code
stringlengths
114
1.05M
path
stringlengths
3
312
quality_prob
float64
0.5
0.99
learning_prob
float64
0.2
1
filename
stringlengths
3
168
kind
stringclasses
1 value
import pandas as pd import os import datetime def get_data(data_name, columns=None, start_time='2016-01-01', end_time='2021-01-01', frequency=1): base_data_names = ['adj_close_price', 'adj_open_price', 'adj_high_price', 'adj_low_price', 'volume', 'value', 'openint'] base_columns = ['IF', 'IC', 'IH'] if columns is None: columns = base_columns if data_name not in base_data_names: return if not isinstance(columns, list): return for c in columns: if c not in base_columns: print(f'No {c} Data') return if 240 % frequency != 0: print(F'240%frequency should be 0 and frequency should be smaller than or equal to 240') return dirname, _ = os.path.split(os.path.abspath(__file__)) path = os.path.join(dirname, 'dataset', f'_{data_name}.csv') output = pd.read_csv(path, index_col=0, header=0, converters={'date': pd.to_datetime}) output = output.loc[pd.to_datetime(start_time):pd.to_datetime(end_time), columns] if frequency <= 240: if data_name in ['adj_close_price', 'openint']: output = output.iloc[frequency-1::frequency] elif data_name in ['adj_open_price']: output = output.rolling(frequency).apply(lambda x: x.iloc[0]).iloc[frequency-1::frequency] elif data_name in ['adj_high_price']: output = output.rolling(frequency).max().iloc[frequency - 1::frequency] elif data_name in ['adj_low_price']: output = output.rolling(frequency).min().iloc[frequency - 1::frequency] elif data_name in ['volume', 'value']: output = output.rolling(frequency).sum().iloc[frequency - 1::frequency] if frequency == 240: output.index = pd.to_datetime(output.index.date) return output def index_futures_adj(frequency=1): dirname, _ = os.path.split(os.path.abspath(__file__)) path = os.path.join(dirname, 'dataset', '_adj_close_price.csv') output = pd.read_csv(path, index_col=0, header=0) output.index = pd.to_datetime(output.index) if 240 % frequency != 0: print(F'240%frequency should be 0') return if frequency <= 240: output = output[frequency-1::frequency] elif frequency == 240: output = output[239::240] output.index = output.index.to_series().apply(lambda x: datetime.datetime(x.year, x.month, x.day)) return output def index_futures_volume(frequency=1): dirname, _ = os.path.split(os.path.abspath(__file__)) path = os.path.join(dirname, 'dataset', '_volume.csv') output = pd.read_csv(path, index_col=0, header=0) output.index = pd.to_datetime(output.index) if 240 % frequency != 0: print(F'240%frequency should be 0') return if frequency <= 240: output = output.rolling(frequency).sum().iloc[frequency-1::frequency] elif frequency == 240: output = output.groupby(output.index.date).sum() output.index = pd.to_datetime(output.index) return output
/sc-backtest-0.1.14.tar.gz/sc-backtest-0.1.14/sc_backtest/data_set.py
0.40251
0.359477
data_set.py
pypi
import asyncio import aiohttp from dataclasses import dataclass, field from requests import post from sc_cc_ng_models_python import ContextFilter, BitVal from typing import List, Optional, Any from enum import Enum from itertools import chain from more_itertools import batched from functools import reduce @dataclass class Result: """ A result object, containing data if everything was ok else an error. """ data: Optional[Any] = None error: Optional[str] = None @dataclass class SCNG: url: str @staticmethod def _bit_list_json_query(tokens_list: List[List[str]], context_filter: Optional[ContextFilter] = None) -> dict: if context_filter is None: context_filter = ContextFilter.empty() return { "query": """ query TokenListListQuery( $tokenList: [[String!]!]!, $contextFilter: ContextFilter, ) { tokenListBasedContent( tokenList: $tokenList contextFilter: $contextFilter ) { context value reason } } """, "variables": { "tokenList": tokens_list, "contextFilter": context_filter.to_dict(), } } @staticmethod def _dict_list_json_query(tokens_list: List[List[str]], context_filter: Optional[ContextFilter] = None) -> dict: if context_filter is None: context_filter = ContextFilter.empty() return { "query": """ query TokenListDictQuery( $tokenList: [[String!]!]!, $contextFilter: ContextFilter, ) { tokensListBasedContentAsDict( tokenList: $tokenList contextFilter: $contextFilter ) } """, "variables": { "tokenList": tokens_list, "contextFilter": context_filter.to_dict(), } } @staticmethod def _bit_list_to_string_list(bit_lists: List[List[dict]], ignore_context: bool = False) -> List[List[str]]: """ Converts a list of lists of BitVals to a list of lists of strings. """ return list( map( lambda xs: list( map( lambda x: x.to_string( simple=ignore_context, ), xs ) ), bit_lists ) ) def to_dict_list( self, tokens_list: List[List[str]], context_filter: Optional[ContextFilter] = None, ) -> Result: """ Converts lists of tokens to a list of dictionaries, containing all matching meta data to those tokens. If no meta data was found for a combination of tokens, the dictionary will be empty. :param tokens_list: A list of lists of tokens. :param context_filter: A context filter object. :return: A result object. """ try: response = post( self.url, json=self._dict_list_json_query( tokens_list, context_filter, ), ) if response.status_code == 200: json = response.json() if "errors" in json: return Result(error=json["errors"]) else: return Result(data=response.json()['data']['tokensListBasedContentAsDict']) else: return Result(error=response.text) except Exception as e: return Result(error=str(e)) def to_bit_list( self, tokens_list: List[List[str]], context_filter: Optional[ContextFilter] = None, ) -> Result: """ Converts lists of tokens to a list of bit values, containing all matching meta data to those tokens. If no meta data was found for a combination of tokens, the list will be empty. :param tokens_list: A list of lists of tokens. :param context_filter: A context filter object. :return: A result object. """ try: response = post( self.url, json=self._bit_list_json_query( tokens_list, context_filter, ) ) if response.status_code == 200: json = response.json() if "errors" in json: return Result(error=json["errors"]) else: return Result( data=list( map( lambda xs: list( map( lambda x: BitVal( context=x['context'], value=x['value'], reason=x['reason'], ), xs ) ), response.json()['data']['tokenListBasedContent'] ) ) ) else: return Result(error=response.text) except Exception as e: return Result(error=str(e)) def to_string_list( self, tokens_list: list, context_filter: Optional[ContextFilter] = None, ignore_context: bool = False, ) -> Result: """ Converts lists of tokens to a list of strings, containing all matching meta data to those tokens. If no meta data was found for a combination of tokens, the list will be empty. :param tokens_list: A list of lists of tokens. :param context_filter: A context filter object. :return: A result object. """ try: internal_result = self.to_bit_list( tokens_list=tokens_list, context_filter=context_filter, ) if internal_result.error is None: return Result( data=self._bit_list_to_string_list( internal_result.data, ignore_context=ignore_context, ) ) else: return internal_result except Exception as e: return Result(error=str(e)) @dataclass class ResultAsync: """ A result object, containing data if everything was ok else an error. """ data: List[Optional[str]] = field(default_factory=lambda: []) error: List[Optional[str]] = field(default_factory=lambda: []) @dataclass class SCNGAsync: url: str @staticmethod def _compile_batched_result(results: List[Result]) -> ResultAsync: """""" return ResultAsync( data=list( chain( *map( lambda x: x.data, results ) ) ), error=list( filter( lambda x: x is not None, map( lambda x: x.error, results ) ) ), ) async def _fetch_batch(self, session, data, query_fn, response_keys: list, context_filter: Optional[ContextFilter] = None) -> ResultAsync: """ Fetch single batch of data from the server. """ try: async with session.post( self.url, json=query_fn( data, context_filter, ) ) as response: result = await response.json() return Result( data=reduce( lambda x,y: x.get(y), response_keys, result ) ) except Exception as e: return Result(error=str(e)) async def to_dict_list(self, tokens_list, context_filter: Optional[ContextFilter] = None, batch_size: int = 5, seq_size: int = 4) -> ResultAsync: """ Converts lists of tokens to a list of dicts, containing all matching meta data to those tokens. If no meta data was found for a combination of tokens, the list will be empty. :param tokens_list: A list of lists of tokens. :param context_filter: A context filter object. :param batching: The batching mode. Can be 'auto', 'none' or 'manual'. :return: A result object. """ try: final = [] async with aiohttp.ClientSession() as session: for super_batch in map( lambda super_batch: map( lambda batch: asyncio.ensure_future( self._fetch_batch( session, batch, SCNG._dict_list_json_query, [ 'data', 'tokensListBasedContentAsDict', ], context_filter, ) ), super_batch, ), batched( batched( tokens_list, batch_size, ), seq_size, ) ): final.append( await asyncio.gather(*super_batch) ) result = self._compile_batched_result( list( map( self._compile_batched_result, final ) ) ) return ResultAsync( data=result.data, error=list( chain(*result.error), ) ) except Exception as e: return Result(error=str(e)) async def to_bit_list(self, tokens_list, context_filter: Optional[ContextFilter] = None, batch_size: int = 10, seq_size: int = 4) -> ResultAsync: """ Converts lists of tokens to a list of bits, containing all matching meta data to those tokens. If no meta data was found for a combination of tokens, the list will be empty. :param tokens_list: A list of lists of tokens. :param context_filter: A context filter object. :param batching: The batching mode. Can be 'auto', 'none' or 'manual'. :return: A result object. """ try: final = [] async with aiohttp.ClientSession() as session: for super_batch in map( lambda super_batch: map( lambda batch: asyncio.ensure_future( self._fetch_batch( session, batch, SCNG._bit_list_json_query, [ 'data', 'tokenListBasedContent', ], context_filter, ) ), super_batch, ), batched( batched( tokens_list, batch_size, ), seq_size, ) ): final.append( await asyncio.gather(*super_batch) ) result = self._compile_batched_result( list( map( self._compile_batched_result, final ) ) ) return ResultAsync( data=list( map( lambda xs: list( map( lambda x: BitVal( context=x['context'], value=x['value'], reason=x['reason'], ), xs ) ), result.data, ) ), error=list( chain(*result.error), ) ) except Exception as e: return Result(error=str(e)) async def to_string_list(self, tokens_list, context_filter: Optional[ContextFilter] = None, batch_size: int = 10, seq_size: int = 4, ignore_context: bool = False) -> ResultAsync: """ Converts lists of tokens to a list of strings, containing all matching meta data to those tokens. If no meta data was found for a combination of tokens, the list will be empty. :param tokens_list: A list of lists of tokens. :param context_filter: A context filter object. :param batching: The batching mode. Can be 'auto', 'none' or 'manual'. :return: A result object. """ try: final = [] async with aiohttp.ClientSession() as session: for super_batch in map( lambda super_batch: map( lambda batch: asyncio.ensure_future( self._fetch_batch( session, batch, SCNG._bit_list_json_query, [ 'data', 'tokenListBasedContent', ], context_filter, ) ), super_batch, ), batched( batched( tokens_list, batch_size, ), seq_size, ) ): final.append( await asyncio.gather(*super_batch) ) result = self._compile_batched_result( list( map( self._compile_batched_result, final ) ) ) return ResultAsync( data=SCNG._bit_list_to_string_list( map( lambda xs: list( map( lambda x: BitVal( context=x['context'], value=x['value'], reason=x['reason'], ), xs ) ), result.data, ), ignore_context=ignore_context, ), error=list( chain(*result.error), ) ) except Exception as e: return Result(error=str(e))
/sc_cc_ng_sdk_python-0.2.1.tar.gz/sc_cc_ng_sdk_python-0.2.1/sc_cc_ng_sdk_python/__init__.py
0.843799
0.266656
__init__.py
pypi
import lzma from sc_compression.signatures import Signatures, get_signature from sc_compression.utils.reader import Reader try: import lzham except ImportError: from platform import system as get_system_name lzham = None if get_system_name() == 'Windows': from sc_compression.support.lzham import LZHAM lzham = LZHAM try: import zstandard except ImportError: zstandard = None class Decompressor(Reader): def __init__(self): super().__init__(b'') self.signature = Signatures.NONE self.file_version = -1 self.hash = None def decompress(self, buffer: bytes) -> bytes: super().__init__(buffer, 'little') decompressed = buffer self.signature = get_signature(self.buffer, self.file_version) if self.signature == Signatures.NONE: return decompressed if self.signature == Signatures.SC: super().__init__(buffer, 'big') self.read(2) self.file_version = self.readInt32() if self.file_version >= 4: self.file_version = self.readInt32() self.hash = self.read(self.readInt32()) decompressed = self.decompress(buffer[self.i:]) elif self.signature == Signatures.SIG: buffer = buffer[68:] decompressed = self.decompress(buffer) elif self.signature == Signatures.SCLZ: self.read(4) dict_size_log2 = self.readUByte() uncompressed_size = self.readInt32() if lzham: filters = { 'dict_size_log2': dict_size_log2 } decompressed = lzham.decompress(self.buffer[self.tell():], uncompressed_size, filters) elif self.signature == Signatures.LZMA: decompressor = lzma.LZMADecompressor() compressed = self.buffer[:5] + b'\xff' * 8 + self.buffer[9:] decompressed = decompressor.decompress(compressed) elif self.signature == Signatures.ZSTD: if zstandard: decompressor = zstandard.ZstdDecompressor() decompressed = decompressor.decompress(self.buffer) else: raise TypeError(self.signature) return decompressed
/sc_compression-0.6.1-py3-none-any.whl/sc_compression/decompressor.py
0.50293
0.187542
decompressor.py
pypi
import lzma from hashlib import md5 from sc_compression.signatures import Signatures from sc_compression.utils.writer import Writer try: import lzham except ImportError: from platform import system as get_system_name lzham = None if get_system_name() == 'Windows': from sc_compression.support.lzham import LZHAM lzham = LZHAM try: import zstandard except ImportError: zstandard = None class Compressor(Writer): lzham_filters = { 'dict_size_log2': 18 } lzma_filters = [ { "id": lzma.FILTER_LZMA1, "dict_size": 256 * 1024, "lc": 3, "lp": 0, "pb": 2, "mode": lzma.MODE_NORMAL }, ] def __init__(self): super().__init__('little') def compress(self, data, signature: Signatures, file_version: int = None) -> bytes: uncompressed_size = len(data) if file_version is None: file_version = 3 if zstandard and signature != Signatures.SCLZ else 1 if signature == Signatures.ZSTD and not zstandard or \ signature == Signatures.SCLZ and not lzham: signature = Signatures.SC super().__init__('little') if signature is Signatures.NONE: return data elif signature in (Signatures.LZMA, Signatures.SIG) or (signature == Signatures.SC and file_version != 3): compressed = lzma.compress(data, format=lzma.FORMAT_ALONE, filters=self.lzma_filters) self.write(compressed[:5]) self.writeInt32(uncompressed_size) self.write(compressed[13:]) compressed = self.buffer elif signature == Signatures.SCLZ and lzham: compressed = lzham.compress(data, filters=self.lzham_filters) self.write(b'SCLZ') self.writeUByte(self.lzham_filters['dict_size_log2']) self.writeInt32(uncompressed_size) self.write(compressed) compressed = self.buffer elif signature in (Signatures.SC, Signatures.ZSTD) and file_version == 3: compressor = zstandard.ZstdCompressor() compressed = compressor.compress(data) else: raise TypeError('Unknown Signature!') super().__init__('big') if signature in (Signatures.SC, Signatures.SCLZ): data_hash = md5(data).digest() self.write(b'SC') self.writeInt32(file_version) if file_version == 4: self.writeInt32(1) self.writeInt32(len(data_hash)) self.write(data_hash) compressed = self.buffer + compressed elif signature == Signatures.SIG: self.write(b'Sig:') self.write(b'\x00' * 64) # sha64 compressed = self.buffer + compressed return compressed
/sc_compression-0.6.1-py3-none-any.whl/sc_compression/compressor.py
0.49585
0.242794
compressor.py
pypi
class Writer: def __init__(self, endian: str = 'big'): super(Writer, self).__init__() self.endian = endian self.buffer = b'' def write(self, data: bytes): self.buffer += data def writeUInteger(self, integer: int, length: int = 1): self.buffer += integer.to_bytes(length, self.endian, signed=False) def writeInteger(self, integer: int, length: int = 1): self.buffer += integer.to_bytes(length, self.endian, signed=True) def writeUInt64(self, integer: int): self.writeUInteger(integer, 8) def writeInt64(self, integer: int): self.writeInteger(integer, 8) def writeFloat(self, floating: float): exponent = 0 sign = 1 if floating < 0: sign = -1 floating = -floating if floating >= 2 ** -1022: value = floating while value < 1: exponent -= 1 value *= 2 while value >= 2: exponent += 1 value /= 2 mantissa = floating / 2 ** exponent exponent += 127 as_integer_bin = '0' if sign == -1: as_integer_bin = '1' as_integer_bin += bin(exponent)[2:].zfill(8) mantissa_bin = '' for x in range(24): bit = '0' if mantissa >= 1/2**x: mantissa -= 1/2**x bit = '1' mantissa_bin += bit mantissa_bin = mantissa_bin[1:] as_integer_bin += mantissa_bin as_integer = int(as_integer_bin, 2) self.writeUInt32(as_integer) def writeUInt32(self, integer: int): self.writeUInteger(integer, 4) def writeInt32(self, integer: int): self.writeInteger(integer, 4) def writeNUInt16(self, integer: int): self.writeUInt16(integer * 65535) def writeUInt16(self, integer: int): self.writeUInteger(integer, 2) def writeNInt16(self, integer: int): self.writeInt16(integer * 32512) def writeInt16(self, integer: int): self.writeInteger(integer, 2) def writeUInt8(self, integer: int): self.writeUInteger(integer) def writeInt8(self, integer: int): self.writeInteger(integer) def writeBool(self, boolean: bool): if boolean: self.writeUInt8(1) else: self.writeUInt8(0) writeUInt = writeUInteger writeInt = writeInteger writeULong = writeUInt64 writeLong = writeInt64 writeNUShort = writeNUInt16 writeNShort = writeNInt16 writeUShort = writeUInt16 writeShort = writeInt16 writeUByte = writeUInt8 writeByte = writeInt8 def writeChar(self, string: str): for char in list(string): self.buffer += char.encode('utf-8') def writeString(self, string: str): encoded = string.encode('utf-8') self.writeUShort(len(encoded)) self.buffer += encoded
/sc_compression-0.6.1-py3-none-any.whl/sc_compression/utils/writer.py
0.648466
0.37605
writer.py
pypi
class Reader: def __init__(self, buffer: bytes, endian: str = 'big'): self.buffer = buffer self.endian = endian self.i = 0 def read(self, length: int = 1): result = self.buffer[self.i:self.i + length] self.i += length return result def readUInteger(self, length: int = 1) -> int: result = 0 for x in range(length): byte = self.buffer[self.i] bit_padding = x * 8 if self.endian == 'big': bit_padding = (8 * (length - 1)) - bit_padding result |= byte << bit_padding self.i += 1 return result def readInteger(self, length: int = 1) -> int: integer = self.readUInteger(length) result = integer if integer > 2**(length * 8) / 2: result -= 2**(length * 8) return result def readUInt64(self) -> int: return self.readUInteger(8) def readInt64(self) -> int: return self.readInteger(8) def readFloat(self) -> float: asInt = self.readUInt32() binary = bin(asInt) binary = binary[2:].zfill(32) sign = -1 if binary[0] == 1 else 1 exponent = int(binary[1:9], 2) - 127 mantissa_base = binary[9:] mantissa_bin = '1' + mantissa_base mantissa = 0 val = 1 if exponent == -127: if mantissa_base[1] == -1: return 0 else: exponent = -126 mantissa_bin = '0' + mantissa_base for char in mantissa_bin: mantissa += val * int(char) val = val / 2 result = sign * 2 ** exponent * mantissa return result def readUInt32(self) -> int: return self.readUInteger(4) def readInt32(self) -> int: return self.readInteger(4) def readNUInt16(self) -> float: return self.readUInt16() / 65535 def readUInt16(self) -> int: return self.readUInteger(2) def readNInt16(self) -> float: return self.readInt16() / 32512 def readInt16(self) -> int: return self.readInteger(2) def readUInt8(self) -> int: return self.readUInteger() def readInt8(self) -> int: return self.readInteger() def readBool(self) -> bool: if self.readUInt8() >= 1: return True else: return False readUInt = readUInteger readInt = readInteger readULong = readUInt64 readLong = readInt64 readNUShort = readNUInt16 readNShort = readNInt16 readUShort = readUInt16 readShort = readInt16 readUByte = readUInt8 readByte = readInt8 def readChar(self, length: int = 1) -> str: return self.read(length).decode('utf-8') def readString(self) -> str: length = self.readUShort() return self.readChar(length) def tell(self) -> int: return self.i
/sc_compression-0.6.1-py3-none-any.whl/sc_compression/utils/reader.py
0.765243
0.334698
reader.py
pypi
from copy import deepcopy from functools import partial, update_wrapper from typing import Callable, Dict, Hashable, Tuple, Optional, Union, List import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd from dandelion.external.nxviz import encodings, lines from dandelion.external.nxviz.utils import node_table, edge_table default_edge_kwargs = dict(facecolor="none", zorder=1) def line_width(et: pd.DataFrame, lw_by: Hashable): """Default edge line width function.""" if lw_by is not None: return encodings.data_linewidth(et[lw_by], et[lw_by]) return pd.Series([1] * len(et), name="lw") def transparency( et: pd.DataFrame, alpha_by: Hashable, alpha_bounds: Optional[Tuple] = None ) -> pd.Series: """Default edge line transparency function.""" if alpha_by is not None: ref_data = et[alpha_by] if isinstance(alpha_bounds, tuple): ref_data = pd.Series(alpha_bounds) return encodings.data_transparency(et[alpha_by], ref_data) return pd.Series([0.1] * len(et), name="alpha") def edge_colors( et: pd.DataFrame, nt: pd.DataFrame, color_by: Hashable, node_color_by: Hashable, palette: Optional[Union[Dict, List]] = None, ): """Default edge line color function.""" if color_by in ("source_node_color", "target_node_color"): edge_select_by = color_by.split("_")[0] return encodings.data_color( et[edge_select_by].apply(nt[node_color_by].get), nt[node_color_by], palette, ) elif color_by: return encodings.data_color(et[color_by], et[color_by], palette) return pd.Series(["black"] * len(et), name="color_by") def validate_color_by( G: nx.Graph, color_by: Hashable, node_color_by: Hashable, ) -> None: """Validate `node_color_by` and `G` when `color_by` has a special value.""" if color_by in ("source_node_color", "target_node_color"): if not isinstance(G, nx.DiGraph): raise ValueError( "Special values of `color_by`, can only be set for directed graphs." ) elif not node_color_by: raise ValueError( "When setting `color_by` to special values," " `node_color_by` also needs to be set." ) def draw( G: nx.Graph, pos: Dict[Hashable, np.ndarray], lines_func: Callable, color_by: Hashable = None, node_color_by: Hashable = None, lw_by: Hashable = None, alpha_by: Hashable = None, ax=None, encodings_kwargs: Dict = {}, palette: Optional[Union[Dict, List]] = None, **linefunc_kwargs, ): """Draw edges to matplotlib axes. ## Parameters - `G`: A NetworkX graph. - `pos`: A dictionary mapping for x,y coordinates of a node. - `lines_func`: One of the line drawing functions from `nxviz.lines` - `color_by`: Categorical or quantitative edge attribute key to color edges by. There are two special value for this parameter when using directed graphs: "source_node_color" and "target_node_color". If these values are set, then `node_color_by` also needs to be set. - `node_color_by`: Node metadata attribute key that has been used to color nodes. - `node_color_by`: Node metadata attribute key that has been used to color nodes. - `lw_by`: Quantitative edge attribute key to determine line width. - `alpha_by`: Quantitative edge attribute key to determine transparency. - `ax`: Matplotlib axes object to plot onto. - `encodings_kwargs`: A dictionary of kwargs to determine the visual properties of the edge. - `palette`: Optional custom palette of colours for plotting categorical groupings in a list/dictionary. Colours must be values `matplotlib.colors.ListedColormap` can interpret. If a dictionary is provided, key and record corresponds to category and colour respectively. - `linefunc_kwargs`: All other keyword arguments passed in will be passed onto the appropriate linefunc. Special keyword arguments for `encodings_kwargs` include: - `lw_scale`: A scaling factor for all edges' line widths. Equivalent to multiplying all line widths by this number. - `alpha_scale`: A scaling factor for all edges' line transparencies. Equivalent to multiplying all alphas by this number. The default transparency is 0.1, so an alpha_scale of any number greater than or equal to 10 will result in 100% opaque lines. - `alpha_bounds`: The bounds for transparency. Should be a tuple of `(lower, upper)` numbers. This keyword argument lets us manually set the bounds that we wish to have for 0 opacity (i.e. transparent) to 1.0 opacity (i.e. opaque.) Everything else passed in here will be passed to the matplotlib Patch constructor; see `nxviz.lines` for more information. """ nt = node_table(G) et = edge_table(G) if ax is None: ax = plt.gca() validate_color_by(G, color_by, node_color_by) edge_color = edge_colors(et, nt, color_by, node_color_by, palette) encodings_kwargs = deepcopy(encodings_kwargs) lw = line_width(et, lw_by) * encodings_kwargs.pop("lw_scale", 1.0) alpha_bounds = encodings_kwargs.pop("alpha_bounds", None) alpha = transparency(et, alpha_by, alpha_bounds) * encodings_kwargs.pop( "alpha_scale", 1.0 ) aes_kw = {"facecolor": "none"} aes_kw.update(encodings_kwargs) patches = lines_func( et, pos, edge_color=edge_color, alpha=alpha, lw=lw, aes_kw=aes_kw, **linefunc_kwargs, ) for patch in patches: ax.add_patch(patch) circos = partial(draw, lines_func=lines.circos) line = partial(draw, lines_func=lines.line) arc = partial(draw, lines_func=lines.arc) hive = partial(draw, lines_func=lines.hive) matrix = partial(draw, lines_func=lines.matrix) update_wrapper(circos, draw) circos.__name__ = "edges.circos" update_wrapper(line, draw) line.__name__ = "edges.line" update_wrapper(arc, draw) arc.__name__ = "edges.arc" update_wrapper(hive, draw) hive.__name__ = "edges.hive" update_wrapper(matrix, draw) matrix.__name__ = "edges.matrix"
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/edges.py
0.90928
0.423875
edges.py
pypi
from functools import partial, update_wrapper from typing import Dict, Hashable, Union, Optional, List import matplotlib.pyplot as plt import numpy as np import pandas as pd import networkx as nx from matplotlib.cm import ScalarMappable from matplotlib.colors import Normalize from matplotlib.patches import Patch, Rectangle from dandelion.external.nxviz import encodings, layouts, utils from dandelion.external.nxviz.geometry import circos_radius, item_theta from dandelion.external.nxviz.polcart import to_cartesian, to_degrees def text_alignment(x: float, y: float): """ Align text labels based on the x- and y-axis coordinate values. This function is used for computing the appropriate alignment of the text label. For example, if the text is on the "right" side of the plot, we want it to be left-aligned. If the text is on the "top" side of the plot, we want it to be bottom-aligned. :param x, y: (`int` or `float`) x- and y-axis coordinate respectively. :returns: A 2-tuple of strings, the horizontal and vertical alignments respectively. """ if x == 0: ha = "center" elif x > 0: ha = "left" else: ha = "right" if y == 0: va = "center" elif y > 0: va = "bottom" else: va = "top" return ha, va def validate_fontdict(fontdict: Dict): """Validate `fontdict` keys.""" valid_keys = {"family", "size", "stretch", "style", "variant", "weight"} assert set(fontdict) <= valid_keys def circos_group( G: nx.Graph, group_by: Hashable, radius: float = None, radius_offset: float = 1, midpoint: bool = True, fontdict: Dict = {}, ax=None, ): """Text annotation of node grouping variable on a circos plot.""" validate_fontdict(fontdict) nt = utils.node_table(G) groups = nt.groupby(group_by).apply(lambda df: len(df)).sort_index() proportions = groups / groups.sum() starting_points = proportions.cumsum() - proportions if midpoint: starting_points += proportions / 2 angles = starting_points * 360 radians = angles.apply(lambda x: x / 360 * 2 * np.pi) if ax is None: ax = plt.gca() if radius is None: radius = circos_radius(len(G)) + radius_offset for label, theta in radians.to_dict().items(): x, y = to_cartesian(radius, theta) ha, va = text_alignment(x, y) ax.annotate(label, xy=(x, y), ha=ha, va=va, **fontdict) def hive_group( G: nx.Graph, group_by: Hashable, offset: float = np.pi / 12, fontdict: Dict = {}, ax=None, ): """Text annotation of hive plot groups.""" validate_fontdict(fontdict) nt = utils.node_table(G) groups = sorted(nt[group_by].unique()) if ax is None: ax = plt.gca() for grp in groups: theta = item_theta(groups, grp) + offset radius = 2 * (8 + len(nt[nt[group_by] == grp]) + 1) x, y = to_cartesian(radius, theta) ha, va = text_alignment(x, y) ax.annotate(grp, xy=(x, y), ha=ha, va=va, **fontdict) def arc_group( G: nx.Graph, group_by: Hashable, midpoint: bool = True, y_offset: float = -1, rotation: float = 45, ha: str = "right", va: str = "top", fontdict: Dict = {}, ax=None, ): """Annotate arc group.""" validate_fontdict(fontdict) if ax is None: ax = plt.gca() nt = utils.node_table(G) groups = nt.groupby(group_by).apply(lambda df: len(df)).sort_index() proportions = groups / groups.sum() starting_points = proportions.cumsum() - proportions if midpoint: starting_points += proportions / 2 starting_points *= len(G) * 2 for label, starting_point in starting_points.to_dict().items(): x = starting_point y = y_offset ax.annotate( label, xy=(x, y), ha=ha, va=va, rotation=rotation, **fontdict ) def parallel_group( G: nx.Graph, group_by: Hashable, y_offset: float = -0.3, rotation: float = 45, ha: str = "right", va: str = "top", fontdict: Dict = {}, ax=None, ): """Annotate parallel plot groups.""" validate_fontdict(fontdict) if ax is None: ax = plt.gca() nt = utils.node_table(G) # groups = nt.groupby(group_by).apply(lambda df: len(df)).sort_index() groups = sorted(nt[group_by].unique()) for i, label in enumerate(groups): x = i * 4 y = y_offset ax.annotate( label, xy=(x, y), ha=ha, va=va, rotation=rotation, **fontdict ) ax.relim() def matrix_group( G: nx.Graph, group_by: Hashable, offset: float = -3, xrotation: float = 0, yrotation: float = 90, fontdict: Dict = {}, ax=None, ): """Annotate matrix plot groups.""" validate_fontdict(fontdict) if ax is None: ax = plt.gca() nt = utils.node_table(G) group_sizes = nt.groupby(group_by).apply(lambda df: len(df)) proportions = group_sizes / group_sizes.sum() midpoint = proportions / 2 starting_positions = proportions.cumsum() - proportions label_positions = (starting_positions + midpoint) * len(G) * 2 label_positions += 1 for label, position in label_positions.to_dict().items(): # Plot the x-axis labels y = offset x = position ax.annotate( label, xy=(x, y), ha="center", va="center", rotation=xrotation, **fontdict, ) # Plot the y-axis labels x = offset y = position ax.annotate( label, xy=(x, y), ha="center", va="center", rotation=yrotation, **fontdict, ) def matrix_block( G: nx.Graph, group_by: Hashable, color_by: Hashable = None, alpha: float = 0.1, ax=None, ): """Annotate group blocks on a matrix plot. Most useful for highlighting the within- vs between-group edges. """ nt = utils.node_table(G) group_sizes = nt.groupby(group_by).apply(lambda df: len(df)) * 2 starting_positions = group_sizes.cumsum() + 1 - group_sizes colors = pd.Series(["black"] * len(group_sizes), index=group_sizes.index) if color_by: color_data = pd.Series(group_sizes.index, index=group_sizes.index) colors = encodings.data_color(color_data, color_data) # Generate patches first patches = [] for label, position in starting_positions.to_dict().items(): xy = (position, position) width = height = group_sizes[label] patch = Rectangle( xy, width, height, zorder=20, alpha=alpha, facecolor=colors[label] ) patches.append(patch) if ax is None: ax = plt.gca() # Then add patches in. for patch in patches: ax.add_patch(patch) def colormapping( data: pd.Series, legend_kwargs: Dict = {}, ax=None, palette: Optional[Union[Dict, List]] = None, ): """Annotate node color mapping. If the color attribute is continuous, a colorbar will be added to the matplotlib figure. Otherwise, a legend will be added. """ cmap, data_family = encodings.data_cmap(data, palette) if ax is None: ax = plt.gca() if data_family == "continuous": norm = Normalize(vmin=data.min(), vmax=data.max()) scalarmap = ScalarMappable( cmap=cmap, norm=norm, ) fig = plt.gcf() fig.colorbar(scalarmap) else: if (palette is not None) and (isinstance(palette, dict)): labels = pd.Series(list(palette.keys())) else: labels = pd.Series(data.unique()) cmap, _ = encodings.data_cmap(labels, palette) cfunc = encodings.color_func(labels, palette) colors = labels.apply(cfunc) patchlist = [] for color, label in zip(colors, labels): data_key = Patch(color=color, label=label) patchlist.append(data_key) kwargs = dict( loc="best", ncol=int(len(labels) / 2), # bbox_to_anchor=(0.5, -0.05), ) kwargs.update(legend_kwargs) legend = plt.legend(handles=patchlist, **kwargs) ax.add_artist(legend) def node_colormapping( G: nx.Graph, color_by: Hashable, legend_kwargs: Dict = {"loc": "upper right", "bbox_to_anchor": (0.0, 1.0)}, ax=None, palette: Optional[Union[Dict, List]] = None, ): """Annotate node color mapping.""" nt = utils.node_table(G) data = nt[color_by] colormapping(data, legend_kwargs, ax, palette) def edge_colormapping( G: nx.Graph, color_by: Hashable, legend_kwargs: Dict = {"loc": "lower right", "bbox_to_anchor": (0.0, 0.0)}, ax=None, palette: Optional[Union[Dict, List]] = None, ): """Annotate edge color mapping.""" if ax is None: ax = plt.gca() et = utils.edge_table(G) data = et[color_by] colormapping(data, legend_kwargs, ax, palette) def node_labels(G, layout_func, group_by, sort_by, fontdict={}, ax=None): """Annotate node labels.""" validate_fontdict(fontdict) if ax is None: ax = plt.gca() nt = utils.node_table(G) pos = layout_func(nt, group_by, sort_by) for node in G.nodes(): ax.annotate( text=node, xy=pos[node], ha="center", va="center", **fontdict ) def circos_labels( G: nx.Graph, group_by: Hashable = None, sort_by: Hashable = None, layout: str = "node_center", radius: float = None, radius_offset: float = 1, fontdict: Dict = {}, ax=None, ): """Annotate node labels for circos plot.""" assert layout in ("node_center", "standard", "rotate", "numbers") if layout == "node_center": return node_labels(G, layouts.circos, group_by, sort_by, fontdict) validate_fontdict(fontdict) if ax is None: ax = plt.gca() nt = utils.node_table(G, group_by, sort_by) nodes = list(nt.index) if radius is None: radius = circos_radius(len(nodes)) if layout == "numbers": radius_adjustment = radius / (radius + radius_offset) else: radius_adjustment = 1.02 radius += radius_offset for i, (node, data) in enumerate(nt.iterrows()): theta = item_theta(nodes, node) x, y = to_cartesian(r=radius * radius_adjustment, theta=theta) ha, va = text_alignment(x, y) if layout == "numbers": tx, _ = to_cartesian(r=radius, theta=theta) tx *= 1 - np.log(np.cos(theta) * utils.nonzero_sign(np.cos(theta))) tx += utils.nonzero_sign(x) ty_numerator = ( 2 * radius * ( theta % (utils.nonzero_sign(y) * utils.nonzero_sign(x) * np.pi) ) ) ty_denominator = utils.nonzero_sign(x) * np.pi ty = ty_numerator / ty_denominator ax.annotate( text="{} - {}".format(*((i, node) if (x > 0) else (node, i))), xy=(tx, ty), ha=ha, va=va, **fontdict, ) ax.annotate(text=i, xy=(x, y), ha="center", va="center") elif layout == "rotate": theta_deg = to_degrees(theta) if -90 <= theta_deg <= 90: rot = theta_deg else: rot = theta_deg - 180 ax.annotate( text=node, xy=(x, y), ha=ha, va="center", rotation=rot, rotation_mode="anchor", **fontdict, ) # Standard layout else: ax.annotate(text=node, xy=(x, y), ha=ha, va=va, **fontdict) def arc_labels( G: nx.Graph, group_by: Hashable = None, sort_by: Hashable = None, layout: str = "node_center", y_offset: float = -1, ha: str = "right", va: str = "top", rotation: float = 45, fontdict: Dict = {}, ax=None, ): """Annotate node labels for arc plot.""" assert layout in ("node_center", "standard") if layout == "node_center": return node_labels(G, layouts.arc, group_by, sort_by, fontdict) validate_fontdict(fontdict) if ax is None: ax = plt.gca() nt = utils.node_table(G, group_by, sort_by) for x, (node, data) in enumerate(nt.iterrows()): ax.annotate( node, xy=(x * 2, y_offset), ha=ha, va=va, rotation=rotation, **fontdict, ) def matrix_labels( G: nx.Graph, group_by: Hashable = None, sort_by: Hashable = None, layout: str = "node_center", offset: float = -1.5, x_ha: str = "right", x_va: str = "top", y_ha: str = "right", y_va: str = "center", x_rotation: float = 45, y_rotation: float = 0, fontdict: Dict = {}, ax=None, ): """Annotate node labels for matrix plot.""" assert layout in ("node_center", "standard") validate_fontdict(fontdict) if ax is None: ax = plt.gca() nt = utils.node_table(G, group_by, sort_by) if layout == "node_center": x_ha = "center" x_va = "center" y_ha = "center" y_va = "center" offset = 0 x_rotation = 0 y_rotation = 0 for i, (node, data) in enumerate(nt.iterrows()): position = (i + 1) * 2 # Plot the x-axis labels ax.annotate( node, xy=(position, offset), ha=x_ha, va=x_va, rotation=x_rotation, **fontdict, ) # Plot the y-axis labels ax.annotate( node, xy=(offset, position), ha=y_ha, va=y_va, rotation=y_rotation, **fontdict, ) parallel_labels = partial( node_labels, layout_func=layouts.parallel, sort_by=None ) update_wrapper(parallel_labels, node_labels) parallel_labels.__name__ = "annotate.parallel_labels" hive_labels = partial(node_labels, layout_func=layouts.hive, sort_by=None) update_wrapper(hive_labels, node_labels) hive_labels.__name__ = "annotate.hive_labels"
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/annotate.py
0.953079
0.652823
annotate.py
pypi
from typing import Dict, Hashable import numpy as np import pandas as pd from dandelion.external.nxviz.geometry import circos_radius, item_theta from dandelion.external.nxviz.polcart import to_cartesian from dandelion.external.nxviz.utils import group_and_sort def parallel( nt: pd.DataFrame, group_by: Hashable, sort_by: Hashable = None ) -> Dict[Hashable, np.ndarray]: """Parallel coordinates node layout.""" pos = dict() for x, (grp, data) in enumerate(nt.groupby(group_by)): if sort_by is not None: data = data.sort_values(sort_by) for y, (node, d) in enumerate(data.iterrows()): pos[node] = np.array([x * 4, y]) return pos def circos( nt: pd.DataFrame, group_by: Hashable = None, sort_by: Hashable = None, radius: float = None, ) -> Dict[Hashable, np.ndarray]: """Circos plot node layout.""" pos = dict() nt = group_and_sort(nt, group_by, sort_by) nodes = list(nt.index) if radius is None: radius = circos_radius(len(nodes)) if group_by: for grp, df in nt.groupby(group_by): for node, data in df.iterrows(): x, y = to_cartesian(r=radius, theta=item_theta(nodes, node)) pos[node] = np.array([x, y]) else: for node, data in nt.iterrows(): x, y = to_cartesian(r=radius, theta=item_theta(nodes, node)) pos[node] = np.array([x, y]) return pos def hive( nt: pd.DataFrame, group_by, sort_by: Hashable = None, inner_radius: float = 8, rotation: float = 0, ): """Hive plot node layout. ## Parameters - `inner_radius`: The inner """ nt = group_and_sort(nt, group_by=group_by, sort_by=sort_by) groups = sorted(nt[group_by].unique()) if len(groups) > 3: raise ValueError( f"group_by {group_by} is associated with more than 3 groups. " f"The groups are {groups}. " "Hive plots can only handle at most 3 groups at a time." ) pos = dict() for grp, df in nt.groupby(group_by): for i, (node, data) in enumerate(df.iterrows()): radius = inner_radius + i theta = item_theta(groups, grp) + rotation x, y = to_cartesian(r=radius * 2, theta=theta) pos[node] = np.array([x, y]) return pos def arc(nt, group_by: Hashable = None, sort_by: Hashable = None): """Arc plot node layout.""" nt = group_and_sort(nt, group_by=group_by, sort_by=sort_by) pos = dict() for x, (node, data) in enumerate(nt.iterrows()): pos[node] = np.array([x * 2, 0]) return pos def geo( nt, group_by=None, sort_by=None, longitude="longitude", latitude="latitude" ): """Geographical node layout.""" pos = dict() for node, data in nt.iterrows(): pos[node] = data[[longitude, latitude]] return pos def matrix(nt, group_by: Hashable = None, sort_by: Hashable = None, axis="x"): """Matrix plot layout.""" # Nodes should be grouped and sorted before we begin assigning coordinates. nt = group_and_sort(node_table=nt, group_by=group_by, sort_by=sort_by) # We are eventually going to return this pos dictionary. pos = dict() # Loop over each of the rows, and assign x, y coordinates in order of them being grouped and sorted. for i, (node, data) in enumerate(nt.iterrows()): x = (i + 1) * 2 y = 0 if axis == "y": x, y = y, x pos[node] = np.array([x, y]) return pos
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/layouts.py
0.893646
0.598459
layouts.py
pypi
from itertools import product from typing import Dict, Iterable, List import numpy as np import pandas as pd from matplotlib.patches import Arc, Circle, Patch, Path, PathPatch from dandelion.external.nxviz.geometry import correct_hive_angles from dandelion.external.nxviz.polcart import to_cartesian, to_polar, to_radians def circos( et: pd.DataFrame, pos: Dict, edge_color: Iterable, alpha: Iterable, lw: Iterable, aes_kw: Dict, ) -> List[Patch]: """Circos plot line drawing.""" patches = [] for r, d in et.iterrows(): verts = [pos[d["source"]], (0, 0), pos[d["target"]]] codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3] path = Path(verts, codes) patch = PathPatch( path, edgecolor=edge_color[r], alpha=alpha[r], lw=lw[r], **aes_kw ) patches.append(patch) return patches def line( et: pd.DataFrame, pos: Dict, edge_color: Iterable, alpha: Iterable, lw: Iterable, aes_kw: Dict, ): """Straight line drawing function.""" patches = [] for r, d in et.iterrows(): start = d["source"] end = d["target"] verts = [pos[start], pos[end]] codes = [Path.MOVETO, Path.LINETO] path = Path(verts, codes) patch = PathPatch( path, edgecolor=edge_color[r], alpha=alpha[r], lw=lw[r], **aes_kw ) patches.append(patch) return patches def arc( et: pd.DataFrame, pos: Dict, edge_color: Iterable, alpha: Iterable, lw: Iterable, aes_kw: Dict, ): """Arc plot edge drawing function.""" patches = [] for r, d in et.iterrows(): start = d["source"] end = d["target"] start_x, start_y = pos[start] end_x, end_y = pos[end] middle_x = np.mean([start_x, end_x]) middle_y = np.mean([start_y, end_y]) width = abs(end_x - start_x) height = width r1, theta1 = to_polar(start_x - middle_x, start_y - middle_y) r2, theta2 = to_polar(end_x - middle_x, end_y - middle_y) theta1 = np.rad2deg(theta1) theta2 = np.rad2deg(theta2) theta1, theta2 = min([theta1, theta2]), max([theta1, theta2]) patch = Arc( xy=(middle_x, middle_y), width=width, height=height, theta1=theta1, theta2=theta2, edgecolor=edge_color[r], alpha=alpha[r], lw=lw[r], **aes_kw, ) patches.append(patch) return patches def hive( et: pd.DataFrame, pos: Dict, pos_cloned: Dict, edge_color: Iterable, alpha: Iterable, lw: Iterable, aes_kw: Dict, curves: bool = True, ): """Hive plot line drawing function.""" rad = pd.Series(pos).apply(lambda val: to_polar(*val)).to_dict() if pos_cloned is None: pos_cloned = pos rad_cloned = ( pd.Series(pos_cloned).apply(lambda val: to_polar(*val)).to_dict() ) patches = [] for r, d in et.iterrows(): start = d["source"] end = d["target"] start_radius, start_theta = rad[start] end_radius, end_theta = rad[end] _, start_theta_cloned = rad_cloned[start] _, end_theta_cloned = rad_cloned[end] # Find the pair of start and end thetas that give the smallest acute angle smallest_pair = None smallest_nonzero_angle = np.inf starts = [start_theta, start_theta_cloned] ends = [end_theta, end_theta_cloned] for start, end in product(starts, ends): start, end = correct_hive_angles(start, end) if not np.allclose(end - start, 0): angle = to_radians(abs(min([end - start, start - end]))) if angle < smallest_nonzero_angle: smallest_nonzero_angle = abs(angle) smallest_pair = ((start_radius, start), (end_radius, end)) if smallest_pair is None: continue (start_radius, start_theta), (end_radius, end_theta) = smallest_pair if np.allclose(end_theta, 0): end_theta = 2 * np.pi startx, starty = to_cartesian(start_radius, start_theta) endx, endy = to_cartesian(end_radius, end_theta) middle_theta = np.mean([start_theta, end_theta]) middlex1, middley1 = to_cartesian(start_radius, middle_theta) middlex2, middley2 = to_cartesian(end_radius, middle_theta) endx, endy = to_cartesian(end_radius, end_theta) verts = [(startx, starty), (endx, endy)] codes = [Path.MOVETO, Path.LINETO] if curves: verts = [ (startx, starty), (middlex1, middley1), (middlex2, middley2), (endx, endy), ] codes = [ Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, ] path = Path(verts, codes) patch = PathPatch( path, lw=lw[r], alpha=alpha[r], edgecolor=edge_color[r], **aes_kw ) patches.append(patch) return patches def matrix( et, pos, pos_cloned, edge_color: Iterable, alpha: Iterable, lw: Iterable, aes_kw: Dict, ): """Matrix plot edge drawing function.""" patches = [] for r, d in et.iterrows(): start = d["source"] end = d["target"] x_start, y_start = pos_cloned[start] x_end, y_end = pos[end] x, y = (max(x_start, y_start), max(x_end, y_end)) kw = { "fc": edge_color[r], "alpha": alpha[r], "radius": lw[r], "zorder": 1, } kw.update(aes_kw) patch = Circle(xy=(x, y), **kw) patches.append(patch) return patches
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/lines.py
0.832237
0.558929
lines.py
pypi
from copy import deepcopy from functools import partial, update_wrapper from typing import Callable, Dict, Hashable, Optional, Tuple, Union, List import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd from matplotlib.patches import Circle from dandelion.external.nxviz import encodings, layouts from dandelion.external.nxviz.utils import node_table from dandelion.external.nxviz.plots import rescale, rescale_arc, rescale_square def node_colors( nt: pd.DataFrame, color_by: Hashable, palette: Optional[Union[Dict, List]] = None, ): """Return pandas Series of node colors.""" if color_by: return encodings.data_color(nt[color_by], nt[color_by], palette) return pd.Series(["blue"] * len(nt), name="color_by", index=nt.index) def transparency( nt: pd.DataFrame, alpha_by: Hashable, alpha_bounds: Optional[Tuple] = None ): """Return pandas Series of transparency (alpha) values. Transparency must always be normalized to (0, 1).""" if alpha_by is not None: ref_data = nt[alpha_by] if isinstance(alpha_bounds, tuple): ref_data = pd.Series(alpha_bounds) return encodings.data_transparency(nt[alpha_by], ref_data) return pd.Series([1.0] * len(nt), name="transparency", index=nt.index) def node_size(nt: pd.DataFrame, size_by: Hashable): """Return pandas Series of node sizes.""" if size_by: return encodings.data_size(nt[size_by], nt[size_by]) return pd.Series([1.0] * len(nt), name="size", index=nt.index) def node_glyphs(nt, pos, node_color, alpha, size, **encodings_kwargs): """Draw circos glyphs to the matplotlib axes object.""" patches = dict() for r, d in nt.iterrows(): kw = { "fc": node_color[r], "alpha": alpha[r], "radius": size[r], "zorder": 2, } kw.update(encodings_kwargs) c = Circle(xy=pos[r], **kw) patches[r] = c return pd.Series(patches) def draw( G: nx.Graph, layout_func: Callable, group_by: Hashable, sort_by: Hashable, color_by: Hashable = None, alpha_by: Hashable = None, size_by: Hashable = None, layout_kwargs: Dict = {}, encodings_kwargs: Dict = {}, rescale_func=rescale, ax=None, palette: Optional[Union[Dict, List]] = None, ): """Draw nodes to matplotlib axes. ## Parameters - `G`: The graph to plot. - `layout_func`: One of the node layout functions from `nxviz.layout`. - `group_by`: Categorical attribute key to group nodes by. - `sort_by`: Quantitative or ordinal attribute key to sort nodes. - `color_by`: Node attribute key to color nodes by. - `alpha_by`: Quantitative node attribute key to set transparency. - `size_by`: Quantitative node attribute key to set node size. - `layout_kwargs`: Keyword arguments to pass to the appropriate layout function. - `encodings_kwargs`: A dictionary of kwargs to determine the visual properties of the node. - `palette`: Optional custom palette of colours for plotting categorical groupings in a list/dictionary. Colours must be values `matplotlib.colors.ListedColormap` can interpret. If a dictionary is provided, key and record corresponds to category and colour respectively. Special keyword arguments for `encodings_kwargs` include: - `size_scale`: A scaling factor for all node radii. Equivalent to multiplying all node radii by this number. - `alpha_scale`: A scaling factor for all nodes' transparencies. Equivalent to multiplying all alphas by this number. The default transparency is 1.0. If you need to make the nodes transparent, use a value smaller than one. - `alpha_bounds`: The bounds for transparency. Should be a tuple of `(lower, upper)` numbers. This keyword argument lets us manually set the bounds that we wish to have for 0 opacity (i.e. transparent) to 1.0 opacity (i.e. opaque.) Everything else passed in here will be passed to the matplotlib Patch constructor; see `nxviz.lines` for more information. """ if ax is None: ax = plt.gca() nt = node_table(G) pos = layout_func(nt, group_by, sort_by, **layout_kwargs) node_color = node_colors(nt, color_by, palette) encodings_kwargs = deepcopy(encodings_kwargs) alpha_bounds = encodings_kwargs.pop("alpha_bounds", None) alpha = transparency(nt, alpha_by, alpha_bounds) * encodings_kwargs.pop( "alpha_scale", 1 ) size = node_size(nt, size_by) * encodings_kwargs.pop("size_scale", 1) patches = node_glyphs(nt, pos, node_color, alpha, size, **encodings_kwargs) for patch in patches: ax.add_patch(patch) rescale_func(G) return pos hive = partial( draw, layout_func=layouts.hive, sort_by=None, layout_kwargs={"inner_radius": 8}, encodings_kwargs={"size_scale": 0.5}, rescale_func=rescale_square, ) update_wrapper(hive, draw) hive.__name__ = "nodes.hive" circos = partial( draw, layout_func=layouts.circos, group_by=None, sort_by=None, ) update_wrapper(circos, draw) circos.__name__ = "nodes.circos" arc = partial( draw, layout_func=layouts.arc, group_by=None, sort_by=None, rescale_func=rescale_arc, ) update_wrapper(arc, draw) arc.__name__ = "nodes.arc" parallel = partial( draw, layout_func=layouts.parallel, sort_by=None, encodings_kwargs={"size_scale": 0.5}, ) update_wrapper(parallel, draw) parallel.__name__ = "nodes.parallel" matrix = partial(draw, layout_func=layouts.matrix, group_by=None, sort_by=None) update_wrapper(matrix, draw) matrix.__name__ = "nodes.matrix" geo = partial( draw, layout_func=layouts.geo, group_by=None, sort_by=None, encodings_kwargs={"size_scale": 0.0015}, ) update_wrapper(geo, draw) geo.__name__ = "nodes.geo"
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/nodes.py
0.919715
0.446434
nodes.py
pypi
import warnings from functools import partial, update_wrapper from itertools import combinations from typing import Callable, Hashable import matplotlib.pyplot as plt import networkx as nx import numpy as np from dandelion.external.nxviz import annotate, api, utils ### Iterators to generate subgraphs. def hive_triplets(G: nx.Graph, group_by: Hashable): """Yield subgraphs containing triplets of node categories. Intended for hive plotting. """ nt = utils.node_table(G) groups = sorted(nt[group_by].unique()) if len(groups) > 6: warnings.warn( "You have more than 6 groups of nodes, " "which means you might end up having a lot of subplots made. " "User beware! " "We recommend using hive plots only when you have 6 or fewer " "groups of nodes." ) triplets = combinations(groups, 3) for groups in triplets: wanted_nodes = (n for n in G.nodes() if G.nodes[n][group_by] in groups) yield G.subgraph(wanted_nodes), groups def edge_group(G: nx.Graph, group_by: Hashable): """Yield graphs containing only certain categories of edges.""" et = utils.edge_table(G) groups = sorted(et[group_by].unique()) for group in groups: G_sub = G.copy() G_sub.remove_edges_from(G_sub.edges()) for u, v, d in G.edges(data=True): if d[group_by] == group: G_sub.add_edge(u, v, **d) yield G_sub, group def node_group_edges(G: nx.Graph, group_by: Hashable): """Return a subgraph containing edges connected to a particular category of nodes.""" nt = utils.node_table(G) groups = sorted(nt[group_by].unique()) for group in groups: G_sub = G.copy() G_sub.remove_edges_from(G_sub.edges()) wanted_nodes = (n for n in G.nodes() if G.nodes[n][group_by] == group) for node in wanted_nodes: for u, v, d in G.edges(node, data=True): G_sub.add_edge(u, v, **d) yield G_sub, group def n_rows_cols(groups): """Return squarest n_rows and n_cols combination.""" nrows = ncols = int(np.ceil(np.sqrt(len(groups)))) return nrows, ncols def null(*args, **kwargs): """A passthrough function that does nothing.""" pass grouping_annotations = { "api.circos": annotate.circos_group, "api.arc": annotate.arc_group, "api.matrix": annotate.matrix_block, "api.hive": annotate.hive_group, "api.parallel": annotate.parallel_group, } node_color_annotations = { "api.hive": null, "api.circos": annotate.node_colormapping, "api.matrix": annotate.node_colormapping, "api.arc": annotate.node_colormapping, "api.parallel": annotate.node_colormapping, } def facet_plot( G: nx.Graph, plotting_func: Callable, node_facet_func: Callable, node_group_by: Hashable, node_sort_by: Hashable, node_color_by: Hashable, edge_facet_func: Callable, edge_group_by: Hashable, edge_color_by: Hashable, ): """Generic facet plotting function. All faceting funcs should take G and group_by and yield graphs. Underneath the hood, how they work shouldn't be of concern. Edge facet func takes priority if both node and edge facet func are specified. Just keep this in mind. ## Parameters - `G`: The graph to facet. - `plotting_func`: One of the high level API functions to use for plotting. - `node_facet_func`: A function to facet the nodes by. - `node_group_by`: Node metadata attribute to group nodes by. - `node_sort_by`: Node metadata attribute to sort nodes by. - `node_color_by`: Node metadata attribute to color nodes by. - `edge_facet_func`: A function to facet the edges by. - `edge_group_by`: Edge metadata attribute to group edges by. - `edge_color_by`: Edge metadata attribute to color edges by. """ group_by = node_group_by facet_func = node_facet_func if edge_facet_func and edge_group_by: group_by = edge_group_by facet_func = edge_facet_func graphs, groups = zip(*facet_func(G, group_by)) nrows, ncols = n_rows_cols(groups) fig, axes = plt.subplots( figsize=(3 * nrows, 3 * ncols), nrows=nrows, ncols=ncols ) axes = list(axes.flatten()) for G_sub, group, ax in zip(graphs, groups, axes): plt.sca(ax) plotting_func( G_sub, group_by=node_group_by, sort_by=node_sort_by, node_color_by=node_color_by, edge_color_by=edge_color_by, ) if node_group_by: grouping_annotations.get(plotting_func.__name__)( G_sub, group_by=node_group_by ) if node_color_by: # Annotate only on the left most axes idx = axes.index(ax) if not idx % nrows: node_color_annotations[plotting_func.__name__](G, node_color_by) ax.set_title(f"{group_by} = {group}") last_idx = axes.index(ax) for ax in axes[last_idx + 1 :]: fig.delaxes(ax) plt.tight_layout() #### Function begins below. This belongs to the "edge faceting" category. hive_panel = partial( facet_plot, plotting_func=api.hive, node_facet_func=hive_triplets, node_sort_by=None, node_color_by=None, edge_facet_func=None, edge_group_by=None, edge_color_by=None, ) update_wrapper(hive_panel, facet_plot) hive_panel.__name__ = "facet.hive_panel" matrix_panel = partial( facet_plot, plotting_func=api.matrix, node_facet_func=None, node_group_by=None, node_sort_by=None, node_color_by=None, edge_facet_func=edge_group, edge_color_by=None, ) update_wrapper(matrix_panel, facet_plot) matrix_panel.__name__ = "facet.matrix_panel" arc_panel = partial( facet_plot, plotting_func=api.arc, node_facet_func=None, node_group_by=None, node_sort_by=None, node_color_by=None, edge_facet_func=edge_group, edge_color_by=None, ) update_wrapper(arc_panel, facet_plot) arc_panel.__name__ = "facet.arc_panel" circos_panel = partial( facet_plot, plotting_func=api.circos, node_facet_func=None, node_group_by=None, node_sort_by=None, node_color_by=None, edge_facet_func=edge_group, edge_color_by=None, ) update_wrapper(circos_panel, facet_plot) circos_panel.__name__ = "facet.circos_panel" parallel_panel = partial( facet_plot, plotting_func=api.parallel, node_facet_func=None, node_group_by=None, node_sort_by=None, node_color_by=None, edge_facet_func=edge_group, edge_color_by=None, ) update_wrapper(parallel_panel, facet_plot) parallel_panel.__name__ = "facet.parallel_panel"
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/facet.py
0.862757
0.518973
facet.py
pypi
from collections import Counter import pandas as pd import warnings from typing import Iterable def is_data_homogenous(data_container: Iterable): """ Checks that all of the data in the container are of the same Python data type. This function is called in every other function below, and as such need not necessarily be called. :param data_container: A generic container of data points. """ data_types = set([type(i) for i in data_container]) return len(data_types) == 1 def infer_data_type(data_container: Iterable): """ For a given container of data, infer the type of data as one of continuous, categorical, or ordinal. For now, it is a one-to-one mapping as such: - str: categorical - int: ordinal - float: continuous There may be better ways that are not currently implemented below. For example, with a list of numbers, we can check whether the number of unique entries is less than or equal to 12, but has over 10000+ entries. This would be a good candidate for floats being categorical. :param data_container: A generic container of data points. :type data_container: `iterable` """ warnings.warn( "`infer_data_type` is deprecated! " "Please use `infer_data_family` instead!" ) # Defensive programming checks. # 0. Ensure that we are dealing with lists or tuples, and nothing else. assert isinstance(data_container, list) or isinstance( data_container, tuple ), "data_container should be a list or tuple." # 1. Don't want to deal with only single values. assert ( len(set(data_container)) > 1 ), "There should be more than one value in the data container." # 2. Don't want to deal with mixed data. assert is_data_homogenous( data_container ), "Data are not of a homogenous type!" # Once we check that the data type of the container is homogenous, we only # need to check the first element in the data container for its type. datum = data_container[0] # Return statements below # treat binomial data as categorical # TODO: make tests for this. if len(set(data_container)) == 2: return "categorical" elif isinstance(datum, str): return "categorical" elif isinstance(datum, int): return "ordinal" elif isinstance(datum, float): return "continuous" else: raise ValueError("Not possible to tell what the data type is.") def infer_data_family(data: pd.Series): """Infer data family from a column of data. The three families are "continuous", "ordinal", and "categorical". The rules: - dtype = float: - min < 0 and max > 0: divergent - otherwise: continuous - dtype = integer: - greater than 12 distinct integers: continuous - otherwise: ordinal - dtype = object: categorical """ if data.dtype == float: if data.min() < 0 and data.max() > 0: return "divergent" return "continuous" if data.dtype == int: if len(set(data)) > 9: return "continuous" return "ordinal" return "categorical" def is_data_diverging(data_container: Iterable): """ We want to use this to check whether the data are diverging or not. This is a simple check, can be made much more sophisticated. :param data_container: A generic container of data points. :type data_container: `iterable` """ assert infer_data_type(data_container) in [ "ordinal", "continuous", ], "Data type should be ordinal or continuous" # Check whether the data contains negative and positive values. has_negative = False has_positive = False for i in data_container: if i < 0: has_negative = True elif i > 0: has_positive = True if has_negative and has_positive: return True else: return False def is_groupable(data_container: Iterable): """ Returns whether the data container is a "groupable" container or not. By "groupable", we mean it is a 'categorical' or 'ordinal' variable. :param data_container: A generic container of data points. :type data_container: `iterable` """ is_groupable = False if infer_data_type(data_container) in ["categorical", "ordinal"]: is_groupable = True return is_groupable def num_discrete_groups(data_container: Iterable): """ Returns the number of discrete groups present in a data container. :param data_container: A generic container of data points. :type data_container: `iterable` """ return len(set(data_container)) def items_in_groups(data_container: Iterable): """ Returns discrete groups present in a data container and the number items per group. :param data_container: A generic container of data points. :type data_container: `iterable` """ return Counter(data_container) def node_table(G, group_by=None, sort_by=None): """Return the node table of a graph G. ## Parameters - `G`: A NetworkX graph. - `group_by`: A key in the node attribute dictionary. - `sort_by`: A key in the node attribute dictionary. ## Returns A pandas DataFrame, such that the index is the node and the columns are node attributes. """ node_table = [] node_index = [] for n, d in G.nodes(data=True): node_table.append(d) node_index.append(n) df = pd.DataFrame(data=node_table, index=node_index) df = group_and_sort(df, group_by, sort_by) return df import networkx as nx def edge_table(G) -> pd.DataFrame: """Return the edge table of a graph. The nodes involved in the edge are keyed under the `source` and `target` keys. This is a requirement for use with the hammer_bundle module in datashader's bundler. The rest of their node attributes are returned as columns. """ data = [] for u, v, d in G.edges(data=True): row = dict() row.update(d) row["source"] = u row["target"] = v data.append(row) if not G.is_directed(): u, v = v, u row = dict() row.update(d) row["source"] = u row["target"] = v data.append(row) return pd.DataFrame(data) from typing import Hashable, Iterable def group_and_sort( node_table: pd.DataFrame, group_by: Hashable = None, sort_by: Hashable = None, ) -> pd.DataFrame: """Group and sort a node table.""" sort_criteria = [] if group_by: sort_criteria.append(group_by) if sort_by: sort_criteria.append(sort_by) if sort_criteria: node_table = node_table.sort_values(sort_criteria) return node_table def nonzero_sign(xy): """ A sign function that won't return 0 """ return -1 if xy < 0 else 1
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/utils.py
0.860896
0.705214
utils.py
pypi
from functools import partial from typing import Callable, Tuple, Optional, Union, Dict, List from itertools import cycle import numpy as np import pandas as pd from matplotlib.cm import get_cmap from matplotlib.colors import ListedColormap, Normalize, BoundaryNorm from palettable.colorbrewer import qualitative, sequential from dandelion.external.nxviz.utils import infer_data_family def data_cmap( data: pd.Series, palette: Optional[Union[Dict, List]] = None ) -> Tuple: """Return a colormap for data attribute. Returns both the cmap and data family. """ data_family = infer_data_family(data) if data_family == "categorical": if palette is None: base_cmap = qualitative num_categories = max(len(data.unique()), 3) if num_categories > 12: raise ValueError( f"It appears you have >12 categories for the key {data.name}. " "Because it's difficult to discern >12 categories, " "and because colorbrewer doesn't have a qualitative colormap " "with greater than 12 categories, " "nxviz does not support plotting with >12 categories. " "Please provide your own palette." ) cmap = ListedColormap( base_cmap.__dict__[f"Set3_{num_categories}"].mpl_colors ) else: cmap = palette elif data_family == "ordinal": cmap = get_cmap("viridis") elif data_family == "continuous": cmap = get_cmap("viridis") elif data_family == "divergent": cmap = get_cmap("bwr") return cmap, data_family def continuous_color_func(val, cmap, data: pd.Series): """Return RGBA of a value. ## Parameters - `val`: Value to convert to RGBA - `cmap`: A Matplotlib cmap - `data`: Pandas series. """ norm = Normalize(vmin=data.min(), vmax=data.max()) return cmap(norm(val)) def divergent_color_func(val, cmap, data: pd.Series): """Return RGBA for divergent color func. Divergent colormaps are best made symmetric. Hence, vmin and vmax are set appropriately here. """ vmin = min(data.min(), -data.max()) vmax = max(data.max(), -data.min()) norm = Normalize(vmin=vmin, vmax=vmax) return cmap(norm(val)) def discrete_color_func( val, cmap, data: pd.Series, palette: Optional[Union[Dict, List]] = None ): """Return RGB corresponding to a value. ## Parameters - `val`: Value to convert to RGBA - `cmap`: A Matplotlib cmap - `data`: Pandas series. """ if palette is not None: if isinstance(palette, dict): return palette[val] else: pal = dict(zip(data.unique(), cycle(palette))) return pal[val] else: colors = sorted(data.unique()) return cmap.colors[colors.index(val)] def ordinal_color_func(val, cmap, data): """Return RGB corresponding to an ordinal value. ## Parameters - `val`: Value to convert to RGBA - `cmap`: A Matplotlib cmap - `data`: Pandas series. """ bounds = np.arange(data.min(), data.max()) norm = BoundaryNorm(bounds, cmap.N) return cmap(norm(val)) def color_func( data: pd.Series, palette: Optional[Union[Dict, List]] = None ) -> Callable: """Return a color function that takes in a value and returns an RGB(A) tuple. This will do the mapping to the continuous and discrete color functions. """ cmap, data_family = data_cmap(data, palette) func = discrete_color_func if data_family in ["continuous", "ordinal"]: func = continuous_color_func return partial(func, cmap=cmap, data=data) else: return partial(func, cmap=cmap, data=data, palette=palette) def data_color( data: pd.Series, ref_data: pd.Series, palette: Optional[Union[Dict, List]] = None, ) -> pd.Series: """Return iterable of colors for a given data. `cfunc` gives users the ability to customize the color mapping of a node. The only thing that we expect is that it takes in a value and returns a matplotlib-compatible RGB(A) tuple or hexadecimal value. The function takes in `ref_data` which is used to determine important colormap values (such as boundaries). That colormap is then applied to the actual `data`. ## Parameters - `data`: The data on which to map colors. - `ref_data`: The data on which the colormap is constructed. - `palette`: Optional custom palette of colours for plotting categorical groupings in a list/dictionary. Colours must be values `matplotlib.colors.ListedColormap` can interpret. If a dictionary is provided, key and record corresponds to category and colour respectively. """ cfunc = color_func(ref_data, palette) return data.apply(cfunc) def data_transparency(data: pd.Series, ref_data: pd.Series) -> pd.Series: """Transparency based on value.""" norm = Normalize(vmin=ref_data.min(), vmax=ref_data.max()) return data.apply(norm) def data_size(data: pd.Series, ref_data: pd.Series) -> pd.Series: """Square root node size.""" return data.apply(np.sqrt) def data_linewidth(data: pd.Series, ref_data: pd.Series) -> pd.Series: """Line width scales linearly with property (by default).""" return data
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/encodings.py
0.949153
0.586967
encodings.py
pypi
from functools import partial, update_wrapper from typing import Callable, Dict, Hashable, Optional, Union, List import matplotlib.pyplot as plt import networkx as nx import numpy as np from dandelion.external.nxviz import edges, nodes from dandelion.external.nxviz.plots import aspect_equal, despine # This docstring applies to all plotting functions in this module. # docstring = def base( G: nx.Graph, node_layout_func: Callable, edge_line_func: Callable, group_by: Hashable, sort_by: Hashable, node_color_by: Hashable = None, node_alpha_by: Hashable = None, node_size_by: Hashable = None, node_enc_kwargs: Dict = {}, edge_color_by: Hashable = None, edge_lw_by: Hashable = None, edge_alpha_by: Hashable = None, edge_enc_kwargs: Dict = {}, node_layout_kwargs: Dict = {}, edge_line_kwargs: Dict = {}, node_palette: Optional[Union[Dict, List]] = None, edge_palette: Optional[Union[Dict, List]] = None, ): """High-level graph plotting function. ## Parameters ### Basic - `G`: A NetworkX Graph. ### Nodes - `group_by`: Node metadata attribute key to group nodes. - `sort_by`: Node metadata attribute key to sort nodes. - `node_color_by`: Node metadata attribute key to color nodes. - `node_alpha_by`: Node metadata attribute key to set node transparency. - `node_size_by`: Node metadata attribute key to set node size. - `node_enc_kwargs`: Keyword arguments to set node visual encodings. TODO: Elaborate on what these arguments are. - `node_palette`: Optional custom palette of colours for plotting categorical groupings in a list/dictionary. Colours must be values `matplotlib.colors.ListedColormap` can interpret. If a dictionary is provided, key and record corresponds to category and colour respectively. ### Edges - `edge_color_by`: Edge metdata attribute key to color edges. There are two special value for this parameter when using directed graphs: "source_node_color" and "target_node_color". If these values are set, then `node_color_by` also needs to be set. - `edge_lw_by`: Edge metdata attribute key to set edge line width. - `edge_alpha_by`: Edge metdata attribute key to set edge transparency. - `edge_enc_kwargs`: Keyword arguments to set edge visual encodings. - `edge_palette`: Same as node_palette but for edges. TODO: Elaborate on what these arguments are. """ pos = node_layout_func( G, group_by=group_by, sort_by=sort_by, color_by=node_color_by, size_by=node_size_by, alpha_by=node_alpha_by, encodings_kwargs=node_enc_kwargs, layout_kwargs=node_layout_kwargs, palette=node_palette, ) edge_line_func( G, pos, color_by=edge_color_by, node_color_by=node_color_by, lw_by=edge_lw_by, alpha_by=edge_alpha_by, encodings_kwargs=edge_enc_kwargs, palette=edge_palette, ) despine() aspect_equal() return plt.gca() arc = partial( base, node_layout_func=nodes.arc, edge_line_func=edges.arc, group_by=None, sort_by=None, ) update_wrapper(arc, base) arc.__name__ = "api.arc" circos = partial( base, node_layout_func=nodes.circos, edge_line_func=edges.circos, group_by=None, sort_by=None, ) update_wrapper(circos, base) circos.__name__ = "api.circos" parallel = partial( base, node_layout_func=nodes.parallel, edge_line_func=edges.line, sort_by=None, node_enc_kwargs={"size_scale": 0.5}, ) update_wrapper(parallel, base) parallel.__name__ = "api.parallel" geo = partial( base, node_layout_func=nodes.geo, edge_line_func=edges.line, group_by=None, sort_by=None, node_enc_kwargs={"size_scale": 0.0015}, ) update_wrapper(geo, base) geo.__name__ = "api.geo" def base_cloned( G, node_layout_func, edge_line_func, group_by, sort_by=None, node_color_by=None, node_alpha_by=None, node_size_by=None, node_enc_kwargs={}, edge_color_by=None, edge_lw_by=None, edge_alpha_by=None, edge_enc_kwargs={}, node_layout_kwargs: Dict = {}, edge_line_kwargs: Dict = {}, cloned_node_layout_kwargs: Dict = {}, node_palette: Optional[Union[Dict, List]] = None, edge_palette: Optional[Union[Dict, List]] = None, ): """High-level graph plotting function. ## Parameters ### Basic - `G`: A NetworkX Graph. ### Nodes - `group_by`: Node metadata attribute key to group nodes. - `sort_by`: Node metadata attribute key to sort nodes. - `node_color_by`: Node metadata attribute key to color nodes. - `node_alpha_by`: Node metadata attribute key to set node transparency. - `node_size_by`: Node metadata attribute key to set node size. - `node_enc_kwargs`: Keyword arguments to set node visual encodings. TODO: Elaborate on what these arguments are. - `node_palette`: Optional custom palette of colours for plotting categorical groupings in a list/dictionary. Colours must be values `matplotlib.colors.ListedColormap` can interpret. If a dictionary is provided, key and record corresponds to category and colour respectively. ### Edges - `edge_color_by`: Edge metdata attribute key to color edges. There are two special value for this parameter when using directed graphs: "source_node_color" and "target_node_color". If these values are set, then `node_color_by` also needs to be set. - `edge_lw_by`: Edge metdata attribute key to set edge line width. - `edge_alpha_by`: Edge metdata attribute key to set edge transparency. - `edge_enc_kwargs`: Keyword arguments to set edge visual encodings. - `edge_palette`: Same as node_palette but for edges. """ pos = node_layout_func( G, group_by=group_by, sort_by=sort_by, color_by=node_color_by, size_by=node_size_by, alpha_by=node_alpha_by, encodings_kwargs=node_enc_kwargs, layout_kwargs=node_layout_kwargs, palette=node_palette, ) pos_cloned = node_layout_func( G, group_by=group_by, sort_by=sort_by, color_by=node_color_by, size_by=node_size_by, alpha_by=node_alpha_by, encodings_kwargs=node_enc_kwargs, layout_kwargs=cloned_node_layout_kwargs, palette=node_palette, ) edge_line_func( G, pos, pos_cloned=pos_cloned, color_by=edge_color_by, node_color_by=node_color_by, lw_by=edge_lw_by, alpha_by=edge_alpha_by, encodings_kwargs=edge_enc_kwargs, palette=edge_palette, **edge_line_kwargs, ) despine() aspect_equal() return plt.gca() hive = partial( base_cloned, node_layout_func=nodes.hive, edge_line_func=edges.hive, cloned_node_layout_kwargs={"rotation": np.pi / 6}, ) update_wrapper(hive, base_cloned) hive.__name__ = "api.hive" matrix = partial( base_cloned, group_by=None, node_layout_func=nodes.matrix, edge_line_func=edges.matrix, cloned_node_layout_kwargs={"axis": "y"}, ) update_wrapper(matrix, base_cloned) matrix.__name__ = "api.matrix" # Object-oriented API below, placed for compatibility. class BasePlot: """Base Plot class.""" def __init__( self, G: nx.Graph = None, node_grouping: Hashable = None, node_order: Hashable = None, node_color: Hashable = None, node_alpha: Hashable = None, node_size: Hashable = None, nodeprops: Dict = None, edge_color: Hashable = None, edge_alpha: Hashable = None, edge_width: Hashable = None, edgeprops: Dict = None, node_palette: Optional[Union[Dict, List]] = None, edge_palette: Optional[Union[Dict, List]] = None, ): """Instantiate a plot. ## Parameters: - `G`: NetworkX graph to plot. - `node_grouping`: The node attribute on which to specify the grouping position of nodes. - `node_order`: The node attribute on which to specify the coloring of nodes. - `node_color`: The node attribute on which to specify the colour of nodes. - `node_alpha`: The node attribute on which to specify the transparency of nodes. - `node_size`: The node attribute on which to specify the size of nodes. - `nodeprops`: A `matplotlib`-compatible `props` dictionary. - `edge_color`: The edge attribute on which to specify the colour of edges. - `edge_alpha`: The edge attribute on which to specify the transparency of edges. - `edge_width`: The edge attribute on which to specify the width of edges. - `edgeprops`: A `matplotlib-compatible `props` dictionary. - `node_palette`: Optional custom palette of colours for plotting categorical groupings in a list/dictionary. Colours must be values `matplotlib.colors.ListedColormap` can interpret. If a dictionary is provided, key and record corresponds to category and colour respectively. - `edge_palette`: Same as node_palette but for edges. """ import warnings warnings.warn( "As of nxviz 0.7, the object-oriented API is being deprecated " "in favour of a functional API. " "Please consider switching your plotting code! " "The object-oriented API wrappers remains in place " "to help you transition over. " "A few changes between the old and new API exist; " "please consult the nxviz documentation for more information. " "When the 1.0 release of nxviz happens, " "the object-oriented API will be dropped entirely." ) def draw(): """No longer implemented!""" pass functional_api_names = [ "group_by", "sort_by", "node_color_by", "node_alpha_by", "node_size_by", "node_enc_kwargs", "edge_color_by", "edge_alpha_by", "edge_lw_by", "edge_enc_kwargs", "node_palette", "edge_palette", ] object_api_names = [ "node_grouping", "node_order", "node_color", "node_alpha", "node_size", "nodeprops", "edge_color", "edge_alpha", "edge_width", "edgeprops", "node_palette", "edge_palette", ] functional_to_object = dict(zip(functional_api_names, object_api_names)) object_to_functional = dict(zip(object_api_names, functional_api_names)) class ArcPlot(BasePlot): """Arc Plot.""" def __init__(self, G, **kwargs): super().__init__() func_kwargs = {object_to_functional[k]: v for k, v in kwargs.items()} self.fig = plt.figure() self.ax = arc(G, **func_kwargs) class CircosPlot(BasePlot): """Circos Plot.""" def __init__(self, G, **kwargs): super().__init__() func_kwargs = {object_to_functional[k]: v for k, v in kwargs.items()} self.fig = plt.figure() self.ax = circos(G, **func_kwargs) class HivePlot(BasePlot): """Hive Plot.""" def __init__(self, G, **kwargs): super().__init__() func_kwargs = {object_to_functional[k]: v for k, v in kwargs.items()} self.fig = plt.figure() self.ax = hive(G, **func_kwargs) class MatrixPlot(BasePlot): """Matrix Plot.""" def __init__(self, G, **kwargs): super().__init__() func_kwargs = {object_to_functional[k]: v for k, v in kwargs.items()} self.fig = plt.figure() self.ax = matrix(G, **func_kwargs)
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/api.py
0.852736
0.438304
api.py
pypi
from typing import Callable, Hashable from networkx.drawing import layout from dandelion.external.nxviz import layouts, lines, utils from matplotlib.patches import Circle, Rectangle import matplotlib.pyplot as plt from functools import partial, update_wrapper import numpy as np import pandas as pd from copy import deepcopy import networkx as nx def node( G, node, layout_func, group_by, sort_by=None, # visual properties color="red", # color radius=1, # size alpha=1.0, # transparency clone=False, cloned_node_layout_kwargs={}, ): """Highlight one particular node.""" nt = utils.node_table(G, group_by=group_by, sort_by=sort_by) pos = layout_func(nt, group_by=group_by, sort_by=sort_by) ax = plt.gca() zorder = max([_.zorder for _ in ax.get_children()]) c = Circle(xy=pos[node], fc=color, radius=radius, zorder=zorder) ax.add_patch(c) if clone: pos_cloned = layout_func( nt, group_by=group_by, sort_by=sort_by, **cloned_node_layout_kwargs ) c = Circle( xy=pos_cloned[node], fc=color, radius=radius, zorder=zorder + 1 ) ax.add_patch(c) circos_node = partial(node, layout_func=layouts.circos, group_by=None) update_wrapper(circos_node, node) circos_node.__name__ = "highlights.circos_node" parallel_node = partial(node, layout_func=layouts.parallel, group_by=None) update_wrapper(parallel_node, node) parallel_node.__name__ = "highlights.parallel_node" arc_node = partial(node, layout_func=layouts.arc, group_by=None) update_wrapper(arc_node, node) arc_node.__name__ = "highlights.arc_node" hive_node = partial( node, layout_func=layouts.hive, clone=True, cloned_node_layout_kwargs={"rotation": np.pi / 6}, ) update_wrapper(hive_node, node) hive_node.__name__ = "highlights.hive_node" matrix_node = partial( node, layout_func=layouts.matrix, group_by=None, clone=True, cloned_node_layout_kwargs={"axis": "y"}, ) update_wrapper(matrix_node, node) matrix_node.__name__ = "highlights.matrix_node" def edge( G, source, target, layout_func, line_func, group_by, sort_by, color="red", # color lw=1.0, # size alpha=1.0, # transparency clone=False, cloned_node_layout_kwargs={}, line_func_aes_kw={"zorder": 30, "fc": "none"}, line_func_kwargs={}, ): """Highlight one particular edge.""" nt = utils.node_table(G, group_by=group_by, sort_by=sort_by) et = ( utils.edge_table(G) .query("source == @source") .query("target == @target") ) pos = layout_func(nt, group_by=group_by, sort_by=sort_by) line_func_kwargs = deepcopy(line_func_kwargs) line_func_kwargs.update( et=et, pos=pos, edge_color=pd.Series([color], index=et.index), alpha=pd.Series([alpha], index=et.index), lw=pd.Series([lw], index=et.index), aes_kw=line_func_aes_kw, ) if clone: pos_cloned = layout_func( nt, group_by=group_by, sort_by=sort_by, **cloned_node_layout_kwargs ) line_func_kwargs["pos_cloned"] = pos_cloned patches = line_func(**line_func_kwargs) ax = plt.gca() for patch in patches: ax.add_patch(patch) circos_edge = partial( edge, layout_func=layouts.circos, line_func=lines.circos, group_by=None, sort_by=None, ) update_wrapper(circos_edge, node) circos_edge.__name__ = "highlights.circos_edge" arc_edge = partial( edge, layout_func=layouts.arc, line_func=lines.arc, group_by=None, sort_by=None, line_func_aes_kw={"zorder": 1}, ) update_wrapper(arc_edge, node) arc_edge.__name__ = "highlights.arc_edge" hive_edge = partial( edge, layout_func=layouts.hive, line_func=lines.hive, sort_by=None, clone=True, cloned_node_layout_kwargs={"rotation": np.pi / 6}, ) update_wrapper(hive_edge, node) hive_edge.__name__ = "highlights.hive_edge" matrix_edge = partial( edge, layout_func=layouts.matrix, line_func=lines.matrix, group_by=None, sort_by=None, clone=True, cloned_node_layout_kwargs={"axis": "y"}, line_func_aes_kw={}, ) update_wrapper(matrix_edge, node) matrix_edge.__name__ = "highlights.matrix_edge" parallel_edge = partial( edge, layout_func=layouts.parallel, line_func=lines.line, sort_by=None, line_func_aes_kw={"zorder": 1}, ) update_wrapper(parallel_edge, node) parallel_edge.__name__ = "highlights.parallel_edge" def matrix_row( G: nx.Graph, node: Hashable, group_by: Hashable = None, sort_by: Hashable = None, axis="x", color="red", ): """Highlight one row (or column) in the matrix plot.""" nt = utils.node_table(G) pos = layouts.matrix(nt, group_by=group_by, sort_by=sort_by, axis=axis) x, y = pos[node] width = 2 height = 2 * len(G) xy = x - 1, y + 1 if axis == "y": width, height = height, width xy = x + 1, y - 1 rectangle = Rectangle( xy=xy, width=width, height=height, fc=color, ec="none", alpha=0.3 ) ax = plt.gca() ax.add_patch(rectangle)
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/highlights.py
0.829803
0.251303
highlights.py
pypi
