code
stringlengths
114
1.05M
path
stringlengths
3
312
quality_prob
float64
0.5
0.99
learning_prob
float64
0.2
1
filename
stringlengths
3
168
kind
stringclasses
1 value
import collections.abc as container_abcs import numpy as np import re import sys import torch from ...dataset import MultiConditionAnnotatedDataset def print_progress(epoch, logs, n_epochs=10000, only_val_losses=True): """Creates Message for '_print_progress_bar'. Parameters ---------- epoch: Integer Current epoch iteration. logs: Dict Dictionary of all current losses. n_epochs: Integer Maximum value of epochs. only_val_losses: Boolean If 'True' only the validation dataset losses are displayed, if 'False' additionally the training dataset losses are displayed. Returns ------- """ message = "" for key in logs: if only_val_losses: if "val_" in key and "unweighted" not in key: message += f" - {key:s}: {logs[key][-1]:7.2f}" else: if "unweighted" not in key: message += f" - {key:s}: {logs[key][-1]:7.2f}" _print_progress_bar(epoch + 1, n_epochs, prefix='', suffix=message, decimals=1, length=20) def _print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """Prints out message with a progress bar. Parameters ---------- iteration: Integer Current epoch. total: Integer Maximum value of epochs. prefix: String String before the progress bar. suffix: String String after the progress bar. decimals: Integer Digits after comma for all the losses. length: Integer Length of the progress bar. fill: String Symbol for filling the bar. Returns ------- """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filled_len = int(length * iteration // total) bar = fill * filled_len + '-' * (length - filled_len) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percent, '%', suffix)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() def custom_collate(batch): r"""Puts each data field into a tensor with outer dimension batch size""" np_str_obj_array_pattern = re.compile(r'[SaUO]') default_collate_err_msg_format = ( "default_collate: batch must contain tensors, numpy arrays, numbers, " "dicts or lists; found {}") elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(default_collate_err_msg_format.format(elem.dtype)) return custom_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, container_abcs.Mapping): output = {key: custom_collate([d[key] for d in batch]) for key in elem} return output def train_test_split(adata, train_frac=0.85, condition_key=None, cell_type_key=None, labeled_array=None): """Splits 'Anndata' object into training and validation data. Parameters ---------- adata: `~anndata.AnnData` `AnnData` object for training the model. train_frac: float Train-test split fraction. the model will be trained with train_frac for training and 1-train_frac for validation. Returns ------- Indices for training and validating the model. """ indices = np.arange(adata.shape[0]) if train_frac == 1: return indices, None if cell_type_key is not None: labeled_array = np.zeros((len(adata), 1)) if labeled_array is None else labeled_array labeled_array = np.ravel(labeled_array) labeled_idx = indices[labeled_array == 1] unlabeled_idx = indices[labeled_array == 0] train_labeled_idx = [] val_labeled_idx = [] train_unlabeled_idx = [] val_unlabeled_idx = [] if len(labeled_idx) > 0: cell_types = adata[labeled_idx].obs[cell_type_key].unique().tolist() for cell_type in cell_types: ct_idx = labeled_idx[adata[labeled_idx].obs[cell_type_key] == cell_type] n_train_samples = int(np.ceil(train_frac * len(ct_idx))) np.random.shuffle(ct_idx) train_labeled_idx.append(ct_idx[:n_train_samples]) val_labeled_idx.append(ct_idx[n_train_samples:]) if len(unlabeled_idx) > 0: n_train_samples = int(np.ceil(train_frac * len(unlabeled_idx))) train_unlabeled_idx.append(unlabeled_idx[:n_train_samples]) val_unlabeled_idx.append(unlabeled_idx[n_train_samples:]) train_idx = train_labeled_idx + train_unlabeled_idx val_idx = val_labeled_idx + val_unlabeled_idx train_idx = np.concatenate(train_idx) val_idx = np.concatenate(val_idx) elif condition_keys is not None: train_idx = [] val_idx = [] conditions = adata.obs['conditions_combined'].unique().tolist() for condition in conditions: cond_idx = indices[adata.obs['conditions_combined'] == condition] n_train_samples = int(np.ceil(train_frac * len(cond_idx))) np.random.shuffle(cond_idx) train_idx.append(cond_idx[:n_train_samples]) val_idx.append(cond_idx[n_train_samples:]) train_idx = np.concatenate(train_idx) val_idx = np.concatenate(val_idx) else: n_train_samples = int(np.ceil(train_frac * len(indices))) np.random.shuffle(indices) train_idx = indices[:n_train_samples] val_idx = indices[n_train_samples:] return train_idx, val_idx def make_dataset(adata, train_frac=0.9, condition_keys=None, cell_type_keys=None, condition_encoders=None, conditions_combined_encoder=None, cell_type_encoder=None, labeled_indices=None, ): """Splits 'adata' into train and validation data and converts them into 'CustomDatasetFromAdata' objects. Parameters ---------- Returns ------- Training 'CustomDatasetFromAdata' object, Validation 'CustomDatasetFromAdata' object """ # Preprare data for semisupervised learning labeled_array = np.zeros((len(adata), 1)) if labeled_indices is not None: labeled_array[labeled_indices] = 1 if cell_type_keys is not None: finest_level = None n_cts = 0 for cell_type_key in cell_type_keys: if len(adata.obs[cell_type_key].unique().tolist()) >= n_cts: n_cts = len(adata.obs[cell_type_key].unique().tolist()) finest_level = cell_type_key train_idx, val_idx = train_test_split(adata, train_frac, cell_type_key=finest_level, labeled_array=labeled_array) elif condition_key is not None: train_idx, val_idx = train_test_split(adata, train_frac, condition_key=condition_key) else: train_idx, val_idx = train_test_split(adata, train_frac) data_set_train = MultiConditionAnnotatedDataset( adata if train_frac == 1 else adata[train_idx], condition_keys=condition_keys, cell_type_keys=cell_type_keys, condition_encoders=condition_encoders, conditions_combined_encoder=conditions_combined_encoder, cell_type_encoder=cell_type_encoder, labeled_array=labeled_array[train_idx] ) if train_frac == 1: return data_set_train, None else: data_set_valid = MultiConditionAnnotatedDataset( adata[val_idx], condition_keys=condition_keys, cell_type_keys=cell_type_keys, condition_encoders=condition_encoders, conditions_combined_encoder=conditions_combined_encoder, cell_type_encoder=cell_type_encoder, labeled_array=labeled_array[val_idx] ) return data_set_train, data_set_valid def cov(x, rowvar=False, bias=False, ddof=None, aweights=None): """Estimates covariance matrix like numpy.cov""" # ensure at least 2D if x.dim() == 1: x = x.view(-1, 1) # treat each column as a data point, each row as a variable if rowvar and x.shape[0] != 1: x = x.t() if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 w = aweights if w is not None: if not torch.is_tensor(w): w = torch.tensor(w, dtype=torch.float) w_sum = torch.sum(w) avg = torch.sum(x * (w / w_sum)[:, None], 0) else: avg = torch.mean(x, 0) # Determine the normalization if w is None: fact = x.shape[0] - ddof elif ddof == 0: fact = w_sum elif aweights is None: fact = w_sum - ddof else: fact = w_sum - ddof * torch.sum(w * w) / w_sum xm = x.sub(avg.expand_as(x)) if w is None: X_T = xm.t() else: X_T = torch.mm(torch.diag(w), xm).t() c = torch.mm(X_T, xm) c = c / fact return c.squeeze() def t_dist(x, y, alpha): """student t-distribution, as same as used in t-SNE algorithm. q_ij = 1/(1+dist(x_i, u_j)^2), then normalize it. Arguments: inputs: the variable containing data, shape=(n_samples, n_features) Return: q: student's t-distribution with degree alpha, or soft labels for each sample. shape=(n_samples, n_clusters) """ n = x.size(0) m = y.size(0) d = x.size(1) if d != y.size(1): raise Exception x = x.unsqueeze(1).expand(n, m, d) y = y.unsqueeze(0).expand(n, m, d) distances = torch.pow(x - y, 2).sum(2) / alpha q = 1.0 / (1.0 + distances) q = torch.pow(q, (alpha + 1.0) / 2.0) q = (q.T / q.sum(1)).T return q def target_distribution(q): weight = torch.pow(q, 2) / q.sum(0) return (weight.T / weight.sum(1)).T def kl_loss(p, q): return (p * torch.log(p / q)).sum(1).mean()
