time = time.time() inference_time = datetime.timedelta(seconds=current_time - prev_time) prev_time = current_time print("\t+ Batch %d, Inference Time: %s" % (batch_i, inference_time)) # Save image and detections imgs.extend(img_paths) img_detections.extend(detections) # Bounding-box colors cmap = plt.get_cmap("tab20b") colors = [cmap(i) for i in np.linspace(0, 1, 20)] print("\nSaving images:") # Iterate through images and save plot of detections for img_i, (path, detections) in enumerate(zip(imgs, img_detections)): print("(%d) Image: '%s'" % (img_i, path)) # Create plot img = np.array(Image.open(path)) plt.figure() plt.rcParams['font.sans-serif'] = ['SimHei'] fig, ax = plt.subplots(1) ax.imshow(img) # Draw bounding boxes and labels of detections if detections is not None: # Rescale boxes to original image detections = rescale_boxes(detections, opt.img_size, img.shape[:2]) unique_labels = detections[:, -1].cpu().unique() n_cls_preds = len(unique_labels) bbox_colors = random.sample(colors, n_cls_preds) for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: print("\t+ Label: %s, Conf: %.5f" % (classes[int(cls_pred)], cls_conf.item())) box_w = x2 - x1 box_h = y2 - y1 color = "red" # bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])] # Create a Rectangle patch bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2, edgecolor=color, facecolor="none") # Add the bbox to the plot ax.add_patch(bbox) # Add label plt.text( x1, y1-40, s=classes[int(cls_pred)], color="white", fontdict={"size": 10}, verticalalignment="top", bbox={"color": color, "pad": 0}, ) # Save generated image with detections plt.axis("off") plt.gca().xaxis.set_major_locator(NullLocator()) plt.gca().yaxis.set_major_locator(NullLocator()) filename = path.split("/")[-1].split(".")[0] plt.savefig(f"output/{filename}.png", bbox_inches="tight", pad_inches=0.0) plt.close()
[ "torch.no_grad", "torch.cuda.is_available", "torch.load" ]
1.0
ljx02/MLFinalWork
d0eb1551401035be5b8c12fe1fd3733aefcc652f
0.27
# Copyright 2021 MosaicML. All Rights Reserved. """Core MixUp classes and functions.""" from __future__ import annotations import logging from typing import Optional, Tuple import numpy as np import torch from torch.nn import functional as F from composer.core.types import Algorithm, Event, Logger, State, Tensor from composer.models.loss import _check_for_index_targets log = logging.getLogger(__name__) __all__ = ["MixUp", "mixup_batch"] def mixup_batch(input: Tensor, target: Tensor, num_classes: int, mixing: Optional[float] = None, alpha: float = 0.2, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Create new samples using convex combinations of pairs of samples. This is done by taking a convex combination of ``input`` with a randomly permuted copy of ``input``. The permutation takes place along the sample axis (dim 0). The relative weight of the original ``input`` versus the permuted copy is defined by the ``mixing`` parameter. This parameter should be chosen from a ``Beta(alpha, alpha)`` distribution for some parameter ``alpha > 0``. Note that the same ``mixing`` is used for the whole batch. Args: input (torch.Tensor): input tensor of shape ``(minibatch, ...)``, where ``...`` indicates zero or more dimensions. target (torch.Tensor): target tensor of shape ``(minibatch, ...)``, where ``...