import numpy as np from .polcart import to_cartesian from typing import List, Hashable def item_theta(itemlist: List[Hashable], item: Hashable): """ Maps node to an angle in radians. :param itemlist: Item list from the graph. :param item: The item of interest. Must be in the itemlist. :returns: theta -- the angle of the item in radians. """ assert len(itemlist) > 0, "itemlist must be a list of items." assert item in itemlist, "item must be inside itemlist." i = itemlist.index(item) theta = i * 2 * np.pi / len(itemlist) return theta def get_cartesian(r: float, theta: float): """ Returns the cartesian (x,y) coordinates of (r, theta). :param r: Real-valued radius. :param theta: Angle in radians. :returns: to_cartesian(r, theta) """ return to_cartesian(r, theta) def correct_negative_angle(angle): """ Corrects a negative angle to a positive one. :param angle: The angle in radians. :returns: `angle`, corrected to be positively-valued. """ angle = angle % (2 * np.pi) if angle < 0: angle += 2 * np.pi return angle def circos_radius(n_nodes: int, node_radius: float = 1.0): """ Automatically computes the origin-to-node centre radius of the Circos plot using the triangle equality sine rule. a / sin(A) = b / sin(B) = c / sin(C) :param n_nodes: the number of nodes in the plot. :param node_radius: the radius of each node. :returns: Origin-to-node centre radius. """ A = 2 * np.pi / n_nodes # noqa B = (np.pi - A) / 2 # noqa a = 2 * node_radius return a * np.sin(B) / np.sin(A) def correct_hive_angles(start, end): """Perform correction of hive plot angles for edge drawing.""" if start > np.pi and end == 0.0: end = 2 * np.pi if start < np.pi and end == 0.0: start, end = end, start if end < np.pi and start == 2 * np.pi: start = 0 if end > np.pi and start == 0: start = 2 * np.pi return start, end
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/dandelion/external/nxviz/geometry.py
0.954287
0.737276
geometry.py
pypi
"""changeo clonotypes script""" import argparse import dandelion as ddl import os import scanpy from scanpy import logging as logg scanpy.settings.verbosity = 3 def parse_args(): """Parse command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( "--h5ddl", required=True, help=("Dandelion object to call changeo clonotypes on."), ) parser.add_argument( "--manual_threshold", help=("Optional manual override of SHazaM threshold."), ) parser.add_argument( "--plot_file", help=( "File name to save PDF of SHazaM plot to. Defaults to the input object name " + "with _shazam.pdf appended." ), ) parser.add_argument( "--key_added", default="changeo_clone_id", help=( "The column name to store the identified clone ID under in the object. " + "Defaults to changeo_clone_id." ), ) parser.add_argument( "--h5ddl_out", help=( "Path to save Dandelion object with changeo clonotypes to. Defaults to the " + "input object name with _changeo.h5ddl appended." ), ) args = parser.parse_args() # set up the default names of files if need be. needs the base name of the file basename = os.path.splitext(args.h5ddl)[0] if args.plot_file is None: args.plot_file = basename + "_shazam.pdf" if args.h5ddl_out is None: args.h5ddl_out = basename + "_changeo.h5ddl" if args.manual_threshold is not None: args.manual_threshold = float(args.manual_threshold) return args def main(): """Main changeo-clonotypes.""" logg.info("Software versions:\n") ddl.logging.print_header() start = logg.info("\nBeginning assigning change-o clonotypes\n") # parse arguments args = parse_args() logg.info( "command line parameters:\n", deep=( f"\n" f"--------------------------------------------------------------\n" f" --h5ddl = {args.h5ddl}\n" f" --manual_threshold = {str(args.manual_threshold)}\n" f" --plot_file = {args.plot_file}\n" f" --key_added = {args.key_added}\n" f" --h5ddl_out = {args.h5ddl_out}\n" f"--------------------------------------------------------------\n" ), ) # the actual process is easy. the dependencies quite a bit less so vdj = ddl.read_h5ddl(args.h5ddl) ddl.pp.calculate_threshold( vdj, manual_threshold=args.manual_threshold, save_plot=args.plot_file, ) ddl.tl.define_clones(vdj, key_added=args.key_added) vdj.write_h5ddl(args.h5ddl_out) logg.info("Assigning Change-o clonotypes finished.\n", time=start) if __name__ == "__main__": main()
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/container/changeo_clonotypes.py
0.636692
0.164886
changeo_clonotypes.py
pypi
# Interoperability with `scirpy` ![dandelion_logo](img/dandelion_logo_illustration.png) It is now possible to convert the file formats between `dandelion>=0.1.1` and `scirpy>=0.6.2` [[Sturm2020]](https://academic.oup.com/bioinformatics/article/36/18/4817/5866543) to enhance the collaboration between the analysis toolkits. We will download the *airr_rearrangement.tsv* file from here: ```bash # bash wget https://cf.10xgenomics.com/samples/cell-vdj/4.0.0/sc5p_v2_hs_PBMC_10k/sc5p_v2_hs_PBMC_10k_b_airr_rearrangement.tsv ``` **Import *dandelion* module** ``` import os import dandelion as ddl # change directory to somewhere more workable os.chdir(os.path.expanduser('/Users/kt16/Downloads/dandelion_tutorial/')) ddl.logging.print_versions() import scirpy as ir ir.__version__ ``` ## `dandelion` ``` # read in the airr_rearrangement.tsv file file_location = 'sc5p_v2_hs_PBMC_10k/sc5p_v2_hs_PBMC_10k_b_airr_rearrangement.tsv' vdj = ddl.read_10x_airr(file_location) vdj ``` The test file contains a blank `clone_id` column so we run `find_clones` to populate it first. ``` ddl.tl.find_clones(vdj) ``` ### `ddl.to_scirpy` : Converting `dandelion` to `scirpy` ``` irdata = ddl.to_scirpy(vdj) irdata ``` to transfer every column found in a dandelion airr object (including things like `germline_alignment_d_mask`) do: ``` irdata = ddl.to_scirpy(vdj, include_fields = vdj.data.columns) irdata ``` The `clone_id` is mapped to `IR_VJ_1_clone_id` column. `transfer = True` will perform dandelion's `tl.transfer`. ``` irdatax = ddl.to_scirpy(vdj, transfer = True) irdatax ``` ### `ddl.from_scirpy` : Converting `scirpy` to `dandelion` ``` vdjx = ddl.from_scirpy(irdata) vdjx vdjx.metadata ``` ## `scirpy` ### `ir.io.from_dandelion` : Converting `dandelion` to `scirpy` ``` irdata2 = ir.io.from_dandelion(vdj, include_fields = vdj.data.columns) irdata2 ``` likewise, `transfer = True` will perform dandelion's `tl.transfer`. ``` irdata2x = ir.io.from_dandelion(vdj, transfer = True, include_fields = vdj.data.columns) irdata2x ``` ### `ir.io.to_dandelion` : Converting `scirpy` to `dandelion` ``` vdj3 = ir.io.to_dandelion(irdata2) vdj3 ``` ### Example of reading with `scirpy` followed by conversion to `dandelion` ``` # read in the airr_rearrangement.tsv file file_location = 'sc5p_v2_hs_PBMC_10k/sc5p_v2_hs_PBMC_10k_b_airr_rearrangement.tsv' irdata_s = ir.io.read_airr(file_location) irdata_s ``` This time, find clones with `scirpy`'s method. ``` ir.tl.chain_qc(irdata_s) ir.pp.ir_dist(irdata_s, metric = 'hamming', sequence="aa") ir.tl.define_clonotypes(irdata_s) irdata_s vdj4 = ir.io.to_dandelion(irdata_s) vdj4 ``` ### Visualising with `scirpy`'s plotting tools You can now also plot `dandelion` networks using `scirpy`'s functions. ``` ddl.tl.generate_network(vdj, key = 'junction') irdata_s.obs['scirpy_clone_id'] = irdata_s.obs['clone_id'] # stash it ddl.tl.transfer(irdata_s, vdj, overwrite = True) # overwrite scirpy's clone_id definition ir.tl.clonotype_network(irdata_s, min_cells = 2) ir.pl.clonotype_network(irdata_s, color = 'clone_id', panel_size=(7,7)) ``` to swap to a shorter clone_id name (ordered by size) ``` ddl.tl.transfer(irdata_s, vdj, clone_key = 'clone_id_by_size') ir.tl.clonotype_network(irdata_s, clonotype_key= 'clone_id_by_size', min_cells = 2) ir.pl.clonotype_network(irdata_s, color = 'clone_id_by_size', panel_size=(7,7)) ``` you can also collapse the networks to a single node and plot by size ``` ddl.tl.transfer(irdata_s, vdj, clone_key = 'clone_id_by_size', collapse_nodes = True) ir.tl.clonotype_network(irdata_s, clonotype_key = 'clone_id_by_size', min_cells = 2) ir.pl.clonotype_network(irdata_s, color = 'scirpy_clone_id', panel_size=(7,7)) ```
/sc-dandelion-0.3.2.tar.gz/sc-dandelion-0.3.2/docs/notebooks/1c_dandelion_scirpy.ipynb
0.424054
0.937555
1c_dandelion_scirpy.ipynb
pypi
import pandas as pd from config42 import ConfigManager from sc_analyzer_base import BaseSummaryDiffAnalyzer class BranchSummaryGroupByBranchDiffAnalyzer(BaseSummaryDiffAnalyzer): """ 机构汇总(按机构分组)差异分析类 """ def __init__(self, *, config: ConfigManager, is_first_analyzer=False): self._branch_order = dict() super().__init__(config=config, is_first_analyzer=is_first_analyzer) self._key_enabled = "diff.branch_summary_group_by_branch.enabled" def _read_config(self, *, config: ConfigManager): super()._read_config(config=config) # 选中需要处理的机构清单 self._branch_selected_list = config.get("branch.selected_list") self._init_branch_orders() # 生成的Excel中Sheet的名称 self._target_sheet_name = config.get("diff.branch_summary_group_by_branch.target_sheet_name") # Sheet名称 self._sheet_name = config.get("diff.branch_summary_group_by_branch.sheet_name") # 表头行索引 self._header_row = config.get("diff.branch_summary_group_by_branch.header_row") # 所属机构列名称(Excel中列名必须唯一) index_column_names = config.get("diff.branch_summary_group_by_branch.index_column_names") if index_column_names is not None and type(index_column_names) is list: self._index_column_names.extend(index_column_names) # 待分析差异列名称列表(Excel中列名必须唯一) diff_column_dict: dict = config.get("diff.branch_summary_group_by_branch.diff_column_list") if diff_column_dict is not None and type(diff_column_dict) is dict: self._diff_column_dict.update(diff_column_dict) def _filter_origin_data(self, *, data): column_name = self._index_column_names[0] # 筛选指定部门,删除合计行 data = data[data[column_name].isin(self._branch_selected_list)] return data def _init_branch_orders(self): index = 1 for branch in self._branch_selected_list: self._branch_order[branch] = index index = index + 1 def _sort_branch_rows(self, branches): return branches.map(self._branch_order) def _after_calculated_difference(self, result: pd.DataFrame) -> pd.DataFrame: result = super()._after_calculated_difference(result=result) # 先删除合计行 result = result.drop("合计") # 按指定顺序排序机构名称 result.sort_index( axis=0, inplace=True, key=self._sort_branch_rows, ) # 添加合计行 result.loc["合计"] = result.apply(lambda x: x.sum()) return result
/sc_diff_analysis-0.0.28-py3-none-any.whl/sc_diff_analysis/analyzer/branch_summary_group_by_branch_diff_analyzer.py
0.420719
0.164248
branch_summary_group_by_branch_diff_analyzer.py
pypi
# Copyright (c) 2018, Cabral, Juan; Luczywo, Nadia; Zanazi Jose Luis # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ============================================================================= # DOCS # ============================================================================= """DRV method implementation """ __all__ = ["DRVProcess"] # ============================================================================= # IMPORTS # ============================================================================= import itertools as it import numpy as np from scipy import stats import attr import joblib import jinja2 from skcriteria import norm, rank from skcriteria.madm import simple from . import normtests, plot # ============================================================================= # CONSTANTS # ============================================================================= NORMAL_TESTS = {"shapiro": normtests.shapiro, "ks": normtests.kstest} # ============================================================================= # STRUCTURATION FUNCTIONS # ============================================================================= def nproduct_indexes(nproducts, climit): """Calculate the indexs of the products""" sst = np.sum((nproducts - np.mean(nproducts)) ** 2) ssw = np.sum((nproducts - np.mean(nproducts, axis=0)) ** 2) ssb = sst - ssw ssu = (nproducts.shape[0] - 1) / float(nproducts.shape[1] * 3) ivr = ssw / ssu inc = ivr <= climit resume = np.mean(nproducts, axis=0) return sst, ssw, ssb, ssu, ivr, inc, resume def solve_nproducts(mtx): """Create the product (normalized) matrix""" rmtx = np.flip(mtx, axis=1) rcumprod = np.cumprod(rmtx, axis=1) wproducts = np.flip(rcumprod, axis=1) return norm.sum(wproducts, axis=1) def subproblem(mtx, climit, ntest, ntest_kwargs, alpha_norm): """Create and evaluate the product (normalized) matrix""" nproducts = solve_nproducts(mtx) sst, ssw, ssb, ssu, ivr, inc, resume = nproduct_indexes(nproducts, climit) n_sts, pvals = ntest(nproducts, axis=1, **ntest_kwargs) n_reject_h0 = pvals <= alpha_norm return { "nproducts": nproducts, "sst": sst, "ssw": ssw, "ssb": ssb, "ssu": ssu, "ivr": ivr, "in_consensus": inc, "ntest_sts": n_sts, "ntest_pvals": pvals, "ntest_reject_h0": n_reject_h0, "resume": resume} # ============================================================================= # AGGREGATION STAGE # ============================================================================= def run_aggregator(idx, mtxs, criteria, weights, aggregator): """Helper to run the aggregator with joblib""" mtx = np.vstack([m[idx] for m in mtxs]).T weight = 1 if weights is None else weights[idx] return aggregator.decide(mtx, criteria=criteria, weights=weight) def rank_ttest_rel(agg_p, aidx, bidx): """Helper to run the t-test with joblib""" a_vals = np.array([r.e_.points[aidx] for r in agg_p]) b_vals = np.array([r.e_.points[bidx] for r in agg_p]) return stats.ttest_rel(a_vals, b_vals) def fdr_by(alpha, pvals, I): """False discovery rate of Benjamini-Yekutieli""" L = I * (I - 1) / 2. pvals_rank = rank.rankdata(pvals, reverse=True) denom = 1 / np.arange(1, L + 1) fdr = pvals_rank * alpha / denom return fdr # ============================================================================= # DRV as FUNCTION # ============================================================================= def drv( weights, abc, climit, ntest, ntest_kwargs, alpha_norm, alpha_rank, njobs, agg_only_consensus ): # PREPROCESS # determine numbers of parallel jobs njobs = joblib.cpu_count() if njobs is None else njobs # determine the normal test ntest = NORMAL_TESTS.get(ntest, ntest) ntest_kwargs = {} if ntest_kwargs is None else ntest_kwargs # number of participants & alternatives N, I = np.shape(abc[0]) # number of criteria J = len(abc) # placeholder to store the results results = {"N_": N, "I_": I, "J_": J} # WEIGHTS if np.ndim(weights) > 1: wresults = subproblem( mtx=weights, climit=climit, alpha_norm=alpha_norm, ntest=ntest, ntest_kwargs=ntest_kwargs) else: wresults = {} # copy weights results to the global results results.update({ "wmtx_": wresults.get("nproducts"), "wsst_": wresults.get("sst"), "wssw_": wresults.get("ssw"), "wssb_": wresults.get("ssb"), "wssu_": wresults.get("ssu"), "wivr_": wresults.get("ivr"), "wntest_sts_": wresults.get("ntest_sts"), "wntest_pvals_": wresults.get("ntest_pvals"), "wntest_reject_h0_": wresults.get("ntest_reject_h0"), "win_consensus_": wresults.get("in_consensus"), "weights_mean_": wresults.get("resume")}) # ALTERNATIVES with joblib.Parallel(n_jobs=njobs) as jobs: wresults = jobs( joblib.delayed(subproblem)( amtx, climit=climit, alpha_norm=alpha_norm, ntest=ntest, ntest_kwargs=ntest_kwargs) for amtx in abc) # copy alt results to the global results results.update({ "amtx_criteria_": tuple([r["nproducts"] for r in wresults]), "asst_": np.hstack([r["sst"] for r in wresults]), "assw_": np.hstack([r["ssw"] for r in wresults]), "assb_": np.hstack([r["ssb"] for r in wresults]), "assu_": np.hstack([r["ssu"] for r in wresults]), "aivr_": np.hstack([r["ivr"] for r in wresults]), "ain_consensus_": np.hstack([r["in_consensus"] for r in wresults]), "antest_sts_": np.vstack([r["ntest_sts"] for r in wresults]), "antest_pvals_": np.vstack([r["ntest_pvals"] for r in wresults]), "antest_reject_h0_": np.vstack([ r["ntest_reject_h0"] for r in wresults]), "amtx_mean_": np.vstack([r["resume"] for r in wresults])}) # CONSENSUS consensus = np.all(results["ain_consensus_"]) if consensus and results["weights_mean_"] is not None: consensus = consensus and results["win_consensus_"] results["consensus_"] = consensus # to global results # GLOBAL REJECT H0 reject_h0 = np.any(results["antest_reject_h0_"]) if not reject_h0 and results["wntest_reject_h0_"] is not None: reject_h0 = reject_h0 or np.any(results["wntest_reject_h0_"]) results["ntest_reject_h0_"] = reject_h0 # AGGREGATION if consensus or not agg_only_consensus: aggregator = simple.WeightedSum(mnorm="none", wnorm="none") criteria = [max] * J weights_mean = ( 1 if results["weights_mean_"] is None else results["weights_mean_"]) agg_m = aggregator.decide( results["amtx_mean_"].T, criteria=criteria, weights=weights_mean) with joblib.Parallel(n_jobs=1) as jobs: agg_p = jobs( joblib.delayed(run_aggregator)( idx=idx, mtxs=results["amtx_criteria_"], criteria=criteria, weights=results["wmtx_"], aggregator=aggregator) for idx in range(N)) agg_p = tuple(agg_p) with joblib.Parallel(n_jobs=1) as jobs: # rank verification ttest_results = jobs( joblib.delayed(rank_ttest_rel)( agg_p=agg_p, aidx=aidx, bidx=bidx) for aidx, bidx in it.combinations(range(I), 2)) ttest_size = len(ttest_results) rank_t, rank_p = np.empty(ttest_size), np.empty(ttest_size) for idx, r in enumerate(ttest_results): rank_t[idx] = r.statistic rank_p[idx] = r.pvalue rank_fdr = fdr_by(alpha=alpha_rank, pvals=rank_p, I=I) rank_results = rank_p < rank_fdr rank_results_resume = np.all(rank_results) else: agg_p, agg_m = None, None rank_t, rank_p, rank_fdr, rank_results = None, None, None, None rank_results_resume = False # to global results results["aggregation_criteria_"] = agg_p results["aggregation_mean_"] = agg_m results["rank_check_t_"] = rank_t results["rank_check_pval_"] = rank_p results["rank_check_fdr_"] = rank_fdr results["rank_check_results_"] = rank_results results["rank_check_results_resume_"] = rank_results_resume results["strict_preference_"] = ( consensus and not reject_h0 and rank_results_resume) return results # ============================================================================= # RESULT CLASS # ============================================================================= @attr.s(frozen=True) class DRVResult(object): """Result set of the DRV method. Parameters ---------- ntest : str Normality-test. Test to check if the priorities established by group members must have a random behavior, represented by Normal Distribution. ntest_kwargs : dict or None Parameters for the normal test function. alpha_norm : float significance. If the any p-value of n-test is less than ``alpha_norm``, we reject the null hypothesis of the normality tests. alpha_rank : float significance. If the any FDR Benjamini-Yekutieli of the ``rank_check_pval_`` is less than ``alpha_rank``, we reject the null hypothesis (two alternatives are not different enough). climit : float Consensus limit. Maximum value of the IVR to asume that the solution is stable. The Stability is verified using the normality analysis of priorities for each element of a sub-problem, or by using the IVR (Índice de Variabilidad Remanente, Remaining Variability Index) ``IVR <= climit`` are indicative of stability. N_ : int Number of participants I_ : int Number of alternatives J_ : int Number of criteria. strict_preference_ : bool True if consensus_ and rank_check_results_resume_ are True and also ntest_reject_h0_ is False. consensus_ : bool If all the sub-problems are in consensus. In other words if every problem has ther IVR <= climit. ntest_reject_h0_ : bool True if any sub-problem reject one of their normality test H0 then this. rank_check_results_resume_ : bool True only if all values of rank_check_results_ are True. If rank_check_results_ is None then rank_check_results_resume_ is False. weights_mean_ : array or None If the weight preference if provided, this attribute contains a array where every j-nth element is mean of the weights assigned by the participants to the j-nth criteria. wmtx_ : array or None If the weight preference if provided, this attribute contains a 2D array where every row is a weight assigned by a single participant. wsst_ : float or None Weights sub-problem Square Sum Total. If the weight preference if provided, this attribute contains the total sum of squares of the weight sub-problem. This value is calculated as ``sum((wmtx_ - mean(wmtx_))**2))``. wssw_ : float or None Weights sub-problem Square-Sum Within. If the weight preference if provided, this attribute contains the sum of squares within criteria of the weight sub-problem, and represents the residual variability after a stage of analysis. This value is calculated as ``sum((wmtx_ - mean_by_row(wmtx_))**2))`` wssb_ : float or None Weights sub-problem Square-Sum Between. If the weight preference if provided, this attribute contains the sum of squares between criteria of the weight sub-problem, This value is calculated as ``wsst_ - wssw_``. wssu_ : float or None Weights sub-problem Square-Sum of Uniform distribution. Corresponds to the uniform distribution and reflects a situation of complete disagreement within the group. wivr_ : float or None Weights sub-problem Índice de Variabilidad Remanente (Translation: Remaining Variability Index). If the weight preference if provided, this attribute contains Is a ratio of agreement calculates as ``wssw_ / wssu_``. win_consensus_ : bool or None Weights sub-problem In Consensus. If the weight preference if provided, this attribute contains the weights sub-problem is in consensus. In other words if all the weight sub-problem ``wivr_ <= climit``. wntest_sts_ : ndarray or None Weights Normal Test Statistics. If the weight preference if provided, this attribute contains an array with the normality test statistic by criteria. wntest_pvals_ : array or None Weights Normal Test P-value. If the weight preference if provided, this attribute contains an array with the normality test Normality test p-value by criteria. This values are useful if you have an small number of criteria to reinforce the assumption normality. wntest_reject_h0_ : array or None If the weight preference if provided, this attribute contains an array where the j-nth element is True if the normality test fails for the values of the criteria j-nth. amtx_criteria_ : tuple of arrays Alternatives matrix by criteria. A tuple where the j-nth element is a 2D array of preference of the ``I_`` alternatives by the criteria j. asst_ : array Alternatives by criteria sub-problems Square-Sum Within. Array where the j-nth element is the total sum of squares of the evaluation of the alternatives by the criteria j. Every element on this array is calculated as ``sum((amtx_criteria_[j] - mean(amtx_criteria_[j]))**2))``. assw_ : array Alternatives by criteria sub-problems Square-Sum Within. Array where the j-nth element is the total sum of squares within of the evaluation of the alternatives by the criteria j, and represents the residual variability after a stage of analysis. Every element on this array is calculated as ``sum((amtx_criteria_[j] - mean_by_row(amtx_criteria_[j]))**2))`` assb_ : array Alternatives by criteria sub-problems Square-Sum Between. Array where the j-nth element is the total sum of squares between of the evaluation of the alternatives by the criteria j. Every element on this array is calculated as ``asst_ - assw_``. assu_ : array Alternatives by criteria sub-problems Square-Sum of Uniform distribution. Corresponds to the uniform distribution and reflects a situation of complete disagreement within the group. aivr_ : array Alternatives by criteria sub-problems Índice de Variabilidad Remanente (Translation: Remaining Variability Index). Array where the j-nth element a ratio of agreement of the alternatives by the criteria j. Is calculated as follows: ``assw_ / assu_``. ain_consensus_ : array Alternatives by criteria sub-problems In Consensus. Array where the j-nth element is True if the alternatives by the criteria j are in consensus. In other words if ``aivr_[j] <= climit``. amtx_mean_ : 2D array Alternative matrix. Created as a mean of all alternatives matrix by criteria. antest_sts_ : 2D array Alternatives by criteria sub-problems Normal Test Statistics. Array where the A_ij element contains the statistic of the normality test for the alternative i under the criteria j. antest_pvals_ : 2D array Alternatives by criteria sub-problems Normal Test Statistics. Array where the A_ij element contains the p-value of the normality test for the alternative i under the criteria j. antest_reject_h0_ : 2D array Alternatives by criteria sub-problems status of the null hypothesis. Array where the A_ij element contains the null hypotesys of the normality test for the alternative i under the criteria j must be rejected. aggregation_criteria_ : tuple Tuple where the j-nth element is the decision using the data of the alternatives by the criteria j. (The matrix is ``amtx_criteria_[j]``, the weight is ``wmtx_[j] ``, with maximize criteria.) aggregation_mean_ : skcriteria.madm.Decision Decision using the data of the alternatives by the means. (The matrix is ``amtx_mean_``, the weight is ``weights_mean_ ``, with maximize criteria.). This is the real **result**, But is important to check: - ``consensus_`` must be, True. - ``ntest_reject_h0_`` must be False. - ``rank_check_reject_h0_`` must be True. rank_check_t_ : array or None T-Test statistic of independence of the the points of the aggregation function. In other words if some alternative A is different enough to an alternative B. rank_check_pval_ : array or None T-Test P-Value statistic of independence of the the points of the aggregation function. rank_check_fdr_ : array or None Value Benjamini-Yekutieli FDR using the ``alpha_rank`` value. rank_check_results_ : array or None ``rank_check_pval_ < rank_check_fdr_``. True if the rank is affected by the sampling. """ ntest = attr.ib() ntest_kwargs = attr.ib() alpha_norm = attr.ib() alpha_rank = attr.ib() climit = attr.ib() N_ = attr.ib() I_ = attr.ib() J_ = attr.ib() strict_preference_ = attr.ib() consensus_ = attr.ib(repr=False) ntest_reject_h0_ = attr.ib(repr=False) rank_check_results_resume_ = attr.ib(repr=False) wmtx_ = attr.ib(repr=False) wsst_ = attr.ib(repr=False) wssw_ = attr.ib(repr=False) wssb_ = attr.ib(repr=False) wssu_ = attr.ib(repr=False) wivr_ = attr.ib(repr=False) win_consensus_ = attr.ib(repr=False) weights_mean_ = attr.ib(repr=False) wntest_sts_ = attr.ib(repr=False) wntest_pvals_ = attr.ib(repr=False) wntest_reject_h0_ = attr.ib(repr=False) amtx_criteria_ = attr.ib(repr=False) asst_ = attr.ib(repr=False) assw_ = attr.ib(repr=False) assb_ = attr.ib(repr=False) assu_ = attr.ib(repr=False) aivr_ = attr.ib(repr=False) ain_consensus_ = attr.ib(repr=False) amtx_mean_ = attr.ib(repr=False) antest_sts_ = attr.ib(repr=False) antest_pvals_ = attr.ib(repr=False) antest_reject_h0_ = attr.ib(repr=False) aggregation_criteria_ = attr.ib(repr=False) aggregation_mean_ = attr.ib(repr=False) rank_check_t_ = attr.ib(repr=False) rank_check_pval_ = attr.ib(repr=False) rank_check_fdr_ = attr.ib(repr=False) rank_check_results_ = attr.ib(repr=False) plot = attr.ib(repr=False, init=False) _template = jinja2.Template(""" <div class="drv-result" id="drv_result_{{ id }}"> <h5>DRV Results Resume</h5> <style> .red, .red code {color: #A52A2A} .green, .green code {color: #008000} </style> <table> <thead> <th>Attribute</th> <th>Value</th> <tbody> {% for n, v, cls in rows %} <tr class={{ cls }}><th>{{ n|safe }}</th><td>{{ v }}</td><tr> {% endfor %} <tbody> </table> </div> """) def __attrs_post_init__(self): object.__setattr__(self, "plot", plot.PlotProxy(self)) def _repr_html_(self): if not hasattr(self, "_repr_html"): cls = {True: "green", False: "red"} rows = [ ("Normal Test (<code>ntest<code>)", self.ntest, ""), ( "Alpha for Normal Test (<code>alpha_norm</code>)", self.alpha_norm, ""), ( "Alpha for T-Test (<code>alpha_rank</code>)", self.alpha_rank, ""), ("Consensus Limit (<code>climit</code>)", self.climit, ""), ("Number of Participants (<code>N_</code>)", self.N_, ""), ("Number of Alternatives (<code>I_</code>)", self.I_, ""), ("Number of Criteria (<code>J_</code>)", self.J_, ""), ( "Strict Preference (<code>strict_preference_</code>)", self.strict_preference_, cls[self.strict_preference_]), ( "Consensus (<code>consensus</code>)", self.consensus_, cls[self.consensus_]), ( "N-Test Reject H0 (<code>ntest_reject_h0_</code>)", self.ntest_reject_h0_, cls[not self.ntest_reject_h0_]), ( "Rank Check (<code>rank_check_results_resume_</code>)", self.rank_check_results_resume_, cls[self.rank_check_results_resume_]) ] repr_html = self._template.render(rows=rows, id=id(self)) object.__setattr__(self, "_repr_html", repr_html) return self._repr_html @property def has_weights_(self): """True if the weight preference if provided so all the weight sub-problem attributes are available; otherwise the attributes are setted to None """ return self.weights_mean_ is not None @property def data_(self): """Data object used in the aggregation mean or None""" if self.aggregation_mean_ is not None: return self.aggregation_mean_.data # ============================================================================= # API # ============================================================================= @attr.s(frozen=True) class DRVProcess(object): """DRV Processes (Decision with Reduction of Variability). DRV processes have been developed to support Group Decision Making. They are applicable to the cases in which all members of the group operate in the same organization and, therefore, they must share organizational values, knowledge and preferences. Assumes that it is necessary to generate agreement on the preferences of group members [1]_. Parameters ---------- climit : float, optional (default=.25) Consensus limit. Maximum value of the IVR to asume that the solution is stable. The Stability is verified using the normality analysis of priorities for each element of a subproblem, or by using the IVR (Índice de Variabilidad Remanente, Remaining Variability Index) ``IVR <= climit`` are indicative of stability. ntest : 'shapiro' or 'ks' (default='shapiro') Normality-test. Test to check if the priorities established by group members must have a random behavior, represented by Normal Distribution. The values must be 'shapiro' for the Shapito-Wilk test [2]_ or 'ks' for the Kolmogorov-Smirnov test for goodness of fit. [3]_ ntest_kwargs : dict or None, optional (default=None) Parameters to the normal test function. alpha_norm : float, optional (default=0.01) significance. If the any p-value of n-test is less than ``alpha_norm``, we reject the null hypothesis. alpha_rank : float, optional (default=0.05) significance. If the any FDR Benjamini-Yekutieli of the rank_check_pval_ is less than ``alpha_rank``, we reject the null hypothesis (two alternatives are not different enough). njobs : int, optional (default=-1) The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. For more information check ``joblib <https://pythonhosted.org/joblib/>``_ documentation. agg_only_consensus : bool, optional (default=True) Calculate the aggregation only when a consensus is achieved. References ---------- .. [1] Zanazzi, J. L., Gomes, L. F. A. M., & Dimitroff, M. (2014). Group decision making applied to preventive maintenance systems. Pesquisa Operacional, 34(1), 91-105. .. [2] Shapiro, S. S. & Wilk, M.B (1965). An analysis of variance test for normality (complete samples), Biometrika, Vol. 52, pp. 591-611. .. [3] Daniel, Wayne W. (1990). "Kolmogorov–Smirnov one-sample test". Applied Nonparametric Statistics (2nd ed.). Boston: PWS-Kent. pp. 319–330. ISBN 0-534-91976-6. """ climit: float = attr.ib(default=.25) ntest: str = attr.ib(default="shapiro") ntest_kwargs: dict = attr.ib(default=None) alpha_norm: float = attr.ib(default=0.01) alpha_rank: float = attr.ib(default=0.05) njobs: int = attr.ib(default=-1) agg_only_consensus: bool = attr.ib(default=True) @climit.validator def climit_check(self, attribute, value): if not isinstance(value, float): raise ValueError("'climit' value must be an instance of float") elif value < 0 or value > 1: raise ValueError("'climit' has to be >= 0 and <= 1") @alpha_norm.validator def alpha_norm_check(self, attribute, value): if not isinstance(value, float): raise ValueError("'alpha_norm' value must be an instance of float") elif value < 0 or value > 1: raise ValueError("'alpha_norm' has to be >= 0 and <= 1") @alpha_rank.validator def alpha_rank_check(self, attribute, value): if not isinstance(value, float): raise ValueError("'alpha_rank' value must be an instance of float") elif value < 0 or value > 1: raise ValueError("'alpha_rank' has to be >= 0 and <= 1") @njobs.validator def njobs_check(self, attribute, value): if not isinstance(value, int): raise ValueError("'njobs' must be an integer") @ntest.validator def ntest_check(self, attribute, value): if value not in NORMAL_TESTS and not callable(value): ntests = tuple(NORMAL_TESTS) raise ValueError(f"'ntests' must be a callable or str in {ntests}") @ntest_kwargs.validator def ntest_kwargs_check(self, attribute, value): if value is not None and not isinstance(value, dict): raise ValueError("'ntest_kwargs' must be a dict or None") def decide(self, abc: list, weights: np.ndarray = None) -> DRVResult: """Execute the DRV Processes. Parameters ---------- abc : list of 2D array-like Alternative by criteria list. Every element of the list is a 2D array where the element $A_{ij}$ of the matrix $k$ represent the valoration of the participant $i$ of the alternative $j$ by the criteria $k$. weights : 2D array-like or None (default=None) Weight valoration matrix. Where the element $W_{ik} represent the valoration of the participant $i$ of the weight of the criterion $k$. If is None, all the criteria has the same weight. Returns ------- result : DRVResult Resume of the entire DRV process. If the problem not achieve a consensus (``result.consensus == False``) the aggregation phase are not executed. """ # run the rdv drv_result = drv( weights, abc, ntest=self.ntest, ntest_kwargs=self.ntest_kwargs, climit=self.climit, njobs=self.njobs, alpha_norm=self.alpha_norm, alpha_rank=self.alpha_rank, agg_only_consensus=self.agg_only_consensus) return DRVResult( climit=self.climit, ntest=self.ntest, alpha_norm=self.alpha_norm, alpha_rank=self.alpha_rank, ntest_kwargs=self.ntest_kwargs, **drv_result) # ============================================================================= # MAIN # ============================================================================= if __name__ == "__main__": print(__doc__)
/sc-drv-0.2.1.tar.gz/sc-drv-0.2.1/sc_drv/method.py
0.733261
0.155751
method.py
pypi
# flake8: noqa # ============================================================================= # DOCS # ============================================================================= """From Matplotlib documentation - URL: https://matplotlib.org/gallery/images_contours_and_fields/image_annotated_heatmap.html - License: https://matplotlib.org/users/license.html """ # ============================================================================= # IMPORTS # ============================================================================= import numpy as np import matplotlib import matplotlib.pyplot as plt # ============================================================================= # FUNCTIONS # ============================================================================= def heatmap(data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="", **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Arguments: data : A 2D numpy array of shape (N,M) row_labels : A list or array of length N with the labels for the rows col_labels : A list or array of length M with the labels for the columns Optional arguments: ax : A matplotlib.axes.Axes instance to which the heatmap is plotted. If not provided, use current axes or create a new one. cbar_kw : A dictionary with arguments to :meth:`matplotlib.Figure.colorbar`. cbarlabel : The label for the colorbar All other arguments are directly passed on to the imshow call. """ if not ax: ax = plt.gca() # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") # We want to show all ticks... ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) # ... and label them with the respective list entries. ax.set_xticklabels(col_labels) ax.set_yticklabels(row_labels) # Let the horizontal axes labeling appear on top. ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") # Turn spines off and create white grid. for edge, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) ax.grid(which="minor", color="w", linestyle='-', linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar def annotate_heatmap(im, data=None, valfmt="{x:.2f}", textcolors=["black", "white"], threshold=None, **textkw): """ A function to annotate a heatmap. Arguments: im : The AxesImage to be labeled. Optional arguments: data : Data used to annotate. If None, the image's data is used. valfmt : The format of the annotations inside the heatmap. This should either use the string format method, e.g. "$ {x:.2f}", or be a :class:`matplotlib.ticker.Formatter`. textcolors : A list or array of two color specifications. The first is used for values below a threshold, the second for those above. threshold : Value in data units according to which the colors from textcolors are applied. If None (the default) uses the middle of the colormap as separation. Further arguments are passed on to the created text labels. """ if len(textcolors) != 2: raise ValueError("Text color must be only 2") if not isinstance(data, (list, np.ndarray)): data = im.get_array() # Normalize the threshold to the images color range. if threshold is not None: threshold = im.norm(threshold) else: threshold = im.norm(data.max())/2. # Set default alignment to center, but allow it to be # overwritten by textkw. kw = dict(horizontalalignment="center", verticalalignment="center") kw.update(textkw) # Get the formatter in case a string is supplied if isinstance(valfmt, str): valfmt = matplotlib.ticker.StrMethodFormatter(valfmt) # Loop over the data and create a `Text` for each "pixel". # Change the text's color depending on the data. texts = [] for i in range(data.shape[0]): for j in range(data.shape[1]): text_color = textcolors[int(im.norm(data[i, j]) > threshold)] kw.update(color=text_color) text = im.axes.text(j, i, valfmt(data[i, j], None), **kw) texts.append(text) return texts
/sc-drv-0.2.1.tar.gz/sc-drv-0.2.1/sc_drv/libs/heatmap.py
0.877608
0.712757
heatmap.py
pypi
# Battle Cats Save File Editor [![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/M4M53M4MN) A python save editor for the mobile game The Battle Cats Join the [discord server](https://discord.gg/DvmMgvn5ZB) if you want to suggest new features, report bugs or get help on how to use the editor (please read the below tutorials / watch the latest [tutorial video](https://www.youtube.com/watch?v=Kr6VaLTXOSY) first before asking for help). ## Thanks to Lethal's editor for giving me inspiration to start the project and it helped me work out how to patch the save data and edit cf/xp: <https://www.reddit.com/r/BattleCatsCheats/comments/djehhn/editoren/> Beeven and csehydrogen's open source code, which helped me figure out how to patch save data: [beeven/battlecats](https://github.com/beeven/battlecats), [csehydrogen/BattleCatsHacker](https://github.com/csehydrogen/BattleCatsHacker) Everyone who's given me saves, which helped to test save parsing/serialising and to test/develop new features ## How to use If you have a pc: watch a [Tutorial video](https://www.youtube.com/watch?v=Kr6VaLTXOSY), or scroll down for a text tutorial If you only have an android device: read the [Android text tutorial](https://github.com/fieryhenry/BCSFE-Python#android-tutorial) If you only have an ios device: watch the [IOS tutorial video](https://www.youtube.com/watch?v=xw-uOqQRYJ8) (Made by Viarules) ## Main tutorial You no longer need a rooted device nor a rooted android emulator. Although if you want to get unbanned / fix the elsewhere error you will still need one. I recommend LDPlayer, Nox, or MEmu if needed. Bluestacks is also an option but is more difficult to root as it doesn't have a built in option. --- 1. Install python (You'll need version 3.9 and up) <https://www.python.org/downloads/> 2. Enter the command: `py -m pip install -U battle-cats-save-editor` into command prompt or another terminal to install the editor (**NOT the Windows Python app**). If that doesn't work then use `python3` or `python` instead of `py` in the command 3. Enter the command: `py -m BCSFE_Python` to run the editor. If that doesn't work then use `python3` or `python` instead of `py` in the command 4. Look below for the tutorial that you need, or watch [here](https://www.youtube.com/watch?v=Kr6VaLTXOSY) for a video #### Using Transfer Codes If you don't have a rooted device or an emulator setup then do this: 5. Go into the game and look in the top right of the screen and record / remember the game version 6. Go into the in-game transfer system in `Settings-> Data Transfer` and click `Begin Data Transfer` 7. In the editor use the option called `Download save data from the game using transfer and confirmation codes` (enter the corresponding number, not the name itself) 8. Enter the game version that you are using, `en`=english, `kr`=korean, `ja`=japanese, `tw`=taiwan. 9. Enter your transfer code 10. Enter your confirmation code 11. Enter the game version that you recorded earlier in step 5. If you entered everything in correctly it should work and you should be able to select a place to put the save 12. If you get a parsing error please join the [discord server](https://discord.gg/DvmMgvn5ZB) and report it in #bug-reports and / or dm me your save file (preferably <b>not</b> transfer codes) 13. Edit what you want 14. Go into the `Save Management` option and select `Save changes and upload to game servers (get transfer and confirmation codes)`. It may take some time 15. Enter those codes into the game's transfer system (click on `Resume Data Transfer`) (You may need to `Cancel Data Transfer` in-game before doing so) 16. If you press play you may get a `The current Save Data is in violation` message, if so press ok and try again and it should go away, if it doesn't look at the tutorial below #### Using a rooted device If you can't upload your save data using the in-game system because your are banned or the `This save data is currently active elsewhere` message appears, you will need direct access to the save data: If you don't have a rooted device: 5. You will need to get one of the emulators listed earlier, I recommend LD Player because I know that it works with this method. If you change the default install location, make sure to keep a note of it for it later 1. Enable `root permission` in the settings and under `ADB Debugging` select `Open local connection`. You will need to restart LD Player for the changes to work 2. Open the editor and select the option named `Use adb to pull the save from a rooted device` and enter your game version 6. If you get the option to add adb to your path, select enter `y`. 7. The editor will look for adb in default install directories of common emulators and add it automatically 8. If it fails, then you will need to either 1. Enter the path to your emulator's install directory, it might look like `C:\LDPlayer\LDPlayer4.0` 2. Download adb with from [here](https://dl.google.com/android/repository/platform-tools-latest-windows.zip). Extract the zip and copy the folder path (not adb.exe itself) into the editor 9. Now rerun the editor and try the option again. If it still doesn't work you'll need to manually do it, using the tutorial below. 10. If you get a parsing issue please join the [discord server](https://discord.gg/DvmMgvn5ZB) and report it in #bug-reports and / or dm me your save file (preferably not transfer codes) 11. Edit what you want 12. Go into save management and select an option to push save data to the game 13. Enter the game and you should see changes ### Put adb in path To use the options in the editor to get and push your save data to the game, you will need to have adb in your path system environment variable. The editor will try to do this automatically, but it may not work. So do this if it doesn't (If you're not using windows look up how to do this): 1. If you are using an emulator: Go to your emulator's install directory, if you're using LDPlayer it will most likely be in `C:/LDPlayer/LDPlayer4.0`. Then find `adb` in that folder (other emulators might have it in the `bin` directory) 2. If you aren't using an emulator [Download the Android SDK Platform Tools ZIP file for Windows](https://dl.google.com/android/repository/platform-tools-latest-windows.zip), and unzip it. 3. Copy the path to the folder that you are in (not adb.exe itself) 4. Then open the windows start menu and search: `edit the system environment variables` and press enter. 5. Then click on the `Environment Variables` button. 6. Then in the `System variables` box find the variable named `Path`, then click on the `edit` button. 7. Then click `New` and paste the path into it. 8. Click `Ok` then `Ok` again then `Ok` again. 9. Relaunch powershell and maybe restart your whole pc, and try the command again. If this method is too difficult, just use a root file explorer instead and manually get the files that you want. The path that you will need is: `/data/data/jp.co.ponos.battlecatsen/files/SAVE_DATA` ### How to fix "This save data is currently active elsewhere" or "The current Save Data is in violation" 1. You will need to get access to save data so you will need a rooted device / emulator, so look at the first part of the `Using a rooted device` tutorial. 2. Select the option in `Inquiry Code / Token` to `Fix elsewhere error / Unban account` 3. It may take some time but after, you should be able to choose one of the options in save management to push the save data to the game. 4. If you press play you may get a `The current Save Data is in violation` message, if so press ok and try again and it should go away, if it doesn't then either you've done something wrong or the process didn't work. You may need to follow the tutorial in the second part of the old help video [here](https://www.youtube.com/watch?v=xBnGR1A3A-U) (3:40) and use the `Old Fix elsewhere error / Unban account (needs 2 save files)` feature instead ### How to unban an account You can get banned for editing in any amount of cat food, rare tickets, platinum tickets or legend tickets. The way you fix it is the same method as the elsewhere fix, so just follow that. ##### How to prevent a ban in the future - Instead of editing in platinum tickets use the `Platinum Shards` feature - Instead of editing in rare tickets use the `Normal Ticket Max Trade Progress (allows for unbannable rare tickets)` feature - Instead of hacking in cat food, just edit everything in that you can buy with cat food, e.g battle items, catamins, xp, energy refills (leaderships), etc. If you really want catfood then you can clear and unclear catnip missions with the feature `Catnip Challenges / Missions` then entering 1 when asked. You'll need to collect the catfood in-game after each clear though - Instead of hacking in tickets, just hack in the cats/upgrades you want directly ## Android Tutorial If you don't have a pc to install and run the editor you can use Termux. 1. Download [F-Droid](https://f-droid.org/F-Droid.apk) - You can download the Termux apk directly but then it won't automatically update 2. Install F-Droid 3. Open it and wait for it to finish `Updating repositories` 4. Tap the green search button in the bottom right and search for `Termux` 5. Tap `Termux Terminal emulator with packages` 6. Tap `INSTALL` and then `OPEN` once installed 7. Once opened enter the command `pkg install python` 8. If that doesn't work then read this: <https://stackoverflow.com/a/71097459> 9. Then run `python -m pip install -U battle-cats-save-editor` 10. If that doesn't work then run `pkg upgrade` and try again 11. Then run `python -m BCSFE_Python` 12. You can then use the editor like normal (If asked to enter the path to a save file, then just enter `SAVE_DATA`) ### Install from source If you want the latest features and don't mind bugs then you can install the editor from the github. 1. Download [Git](https://git-scm.com/downloads) 2. Run the following commands: (You may have to replace `py` with `python` or `python3`) ```batch git clone https://github.com/fieryhenry/BCSFE-Python.git py -m pip install -e BCSFE-Python/ py -m BCSFE_Python ``` If you want to use the editor again all you need to do is run the `py -m BCSFE_Python` command Then if you want the latest changes you only need to run `git pull` in the downloaded `BCSFE-Python` folder. (use `cd` to change the folder)
/sc-editor-1.93.tar.gz/sc-editor-1.93/README.md
0.551815
0.735024
README.md
pypi
import struct from typing import Any, Union import dateutil.parser from . import helper, parse_save def write( save_data: list[int], number: Union[dict[str, int], int], length: Union[int, None] = None, ) -> list[int]: """Writes a little endian number to the save data""" if length is None and isinstance(number, dict): length = number["Length"] if isinstance(number, dict): number = number["Value"] if length is None: raise ValueError("Length is None") number = int(number) data = list(helper.num_to_bytes(number, length)) save_data += data return save_data def create_list_separated(data: list[int], length: int) -> list[int]: """Creates a list of bytes from a list of numbers""" lst: list[int] = [] for item in data: byte_data = list(helper.num_to_bytes(item, length)) lst += byte_data return lst def create_list_double(data: list[float]) -> list[int]: """Creates a list of bytes from a list of doubles""" lst: list[int] = [] for item in data: byte_data = list(struct.pack("d", item)) lst += byte_data return lst def write_length_data( save_data: list[int], data: Union[list[int], dict[str, list[int]]], length_bytes: int = 4, bytes_per_val: int = 4, write_length: bool = True, length: Union[int, None] = None, ) -> list[int]: """Writes a list of ints to the save data""" if write_length is False and length is None: length = len(data) if isinstance(data, dict): data = data["Value"] if write_length: if length is None: length = len(data) length_data = list(helper.num_to_bytes(length, length_bytes)) save_data += length_data save_data += create_list_separated(data, bytes_per_val) return save_data def write_length_doubles( save_data: list[int], data: Union[list[float], dict[str, list[float]]], length_bytes: int = 4, write_length: bool = True, length: Union[None, int] = None, ) -> list[int]: """Writes a list of doubles to the save data""" if write_length is False and length is None: length = len(data) if isinstance(data, dict): data = data["Value"] if write_length: if length is None: length = len(data) length_data = list(helper.num_to_bytes(length, length_bytes)) save_data += length_data save_data += create_list_double(data) return save_data def serialise_time_data_skip( save_data: list[int], time_data: str, time_stamp: float, dst_flag: bool, duplicate: dict[str, Any], dst: int = 0, ) -> list[int]: time = dateutil.parser.parse(time_data) save_data = write(save_data, time.year, 4) save_data = write(save_data, duplicate["yy"], 4) save_data = write(save_data, time.month, 4) save_data = write(save_data, duplicate["mm"], 4) save_data = write(save_data, time.day, 4) save_data = write(save_data, duplicate["dd"], 4) save_data = write_double(save_data, time_stamp) save_data = write(save_data, time.hour, 4) save_data = write(save_data, time.minute, 4) save_data = write(save_data, time.second, 4) if dst_flag: save_data = write(save_data, dst, 1) return save_data def serialise_time_data( save_data: list[int], time: str, dst_flag: bool, dst: int = 0 ) -> list[int]: time_d = dateutil.parser.parse(time) if dst_flag: save_data = write(save_data, dst, 1) save_data = write(save_data, time_d.year, 4) save_data = write(save_data, time_d.month, 4) save_data = write(save_data, time_d.day, 4) save_data = write(save_data, time_d.hour, 4) save_data = write(save_data, time_d.minute, 4) save_data = write(save_data, time_d.second, 4) return save_data def serialise_equip_slots( save_data: list[int], equip_slots: list[list[int]] ) -> list[int]: save_data = write(save_data, len(equip_slots), 1) for slot in equip_slots: save_data = write_length_data(save_data, slot, 0, 4, False) return save_data def serialise_main_story( save_data: list[int], story_chapters: dict[str, list[Any]] ) -> list[int]: save_data = write_length_data( save_data, story_chapters["Chapter Progress"], write_length=False ) for chapter in story_chapters["Times Cleared"]: save_data = write_length_data(save_data, chapter, write_length=False) return save_data def serialise_treasures(save_data: list[int], treasures: list[list[int]]) -> list[int]: for chapter in treasures: save_data = write_length_data(save_data, chapter, write_length=False) return save_data def serialise_cat_upgrades( save_data: list[int], cat_upgrades: dict[str, list[int]] ) -> list[int]: data: list[int] = [] length = len(cat_upgrades["Base"]) for cat_id in range(length): data.append(cat_upgrades["Plus"][cat_id]) data.append(cat_upgrades["Base"][cat_id]) write_length_data(save_data, data, 4, 2, True, length) return save_data def serialise_blue_upgrades( save_data: list[int], blue_upgrades: dict[str, list[int]] ) -> list[int]: data: list[int] = [] length = len(blue_upgrades["Base"]) for blue_id in range(length): data.append(blue_upgrades["Plus"][blue_id]) data.append(blue_upgrades["Base"][blue_id]) write_length_data(save_data, data, 4, 2, False) return save_data def serialise_utf8_string( save_data: list[int], string: Union[dict[str, str], str], length_bytes: int = 4, write_length: bool = True, length: Union[int, None] = None, ) -> list[int]: """Writes a string to the save data""" if isinstance(string, dict): string = string["Value"] data = list(string.encode("utf-8")) save_data = write_length_data( save_data, data, length_bytes, 1, write_length, length ) return save_data def serialise_event_stages_current( save_data: list[int], event_current: dict[str, Any] ) -> list[int]: unknown_val = event_current["unknown"] total_sub_chapters = event_current["total"] // unknown_val stars_per_sub_chapter = event_current["stars"] stages_per_sub_chapter = event_current["stages"] save_data = write(save_data, unknown_val, 1) save_data = write(save_data, total_sub_chapters, 2) save_data = write(save_data, stars_per_sub_chapter, 1) save_data = write(save_data, stages_per_sub_chapter, 1) for i in range(len(event_current["Clear"])): save_data = write_length_data(save_data, event_current["Clear"][i], 1, 1, False) return save_data def flatten_list(_2d_list: Union[list[list[Any]], list[Any]]) -> list[Any]: flat_list: list[Any] = [] # Iterate through the outer list for element in _2d_list: if isinstance(element, list): # If the element is of type list, iterate through the sublist for item in element: flat_list.append(item) else: flat_list.append(element) return flat_list def serialise_event_stages( save_data: list[int], event_stages: dict[str, Any] ) -> list[int]: lengths = event_stages["Lengths"] total = lengths["total"] stars = lengths["stars"] stages = lengths["stages"] for chapter in event_stages["Value"]["clear_progress"]: save_data = write_length_data(save_data, chapter, 1, 1, False) clear_amount = [0] * total * stars * stages clear_amount_data = event_stages["Value"]["clear_amount"] for i in range(total): for j in range(stages): for k in range(stars): clear_amount[i * stages * stars + j * stars + k] = clear_amount_data[i][ k ][j] save_data = write_length_data(save_data, clear_amount, 4, 2, False) for chapter in event_stages["Value"]["unlock_next"]: save_data = write_length_data(save_data, chapter, 1, 1, False) return save_data def serialse_purchase_receipts(save_data: list[int], data: dict[Any, Any]) -> list[int]: save_data = write(save_data, len(data), 4) for item in data: save_data = write(save_data, item["unknown_4"], 4) save_data = write(save_data, len(item["item_packs"]), 4) for string_dict in item["item_packs"]: save_data = serialise_utf8_string(save_data, string_dict["Value"]) save_data = write(save_data, string_dict["unknown_1"], 1) return save_data def serialise_dumped_data( save_data: list[int], data: list[dict[str, int]] ) -> list[int]: for item in data: save_data = write(save_data, item) return save_data def serialise_outbreaks(save_data: list[int], outbreaks: dict[Any, Any]) -> list[int]: save_data = write(save_data, len(outbreaks), 4) for chapter_id in outbreaks: save_data = write(save_data, int(chapter_id), 4) save_data = write(save_data, len(outbreaks[chapter_id]), 4) for level_id in outbreaks[chapter_id]: save_data = write(save_data, level_id, 4) save_data = write(save_data, outbreaks[chapter_id][level_id], 1) return save_data def serialise_ototo_cat_cannon( save_data: list[int], ototo_cannon: dict[int, Any] ) -> list[int]: save_data = write(save_data, len(ototo_cannon), 4) for cannon_id in ototo_cannon: cannon = ototo_cannon[cannon_id] save_data = write(save_data, int(cannon_id), 4) save_data = write(save_data, cannon["len_val"], 4) save_data = write(save_data, cannon["unlock_flag"], 4) levels = cannon["levels"] save_data = write(save_data, levels["effect"], 4) if cannon["len_val"] == 4: save_data = write(save_data, levels["foundation"], 4) save_data = write(save_data, levels["style"], 4) return save_data def serialise_uncanny_current( save_data: list[int], uncanny_current: dict[str, Any] ) -> list[int]: total_sub_chapters = uncanny_current["total"] stars_per_sub_chapter = uncanny_current["stars"] stages_per_sub_chapter = uncanny_current["stages"] save_data = write(save_data, total_sub_chapters, 4) save_data = write(save_data, stages_per_sub_chapter, 4) save_data = write(save_data, stars_per_sub_chapter, 4) for i in range(len(uncanny_current["Clear"])): save_data = write_length_data( save_data, uncanny_current["Clear"][i], 4, 4, False ) return save_data def serialise_event_timed_scores( save_data: list[int], timed_scores: dict[str, Any] ) -> list[int]: total_sub_chapters = timed_scores["total"] stars_per_sub_chapter = timed_scores["stars"] stages_per_sub_chapter = timed_scores["stages"] save_data = write(save_data, total_sub_chapters, 4) save_data = write(save_data, stages_per_sub_chapter, 4) save_data = write(save_data, stars_per_sub_chapter, 4) for i in range(len(timed_scores["Score"])): save_data = write_length_data(save_data, timed_scores["Score"][i], 4, 4, False) return save_data def serialise_uncanny_progress( save_data: list[int], uncanny: dict[str, Any] ) -> list[int]: lengths = uncanny["Lengths"] total = lengths["total"] stars = lengths["stars"] stages = lengths["stages"] for chapter in uncanny["Value"]["clear_progress"]: save_data = write_length_data(save_data, chapter, 4, 4, False) clear_amount = [0] * total * stars * stages clear_amount_data = uncanny["Value"]["clear_amount"] for i in range(total): for j in range(stages): for k in range(stars): clear_amount[i * stages * stars + j * stars + k] = clear_amount_data[i][ k ][j] save_data = write_length_data(save_data, clear_amount, 4, 4, False) for chapter in uncanny["Value"]["unlock_next"]: save_data = write_length_data(save_data, chapter, 4, 4, False) return save_data def serialise_talent_data(save_data: list[int], talents: dict[str, Any]) -> list[int]: save_data = write(save_data, len(talents), 4) for cat_id in talents: cat_talent_data = talents[cat_id] save_data = write(save_data, int(cat_id), 4) save_data = write(save_data, len(cat_talent_data), 4) for talent in cat_talent_data: save_data = write(save_data, talent["id"], 4) save_data = write(save_data, talent["level"], 4) return save_data def serialise_gauntlet_current( save_data: list[int], gauntlet_current: dict[str, Any] ) -> list[int]: save_data = write(save_data, gauntlet_current["total"], 2) save_data = write(save_data, gauntlet_current["stages"], 1) save_data = write(save_data, gauntlet_current["stars"], 1) for i in range(len(gauntlet_current["Clear"])): save_data = write_length_data( save_data, gauntlet_current["Clear"][i], 1, 1, False ) return save_data def serialise_gauntlet_progress( save_data: list[int], gauntlets: dict[str, Any] ) -> list[int]: lengths = gauntlets["Lengths"] total = lengths["total"] stars = lengths["stars"] stages = lengths["stages"] for chapter in gauntlets["Value"]["clear_progress"]: save_data = write_length_data(save_data, chapter, 1, 1, False) clear_amount = [0] * total * stars * stages clear_amount_data = gauntlets["Value"]["clear_amount"] for i in range(total): for j in range(stages): for k in range(stars): clear_amount[i * stages * stars + j * stars + k] = clear_amount_data[i][ k ][j] save_data = write_length_data(save_data, clear_amount, 4, 2, False) for chapter in gauntlets["Value"]["unlock_next"]: save_data = write_length_data(save_data, chapter, 1, 1, False) return save_data def serialise_legend_quest_current( save_data: list[int], legend_quest_current: dict[str, Any] ) -> list[int]: save_data = write(save_data, legend_quest_current["total"], 1) save_data = write(save_data, legend_quest_current["stages"], 1) save_data = write(save_data, legend_quest_current["stars"], 1) for i in range(len(legend_quest_current["Clear"])): save_data = write_length_data( save_data, legend_quest_current["Clear"][i], 1, 1, False ) return save_data def serialise_legend_quest_progress( save_data: list[int], legend_quests: dict[str, Any] ) -> list[int]: lengths = legend_quests["Lengths"] total = lengths["total"] stars = lengths["stars"] stages = lengths["stages"] for chapter in legend_quests["Value"]["clear_progress"]: save_data = write_length_data(save_data, chapter, 1, 1, False) clear_amount = [0] * total * stars * stages clear_amount_data = legend_quests["Value"]["clear_amount"] for i in range(total): for j in range(stages): for k in range(stars): clear_amount[i * stages * stars + j * stars + k] = clear_amount_data[i][ k ][j] tries = [0] * total * stars * stages tries_data = legend_quests["Value"]["tries"] for i in range(total): for j in range(stages): for k in range(stars): tries[i * stages * stars + j * stars + k] = tries_data[i][k][j] save_data = write_length_data(save_data, clear_amount, 4, 2, False) save_data = write_length_data(save_data, tries, 4, 2, False) for chapter in legend_quests["Value"]["unlock_next"]: save_data = write_length_data(save_data, chapter, 1, 1, False) return save_data def serialise_talent_orbs( save_data: list[int], talent_orbs: dict[str, int], game_verison: dict[str, int] ) -> list[int]: save_data = write(save_data, len(talent_orbs), 2) for orb_id in talent_orbs: save_data = write(save_data, int(orb_id), 2) if game_verison["Value"] < 110400: save_data = write(save_data, talent_orbs[orb_id], 1) else: save_data = write(save_data, talent_orbs[orb_id], 2) return save_data def serialise_aku(save_data: list[int], aku: dict[str, Any]) -> list[int]: lengths = aku["Lengths"] save_data = write(save_data, lengths["total"], 2) save_data = write(save_data, lengths["stages"], 1) save_data = write(save_data, lengths["stars"], 1) save_data = serialise_gauntlet_progress(save_data, aku) return save_data def serialise_tower(save_data: list[int], tower: dict[str, Any]) -> list[int]: save_data = write(save_data, tower["current"]["total"], 4) save_data = write(save_data, tower["current"]["stars"], 4) for i in range(len(tower["current"]["selected"])): save_data = write_length_data( save_data, tower["current"]["selected"][i], 4, 4, False ) save_data = write(save_data, tower["progress"]["total"], 4) save_data = write(save_data, tower["progress"]["stars"], 4) for i in range(len(tower["progress"]["clear_progress"])): save_data = write_length_data( save_data, tower["progress"]["clear_progress"][i], 4, 4, False ) total = tower["progress"]["total"] stages = tower["progress"]["stages"] stars = tower["progress"]["stars"] save_data = write(save_data, total, 4) save_data = write(save_data, stages, 4) save_data = write(save_data, stars, 4) clear_amount = [0] * total * stars * stages clear_amount_data = tower["progress"]["clear_amount"] for i in range(total): for j in range(stages): for k in range(stars): clear_amount[i * stages * stars + j * stars + k] = clear_amount_data[i][ k ][j] save_data = write_length_data(save_data, clear_amount, 4, 4, False) save_data = serialise_dumped_data(save_data, tower["data"]) return save_data def exit_serialiser(save_data: list[int], save_stats: dict[str, Any]) -> list[int]: return serialise_utf8_string(save_data, save_stats["hash"], write_length=False) def check_gv( save_data: list[int], save_stats: dict[str, Any], game_version: int ) -> dict[str, Any]: if save_stats["game_version"]["Value"] < game_version: save_data = exit_serialiser(save_data, save_stats) return {"save_data": save_data, "exit": True} else: return {"save_data": save_data, "exit": False} def serialise_medals(save_data: list[int], medals: dict[str, Any]) -> list[int]: save_data = write_length_data(save_data, medals["medal_data_1"], 2, 2) medal_data_2 = medals["medal_data_2"] save_data = write(save_data, len(medal_data_2), 2) for medal_id in medal_data_2: save_data = write(save_data, medal_id, 2) save_data = write(save_data, medal_data_2[medal_id], 1) return save_data def serialise_play_time(save_data: list[int], play_time: dict[str, Any]) -> list[int]: frames = helper.time_to_frames(play_time) save_data = write(save_data, frames, 4) return save_data def serialise_mission_segment(save_data: list[int], data: dict[int, Any]) -> list[int]: save_data = write(save_data, len(data), 4) for mission in data: save_data = write(save_data, mission, 4) save_data = write(save_data, data[mission], 4) return save_data def serialise_missions( save_data: list[int], missions_data: dict[str, Any] ) -> list[int]: save_data = serialise_mission_segment(save_data, missions_data["states"]) save_data = serialise_mission_segment(save_data, missions_data["requirements"]) save_data = serialise_mission_segment(save_data, missions_data["clear_types"]) save_data = serialise_mission_segment(save_data, missions_data["gamatoto"]) save_data = serialise_mission_segment(save_data, missions_data["nyancombo"]) save_data = serialise_mission_segment(save_data, missions_data["user_rank"]) save_data = serialise_mission_segment(save_data, missions_data["expiry"]) save_data = serialise_mission_segment(save_data, missions_data["preparing"]) return save_data def serialise_dojo(save_data: list[int], dojo_data: dict[int, Any]) -> list[int]: save_data = write(save_data, len(dojo_data), 4) for subchapter_id in dojo_data: subchapter_data = dojo_data[subchapter_id] save_data = write(save_data, subchapter_id, 4) save_data = write(save_data, len(subchapter_data), 4) for stage_id in subchapter_data: score = subchapter_data[stage_id] save_data = write(save_data, stage_id, 4) save_data = write(save_data, score, 4) return save_data def write_double(save_data: list[int], number: float) -> list[int]: """Writes a double to the save data""" if isinstance(number, dict): number = number["Value"] number = float(number) data = struct.pack("d", number) save_data += data return save_data def start_serialize(save_stats: dict[str, Any]) -> bytes: """Starts the serialisation process""" try: save_data = serialize_save(save_stats) except Exception as e: # pylint: disable=broad-except helper.colored_text( "\nError: An error has occurred while serializing your save data:", base=helper.RED, ) game_version = save_stats["game_version"]["Value"] if game_version < 110000: helper.colored_text( f"\nThis save is from before &11.0.0& (current save version is &{helper.gv_to_str(game_version)}&), so this is likely the cause for the issue. &The save editor is not designed to work with saves from before 11.0.0&" ) raise e return save_data def serialise_gold_pass(save_data: list[int], gold_pass: dict[str, Any]) -> list[int]: """Serialises the gold pass data""" save_data = write(save_data, gold_pass["officer_id"]) save_data = write(save_data, gold_pass["renewal_times"]) save_data = write_double(save_data, gold_pass["start_date"]) save_data = write_double(save_data, gold_pass["expiry_date"]) save_data = write_length_doubles( save_data, gold_pass["unknown_2"], write_length=False ) save_data = write_double(save_data, gold_pass["start_date_2"]) save_data = write_double(save_data, gold_pass["expiry_date_2"]) save_data = write_double(save_data, gold_pass["unknown_3"]) save_data = write(save_data, gold_pass["flag_2"]) save_data = write_double(save_data, gold_pass["expiry_date_3"]) save_data = write(save_data, len(gold_pass["claimed_rewards"]), 4) for item_id, amount in gold_pass["claimed_rewards"].items(): save_data = write(save_data, item_id, 4) save_data = write(save_data, amount, 4) save_data = write(save_data, gold_pass["unknown_4"]) save_data = write(save_data, gold_pass["unknown_5"]) save_data = write(save_data, gold_pass["unknown_6"]) return save_data def serialise_unlock_popups( save_data: list[int], unlock_popups: list[tuple[int, int]], unknown_118: dict[str, int], ): """Serialises the unlock popups""" save_data = write(save_data, len(unlock_popups), 4) save_data = write(save_data, unknown_118) for popup_id in unlock_popups: save_data = write(save_data, popup_id[1], 1) save_data = write(save_data, popup_id[0], 4) return save_data def serialise_cleared_slots( save_data: list[int], cleared_slots: dict[str, Any] ) -> list[int]: """ Serialises the cleared slots Args: save_data (list[int]): The save data cleared_slots (dict[str, Any]): The cleared slots Returns: list[int]: The save data """ cleared_slot_data = parse_save.ClearedSlots.from_dict(cleared_slots) save_data = write(save_data, len(cleared_slot_data.slots), 2) for slot in cleared_slot_data.slots: save_data = write(save_data, slot.slot_index, 2) for cat in slot.cats: save_data = write(save_data, cat.cat_id, 2) save_data = write(save_data, cat.cat_form, 1) save_data = write(save_data, slot.separator, 3) save_data = write(save_data, cleared_slot_data.end_index, 2) for stages_slot in cleared_slot_data.slot_stages: save_data = write(save_data, stages_slot.slot_index, 2) save_data = write(save_data, len(stages_slot.stages), 2) for stage in stages_slot.stages: save_data = write(save_data, stage.stage_id, 4) return save_data def serialise_enigma_data(save_data: list[int], enigma_data: dict[str, Any]): """ Serialises the enigma data Args: save_data (list[int]): The save data enigma_data (dict[str, Any]): The enigma data """ save_data = write(save_data, enigma_data["energy_since_1"], 4) save_data = write(save_data, enigma_data["energy_since_2"], 4) save_data = write(save_data, enigma_data["enigma_level"], 1) save_data = write(save_data, enigma_data["unknown_2"], 1) save_data = write(save_data, enigma_data["unknown_3"], 1) save_data = write(save_data, len(enigma_data["stages"]), 1) for stage in enigma_data["stages"]: save_data = write(save_data, stage["level"], 4) save_data = write(save_data, stage["stage_id"], 4) save_data = write(save_data, stage["decoding_status"], 1) save_data = write_double(save_data, stage["start_time"]) return save_data def serialise_cat_shrine( save_data: list[int], shrine_data: dict[str, Any] ) -> list[int]: """ Serialises the cat shrine data Args: save_data (list[int]): The save data shrine_data (dict[str, Any]): The shrine data Returns: list[int]: The save data """ save_data = write_double(save_data, shrine_data["stamp_1"]) save_data = write_double(save_data, shrine_data["stamp_2"]) save_data = write(save_data, shrine_data["shrine_gone"], 1) save_data = write_length_data(save_data, shrine_data["flags"], 1, 1) save_data = write(save_data, shrine_data["xp_offering"], 4) return save_data def write_variable_length_int(save_data: list[int], i: int) -> list[int]: """ Writes a variable length integer to the save data (I have no idea how this works and what this does) Args: save_data (list[int]): The save data i (int): The integer to write Returns: list[int]: The save data """ i_2 = 0 i_3 = 0 i = int(i) while i >= 128: i_2 |= ((i & 127) | 32768) << (i_3 * 8) i_3 += 1 i >>= 7 i_4 = i_2 | (i << (i_3 * 8)) i_5 = i_3 + 1 for i_6 in range(i_5): i_7 = (i_4 >> (((i_5 - i_6) - 1) * 8)) & 255 save_data = write(save_data, i_7, 1) return save_data def set_variable_data( save_data: list[int], data: tuple[dict[int, int], dict[int, int]] ) -> list[int]: """ Sets the variable data Args: save_data (list[int]): The save data data (tuple[dict[int, int], dict[int, int]]): The variable data Returns: list[int]: The save data """ save_data = write_variable_length_int(save_data, len(data[0])) for key, value in data[0].items(): save_data = write_variable_length_int(save_data, key) save_data = write_variable_length_int(save_data, value) save_data = write_variable_length_int(save_data, len(data[1])) for key, value in data[1].items(): save_data = write_variable_length_int(save_data, key) save_data = write(save_data, value, 1) return save_data def serialise_login_bonuses(save_data: list[int], login_bonuses: dict[int, int]): """ Serialises the login bonuses Args: save_data (list[int]): The save data login_bonuses (dict[int, int]): The login bonuses """ save_data = write(save_data, len(login_bonuses), 4) for key, value in login_bonuses.items(): save_data = write(save_data, key, 4) save_data = write(save_data, value, 4) return save_data def serialise_tower_item_obtained(save_data: list[int], data: list[list[bool]]): """ Serialises the tower item obtained data Args: save_data (list[int]): The save data data (list[list[bool]]): The tower item obtained data """ save_data = write(save_data, len(data), 4) save_data = write(save_data, len(data[0]), 4) for row in data: for item in row: save_data = write(save_data, item, 1) return save_data def write_dict(save_data: list[int], data: dict[Any, Any]) -> list[int]: """ Writes a dictionary to the save data Args: save_data (list[int]): The save data data (dict[Any, Any]): The dictionary Returns: list[int]: The save data """ save_data = write(save_data, len(data), 4) for key, value in data.items(): save_data = write(save_data, key, 4) if isinstance(value, str): save_data = serialise_utf8_string(save_data, value) elif isinstance(value, bool): save_data = write(save_data, value, 1) else: save_data = write(save_data, value, 4) return save_data def serialise_zero_legends(save_data: list[int], data: list[Any]): """ Serialises the zero legends data Args: save_data (list[int]): The save data data (list[Any]): The zero legends data """ save_data = write(save_data, len(data), 2) for chapter in data: unknown_1 = chapter["unknown_1"] save_data = write(save_data, unknown_1, 1) save_data = write(save_data, len(chapter["stars"]), 1) for star in chapter["stars"]: selected_stage = star["selected_stage"] stages_cleared = star["stages_cleared"] unlock_next = star["unlock_next"] save_data = write(save_data, selected_stage, 1) save_data = write(save_data, stages_cleared, 1) save_data = write(save_data, unlock_next, 1) save_data = write(save_data, len(star["stages"]), 2) for clear_amount in star["stages"]: save_data = write(save_data, clear_amount, 2) return save_data def serialize_save(save_stats: dict[str, Any]) -> bytes: """Serialises the save stats""" save_data: list[int] = [] save_data = write(save_data, save_stats["game_version"]) save_data = write(save_data, save_stats["unknown_1"]) save_data = write(save_data, save_stats["mute_music"]) save_data = write(save_data, save_stats["mute_sound_effects"]) save_data = write(save_data, save_stats["cat_food"]) save_data = write(save_data, save_stats["current_energy"]) if save_stats["extra_time_data"]: if save_stats["extra_time_data"]["Value"] != 0: save_data = write(save_data, save_stats["extra_time_data"]) save_data = serialise_time_data_skip( save_data, save_stats["time"], save_stats["time_stamp"], save_stats["dst"], save_stats["duplicate_time"], save_stats["dst_val"], ) save_data = write_length_data( save_data, save_stats["unknown_flags_1"], write_length=False ) save_data = write(save_data, save_stats["upgrade_state"]) save_data = write(save_data, save_stats["xp"]) save_data = write(save_data, save_stats["tutorial_cleared"]) save_data = write_length_data( save_data, save_stats["unknown_flags_2"], write_length=False ) save_data = write(save_data, save_stats["unknown_flag_1"]) save_data = serialise_equip_slots(save_data, save_stats["slots"]) save_data = write(save_data, save_stats["cat_stamp_current"]) save_data = write_length_data( save_data, save_stats["cat_stamp_collected"], write_length=False ) save_data = write(save_data, save_stats["unknown_2"]) save_data = write(save_data, save_stats["daily_reward_flag"]) save_data = write_length_data( save_data, save_stats["unknown_116"], write_length=False ) save_data = serialise_main_story(save_data, save_stats["story_chapters"]) save_data = serialise_treasures(save_data, save_stats["treasures"]) save_data = write_length_data(save_data, save_stats["enemy_guide"]) save_data = write_length_data(save_data, save_stats["cats"]) save_data = serialise_cat_upgrades(save_data, save_stats["cat_upgrades"]) save_data = write_length_data(save_data, save_stats["current_forms"]) save_data = serialise_blue_upgrades(save_data, save_stats["blue_upgrades"]) save_data = write_length_data(save_data, save_stats["menu_unlocks"]) save_data = write_length_data(save_data, save_stats["new_dialogs_1"]) save_data = write_length_data(save_data, save_stats["battle_items"], 4, 4, False, 6) save_data = write_length_data(save_data, save_stats["new_dialogs_2"]) save_data = write(save_data, save_stats["unknown_6"]) save_data = write_length_data( save_data, save_stats["unknown_7"], write_length=False ) save_data = write(save_data, save_stats["lock_item"]) save_data = write_length_data(save_data, save_stats["locked_items"], 1, 1, False, 6) save_data = serialise_time_data( save_data, save_stats["second_time"], save_stats["dst"], save_stats["dst_val"] ) save_data = write_length_data( save_data, save_stats["unknown_8"], write_length=False ) save_data = serialise_time_data( save_data, save_stats["third_time"], save_stats["dst"], save_stats["dst_val"] ) save_data = write(save_data, save_stats["unknown_9"]) save_data = serialise_utf8_string(save_data, save_stats["thirty2_code"]) save_data = set_variable_data(save_data, save_stats["unknown_10"]) save_data = write_length_data( save_data, save_stats["unknown_11"], write_length=False ) save_data = write(save_data, save_stats["normal_tickets"]) save_data = write(save_data, save_stats["rare_tickets"]) save_data = write_length_data(save_data, save_stats["gatya_seen_cats"]) save_data = write_length_data( save_data, save_stats["unknown_12"], write_length=False ) if save_stats["cat_storage"]["len"]: save_data = write(save_data, len(save_stats["cat_storage"]["ids"]), 2) save_data = write_length_data( save_data, save_stats["cat_storage"]["ids"], 2, 4, False ) save_data = write_length_data( save_data, save_stats["cat_storage"]["types"], 2, 4, False ) save_data = serialise_event_stages_current(save_data, save_stats["event_current"]) save_data = serialise_event_stages(save_data, save_stats["event_stages"]) save_data = write_length_data( save_data, save_stats["unknown_15"], write_length=False ) save_data = write_length_data(save_data, save_stats["unit_drops"]) save_data = write(save_data, save_stats["rare_gacha_seed"]) save_data = write(save_data, save_stats["unknown_17"]) save_data = write(save_data, save_stats["unknown_18"]) save_data = serialise_time_data( save_data, save_stats["fourth_time"], save_stats["dst"], save_stats["dst_val"] ) save_data = write_length_data(save_data, save_stats["unknown_105"], 4, 4, False) save_data = write_length_data( save_data, save_stats["unknown_107"], write_length=False, bytes_per_val=1 ) if save_stats["dst"]: save_data = serialise_utf8_string(save_data, save_stats["unknown_110"]) unknown_108 = helper.format_text(save_stats["unknown_108"]) save_data = write(save_data, len(unknown_108), 4) for i in range(len(unknown_108)): save_data = serialise_utf8_string(save_data, unknown_108[i]) if save_stats["dst"]: save_data = write_length_doubles( save_data, save_stats["time_stamps"], write_length=False ) save_data = write(save_data, len(save_stats["unknown_112"]), 4) for string in save_stats["unknown_112"]: save_data = serialise_utf8_string(save_data, string) save_data = write(save_data, save_stats["energy_notice"]) save_data = write(save_data, save_stats["game_version_2"]) save_data = write(save_data, save_stats["unknown_111"]) save_data = write(save_data, save_stats["unlocked_slots"]) save_data = write(save_data, save_stats["unknown_20"]["Length_1"], 4) save_data = write(save_data, save_stats["unknown_20"]["Length_2"], 4) save_data = write_length_data( save_data, save_stats["unknown_20"], write_length=False ) save_data = write_length_doubles( save_data, save_stats["time_stamps_2"][:-1], write_length=False ) save_data = write(save_data, save_stats["trade_progress"]) if save_stats["dst"]: save_data = write_double(save_data, save_stats["time_stamps_2"][-1]) else: save_data = write(save_data, save_stats["unknown_24"]) save_data = serialise_cat_upgrades(save_data, save_stats["catseye_related_data"]) save_data = write_length_data( save_data, save_stats["unknown_22"], write_length=False ) save_data = write_length_data(save_data, save_stats["user_rank_rewards"], 4, 1) if not save_stats["dst"]: save_data = write_double(save_data, save_stats["time_stamps_2"][-1]) save_data = write_length_data(save_data, save_stats["unlocked_forms"]) save_data = serialise_utf8_string(save_data, save_stats["transfer_code"]) save_data = serialise_utf8_string(save_data, save_stats["confirmation_code"]) save_data = write(save_data, save_stats["transfer_flag"]) lengths = save_stats["stage_data_related_1"]["Lengths"] length = lengths[0] * lengths[1] * lengths[2] save_data = write_length_data(save_data, lengths, write_length=False) save_data = write_length_data( save_data, save_stats["stage_data_related_1"], 4, 1, False, length ) save_data = serialise_event_timed_scores( save_data, save_stats["event_timed_scores"] ) save_data = serialise_utf8_string(save_data, save_stats["inquiry_code"]) save_data = serialise_play_time(save_data, save_stats["play_time"]) save_data = write(save_data, save_stats["unknown_25"]) save_data = write(save_data, save_stats["backup_state"]) if save_stats["dst"]: save_data = write(save_data, save_stats["unknown_119"]) save_data = write(save_data, save_stats["gv_44"]) save_data = write(save_data, save_stats["unknown_120"]) save_data = write_length_data( save_data, flatten_list(save_stats["itf_timed_scores"]), 4, 4, write_length=False, ) save_data = write(save_data, save_stats["unknown_27"]) save_data = write_length_data(save_data, save_stats["cat_related_data_1"]) save_data = write(save_data, save_stats["unknown_28"]) save_data = write(save_data, save_stats["gv_45"]) save_data = write(save_data, save_stats["gv_46"]) save_data = write(save_data, save_stats["unknown_29"]) save_data = write_length_data(save_data, save_stats["lucky_tickets_1"]) save_data = write_length_data(save_data, save_stats["unknown_32"]) save_data = write(save_data, save_stats["gv_47"]) save_data = write(save_data, save_stats["gv_48"]) if not save_stats["dst"]: save_data = write(save_data, save_stats["energy_notice"]) save_data = write_double(save_data, save_stats["account_created_time_stamp"]) save_data = write_length_data(save_data, save_stats["unknown_35"]) save_data = write(save_data, save_stats["unknown_36"]) save_data = write(save_data, save_stats["user_rank_popups"]) save_data = write(save_data, save_stats["unknown_37"]) save_data = write(save_data, save_stats["gv_49"]) save_data = write(save_data, save_stats["gv_50"]) save_data = write(save_data, save_stats["gv_51"]) save_data = write_length_data( save_data, save_stats["cat_guide_collected"], bytes_per_val=1 ) save_data = write(save_data, save_stats["gv_52"]) save_data = write_length_doubles( save_data, save_stats["time_stamps_3"], write_length=False ) save_data = write_length_data(save_data, save_stats["cat_fruit"]) save_data = write_length_data(save_data, save_stats["cat_related_data_3"]) save_data = write_length_data(save_data, save_stats["catseye_cat_data"]) save_data = write_length_data(save_data, save_stats["catseyes"]) save_data = write_length_data(save_data, save_stats["catamins"]) seconds = helper.time_to_seconds(save_stats["gamatoto_time_left"]) save_data = write_double(save_data, float(seconds)) save_data = write(save_data, save_stats["gamatoto_exclamation"]) save_data = write(save_data, save_stats["gamatoto_xp"]) save_data = write(save_data, save_stats["gamamtoto_destination"]) save_data = write(save_data, save_stats["gamatoto_recon_length"]) save_data = write(save_data, save_stats["unknown_43"]) save_data = write(save_data, save_stats["gamatoto_complete_notification"]) save_data = write_length_data(save_data, save_stats["unknown_44"], bytes_per_val=1) save_data = write_length_data( save_data, save_stats["unknown_45"], bytes_per_val=12 * 4 ) save_data = write(save_data, save_stats["gv_53"]) save_data = write_length_data(save_data, save_stats["helpers"]) save_data = write(save_data, save_stats["unknown_47"]) save_data = write(save_data, save_stats["gv_54"]) save_data = serialse_purchase_receipts(save_data, save_stats["purchases"]) save_data = write(save_data, save_stats["gv_54"]) save_data = write(save_data, save_stats["gamatoto_skin"]) save_data = write(save_data, save_stats["platinum_tickets"]) save_data = serialise_login_bonuses(save_data, save_stats["login_bonuses"]) save_data = write(save_data, save_stats["unknown_49"]) save_data = write_length_data( save_data, save_stats["announcment"], write_length=False ) save_data = write(save_data, save_stats["backup_counter"]) save_data = write_length_data( save_data, save_stats["unknown_131"], write_length=False ) save_data = write(save_data, save_stats["gv_55"]) save_data = write(save_data, save_stats["unknown_51"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_113"]) save_data = serialise_dojo(save_data, save_stats["dojo_data"]) save_data = write(save_data, save_stats["dojo_item_lock"]) save_data = write_length_data( save_data, save_stats["dojo_locks"], write_length=False, bytes_per_val=1 ) save_data = write(save_data, save_stats["unknown_114"]) save_data = write(save_data, save_stats["gv_58"]) save_data = write(save_data, save_stats["unknown_115"]) save_data = serialise_outbreaks(save_data, save_stats["outbreaks"]) save_data = write_double(save_data, save_stats["unknown_52"]) save_data = write_length_data( save_data, save_stats["item_schemes"]["to_obtain_ids"] ) save_data = write_length_data(save_data, save_stats["item_schemes"]["received_ids"]) save_data = serialise_outbreaks(save_data, save_stats["current_outbreaks"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_55"]) save_data = write_double(save_data, save_stats["time_stamp_4"]) save_data = write(save_data, save_stats["gv_60"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_117"]) save_data = write(save_data, save_stats["gv_61"]) save_data = serialise_unlock_popups( save_data, save_stats["unlock_popups"], save_stats["unknown_118"] ) save_data = write_length_data(save_data, save_stats["base_materials"]) save_data = write(save_data, save_stats["unknown_56"]) save_data = write(save_data, save_stats["unknown_57"]) save_data = write(save_data, save_stats["unknown_58"]) save_data = write(save_data, save_stats["engineers"]) save_data = serialise_ototo_cat_cannon(save_data, save_stats["ototo_cannon"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_59"]) save_data = serialise_tower(save_data, save_stats["tower"]) save_data = serialise_missions(save_data, save_stats["missions"]) save_data = serialise_tower_item_obtained( save_data, save_stats["tower_item_obtained"] ) save_data = serialise_dumped_data(save_data, save_stats["unknown_61"]) save_data = write(save_data, save_stats["challenge"]["Score"]) save_data = write(save_data, save_stats["challenge"]["Cleared"]) save_data = write(save_data, save_stats["gv_67"]) save_data = write_dict(save_data, save_stats["weekly_event_missions"]) save_data = write(save_data, save_stats["won_dojo_reward"]) save_data = write(save_data, save_stats["event_flag_update_flag"]) save_data = write(save_data, save_stats["gv_68"]) save_data = write_dict(save_data, save_stats["completed_one_level_in_chapter"]) save_data = write_dict(save_data, save_stats["displayed_cleared_limit_text"]) save_data = write_dict(save_data, save_stats["event_start_dates"]) save_data = write_length_data(save_data, save_stats["stages_beaten_twice"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_102"]) save_data = serialise_uncanny_current(save_data, save_stats["uncanny_current"]) save_data = serialise_uncanny_progress(save_data, save_stats["uncanny"]) save_data = write(save_data, save_stats["unknown_62"]) save_data = write_length_data( save_data, save_stats["unknown_63"], write_length=False ) save_data = serialise_uncanny_current( save_data, save_stats["unknown_64"]["current"] ) save_data = serialise_uncanny_progress( save_data, save_stats["unknown_64"]["progress"] ) save_data = write(save_data, save_stats["unknown_65"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_66"]) save_data = write_length_data( save_data, save_stats["lucky_tickets_2"], write_length=False ) save_data = write_length_data( save_data, save_stats["unknown_67"], write_length=False ) save_data = write(save_data, save_stats["unknown_68"]) save_data = write(save_data, save_stats["gv_77"]) save_data = serialise_gold_pass(save_data, save_stats["gold_pass"]) save_data = serialise_talent_data(save_data, save_stats["talents"]) save_data = write(save_data, save_stats["np"]) save_data = write(save_data, save_stats["unknown_70"]) save_data = write(save_data, save_stats["gv_80000"]) save_data = write(save_data, save_stats["unknown_71"]) save_data = write(save_data, save_stats["leadership"]) save_data = write(save_data, save_stats["officer_pass_cat_id"]) save_data = write(save_data, save_stats["officer_pass_cat_form"]) save_data = write(save_data, save_stats["gv_80200"]) save_data = write(save_data, save_stats["filibuster_stage_id"]) save_data = write(save_data, save_stats["filibuster_stage_enabled"]) save_data = write(save_data, save_stats["gv_80300"]) save_data = write_length_data(save_data, save_stats["unknown_74"]) save_data = write(save_data, save_stats["gv_80500"]) save_data = write_length_data(save_data, save_stats["unknown_75"], 2) save_data = serialise_legend_quest_current( save_data, save_stats["legend_quest_current"] ) save_data = serialise_legend_quest_progress(save_data, save_stats["legend_quest"]) save_data = write_length_data( save_data, save_stats["unknown_133"], bytes_per_val=1, write_length=False ) save_data = write_length_data( save_data, save_stats["legend_quest_ids"], write_length=False ) save_data = serialise_dumped_data(save_data, save_stats["unknown_76"]) save_data = write(save_data, save_stats["gv_80700"]) if save_stats["dst"]: if save_stats["gv_100600"]["Value"] == 100600: save_data = write(save_data, save_stats["unknown_104"]) save_data = write(save_data, save_stats["gv_100600"]) save_data = write(save_data, save_stats["restart_pack"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_101"]) save_data = serialise_medals(save_data, save_stats["medals"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_103"]) save_data = serialise_gauntlet_current(save_data, save_stats["gauntlet_current"]) save_data = serialise_gauntlet_progress(save_data, save_stats["gauntlets"]) save_data = write_length_data( save_data, save_stats["unknown_77"], bytes_per_val=1, write_length=False ) save_data = write(save_data, save_stats["gv_90300"]) save_data = serialise_gauntlet_current(save_data, save_stats["unknown_78"]) save_data = serialise_gauntlet_progress(save_data, save_stats["unknown_79"]) save_data = write_length_data( save_data, save_stats["unknown_80"], bytes_per_val=1, write_length=False ) save_data = serialise_enigma_data(save_data, save_stats["enigma_data"]) save_data = serialise_cleared_slots(save_data, save_stats["cleared_slot_data"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_121"]) save_data = serialise_gauntlet_current( save_data, save_stats["collab_gauntlets_current"] ) save_data = serialise_gauntlet_progress(save_data, save_stats["collab_gauntlets"]) save_data = write_length_data( save_data, save_stats["unknown_84"], bytes_per_val=1, write_length=False ) save_data = serialise_dumped_data(save_data, save_stats["unknown_85"]) save_data = serialise_talent_orbs( save_data, save_stats["talent_orbs"], save_stats["game_version"] ) save_data = serialise_dumped_data(save_data, save_stats["unknown_86"]) save_data = serialise_cat_shrine(save_data, save_stats["cat_shrine"]) save_data = write(save_data, save_stats["unknown_130"]) save_data = write(save_data, save_stats["gv_90900"]) if save_stats["game_version"]["Value"] >= 110600: save_data = write(save_data, len(save_stats["slot_names"]), 1) for slot_name in save_stats["slot_names"]: save_data = serialise_utf8_string(save_data, slot_name) save_data = write(save_data, save_stats["gv_91000"]) save_data = write(save_data, save_stats["legend_tickets"]) save_data = write_length_data( save_data, save_stats["unknown_87"], bytes_per_val=5, length_bytes=1 ) save_data = write(save_data, save_stats["unknown_88"]) save_data = serialise_utf8_string(save_data, save_stats["token"]) save_data = write(save_data, save_stats["unknown_89"]) save_data = write(save_data, save_stats["unknown_90"]) save_data = write(save_data, save_stats["unknown_91"]) save_data = write(save_data, save_stats["gv_100000"]) data = check_gv(save_data, save_stats, 100100) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = write(save_data, save_stats["date_int"]) save_data = write(save_data, save_stats["gv_100100"]) data = check_gv(save_data, save_stats, 100300) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = write_length_data( save_data, save_stats["unknown_93"], bytes_per_val=19, write_length=False ) save_data = write(save_data, save_stats["gv_100300"]) data = check_gv(save_data, save_stats, 100700) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_dumped_data(save_data, save_stats["unknown_94"]) save_data = write(save_data, save_stats["platinum_shards"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_100"]) save_data = write(save_data, save_stats["gv_100700"]) data = check_gv(save_data, save_stats, 100900) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_aku(save_data, save_stats["aku"]) save_data = write(save_data, save_stats["unknown_95"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_96"]) save_data = write(save_data, save_stats["gv_100900"]) data = check_gv(save_data, save_stats, 101000) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = write(save_data, save_stats["unknown_97"]) save_data = write(save_data, save_stats["gv_101000"]) data = check_gv(save_data, save_stats, 110000) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_dumped_data(save_data, save_stats["unknown_98"]) save_data = write(save_data, save_stats["gv_110000"]) data = check_gv(save_data, save_stats, 110500) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_gauntlet_current( save_data, save_stats["behemoth_culling_current"] ) save_data = serialise_gauntlet_progress(save_data, save_stats["behemoth_culling"]) save_data = write_length_data( save_data, save_stats["unknown_124"], bytes_per_val=1, write_length=False ) save_data = write(save_data, save_stats["unknown_125"]) save_data = write(save_data, save_stats["gv_110500"]) data = check_gv(save_data, save_stats, 110600) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = write(save_data, save_stats["unknown_126"]) save_data = write(save_data, save_stats["gv_110600"]) data = check_gv(save_data, save_stats, 110700) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_dumped_data(save_data, save_stats["unknown_127"]) if save_stats["dst"]: save_data = write(save_data, save_stats["unknown_128"]) save_data = write(save_data, save_stats["gv_110700"]) data = check_gv(save_data, save_stats, 110800) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = write(save_data, save_stats["shrine_dialogs"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_129"]) save_data = write(save_data, save_stats["dojo_3x_speed"]) save_data = serialise_dumped_data(save_data, save_stats["unknown_132"]) save_data = write(save_data, save_stats["gv_110800"]) data = check_gv(save_data, save_stats, 110900) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_dumped_data(save_data, save_stats["unknown_135"]) save_data = write(save_data, save_stats["gv_110900"]) data = check_gv(save_data, save_stats, 120000) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_zero_legends(save_data, save_stats["zero_legends"]) save_data = write(save_data, save_stats["unknown_136"]) save_data = write(save_data, save_stats["gv_120000"]) data = check_gv(save_data, save_stats, 120100) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_dumped_data(save_data, save_stats["unknown_137"]) save_data = write(save_data, save_stats["gv_120100"]) data = check_gv(save_data, save_stats, 120200) save_data = data["save_data"] if data["exit"]: return bytes(save_data) save_data = serialise_dumped_data(save_data, save_stats["unknown_138"]) save_data = write(save_data, save_stats["gv_120200"]) save_data = write(save_data, save_stats["extra_data"]) save_data = exit_serialiser(save_data, save_stats) return bytes(save_data)
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/serialise_save.py
0.727879
0.3333
serialise_save.py
pypi
import filecmp import json from multiprocessing import Process import os import shutil import sys import time from typing import Any, Callable, Generator, Optional, Union import colored # type: ignore from . import ( user_input_handler, server_handler, patcher, serialise_save, parse_save, config_manager, user_info, ) GREEN = "#008000" RED = "#FF0000" DARK_YELLOW = "#D7C32A" BLACK = "#000000" WHITE = "#FFFFFF" CYAN = "#00FFFF" def get_time() -> int: """Get current time in seconds""" return int(time.time()) def get_iso_time() -> str: """Get the current time in iso format""" return time.strftime("%Y-%m-%dT%H:%M:%S", time.localtime()) def print_line_seperator(base: str, char: str = "-", length: int = 80): """Print a line of a char""" width = shutil.get_terminal_size().columns if width < length: length = width colored_text(char * length, base) def get_dirs(path: str) -> list[str]: """Get all directories in a path""" if not os.path.exists(path): return [] return [dir for dir in os.listdir(path) if os.path.isdir(os.path.join(path, dir))] def delete_dir(path: str) -> None: """Delete a directory and all of its contents""" if not os.path.exists(path): return for root, dirs, files in os.walk(path, topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) os.rmdir(path) def create_dirs(path: str) -> None: """Create directories if they don't exist""" if not os.path.exists(path): os.makedirs(path) def offset_list(lst: list[int], offset: int) -> list[int]: """Offset each value in an list by a certain amount""" new_list: list[int] = [] for item in lst: new_list.append(item + offset) return new_list def copy_first_n(lst: list[Any], number: int) -> list[Any]: """Get the nth item in a list of lists""" new_list: list[Any] = [] for item in lst: new_list.append(item[number]) return new_list def get_file(file_name: str) -> str: """Get file in files folder""" file_path = os.path.join(get_local_files_path(), file_name) return file_path def get_files_in_dir(dir_path: str) -> list[str]: """Get all files in a directory""" files: list[str] = [] for file in os.listdir(dir_path): if os.path.isfile(os.path.join(dir_path, file)): file_path = os.path.join(dir_path, file) files.append(file_path) return files def find_files_in_dir(dir_path: str, file_name: str) -> list[str]: """Find all files in a directory with a certain name""" files: list[str] = [] for file in os.listdir(dir_path): if file_name in file: files.append(file) return files def get_local_files_path() -> str: """Get the local files path""" dir_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "files") return dir_path def read_file_string(file_path: str, create: bool = False) -> str: """Reads a file and returns its contents as a string""" try: with open(file_path, "r", encoding="utf-8") as file: return file.read() except FileNotFoundError as err: if create: os.makedirs(os.path.dirname(file_path), exist_ok=True) write_file_string(file_path, "") return "" raise Exception("File not found: " + file_path) from err except UnicodeDecodeError as err: raise Exception("Error reading file: " + file_path + ": " + str(err)) from err def chunks(lst: list[Any], chunk_len: int) -> Generator[Any, Any, Any]: """Split list into chunks of n""" for i in range(0, len(lst), chunk_len): yield lst[i : i + chunk_len] def frames_to_time(frames: int) -> dict[str, Any]: """Turn frames into hours, minutes, seconds, frames""" frames = clamp_int(frames) seconds, frames = divmod(frames, 30) minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) return {"hh": hours, "mm": minutes, "ss": seconds, "frames": frames} def clamp_int(value: int) -> int: """ Clamp an integer to the range of a signed 32 bit integer Args: value (int): The value to clamp Returns: int: The clamped value """ return clamp(value, 0, (2**31) - 1) def num_to_bytes(num: int, length: int) -> bytes: """Turn number into little endian bytes""" return num.to_bytes(length, byteorder="little") def seconds_to_time(seconds: int) -> dict[str, Any]: """Turn seconds into hours, minutes, seconds""" minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) return {"hh": hours, "mm": minutes, "ss": seconds} def time_to_seconds(time: dict[str, Any]) -> int: """Turn hours, minutes, seconds into seconds""" seconds = time["ss"] seconds += time["mm"] * 60 seconds += time["hh"] * 60 * 60 return seconds def time_to_frames(time: dict[str, Any]) -> int: """Turn hours, minutes, seconds, frames into frames""" total_frames = time["frames"] total_frames += time["ss"] * 30 total_frames += time["mm"] * 60 * 30 total_frames += time["hh"] * 60 * 60 * 30 total_frames = clamp_int(total_frames) return total_frames def check_int(value: str) -> Union[int, None]: """Check if a string is an integer""" value = str(value).strip(" ") try: return int(value) except ValueError: return None def check_int_max(value: str, max_value: Optional[int] = None) -> Optional[int]: val = check_int(value) if val is None: return None if max_value is not None: return clamp(val, 0, max_value) return clamp_int(val) def int_to_str_ls(int_list: list[int]) -> list[str]: """Turn list of ints to list of strings""" str_list: list[str] = [] for i in int_list: str_list.append(str(i)) return str_list def parse_int_list(lst: list[str], offset: int) -> list[int]: """Turn string list to int list""" new_list: list[int] = [] for item in lst: try: new_list.append(int(item) + offset) except ValueError: pass return new_list def clamp(value: int, min_value: int, max_value: int) -> int: """Clamp a value between two values""" return max(min(value, max_value), min_value) def write_file_bytes(file_path: str, data: bytes) -> bytes: """Write file as bytes""" try: with open(file_path, "wb") as file: file.write(data) except PermissionError as err: raise Exception("Permission denied: " + file_path) from err return data def get_save_path() -> str: """Get the save path from the env variable""" save_path = os.environ.get("BC_SAVE_PATH") if save_path is None: raise Exception("BC_SAVE_PATH not set") return save_path def set_save_path(path: str) -> None: """Set the save path in the env variable""" os.environ["BC_SAVE_PATH"] = os.path.abspath(path) def get_text_splitter(isjp: bool): """Get the text splitter for the current save stats""" if isjp: return "," return "|" def get_save_file_filetype() -> list[tuple[str, str]]: """Get the file types for the save file""" return [("Battle Cats Save Files", "*SAVE_DATA*"), ("All Files", "*.*")] def read_file_bytes(file_path: str) -> bytes: """Read file as bytes""" with open(file_path, "rb") as file: return file.read() def write_file_string(file_path: str, data: str): """Write file as string""" with open(file_path, "w", encoding="utf-8") as file: file.write(data) def config_clamp(value: int, min: int, max: int, clamp_max_int: bool = True): """Clamp a value between 0 and a max value""" disable = config_manager.get_config_value_category("EDITOR", "DISABLE_MAXES") if disable: if clamp_max_int: return clamp_int(value) return value return clamp(value, min, max) def check_clamp( values: Any, max_value: int, min_value: int = 0, offset: int = -1 ) -> list[int]: """turn a list of strings into a list of ints and clamp them between a min and max""" if isinstance(values, str): values = [values] int_values: list[int] = [] for value in values: value = str(value).strip(" ") value = check_int(value) if value is None: continue value = clamp(value, min_value, max_value) value += offset int_values.append(value) return int_values def encode_ls(lst: list[int]) -> dict[int, Any]: """Encode a list of integers into a dictionary""" return {i: lst[i] for i in range(len(lst))} def parse_int_list_list(list_of_lists: list[list[str]]) -> list[list[Any]]: """Turn list of list of strings into list of list of ints""" new_lists: list[list[Any]] = [] for lst in list_of_lists: new_list: list[Any] = [] for item in lst: try: new_list.append(int(item)) except ValueError: new_list.append(item) new_lists.append(new_list) new_lists = [line for line in new_lists if line != []] return new_lists def check_hex(value: str) -> Union[str, None]: """Check if a string is a hex number""" value = str(value).strip(" ") try: int(value, 16) return value except ValueError: return None def check_dec(value: str) -> Union[str, None]: """Check if a string is a decimal number""" value = str(value).strip(" ") try: int(value) return value except ValueError: return None def str_to_gv(game_version: str) -> str: """Turn a game version with semantic versioning to integer representation""" split_gv = game_version.split(".") if len(split_gv) == 2: split_gv.append("0") final = "" for split in split_gv: final += split.zfill(2) return final.lstrip("0") def gv_to_str(game_version: int) -> str: """Turn a game version with integer representation to semantic versioning""" split_gv = str(game_version).zfill(6) split_gv = [str(int(split_gv[i : i + 2])) for i in range(0, len(split_gv), 2)] return ".".join(split_gv) def load_json(json_path: str) -> Any: """Load a json file""" return json.loads(read_file_string(json_path)) def is_jp(save_stats: dict[str, Any]) -> bool: """Check if the save is a Japanese save""" return save_stats["version"] == "jp" def check_data_is_jp(save_stats: dict[str, Any]) -> bool: """Check if the save data is a Japanese save, checking the config file""" if config_manager.get_config_value_category("EDITOR", "ONLY_GET_EN_DATA"): return False return is_jp(save_stats) def check_managed_items(save_stats: dict[str, Any], path: str) -> None: """Check if the user has untracked bannable items""" info = user_info.UserInfo(save_stats["inquiry_code"]) if info.has_managed_items(): upload = ( user_input_handler.colored_input( "You have untracked bannable items that need to be uploaded. Do you want to upload them now? (&y&/&n&) (I recommend saying &y& to avoid bans):" ) == "y" ) if upload: server_handler.meta_data_upload_handler(save_stats, path) colored_text("&Uploaded meta data", new=GREEN) else: delete = ( user_input_handler.colored_input( "Do you want to remove your item logs? (&y&/&n&):" ) == "y" ) if delete: info.clear_managed_items() colored_text("&Removed item logs", new=GREEN) def exit_editor(): """Exit the editor""" sys.exit(0) def check_changes(_: Any): """ Check if the user wants to exit the editor Args: _ (Any): Unused """ try: save_path = get_save_path() except Exception: return temp_file_path = os.path.join( config_manager.get_app_data_folder(), "SAVE_DATA_temp" ) if not os.path.exists(temp_file_path): return is_identical = are_identical_files(save_path, temp_file_path) if is_identical: return ask_save_changes() def exit_check_changes(_: Any = None): check_changes(None) exit_editor() def ask_save_changes(): """ Ask if the user wants to save the changes """ save = ( user_input_handler.colored_input( "You have unsaved changes. Would you like to save them? (&y&/&n&):" ) == "y" ) if save: current_path = get_save_path() temp_file_path = os.path.join( config_manager.get_app_data_folder(), "SAVE_DATA_temp" ) if os.path.exists(temp_file_path): data = read_file_bytes(temp_file_path) save_stats = parse_save.start_parse(data, get_country_code(data)) check_managed_items(save_stats, temp_file_path) write_file_bytes(current_path, read_file_bytes(temp_file_path)) colored_text( f"Save data saved to &{current_path}&", base=GREEN, new=WHITE, ) def are_identical_files(file1: str, file2: str) -> bool: """Check if two files are identical""" return filecmp.cmp(file1, file2) def check_cat_ids(cat_ids: list[int], save_stats: dict[str, Any]) -> list[int]: """Check if a list of cat ids is valid""" new_cat_ids: list[int] = [] for cat_id in cat_ids: if cat_id > len(save_stats["cats"]) - 1: colored_text(f"Invalid cat id {cat_id}", base=RED) continue new_cat_ids.append(cat_id) return new_cat_ids def error_text(text: str): """Print error text""" colored_text(text, base=RED) def is_android() -> bool: """Check if the user is on android""" return "ANDROID_ROOT" in os.environ def colored_text( text: str, base: str = WHITE, new: str = DARK_YELLOW, split_char: str = "&", end: str = "\n", ): """Print text with colors""" color_new = colored.fg(new) # type: ignore color_base = colored.fg(base) # type: ignore color_reset = colored.fg(WHITE) # type: ignore text_split: list[str] = split_text(text, split_char) for i, text_section in enumerate(text_split): if i % 2: print(f"{color_new}{text_section}{color_base}", end="") else: print(f"{color_base}{text_section}{color_base}", end="") print(color_reset, end=end) def split_text(text: str, split_char: str = "&") -> list[str]: """Split text on split_char, allowing for escaped split chars""" text_split: list[str] = [] current_string = "" skip = 0 for i, char in enumerate(text): if skip > 0: skip -= 1 continue if char == "\\": if text[i + 1] == split_char: current_string += split_char skip = 1 continue if char == split_char: text_split.append(current_string) current_string = "" else: current_string += char text_split.append(current_string) return text_split def colored_list( items: list[str], extra_data: Any = None, index: bool = True, offset: Union[None, int] = None, ): """Print a list with colors and extra data if provided""" final = "" for i, item in enumerate(items): if index: final += f"{i+1}. " final += f"&{item}&" if extra_data: if extra_data[i] is not None: if isinstance(offset, int) and isinstance(extra_data[i], int): final += f" &:& {extra_data[i]+offset}" else: final += f" &:& {extra_data[i]}" final += "\n" final = final.rstrip("\n") colored_text(final) def calculate_user_rank(save_stats: dict[str, Any]): """Calculate the user rank""" user_rank = 0 for cat_id, cat_flag in enumerate(save_stats["cats"]): if cat_flag == 0: continue user_rank += save_stats["cat_upgrades"]["Base"][cat_id] + 1 user_rank += save_stats["cat_upgrades"]["Plus"][cat_id] for skill_id in range(len(save_stats["blue_upgrades"]["Base"])): if skill_id == 1: continue user_rank += save_stats["blue_upgrades"]["Base"][skill_id] + 1 user_rank += save_stats["blue_upgrades"]["Plus"][skill_id] return user_rank def write_save_data(save_data: bytes, country_code: str, path: str, prompt: bool): """Patch the save data and write it""" save_data = patcher.patch_save_data(save_data, country_code) if prompt: new_path = save_file("Save File", get_save_file_filetype(), path) if new_path is None: colored_text("Save cancelled", new=RED) return path = new_path write_file_bytes(path, save_data) colored_text(f"Saved to: &{os.path.abspath(path)}&", new=GREEN) return save_data def select_dir(title: str, default_dir: str) -> str: """ Select a directory from the user Args: title (str): Title of the dialog default_dir (str): Default directory to select Returns: str: Selected directory """ if not has_tkinter(): return default_dir from tkinter import filedialog # type: ignore root = setup_tk() dir_path = filedialog.askdirectory(title=title, initialdir=default_dir, parent=root) return dir_path def has_tkinter() -> bool: """Check if tkinter is installed""" try: import tkinter # type: ignore except ImportError: colored_text("tkinter is not installed", new=RED) return False try: setup_tk() except tkinter.TclError: colored_text("error setting up tkinter", new=RED) return False return True def setup_tk() -> Any: """ Setup the tkinter window Returns: Tk: Tkinter window """ from tkinter import Tk root = Tk() root.withdraw() root.wm_attributes("-topmost", 1) # type: ignore return root def run_in_parallel(fns: list[Process]) -> None: """ Run a list of functions in parallel Args: fns (list[Process]): List of functions to run in parallel """ proc: list[Process] = [] for fn in fns: fn.start() proc.append(fn) for p in proc: p.join() def run_in_background(func: Callable[..., Any]) -> None: """ Run a function in the background Args: fn (Callable[..., Any]): Function to run in the background """ Process(target=func).start() def get_cc(save_stats: dict[str, Any]) -> str: """Get the country code""" if is_jp(save_stats): return "jp" return "en" def get_lang(jp: bool) -> str: """Get the language code""" if jp: return "ja" return "en" def get_save_path_home() -> str: """ Get the save path Returns: str: Save path """ save_name = get_default_save_name() if config_manager.get_config_value("FIXED_SAVE_PATH"): path = os.path.join(get_home_path(), "bc_saves", os.path.basename(save_name)) create_dirs(os.path.dirname(path)) return path return save_name def save_file( title: str, file_types: list[tuple[str, str]], path: str ) -> Optional[str]: """Save a file with tkinter""" if not has_tkinter(): return path setup_tk() from tkinter import filedialog try: path_d = filedialog.asksaveasfile( mode="w", confirmoverwrite=True, initialfile=os.path.basename(path), filetypes=file_types, title=title, ) if not path_d: return None except PermissionError: print( colored_text( "Permission denied. Make sure the file is not in use", base=RED ) ) exit_editor() return return path_d.name def select_file( title: str, file_types: list[tuple[str, str]], default_dir: str = "", initial_file: str = "", ) -> str: """Select a file with tkinter""" if not has_tkinter(): path = user_input_handler.colored_input( f"Enter the path to the file ({title}): " ) if not os.path.isfile(path): colored_text("Invalid path", new=RED) return "" return path setup_tk() from tkinter import filedialog file_path = filedialog.askopenfilename( initialdir=default_dir, title=title, filetypes=file_types, initialfile=initial_file, ) return file_path def get_home_path() -> str: """ Get the home path Returns: str: Home path """ return os.path.expanduser("~") def get_default_save_name() -> str: """ Get the default save name Returns: str: Default save name """ save_name = config_manager.get_config_value("DEFAULT_SAVE_FILE_PATH") if not save_name: save_name = "SAVE_DATA" return save_name def load_save_file(path: str) -> dict[str, Any]: """Load a save file, get the country code, create a backup and parse the save data""" save_data = read_file_bytes(path) country_code = get_country_code(save_data) colored_text(f"Game version: &{country_code}&") save_stats = parse_save.start_parse(save_data, country_code) if config_manager.get_config_value_category("START_UP", "CREATE_BACKUP"): write_file_bytes(path + "_backup", save_data) colored_text( f"Backup created at: &{os.path.abspath(path + '_backup')}&", new=GREEN ) return { "save_data": save_data, "country_code": country_code, "save_stats": save_stats, } def get_country_code(save_data: bytes) -> str: """Ask the user for their country code if it cannot be detected""" country_code = patcher.detect_game_version(save_data) if country_code is None: country_code = ask_cc() return country_code def ask_cc(): """Ask the user for their country code""" default_gv = config_manager.get_config_value("DEFAULT_COUNTRY_CODE") if default_gv: if len(default_gv) == 2: colored_text(f"Using default country code: &{default_gv}&") return default_gv country_code = user_input_handler.colored_input( "Enter your country code (&en&, &jp&, &kr&, &tw&):" ) return country_code def export_json(save_stats: dict[str, Any], path: str) -> None: """Export the save stats to a json file""" ordered_data = parse_save.re_order(save_stats) if os.path.isdir(path): path = os.path.join(path, f"{get_save_path_home()}.json") write_file_string(path, json.dumps(ordered_data, indent=4)) colored_text(f"Successfully wrote json to &{os.path.abspath(path)}&") def load_json_handler(json_path: str) -> Union[None, str]: """Load a save_data json file and serialise it""" save_stats = load_json(json_path) save_data = serialise_save.start_serialize(save_stats) save_data = patcher.patch_save_data(save_data, save_stats["version"]) path = save_file( "Save file", get_save_file_filetype(), os.path.join(os.path.dirname(json_path), get_save_path_home()), ) if path is None: return None write_file_bytes(path, save_data) return path def format_text(text: list[str]) -> list[str]: for i, order in enumerate(text): if order.startswith("bcsfe:"): try: counter = int(order.split(":")[1]) except ValueError: counter = 0 text[i] = f"bcsfe:{counter + 1}" break else: text.append("bcsfe:1") return text
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/helper.py
0.599954
0.167968
helper.py
pypi
import collections import datetime import enum import json import struct import traceback from typing import Any, Optional, Union from . import helper from . import updater address = 0 save_data_g = None def re_order(data: dict[str, Any]) -> collections.OrderedDict[str, Any]: """Move all unknown vals to the bottom of the json""" priority: list[str] = json.loads( helper.read_file_string(helper.get_file("order.json")) ) ordered_data = collections.OrderedDict(data) for item in ordered_data.copy(): if "unknown" in item: ordered_data.move_to_end(item) for i in range(len(priority)): ordered_data.move_to_end(priority[len(priority) - 1 - i], False) return ordered_data def set_address(val: int): """Set the address to a specific value""" global address address = val def next_int_len(number: int) -> dict[str, int]: """Get the next int of a specified byte length from the save file""" if number < 0: raise Exception("Invalid number") if save_data_g is None: raise Exception("Invalid save data") if number > len(save_data_g): raise Exception("Byte length is greater than the length of the save data") val = convert_little(save_data_g[address : address + number]) data: dict[str, int] = {} set_address(address + number) data["Value"] = val data["Length"] = number return data def generate_empty_len(length: int) -> dict[str, int]: """Generate an empty dict with a length and value of 0""" data: dict[str, int] = {} data["Length"] = length data["Value"] = 0 return data def next_int(number: int) -> int: return next_int_len(number)["Value"] def skip(number: int): """Skip a number of bytes""" set_address(address + number) def convert_little(byte_data: bytes) -> int: """Convert a byte array to an int in little endian""" return int.from_bytes(byte_data, byteorder="little", signed=False) def get_time_data_skip(dst_flag: bool) -> dict[str, Any]: year = next_int(4) year_2 = next_int(4) month = next_int(4) month_2 = next_int(4) day = next_int(4) day_2 = next_int(4) time_stamp = get_double() hour = next_int(4) minute = next_int(4) second = next_int(4) dst = 0 if dst_flag: dst = next_int(1) time = datetime.datetime(year, month, day, hour, minute, second) return { "time": time.isoformat(), "time_stamp": time_stamp, "dst": dst, "duplicate": {"yy": year_2, "mm": month_2, "dd": day_2}, } def get_time_data(dst_flag: bool) -> str: if dst_flag: _ = next_int(1) year = next_int(4) month = next_int(4) day = next_int(4) hour = next_int(4) minute = next_int(4) second = next_int(4) time = datetime.datetime(year, month, day, hour, minute, second) return time.isoformat() def get_length_data( length_bytes: int = 4, separator: int = 4, length: Union[int, None] = None ) -> list[int]: data: list[int] = [] if length is None: length = next_int(length_bytes) if save_data_g is None: raise Exception("Invalid save data") if length > len(save_data_g): raise Exception("Length too large") for _ in range(length): data.append(next_int(separator)) return data def get_length_doubles( length_bytes: int = 4, length: Union[int, None] = None ) -> list[float]: data: list[float] = [] if length is None: length = next_int(length_bytes) if save_data_g is None: raise Exception("Invalid save data") if length > len(save_data_g): raise Exception("Length too large") for _ in range(length): data.append(get_double()) return data def get_equip_slots() -> list[list[int]]: length = next_int(1) data = get_length_data(1, length=length * 10) slots: list[list[int]] = [] for i in range(length): start_pos = 10 * i end_pos = 10 * (i + 1) slots.append(data[start_pos:end_pos]) data = slots return data def get_main_story_levels() -> dict[str, Any]: chapter_progress: list[int] = [] for _ in range(10): chapter_progress.append(next_int(4)) times_cleared: list[list[int]] = [] for _ in range(10): chapter_times: list[int] = [] for _ in range(51): chapter_times.append(next_int(4)) times_cleared.append(chapter_times) times_cleared_dict = times_cleared return { "Chapter Progress": chapter_progress, "Times Cleared": times_cleared_dict, } def get_treasures() -> list[list[int]]: treasures: list[list[int]] = [] for _ in range(10): chapter: list[int] = [] for _ in range(49): chapter.append(next_int(4)) treasures.append(chapter) return treasures def get_cat_upgrades() -> dict[str, Any]: length = next_int(4) data = get_length_data(4, 2, length * 2) base_levels = data[1::2] plus_levels = data[0::2] data_dict = {"Base": base_levels, "Plus": plus_levels} return data_dict def get_blue_upgrades() -> dict[str, Any]: length = 11 data = get_length_data(4, 2, length * 2) base_levels = data[1::2] plus_levels = data[0::2] data_dict = {"Base": base_levels, "Plus": plus_levels} return data_dict def get_utf8_string(length: Union[int, None] = None) -> str: data = get_length_data(4, 1, length) data = bytes(data).decode("utf-8") return data def read_variable_length_int() -> int: """ Read a variable length int from the save file Returns: int: The value of the variable length int """ i = 0 for _ in range(4): i_3 = i << 7 read = next_int(1) i = i_3 | (read & 127) if (read & 128) == 0: return i return i def load_bonus_hash() -> tuple[dict[int, int], dict[int, int]]: """ Get the variable data from the save file Returns: tuple[dict[int, int], dict[int, int]]: The variable data """ length_1 = read_variable_length_int() data_1: dict[int, int] = {} for _ in range(length_1): key = read_variable_length_int() val = read_variable_length_int() data_1[key] = val length_2 = read_variable_length_int() data_2: dict[int, int] = {} for _ in range(length_2): key = read_variable_length_int() val = next_int(1) data_2[key] = val return (data_1, data_2) def get_event_stages_current() -> dict[str, Any]: unknown_val = next_int(1) total_sub_chapters = next_int(2) * unknown_val stars_per_sub_chapter = next_int(1) stages_per_sub_chapter = next_int(1) clear_progress = get_length_data(1, 1, total_sub_chapters * stars_per_sub_chapter) clear_progress = list(helper.chunks(clear_progress, stars_per_sub_chapter)) return { "Clear": clear_progress, "unknown": unknown_val, "total": total_sub_chapters, "stages": stages_per_sub_chapter, "stars": stars_per_sub_chapter, } def get_event_stages(lengths: dict[str, Any]) -> dict[str, Any]: total_sub_chapters = lengths["total"] stars_per_sub_chapter = lengths["stars"] stages_per_sub_chapter = lengths["stages"] clear_progress = get_length_data(1, 1, total_sub_chapters * stars_per_sub_chapter) clear_amount = get_length_data( 1, 2, total_sub_chapters * stages_per_sub_chapter * stars_per_sub_chapter ) unlock_next = get_length_data(1, 1, total_sub_chapters * stars_per_sub_chapter) clear_progress = list(helper.chunks(clear_progress, stars_per_sub_chapter)) clear_amount = list( helper.chunks(clear_amount, stages_per_sub_chapter * stars_per_sub_chapter) ) unlock_next = list(helper.chunks(unlock_next, stars_per_sub_chapter)) clear_amount_sep: list[list[list[int]]] = [] for clear_amount_val in clear_amount: sub_chapter_clears: list[list[int]] = [] for j in range(stars_per_sub_chapter): sub_chapter_clears.append(clear_amount_val[j::stars_per_sub_chapter]) clear_amount_sep.append(sub_chapter_clears) clear_amount = clear_amount_sep return { "Value": { "clear_progress": clear_progress, "clear_amount": clear_amount, "unlock_next": unlock_next, }, "Lengths": lengths, } def get_purchase_receipts() -> list[dict[str, Any]]: total_strs = next_int(4) data: list[dict[Any, Any]] = [] for _ in range(total_strs): data_dict: dict[str, Any] = {} data_dict["unknown_4"] = next_int(4) strings = next_int(4) item_packs: list[Any] = [] for _ in range(strings): strings_dict = {} strings_dict["Value"] = get_utf8_string() strings_dict["unknown_1"] = next_int(1) item_packs.append(strings_dict) data_dict["item_packs"] = item_packs data.append(data_dict) return data def get_dojo_data_maybe() -> dict[int, Any]: # everything here is speculative and might not be correct dojo_data: dict[int, Any] = {} total_subchapters = next_int(4) for _ in range(total_subchapters): subchapter_id = next_int(4) subchapter_data = {} total_stages = next_int(4) for _ in range(total_stages): stage_id = next_int(4) score = next_int(4) subchapter_data[stage_id] = score dojo_data[subchapter_id] = subchapter_data return dojo_data def get_data_before_outbreaks() -> list[dict[str, Any]]: data: list[dict[str, Any]] = [] length = next_int_len(4) data.append(length) for _ in range(length["Value"]): length_2 = next_int_len(4) data.append(length_2) length_3 = next_int_len(4) data.append(length_3) for _ in range(length_3["Value"]): val_1 = next_int_len(4) data.append(val_1) val_2 = next_int_len(1) data.append(val_2) length = next_int_len(4) data.append(length) for _ in range(length["Value"]): val_1 = next_int_len(4) data.append(val_1) val_2 = next_int_len(1) data.append(val_2) length = next_int_len(4) data.append(length) for _ in range(length["Value"]): val_1 = next_int_len(4) data.append(val_1) val_2 = next_int_len(4) data.append(val_2) length = next_int_len(4) data.append(length) val_1 = next_int_len(4) data.append(val_1) for _ in range(length["Value"]): val_2 = next_int_len(8) data.append(val_2) val_3 = next_int_len(4) data.append(val_3) gv_56 = next_int_len(4) # 0x38 data.append(gv_56) val_1 = next_int_len(1) data.append(val_1) length = next_int_len(4) data.append(length) val_2 = next_int_len(4) data.append(val_2) for _ in range(length["Value"]): val_3 = next_int_len(1) data.append(val_3) val_4 = next_int_len(4) data.append(val_4) return data def get_outbreaks() -> dict[int, Any]: chapters_count = next_int(4) outbreaks: dict[int, Any] = {} for _ in range(chapters_count): chapter_id = next_int(4) stages_count = next_int(4) chapter = {} for _ in range(stages_count): stage_id = next_int(4) outbreak_cleared_flag = next_int(1) chapter[stage_id] = outbreak_cleared_flag outbreaks[chapter_id] = chapter return outbreaks def get_mission_data_maybe() -> list[dict[str, int]]: data: list[dict[str, int]] = [] length = next_int_len(4) data.append(length) for _ in range(length["Value"]): val_1 = next_int_len(4) data.append(val_1) val_2 = next_int_len(1) data.append(val_2) return data def get_unlock_popups() -> tuple[list[tuple[int, int]], dict[str, int]]: """Get unlock popups and unlock flags""" length = next_int_len(4) val_1 = next_int_len(4) data: list[tuple[int, int]] = [] for _ in range(length["Value"]): flag = next_int(1) popup_id = next_int(4) data.append((popup_id, flag)) return data, val_1 def get_unknown_data(): data: list[dict[str, int]] = [] length = next_int_len(4) data.append(length) for _ in range(length["Value"]): length_2 = next_int_len(4) data.append(length_2) val_1 = next_int_len(4) data.append(val_1) unknown_val_2 = next_int_len(1) data.append(unknown_val_2) length = next_int_len(4) data.append(length) for _ in range(length["Value"]): val_1 = next_int_len(4) data.append(val_1) val_2 = next_int_len(1) data.append(val_2) return data def get_cat_cannon_data() -> dict[int, dict[str, Any]]: length = next_int(4) cannon_data: dict[int, dict[str, Any]] = {} for _ in range(length): cannon: dict[str, Any] = {} cannon_id = next_int(4) len_val = next_int(4) unlock_flag = next_int(4) effect_level = next_int(4) foundation_level = 0 style_level = 0 if len_val == 4: foundation_level = next_int(4) style_level = next_int(4) cannon["levels"] = { "effect": effect_level, "foundation": foundation_level, "style": style_level, } cannon["unlock_flag"] = unlock_flag cannon["len_val"] = len_val cannon_data[cannon_id] = cannon return cannon_data def get_data_near_ht() -> list[dict[str, int]]: data: list[dict[str, int]] = [] val = next_int_len(1) data.append(val) for _ in range(val["Value"]): unknown_val_2 = next_int_len(3) data.append(unknown_val_2) unknown_val_3 = next_int_len(8) data.append(unknown_val_3) gv_64 = next_int_len(4) # 0x40 data.append(gv_64) length = next_int_len(4) data.append(length) val_1 = next_int_len(4) data.append(val_1) val_3 = {"Value": 0} for _ in range(length["Value"]): val_2 = next_int_len(4) data.append(val_2) val_3 = next_int_len(4) data.append(val_3) val_1 = next_int_len(4) data.append(val_1) val_4 = {"Value": 0} for _ in range(val_3["Value"]): length = next_int_len(4) data.append(length) for _ in range(length["Value"]): val_2 = next_int_len(4) data.append(val_2) val_4 = next_int_len(4) data.append(val_4) val_1 = next_int_len(4) data.append(val_1) for _ in range(val_4["Value"]): val_2 = next_int_len(1) data.append(val_2) val_3 = next_int_len(4) data.append(val_3) return data def get_ht_it_data() -> dict[str, Any]: total = next_int(4) stars = next_int(4) current_data: dict[str, Any] = {} current_data = {"total": total, "stars": stars, "selected": []} for _ in range(total): for _ in range(stars): current_data["selected"].append(next_int(4)) current_data["selected"] = list(helper.chunks(current_data["selected"], 4)) total = next_int(4) stars = next_int(4) progress_data: dict[str, Any] = {} progress_data = { "total": total, "stars": stars, "clear_progress": [], "clear_amount": [], "unlock_next": [], } for _ in range(total): for _ in range(stars): progress_data["clear_progress"].append(next_int(4)) progress_data["clear_progress"] = list( helper.chunks(progress_data["clear_progress"], 4) ) total = next_int(4) stages = next_int(4) progress_data["stages"] = stages stars = next_int(4) clear_amount = get_length_data(4, 4, total * stages * stars) clear_amount = list(helper.chunks(clear_amount, stages * stars)) clear_amount_sep: list[list[list[int]]] = [] for clear_amount_val in clear_amount: sub_chapter_clears: list[list[int]] = [] for j in range(stars): sub_chapter_clears.append(clear_amount_val[j::stars]) clear_amount_sep.append(sub_chapter_clears) progress_data["clear_amount"] = clear_amount_sep data: list[dict[str, int]] = [] length = next_int_len(4) data.append(length) length_2 = next_int_len(4) data.append(length_2) for _ in range(length["Value"]): for _ in range(length_2["Value"]): data.append(next_int_len(4)) return {"data": data, "current": current_data, "progress": progress_data} def get_mission_segment() -> dict[int, int]: missions: dict[int, int] = {} length = next_int(4) for _ in range(length): mission_id = next_int(4) mission_value = next_int(4) missions[mission_id] = mission_value return missions def get_mission_data() -> dict[str, Any]: missions: dict[str, dict[int, int]] = {} missions["states"] = get_mission_segment() missions["requirements"] = get_mission_segment() missions["clear_types"] = get_mission_segment() missions["gamatoto"] = get_mission_segment() missions["nyancombo"] = get_mission_segment() missions["user_rank"] = get_mission_segment() missions["expiry"] = get_mission_segment() missions["preparing"] = get_mission_segment() return missions def get_data_after_challenge() -> list[dict[str, int]]: data: list[dict[str, int]] = [] val_22 = next_int_len(4) data.append(val_22) gv_69 = next_int_len(4) # 0x45 data.append(gv_69) val_54 = next_int_len(4) data.append(val_54) val_118 = next_int_len(4) data.append(val_118) for _ in range(val_54["Value"]): val_15 = next_int_len(1) data.append(val_15) val_118 = next_int_len(4) data.append(val_118) val_54 = next_int_len(4) data.append(val_54) for _ in range(val_118["Value"]): val_65 = next_int_len(8) data.append(val_65) val_54 = next_int_len(4) data.append(val_54) return data def get_data_after_tower() -> list[dict[str, int]]: data: list[dict[str, int]] = [] gv_66 = next_int_len(4) # 0x42 data.append(gv_66) data.append(next_int_len(4 * 2)) data.append(next_int_len(1 * 3)) data.append(next_int_len(4 * 3)) data.append(next_int_len(1 * 3)) data.append(next_int_len(1)) data.append(next_int_len(8)) val_54 = next_int_len(4) data.append(val_54) val_61 = next_int_len(4) data.append(val_61) for _ in range(val_54["Value"]): for _ in range(val_61["Value"]): val_22 = next_int_len(4) data.append(val_22) val_54 = next_int_len(4) data.append(val_54) val_61 = next_int_len(4) data.append(val_61) for _ in range(val_54["Value"]): for _ in range(val_61["Value"]): val_22 = next_int_len(4) data.append(val_22) val_54 = next_int_len(4) data.append(val_54) val_61 = next_int_len(4) data.append(val_61) val_57 = next_int_len(4) data.append(val_57) for _ in range(val_54["Value"]): for _ in range(val_61["Value"]): for _ in range(val_57["Value"]): val_22 = next_int_len(4) data.append(val_22) val_54 = next_int_len(4) data.append(val_54) val_61 = next_int_len(4) data.append(val_61) for _ in range(val_54["Value"]): for _ in range(val_61["Value"]): val_22 = next_int_len(4) data.append(val_22) val_54 = next_int_len(4) data.append(val_54) for _ in range(val_54["Value"] - 1): val_22 = next_int_len(4) data.append(val_22) return data def get_uncanny_current() -> dict[str, Any]: total_subchapters = next_int(4) stages_per_subchapter = next_int(4) stars = next_int(4) if total_subchapters < 1: next_int(4) raise Exception("Invalid total subchapters") else: clear_progress = get_length_data(4, 4, total_subchapters * stars) clear_progress = list(helper.chunks(clear_progress, stars)) return { "Clear": clear_progress, "total": total_subchapters, "stages": stages_per_subchapter, "stars": stars, } def get_event_timed_scores() -> dict[str, Any]: total_subchapters = next_int(4) stages_per_subchapter = next_int(4) stars = next_int(4) score = get_length_data(4, 4, total_subchapters * stars * stages_per_subchapter) score = list(helper.chunks(score, stars * stages_per_subchapter)) return { "Score": score, "total": total_subchapters, "stages": stages_per_subchapter, "stars": stars, } def get_uncanny_progress(lengths: dict[str, Any]) -> dict[str, Any]: total = lengths["total"] stars = lengths["stars"] stages = lengths["stages"] clear_progress = get_length_data(4, 4, total * stars) clear_progress = list(helper.chunks(clear_progress, stars)) clear_amount = get_length_data(4, 4, total * stages * stars) unlock_next = get_length_data(4, 4, total * stars) clear_amount = list(helper.chunks(clear_amount, stages * stars)) unlock_next = list(helper.chunks(unlock_next, stars)) clear_amount_sep: list[list[list[int]]] = [] for clear_amount_val in clear_amount: sub_chapter_clears: list[list[int]] = [] for j in range(stars): sub_chapter_clears.append(clear_amount_val[j::stars]) clear_amount_sep.append(sub_chapter_clears) clear_amount = clear_amount_sep return { "Value": { "clear_progress": clear_progress, "clear_amount": clear_amount, "unlock_next": unlock_next, }, "Lengths": lengths, } def get_data_after_uncanny() -> dict[str, Any]: lengths = get_uncanny_current() return {"current": lengths, "progress": get_uncanny_progress(lengths)} def get_gold_pass_data() -> dict[str, Any]: """Get gold pass related data""" data: dict[str, Any] = {} data["officer_id"] = next_int_len(4) data["renewal_times"] = next_int_len(4) data["start_date"] = get_double() data["expiry_date"] = get_double() data["unknown_2"] = get_length_doubles(length=2) data["start_date_2"] = get_double() data["expiry_date_2"] = get_double() data["unknown_3"] = get_double() data["flag_2"] = next_int_len(4) data["expiry_date_3"] = get_double() number_of_rewards = next_int(4) claimed_rewards: dict[int, int] = {} for _ in range(number_of_rewards): item_id = next_int(4) amount = next_int(4) claimed_rewards[item_id] = amount data["claimed_rewards"] = claimed_rewards data["unknown_4"] = next_int_len(8) data["unknown_5"] = next_int_len(1) data["unknown_6"] = next_int_len(1) return data def get_talent_data() -> dict[int, list[dict[str, int]]]: total_cats = next_int(4) talents: dict[int, list[dict[str, int]]] = {} for _ in range(total_cats): cat_id = next_int(4) cat_data: list[dict[str, int]] = [] number_of_talents = next_int(4) for _ in range(number_of_talents): talent_id = next_int(4) talent_level = next_int(4) talent = {"id": talent_id, "level": talent_level} cat_data.append(talent) talents[cat_id] = cat_data return talents def get_medals() -> dict[str, Any]: medal_data_1 = get_length_data(2, 2) total_medals = next_int(2) medals = {} for _ in range(total_medals): medal_id = next_int(2) medal_flag = next_int(1) medals[medal_id] = medal_flag return {"medal_data_1": medal_data_1, "medal_data_2": medals} def get_data_after_medals() -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(1)) val_2 = next_int_len(2) data.append(val_2) val_3 = next_int_len(2) data.append(val_3) for _ in range(val_2["Value"]): val_1 = next_int_len(1) data.append(val_1) val_3 = next_int_len(2) data.append(val_3) val_2 = next_int_len(2) data.append(val_2) val_6c = val_3 for _ in range(val_6c["Value"]): val_2 = next_int_len(2) data.append(val_2) for _ in range(val_2["Value"]): val_3 = next_int_len(2) data.append(val_3) val_4 = next_int_len(2) data.append(val_4) val_2 = next_int_len(2) data.append(val_2) val_7c = val_2 for _ in range(val_7c["Value"]): val_2 = next_int_len(2) data.append(val_2) val_12 = next_int_len(4) data.append(val_12) data.append(next_int_len(4)) # 90000 data.append(next_int_len(4)) data.append(next_int_len(4)) data.append(next_int_len(8)) data.append(next_int_len(4)) # 90100 val_18 = next_int_len(2) data.append(val_18) for _ in range(val_18["Value"]): data.append(next_int_len(4)) data.append(next_int_len(4)) data.append(next_int_len(2)) data.append(next_int_len(4)) data.append(next_int_len(4)) data.append(next_int_len(4)) data.append(next_int_len(2)) val_18 = next_int_len(2) data.append(val_18) for _ in range(val_18["Value"]): val_32 = next_int_len(4) data.append(val_32) val_48 = next_int_len(8) data.append(val_48) return data def get_data_after_after_leadership(dst: bool) -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(4)) if not dst: data.append(next_int_len(5)) if dst: data.append(next_int_len(12)) else: data.append(next_int_len(7)) return data def get_legend_quest_current() -> dict[str, Any]: total_subchapters = next_int(1) stages_per_subchapter = next_int(1) stars = next_int(1) clear_progress = get_length_data(4, 1, total_subchapters * stars) clear_progress = list(helper.chunks(clear_progress, stars)) return { "Clear": clear_progress, "total": total_subchapters, "stages": stages_per_subchapter, "stars": stars, } def get_legend_quest_progress(lengths: dict[str, Any]): total = lengths["total"] stars = lengths["stars"] stages = lengths["stages"] clear_progress = get_length_data(4, 1, total * stars) clear_progress = list(helper.chunks(clear_progress, stars)) clear_amount = get_length_data(4, 2, total * stars * stages) tries = get_length_data(4, 2, total * stars * stages) unlock_next = get_length_data(4, 1, total * stars) unlock_next = list(helper.chunks(unlock_next, stars)) clear_amount = list(helper.chunks(clear_amount, stages * stars)) tries = list(helper.chunks(tries, stages * stars)) clear_amount_sep: list[list[list[int]]] = [] stage_ids_sep: list[list[list[int]]] = [] for clear_amount_val in clear_amount: sub_chapter_clears: list[list[int]] = [] for j in range(stars): sub_chapter_clears.append(clear_amount_val[j::stars]) clear_amount_sep.append(sub_chapter_clears) clear_amount = clear_amount_sep for stage_id_val in tries: sub_chapter_ids: list[list[int]] = [] for j in range(stars): sub_chapter_ids.append(stage_id_val[j::stars]) stage_ids_sep.append(sub_chapter_ids) tries = stage_ids_sep return { "Value": { "clear_progress": clear_progress, "clear_amount": clear_amount, "tries": tries, "unlock_next": unlock_next, }, "Lengths": lengths, } def get_data_after_leadership() -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(2)) data.append(next_int_len(1)) data.append(next_int_len(4)) # 80600 val_54 = next_int_len(4) data.append(val_54) if val_54["Value"] > 0: val_118 = next_int_len(4) data.append(val_118) val_55 = next_int_len(4) data.append(val_55) for _ in range(val_55["Value"]): val_61 = next_int_len(4) data.append(val_61) for _ in range(val_54["Value"] - 1): val_61 = next_int_len(4) data.append(val_61) val_61 = next_int_len(4) data.append(val_61) return data def get_gauntlet_current() -> dict[str, Any]: total_subchapters = next_int(2) stages_per_subchapter = next_int(1) stars = next_int(1) clear_progress = get_length_data(4, 1, total_subchapters * stars) clear_progress = list(helper.chunks(clear_progress, stars)) return { "Clear": clear_progress, "total": total_subchapters, "stages": stages_per_subchapter, "stars": stars, } def get_gauntlet_progress( lengths: dict[str, Any], unlock: bool = True ) -> dict[str, Any]: total = lengths["total"] stars = lengths["stars"] stages = lengths["stages"] clear_progress = get_length_data(4, 1, total * stars) clear_progress = list(helper.chunks(clear_progress, stars)) clear_amount = get_length_data(4, 2, total * stages * stars) unlock_next = [] if unlock: unlock_next = get_length_data(4, 1, total * stars) unlock_next = list(helper.chunks(unlock_next, stars)) clear_amount = list(helper.chunks(clear_amount, stages * stars)) clear_amount_sep: list[list[list[int]]] = [] for clear_amount_val in clear_amount: sub_chapter_clears: list[list[int]] = [] for j in range(stars): sub_chapter_clears.append(clear_amount_val[j::stars]) clear_amount_sep.append(sub_chapter_clears) clear_amount = clear_amount_sep return { "Value": { "clear_progress": clear_progress, "clear_amount": clear_amount, "unlock_next": unlock_next, }, "Lengths": lengths, } class ClearedSlots: class Slot: class Cat: def __init__(self, cat_id: int, cat_form: int): self.cat_id = cat_id self.cat_form = cat_form def to_dict(self) -> dict[str, Any]: return { "cat_id": self.cat_id, "cat_form": self.cat_form, } @staticmethod def from_dict(data: dict[str, Any]) -> "ClearedSlots.Slot.Cat": return ClearedSlots.Slot.Cat(data["cat_id"], data["cat_form"]) def __init__(self, cats: list[Cat], slot_index: int, separator: int): self.cats = cats self.slot_index = slot_index self.separator = separator def to_dict(self) -> dict[str, Any]: return { "cats": [cat.to_dict() for cat in self.cats], "slot_index": self.slot_index, "separator": self.separator, } @staticmethod def from_dict(data: dict[str, Any]): return ClearedSlots.Slot( [ClearedSlots.Slot.Cat.from_dict(cat) for cat in data["cats"]], data["slot_index"], data["separator"], ) class StageSlot: class Stage: def __init__(self, stage_id: int): self.stage_id = stage_id def to_dict(self) -> dict[str, Any]: return { "stage_id": self.stage_id, } @staticmethod def from_dict(data: dict[str, Any]) -> "ClearedSlots.StageSlot.Stage": return ClearedSlots.StageSlot.Stage(data["stage_id"]) def __init__(self, slot_index: int, stages: list[Stage]): self.slot_index = slot_index self.stages = stages def to_dict(self) -> dict[str, Any]: return { "slot_index": self.slot_index, "stages": [stage.to_dict() for stage in self.stages], } @staticmethod def from_dict(data: dict[str, Any]) -> "ClearedSlots.StageSlot": return ClearedSlots.StageSlot( data["slot_index"], [ ClearedSlots.StageSlot.Stage.from_dict(stage) for stage in data["stages"] ], ) def __init__(self, slots: list[Slot], slot_stages: list[StageSlot], end_index: int): self.slots = slots self.slot_stages = slot_stages self.end_index = end_index def to_dict(self) -> dict[str, Any]: return { "slots": [slot.to_dict() for slot in self.slots], "slot_stages": [stage.to_dict() for stage in self.slot_stages], "end_index": self.end_index, } @staticmethod def from_dict(data: dict[str, Any]) -> "ClearedSlots": return ClearedSlots( [ClearedSlots.Slot.from_dict(slot) for slot in data["slots"]], [ClearedSlots.StageSlot.from_dict(stage) for stage in data["slot_stages"]], data["end_index"], ) def get_enigma_stages() -> dict[str, Any]: """ Gets the enigma stages Returns: dict[str, Any]: The enigma stages """ enigma_data: dict[str, Any] = {} enigma_data["energy_since_1"] = next_int(4) enigma_data["energy_since_2"] = next_int(4) enigma_data["enigma_level"] = next_int(1) enigma_data["unknown_2"] = next_int(1) enigma_data["unknown_3"] = next_int(1) total_stages = next_int(1) stages: list[dict[str, Any]] = [] for _ in range(total_stages): data = {} data["level"] = next_int(4) # 0 = inferior, 1 = normal, 2 = superior data["stage_id"] = next_int(4) data["decoding_status"] = next_int( 1 ) # 0 = not decoded, 1 = decoded, 2 = revealed data["start_time"] = get_double() stages.append(data) enigma_data["stages"] = stages return enigma_data def get_cleared_slots() -> tuple[dict[str, Any], list[dict[str, int]]]: """ Returns the line ups of the cleared stages Returns: dict[str, Any]: The line ups of the cleared stages """ total_slots = next_int(2) index = next_int(2) slots: list[ClearedSlots.Slot] = [] for _ in range(total_slots): cats: list[ClearedSlots.Slot.Cat] = [] for _ in range(10): cat_id = next_int(2) cat_form = next_int(1) cat_data = ClearedSlots.Slot.Cat(cat_id, cat_form) cats.append(cat_data) separator = next_int(3) slot = ClearedSlots.Slot(cats, index, separator) index = next_int(2) slots.append(slot) cleared_slot_data: list[ClearedSlots.StageSlot] = [] index_2 = next_int(2) for _ in range(index): total_stages = next_int(2) stages: list[ClearedSlots.StageSlot.Stage] = [] for _ in range(total_stages): stage_id = next_int(4) stage = ClearedSlots.StageSlot.Stage(stage_id) stages.append(stage) stages_data = ClearedSlots.StageSlot(index_2, stages) index_2 = next_int(2) cleared_slot_data.append(stages_data) data_2: list[dict[str, int]] = [] data_2.append({"Value": index_2, "Length": 2}) for _ in range(index_2): val_18 = next_int_len(2) data_2.append(val_18) val_4 = next_int_len(1) data_2.append(val_4) data_2.append(next_int_len(4)) # 90400 cleared_slots = ClearedSlots(slots, cleared_slot_data, index) return cleared_slots.to_dict(), data_2 def get_data_after_gauntlets() -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(4 * 2)) data.append(next_int_len(1 * 3)) val_4 = next_int_len(1) data.append(val_4) for _ in range(val_4["Value"]): data.append(next_int_len(4)) data.append(next_int_len(4)) data.append(next_int_len(1)) data.append(next_int_len(8)) return data def get_data_after_orbs() -> list[dict[str, int]]: data: list[dict[str, int]] = [] val_31 = next_int_len(2) data.append(val_31) for _ in range(val_31["Value"]): val_18 = next_int_len(2) data.append(val_18) val_5 = next_int_len(1) data.append(val_5) for _ in range(val_5["Value"]): val_6 = next_int_len(1) data.append(val_6) val_18 = next_int_len(2) data.append(val_18) data.append(next_int_len(1)) data.append(next_int_len(4)) # 90700 length = next_int_len(2) data.append(length) for _ in range(length["Value"]): data.append(next_int_len(4)) data.append(next_int_len(1 * 10)) data.append(next_int_len(4)) # 90800 data.append(next_int_len(1)) return data def get_cat_shrine_data() -> dict[str, Any]: """ Gets the cat shrine data Returns: dict[str, Any]: The cat shrine data """ stamp_1 = get_double() stamp_2 = get_double() shrine_gone = next_int(1) flags: list[int] = get_length_data(1, 1) xp_offering = next_int(4) return { "flags": flags, "xp_offering": xp_offering, "shrine_gone": shrine_gone, "stamp_1": stamp_1, "stamp_2": stamp_2, } def get_slot_names(save_stats: dict[str, Any]) -> list[str]: total_slots = len(save_stats["slots"]) if save_stats["game_version"]["Value"] >= 110600: total_slots = next_int(1) names: list[str] = [] for _ in range(total_slots): names.append(get_utf8_string()) return names def get_talent_orbs(game_version: dict[str, Any]) -> dict[int, int]: talent_orb_data: dict[int, int] = {} total_orbs = next_int(2) for _ in range(total_orbs): orb_id = next_int(2) if game_version["Value"] < 110400: amount = next_int(1) else: amount = next_int(2) talent_orb_data[orb_id] = amount return talent_orb_data def data_after_after_gauntlets() -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(1)) data.append(next_int_len(8 * 2)) data.append(next_int_len(4)) data.append(next_int_len(1 * 2)) data.append(next_int_len(8 * 2)) data.append(next_int_len(4)) # 90500 return data def get_data_near_end_after_shards() -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(1)) data.append(next_int_len(4)) # 100600 val_2 = next_int_len(2) data.append(val_2) val_3 = next_int_len(2) data.append(val_3) for _ in range(val_2["Value"]): val_1 = next_int_len(1) data.append(val_1) val_3 = next_int_len(2) data.append(val_3) val_6c = val_3 val_2 = next_int_len(2) data.append(val_2) for _ in range(val_6c["Value"]): val_2 = next_int_len(2) data.append(val_2) for _ in range(val_2["Value"]): val_3 = next_int_len(2) data.append(val_3) val_4 = next_int_len(2) data.append(val_4) val_2 = next_int_len(2) data.append(val_2) val_7c = val_2 for _ in range(val_7c["Value"]): val_2 = next_int_len(2) data.append(val_2) val_12 = next_int_len(4) data.append(val_12) return data def get_data_near_end() -> list[dict[str, int]]: data: list[dict[str, int]] = [] val_5 = next_int_len(1) data.append(val_5) if 0 < val_5["Value"]: val_33 = next_int_len(4) data.append(val_33) if val_5["Value"] != 1: val_33 = next_int_len(4) data.append(val_33) if val_5["Value"] != 2: val_32 = val_5["Value"] + 2 for _ in range(val_32): data.append(next_int_len(4)) data.append(next_int_len(1)) data.append(next_int_len(4)) # 100400 data.append(next_int_len(8)) return data def get_aku() -> dict[str, Any]: total = next_int(2) stages = next_int(1) stars = next_int(1) return get_gauntlet_progress( {"total": total, "stages": stages, "stars": stars}, False ) def get_data_after_aku() -> list[dict[str, int]]: data_1: list[dict[str, int]] = [] val_6 = next_int_len(2) data_1.append(val_6) val_7 = next_int_len(2) data_1.append(val_7) for _ in range(val_6["Value"]): val_7 = next_int_len(2) data_1.append(val_7) for _ in range(val_7["Value"]): data_1.append(next_int_len(2)) val_7 = next_int_len(2) data_1.append(val_7) val_4c = val_7 for _ in range(val_4c["Value"]): data_1.append(next_int_len(2)) data_1.append(next_int_len(8)) val_5 = next_int_len(2) data_1.append(val_5) for _ in range(val_5["Value"]): data_1.append(next_int_len(2)) data_1.append(next_int_len(8)) data_1.append(next_int_len(1)) return data_1 def get_data_near_end_after_aku() -> list[dict[str, int]]: data_2: list[dict[str, int]] = [] val_4 = next_int_len(2) data_2.append(val_4) for _ in range(val_4["Value"]): data_2.append(next_int_len(4)) data_2.append(next_int_len(1)) data_2.append(next_int_len(1)) return data_2 def exit_parser(save_stats: dict[str, Any]) -> dict[str, Any]: save_stats["hash"] = get_utf8_string(32) return save_stats def check_gv(save_stats: dict[str, Any], game_version: int) -> dict[str, Any]: if save_stats["game_version"]["Value"] < game_version: save_stats = exit_parser(save_stats) save_stats["exit"] = True save_stats["extra_data"] = next_int_len(0) else: save_stats["exit"] = False return save_stats def get_play_time() -> dict[str, Any]: raw_val = next_int_len(4) frames = raw_val["Value"] play_time_data = helper.frames_to_time(frames) return play_time_data def start_parse(save_data: bytes, country_code: str) -> dict[str, Any]: """Start the parser and handle any exceptions.""" try: save_stats = parse_save(save_data, country_code) except Exception: # pylint: disable=broad-except helper.colored_text( f"\nError: An error has occurred while parsing your save data (address = {address}):", base=helper.RED, ) traceback.print_exc() game_version = get_game_version(save_data) if game_version < 110000: helper.colored_text( f"\nThis save is from before &11.0.0& (current save version is &{helper.gv_to_str(game_version)}&), so this is likely the cause for the issue. &The save editor is not designed to work with saves from before 11.0.0&" ) else: helper.colored_text( "\nPlease report this to &#bug-reports&, and/or &dm me your save& on discord" ) helper.exit_editor() return {} return save_stats def get_game_version(save_data: bytes) -> int: """Get the game version from the save data.""" return convert_little(save_data[0:3]) def find_date() -> int: """Find the date of the save, used because for some reason in some saves there is like 40 zero bytes before the main save data""" for _ in range(100): val = next_int(4) if val >= 2000 and val <= 3000: return address - 4 raise Exception("Could not find date") def get_dst(save_data: bytes, offset: int) -> bool: """Get if the save has daylight savings from the save data, this is used to handle jp differences.""" dst = False if save_data[offset] >= 15 and save_data[offset] <= 20: dst = True elif save_data[offset - 1] >= 15 and save_data[offset - 1] <= 20: dst = False # Offset in jp due to no dst return dst def get_double() -> float: """Get a double from the save data.""" if save_data_g is None: raise Exception("No save data loaded") data = save_data_g[address : address + 8] val = struct.unpack("d", data)[0] set_address(address + 8) return val def get_110800_data() -> list[dict[str, int]]: """ Get the data from 11.7.0 Returns: list[dict[str, int]]: The data """ data: list[dict[str, int]] = [] u_var_38 = next_int_len(1) data.append(u_var_38) return data def get_110800_data_2() -> list[dict[str, int]]: """ Get the data from 11.7.0 Returns: list[dict[str, int]]: The data """ data: list[dict[str, int]] = [] u_var_38 = next_int_len(1) data.append(u_var_38) u_var_38 = next_int_len(1) data.append(u_var_38) return data def get_110700_data() -> list[dict[str, int]]: """ Get the data from 110600 Returns: list[dict[str, int]]: The data """ data: list[dict[str, int]] = [] i_var_32 = next_int_len(4) data.append(i_var_32) for _ in range(i_var_32["Value"]): pi_var_33 = next_int_len(4) data.append(pi_var_33) f_var_54 = next_int_len(8) data.append(f_var_54) f_var_54 = next_int_len(8) data.append(f_var_54) return data def get_login_bonuses() -> dict[int, int]: """ Get the login bonuses Returns: dict[int, int]: The login bonuses """ length = next_int(4) data: dict[int, int] = {} for _ in range(length): login_id = next_int(4) data[login_id] = next_int(4) return data def get_tower_item_obtained() -> list[list[int]]: total_stars = next_int(4) total_stages = next_int(4) data: list[list[int]] = [] for _ in range(total_stars): star_data: list[int] = [] for _ in range(total_stages): star_data.append(next_int(1)) data.append(star_data) return data def get_dict( key_type: type, value_type: type, length: Optional[int] = None ) -> dict[Any, Any]: if length is None: length = next_int(4) data: dict[Any, Any] = {} for _ in range(length): if key_type == int: key = next_int(4) else: raise Exception("Invalid key type") if value_type == int: data[key] = next_int(4) elif value_type == str: data[key] = get_utf8_string() elif value_type == bool: data[key] = next_int(1) == 1 else: raise Exception("Invalid value type") return data class BackupState(enum.Enum): IDLE = 0 GO_TO_CAN_BACKUP = 1 IN_CAN_BACKUP = 2 GO_TO_CHECK_BAN = 3 IN_CHECK_BAN = 4 GO_TO_BACKUP = 5 IN_BACKUP = 6 FINISHED = 7 def get_110900_data() -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(4)) data.append(next_int_len(2)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) ivar_14 = next_int_len(1) data.append(ivar_14) for _ in range(ivar_14["Value"]): data.append(next_int_len(2)) svar6 = next_int_len(2) data.append(svar6) for _ in range(svar6["Value"]): data.append(next_int_len(2)) svar6 = next_int_len(2) data.append(svar6) for _ in range(svar6["Value"]): data.append(next_int_len(2)) data.append(next_int_len(4)) data.append(next_int_len(4)) data.append(next_int_len(4)) data.append(next_int_len(2)) data.append(next_int_len(2)) data.append(next_int_len(2)) data.append(next_int_len(2)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) svar6 = next_int_len(2) data.append(svar6) for _ in range(svar6["Value"]): data.append(next_int_len(2)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) data.append(next_int_len(1)) cvar4 = next_int_len(1) data.append(cvar4) if 0 < cvar4["Value"]: data.append(next_int_len(2)) if cvar4["Value"] != 1: data.append(next_int_len(2)) if cvar4["Value"] != 2: data.append(next_int_len(2)) if cvar4["Value"] != 3: data.append(next_int_len(2)) if cvar4["Value"] != 4: ivar32 = cvar4["Value"] + 4 for _ in range(ivar32): data.append(next_int_len(2)) return data def get_zero_legends() -> list[Any]: total_chapters = next_int(2) chapters: list[dict[str, Any]] = [] for _ in range(total_chapters): unknown_1 = next_int(1) total_stars = next_int(1) stars: list[dict[str, Any]] = [] for _ in range(total_stars): selected_stage = next_int(1) stages_cleared = next_int(1) unlock_next = next_int(1) total_stages = next_int(2) stages: list[Any] = [] for _ in range(total_stages): clear_amount = next_int(2) stages.append(clear_amount) stars.append( { "selected_stage": selected_stage, "stages_cleared": stages_cleared, "unlock_next": unlock_next, "stages": stages, } ) chapters.append( { "unknown_1": unknown_1, "stars": stars, } ) return chapters def get_120100_data() -> list[dict[str, int]]: data: list[dict[str, int]] = [] svar19 = next_int_len(2) data.append(svar19) for _ in range(svar19["Value"]): data.append(next_int_len(2)) return data def get_120200_data() -> list[dict[str, int]]: data: list[dict[str, int]] = [] data.append(next_int_len(1)) data.append(next_int_len(2)) cvar4 = next_int_len(1) data.append(cvar4) for _ in range(cvar4["Value"]): data.append(next_int_len(2)) data.append(next_int_len(2)) return data def parse_save( save_data: bytes, country_code: Union[str, None], dst: Optional[bool] = None, ) -> dict[str, Any]: """Parse the save data.""" if country_code == "ja" or country_code == "": country_code = "jp" set_address(0) global save_data_g save_data_g = save_data save_stats: dict[str, Any] = {} save_stats["editor_version"] = updater.get_local_version() save_stats["game_version"] = next_int_len(4) save_stats["version"] = country_code save_stats["unknown_1"] = next_int_len(1) save_stats["mute_music"] = next_int_len(1) save_stats["mute_sound_effects"] = next_int_len(1) save_stats["cat_food"] = next_int_len(4) save_stats["current_energy"] = next_int_len(4) old_address = address new_address = find_date() set_address(old_address) extra = new_address - old_address save_stats["extra_time_data"] = next_int_len(extra) if dst is None: dst = get_dst(save_data, address + 118) save_stats["dst"] = dst if ( save_stats["version"] == "jp" and dst or save_stats["version"] != "jp" and not dst ): helper.colored_text( "Warning: DST detected is not correct for this save version, this may cause issues with save parsing.", helper.RED, ) data = get_time_data_skip(save_stats["dst"]) save_stats["time"] = data["time"] save_stats["dst_val"] = data["dst"] save_stats["time_stamp"] = data["time_stamp"] save_stats["duplicate_time"] = data["duplicate"] save_stats["unknown_flags_1"] = get_length_data(length=3) save_stats["upgrade_state"] = next_int_len(4) save_stats["xp"] = next_int_len(4) save_stats["tutorial_cleared"] = next_int_len(4) save_stats["unknown_flags_2"] = get_length_data(length=12) save_stats["unknown_flag_1"] = next_int_len(1) save_stats["slots"] = get_equip_slots() save_stats["cat_stamp_current"] = next_int_len(4) save_stats["cat_stamp_collected"] = get_length_data(length=30) save_stats["unknown_2"] = next_int_len(4) save_stats["daily_reward_flag"] = next_int_len(4) save_stats["unknown_116"] = get_length_data(length=10) save_stats["story_chapters"] = get_main_story_levels() save_stats["treasures"] = get_treasures() try: save_stats["enemy_guide"] = get_length_data() except Exception: return parse_save(save_data, country_code, not dst) if len(save_stats["enemy_guide"]) == 0: return parse_save(save_data, country_code, not dst) save_stats["cats"] = get_length_data() save_stats["cat_upgrades"] = get_cat_upgrades() save_stats["current_forms"] = get_length_data() save_stats["blue_upgrades"] = get_blue_upgrades() save_stats["menu_unlocks"] = get_length_data() save_stats["new_dialogs_1"] = get_length_data() save_stats["battle_items"] = get_length_data(4, 4, 6) save_stats["new_dialogs_2"] = get_length_data() save_stats["unknown_6"] = next_int_len(4) save_stats["unknown_7"] = get_length_data(length=21) save_stats["lock_item"] = next_int_len(1) save_stats["locked_items"] = get_length_data(1, 1, 6) save_stats["second_time"] = get_time_data(save_stats["dst"]) save_stats["unknown_8"] = get_length_data(length=50) save_stats["third_time"] = get_time_data(save_stats["dst"]) save_stats["unknown_9"] = next_int_len(6 * 4) save_stats["thirty2_code"] = get_utf8_string() save_stats["unknown_10"] = load_bonus_hash() save_stats["unknown_11"] = get_length_data(length=4) save_stats["normal_tickets"] = next_int_len(4) save_stats["rare_tickets"] = next_int_len(4) save_stats["gatya_seen_cats"] = get_length_data() save_stats["unknown_12"] = get_length_data(length=10) length = next_int(2) cat_storage_len = True if length != 128: skip(-2) cat_storage_len = False length = 100 cat_storage_id = get_length_data(2, 4, length) cat_storage_type = get_length_data(2, 4, length) save_stats["cat_storage"] = { "ids": cat_storage_id, "types": cat_storage_type, "len": cat_storage_len, } current_sel = get_event_stages_current() save_stats["event_current"] = current_sel save_stats["event_stages"] = get_event_stages(current_sel) save_stats["unknown_15"] = get_length_data(length=38) save_stats["unit_drops"] = get_length_data() save_stats["rare_gacha_seed"] = next_int_len(4) save_stats["unknown_17"] = next_int_len(12) save_stats["unknown_18"] = next_int_len(4) save_stats["fourth_time"] = get_time_data(save_stats["dst"]) save_stats["unknown_105"] = get_length_data(length=5) save_stats["unknown_107"] = get_length_data(separator=1, length=3) if save_stats["dst"]: save_stats["unknown_110"] = get_utf8_string() else: save_stats["unknown_110"] = "" total_strs = next_int(4) unknown_108: list[str] = [] for _ in range(total_strs): unknown_108.append(get_utf8_string()) save_stats["unknown_108"] = unknown_108 if save_stats["dst"]: save_stats["time_stamps"] = get_length_doubles(length=3) length = next_int(4) strs: list[str] = [] for _ in range(length): strs.append(get_utf8_string()) save_stats["unknown_112"] = strs save_stats["energy_notice"] = next_int_len(1) save_stats["game_version_2"] = next_int_len(4) else: save_stats["time_stamps"] = [0, 0, 0] save_stats["unknown_112"] = [] save_stats["energy_notice"] = generate_empty_len(1) save_stats["game_version_2"] = generate_empty_len(4) save_stats["unknown_111"] = next_int_len(4) save_stats["unlocked_slots"] = next_int_len(1) length_1 = next_int(4) length_2 = next_int(4) unknown_20: dict[str, Any] = {} unknown_20 = {"Value": get_length_data(4, 4, length_1 * length_2)} unknown_20["Length_1"] = length_1 unknown_20["Length_2"] = length_2 save_stats["unknown_20"] = unknown_20 save_stats["time_stamps_2"] = get_length_doubles(length=4) save_stats["trade_progress"] = next_int_len(4) if save_stats["dst"]: save_stats["time_stamps_2"].append(get_double()) save_stats["unknown_24"] = generate_empty_len(4) else: save_stats["unknown_24"] = next_int_len(4) save_stats["catseye_related_data"] = get_cat_upgrades() save_stats["unknown_22"] = get_length_data(length=11) save_stats["user_rank_rewards"] = get_length_data(4, 1) if not save_stats["dst"]: save_stats["time_stamps_2"].append(get_double()) save_stats["unlocked_forms"] = get_length_data() save_stats["transfer_code"] = get_utf8_string() save_stats["confirmation_code"] = get_utf8_string() save_stats["transfer_flag"] = next_int_len(1) lengths = [next_int(4), next_int(4), next_int(4)] length = lengths[0] * lengths[1] * lengths[2] save_stats["stage_data_related_1"] = { "Value": get_length_data(4, 1, length), "Lengths": lengths, } save_stats["event_timed_scores"] = get_event_timed_scores() save_stats["inquiry_code"] = get_utf8_string() save_stats["play_time"] = get_play_time() save_stats["unknown_25"] = next_int_len(1) save_stats["backup_state"] = next_int_len(4) if save_stats["dst"]: save_stats["unknown_119"] = next_int_len(1) else: save_stats["unknown_119"] = generate_empty_len(1) save_stats["gv_44"] = next_int_len(4) save_stats["unknown_120"] = next_int_len(4) save_stats["itf_timed_scores"] = list( helper.chunks(get_length_data(4, 4, 51 * 3), 51) ) save_stats["unknown_27"] = next_int_len(4) save_stats["cat_related_data_1"] = get_length_data() save_stats["unknown_28"] = next_int_len(1) save_stats["gv_45"] = next_int_len(4) save_stats["gv_46"] = next_int_len(4) save_stats["unknown_29"] = next_int_len(4) save_stats["lucky_tickets_1"] = get_length_data() save_stats["unknown_32"] = get_length_data() save_stats["gv_47"] = next_int_len(4) save_stats["gv_48"] = next_int_len(4) if not save_stats["dst"]: save_stats["energy_notice"] = next_int_len(1) save_stats["account_created_time_stamp"] = get_double() save_stats["unknown_35"] = get_length_data() save_stats["unknown_36"] = next_int_len(15) save_stats["user_rank_popups"] = next_int_len(3) save_stats["unknown_37"] = next_int_len(1) save_stats["gv_49"] = next_int_len(4) save_stats["gv_50"] = next_int_len(4) save_stats["gv_51"] = next_int_len(4) save_stats["cat_guide_collected"] = get_length_data(4, 1) save_stats["gv_52"] = next_int_len(4) save_stats["time_stamps_3"] = get_length_doubles(length=5) save_stats["cat_fruit"] = get_length_data() save_stats["cat_related_data_3"] = get_length_data() save_stats["catseye_cat_data"] = get_length_data() save_stats["catseyes"] = get_length_data() save_stats["catamins"] = get_length_data() save_stats["gamatoto_time_left"] = helper.seconds_to_time(int(get_double())) save_stats["gamatoto_exclamation"] = next_int_len(1) save_stats["gamatoto_xp"] = next_int_len(4) save_stats["gamamtoto_destination"] = next_int_len(4) save_stats["gamatoto_recon_length"] = next_int_len(4) save_stats["unknown_43"] = next_int_len(4) save_stats["gamatoto_complete_notification"] = next_int_len(4) save_stats["unknown_44"] = get_length_data(4, 1) save_stats["unknown_45"] = get_length_data(4, 12 * 4) save_stats["gv_53"] = next_int_len(4) save_stats["helpers"] = get_length_data() save_stats["unknown_47"] = next_int_len(1) save_stats["gv_54"] = next_int_len(4) save_stats["purchases"] = get_purchase_receipts() save_stats["gv_54"] = next_int_len(4) save_stats["gamatoto_skin"] = next_int_len(4) save_stats["platinum_tickets"] = next_int_len(4) save_stats["login_bonuses"] = get_login_bonuses() save_stats["unknown_49"] = next_int_len(16) save_stats["announcment"] = get_length_data(length=32) save_stats["backup_counter"] = next_int_len(4) save_stats["unknown_131"] = get_length_data(length=3) save_stats["gv_55"] = next_int_len(4) save_stats["unknown_51"] = next_int_len(1) save_stats["unknown_113"] = get_data_before_outbreaks() save_stats["dojo_data"] = get_dojo_data_maybe() save_stats["dojo_item_lock"] = next_int_len(1) save_stats["dojo_locks"] = get_length_data(1, 1, 2) save_stats["unknown_114"] = next_int_len(4) save_stats["gv_58"] = next_int_len(4) # 0x3a save_stats["unknown_115"] = next_int_len(8) save_stats["outbreaks"] = get_outbreaks() save_stats["unknown_52"] = get_double() save_stats["item_schemes"] = {} save_stats["item_schemes"]["to_obtain_ids"] = get_length_data() save_stats["item_schemes"]["received_ids"] = get_length_data() save_stats["current_outbreaks"] = get_outbreaks() save_stats["unknown_55"] = get_mission_data_maybe() save_stats["time_stamp_4"] = get_double() save_stats["gv_60"] = next_int_len(4) save_stats["unknown_117"] = get_unknown_data() save_stats["gv_61"] = next_int_len(4) data = get_unlock_popups() save_stats["unlock_popups"] = data[0] save_stats["unknown_118"] = data[1] save_stats["base_materials"] = get_length_data() save_stats["unknown_56"] = next_int_len(8) save_stats["unknown_57"] = next_int_len(1) save_stats["unknown_58"] = next_int_len(4) save_stats["engineers"] = next_int_len(4) save_stats["ototo_cannon"] = get_cat_cannon_data() save_stats["unknown_59"] = get_data_near_ht() save_stats["tower"] = get_ht_it_data() save_stats["missions"] = get_mission_data() save_stats["tower_item_obtained"] = get_tower_item_obtained() save_stats["unknown_61"] = get_data_after_tower() save_stats["challenge"] = {"Score": next_int_len(4), "Cleared": next_int_len(1)} save_stats["gv_67"] = next_int_len(4) # 0x43 save_stats["weekly_event_missions"] = get_dict(int, bool) save_stats["won_dojo_reward"] = next_int_len(1) save_stats["event_flag_update_flag"] = next_int_len(1) save_stats["gv_68"] = next_int_len(4) # 0x44 save_stats["completed_one_level_in_chapter"] = get_dict(int, int) save_stats["displayed_cleared_limit_text"] = get_dict(int, bool) save_stats["event_start_dates"] = get_dict(int, int) save_stats["stages_beaten_twice"] = get_length_data() save_stats["unknown_102"] = get_data_after_challenge() lengths = get_uncanny_current() save_stats["uncanny_current"] = lengths save_stats["uncanny"] = get_uncanny_progress(lengths) total = lengths["total"] save_stats["unknown_62"] = next_int_len(4) save_stats["unknown_63"] = get_length_data(length=total) save_stats["unknown_64"] = get_data_after_uncanny() total = save_stats["unknown_64"]["progress"]["Lengths"]["total"] save_stats["unknown_65"] = next_int_len(4) val_61 = save_stats["unknown_65"] save_stats["unknown_66"] = [] unknown_66: list[Any] = [] for _ in range(total): val_61 = next_int_len(4) unknown_66.append(val_61) save_stats["unknown_66"] = unknown_66 val_54 = 0x37 if val_61["Value"] < 0x38: val_54 = val_61["Value"] save_stats["lucky_tickets_2"] = get_length_data(length=val_54) save_stats["unknown_67"] = [] if 0x37 < val_61["Value"]: save_stats["unknown_67"] = get_length_data(4, 4, val_61["Value"]) save_stats["unknown_68"] = next_int_len(1) save_stats["gv_77"] = next_int_len(4) # 0x4d save_stats["gold_pass"] = get_gold_pass_data() save_stats["talents"] = get_talent_data() save_stats["np"] = next_int_len(4) save_stats["unknown_70"] = next_int_len(1) save_stats["gv_80000"] = next_int_len(4) # 80000 save_stats["unknown_71"] = next_int_len(1) save_stats["leadership"] = next_int_len(2) save_stats["officer_pass_cat_id"] = next_int_len(2) save_stats["officer_pass_cat_form"] = next_int_len(2) save_stats["gv_80200"] = next_int_len(4) # 80200 save_stats["filibuster_stage_id"] = next_int_len(1) save_stats["filibuster_stage_enabled"] = next_int_len(1) save_stats["gv_80300"] = next_int_len(4) # 80300 save_stats["unknown_74"] = get_length_data() save_stats["gv_80500"] = next_int_len(4) # 80500 save_stats["unknown_75"] = get_length_data(2, 4) lengths = get_legend_quest_current() save_stats["legend_quest_current"] = lengths save_stats["legend_quest"] = get_legend_quest_progress(lengths) save_stats["unknown_133"] = get_length_data(4, 1, lengths["total"]) save_stats["legend_quest_ids"] = get_length_data(4, 4, lengths["stages"]) save_stats["unknown_76"] = get_data_after_leadership() save_stats["gv_80700"] = next_int_len(4) # 80700 if save_stats["dst"]: save_stats["unknown_104"] = next_int_len(1) save_stats["gv_100600"] = next_int_len(4) if save_stats["gv_100600"]["Value"] != 100600: skip(-5) else: save_stats["unknown_104"] = generate_empty_len(1) save_stats["gv_100600"] = generate_empty_len(4) save_stats["restart_pack"] = next_int_len(1) save_stats["unknown_101"] = get_data_after_after_leadership(save_stats["dst"]) save_stats["medals"] = get_medals() save_stats["unknown_103"] = get_data_after_medals() lengths = get_gauntlet_current() save_stats["gauntlet_current"] = lengths save_stats["gauntlets"] = get_gauntlet_progress(lengths) save_stats["unknown_77"] = get_length_data(4, 1, lengths["total"]) save_stats["gv_90300"] = next_int_len(4) # 90300 lengths = get_gauntlet_current() save_stats["unknown_78"] = lengths save_stats["unknown_79"] = get_gauntlet_progress(lengths) save_stats["unknown_80"] = get_length_data(4, 1, lengths["total"]) save_stats["enigma_data"] = get_enigma_stages() data = get_cleared_slots() save_stats["cleared_slot_data"] = data[0] save_stats["unknown_121"] = data[1] lengths = get_gauntlet_current() save_stats["collab_gauntlets_current"] = lengths save_stats["collab_gauntlets"] = get_gauntlet_progress(lengths) save_stats["unknown_84"] = get_length_data(4, 1, lengths["total"]) save_stats["unknown_85"] = data_after_after_gauntlets() save_stats["talent_orbs"] = get_talent_orbs(save_stats["game_version"]) save_stats["unknown_86"] = get_data_after_orbs() save_stats["cat_shrine"] = get_cat_shrine_data() save_stats["unknown_130"] = next_int_len(4 * 5) save_stats["gv_90900"] = next_int_len(4) # 90900 save_stats["slot_names"] = get_slot_names(save_stats) save_stats["gv_91000"] = next_int_len(4) save_stats["legend_tickets"] = next_int_len(4) save_stats["unknown_87"] = get_length_data(1, 5) save_stats["unknown_88"] = next_int_len(2) save_stats["token"] = get_utf8_string() save_stats["unknown_89"] = next_int_len(1 * 3) save_stats["unknown_90"] = next_int_len(8) save_stats["unknown_91"] = next_int_len(8) save_stats["gv_100000"] = next_int_len(4) # 100000 save_stats = check_gv(save_stats, 100100) if save_stats["exit"]: return save_stats save_stats["date_int"] = next_int_len(4) save_stats["gv_100100"] = next_int_len(4) # 100100 save_stats = check_gv(save_stats, 100300) if save_stats["exit"]: return save_stats save_stats["unknown_93"] = get_length_data(4, 19, 6) save_stats["gv_100300"] = next_int_len(4) # 100300 save_stats = check_gv(save_stats, 100700) if save_stats["exit"]: return save_stats save_stats["unknown_94"] = get_data_near_end() save_stats["platinum_shards"] = next_int_len(4) save_stats["unknown_100"] = get_data_near_end_after_shards() save_stats["gv_100700"] = next_int_len(4) # 100700 save_stats = check_gv(save_stats, 100900) if save_stats["exit"]: return save_stats save_stats["aku"] = get_aku() save_stats["unknown_95"] = next_int_len(1 * 2) save_stats["unknown_96"] = get_data_after_aku() save_stats["gv_100900"] = next_int_len(4) # 100900 save_stats = check_gv(save_stats, 101000) if save_stats["exit"]: return save_stats save_stats["unknown_97"] = next_int_len(1) save_stats["gv_101000"] = next_int_len(4) # 101000 save_stats = check_gv(save_stats, 110000) if save_stats["exit"]: return save_stats save_stats["unknown_98"] = get_data_near_end_after_aku() save_stats["gv_110000"] = next_int_len(4) # 110000 save_stats = check_gv(save_stats, 110500) if save_stats["exit"]: return save_stats data = get_gauntlet_current() save_stats["behemoth_culling_current"] = data save_stats["behemoth_culling"] = get_gauntlet_progress(data) save_stats["unknown_124"] = get_length_data(4, 1, data["total"]) save_stats["unknown_125"] = next_int_len(1) save_stats["gv_110500"] = next_int_len(4) # 110500 save_stats = check_gv(save_stats, 110600) if save_stats["exit"]: return save_stats save_stats["unknown_126"] = next_int_len(1) save_stats["gv_110600"] = next_int_len(4) # 110600 save_stats = check_gv(save_stats, 110700) if save_stats["exit"]: return save_stats save_stats["unknown_127"] = get_110700_data() if save_stats["dst"]: save_stats["unknown_128"] = next_int_len(1) else: save_stats["unknown_128"] = generate_empty_len(1) save_stats["gv_110700"] = next_int_len(4) # 110700 save_stats = check_gv(save_stats, 110800) if save_stats["exit"]: return save_stats save_stats["shrine_dialogs"] = next_int_len(4) save_stats["unknown_129"] = get_110800_data() save_stats["dojo_3x_speed"] = next_int_len(1) save_stats["unknown_132"] = get_110800_data_2() save_stats["gv_110800"] = next_int_len(4) # 110800 save_stats = check_gv(save_stats, 110900) if save_stats["exit"]: return save_stats save_stats["unknown_135"] = get_110900_data() save_stats["gv_110900"] = next_int_len(4) # 110900 save_stats = check_gv(save_stats, 120000) if save_stats["exit"]: return save_stats save_stats["zero_legends"] = get_zero_legends() save_stats["unknown_136"] = next_int_len(1) save_stats["gv_120000"] = next_int_len(4) # 120000 save_stats = check_gv(save_stats, 120100) if save_stats["exit"]: return save_stats save_stats["unknown_137"] = get_120100_data() save_stats["gv_120100"] = next_int_len(4) # 120100 save_stats = check_gv(save_stats, 120200) if save_stats["exit"]: return save_stats save_stats["unknown_138"] = get_120200_data() save_stats["gv_120200"] = next_int_len(4) # 120200 save_stats = check_gv(save_stats, 120200) if save_stats["exit"]: return save_stats length = len(save_data) - address - 32 save_stats["extra_data"] = next_int_len(length) save_stats = exit_parser(save_stats) return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/parse_save.py