/scArches-0.5.9.tar.gz/scArches-0.5.9/scarches/trainers/scpoli/_utils.py
0.702122
0.358662
_utils.py
pypi
from .trainer import Trainer import torch class trVAETrainer(Trainer): """ScArches Unsupervised Trainer class. This class contains the implementation of the unsupervised CVAE/TRVAE Trainer. Parameters ---------- model: trVAE Number of input features (i.e. gene in case of scRNA-seq). adata: : `~anndata.AnnData` Annotated data matrix. Has to be count data for 'nb' and 'zinb' loss and normalized log transformed data for 'mse' loss. condition_key: String column name of conditions in `adata.obs` data frame. cell_type_key: String column name of celltypes in `adata.obs` data frame. train_frac: Float Defines the fraction of data that is used for training and data that is used for validation. batch_size: Integer Defines the batch size that is used during each Iteration n_samples: Integer or None Defines how many samples are being used during each epoch. This should only be used if hardware resources are limited. clip_value: Float If the value is greater than 0, all gradients with an higher value will be clipped during training. weight decay: Float Defines the scaling factor for weight decay in the Adam optimizer. alpha_iter_anneal: Integer or None If not 'None', the KL Loss scaling factor will be annealed from 0 to 1 every iteration until the input integer is reached. alpha_epoch_anneal: Integer or None If not 'None', the KL Loss scaling factor will be annealed from 0 to 1 every epoch until the input integer is reached. use_early_stopping: Boolean If 'True' the EarlyStopping class is being used for training to prevent overfitting. early_stopping_kwargs: Dict Passes custom Earlystopping parameters. use_stratified_sampling: Boolean If 'True', the sampler tries to load equally distributed batches concerning the conditions in every iteration. use_stratified_split: Boolean If `True`, the train and validation data will be constructed in such a way that both have same distribution of conditions in the data. monitor: Boolean If `True', the progress of the training will be printed after each epoch. n_workers: Integer Passes the 'n_workers' parameter for the torch.utils.data.DataLoader class. seed: Integer Define a specific random seed to get reproducable results. """ def __init__( self, model, adata, **kwargs ): super().__init__(model, adata, **kwargs) def loss(self, total_batch=None): recon_loss, kl_loss, mmd_loss = self.model(**total_batch) loss = recon_loss + self.calc_alpha_coeff()*kl_loss + mmd_loss self.iter_logs["loss"].append(loss.item()) self.iter_logs["unweighted_loss"].append(recon_loss.item() + kl_loss.item() + mmd_loss.item()) self.iter_logs["recon_loss"].append(recon_loss.item()) self.iter_logs["kl_loss"].append(kl_loss.item()) if self.model.use_mmd: self.iter_logs["mmd_loss"].append(mmd_loss.item()) return loss
/scArches-0.5.9.tar.gz/scArches-0.5.9/scarches/trainers/trvae/unsupervised.py
0.92958
0.723041
unsupervised.py
pypi
import torch import torch.nn as nn from collections import defaultdict import numpy as np import time from torch.utils.data import DataLoader from torch.utils.data import WeightedRandomSampler from ...utils.monitor import EarlyStopping from ._utils import make_dataset, custom_collate, print_progress class Trainer: """ScArches base Trainer class. This class contains the implementation of the base CVAE/TRVAE Trainer. Parameters ---------- model: trVAE Number of input features (i.e. gene in case of scRNA-seq). adata: : `~anndata.AnnData` Annotated data matrix. Has to be count data for 'nb' and 'zinb' loss and normalized log transformed data for 'mse' loss. condition_key: String column name of conditions in `adata.obs` data frame. cell_type_keys: List List of column names of different celltype levels in `adata.obs` data frame. batch_size: Integer Defines the batch size that is used during each Iteration alpha_epoch_anneal: Integer or None If not 'None', the KL Loss scaling factor (alpha_kl) will be annealed from 0 to 1 every epoch until the input integer is reached. alpha_kl: Float Multiplies the KL divergence part of the loss. alpha_iter_anneal: Integer or None If not 'None', the KL Loss scaling factor will be annealed from 0 to 1 every iteration until the input integer is reached. use_early_stopping: Boolean If 'True' the EarlyStopping class is being used for training to prevent overfitting. reload_best: Boolean If 'True' the best state of the model during training concerning the early stopping criterion is reloaded at the end of training. early_stopping_kwargs: Dict Passes custom Earlystopping parameters. train_frac: Float Defines the fraction of data that is used for training and data that is used for validation. n_samples: Integer or None Defines how many samples are being used during each epoch. This should only be used if hardware resources are limited. use_stratified_sampling: Boolean If 'True', the sampler tries to load equally distributed batches concerning the conditions in every iteration. monitor: Boolean If `True', the progress of the training will be printed after each epoch. monitor_only_val: Boolean If `True', only the progress of the validation datset is displayed. clip_value: Float If the value is greater than 0, all gradients with an higher value will be clipped during training. weight decay: Float Defines the scaling factor for weight decay in the Adam optimizer. n_workers: Integer Passes the 'n_workers' parameter for the torch.utils.data.DataLoader class. seed: Integer Define a specific random seed to get reproducable results. """ def __init__(self, model, adata, condition_key: str = None, cell_type_keys: str = None, batch_size: int = 128, alpha_epoch_anneal: int = None, alpha_kl: float = 1., use_early_stopping: bool = True, reload_best: bool = True, early_stopping_kwargs: dict = None, **kwargs): self.adata = adata self.model = model self.condition_key = condition_key self.cell_type_keys = cell_type_keys self.batch_size = batch_size self.alpha_epoch_anneal = alpha_epoch_anneal self.alpha_iter_anneal = kwargs.pop("alpha_iter_anneal", None) self.use_early_stopping = use_early_stopping self.reload_best = reload_best self.alpha_kl = alpha_kl early_stopping_kwargs = (early_stopping_kwargs