`` indicates zero or more dimensions. num_classes (int): total number of classes or output variables mixing (float, optional): coefficient used to interpolate between the two examples. If provided, must be in :math:`[0, 1]`. If ``None``, value is drawn from a ``Beta(alpha, alpha)`` distribution. Default: ``None``. alpha (float, optional): parameter for the Beta distribution over ``mixing``. Ignored if ``mixing`` is provided. Default: ``0.2``. indices (Tensor, optional): Permutation of the samples to use. Default: ``None``. Returns: input_mixed (torch.Tensor): batch of inputs after mixup has been applied target_mixed (torch.Tensor): labels after mixup has been applied perm (torch.Tensor): the permutation used Example: .. testcode:: import torch from composer.functional import mixup_batch N, C, H, W = 2, 3, 4, 5 num_classes = 10 X = torch.randn(N, C, H, W) y = torch.randint(num_classes, size=(N,)) X_mixed, y_mixed, perm = mixup_batch( X, y, num_classes=num_classes, alpha=0.2) """ if mixing is None: mixing = _gen_mixing_coef(alpha) # Create shuffled versions of x and y in preparation for interpolation # Use given indices if there are any. if indices is None: shuffled_idx = torch.randperm(input.shape[0]) else: shuffled_idx = indices x_shuffled = input[shuffled_idx] y_shuffled = target[shuffled_idx] # Interpolate between the inputs x_mix = (1 - mixing) * input + mixing * x_shuffled # First check if labels are indices. If so, convert them to onehots. # This is under the assumption that the loss expects torch.LongTensor, which is true for pytorch cross_entropy if _check_for_index_targets(target): y_onehot = F.one_hot(target, num_classes=num_classes) y_shuffled_onehot = F.one_hot(y_shuffled, num_classes=num_classes) y_mix = ((1. - mixing) * y_onehot + mixing * y_shuffled_onehot) else: y_mix = ((1. - mixing) * target + mixing * y_shuffled) return x_mix, y_mix, shuffled_idx class MixUp(Algorithm): """`MixUp <https://arxiv.org/abs/1710.09412>`_ trains the network on convex combinations of pairs of examples and targets rather than individual examples and targets. This is done by taking a convex combination of a given batch X with a randomly permuted copy of X. The mixing coefficient is drawn from a ``Beta(alpha, alpha)`` distribution. Training in this fashion sometimes reduces generalization error. Args: num_classes (int): the number of classes in the task labels. alpha (float, optional): the psuedocount for the Beta distribution used to sample mixing parameters. As ``alpha`` grows, the two samples in each pair tend to be weighted more equally. As ``alpha`` approaches 0 from above, the combination approaches only using one element of the pair. Default: ``0.2``. Example: .. testcode:: from composer.algorithms import MixUp algorithm = MixUp(num_classes=10, alpha=0.2) trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[algorithm], optimizers=[optimizer] ) """ def __init__(self, num_classes: int, alpha: float = 0.2): self.num_classes = num_classes self.alpha = alpha self.mixing = 0.0 self.indices = torch.Tensor() def match(self, event: Event, state: State) -> bool: """Runs on Event.INIT and Event.AFTER_DATALOADER. Args: event (:class:`Event`): The current event. state (:class:`State`): The current state. Returns: bool: True if this algorithm should run now. """ return event == Event.AFTER_DATALOADER def apply(self, event: Event, state: State, logger: Logger) -> None: """Applies MixUp augmentation on State input. Args: event (Event): the current event state (State): the current trainer state logger (Logger): the training logger """ input, target = state.batch_pair assert isinstance(input, Tensor) and isinstance(target, Tensor), \ "Multiple tensors for inputs or targets not supported yet." self.mixing = _gen_mixing_coef(self.alpha) new_input, new_target, self.indices = mixup_batch( input, target, mixing=self.mixing, num_classes=self.num_classes, ) state.batch = (new_input, new_target) def _gen_mixing_coef(alpha: float) -> float: """Samples ``max(z, 1-z), z ~ Beta(alpha, alpha)``.""" # First check if alpha is positive. assert alpha >= 0 # Draw the mixing parameter from a beta distribution. # Check here is needed because beta distribution requires alpha > 0 # but alpha = 0 is fine for mixup. if alpha == 0: mixing_lambda = 0 else: mixing_lambda = np.random.beta(alpha, alpha) # for symmetric beta distribution, can always use 0 <= lambda <= .5; # this way the "main" label is always the original one, which keeps # the training accuracy meaningful return max(mixing_lambda, 1. - mixing_lambda)
[ "torch.Tensor", "torch.nn.functional.one_hot", "torch.randperm" ]