0.708213
0.365598
parse_save.py
pypi
from typing import Optional, Union from . import ( managed_item, user_input_handler, helper, locale_handler, config_manager, user_info, ) class Bannable: def __init__( self, type: "managed_item.ManagedItemType", inquiry_code: str, work_around: str = "", ): self.type = type self.inquiry_code = inquiry_code self.work_around = work_around class Int: def __init__(self, value: Optional[int], byte_size: int = 4, signed: bool = True): self.value = value self.byte_size = byte_size self.signed = signed def get_max_value(self) -> int: if self.signed: return (2 ** (self.byte_size * 8 - 1)) - 1 return (2 ** (self.byte_size * 8)) - 1 class IntItem: def __init__( self, name: str, value: Int, max_value: Optional[int], bannable: Optional[Bannable] = None, offset: int = 0, ): self.name = name self.__value = value disable_maxes = config_manager.get_config_value_category( "EDITOR", "DISABLE_MAXES" ) self.max_value = max_value if disable_maxes: self.max_value = None self.bannable = bannable self.offset = offset self.locale_manager = locale_handler.LocalManager.from_config() def get_max_value(self) -> int: if self.max_value is not None: return self.max_value return self.__value.get_max_value() def show_ban_warning(self) -> bool: if self.bannable is None: return True helper.colored_text(self.locale_manager.search_key("ban_warning") % self.name) if self.bannable.work_around: helper.colored_text(self.bannable.work_around) return user_input_handler.get_yes_no( self.locale_manager.search_key("ban_warning_leave") ) def edit(self) -> None: end = not self.show_ban_warning() if end: return original_value = self.__value.value helper.colored_text( self.locale_manager.search_key("current_item_value") % (self.name, self.get_value_off()) ) max_str = "" if self.max_value is not None: max_str = " " + self.locale_manager.search_key("max_str") % self.max_value new_value = user_input_handler.get_int( self.locale_manager.search_key("enter_value_text") % (self.name, max_str), ) new_value -= self.offset new_value = helper.clamp(new_value, 0, self.get_max_value()) self.__value.value = new_value helper.colored_text( self.locale_manager.search_key("item_value_changed") % ( self.name, 0 if original_value is None else original_value, self.get_value_off(), ) ) if self.bannable is not None and self.__value.value != original_value: new_value = self.__value.value if original_value is None: original_value = 0 info = user_info.UserInfo(self.bannable.inquiry_code) info.update_item(self.bannable.type, self.__value.value - original_value) def get_value_off(self) -> int: if self.__value.value is None: return 0 return self.__value.value + self.offset def get_value(self) -> int: if self.__value.value is None: return 0 return self.__value.value def get_value_none(self) -> Optional[int]: return self.__value.value def set_value(self, value: int) -> None: self.__value.value = value class IntItemGroup: def __init__(self, group_name: str, items: list[IntItem]): self.items = items self.locale_manager = locale_handler.LocalManager.from_config() self.group_name = group_name def get_values(self) -> list[int]: return [item.get_value() for item in self.items] def get_values_none(self) -> list[Optional[int]]: return [item.get_value_none() for item in self.items] def get_values_off(self) -> list[int]: return [item.get_value_off() for item in self.items] def all_none(self) -> bool: return all([item.get_value_none() is None for item in self.items]) def get_names(self) -> list[str]: return [item.name for item in self.items] def edit(self) -> None: if not self.items: return ids, individual = user_input_handler.select_options( self.get_names(), self.locale_manager.search_key("select_l"), self.get_values_off() if not self.all_none() else None, ) if individual: for id in ids: self.items[id].edit() else: max_value = self.get_max_max_value() offset = self.items[ids[0]].offset max_str = "" if self.items[ids[0]].max_value is not None: max_str = " " + self.locale_manager.search_key("max_str") % ( max_value + offset ) new_value = user_input_handler.get_int( self.locale_manager.search_key("enter_value_text") % (self.group_name, max_str) ) new_value -= offset entered_value = helper.clamp(new_value, 0, max_value) for id in ids: max_value = self.items[id].get_max_value() value = helper.clamp(new_value, 0, max_value) self.items[id].set_value(value) helper.colored_text( self.locale_manager.search_key("success_set") % (self.group_name, entered_value + offset) ) def get_max_max_value(self) -> int: return max([item.get_max_value() for item in self.items]) @staticmethod def from_lists( names: list[str], values: Optional[list[int]], maxes: Union[list[int], int, None], group_name: str, offset: int = 0, ) -> "IntItemGroup": items: list[IntItem] = [] for i in range(len(names)): max_value = maxes[i] if isinstance(maxes, list) else maxes try: value = values[i] if values is not None else None except IndexError: value = None items.append( IntItem( names[i], Int(value), max_value, offset=offset, ) ) return IntItemGroup(group_name, items) class StrItem: def __init__(self, name: str, value: str): self.name = name self.value = value self.locale_manager = locale_handler.LocalManager.from_config() def edit(self) -> None: original_value = self.value helper.colored_text( self.locale_manager.search_key("current_item_value") % (self.name, self.value) ) new_value = user_input_handler.colored_input( self.locale_manager.search_key("enter_value_text") % (self.name, "") ) self.value = new_value helper.colored_text( self.locale_manager.search_key("item_value_changed") % (self.name, original_value, self.value) ) def get_value(self) -> str: return self.value
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/item.py
0.85186
0.157234
item.py
pypi
import os from typing import Optional import requests from . import helper URL = "https://raw.githubusercontent.com/fieryhenry/BCData/master/" def download_file( game_version: str, pack_name: str, file_name: str, get_data: bool = True, print_progress: bool = True, ) -> bytes: """ Downloads the file. Args: game_version (str): The game version to download from. pack_name (str): The pack name to download from. file_name (str): The file name to download. get_data (bool, optional): Whether to return the data. Defaults to True. print_progress (bool, optional): Whether to print the progress. Defaults to True. Returns: bytes: The data of the file. """ path = helper.get_file(os.path.join("game_data", game_version, pack_name)) file_path = os.path.join(path, file_name) if os.path.exists(file_path): if get_data: return helper.read_file_bytes(file_path) return b"" if print_progress: helper.colored_text( f"Downloading game data file &{file_name}& from &{pack_name}& with game version &{game_version}&", helper.GREEN, helper.WHITE, ) url = URL + game_version + "/" + pack_name + "/" + file_name response = requests.get(url) helper.create_dirs(path) helper.write_file_bytes(file_path, response.content) return response.content def get_latest_versions() -> Optional[list[str]]: """ Gets the latest versions of the game data. Returns: Optional[list[str]]: The latest versions of the game data. """ try: response = requests.get(URL + "latest.txt") except requests.exceptions.ConnectionError: return None versions = response.text.splitlines() return versions def get_latest_version(is_jp: bool) -> Optional[str]: """ Gets the latest version of the game data. Args: is_jp (bool): Whether to get the japanese version. Returns: str: The latest version of the game data. """ versions = get_latest_versions() if versions is None: return None if is_jp: return versions[1] else: return versions[0] def get_file_latest(pack_name: str, file_name: str, is_jp: bool) -> Optional[bytes]: """ Gets the latest version of the file. Args: pack_name (str): The pack name to find. file_name (str): The file name to find. is_jp (bool): Whether to get the japanese version. Returns: Optional[bytes]: The data of the file. """ version = get_latest_version(is_jp) if version is None: return None return download_file(version, pack_name, file_name) def get_file_latest_path(path: str, is_jp: bool) -> Optional[bytes]: """ Gets the latest version of the file. Args: path (str): The path to find. is_jp (bool): Whether to get the japanese version. Returns: Optional[bytes]: The data of the file. """ version = get_latest_version(is_jp) if version is None: return None packname, filename = path.split("/") return download_file(version, packname, filename) def get_path(pack_name: str, file_name: str, is_jp: bool) -> Optional[str]: """ Gets the path of the file. Args: pack_name (str): The pack name to find. file_name (str): The file name to find. is_jp (bool): Whether to get the japanese version. Returns: Optional[str]: The path of the file. """ version = get_latest_version(is_jp) if version is None: return None return os.path.join("game_data", version, pack_name, file_name) def check_remove(new_version: str, is_jp: bool): """ Checks if older game data is downloaded, and deletes if out of date. Args: new_version (str): The new version. is_jp (bool): Whether to get the japanese version. """ all_versions = helper.get_dirs(helper.get_file("game_data")) for version in all_versions: if is_jp: if "jp" not in version: continue if version != new_version: helper.delete_dir(helper.get_file(os.path.join("game_data", version))) else: if "jp" in version: continue if version != new_version: helper.delete_dir(helper.get_file(os.path.join("game_data", version))) def check_remove_handler(): """ Checks if older game data is downloaded, and deletes if out of date. """ versions = get_latest_versions() if versions is None: return None check_remove(versions[0], is_jp=False) check_remove(versions[1], is_jp=True)
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/game_data_getter.py
0.800692
0.283066
game_data_getter.py
pypi
import json from typing import Any from . import config_manager, managed_item, helper import os class ManagedItems: def __init__(self, managed_items: dict[managed_item.ManagedItemType, int]): self.managed_items = managed_items def to_dict(self) -> dict[str, int]: """Convert to dict""" return { item.value: self.managed_items[item] for item in managed_item.ManagedItemType } @staticmethod def from_dict(data: dict[str, int]) -> "ManagedItems": """Convert from dict""" managed_items = { managed_item.ManagedItemType(item): data[item] for item in data } return ManagedItems(managed_items) class UserInfo: def __init__(self, inquiry_code: str): self.inquiry_code = inquiry_code self.read_user_info() def get_path(self) -> str: """Get the path to the user info""" app_data_folder = config_manager.get_app_data_folder() path = os.path.join(app_data_folder, "user_info", self.inquiry_code + ".json") os.makedirs(os.path.dirname(path), exist_ok=True) return path def create_empty_user_info(self): managed_items = {item: 0 for item in managed_item.ManagedItemType} managed_items = ManagedItems(managed_items) data = { "managedItems": managed_items.to_dict(), "password": "", "authToken": "", } self.write_user_info(data) def read_user_info(self): if not os.path.exists(self.get_path()): self.create_empty_user_info() data = helper.read_file_string(self.get_path()) try: data = json.loads(data) except json.JSONDecodeError: self.create_empty_user_info() data = helper.read_file_string(self.get_path()) data = json.loads(data) self.managed_items = ManagedItems.from_dict(data["managedItems"]) self.password = data["password"] self.auth_token = data["authToken"] def write_user_info(self, data: dict[str, Any]): helper.write_file_string(self.get_path(), json.dumps(data, indent=4)) def save(self): data = { "managedItems": self.managed_items.to_dict(), "password": self.password, "authToken": self.auth_token, } self.write_user_info(data) def get_managed_items(self) -> ManagedItems: return self.managed_items def get_password(self) -> str: return self.password def get_auth_token(self) -> str: return self.auth_token def set_managed_items(self, managed_items: ManagedItems): self.managed_items = managed_items self.save() def set_password(self, password: str): self.password = password self.save() def set_auth_token(self, auth_token: str): self.auth_token = auth_token self.save() def clear_managed_items(self): self.managed_items = ManagedItems( {item: 0 for item in managed_item.ManagedItemType} ) self.save() def get_managed_items_lst(self) -> list[managed_item.ManagedItem]: items: list[managed_item.ManagedItem] = [] for item in self.managed_items.managed_items: value = self.managed_items.managed_items[item] if value > 0: detail_type = managed_item.DetailType.GET elif value < 0: detail_type = managed_item.DetailType.USE value = abs(value) else: continue items.append(managed_item.ManagedItem(value, detail_type, item)) return items def has_managed_items(self) -> bool: for item in self.managed_items.managed_items: value = self.managed_items.managed_items[item] if value != 0: return True return False def update_item(self, item_type: managed_item.ManagedItemType, amount: int): self.managed_items.managed_items[item_type] += amount self.save() @staticmethod def clear_all_items(): app_data_folder = config_manager.get_app_data_folder() path = os.path.join(app_data_folder, "user_info") os.makedirs(path, exist_ok=True) files = helper.get_files_in_dir(path) for file in files: if file.endswith(".json"): info = UserInfo(file.replace(".json", "")) info.clear_managed_items()
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/user_info.py
0.572245
0.18954
user_info.py
pypi
import os import subprocess from typing import Optional from . import helper def get_data_path() -> str: """ Get the data path Returns: str: The data path """ return "/data/data/" def get_installed_battlecats_versions() -> Optional[list[str]]: """ Get a list of installed battle cats versions Returns: Optional[list[str]]: A list of installed battle cats versions """ if not is_ran_as_root(): return None path = get_data_path() if not os.path.exists(path): return None versions: list[str] = [] for folder in os.listdir(path): if folder == "jp.co.ponos.battlecats": versions.append("jp") elif folder.startswith("jp.co.ponos.battlecats"): versions.append(folder.replace("jp.co.ponos.battlecats", "")) return versions def pull_save_data(game_version: str) -> Optional[str]: """ Pull save data from a game version Args: game_version (str): The game version to pull from Returns: Optional[str]: The path to the pulled save data """ if not is_ran_as_root(): return None package_name = "jp.co.ponos.battlecats" + game_version.replace("jp", "") path = get_data_path() + package_name + "/files/SAVE_DATA" if not os.path.exists(path): return None return path def is_ran_as_root() -> bool: """ Check if the program is ran as root Returns: bool: If the program is ran as root """ if not helper.is_android(): return False try: os.listdir(get_data_path()) except PermissionError: helper.colored_text( "Root access is required to get installed game versions. Try adding sudo before the run command", base=helper.RED, ) return False return True def rerun_game(version: str) -> None: """ Rerun the game on the device without adb Args: version (str): The game version to rerun """ if not is_ran_as_root(): return package_name = "jp.co.ponos.battlecats" + version.replace("jp", "") subprocess.run( f"sudo pkill -f {package_name}", capture_output=True, check=False, shell=True ) subprocess.run( f"sudo monkey -p {package_name} -c android.intent.category.LAUNCHER 1", capture_output=True, check=False, shell=True, )
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/root_handler.py
0.684791
0.23421
root_handler.py
pypi
import subprocess from typing import Any, Optional import requests from . import config_manager, helper def update(latest_version: str, command: str = "py") -> bool: """Update pypi package testing for py and python""" helper.colored_text("Updating...", base=helper.GREEN) try: full_cmd = f"{command} -m pip install --upgrade battle-cats-save-editor=={latest_version}" subprocess.run( full_cmd, shell=True, capture_output=True, check=True, ) helper.colored_text("Update successful", base=helper.GREEN) return True except subprocess.CalledProcessError: return False def try_update(latest_version: str): """ Try to update the editor Args: latest_version (str): The latest version of the editor """ success = update(latest_version, "py") if success: return success = update(latest_version, "python3") if success: return success = update(latest_version, "python") if success: return helper.colored_text( "Update failed\nYou may need to manually update with py -m pip install -U battle-cats-save-editor", base=helper.RED, ) def get_local_version() -> str: """Returns the local version of the editor""" return "1.8" def get_version_info() -> Optional[tuple[str, str]]: """Gets the latest version of the program""" package_name = "battle-cats-save-editor" try: response = requests.get(f"https://pypi.org/pypi/{package_name}/json") response.raise_for_status() data = response.json() except requests.exceptions.RequestException: return None info = ( get_pypi_version(data), get_latest_prerelease_version(data), ) return info def get_pypi_version(data: dict[str, Any]) -> str: """Get latest pypi version of the program""" return data["info"]["version"] def get_latest_prerelease_version(data: dict[str, Any]) -> str: """Get latest prerelease version of the program""" releases = list(data["releases"]) releases.reverse() for release in releases: if "b" in release: return release return "" def pypi_is_newer(local_version: str, pypi_version: str, remove_b: bool = True) -> bool: """Checks if the local version is newer than the pypi version""" if remove_b: if "b" in pypi_version: pypi_version = pypi_version.split("b")[0] if "b" in local_version: local_version = local_version.split("b")[0] return pypi_version > local_version def check_update(version_info: tuple[str, str]) -> tuple[bool, str]: """Checks if the editor is updated""" local_version = get_local_version() pypi_version, latest_prerelease_version = version_info check_pre = "b" in local_version or config_manager.get_config_value_category( "START_UP", "UPDATE_TO_BETAS" ) if check_pre and pypi_is_newer( local_version, latest_prerelease_version, remove_b=False ): helper.colored_text("Prerelease update available\n", base=helper.GREEN) return True, latest_prerelease_version if pypi_is_newer(local_version, pypi_version): helper.colored_text("Stable update available\n", base=helper.GREEN) return True, pypi_version helper.colored_text("No update available\n", base=helper.GREEN) return False, local_version
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/updater.py
0.767646
0.178633
updater.py
pypi
import enum import os import re import subprocess from typing import Union from . import helper, user_input_handler, config_manager class ADBExceptionTypes(enum.Enum): """ADB exception types""" NO_DEVICE = enum.auto() DEVICE_OFFLINE = enum.auto() PATH_NOT_FOUND = enum.auto() ADB_NOT_INSTALLED = enum.auto() MORE_THAN_ONE_DEVICE = enum.auto() UNKNOWN = enum.auto() class ADBException(Exception): """ADB exception""" def __init__(self, exception_type: ADBExceptionTypes, message: str = ""): """Initialize exception.""" super().__init__(message) self.message = message self.exception_type = exception_type def adb_pull(package_name: str, device_file_path: str, local_file_path: str): """Pull a file from a device""" if local_file_path: local_file_path = f'"{local_file_path}"' path = f"/data/data/{package_name}/{device_file_path}" run_adb_command(f'pull "{path}" {local_file_path}') def find_game_versions() -> list[str]: """ Find installed game versions Returns: list[str]: List of game versions """ package_name = "jp.co.ponos.battlecats" try: run_adb_command("devices") except ADBException as exception: return adb_err_handler(exception) try: output = str( subprocess.run( "adb shell ls /data/data/", capture_output=True, check=True, shell=True ).stdout ) except subprocess.CalledProcessError: return [] package_names: list[str] = re.findall(f"{package_name}..", output) for i, package_name in enumerate(package_names): package_names[i] = ( package_name.replace("\\n", "jp") .replace(" ", "jp") .replace("jp.co.ponos.battlecats", "") ) return package_names def adb_push(package_name: str, local_file_path: str, device_file_path: str): """Push a file to a device""" path = f"/data/data/{package_name}/{device_file_path}" run_adb_command(f'push "{local_file_path}" "{path}"') def adb_delete_file(package_name: str, device_file_path: str, options: str = ""): """Delete a file on a device""" path = f"/data/data/{package_name}/{device_file_path}" run_adb_command(f'shell "su 0 rm "{path}" {options}"') def adb_close_process(package_name: str): """Close a process""" run_adb_command(f"shell am force-stop {package_name}") def adb_run_process(package_name: str): """Run a process""" run_adb_command(f"shell monkey -p {package_name} -v 1") def adb_reboot(): """Reboot adb server""" helper.run_in_background(adb_reboot_background) def adb_reboot_background(): """ Reboot adb server in background """ adb_kill_server() is_adb_installed() def adb_root(): """Start adb server as root""" subprocess.run("adb root", shell=True, check=True, text=True, capture_output=True) def is_adb_installed(): """Test if adb is installed""" try: subprocess.run( "adb start-server", shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, ) except subprocess.CalledProcessError: return False return True def run_adb_command(command: str) -> bool: """Run an ADB command""" command = f"adb {command}" if not is_adb_installed(): raise ADBException(ADBExceptionTypes.ADB_NOT_INSTALLED) try: adb_root() subprocess.run(command, shell=True, check=True, text=True, capture_output=True) except subprocess.CalledProcessError as err: adb_error_handler(err) return True def adb_kill_server(): """Kill ADB server""" try: subprocess.run( "adb kill-server", shell=True, check=True, text=True, capture_output=True ) except subprocess.CalledProcessError as err: adb_error_handler(err) def adb_error_handler(err: subprocess.CalledProcessError): """Handle ADB errors""" error_text = str(err.stderr).lower() if not error_text: error_text = str(err.stdout).lower() if not error_text: error_text = str(err.output).lower() if "not found" in error_text: raise ADBException(ADBExceptionTypes.NO_DEVICE) if "offline" in error_text: raise ADBException(ADBExceptionTypes.DEVICE_OFFLINE) if "does not exist" in error_text: raise ADBException(ADBExceptionTypes.PATH_NOT_FOUND) if "'adb' is not recognized" in error_text: raise ADBException(ADBExceptionTypes.ADB_NOT_INSTALLED) if "more than one device" in error_text: raise ADBException(ADBExceptionTypes.MORE_THAN_ONE_DEVICE) if "no such file or directory" in error_text: raise ADBException(ADBExceptionTypes.PATH_NOT_FOUND) raise ADBException(ADBExceptionTypes.UNKNOWN, error_text) def find_adb_path() -> Union[str, None]: """Find adb path automatically in common locations""" drive_letters = ["C", "D", "E"] paths = [ "LDPlayer\\LDPlayer4.0", "LDPlayer\\LDPlayer9", "Program Files (x86)\\Nox\\bin", "adb", ] found_paths: list[str] = [] for drive_letter in drive_letters: for path in paths: path = f"{drive_letter}:\\{path}" if os.path.exists(path): found_paths.append(path) if found_paths: for path in found_paths: if "adb" not in path: return path return found_paths[0] return None def if_windows() -> bool: """Check if windows""" return os.name == "nt" def add_to_path() -> None: """Try to add adb to path environment variable automatically""" if not if_windows(): helper.colored_text( "ADB path not added to PATH environment variable.\n" "Please add it manually to your system PATH variable.", helper.RED, ) return adb_path = find_adb_path() if not adb_path: adb_path = input( "Please enter the path to the folder than contains adb: download link here: https://dl.google.com/android/repository/platform-tools-latest-windows.zip:" ) if os.path.isfile(adb_path): adb_path = os.path.dirname(adb_path) print(f"Adding {adb_path} to your path environment variable") backup = os.environ["PATH"] backup_path = os.path.join(config_manager.get_app_data_folder(), "path_backup.txt") helper.write_file_string(backup_path, backup) helper.colored_text( f"Your old PATH environment variable has been backed up to &{backup_path}&" ) subprocess.run(f'setx PATH "{adb_path};%PATH%"', shell=True, check=True, text=True) print("Successfully added adb to path") def adb_err_handler(err: ADBException): """Handle ADB errors""" if err.exception_type in ( ADBExceptionTypes.NO_DEVICE, ADBExceptionTypes.DEVICE_OFFLINE, ): helper.colored_text( "Error: No device with an adb connection can be found, please connect one and try again. (You may have to wait aprox 1min for the device to be detected)", base=helper.RED, ) adb_reboot() elif err.exception_type == ADBExceptionTypes.PATH_NOT_FOUND: helper.colored_text( 'Error: SAVE_DATA couldn\'t be located, please make sure you have loaded into the game and clicked "START" and try again.', base=helper.RED, ) elif err.exception_type == ADBExceptionTypes.ADB_NOT_INSTALLED: add_adb = ( user_input_handler.colored_input( "Error, adb is not in your Path environment variable. There is a tutorial in the github's readme. Would you like to try to add adb to your path now?(&y&/&n&):" ) == "y" ) if add_adb: add_to_path() print("Please re-run the editor to try again") elif err.exception_type == ADBExceptionTypes.MORE_THAN_ONE_DEVICE: helper.colored_text( "Error: More than one device with an adb connection can be found, please make sure that only 1 device is connected. (You may have to wait aprox 1min for the device to be detected)", base=helper.RED, ) adb_reboot() else: helper.colored_text( "Error: " + str(err.message), base=helper.RED, ) helper.exit_editor() def adb_pull_save_data(game_version: str) -> str: """Pull save data from device""" helper.colored_text( "Pulling save data from device...", base=helper.DARK_YELLOW, ) try: adb_pull( get_package_name(game_version), "files/SAVE_DATA", helper.get_save_path_home(), ) except ADBException as err: adb_err_handler(err) return helper.get_save_path_home() def adb_push_save_data(game_version: str, path: str) -> None: """Push save data to device""" helper.colored_text( "Pushing save data to device...", base=helper.DARK_YELLOW, ) try: adb_push(get_package_name(game_version), path, "files/SAVE_DATA") except ADBException as err: adb_err_handler(err) def rerun_game(game_version: str) -> None: """Rerun game""" helper.colored_text( "Rerunning game...", base=helper.DARK_YELLOW, ) try: adb_close_process(get_package_name(game_version)) adb_run_process(get_package_name(game_version)) except ADBException as err: adb_err_handler(err) def adb_clear_save_data(game_version: str) -> None: """Clear save data""" try: adb_delete_file(get_package_name(game_version), "/files/*SAVE_DATA*") adb_delete_file(get_package_name(game_version), "/shared_prefs", "-r -f") except ADBException as err: adb_err_handler(err) def get_package_name(game_version: str) -> str: """Get package name""" if game_version == "jp": game_version = "" return f"jp.co.ponos.battlecats{game_version}"
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/adb_handler.py
0.611034
0.161949
adb_handler.py
pypi
from typing import Any, Union from . import ( helper, user_input_handler, config_manager, ) from .edits import basic, cats, gamototo, levels, other, save_management def fix_elsewhere_old(save_stats: dict[str, Any]) -> dict[str, Any]: """Fix the elsewhere error using 2 save files""" main_token = save_stats["token"] main_iq = save_stats["inquiry_code"] input( "Select a save file that is currently loaded in-game that doesn't have the elsehere error and is not banned\nPress enter to continue:" ) new_path = helper.select_file( "Select a clean save file", helper.get_save_file_filetype(), helper.get_save_path(), ) if not new_path: print("Please select a save file") return save_stats data = helper.load_save_file(new_path) new_stats = data["save_stats"] new_token = new_stats["token"] new_iq = new_stats["inquiry_code"] save_stats["token"] = new_token save_stats["inquiry_code"] = new_iq helper.colored_text(f"Replaced inquiry code: &{main_iq}& with &{new_iq}&") helper.colored_text(f"Replaced token: &{main_token}& with &{new_token}&") return save_stats FEATURES: dict[str, Any] = { "세이브 관리": { "세이브 저장": save_management.save.save_save, "세이브 저장후 기종변경 코드 받기": save_management.server_upload.save_and_upload, "파일에 저장하기": save_management.save.save, "Save changes and push save data to the game with adb (don't re-open game)": save_management.save.save_and_push, "Save changes and push save data to the game with adb (re-open game)": save_management.save.save_and_push_rerun, "세이브 데이터를 JSON으로 컴파일": save_management.other.export, "Clear save data with adb (used to generate a new account without re-installing the game)": save_management.other.clear_data, "Upload tracked bannable items (This is done automatically when saving or exiting)": save_management.server_upload.upload_metadata, "새로운 세이브 데이터 로딩": save_management.load.select, "세이브 데이터 국가 변경": save_management.convert.convert_save, # "Manage Presets": preset_handler.preset_manager, }, "아이템": { "통조림": basic.basic_items.edit_cat_food, "XP": basic.basic_items.edit_xp, "티켓": { "냥코 티켓": basic.basic_items.edit_normal_tickets, "레어 티켓": basic.basic_items.edit_rare_tickets, "플래티넘 티켓": basic.basic_items.edit_platinum_tickets, "플래티넘 조각": basic.basic_items.edit_platinum_shards, "레전드 티켓": basic.basic_items.edit_legend_tickets, }, "NP": basic.basic_items.edit_np, "리더쉽": basic.basic_items.edit_leadership, "배틀 아이템": basic.basic_items.edit_battle_items, "캣츠아이": basic.catseyes.edit_catseyes, "개다래 / 수석": basic.catfruit.edit_catfruit, "본능 구슬": basic.talent_orbs_new.edit_talent_orbs, "고양이 드링크": basic.basic_items.edit_catamins, "항목 구성표(금지할 수 없는 항목을 얻을 수 있음)": other.scheme_item.edit_scheme_data, }, "가마토토 / 오토토": { "오토토 조수": basic.basic_items.edit_engineers, "성 재료": basic.ototo_base_mats.edit_base_mats, "고양이 드링크": basic.basic_items.edit_catamins, "가마토토 XP / 레벨": gamototo.gamatoto_xp.edit_gamatoto_xp, "오토토 대포": gamototo.ototo_cat_cannon.edit_cat_cannon, "가마토토 대원": gamototo.helpers.edit_helpers, "가마토토가 게임을 튕기는 버그 수정": gamototo.fix_gamatoto.fix_gamatoto, }, "캐릭터 / 특능": { "캐릭터 획득 / 제거": { "캐릭터 획득": cats.get_remove_cats.get_cat, "캐릭터 제거": cats.get_remove_cats.remove_cats, }, "캐릭터 업그레이드": cats.upgrade_cats.upgrade_cats, "캐릭터 3단 진화": { "3단 진화 획득": cats.evolve_cats.get_evolve, "3단 진화 제거": cats.evolve_cats.remove_evolve, "강제 3단 진화 (3단 진화가 없는 고양이의 경우 빈 고양이로 채워짐)": cats.evolve_cats.get_evolve_forced, }, "본능": { "선택한 각 고양이의 본능을 개별적으로 설정": cats.talents.edit_talents_individual, "선택된 모든 고양이 본능 만렙 / 제거": cats.talents.max_all_talents, }, "캐릭터 도감": { "캐릭터 도감 획득 (통조림 X)": cats.clear_cat_guide.collect_cat_guide, "캐릭터 도감 미확인 상태": cats.clear_cat_guide.remove_cat_guide, }, '스테이지 드롭 보상 받기 (보수 상태 획득)': cats.chara_drop.get_character_drops, "특능 편집": cats.upgrade_blue.upgrade_blue, }, "스테이지 / 보물": { "스테이지 클리어 / 언클리어": { "선택한 모든 챕터의 모든 챕터에서 각 스테이지 클리어": levels.main_story.clear_all, "선택한 각 챕터의 모든 챕터에서 각 스테이지 클리어": levels.main_story.clear_each, }, "보물": { "보물 그룹으로 설정": levels.treasures.treasure_groups, "모든 보물을 따로따로 설정": levels.treasures.specific_stages, "각 장별로 한번에 설정": levels.treasures.specific_stages_all_chapters, }, "좀비스테이지": levels.outbreaks.edit_outbreaks, "이벤트 스테이지": levels.event_stages.event_stages, "구레전드 스테이지": levels.event_stages.stories_of_legend, "신레전드 스테이지": levels.uncanny.edit_uncanny, "마계편 클리어": levels.aku.edit_aku, "마계의 문 열기": levels.unlock_aku_realm.unlock_aku_realm, #"Gauntlets": levels.gauntlet.edit_gauntlet, #"Collab Gauntlets": levels.gauntlet.edit_collab_gauntlet, "탑": levels.towers.edit_tower, "초수 스테이지": levels.behemoth_culling.edit_behemoth_culling, "미래편 시간 점수": levels.itf_timed_scores.timed_scores, "챌린지 배틀 점수": basic.basic_items.edit_challenge_battle, "튜토리얼 클리어": levels.clear_tutorial.clear_tutorial, "냥코 도장 점수": basic.basic_items.edit_dojo_score, "발굴 스테이지 추가": levels.enigma_stages.edit_enigma_stages, "필리버스터 스테이지 언클리어": levels.allow_filibuster_clearing.allow_filibuster_clearing, "레전드 퀘스트": levels.legend_quest.edit_legend_quest, }, "문의코드 / 토큰 / 계정": { "문의코드": basic.basic_items.edit_inquiry_code, "토큰": basic.basic_items.edit_token, "언밴 / 오류 해결": other.fix_elsewhere.fix_elsewhere, #"Old Fix elsewhere error / Unban account (needs 2 save files)": fix_elsewhere_old, "새 문의코드와 토큰 생성": other.create_new_account.create_new_account, }, "기타": { "레어 뽑기 시드": basic.basic_items.edit_rare_gacha_seed, "캐릭터 편성": basic.basic_items.edit_unlocked_slots, "리스타트팩 설정": basic.basic_items.edit_restart_pack, "냥코 메달 설정": other.meow_medals.medals, "플레이타임 설정": other.play_time.edit_play_time, "적 도감 설정": other.unlock_enemy_guide.enemy_guide, "미션 설정": other.missions.edit_missions, "일반 티켓 최대 거래 진행률(금지할 수 없는 희귀 티켓 허용)": other.trade_progress.set_trade_progress, "골드패스 설정": other.get_gold_pass.get_gold_pass, "모든 유저 랭크 보상 제거 / 획득 (아이템을 주지 않음)": other.claim_user_rank_rewards.edit_rewards, "냥코 사당 레벨 / XP": other.cat_shrine.edit_shrine_xp, }, "오류해결": { "시간 오류 해결": other.fix_time_issues.fix_time_issues, "캐릭터 편성 오류 해결": other.unlock_equip_menu.unlock_equip, "튜토리얼 클리어": levels.clear_tutorial.clear_tutorial, "언밴 / 오류 해결": other.fix_elsewhere.fix_elsewhere, #"Old Fix elsewhere error / Unban account (needs 2 save files)": fix_elsewhere_old, "가마토토 / 오토토 오류 해결": gamototo.fix_gamatoto.fix_gamatoto, }, "에디터 설정 (사용 X)": { "Edit LOCALIZATION": config_manager.edit_locale, "Edit DEFAULT_COUNTRY_CODE": config_manager.edit_default_gv, "Edit DEFAULT_SAVE_PATH": config_manager.edit_default_save_file_path, "Edit FIXED_SAVE_PATH": config_manager.edit_fixed_save_path, "Edit EDITOR settings": config_manager.edit_editor_settings, "Edit START_UP settings": config_manager.edit_start_up_settings, "Edit SAVE_CHANGES settings": config_manager.edit_save_changes_settings, "Edit SERVER settings": config_manager.edit_server_settings, "Edit config path": config_manager.edit_config_path, }, "종료": helper.exit_check_changes, } def get_feature( selected_features: Any, search_string: str, results: dict[str, Any] ) -> dict[str, Any]: """Search for a feature if the feature name contains the search string""" for feature in selected_features: feature_data = selected_features[feature] if isinstance(feature_data, dict): feature_data = get_feature(feature_data, search_string, results) if search_string.lower().replace(" ", "") in feature.lower().replace(" ", ""): results[feature] = selected_features[feature] return results def show_options( save_stats: dict[str, Any], features_to_use: dict[str, Any] ) -> dict[str, Any]: """Allow the user to either enter a feature number or a feature name, and get the features that match""" if ( not config_manager.get_config_value_category("EDITOR", "SHOW_CATEGORIES") and FEATURES == features_to_use ): user_input = "" else: prompt = ( "에딧할 것을 선택하세요." ) if config_manager.get_config_value_category( "EDITOR", "SHOW_FEATURE_SELECT_EXPLANATION" ): prompt += "\n원하시는 메뉴의 번호를 입력해주세요" user_input = user_input_handler.colored_input(f"{prompt}:\n") user_int = helper.check_int(user_input) results = [] if user_int is None: results = get_feature(features_to_use, user_input, {}) else: if user_int < 1 or user_int > len(features_to_use) + 1: helper.colored_text("번호가 메뉴에 없습니다.", helper.RED) return show_options(save_stats, features_to_use) if FEATURES != features_to_use: if user_int - 2 < 0: return menu(save_stats) results = features_to_use[list(features_to_use)[user_int - 2]] else: results = features_to_use[list(features_to_use)[user_int - 1]] if not isinstance(results, dict): save_stats_return = results(save_stats) if save_stats_return is None: return save_stats return save_stats_return if len(results) == 0: helper.colored_text("해당 메뉴가 없습니다.", helper.RED) return menu(save_stats) if len(results) == 1 and isinstance(list(results.values())[0], dict): results = results[list(results)[0]] if len(results) == 1: save_stats_return = results[list(results)[0]](save_stats) if save_stats_return is None: return save_stats return save_stats_return helper.colored_list(["뒤로가기"] + list(results)) return show_options(save_stats, results) def menu( save_stats: dict[str, Any], path_save: Union[str, None] = None ) -> dict[str, Any]: """Show the menu and allow the user to select a feature to edit""" if path_save: helper.set_save_path(path_save) if config_manager.get_config_value_category("EDITOR", "SHOW_CATEGORIES"): helper.colored_list(list(FEATURES)) save_stats = show_options(save_stats, FEATURES) return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/feature_handler.py
0.490968
0.286512
feature_handler.py
pypi
from typing import Any, Optional, Tuple, Union from . import helper, locale_handler def handle_all_at_once( ids: list[int], all_at_once: bool, data: list[int], names: list[Any], item_name: str, group_name: str, explain_text: str = "", ) -> list[int]: """Handle all at once option""" locale_manager = locale_handler.LocalManager.from_config() first = True value = None for item_id in ids: if all_at_once and first: value = helper.check_int( colored_input( locale_manager.search_key("enter_item_name_explain") % (item_name, explain_text) ) ) first = False elif not all_at_once: value = helper.check_int( colored_input( locale_manager.search_key("enter_item_name_group_explain") % (item_name, group_name, names[item_id], explain_text) ) ) if value is None: continue data[item_id] = value return data def create_all_list( ids: list[str], max_val: int, ) -> dict[str, Any]: """Creates a list with an all at once option""" all_at_once = False if f"{max_val}" in ids: ids_s = list(range(1, max_val)) ids = [format(x, "02d") for x in ids_s] all_at_once = True return {"ids": ids, "at_once": all_at_once} def create_all_list_inc(ids: list[str], max_val: int) -> dict[str, Any]: """Creates a list with an all at once option and include all""" return create_all_list(ids, max_val) def create_all_list_not_inc(ids: list[str], max_val: int) -> list[str]: """Creates a list with an all at once option and don't include all""" return create_all_list(ids, max_val)["ids"] def get_range( usr_input: str, length: Union[int, None] = None, min_val: int = 0, all_ids: Union[list[int], None] = None, ) -> list[int]: """Get a range of numbers from user input""" locale_manager = locale_handler.LocalManager.from_config() ids: list[int] = [] for item in usr_input.split(" "): if item.lower() == locale_manager.search_key("all_text").lower(): if length is None and all_ids is None: helper.colored_text( locale_manager.search_key("invalid_all"), helper.RED ) return [] if all_ids: return all_ids if length is not None: return list(range(min_val, length)) if "-" in item: start_s, end_s = item.split("-") start = helper.check_int(start_s) end = helper.check_int(end_s) if start is None or end is None: helper.colored_text( locale_manager.search_key("invalid_range_format"), helper.RED, ) return ids if start > end: start, end = end, start ids.extend(list(range(start, end + 1))) else: item_id = helper.check_int(item) if item_id is None: helper.colored_text( locale_manager.search_key("invalid_int"), helper.RED ) return ids ids.append(item_id) return ids def colored_input( dialog: str, base: Optional[str] = None, new: Optional[str] = None ) -> str: """Format dialog as a colored string""" if base is None: base = helper.WHITE if new is None: new = helper.DARK_YELLOW helper.colored_text(dialog, end="", base=base, new=new) return input() def get_range_ids(group_name: str, length: int) -> list[int]: """Get a range of ids from user input""" locale_manager = locale_handler.LocalManager.from_config() ids = get_range( colored_input(locale_manager.search_key("enter_range_text") % (group_name)), length, ) return ids def select_options( options: list[str], mode: Optional[str] = None, extra_data: Union[list[Any], None] = None, offset: int = 0, ) -> Tuple[list[int], bool]: """Select an option or multiple options from a list""" if len(options) == 1: return [0], True locale_manager = locale_handler.LocalManager.from_config() if mode is None: mode = locale_manager.search_key("edit_text") helper.colored_list(options, extra_data=extra_data, offset=offset) total = len(options) helper.colored_text(f"{total+1}. {locale_manager.search_key('select_all')}") ids_s = colored_input( locale_manager.search_key("select_list") % (mode, mode) ).split(" ") individual = True if str(total + 1) in ids_s: ids = list(range(1, total + 1)) individual = False ids_s = helper.int_to_str_ls(ids) ids = helper.parse_int_list(ids_s, -1) for item_id in ids: if item_id < 0 or item_id > total - 1: helper.colored_text( locale_manager.search_key("invalid_range") % (total + 1), helper.RED, ) return select_options(options, mode, extra_data, offset) return ids, individual def select_inc( options: list[str], mode: Optional[str] = None, extra_data: Union[list[Any], None] = None, offset: int = 0, ) -> Tuple[list[int], bool]: """Select an option or multiple options from a list and include all""" return select_options(options, mode, extra_data, offset) def select_not_inc( options: list[str], mode: Optional[str] = None, extra_data: Union[list[Any], None] = None, offset: int = 0, ) -> list[int]: """Select an option or multiple options from a list and don't include all""" return select_options(options, mode, extra_data, offset)[0] def select_single( options: list[str], mode: Optional[str] = None, title: str = "", allow_text: bool = False, ) -> int: "Select a single option from a list" locale_manager = locale_handler.LocalManager.from_config() if not options: raise ValueError(locale_manager.search_key("error_no_options")) if len(options) == 1: return 1 helper.colored_list(options) if not title: title = locale_manager.search_key("select_option_to") % (mode) val = colored_input(title) if allow_text: if val in options: return options.index(val) + 1 val = helper.check_int(val) if val is None: helper.colored_text(locale_manager.search_key("invalid_int"), helper.RED) return select_single(options, mode, title, allow_text) if val < 1 or val > len(options): helper.colored_text( locale_manager.search_key("invalid_range") % (len(options)), helper.RED, ) return select_single(options, mode, title, allow_text) return val def get_int(dialog: str, default: Optional[int] = None) -> int: """Get user input as an integer and keep asking until a valid integer is entered""" helper.colored_text(dialog, end="") locale_manager = locale_handler.LocalManager.from_config() while True: try: val = input() val = val.strip(" ") return int(val) except ValueError: if default is not None: return default helper.colored_text(locale_manager.search_key("invalid_int"), helper.RED) def ask_if_individual(item_name: str) -> bool: """Ask if the user wants to edit an individual item""" locale_manager = locale_handler.LocalManager.from_config() is_individual = ( colored_input( locale_manager.search_key("ask_individual") % (item_name), ) == "1" ) return is_individual def get_yes_no(dialog: str) -> bool: """Get user input as a yes or no""" locale_manager = locale_handler.LocalManager.from_config() while True: val = colored_input(dialog) if val: if val.lower()[0] == "y": return True if val.lower()[0] == "n": return False helper.colored_text(locale_manager.search_key("invalid_yes_no"), helper.RED)
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/user_input_handler.py
0.776835
0.211753
user_input_handler.py
pypi
from typing import Any, Union from ... import helper, user_input_handler from . import cat_id_selector, cat_helper def set_level_caps(save_stats: dict[str, Any]) -> dict[str, Any]: """ Set the level caps for the cats Args: save_stats (dict[str, Any]): The save stats Returns: dict[str, Any]: The save stats """ unit_max_data = cat_helper.get_unit_max_levels(helper.is_jp(save_stats)) rarities = cat_helper.get_rarities(helper.is_jp(save_stats)) for cat_id in range(len(save_stats["cats"])): base_level = save_stats["cat_upgrades"]["Base"][cat_id] if unit_max_data is not None: max_base_level = cat_helper.get_unit_max_level(unit_max_data, cat_id)[0] else: max_base_level = 50000 try: rarity = rarities[cat_id] except IndexError: rarity = 0 max_base_level_ur = cat_helper.get_max_level(save_stats, rarity, cat_id) level_cap = cat_helper.get_level_cap_increase_amount( min(base_level, max_base_level, max_base_level_ur) ) save_stats["catseye_cat_data"][cat_id] = level_cap save_stats["catseye_related_data"]["Base"][cat_id] = level_cap + 10 return save_stats def set_user_popups(save_stats: dict[str, Any]) -> dict[str, Any]: """Set user popups, stops the user rank popups from spamming up the screen""" save_stats["user_rank_popups"]["Value"] = 0xFFFFFF return save_stats def get_plus_base(usr_input: str) -> tuple[Union[int, None], Union[int, None]]: """Get the base and plus level of an input""" split = usr_input.split("+") base = None plus = None if split[0]: base = helper.check_int_max(split[0]) if len(split) == 2 and split[1]: plus = helper.check_int_max(split[1]) if len(split) == 1: plus = 0 return base, plus def upgrade_cats(save_stats: dict[str, Any]) -> dict[str, Any]: """Upgrade specific cats""" ids = cat_id_selector.select_cats(save_stats) return upgrade_cats_ids(save_stats, ids) def upgrade_handler( data: dict[str, Any], ids: list[int], item_name: str, save_stats: dict[str, Any] ) -> dict[str, Any]: """Handler for cat upgrades""" ids = helper.check_cat_ids(ids, save_stats) base = data["Base"] plus = data["Plus"] individual = True if len(ids) > 1: individual = user_input_handler.ask_if_individual( f"upgrades for each {item_name}" ) first = True base_lvl = None plus_lvl = None for cat_id in ids: if not individual and first: levels = get_plus_base( user_input_handler.colored_input( 'Enter the base level followed by a "&+&" then the plus level, e.g 5&+&12. If you want to ignore the base level do &+&12, if you want to ignore the plus level do 5&+&:\n' ) ) base_lvl = levels[0] plus_lvl = levels[1] first = False elif individual: helper.colored_text( f"The current upgrade level of id &{cat_id}& is &{base[cat_id]+1}&+&{plus[cat_id]}&" ) levels = get_plus_base( user_input_handler.colored_input( f'Enter the base level for {item_name}: &{cat_id}& followed by a "&+&" then the plus level, e.g 5&+&12. If you want to ignore the base level do &+&12, if you want to ignore the plus level do 5&+&:\n' ) ) base_lvl = levels[0] plus_lvl = levels[1] if base_lvl is not None: if base_lvl > 0: base_lvl = helper.clamp(base_lvl, 0, 50000) base[cat_id] = base_lvl - 1 if plus_lvl is not None: plus_lvl = helper.clamp(plus_lvl, 0, 50000) plus[cat_id] = plus_lvl data["Base"] = base data["Plus"] = plus return data def upgrade_cats_ids(save_stats: dict[str, Any], ids: list[int]) -> dict[str, Any]: """Upgrade cats by ids""" save_stats["cat_upgrades"] = upgrade_handler( data=save_stats["cat_upgrades"], ids=ids, item_name="cat", save_stats=save_stats, ) save_stats = set_user_popups(save_stats) # save_stats = set_level_caps(save_stats) print("Successfully set cat levels") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/cats/upgrade_cats.py
0.737064
0.191649
upgrade_cats.py
pypi
from typing import Any from ... import helper, user_input_handler, csv_handler, game_data_getter from . import cat_id_selector def set_t_ids(save_stats: dict[str, Any]) -> dict[str, Any]: """handler for editing treasure ids""" unit_drops_stats = save_stats["unit_drops"] data = get_data(helper.check_data_is_jp(save_stats)) usr_t_ids = user_input_handler.get_range( user_input_handler.colored_input( "Enter treasures ids (Look up item drop cats battle cats to find ids)(You can enter &all& to get all, a range e.g &1&-&50&, or ids separate by spaces e.g &5 4 7&):" ), all_ids=data["t_ids"], ) unit_drops_stats = set_t_ids_val(unit_drops_stats, data, usr_t_ids) save_stats["unit_drops"] = unit_drops_stats return save_stats def set_c_ids(save_stats: dict[str, Any]) -> dict[str, Any]: """handler for editing cat ids""" unit_drops_stats = save_stats["unit_drops"] data = get_data(helper.check_data_is_jp(save_stats)) ids = cat_id_selector.select_cats(save_stats) usr_c_ids = helper.check_cat_ids(ids, save_stats) unit_drops_stats = set_c_ids_val(unit_drops_stats, data, usr_c_ids) save_stats["unit_drops"] = unit_drops_stats return save_stats def get_character_drops(save_stats: dict[str, Any]) -> dict[str, Any]: """handler for getting character drops""" flag_t_ids = ( user_input_handler.colored_input( "Do you want to select treasure ids &(1)&, or cat ids? &(2)&:" ) == "1" ) if flag_t_ids: save_stats = set_t_ids(save_stats) else: save_stats = set_c_ids(save_stats) print("Successfully set unit drops") return save_stats def get_data(is_jp: bool) -> dict[str, Any]: """gets all of the cat ids and treasure ids that can be dropped""" file_data = game_data_getter.get_file_latest("DataLocal", "drop_chara.csv", is_jp) if file_data is None: helper.error_text("Failed to get drop_chara.csv") return {"t_ids": [], "c_ids": [], "indexes": []} character_data = helper.parse_int_list_list( csv_handler.parse_csv(file_data.decode("utf-8"))[1:] ) treasure_ids = helper.copy_first_n(character_data, 0) indexes = helper.copy_first_n(character_data, 1) cat_ids = helper.copy_first_n(character_data, 2) return {"t_ids": treasure_ids, "indexes": indexes, "c_ids": cat_ids} def set_t_ids_val( unit_drops_stats: list[int], data: dict[str, Any], user_t_ids: list[int] ) -> list[int]: """sets the treasure ids of the unit drops""" for t_id in user_t_ids: if t_id in data["t_ids"]: index = data["t_ids"].index(t_id) save_index = data["indexes"][index] unit_drops_stats[save_index] = 1 return unit_drops_stats def set_c_ids_val( unit_drops_stats: list[int], data: dict[str, Any], user_t_ids: list[int] ) -> list[int]: """sets the cat ids of the unit drops""" for c_id in user_t_ids: if c_id in data["c_ids"]: index = data["c_ids"].index(c_id) save_index = data["indexes"][index] unit_drops_stats[save_index] = 1 return unit_drops_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/cats/chara_drop.py
0.651355
0.29988
chara_drop.py
pypi
from typing import Any from ... import helper, csv_handler, game_data_getter from . import cat_id_selector def get_evolve(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for evolving cats""" cat_ids = cat_id_selector.select_cats(save_stats) return evolve_handler_ids( save_stats=save_stats, val=2, string="set", ids=cat_ids, forced=False, ) def get_evolve_forced(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for evolving cats without the form check""" cat_ids = cat_id_selector.select_cats(save_stats) return evolve_handler_ids( save_stats=save_stats, val=2, string="set", ids=cat_ids, forced=True, ) def remove_evolve(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for de-evolving cats""" cat_ids = cat_id_selector.select_cats(save_stats) return evolve_handler_ids( save_stats=save_stats, val=0, string="removed", ids=cat_ids, forced=True, ) def evolve_handler( save_stats: dict[str, Any], val: int, string: str, forced: bool ) -> dict[str, Any]: """Evolve specific cats""" ids = cat_id_selector.select_cats(save_stats) return evolve_handler_ids(save_stats, val, string, ids, forced) def get_evolve_data(is_jp: bool) -> list[int]: """Get max form of cats""" file_data = game_data_getter.get_file_latest( "DataLocal", "nyankoPictureBookData.csv", is_jp ) if file_data is None: helper.error_text("Failed to get evolve data") return [] data = helper.parse_int_list_list(csv_handler.parse_csv(file_data.decode("utf-8"))) forms = helper.copy_first_n(data, 2) forms = helper.offset_list(forms, -1) return forms def evolve_handler_ids( save_stats: dict[str, Any], val: int, string: str, ids: list[int], forced: bool ) -> dict[str, Any]: """Evolve specific cats by ids""" ids = helper.check_cat_ids(ids, save_stats) evolves = save_stats["unlocked_forms"] if not forced: form_data = get_evolve_data(helper.check_data_is_jp(save_stats)) length = min([len(ids), len(form_data)]) for i in range(length): try: evolves[ids[i]] = form_data[ids[i]] except IndexError: pass else: for cat_id in ids: evolves[cat_id] = val for cat_id, (unlocked_flag, current_flag) in enumerate( zip(evolves, save_stats["current_forms"]) ): save_stats["current_forms"][cat_id] = max(unlocked_flag, current_flag) flags_evolved = [0 if form == 1 else form for form in evolves] save_stats["unlocked_forms"] = flags_evolved print(f"Successfully {string} true forms of cats") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/cats/evolve_cats.py
0.587707
0.238196
evolve_cats.py
pypi
import os from multiprocessing import Process from typing import Any, Callable, Optional from ... import ( csv_handler, game_data_getter, helper, user_input_handler, ) from ..levels import treasures from . import cat_helper def select_cats(save_stats: dict[str, Any], current: bool = True) -> list[int]: """Select cats""" options: dict[str, Callable[[dict[str, Any]], list[int]]] = { "Select currently unlocked cats": select_current_cats, "Select cats of a certain rarity": select_cats_rarity, "Select specific cat ids": select_cats_range, "Select cats of a specific gacha banner": select_cats_gatya_banner, "Select all cats": get_all_cats, "Search by cat name": select_cat_names, "Select all obtainable cats": select_cats_obtainable, } if not current: del options["Select currently unlocked cats"] choice_index = ( user_input_handler.select_single(list(options.keys()), title="Select cats:") - 1 ) cat_ids = options[list(options)[choice_index]](save_stats) return cat_ids def select_cats_obtainable(save_stats: dict[str, Any]) -> list[int]: """ Select cats that can be obtained Args: save_stats (dict[str, Any]): Save stats Returns: list[int]: Cat ids """ return filter_obtainable_cats(save_stats, get_all_cats(save_stats)) def select_current_cats(save_stats: dict[str, Any]) -> list[int]: """Select current cats""" cats = save_stats["cats"] cat_ids: list[int] = [] for i, cat_val in enumerate(cats): if cat_val == 1: cat_ids.append(i) return cat_ids def select_cats_rarity(save_stats: dict[str, Any]) -> list[int]: """Select cats of a certain rarity""" ids = user_input_handler.select_not_inc( options=cat_helper.TYPES, mode="select", ) is_jp = helper.is_jp(save_stats) cat_ids = cat_helper.get_rarity(ids, is_jp) return cat_ids def select_cats_range(save_stats: dict[str, Any]) -> list[int]: """Select cats in a range""" ids = user_input_handler.get_range( user_input_handler.colored_input( "Enter cat ids (Look up cro battle cats to find ids)(You can enter &all& to get all, a range e.g &1&-&50&, or ids separate by spaces e.g &5 4 7&):" ), length=len(save_stats["cats"]), ) return ids def select_cats_gatya_banner(save_stats: dict[str, Any]) -> list[int]: """Select cats for a specific gacha banner""" is_jp = helper.is_jp(save_stats) file_data = game_data_getter.get_file_latest( "DataLocal", "GatyaDataSetR1.csv", is_jp ) if file_data is None: helper.colored_text("Failed to get gatya banners") return [] data = helper.parse_int_list_list(csv_handler.parse_csv(file_data.decode("utf-8"))) ids = user_input_handler.get_range( user_input_handler.colored_input( "Enter gacha banner id (Look up the gacha banners you want, then click on the image at the top, and look for the last digits of the file name (e.g royal fest = 602))(You can enter &all& to get all, a range e.g &1&-&50&, or ids separate by spaces e.g &5 4 7&):" ), length=len(data), ) data = treasures.remove_negative_1(data) cat_ids: list[int] = [] for c_id in ids: cat_ids.extend(data[c_id]) return cat_ids def get_all_cats(save_stats: dict[str, Any]) -> list[int]: """Get all cats""" return list(range(len(save_stats["cats"]))) def select_cat_names(save_stats: dict[str, Any]) -> list[int]: """ select_cat_names Args: save_stats (dict[str, Any]): save stats Returns: list[int]: cat ids """ all_names = get_cat_names(save_stats) if all_names is None: return [] name = user_input_handler.colored_input("Enter cat name:") found_names = search_cat_names(name, all_names) found_names = filter_cat_names(found_names) if not found_names: print("No cats with that name found") return [] cat_ids: list[int] = [] cat_ids_str: list[str] = [] cat_names: list[str] = [] for cat_name, cat_id, _ in found_names: cat_ids.append(cat_id) cat_name = cat_name.replace("&", "\\&") cat_names.append(cat_name) cat_ids_str.append(f"Cat id: &{cat_id}&") print("Select indexes of cats to select (Not the cat id itself):") indexes = user_input_handler.select_not_inc( cat_names, mode="select", extra_data=cat_ids_str ) selected_ids: list[int] = [] for index in indexes: try: selected_ids.append(cat_ids[index]) except IndexError: helper.colored_text( f"Option is too high: {index} - Make sure to select the index on the left rather than the cat id", helper.RED, ) return selected_ids def get_cat_by_form_and_id( all_names: list[tuple[str, int, int]], cat_id: int, form_id: int ) -> Optional[tuple[str, int, int]]: """ Get cat by form and id Args: all_names (list[tuple[str, int, int]]): all names cat_id (int): cat id form_id (int): form id Returns: Optional[tuple[str, int, int]]: cat data """ for cat in all_names: if cat[1] == cat_id and cat[2] == form_id: return cat return None def get_cat_by_id( cat_names: list[tuple[str, int, int]], cat_id_to_search: int ) -> list[tuple[str, int, int]]: """ Get cat by id Args: cat_names (list[tuple[str, int, int]]): list of cat names cat_id_to_search (int): cat id to search for Returns: Optional[tuple[str, int, int]]: cat name, cat id, cat form """ cats: list[tuple[str, int, int]] = [] for cat_name, cat_id, cat_form in cat_names: if cat_id == cat_id_to_search: cats.append((cat_name, cat_id, cat_form)) return cats def filter_cat_names( cat_names: list[tuple[str, int, int]] ) -> list[tuple[str, int, int]]: """ Filter cat names by only selecting one of the forms Args: cat_names (list[tuple[str, int, int]]): list of cat names Returns: list[tuple[str, int, int]]: filtered cat names """ filtered_cat_ids: list[int] = [] cat_data: list[tuple[str, int, int]] = [] for cat_name, cat_id, cat_form in cat_names: if cat_id not in filtered_cat_ids: filtered_cat_ids.append(cat_id) cat_data.append((cat_name, cat_id, cat_form)) return cat_data def search_cat_names( name: str, cat_names: list[tuple[str, int, int]] ) -> list[tuple[str, int, int]]: """ Search cat names Args: name (str): name to search for cat_names (list[tuple[str, int, int]]): list of cat names Returns: list[tuple[str, int, int]]: list of cat names that match the search """ found_names: list[tuple[str, int, int]] = [] for cat_name, cat_id, form_id in cat_names: if name.lower().replace(" ", "") in cat_name.lower().replace(" ", ""): found_names.append((cat_name, cat_id, form_id)) return found_names def download_10_files(game_version: str, file_names: list[str]) -> None: """ Download 10 files Args: game_version (str): game version file_names (list[str]): file names """ for file_name in file_names: game_data_getter.download_file(game_version, "resLocal", file_name, False) def get_cat_names(save_stats: dict[str, Any]) -> Optional[list[tuple[str, int, int]]]: """ Get cat names and ids Args: save_stats (dict[str, Any]): save stats Returns: Optional[list[tuple[str, int, int]]]: cat names and ids """ is_jp = helper.is_jp(save_stats) path = game_data_getter.get_path("resLocal", "", is_jp) if path is None: helper.colored_text("Failed to get cat names", helper.RED) return None file_path_dir = os.path.dirname(helper.get_file(path)) helper.create_dirs(file_path_dir) if len(helper.find_files_in_dir(file_path_dir, "Unit_Explanation")) < len( save_stats["cats"] ): helper.colored_text( "Downloading cat names for the first time... (This may take some time, but next time it will be much faster)", helper.GREEN, ) funcs: list[Process] = [] version = game_data_getter.get_latest_version(is_jp) if version is None: helper.colored_text("Failed to get cat names", helper.RED) return None all_file_names: list[str] = [] for cat_id, _ in enumerate(save_stats["cats"]): file_name = f"Unit_Explanation{cat_id+1}_{helper.get_lang(is_jp)}.csv" all_file_names.append(file_name) file_names_split = helper.chunks(all_file_names, 10) for file_names in file_names_split: funcs.append( Process( target=download_10_files, args=(version, file_names), ) ) helper.run_in_parallel(funcs) names: list[tuple[str, int, int]] = [] for cat_id, _ in enumerate(save_stats["cats"]): file_path = os.path.join( file_path_dir, f"Unit_Explanation{cat_id+1}_{helper.get_lang(is_jp)}.csv" ) data = csv_handler.parse_csv( helper.read_file_string(file_path), delimeter=helper.get_text_splitter(is_jp), ) for form_id, form in enumerate(data): name = form[0] names.append((name, cat_id, form_id)) return names def get_obtainability(save_stats: dict[str, Any]) -> list[int]: """ Get obtainability of cats Args: save_stats (dict[str, Any]): save stats Returns: list[int]: obtainability of cats (0 = not obtainable, 1 = obtainable) """ file_data = game_data_getter.get_file_latest( "DataLocal", "nyankoPictureBookData.csv", helper.is_jp(save_stats) ) if file_data is None: helper.colored_text("Failed to get obtainability", helper.RED) return [] data = helper.parse_int_list_list(csv_handler.parse_csv(file_data.decode("utf-8"))) is_obtainable = helper.copy_first_n(data, 0) return is_obtainable def get_obtainable_cats(save_stats: dict[str, Any]) -> list[int]: """ Get obtainable cats Args: save_stats (dict[str, Any]): save stats Returns: list[int]: obtainable cats """ obtainability = get_obtainability(save_stats) return [i for i, x in enumerate(obtainability) if x == 1] def filter_obtainable_cats(save_stats: dict[str, Any], cat_ids: list[int]) -> list[int]: """ Filter obtainable cats in a list of cat ids Args: save_stats (dict[str, Any]): save stats cat_ids (list[int]): cat ids Returns: list[int]: obtainable cats """ obtainable_cats = get_obtainable_cats(save_stats) return [i for i in cat_ids if i in obtainable_cats]
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/cats/cat_id_selector.py
0.713731
0.24168
cat_id_selector.py
pypi
from typing import Any, Optional from ... import helper, item, csv_handler, game_data_getter, user_input_handler from . import cat_id_selector def get_talent_data(save_stats: dict[str, Any]) -> Optional[dict[Any, Any]]: """Get talent data for all cats""" file_data = game_data_getter.get_file_latest( "DataLocal", "SkillAcquisition.csv", helper.check_data_is_jp(save_stats) ) if file_data is None: helper.error_text("Failed to get talent data") return None talent_data_raw = helper.parse_int_list_list( csv_handler.parse_csv( file_data.decode("utf-8"), ) ) file_data = game_data_getter.get_file_latest( "resLocal", "SkillDescriptions.csv", helper.check_data_is_jp(save_stats) ) if file_data is None: helper.error_text("Failed to get talent names") return None talent_names = csv_handler.parse_csv( file_data.decode("utf-8"), helper.get_text_splitter(helper.check_data_is_jp(save_stats)), ) columns = helper.int_to_str_ls(talent_data_raw[0]) new_talent_data: dict[Any, Any] = {} for j in range(1, len(talent_data_raw)): data = talent_data_raw[j] cat_id: int = int(data[0]) new_talent_data[cat_id] = {} for data_i, column in zip(data, columns): new_talent_data = replace_name( cat_id=cat_id, column=column, data=data_i, talent_names=talent_names, new_data=new_talent_data, ) return new_talent_data def replace_name( cat_id: int, column: str, data: int, talent_names: list[list[str]], new_data: dict[Any, Any], ) -> dict[str, Any]: """Replace the text ids with the corresponding names""" new_data[cat_id][column] = data if ( "textID" in column or "tFxtID_F" in column ): # ponos made a typo, should be textID_F new_data[cat_id][column] = talent_names[data][1] stop_at = "<br>" if stop_at in new_data[cat_id][column]: index = new_data[cat_id][column].index(stop_at) new_data[cat_id][column] = new_data[cat_id][column][:index] return new_data def find_order( cat_talents: list[dict[str, Any]], cat_talent_data: dict[str, Any] ) -> list[str]: """Find what talent slot each letter corresponds to""" letters = ["A", "B", "C", "D", "E", "F", "G", "H"] letter_order: list[str] = [] for talent in cat_talents: talent_id = talent["id"] for letter in letters: key = f"abilityID_{letter}" if key not in cat_talent_data: continue ability_id = int(cat_talent_data[key]) if ability_id == talent_id: letter_order.append(letter) break return letter_order def get_cat_talents( cat_talents: list[dict[str, Any]], cat_talent_data: dict[str, Any] ) -> dict[Any, Any]: """Get the name and max value of each talent for a specific cat""" data: dict[Any, Any] = {} letter_order = find_order(cat_talents, cat_talent_data) for i, letter in enumerate(letter_order): cat_data = {} if letter == "F": text_id_str = "tFxtID_F" # ponos made a typo, should be textID_F else: text_id_str = f"textID_{letter}" cat_data["name"] = cat_talent_data[text_id_str].strip("\n") cat_data["max"] = int(cat_talent_data[f"MAXLv_{letter}"]) if cat_data["max"] == 0: cat_data["max"] = 1 data[i] = cat_data return data def get_talent_levels( talent_data: dict[int, Any], talents: dict[int, Any], cat_id: int ) -> list[int]: """Get the level of each talent for a specific cat""" cat_talent_data = talent_data[cat_id] cat_talents = talents[cat_id] cat_talent_data_formatted = get_cat_talents(cat_talents, cat_talent_data) cat_talents_levels: list[int] = [] for talent_formatted in cat_talent_data_formatted.values(): max_val = talent_formatted["max"] cat_talents_levels.append(max_val) return cat_talents_levels def max_all_talents(save_stats: dict[str, Any]): """Max all talents for all cats""" max_all = ( user_input_handler.colored_input( "Do you want to max talents or reset talents? (&m&/&r&):" ) == "m" ) if not max_all: return remove_all_talents(save_stats) talents = save_stats["talents"] ids = cat_id_selector.select_cats(save_stats) talent_data = get_talent_data(save_stats) if talent_data is None: return save_stats cat_talents_levels: list[int] = [] for cat_id in ids: if cat_id not in talents or cat_id not in talent_data: continue cat_talents = talents[cat_id] cat_talents_levels = get_talent_levels(talent_data, talents, cat_id) for i, cat_talent_level in enumerate(cat_talents_levels): cat_talents[i]["level"] = cat_talent_level save_stats["talents"] = talents print("Successfully set talents") return save_stats def remove_all_talents(save_stats: dict[str, Any]) -> dict[str, Any]: """ Remove all talents for all cats Args: save_stats (dict[str, Any]): The save stats Returns: dict[str, Any]: The save stats """ talents = save_stats["talents"] ids = cat_id_selector.select_cats(save_stats) talent_data = get_talent_data(save_stats) if talent_data is None: return save_stats cat_talents_levels: list[int] = [] for cat_id in ids: if cat_id not in talents or cat_id not in talent_data: continue cat_talents = talents[cat_id] cat_talents_levels = get_talent_levels(talent_data, talents, cat_id) for i in range(len(cat_talents_levels)): cat_talents[i]["level"] = 0 save_stats["talents"] = talents print("Successfully removed talents") return save_stats def edit_talents_individual(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing talents""" talents = save_stats["talents"] ids = cat_id_selector.select_cats(save_stats) talent_data = get_talent_data(save_stats) if talent_data is None: return save_stats for cat_id in ids: cat_talents_levels: list[int] = [] if cat_id not in talents or cat_id not in talent_data: # don't spam the user with messages if they selected alot of ids at once if len(ids) < 20: helper.colored_text( f"Error cat &{cat_id}& does not have any talents", helper.RED, helper.WHITE, ) continue cat_talent_data = talent_data[cat_id] cat_talents = talents[cat_id] cat_talent_data_formatted = get_cat_talents(cat_talents, cat_talent_data) names: list[str] = [] maxes: list[int] = [] for talent_index, cat_talent_formatted in cat_talent_data_formatted.items(): names.append(cat_talent_formatted["name"]) cat_talents_levels.append(cat_talents[talent_index]["level"]) maxes.append(cat_talent_formatted["max"]) helper.colored_text(f"Cat &{cat_id}& is selected:") cat_talents_levels_g = item.IntItemGroup.from_lists( names=names, values=cat_talents_levels, maxes=maxes, group_name="Talents", ) cat_talents_levels_g.edit() cat_talents_levels = cat_talents_levels_g.get_values() for i, cat_talent_level in enumerate(cat_talents_levels): cat_talents[i]["level"] = cat_talent_level talents[cat_id] = cat_talents save_stats["talents"] = talents print("Successfully set talents") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/cats/talents.py
0.732974
0.187802
talents.py
pypi
from typing import Any, Optional from ... import csv_handler, game_data_getter, helper from ..levels import main_story, uncanny TYPES = [ "Normal", "Special", "Rare", "Super Rare", "Uber Super Rare", "Legend Rare", ] def get_level_cap_increase_amount(cat_base_level: int) -> int: """ Get the amount of levels to increase the level cap by Args: cat_base_level (int): The base level of the cat (30 = 29) Returns: int: The amount of levels to increase the level cap by """ return max(0, cat_base_level - 29) def get_unit_max_levels(is_jp: bool) -> Optional[tuple[list[int], list[int]]]: """ Get the max base and plus levels for all cats Args: is_jp (bool): If the game is in Japanese Returns: tuple[list[int], list[int]]: The max base and plus levels for all cats """ file_data = game_data_getter.get_file_latest("DataLocal", "unitbuy.csv", is_jp) if file_data is None: helper.error_text("Could not get unitbuy.csv") return None data = helper.parse_int_list_list(csv_handler.parse_csv(file_data.decode("utf-8"))) max_base_level = helper.copy_first_n(data, 50) max_plus_level = helper.copy_first_n(data, 51) return max_base_level, max_plus_level def get_unit_max_level( data: tuple[list[int], list[int]], cat_id: int ) -> tuple[int, int]: """ Get the max base and plus levels for a cat Args: data (tuple[list[int], list[int]]): The max base and plus levels for all cats cat_id (int): The id of the cat Returns: tuple[int, int]: The max base and plus levels for a cat """ try: return data[0][cat_id], data[1][cat_id] except IndexError: return 0, 0 def get_rarities(is_jp: bool) -> list[int]: """Get all cat ids of each rarity""" file_data = game_data_getter.get_file_latest( "DataLocal", "unitbuy.csv", is_jp ) if file_data is None: helper.error_text("Could not get unitbuy.csv") return [] data = helper.parse_int_list_list(csv_handler.parse_csv(file_data.decode("utf-8"))) rarity_ids = helper.copy_first_n(data, 13) return rarity_ids def get_rarity(rarity_ids: list[int], is_jp: bool) -> list[int]: """Get all cat ids of a certain rarity""" rarities = get_rarities(is_jp) cat_ids: list[int] = [] for rarity_id in rarity_ids: for i, rarity_val in enumerate(rarities): if int(rarity_val) == rarity_id: cat_ids.append(i) return cat_ids def is_legend(cat_id: int) -> bool: """ Check if a cat is a legend Args: cat_id (int): The id of the cat Returns: bool: If the cat is a legend """ legends = [ 24, 25, 130, 172, 268, 323, 352, 383, 426, 437, 462, 464, 532, 554, 568, 613, 622, 653, ] if cat_id in legends: return True return False def is_crazed(cat_id: int) -> bool: """ Check if a cat is crazed Args: cat_id (int): The id of the cat Returns: bool: If the cat is crazed """ crazed = [ 91, 92, 93, 94, 95, 96, 97, 98, 99, ] if cat_id in crazed: return True return False def get_max_cat_level_normal(save_stats: dict[str, Any]) -> int: """ Get the max level a normal cat can be upgraded to Args: save_stats (dict[str, Any]): The save stats Returns: int: The max level of a normal cat """ if main_story.has_cleared_chapter(save_stats, 1): return 20 return 10 def catseyes_unlocked(save_stats: dict[str, Any]) -> bool: """ Check if catseyes are unlocked Args: save_stats (dict[str, Any]): The save stats Returns: bool: If catseyes are unlocked """ return helper.calculate_user_rank(save_stats) >= 1600 def get_max_cat_level_special(save_stats: dict[str, Any], cat_id: int) -> int: """ Get the max level a special cat can be upgraded to Args: save_stats (dict[str, Any]): The save stats cat_id (int): The id of the cat Returns: int: The max level of a special cat """ legend = is_legend(cat_id) acient_curse_clear = uncanny.is_ancient_curse_clear(save_stats) user_rank = helper.calculate_user_rank(save_stats) catseyes = catseyes_unlocked(save_stats) eoc_cleared_2 = main_story.has_cleared_chapter(save_stats, 1) if not eoc_cleared_2: return 10 if user_rank < 1600: return 20 if not catseyes: return 30 if not acient_curse_clear and not legend: return 40 if not acient_curse_clear and legend: return 30 if acient_curse_clear and legend: return 40 return 50 def get_max_cat_level_rare(save_stats: dict[str, Any]) -> int: """ Get the max level a cat can be upgraded to Args: save_stats (dict[str, Any]): The save stats Returns: int: The max level of a cat """ user_rank = helper.calculate_user_rank(save_stats) catseyes = catseyes_unlocked(save_stats) cleared_eoc_2 = main_story.has_cleared_chapter(save_stats, 1) acient_curse_clear = uncanny.is_ancient_curse_clear(save_stats) if not cleared_eoc_2: return 10 if user_rank < 900: return 20 if user_rank < 1200: return 25 if not catseyes: return 30 if not acient_curse_clear: return 40 return 50 def get_max_level_super_rare(save_stats: dict[str, Any], cat_id: int) -> int: """ Get the max level a super rare cat can be upgraded to Args: save_stats (dict[str, Any]): The save stats cat_id (int): The id of the cat Returns: int: The max level of a super rare cat """ user_rank = helper.calculate_user_rank(save_stats) cleared_eoc_2 = main_story.has_cleared_chapter(save_stats, 1) acient_curse_clear = uncanny.is_ancient_curse_clear(save_stats) crazed = is_crazed(cat_id) catseyes = catseyes_unlocked(save_stats) if not cleared_eoc_2: return 10 if crazed and user_rank < 3600: return 20 if not crazed and user_rank < 1000: return 20 if crazed and user_rank < 3650: return 25 if not crazed and user_rank < 1300: return 25 if not catseyes: return 30 if not acient_curse_clear: return 40 return 50 def get_max_level_uber_rare(save_stats: dict[str, Any]) -> int: """ Get the max level a uber rare cat can be upgraded to Args: save_stats (dict[str, Any]): The save stats Returns: int: The max level of a uber rare cat """ user_rank = helper.calculate_user_rank(save_stats) cleared_eoc_2 = main_story.has_cleared_chapter(save_stats, 1) acient_curse_clear = uncanny.is_ancient_curse_clear(save_stats) catseyes = catseyes_unlocked(save_stats) if not cleared_eoc_2: return 10 if user_rank < 1100: return 20 if user_rank < 1400: return 25 if not catseyes: return 30 if not acient_curse_clear: return 40 return 50 def get_max_level_legend_rare(save_stats: dict[str, Any]) -> int: """ Get the max level a legend rare cat can be upgraded to Args: save_stats (dict[str, Any]): The save stats Returns: int: The max level of a legend rare cat """ user_rank = helper.calculate_user_rank(save_stats) cleared_eoc_2 = main_story.has_cleared_chapter(save_stats, 1) acient_curse_clear = uncanny.is_ancient_curse_clear(save_stats) catseyes = catseyes_unlocked(save_stats) if not cleared_eoc_2: return 10 if user_rank < 1110: return 20 if user_rank < 1410: return 25 if not catseyes: return 30 if not acient_curse_clear: return 40 return 50 def get_max_level(save_stats: dict[str, Any], rarity_index: int, cat_id: int) -> int: """ Get the max level a cat can be upgraded to Args: save_stats (dict[str, Any]): The save stats rarity_index (int): The rarity index of the cat cat_id (int): The id of the cat Returns: int: The max level of a cat """ if rarity_index == 0: return get_max_cat_level_normal(save_stats) if rarity_index == 1: return get_max_cat_level_special(save_stats, cat_id) if rarity_index == 2: return get_max_cat_level_rare(save_stats) if rarity_index == 3: return get_max_level_super_rare(save_stats, cat_id) if rarity_index == 4: return get_max_level_uber_rare(save_stats) if rarity_index == 5: return get_max_level_legend_rare(save_stats) return 0