if early_stopping_kwargs else dict()) self.n_samples = kwargs.pop("n_samples", None) self.train_frac = kwargs.pop("train_frac", 0.9) self.use_stratified_sampling = kwargs.pop("use_stratified_sampling", True) self.weight_decay = kwargs.pop("weight_decay", 0.04) self.clip_value = kwargs.pop("clip_value", 0.0) self.n_workers = kwargs.pop("n_workers", 0) self.seed = kwargs.pop("seed", 2020) self.monitor = kwargs.pop("monitor", True) self.monitor_only_val = kwargs.pop("monitor_only_val", True) self.early_stopping = EarlyStopping(**early_stopping_kwargs) torch.manual_seed(self.seed) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): torch.cuda.manual_seed(self.seed) self.model.cuda() self.epoch = -1 self.n_epochs = None self.iter = 0 self.best_epoch = None self.best_state_dict = None self.current_loss = None self.previous_loss_was_nan = False self.nan_counter = 0 self.optimizer = None self.training_time = 0 self.train_data = None self.valid_data = None self.sampler = None self.dataloader_train = None self.dataloader_valid = None self.iters_per_epoch = None self.val_iters_per_epoch = None self.logs = defaultdict(list) # Create Train/Valid AnnotatetDataset objects self.train_data, self.valid_data = make_dataset( self.adata, train_frac=self.train_frac, condition_key=self.condition_key, cell_type_keys=self.cell_type_keys, condition_encoder=self.model.condition_encoder, cell_type_encoder=self.model.cell_type_encoder, ) def initialize_loaders(self): """ Initializes Train-/Test Data and Dataloaders with custom_collate and WeightedRandomSampler for Trainloader. Returns: """ if self.n_samples is None or self.n_samples > len(self.train_data): self.n_samples = len(self.train_data) self.iters_per_epoch = int(np.ceil(self.n_samples / self.batch_size)) if self.use_stratified_sampling: # Create Sampler and Dataloaders stratifier_weights = torch.tensor(self.train_data.stratifier_weights, device=self.device) self.sampler = WeightedRandomSampler(stratifier_weights, num_samples=self.n_samples, replacement=True) self.dataloader_train = torch.utils.data.DataLoader(dataset=self.train_data, batch_size=self.batch_size, sampler=self.sampler, collate_fn=custom_collate, num_workers=self.n_workers) else: self.dataloader_train = torch.utils.data.DataLoader(dataset=self.train_data, batch_size=self.batch_size, shuffle=True, collate_fn=custom_collate, num_workers=self.n_workers) if self.valid_data is not None: val_batch_size = self.batch_size if self.batch_size > len(self.valid_data): val_batch_size = len(self.valid_data) self.val_iters_per_epoch = int(np.ceil(len(self.valid_data) / self.batch_size)) self.dataloader_valid = torch.utils.data.DataLoader(dataset=self.valid_data, batch_size=val_batch_size, shuffle=True, collate_fn=custom_collate, num_workers=self.n_workers) def calc_alpha_coeff(self): """Calculates current alpha coefficient for alpha annealing. Parameters ---------- Returns ------- Current annealed alpha value """ if self.alpha_epoch_anneal is not None: alpha_coeff = min(self.alpha_kl * self.epoch / self.alpha_epoch_anneal, self.alpha_kl) elif self.alpha_iter_anneal is not None: alpha_coeff = min((self.alpha_kl * (self.epoch * self.iters_per_epoch + self.iter) / self.alpha_iter_anneal), self.alpha_kl) else: alpha_coeff = self.alpha_kl return alpha_coeff def train(self, n_epochs=400, lr=1e-3, eps=0.01): self.initialize_loaders() begin = time.time() self.model.train() self.n_epochs = n_epochs params = filter(lambda p: p.requires_grad, self.model.parameters()) self.optimizer = torch.optim.Adam(params, lr=lr, eps=eps, weight_decay=self.weight_decay) self.before_loop() for self.epoch in range(n_epochs): self.on_epoch_begin(lr, eps) self.iter_logs = defaultdict(list) for self.iter, batch_data in enumerate(self.dataloader_train): for key, batch in batch_data.items(): batch_data[key] = batch.to(self.device) # Loss Calculation self.on_iteration(batch_data) # Validation of Model, Monitoring, Early Stopping self.on_epoch_end() if self.use_early_stopping: if not self.check_early_stop(): break if self.best_state_dict is not None and self.reload_best: print("Saving best state of network...") print("Best State was in Epoch", self.best_epoch) self.model.load_state_dict(self.best_state_dict) self.model.eval() self.after_loop() self.training_time += (time.time() - begin) def before_loop(self): pass def on_epoch_begin(self, lr, eps): pass def after_loop(self): pass def on_iteration(self, batch_data): # Dont update any weight on first layers except condition weights if self.model.freeze: for name, module in self.model.named_modules(): if isinstance(module, nn.BatchNorm1d): if not module.weight.requires_grad: module.affine = False module.track_running_stats = False # Calculate Loss depending on Trainer/Model self.current_loss = loss = self.loss(batch_data) self.optimizer.zero_grad() loss.backward() # Gradient Clipping if self.clip_value > 0: torch.nn.utils.clip_grad_value_(self.model.parameters(), self.clip_value) self.optimizer.step() def on_epoch_end(self): # Get Train Epoch Logs for key in self.iter_logs: self.logs["epoch_" + key].append(np.array(self.iter_logs[key]).mean()) # Validate Model if self.valid_data is not None: self.validate() # Monitor Logs if self.monitor: print_progress(self.epoch, self.logs, self.n_epochs, self.monitor_only_val) @torch.no_grad() def validate(self): self.model.eval() self.iter_logs = defaultdict(list) # Calculate Validation Losses for val_iter, batch_data in enumerate(self.dataloader_valid): for key, batch in batch_data.items(): batch_data[key] = batch.to(self.device) val_loss = self.loss(batch_data) # Get Validation Logs for key in self.iter_logs: self.logs["val_" + key].append(np.array(self.iter_logs[key]).mean()) self.model.train() def check_early_stop(self): # Calculate Early Stopping and best state early_stopping_metric = self.early_stopping.early_stopping_metric if self.early_stopping.update_state(self.logs[early_stopping_metric][-1]): self.best_state_dict = self.model.state_dict() self.best_epoch = self.epoch continue_training, update_lr = self.early_stopping.step(self.logs[early_stopping_metric][-1]) if update_lr: print(f'\nADJUSTED LR') for param_group in self.optimizer.param_groups: param_group["lr"] *= self.early_stopping.lr_factor return continue_training
/scArches-0.5.9.tar.gz/scArches-0.5.9/scarches/trainers/trvae/trainer.py
0.92382
0.524943
trainer.py
pypi