0.27
stanford-crfm/composer
4996fbd818971afd6439961df58b531d9b47a37b
1.5
"""Torch backend distributions""" def get_TorchDeterministic(): from numbers import Number import torch from torch.distributions import constraints from torch.distributions.kl import register_kl from torch.distributions.utils import broadcast_all class TorchDeterministic(torch.distributions.distribution.Distribution): """Deterministic distribution for PyTorch""" arg_constraints = {"loc": constraints.real} support = constraints.real has_rsample = True @property def mean(self): return self.loc @property def stddev(self): return 0.0 @property def variance(self): return 0.0 def __init__(self, loc, validate_args=None): self.loc = broadcast_all(loc)[0] if isinstance(loc, Number): batch_shape = torch.Size() else: batch_shape = self.loc.size() super(TorchDeterministic, self).__init__( batch_shape, validate_args=validate_args ) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(TorchDeterministic, _instance) batch_shape = torch.Size(batch_shape) new.loc = self.loc.expand(batch_shape) super(TorchDeterministic, new).__init__( batch_shape, validate_args=False ) new._validate_args = self._validate_args return new def rsample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) ones = torch.ones( shape, dtype=self.loc.dtype, device=self.loc.device ) return self.loc * ones def log_prob(self, value): if self._validate_args: self._validate_sample(value) return torch.log(value.eq(self.loc).type_as(self.loc)) def cdf(self, value): if self._validate_args: self._validate_sample(value) result = value.gt(self.loc).type_as(self.loc) return result.clamp(min=0, max=1) def icdf(self, value): if self._validate_args: self._validate_sample(value) result = value.lt(self.loc).type_as(self.loc) return result def entropy(self): return torch.log(torch.zeros([1])) @register_kl( TorchDeterministic, torch.distributions.distribution.Distribution ) def kl_deterministic_continuous(p, q): return -q.log_prob(p.mean) return TorchDeterministic
[ "torch.Size", "torch.zeros", "torch.distributions.utils.broadcast_all", "torch.ones", "torch.distributions.kl.register_kl" ]
1.5.0
chiragnagpal/probflow
1ba0619cd4f482a015cd25633d2f113d5d0f3476
1.4
import logging import torch import torch.nn as nn import torch.nn.functional as F logger = logging.getLogger(__name__) class SeqSoftmaxDecoder(nn.Module): """This class decodes sequence hidden unit """ def __init__(self, hidden_size, label_size, bias=True): """This function sets SeqSoftmaxDecoder input/output size Arguments: hidden_size {int} -- the size of hidden unit label_size {int} -- the size of label Keyword Arguments: bias {bool} -- adding bias or not (default: {True}) """ super().