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/cats/cat_helper.py
0.85555
0.324075
cat_helper.py
pypi
from typing import Any, Optional from ... import user_input_handler, server_handler, helper, adb_handler from ..levels import clear_tutorial def select(save_stats: dict[str, Any]) -> dict[str, Any]: helper.check_changes(None) options = [ "Download save data from the game using transfer and confirmation codes", "Select a save file from file", "Use adb to pull the save from a rooted device", "Load save data from json", ] index = ( user_input_handler.select_single( options, title="Select an option to get save data:" ) - 1 ) save_path = handle_index(index) if not save_path: return save_stats helper.set_save_path(save_path) data = helper.load_save_file(save_path) save_stats = data["save_stats"] if save_path.endswith(".json"): input( "Your save data seems to be in json format. Please use to import json option if you want to load json data.\nPress enter to continue...:" ) if not clear_tutorial.is_tutorial_cleared(save_stats): save_stats = clear_tutorial.clear_tutorial(save_stats) return save_stats def handle_index(index: int) -> Optional[str]: path = None if index == 0: print("Enter details for data transfer:") path = server_handler.download_handler() elif index == 1: print("Select save file:") path = helper.select_file( "Select a save file:", helper.get_save_file_filetype(), initial_file=helper.get_save_path_home(), ) elif index == 2: print("Enter details for save pulling:") game_versions = adb_handler.find_game_versions() if not game_versions: game_version = helper.ask_cc() else: index = ( user_input_handler.select_single( game_versions, "Select", "Select a game version to pull from:", True ) - 1 ) game_version = game_versions[index] path = adb_handler.adb_pull_save_data(game_version) elif index == 3: print("Select save data json file") js_path = helper.select_file( "Select save data json file", [("Json", "*.json")], initial_file=helper.get_save_path_home() + ".json", ) if js_path: path = helper.load_json_handler(js_path) else: helper.colored_text("Please enter a recognised option", base=helper.RED) return None return path
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/save_management/load.py
0.617167
0.293886
load.py
pypi
from typing import Any from ... import helper, serialise_save, patcher, adb_handler, root_handler def save(save_stats: dict[str, Any]) -> dict[str, Any]: """Serialise the save data and exit""" save_data = serialise_save.start_serialize(save_stats) helper.write_save_data( save_data, save_stats["version"], helper.get_save_path(), True ) helper.check_managed_items(save_stats, helper.get_save_path()) return save_stats def save_save(save_stats: dict[str, Any]) -> dict[str, Any]: """Serialise the save data""" save_data = serialise_save.start_serialize(save_stats) helper.write_save_data( save_data, save_stats["version"], helper.get_save_path(), False ) helper.check_managed_items(save_stats, helper.get_save_path()) return save_stats def save_and_push(save_stats: dict[str, Any]) -> dict[str, Any]: """Serialise the save data and and push it to the game""" save_data = serialise_save.start_serialize(save_stats) save_data = patcher.patch_save_data(save_data, save_stats["version"]) helper.write_file_bytes(helper.get_save_path(), save_data) helper.check_managed_items(save_stats, helper.get_save_path()) if not helper.is_android(): adb_handler.adb_push_save_data(save_stats["version"], helper.get_save_path()) return save_stats def save_and_push_rerun(save_stats: dict[str, Any]) -> dict[str, Any]: """Serialise the save data and push it to the game and restart the game""" save_data = serialise_save.start_serialize(save_stats) save_data = patcher.patch_save_data(save_data, save_stats["version"]) helper.write_file_bytes(helper.get_save_path(), save_data) helper.check_managed_items(save_stats, helper.get_save_path()) if not helper.is_android(): adb_handler.adb_push_save_data(save_stats["version"], helper.get_save_path()) adb_handler.rerun_game(save_stats["version"]) else: root_handler.rerun_game(save_stats["version"]) return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/save_management/save.py
0.737253
0.188063
save.py
pypi
from typing import Any from ... import helper, serialise_save, server_handler, user_info def upload_metadata(save_stats: dict[str, Any]) -> dict[str, Any]: """Upload the metadata to the game server""" _, save_stats = server_handler.meta_data_upload_handler( save_stats, helper.get_save_path() ) return save_stats def set_managed_items(save_stats: dict[str, Any]) -> dict[str, Any]: """Set the managed items for the save stats""" data = server_handler.check_gen_token(save_stats) token = data["token"] save_stats = data["save_stats"] if token is None: helper.colored_text("Error generating token") return save_stats server_handler.update_managed_items(save_stats["inquiry_code"], token, save_stats) return save_stats def handle_upload_error(inquiry_code: str): """Show an error message""" info = user_info.UserInfo(inquiry_code) info.set_auth_token("") info.set_password("") helper.colored_text( "Error uploading save data\nPlease try again. If error persists, please report this in #bug-reports" ) def save_and_upload(save_stats: dict[str, Any]) -> dict[str, Any]: """Serialise the save data, and upload it to the game server""" save_data = serialise_save.start_serialize(save_stats) save_data = helper.write_save_data( save_data, save_stats["version"], helper.get_save_path(), False ) upload_data = server_handler.upload_handler(save_stats, helper.get_save_path()) if upload_data is None: handle_upload_error(save_stats["inquiry_code"]) return save_stats upload_data, save_stats = upload_data inquiry_code = save_stats["inquiry_code"] if upload_data is None: handle_upload_error(inquiry_code) return save_stats if "transferCode" not in upload_data: handle_upload_error(inquiry_code) return save_stats else: helper.colored_text(f"Transfer code : &{upload_data['transferCode']}&") helper.colored_text(f"Confirmation Code : &{upload_data['pin']}&") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/save_management/server_upload.py
0.664105
0.186817
server_upload.py
pypi
from typing import Any, Optional from ... import game_data_getter, helper, item, user_input_handler def get_boundaries(is_jp: bool) -> Optional[list[int]]: """ Returns the xp requirements for each level Args: is_jp (bool): If the save file is japanese Returns: list[int]: The xp requirements for each level """ file_data = game_data_getter.get_file_latest("resLocal", "jinja_level.csv", is_jp) if file_data is None: helper.error_text("Failed to get jinja level data") return None boundaries = file_data.decode("utf-8").splitlines() xp_requirements: list[int] = [] counter = 0 for line in boundaries: requirement = int(line.split(helper.get_text_splitter(is_jp))[0]) counter += requirement xp_requirements.append(counter) return xp_requirements def get_level_from_xp(shrine_xp: int, is_jp: bool) -> Optional[dict[str, Any]]: """ Returns the level, max level and max xp from the given xp Args: shrine_xp (int): The xp of the shrine is_jp (bool): If the save file is japanese Returns: dict[str, Any]: The level, max level, and max xp """ xp_requirements = get_boundaries(is_jp) if xp_requirements is None: return None level = 1 for requirement in xp_requirements: if shrine_xp >= requirement: level += 1 if level > len(xp_requirements): level = len(xp_requirements) return { "level": level, "max_level": len(xp_requirements), "max_xp": xp_requirements[-2], } def get_xp_from_level(level: int, is_jp: bool) -> Optional[int]: """ Returns the xp required to reach the given level Returns: _type_: int """ xp_requirements = get_boundaries(is_jp) if xp_requirements is None: return None if level <= 1: shrine_xp = 0 else: shrine_xp = xp_requirements[level - 2] return shrine_xp def edit_shrine_xp(save_stats: dict[str, Any]) -> dict[str, Any]: """ Edit the shrine xp of the save file Args: save_stats (dict[str, Any]): The save file stats Returns: dict[str, Any]: The edited save file stats """ shrine_xp = save_stats["cat_shrine"]["xp_offering"] data = get_level_from_xp(shrine_xp, helper.check_data_is_jp(save_stats)) if data is None: return save_stats level = data["level"] helper.colored_text(f"Shrine XP: &{shrine_xp}&\nLevel: &{level}&") raw = ( user_input_handler.colored_input( "Do you want to edit raw xp(&1&) or the level(&2&)?:" ) == "1" ) if raw: cat_shrine_xp = item.IntItem( name="Shrine XP", value=item.Int(shrine_xp), max_value=None, ) cat_shrine_xp.edit() shrine_xp = int(cat_shrine_xp.get_value()) else: shrine_level = item.IntItem( name="Shrine Level", value=item.Int(level), max_value=data["max_level"], ) shrine_level.edit() shrine_xp = get_xp_from_level( int(shrine_level.get_value()), helper.check_data_is_jp(save_stats) ) if shrine_xp is None: return save_stats shrine_data = get_level_from_xp(shrine_xp, helper.check_data_is_jp(save_stats)) if shrine_data is None: return save_stats shrine_level = shrine_data["level"] if shrine_level > data["max_level"]: shrine_level = data["max_level"] save_stats["shrine_dialogs"]["Value"] = shrine_level - 1 # Level up dialog save_stats["shrine_gone"] = 0 save_stats["cat_shrine"]["stamp_1"] = 0 save_stats["cat_shrine"]["stamp_2"] = 0 save_stats["cat_shrine"]["xp_offering"] = shrine_xp return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/other/cat_shrine.py
0.865253
0.321846
cat_shrine.py
pypi
from typing import Any, Optional from ... import user_input_handler, game_data_getter, csv_handler, helper def get_mission_conditions(is_jp: bool) -> Optional[dict[Any, Any]]: """Get the mission data and what you need to do to complete it""" file_data = game_data_getter.get_file_latest( "DataLocal", "Mission_Condition.csv", is_jp ) if file_data is None: helper.error_text("Failed to get mission conditions") return None mission_condition_data = file_data.decode("utf-8") mission_conditions_list = helper.parse_int_list_list( csv_handler.parse_csv(mission_condition_data) ) mission_conditions: dict[Any, Any] = {} for line in mission_conditions_list[1:]: mission_id = line[0] mission_conditions[mission_id] = { "mission_type": line[1], "conditions_type": line[2], "progress_count": line[3], "conditions_value": line[4:], } return mission_conditions def get_mission_names(is_jp: bool) -> Optional[dict[int, Any]]: """Get all mission names""" file_data = game_data_getter.get_file_latest("resLocal", "Mission_Name.csv", is_jp) if file_data is None: helper.error_text("Failed to get mission names") return None mission_name = file_data.decode("utf-8") mission_name_list = mission_name.split("\n") mission_names: dict[int, Any] = {} for mission_name in mission_name_list: line_data = mission_name.split(helper.get_text_splitter(is_jp)) if helper.check_int(line_data[0]) is None: continue mission_id = int(line_data[0]) name = line_data[1] name = name.replace("&", "\\&") mission_names[mission_id] = name return mission_names def get_mission_names_from_ids( ids: list[int], mission_names: dict[int, Any] ) -> list[str]: """Get the mission names from the ids""" names: list[str] = [] for mission_id in ids: if mission_id in mission_names: names.append(mission_names[mission_id]) return names def get_mission_ids( missions: dict[str, Any], conditions: dict[int, Any], names: dict[int, Any] ) -> tuple[list[int], list[str]]: """Get the mission ids and names from the conditions""" mission_ids_to_use: list[int] = [] for mission_id in missions["states"]: if mission_id in conditions: mission_ids_to_use.append(mission_id) names_to_use = get_mission_names_from_ids(mission_ids_to_use, names) return mission_ids_to_use, names_to_use def set_missions( missions: dict[str, Any], ids: list[int], conditions: dict[Any, Any], mission_ids_to_use: list[int], re_claim: bool, ) -> dict[str, Any]: """Set the missions""" for mission_id in ids: mission_id = helper.clamp(mission_id, 1, len(mission_ids_to_use)) mission_id = mission_ids_to_use[mission_id] if re_claim: claim = True elif not re_claim and missions["states"][mission_id] != 4: claim = True else: claim = False if claim: missions["states"][mission_id] = 2 missions["requirements"][mission_id] = conditions[mission_id][ "progress_count" ] return missions def edit_missions(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editting catnip missions""" missions = save_stats["missions"] names = get_mission_names(helper.check_data_is_jp(save_stats)) conditions = get_mission_conditions(helper.check_data_is_jp(save_stats)) if names is None or conditions is None: return save_stats mission_ids_to_use, names_to_use = get_mission_ids(missions, conditions, names) ids = user_input_handler.select_not_inc( options=names_to_use, mode="complete", ) re_claim = ( user_input_handler.colored_input( "Do you want to re-complete already claimed missions &(1)& (Allows you to get the rewards again) or only complete non-claimed missions&(2)&:" ) == "1" ) missions = set_missions(missions, ids, conditions, mission_ids_to_use, re_claim) save_stats["missions"] = missions print("Successfully completed missions") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/other/missions.py
0.740925
0.260251
missions.py
pypi
from typing import Any from ... import csv_handler, game_data_getter, helper, user_input_handler def get_item_names(is_jp: bool) -> list[str]: """Get the item names Args: is_jp (bool): If the data is for jp Returns: list[str]: The item names """ item_names = game_data_getter.get_file_latest( "resLocal", "GatyaitemName.csv", is_jp ) if item_names is None: helper.error_text("Failed to get item names") return [] item_names = csv_handler.parse_csv( item_names.decode("utf-8"), delimeter=helper.get_text_splitter(is_jp), ) names: list[str] = [] for item in item_names: names.append(item[0]) return names def get_scheme_data(is_jp: bool) -> list[list[int]]: """Get the scheme data Args: is_jp (bool): If the data is for jp Returns: list[list[int]]: The scheme data """ scheme_data = game_data_getter.get_file_latest( "DataLocal", "schemeItemData.tsv", is_jp ) if scheme_data is None: helper.error_text("Failed to get scheme data") return [] scheme_data_data = helper.parse_int_list_list( csv_handler.parse_csv( scheme_data.decode("utf-8"), delimeter="\t", ) ) return scheme_data_data def get_scheme_names(is_jp: bool, scheme_data: list[list[int]]) -> dict[int, str]: """Get the scheme names""" file_data = game_data_getter.get_file_latest("resLocal", "localizable.tsv", is_jp) if file_data is None: helper.error_text("Failed to get scheme names") return {} localizable = csv_handler.parse_csv( file_data.decode("utf-8"), delimeter="\t", ) names: dict[int, str] = {} for scheme in scheme_data[1:]: scheme_id = scheme[0] for name in localizable: scheme_str = f"scheme_popup_{scheme_id}" if name[0] == scheme_str: scheme_name = name[1].replace("<flash>", "").replace("</flash>", "") names[scheme_id] = scheme_name break return names def get_cat_name(cat_id: int, is_jp: bool, cc: str) -> str: """Get the cat name""" file_data = game_data_getter.get_file_latest( "resLocal", f"Unit_Explanation{cat_id+1}_{cc}.csv", is_jp ) if file_data is None: helper.error_text("Failed to get cat names") return "" cat_name = csv_handler.parse_csv( file_data.decode("utf-8"), delimeter=helper.get_text_splitter(is_jp), ) return cat_name[0][0] def edit_scheme_data(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing scheme data""" is_jp = helper.check_data_is_jp(save_stats) data = get_scheme_data(is_jp) names = get_scheme_names(is_jp, data) item_names = get_item_names(is_jp) options: list[str] = [] for scheme in data[1:]: scheme_id = scheme[0] is_cat = scheme[2] == 1 item_id = scheme[3] amount = scheme[4] try: scheme_name = names[scheme_id] except KeyError: continue string = "\n\t" if is_cat: cat_name = get_cat_name(item_id, is_jp, helper.get_lang(is_jp)) string += scheme_name.replace("%@", cat_name) else: try: item_name = item_names[item_id] except IndexError: continue string += scheme_name first_index = string.find("%@") second_index = string.find("%@", first_index + 1) string = ( string[:first_index] + str(amount) + " " + item_name + string[second_index + 2 :] ) string = string.replace("<br>", "\n\t") options.append(string) scheme_ids = user_input_handler.select_not_inc(options, "get") scheme_data = save_stats["item_schemes"] for scheme_index in scheme_ids: try: scheme_id = data[scheme_index + 1][0] except IndexError: continue obtain_ids: list[int] = scheme_data["to_obtain_ids"] obtain_ids.append(scheme_id) received_ids: list[int] = scheme_data["received_ids"] if scheme_id in received_ids: received_ids.remove(scheme_id) scheme_data["to_obtain_ids"] = obtain_ids scheme_data["received_ids"] = received_ids save_stats["item_schemes"] = scheme_data return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/other/scheme_item.py
0.794305
0.240351
scheme_item.py
pypi
import json from typing import Any, Optional from SC_Editor import game_data_getter, csv_handler, helper, user_input_handler class RawOrbInfo: def __init__( self, orb_id: int, grade_id: int, effect_id: int, value: list[int], attribute_id: int, ): """Initialize the RawOrbInfo class Args: orb_id (int): The id of the orb grade_id (int): The id of the grade effect_id (int): The id of the effect value (list[int]): The value of the effect? idk attribute_id (int): The id of the attribute """ self.orb_id = orb_id self.grade_id = grade_id self.effect_id = effect_id self.value = value self.attribute_id = attribute_id class OrbInfo: def __init__( self, raw_orb_info: RawOrbInfo, grade: str, attribute: str, effect: str, ): """Initialize the OrbInfo class Args: raw_orb_info (RawOrbInfo): The raw orb info grade (str): The grade of the orb (e.g. "S") attribute (str): The attribute of the orb (e.g. "Red") effect (str): The effect of the orb (e.g. "Attack Up %@: %@") """ self.raw_orb_info = raw_orb_info self.grade = grade self.attribute = attribute self.effect = effect def __str__(self) -> str: """Get the string representation of the OrbInfo Returns: str: The string representation of the OrbInfo """ effect_text = self.effect.replace("%@", "{}") text = effect_text.format(self.grade, self.attribute).strip() return text def to_colortext(self) -> str: """Get the string representation of the OrbInfo with color Returns: str: The string representation of the OrbInfo with color """ effect_text = self.effect.replace("%@", "&{}&") text = effect_text.format(self.grade, self.attribute).strip() return text @staticmethod def create_unknown(orb_id: int) -> "OrbInfo": """Create an unknown OrbInfo Args: orb_id (int): The id of the orb Returns: OrbInfo: The unknown OrbInfo """ return OrbInfo( RawOrbInfo(orb_id, 0, 0, [], 0), "Unknown", "", "%@:%@", ) class OrbInfoList: equipment_data_file_name = "DataLocal/equipmentlist.json" grade_list_file_name = "DataLocal/equipmentgrade.csv" attribute_list_file_name = "resLocal/attribute_explonation.tsv" effect_list_file_name = "resLocal/equipment_explonation.tsv" def __init__(self, orb_info_list: list[OrbInfo]): """Initialize the OrbInfoList class Args: orb_info_list (list[OrbInfo]): The list of OrbInfo """ self.orb_info_list = orb_info_list @staticmethod def create(is_jp: bool) -> Optional["OrbInfoList"]: """Create an OrbInfoList Args: is_jp (bool): Whether the game is in Japanese Returns: Optional[OrbInfoList]: The OrbInfoList """ json_data_file = game_data_getter.get_file_latest_path( OrbInfoList.equipment_data_file_name, is_jp ) grade_list_file = game_data_getter.get_file_latest_path( OrbInfoList.grade_list_file_name, is_jp ) attribute_list_file = game_data_getter.get_file_latest_path( OrbInfoList.attribute_list_file_name, is_jp ) equipment_list_file = game_data_getter.get_file_latest_path( OrbInfoList.effect_list_file_name, is_jp ) if ( json_data_file is None or grade_list_file is None or attribute_list_file is None or equipment_list_file is None ): return None json_data = json_data_file.decode("utf-8") grade_list = grade_list_file.decode("utf-8") attribute_list = attribute_list_file.decode("utf-8") equipment_list = equipment_list_file.decode("utf-8") raw_orbs = OrbInfoList.parse_json_data(json_data) orbs = OrbInfoList.load_names( raw_orbs, grade_list, attribute_list, equipment_list ) return OrbInfoList(orbs) @staticmethod def parse_json_data(json_data: str) -> list[RawOrbInfo]: """Parse the json data of the equipment Args: json_data (str): The json data Returns: list[RawOrbInfo]: The list of RawOrbInfo """ data: dict[str, Any] = json.loads(json_data) orb_info_list: list[RawOrbInfo] = [] for id, orb in enumerate(data["ID"]): grade_id = orb["gradeID"] content = orb["content"] value = orb["value"] attribute = orb["attribute"] orb_info_list.append(RawOrbInfo(id, grade_id, content, value, attribute)) return orb_info_list @staticmethod def load_names( raw_orb_info: list[RawOrbInfo], grade_data: str, attribute_data: str, effect_data: str, ) -> list[OrbInfo]: """Load the names of the equipment Args: raw_orb_info (list[RawOrbInfo]): The list of RawOrbInfo grade_data (str): Raw data of the grade list attribute_data (str): Raw data of the attribute list effect_data (str): Raw data of the effect list Returns: list[OrbInfo]: The list of OrbInfo """ grade_csv = csv_handler.parse_csv(grade_data) attribute_tsv = csv_handler.parse_csv(attribute_data, "\t") effect_csv = csv_handler.parse_csv(effect_data, "\t") orb_info_list: list[OrbInfo] = [] for orb in raw_orb_info: grade = grade_csv[orb.grade_id][3] attribute = attribute_tsv[orb.attribute_id][0] effect = effect_csv[orb.effect_id][0] orb_info_list.append(OrbInfo(orb, grade, attribute, effect)) return orb_info_list def get_orb_info(self, orb_id: int) -> Optional[OrbInfo]: """Get the OrbInfo from the id Args: orb_id (int): The id of the orb Returns: Optional[OrbInfo]: The OrbInfo """ if orb_id >= len(self.orb_info_list): return None return self.orb_info_list[orb_id] def get_orb_from_components( self, grade: str, attribute: str, effect: str, ) -> Optional[OrbInfo]: """Get the OrbInfo from the components Args: grade (str): The grade of the orb attribute (str): The attribute of the orb effect (str): The effect of the orb Returns: Optional[OrbInfo]: The OrbInfo """ for orb in self.orb_info_list: if ( orb.grade == grade and orb.attribute == attribute and orb.effect == effect ): return orb return None def get_orbs_from_component_fuzzy( self, grade: str, attribute: str, effect: str, ) -> list[OrbInfo]: """Get the OrbInfo from the components matching the first word of the effect and lowercased Args: grade (str): The grade of the orb attribute (str): The attribute of the orb effect (str): The effect of the orb Returns: list[OrbInfo]: The list of OrbInfo """ orbs: list[OrbInfo] = [] for orb in self.orb_info_list: if ( (orb.grade.lower() == grade.lower() or grade == "*") and (orb.attribute.lower() == attribute.lower() or attribute == "*") and ( orb.effect.lower().split(" ")[0] == effect.lower().split(" ")[0] or effect == "*" ) ): orbs.append(orb) return orbs def get_all_grades(self) -> list[str]: """Get all the grades Returns: list[str]: The list of grades """ return list(set([orb.grade for orb in self.orb_info_list])) def get_all_attributes(self) -> list[str]: """Get all the attributes Returns: list[str]: The list of attributes """ return list(set([orb.attribute for orb in self.orb_info_list])) def get_all_effects(self) -> list[str]: """Get all the effects Returns: list[str]: The list of effects """ return list(set([orb.effect for orb in self.orb_info_list])) class SaveOrb: """Represents a saved orb in the save file""" def __init__(self, orb: OrbInfo, count: int): """Initialize the SaveOrb class Args: orb (OrbInfo): The OrbInfo count (int): The amount of the orb """ self.count = count self.orb = orb class SaveOrbs: def __init__( self, orbs: dict[int, SaveOrb], orb_info_list: OrbInfoList, ): """Initialize the SaveOrbs class Args: orbs (dict[int, SaveOrb]): The orbs orb_info_list (OrbInfoList): The orb info list """ self.orbs = orbs self.orb_info_list = orb_info_list @staticmethod def from_save_stats(save_stats: dict[str, Any]) -> Optional["SaveOrbs"]: """Create a SaveOrbs from the save stats Args: save_stats (dict[str, Any]): The save stats Returns: Optional[SaveOrbs]: The SaveOrbs """ is_jp = helper.is_jp(save_stats) orb_info_list = OrbInfoList.create(is_jp) if orb_info_list is None: return None orbs: dict[int, SaveOrb] = {} for orb_id, amount in save_stats["talent_orbs"].items(): try: orb_info = orb_info_list.orb_info_list[int(orb_id)] except IndexError: orb_info = OrbInfo.create_unknown(int(orb_id)) orbs[int(orb_id)] = SaveOrb(orb_info, amount) return SaveOrbs(orbs, orb_info_list) def print(self): """Print the orbs as a formatted list""" self.sort_orbs() helper.colored_text( f"Total current orbs: &{sum([orb.count for orb in self.orbs.values()])}&" ) helper.colored_text(f"Total current types: &{len(self.orbs)}&") print("Current Orbs:") for orb in self.orbs.values(): helper.colored_text(f"&{orb.count}& {orb.orb.to_colortext()}") def sort_orbs(self): """Sort the orbs by attribute, effect, grade and id in that order with attribute being the most important""" orbs = list(self.orbs.values()) orbs.sort(key=lambda orb: orb.orb.raw_orb_info.orb_id) orbs.sort(key=lambda orb: orb.orb.raw_orb_info.grade_id) orbs.sort(key=lambda orb: orb.orb.raw_orb_info.effect_id) orbs.sort(key=lambda orb: orb.orb.raw_orb_info.attribute_id) def edit(self): """Edit the orbs""" self.print() all_grades = self.orb_info_list.get_all_grades() all_grades = [grade.lower() for grade in all_grades] all_grades.sort() all_attributes = self.orb_info_list.get_all_attributes() all_attributes = [attribute.lower() for attribute in all_attributes] all_attributes.sort() all_effects = self.orb_info_list.get_all_effects() all_effects = [effect.lower().split(" ")[0] for effect in all_effects] all_effects.sort() all_grades_str = "&,& ".join(all_grades) all_attributes_str = "&,& ".join(all_attributes) all_effects_str = "&,& ".join(all_effects) help_text = f"""Help: Available grades: &{all_grades_str}& Available attributes: &{all_attributes_str}& Available effects: &{all_effects_str}& &Note: Not all grades and effects will be available for all attributes.& Example inputs: &aku& - selects &all aku& orbs &red s& - selects &all red &orbs with &s& grade &alien d attack& - selects the &alien &orb with &d& grade that increases &attack&. These can be switched around, so you can also do stuff like: &d alien attack& &s red& &attack d alien& If you want to select &all& orbs then input: &*& If you want to do &multiple selections& then separate them with a &comma& like this: &s black tough&,&d red massive&,&floating& """ helper.colored_text(help_text) orb_input_selection = ( input("Select orbs:").lower().replace("angle", "angel").split(",") ) orb_selection: list[OrbInfo] = [] for orb_input in orb_input_selection: grade = None attribute = None effect = None orb_input = orb_input.strip() parts = orb_input.split(" ") parts = [part for part in parts if part != ""] if len(parts) == 0: continue if parts[0] == "*": orb_selection = self.orb_info_list.orb_info_list break for available_grade in all_grades: if available_grade in parts: grade = available_grade break for available_attribute in all_attributes: if available_attribute in parts: attribute = available_attribute break for available_effect in all_effects: if available_effect in parts: effect = available_effect break if grade is None: grade = "*" if attribute is None: attribute = "*" if effect is None: effect = "*" orbs = self.orb_info_list.get_orbs_from_component_fuzzy( grade, attribute, effect ) orb_selection.extend(orbs) orb_selection = list(set(orb_selection)) orb_selection.sort(key=lambda orb: orb.raw_orb_info.orb_id) orb_selection.sort(key=lambda orb: orb.raw_orb_info.grade_id) orb_selection.sort(key=lambda orb: orb.raw_orb_info.effect_id) orb_selection.sort(key=lambda orb: orb.raw_orb_info.attribute_id) print("Selected orbs:") for orb in orb_selection: helper.colored_text((orb.to_colortext())) individual = ( input("Edit orb amounts individually? or all at once? (i/a)") == "i" ) if individual: for orb in orb_selection: orb_id = orb.raw_orb_info.orb_id try: orb_count = self.orbs[orb_id].count except KeyError: orb_count = 0 orb_count = user_input_handler.colored_input( f"What do you want to set the amount of {orb.to_colortext()} to? (currently &{orb_count}&) (&q& to exit):" ) if orb_count == "q": break orb_count = helper.check_int_max(orb_count) if orb_count is None: continue self.orbs[orb_id] = SaveOrb(orb, orb_count) else: orb_count = user_input_handler.get_int( "What do you want to set the amount of the selected orbs to?:" ) orb_count = helper.clamp_int(orb_count) for orb in orb_selection: orb_id = orb.raw_orb_info.orb_id self.orbs[orb_id] = SaveOrb(orb, orb_count) self.print() def save(self, save_stats: dict[str, Any]): """Save the orbs to the save_stats Args: save_stats (dict[str, Any]): The save_stats to save the orbs to """ for orb_id, orb in self.orbs.items(): save_stats["talent_orbs"][orb_id] = orb.count def edit_talent_orbs(save_stats: dict[str, Any]) -> dict[str, Any]: """Edit the talent orbs Args: save_stats (dict[str, Any]): The save_stats to edit the orbs in Returns: dict[str, Any]: The edited save_stats """ save_orbs = SaveOrbs.from_save_stats(save_stats) if save_orbs is None: print("Failed to load orbs") return save_stats save_orbs.edit() save_orbs.save(save_stats) return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/basic/talent_orbs_new.py
0.869936
0.156652
talent_orbs_new.py
pypi
from typing import Any from ... import item, managed_item def edit_cat_food(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing cat food""" cat_food = item.IntItem( name="고양이 통조림", value=item.Int(save_stats["cat_food"]["Value"]), max_value=45000, bannable=item.Bannable( managed_item.ManagedItemType.CATFOOD, save_stats["inquiry_code"] ), ) cat_food.edit() save_stats["cat_food"]["Value"] = cat_food.get_value() return save_stats def edit_xp(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing xp""" experience = item.IntItem( name="XP", value=item.Int(save_stats["xp"]["Value"]), max_value=99999999, ) experience.edit() save_stats["xp"]["Value"] = experience.get_value() return save_stats def edit_normal_tickets(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing normal tickets""" normal_tickets = item.IntItem( name="냥코 티켓", value=item.Int(save_stats["normal_tickets"]["Value"]), max_value=2999, ) normal_tickets.edit() save_stats["normal_tickets"]["Value"] = normal_tickets.get_value() return save_stats def edit_rare_tickets(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing rare tickets""" rare_tickets = item.IntItem( name="레어 티켓", value=item.Int(save_stats["rare_tickets"]["Value"]), max_value=299, bannable=item.Bannable( inquiry_code=save_stats["inquiry_code"], work_around='밴 위험이 높으니 신중히 사용하세요.', type=managed_item.ManagedItemType.RARE_TICKET, ), ) rare_tickets.edit() save_stats["rare_tickets"]["Value"] = rare_tickets.get_value() return save_stats def edit_platinum_tickets(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing platinum tickets""" platinum_tickets = item.IntItem( name="플래티넘 티켓", value=item.Int(save_stats["platinum_tickets"]["Value"]), max_value=9, bannable=item.Bannable( inquiry_code=save_stats["inquiry_code"], work_around="밴 위험이 높으니 신중히 사용하세요.", type=managed_item.ManagedItemType.PLATINUM_TICKET, ), ) platinum_tickets.edit() save_stats["platinum_tickets"]["Value"] = platinum_tickets.get_value() return save_stats def edit_platinum_shards(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing platinum shards""" ticket_amount = save_stats["platinum_tickets"]["Value"] max_value = 99 - (ticket_amount * 10) platinum_shards = item.IntItem( name="플래티넘 조각", value=item.Int(save_stats["platinum_shards"]["Value"]), max_value=max_value, ) platinum_shards.edit() save_stats["platinum_shards"]["Value"] = platinum_shards.get_value() return save_stats def edit_np(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing np""" nyanko_points = item.IntItem( name="NP", value=item.Int(save_stats["np"]["Value"]), max_value=9999, ) nyanko_points.edit() save_stats["np"]["Value"] = nyanko_points.get_value() return save_stats def edit_leadership(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing leadership""" leadership = item.IntItem( name="리더쉽", value=item.Int(save_stats["leadership"]["Value"]), max_value=9999, ) leadership.edit() save_stats["leadership"]["Value"] = leadership.get_value() return save_stats def edit_battle_items(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing battle items""" battle_items = item.IntItemGroup.from_lists( names=[ "스피드 업", "트레져 레이더", "고양이 도령", "야옹컴", "고양이 박사", "스냥이퍼", ], values=save_stats["battle_items"], maxes=9999, group_name="배틀 아이템", ) battle_items.edit() save_stats["battle_items"] = battle_items.get_values() return save_stats def edit_engineers(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing ototo engineers""" engineers = item.IntItem( name="오토토 조수", value=item.Int(save_stats["engineers"]["Value"]), max_value=5, ) engineers.edit() save_stats["engineers"]["Value"] = engineers.get_value() return save_stats def edit_catamins(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing catamins""" catamins = item.IntItemGroup.from_lists( names=[ "드링크 A", "드링크 B", "드링크 C", ], values=save_stats["catamins"], maxes=9999, group_name="고양이 드링크", ) catamins.edit() save_stats["catamins"] = catamins.get_values() return save_stats def edit_inquiry_code(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing the inquiry code""" print( "경고: 문의 코드 편집은 자신이 무엇을 하고 있는지 알고 있는 경우에만 수행해야 합니다! 올바르게 수행하지 않으면 게임 내에서 다른 오류가 발생합니다!" ) inquiry_code = item.StrItem( name="문의코드", value=save_stats["inquiry_code"], ) inquiry_code.edit() save_stats["inquiry_code"] = inquiry_code.get_value() return save_stats def edit_rare_gacha_seed(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing the rare gacha seed""" rare_gacha_seed = item.IntItem( name="레어 뽑기 시드", value=item.Int(save_stats["rare_gacha_seed"]["Value"], signed=False), max_value=None, ) rare_gacha_seed.edit() save_stats["rare_gacha_seed"]["Value"] = rare_gacha_seed.get_value() return save_stats def edit_unlocked_slots(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing the amount of unlocked slots""" unlocked_slots = item.IntItem( name="캐릭터 편성", value=item.Int(save_stats["unlocked_slots"]["Value"]), max_value=len(save_stats["slots"]), ) unlocked_slots.edit() save_stats["unlocked_slots"]["Value"] = unlocked_slots.get_value() return save_stats def edit_token(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing the password-refresh-token""" print( "경고: 토큰 편집은 수행 중인 작업을 알고 있는 경우에만 수행해야 합니다! 올바르게 수행하지 않으면 게임 내에서 다른 오류가 발생합니다!" ) token = item.StrItem( name="토큰", value=save_stats["token"], ) token.edit() save_stats["token"] = token.get_value() return save_stats def edit_restart_pack(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for giving the restart pack""" save_stats["restart_pack"]["Value"] = 1 print("Successfully gave the restart pack") return save_stats def edit_challenge_battle(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing the score of the challenge battle""" challenge_battle = item.IntItem( name="챌린지 배틀", value=item.Int(save_stats["challenge"]["Score"]["Value"]), max_value=None, ) challenge_battle.edit() save_stats["challenge"]["Score"]["Value"] = challenge_battle.get_value() save_stats["challenge"]["Cleared"]["Value"] = 1 return save_stats def edit_legend_tickets(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing legend tickets""" legend_tickets = item.IntItem( name="레전드 티켓", value=item.Int(save_stats["legend_tickets"]["Value"]), max_value=4, bannable=item.Bannable( inquiry_code=save_stats["inquiry_code"], type=managed_item.ManagedItemType.LEGEND_TICKET, ), ) legend_tickets.edit() save_stats["legend_tickets"]["Value"] = legend_tickets.get_value() return save_stats def edit_dojo_score(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing the dojo score""" if not save_stats["dojo_data"]: save_stats["dojo_data"] = {0: {0: 0}} dojo_score = item.IntItem( name="도장 점수", value=item.Int(save_stats["dojo_data"][0][0]), max_value=None, ) dojo_score.edit() save_stats["dojo_data"][0][0] = dojo_score.get_value() return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/basic/basic_items.py
0.656878
0.34183
basic_items.py
pypi
from typing import Any from ... import helper, user_input_handler def edit_all_orbs(save_stats: dict[str, Any], orb_list: list[str]) -> dict[str, Any]: """Handler for editing all talent orbs""" val = user_input_handler.colored_input( "What do you want to set the value of all talent orbs to?:" ) val = helper.check_int_max(val) if val is None: print("Error please enter a number") return save_stats for orb in orb_list: try: orb_id = orb_list.index(orb) except ValueError: continue save_stats["talent_orbs"][orb_id] = val helper.colored_text(f"Set all talent orbs to &{val}&") return save_stats def edit_talent_orbs(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing talent orbs""" orb_list = get_talent_orbs_types() talent_orbs = save_stats["talent_orbs"] print("You have:") for orb in talent_orbs: amount = talent_orbs[orb] text = "orbs" if amount != 1 else "orb" try: helper.colored_text(f"&{amount}& {orb_list[orb]} {text}") except IndexError: helper.colored_text(f"&{amount}& Unknown {orb} {text}") orbs_str = user_input_handler.colored_input( "Enter the name of the orb that you want. You can enter multiple orb names separated by &spaces& to edit multiple at once or you can enter &all& to select all talent orbs to edit (e.g &angel a massive red d strong black b resistant&):" ).split(" ") if orbs_str[0] == "all": return edit_all_orbs(save_stats, orb_list) length = len(orbs_str) // 3 orbs_to_set: list[int] = [] for i in range(length): orb_name = " ".join(orbs_str[i * 3 : i * 3 + 3]).lower() orb_name = orb_name.replace("angle", "angel").title() try: orbs_to_set.append(orb_list.index(orb_name)) except ValueError: helper.colored_text( f"Error orb &{orb_name}& does not exist or is not recognized" ) for orb_id in orbs_to_set: name = orb_list[orb_id] val = helper.check_int_max( user_input_handler.colored_input( f"What do you want to set the value of &{name}& to?:" ) ) if val is None: print("Error please enter a number") continue talent_orbs[orb_id] = val save_stats["talent_orbs"] = talent_orbs return save_stats ATTRIBUTES = [ "Red", "Floating", "Black", "Metal", "Angel", "Alien", "Zombie", ] EFFECTS = [ "Attack", "Defense", "Strong", "Massive", "Resistant", ] GRADES = [ "D", "C", "B", "A", "S", ] def create_orb_list( attributes: list[str], effects: list[str], grades: list[str], incl_metal: bool ) -> list[str]: """Create a list of all possible talent orbs""" orb_list: list[str] = [] for attribute in attributes: effects_trim = effects if attribute == "Metal" and incl_metal: effects_trim = [effects[1]] if attribute == "Metal" and not incl_metal: effects_trim = [] for effect in effects_trim: for grade in grades: orb_list.append(f"{attribute} {grade} {effect}") return orb_list def create_aku_orbs(effects: list[str], grades: list[str]) -> list[str]: """Create a list of all possible aku orbs""" orb_list: list[str] = [] for effect in effects: for grade in grades: orb_list.append(f"Aku {grade} {effect}") return orb_list def get_talent_orbs_types() -> list[str]: """Get a list of all possible talent orbs""" orb_list = create_orb_list(ATTRIBUTES, EFFECTS[0:2], GRADES, True) orb_list += create_orb_list(ATTRIBUTES, EFFECTS[2:], GRADES, False) orb_list += create_aku_orbs(EFFECTS, GRADES) print(orb_list) return orb_list
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/basic/talent_orbs.py
0.526586
0.261997
talent_orbs.py
pypi
from typing import Any, Optional from ... import item, game_data_getter, helper def get_gamatoto_helpers(is_jp: bool) -> Optional[dict[str, Any]]: """Get the rarities of all gamatoto helpers""" if is_jp: country_code = "ja" else: country_code = "en" file_data = game_data_getter.get_file_latest( "resLocal", f"GamatotoExpedition_Members_name_{country_code}.csv", is_jp ) if file_data is None: helper.error_text("Failed to get gamatoto helper data") return None data = file_data.decode("utf-8").splitlines()[1:] helpers: dict[str, Any] = {} for line in data: line_data = line.split(helper.get_text_splitter(is_jp)) if len(line_data) < 5: break helper_id = line_data[0] rarity = int(line_data[1]) type_str = line_data[4] helpers[helper_id] = {"Rarity_id": rarity, "Rarity_name": type_str} return helpers def generate_helpers(user_input: list[int], helper_data: dict[str, Any]) -> list[int]: """Generate unique helpers from amounts of each""" final_helpers: list[int] = [] values = list(helper_data.values()) for i, usr_input in enumerate(user_input): for j, value in enumerate(values): if value["Rarity_id"] == i: final_helpers += list(range(j + 1, j + 1 + usr_input)) break return final_helpers def get_helper_rarities(helper_data: dict[str, Any]) -> list[str]: """Get the rarities of all gamatoto helpers""" rarities: list[str] = [] for helpers in helper_data.values(): if helpers["Rarity_name"] not in rarities: rarities.append(helpers["Rarity_name"]) return rarities def get_helpers(helpers: list[int], helper_data: dict[str, Any]) -> dict[str, Any]: """Get the amount of each type of helper""" current_helpers: dict[int, Any] = {} rarities = get_helper_rarities(helper_data) helper_count: dict[str, int] = {} for rarity in rarities: helper_count[rarity] = 0 for helper_id in helpers: if helper_id == 0xFFFFFFFF: break current_helpers[helper_id] = helper_data[str(helper_id)] helper_count[current_helpers[helper_id]["Rarity_name"]] += 1 return helper_count def add_empty_helper_slots(helpers: list[int], final_helpers: list[int]): """Add empty helper slots to the end of the list""" empty_slots = len(helpers) - len(final_helpers) if empty_slots > 0: final_helpers += [0xFFFFFFFF] * empty_slots return final_helpers def edit_helpers(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for gamatoto helpers""" helpers = save_stats["helpers"] helper_data = get_gamatoto_helpers(helper.check_data_is_jp(save_stats)) if helper_data is None: return save_stats helper_count = get_helpers(helpers, helper_data) helpers_counts_input = item.IntItemGroup.from_lists( names=list(helper_count.keys()), values=list(helper_count.values()), group_name="Gamatoto Helpers", maxes=10, ) helpers_counts_input.edit() final_helpers = generate_helpers(helpers_counts_input.get_values(), helper_data) helpers = add_empty_helper_slots(helpers, final_helpers) save_stats["helpers"] = helpers return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/gamototo/helpers.py
0.686895
0.292248
helpers.py
pypi
from typing import Any, Optional from ... import helper, user_input_handler, item, game_data_getter def get_boundaries(is_jp: bool) -> Optional[list[int]]: """Get the xp requirements for each level""" file_data = game_data_getter.get_file_latest( "DataLocal", "GamatotoExpedition.csv", is_jp ) if file_data is None: helper.error_text("Failed to get gamatoto xp requirements") return None boundaries = file_data.decode("utf-8").splitlines() previous = 0 xp_requirements: list[int] = [] previous = 0 for line in boundaries: requirement = int(line.split(",")[0]) if previous >= requirement: break xp_requirements.append(requirement) previous = requirement return xp_requirements def get_level_from_xp(gamatoto_xp: int, is_jp: bool) -> Optional[dict[str, Any]]: """Get the level from the xp amount""" xp_requirements = get_boundaries(is_jp) if xp_requirements is None: return None level = 1 for requirement in xp_requirements: if gamatoto_xp >= requirement: level += 1 return { "level": level, "max_level": len(xp_requirements), "max_xp": xp_requirements[-2], } def get_xp_from_level(level: int, is_jp: bool) -> Optional[int]: """Get the xp amount from the level""" xp_requirements = get_boundaries(is_jp) if xp_requirements is None: return None if level <= 1: gamatoto_xp = 0 else: gamatoto_xp = xp_requirements[level - 2] return gamatoto_xp def edit_gamatoto_xp(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for gamatoto xp""" gamatoto_xp = save_stats["gamatoto_xp"] data = get_level_from_xp(gamatoto_xp["Value"], helper.check_data_is_jp(save_stats)) if data is None: return save_stats level = data["level"] helper.colored_text(f"Gamatoto xp: &{gamatoto_xp['Value']}&\nLevel: &{level}&") raw = ( user_input_handler.colored_input( "Do you want to edit raw xp(&1&) or the level(&2&)?:" ) == "1" ) if raw: gam_xp = item.IntItem( name="Gamatoto XP", value=item.Int(gamatoto_xp["Value"]), max_value=None, ) gam_xp.edit() gamatoto_xp["Value"] = gam_xp.get_value() else: gam_level = item.IntItem( name="Gamatoto Level", value=item.Int(level), max_value=data["max_level"], ) gam_level.edit() gamatoto_xp["Value"] = get_xp_from_level( gam_level.get_value(), helper.check_data_is_jp(save_stats) ) save_stats["gamatoto_xp"] = gamatoto_xp return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/gamototo/gamatoto_xp.py
0.747063
0.310342
gamatoto_xp.py
pypi
from typing import Any from ... import user_input_handler, helper from ...edits.other import meow_medals def set_stage_data( stage_data_edit: dict[str, Any], stage_id: int, stars: int, lengths: dict[str, int], unlock_next: bool, ) -> dict[str, Any]: """Set the stage data for a stage""" if stage_id >= len(stage_data_edit["Value"]["clear_progress"]): return stage_data_edit stage_data_edit = set_clear_progress(stage_data_edit, stage_id, stars, lengths) if unlock_next and stage_id + 1 < len(stage_data_edit["Value"]["clear_progress"]): stage_data_edit = set_unlock_next(stage_data_edit, stage_id, stars, lengths) stage_data_edit = set_clear_amount(stage_data_edit, stage_id, stars, lengths) return stage_data_edit def set_clear_progress( stage_data: dict[str, Any], stage_id: int, stars: int, lengths: dict[str, int] ) -> dict[str, Any]: """Set the clear progress for a stage""" stage_data["Value"]["clear_progress"][stage_id] = ([lengths["stages"]] * stars) + ( [0] * (lengths["stars"] - stars) ) return stage_data def set_unlock_next( stage_data: dict[str, Any], stage_id: int, stars: int, lengths: dict[str, int] ) -> dict[str, Any]: """Set the unlock next for a stage""" stage_data["Value"]["unlock_next"][stage_id + 1] = ( [lengths["stars"] - 1] * stars ) + ([0] * (lengths["stars"] - stars)) return stage_data def set_clear_amount( stage_data: dict[str, Any], stage_id: int, stars: int, lengths: dict[str, int] ) -> dict[str, Any]: """Set the clear amount for a stage""" stage_data["Value"]["clear_amount"][stage_id] = ( [[1] * lengths["stages"]] * stars ) + ([[0] * lengths["stages"]] * (lengths["stars"] - stars)) return stage_data def set_medals( stage_stats: dict[str, Any], medal_stats: dict[str, Any], valid_range: tuple[int, int], offset: int, is_jp: bool, ) -> tuple[dict[str, Any], dict[str, Any]]: """Set the medals for completed stages""" medal_data = meow_medals.get_medal_data(is_jp) if medal_data is None: return stage_stats, medal_stats unlock_next = stage_stats["Value"]["unlock_next"] for medal in medal_data.stages: if not medal.maps: continue completed = True for map_id in medal.maps: star = medal.star if map_id < 0: continue if map_id < valid_range[0] or map_id > valid_range[1]: completed = False break map_id += offset next_chapter = unlock_next[map_id + 1] if star is None: star = 0 if next_chapter[star] == 0: completed = False break if completed: if medal.medal_id not in medal_stats["medal_data_1"]: medal_stats["medal_data_1"].append(medal.medal_id) medal_stats["medal_data_2"][medal.medal_id] = 1 return stage_stats, medal_stats def stage_handler( stage_data: dict[str, Any], ids: list[int], offset: int, unlock_next: bool = True ) -> dict[str, Any]: """Clear stages from a set of ids""" lengths = stage_data["Lengths"] individual = True if len(ids) > 1: individual = user_input_handler.ask_if_individual( "stars / crowns for each stage" ) first = True stars = 0 stage_data_edit = stage_data for stage_id in ids: if not individual and first: stars = helper.check_int( user_input_handler.colored_input( f"Enter the number of stars/crowns (max &{lengths['stars']}&):" ) ) if stars is None: print("Please enter a valid number") break stars = helper.clamp(stars, 0, lengths["stars"]) first = False elif individual: stars = helper.check_int( user_input_handler.colored_input( f"Enter the number of stars/crowns for subchapter &{stage_id}& (max &{lengths['stars']}&):" ) ) if stars is None: print("Please enter a valid number") break stars = helper.clamp(stars, 0, lengths["stars"]) stage_id += offset stage_data_edit = stage_data stage_data_edit = set_stage_data( stage_data_edit, stage_id, stars, lengths, unlock_next ) print("Successfully set subchapters") return stage_data_edit def stories_of_legend(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for clearing stories of legend""" stage_data = save_stats["event_stages"] ids = user_input_handler.get_range( user_input_handler.colored_input( "Enter subchapter ids (e.g &1& = legend begins, &2& = passion land)(You can enter &all& to get all, a range e.g &1&-&49&, or ids separate by spaces e.g &5 4 7&):" ), 50, ) offset = -1 save_stats["event_stages"] = stage_handler(stage_data, ids, offset) save_stats["event_stages"], save_stats["medals"] = set_medals( save_stats["event_stages"], save_stats["medals"], (0, 50), 0, helper.check_data_is_jp(save_stats), ) return save_stats def event_stages(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for clearing event stages""" stage_data = save_stats["event_stages"] lengths = stage_data["Lengths"] ids = user_input_handler.get_range( user_input_handler.colored_input( "Enter subchapter ids (Look up &Event Release Order battle cats& to find ids)(You can enter &all& to get all, a range e.g &1&-&50&, or ids separate by spaces e.g &5 4 7&):" ), lengths["total"] - 400, ) offset = 400 save_stats["event_stages"] = stage_handler(stage_data, ids, offset) save_stats["event_stages"], save_stats["medals"] = set_medals( save_stats["event_stages"], save_stats["medals"], (0, len(save_stats["event_stages"]["Value"]["unlock_next"])), -600, helper.check_data_is_jp(save_stats), ) return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/levels/event_stages.py
0.584508
0.249807
event_stages.py
pypi
from typing import Optional from ... import user_input_handler, helper from . import main_story def select_specific_chapters() -> list[int]: """Select specific levels""" print("What chapters do you want to select?") ids = user_input_handler.select_not_inc(main_story.CHAPTERS, "clear") return ids def get_option(): """Get option""" options = [ "Select specific levels with stage ids", "Select all levels up to a certain stage", "Select all levels", ] return user_input_handler.select_single(options) def select_levels( chapter_id: Optional[int], forced_option: Optional[int] = None, total: int = 48 ) -> list[int]: """Select levels""" if forced_option is None: choice = get_option() else: choice = forced_option if choice == 1: return select_specific_levels(chapter_id, total) if choice == 2: return select_levels_up_to(chapter_id, total) if choice == 3: return select_all(total) return [] def select_specific_levels(chapter_id: Optional[int], total: int) -> list[int]: """Select specific levels""" print("What levels do you want to select?") if chapter_id is not None: helper.colored_text( f"Chapter: &{chapter_id+1}& : &{main_story.CHAPTERS[chapter_id]}&" ) ids = user_input_handler.get_range_ids( "Level ids (e.g &1&=korea, &2&=mongolia)", total ) ids = helper.check_clamp(ids, total, 1, -1) return ids def select_levels_up_to(chapter_id: Optional[int], total: int) -> list[int]: """Select levels up to a certain level""" print("What levels do you want to select?") if chapter_id is not None: helper.colored_text( f"Chapter: &{chapter_id+1}& : &{main_story.CHAPTERS[chapter_id]}&" ) stage_id = user_input_handler.get_int( f"Enter the stage id that you want to clear/unclear up to (and including) (e.g &1&=korea cleared, &2&=korea &and& mongolia cleared, &{total}&=all)?:" ) stage_id = helper.clamp(stage_id, 1, total) return list(range(0, stage_id)) def select_all(total: int) -> list[int]: """Select all levels""" return list(range(0, total)) def select_level_progress( chapter_id: Optional[int], total: int, examples: Optional[list[str]] = None ) -> int: """Select level progress""" if examples is None: examples = [ "korea", "mongolia", ] print("What level do you want to clear up to and including?") if chapter_id is not None: helper.colored_text( f"Chapter: &{chapter_id+1}& : &{main_story.CHAPTERS[chapter_id]}&" ) progress = user_input_handler.get_int( f"Enter the stage id that you want to clear/unclear (e.g &1&={examples[0]} cleared, &2&={examples[0]} &and& {examples[1]} cleared, &{total}&=all, &0&=unclear all)?:" ) progress = helper.clamp(progress, 0, total) return progress
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/levels/story_level_id_selector.py
0.785144
0.259842
story_level_id_selector.py
pypi
from typing import Any, Optional from ... import user_input_handler, helper from . import main_story def get_available_chapters(outbreaks: dict[int, Any]) -> list[str]: """Get available chapters""" available_chapters: list[str] = [] for chapter_index in outbreaks: if chapter_index > 2: chapter_index -= 1 if chapter_index > 6: continue available_chapters.append(main_story.CHAPTERS[chapter_index]) return available_chapters def set_outbreak( chapter_data: dict[int, int], val_to_set: int, total: Optional[int] = None ) -> dict[int, int]: """Set a chapter of an outbreak""" if total is None: total = len(chapter_data) for level_id in range(total): chapter_data[level_id] = val_to_set return chapter_data def set_outbreaks( outbreaks: dict[int, Any], current_outbreaks: dict[int, Any], ids: list[int], clear: bool = True, ) -> tuple[dict[int, Any], dict[int, Any]]: """Set outbreaks""" for chapter_id in ids: outbreaks[chapter_id] = set_outbreak( outbreaks[chapter_id], 1 if clear else 0, 48 ) if chapter_id in current_outbreaks: if clear: current_outbreaks[chapter_id] = {} return outbreaks, current_outbreaks def edit_outbreaks(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editting outbreaks""" outbreaks = save_stats["outbreaks"] current_outbreaks = save_stats["current_outbreaks"] clear = ( user_input_handler.colored_input( "Do you want to clear or un-clear outbreaks? (&c&/&u&): " ) == "c" ) available_chapters = get_available_chapters(outbreaks) print("What chapter do you want to edit:") ids = user_input_handler.select_not_inc( options=available_chapters, mode="clear the outbreaks for?", ) ids = helper.check_clamp(ids, len(available_chapters) + 1, 0, 0) ids = main_story.format_story_ids(ids) outbreaks, current_outbreaks = set_outbreaks( outbreaks, current_outbreaks, ids, clear ) save_stats["outbreaks"] = outbreaks save_stats["current_outbreaks"] = current_outbreaks print("Successfully set outbreaks") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/levels/outbreaks.py
0.707101
0.255367
outbreaks.py
pypi
from typing import Any from ... import helper from . import story_level_id_selector CHAPTERS = [ "Empire of Cats 1", "Empire of Cats 2", "Empire of Cats 3", "Into the Future 1", "Into the Future 2", "Into the Future 3", "Cats of the Cosmos 1", "Cats of the Cosmos 2", "Cats of the Cosmos 3", ] def clear_specific_level_ids( save_stats: dict[str, Any], chapter_id: int, progress: int ) -> dict[str, Any]: """Clear specific levels in a chapter""" story_chapters = save_stats["story_chapters"] progress = helper.clamp(progress, 0, 48) if progress == 0: story_chapters["Chapter Progress"][chapter_id] = 0 story_chapters["Times Cleared"][chapter_id] = [0] * 51 else: stage_index = progress - 1 story_chapters["Chapter Progress"][chapter_id] = progress # set all levels before the one being cleared to 1 story_chapters["Times Cleared"][chapter_id][stage_index] = 1 for i in range(stage_index): story_chapters["Times Cleared"][chapter_id][i] = 1 # set all levels after the one being cleared to 0 for i in range(stage_index + 1, get_total_stages(save_stats, chapter_id) + 3): story_chapters["Times Cleared"][chapter_id][i] = 0 save_stats["story_chapters"] = story_chapters return save_stats def has_cleared_chapter(save_stats: dict[str, Any], chapter_id: int) -> bool: """ Check if a chapter has been cleared Args: save_stats (dict[str, Any]): Save stats chapter_id (int): Chapter ID Returns: bool: True if cleared, False if not """ chapter_id = format_story_id(chapter_id) return save_stats["story_chapters"]["Chapter Progress"][chapter_id] >= 48 def format_story_ids(ids: list[int]) -> list[int]: """For some reason there is a gap after EoC 3. This adds that""" formatted_ids: list[int] = [] for story_id in ids: formatted_ids.append(format_story_id(story_id)) return formatted_ids def format_story_id(chapter_id: int) -> int: """For some reason there is a gap after EoC 3. This adds that""" if chapter_id > 2: chapter_id += 1 return chapter_id def clear_levels( story_chapters: dict[str, Any], treasures: list[list[int]], ids: list[int], val: int, chapter_progress: int, clear: bool, ) -> tuple[dict[str, Any], list[list[int]]]: """Clear levels in a chapter""" for chapter_id in ids: story_chapters["Chapter Progress"][chapter_id] = chapter_progress story_chapters["Times Cleared"][chapter_id] = ( ([val] * chapter_progress) + ([0] * (48 - chapter_progress)) + ([0] * 3) ) if not clear: treasures[chapter_id] = [0] * 49 return story_chapters, treasures def get_total_stages(save_stats: dict[str, Any], chapter_id: int) -> int: """Get the total number of stages in a chapter""" return len(save_stats["story_chapters"]["Times Cleared"][chapter_id]) - 3 def clear_each(save_stats: dict[str, Any]): """Clear stages for each chapter""" chapter_ids = story_level_id_selector.select_specific_chapters() for chapter_id in chapter_ids: helper.colored_text(f"Chapter: &{chapter_id+1}& : &{CHAPTERS[chapter_id]}&") formatted_id = format_story_id(chapter_id) progress = story_level_id_selector.select_level_progress( chapter_id, get_total_stages(save_stats, formatted_id) ) save_stats = clear_specific_level_ids(save_stats, formatted_id, progress) helper.colored_text("Successfully set main story chapters") return save_stats def clear_all(save_stats: dict[str, Any]) -> dict[str, Any]: """Clear whole chapters""" chapter_ids = story_level_id_selector.select_specific_chapters() text = "" for chapter_id in chapter_ids: text += f"Chapter: &{chapter_id+1}& : &{CHAPTERS[chapter_id]}&\n" helper.colored_text(text.strip("\n")) progress = story_level_id_selector.select_level_progress( None, get_total_stages(save_stats, 0) ) for chapter_id in chapter_ids: chapter_id = format_story_id(chapter_id) save_stats = clear_specific_level_ids(save_stats, chapter_id, progress) helper.colored_text("Successfully set main story chapters") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/levels/main_story.py
0.708717
0.383295
main_story.py
pypi
from typing import Any, Optional from ... import helper, user_input_handler, item, csv_handler, game_data_getter from . import story_level_id_selector, main_story def get_stages(is_jp: bool) -> Optional[list[list[list[int]]]]: """Get what stages belong to which treasure group""" treasures_values: list[list[list[int]]] = [] file_data = game_data_getter.get_file_latest( "DataLocal", "treasureData0.csv", is_jp ) if file_data is None: helper.error_text("Failed to get treasureData0.csv") return None eoc_treasures = helper.parse_int_list_list( csv_handler.parse_csv( file_data.decode("utf-8"), ) )[11:22] file_data = game_data_getter.get_file_latest( "DataLocal", "treasureData1.csv", is_jp ) if file_data is None: helper.error_text("Failed to get treasureData1.csv") return None itf_treasures = helper.parse_int_list_list( csv_handler.parse_csv( file_data.decode("utf-8"), ) )[11:22] file_data = game_data_getter.get_file_latest( "DataLocal", "treasureData2_0.csv", is_jp ) if file_data is None: helper.error_text("Failed to get treasureData2_0.csv") return None cotc_treasures = helper.parse_int_list_list( csv_handler.parse_csv( file_data.decode("utf-8"), ) )[11:22] treasures_values.append(remove_negative_1(eoc_treasures)) treasures_values.append(remove_negative_1(itf_treasures)) treasures_values.append(remove_negative_1(cotc_treasures)) return treasures_values def remove_negative_1(data: list[list[int]]) -> list[list[int]]: """Remove items from a list that have a negative value of 1""" new_data = data.copy() for i, val in enumerate(data): if -1 in val: new_data[i] = new_data[i][:-1] return new_data def get_names(is_jp: bool) -> Optional[list[list[list[str]]]]: """Get the names of all of the treasure groups""" names: list[list[list[str]]] = [] if is_jp: country_code = "ja" else: country_code = "en" file_data = game_data_getter.get_file_latest( "resLocal", f"Treasure3_0_{country_code}.csv", is_jp ) if file_data is None: helper.error_text(f"Failed to get Treasure3_0_{country_code}.csv") return None eoc_names = csv_handler.parse_csv( file_data.decode("utf-8"), delimeter=helper.get_text_splitter(is_jp), )[:11] file_data = game_data_getter.get_file_latest( "resLocal", f"Treasure3_1_AfterFirstEncounter_{country_code}.csv", is_jp ) if file_data is None: helper.error_text( f"Failed to get Treasure3_1_AfterFirstEncounter_{country_code}.csv" ) return None itf_names = csv_handler.parse_csv( file_data.decode("utf-8"), delimeter=helper.get_text_splitter(is_jp), )[:11] file_data = game_data_getter.get_file_latest( "resLocal", f"Treasure3_2_0_{country_code}.csv", is_jp ) if file_data is None: helper.error_text(f"Failed to get Treasure3_2_0_{country_code}.csv") return None cotc_names = csv_handler.parse_csv( file_data.decode("utf-8"), delimeter=helper.get_text_splitter(is_jp), )[:11] names.append(helper.copy_first_n(eoc_names, 0)) names.append(helper.copy_first_n(itf_names, 0)) names.append(helper.copy_first_n(cotc_names, 0)) return names def get_treasure_groups(is_jp: bool) -> Optional[dict[str, Any]]: """Get the names and stages of all of the treasure groups""" treasure_stages = get_stages(is_jp) treasure_names = get_names(is_jp) if treasure_stages is None or treasure_names is None: return None return {"names": treasure_names, "stages": treasure_stages} def set_treasures( treasure_stats: list[list[int]], user_levels: list[int] ) -> list[list[int]]: """Set the treasure stats of a set of levels""" for i, level in enumerate(user_levels): if level == -1: continue if i > 2: i += 1 treasure_stats[i] = [level] * 48 + [0] return treasure_stats def set_specific_treasures( treasure_stats: list[list[int]], treasure_data: list[int], chapter_id: int ) -> list[list[int]]: """Set the treasure stats of specific treasures""" for i, stage in enumerate(treasure_data): if stage == -1: continue if i > 45: stage_id = i else: stage_id = 45 - i treasure_stats[chapter_id][stage_id] = stage return treasure_stats def set_treasure_groups( treasures_stats: list[list[int]], treasure_grps: dict[str, Any], treasure_levels: list[Optional[int]], type_id: int, chapter_id: int, ) -> list[list[int]]: """Set the treasure stats of a group of treasures""" for i, treasure_level in enumerate(treasure_levels): stages = treasure_grps["stages"][type_id][i] for stage in stages: if treasure_level is not None: treasures_stats[chapter_id][stage] = treasure_level return treasures_stats def treasure_groups(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing treasure groups""" treasure_grps = get_treasure_groups(helper.check_data_is_jp(save_stats)) if treasure_grps is None: return save_stats treasures_stats = save_stats["treasures"] ids = user_input_handler.select_not_inc(main_story.CHAPTERS, "select") for chapter_id in ids: helper.colored_text(f"Chapter: &{main_story.CHAPTERS[chapter_id]}&") type_id = chapter_id // 3 if chapter_id > 2: chapter_id += 1 names = treasure_grps["names"][type_id] treasure_levels = [-1] * len(names) helper.colored_text("&0& = None, &1& = Inferior, &2& = Normal, &3& = Superior") treasure_levels = item.IntItemGroup.from_lists( names=names, values=None, maxes=None, group_name="Treasures", ) treasure_levels.edit() treasures_stats = set_treasure_groups( treasures_stats, treasure_grps, treasure_levels.get_values_none(), type_id, chapter_id, ) save_stats["treasures"] = treasures_stats return save_stats def specific_stages(save_stats: dict[str, Any]): """Handler for editing specific stages""" treasure_stats = save_stats["treasures"] chapter_ids = story_level_id_selector.select_specific_chapters() choice = story_level_id_selector.get_option() for chapter_id in chapter_ids: chapter_id = main_story.format_story_id(chapter_id) stage_ids = story_level_id_selector.select_levels(chapter_id, choice) treasure_data = [-1] * 48 treasure_data = user_input_handler.handle_all_at_once( stage_ids, False, treasure_data, list(range(1, 49)), "treasure level", "stage", "(&0&=none, &1&=inferior, &2&=normal, &3&=superior)", ) treasure_stats = set_specific_treasures( treasure_stats, treasure_data, chapter_id ) save_stats["treasures"] = treasure_stats print("Successfully set treasures") return save_stats def specific_stages_all_chapters(save_stats: dict[str, Any]) -> dict[str, Any]: """Handler for editing treasure levels""" chapter_ids = story_level_id_selector.select_specific_chapters() treasure_stats = save_stats["treasures"] stage_ids = story_level_id_selector.select_levels(None) treasure_data = [-1] * 48 for i, chapter_id in enumerate(chapter_ids): chapter_id = main_story.format_story_id(chapter_id) if i == 0: treasure_data = user_input_handler.handle_all_at_once( stage_ids, True, treasure_data, list(range(0, 48)), "treasure level", "stage", "(&0&=none, &1&=inferior, &2&=normal, &3&=superior)", ) treasure_stats = set_specific_treasures( treasure_stats, treasure_data, chapter_id ) save_stats["treasures"] = treasure_stats print("Successfully set treasures") return save_stats
/sc-editor-1.93.tar.gz/sc-editor-1.93/src/SC_Editor/edits/levels/treasures.py
0.656768
0.171234
treasures.py
pypi
from githooks.base_check import BaseCheck, Severity from githooks.config import config from githooks.git import CommittedFile class CommittedFileCheck(BaseCheck): """Parent class for checks on a single committed file To check the files, we have to clone ourselves when we are being prepared for the CommittedFile. The subclasses has additional logic on those to filter out themselves for some cases. """ committed_file = None def prepare(self, obj): new = super(CommittedFileCheck, self).prepare(obj) if not new or not isinstance(obj, CommittedFile): return new new = new.clone() new.committed_file = obj return new def __str__(self): return '{} on {}'.format(type(self).__name__, self.committed_file) class CommittedFileSizeCheck(CommittedFileCheck): """Special check for committed file size""" def get_problems(self): if self.committed_file.get_file_size() >= config.get("commit_check.commit_file_max_size"): yield ( Severity.ERROR, '提交 {} 的文件 {} 大小超过 {}, 即 {} MB' .format(self.committed_file.commit, self.committed_file.path, config.get("commit_check.commit_file_max_size"), config.get("commit_check.commit_file_max_size") / 1024 / 1024) ) class CommittedFileExtensionCheck(CommittedFileCheck): """Special check for committed file extension""" def get_problems(self): illegal_suffixes = config.get("commit_check.binary_file_illegal_suffixes") illegal_suffixes_list = illegal_suffixes.split(",") legal_binary_filenames = config.get("commit_check.legal_binary_filenames") legal_binary_filenames_list = legal_binary_filenames.split(",") filename = self.committed_file.get_filename() if filename in legal_binary_filenames_list: return extension = self.committed_file.get_extension() if extension in illegal_suffixes_list: yield ( Severity.ERROR, '提交 {} 的文件 {} 在不允许的提交文件后缀名清单中 {}' .format(self.committed_file.commit, self.committed_file.path, illegal_suffixes_list) )
/sc-githooks-0.2.0.tar.gz/sc-githooks-0.2.0/githooks/file_checks.py
0.466603
0.154121
file_checks.py
pypi
from os.path import isabs, join as joinpath, normpath from subprocess import check_output from githooks.utils import get_exe_path, get_extension, decode_str git_exe_path = get_exe_path('git') class CommitList(list): """Routines on a list of sequential commits""" ref_path = None def __init__(self, other, branch_name): super(CommitList, self).__init__(other) self.branch_name = branch_name def __str__(self): name = '{}..{}'.format(self[0], self[-1]) if self.ref_path: name += ' ({})'.format(self.branch_name) return name class Commit(object): """Routines on a single commit""" null_commit_id = '0000000000000000000000000000000000000000' def __init__(self, commit_id, commit_list=None): self.commit_id = commit_id self.commit_list = commit_list self.content_fetched = False self.changed_files = None self.binary_files = None def __str__(self): return self.commit_id[:8] def __bool__(self): return self.commit_id != Commit.null_commit_id def __nonzero__(self): return self.__bool__() def __eq__(self, other): return isinstance(other, Commit) and self.commit_id == other.commit_id def get_new_commit_list(self, branch_name): """Get the list of parent new commits in order""" output = decode_str(check_output([ git_exe_path, 'rev-list', self.commit_id, '--not', '--all', '--reverse', ])) commit_list = CommitList([], branch_name) for commit_id in output.splitlines(): commit = Commit(commit_id, commit_list) commit_list.append(commit) return commit_list def _fetch_content(self): content = check_output( [git_exe_path, 'cat-file', '-p', self.commit_id] ) self._parents = [] self._message_lines = [] # The commit message starts after the empty line. We iterate until # we find one, and then consume the rest as the message. lines = iter(content.splitlines()) for line in lines: if not line: break if line.startswith(b'parent '): self._parents.append(Commit(line[len(b'parent '):].rstrip())) elif line.startswith(b'author '): self._author = Contributor.parse(line[len(b'author '):]) elif line.startswith(b'committer '): self._committer = Contributor.parse(line[len(b'committer '):]) for line in lines: self._message_lines.append(decode_str(line)) self.content_fetched = True def get_parents(self): if not self.content_fetched: self._fetch_content() return self._parents def get_author(self): if not self.content_fetched: self._fetch_content() return self._author def get_committer(self): if not self.content_fetched: self._fetch_content() return self._committer def get_contributors(self): yield self.get_author() yield self._committer def get_message_lines(self): if not self.content_fetched: self._fetch_content() return self._message_lines def get_summary(self): return self.get_message_lines()[0] def parse_tags(self): tags = [] rest = self.get_summary() while rest.startswith('[') and ']' in rest: end_index = rest.index(']') tags.append(rest[1:end_index]) rest = rest[end_index + 1:] return tags, rest def content_can_fail(self): return not any( t in ['HOTFIX', 'MESS', 'TEMP', 'WIP'] for t in self.parse_tags()[0] ) def get_changed_files(self): """Return the list of added or modified files on a commit""" if self.changed_files is None: output = decode_str(check_output([ git_exe_path, 'diff-tree', '-r', '--root', # Get the initial commit as additions '--no-commit-id', # We already know the commit id. '--break-rewrites', # Get rewrites as additions '--no-renames', # Get renames as additions '--diff-filter=AM', # Only additions and modifications self.commit_id, ])) changed_files = [] for line in output.splitlines(): line_split = line.split(None, 5) assert len(line_split) == 6 assert line_split[0].startswith(':') file_mode = line_split[1] # sc add object_id object_id = line_split[3] file_path = line_split[5] changed_files.append(CommittedFile(file_path, self, file_mode, object_id)) self.changed_files = changed_files return self.changed_files def get_binary_files(self): """Return the binary files on a commit""" if self.binary_files is None: output = decode_str(check_output([ git_exe_path, 'log', '--pretty=format:%H -M100%', # pretty format '--numstat', # number state of the file '--no-commit-id', # We already know the commit id. '--break-rewrites', # Get rewrites as additions '--no-renames', # Get renames as additions '--diff-filter=AM', # Only additions and modifications "{}^!".format(self.commit_id), ])) binary_files = [] for line in output.splitlines(): line_split = line.split('\t') if len(line_split) == 3: if "-" == line_split[0] and "-" == line_split[1]: binary_files.append(line_split[2]) self.binary_files = binary_files return self.binary_files class Contributor(object): """Routines on contribution properties of a commit""" def __init__(self, name, email, timestamp): self.name = name self.email = email self.timestamp = timestamp @classmethod def parse(cls, line): """Parse the contribution line as bytes""" name, line = line.split(b' <', 1) email, line = line.split(b'> ', 1) timestamp, line = line.split(b' ', 1) return cls(decode_str(name), decode_str(email), int(timestamp)) def get_email_domain(self): return self.email.split('@', 1)[-1] class CommittedFile(object): """Routines on a single committed file""" def __init__(self, path, commit=None, mode=None, object_id=None): self.path = path self.commit = commit assert mode is None or len(mode) == 6 self.mode = mode self.content = None # sc add object id self.object_id = object_id def __str__(self): return '文件 {} 位于提交 {}'.format(self.path, self.commit) def __eq__(self, other): return ( isinstance(other, CommittedFile) and self.path == other.path and self.commit == other.commit ) def exists(self): return bool(check_output([ git_exe_path, 'ls-tree', '--name-only', '-r', self.commit.commit_id, self.path, ])) def changed(self): return self in self.commit.get_changed_files() def regular(self): return self.mode[:2] == '10' def symlink(self): return self.mode[:2] == '12' def owner_can_execute(self): owner_bits = int(self.mode[-3]) return bool(owner_bits & 1) def get_object_id(self): return self.object_id def get_filename(self): return self.path.rsplit('/', 1)[-1] def get_file_size(self): output = check_output([ git_exe_path, 'cat-file', '-s', # show file size self.object_id, ]) return int(output) def get_extension(self): return get_extension(self.path) def get_content(self): """Get the file content as binary""" if self.content is None: self.content = check_output([ git_exe_path, 'show', self.commit.commit_id + ':' + self.path ]) return self.content def get_shebang(self): """Get the shebang from the file content""" if not self.regular(): return None content = self.get_content() if not content.startswith(b'#!'): return None content = content[len(b'#!'):].strip() return decode_str(content.split(None, 1)[0]) def get_shebang_exe(self): """Get the executable from the shebang""" shebang = self.get_shebang() if not shebang: return None if shebang == '/usr/bin/env': rest = self.get_content().splitlines()[0][len(b'#!/usr/bin/env'):] rest_split = rest.split(None, 1) if rest_split: return decode_str(rest_split[0]) return shebang.rsplit('/', 1)[-1] def get_symlink_target(self): """Get the symlink target as same kind of instance We just return None, if the target has no chance to be on the repository.""" content = self.get_content() if isabs(content): return None path = normpath(joinpath(self.path, '..', decode_str(content))) if path.startswith('..'): return None return type(self)(path, self.commit)
/sc-githooks-0.2.0.tar.gz/sc-githooks-0.2.0/githooks/git.py
0.581541
0.154217
git.py
pypi
import logging class Handler(object): """The root handler""" def handle(self, data): return True class BaseHandler(Handler): """Base handler for decorating use""" _handler: Handler = None def __init__(self, handler: Handler = None) -> None: self._handler = handler @property def handler(self): return self._handler def handle(self, data): if self._handler: return self._handler.handle(data) return True class NoOpHandler(Handler): """No Operation handler """ def handle(self, data): return True class UnknownOpHandler(Handler): """Unknown Operation handler """ def handle(self, data): event_type = data.get('event_type') event_name = data.get('event_name') logging.getLogger(__name__).error("Unknown event, type: %s, name: %s", event_type, event_name) return False class UserCreateHandler(BaseHandler): """A handler for creating user """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class UserDestroyHandler(BaseHandler): """A handler for destroying user """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class GroupCreateHandler(BaseHandler): """A handler for creating group """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class GroupRenameHandler(BaseHandler): """A handler for renaming group """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class GroupDestroyHandler(BaseHandler): """A handler for destroying group """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class UserAddToGroupHandler(BaseHandler): """A handler for adding user to group """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class UserRemoveFromGroupHandler(BaseHandler): """A handler for removing user from group """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class ProjectCreateHandler(BaseHandler): """A handler for creating project """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class ProjectRenameHandler(BaseHandler): """A handler for renaming project """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class ProjectUpdateHandler(BaseHandler): """A handler for updating project """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class ProjectDestroyHandler(BaseHandler): """A handler for destroying project """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class PushHandler(BaseHandler): """A handler for pushing commits """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class TagPushHandler(BaseHandler): """A handler for pushing tag """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class RepositoryUpdateHandler(BaseHandler): """A handler for updating repository """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_name = data.get('event_name') logging.getLogger(__name__).info("Handling event: %s", event_name) return True class MergeRequestHandler(BaseHandler): """A handler for merging request """ def handle(self, data): result = BaseHandler.handle(self, data) if not result: return False event_type = data.get('event_type') logging.getLogger(__name__).info("Handling event: %s", event_type) return True class HandlerFactory: _HANDLERS = { "user_create": UserCreateHandler(), "user_destroy": UserDestroyHandler(), "group_create": GroupCreateHandler(), "group_rename": GroupRenameHandler(), "group_destroy": GroupDestroyHandler(), "user_add_to_group": UserAddToGroupHandler(), "user_remove_from_group": UserRemoveFromGroupHandler(), "project_create": ProjectCreateHandler(), "project_rename": ProjectRenameHandler(), "project_update": ProjectUpdateHandler(), "project_destroy": ProjectDestroyHandler(), "push": PushHandler(), "repository_update": RepositoryUpdateHandler(), "merge_request": MergeRequestHandler(), } @staticmethod def get_handler(event_type: str, event_name: str) -> Handler: if event_type: if event_type in HandlerFactory._HANDLERS.keys(): return HandlerFactory._HANDLERS.get(event_type) if event_name in HandlerFactory._HANDLERS.keys(): return HandlerFactory._HANDLERS.get(event_name) return UnknownOpHandler()
/sc-gitlab-msg-consumer-0.0.2.tar.gz/sc-gitlab-msg-consumer-0.0.2/consumer/handlers.py
0.720663
0.247325
handlers.py
pypi
import decimal import json import logging from sc_config.config import Config from sc_utilities import Singleton from .configs.default import DEFAULT_CONFIG class ConfigUtils(metaclass=Singleton): """ 配置文件相关工具类 """ _config = None def __init__(self): pass @classmethod def load_configurations(cls): """ 加载配置文件 :return: """ try: # load configurations cls._config = Config.create(project_name="sc-gz-dashboard", defaults=DEFAULT_CONFIG) except Exception as error: cls._config = {} logging.getLogger(__name__).exception("failed to read configuration", exc_info=error) @classmethod def get_config(cls): """ 获取配置信息 :return: 配置信息字典 """ if cls._config is None: cls.load_configurations() return cls._config class MonthUtils: @classmethod def calculate_month(cls, year_str, month_str): """ 计算月份:年初、季初、月初 :param year_str: 年份 :param month_str: 月份 :return: ( (year, yearly_compare_month), (year, seasonal_compare_month), (year, monthly_compare_month) ),年初对应的年份和月份、季初对应的年份和月份、月初对应的年份和月份 """ illegal_result = (None, None), (None, None), (None, None) try: year = int(year_str) except ValueError: logging.getLogger(__name__).error("年份参数错误:{}".format(year_str)) return illegal_result except TypeError: logging.getLogger(__name__).error("年份参数错误:{}".format(year_str)) return illegal_result try: month = int(month_str) except ValueError: logging.getLogger(__name__).error("月份参数错误:{}".format(month_str)) return illegal_result except TypeError: logging.getLogger(__name__).error("月份参数错误:{}".format(month_str)) return illegal_result # 年初为去年的12月 yearly = (year - 1, 12) # 季度的开始月份 seasons = [1, 4, 7, 10, 13] # 计算季度初 if seasons[0] <= month < seasons[1]: seasonal_start = seasons[0] elif seasons[1] <= month < seasons[2]: seasonal_start = seasons[1] elif seasons[2] <= month < seasons[3]: seasonal_start = seasons[2] elif seasons[3] <= month < seasons[4]: seasonal_start = seasons[3] else: logging.getLogger(__name__).error("月份参数错误:{}".format(month_str)) return illegal_result # 计算季初 last_month = seasonal_start - 1 if last_month == 0: seasonal = yearly else: seasonal = (year, last_month) # 计算月初,即上个月 last_month = month - 1 if last_month == 0: monthly = yearly else: monthly = (year, last_month) return yearly, seasonal, monthly class DecimalEncoder(json.JSONEncoder): """ Decimal类型的数据JSON序列化类 """ def default(self, o): if isinstance(o, decimal.Decimal): return float(o) super(DecimalEncoder, self).default(o) __all__ = { "ConfigUtils", "MonthUtils", "DecimalEncoder", }