import sys import numpy as np import re import torch import collections.abc as container_abcs from torch.utils.data import DataLoader from ...dataset import trVAEDataset def print_progress(epoch, logs, n_epochs=10000, only_val_losses=True): """Creates Message for '_print_progress_bar'. Parameters ---------- epoch: Integer Current epoch iteration. logs: Dict Dictionary of all current losses. n_epochs: Integer Maximum value of epochs. only_val_losses: Boolean If 'True' only the validation dataset losses are displayed, if 'False' additionally the training dataset losses are displayed. Returns ------- """ message = "" for key in logs: if only_val_losses: if "val_" in key and "unweighted" not in key: message += f" - {key:s}: {logs[key][-1]:7.10f}" else: if "unweighted" not in key: message += f" - {key:s}: {logs[key][-1]:7.10f}" _print_progress_bar(epoch + 1, n_epochs, prefix='', suffix=message, decimals=1, length=20) def _print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """Prints out message with a progress bar. Parameters ---------- iteration: Integer Current epoch. total: Integer Maximum value of epochs. prefix: String String before the progress bar. suffix: String String after the progress bar. decimals: Integer Digits after comma for all the losses. length: Integer Length of the progress bar. fill: String Symbol for filling the bar. Returns ------- """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filled_len = int(length * iteration // total) bar = fill * filled_len + '-' * (length - filled_len) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percent, '%', suffix)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() def train_test_split(adata, train_frac=0.85, condition_key=None, cell_type_key=None, labeled_array=None): """Splits 'Anndata' object into training and validation data. Parameters ---------- adata: `~anndata.AnnData` `AnnData` object for training the model. train_frac: float Train-test split fraction. the model will be trained with train_frac for training and 1-train_frac for validation. Returns ------- Indices for training and validating the model. """ indices = np.arange(adata.shape[0]) if train_frac == 1: return indices, None if cell_type_key is not None: labeled_array = np.zeros((len(adata), 1)) if labeled_array is None else labeled_array labeled_array = np.ravel(labeled_array) labeled_idx = indices[labeled_array == 1] unlabeled_idx = indices[labeled_array == 0] train_labeled_idx = [] val_labeled_idx = [] train_unlabeled_idx = [] val_unlabeled_idx = [] #TODO this is horribly inefficient if len(labeled_idx) > 0: cell_types = adata[labeled_idx].obs[cell_type_key].unique().tolist() for cell_type in cell_types: ct_idx = labeled_idx[adata[labeled_idx].obs[cell_type_key] == cell_type] n_train_samples = int(np.ceil(train_frac * len(ct_idx))) np.random.shuffle(ct_idx) train_labeled_idx.append(ct_idx[:n_train_samples]) val_labeled_idx.append(ct_idx[n_train_samples:]) if len(unlabeled_idx) > 0: n_train_samples = int(np.ceil(train_frac * len(unlabeled_idx))) train_unlabeled_idx.append(unlabeled_idx[:n_train_samples]) val_unlabeled_idx.append(unlabeled_idx[n_train_samples:]) train_idx = train_labeled_idx + train_unlabeled_idx val_idx = val_labeled_idx + val_unlabeled_idx train_idx = np.concatenate(train_idx) val_idx = np.concatenate(val_idx) elif condition_key is not None: train_idx = [] val_idx = [] conditions = adata.obs[condition_key].unique().tolist() for condition in conditions: cond_idx = indices[adata.obs[condition_key] == condition] n_train_samples = int(np.ceil(train_frac * len(cond_idx))) #np.random.shuffle(cond_idx) train_idx.append(cond_idx[:n_train_samples]) val_idx.append(cond_idx[n_train_samples:]) train_idx = np.concatenate(train_idx) val_idx = np.concatenate(val_idx) else: n_train_samples = int(np.ceil(train_frac * len(indices))) np.random.shuffle(indices) train_idx = indices[:n_train_samples] val_idx = indices[n_train_samples:] return train_idx, val_idx def make_dataset(adata, train_frac=0.9, condition_key=None, cell_type_keys=None, condition_encoder=None, cell_type_encoder=None, labeled_indices=None, ): """Splits 'adata' into train and validation data and converts them into 'CustomDatasetFromAdata' objects. Parameters ---------- Returns ------- Training 'CustomDatasetFromAdata' object, Validation 'CustomDatasetFromAdata' object """ # Preprare data for semisupervised learning print(f"Preparing {adata.shape}") labeled_array = np.zeros((len(adata), 1)) if labeled_indices is not None: labeled_array[labeled_indices] = 1 if cell_type_keys is not None: finest_level = None n_cts = 0 for cell_type_key in cell_type_keys: if len(adata.obs[cell_type_key].unique().tolist()) >= n_cts: n_cts = len(adata.obs[cell_type_key].unique().tolist()) finest_level = cell_type_key print(f"Splitting data {adata.shape}") train_idx, val_idx = train_test_split(adata, train_frac, cell_type_key=finest_level, labeled_array=labeled_array) elif condition_key is not None: train_idx, val_idx = train_test_split(adata, train_frac, condition_key=condition_key) else: train_idx, val_idx = train_test_split(adata, train_frac) print("Instantiating dataset") data_set_train = trVAEDataset( adata if train_frac == 1 else adata[train_idx], condition_key=condition_key, cell_type_keys=cell_type_keys, condition_encoder=condition_encoder, cell_type_encoder=cell_type_encoder, labeled_array=labeled_array[train_idx] ) if train_frac == 1: return data_set_train, None else: data_set_valid = trVAEDataset( adata[val_idx], condition_key=condition_key, cell_type_keys=cell_type_keys, condition_encoder=condition_encoder, cell_type_encoder=cell_type_encoder, labeled_array=labeled_array[val_idx] ) return data_set_train, data_set_valid def custom_collate(batch): r"""Puts each data field into a tensor with outer dimension batch size""" np_str_obj_array_pattern = re.compile(r'[SaUO]') default_collate_err_msg_format = ( "default_collate: batch must contain tensors, numpy arrays, numbers, " "dicts or lists; found {}") elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(default_collate_err_msg_format.format(elem.dtype)) return custom_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, container_abcs.Mapping): output = {key: custom_collate([d[key] for d in batch]) for key in elem} return output
/scArches-0.5.9.tar.gz/scArches-0.5.9/scarches/trainers/trvae/_utils.py
0.716119
0.353233
_utils.py
pypi
from typing import Optional import anndata import logging import torch from torch.distributions import Normal import numpy as np from scvi import _CONSTANTS from scarchest.dataset.scvi import ScviDataLoader from scarchest.models.scvi import totalVI logger = logging.getLogger(__name__) def _unpack_tensors(tensors): x = tensors[_CONSTANTS.X_KEY] local_l_mean = tensors[_CONSTANTS.LOCAL_L_MEAN_KEY] local_l_var = tensors[_CONSTANTS.LOCAL_L_VAR_KEY] batch_index = tensors[_CONSTANTS.BATCH_KEY] labels = tensors[_CONSTANTS.LABELS_KEY] y = tensors[_CONSTANTS.PROTEIN_EXP_KEY] return x, local_l_mean, local_l_var, batch_index, labels, y class TotalDataLoader(ScviDataLoader): """ Extended data loader for totalVI. Parameters ---------- model : A model instance from class ``TOTALVI`` adata: A registered AnnData object shuffle : Specifies if a `RandomSampler` or a `SequentialSampler` should be used indices : Specifies how the data should be split with regards to train/test or labelled/unlabelled use_cuda : Default: ``True`` data_loader_kwargs : Keyword arguments to passed into the `DataLoader` """ def __init__( self, model: totalVI, adata: anndata.AnnData, shuffle: bool = False, indices: Optional[np.ndarray] = None, use_cuda: bool = True, batch_size: int = 256, data_loader_kwargs=dict(), ): super().