__init__() self.hidden_size = hidden_size self.label_size = label_size self.hidden2label = nn.Linear(hidden_size, label_size, bias) self.hidden2label.weight.data.normal_(mean=0.0, std=0.02) if self.hidden2label.bias is not None: self.hidden2label.bias.data.zero_() self.loss = nn.CrossEntropyLoss() def get_input_dim(self): return self.hidden_size def get_output_dim(self): return self.label_size def forward(self, seq_inputs, seq_mask=None, seq_labels=None): """This function propagates forwardly Arguments: seq_inputs {tensor} -- input data, shape: (batch_size, seq_size, input_size) Keyword Arguments: seq_mask {tensor} -- mask tensor, shape: (batch_size, seq_size) (default: {None}) seq_labels {tensor} -- label data, shape: (batch_size, seq_size) (default: {None}) Returns: dict -- results: loss, predict, log_probs """ _, _, input_size = seq_inputs.size() assert input_size == self.hidden_size, "input size is not equal to hidden size" results = {} seq_outpus = self.hidden2label(seq_inputs) seq_log_probs = F.log_softmax(seq_outpus, dim=2) seq_preds = seq_log_probs.argmax(dim=2) results['predict'] = seq_preds if seq_labels is not None: if seq_mask is not None: active_loss = seq_mask.view(-1) == 1 active_outputs = seq_outpus.view(-1, self.label_size)[active_loss] active_labels = seq_labels.view(-1)[active_loss] no_pad_avg_loss = self.loss(active_outputs, active_labels) results['loss'] = no_pad_avg_loss else: avg_loss = self.loss(seq_outpus.view(-1, self.label_size), seq_labels.view(-1)) results['loss'] = avg_loss return results
[ "torch.nn.Linear", "torch.nn.CrossEntropyLoss", "torch.nn.functional.log_softmax" ]
1.4.0
Receiling/ENPAR
decd2945d21a7be5a0f73c37cfc5e252301aab15
1.6
# Differentiable Augmentation for Data-Efficient GAN Training # Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han # https://arxiv.org/pdf/2006.10738 from random import random import torch import torch.nn as nn import torch.nn.functional as F class DiffAugment(nn.Module): def __init__(self, policy='', channels_first=True): super(DiffAugment, self).__init__() self.policy = policy self.channels_first = channels_first def forward(self, x): if self.policy: if not self.channels_first: x = x.permute(0, 3, 1, 2) for p in self.policy.split(','): for f in AUGMENT_FNS[p]: x = f(x) if not self.channels_first: x = x.permute(0, 2, 3, 1) x = x.contiguous() return x def rand_brightness(x): x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) return x def rand_saturation(x): x_mean = x.mean(dim=1, keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean return x def rand_contrast(x): x_mean = x.mean(dim=[1, 2, 3], keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean return x def rand_translation(x, ratio=0.125): shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(x.size(2), dtype=torch.long, device=x.device), torch.arange(x.size(3), dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) return x def rand_cutout(x, ratio=0.5): cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(cutout_size[0], dtype=torch.long, device=x.device), torch.arange(cutout_size[1], dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) mask[grid_batch, grid_x, grid_y] = 0 x = x * mask.unsqueeze(1) return x def rand_upscale(x, ratio=0.25): up_ratio = 1.0 + ratio * random() sz = x.size(2) x = torch.nn.functional.interpolate(x, scale_factor=up_ratio, mode='bilinear') return center_crop(x, sz) def center_crop(x, sz): h, w = x.size(2), x.size(3) x1 = int(round((h - sz) / 2.)) y1 = int(round((w - sz) / 2.)) return x[:, :, x1:x1+sz, y1:y1+sz] AUGMENT_FNS = { 'color': [rand_brightness, rand_saturation, rand_contrast], 'translation': [rand_translation], 'cutout': [rand_cutout], 'upscale': [rand_upscale], }
[ "torch.nn.functional.pad", "torch.nn.functional.interpolate", "torch.arange" ]
1.6.0
AyushExel/GANSketching
c72524ac4425de898087af7a4c554b777a4e2218
1.7