/sc_gz_dashboard-0.0.14-py3-none-any.whl/sc_gz_dashboard/utils.py
0.422266
0.160825
utils.py
pypi
import logging import pandas as pd from sc_analyzer_base import BranchUtils from sc_utilities import Singleton, calculate_column_index class ManifestUtils(metaclass=Singleton): """ 花名册相关工具类 """ # 名单DataFrame _df: pd.DataFrame = None # 花名册姓名与所在部门对应关系DataFrame _name_branch_df: pd.DataFrame = None _id_column_name: str = "" _name_column_name: str = "" _branch_column_name: str = "" _sales_performance_attribution_column_name: str = "" _config = None @classmethod def set_config(cls, config): cls._config = config @classmethod def get_manifest_branch_column_name(cls): return "花名册" + cls.get_branch_column_name() @classmethod def get_name_branch_data_frame(cls) -> pd.DataFrame: """ 花名册姓名与所在部门对应关系 :return: """ return cls._name_branch_df @classmethod def get_id_column_name(cls) -> str: """ 工号列名 :return: 工号列名 """ return cls._id_column_name @classmethod def get_name_column_name(cls) -> str: """ 姓名列名 :return: 姓名列名 """ return cls._name_column_name @classmethod def get_branch_column_name(cls) -> str: """ 所属机构列名 :return: 所属机构列名 """ return cls._branch_column_name @classmethod def get_sales_performance_attribution_column_name(cls) -> str: """ 业绩归属机构列名 :return: 业绩归属机构列名 """ return cls._sales_performance_attribution_column_name @classmethod def load_manifest(cls): """ 加载花名册 :return: """ config = cls._config src_file_path = config.get("manifest.source_file_path") # 业绩归属机构列名 cls._sales_performance_attribution_column_name = config.get("branch.sales_performance_attribution_column_name") sheet_name = config.get("manifest.sheet_name") header_row = config.get("manifest.sheet_config.header_row") # 工号列索引 id_column_config = config.get("manifest.sheet_config.id_column") try: id_column = calculate_column_index(id_column_config) except ValueError as e: logging.getLogger(__name__).error("id_column configuration is invalid", exc_info=e) raise e # 姓名列索引 name_column_config = config.get("manifest.sheet_config.name_column") try: name_column = calculate_column_index(name_column_config) except ValueError as e: logging.getLogger(__name__).error("name_column configuration is invalid", exc_info=e) raise e # 所属机构列索引 branch_column_config = config.get("manifest.sheet_config.branch_column") try: branch_column = calculate_column_index(branch_column_config) except ValueError as e: logging.getLogger(__name__).error("branch_column configuration is invalid", exc_info=e) raise e logging.getLogger(__name__).info("加载花名册:{}".format(src_file_path)) df = pd.read_excel(src_file_path, sheet_name=sheet_name, header=header_row) df = df.iloc[:, [id_column, name_column, branch_column]] cls._id_column_name = df.columns[0] cls._name_column_name = df.columns[1] cls._branch_column_name = df.columns[2] # 添加公共户相关行 for branch in set(BranchUtils.get_branch_name_mapping().values()): df = pd.concat( [df, pd.DataFrame( { cls._id_column_name: 0, cls._name_column_name: branch, cls._branch_column_name: branch, }, index=[1]) # 必须添加此index参数,否则会报错 ], ignore_index=True, # 忽略上一步添加的index,使用系统生成的index ) mapping = BranchUtils.get_branch_name_mapping() # 替换机构名称 df = df.replace({cls._branch_column_name: mapping}) # 添加业绩归属列 df[cls._sales_performance_attribution_column_name] = df[cls._branch_column_name] # 业绩归属机构配置 mapping = BranchUtils.get_sales_performance_attribution_mapping() # 处理业绩归属机构 result = df.replace({cls._sales_performance_attribution_column_name: mapping}) # 花名册姓名与所在部门对应关系 cls._name_branch_df = result[[cls._name_column_name, cls._branch_column_name]].copy() cls._name_branch_df.set_index(cls._name_column_name, inplace=True) cls._name_branch_df.rename(columns={ cls._branch_column_name: ManifestUtils.get_manifest_branch_column_name(), }, inplace=True) cls._df = result @classmethod def fix_name_error(cls, data: pd.DataFrame, id_column_name: str, name_column_name: str) -> pd.DataFrame: """ 解决姓名与工号不匹配的问题 :param data: 原始数据 :param id_column_name: 工号列名称 :param name_column_name: 姓名列名称 :return: 解决姓名与工号不匹配的问题后的数据 """ for row_i, row in data.iterrows(): id_value = row[id_column_name] if id_value == 0: continue name_in_manifest = cls._df.loc[cls._df[cls._id_column_name] == id_value][cls._name_column_name] if name_in_manifest.empty: continue name = row[name_column_name] if name != name_in_manifest.values[0]: data.at[row_i, name_column_name] = name_in_manifest.values[0] return data @classmethod def merge_with_manifest(cls, *, manifest_data: pd.DataFrame, data: pd.DataFrame, id_column_name: str = None, how: str = "left", name_column_name: str = None) -> pd.DataFrame: """ 与花名册合并 :param manifest_data: 花名册数据,左边表 :param data: 待合并DataFrame,右边表 :param how: 如何合并,即连接方式,默认使用left连接,即左连接,保证花名册的数据完整 :param id_column_name: 工号列名称 :param name_column_name: 姓名列名称 :return: 花名册与目标DataFrame合并后的DataFrame """ if id_column_name is None and name_column_name is None: # ID与名称列全为空,则返回原结果 return data if id_column_name is None and name_column_name is not None: # 如果没有工号列,则按姓名列Join return manifest_data.merge(data, how=how, left_on=[cls._df.columns[1]], right_on=[name_column_name]) if name_column_name is None and id_column_name is not None: # 如果没有姓名列,则按工号列Join return manifest_data.merge(data, how=how, left_on=[cls._df.columns[0]], right_on=[id_column_name]) # ID与姓名都不为空,则按ID和姓名两列Join return manifest_data.merge(data, how=how, left_on=[cls._df.columns[0], cls._df.columns[1]], right_on=[id_column_name, name_column_name]) @classmethod def get_manifest_df(cls) -> pd.DataFrame: return cls._df @classmethod def get_all_names_in_manifest(cls) -> list: return list(cls._df[cls._name_column_name].values)
/sc_inclusive_analysis-0.0.4-py3-none-any.whl/sc_inclusive/manifest_utils.py
0.409457
0.171338
manifest_utils.py
pypi
import logging import pandas as pd from sc_analyzer_base import BranchUtils from sc_utilities import Singleton, calculate_column_index class ManifestUtils(metaclass=Singleton): """ 花名册相关工具类 """ # 名单DataFrame _df: pd.DataFrame = None # 花名册姓名与所在部门对应关系DataFrame _name_branch_df: pd.DataFrame = None _id_column_name: str = "" _name_column_name: str = "" _branch_column_name: str = "" _sales_performance_attribution_column_name: str = "" _config = None @classmethod def set_config(cls, config): cls._config = config @classmethod def get_manifest_branch_column_name(cls): return "花名册" + cls.get_branch_column_name() @classmethod def get_name_branch_data_frame(cls) -> pd.DataFrame: """ 花名册姓名与所在部门对应关系 :return: """ return cls._name_branch_df @classmethod def get_id_column_name(cls) -> str: """ 工号列名 :return: 工号列名 """ return cls._id_column_name @classmethod def get_name_column_name(cls) -> str: """ 姓名列名 :return: 姓名列名 """ return cls._name_column_name @classmethod def get_branch_column_name(cls) -> str: """ 所属机构列名 :return: 所属机构列名 """ return cls._branch_column_name @classmethod def get_sales_performance_attribution_column_name(cls) -> str: """ 业绩归属机构列名 :return: 业绩归属机构列名 """ return cls._sales_performance_attribution_column_name @classmethod def load_manifest(cls): """ 加载花名册 :return: """ config = cls._config src_file_path = config.get("manifest.source_file_path") # 业绩归属机构列名 cls._sales_performance_attribution_column_name = config.get("branch.sales_performance_attribution_column_name") sheet_name = config.get("manifest.sheet_name") header_row = config.get("manifest.sheet_config.header_row") # 工号列索引 id_column_config = config.get("manifest.sheet_config.id_column") try: id_column = calculate_column_index(id_column_config) except ValueError as e: logging.getLogger(__name__).error("id_column configuration is invalid", exc_info=e) raise e # 姓名列索引 name_column_config = config.get("manifest.sheet_config.name_column") try: name_column = calculate_column_index(name_column_config) except ValueError as e: logging.getLogger(__name__).error("name_column configuration is invalid", exc_info=e) raise e # 所属机构列索引 branch_column_config = config.get("manifest.sheet_config.branch_column") try: branch_column = calculate_column_index(branch_column_config) except ValueError as e: logging.getLogger(__name__).error("branch_column configuration is invalid", exc_info=e) raise e logging.getLogger(__name__).info("加载花名册:{}".format(src_file_path)) df = pd.read_excel(src_file_path, sheet_name=sheet_name, header=header_row) df = df.iloc[:, [id_column, name_column, branch_column]] cls._id_column_name = df.columns[0] cls._name_column_name = df.columns[1] cls._branch_column_name = df.columns[2] # 添加公共户相关行 for branch in set(BranchUtils.get_branch_name_mapping().values()): df = pd.concat( [df, pd.DataFrame( { cls._id_column_name: 0, cls._name_column_name: branch, cls._branch_column_name: branch, }, index=[1]) # 必须添加此index参数,否则会报错 ], ignore_index=True, # 忽略上一步添加的index,使用系统生成的index ) mapping = BranchUtils.get_branch_name_mapping() # 替换机构名称 df = df.replace({cls._branch_column_name: mapping}) # 添加业绩归属列 df[cls._sales_performance_attribution_column_name] = df[cls._branch_column_name] # 业绩归属机构配置 mapping = BranchUtils.get_sales_performance_attribution_mapping() # 处理业绩归属机构 result = df.replace({cls._sales_performance_attribution_column_name: mapping}) # 花名册姓名与所在部门对应关系 cls._name_branch_df = result[[cls._name_column_name, cls._branch_column_name]].copy() cls._name_branch_df.set_index(cls._name_column_name, inplace=True) cls._name_branch_df.rename(columns={ cls._branch_column_name: ManifestUtils.get_manifest_branch_column_name(), }, inplace=True) cls._df = result @classmethod def fix_name_error(cls, data: pd.DataFrame, id_column_name: str, name_column_name: str) -> pd.DataFrame: """ 解决姓名与工号不匹配的问题 :param data: 原始数据 :param id_column_name: 工号列名称 :param name_column_name: 姓名列名称 :return: 解决姓名与工号不匹配的问题后的数据 """ for row_i, row in data.iterrows(): id_value = row[id_column_name] if id_value == 0: continue name_in_manifest = cls._df.loc[cls._df[cls._id_column_name] == id_value][cls._name_column_name] if name_in_manifest.empty: continue name = row[name_column_name] if name != name_in_manifest.values[0]: data.at[row_i, name_column_name] = name_in_manifest.values[0] return data @classmethod def merge_with_manifest(cls, *, manifest_data: pd.DataFrame, data: pd.DataFrame, id_column_name: str = None, how: str = "left", name_column_name: str = None) -> pd.DataFrame: """ 与花名册合并 :param manifest_data: 花名册数据,左边表 :param data: 待合并DataFrame,右边表 :param how: 如何合并,即连接方式,默认使用left连接,即左连接,保证花名册的数据完整 :param id_column_name: 工号列名称 :param name_column_name: 姓名列名称 :return: 花名册与目标DataFrame合并后的DataFrame """ if id_column_name is None and name_column_name is None: # ID与名称列全为空,则返回原结果 return data if id_column_name is None and name_column_name is not None: # 如果没有工号列,则按姓名列Join return manifest_data.merge(data, how=how, left_on=[cls._df.columns[1]], right_on=[name_column_name]) if name_column_name is None and id_column_name is not None: # 如果没有姓名列,则按工号列Join return manifest_data.merge(data, how=how, left_on=[cls._df.columns[0]], right_on=[id_column_name]) # ID与姓名都不为空,则按ID和姓名两列Join return manifest_data.merge(data, how=how, left_on=[cls._df.columns[0], cls._df.columns[1]], right_on=[id_column_name, name_column_name]) @classmethod def get_manifest_df(cls) -> pd.DataFrame: return cls._df @classmethod def get_all_names_in_manifest(cls) -> list: return list(cls._df[cls._name_column_name].values)
/sc_inclusive_balance_detail_analysis-0.0.4-py3-none-any.whl/sc_inclusive_balance_detail_analysis/manifest_utils.py
0.409457
0.171338
manifest_utils.py
pypi
# Supercollider Jupyter Kernel This kernel allows running [SuperCollider](https://supercollider.github.io/) Code in a [Jupyter](https://jupyter.org/) environment. ![Demo Notebook](demo.jpg) ## Installation Please make sure one has installed [SuperCollider](https://supercollider.github.io/) and [Python 3 with pip](https://realpython.com/installing-python). * To install the kernel for Jupyter execute ```shell pip3 install --upgrade sc-kernel ``` This will also install [Jupyter Lab](https://jupyter.org/) if it is not already installed on the system. * Start a new Jupyter Lab instance by executing `jupyter lab` in a console. * Click on the SuperCollider icon If one has not installed SuperCollider in the default location, one has to set a environment variable called `SCLANG_PATH` which points to the sclang executable. To uninstall the kernel execute ```shell jupyter kernelspec uninstall sc_kernel ``` ### As a Docker container It is also possible to run sc-kernel in a Docker container, although a sound output is not possible in this case. Assuming you have cloned the repository and opened a terminal in its directory. ```shell # build container - takes some time b/c we build supercollider docker build -t sc_kernel . # run container # -v mounts the current directory to the container # -p passes the container port to our host docker run -v ${PWD}:/home/sc_kernel -p 8888:8888 sc_kernel ``` ## Usage Contrary to ScIDE each document will run in its own interpreter and not in a shared one. This is the default behavior of Jupyter but maybe this will be changed at a later point. Currently it is only possible to use the default config - if you encounter missing classes it is probably caused that they are not available in the default config. ### Stop sound Currently the `Cmd + .` command is not binded. Instead create a new cell with a single dot ```supercollider . ``` and execute this cell. This will transform the command to `CommandPeriod.run;` which is what is actually called on the `Cmd + .` press in the IDE. ### Recording `sc_kernel` provides an easy way to record audio to the local directory and store it embedded in the notebook so one can transfer the notebook into a website which has the audio files included. The audio is stored in FLAC with 16 bit resolution. The provided function `record` takes 2 arguments: * Duration in seconds * Filename which will be used for the recording, using the path of the notebook as base path. Assuming one has started the server, simply execute ```supercollider Ndef(\sine, { var sig = SinOsc.ar(LFDNoise0.kr(1.0!2).exprange(100, 400)); sig = sig * \amp.kr(0.2); sig; }).play; record.(4.0); ``` ![Recording](recording.png) ### Plotting `sc_kernel` also provides a way to embed images of SuperCollider windows into the Jupyter document. First create a window that you want to embed into the document ```supercollider w = {SinOsc.ar(2.0)}.plot(1.0); ``` After the plotting is finished by the server we can now simply save an image of the window to a file and also embed the image into the document via a SuperCollider helper method which is available. ```supercollider plot.(w); ``` ![Plotting magic](plotting.png) The image will be saved relative the directory where `jupyter lab` was executed. The optional second argument can be the filename. > Note that `{}.plot` does not return a `Window` but a `Plotter`, but `sc_kernel` > accesses the window of a `Plotter` automatically. > > For plotting e.g. the server meter you need to pass the proper window, so > > ```supercollider > a = s.meter; > // a is a ServerMeter > > // new cell > plot.(a.window, "meter.png"); > ``` ### Autocomplete Simply push `Tab` to see available autocompletions. This is currently limited to scan for available classes. ### Documentation To display the documentation of a Class, simply prepend a `?` to it and execute it, e.g. ```supercollider ?SinOsc ``` You can also hit `shift <tab>` iff the cursor is behind a class to trigger the inline documentation. ![Inline documentation](inline_docs.png) ### Real Time Collaboration Jupyter Lab allows for real time collaboration in which multiple users can write in the same document from different computers by visiting the Jupyter server via their browser. Each user can write and execute sclang statements on your local sclang interpreter and the cursors of each user is shown to everyone. This allows for interactive, shared sessions which can be an interesting live coding sessions. > Be aware that this can be a security threat as it allows for other people from within the network to execute arbitrary sclang commands on your computer To start such a session you can spin Jupyter Lab via ```shell jupyter lab --ip 0.0.0.0 --collaborative --NotebookApp.token='sclang' ``` where the `NotebookApp.token` is the necessary password to login - set it to `''` if no password is wanted. Check out the [documentation on Jupyter Lab](https://jupyterlab.readthedocs.io/en/stable/user/rtc.html) about *Real Time Collaboration*. ## Development Any PR is welcome! Please state the changes in an Issue. To contribute, please * Fork the repository and clone it to a local directory * Create a virtual environment and install the dev dependencies in it with ```shell pip3 install -e ".[dev]" ``` * If one wants to add the kernel to an existing Jupyter installation one can execute ```shell jupyter kernelspec install sc_kernel ``` and run `jupyter lab` from within the cloned directory as we need to have access to `sc_kernel`. * Run `./run_tests.sh` and make a PR :) Use `black sc_kernel test` to format the source code. ## Maintainers * [Dennis Scheiba](https://dennis-scheiba.com)
/sc_kernel-0.4.0.tar.gz/sc_kernel-0.4.0/README.md
0.80271
0.962179
README.md
pypi
from ._leflib import parse as _parse def parse(path): ''' Parses LEF file. Given a path to a LEF file, this function parses the file and returns a dictionary representing the contents of the LEF file. If there's an error while reading or parsing the file, this function returns None instead. Note that this function does not return all information contained in the LEF. The subset of information returned includes: * LEF version * Bus bit characters * Divider characters * Units * Manufacturing grid * Use min spacing * Clearance measure * Fixed mask * Layer information * Type * Width * Direction * Offset * Pitch * Max stack via * Viarules * Sites * Macro information * Size * Pins * Obstructions The dictionary returned by this function is designed to mimic the structure of the LEF file as closely as possible, and this function does minimal legality checking. The order all top-level objects appear in the dictionary is guaranteed to match the LEF file. It looks like follows: .. code-block:: python { 'version': 5.8, 'busbitchars': '<>', 'dividerchar': ':', 'units': { 'capacitance': 10.0, 'current': 10000.0, 'database': 20000.0, 'frequency': 10.0, 'power': 10000.0, 'resistance': 10000.0, 'time': 100.0, 'voltage': 1000.0 }, 'manufacturinggrid': 0.05, 'useminspacing': {'OBS': 'OFF'}, 'clearancemeasure': 'MAXXY', 'fixedmask': True, 'layers': { 'M1': { 'type': 'ROUTING', 'direction': 'HORIZONTAL', 'offset': (0.1, 0.2), 'pitch': 1.8, 'width': 1.0 }, 'V1': { 'type': 'CUT', }, ... }, 'maxviastack': {'range': {'bottom': 'm1', 'top': 'm7'}, 'value': 4}, 'viarules': { '<name>': { 'generate': True, 'layers': [ {'enclosure': {'overhang1': 1.4, 'overhang2': 1.5}, 'name': 'M1', 'width': {'max': 19.0, 'min': 0.1}}, {'enclosure': {'overhang1': 1.4, 'overhang2': 1.5}, 'name': 'M2', 'width': {'max': 1.9, 'min': 0.2}}, {'name': 'M3', 'rect': (-0.3, -0.3, -0.3, 0.3), 'resistance': 0.5, 'spacing': {'x': 5.6, 'y': 7.0}} ] }, '<name>': { {'layers': [ {'direction': 'VERTICAL', 'name': 'M1', 'width': {'max': 9.6, 'min': 9.0}}, {'direction': 'HORZIONTAL', 'name': 'M1', 'width': {'max': 3.0, 'min': 3.0}} ]} }, ... } 'macros': { '<name>': { 'size': { 'width': 5, 'height': 8 }, 'pins': { '<name>': { 'ports': [{ 'class': 'CORE', 'layer_geometries': [{ 'layer': 'M1', 'exceptpgnet': True, 'spacing': 0.01, 'designrulewidth': 0.05, 'width': 1.5, 'shapes': [ { 'rect': (0, 0, 5, 5), 'mask': 1, 'iterate': { 'num_x': 2, 'num_y': 3, 'space_x': 1, 'space_y': 4 } }, { 'path': [(0, 0), (5, 0), (0, 5)], 'iterate': ... }, { 'polygon': [(0, 0), (5, 0), (0, 5)], 'iterate': ... } ], 'via': { 'pt': (2, 3), 'name': 'via1', 'iterate': ... } }] }] }, ... } }, ... } } If some entry is not specified in the LEF, the corresponding key will not be present in the dictionary. Args: path (str): Path to LEF file to parse. ''' return _parse(path)
/sc_leflib-0.1.0-cp311-cp311-macosx_10_15_x86_64.whl/sc_leflib/__init__.py
0.769817
0.497986
__init__.py
pypi
from PyQt5 import QtCore, QtGui, QtWidgets class SideGrip(QtWidgets.QWidget): def __init__(self, parent, edge): QtWidgets.QWidget.__init__(self, parent) if edge == QtCore.Qt.LeftEdge: self.setCursor(QtCore.Qt.SizeHorCursor) self.resizeFunc = self.resizeLeft elif edge == QtCore.Qt.TopEdge: self.setCursor(QtCore.Qt.SizeVerCursor) self.resizeFunc = self.resizeTop elif edge == QtCore.Qt.RightEdge: self.setCursor(QtCore.Qt.SizeHorCursor) self.resizeFunc = self.resizeRight else: self.setCursor(QtCore.Qt.SizeVerCursor) self.resizeFunc = self.resizeBottom self.mousePos = None def resizeLeft(self, delta): window = self.window() width = max(window.minimumWidth(), window.width() - delta.x()) geo = window.geometry() geo.setLeft(geo.right() - width) window.setGeometry(geo) def resizeTop(self, delta): window = self.window() height = max(window.minimumHeight(), window.height() - delta.y()) geo = window.geometry() geo.setTop(geo.bottom() - height) window.setGeometry(geo) def resizeRight(self, delta): window = self.window() width = max(window.minimumWidth(), window.width() + delta.x()) window.resize(width, window.height()) def resizeBottom(self, delta): window = self.window() height = max(window.minimumHeight(), window.height() + delta.y()) window.resize(window.width(), height) def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self.mousePos = event.pos() def mouseMoveEvent(self, event): if self.mousePos is not None: delta = event.pos() - self.mousePos self.resizeFunc(delta) def mouseReleaseEvent(self, event): self.mousePos = None class CSizeGrip(QtWidgets.QSizeGrip): def __init__(self, parent): QtWidgets.QSizeGrip.__init__(self, parent) self.setStyleSheet("background-color:rgba(0, 0, 0, 0);") class ResizableMainWindow(QtWidgets.QMainWindow): _gripSize = 8 resizable = True def __init__(self): QtWidgets.QMainWindow.__init__(self) self.sideGrips = [ SideGrip(self, QtCore.Qt.LeftEdge), SideGrip(self, QtCore.Qt.TopEdge), SideGrip(self, QtCore.Qt.RightEdge), SideGrip(self, QtCore.Qt.BottomEdge), ] self.cornerGrips = [CSizeGrip(self) for i in range(4)] @property def gripSize(self): return self._gripSize def setGripSize(self, size): if size == self._gripSize: return elif size == 0: self._gripSize = 0 else: self._gripSize = max(2, size) self.updateGrips() def updateGrips(self): self.setContentsMargins(*[self.gripSize] * 4) outRect = self.rect() inRect = outRect.adjusted(self.gripSize, self.gripSize, -self.gripSize, -self.gripSize) self.cornerGrips[0].setGeometry( QtCore.QRect(outRect.topLeft(), inRect.topLeft())) self.cornerGrips[1].setGeometry( QtCore.QRect(outRect.topRight(), inRect.topRight()).normalized()) self.cornerGrips[2].setGeometry( QtCore.QRect(inRect.bottomRight(), outRect.bottomRight())) self.cornerGrips[3].setGeometry( QtCore.QRect(outRect.bottomLeft(), inRect.bottomLeft()).normalized()) self.sideGrips[0].setGeometry( 0, inRect.top(), self.gripSize, inRect.height()) self.sideGrips[1].setGeometry( inRect.left(), 0, inRect.width(), self.gripSize) self.sideGrips[2].setGeometry( inRect.left() + inRect.width(), inRect.top(), self.gripSize, inRect.height()) self.sideGrips[3].setGeometry( self.gripSize, inRect.top() + inRect.height(), inRect.width(), self.gripSize) def resizeEvent(self, event): if self.resizable == True: QtWidgets.QMainWindow.resizeEvent(self, event) self.updateGrips() elif self.gripSize != 0: self.setContentsMargins(*[8] * 4) else: self.setContentsMargins(*[0] * 4)
/sc_mainwindow-1.2.tar.gz/sc_mainwindow-1.2/sc_mainwindow/components/resizable_mwindow.py
0.602529
0.189765
resizable_mwindow.py
pypi
import smtplib, os from collections import namedtuple from email.message import EmailMessage from typing import List, Union attachable = namedtuple('attachable', ['fn', 'maintype', 'subtype']) def email_text(content: str, recipient: str = None, subject: str = 'Build Status Update', sender: str = None): """ Sends a basic email from Bob the Builder to the specified recipient. :param content: The text to include in the email body :param recipient: The email of the person you're sending this to :param subject: The subject line of the email :param sender: The address to send from. If not present, we use the EMAIL_SENDER environment var """ message = EmailMessage() message.set_content(content) if not sender: try: sender = os.environ['EMAIL_SENDER'] except: raise Exception('No email sender provided') if not recipient: try: recipient = os.environ['EMAIL_RECIPIENT'] except: raise Exception('No email recipient provided') message['Subject'] = subject message['From'] = sender message['To'] = recipient s = smtplib.SMTP_SSL('smtp.mail.yahoo.com', port=465) s.login(sender, os.environ['EMAIL_APP_KEY']) # app password s.send_message(message) s.quit() return message def email_attachment(content: str, attachment: Union[List[attachable], attachable], recipient: str = None, subject: str = 'Build Update! Files attached.', sender: str = None): """ Sends an email with some number of attachments from Bob the Builder to the specified recipient :param content: The text to include in the email body :param attachment: The file or list of files to attach. These are tuples with 'fn', 'maintype', and 'subtype' fields :param recipient: The email of the person you're sending this to :param subject: The subject of the email :param sender: The address to send from. If not present, we use the EMAIL_SENDER environment var """ message = EmailMessage() message.set_content(content) if not sender: sender = os.environ['EMAIL_SENDER'] if not recipient: recipient = os.environ['EMAIL_RECIPIENT'] message['Subject'] = subject message['From'] = sender message['To'] = recipient if type(attachment) != list: attachment = [attachment] for a in attachment: try: att = open(a.fn, 'rb') att_content = att.read() message.add_attachment(att_content, maintype = a.maintype, subtype = a.subtype, filename = a.fn.split('/')[-1]) finally: att.close() s = smtplib.SMTP_SSL('smtp.mail.yahoo.com', port=465) s.login('[email protected]', os.environ['EMAIL_APP_KEY']) # app password s.send_message(message) s.quit() return message def email_text_attachment(content: str, attachment: str, recipient: str = None, subject: str = 'Build Update! Text files attached.', sender: str = None): """ Sends an email with a text document attachment from Bob the Builder to the specified recipient :param content: The text to include in the email body :param attachment: The text file to attach to the email :param recipient: The email of the person you're sending this to :param subject: The subject of the email :param sender: The address to send from. If not present, we use the EMAIL_SENDER environment var """ return email_attachment(content, [attachable(attachment, 'text', 'plain')], recipient, subject, sender) def email_html_attachment(content: str, attachment: str, recipient: str = None, subject: str = 'Build Update! Text files attached.', sender: str = None): """ Sends an email with a HTML attachment from Bob the Builder to the specified recipient :param content: The text to include in the email body :param attachment: The html file to attach to the email :param recipient: The email of the person you're sending this to :param subject: The subject of the email :param sender: The address to send from. If not present, we use the EMAIL_SENDER environment var """ return email_attachment(content, [attachable(attachment, 'text', 'html')], recipient, subject, sender) def email_png_attachment(content: str, attachment: str, recipient: str = None, subject: str = 'Build Update! Text files attached.', sender: str = None): """ Sends an email with a PNG image attachment from Bob the Builder to the specified recipient :param content: The text to include in the email body :param attachment: The png file to attach to the email :param recipient: The email of the person you're sending this to :param subject: The subject of the email :param sender: The address to send from. If not present, we use the EMAIL_SENDER environment var """ return email_attachment(content, [attachable(attachment, 'image', 'png')], recipient, subject, sender) def email_pdf_attachment(content: str, attachment: str, recipient: str = None, subject: str = 'Build Update! Files attached.', sender = None): """ Sends an email with a PDF attachment from Bob the Builder to the specified recipient :param content: The text to include in the email body :param attachment: The pdf file to attach to the email :param recipient: The email of the person you're sending this to :param subject: The subject of the email :param sender: The address to send from. If not present, we use the EMAIL_SENDER environment var """ return email_attachment(content, [attachable(attachment, 'application', 'pdf')], recipient, subject, sender)
/sc_notify-1.2.0-py3-none-any.whl/notify/mail.py
0.713432
0.204362
mail.py
pypi
from io import StringIO _DEFAULT_EXAMPLES = { "string": "string", "integer": 1, "number": 1.0, "boolean": True, "array": [], } _DEFAULT_STRING_EXAMPLES = { "date": "2020-01-01", "date-time": "2020-01-01T01:01:01Z", "password": "********", "byte": "QG1pY2hhZWxncmFoYW1ldmFucw==", "ipv4": "127.0.0.1", "ipv6": "::1", } def example_from_schema(schema): """ Generates an example request/response body from the provided schema. >>> schema = { ... "type": "object", ... "required": ["id", "name"], ... "properties": { ... "id": { ... "type": "integer", ... "format": "int64" ... }, ... "name": { ... "type": "string", ... "example": "John Smith" ... }, ... "tag": { ... "type": "string" ... } ... } ... } >>> example = example_from_schema(schema) >>> assert example == { ... "id": 1, ... "name": "John Smith", ... "tag": "string" ... } """ # If an example was provided then we use that if "example" in schema: return schema["example"] elif "oneOf" in schema: return example_from_schema(schema["oneOf"][0]) elif "anyOf" in schema: return example_from_schema(schema["anyOf"][0]) elif "allOf" in schema: # Combine schema examples example = {} for sub_schema in schema["allOf"]: example.update(example_from_schema(sub_schema)) return example elif "enum" in schema: return schema["enum"][0] elif "type" not in schema: # Any type return _DEFAULT_EXAMPLES["integer"] elif schema["type"] == "object" or "properties" in schema: example = {} for prop, prop_schema in schema.get("properties", {}).items(): example[prop] = example_from_schema(prop_schema) return example elif schema["type"] == "array": items = schema["items"] min_length = schema.get("minItems", 0) max_length = schema.get("maxItems", max(min_length, 2)) assert min_length <= max_length # Try generate at least 2 example array items gen_length = min(2, max_length) if min_length <= 2 else min_length example_items = [] if items == {}: # Any-type arrays example_items.extend(_DEFAULT_EXAMPLES.values()) elif isinstance(items, dict) and "oneOf" in items: # Mixed-type arrays example_items.append(_DEFAULT_EXAMPLES[sorted(items["oneOf"])[0]]) else: example_items.append(example_from_schema(items)) # Generate array containing example_items and satisfying min_length and max_length return [example_items[i % len(example_items)] for i in range(gen_length)] elif schema["type"] == "string": example_string = _DEFAULT_STRING_EXAMPLES.get( schema.get("format", None), _DEFAULT_EXAMPLES["string"] ) min_length = schema.get("minLength", 0) max_length = schema.get("maxLength", max(min_length, len(example_string))) gen_length = ( min(len(example_string), max_length) if min_length <= len(example_string) else min_length ) assert 0 <= min_length <= max_length if min_length <= len(example_string) <= max_length: return example_string else: example_builder = StringIO() for i in range(gen_length): example_builder.write(example_string[i % len(example_string)]) example_builder.seek(0) return example_builder.read() elif schema["type"] in ("integer", "number"): example = _DEFAULT_EXAMPLES[schema["type"]] if "minimum" in schema and "maximum" in schema: # Take average example = schema["minimum"] + (schema["maximum"] - schema["minimum"]) / 2 elif "minimum" in schema and example <= schema["minimum"]: example = schema["minimum"] + 1 elif "maximum" in schema and example >= schema["maximum"]: example = schema["maximum"] - 1 return float(example) if schema["type"] == "number" else int(example) else: return _DEFAULT_EXAMPLES[schema["type"]]
/sc-oa-0.7.0.12.tar.gz/sc-oa-0.7.0.12/sphinxcontrib/openapi/schema_utils.py
0.711932
0.511534
schema_utils.py
pypi
from docutils.parsers.rst import directives from . import abc from .. import openapi20, openapi30, utils class HttpdomainOldRenderer(abc.RestructuredTextRenderer): option_spec = { # A list of endpoints to be rendered. Endpoints must be whitespace # delimited. "paths": lambda s: s.split(), # Regular expression patterns to includes/excludes endpoints to/from # rendering. Similar to paths, the patterns must be whitespace # delimited. "include": lambda s: s.split(), "exclude": lambda s: s.split(), # Endpoints to be included based on HTTP method names. "methods": lambda s: s.split(), # Render the request body structure when passed. "request": directives.flag, # Render request/response examples when passed. "examples": directives.flag, # render examples when passed # Render request/response examples in one block or inline with the response codes. "contextpath": directives.flag, # use the server path as prefix in service URL "group_examples": directives.flag, # render examples in one block # Include links to entity description "entities": directives.flag, # Group endpoints by tags when passed. By default, no grouping is # applied and endpoints are rendered in the order they met in spec. "group": directives.flag, # Markup format to render OpenAPI descriptions. "format": str, } def __init__(self, state, options): self._state = state self._options = options def render_restructuredtext_markup(self, spec): # OpenAPI spec may contain JSON references, common properties, etc. # Trying to render the spec "As Is" will require to put multiple if-s # around the code. In order to simplify rendering flow, let's make it # have only one (expected) schema, i.e. normalize it. utils.normalize_spec(spec, **self._options) # We support both OpenAPI 2.0 (f.k.a. Swagger) and OpenAPI 3.0.0, so # determine which version we are parsing here. spec_version = spec.get("openapi", spec.get("swagger", "2.0")) if spec_version.startswith("2."): openapihttpdomain = openapi20.openapihttpdomain elif spec_version.startswith("3."): openapihttpdomain = openapi30.openapihttpdomain else: raise ValueError("Unsupported OpenAPI version (%s)" % spec_version) yield from openapihttpdomain(spec, **self._options)
/sc-oa-0.7.0.12.tar.gz/sc-oa-0.7.0.12/sphinxcontrib/openapi/renderers/_httpdomain_old.py
0.749087
0.226302
_httpdomain_old.py
pypi
try: import keras import tensorflow as tf from keras.layers import ( Activation, BatchNormalization, Dense, Dropout, Input, Lambda, ) from keras.models import Model from keras.utils import np_utils from sklearn.metrics import ( accuracy_score, balanced_accuracy_score, confusion_matrix, plot_confusion_matrix, ) from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder except ImportError: pass import datetime import os import pickle import anndata import matplotlib.pyplot as plt import numpy as np import pandas as pd import scanpy as sc import seaborn as sns import yaml def preprocess_one_hot(adata, obs_key): X = adata.X if type(X) != np.ndarray: X_array = X.toarray() else: X_array = X y = adata.obs[obs_key] y_array = y.array # encode class values as integers encoder = LabelEncoder() encoder.fit(y) encoded_y = encoder.transform(y) decoded_y = encoder.inverse_transform(encoded_y) # convert integers to dummy variables (i.e. one hot encoded) dummy_y = np_utils.to_categorical(encoded_y) X_train, X_test, y_train, y_test = train_test_split( X_array, dummy_y, test_size=0.2, random_state=42 ) return X_train, X_test, y_train, y_test, encoder def build_predictor(input_size, nb_classes): inputs = Input(shape=(input_size,)) # a layer instance is callable on a tensor, and returns a tensor denses = Dense(128, activation="relu")(inputs) denses = Dense(64, activation="relu")(denses) predictions = Dense(nb_classes, activation="softmax")(denses) # This creates a model that includes # the Input layer and three Dense layers model = Model(inputs=inputs, outputs=predictions) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["acc"] ) model.summary() return model def batch_generator_training(X, y, batch_size): samples_per_epoch = X.shape[0] number_of_batches = samples_per_epoch / batch_size counter = 0 shuffle_index = np.arange(np.shape(y)[0]) np.random.shuffle(shuffle_index) X = X[shuffle_index, :] y = y[shuffle_index] while 1: index_batch = shuffle_index[ batch_size * counter : batch_size * (counter + 1) ] X_batch = X[index_batch, :].todense() X_batch = np.array(X_batch).reshape( X_batch.shape[0], X_batch.shape[1], 1 ) y_batch = y[index_batch, :] counter += 1 yield (np.array(X_batch), np.array(y_batch)) if counter >= number_of_batches: np.random.shuffle(shuffle_index) counter = 0 class MLP_Predictor: def __init__( self, latent_space, predict_key, predictor_hidden_sizes, predictor_epochs, predictor_batch_size, unlabeled_category, predictor_activation="softmax", ): # random_state gives the split for train_test split during the MLP predictor training self.predict_key = predict_key self.adata = latent_space self.predictor_hidden_sizes = predictor_hidden_sizes self.predictor_epochs = predictor_epochs self.predictor_batch_size = predictor_batch_size self.predictor_activation = predictor_activation self.unlabeled_category = unlabeled_category ## Removing the unlabeled cells from the prediction training set to_keep = self.adata.obs["train_split"].copy() UNK_cells = self.adata.obs[self.predict_key] == self.unlabeled_category print("nb of nan") print(UNK_cells.sum()) to_keep[UNK_cells] = "val" self.adata.obs["train_split"] = to_keep self.adata_train = self.adata[ self.adata.obs["train_split"] == "train", : ].copy() self.adata_test = self.adata[ self.adata.obs["train_split"] == "test", : ].copy() self.adata_val = self.adata[ self.adata.obs["train_split"] == "val", : ].copy() self.train_index = self.adata_train.obs.index self.test_index = self.adata_test.obs.index self.val_index = self.adata_val.obs.index self.y = self.adata.obs[self.predict_key] self.categories = self.y.unique() self.train_categories = [] self.model = keras.Model() self.X_array = np.array([]) self.X_train = np.array([]) self.X_test = np.array([]) self.y_train = pd.Series() self.y_test = pd.Series() self.y_train_onehot = np.array([]) self.y_test_onehot = np.array([]) self.y_pred_raw = np.array( [] ) # The output of the model ie result of the softmax/sigmoid layer self.y_pred = pd.Series() self.prediction_table = pd.DataFrame() self.encoder = LabelEncoder() self.train_adata = anndata.AnnData() self.test_adata = anndata.AnnData() self.val_adata = anndata.AnnData() self.train_history = keras.callbacks.History() self.history = dict() self.is_trained = False self.training_time = datetime.datetime.today() def preprocess_one_hot(self): self.X_array = self.adata.X if type(self.X_array) != np.ndarray: self.X_array = self.X_array.toarray() self.X_train = self.adata_train.X if type(self.X_train) != np.ndarray: self.X_train = self.X_train.toarray() self.X_test = self.adata_test.X if type(self.X_test) != np.ndarray: self.X_test = self.X_test.toarray() self.X_val = self.adata_val.X if type(self.X_val) != np.ndarray: self.X_val = self.X_val.toarray() self.y_train = self.y[self.train_index] self.y_test = self.y[self.test_index] self.y_val = self.y[self.val_index] self.train_categories = self.y_train.unique() # encode class values as integers self.encoder = LabelEncoder() self.encoder.fit(self.y) self.y_train_onehot = self.encoder.transform(self.y_train) self.y_val_onehot = self.encoder.transform(self.y_val) # self.y_test_onehot = self.encoder.transform(self.y_test) self.y_train_onehot = np_utils.to_categorical(self.y_train_onehot) self.y_val_onehot = np_utils.to_categorical(self.y_val_onehot) # self.y_test_onehot = np_utils.to_categorical(self.y_test_onehot) self.train_adata = self.adata[self.train_index, :] self.test_adata = self.adata[self.test_index, :] self.val_adata = self.adata[self.val_index, :] return ( self.X_train, self.X_test, self.X_val, self.y_train, self.y_val, self.y_test, self.encoder, ) def build_predictor(self): print("building predictor on :") print(self.adata_train) print(self.X_train) print(self.categories) print(self.train_categories) print(self.adata_train.obs[self.predict_key].value_counts()) input_size = self.X_train.shape[1] nb_classes = len(self.train_categories) inputs = Input(shape=(input_size,)) denses = Dense(self.predictor_hidden_sizes, activation="relu")(inputs) predictions = Dense(nb_classes, activation=self.predictor_activation)( denses ) model = Model(inputs=inputs, outputs=predictions) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["acc"] ) model.summary() self.model = model return model def train_model(self): self.training_time = datetime.datetime.today() batch_size = self.predictor_batch_size epochs = self.predictor_epochs es = tf.keras.callbacks.EarlyStopping( monitor="val_loss", mode="min", patience=10, restore_best_weights=True, verbose=1, ) callbacks = [es] self.train_history = self.model.fit( x=self.X_train, y=self.y_train_onehot, batch_size=batch_size, epochs=epochs, callbacks=callbacks, validation_split=0.2, ) # Predictor is trained only on the annotated data in a fully supervised way self.is_trained = True def predict_on_test(self): self.y_pred_raw = self.model.predict(self.X_array) self.y_pred = pd.Series( self.encoder.inverse_transform(np.argmax(self.y_pred_raw, axis=1)), index=self.y.index, ) self.prediction_table = pd.DataFrame( { "y_true": self.y, "y_pred": self.y_pred, "is_test": self.y.index.isin(self.test_index), }, index=self.y.index, ) self.adata.obs["y_pred"] = self.y_pred self.adata.obsm["y_pred_raw"] = self.y_pred_raw self.adata.uns["prediction_decoder"] = self.encoder.classes_ def save_model(self, save_path): if not os.path.isdir(save_path): os.mkdir(save_path) self.model.save(save_path) def save_results(self): self.prediction_table.to_csv(self.predict_save_path) if not os.path.isdir(self.model_predict_save_path): os.mkdir(self.model_predict_save_path) self.model.save(self.model_predict_save_path + "/model") with open(self.model_predict_save_path + "/history", "wb") as file_pi: pickle.dump(self.train_history.history, file_pi) def load_prediction_results(self): self.prediction_table = pd.read_csv( self.predict_save_path, index_col=0 ) self.history = pickle.load( open(self.model_predict_save_path + "/history", "rb") ) self.adata.obs[ f"{self.predict_key}_predictions" ] = self.prediction_table["y_pred"] misclassified = self.adata.obs[self.predict_key].astype("str") misclassified[ self.adata.obs[f"{self.predict_key}_predictions"] != self.adata.obs[self.predict_key] ] = "misclassified" self.adata.obs[f"misclassified"] = misclassified misclassified_and_test = self.adata.obs["misclassified"].astype("str") misclassified_and_test[ (self.adata.obs["misclassified"] == "misclassified") & (self.prediction_table["is_test"]) ] = "misclassified_and_test" self.adata.obs[f"misclassified_and_test"] = misclassified_and_test self.adata.obs[f"is_test"] = self.prediction_table["is_test"].replace( {True: "test", False: "train"} ) def plot_prediction_results(self, test_only, normalize="true", ax=None): if not test_only: y_true = self.prediction_table["y_true"] y_pred = self.prediction_table["y_pred"] else: y_true = self.prediction_table.loc[ self.prediction_table["is_test"], "y_true" ] y_pred = self.prediction_table.loc[ self.prediction_table["is_test"], "y_pred" ] labels = sorted(y_true.unique()) self.confusion_matrix = confusion_matrix( y_true, y_pred, labels=labels, normalize=normalize ) confusion_to_plot = pd.DataFrame( self.confusion_matrix, index=labels, columns=labels ) self.balanced_accuracy_score = balanced_accuracy_score(y_true, y_pred) self.accuracy_score = accuracy_score(y_true, y_pred) plt.figure(figsize=(15, 15)) ax = sns.heatmap(confusion_to_plot, annot=True, ax=ax) return ( self.confusion_matrix, self.balanced_accuracy_score, self.accuracy_score, ax, ) def plot_training_performances(self): plt.figure(figsize=(5, 5)) plt.show() plt.plot(self.history["acc"]) plt.plot(self.history["val_acc"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() # summarize history for loss plt.plot(self.history["loss"]) plt.plot(self.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() def get_colors(self, color=None): if not color: color = self.predict_key if not self.adatas: print("please load at least one dataset") else: adata = self.adatas[0] sc.pl.umap(adata, color=color, show=False) self.colors[color] = adata.uns[f"{color}_colors"] self.colors_UNK[f"{color} + _UNK"] = self.colors[color] + [ "#FF0000" ] def plot_misclassified_umap(self, title=None): if self.prediction_table.empty: self.load_prediction_results() sc.pl.umap(self.adata, color=self.predict_key, title=title) self.adata.uns[f"misclassified_colors"] = self.adata.uns[ f"{self.predict_key}_colors" ] + ["#FF0000"] self.adata.uns[f"misclassified_and_test_colors"] = ( self.adata.uns[f"{self.predict_key}_colors"] + ["#FF0000"] + ["#08ff00"] ) sc.pl.umap(self.adata, color="misclassified", title=title) sizes = pd.Series([2] * self.adata.n_obs, index=self.adata.obs.index) sizes[ self.adata.obs[f"{self.predict_key}_predictions"] != self.adata.obs[self.predict_key] ] = 20 sc.pl.umap( self.adata, color=[self.predict_key, f"{self.predict_key}_predictions"], size=sizes, ) sc.pl.umap(self.adata, color=["misclassified", "is_test"], size=sizes) sc.pl.umap( self.adata, color=["misclassified_and_test", "dca_split"], size=sizes, )
/sc_permut-0.1.1-py3-none-any.whl/sc_permut/predictor.py
0.817174
0.439747
predictor.py
pypi
import tensorflow as tf from keras.engine.base_layer import InputSpec from keras.engine.topology import Layer from keras.layers import Dense, Lambda from tensorflow.compat.v1.keras import backend as K class ConstantDispersionLayer(Layer): """ An identity layer which allows us to inject extra parameters such as dispersion to Keras models """ def __init__(self, **kwargs): super().__init__(**kwargs) def build(self, input_shape): self.theta = self.add_weight( shape=(1, input_shape[1]), initializer="zeros", trainable=True, name="theta", ) self.theta_exp = tf.clip_by_value(K.exp(self.theta), 1e-3, 1e4) super().build(input_shape) def call(self, x): return tf.identity(x) def compute_output_shape(self, input_shape): return input_shape class SliceLayer(Layer): def __init__(self, index, **kwargs): self.index = index super().__init__(**kwargs) def build(self, input_shape): if not isinstance(input_shape, list): raise ValueError("Input should be a list") super().build(input_shape) def call(self, x): assert isinstance(x, list), "SliceLayer input is not a list" return x[self.index] def compute_output_shape(self, input_shape): return input_shape[self.index] class ElementwiseDense(Dense): def build(self, input_shape): assert len(input_shape) >= 2 input_dim = input_shape[-1] assert (input_dim == self.units) or ( self.units == 1 ), "Input and output dims are not compatible" # shape=(input_units, ) makes this elementwise bcs of broadcasting self.kernel = self.add_weight( shape=(self.units,), initializer=self.kernel_initializer, name="kernel", regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) if self.use_bias: self.bias = self.add_weight( shape=(self.units,), initializer=self.bias_initializer, name="bias", regularizer=self.bias_regularizer, constraint=self.bias_constraint, ) else: self.bias = None self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim}) self.built = True def call(self, inputs): # use * instead of tf.matmul, we need broadcasting here output = inputs * self.kernel if self.use_bias: output = output + self.bias if self.activation is not None: output = self.activation(output) return output nan2zeroLayer = Lambda(lambda x: tf.where(tf.is_nan(x), tf.zeros_like(x), x)) ColwiseMultLayer = Lambda( lambda l: l[0] * tf.reshape(l[1], (-1, 1)), name="reconstruction" )
/sc_permut-0.1.1-py3-none-any.whl/sc_permut/layers.py
0.916987
0.428532
layers.py
pypi
import json import os import pickle import keras.optimizers as opt import numpy as np from hyperopt import Trials, fmin, hp, tpe from kopt import CompileFN, test_fn from . import io from .network import AE_types def hyper(args): print("entering_hyper") adata = io.read_dataset( args.input, transpose=args.transpose, test_split=False ) hyper_params = { "data": { "norm_input_log": hp.choice("d_norm_log", (True, False)), "norm_input_zeromean": hp.choice("d_norm_zeromean", (True, False)), "norm_input_sf": hp.choice("d_norm_sf", (True, False)), }, "model": { "lr": hp.loguniform("m_lr", np.log(1e-3), np.log(1e-2)), "ridge": hp.loguniform("m_ridge", np.log(1e-7), np.log(1e-1)), "l1_enc_coef": hp.loguniform( "m_l1_enc_coef", np.log(1e-7), np.log(1e-1) ), "hidden_size": hp.choice( "m_hiddensize", ( (64, 32, 64), (32, 16, 32), (64, 64), (32, 32), (16, 16), (16,), (32,), (64,), (128,), ), ), "activation": hp.choice( "m_activation", ("relu", "selu", "elu", "PReLU", "linear", "LeakyReLU"), ), "aetype": hp.choice("m_aetype", ("zinb", "zinb-conddisp")), "batchnorm": hp.choice("m_batchnorm", (True, False)), "dropout": hp.uniform("m_do", 0, 0.7), "input_dropout": hp.uniform("m_input_do", 0, 0.8), }, "fit": {"epochs": args.hyperepoch}, } def data_fn(norm_input_log, norm_input_zeromean, norm_input_sf): ad = adata.copy() ad = io.normalize( ad, size_factors=norm_input_sf, logtrans_input=norm_input_log, normalize_input=norm_input_zeromean, ) x_train = {"count": ad.X, "size_factors": ad.obs.size_factors} y_train = ad.raw.X return ((x_train, y_train),) def model_fn( train_data, lr, hidden_size, activation, aetype, batchnorm, dropout, input_dropout, ridge, l1_enc_coef, ): net = AE_types[aetype]( train_data[1].shape[1], hidden_size=hidden_size, l2_coef=0.0, l1_coef=0.0, l2_enc_coef=0.0, l1_enc_coef=l1_enc_coef, ridge=ridge, hidden_dropout=dropout, input_dropout=input_dropout, batchnorm=batchnorm, activation=activation, init="glorot_uniform", debug=args.debug, ) net.build() net.model.summary() optimizer = opt.__dict__["RMSprop"](lr=lr, clipvalue=5.0) net.model.compile(loss=net.loss, optimizer=optimizer) return net.model output_dir = os.path.join(args.outputdir, "hyperopt_results") objective = CompileFN( "autoencoder_hyperpar_db", "myexp1", data_fn=data_fn, model_fn=model_fn, loss_metric="loss", loss_metric_mode="min", valid_split=0.2, save_model=None, save_results=True, use_tensorboard=False, save_dir=output_dir, ) test_fn(objective, hyper_params, save_model=None) trials = Trials() best = fmin( objective, hyper_params, trials=trials, algo=tpe.suggest, max_evals=args.hypern, catch_eval_exceptions=True, ) with open(os.path.join(output_dir, "trials.pickle"), "wb") as f: pickle.dump(trials, f) # TODO: map indices in "best" back to choice-based hyperpars before saving with open(os.path.join(output_dir, "best.json"), "wt") as f: json.dump(best, f, sort_keys=True, indent=4) print(best) # TODO: not just save the best conf but also train the model with these params
/sc_permut-0.1.1-py3-none-any.whl/sc_permut/hyper.py
0.450601
0.217535
hyper.py
pypi
import matplotlib.pyplot as plt import numpy as np import pandas as pd import scanpy as sc import scipy as sp import seaborn as sns import tensorflow as tf from tensorflow.contrib.opt import ScipyOptimizerInterface nb_zero = lambda t, mu: (t / (mu + t)) ** t zinb_zero = lambda t, mu, p: p + ((1.0 - p) * ((t / (mu + t)) ** t)) sigmoid = lambda x: 1.0 / (1.0 + np.exp(-x)) logit = lambda x: np.log(x + 1e-7) - np.log(1.0 - x + 1e-7) tf_logit = lambda x: tf.cast( tf.math.log(x + 1e-7) - tf.math.log(1.0 - x + 1e-7), "float32" ) log_loss = lambda pred, label: np.sum( -(label * np.log(pred + 1e-7)) - ((1.0 - label) * np.log(1.0 - pred + 1e-7)) ) def _lrt(ll_full, ll_reduced, df_full, df_reduced): # Compute the difference in degrees of freedom. delta_df = df_full - df_reduced # Compute the deviance test statistic. delta_dev = 2 * (ll_full - ll_reduced) # Compute the p-values based on the deviance and its expection based on the chi-square distribution. pvals = 1.0 - sp.stats.chi2(delta_df).cdf(delta_dev) return pvals def _fitquad(x, y): coef, res, _, _ = np.linalg.lstsq( (x**2)[:, np.newaxis], y - x, rcond=None ) ss_exp = res[0] ss_tot = np.var(y - x) * len(x) r2 = 1 - (ss_exp / ss_tot) # print('Coefs:', coef) return np.array([coef[0], 1, 0]), r2 def _tf_zinb_zero(mu, t=None): a, b = tf.Variable([-1.0], dtype="float32"), tf.Variable( [0.0], dtype="float32" ) if t is None: t_log = tf.Variable([-10.0], dtype="float32") t = tf.math.exp(t_log) p = tf.math.sigmoid((tf.math.log(mu + 1e-7) * a) + b) pred = p + ((1.0 - p) * ((t / (mu + t)) ** t)) pred = tf.cast(pred, "float32") return pred, a, b, t def _optimize_zinb(mu, dropout, theta=None): pred, a, b, t = _tf_zinb_zero(mu, theta) # loss = tf.math.reduce_mean(tf.abs(tf_logit(pred) - tf_logit(dropout))) loss = tf.compat.v1.losses.log_loss( labels=dropout.astype("float32"), predictions=pred ) optimizer = ScipyOptimizerInterface(loss, options={"maxiter": 100}) with tf.compat.v1.Session() as sess: sess.run(tf.global_variables_initializer()) optimizer.minimize(sess) ret_a = sess.run(a) ret_b = sess.run(b) if theta is None: ret_t = sess.run(t) else: ret_t = t return ret_a, ret_b, ret_t def plot_mean_dropout(ad, title, ax, opt_zinb_theta=False, legend_out=False): expr = ad.X mu = expr.mean(0) do = np.mean(expr == 0, 0) v = expr.var(axis=0) coefs, r2 = _fitquad(mu, v) theta = 1.0 / coefs[0] # zinb fit coefs = _optimize_zinb(mu, do, theta=theta if not opt_zinb_theta else None) print(coefs) # pois_pred = np.exp(-mu) nb_pred = nb_zero(theta, mu) zinb_pred = zinb_zero( coefs[2], mu, sigmoid((np.log(mu + 1e-7) * coefs[0]) + coefs[1]) ) # calculate log loss for all distr. # pois_ll = log_loss(pois_pred, do) nb_ll = log_loss(nb_pred, do) zinb_ll = log_loss(zinb_pred, do) ax.plot(mu, do, "o", c="black", markersize=1) ax.set(xscale="log") # sns.lineplot(mu, pois_pred, ax=ax, color='blue') sns.lineplot(mu, nb_pred, ax=ax, color="red") sns.lineplot(mu, zinb_pred, ax=ax, color="green") ax.set_title(title) ax.set_ylabel("Empirical dropout rate") ax.set_xlabel(r"Mean expression") leg_loc = "best" if not legend_out else "upper left" leg_bbox = None if not legend_out else (1.02, 1.0) ax.legend( [ "Genes", # r'Poisson $L=%.4f$' % pois_ll, r"NB($\theta=%.2f)\ L=%.4f$" % ((1.0 / theta), nb_ll), r"ZINB($\theta=%.2f,\pi=\sigma(%.2f\mu%+.2f)) \ L=%.4f$" % (1.0 / coefs[2], coefs[0], coefs[1], zinb_ll), ], loc=leg_loc, bbox_to_anchor=leg_bbox, ) zinb_pval = _lrt(-zinb_ll, -nb_ll, 3, 1) print("p-value: %e" % zinb_pval) def plot_mean_var(ad, title, ax): ad = ad.copy() sc.pp.filter_cells(ad, min_counts=1) sc.pp.filter_genes(ad, min_counts=1) m = ad.X.mean(axis=0) v = ad.X.var(axis=0) coefs, r2 = _fitquad(m, v) ax.set(xscale="log", yscale="log") ax.plot(m, v, "o", c="black", markersize=1) poly = np.poly1d(coefs) sns.lineplot(m, poly(m), ax=ax, color="red") ax.set_title(title) ax.set_ylabel("Variance") ax.set_xlabel(r"$\mu$") sns.lineplot(m, m, ax=ax, color="blue") ax.legend( ["Genes", r"NB ($\theta=%.2f)\ r^2=%.3f$" % (coefs[0], r2), "Poisson"] ) return coefs[0] def plot_zeroinf(ad, title, mean_var_plot=False, opt_theta=True): if mean_var_plot: f, axs = plt.subplots(1, 2, figsize=(15, 5)) plot_mean_var(ad, title, ax=axs[0]) plot_mean_dropout( ad, title, axs[1], opt_zinb_theta=opt_theta, legend_out=True ) plt.tight_layout() else: f, ax = plt.subplots(1, 1, figsize=(10, 5)) plot_mean_dropout( ad, title, ax, opt_zinb_theta=opt_theta, legend_out=True ) plt.tight_layout()
/sc_permut-0.1.1-py3-none-any.whl/sc_permut/utils.py
0.731346
0.59884
utils.py
pypi
try: from .clust_compute import * from .dataset import Dataset from .load import load_runfile from .model import DCA_Permuted from .predictor import MLP_Predictor from .runfile_handler import RunFile from .workflow import Workflow except ImportError: from load import load_runfile from dataset import Dataset from predictor import MLP_Predictor from model import DCA_Permuted from workflow import Workflow from runfile_handler import RunFile from clust_compute import * import math import os import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd import scanpy as sc import seaborn as sns from sklearn.metrics import ( accuracy_score, balanced_accuracy_score, confusion_matrix, plot_confusion_matrix, ) metrics_list = [ "balanced_accuracy_scores", "balanced_accuracy_scores_test", "balanced_accuracy_scores_val", "balanced_accuracy_scores_train", "accuracy_scores", "accuracy_scores_test", "accuracy_scores_val", "accuracy_scores_train", # "silhouette_true", # "silhouette_pred", "davies_bouldin_true", "davies_bouldin_pred", "nmi", "batch_entropy_mixing", ] class AnalysisWorkflow: def __init__(self, working_dir, id_list): """ At the moment, most of the functions might not support workflows coming from different datasets (especially, it's better if every latent spaces has the same number of obs) """ self.id_list = id_list self.working_dir = working_dir self.runfile_paths = { wf_id: RunFile( working_dir=working_dir, workflow_ID=wf_id ).run_file_path for wf_id in self.id_list } self.workflow_list = { wf_id: Workflow(working_dir=working_dir, yaml_name=rf_path) for wf_id, rf_path in self.runfile_paths.items() } self.true_class = dict() self.pred_class = dict() self.corrected_counts = dict() self.balanced_accuracy_scores = dict() self.accuracy_scores = dict() self.metric_results_path = ( self.working_dir + "/results/metric_results.csv" ) self.metric_results_df = pd.read_csv( self.metric_results_path, index_col="index" ) self.runfile_csv_path = ( self.working_dir + "/runfile_dir/runfile_list.csv" ) print(self.id_list) print(self.runfile_csv_path) self.runfile_df = pd.read_csv( self.runfile_csv_path, index_col="index" ).loc[self.id_list, :] self.metrics_computed_solo = [] self.metrics_computed_solo_df = pd.DataFrame() self.metrics_table = self.metric_results_df.copy().loc[self.id_list, :] def load_metrics(self): """ Loads the metrics from the result folder """ self.metrics_computed_solo = [ pd.read_csv(wf.metric_path, index_col=0) for wf in self.workflow_list.values() ] # The metrics as saved in the result folder self.metrics_computed_solo_df = pd.concat( self.metrics_computed_solo ) # Merge them into a dataframe self.metrics_computed_solo_df.index.name = "index" def update_metrics(self): """ Updates the metrics in the metrics table """ self.metric_results_df.update(self.metrics_computed_solo_df) self.metric_results_df.to_csv(self.metric_results_path) self.metrics_table = self.metric_results_df.copy().loc[self.id_list, :] def load_corrected_counts(self): for workflow in self.workflow_list.values(): workflow.load_corrected() self.corrected_counts = { wf_id: workflow.corrected_count for wf_id, workflow in self.workflow_list.items() } def load_latent_spaces(self, verbose=False): def verbose_print(to_print): if verbose: print(to_print) failed_ID = [] for ID, workflow in self.workflow_list.items(): verbose_print(f"workflow {ID} loaded") workflow.load_results() try: self.true_class[ID] = workflow.latent_space.obs[ f"true_{workflow.class_key}" ] except: failed_ID.append(ID) if failed_ID: failed_ID = [str(i) for i in failed_ID] print( Exception( f'The following ID didnt have a true_class_key obs : {"_".join(failed_ID)}' ) ) return failed_ID # returns th wrong ids self.pred_class = { wf_id: workflow.latent_space.obs[f"{workflow.class_key}_pred"] for wf_id, workflow in self.workflow_list.items() } self.latent_spaces = { wf_id: workflow.latent_space for wf_id, workflow in self.workflow_list.items() } self.pred_tables = { wf_id: workflow.latent_space.obs.loc[ :, [ f"true_{workflow.class_key}", f"{workflow.class_key}_pred", "train_split", ], ] for wf_id, workflow in self.workflow_list.items() } # for wf_id,workflow in self.workflow_list.items(): # class_key = self.workflow_list[wf_id].class_key # true_celltype = self.workflow_list[wf_id].true_celltype # false_celltype = self.workflow_list[wf_id].false_celltype # false_true_only = pd.Series(['Other'] * workflow.latent_space.n_obs, index = workflow.latent_space.obs.index) # false_true_only[workflow.latent_space.obs[f'true_{class_key}'] == true_celltype] = true_celltype # false_true_only[workflow.latent_space.obs[f'true_{class_key}'] == false_celltype] = false_celltype # false_true_only[workflow.latent_space.obs['faked']] = f'fake {false_celltype} - true {true_celltype}' # workflow.latent_space.obs['false_true_only'] = false_true_only # false_only = pd.Series(['Other'] * workflow.latent_space.n_obs, index = workflow.latent_space.obs.index) # false_only[workflow.latent_space.obs['faked']] = f'fake {false_celltype} - true {true_celltype}' # workflow.latent_space.obs['false_only'] = false_only # self.latent_spaces = {wf_id: workflow.latent_space for wf_id, workflow in self.workflow_list.items()} def subsample_true_false(self, keep="true and false"): """ Use only when celltypes have been faked in the workflows. Keeps only a few cells hein keep is either 'true', 'false' or 'true and false'. """ for wf_id, latent_space in self.latent_spaces.items(): class_key = self.workflow_list[wf_id].class_key if keep == "true": keep_celltype = [self.workflow_list[wf_id].true_celltype] elif keep == "false": keep_celltype = [self.workflow_list[wf_id].false_celltype] elif keep == "true and false": keep_celltype = [ self.workflow_list[wf_id].false_celltype, self.workflow_list[wf_id].true_celltype, ] self.latent_spaces[wf_id] = latent_space[ latent_space.obs[f"true_{class_key}"].isin(keep_celltype), : ].copy() self.workflow_list[wf_id].latent_space = latent_space[ latent_space.obs[f"true_{class_key}"].isin(keep_celltype), : ].copy() self.true_class = { wf_id: self.latent_spaces[wf_id].obs[ f"true_{workflow.class_key}" ] for wf_id, workflow in self.workflow_list.items() } self.pred_class = { wf_id: self.latent_spaces[wf_id].obs[ f"{workflow.class_key}_pred" ] for wf_id, workflow in self.workflow_list.items() } self.pred_tables = { wf_id: self.latent_spaces[wf_id].obs.loc[ :, [ f"true_{workflow.class_key}", f"{workflow.class_key}_pred", "train_split", ], ] for wf_id, workflow in self.workflow_list.items() } def subsample_on_obs(self, obs_filter, condition=True): """ Reduces every workflow on a common obs condition. If obs_filter is a boolean Series, no need to specify condition. The True and False value might be different between workflows therefore, workflows won't share the same cells after this operation """ if (type(condition) == str) or (type(condition) == bool): condition = [condition] for wf_id, latent_space in self.latent_spaces.items(): self.latent_spaces[wf_id] = latent_space[ latent_space.obs[obs_filter].isin(condition), : ].copy() self.workflow_list[wf_id].latent_space = latent_space[ latent_space.obs[obs_filter].isin(condition), : ].copy() self.true_class = { wf_id: self.latent_spaces[wf_id].obs[ f"true_{workflow.class_key}" ] for wf_id, workflow in self.workflow_list.items() } self.pred_class = { wf_id: self.latent_spaces[wf_id].obs[ f"{workflow.class_key}_pred" ] for wf_id, workflow in self.workflow_list.items() } self.pred_tables = { wf_id: self.latent_spaces[wf_id].obs.loc[ :, [ f"true_{workflow.class_key}", f"{workflow.class_key}_pred", "train_split", ], ] for wf_id, workflow in self.workflow_list.items() } def subsample_on_index(self, cell_index): """ Reduces every workflow to cells specified in cell_index """ for wf_id, latent_space in self.latent_spaces.items(): self.latent_spaces[wf_id] = latent_space[cell_index, :].copy() self.workflow_list[wf_id].latent_space = latent_space[ cell_index, : ].copy() self.true_class = { wf_id: self.latent_spaces[wf_id].obs[ f"true_{workflow.class_key}" ] for wf_id, workflow in self.workflow_list.items() } self.pred_class = { wf_id: self.latent_spaces[wf_id].obs[ f"{workflow.class_key}_pred" ] for wf_id, workflow in self.workflow_list.items() } self.pred_tables = { wf_id: self.latent_spaces[wf_id].obs.loc[ :, [ f"true_{workflow.class_key}", f"{workflow.class_key}_pred", "train_split", ], ] for wf_id, workflow in self.workflow_list.items() } def add_obs_metadata(self, metadata): """ Add metadata to every latent_space. metadata should be a pandas DataFrame with correct number of observations """ for wf_id, latent_space in self.latent_spaces.items(): assert ( latent_space.obs.shape[0] == metadata.shape[0] ), "metadata doesn't have the same number of cell as the latent spaces" latent_space.obs = pd.concat([latent_space.obs, metadata], axis=1) def compute_metrics_solo(self, ID, add_to_csv=True, save_adata=True): """ computes the metrics of interest for one sample and returns them in a pd.Series object. It is then stored as a 1 row dataframe (for convenience when merging with metrics_table) in the uns['metrics'] section of the adata. ID : ID of the adata to compute the metric on add_to_csv : wether to add it to the metrics_table csv save_adata : wether to save the new adata object created """ wf = self.workflow_list[ID] latent_space = self.latent_spaces[ID] if os.path.exists(wf.metric_path): metric_series = pd.read_csv(wf.metric_path, index_col=0) else: try: metric_series = latent_space.uns["metrics"] except: metric_series = pd.Series(index=metrics_list, name=ID) metric_series = pd.DataFrame( [metric_series.values], index=[ID], columns=metric_series.index ) # metric_series = pd.read_csv(wf.metric_path, index_col = 0) metric_clone = metric_series.copy() print(f"computing ID {ID}") for metric in metrics_list: if ( (metric not in metric_series.columns) or (metric_series.isna().loc[ID, metric]) or (metric_series.loc[ID, metric] == "NC") ): print(f"computing metric : {metric}") if metric == "balanced_accuracy_scores": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=latent_space, partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "balanced_accuracy_scores_test": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=latent_space[ latent_space.obs["train_split"] == "test" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "balanced_accuracy_scores_val": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=latent_space[ latent_space.obs["train_split"] == "val" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "balanced_accuracy_scores_train": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=latent_space[ latent_space.obs["train_split"] == "train" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores": try: metric_series.loc[ID, metric] = accuracy( adata=latent_space, partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores_test": try: metric_series.loc[ID, metric] = accuracy( adata=latent_space[ latent_space.obs["train_split"] == "test" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores_val": try: metric_series.loc[ID, metric] = accuracy( adata=latent_space[ latent_space.obs["train_split"] == "val" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores_train": try: metric_series.loc[ID, metric] = accuracy( adata=latent_space[ latent_space.obs["train_split"] == "train" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_true": try: metric_series.loc[ID, metric] = silhouette( adata=latent_space, partition_key=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_pred": try: metric_series.loc[ID, metric] = silhouette( adata=latent_space, partition_key=f"{wf.class_key}_pred", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_true": try: metric_series.loc[ID, metric] = davies_bouldin( adata=latent_space, partition_key=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_pred": try: metric_series.loc[ID, metric] = davies_bouldin( adata=latent_space, partition_key=f"{wf.class_key}_pred", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "nmi": try: metric_series.loc[ID, metric] = nmi( adata=latent_space, partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "batch_entropy_mixing": for b_k in ["manip", "sample"]: if b_k in latent_space.obs.columns: batch_key = b_k try: metric_series.loc[ID, metric] = batch_entropy_mixing( adata=latent_space, batch_key=batch_key ) except: metric_series.loc[ID, metric] = "NC" if not metric_series.equals(metric_clone): metric_series.to_csv(wf.metric_path) print(f"metric_series saved for ID {ID}") if add_to_csv: self.metric_results_df.update(metric_series) self.metric_results_df.to_csv(self.metric_results_path) self.metrics_table = self.metric_results_df.copy().loc[ self.id_list, : ] if save_adata: latent_space.uns["metrics"] = metric_series latent_space.write(wf.adata_path) return metric_series def compute_metrics_csv(self): for ID, wf in self.workflow_list.items(): metric_series = self.metric_results_df.loc[ID, metrics_list].copy() metric_series = pd.DataFrame( [metric_series.values], index=[ID], columns=metric_series.index ) # metric_series = pd.read_csv(wf.metric_path, index_col = 0) metric_clone = metric_series.copy() print(f"computing ID {ID}") for metric in metrics_list: if (metric not in metric_series.columns) or ( metric_series.isna().loc[ID, metric] ): print("computing metric") if metric == "balanced_accuracy_scores": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=wf.latent_space, partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "balanced_accuracy_scores_test": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=wf.latent_space[ wf.latent_space.obs["train_split"] == "test" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "balanced_accuracy_scores_val": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=wf.latent_space[ wf.latent_space.obs["train_split"] == "val" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "balanced_accuracy_scores_train": try: metric_series.loc[ID, metric] = balanced_accuracy( adata=wf.latent_space[ wf.latent_space.obs["train_split"] == "train" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores": try: metric_series.loc[ID, metric] = accuracy( adata=wf.latent_space, partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores_test": try: metric_series.loc[ID, metric] = accuracy( adata=wf.latent_space[ wf.latent_space.obs["train_split"] == "test" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores_val": try: metric_series.loc[ID, metric] = accuracy( adata=wf.latent_space[ wf.latent_space.obs["train_split"] == "val" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "accuracy_scores_train": try: metric_series.loc[ID, metric] = accuracy( adata=wf.latent_space[ wf.latent_space.obs["train_split"] == "train" ], partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_true": try: metric_series.loc[ID, metric] = silhouette( adata=wf.latent_space, partition_key=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_pred": try: metric_series.loc[ID, metric] = silhouette( adata=wf.latent_space, partition_key=f"{wf.class_key}_pred", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_true": try: metric_series.loc[ID, metric] = davies_bouldin( adata=wf.latent_space, partition_key=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "silhouette_pred": try: metric_series.loc[ID, metric] = davies_bouldin( adata=wf.latent_space, partition_key=f"{wf.class_key}_pred", ) except: metric_series.loc[ID, metric] = "NC" elif metric == "nmi": try: metric_series.loc[ID, metric] = nmi( adata=wf.latent_space, partition_key=f"{wf.class_key}_pred", reference=f"true_{wf.class_key}", ) except: metric_series.loc[ID, metric] = "NC" if not metric_series.equals(metric_clone): metric_series.to_csv(wf.metric_path) print(f"metric_series saved for ID {ID}") self.metric_results_df.update(metric_series) self.metric_results_df.to_csv(self.metric_results_path) self.metrics_table = self.metric_results_df.copy().loc[self.id_list, :] # def compute_metrics(self, verbose=False): # y_iterate = lambda:zip(self.workflow_list.keys(),self.true_class.values(),self.pred_class.values()) # def verbose_print(to_print): # if verbose: # print(to_print) # verbose_print('computing balanced_accuracy_scores') # self.balanced_accuracy_scores = {wf_id: balanced_accuracy(adata=workflow.latent_space, # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.balanced_accuracy_scores = pd.Series(self.balanced_accuracy_scores, name = 'balanced_accuracy_scores') # self.balanced_accuracy_scores_test = {wf_id: balanced_accuracy(adata=workflow.latent_space[workflow.latent_space.obs['train_split'] == 'test'], # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.balanced_accuracy_scores_test = pd.Series(self.balanced_accuracy_scores_test, name = 'balanced_accuracy_scores_test') # self.balanced_accuracy_scores_val = {wf_id: balanced_accuracy(adata=workflow.latent_space[workflow.latent_space.obs['train_split'] == 'val'], # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.balanced_accuracy_scores_val = pd.Series(self.balanced_accuracy_scores_val, name = 'balanced_accuracy_scores_val') # self.balanced_accuracy_scores_train = {wf_id: balanced_accuracy(adata=workflow.latent_space[workflow.latent_space.obs['train_split'] == 'train'], # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.balanced_accuracy_scores_train = pd.Series(self.balanced_accuracy_scores_train, name = 'balanced_accuracy_scores_train') # verbose_print('computing accuracy_scores') # self.accuracy_scores = {wf_id: accuracy(adata=workflow.latent_space, # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.accuracy_scores = pd.Series(self.accuracy_scores, name = 'accuracy_scores') # self.accuracy_scores_test = {wf_id: accuracy(adata=workflow.latent_space[workflow.latent_space.obs['train_split'] == 'test'], # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.accuracy_scores_test = pd.Series(self.accuracy_scores_test, name = 'accuracy_scores_test') # self.accuracy_scores_val = {wf_id: accuracy(adata=workflow.latent_space[workflow.latent_space.obs['train_split'] == 'val'], # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.accuracy_scores_val = pd.Series(self.accuracy_scores_val, name = 'accuracy_scores_val') # self.accuracy_scores_train = {wf_id: accuracy(adata=workflow.latent_space[workflow.latent_space.obs['train_split'] == 'train'], # partition_key=f'{workflow.class_key}_pred', # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # self.accuracy_scores_train = pd.Series(self.accuracy_scores_train, name = 'accuracy_scores_train') # # verbose_print('computing silhouette_true') # # self.silhouette_true = {wf_id: silhouette(adata=workflow.latent_space, # # partition_key=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # # self.silhouette_true = pd.Series(self.silhouette_true, name = 'silhouette_true') # # verbose_print('computing silhouette_pred') # # self.silhouette_pred = {wf_id: silhouette(adata=workflow.latent_space, # # partition_key=f'{workflow.class_key}_pred') for wf_id, workflow in self.workflow_list.items()} # # self.silhouette_pred = pd.Series(self.silhouette_pred, name = 'silhouette_pred') # # verbose_print('computing davies_bouldin_true') # # self.davies_bouldin_true = {wf_id: davies_bouldin(adata=workflow.latent_space, # # partition_key=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # # self.davies_bouldin_true = pd.Series(self.davies_bouldin_true, name = 'davies_bouldin_true') # # verbose_print('computing davies_bouldin_pred') # # self.davies_bouldin_pred = {wf_id: davies_bouldin(adata=workflow.latent_space, # # partition_key=f'{workflow.class_key}_pred') for wf_id, workflow in self.workflow_list.items()} # # self.davies_bouldin_pred = pd.Series(self.davies_bouldin_pred, name = 'davies_bouldin_pred') # # verbose_print('computing nmi') # # self.nmi = {wf_id: nmi(adata=workflow.latent_space, # # partition_key=f'{workflow.class_key}_pred', # # reference=f'true_{workflow.class_key}') for wf_id, workflow in self.workflow_list.items()} # # self.nmi = pd.Series(self.nmi, name = 'nmi') # metrics_table_add = pd.concat([ self.accuracy_scores, # self.accuracy_scores_test, # self.accuracy_scores_val, # self.accuracy_scores_train, # self.balanced_accuracy_scores, # self.balanced_accuracy_scores_test, # self.balanced_accuracy_scores_val, # self.balanced_accuracy_scores_train, # # self.silhouette_true, # # self.silhouette_pred, # # self.davies_bouldin_true, # # self.davies_bouldin_pred, # # self.nmi # ], axis = 1) # self.metrics_table = pd.concat([metrics_table_add, self.metrics_table], axis=1) # self.metrics_table = self.metrics_table.loc[:,~self.metrics_table.columns.duplicated()].copy() # Removing duplicate cols def compute_clustering_metrics(self, cluster_key, verbose=False): """ Compute the clustering metrics for a selected cluster for example batches """ self.davies_bouldin_cluster = { wf_id: davies_bouldin( adata=workflow.latent_space, partition_key=cluster_key ) for wf_id, workflow in self.workflow_list.items() } self.davies_bouldin_cluster = pd.Series( self.davies_bouldin_cluster, name=f"davies_bouldin_{cluster_key}" ) self.silhouette_cluster = { wf_id: silhouette( adata=workflow.latent_space, partition_key=f"true_{workflow.class_key}", ) for wf_id, workflow in self.workflow_list.items() } self.silhouette_cluster = pd.Series( self.silhouette_cluster, name=f"silhouette_{cluster_key}" ) metrics_table_add = pd.concat( [self.davies_bouldin_cluster, self.silhouette_cluster], axis=1 ) self.metrics_table = pd.concat( [metrics_table_add, self.metrics_table], axis=1 ) def plot_confusion_matrices_single( self, workflow_ID, test_only, normalize="true", ax=None, **kwargs ): if not test_only: y_true = self.true_class[workflow_ID] y_pred = self.pred_class[workflow_ID] else: y_true = self.true_class[workflow_ID][ self.pred_tables[workflow_ID]["train_split"] == "test" ] y_pred = self.pred_class[workflow_ID][ self.pred_tables[workflow_ID]["train_split"] == "test" ] labels = sorted(list(set(y_true.unique()) | set(y_pred.unique()))) conf_mat = confusion_matrix( y_true, y_pred, labels=labels, normalize=normalize ) confusion_to_plot = pd.DataFrame( conf_mat, index=labels, columns=labels ) plt.figure(figsize=(15, 15)) ax = sns.heatmap(confusion_to_plot, annot=True, ax=ax, **kwargs) return confusion_to_plot, ax def compute_confusion_matrix( self, workflow_ID, test_only, normalize="true" ): if not test_only: y_true = self.true_class[workflow_ID] y_pred = self.pred_class[workflow_ID] else: y_true = self.true_class[workflow_ID][ self.pred_tables[workflow_ID]["train_split"] == "test" ] y_pred = self.pred_class[workflow_ID][ self.pred_tables[workflow_ID]["train_split"] == "test" ] labels = sorted(list(set(y_true.unique()) | set(y_pred.unique()))) conf_mat = confusion_matrix( y_true, y_pred, labels=labels, normalize=normalize ) confusion_to_plot = pd.DataFrame( conf_mat, index=labels, columns=labels ) return confusion_to_plot def plot_average_conf_matrix( self, split_by, test_only, normalize="true", **kwargs ): """ split_by can be a list of obs columns in which case they'll be regrouped in a meta split_by """ metrics_to_plot = self.metrics_table.copy() if ( type(split_by) == list ): # Creating the "meta split by" ie potentially a combination of several obs fields meta_split_by = "-".join(split_by) col_to_plot = pd.Series( metrics_to_plot[split_by[0]].astype(str), index=metrics_to_plot.index, ) for h in split_by[1:]: col_to_plot = ( col_to_plot + "-" + metrics_to_plot[h].astype(str) ) metrics_to_plot[meta_split_by] = col_to_plot else: meta_split_by = split_by split_id = {} for split in metrics_to_plot[meta_split_by].unique(): print(split) split_id[str(split)] = metrics_to_plot.loc[ metrics_to_plot[meta_split_by] == split, "workflow_ID" ] confusion_dict = { wf_id: self.compute_confusion_matrix(wf_id, test_only, normalize) for wf_id in self.workflow_list.keys() } avg_conf_dict = {} for split, IDs in split_id.items(): conf_concat = pd.concat([confusion_dict[ID] for ID in IDs]) by_row_index = conf_concat.groupby(conf_concat.index) avg_conf = ( by_row_index.mean() ) # Averaging the confusion matrices by split_by conditions. Note that we're averaging normalized values (depending on 'normalize'). avg_conf_dict[split] = avg_conf for split, mat in avg_conf_dict.items(): plt.figure(figsize=(15, 15)) ax = sns.heatmap(mat, annot=True, **kwargs) split_title = split.split("-") plt.title( "average conf matrix, split by " + " ".join( [f"{sp}={s}" for sp, s in zip(split_by, split_title)] ) ) def plot_confusion_matrices_multiple( self, IDs_to_plot="all", params=["dataset_name"] ): """ This plots confusion matrices IDs_to_plot should be either a list of the IDs to plot or 'all' in which case all the indices of the object are plotted """ if IDs_to_plot == "all": IDs_to_plot = list(self.workflow_list.keys()) n_plots = len(IDs_to_plot) f, axes = plt.subplots(n_plots, 2, figsize=(30, 12.5 * n_plots)) i = 0 for wf_id in IDs_to_plot: self.plot_prediction_results_single( workflow_ID=wf_id, test_only=False, ax=axes[i, 0], normalize="true", ) axes[i, 0].set_title( [ f"{param} = {getattr(self.workflow_list[wf_id], param)}" for param in params ] ) axes[i, 0].set_xlabel( f"worflow_{wf_id}, acc={round(self.accuracy_scores[wf_id],2)}, weighted_acc={round(self.balanced_accuracy_scores[wf_id],2)}" ) self.plot_prediction_results_single( workflow_ID=wf_id, test_only=True, ax=axes[i, 1], normalize="true", ) axes[i, 1].set_xlabel( f"worflow_{wf_id}_test_only, acc={round(self.accuracy_scores[wf_id],2)}, weighted_acc={round(self.balanced_accuracy_scores[wf_id],2)}" ) i += 1 return f def plot_umaps(self, IDs_to_plot="all", params=["dataset"], **kwargs): """ params are the params to specify in the umap title """ if IDs_to_plot == "all": IDs_to_plot = self.workflow_list.keys() for wf_id in IDs_to_plot: sc.pl.umap( self.latent_spaces[wf_id], title=f"workflow_{wf_id}" + str( [ f"{param} = {getattr(self.workflow_list[wf_id], param)}" for param in params ] ), **kwargs, ) def plot_comparative_boxplot( self, x, y, hue, title=None, IDs_to_plot="all", **kwargs ): metrics_to_plot = self.metrics_table.copy() if IDs_to_plot != "all": metrics_to_plot = metrics_to_plot.loc[ metrics_to_plot["workflow_ID"].isin(IDs_to_plot) ] print(metrics_to_plot) if type(hue) == list: meta_hue = "_".join(hue) col_to_plot = pd.Series( metrics_to_plot[hue[0]].astype(str), index=metrics_to_plot.index, ) for h in hue[1:]: col_to_plot = ( col_to_plot + "_" + metrics_to_plot[h].astype(str) ) metrics_to_plot[meta_hue] = col_to_plot else: meta_hue = hue sns.set(rc={"figure.figsize": (11.7, 8.27)}) sns.boxplot(x=x, y=y, hue=meta_hue, data=metrics_to_plot, **kwargs) plt.xticks(rotation=90) plt.legend(title=x) if title: plt.title(title) else: plt.title(f"{y} split by {x}") def plot_class_confidence(self, ID, mode="box", layout=True, **kwargs): """ mode is either bar (average) or box (boxplot) """ adata = self.latent_spaces[ID] workflow = self.workflow_list[ID] true_key = f"true_{workflow.class_key}" pred_key = f"{workflow.class_key}_pred" y_pred_raw = pd.DataFrame( adata.obsm["y_pred_raw"], index=adata.obs_names, columns=adata.uns["prediction_decoder"], ) # n_obs x n_class matrix y_pred_raw = y_pred_raw[adata.obs[true_key].cat.categories] class_df_dict = { ct: y_pred_raw.loc[adata.obs[true_key] == ct, :] for ct in adata.obs[true_key].cat.categories } mean_acc_dict = { ct: df.mean(axis=0) for ct, df in class_df_dict.items() } n = math.ceil(np.sqrt(len(adata.obs[true_key].cat.categories))) f, axes = plt.subplots(n, n, constrained_layout=layout) # plt.constrained_layout() i = 0 for ct, df in class_df_dict.items(): r = i // n c = i % n ax = axes[r, c] if mode == "box": df.plot.box( ax=ax, figsize=(20, 15), ylim=(-0.01, 1.01), xlabel=adata.obs[true_key].cat.categories, **kwargs, ) if mode == "bar": df = mean_acc_dict[ct] df.plot.bar(ax=ax, figsize=(20, 15), ylim=(0, 1), **kwargs) ax.tick_params(axis="x", labelrotation=90) ax.set_title(ct + f"- {class_df_dict[ct].shape[0]} cells") i += 1 def plot_size_conf_correlation(self, ID): adata = self.latent_spaces[ID] workflow = self.workflow_list[ID] true_key = f"true_{workflow.class_key}" pred_key = f"{workflow.class_key}_pred" y_pred_raw = pd.DataFrame( adata.obsm["y_pred_raw"], index=adata.obs_names, columns=adata.uns["prediction_decoder"], ) # n_obs x n_class matrix class_df_dict = { ct: y_pred_raw.loc[adata.obs[true_key] == ct, :] for ct in adata.obs[true_key].cat.categories } # The order of the plot is defined here (adata.obs['true_louvain'].cat.categories) mean_acc_dict = { ct: df.mean(axis=0) for ct, df in class_df_dict.items() } f, axes = plt.subplots(1, 2, figsize=(10, 5)) f.suptitle("correlation between confidence and class size") pd.Series( {ct: class_df_dict[ct].shape[0] for ct in mean_acc_dict.keys()} ).plot.bar(ax=axes[0]) pd.Series( {ct: mean_acc_dict[ct][ct] for ct in mean_acc_dict.keys()} ).plot.bar(ax=axes[1]) def plot_size_conf_correlation(self, ID): adata = self.latent_spaces[ID] workflow = self.workflow_list[ID] true_key = f"true_{workflow.class_key}" pred_key = f"{workflow.class_key}_pred" y_pred_raw = pd.DataFrame( adata.obsm["y_pred_raw"], index=adata.obs_names, columns=adata.uns["prediction_decoder"], ) # n_obs x n_class matrix class_df_dict = { ct: y_pred_raw.loc[adata.obs[true_key] == ct, :] for ct in adata.obs[true_key].cat.categories } # The order of the plot is defined here (adata.obs['true_louvain'].cat.categories) mean_acc_dict = { ct: df.mean(axis=0) for ct, df in class_df_dict.items() } f, axes = plt.subplots(1, 2, figsize=(10, 5)) f.suptitle("correlation between confidence and class size") pd.Series( {ct: class_df_dict[ct].shape[0] for ct in mean_acc_dict.keys()} ).plot.bar(ax=axes[0]) pd.Series( {ct: mean_acc_dict[ct][ct] for ct in mean_acc_dict.keys()} ).plot.bar(ax=axes[1]) def plot_class_accuracy(self, ID, layout=True, **kwargs): """ mode is either bar (average) or box (boxplot) """ adata = self.latent_spaces[ID] workflow = self.workflow_list[ID] true_key = f"true_{workflow.class_key}" pred_key = f"{workflow.class_key}_pred" labels = adata.obs[true_key].cat.categories conf_mat = pd.DataFrame( confusion_matrix( adata.obs[true_key], adata.obs[pred_key], labels=labels ), index=labels, columns=labels, ) n = math.ceil(np.sqrt(len(labels))) f, axes = plt.subplots(n, n, constrained_layout=layout) f.suptitle("Accuracy & confusion by celltype") # plt.constrained_layout() i = 0 for ct in labels: r = i // n c = i % n ax = axes[r, c] df = conf_mat.loc[ct, :] / conf_mat.loc[ct, :].sum() df.plot.bar(ax=ax, figsize=(20, 15), ylim=(0, 1), **kwargs) ax.tick_params(axis="x", labelrotation=90) ax.set_title(ct + f"- {conf_mat.loc[ct,:].sum()} cells") i += 1 def plot_history(self, split_by, DR_or_pred, value, params=None): """ Plots various train history information. split_by : parameter to split the plots by value : one of 'loss', 'lr' (DR only), 'acc' , 'val_acc', 'val_loss' (pred only) params : parameters to put in the legend """ metrics_to_plot = self.metrics_table.copy() if type(split_by) == list: meta_split_by = "_".join(split_by) col_to_plot = pd.Series( metrics_to_plot[split_by[0]].astype(str), index=metrics_to_plot.index, ) for h in split_by[1:]: col_to_plot = ( col_to_plot + "_" + metrics_to_plot[h].astype(str) ) metrics_to_plot[meta_split_by] = col_to_plot else: meta_split_by = split_by split_id = {} for split in metrics_to_plot[meta_split_by].unique(): split_id[split] = metrics_to_plot.loc[ metrics_to_plot[meta_split_by] == split, "workflow_ID" ] for split, IDs in split_id.items(): plt.figure(figsize=(10, 8)) sub_metrics = self.runfile_df.loc[ self.runfile_df["workflow_ID"].isin(IDs) ] legend = pd.Series("", index=sub_metrics.index) if params: for param in params: legend += ( param + "_" + sub_metrics[param].astype(str) + "_" ) else: nunique = sub_metrics.nunique() cols_to_leg = list(nunique[nunique > 1].index) for col in cols_to_leg: legend += col + "_" + sub_metrics[col].astype(str) + "_" for ID in IDs: DR_hist_path = self.workflow_list[ID].DR_history_path pred_hist_path = self.workflow_list[ID].pred_history_path if DR_or_pred == "DR": try: with open(DR_hist_path, "rb") as f: data = pickle.load(f) except FileNotFoundError: print(f"DR hist was not found for ID {ID}") elif DR_or_pred == "pred": try: with open(pred_hist_path, "rb") as f: data = pickle.load(f) except FileNotFoundError: print(f"pred hist was not found for ID {ID}") plt.plot(data[value]) plt.title(split) plt.tight_layout() plt.legend(legend, loc="center left", bbox_to_anchor=(1, 0.5)) def plot_single_pred_hist(self, IDs_to_plot=None, params=None): metrics_to_plot = self.metrics_table.copy() if not IDs_to_plot: IDs_to_plot = metrics_to_plot["workflow_ID"] for ID in IDs_to_plot: plt.figure() pred_hist_path = self.workflow_list[ID].pred_history_path try: with open(pred_hist_path, "rb") as f: data = pickle.load(f) except FileNotFoundError: print(f"pred hist was not found for ID {ID}") pd.DataFrame(data).plot(figsize=(8, 5)) if params: title = "" for param in params: title += ( param + "_" + metrics_to_plot.loc[ID, param].astype(str) + "_" ) else: title = "worklow_ID_" + str( metrics_to_plot.loc[ID, "workflow_ID"] ) plt.title(title) plt.tight_layout()