__init__( model, adata, shuffle=shuffle, indices=indices, use_cuda=use_cuda, batch_size=batch_size, data_loader_kwargs=data_loader_kwargs, ) @property def _data_and_attributes(self): return { _CONSTANTS.X_KEY: np.float32, _CONSTANTS.BATCH_KEY: np.int64, _CONSTANTS.LOCAL_L_MEAN_KEY: np.float32, _CONSTANTS.LOCAL_L_VAR_KEY: np.float32, _CONSTANTS.LABELS_KEY: np.int64, _CONSTANTS.PROTEIN_EXP_KEY: np.float32, } @torch.no_grad() def elbo(self): elbo = self.compute_elbo(self.model) return elbo elbo.mode = "min" @torch.no_grad() def reconstruction_error(self, mode="total"): ll_gene, ll_protein = self.compute_reconstruction_error(self.model) if mode == "total": return ll_gene + ll_protein elif mode == "gene": return ll_gene else: return ll_protein reconstruction_error.mode = "min" @torch.no_grad() def marginal_ll(self, n_mc_samples=1000): ll = self.compute_marginal_log_likelihood() return ll @torch.no_grad() def get_protein_background_mean(self): background_mean = [] for tensors in self: x, _, _, batch_index, label, y = _unpack_tensors(tensors) outputs = self.model.inference( x, y, batch_index=batch_index, label=label, n_samples=1 ) b_mean = outputs["py_"]["rate_back"] background_mean += [np.array(b_mean.cpu())] return np.concatenate(background_mean) def compute_elbo(self, vae: totalVI, **kwargs): """ Computes the ELBO. The ELBO is the reconstruction error + the KL divergences between the variational distributions and the priors. It differs from the marginal log likelihood. Specifically, it is a lower bound on the marginal log likelihood plus a term that is constant with respect to the variational distribution. It still gives good insights on the modeling of the data, and is fast to compute. Parameters ---------- vae vae model **kwargs keyword args for forward """ # Iterate once over the data loader and computes the total log_likelihood elbo = 0 for _, tensors in enumerate(self): x, local_l_mean, local_l_var, batch_index, labels, y = _unpack_tensors( tensors ) ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_gene_l, kl_div_back_pro, ) = vae( x, y, local_l_mean, local_l_var, batch_index=batch_index, label=labels, **kwargs, ) elbo += torch.sum( reconst_loss_gene + reconst_loss_protein + kl_div_z + kl_div_gene_l + kl_div_back_pro ).item() n_samples = len(self.indices) return elbo / n_samples def compute_reconstruction_error(self, vae: totalVI, **kwargs): r""" Computes log p(x/z), which is the reconstruction error. Differs from the marginal log likelihood, but still gives good insights on the modeling of the data, and is fast to compute This is really a helper function to self.ll, self.ll_protein, etc. """ # Iterate once over the data loader and computes the total log_likelihood log_lkl_gene = 0 log_lkl_protein = 0 for _, tensors in enumerate(self): x, local_l_mean, local_l_var, batch_index, labels, y = _unpack_tensors( tensors ) ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_l_gene, kl_div_back_pro, ) = vae( x, y, local_l_mean, local_l_var, batch_index=batch_index, label=labels, **kwargs, ) log_lkl_gene += torch.sum(reconst_loss_gene).item() log_lkl_protein += torch.sum(reconst_loss_protein).item() n_samples = len(self.indices) return log_lkl_gene / n_samples, log_lkl_protein / n_samples def compute_marginal_log_likelihood( self, n_samples_mc: int = 100, batch_size: int = 96 ): """ Computes a biased estimator for log p(x, y), which is the marginal log likelihood. Despite its bias, the estimator still converges to the real value of log p(x, y) when n_samples_mc (for Monte Carlo) goes to infinity (a fairly high value like 100 should be enough). 5000 is the standard in machine learning publications. Due to the Monte Carlo sampling, this method is not as computationally efficient as computing only the reconstruction loss Parameters ---------- n_samples_mc (Default value = 100) batch_size (Default value = 96) """ # Uses MC sampling to compute a tighter lower bound on log p(x) log_lkl = 0 for _, tensors in enumerate(self.update_batch_size(batch_size)): x, local_l_mean, local_l_var, batch_index, labels, y = _unpack_tensors( tensors ) to_sum = torch.zeros(x.size()[0], n_samples_mc) for i in range(n_samples_mc): # Distribution parameters and sampled variables outputs = self.model.inference(x, y, batch_index, labels) qz_m = outputs["qz_m"] qz_v = outputs["qz_v"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] px_ = outputs["px_"] py_ = outputs["py_"] log_library = outputs["untran_l"] # really need not softmax transformed random variable z = outputs["untran_z"] log_pro_back_mean = outputs["log_pro_back_mean"] # Reconstruction Loss ( reconst_loss_gene, reconst_loss_protein, ) = self.model.get_reconstruction_loss(x, y, px_, py_) # Log-probabilities p_l_gene = ( Normal(local_l_mean, local_l_var.sqrt()) .log_prob(log_library) .sum(dim=-1) ) p_z = Normal(0, 1).log_prob(z).sum(dim=-1) p_mu_back = self.model.back_mean_prior.log_prob(log_pro_back_mean).sum( dim=-1 ) p_xy_zl = -(reconst_loss_gene + reconst_loss_protein) q_z_x = Normal(qz_m, qz_v.sqrt()).log_prob(z).sum(dim=-1) q_l_x = Normal(ql_m, ql_v.sqrt()).log_prob(log_library).sum(dim=-1) q_mu_back = ( Normal(py_["back_alpha"], py_["back_beta"]) .log_prob(log_pro_back_mean) .sum(dim=-1) ) to_sum[:, i] = ( p_z + p_l_gene + p_mu_back + p_xy_zl - q_z_x - q_l_x - q_mu_back ) batch_log_lkl = torch.logsumexp(to_sum, dim=-1) - np.log(n_samples_mc) log_lkl += torch.sum(batch_log_lkl).item() n_samples = len(self.indices) # The minus sign is there because we actually look at the negative log likelihood return -log_lkl / n_samples
/scArchest-0.0.1-py3-none-any.whl/scarchest/dataset/scvi/total_data_loader.py
0.958079
0.320476
total_data_loader.py
pypi
import numpy as np import logging from sklearn.neighbors import KNeighborsClassifier import torch from scvi.core import unsupervised_clustering_accuracy from scvi import _CONSTANTS from scarchest.dataset.scvi import ScviDataLoader logger = logging.getLogger(__name__) class AnnotationDataLoader(ScviDataLoader): def __init__(self, *args, model_zl=False, **kwargs): super().__init__(*args, **kwargs) self.model_zl = model_zl def accuracy(self): model, cls = ( (self.sampling_model, self.model) if hasattr(self, "sampling_model") else (self.model, None) ) acc = compute_accuracy(model, self, classifier=cls, model_zl=self.model_zl) logger.debug("Acc: %.4f" % (acc)) return acc accuracy.mode = "max" @torch.no_grad() def hierarchical_accuracy(self): all_y, all_y_pred = self.compute_predictions() acc = np.mean(all_y == all_y_pred) all_y_groups = np.array([self.model.labels_groups[y] for y in all_y]) all_y_pred_groups = np.array([self.model.labels_groups[y] for y in all_y_pred]) h_acc = np.mean(all_y_groups == all_y_pred_groups) logger.debug("Hierarchical Acc : %.4f\n" % h_acc) return acc accuracy.mode = "max" @torch.no_grad() def compute_predictions(self, soft=False): """ Parameters ---------- soft (Default value = False) Returns ------- the true labels and the predicted labels """ model, cls = ( (self.sampling_model, self.model) if hasattr(self, "sampling_model") else (self.model, None) ) return compute_predictions( model, self, classifier=cls, soft=soft, model_zl=self.model_zl ) @torch.no_grad() def unsupervised_classification_accuracy(self): all_y, all_y_pred = self.compute_predictions() uca = unsupervised_clustering_accuracy(all_y, all_y_pred)[0] logger.debug("UCA : %.4f" % (uca)) return uca unsupervised_classification_accuracy.mode = "max" @torch.no_grad() def nn_latentspace(self, data_loader): data_train, _, labels_train = self.get_latent() data_test, _, labels_test = data_loader.get_latent() nn = KNeighborsClassifier() nn.fit(data_train, labels_train) score = nn.score(data_test, labels_test) return score @torch.no_grad() def compute_accuracy(vae, data_loader, classifier=None, model_zl=False): all_y, all_y_pred = compute_predictions( vae, data_loader, classifier=classifier, model_zl=model_zl ) return np.mean(all_y == all_y_pred) @torch.no_grad() def compute_predictions( model, data_loader, classifier=None, soft=False, model_zl=False ): all_y_pred = [] all_y = [] for _, tensors in enumerate(data_loader): sample_batch = tensors[_CONSTANTS.X_KEY] labels = tensors[_CONSTANTS.LABELS_KEY] all_y += [labels.view(-1).cpu()] if hasattr(model, "classify"): if model.modified: batch_index = tensors[_CONSTANTS.BATCH_KEY] y_pred = model.classify(sample_batch, batch_index=batch_index) else: y_pred = model.classify(sample_batch) elif classifier is not None: # Then we use the specified classifier if model is not None: if model.log_variational: sample_batch = torch.log(1 + sample_batch) if model_zl: if model.modified: batch_index = tensors[_CONSTANTS.BATCH_KEY] sample_z = model.z_encoder(sample_batch, batch_index)[0] sample_l = model.l_encoder(sample_batch)[0] else: sample_z = model.z_encoder(sample_batch)[0] sample_l = model.l_encoder(sample_batch)[0] sample_batch = torch.cat((sample_z, sample_l), dim=-1) else: if model.modified: batch_index = tensors[_CONSTANTS.BATCH_KEY] sample_batch, _, _ = model.z_encoder(sample_batch, batch_index) else: sample_batch, _, _ = model.z_encoder(sample_batch) y_pred = classifier(sample_batch) else: # The model is the raw classifier y_pred = model(sample_batch) if not soft: y_pred = y_pred.argmax(dim=-1) all_y_pred += [y_pred.cpu()] all_y_pred = np.array(torch.cat(all_y_pred)) all_y = np.array(torch.cat(all_y)) return all_y, all_y_pred
/scArchest-0.0.1-py3-none-any.whl/scarchest/dataset/scvi/annotation_data_loader.py
0.849066
0.280179
annotation_data_loader.py
pypi
import numpy as np import scanpy as sc from scarchest.dataset.trvae import AnnotatedDataset from scarchest.dataset.trvae._utils import label_encoder class MetaAnnotatedDataset(object): def __init__(self, adata: sc.AnnData, task_key: str, meta_test_task: str = None, task_encoder=None, cell_type_key=None, cell_type_encoder=None, size_factors_key=None, ): self.adata = adata self.meta_test_task = meta_test_task self.task_key = task_key self.unique_tasks = list(np.unique(self.adata.obs[task_key])) _, self.task_encoder = label_encoder(self.adata, encoder=task_encoder, condition_key=self.task_key) self.meta_train_tasks = [task for task in self.unique_tasks if task != self.meta_test_task] self.meta_test_tasks = [task for task in self.unique_tasks if task == self.meta_test_task] self.cell_type_encoder = cell_type_encoder self.cell_type_key = cell_type_key self.unique_cell_types = np.unique(self.adata.obs[cell_type_key]) if self.cell_type_key else None self.size_factors_key = size_factors_key self.meta_train_tasks_adata = [AnnotatedDataset( adata=self.adata[self.adata.obs[self.task_key] == task], condition_key=self.task_key, condition_encoder=self.task_encoder, cell_type_key=self.cell_type_key, cell_type_encoder=self.cell_type_encoder, ) for task in self.meta_train_tasks] if self.meta_test_task is not None: self.meta_test_task_adata = AnnotatedDataset( adata=self.adata[self.adata.obs[self.task_key] == self.meta_test_task], condition_key=self.task_key, condition_encoder=self.task_encoder, cell_type_key=self.cell_type_key, cell_type_encoder=None, size_factors_key=size_factors_key, ) else: self.meta_test_task_adata = None
/scArchest-0.0.1-py3-none-any.whl/scarchest/dataset/mars/meta_anndata.py
0.545165
0.243789
meta_anndata.py
pypi
import numpy as np import torch from torch.utils.data import Dataset from scipy import sparse from .data_handling import remove_sparsity from ._utils import label_encoder class AnnotatedDataset(Dataset): def __init__(self, adata, condition_key=None, condition_encoder=None, cell_type_key=None, cell_type_encoder=None, size_factors_key=None, unique_conditions=None, ): self.adata = adata if sparse.issparse(self.adata.X): self.adata = remove_sparsity(self.adata) self.data = np.asarray(self.adata.X) self.condition_encoder = condition_encoder self.condition_key = condition_key self.unique_conditions = unique_conditions self.cell_type_encoder = cell_type_encoder self.cell_type_key = cell_type_key self.unique_cell_types = None self.size_factors_key = size_factors_key if self.condition_key is not None: if self.unique_conditions is None: self.unique_conditions = adata.obs[condition_key].unique().tolist() self.conditions, self.condition_encoder = label_encoder(self.adata, encoder=self.condition_encoder, condition_key=condition_key) self.conditions = np.array(self.conditions).reshape(-1, ) if self.cell_type_key is not None: self.unique_cell_types = adata.obs[cell_type_key].unique().tolist() self.cell_types, self.cell_type_encoder = label_encoder(self.adata, encoder=self.cell_type_encoder, condition_key=cell_type_key) self.cell_types = np.array(self.cell_types).reshape(-1, ) if self.size_factors_key: self.raw_data = np.array(self.adata.raw.X) self.size_factors = np.array(self.adata.obs[self.size_factors_key].values).reshape(-1, ) def __getitem__(self, index): outputs = dict() outputs["x"] = torch.tensor(self.data[index, :]) if self.condition_key: outputs["c"] = torch.tensor(self.conditions[index]) if self.cell_type_key: outputs["y"] = torch.tensor(self.cell_types[index]) if self.size_factors_key: outputs["raw"] = torch.tensor(self.raw_data[index, :]) outputs["f"] = torch.tensor(self.size_factors[index]) return outputs def __len__(self): return len(self.adata) @property def condition_label_encoder(self) -> dict: return self.condition_encoder @condition_label_encoder.setter def condition_label_encoder(self, value: dict): if value is not None: self.condition_encoder = value @property def cell_type_label_encoder(self) -> dict: return self.cell_type_encoder @cell_type_label_encoder.setter def cell_type_label_encoder(self, value: dict): if value is not None: self.cell_type_encoder = value @property def stratifier_weights(self): condition_coeff = 1 / len(self.conditions) weights_per_condition = list() for i in range(len(self.conditions)): samples_per_condition = np.count_nonzero(self.conditions == i) if samples_per_condition == 0: weights_per_condition.append(0) else: weights_per_condition.append((1 / samples_per_condition) * condition_coeff) strat_weights = np.copy(self.conditions) for i in range(len(self.conditions)): strat_weights = np.where(strat_weights == i, weights_per_condition[i], strat_weights) return strat_weights.astype(float)
/scArchest-0.0.1-py3-none-any.whl/scarchest/dataset/trvae/anndata.py
0.822082
0.316132
anndata.py
pypi