################################################################################ # Code from # https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py # Modified the original code so that it also loads images from the current # directory as well as the subdirectories ################################################################################ import h5py import torch.utils.data as data import pickle import numpy as np import torch import os import os.path import sys import math, random import skimage from skimage.transform import resize from skimage import io from skimage.transform import rotate def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def rgb_to_chromaticity(rgb): """ converts rgb to chromaticity """ irg = np.zeros_like(rgb) s = np.sum(rgb, axis=-1) + 1e-8 # 每一行相加 irg[..., 0] = rgb[..., 0] / s irg[..., 1] = rgb[..., 1] / s irg[..., 2] = rgb[..., 2] / s return irg def make_dataset(list_dir): file_name = list_dir + "img_batch.p" images_list = pickle.load( open( file_name, "rb" ) ) return images_list # This is Image loader for unlabel video clips class ImageFolder(data.Dataset): def __init__(self, root, list_dir, transform=None, loader=None): # load image list from hdf5 img_list = make_dataset(list_dir) if len(img_list) == 0: raise(RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.root = root self.list_dir = list_dir self.img_list = img_list self.transform = transform x = np.arange(-1, 2) y = np.arange(-1, 2) self.X, self.Y = np.meshgrid(x, y) self.num_scale = 4 self.sigma_chro = 0.025 self.sigma_I = 0.12 self.half_window = 1 self.rotation_range = 5 self.input_height = 256 self.input_width = 384 def construst_sub_L(self, L): h = L.shape[0] w = L.shape[1] sub_L = np.zeros( (9 ,L.shape[0]-2,L.shape[1]-2)) ct_idx = 0 for k in range(0, self.half_window*2+1): for l in range(0,self.half_window*2+1): sub_L[ct_idx,:,:] = L[self.half_window + self.Y[k,l]:h- self.half_window + self.Y[k,l], \ self.half_window + self.X[k,l]: w-self.half_window + self.X[k,l]] ct_idx += 1 return sub_L def construst_sub_C(self, C): h = C.shape[0] w = C.shape[1] sub_C = np.zeros( (9 ,C.shape[0]-2,C.shape[1]-2, 2)) ct_idx = 0 for k in range(0, self.half_window*2+1): for l in range(0,self.half_window*2+1): sub_C[ct_idx,:,:,:] = C[self.half_window + self.Y[k,l]:h- self.half_window + self.Y[k,l], \ self.half_window + self.X[k,l]: w-self.half_window + self.X[k,l] , 0:2] ct_idx += 1 return sub_C def construst_R_weights(self, N_c_0, N_L_0): center_c = np.repeat( np.expand_dims(N_c_0[4, :, :,:], axis =0), 9, axis = 0) center_I = np.repeat( np.expand_dims(N_L_0[4, :, :], axis =0), 9, axis = 0) chro_diff = center_c - N_c_0 I_diff = center_I - N_L_0 r_w = np.exp( - np.sum( chro_diff**2 , 3) / (self.sigma_chro**2)) * np.exp(- (I_diff**2) /(self.sigma_I**2) ) return r_w def DA(self, img, mode, random_pos, random_filp, random_angle, input_height, input_width): if random_filp > 0.5: img = np.fliplr(img) img = img[random_pos[0]:random_pos[1], random_pos[2]:random_pos[3], :] img = rotate(img, random_angle, order = mode) img = resize(img, (input_height, input_width), order = mode) return img def generate_random_parameters(self, img): original_h, original_w = img.shape[0], img.shape[1] # 720 1280 # rotation_range=5 # random() 方法返回随机生成的一个实数,它在[0,1)范围内。 random_angle = random.random() * self.rotation_range * 2.0 - self.rotation_range # random angle between -5 --- 5 degree random_filp = random.random() ratio = float(original_w)/float(original_h) random_resize = random.random() if ratio > 1.4142: random_start_y = random.randint(0, 9) random_start_x = random.randint(0, 29) random_pos = [random_start_y, random_start_y + original_h - 10, random_start_x, random_start_x + original_w - 30] input_height, input_width = 256, 384 elif ratio < 1./1.4142: random_start_y = random.randint(0, 29) random_start_x = random.randint(0, 9) random_pos = [random_start_y, random_start_y + original_h - 30, random_start_x, random_start_x + original_w - 10] input_height, input_width = 384, 256 elif ratio > 1.2247: random_start_y = random.randint(0, 29) random_start_x = random.randint(0, 9) random_pos = [random_start_y, random_start_y + original_h - 30, random_start_x, random_start_x + original_w - 10] input_height, input_width = 256, 384 elif ratio < 1./ 1.2247: random_start_y = random.randint(0, 9) random_start_x = random.randint(0, 29) random_pos = [random_start_y, random_start_y + original_h - 10, random_start_x, random_start_x + original_w - 30] input_height, input_width = 384, 256 else: random_start_y = random.randint(0, 9) random_start_x = random.randint(0, 9) random_pos = [random_start_y, random_start_y + original_h - 10, random_start_x, random_start_x + original_w - 10] input_height, input_width = 256, 256 return random_angle, random_filp, random_pos, input_height, input_width # 【-5,5】;【0,1】;x ;256 ;384 def __getitem__(self, index): targets_1 = {} targets_1['path'] = [] sparse_path_1s = [] # 下边三个参数都没用到啊 sparse_path_1r = [] # temp_targets = {} # path_list = self.img_list[index] folder_id = path_list[0].split('/')[0] # number of images in one sequence num_imgs = len(path_list) num_channel = (self.half_window*2+1)**2 # sample image img_name = path_list[0].split('/')[-1] img_path = self.root + str(folder_id) + "/data/" + img_name # load original image srgb_img = np.float32(io.imread(img_path))/ 255.0 original_h, original_w = srgb_img.shape[0], srgb_img.shape[1] random_angle, random_filp, random_pos, input_height, input_width = self.generate_random_parameters(srgb_img) # image intensity profiles across the sequence local_intensity_profiles = [None, None, None,None] local_intensity_profiles[0] = np.zeros( (num_imgs, num_channel, input_height-self.half_window*2, input_width-self.half_window*2) ) local_intensity_profiles[1] = np.zeros( (num_imgs, num_channel, input_height/2-self.half_window*2, input_width/2-self.half_window*2) ) local_intensity_profiles[2] = np.zeros( (num_imgs, num_channel, input_height/4-self.half_window*2, input_width/4-self.half_window*2) ) local_intensity_profiles[3] = np.zeros( (num_imgs, num_channel, input_height/8-self.half_window*2, input_width/8-self.half_window*2) ) # random permutation #random_image_list = np.random.permutation(num_imgs) # for each image in the sequence for i in range(num_imgs): img_name = path_list[i].split('/')[-1] img_path = self.root + str(folder_id) + "/data/" + img_name # load original image srgb_img = np.float32(io.imread(img_path))/ 255.0 mask_path = self.root + str(folder_id) + "/data/" + img_name[:-4] + "_mask.png" # load mask mask = np.float32(io.imread(mask_path))/ 255.0 mask = np.expand_dims(mask, axis = 2) mask = np.repeat(mask, 3, axis= 2) # do data augmentation assert(mask.shape[0] == srgb_img.shape[0]) assert(mask.shape[1] == srgb_img.shape[1]) srgb_img = self.DA(srgb_img, 1, random_pos, random_filp, random_angle, input_height, input_width) mask = self.DA(mask, 0, random_pos, random_filp, random_angle, input_height, input_width) # sky_mask = self.DA(sky_mask, 0, random_pos, random_filp, random_angle, input_height, input_width) # 0.0001 srgb_img[srgb_img < 1e-4] = 1e-4 rgb_img = srgb_img**2.2 rgb_img[rgb_img < 1e-4] = 1e-4 chromaticity = rgb_to_chromaticity(rgb_img) L0 = np.mean(rgb_img, 2) for l in range(self.num_scale): N_c_0 = self.construst_sub_C(chromaticity) N_L_0 = self.construst_sub_L(L0) r_w_s= self.construst_R_weights(N_c_0, N_L_0) if ('r_w_s'+ str(l)) not in targets_1: targets_1['r_w_s'+ str(l)] = torch.from_numpy(r_w_s).float().unsqueeze(0) targets_1['mask_' + str(l)] = torch.from_numpy(np.transpose(mask, (2, 0, 1))).float().unsqueeze(0) else: targets_1['r_w_s'+ str(l)] = torch.cat( ( targets_1['r_w_s'+ str(l)], \ torch.from_numpy(r_w_s).float().unsqueeze(0)), 0) targets_1['mask_' + str(l)] = torch.cat( (targets_1['mask_' + str(l)], \ torch.from_numpy(np.transpose(mask, (2, 0, 