/sc_permut-0.1.1-py3-none-any.whl/sc_permut/analysis.py
0.621541
0.170301
analysis.py
pypi
import yaml def load_runfile(runfile_path): workflow_ID = 1 yaml_config_dict = { "dataset": "dataset", # keys are the name in the runfile, values are the "official" keys "dataset_name": "dataset_name", "filter_min_counts": "filter_min_counts", "normalize_size_factors": "normalize_size_factors", "scale_input": "scale_input", "logtrans_input": "logtrans_input", "class_key": "class_key", "model_spec": "model_spec", "ae_type": "ae_type", "hidden_size": "hidden_size", "hidden_dropout": "hidden_dropout", "batchnorm": "batchnorm", "activation": "activation", "init": "init", "training_spec": "training_spec", "epochs": "epochs", "reduce_lr": "reduce_lr", "early_stop": "early_stop", "batch_size": "batch_size", "optimizer": "optimizer", "verbose": "verbose", "threads": "threads", "learning_rate": "learning_rate", "n_perm": "n_perm", "permute": "permute", "semi_sup": "semi_sup", "unlabelled_category": "unlabelled_category", "train_split": "train_split", "mode": "mode", "pct_split": "pct_split", "obs_key": "obs_key", "n_keep": "n_keep", "keep_obs": "keep_obs", "random_seed": "random_seed", "obs_subsample": "obs_subsample", "train_test_random_seed": "train_test_random_seed", "fake_annotation": "fake_annotation", "true_celltype": "true_celltype", "false_celltype": "false_celltype", "pct_false": "pct_false", "predictor_activation": "predictor_activation", } yml = open(runfile_path) parsed_yml = yaml.load(yml, Loader=yaml.FullLoader) n_hidden = parsed_yml["model_spec"]["hidden_size"] for key in parsed_yml.keys(): if type(parsed_yml[key]) == dict: for ki in parsed_yml[key].keys(): if parsed_yml[key][ki] == "None": parsed_yml[key][ki] = None if ( type(parsed_yml[key][ki]) == str and "(" in parsed_yml[key][ki] ): # Tuples are parsed as string, we convert them back to tuples parsed_yml[key][ki] = tuple( [ int(i) for i in parsed_yml[key][ki] .strip("(") .strip(")") .replace(" ", "") .split(",") ] ) return parsed_yml
/sc_permut-0.1.1-py3-none-any.whl/sc_permut/load.py
0.437824
0.394318
load.py
pypi
import os import random import shutil import tempfile import anndata import numpy as np import scanpy as sc try: import tensorflow as tf except ImportError: raise ImportError( "DCA requires tensorflow. Please follow instructions" " at https://www.tensorflow.org/install/ to install" " it." ) from .io import normalize, read_dataset from .network import AE_types from .train import train def dca( adata, mode="denoise", ae_type="zinb-conddisp", normalize_per_cell=True, scale=True, log1p=True, hidden_size=(64, 32, 64), # network args hidden_dropout=0.0, batchnorm=True, activation="relu", init="glorot_uniform", network_kwds={}, epochs=300, # training args reduce_lr=10, early_stop=15, batch_size=32, optimizer="RMSprop", learning_rate=None, random_state=0, threads=None, verbose=False, training_kwds={}, return_model=False, return_info=False, copy=False, permute=True, ): """Deep count autoencoder(DCA) API. Fits a count autoencoder to the count data given in the anndata object in order to denoise the data and capture hidden representation of cells in low dimensions. Type of the autoencoder and return values are determined by the parameters. Parameters ---------- adata : :class:`~scanpy.api.AnnData` An anndata file with `.raw` attribute representing raw counts. mode : `str`, optional. `denoise`(default), or `latent`. `denoise` overwrites `adata.X` with denoised expression values. In `latent` mode DCA adds `adata.obsm['X_dca']` to given adata object. This matrix represent latent representation of cells via DCA. ae_type : `str`, optional. `zinb-conddisp`(default), `zinb`, `nb-conddisp` or `nb`. Type of the autoencoder. Return values and the architecture is determined by the type e.g. `nb` does not provide dropout probabilities. normalize_per_cell : `bool`, optional. Default: `True`. If true, library size normalization is performed using the `sc.pp.normalize_per_cell` function in Scanpy and saved into adata object. Mean layer is re-introduces library size differences by scaling the mean value of each cell in the output layer. See the manuscript for more details. scale : `bool`, optional. Default: `True`. If true, the input of the autoencoder is centered using `sc.pp.scale` function of Scanpy. Note that the output is kept as raw counts as loss functions are designed for the count data. log1p : `bool`, optional. Default: `True`. If true, the input of the autoencoder is log transformed with a pseudocount of one using `sc.pp.log1p` function of Scanpy. hidden_size : `tuple` or `list`, optional. Default: (64, 32, 64). Width of hidden layers. hidden_dropout : `float`, `tuple` or `list`, optional. Default: 0.0. Probability of weight dropout in the autoencoder (per layer if list or tuple). batchnorm : `bool`, optional. Default: `True`. If true, batch normalization is performed. activation : `str`, optional. Default: `relu`. Activation function of hidden layers. init : `str`, optional. Default: `glorot_uniform`. Initialization method used to initialize weights. network_kwds : `dict`, optional. Additional keyword arguments for the autoencoder. epochs : `int`, optional. Default: 300. Number of total epochs in training. reduce_lr : `int`, optional. Default: 10. Reduces learning rate if validation loss does not improve in given number of epochs. early_stop : `int`, optional. Default: 15. Stops training if validation loss does not improve in given number of epochs. batch_size : `int`, optional. Default: 32. Number of samples in the batch used for SGD. learning_rate : `float`, optional. Default: None. Learning rate to use in the training. optimizer : `str`, optional. Default: "RMSprop". Type of optimization method used for training. random_state : `int`, optional. Default: 0. Seed for python, numpy and tensorflow. threads : `int` or None, optional. Default: None Number of threads to use in training. All cores are used by default. verbose : `bool`, optional. Default: `False`. If true, prints additional information about training and architecture. training_kwds : `dict`, optional. Additional keyword arguments for the training process. return_model : `bool`, optional. Default: `False`. If true, trained autoencoder object is returned. See "Returns". return_info : `bool`, optional. Default: `False`. If true, all additional parameters of DCA are stored in `adata.obsm` such as dropout probabilities (obsm['X_dca_dropout']) and estimated dispersion values (obsm['X_dca_dispersion']), in case that autoencoder is of type zinb or zinb-conddisp. copy : `bool`, optional. Default: `False`. If true, a copy of anndata is returned. Returns ------- If `copy` is true and `return_model` is false, AnnData object is returned. In "denoise" mode, `adata.X` is overwritten with the denoised values. In "latent" mode, latent low dimensional representation of cells are stored in `adata.obsm['X_dca']` and `adata.X` is not modified. Note that these values are not corrected for library size effects. If `return_info` is true, all estimated distribution parameters are stored in AnnData such as: - `.obsm["X_dca_dropout"]` which is the mixture coefficient (pi) of the zero component in ZINB, i.e. dropout probability. (Only if ae_type is zinb or zinb-conddisp) - `.obsm["X_dca_dispersion"]` which is the dispersion parameter of NB. - `.uns["dca_loss_history"]` which stores the loss history of the training. Finally, the raw counts are stored as `.raw`. If `return_model` is given, trained model is returned. When both `copy` and `return_model` are true, a tuple of anndata and model is returned in that order. """ print("entering_dca") assert isinstance( adata, anndata.AnnData ), "adata must be an AnnData instance" assert mode in ("denoise", "latent"), "%s is not a valid mode." % mode # set seed for reproducibility random.seed(random_state) np.random.seed(random_state) tf.set_random_seed(random_state) os.environ["PYTHONHASHSEED"] = "0" # this creates adata.raw with raw counts and copies adata if copy==True adata = read_dataset(adata, transpose=False, test_split=False, copy=copy) # check for zero genes nonzero_genes, _ = sc.pp.filter_genes(adata.X, min_counts=1) assert ( nonzero_genes.all() ), "Please remove all-zero genes before using DCA." adata = normalize( adata, filter_min_counts=False, # no filtering, keep cell and gene idxs same size_factors=normalize_per_cell, normalize_input=scale, logtrans_input=log1p, ) network_kwds = { **network_kwds, "hidden_size": hidden_size, "hidden_dropout": hidden_dropout, "batchnorm": batchnorm, "activation": activation, "init": init, } input_size = output_size = adata.n_vars net = AE_types[ae_type]( input_size=input_size, output_size=output_size, **network_kwds ) net.save() net.build() training_kwds = { **training_kwds, "epochs": epochs, "reduce_lr": reduce_lr, "early_stop": early_stop, "batch_size": batch_size, "optimizer": optimizer, "verbose": verbose, "threads": threads, "learning_rate": learning_rate, "permute": permute, } hist = train(adata[adata.obs.dca_split == "train"], net, **training_kwds) res = net.predict(adata, mode, return_info, copy) adata = res if copy else adata if return_info: adata.uns["dca_loss_history"] = hist.history if return_model: return (adata, net) if copy else net else: return adata if copy else None
/sc_permut-0.1.1-py3-none-any.whl/sc_permut/api.py
0.863823
0.61438
api.py
pypi
import logging import numpy as np import pandas as pd from config42 import ConfigManager from sc_analyzer_base import ManifestUtils from sc_retail_analysis.analyzer.base_analyzer import BaseAnalyzer class CreditCardAmountAnalyzer(BaseAnalyzer): """ 信用卡大额分期投放额分析 """ def __init__(self, *, config: ConfigManager, excel_writer: pd.ExcelWriter): super().__init__(config=config, excel_writer=excel_writer) self._key_enabled = "retail.credit_card.credit_amount.enabled" self._key_business_type = "retail.credit_card.credit_amount.business_type" self._key_export_column_list = "retail.credit_card.credit_amount.sheet_config.export_column_list" def _read_config(self, *, config: ConfigManager): # 信用卡大额分期报表文件路径 self._src_filepath = config.get("retail.credit_card.credit_amount.source_file_path") # Sheet名称 self._sheet_name = config.get("retail.credit_card.credit_amount.sheet_name") # 表头行索引 self._header_row = config.get("retail.credit_card.credit_amount.sheet_config.header_row") # 员工工号列索引 self._id_column = self._calculate_column_index_from_config( config, "retail.credit_card.credit_amount.sheet_config.id_column" ) # 员工姓名列索引 self._name_column = self._calculate_column_index_from_config( config, "retail.credit_card.credit_amount.sheet_config.name_column" ) # 需要统计的列的索引与输出列名对 self._init_value_column_config(config, "retail.credit_card.credit_amount.sheet_config.value_column_pairs") def _read_src_file(self) -> pd.DataFrame: logging.getLogger(__name__).info("读取源文件:{}".format(self._src_filepath)) data = pd.read_excel(self._src_filepath, sheet_name=self._sheet_name, header=self._header_row) self._id_column_name = data.columns[self._id_column] self._name_column_name = data.columns[self._name_column] self._init_value_column_pairs(data) if not data.empty: # 工号前面的列可能包括合计,去除合计行 for index in range(self._id_column): # 过滤合计行 if not data.empty: criterion = data[data.columns[index]].map(lambda x: x != '合计') data = data[criterion].copy() return data def _add_export_column_manifest_branch(self, origin_data: pd.DataFrame): if origin_data is None or origin_data.empty: return origin_data # 与花名册整合,添加花名册所在部门一列 data = origin_data.merge( ManifestUtils.get_name_branch_data_frame(), how="left", left_on=[self._name_column_name], right_on=[ManifestUtils.get_name_column_name()] ) return data def _rename_target_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: df = data.rename(columns=self._value_column_pairs) return df def _pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: index_columns = [self._id_column_name, self._name_column_name] value_columns = self._get_value_columns() logging.getLogger(__name__).info("按{} 透视数据项:{}".format( index_columns, value_columns, )) if data.empty: return pd.DataFrame(columns=index_columns + value_columns) table = pd.pivot_table(data, values=value_columns, index=index_columns, aggfunc=np.sum, fill_value=0) return table def _after_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.reset_index() def _merge_with_manifest(self, *, manifest_data: pd.DataFrame, data: pd.DataFrame) -> pd.DataFrame: logging.getLogger(__name__).info("与花名册合并...") merge_result = ManifestUtils.merge_with_manifest(manifest_data=manifest_data, data=data, id_column_name=self._id_column_name, name_column_name=self._name_column_name) return merge_result def _drop_duplicated_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.drop(columns=[self._id_column_name, self._name_column_name]) def _add_target_columns(self) -> None: self._add_value_pair_target_columns()
/sc_retail_analysis-0.0.49-py3-none-any.whl/sc_retail_analysis/credit_card/credit_card_amount_analyzer.py
0.411584
0.16848
credit_card_amount_analyzer.py
pypi
import logging import numpy as np import pandas as pd from config42 import ConfigManager from sc_analyzer_base import ManifestUtils from sc_retail_analysis.analyzer.base_analyzer import BaseAnalyzer class LargeInstallmentsAnalyzer(BaseAnalyzer): """ 信用卡大额分期余额分析 """ def __init__(self, *, config: ConfigManager, excel_writer: pd.ExcelWriter): super().__init__(config=config, excel_writer=excel_writer) self._key_enabled = "retail.loan.large_installments.enabled" self._key_business_type = "retail.loan.large_installments.business_type" self._key_export_column_list = "retail.loan.large_installments.sheet_config.export_column_list" def _read_config(self, *, config: ConfigManager): # 信用卡大额分期报表文件路径 self._src_filepath = config.get("retail.loan.large_installments.source_file_path") # Sheet名称 self._sheet_name = config.get("retail.loan.large_installments.sheet_name") # 表头行索引 self._header_row = config.get("retail.loan.large_installments.sheet_config.header_row") # 员工工号列索引 self._id_column = self._calculate_column_index_from_config( config, "retail.loan.large_installments.sheet_config.id_column" ) # 员工姓名列索引 self._name_column = self._calculate_column_index_from_config( config, "retail.loan.large_installments.sheet_config.name_column" ) # 需要统计的列的索引与输出列名对 key = "retail.loan.large_installments.sheet_config.value_column_pairs" self._init_value_column_config(config, key) def _read_src_file(self) -> pd.DataFrame: logging.getLogger(__name__).info("读取源文件:{}".format(self._src_filepath)) data = pd.read_excel(self._src_filepath, sheet_name=self._sheet_name, header=self._header_row) self._id_column_name = data.columns[self._id_column] self._name_column_name = data.columns[self._name_column] self._init_value_column_pairs(data) if not data.empty: # 工号前面的列可能包括合计,去除合计行 for index in range(self._id_column): # 过滤合计行 if not data.empty: criterion = data[data.columns[index]].map(lambda x: x != '合计') data = data[criterion].copy() return data def _add_export_column_manifest_branch(self, origin_data: pd.DataFrame): if origin_data is None or origin_data.empty: return origin_data # 与花名册整合,添加花名册所在部门一列 data = origin_data.merge( ManifestUtils.get_name_branch_data_frame(), how="left", left_on=[self._name_column_name], right_on=[ManifestUtils.get_name_column_name()] ) return data def _rename_target_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: df = data.rename(columns=self._value_column_pairs) return df def _pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: index_columns = [self._id_column_name, self._name_column_name] value_columns = self._get_value_columns() logging.getLogger(__name__).info("按{} 透视数据项:{}".format( index_columns, value_columns, )) if data.empty: return pd.DataFrame(columns=index_columns + value_columns) table = pd.pivot_table(data, values=value_columns, index=index_columns, aggfunc=np.sum, fill_value=0) return table def _after_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.reset_index() def _merge_with_manifest(self, *, manifest_data: pd.DataFrame, data: pd.DataFrame) -> pd.DataFrame: logging.getLogger(__name__).info("与花名册合并...") merge_result = ManifestUtils.merge_with_manifest(manifest_data=manifest_data, data=data, id_column_name=self._id_column_name, name_column_name=self._name_column_name) return merge_result def _drop_duplicated_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.drop(columns=[self._id_column_name, self._name_column_name]) def _add_target_columns(self) -> None: self._add_value_pair_target_columns()
/sc_retail_analysis-0.0.49-py3-none-any.whl/sc_retail_analysis/loan/large_installments_analyzer.py
0.406037
0.157105
large_installments_analyzer.py
pypi
import logging import numpy as np import pandas as pd from config42 import ConfigManager from sc_analyzer_base import BranchUtils, ManifestUtils from sc_retail_analysis.analyzer.base_analyzer import BaseAnalyzer class EasyLoanAnalyzer(BaseAnalyzer): """ 易得贷分析 """ def __init__(self, *, config: ConfigManager, excel_writer: pd.ExcelWriter): super().__init__(config=config, excel_writer=excel_writer) self._key_enabled = "retail.loan.easy_loan.enabled" self._key_business_type = "retail.loan.easy_loan.business_type" self._key_export_column_list = "retail.loan.easy_loan.sheet_config.export_column_list" def _read_config(self, *, config: ConfigManager): # 易得贷客户经理业绩表文件路径 self._src_filepath = config.get("retail.loan.easy_loan.source_file_path") # Sheet名称 self._sheet_name = config.get("retail.loan.easy_loan.sheet_name") # 表头行索引 self._header_row = config.get("retail.loan.easy_loan.sheet_config.header_row") # 工号列索引 self._id_column = self._calculate_column_index_from_config( config, "retail.loan.easy_loan.sheet_config.id_column" ) # 客户经理列索引 self._name_column = self._calculate_column_index_from_config( config, "retail.loan.easy_loan.sheet_config.name_column" ) # 所属支行列索引 self._branch_column = self._calculate_column_index_from_config( config, "retail.loan.easy_loan.sheet_config.branch_column" ) # 需要统计的列的索引与输出列名对 key = "retail.loan.easy_loan.sheet_config.value_column_pairs" self._init_value_column_config(config, key) def _read_src_file(self) -> pd.DataFrame: logging.getLogger(__name__).info("读取源文件:{}".format(self._src_filepath)) data = pd.read_excel(self._src_filepath, sheet_name=self._sheet_name, header=self._header_row) self._id_column_name = data.columns[self._id_column] self._name_column_name = data.columns[self._name_column] self._branch_column_name = data.columns[self._branch_column] self._init_value_column_pairs(data) return data def _add_export_column_manifest_branch(self, origin_data: pd.DataFrame): if origin_data is None or origin_data.empty: return origin_data # 与花名册整合,添加花名册所在部门一列 data = origin_data.merge( ManifestUtils.get_name_branch_data_frame(), how="left", left_on=[self._name_column_name], right_on=[ManifestUtils.get_name_column_name()] ) return data def _rename_target_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: df = data.rename(columns=self._value_column_pairs) return df def _mapping_leave_employee(self, *, data: pd.DataFrame) -> pd.DataFrame: """ 映射离职员工到对应的客户经理 :param data: 原DataFrame :return: 操作后的DataFrame """ mapping = ManifestUtils.get_leave_employee_mapping() name_mapping = dict.fromkeys(mapping, np.nan) data = data.replace({self._name_column_name: name_mapping}) return data def _replace_common_account(self, *, df: pd.DataFrame, id_column_name: str, name_column_name: str, branch_column_name: str): """ 处理公共户 如果客户经理是公共户,则归属到对应的机构去,将客户经理名称修改为对应机构名称 :param df: DataFrame :param id_column_name: ID列名称 :param name_column_name: 客户经理列名称 :param branch_column_name: 机构列名称 :return: 替换公共户和机构名称后的DataFrame """ for row_i, row in df.iterrows(): id_value = row[id_column_name] name = row[name_column_name] branch_name = row[branch_column_name] new_branch_name = BranchUtils.replace_branch_name(branch_name=branch_name) if name is np.nan or id_value == 0: df.at[row_i, name_column_name] = new_branch_name df.at[row_i, id_column_name] = 0 def _pre_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: data = self._mapping_leave_employee(data=data) logging.getLogger(__name__).info("开始处理公共户信息...") self._replace_common_account(df=data, id_column_name=self._id_column_name, name_column_name=self._name_column_name, branch_column_name=self._branch_column_name) logging.getLogger(__name__).info("解决姓名与工号不匹配的问题...") df = ManifestUtils.fix_name_error(data, self._id_column_name, self._name_column_name) return df def _pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: index_columns = [self._id_column_name, self._name_column_name] value_columns = self._get_value_columns() logging.getLogger(__name__).info("按{} 透视数据项:{}".format( index_columns, value_columns, )) if data.empty: return pd.DataFrame(columns=index_columns + value_columns) table = pd.pivot_table(data, values=value_columns, index=index_columns, aggfunc=np.sum, fill_value=0) return table def _after_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.reset_index() def _merge_with_manifest(self, *, manifest_data: pd.DataFrame, data: pd.DataFrame) -> pd.DataFrame: logging.getLogger(__name__).info("与花名册合并...") merge_result = ManifestUtils.merge_with_manifest(manifest_data=manifest_data, data=data, id_column_name=self._id_column_name, name_column_name=self._name_column_name) return merge_result def _drop_duplicated_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.drop(columns=[self._name_column_name]) def _add_target_columns(self) -> None: self._add_value_pair_target_columns()
/sc_retail_analysis-0.0.49-py3-none-any.whl/sc_retail_analysis/loan/easy_loan_analyzer.py
0.409575
0.191781
easy_loan_analyzer.py
pypi
import logging import numpy as np import pandas as pd from config42 import ConfigManager from sc_analyzer_base import ManifestUtils from sc_retail_analysis.analyzer.base_analyzer import BaseAnalyzer class LoanDetailAnalyzer(BaseAnalyzer): """ 贷款明细分析 """ def __init__(self, *, config: ConfigManager, excel_writer: pd.ExcelWriter): self._business_type_mapping_loaded = False self._business_type_mapping = dict() super().__init__(config=config, excel_writer=excel_writer) self._key_enabled = "retail.loan.loan_detail.enabled" self._key_business_type = "retail.loan.loan_detail.business_type" self._key_export_column_list = "retail.loan.loan_detail.sheet_config.export_column_list" # 基于客户名称的原始数据 self._client_origin_data = pd.DataFrame() # 基于客户名称统计的数据 self._client_data = pd.DataFrame() def get_business_type_mapping(self) -> dict: """ 业务种类与业务大类对应关系 :return: 业务种类与业务大类对应关系 """ return self._business_type_mapping def _load_business_type_mapping(self, config: ConfigManager): """ 加载业务种类与业务大类对应关系 :return: """ if self._business_type_mapping_loaded: return mapping = config.get("retail.loan.loan_detail.business_type_mapping") self._business_type_mapping.update(mapping) self._business_type_mapping_loaded = True def _read_config(self, *, config: ConfigManager): self._load_business_type_mapping(config) # 贷款明细报表文件路径 self._src_filepath = config.get("retail.loan.loan_detail.source_file_path") # Sheet名称 self._sheet_name = config.get("retail.loan.loan_detail.sheet_name") # 表头行索引 self._header_row = config.get("retail.loan.loan_detail.sheet_config.header_row") # 客户经理列索引 self._name_column = self._calculate_column_index_from_config( config, "retail.loan.loan_detail.sheet_config.name_column" ) # 客户名称列索引 self._client_name_column = self._calculate_column_index_from_config( config, "retail.loan.loan_detail.sheet_config.client_name_column" ) # 客户证件号码列索引 self._client_id_column = self._calculate_column_index_from_config( config, "retail.loan.loan_detail.sheet_config.client_id_column" ) # 余额列索引 self._balance_column = self._calculate_column_index_from_config( config, "retail.loan.loan_detail.sheet_config.balance_column" ) # 业务种类列索引 self._business_type_column = self._calculate_column_index_from_config( config, "retail.loan.loan_detail.sheet_config.business_type_column" ) self._business_genre_column_name = "业务大类" def _read_src_file(self) -> pd.DataFrame: logging.getLogger(__name__).info("读取源文件:{}".format(self._src_filepath)) data = pd.read_excel(self._src_filepath, sheet_name=self._sheet_name, header=self._header_row) self._name_column_name = data.columns[self._name_column] self._client_name_column_name = data.columns[self._client_name_column] self._client_id_column_name = data.columns[self._client_id_column] self._balance_column_name = data.columns[self._balance_column] self._business_type_column_name = data.columns[self._business_type_column] # 业务种类与业务大类对应关系 mapping = self.get_business_type_mapping() # 筛选需要统计的业务大类 if not data.empty: criterion = data[self._business_type_column_name].map(lambda x: x in mapping.keys()) data = data[criterion].copy() # 筛选余额不为0的记录 if not data.empty: criterion = data[self._balance_column_name].map(lambda x: x != 0) data = data[criterion].copy() return data def _add_export_column_manifest_branch(self, origin_data: pd.DataFrame): if origin_data is None or origin_data.empty: return origin_data # 与花名册整合,添加花名册所在部门一列 data = origin_data.merge( ManifestUtils.get_name_branch_data_frame(), how="left", left_on=[self._name_column_name], right_on=[ManifestUtils.get_name_column_name()] ) return data def _mapping_leave_employee(self, *, data: pd.DataFrame) -> pd.DataFrame: """ 映射离职员工到对应的客户经理 :param data: 原DataFrame :return: 操作后的DataFrame """ mapping = ManifestUtils.get_leave_employee_mapping() result = data.replace({self._name_column_name: mapping}) return result def _pre_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: # 增加业务大类一列 data[self._business_genre_column_name] = data[self._business_type_column_name] # 业务种类与业务大类对应关系 mapping = self.get_business_type_mapping() # 处理业务种类与业务大类对应关系 data = data.replace({self._business_genre_column_name: mapping}) # 筛选需要统计的业务大类 if not data.empty: criterion = data[self._business_genre_column_name].map(lambda x: x in mapping.values()) data = data[criterion].copy() data = self._mapping_leave_employee(data=data) self._client_origin_data = data.copy() return data def _pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: index_columns = [self._name_column_name] value_columns = [self._balance_column_name] if data.empty: return pd.DataFrame(columns=index_columns + value_columns) table = pd.pivot_table( data=data, values=value_columns, index=index_columns, columns=[self._business_genre_column_name], aggfunc=np.sum, fill_value=0, ) if self._client_origin_data is not None and (not self._client_origin_data.empty): index_columns = [ self._client_name_column_name, self._client_id_column_name, self._name_column_name, ] self._client_data = pd.pivot_table( data=self._client_origin_data, values=value_columns, index=index_columns, columns=[self._business_genre_column_name], aggfunc=np.sum, fill_value=0, ) return table def _after_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: data.columns = data.columns.droplevel(0) self._client_data.columns = self._client_data.columns.droplevel(0) self._client_data = self._client_data.reset_index() return data.reset_index() def _merge_with_manifest(self, *, manifest_data: pd.DataFrame, data: pd.DataFrame) -> pd.DataFrame: logging.getLogger(__name__).info("与花名册合并...") merge_result = ManifestUtils.merge_with_manifest( manifest_data=manifest_data, data=data, name_column_name=self._name_column_name, ) self._client_data = ManifestUtils.merge_with_manifest( manifest_data=manifest_data, data=self._client_data, name_column_name=self._name_column_name, how="right", ) return merge_result def _drop_duplicated_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.drop(columns=[self._name_column_name]) def _add_target_columns(self) -> None: # 业务种类与业务大类对应关系 mapping = self.get_business_type_mapping() # 筛选需要统计的业务大类 for column in mapping.values(): self._add_target_column(column) def write_detail_report(self, data: pd.DataFrame): super().write_detail_report(data=data) # 如果未启用,则直接返回 if not self._enabled(): return # 没有数据 if self._client_data is None or self._client_data.empty: return # 将按客户统计维度的数据输出 self._client_data.to_excel( excel_writer=self._excel_writer, index=False, sheet_name=self._business_type + "-按客户统计", )
/sc_retail_analysis-0.0.49-py3-none-any.whl/sc_retail_analysis/loan/loan_detail_analyzer.py
0.420362
0.175326
loan_detail_analyzer.py
pypi
import logging import numpy as np import pandas as pd from config42 import ConfigManager from sc_analyzer_base import BranchUtils, ManifestUtils from sc_retail_analysis.analyzer.base_analyzer import BaseAnalyzer class DepositAnalyzer(BaseAnalyzer): """ 存款分析 """ def __init__(self, *, config: ConfigManager, excel_writer: pd.ExcelWriter): super().__init__(config=config, excel_writer=excel_writer) self._key_enabled = "retail.non_interest.deposit.enabled" self._key_business_type = "retail.non_interest.deposit.business_type" self._key_export_column_list = "retail.non_interest.deposit.sheet_config.export_column_list" def _read_config(self, *, config: ConfigManager): self._src_filepath = config.get("retail.non_interest.deposit.source_file_path") self._sheet_name = config.get("retail.non_interest.deposit.sheet_name") self._header_row = config.get("retail.non_interest.deposit.sheet_config.header_row") # 工号列索引 self._id_column = self._calculate_column_index_from_config( config, "retail.non_interest.deposit.sheet_config.id_column" ) # 姓名列索引 self._name_column = self._calculate_column_index_from_config( config, "retail.non_interest.deposit.sheet_config.name_column" ) # 所属机构列索引 self._branch_column = self._calculate_column_index_from_config( config, "retail.non_interest.deposit.sheet_config.branch_column" ) # 需要统计的列的索引与输出列名对 key = "retail.non_interest.deposit.sheet_config.value_column_pairs" self._init_value_column_config(config, key) def _read_src_file(self) -> pd.DataFrame: logging.getLogger(__name__).info("读取源文件:{}".format(self._src_filepath)) data = pd.read_excel(self._src_filepath, sheet_name=self._sheet_name, header=self._header_row, thousands=",") self._id_column_name = data.columns[self._id_column] self._name_column_name = data.columns[self._name_column] self._branch_column_name = data.columns[self._branch_column] self._init_value_column_pairs(data) return data def _add_export_column_manifest_branch(self, origin_data: pd.DataFrame): if origin_data is None or origin_data.empty: return origin_data # 与花名册整合,添加花名册所在部门一列 data = origin_data.merge( ManifestUtils.get_name_branch_data_frame(), how="left", left_on=[self._name_column_name], right_on=[ManifestUtils.get_name_column_name()] ) return data def _rename_target_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: df = data.rename(columns=self._value_column_pairs) return df def _replace_common_account(self, *, df: pd.DataFrame, id_column_name: str, name_column_name: str, branch_column_name: str): """ 处理公共户 如果客户经理是公共户,则归属到对应的机构去,将客户经理名称修改为对应机构名称 :param df: DataFrame :param id_column_name: ID列名称 :param name_column_name: 姓名列名称 :param branch_column_name: 机构列名称 :return: 替换公共户和机构名称后的DataFrame """ for row_i, row in df.iterrows(): name = row[name_column_name] branch_name = row[branch_column_name] new_branch_name = BranchUtils.replace_branch_name(branch_name=branch_name) if BranchUtils.is_common_account(name): df.at[row_i, name_column_name] = new_branch_name df.at[row_i, id_column_name] = 0 def _pre_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: logging.getLogger(__name__).info("开始处理公共户信息...") self._replace_common_account(df=data, id_column_name=self._id_column_name, name_column_name=self._name_column_name, branch_column_name=self._branch_column_name) logging.getLogger(__name__).info("解决姓名与工号不匹配的问题...") # 将工号变成数字,好与匹配花名册,修正员工名称错误的问题 data[self._id_column_name] = data[self._id_column_name].astype("int64") data = ManifestUtils.fix_name_error(data, self._id_column_name, self._name_column_name) return data def _pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: index_columns = [ self._id_column_name, self._name_column_name, ] value_columns = self._get_value_columns() logging.getLogger(__name__).info("按{} 透视数据项:{}".format( index_columns, value_columns, )) if data.empty: return pd.DataFrame(columns=index_columns + value_columns) table = pd.pivot_table(data, values=value_columns, index=index_columns, aggfunc=np.sum, fill_value=0) return table def _after_pivot_table(self, *, data: pd.DataFrame) -> pd.DataFrame: data.reset_index(inplace=True) # 调整列的顺序 columns_list = [ self._id_column_name, self._name_column_name, ] columns_list.extend(self._value_column_pairs.values()) data = data[columns_list] return data def _merge_with_manifest(self, *, manifest_data: pd.DataFrame, data: pd.DataFrame) -> pd.DataFrame: logging.getLogger(__name__).info("与花名册合并...") merge_result = ManifestUtils.merge_with_manifest(manifest_data=manifest_data, data=data, id_column_name=self._id_column_name, name_column_name=self._name_column_name) return merge_result def _drop_duplicated_columns(self, *, data: pd.DataFrame) -> pd.DataFrame: return data.drop(columns=[self._id_column_name, self._name_column_name]) def _add_target_columns(self) -> None: self._add_value_pair_target_columns()
/sc_retail_analysis-0.0.49-py3-none-any.whl/sc_retail_analysis/non_interest_income/deposit_analyzer.py
0.423339
0.162015
deposit_analyzer.py
pypi
import json import logging from urllib.parse import urljoin import requests import urllib3 from .exception import * class RequestClient(object): """ A class to interact with Http """ def __init__(self, *, url, username=None, password=None, x509_verify=True): """ Create a RequestClient object. :param url: the request url. :param username: the user name. :param password: password. :param x509_verify: Whether to validate the x509 certificate when using https """ self._url = url self._username = username self._password = password self._x509_verify = x509_verify @property def url(self): """ Current username. :rtype: str """ return self._url @property def username(self): """ Current username. :rtype: str """ return self._username @property def password(self): """ Current password. :rtype: str """ return self._password @property def x509_verify(self): """ Whether to validate the x509 certificate when using https :rtype: str """ return self._x509_verify def http_request(self, method, endpoint, **kwargs): """ Performs a HTTP request to the Nexus REST API on the specified endpoint. :param method: one of ``get``, ``put``, ``post``, ``delete``. :type method: str :param endpoint: URI path to be appended to the service URL. :type endpoint: str :param kwargs: as per :py:func:`requests.request`. :rtype: requests.Response """ url = urljoin(self._url, endpoint) try: response = requests.request( method=method, auth=(self._username, self._password), url=url, verify=self._x509_verify, timeout=(3.15, 27), **kwargs) except requests.exceptions.ConnectionError as e: logging.error("failed to connect to %s, cause: %s", url, e) raise HttpClientAPIError(e) except urllib3.exceptions.ReadTimeoutError as e: logging.error("read timeout error to %s, cause: %s", url, e) raise HttpClientAPIError(e) except requests.exceptions.ReadTimeout as e: logging.error("read timeout to %s, cause: %s", url, e) raise HttpClientAPIError(e) if response.status_code == 400: raise BadRequestException(response.text) if response.status_code == 401: raise HttpClientInvalidCredentials("Invalid credential {0}, {1}".format( self._username, self._password)) return response def http_get(self, endpoint): """ Performs a HTTP GET request on the given endpoint. :param endpoint: name of the Nexus REST API endpoint. :type endpoint: str :rtype: requests.Response """ return self.http_request('get', endpoint, stream=True) def http_head(self, endpoint): """ Performs a HTTP HEAD request on the given endpoint. :param endpoint: name of the Nexus REST API endpoint. :type endpoint: str :rtype: requests.Response """ return self.http_request('head', endpoint) def _get_paginated(self, endpoint, **request_kwargs): """ Performs a GET request using the given args and kwargs. If the response is paginated, the method will repeat the request, manipulating the `params` keyword argument each time in order to receive all pages of the response. Items in the responses are sent in "batches": when all elements of a response have been yielded, a new request is made and the process repeated. :param request_kwargs: passed verbatim to the _request() method, except for the argument needed to paginate requests. :return: a generator that yields on response item at a time. :rtype: typing.Iterator[dict] """ response = self.http_request('get', endpoint, **request_kwargs) if response.status_code == 404: raise HttpClientAPIError(response.reason) try: content = response.json() except json.decoder.JSONDecodeError: raise HttpClientAPIError(response.content) while True: for item in content.get('items'): yield item continuation_token = content.get('continuationToken') if continuation_token is None: break request_kwargs['params'].update( {'continuationToken': continuation_token}) response = self.http_request('get', endpoint, **request_kwargs) content = response.json() def http_post(self, endpoint, **kwargs): """ Performs a HTTP POST request on the given endpoint. :param endpoint: name of the Nexus REST API endpoint. :type endpoint: str :param kwargs: as per :py:func:`requests.request`. :rtype: requests.Response """ return self.http_request('post', endpoint, **kwargs) def http_put(self, endpoint, **kwargs): """ Performs a HTTP PUT request on the given endpoint. :param endpoint: name of the Nexus REST API endpoint. :type endpoint: str :param kwargs: as per :py:func:`requests.request`. :rtype: requests.Response """ return self.http_request('put', endpoint, **kwargs) def http_delete(self, endpoint, **kwargs): """ Performs a HTTP DELETE request on the given endpoint. :param endpoint: name of the Nexus REST API endpoint. :type endpoint: str :param kwargs: as per :py:func:`requests.request`. :rtype: requests.Response """ return self.http_request('delete', endpoint, **kwargs)
/sc-search-gav-0.0.2.tar.gz/sc-search-gav-0.0.2/sc_gav/request_api.py
0.813201
0.16228
request_api.py
pypi
from enum import Enum from typing import Dict, List, Optional, Sequence, Tuple, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import scanpy as sc import seaborn as sb from adjustText import adjust_text from matplotlib import colors from rich import print class Colormaps(Enum): """Useful Colormaps for e.g. UMAPs.""" grey_red = colors.LinearSegmentedColormap.from_list("grouping", ["lightgray", "red", "darkred"], N=128) grey_green = colors.LinearSegmentedColormap.from_list("grouping", ["lightgray", "limegreen", "forestgreen"], N=128) grey_yellow = colors.LinearSegmentedColormap.from_list("grouping", ["lightgray", "yellow", "gold"], N=128) grey_violet = colors.LinearSegmentedColormap.from_list( "grouping", ["lightgray", "mediumvioletred", "indigo"], N=128 ) grey_blue = colors.LinearSegmentedColormap.from_list("grouping", ["lightgray", "cornflowerblue", "darkblue"], N=128) def custom_plot_size(width: int, height: int, dpi: int): """Create a custom axis object of desired sizes. Args: width: Desired plot width height: Desired plot height dpi: Desired plot DPI. Returns: Axis of desired sizes """ fig, ax = plt.subplots(figsize=(width, height), dpi=dpi) return fig.gca() def standard_lineplot( data, order: List, xlabel: str, ylabel: str, hue=None, gene=None, smooth: Optional[bool] = None, palette=None, title=None, rotation: Optional[int] = None, figsize: Tuple[int, int] = (15, 5), tick_size=None, label_size=None, order_smooth: int = 3, confidence_interval=None, scatter=None, save: Optional[str] = None, ): """Draws a standard line plot based on Seaborn's lmplot. Args: data: Data frame containing averaged expression values order: Order of x-axis labels from left to right xlabel: x-axis label ylabel: y-axis label hue: Subsets of the data which will be drawn on separate facets in the grid. Example: "condition" gene: Gene of interest smooth: Whether to smoothen (interpolate) the curve palette: Color palette. For example a list of colors. title: Title of the plot rotation: Rotation of the x-axis labels figsize: Size of the figure as specified in matplotlib tick_size: Size of the ticks as specified in matplotlib label_size: Size of the labels as specified in matplotlib order_smooth: If greater than 1, numpy.polyfit is used to estimate a polynomial regression confidence_interval: Confidence interval scatter: Set to true in order to add mean expression per sample in form of scatter point save: Path to save the plot to """ if smooth: # Possible to set alpha of scatter with scatter_kws={'alpha': 0.1} if hue: cat = sb.lmplot( data=data, x=xlabel, y=gene, ci=confidence_interval, order=order_smooth, scatter=scatter, hue=hue, truncate=True, palette=palette, ) else: cat = sb.lmplot( data=data, x=xlabel, y=gene, ci=confidence_interval, order=order_smooth, scatter=scatter, palette=palette, ) else: # Removed Parameter order = order, as order should be given numerically anyways. if hue: cat = sb.catplot(data=data, x=xlabel, y=gene, linestyles="-", kind="point", hue=hue, palette=palette) else: cat = sb.catplot(data=data, x=xlabel, y=gene, linestyles="-", kind="point", palette=palette) if scatter: cat2 = sb.stripplot(data=data, x=xlabel, y=gene, palette=palette, hue=hue, size=7) if hue: cat2.legend_.remove() cat.set(xticks=np.unique(data.loc[:, xlabel])) cat.set_xticklabels(order) cat.fig.set_size_inches(figsize) if rotation: cat.ax.set_xticklabels(order, rotation="vertical") cat.ax.set_title(title, size=label_size) cat.ax.set_xlabel(xlabel, size=label_size) cat.ax.set_ylabel(ylabel, size=label_size) cat.ax.tick_params(labelsize=tick_size) if save: full_save_name = f"{gene}_{save}" cat.fig.savefig(f"{full_save_name}", bbox_inches="tight") print(f"[bold blue]Saving figure to {full_save_name}") plt.show() plt.close() def average_expression( gene_expression, genes, order: List[str], id_label: str = "identifier", xlabel: str = "days", cluster: str = "all", hue=None, palette: str = "tab:blue", figsize: Tuple[int, int] = (15, 6), smooth=None, rotation: Optional[int] = None, order_smooth=None, conf_int=None, scatter=None, save: Optional[str] = None, ): """Draw a line plot showing the gene expression over time. Expression values are averaged by individual sample. Args: gene_expression: Data frame containing gene expression values genes: List of genes for which individual line plots will be generated order: Order of x-axis labels from left to right id_label: Adata column in which sample id information is stored xlabel: x-axis label cluster: Which clusters to plot. Select 'all" if all clusters should be drawn. hue: Which value to color by figsize: Size of the figure as specified in matplotlib smooth: Set to true for smoothened line plot using polynomial regression rotation: set to True to rotate x-axis labels 90 degrees order_smooth: If greater than 1, use numpy.polyfit to estimate a polynomial regression conf_int: Size of the confidence interval for the regression estimate scatter: Set to True to add average expression values per sample ID as dots save: Path to save the plot to Example smooth: .. image:: /_images/average_expression_smooth.png Example raw: .. image:: /_images/average_expression_raw.png """ for gene in genes: meanpid = gene_expression.groupby([id_label, xlabel])[gene].mean().reset_index() # cluster_label = ", ".join(cluster) cluster_label = ", ".join(cluster) if isinstance(cluster, list) else cluster standard_lineplot( meanpid, order=order, xlabel=xlabel, ylabel=f"Average expression in cluster {cluster_label}", hue=hue, gene=gene, smooth=smooth, palette=palette, title=gene, rotation=rotation, figsize=figsize, save=save, order_smooth=order_smooth, confidence_interval=conf_int, scatter=scatter, ) def average_expression_per_cluster( gene_expression, genes, order, obs=None, id_label: str = "identifier", xlabel: str = "days", cluster: str = "all", hue=None, figsize: Tuple[int, int] = (15, 6), smooth=None, rotation=None, tick_size: int = 12, label_size: int = 15, order_smooth=None, conf_int=None, palette=None, scatter=None, save: Optional[str] = None, ): """Plots gene expression over time split by cluster identity. One line per cluster. Args: gene_expression: Data frame containing gene expression values genes: List of genes for which individual line plots will be generated order: Order of x-axis labels from left to right obs: Data frame containing meta data information xlabel: x-axis label cluster: Which clusters to plot. Select 'all" if all clusters should be drawn. id_label: Meta data column in which sample id information is stored hue: Split expression values by this grouping, one line per category will be drawn figsize: Size of the figure as specified in matplotlib smooth: Set to True for smoothened line plot using polynomial regression rotation: Set to True to rotate x-axis labels 90 degrees tick_size: Size of the ticks as specified in matplotlib label_size: Size of the labels as specified in matplotlib order_smooth: If greater than 1, use numpy.polyfit to estimate a polynomial regression conf_int: Size of the confidence interval for the regression estimate palette: Color palette that gets passed to Seaborn's lineplot. For example a list of colors. scatter: Set to True to add average expression values per sample ID as dots save: Path to save the plot to """ for gene in genes: meanpid = gene_expression.groupby([id_label, xlabel])[gene].mean().reset_index() if hue: cell_types = {} combis = obs.groupby([id_label, hue]).groups.keys() for c in combis: cell_types[c[0]] = c[1] meanpid[hue] = [cell_types[label] for label in meanpid.identifier] # cluster_label = ", ".join(cluster) cluster_label = ", ".join(cluster) if isinstance(cluster, list) else cluster standard_lineplot( meanpid, order=order, xlabel=xlabel, ylabel=f"Average expression in cluster {cluster_label}", hue=hue, gene=gene, smooth=smooth, palette=palette, title=gene, tick_size=tick_size, label_size=label_size, rotation=rotation, figsize=figsize, save=save, order_smooth=order_smooth, confidence_interval=conf_int, scatter=scatter, ) def average_expression_split_cluster( gene_expression, genes, order, id_label="identifier", xlabel="days", hue="genotype", cluster=None, figsize=(15, 6), smooth=None, rotation=None, cols=None, tick_size=12, label_size=15, order_smooth=None, conf_int=None, scatter=None, save=None, ): """ Plot average gene expression as line plots for multiple clusters at once. Args: gene_expression: Data frame containing gene expression values genes: List of genes for which individual line plots will be generated order: Order of x-axis labels from left to right id_label: Meta data column in which sample id information is stored xlabel: x-axis label hue: Split expression values by this grouping, one line per category, will be drawn cluster: Which clusters to plot. Select 'all" if all clusters should be drawn. figsize: Size of the figure as specified in matplotlib smooth: Set to True for smoothened line plot using polynomial regression rotation: x-axis label rotation cols: List of colors to use for line plot tick_size: Size of the ticks as specified in matplotlib label_size: Size of the labels as specified in matplotlib order_smooth: If greater than 1, numpy.polyfit is used to estimate a polynomial regression conf_int: Size of the confidence interval for the regression estimate scatter: Set to True to add average expression values per sample ID as dots save: Path to save the plot to Example smooth: .. image:: /_images/average_expression_per_cluster_smooth.png Example raw: .. image:: /_images/average_expression_per_cluster_raw.png """ if cluster: if isinstance(cluster, list): ylab = f"Average expression in {', '.join(cluster)}" else: ylab = f"Average expression in {cluster}" else: ylab = "Average expression" for gene in genes: meanpid = gene_expression.groupby([id_label, hue, xlabel])[gene].mean().reset_index() standard_lineplot( meanpid, order=order, xlabel=xlabel, ylabel=ylab, hue=hue, gene=gene, smooth=smooth, palette=cols, title=gene, tick_size=tick_size, label_size=label_size, rotation=rotation, figsize=figsize, save=save, order_smooth=order_smooth, confidence_interval=conf_int, scatter=scatter, ) def average_expression_per_cell( gene_expression, genes, order, xlabel: str = "days", cluster: str = "all", hue=None, figsize: Tuple[int, int] = (15, 6), smooth=None, rotation=None, tick_size=12, label_size=15, order_smooth=None, conf_int=None, scatter=None, cols=None, save: Optional[str] = None, ): """ Plots the average gene expression as a line plot per cell. Ideally used when the scatter point should not be sample wise, but cell wise. Args: gene_expression: Data frame containing gene expression values genes: List of genes for which individual line plots will be generated order: Order of x-axis labels from left to right xlabel: x-axis label cluster: Which clusters to plot. Select 'all" if all clusters should be drawn. hue: Split expression values by this grouping, one line per category, will be drawn figsize: Size of the figure as specified in matplotlib smooth: Set to true for smoothened line plot using polynomial regression rotation: Set to True to rotate x-axis labels 90 degrees tick_size: Size of the ticks as specified in matplotlib label_size: Size of the labels as specified in matplotlib order_smooth: If greater than 1, use numpy.polyfit to estimate a polynomial regression conf_int: Size of the confidence interval for the regression estimate scatter: Set to True to add average expression values per sample ID as dots cols: List of colors to use for line plot save: Path to save the plot to """ for gene in genes: cluster_label = ", ".join(cluster) if isinstance(cluster, list) else cluster standard_lineplot( gene_expression, order=order, xlabel=xlabel, ylabel=f"Average expression in cluster {cluster_label}", hue=hue, gene=gene, smooth=smooth, palette=cols, title=gene, tick_size=tick_size, label_size=label_size, rotation=rotation, figsize=figsize, save=save, order_smooth=order_smooth, confidence_interval=conf_int, scatter=scatter, ) def gene_expression_dpt_ordered( data, genes, xlabel, order=3, conf_int=95, figsize: Tuple[int, int] = (12, 6), condition=None, label_size: int = 15, cols=None, scale=None, ylim=None, save: Optional[str] = None, ): """ Plot smoothed expression of all cells ordered by pseudo time. Args: data: AnnData object genes: List of genes for which individual line plots will be generated xlabel: x-axis label order: Order of x-axis labels from left to right conf_int: Size of the confidence interval for the regression estimate figsize: Size of the figure as specified in matplotlib condition: Split expression values by this grouping, one line per category will be drawn label_size: Size of the labels as specified in matplotlib cols: List of colors to use for line plot scale: Set to True to scale expression value to a range between 0 and 1 ylim: Upper limit on the y-axis if desired save: Path to save the plot to Example: .. image:: /_images/gene_expression_dpt_ordered.png Example with columns: .. image:: /_images/gene_expression_dpt_ordered_col.png """ import matplotlib.patches as mpatches patches = [] data = data.copy() fig, ax = plt.subplots(figsize=figsize) # use rainbow colour palette if no colours are specified if cols is None: from matplotlib import colors bins = len(np.unique(data.loc[:, condition])) if condition else len(genes) cmap = plt.cm.rainbow cmaplist = [cmap(i) for i in range(cmap.N)] cmap = colors.LinearSegmentedColormap.from_list("colours", cmaplist, N=bins) cols = [cmap(i) for i in range(bins)] # only working for one gene at a time for now if condition: conditions = np.unique(data.loc[:, condition]) gene = genes[0] data = pd.pivot(data, columns=[condition]) columns = [ f"{data.columns.get_level_values(0)[i]}_{data.columns.get_level_values(1)[i]}" for i in range(len(data.columns.values)) ] data.columns = columns data[xlabel] = data.filter(like=xlabel).sum(axis=1).values for i, con in enumerate(conditions): col = f"{gene}_{con}" if scale: data[col] = np.interp(data[col], (data[col].min(), data[col].max()), (0, +1)) cat = sb.regplot( data=data, x=xlabel, y=col, scatter=False, order=order, truncate=True, ax=ax, color=cols[i], ci=conf_int ) patches.append(mpatches.Patch(color=cols[i], label=col)) else: for i, gene in enumerate(genes): if scale: data[gene] = np.interp(data[gene], (data[gene].min(), data[gene].max()), (0, +1)) cat = sb.regplot( data=data, x=xlabel, y=gene, scatter=False, order=order, truncate=True, ax=ax, color=cols[i], ci=conf_int, ) patches.append(mpatches.Patch(color=cols[i], label=gene)) cat.set_ylabel("expression", size=label_size) cat.set_xlabel(xlabel, size=label_size) cat.tick_params(labelsize=label_size) sb.despine() plt.legend(handles=patches, loc="center left", bbox_to_anchor=(1.02, 0.5), prop={"size": label_size}, frameon=False) if ylim: cat.set(ylim=ylim) if save: plt.savefig(f"{save}", bbox_to_anchor="tight") print("[bold blue]Saving figure to {save}") plt.show() plt.close() def relative_frequencies_boxplots( relative_frequencies: pd.DataFrame, cluster, cols, order, xlabel: str = "days", hue: str = "batch", figsize: Tuple[int, int] = (15, 6), width: float = 0.5, jitter=None, save=None, ) -> None: """Plots the relative frequencies as split boxplots. Use calc_relative_frequencies to get the required input format. Args: relative_frequencies: Calculated by calc_relative_frequencies as Pandas DataFrame cluster: Cluster to be plotted cols: List of colors to use for boxes order: Order of x-axis labels from left to right xlabel: x-axis label hue: Value to color by figsize: Size of the figure as specified in matplotlib width: Width of the plot as specified in matplotlib jitter: Set to True for individual dots per sample save: Path to save the plot to Example: .. image:: /_images/relative_frequencies_boxplots.png """ # Subset according to order relative_frequencies = relative_frequencies.loc[relative_frequencies[xlabel].isin(order)] split_boxplot( relative_frequencies, order=order, xlabel=xlabel, ylabel="relative frequency", hue=hue, column=cluster, cols=cols, width=width, title=cluster, figsize=figsize, jitter=jitter, save=save, ) def split_boxplot( table, order, xlabel: str, ylabel: str, column=None, hue=None, cols=None, width: float = 1, title=None, figsize: Tuple[int, int] = (15, 6), jitter=None, save: Optional[str] = None, ) -> None: """Draws a boxsplit split by hue. Args: table: Table containing the data to draw the boxplots for order: Order of the boxplot labels xlabel: x-axis label ylabel: y-axis label column: hue: Value to split relative frequencies by cols: List of colors to use for boxes width: Width of the desired plot title: Title of the plot figsize: Size of the figure as specified in matplotlib jitter: Set to True for individual dots per sample save: Path to save the plot to """ fig, ax = plt.subplots() fig.set_size_inches(figsize) if cols is not None: fig = sb.boxplot(data=table, hue=hue, x=xlabel, y=column, order=order, width=width, palette=cols) else: fig = sb.boxplot(data=table, hue=hue, x=xlabel, y=column, order=order, width=width) if jitter is not None: fig = sb.swarmplot(data=table, color="black", x=xlabel, y=column, order=order) if hue is not None: plt.legend(loc="upper right") if title: fig.set_title(title, size=15) fig.set_xlabel(xlabel, size=15) fig.set_ylabel(ylabel, size=15) fig.tick_params(labelsize=12) if save: fig.get_figure().savefig("{save}") plt.show() plt.close() def marker_dendrogram( marker_table: pd.DataFrame, threshold: float = 0.7, column: str = "cluster", log_fc_key: str = "log_FC", label_size: int = 10, orientation: str = "top", figsize: Tuple[int, int] = (10, 4), save: Optional[str] = None, ): """Plots a dendogram of used marker genes. Args: marker_table: A marker table as generated by sct.calc.extended_marker_table threshold: Threshold for the log fold change column: Column to create pivot by; usually just the clusters log_fc_key: Key for the stored log fold changes in the marker table label_size: Font size of the labels orientation: Orientation of the figure; Currently just 'top' or no orientation figsize: Size of the figure as specified in matplotlib save: Path to save the plot to Example: .. image:: /_images/marker_dendrogram.png """ import scipy.cluster.hierarchy as hc marker_table = marker_table[marker_table[log_fc_key] > threshold] marker_table = marker_table.pivot(index="gene", columns=column, values=log_fc_key) marker_table.fillna(value=0, inplace=True) corr = 1 - marker_table.corr() corr = hc.distance.squareform(corr) # convert to condensed z = hc.linkage(corr, method="complete") plt.figure(figsize=figsize) rot = 90 if orientation == "top" else 0 hc.dendrogram( z, labels=marker_table.columns, leaf_rotation=rot, color_threshold=0, orientation=orientation, leaf_font_size=label_size, above_threshold_color="black", ) plt.yticks(size=label_size) if save is None: plt.show() else: plt.savefig("{save}") print(f"[bold blue]Saving figure to {save}") plt.close() def volcano_plot( table, fdr_thresh: Optional[float] = None, log_fc_thresh: float = 0, adj_p_val: str = "adj_p_val", log_fc: str = "avg_logFC", gene: str = "gene", sig_col: str = "tab:orange", col: str = "tab:blue", figsize: Tuple[int, int] = (8, 6), save=None, ): """ Scatter plot of differential gene expression results generated by diffxpy Args: table: diffxpy generated table of results fdr_thresh: -log(FDR) threshold for labeling genes. If set to None, we will consider the 99th percentile of -log(FDR) values the threshold. log_fc_thresh: absolute(log_fc) threshold for labeling genes. adj_p_val: Label of the adjusted p value, these are considered FDRs log_fc: Label of the log fold change gene: Label of column with gene names col: Color of dots sig_col: Colour of dots surpassing defined FDR threshold figsize: Size of the figure as specified in matplotlib save: Path to save the plot to Example: .. image:: /_images/diffxpy_volcano.png """ table["-log_FDR"] = -np.log(table[adj_p_val]) # take the 99% quantile by default for highlighting if not fdr_thresh: fdr_thresh = np.percentile(table.loc[:, "-log_FDR"], 99) if not log_fc_thresh: log_fc_thresh = 0 lowqval_highfc_de = table.loc[(table["-log_FDR"] > fdr_thresh) & (abs(table[log_fc]) >= log_fc_thresh)] other_de = table.loc[~table.index.isin(lowqval_highfc_de.index)] fig, ax = plt.subplots() fig.set_size_inches(figsize) sb.regplot(x=other_de[log_fc], y=other_de["-log_FDR"], fit_reg=False, scatter_kws={"s": 6}) sb.regplot(x=lowqval_highfc_de[log_fc], y=lowqval_highfc_de["-log_FDR"], fit_reg=False, scatter_kws={"s": 6}) ax.set_xlabel("log2 FC", fontsize=20) ax.set_ylabel("-log Q-value", fontsize=20) ax.tick_params(labelsize=15) ax.grid(False) # Label names and positions x = [i - 0.1 for i in lowqval_highfc_de[log_fc]] y = [i + 0.1 for i in lowqval_highfc_de["-log_FDR"]] labels = lowqval_highfc_de[gene] max_n_labels = 50 if len(labels) > max_n_labels: print(f"[bold yellow]Warning: given your thresholds, more than {max_n_labels} genes would have to be labeled.") print( "[bold yellow]To prevent overcrowding of your plot, make your thresholds stricter.\n" "We will leave out the labels for now." ) else: # plot labels, and use adjust_text to make sure that labels don't overlap: labels = [ plt.text(x, y, label, ha="center", va="center") for x, y, label in zip(x, y, labels) if not x == np.inf ] adjust_text(labels) if save: fig.savefig(f"{save}") else: plt.show() plt.close() def cluster_composition_stacked_barplot( relative_frequencies: pd.DataFrame, xlabel: str = "name", figsize: Tuple[int, int] = (6, 10), width: float = 0.8, order=None, error_bar=None, label_size: int = 15, tick_size: int = 13, capsize: Optional[int] = None, margins: Tuple[float, float] = (0.02, 0.04), colors=None, save: Optional[str] = None, ): """Plot relative frequencies as a stacked barplot. Args: relative_frequencies: Data frame containing relative Frequencies as calculated by calc_relFreq() xlabel: x-axis label figsize: Size of the figure as specified in matplotlib width: Width of the bars order: Order of x-axis labels from left to right error_bar: Set to True to add error bars (only possible when grouping the frequencies) tick_size: Size of the ticks as specified in matplotlib label_size: Size of the labels as specified in matplotlib capsize: Size of the horizontal lines of the error bar margins: Change margins of the plot if desired colors: List of colors to use for the bands save: Path to save the plot to Example: .. image:: /_images/cluster_composition_stacked_barplot.png """ import matplotlib.patches as mpatches if not colors: raise ValueError("Colors was not passed. Obtain them from e.g. adata.uns['cluster_key_colors']") patches = [] fig, ax = plt.subplots() fig.set_size_inches(figsize) order = np.unique(relative_frequencies.loc[:, xlabel]) if order is None else order ci = 95 if error_bar else None ax.margins(margins[0], margins[1]) cell_types = np.flip([col for col in relative_frequencies.columns if col not in ["identifier", xlabel]]) # cell_types = np.flip(np.setdiff1d(relFreqs.columns, ["identifier", xlabel])) bars = pd.DataFrame(index=order, data=np.zeros(len(order))) plot_data = pd.DataFrame(relative_frequencies.loc[:, xlabel]) for i, typ in enumerate(cell_types): sum_up = [ relative_frequencies.loc[:, typ].values[i] + bars.loc[g].values[0] for i, g in enumerate(relative_frequencies.loc[:, xlabel]) ] plot_data[typ] = sum_up bars.iloc[:, 0] = ( bars.iloc[:, 0] + relative_frequencies.loc[:, [typ, xlabel]].groupby(xlabel).mean().loc[order, typ] ) for i, typ in enumerate(reversed(cell_types)): fig = sb.barplot( data=plot_data, x=xlabel, y=typ, order=order, ci=ci, errcolor="black", color=colors[i], capsize=capsize ) patches.append(mpatches.Patch(color=colors[i], label=typ)) ax.set_xlabel(xlabel, size=label_size) ax.set_ylabel("relative frequency", size=label_size) ax.tick_params(labelsize=tick_size) ax.set_xticklabels(labels=order, rotation="vertical") # Change the bar width for bar in fig.patches: centre = bar.get_x() + bar.get_width() / 2.0 bar.set_x(centre - width / 2.0) bar.set_width(width) plt.legend(handles=patches, loc="center left", bbox_to_anchor=(1.02, 0.5), prop={"size": tick_size}, frameon=False) if save: plt.savefig(f"{save}") print(f"[bold blue]Saving Figure to {save}") plt.show() plt.close() def gene_boxplot( table, palette: List[str], xlabel: str = "cell_types", hue: Optional[str] = None, figsize: Tuple[int, int] = (10, 5), legend=True, score="Axin2", scatter=None, rotate=False, width=0.7, save=None, ): """Plot gene values as split boxplots. Args: table: Pandas DataFrame palette: xlabel: x-axis label hue: figsize: Size of the figure as specified in matplotlib legend: Whether to draw a legend or not score: scatter: rotate: width: Width of the desired plot save: Path to save the plot to Example: .. image:: /_images/gene_boxplot.png """ sb.set_style("ticks") fig, ax = plt.subplots() fig.set_size_inches(figsize) sf = False if scatter else True if hue: fig = sb.boxplot(data=table, x=xlabel, y=score, width=width, hue=hue, showfliers=sf, palette=palette) if scatter: fig = sb.stripplot(data=table, x=xlabel, y=score, palette=["black"], size=4, hue=hue, dodge=True) else: fig = sb.boxplot(data=table, x=xlabel, y=score, width=width, showfliers=sf, palette=palette) if scatter: fig = sb.stripplot(data=table, x=xlabel, y=score, palette=["black"], size=4, dodge=True) if rotate: fig.set_xticklabels(fig.get_xticklabels(), rotation=90) else: fig.set_xticklabels(fig.get_xticklabels()) if legend: ax.legend(bbox_to_anchor=(1.05, 1.06)) else: ax.legend_.remove() plt.setp(ax.artists, edgecolor="black") plt.setp(ax.lines, color="black") sb.despine() # to not show ouline box if save: print(f"Saving to {save}") plt.savefig(save, bbox_to_anchor="tight") plt.show() def colors_overview(colors: Dict, ncols: int = 2, figsize: Tuple[int, int] = (8, 5), save: Optional[str] = None): """Draw an overview plot of all used colors. Args: colors: Dictionary of color name and color ncols: How many columns for the plot figsize: Size of the figure as specified in matplotlib save: Path to save the plot to Example: .. image:: /_images/colors.png """ from matplotlib import colors as mcolors # Sort colors by hue, saturation, value and name. by_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgba(color)[:3])), name) for name, color in colors.items()) sorted_names = [name for hsv, name in by_hsv] n = len(sorted_names) nrows = n // ncols + 1 fig, ax = plt.subplots(figsize=figsize) # Get height and width x, y = fig.get_dpi() * fig.get_size_inches() h = y / (nrows + 1) w = x / ncols for i, name in enumerate(sorted_names): col = i % ncols row = i // ncols y = y - (row * h) - h xi_line = w * (col + 0.05) xf_line = w * (col + 0.25) xi_text = w * (col + 0.3) ax.text( xi_text, y, "%s %s" % (name, colors[name]), fontsize=(h * 0.4), horizontalalignment="left", verticalalignment="center", ) ax.hlines(y + h * 0.1, xi_line, xf_line, color=colors[name], linewidth=(h * 0.6)) ax.set_xlim(0, x) ax.set_ylim(0, y) ax.set_axis_off() fig.subplots_adjust(left=0, right=1, top=1, bottom=0, hspace=0, wspace=0) if save: print(f"Saving to {save}") plt.savefig(save, bbox_to_anchor="tight") plt.show() def relative_frequencies_lineplot( relative_frequencies: pd.DataFrame, order, cluster, xlabel: str = "days", ylabel: str = "relative frequency", hue: Optional[str] = None, smooth: Optional[bool] = None, cols=None, title: Optional[str] = None, rotation: Optional[int] = None, figsize: Tuple[int, int] = (15, 5), tick_size: Optional[int] = None, label_size: Optional[int] = None, order_smooth: int = 3, conf_int=None, scatter=None, save: Optional[str] = None, ): """Plot relative frequencies as a line plot. Args: relative_frequencies: Data frame containing relative Frequencies as calculated by calc_relFreq() order: Order of x-axis labels from left to right cluster: Which cluster to plot xlabel: x-axis label ylabel: y-axis label hue: Value to color by smooth: Whether to smoothen the plot cols: List of colors to use for line plot title: Title of the plot rotation: Rotation of the x-axis labels figsize: Size of the figure as specified in matplotlib tick_size: Size of the ticks as specified in matplotlib label_size: Size of the labels as specified in matplotlib order_smooth: If greater than 1, numpy.polyfit is used to estimate a polynomial regression conf_int: Size of the confidence interval for the regression estimate scatter: Set to True to add average expression values per sample ID as dots save: Path to save the plot to Example: .. image:: /_images/relative_frequencies_lineplots.png """ if hue: sub_freqs = relative_frequencies.loc[:, [cluster] + [xlabel, hue]] sub_freqs = pd.melt(sub_freqs, id_vars=[xlabel, hue]) else: sub_freqs = relative_frequencies.loc[:, [cluster] + [xlabel]] sub_freqs = pd.melt(sub_freqs, id_vars=[xlabel]) standard_lineplot( sub_freqs, order=order, xlabel=xlabel, ylabel=ylabel, hue=hue, gene="value", smooth=smooth, palette=cols, title=title, rotation=rotation, figsize=figsize, tick_size=tick_size, label_size=label_size, order_smooth=order_smooth, confidence_interval=conf_int, scatter=scatter, save=save, ) def annotated_cell_type_umap( adata, primary_color: Union[str, Sequence[str]], cell_type_color: str, legend_loc: str = "on data", legend_fontsize: int = 8, title: str = "Plot title", palette=None, cmap=None, figsize=(8, 6), save=None, ): """Plots a UMAP which is colored by the primary_color, but also draws all labels on top of all clusters. Args: adata: AnnData object primary_color: Primary color to color all cells by, e.g. 'genotype' cell_type_color: Key containing all cell types, e.g. 'cell_type' legend_loc: Location of the legend (default: 'on data') legend_fontsize: Font size of the legend (default: 8) title: Title of the plot palette: Color cmap: Color map of the UMAP figsize: Size of the figure save: Path to save the plot to Returns: fig and axs Matplotlib objects Example: .. image:: /_images/annotated_cell_type_umap.png """ fig, axs = plt.subplots(figsize=figsize) sc.pl.umap(adata, color=primary_color, show=False, palette=palette, cmap=cmap, ax=axs) sc.pl.umap( adata, color=cell_type_color, alpha=0, legend_loc=legend_loc, legend_fontsize=legend_fontsize, title=title, show=False, ax=axs, ) if save: fig.savefig(save, dpi=1200, format="pdf", bbox_inches="tight") return fig, axs def genotype_vs_genotype_umaps( adata, genotype_key: str, genotype_label_1: str, genotype_label_2: str, color: str, hide_one_legend: bool = True, figsize: Tuple[int, int] = (12, 6), ): """Plots a two UMAPs of genotypes next to each other displaying only the colors of the second UMAP. Args: adata: AnnData object genotype_key: Key of the genotypes genotype_label_1: Name of the first genotype; Must be contained in the genotypes genotype_label_2: Name of the second genotype; Must be contained in the genotypes color: Key to color by hide_one_legend: Whether to hide the legend of the genotype_label_1 figsize: Size of the figure Example: .. image:: /_images/genotype_vs_genotype_umaps.png """ genotype_data_1 = adata[adata.obs[genotype_key].isin([genotype_label_1])].copy() genotype_data_2 = adata[adata.obs[genotype_key].isin([genotype_label_2])].copy() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize) sc.pl.umap( genotype_data_1, color=color, ax=ax1, palette=sc.pl.palettes.default_20, legend_fontsize="xx-small", size=40, show=False, ) if hide_one_legend: ax1.get_legend().remove() ax1.set_title(genotype_label_1) sc.pl.umap( genotype_data_2, color=color, ax=ax2, palette=sc.pl.palettes.default_20, legend_fontsize="xx-small", size=40, show=False, ) _ = ax2.set_title(genotype_label_2)
/sc_toolbox-0.12.3-py3-none-any.whl/sc_toolbox/plot/__init__.py
0.963446
0.528473
__init__.py
pypi