import scanpy as sc from scipy import sparse def hvg_batch(adata, batch_key=None, target_genes=2000, flavor='cell_ranger', n_bins=20, adataout=False): """ Method to select HVGs based on mean dispersions of genes that are highly variable genes in all batches. Using a the top target_genes per batch by average normalize dispersion. If target genes still hasn't been reached, then HVGs in all but one batches are used to fill up. This is continued until HVGs in a single batch are considered. """ adata_hvg = adata if adataout else adata.copy() n_batches = len(adata_hvg.obs[batch_key].cat.categories) # Calculate double target genes per dataset sc.pp.highly_variable_genes(adata_hvg, flavor=flavor, n_top_genes=target_genes, n_bins=n_bins, batch_key=batch_key) nbatch1_dispersions = adata_hvg.var['dispersions_norm'][adata_hvg.var.highly_variable_nbatches > len(adata_hvg.obs[batch_key].cat.categories) - 1] nbatch1_dispersions.sort_values(ascending=False, inplace=True) if len(nbatch1_dispersions) > target_genes: hvg = nbatch1_dispersions.index[:target_genes] else: enough = False print(f'Using {len(nbatch1_dispersions)} HVGs from full intersect set') hvg = nbatch1_dispersions.index[:] not_n_batches = 1 while not enough: target_genes_diff = target_genes - len(hvg) tmp_dispersions = adata_hvg.var['dispersions_norm'][adata_hvg.var.highly_variable_nbatches == (n_batches - not_n_batches)] if len(tmp_dispersions) < target_genes_diff: print(f'Using {len(tmp_dispersions)} HVGs from n_batch-{not_n_batches} set') hvg = hvg.append(tmp_dispersions.index) not_n_batches += 1 else: print(f'Using {target_genes_diff} HVGs from n_batch-{not_n_batches} set') tmp_dispersions.sort_values(ascending=False, inplace=True) hvg = hvg.append(tmp_dispersions.index[:target_genes_diff]) enough = True print(f'Using {len(hvg)} HVGs') if not adataout: del adata_hvg return hvg.tolist() else: return adata_hvg[:, hvg].copy() def remove_sparsity(adata): """ If ``adata.X`` is a sparse matrix, this will convert it in to normal matrix. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated data matrix. Returns ------- adata: :class:`~anndata.AnnData` Annotated dataset. """ if sparse.issparse(adata.X): new_adata = sc.AnnData(X=adata.X.A, obs=adata.obs.copy(deep=True), var=adata.var.copy(deep=True)) return new_adata return adata def preprocess_data(adata, filter_min_counts=True, size_factors=True, target_sum=None, log_trans_input=True, batch_key=None, n_top_genes=1000, scale=False): """Preprocesses the `adata`. Parameters ---------- adata: `~anndata.AnnData` Annotated data matrix. filter_min_counts: boolean If 'True' filter out Genes and Cells under min_count. size_factors: boolean If 'True' add Size Factors for ZINB/NB loss to 'adata'. target_sum: log_trans_input: boolean If 'True' logarithmize the data matrix. batch_key: n_top_genes: int Only keeps n highest variable genes in 'adata' scale: boolean If 'True' scale data to unit variance and zero mean. Returns ------- adata: `~anndata.AnnData` Preprocessed annotated data matrix. """ if filter_min_counts: sc.pp.filter_genes(adata, min_counts=1) sc.pp.filter_cells(adata, min_counts=1) adata_count = adata.copy() obs = adata.obs_keys() if size_factors and 'size_factors' not in obs: sc.pp.normalize_total(adata, target_sum=target_sum, exclude_highly_expressed=False, key_added='size_factors') if log_trans_input: sc.pp.log1p(adata) if 0 < n_top_genes < adata.shape[1]: if batch_key: genes = hvg_batch(adata.copy(), batch_key=batch_key, adataout=False, target_genes=n_top_genes) else: sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes) genes = adata.var['highly_variable'] adata = adata[:, genes] adata_count = adata_count[:, genes] if scale: sc.pp.scale(adata) if sparse.issparse(adata_count.X): adata_count.X = adata_count.X.A if sparse.issparse(adata.X): adata.X = adata.X.A if adata.raw is None: adata.raw = adata_count.copy() return adata
/scArchest-0.0.1-py3-none-any.whl/scarchest/dataset/trvae/data_handling.py
0.808823
0.525308
data_handling.py
pypi
import numpy as np import torch from typing import Sequence from torch.distributions import Normal, Categorical, kl_divergence as kl from scvi.core.modules.utils import broadcast_labels from scarchest.models.scvi._base import Decoder, Encoder from .classifier import Classifier from .scvi import scVI class scANVI(scVI): """Single-cell annotation using variational inference. This is an implementation of the scANVI model descibed in [Xu19]_, inspired from M1 + M2 model, as described in (https://arxiv.org/pdf/1406.5298.pdf). Parameters ---------- n_input Number of input genes n_batch Number of batches n_labels Number of labels n_hidden Number of nodes per hidden layer n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. reconstruction_loss One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution y_prior If None, initialized to uniform probability over cell types labels_groups Label group designations use_labels_groups Whether to use the label groups Returns ------- Examples -------- >>> gene_dataset = CortexDataset() >>> scanvi = SCANVI(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels) >>> gene_dataset = SyntheticDataset(n_labels=3) >>> scanvi = SCANVI(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=3, y_prior=torch.tensor([[0.1,0.5,0.4]]), labels_groups=[0,0,1]) """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers: int = 1, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, gene_likelihood: str = "zinb", y_prior=None, labels_groups: Sequence[int] = None, use_labels_groups: bool = False, classifier_parameters: dict = dict(), modified: bool = False, ): super().__init__( n_input, n_batch=n_batch, n_labels=n_labels, n_hidden=n_hidden, n_latent=n_latent, n_layers=n_layers, dropout_rate=dropout_rate, dispersion=dispersion, log_variational=log_variational, gene_likelihood=gene_likelihood, modified=modified, ) # Classifier takes n_latent as input self.cls_parameters = { "n_layers": n_layers, "n_hidden": n_hidden, "dropout_rate": dropout_rate, } self.cls_parameters.update(classifier_parameters) self.classifier = Classifier(n_latent, n_labels=n_labels, **self.cls_parameters) self.encoder_z2_z1 = Encoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.decoder_z1_z2 = Decoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, ) self.y_prior = torch.nn.Parameter( y_prior if y_prior is not None else (1 / n_labels) * torch.ones(1, n_labels), requires_grad=False, ) self.use_labels_groups = use_labels_groups self.labels_groups = ( np.array(labels_groups) if labels_groups is not None else None ) if self.use_labels_groups: assert labels_groups is not None, "Specify label groups" unique_groups = np.unique(self.labels_groups) self.n_groups = len(unique_groups) assert (unique_groups == np.arange(self.n_groups)).all() self.classifier_groups = Classifier( n_latent, n_hidden, self.n_groups, n_layers, dropout_rate ) self.groups_index = torch.nn.ParameterList( [ torch.nn.Parameter( torch.tensor( (self.labels_groups == i).astype(np.uint8), dtype=torch.uint8, ), requires_grad=False, ) for i in range(self.n_groups) ] ) def classify(self, x, batch_index=None): if self.log_variational: x = torch.log(1 + x) qz_m, _, z = self.z_encoder(x, batch_index) # We classify using the inferred mean parameter of z_1 in the latent space z = qz_m if self.use_labels_groups: w_g = self.classifier_groups(z) unw_y = self.classifier(z) w_y = torch.zeros_like(unw_y) for i, group_index in enumerate(self.groups_index): unw_y_g = unw_y[:, group_index] w_y[:, group_index] = unw_y_g / ( unw_y_g.sum(dim=-1, keepdim=True) + 