1))).float().unsqueeze(0)), 0) local_intensity_profiles[l][i,:,:,:] = N_L_0 L0 = L0[::2,::2] chromaticity = chromaticity[::2,::2,:] mask = mask[::2,::2,:] # create mask if 'rgb_img' not in targets_1: # targets_1['mask_0'] = torch.from_numpy(mask).float().unsqueeze(0) targets_1['rgb_img'] = torch.from_numpy( np.transpose(rgb_img, (2, 0, 1)) ).unsqueeze(0).contiguous().float() final_img = torch.from_numpy(np.transpose(srgb_img, (2, 0, 1))).unsqueeze(0).contiguous().float() else: # targets_1['mask_0'] = torch.cat( (targets_1['mask_0'], torch.from_numpy(mask).float().unsqueeze(0)), 0) targets_1['rgb_img'] = torch.cat( (targets_1['rgb_img'], torch.from_numpy(np.transpose(rgb_img, (2, 0, 1))).float().unsqueeze(0)),0) final_img = torch.cat( (final_img, torch.from_numpy(np.transpose(srgb_img, (2, 0, 1))).unsqueeze(0).contiguous().float()),0) k1 = 20.0 k2 = 4.0 weight = 12.0 offset = 1.0/weight # compute median of Intensity profiles for each scale for l in range(0, self.num_scale): intensity_profiles = local_intensity_profiles[l] log_ratio_profiles = np.log( np.repeat( np.expand_dims( intensity_profiles[:,4,:,:], 1) , 9, axis = 1)) - np.log(intensity_profiles) median_ratio = np.median(log_ratio_profiles, axis = 0) median_ratio = np.repeat( np.expand_dims(median_ratio, 0), num_imgs, axis = 0) relative_changes = (log_ratio_profiles - median_ratio)/(median_ratio + 1e-6) sw_1 = np.exp(- k1 * (log_ratio_profiles - median_ratio)**2 ) sw_2 = np.exp(- k2 * (relative_changes)**2 ) shading_w = np.maximum(sw_1, sw_2) shading_w = torch.from_numpy(shading_w).float() R_w = targets_1['r_w_s' + str(l)] R_w, index = torch.median(R_w, 0) R_w = 1 - R_w.unsqueeze(0).repeat(shading_w.size(0), 1,1,1) shading_w = torch.mul(offset + R_w, shading_w) targets_1['shading_w_'+str(l)] = weight * shading_w return final_img, targets_1, sparse_path_1r def __len__(self): return len(self.img_list) class IIW_ImageFolder(data.Dataset): def __init__(self, root, list_dir, mode, is_flip, transform=None, loader=None): # load image list from hdf5 img_list = make_dataset(list_dir) if len(img_list) == 0: raise(RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.root = root self.list_dir = list_dir self.img_list = img_list self.transform = transform self.loader = loader self.num_scale = 4 self.sigma_chro = 0.025 self.sigma_I = 0.1 self.half_window = 1 self.current_o_idx = mode self.set_o_idx(mode) x = np.arange(-1, 2) y = np.arange(-1, 2) self.X, self.Y = np.meshgrid(x, y) def set_o_idx(self, o_idx): self.current_o_idx = o_idx if o_idx == 0: self.height = 256 self.width = 384 elif o_idx == 1: self.height = 384 self.width = 256 elif o_idx == 2: self.height = 256 self.width = 256 elif o_idx == 3: self.height = 384 self.width = 512 else: self.height = 512 self.width = 384 def iiw_loader(self, img_path): img_path = img_path[-1][:-3] img_path = self.root + img_path img = np.float32(io.imread(img_path))/ 255.0 oringinal_shape = img.shape img = resize(img, (self.height, self.width)) return img, oringinal_shape def __getitem__(self, index): targets_1 = {} img_id = self.img_list[self.current_o_idx][index].split('/')[-1][0:-6] judgement_path = self.root + img_id + 'json' img, oringinal_shape = self.iiw_loader(self.img_list[self.current_o_idx][index].split('/')) targets_1['path'] = self.img_list[self.current_o_idx][index] targets_1["judgements_path"] = judgement_path targets_1["oringinal_shape"] = oringinal_shape final_img = torch.from_numpy(np.ascontiguousarray(np.transpose(img, (2,0,1)))).contiguous().float() return final_img, targets_1 def __len__(self): return len(self.img_list[self.current_o_idx])
[ "torch.mul", "torch.median", "torch.from_numpy" ]
1.7.0
mckaymckay/Unsupervised-learning
46d627fc5b24043ebb6f2e3b4388b66be3ece7d5