from __future__ import annotations import os from typing import List from pandas import Categorical from statsmodels.stats.multitest import fdrcorrection try: from typing import Literal except ImportError: from typing_extensions import Literal # type: ignore from typing import Optional import numpy as np import pandas as pd import scanpy as sc from anndata import AnnData from rich import print WORKING_DIRECTORY = os.path.dirname(__file__) def generate_expression_table( adata, cluster: str = "all", subset_by: str = "cell_type", xlabel: Optional[str] = None, condition: Optional[str] = None, use_raw: Optional[bool] = None, ): """Generates a table of cells by genes of expression values as a Pandas DataFrame. Args: adata: Anndata object cluster: Which label of the subsets to generate the table for. Use 'all' if for all subsets. subset_by: Which label to subset the clusters by xlabel: Label that will be used for subsequent line plots as x-axis label. Typically a time series such as "days". condition: Column name of the condition to include. use_raw: Whether to use adata.raw.X for the calculations Returns: Gene expression table. """ if cluster == "all": cells = adata.obs_names else: cells = [True if val in cluster else False for val in adata.obs[subset_by]] if use_raw: gen_expression_table = pd.DataFrame( adata[cells].raw.X.todense(), index=adata[cells].obs_names, columns=adata[cells].raw.var_names ) else: gen_expression_table = pd.DataFrame( adata[cells].X, index=adata[cells].obs_names, columns=adata[cells].var_names ) gen_expression_table["identifier"] = adata[cells].obs["identifier"] if xlabel: gen_expression_table[xlabel] = adata[cells].obs[xlabel] if condition: # For multiple cluster, split internally per condition if isinstance(cluster, list) and len(cluster) > 1 and subset_by != condition: gen_expression_table[condition] = [ f"{t}_{c}" for t, c in zip(adata[cells].obs[condition], adata[cells].obs[subset_by]) ] else: gen_expression_table[condition] = adata[cells].obs[condition] return gen_expression_table def relative_frequencies(adata, group_by: str = "cell_type", xlabel: str = "days", condition: str = "batch"): """Calculates the relative frequencies of conditions grouped by an observation. Args: adata: AnnData Objet containing the data group_by: Column name to group by xlabel: x-axis label condition: Returns: Relative frequencies in a Pandas DataFrame """ freqs = adata.obs.groupby(["identifier", group_by]).size() samples = np.unique(adata.obs["identifier"]) ind = adata.obs[group_by].cat.categories relative_frequencies = [freqs[ident] / sum(freqs[ident]) for ident in samples] relative_frequencies = pd.DataFrame(relative_frequencies, columns=ind, index=samples).fillna(0) # relFreqs[xlabel] = grouping.loc[samples, xlabel] ## when using Grouping Table cell_types = {} combis = adata.obs.groupby(["identifier", xlabel]).groups.keys() for c in combis: cell_types[c[0]] = c[1] relative_frequencies[xlabel] = [cell_types[label] for label in relative_frequencies.index] # type: ignore # Todo, add for condition if condition: combis = adata.obs.groupby(["identifier", condition]).groups.keys() for c in combis: cell_types[c[0]] = c[1] relative_frequencies[condition] = [cell_types[label] for label in relative_frequencies.index] # type: ignore return relative_frequencies def relative_frequency_per_cluster(adata, group_by: str = "cell_type", xlabel: str = "days", condition=None): """ Calculates relative frequencies per cluster Args: adata: AnnData object containing the data group_by: The label to group by for the clusters xlabel: x-axis label condition: condition to combine by Returns: Pandas DataFrame of relative frequencies """ frequencies = adata.obs.groupby([group_by, xlabel]).size() celltypes = np.unique(adata.obs[group_by]) ind = adata.obs[xlabel].cat.categories relative_frequencies = [frequencies[ident] / sum(frequencies[ident]) for ident in celltypes] relative_frequencies = pd.DataFrame(relative_frequencies, columns=ind, index=celltypes).fillna(0) cell_types = {} combinations = adata.obs.groupby([group_by, xlabel]).groups.keys() for combination in combinations: cell_types[combination[0]] = combination[1] relative_frequencies[group_by] = relative_frequencies.index # type: ignore # Todo, add for condition if condition: combinations = adata.obs.groupby([group_by, condition]).groups.keys() for combination in combinations: cell_types[combination[0]] = combination[1] relative_frequencies[condition] = [cell_types[label] for label in relative_frequencies.index] # type: ignore return relative_frequencies def correlate_to_signature( adata, marker: pd.DataFrame, log_fc_threshold: float = 0.7, cell_type: str = "AT2 cells", cell_type_label: str = "cell_type", log_fc_label: str = "logfoldchange", gene_label: str = "gene", use_raw: bool = True, ): """ Correlations Score (based on cell type signature (logFC)) - alternative to sc.tl.score Args: adata: AnnData object containing the data marker: Pandas DataFrame containing marker genes log_fc_threshold: Log fold change label cell_type: Cell type to calculate the correlation for cell_type_label: Label of all cell types in the AnnData object log_fc_label: Label of fold change in the AnnData object gene_label: Label of genes in the AnnData object use_raw: Whether to use adata.raw.X Returns: List of correlations """ from scipy.sparse import issparse topmarker = marker[marker.loc[:, cell_type_label] == cell_type] topmarker = topmarker.loc[topmarker.loc[:, log_fc_label] > log_fc_threshold, [gene_label, log_fc_label]] gene_names = list(np.intersect1d(adata.var_names, topmarker.loc[:, gene_label].astype(str))) topmarker = topmarker[topmarker.loc[:, gene_label].isin(gene_names)] print(f"[bold blue]{len(gene_names)} genes used for correlation score to {cell_type}") if use_raw: if issparse(adata.raw.X): gene_expression = adata.raw[:, gene_names].X.todense() else: gene_expression = adata.raw[:, gene_names].X else: if issparse(adata.X): gene_expression = adata[:, gene_names].X.todense() else: gene_expression = adata[:, gene_names].X gene_expression = pd.DataFrame(gene_expression.T, index=gene_names) # For each cell separately gene_expression = pd.DataFrame.fillna(gene_expression, value=0) res = [ np.correlate(topmarker.loc[:, log_fc_label], gene_expression.iloc[:, c])[0] for c in range(gene_expression.shape[1]) ] return res def remove_outliers(cords, eps: int = 1, min_samples: int = 2) -> Categorical: """Remove outlying cells based on UMAP embeddings with DBScan (density based clustering). Call as: sub.obs["d_cluster"] = remove_outliers(sub.obsm["X_umap"], min_samples = 10) Args: cords: adata UMAP coordinates, typically adata.obsm["X_umap"] eps: Maximum distance between two clusters to still be considered neighbors min_samples: Minimum samples of a cluster Returns: Pandas Categorical of clusters """ from natsort import natsorted from sklearn.cluster import DBSCAN clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(cords) cluster = clustering.labels_.astype("U") return pd.Categorical(cluster, categories=natsorted(np.unique(cluster))) def add_percentages(adata, table, ids, group_by: str, threshold: int = 0, gene_label: str = "gene"): """Add columns to existing diffxpy table specifying percentage of expressing cells. Args: adata: AnnData object containing the data table: Table as generated by diffxpy ids: Identifiers to add percentages for. group_by: Label to group by threshold: Cell count threshold. gene_label: Label of the genes Returns: Table containing percentage of expressing cells """ for ident in ids: cells = adata.obs_names[adata.obs[group_by] == ident] data_temp = pd.DataFrame( ((adata[cells].layers["counts"] > threshold).sum(0) / adata[cells].layers["counts"].shape[0]).T, index=adata.var_names, ) if gene_label == "index": table[f"pct.{ident}s"] = data_temp.reindex(table.index.values).values else: table[f"pct.{ident}s"] = data_temp.reindex(table.loc[:, gene_label]).values return table def ranksums_between_groups( table, id1: str = "bystander", id2: str = "infected", xlabel: str = "condition", cells=None, score: str = "Axin2" ): """ Perform Wilcoxon Rank-sum test between two groups. Args: table: id1: id2: xlabel: x-axis label cells: score: Returns: Pandas DataFrame containing test statistic and p-value """ from scipy import stats if cells is not None: table = table.loc[cells].copy() group1 = table[table.loc[:, xlabel] == id1].copy() group2 = table[table.loc[:, xlabel] == id2].copy() t, p = stats.ranksums(group1.loc[:, score], group2.loc[:, score]) result = pd.DataFrame(columns=["wilcoxon_ranksum", "pval"]) result.loc[0] = [t, p] return result def generate_count_object( adata, hue: str = "disease", cell_type_label: str = "cell_type", cell_type: Optional[List[str]] = None, min_samples: int = 2, min_cells: int = 5, ref: str = "healthy", subset: Optional[List[str]] = None, layer: str = "counts", outliers_removal: bool = False, ): """ @Meshal what is this really supposed to do? Args: adata: AnnData object hue: Value to color by cell_type_label: Label containing cell types cell_type: Cells type to generate counts for min_samples: Minimum samples for outlier removal with DBScan min_cells: Minimal number of cells ref: subset: layer: outliers_removal: Whether to remove outliers or not Returns: AnnData object containing counts Example Call: subset = ['3d PI-KO', '3d PI-WT'] raw_counts = generate_count_object(adata, condition = "grouping", cell_type_label = "celltype_refined", cell_type = ["AT2"], ref = "3d PI-WT", subset = subset) """ adata_subset = adata[adata.obs.grouping.isin(subset)] cells = [ True if (adata_subset.obs[cell_type_label][i] in cell_type) else False # type: ignore for i in range(adata_subset.n_obs) ] # Raw count data for diffxpy obs = adata_subset[cells].obs.copy() var = adata_subset.var_names.copy() adata_raw = sc.AnnData(X=adata_subset[cells].layers[layer].copy()) adata_raw.obs = obs adata_raw.var.index = var adata_raw.obsm = adata_subset[cells].obsm.copy() # Also automate tidy up with DBScan :) if outliers_removal: adata_raw.obs["dcluster"] = remove_outliers(adata_raw.obsm["X_umap"], min_samples=min_samples) sc.pl.umap(adata_raw, color=[hue, "dcluster"]) adata_raw = adata_raw[adata_raw.obs.dcluster == "0"].copy() sc.pp.filter_genes(adata_raw, min_cells=min_cells) # Set reference as first column adata_raw.obs.loc[:, hue].cat.reorder_categories([ref, np.setdiff1d(subset, ref)[0]], inplace=True) # type: ignore pal = adata_subset.uns[f"{hue}_colors"] sc.pl.umap(adata_raw, color=[hue], palette=list(pal)) return adata_raw def tidy_de_table(de_test, adata, cells, ids=None, qval_thresh: float = 0.9, group_by: str = "treatment", cols=None): """ Sorts diffxpy de table and adds percentages of expression per group Args: de_test: diffxpy de test adata: AnnData object cells: ids: qval_thresh: group_by: cols: Returns: Pandas Dataframe of diffxpy table with percentages """ result = de_test.summary().sort_values(by=["qval"], ascending=True) result = result[result.qval < qval_thresh].loc[:, cols].copy() # Add percentages result = add_percentages(adata[cells], result, ids=ids, group_by=group_by) return result def correlate_means_to_gene(means: pd.DataFrame, corr_gene: str = "EOMES"): """ Calculate gene to gene correlation based on a mean expression table Args: means: corr_gene: Returns: Pandas DataFrame of correlations """ import scipy.stats genes = means.columns.values cors = pd.DataFrame(index=genes, columns=["spearman_corr", "pvalue"]) # tab = sc.get.obs_df(sub, keys = [corr_gene], layer = None, use_raw = True) table = means.loc[:, [corr_gene]].values # Loop over all genes. for gene in genes: tmp = scipy.stats.spearmanr(table, means.loc[:, [gene]]) # Spearman's rho cors.loc[gene, :] = tmp[0:2] cors.dropna(axis=0, inplace=True) cors.sort_values("spearman_corr", ascending=False, inplace=True) return cors def extended_marker_table( adata: AnnData, qval_thresh: float = 0.05, cell_type_label: str = "cell_type", gene_ranks_key: str = "rank_genes_groups", ): """ Generates an extended marker table with cell types and percentages of expressed cell types per cluster. Run scanpy.tl.rank_genes_groups before using this function. Args: adata: AnnData object containing ranked genes qval_thresh: Threshold to filter the log fold change for cell_type_label: Label containing all cell types gene_ranks_key: Key for the ranked gene groups (generated by sc.tl.rank_genes_groups) Returns: A Pandas DataFrame """ result = adata.uns[gene_ranks_key] all_markers = [] for cluster in result["names"].dtype.names: current = pd.DataFrame( { "gene": result["names"][cluster], "score": result["scores"][cluster], "log_FC": result["logfoldchanges"][cluster], "pval": result["pvals"][cluster], "pval_adj": result["pvals_adj"][cluster], "cell_type": cluster, } ) # Add percentage expressed per cell type adata.obs["group"] = ["within" if ct == cluster else "outside" for ct in adata.obs.loc[:, cell_type_label]] current = add_percentages(adata, table=current, group_by="group", gene_label="gene", ids=["within", "outside"]) all_markers.append(current) all_markers_df = pd.concat(all_markers) all_markers_df = all_markers_df[all_markers_df.pval_adj < qval_thresh].copy() return all_markers_df def generate_pseudobulk( adata: AnnData, group_key: str = "identifier", sep="\t", save: Optional[str] = None ) -> pd.DataFrame: """ Generates a pseudobulk for a given key of groups in the AnnData object. Looks like: +------------+------------------+------------------+ | Genes | Group Member 1 | Group Member 2 | +============+==================+==================+ | Gene 1 | Value 1 | Value 2 | +------------+------------------+------------------+ | Gene 2 | Value 2 | Value 3 | +------------+------------------+------------------+ Args: adata: AnnData object group_key: The key to group by. E.g. by mice, by condition, ... (default: 'identifier') sep: Separator to use when saving the pseudobulk table (default: '\t') save: Path to save the pseudobulk table to (default: None) Returns: A Pandas DataFrame containing the pseudobulk table """ pseudobulk = pd.DataFrame(data=adata.var_names.values, columns=["Genes"]) for i in adata.obs.loc[:, group_key].cat.categories: temp = adata.obs.loc[:, group_key] == i pseudobulk[i] = adata[temp].X.sum(0, dtype=int) # column sums (genes) if save: pseudobulk.to_csv(save, sep=sep, index=False) return pseudobulk def automated_marker_annotation( adata: AnnData, organism: str, tissue: str, marker_file: str, key: str = "rank_genes_groups", normalize: Optional[Literal["reference", "data"]] = "reference", p_value: float = 0.05, log_fold_change: float = 2, ): """Calculates a marker gene overlap based on pre-existing annotations. Currently supported marker files: +------------+------------+------------------------------+ | Organism | Tissue | Marker File | +============+============+==============================+ | Mouse | Lung | lung_particle_markers.txt | +------------+------------+------------------------------+ | Human | NA | | +------------+------------+------------------------------+ Args: adata: AnnData object containing ranked genes organism: Currently supported: 'mouse' tissue: Currently supported: 'lung' marker_file: Name of the marker file to be used - refer to table key: Key of ranked genes in adata (default: 'rank_genes_groups') normalize: Normalization option for the marker gene overlap output (default: 'reference') p_value: p-value threshold for existing marker genes (default: 0.05) log_fold_change: log fold change threshold for existing marker genes (default: 2) Returns: Pandas DataFrame of overlapping genes. Visualize with a Seaborn Heatmap """ supported_organisms = {"mouse"} supported_tissues = {"lung"} supported_marker_files = {"lung_particle_markers.txt"} if organism not in supported_organisms: print(f"[bold red]Unfortunately organism {organism} is not yet supported.") return if tissue not in supported_tissues: print(f"[bold red]Unfortunately tissue {tissue} is not yet supported.") return if marker_file not in supported_marker_files: print(f"[bold red]Unfortunately marker file {marker_file} could not be found. Please check your spelling.") return marker_table = pd.read_csv(f"{WORKING_DIRECTORY}/markers/{marker_file}", sep="\t", index_col=None) marker_table = marker_table[ (marker_table.logfoldchange > log_fold_change) & (marker_table.pval_adj < p_value) ].copy() marker = dict() for ct in marker_table["cell_type"].unique(): tmp = marker_table[marker_table["cell_type"] == ct] marker[ct] = tmp.gene.values return sc.tl.marker_gene_overlap(adata, marker, key=key, normalize=normalize) def de_res_to_anndata( adata: AnnData, de_res: pd.DataFrame, *, groupby: str, gene_id_col: str = "gene_symbol", score_col: str = "score", pval_col: str = "pvalue", pval_adj_col: Optional[str] = None, lfc_col: str = "lfc", key_added: str = "rank_genes_groups", ) -> None: """Add a tabular differential expression result to AnnData as if it was produced by scanpy.tl.rank_genes_groups. Args: adata: Annotated data matrix de_res: Tablular DE result as Pandas DataFrame groupby: Column in `de_res` that indicates the group. This column must also exist in `adata.obs`. gene_id_col: Column in `de_res` that holds the gene identifiers score_col: Column in `de_res` that holds the score (results will be ordered by score). pval_col: Column in `de_res` that holds the unadjusted pvalue pval_adj_col: Column in `de_res` that holds the adjusted pvalue. If not specified, the unadjusted p values will be FDR-adjusted. lfc_col: Column in `de_res` that holds the log fold change key_added: Key under which the results will be stored in adata.uns """ if groupby not in adata.obs.columns or groupby not in de_res.columns: raise ValueError("groupby column must exist in both adata and de_res. ") res_dict = { "params": { "groupby": groupby, "reference": "rest", "method": "other", "use_raw": True, "layer": None, "corr_method": "other", }, "names": [], "scores": [], "pvals": [], "pvals_adj": [], "logfoldchanges": [], } df_groupby = de_res.groupby(groupby) for _, tmp_df in df_groupby: tmp_df = tmp_df.sort_values(score_col, ascending=False) res_dict["names"].append(tmp_df[gene_id_col].values) # type: ignore res_dict["scores"].append(tmp_df[score_col].values) # type: ignore res_dict["pvals"].append(tmp_df[pval_col].values) # type: ignore if pval_adj_col is not None: res_dict["pvals_adj"].append(tmp_df[pval_adj_col].values) # type: ignore else: res_dict["pvals_adj"].append(fdrcorrection(tmp_df[pval_col].values)[1]) # type: ignore res_dict["logfoldchanges"].append(tmp_df[lfc_col].values) # type: ignore for key in ["names", "scores", "pvals", "pvals_adj", "logfoldchanges"]: res_dict[key] = pd.DataFrame( np.vstack(res_dict[key]).T, # type: ignore columns=list(df_groupby.groups.keys()), ).to_records(index=False, column_dtypes="O") adata.uns[key_added] = res_dict
/sc_toolbox-0.12.3-py3-none-any.whl/sc_toolbox/tools/__init__.py
0.875893
0.500305
__init__.py
pypi
import importlib.resources import pickle from enum import Enum from typing import Dict, List, Tuple from scipy import interpolate from .data_vortex import temperature_03, temperature_05, temperature_08 from .vortex_instance import VortexInstance class _DictKey(str, Enum): DELTA_KEY = "delta" class _FileName(str, Enum): delta = "delta.pkl" spectra = "spectra.pkl" u = "u.pkl" v = "v.pkl" class GeneralParameters(Enum): """GeneralParameters Parameters independent of temperature. Attributes: KF_XI: Value of fermi wave number multiplied by pippard length. This is equivalent to value of 2 times zero-temperature bulk gap devided by fermi energey. (k_F * xi = 2 * E_F / Delta_0) MAX_ANGULAR_MOMENTUM: Max value of angular momentum quantum number. MIN_ANGULAR_MOMENTUM: Min value of angular momentum quantum number. SIZE_KF: Systemsize scaled by fermi wave number, this is used in calculation of self-consistent equation(BdG). """ KF_XI = 50 MAX_ANGULAR_MOMENTUM = 99 MIN_ANGULAR_MOMENTUM = -100 SIZE_KF = 400 class VortexInstanceT03(VortexInstance): class Parameters(Enum): """Parameters Parameters involving parameters depending on temperature. Attributes: KF_XI: Value of fermi wave number multiplied by pippard length. This is equivalent to value of 2 times zero-temperature bulk gap devided by fermi energey. (k_F * xi = 2 * E_F / Delta_0) DELTA_OVER_CDGM: Value of zero-temperature bulk gap devided by level spacing of CdGM mode. T_OVER_TC: Temperature scaled by taransition temperature T_c. MAX_ANGULAR_MOMENTUM: Max value of angular momentum quantum number. MIN_ANGULAR_MOMENTUM: Min value of angular momentum quantum number. SIZE_KF: Systemsize scaled by fermi wave number, this is used in calculation of self-consistent equation(BdG). """ KF_XI = GeneralParameters.KF_XI.value DELTA_OVER_CDGM = 31.363654447926976 T_OVER_TC = 0.3 MAX_ANGULAR_MOMENTUM = GeneralParameters.MAX_ANGULAR_MOMENTUM.value MIN_ANGULAR_MOMENTUM = GeneralParameters.MIN_ANGULAR_MOMENTUM.value SIZE_KF = GeneralParameters.SIZE_KF.value def __init__(self) -> None: self.pair_potential: interpolate.CubicSpline self.spectra_dict: Dict[int, float] = dict() self.u_dict: Dict[int, interpolate.CubicSpline] = dict() self.v_dict: Dict[int, interpolate.CubicSpline] = dict() self._construct() def _construct(self) -> None: self.pair_potential, self.spectra_dict, self.u_dict, self.v_dict = _construct( temperature_03 ) def get_pair_potential(self) -> interpolate.CubicSpline: """get_pair_potential() This method returns pair potential at T = 0.3 T_c. Radial coordinates is scaled by inverse of fermi wave number. Value of pair potential is scaled by zero-temperature bulk gap. Returns: scipy.interpolate.CubicSpline: pair potential at T = 0.3 T_c """ return self.pair_potential def get_ith_eigen_func( self, i: int ) -> Tuple[interpolate.CubicSpline, interpolate.CubicSpline]: """get_ith_eigen_func() This method returns ith eigen functions (u, v) at T = 0.3 T_c. Radial coordinates is scaled by inverse of fermi wave number. As u and v have dimension of inverse of L.L, value of them is scaled by 2 times fermi wave number. (k_F * k_F) Args: i (int): Angular momentum quantum number you want to get. Returns: Tuple[scipy.interpolate.CubicSpline, scipy.interpolate.CubicSpline]: ith eigen functions (u_i, v_i) """ return self.u_dict[i], self.v_dict[i] def get_ith_eigen_energy(self, i: int) -> float: """get_ith_eigen_energy() This method returns ith eigen energy e_i at T = 0.3 T_c. Args: i (int): Angular momentum quantum number you want to get. Returns: float: Value of ith eigen energy e_i scaled by level spacing of CdGM mode. """ return self.spectra_dict[i] class VortexInstanceT05(VortexInstance): class Parameters(Enum): """Parameters Parameters involving parameters depending on temperature. Attributes: KF_XI: Value of fermi wave number multiplied by pippard length. This is equivalent to value of 2 times zero-temperature bulk gap devided by fermi energey. (k_F * xi = 2 * E_F / Delta_0) DELTA_OVER_CDGM: Value of zero-temperature bulk gap devided by level spacing of CdGM mode. T_OVER_TC: Temperature scaled by taransition temperature T_c. MAX_ANGULAR_MOMENTUM: Max value of angular momentum quantum number. MIN_ANGULAR_MOMENTUM: Min value of angular momentum quantum number. SIZE_KF: Systemsize scaled by fermi wave number, this is used in calculation of self-consistent equation(BdG). """ KF_XI = GeneralParameters.KF_XI.value DELTA_OVER_CDGM = 43.66058913995896 T_OVER_TC = 0.5 MAX_ANGULAR_MOMENTUM = GeneralParameters.MAX_ANGULAR_MOMENTUM.value MIN_ANGULAR_MOMENTUM = GeneralParameters.MIN_ANGULAR_MOMENTUM.value SIZE_KF = GeneralParameters.SIZE_KF.value def __init__(self) -> None: self.pair_potential: interpolate.CubicSpline self.spectra_dict: Dict[int, float] = dict() self.u_dict: Dict[int, interpolate.CubicSpline] = dict() self.v_dict: Dict[int, interpolate.CubicSpline] = dict() self._construct() def _construct(self) -> None: self.pair_potential, self.spectra_dict, self.u_dict, self.v_dict = _construct( temperature_05 ) def get_pair_potential(self) -> interpolate.CubicSpline: """get_pair_potential() This method returns pair potential at T = 0.5 T_c. Radial coordinates is scaled by inverse of fermi wave number. Value of pair potential is scaled by zero-temperature bulk gap. Returns: scipy.interpolate.CubicSpline: pair potential at T = 0.5 T_c """ return self.pair_potential def get_ith_eigen_func( self, i: int ) -> Tuple[interpolate.CubicSpline, interpolate.CubicSpline]: """get_ith_eigen_func() This method returns ith eigen functions (u, v) at T = 0.5 T_c. Radial coordinates is scaled by inverse of fermi wave number. As (u, v) have dimension of inverse of L.L, value of them is scaled by 2 times fermi wave number. (k_F * k_F) Args: i (int): Angular momentum quantum number you want to get. Returns: Tuple[scipy.interpolate.CubicSpline, scipy.interpolate.CubicSpline]: ith eigen functions (u_i, v_i) """ return self.u_dict[i], self.v_dict[i] def get_ith_eigen_energy(self, i: int): """get_ith_eigen_energy() This method returns ith eigen energy e_i at T = 0.5 T_c. Args: i (int): Angular momentum quantum number you want to get. Returns: float: Value of ith eigen energy e_i scaled by level spacing of CdGM mode. """ return self.spectra_dict[i] class VortexInstanceT08(VortexInstance): class Parameters(Enum): """Parameters Parameters involving parameters depending on temperature. Attributes: KF_XI: Value of fermi wave number multiplied by pippard length. This is equivalent to value of 2 times zero-temperature bulk gap devided by fermi energey. (k_F * xi = 2 * E_F / Delta_0) DELTA_OVER_CDGM: Value of zero-temperature bulk gap devided by level spacing of CdGM mode. T_OVER_TC: Temperature scaled by taransition temperature T_c. MAX_ANGULAR_MOMENTUM: Max value of angular momentum quantum number. MIN_ANGULAR_MOMENTUM: Min value of angular momentum quantum number. SIZE_KF: Systemsize scaled by fermi wave number, this is used in calculation of self-consistent equation(BdG). """ KF_XI = GeneralParameters.KF_XI.value DELTA_OVER_CDGM = 64.11317362045985 T_OVER_TC = 0.8 MAX_ANGULAR_MOMENTUM = GeneralParameters.MAX_ANGULAR_MOMENTUM.value MIN_ANGULAR_MOMENTUM = GeneralParameters.MIN_ANGULAR_MOMENTUM.value SIZE_KF = GeneralParameters.SIZE_KF.value def __init__(self) -> None: self.pair_potential: interpolate.CubicSpline self.spectra_dict: Dict[int, float] = dict() self.u_dict: Dict[int, interpolate.CubicSpline] = dict() self.v_dict: Dict[int, interpolate.CubicSpline] = dict() self._construct() def _construct(self) -> None: self.pair_potential, self.spectra_dict, self.u_dict, self.v_dict = _construct( temperature_08 ) def get_pair_potential(self) -> interpolate.CubicSpline: """get_pair_potential() This method returns pair potential at T = 0.8 T_c. Radial coordinates is scaled by inverse of fermi wave number. Value of pair potential is scaled by zero-temperature bulk gap. Returns: scipy.interpolate.CubicSpline: pair potential at T = 0.8 T_c. """ return self.pair_potential def get_ith_eigen_func( self, i: int ) -> Tuple[interpolate.CubicSpline, interpolate.CubicSpline]: """get_ith_eigen_func() This method returns ith eigen functions (u, v) at T = 0.8 T_c. Radial coordinates is scaled by inverse of fermi wave number. As (u, v) have dimension of inverse of L.L, value of them is scaled by 2 times fermi wave number. (k_F * k_F) Args: i (int): Angular momentum quantum number you want to get. Returns: Tuple[scipy.interpolate.CubicSpline, scipy.interpolate.CubicSpline]: ith eigen functions (u_i, v_i) """ return self.u_dict[i], self.v_dict[i] def get_ith_eigen_energy(self, i: int): """get_ith_eigen_energy() This method returns ith eigen energy e_i at T = 0.8 T_c. Args: i (int): Angular momentum quantum number you want to get. Returns: float: Value of ith eigen energy e_i scaled by level spacing of CdGM mode. """ return self.spectra_dict[i] def _make_spline(x_vector: List[float], f: List[float]) -> interpolate.CubicSpline: return interpolate.CubicSpline(x_vector, f) def _construct(my_package): delta_dict: Dict[str, List[float]] = dict() u_dict: Dict[int, interpolate.CubicSpline] = dict() v_dict: Dict[int, interpolate.CubicSpline] = dict() spectra_dict: Dict[int, float] = dict() kfr: List[float] = [ i * 0.1 for i in range( 0, GeneralParameters.SIZE_KF.value * 10 + 1 ) # [0.0, 0.1, 0.2, ..., 400] ] with importlib.resources.open_binary( my_package, _FileName.delta.value ) as delta, importlib.resources.open_binary( my_package, _FileName.spectra.value ) as spc, importlib.resources.open_binary( my_package, _FileName.u.value ) as u, importlib.resources.open_binary( my_package, _FileName.v.value ) as v: delta_dict: Dict[str, List[float]] = pickle.load(delta) pair_potential = _make_spline(kfr, delta_dict[_DictKey.DELTA_KEY.value]) spectra_dict = pickle.load(spc) u_load = pickle.load(u) v_load = pickle.load(v) for i in range( GeneralParameters.MIN_ANGULAR_MOMENTUM.value, GeneralParameters.MAX_ANGULAR_MOMENTUM.value + 1, ): u_dict[i] = _make_spline(kfr, u_load[i]) v_dict[i] = _make_spline(kfr, v_load[i]) return pair_potential, spectra_dict, u_dict, v_dict
/sc_vortex_2d-1.0.2-py3-none-any.whl/sc_vortex_2d/vortex.py
0.952802
0.375535
vortex.py
pypi
from plone.app.vocabularies.catalog import QuerySearchableTextSourceView from plone.app.vocabularies.catalog import SearchableTextSource from plone.app.vocabularies.terms import BrowsableTerm from Products.CMFCore.interfaces._content import IFolderish from Products.CMFCore.utils import getToolByName from sc.contentrules.groupbydate.config import RELPATHVOC from zope.component import queryUtility from zope.interface import implements from zope.schema.interfaces import IVocabularyFactory from zope.schema.vocabulary import SimpleVocabulary import logging logger = logging.getLogger('sc.contentrules.groupbydate') class RelPathSearchableTextSource(SearchableTextSource): """ A special case of a SearchableTextSource where we always support relative paths """ def __contains__(self, value): """Return whether the value is available in this source """ if not (value[0] == '.'): result = super(RelPathSearchableTextSource, self).__contains__(value) else: result = True return result def search(self, query_string): """ Add relative paths to vocabulary """ results = super(RelPathSearchableTextSource, self).search(query_string) relPaths = RELPATHVOC.keys() results = relPaths + list(results) return (r for r in results) class RelPathQSTSourceView(QuerySearchableTextSourceView): """ A special case of a QuerySearchableTextSourceView where we always support relative paths """ def getTerm(self, value): if not (value[0] == '.'): return super(RelPathQSTSourceView, self).getTerm(value) terms = RELPATHVOC token = value title = terms.get(value, value) browse_token = parent_token = None return BrowsableTerm(value, token=token, title=title, description=value, browse_token=browse_token, parent_token=parent_token) class ContainerSearcher(object): """ Check for all availables/allowed-addable folderish content types in the site. """ implements(IVocabularyFactory) def __call__(self, context): context = getattr(context, 'context', context) portal_url = getToolByName(context, 'portal_url') site = portal_url.getPortalObject() pt = getToolByName(site, 'portal_types') # Use only Friendly Types util = queryUtility(IVocabularyFactory, 'plone.app.vocabularies.ReallyUserFriendlyTypes') types = util(context) types_ids = types.by_token.keys() folderish = [] for type_id in types_ids: site_type = pt[type_id] if (site_type.global_allow) and (site_type.isConstructionAllowed(site)): term = types.by_token[type_id] site.invokeFactory(type_id, 'item') item = site['item'] if IFolderish.providedBy(item): folderish.append(term) del site['item'] return SimpleVocabulary(folderish) ContainerSearcherFactory = ContainerSearcher()
/sc.contentrules.groupbydate-2.0.1.zip/sc.contentrules.groupbydate-2.0.1/src/sc/contentrules/groupbydate/vocabulary.py
0.654453
0.22564
vocabulary.py
pypi
from Acquisition import aq_parent from plone.app.contentrules.conditions.portaltype import IPortalTypeCondition from plone.contentrules.rule.interfaces import IRule from Products.CMFCore.utils import getToolByName from sc.contentrules.layout import MessageFactory as _ from zope.browsermenu.interfaces import IBrowserMenu from zope.component import getUtility from zope.component import queryMultiAdapter from zope.interface import implements from zope.interface import Interface from zope.schema.interfaces import IVocabularyFactory from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm import logging logger = logging.getLogger('sc.contentrules.layout') class ViewsVocabulary(object): """Vocabulary factory listing available views """ implements(IVocabularyFactory) def _get_rule(self, context): ''' Return rule that contains the action ''' rule = None if IRule.providedBy(context): rule = context else: rule = aq_parent(context) return rule def _get_portal_types(self, rule): ''' Return a portal type condition for a given rule IF exists ''' conditions = rule.conditions for condition in conditions: if IPortalTypeCondition.providedBy(condition): types = condition.check_types return types return [] def _get_views_titles(self, views): result = [] for mid in views: view = queryMultiAdapter((self.context, self.REQUEST), Interface, name=mid) if view is not None: menu = getUtility(IBrowserMenu, 'plone_displayviews') item = menu.getMenuItemByAction(self, self.REQUEST, mid) title = item and item.title or mid result.append((mid, title)) else: method = getattr(self.context, mid, None) if method is not None: # a method might be a template, script or method try: title = method.aq_inner.aq_explicit.title_or_id() except AttributeError: title = mid else: title = mid result.append((mid, title)) return result def _get_views(self, context): ''' List portal types available for this rule ''' views = set() portal_types = getToolByName(context, 'portal_types') rule = self._get_rule(context) if rule: types = self._get_portal_types(rule) for type_name in types: pt = portal_types[type_name] pt_views = pt.getAvailableViewMethods(context) if not views: views = set(pt_views) else: views = views.intersection(pt_views) return self._get_views_titles(views) def __call__(self, context): self.context = context self.REQUEST = context.REQUEST terms = [SimpleTerm('_default_view', title=_('Default Content View'))] views = self._get_views(context) for key, title in views: terms.append( SimpleTerm( key, title=_(title))) return SimpleVocabulary(terms) ViewsVocabularyFactory = ViewsVocabulary()
/sc.contentrules.layout-1.0.1.zip/sc.contentrules.layout-1.0.1/src/sc/contentrules/layout/vocabulary.py
0.550366
0.162081
vocabulary.py
pypi
from Acquisition import aq_inner from OFS.SimpleItem import SimpleItem from plone.app.contentrules import PloneMessageFactory as _ from plone.app.contentrules.browser.formhelper import AddForm from plone.app.contentrules.browser.formhelper import EditForm from plone.contentrules.rule.interfaces import IExecutable from plone.contentrules.rule.interfaces import IRuleElementData from sc.contentrules.metadata import utils from zope.component import adapts from zope.formlib import form from zope.interface import implements from zope.interface import Interface from zope.schema import Choice from zope.schema import Set VOCAB = 'plone.app.vocabularies.Keywords' FORM_NAME = _(u"Configure condition") FORM_DESC = _(u'A tag condition makes the rule apply only to contents with ' u'any of the selected tags. If no tag is selected the rule ' u'will apply to contents without tags applied to them.') class ISubjectCondition(Interface): '''Interface for the configurable aspects of a Tag condition. This is also used to create add and edit forms, below. ''' subject = Set(title=_(u'Tags'), description=_(u'Tags to check for. Leave it blank ' u'to check for contents without any ' u'tag set'), required=False, value_type=Choice(vocabulary=VOCAB)) class SubjectCondition(SimpleItem): '''The actual persistent implementation of the Tag condition element. ''' implements(ISubjectCondition, IRuleElementData) subject = [] element = "sc.contentrules.conditions.Subject" @property def summary(self): subject = self.subject if not subject: msg = _(u"No tags selected") else: msg = _(u"Tags contains ${tags}", mapping=dict(tags=" or ".join(subject))) return msg class SubjectConditionExecutor(object): """The executor for this condition. This is registered as an adapter in configure.zcml """ implements(IExecutable) adapts(Interface, ISubjectCondition, Interface) def __init__(self, context, element, event): self.context = context self.element = element self.event = event def __call__(self): expected = self.element.subject obj = aq_inner(self.event.object) if not (utils.subject_available(obj)): return False subject = utils.subject_for_object(obj) if not expected: return not (expected or subject) intersection = set(expected).intersection(subject) return intersection and True or False class SubjectAddForm(AddForm): """An add form for Tag conditions. """ form_fields = form.FormFields(ISubjectCondition) label = _(u'Add Tag Condition') description = FORM_DESC form_name = FORM_NAME def create(self, data): c = SubjectCondition() form.applyChanges(c, self.form_fields, data) return c class SubjectEditForm(EditForm): """An edit form for Tag conditions """ form_fields = form.FormFields(ISubjectCondition) label = _(u"Edit Tag Condition") description = FORM_DESC form_name = FORM_NAME
/sc.contentrules.metadata-1.0.1.zip/sc.contentrules.metadata-1.0.1/src/sc/contentrules/metadata/conditions/subject.py
0.711932
0.161949
subject.py
pypi
from Acquisition import aq_parent from OFS.SimpleItem import SimpleItem from plone.app.contentrules.browser.formhelper import AddForm from plone.app.contentrules.browser.formhelper import EditForm from plone.contentrules.rule.interfaces import IExecutable from plone.contentrules.rule.interfaces import IRuleElementData from sc.contentrules.metadata import MessageFactory as _ from sc.contentrules.metadata import utils from zope.component import adapts from zope.formlib import form from zope.interface import implements from zope.interface import Interface from zope.schema import Bool from zope.schema import Choice from zope.schema import Set VOCAB = 'plone.app.vocabularies.Keywords' FORM_NAME = _(u"Configure action") FORM_DESC = _(u'An action that applies Tags to a content.') class ISubjectAction(Interface): '''Interface for the configurable aspects of a set Tag action. This is also used to create add and edit forms, below. ''' same_as_parent = Bool(title=_(u"Use Tags from parent object"), description=_(u"Select this to use Tags as defined " u"in the parent object. If this " u"option is selected this action " u"ignores the following field.")) subject = Set(title=_(u'Tags'), description=_(u'Tags to check for. Leave it blank ' u'to check for contents without any ' u'tag set'), required=False, value_type=Choice(vocabulary=VOCAB)) class SubjectAction(SimpleItem): """ Stores action settings """ implements(ISubjectAction, IRuleElementData) element = 'sc.contentrules.actions.Subject' same_as_parent = False subject = [] @property def summary(self): same_as_parent = self.same_as_parent subject = self.subject if same_as_parent: msg = _(u"Apply tags from parent object.") else: msg = _(u"Apply tags ${tags}", mapping=dict(tags=", ".join(subject))) return msg class SubjectActionExecutor(object): """ Execute an action """ implements(IExecutable) adapts(Interface, ISubjectAction, Interface) def __init__(self, context, element, event): self.context = context self.element = element self.event = event def __call__(self): ''' Apply selected layout to a content item ''' obj = self.event.object same_as_parent = self.element.same_as_parent subject = self.element.subject if not (utils.subject_available(obj)): return False if same_as_parent: parent = aq_parent(obj) if not (utils.subject_available(parent)): return False subject = utils.subject_for_object(parent) return utils.set_subject(obj, subject) class SubjectAddForm(AddForm): """ An add form for the Tags contentrules action """ form_fields = form.FormFields(ISubjectAction) label = _(u"Add set Tags content rules action") description = FORM_DESC form_name = FORM_NAME def create(self, data): a = SubjectAction() form.applyChanges(a, self.form_fields, data) return a class SubjectEditForm(EditForm): """ An edit form for the set Tags contentrules action """ form_fields = form.FormFields(ISubjectAction) label = _(u"Edit the set Tags content rules action") description = FORM_DESC form_name = FORM_NAME
/sc.contentrules.metadata-1.0.1.zip/sc.contentrules.metadata-1.0.1/src/sc/contentrules/metadata/actions/subject.py
0.699768
0.17094
subject.py
pypi
import itertools from zope.interface import implements try: from zope.schema.interfaces import IVocabularyFactory except ImportError: from zope.app.schema.vocabulary import IVocabularyFactory from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm from plone.app.vocabularies.catalog import SearchableTextSource from plone.app.vocabularies.catalog import QuerySearchableTextSourceView from plone.app.vocabularies.terms import BrowsableTerm from zope.app.form.browser.interfaces import ISourceQueryView, ITerms from sc.contentrules.movebyattribute import MessageFactory as _ RELPATHVOC = {'../': _(u" One level up"), './': _(u' Same folder of content')} class RelPathSearchableTextSource(SearchableTextSource): """ A special case of a SearchableTextSource where we always support relative paths """ def __contains__(self, value): """Return whether the value is available in this source """ if not (value[0] == '.'): result = super(RelPathSearchableTextSource,self).__contains__(value) else: result = True return result def search(self, query_string): """ Add relative paths to vocabulary """ results = super(RelPathSearchableTextSource,self).search(query_string) relPaths = RELPATHVOC.keys() results = relPaths + list(results) return (r for r in results) class RelPathQSTSourceView(QuerySearchableTextSourceView): """ A special case of a QuerySearchableTextSourceView where we always support relative paths """ def getTerm(self, value): if not (value[0] == '.'): return super(RelPathQSTSourceView,self).getTerm(value) terms = RELPATHVOC token = value title = terms.get(value,value) browse_token = parent_token = None return BrowsableTerm(value, token=token, title=title, description=value, browse_token=browse_token, parent_token=parent_token)
/sc.contentrules.movebyattribute-0.5.tar.gz/sc.contentrules.movebyattribute-0.5/sc/contentrules/movebyattribute/vocabulary.py
0.613815
0.196537
vocabulary.py
pypi
from zope.interface import Interface from zope import schema from z3c.form import field from z3c.form import group from zope.schema.vocabulary import SimpleVocabulary, SimpleTerm import logging logger = logging.getLogger('sc.galleria.support') # dependencies # Thanks: collective.gallery try: #plone4 from plone.app.folder.folder import IATUnifiedFolder as IFolder from Products.ATContentTypes.interfaces.link import IATLink as ILink from Products.ATContentTypes.interfaces.topic import IATTopic as ITopic from Products.ATContentTypes.interfaces.image import IATImage as IImage except ImportError, e: logger.info('switch to plone3 %s' % e) #plone3 from Products.ATContentTypes.interface import IATFolder as IFolder from Products.ATContentTypes.interface import IATLink as ILink from Products.ATContentTypes.interface import IATTopic as ITopic from Products.ATContentTypes.interface import IATImage as IImage from sc.galleria.support import MessageFactory as _ transitionsvoc = SimpleVocabulary( [SimpleTerm(value='fade', title=_(u'Fade')), SimpleTerm(value='flash', title=_(u'Flash')), SimpleTerm(value='pulse', title=_(u'Pulse')), SimpleTerm(value='slide', title=_(u'Slide')), SimpleTerm(value='fadeslide', title=_(u'FadeSlide')), ] ) thumbnailsvoc = SimpleVocabulary( [SimpleTerm(value='show', title=_(u"Show thumbnails")), SimpleTerm(value='empty', title=_(u"Don't show thumbnails")), ] ) class IGalleriaLayer(Interface): """ Marker Default browser layer this product. """ class IGalleria(Interface): """ """ def __init__(self, context, request, *args, **kwargs): """ """ def galleriajs(self): """ """ def getThumbnails(self): """ """ def get_theme(self): """ """ def portal_url(self): """ """ def galleria_flickrid(self): """ """ def galleria_picasauserandid(self): """ """ class IGeneralSettings(Interface): """Some general settings. These fields will appear on the 'Default' tab. Option informations: http://galleria.io/docs/1.2/options/ """ autoplay = schema.Bool(title=_(u"Auto Play."), description=_(u"Sets Galleria to play slidehow when initialized."), default=True, required=True,) gallery_wait = schema.Int(title=_(u"Gallery Wait"), description=_(u"Sets how long Galleria should wait when trying to extract measurements."), default=5000, required=True,) showInf = schema.Bool(title=_(u"Show informations"), description=_(u"Toggles the caption."), default=True, required=True,) gallery_width = schema.Int(title=_(u"Gallery width"), description=_(u"Manually set a gallery width."), default=500, required=True,) gallery_height = schema.Int(title=_(u"Gallery height"), description=_(u"Manually set a gallery height."), default=500, required=True,) imagePosition = schema.TextLine(title=_(u"Image css position"), description=_(u"Eg. 'top right' or '20% 100%'"), default=_(u'center'), required=True,) lightbox = schema.Bool(title=_(u"Enable lightbox"), default=False, required=True,) showCounting = schema.Bool(title=_(u"Show counting"), description=_(u"Toggles the counter."), default=True, required=True,) transitions = schema.Choice(title=_(u"Transitions"), description=_(u"Defines what transition to use."), default=_(u'fade'), vocabulary=transitionsvoc, required=True,) transitionSpeed = schema.Int(title=_(u"Transition Speed"), description=_(u"Defines the speed of the transition."), default=400, required=True,) showimagenav = schema.Bool(title=_(u"show image navigation"), description=_(u"toggles the image navigation arrows."), default=True, required=True,) swipe = schema.Bool(title=_(u"swipe"), description=_(u"Enables a swipe movement for flicking through images on touch devices."), default=True, required=True,) selector = schema.TextLine(title=_(u"Selector jQuery"), description=_(u"Eg. '#content-core' or '#content' or '.galleria'. Do not change if you do not know what I mean."), default=u"#content-galleria", required=True,) thumbnails = schema.Choice(title=_(u"Show Thumbnails"), description=_(u"Sets the creation of thumbnails"), default=_(u'show'), vocabulary=thumbnailsvoc, required=True,) imagecrop = schema.Bool(title=_(u"Enable image crop"), description=_(u"Defines how the main image will be cropped inside it is container."), default=True, required=True,) responsive = schema.Bool(title=_(u"Sets Gallery in responsive mode"), description=_(u"Means that it will resize the entire container in dynamic proportions added in your CSS."), default=True, required=True,) debug = schema.Bool(title=_(u"Enable debug mode"), description=_(u"Set this to false to prevent debug messages."), default=False, required=True,) class IFaceBookPlugin(Interface): """ Enable/Disable FaceBook plugin """ facebook = schema.Bool(title=_(u"Enable facebook plugin"), description=_(u""), default=False,) facebook_max = schema.Int(title=_(u"Maximum number of photos."), description=_(u"Maximum number of photos to return (maximum value 100)."), default=20, required=True,) facebook_desc = schema.Bool(title=_(u"Show Description"), description=_(u"The plugin fetches the title per default. If you also wish to fetch the description, set this option to true."), default=False) class IFlickrPlugin(Interface): """ Enable/Disable Flickr plugin http://galleria.io/docs/1.2/plugins/flickr/ """ flickr = schema.Bool(title=_(u"Enable flickr plugin"), description=_(u""), default=False,) flickr_max = schema.Int(title=_(u"Maximum number of photos."), description=_(u"Maximum number of photos to return (maximum value 100)."), default=20, required=True,) flickr_desc = schema.Bool(title=_(u"Show Description"), description=_(u"The plugin fetches the title per default. If you also wish to fetch the description, set this option to true."), default=False) class IPicasaPlugin(Interface): """ Enable/Disable Picasa plugin http://galleria.io/docs/1.2/plugins/picasa/ """ picasa = schema.Bool(title=_(u"Enable picasa plugin"), description=_(u""), default=False,) picasa_max = schema.Int(title=_(u"Maximum number of photos."), description=_(u"Maximum number of photos to return (maximum value 100)."), default=20, required=True,) picasa_desc = schema.Bool(title=_(u"Show Description"), description=_(u"The plugin fetches the title per default. If you also wish to fetch the description, set this option to true."), default=False) class IHistoryPlugin(Interface): """ Enable/Disable History plugin http://galleria.io/docs/1.2/plugins/picasa/ """ history = schema.Bool(title=_(u"Enable history plugin"), description=_(u""), default=False,) class IGalleriaSettings(IGeneralSettings, IFlickrPlugin, IPicasaPlugin, IHistoryPlugin, IFaceBookPlugin): """The form schema contains all settings.""" class FormGroup1(group.Group): label = _(u"Flickr Plugin") fields = field.Fields(IFlickrPlugin) class FormGroup2(group.Group): label = _(u"Picasa Plugin") fields = field.Fields(IPicasaPlugin) class FormGroup3(group.Group): label = _(u"History Plugin") fields = field.Fields(IHistoryPlugin) class FormGroup4(group.Group): label = _(u"FaceBook Plugin") fields = field.Fields(IFaceBookPlugin)
/sc.galleria.support-1.0.1.tar.gz/sc.galleria.support-1.0.1/src/sc/galleria/support/interfaces.py
0.68763
0.181336
interfaces.py
pypi
from plone import api from plone.dexterity.browser.view import DefaultView from plone.memoize import forever from plone.memoize.instance import memoizedproperty from sc.photogallery.config import HAS_ZIPEXPORT from sc.photogallery.interfaces import IPhotoGallerySettings from sc.photogallery.utils import human_readable_size from sc.photogallery.utils import last_modified from sc.photogallery.utils import PhotoGalleryMixin from zope.component import getMultiAdapter import os if HAS_ZIPEXPORT: from ftw.zipexport.generation import ZipGenerator from ftw.zipexport.interfaces import IZipRepresentation class View(DefaultView, PhotoGalleryMixin): """Slideshow view for Photo Gallery content type.""" def id(self): return id(self) @memoizedproperty def results(self): return self.context.listFolderContents() @property def is_empty(self): return len(self.results) == 0 def image(self, obj, scale='large'): """Return an image scale if the item has an image field. :param obj: [required] :type obj: content type object :param scale: the scale to be used :type scale: string """ scales = obj.restrictedTraverse('@@images') return scales.scale('image', scale) def localized_time(self, obj, long_format=False): """Return the object time in a user-friendly way. :param item: [required] :type item: content type object :param long_format: show long date format if True :type scale: string """ return api.portal.get_localized_time(obj.Date(), long_format) @property def can_download(self): """Check if original images can be explicitly downloaded, that is, if downloading is enabled globally and the current object allows it. """ record = IPhotoGallerySettings.__identifier__ + '.enable_download' enabled_globally = api.portal.get_registry_record(record) allow_download = self.context.allow_download return enabled_globally and allow_download def img_size(self, item): try: size = item.size() # Archetypes except AttributeError: size = item.image.size # Dexterity return human_readable_size(size) @property def can_zipexport(self): """Check if original images can be downloaded as a ZIP file, that is, if ftw.zipexport is installed and downloading is allowed in the current object. """ return HAS_ZIPEXPORT and self.can_download @property def last_modified(self): return last_modified(self.context) def zip_url(self): base_url = self.context.absolute_url() url = '{0}/@@zip/{1}/{2}.zip'.format( base_url, str(self.last_modified), self.context.getId()) return url @forever.memoize def _zip_size(self, last_modified=None): if not HAS_ZIPEXPORT: return with ZipGenerator() as generator: for obj in [self.context]: repre = getMultiAdapter( (obj, self.request), interface=IZipRepresentation) for path, pointer in repre.get_files(): generator.add_file(path, pointer) zip_file = generator.generate() size = os.stat(zip_file.name).st_size return human_readable_size(size) def zip_size(self): return self._zip_size(self.last_modified)
/sc.photogallery-1.0b3.zip/sc.photogallery-1.0b3/src/sc/photogallery/browser/view.py
0.776835
0.209591
view.py
pypi
from collective.cover.tiles.base import IPersistentCoverTile from collective.cover.tiles.base import PersistentCoverTile from plone.app.uuid.utils import uuidToObject from plone.memoize import view from plone.tiles.interfaces import ITileDataManager from plone.uuid.interfaces import IUUID from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from sc.photogallery import _ from sc.photogallery.utils import PhotoGalleryMixin from zope import schema from zope.interface import implementer class IPhotoGalleryTile(IPersistentCoverTile): """A tile that shows a photo gallery.""" uuid = schema.TextLine( title=_(u'UUID'), required=False, readonly=True, ) @implementer(IPhotoGalleryTile) class PhotoGalleryTile(PersistentCoverTile, PhotoGalleryMixin): """A tile that shows a photo gallery.""" index = ViewPageTemplateFile('photogallery.pt') is_configurable = True is_editable = False is_droppable = True short_name = _(u'msg_short_name_photogallery', u'Photo Gallery') def accepted_ct(self): """Accept only Photo Gallery objects.""" return ['Photo Gallery'] def populate_with_object(self, obj): super(PhotoGalleryTile, self).populate_with_object(obj) # check permissions if obj.portal_type in self.accepted_ct(): uuid = IUUID(obj) data_mgr = ITileDataManager(self) data_mgr.set(dict(uuid=uuid)) def is_empty(self): return (self.data.get('uuid', None) is None or uuidToObject(self.data.get('uuid')) is None) @view.memoize def gallery(self): return uuidToObject(self.data.get('uuid')) @view.memoize def results(self): gallery = self.gallery() return gallery.listFolderContents() def image(self, obj, scale='large'): """Return an image scale if the item has an image field. :param obj: [required] :type obj: content type object :param scale: the scale to be used :type scale: string """ scales = obj.restrictedTraverse('@@images') return scales.scale('image', scale)
/sc.photogallery-1.0b3.zip/sc.photogallery-1.0b3/src/sc/photogallery/tiles/photogallery.py
0.756447
0.217691
photogallery.py
pypi
import logging import re from string import Template from Acquisition import aq_inner from Acquisition import Explicit from Products.CMFCore.utils import getToolByName from Products.Five import BrowserView from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from plone.app.layout.viewlets import ViewletBase from plone.memoize.view import memoize from plone.registry.interfaces import IRegistry from zope.component import adapts from zope.component import getUtility from zope.contentprovider.interfaces import IContentProvider from zope.interface import Interface from zope.interface import implements from zope.publisher.interfaces.browser import IBrowserRequest from zope.publisher.interfaces.browser import IBrowserView from ..controlpanel.bookmarks import IProvidersSchema logger = logging.getLogger(__name__) class SocialBookmarksBase(object): """Abstract Base class for social bookmarks. """ def _registry(self): return getUtility(IRegistry) def _all_providers(self): """ Return a dict with all providers """ reg = self._registry() providers = [reg[k] for k in reg.records.keys() if k.startswith('sc.social.bookmarks.providers')] all_providers = dict([(p.get('id'), p) for p in providers]) return all_providers def settings(self): reg = self._registry() controlpanel = reg.forInterface(IProvidersSchema, prefix="sc.social.bookmarks") return controlpanel def _availableProviders(self): all_providers = self._all_providers() bookmark_providers = self.settings().bookmark_providers or [] providers = [] for bookmark_id in bookmark_providers: provider = all_providers.get(bookmark_id, None) if not provider: continue providers.append(provider) return providers def providers(self): """Returns a list of dicts with providers already filtered and populated. """ context = aq_inner(self.context) portal_url = getToolByName(context, 'portal_url')() available = self._availableProviders() providers = [] # Attributes available to be substituted in the URL param = { 'title': context.Title(), 'description': context.Description(), 'url': context.absolute_url() } # BBB: Instead of using string formatting we moved to string Templates pattern = re.compile("\%\(([a-zA-Z]*)\)s") for provider in available: rendered_provider = provider.copy() url_tmpl = provider.get('url', '').strip() logo = provider.get('logo', '') if not url_tmpl or not logo: # A provider must have a logo and a share URL logger.error('Provider %s has not URL or logo specified', provider['id']) continue url_tmpl = re.sub(pattern, r'${\1}', url_tmpl) rendered_provider['url'] = Template(url_tmpl).safe_substitute(param) resource_name = provider.get('resource', 'sb_images') logo = provider.get('logo', '') rendered_provider['icon_url'] = '%s/++resource++%s/%s' % ( portal_url, resource_name, logo ) providers.append(rendered_provider) return providers @property def icons_only(self): """Flag whether to show icons only. """ return self.settings().show_icons_only or False @property def action_enabled(self): """Validates if social bookmarks should be enabled for this context using an action. """ return self.settings().use_as_action or False @property def enabled(self): """Validates if social bookmarks should be enabled for this context. """ context = aq_inner(self.context) enabled_portal_types = self.settings().enabled_portal_types or [] return context.portal_type in enabled_portal_types class SocialBookmarksProvider(Explicit, SocialBookmarksBase): """Social Bookmarks Viewlet content provider """ implements(IContentProvider) adapts(Interface, IBrowserRequest, IBrowserView) template = ViewPageTemplateFile(u'templates/bookmarks.pt') def __init__(self, context, request, view): self.__parent__ = view self.context = context self.request = request def update(self): pass def render(self): return self.template(self) class SocialBookmarksView(BrowserView, SocialBookmarksBase): """Social Bookmarks View """ class SocialBookmarksViewlet(ViewletBase, SocialBookmarksBase): """Social Bookmarks Viewlet """ template = ViewPageTemplateFile('templates/bookmarks_viewlet.pt') def render(self): return self.template(self)
/sc.social.bookmarks-1.3.2.tar.gz/sc.social.bookmarks-1.3.2/src/sc/social/bookmarks/browser/common.py
0.598664
0.15393
common.py
pypi
from plone.autoform import directives as form from plone.formwidget.namedfile.widget import NamedImageFieldWidget from plone.supermodel import model from sc.social.like import LikeMessageFactory as _ from sc.social.like.config import DEFAULT_ENABLED_CONTENT_TYPES from sc.social.like.config import DEFAULT_PLUGINS_ENABLED from sc.social.like.utils import validate_canonical_domain from sc.social.like.utils import validate_og_fallback_image from sc.social.like.vocabularies import FacebookButtonsVocabulary from sc.social.like.vocabularies import FacebookVerbsVocabulary from sc.social.like.vocabularies import TypeButtonVocabulary from zope import schema from zope.interface import Interface # BBB: for compatibility with installations made before 2.5.0 import sys sys.modules['sc.social.like.interfaces.socialikes'] = sys.modules[__name__] class ISocialLikeLayer(Interface): """A layer specific for this add-on product.""" class ISocialLikes(Interface): """ """ class IHelperView(Interface): """Social Like configuration helpers.""" def configs(): """Social Like configuration.""" def enabled_portal_types(): """Portal Types that will display our viewlet.""" def plugins_enabled(): """List of plugins enabled.""" def typebutton(): """Button to be used.""" def enabled(view): """Validates if the viewlet should be enabled for this context.""" def available_plugins(): """Return available plugins.""" def plugins(): """Return enabled plugins.""" def view_template_id(): """View or template id for this context.""" class ISocialLikeSettings(model.Schema): """Schema for the control panel form.""" enabled_portal_types = schema.Tuple( title=_(u'Content types'), description=_( u'help_portal_types', default=u'Please select content types in which the ' u'viewlet will be applied.', ), required=True, default=DEFAULT_ENABLED_CONTENT_TYPES, value_type=schema.Choice( vocabulary='plone.app.vocabularies.ReallyUserFriendlyTypes') ) plugins_enabled = schema.Tuple( title=_(u'Plugins'), description=_( u'help_enabled_plugins', default=u'Please select which plugins will be used', ), required=False, default=DEFAULT_PLUGINS_ENABLED, value_type=schema.Choice(vocabulary='sc.social.likes.plugins') ) validation_enabled = schema.Bool( title=_(u'Enable content validation?'), description=_( u'help_validation_enabled', default=u'Enables validation to check if content follows social networks sharing best practices. ' u'The validation includes title, description and lead image fields. ' u'This feature is only available for Dexterity-based content types.' ), default=True, ) typebutton = schema.Choice( title=_(u'Button style'), description=_( u'help_selected_buttons', default=u'Choose your button style.', ), required=True, default=u'horizontal', vocabulary=TypeButtonVocabulary, ) do_not_track = schema.Bool( title=_(u'Do not track users'), description=_( u'help_do_not_track', default=u'If enabled, the site will not provide advanced sharing ' u'widgets , instead simple links will be used.\n' u'This will limits user experience and features ' u'(like the share count) but will enhance users privacy: ' u'no 3rd party cookies will be sent to users.' ), default=False, ) model.fieldset( 'open_graph', label=u'Open Graph', fields=[ 'canonical_domain', 'fallback_image', ], ) canonical_domain = schema.URI( title=_(u'Canonical domain'), description=_( u'help_canonical_domain', default=u'The canonical domain will be used to construct the canonical URL (<code>og:url</code> property) of portal objects. ' u'Use the domain name of your site (e.g. <strong>http://www.example.org</strong> or <strong>https://www.example.org</strong>). ' u'Facebook will use the canonical URL to ensure that all actions such as likes and shares aggregate at the same URL rather than spreading across multiple versions of a page. ' u'Check <a href="https://pypi.python.org/pypi/sc.social.like">package documentation</a> for more information on how to use this feature.' ), required=True, constraint=validate_canonical_domain, ) form.widget('fallback_image', NamedImageFieldWidget) fallback_image = schema.ASCII( title=_(u'Fallback image'), description=_( u'help_fallback_image', default=u'Content without a lead image will use this image as fallback (<code>og:image</code> property). ' u'There could be a delay of up to 2 minutes when replacing this image.' ), required=False, constraint=validate_og_fallback_image, ) model.fieldset( 'facebook', label=u'Facebook', fields=[ 'fbaction', 'facebook_username', 'facebook_app_id', 'fbbuttons', 'fbshowlikes', 'facebook_prefetch_enabled' ], ) fbaction = schema.Choice( title=_(u'Verb to display'), description=_( u'help_verb_display', default=u'The verb to display in the Facebook button. ' u'Currently only "like" and "recommend" are ' u'supported.', ), required=True, default=u'like', vocabulary=FacebookVerbsVocabulary, ) facebook_username = schema.ASCIILine( title=_(u'Admins'), description=_( u'help_admins', default=u'A comma-separated list of either the ' u'Facebook IDs of page administrators.', ), required=False, default='', ) facebook_app_id = schema.ASCIILine( title=_(u'Application ID'), description=_( u'help_appid', default=u'A Facebook Platform application ID.\n' u'This is required when \"Do not track users\" option is enabled.', ), required=False, default='', ) fbbuttons = schema.Tuple( title=_(u'Facebook buttons'), description=_( u'help_fbbuttons', default=u'Select buttons to be shown', ), value_type=schema.Choice(vocabulary=FacebookButtonsVocabulary), required=True, default=(u'Like', ), ) fbshowlikes = schema.Bool( title=_(u'Show number of likes'), description=_( u'help_show_likes', default=u'If enabled, the Facebook button will show the number of ' u'Facebook users who have already liked this page.' ), default=True, ) facebook_prefetch_enabled = schema.Bool( title=_(u'Enable Facebook prefetch?'), description=_( u'help_facebook_prefetch_enabled', default=u'If enabled, an event is triggered to make Facebook ' u'crawler scrape and cache metadata every time a new ' u'piece content is published and every time published ' u'content is edited. ' u'This will keep the metadata updated on Facebook always.' ), default=False, ) model.fieldset( 'twitter', label=u'Twitter', fields=['twitter_username']) twitter_username = schema.ASCIILine( title=_(u'Twitter nick'), description=_( u'help_your_twitter_nick', default=u'Enter your twitter nick. eg. simplesconsultoria', ), required=False, default='', )
/sc.social.like-2.13b3.zip/sc.social.like-2.13b3/sc/social/like/interfaces.py
0.620966
0.174938
interfaces.py
pypi
from DateTime import DateTime from plone import api from plone.supermodel import model from sc.social.like import LikeMessageFactory as _ from sc.social.like.behaviors import ISocialMedia from sc.social.like.interfaces import ISocialLikeSettings from sc.social.like.logger import logger from sc.social.like.utils import get_valid_objects from sc.social.like.utils import validate_canonical_domain from z3c.form import button from z3c.form import field from z3c.form import form from zope import schema class ICanonicalURLUpdater(model.Schema): """A form to update the canonical url of portal objects based on a date.""" old_canonical_domain = schema.URI( title=_(u'Old canonical domain'), description=_( u'help_canonical_domain', default=u'The canonical domain will be used to construct the canonical URL (<code>og:url</code> property) of portal objects. ' u'Use the domain name of your site (e.g. <strong>http://www.example.org</strong> or <strong>https://www.example.org</strong>). ' u'Facebook will use the canonical URL to ensure that all actions such as likes and shares aggregate at the same URL rather than spreading across multiple versions of a page. ' u'Check <a href="https://pypi.python.org/pypi/sc.social.like">package documentation</a> for more information on how to use this feature.' ), required=True, constraint=validate_canonical_domain, ) published_before = schema.Date( title=_(u'Date'), description=_( u'help_published_before', default=u'Objects published before this date will be updated using the canonical domain defined in this form; ' u'objects published on or after this date will be updated using the canonical domain defined in the control panel configlet.' ), required=True, ) class CanonicalURLUpdater(form.Form): """A form to update the canonical url of portal objects based on a date.""" fields = field.Fields(ICanonicalURLUpdater) label = _(u'Canonical URL updater form') description = _( u'This form will update the canonical URL of all Dexterity-based ' u'objects in the catalog providing the Social Media behavior.' ) ignoreContext = True @property def canonical_domain(self): return api.portal.get_registry_record(name='canonical_domain', interface=ISocialLikeSettings) def update(self): super(CanonicalURLUpdater, self).update() # show error message if no canonical domain has been defined in the configlet if not self.canonical_domain: msg = _(u'Canonical domain has not been defined in the control panel configlet.') api.portal.show_message(message=msg, request=self.request, type='error') # disable the green bar and the portlet columns self.request.set('disable_border', 1) self.request.set('disable_plone.rightcolumn', 1) self.request.set('disable_plone.leftcolumn', 1) @property def update_button_enabled(self): """Condition to be used to display the "Update" button.""" return self.canonical_domain is not None @button.buttonAndHandler(_('Update'), name='update', condition=lambda form: form.update_button_enabled) def handle_update(self, action): data, errors = self.extractData() if errors: self.status = _(u'Please correct the errors.') return self.update_canonical_url(data) @button.buttonAndHandler(_(u'label_cancel', default=u'Cancel'), name='cancel') def handle_cancel(self, action): self.request.response.redirect(self.context.absolute_url()) def update_canonical_url(self, data): """Update the canonical URL of all objects in the catalog providing the ISocialMedia behavior. Objects published before the specified date will be updated using the canonical domain defined in this form; objects published on or after that date will be updated using the canonical domain defined in the control panel configlet. """ old_canonical_domain = data['old_canonical_domain'] new_canonical_domain = self.canonical_domain published_before = data['published_before'].isoformat() results = api.content.find( object_provides=ISocialMedia.__identifier__, review_state='published', ) total = len(results) logger.info(u'{0} objects will have their canonical URL updated'.format(total)) for obj in get_valid_objects(results): # FIXME: we're currently ignoring the Plone site id # https://github.com/collective/sc.social.like/issues/119 path = '/'.join(obj.getPhysicalPath()[2:]) if obj.effective_date < DateTime(published_before): # use the canonical domain defined in this form obj.canonical_url = '{0}/{1}'.format(old_canonical_domain, path) elif not obj.canonical_url: # use the canonical domain defined in the configlet obj.canonical_url = '{0}/{1}'.format(new_canonical_domain, path) logger.info(u'Done.') self.status = u'Update complete; {0} items processed.'.format(total)
/sc.social.like-2.13b3.zip/sc.social.like-2.13b3/sc/social/like/browser/canonicalurl.py
0.855821
0.246567
canonicalurl.py
pypi
from Acquisition import aq_inner from plone import api from plone.app.layout.globals.interfaces import IViewView from plone.formwidget.namedfile.converter import b64decode_file from plone.memoize.view import memoize from plone.memoize.view import memoize_contextless from plone.namedfile.browser import Download from plone.namedfile.file import NamedImage from plone.registry.interfaces import IRegistry from Products.Five import BrowserView from sc.social.like.interfaces import IHelperView from sc.social.like.interfaces import ISocialLikeSettings from sc.social.like.plugins import IPlugin from zope.component import getUtilitiesFor from zope.component import getUtility from zope.interface import implementer @implementer(IHelperView) class HelperView(BrowserView): """Social Like configuration helpers.""" def __init__(self, context, request): self.context = aq_inner(context) self.request = request @memoize_contextless def configs(self): registry = getUtility(IRegistry) # do not fail if the upgrade step has not being run settings = registry.forInterface(ISocialLikeSettings, check=False) return settings @memoize_contextless def enabled_portal_types(self): configs = self.configs() return configs.enabled_portal_types or [] @memoize_contextless def plugins_enabled(self): configs = self.configs() return configs.plugins_enabled or [] @memoize def enabled(self, view=None): if view and not IViewView.providedBy(view): return False enabled_portal_types = self.enabled_portal_types() return self.context.portal_type in enabled_portal_types @memoize_contextless def available_plugins(self): registered = dict(getUtilitiesFor(IPlugin)) return registered @memoize_contextless def plugins(self): available = self.available_plugins() enabled = self.plugins_enabled() plugins = [] for plugin_id in enabled: plugin = available.get(plugin_id, None) if plugin: plugins.append(plugin) return plugins @memoize_contextless def typebutton(self): configs = self.configs() return configs.typebutton @memoize def view_template_id(self): context_state = api.content.get_view( 'plone_context_state', self.context, self.request) return context_state.view_template_id() class FallBackImageView(Download): """Helper view to return the fallback image.""" def __init__(self, context, request): super(FallBackImageView, self).__init__(context, request) record = ISocialLikeSettings.__identifier__ + '.fallback_image' fallback_image = api.portal.get_registry_record(record, default=None) if fallback_image is not None: # set fallback image data for download filename, data = b64decode_file(fallback_image) data = NamedImage(data=data, filename=filename) self.filename, self.data = filename, data # enable image caching for 2 minutes self.request.RESPONSE.setHeader('Cache-Control', 'max-age=120, public') else: # resource no longer available self.data = NamedImage(data='') self.request.RESPONSE.setStatus(410) # Gone def _getFile(self): return self.data
/sc.social.like-2.13b3.zip/sc.social.like-2.13b3/sc/social/like/browser/helper.py
0.733738
0.170111
helper.py
pypi
from zope import schema from zope.component import getMultiAdapter from zope.formlib import form from zope.interface import implements from plone.app.portlets.portlets import base from plone.memoize import ram from plone.memoize.compress import xhtml_compress from plone.memoize.instance import memoize from plone.portlets.interfaces import IPortletDataProvider from plone.app.portlets.cache import get_language from Products.CMFCore.utils import getToolByName from Acquisition import aq_inner from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from sc.social.viewcounter import MessageFactory as _ class IViewCounterPortlet(IPortletDataProvider): name = schema.TextLine(title=_(u'Portlet title'), description=_(u''), required=True, default=u'Most Accessed') count = schema.Int(title=_(u'Number of items per list'), description=_(u'How many items to list.'), required=True, default=5) showLastHour = schema.Bool( title=_(u"Display last hour's top contents."), description=_(u"If selected the most accessed content from the last hour will be shown."), default=False, required=False) showLastDay = schema.Bool( title=_(u"Display last day's top contents."), description=_(u"If selected the most accessed content from the last day will be shown."), default=True, required=False) showLastWeek = schema.Bool( title=_(u"Display last week's top contents."), description=_(u"If selected the most accessed content from the last week will be shown."), default=False, required=False) showLastMonth = schema.Bool( title=_(u"Display last month's top contents."), description=_(u"If selected the most accessed content from the last month will be shown."), default=False, required=False) class Assignment(base.Assignment): implements(IViewCounterPortlet) def __init__(self, name=u'Most Accessed', count=5, showLastHour=True, showLastDay=False, showLastWeek=False, showLastMonth=False): self.name = name self.count = count self.showLastHour = showLastHour self.showLastDay = showLastDay self.showLastWeek = showLastWeek self.showLastMonth = showLastMonth @property def title(self): return _(u'Most accessed') def _render_cachekey(fun, self): fingerprint = ''.join([d[0] for d in self._data()]) return "".join(( getToolByName(aq_inner(self.context), 'portal_url')(), get_language(aq_inner(self.context), self.request), str(self.anonymous), self.manager.__name__, self.data.__name__, fingerprint)) class Renderer(base.Renderer): render = ViewPageTemplateFile('portlet.pt') def __init__(self, *args): base.Renderer.__init__(self, *args) context = aq_inner(self.context) portal_state = getMultiAdapter((context, self.request), name=u'plone_portal_state') self.anonymous = portal_state.anonymous() self.portal_url = portal_state.portal_url() self.reports = context.restrictedTraverse('@@vc_reports') plone_tools = getMultiAdapter((context, self.request), name=u'plone_tools') self.catalog = plone_tools.catalog() @property def available(self): return 1 def options(self): listOptions = [] data = self.viewcounter() if self.data.showLastHour and data.get('lastHour',None): listOptions.append(('lastHour',_(u"Last Hour"))) if self.data.showLastDay and data.get('lastDay',None): listOptions.append(('lastDay',_(u"Last Day"))) if self.data.showLastWeek and data.get('lastWeek',None): listOptions.append(('lastWeek',_(u"Last Week"))) if self.data.showLastMonth and data.get('lastMonth',None): listOptions.append(('lastMonth',_(u"Last Month"))) return listOptions def viewcounter(self): return self._data() @memoize def _data(self): count = self.data.count lastHour = self.data.showLastHour and tuple(self.reports.viewsLastHour()[:count]) lastDay = self.data.showLastDay and tuple(self.reports.viewsLastDay()[:count]) lastWeek = self.data.showLastWeek and tuple(self.reports.viewsLastWeek()[:count]) lastMonth = self.data.showLastMonth and tuple(self.reports.viewsLastMonth()[:count]) return {'lastHour':lastHour, 'lastDay':lastDay, 'lastWeek':lastWeek, 'lastMonth':lastMonth,} class AddForm(base.AddForm): form_fields = form.Fields(IViewCounterPortlet) label = _(u"Add a Most Accessed Contents Portlet") description = _(u"This portlet displays the list of most accessed content.") def create(self, data): return Assignment(name=u'Most Accessed', count=data.get('count', 5), showLastHour=data.get('showLastHour', True), showLastDay=data.get('showLastDay', False), showLastWeek=data.get('showLastWeek', False), showLastMonth=data.get('showLastMonth', False)) class EditForm(base.EditForm): form_fields = form.Fields(IViewCounterPortlet) label = _(u"Edit Most Accessed Contents Portlet") description = _(u"This portlet displays the list of most accessed content.")
/sc.social.viewcounter-1.0.7.tar.gz/sc.social.viewcounter-1.0.7/sc/social/viewcounter/browser/portlet.py
0.705481
0.264258
portlet.py
pypi
__revision__ = "src/engine/SCons/Memoize.py issue-2856:2676:d23b7a2f45e8 2012/08/05 15:38:28 garyo" __doc__ = """Memoizer A metaclass implementation to count hits and misses of the computed values that various methods cache in memory. Use of this modules assumes that wrapped methods be coded to cache their values in a consistent way. Here is an example of wrapping a method that returns a computed value, with no input parameters: memoizer_counters = [] # Memoization memoizer_counters.append(SCons.Memoize.CountValue('foo')) # Memoization def foo(self): try: # Memoization return self._memo['foo'] # Memoization except KeyError: # Memoization pass # Memoization result = self.compute_foo_value() self._memo['foo'] = result # Memoization return result Here is an example of wrapping a method that will return different values based on one or more input arguments: def _bar_key(self, argument): # Memoization return argument # Memoization memoizer_counters.append(SCons.Memoize.CountDict('bar', _bar_key)) # Memoization def bar(self, argument): memo_key = argument # Memoization try: # Memoization memo_dict = self._memo['bar'] # Memoization except KeyError: # Memoization memo_dict = {} # Memoization self._memo['dict'] = memo_dict # Memoization else: # Memoization try: # Memoization return memo_dict[memo_key] # Memoization except KeyError: # Memoization pass # Memoization result = self.compute_bar_value(argument) memo_dict[memo_key] = result # Memoization return result At one point we avoided replicating this sort of logic in all the methods by putting it right into this module, but we've moved away from that at present (see the "Historical Note," below.). Deciding what to cache is tricky, because different configurations can have radically different performance tradeoffs, and because the tradeoffs involved are often so non-obvious. Consequently, deciding whether or not to cache a given method will likely be more of an art than a science, but should still be based on available data from this module. Here are some VERY GENERAL guidelines about deciding whether or not to cache return values from a method that's being called a lot: -- The first question to ask is, "Can we change the calling code so this method isn't called so often?" Sometimes this can be done by changing the algorithm. Sometimes the *caller* should be memoized, not the method you're looking at. -- The memoized function should be timed with multiple configurations to make sure it doesn't inadvertently slow down some other configuration. -- When memoizing values based on a dictionary key composed of input arguments, you don't need to use all of the arguments if some of them don't affect the return values. Historical Note: The initial Memoizer implementation actually handled the caching of values for the wrapped methods, based on a set of generic algorithms for computing hashable values based on the method's arguments. This collected caching logic nicely, but had two drawbacks: Running arguments through a generic key-conversion mechanism is slower (and less flexible) than just coding these things directly. Since the methods that need memoized values are generally performance-critical, slowing them down in order to collect the logic isn't the right tradeoff. Use of the memoizer really obscured what was being called, because all the memoized methods were wrapped with re-used generic methods. This made it more difficult, for example, to use the Python profiler to figure out how to optimize the underlying methods. """ import types # A flag controlling whether or not we actually use memoization. use_memoizer = None CounterList = [] class Counter(object): """ Base class for counting memoization hits and misses. We expect that the metaclass initialization will have filled in the .name attribute that represents the name of the function being counted. """ def __init__(self, method_name): """ """ self.method_name = method_name self.hit = 0 self.miss = 0 CounterList.append(self) def display(self): fmt = " %7d hits %7d misses %s()" print fmt % (self.hit, self.miss, self.name) def __cmp__(self, other): try: return cmp(self.name, other.name) except AttributeError: return 0 class CountValue(Counter): """ A counter class for simple, atomic memoized values. A CountValue object should be instantiated in a class for each of the class's methods that memoizes its return value by simply storing the return value in its _memo dictionary. We expect that the metaclass initialization will fill in the .underlying_method attribute with the method that we're wrapping. We then call the underlying_method method after counting whether its memoized value has already been set (a hit) or not (a miss). """ def __call__(self, *args, **kw): obj = args[0] if self.method_name in obj._memo: self.hit = self.hit + 1 else: self.miss = self.miss + 1 return self.underlying_method(*args, **kw) class CountDict(Counter): """ A counter class for memoized values stored in a dictionary, with keys based on the method's input arguments. A CountDict object is instantiated in a class for each of the class's methods that memoizes its return value in a dictionary, indexed by some key that can be computed from one or more of its input arguments. We expect that the metaclass initialization will fill in the .underlying_method attribute with the method that we're wrapping. We then call the underlying_method method after counting whether the computed key value is already present in the memoization dictionary (a hit) or not (a miss). """ def __init__(self, method_name, keymaker): """ """ Counter.__init__(self, method_name) self.keymaker = keymaker def __call__(self, *args, **kw): obj = args[0] try: memo_dict = obj._memo[self.method_name] except KeyError: self.miss = self.miss + 1 else: key = self.keymaker(*args, **kw) if key in memo_dict: self.hit = self.hit + 1 else: self.miss = self.miss + 1 return self.underlying_method(*args, **kw) class Memoizer(object): """Object which performs caching of method calls for its 'primary' instance.""" def __init__(self): pass def Dump(title=None): if title: print title CounterList.sort() for counter in CounterList: counter.display() class Memoized_Metaclass(type): def __init__(cls, name, bases, cls_dict): super(Memoized_Metaclass, cls).__init__(name, bases, cls_dict) for counter in cls_dict.get('memoizer_counters', []): method_name = counter.method_name counter.name = cls.__name__ + '.' + method_name counter.underlying_method = cls_dict[method_name] replacement_method = types.MethodType(counter, None, cls) setattr(cls, method_name, replacement_method) def EnableMemoization(): global use_memoizer use_memoizer = 1 # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
/sc0ns-2.2.0-1.zip/sc0ns-2.2.0-1/SCons/Memoize.py
0.738292
0.359055
Memoize.py
pypi
__revision__ = "src/engine/SCons/Variables/EnumVariable.py issue-2856:2676:d23b7a2f45e8 2012/08/05 15:38:28 garyo" __all__ = ['EnumVariable',] import SCons.Errors def _validator(key, val, env, vals): if not val in vals: raise SCons.Errors.UserError( 'Invalid value for option %s: %s. Valid values are: %s' % (key, val, vals)) def EnumVariable(key, help, default, allowed_values, map={}, ignorecase=0): """ The input parameters describe a option with only certain values allowed. They are returned with an appropriate converter and validator appended. The result is usable for input to Variables.Add(). 'key' and 'default' are the values to be passed on to Variables.Add(). 'help' will be appended by the allowed values automatically 'allowed_values' is a list of strings, which are allowed as values for this option. The 'map'-dictionary may be used for converting the input value into canonical values (eg. for aliases). 'ignorecase' defines the behaviour of the validator: If ignorecase == 0, the validator/converter are case-sensitive. If ignorecase == 1, the validator/converter are case-insensitive. If ignorecase == 2, the validator/converter is case-insensitive and the converted value will always be lower-case. The 'validator' tests whether the value is in the list of allowed values. The 'converter' converts input values according to the given 'map'-dictionary (unmapped input values are returned unchanged). """ help = '%s (%s)' % (help, '|'.join(allowed_values)) # define validator if ignorecase >= 1: validator = lambda key, val, env: \ _validator(key, val.lower(), env, allowed_values) else: validator = lambda key, val, env: \ _validator(key, val, env, allowed_values) # define converter if ignorecase == 2: converter = lambda val: map.get(val.lower(), val).lower() elif ignorecase == 1: converter = lambda val: map.get(val.lower(), val) else: converter = lambda val: map.get(val, val) return (key, help, default, validator, converter) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
/sc0ns-2.2.0-1.zip/sc0ns-2.2.0-1/SCons/Variables/EnumVariable.py
0.650689
0.324396
EnumVariable.py
pypi
__doc__ = """ Textfile/Substfile builder for SCons. Create file 'target' which typically is a textfile. The 'source' may be any combination of strings, Nodes, or lists of same. A 'linesep' will be put between any part written and defaults to os.linesep. The only difference between the Textfile builder and the Substfile builder is that strings are converted to Value() nodes for the former and File() nodes for the latter. To insert files in the former or strings in the latter, wrap them in a File() or Value(), respectively. The values of SUBST_DICT first have any construction variables expanded (its keys are not expanded). If a value of SUBST_DICT is a python callable function, it is called and the result is expanded as the value. Values are substituted in a "random" order; if any substitution could be further expanded by another subsitition, it is unpredictible whether the expansion will occur. """ __revision__ = "src/engine/SCons/Tool/textfile.py issue-2856:2676:d23b7a2f45e8 2012/08/05 15:38:28 garyo" import SCons import os import re from SCons.Node import Node from SCons.Node.Python import Value from SCons.Util import is_String, is_Sequence, is_Dict def _do_subst(node, subs): """ Fetch the node contents and replace all instances of the keys with their values. For example, if subs is {'%VERSION%': '1.2345', '%BASE%': 'MyProg', '%prefix%': '/bin'}, then all instances of %VERSION% in the file will be replaced with 1.2345 and so forth. """ contents = node.get_text_contents() if not subs: return contents for (k,v) in subs: contents = re.sub(k, v, contents) return contents def _action(target, source, env): # prepare the line separator linesep = env['LINESEPARATOR'] if linesep is None: linesep = os.linesep elif is_String(linesep): pass elif isinstance(linesep, Value): linesep = linesep.get_text_contents() else: raise SCons.Errors.UserError( 'unexpected type/class for LINESEPARATOR: %s' % repr(linesep), None) # create a dictionary to use for the substitutions if 'SUBST_DICT' not in env: subs = None # no substitutions else: d = env['SUBST_DICT'] if is_Dict(d): d = list(d.items()) elif is_Sequence(d): pass else: raise SCons.Errors.UserError('SUBST_DICT must be dict or sequence') subs = [] for (k,v) in d: if callable(v): v = v() if is_String(v): v = env.subst(v) else: v = str(v) subs.append((k,v)) # write the file try: fd = open(target[0].get_path(), "wb") except (OSError,IOError), e: raise SCons.Errors.UserError("Can't write target file %s" % target[0]) # separate lines by 'linesep' only if linesep is not empty lsep = None for s in source: if lsep: fd.write(lsep) fd.write(_do_subst(s, subs)) lsep = linesep fd.close() def _strfunc(target, source, env): return "Creating '%s'" % target[0] def _convert_list_R(newlist, sources): for elem in sources: if is_Sequence(elem): _convert_list_R(newlist, elem) elif isinstance(elem, Node): newlist.append(elem) else: newlist.append(Value(elem)) def _convert_list(target, source, env): if len(target) != 1: raise SCons.Errors.UserError("Only one target file allowed") newlist = [] _convert_list_R(newlist, source) return target, newlist _common_varlist = ['SUBST_DICT', 'LINESEPARATOR'] _text_varlist = _common_varlist + ['TEXTFILEPREFIX', 'TEXTFILESUFFIX'] _text_builder = SCons.Builder.Builder( action = SCons.Action.Action(_action, _strfunc, varlist = _text_varlist), source_factory = Value, emitter = _convert_list, prefix = '$TEXTFILEPREFIX', suffix = '$TEXTFILESUFFIX', ) _subst_varlist = _common_varlist + ['SUBSTFILEPREFIX', 'TEXTFILESUFFIX'] _subst_builder = SCons.Builder.Builder( action = SCons.Action.Action(_action, _strfunc, varlist = _subst_varlist), source_factory = SCons.Node.FS.File, emitter = _convert_list, prefix = '$SUBSTFILEPREFIX', suffix = '$SUBSTFILESUFFIX', src_suffix = ['.in'], ) def generate(env): env['LINESEPARATOR'] = os.linesep env['BUILDERS']['Textfile'] = _text_builder env['TEXTFILEPREFIX'] = '' env['TEXTFILESUFFIX'] = '.txt' env['BUILDERS']['Substfile'] = _subst_builder env['SUBSTFILEPREFIX'] = '' env['SUBSTFILESUFFIX'] = '' def exists(env): return 1 # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
/sc0ns-2.2.0-1.zip/sc0ns-2.2.0-1/SCons/Tool/textfile.py
0.447943
0.314682
textfile.py
pypi