1e-8 ) w_y[:, group_index] *= w_g[:, [i]] else: w_y = self.classifier(z) return w_y def get_latents(self, x, y=None, batch_index=None): zs = super().get_latents(x, batch_index=batch_index) qz2_m, qz2_v, z2 = self.encoder_z2_z1(zs[0], y) if not self.training: z2 = qz2_m return [zs[0], z2] def forward(self, x, local_l_mean, local_l_var, batch_index=None, y=None): is_labelled = False if y is None else True outputs = self.inference(x, batch_index, y) px_r = outputs["px_r"] px_rate = outputs["px_rate"] px_dropout = outputs["px_dropout"] qz1_m = outputs["qz_m"] qz1_v = outputs["qz_v"] z1 = outputs["z"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] # Enumerate choices of label ys, z1s = broadcast_labels(y, z1, n_broadcast=self.n_labels) qz2_m, qz2_v, z2 = self.encoder_z2_z1(z1s, ys) pz1_m, pz1_v = self.decoder_z1_z2(z2, ys) reconst_loss = self.get_reconstruction_loss(x, px_rate, px_r, px_dropout) # KL Divergence mean = torch.zeros_like(qz2_m) scale = torch.ones_like(qz2_v) kl_divergence_z2 = kl( Normal(qz2_m, torch.sqrt(qz2_v)), Normal(mean, scale) ).sum(dim=1) loss_z1_unweight = -Normal(pz1_m, torch.sqrt(pz1_v)).log_prob(z1s).sum(dim=-1) loss_z1_weight = Normal(qz1_m, torch.sqrt(qz1_v)).log_prob(z1).sum(dim=-1) kl_divergence_l = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_l_mean, torch.sqrt(local_l_var)), ).sum(dim=1) if is_labelled: return ( reconst_loss + loss_z1_weight + loss_z1_unweight, kl_divergence_z2 + kl_divergence_l, 0.0, ) probs = self.classifier(z1) reconst_loss += loss_z1_weight + ( (loss_z1_unweight).view(self.n_labels, -1).t() * probs ).sum(dim=1) kl_divergence = (kl_divergence_z2.view(self.n_labels, -1).t() * probs).sum( dim=1 ) kl_divergence += kl( Categorical(probs=probs), Categorical(probs=self.y_prior.repeat(probs.size(0), 1)), ) kl_divergence += kl_divergence_l return reconst_loss, kl_divergence, 0.0
/scArchest-0.0.1-py3-none-any.whl/scarchest/models/scvi/scanvi.py
0.911155
0.59796
scanvi.py
pypi
"""Main module.""" import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal, kl_divergence as kl from scvi.core._distributions import ( ZeroInflatedNegativeBinomial, NegativeBinomial, Poisson, ) from scvi.core.modules.utils import one_hot from scarchest.models.scvi._base import Encoder, DecoderSCVI from typing import Tuple, Dict torch.backends.cudnn.benchmark = True # VAE model class scVI(nn.Module): """Variational auto-encoder model. This is an implementation of the scVI model descibed in [Lopez18]_ Parameters ---------- n_input Number of input genes n_batch Number of batches, if 0, no batch correction is performed. n_labels Number of labels n_hidden Number of nodes per hidden layer n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. reconstruction_loss One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution * ``'poisson'`` - Poisson distribution Examples -------- >>> gene_dataset = CortexDataset() >>> vae = VAE(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels) """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers: int = 1, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, gene_likelihood: str = "zinb", latent_distribution: str = "normal", modified: bool = False, ): super().__init__() self.n_input = n_input self.n_batch = n_batch self.n_labels = n_labels self.n_hidden = n_hidden self.n_latent = n_latent self.n_layers = n_layers self.dropout_rate = dropout_rate self.dispersion = dispersion self.log_variational = log_variational self.gene_likelihood = gene_likelihood self.latent_distribution = latent_distribution # Added for scArches self.modified = modified self.freeze = False self.new_conditions = 0 if self.dispersion == "gene": self.px_r = torch.nn.Parameter(torch.randn(n_input)) elif self.dispersion == "gene-batch": self.px_r = torch.nn.Parameter(torch.randn(n_input, n_batch)) elif self.dispersion == "gene-label": self.px_r = torch.nn.Parameter(torch.randn(n_input, n_labels)) elif self.dispersion == "gene-cell": pass else: raise ValueError( "dispersion must be one of ['gene', 'gene-batch'," " 'gene-label', 'gene-cell'], but input was " "{}.format(self.dispersion)" ) # z encoder goes from the n_input-dimensional data to an n_latent-d # latent space representation self.z_encoder = Encoder( n_input, n_latent, n_cat_list=[n_batch] if self.modified else None, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=self.dropout_rate, distribution=latent_distribution, modified=self.modified ) # l encoder goes from n_input-dimensional data to 1-d library size self.l_encoder = Encoder( n_input, 1, n_layers=1, n_hidden=n_hidden, dropout_rate=self.dropout_rate, ) # decoder goes from n_latent-dimensional space to n_input-d data self.decoder = DecoderSCVI( n_latent, n_input, n_cat_list=[n_batch], n_layers=n_layers, n_hidden=n_hidden, modified=modified ) def get_latents(self, x, y=None, batch_index=None) -> torch.Tensor: """Returns the result of ``sample_from_posterior_z`` inside a list Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) batch_index tensor of study/batch labels with shape ``(batch_size, n_labels)`` (Default value = None) Returns ------- type one element list of tensor """ return [self.sample_from_posterior_z(x, y=y, batch_index=batch_index)] def sample_from_posterior_z( self, x, y=None, batch_index=None, give_mean=False, n_samples=5000 ) -> torch.Tensor: """Samples the tensor of latent values from the posterior Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) batch_index tensor of study/batch labels with shape ``(batch_size, n_labels)`` (Default value = None) give_mean is True when we want the mean of the posterior distribution rather than sampling (Default value = False) n_samples how many MC samples to average over for transformed mean (Default value = 5000) Returns ------- type tensor of shape ``(batch_size, n_latent)`` """ if self.log_variational: x = torch.log(1 + x) qz_m, qz_v, z = self.z_encoder(x, batch_index, y) # y only used in VAEC if give_mean: if self.latent_distribution == "ln": samples = Normal(qz_m, qz_v.sqrt()).sample([n_samples]) z = self.z_encoder.z_transformation(samples) z = z.mean(dim=0) else: z = qz_m return z def sample_from_posterior_l(self, x, batch_index=None, give_mean=True) -> torch.Tensor: """Samples the tensor of library sizes from the posterior Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` batch_index tensor of study/batch labels with shape ``(batch_size, n_labels)`` (Default value = None) give_mean Return mean or sample Returns ------- type tensor of shape ``(batch_size, 1)`` """ if self.log_variational: x = torch.log(1 + x) ql_m, ql_v, library = self.l_encoder(x, batch_index) if give_mean is False: library = library else: library = torch.distributions.LogNormal(ql_m, ql_v.sqrt()).mean return library def get_sample_scale( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> torch.Tensor: """Returns the tensor of predicted frequencies of expression Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) n_samples number of samples (Default value = 1) transform_batch int of batch to transform samples into (Default value = None) Returns ------- type tensor of predicted frequencies of expression with shape ``(batch_size, n_input)`` """ return self.inference( x, batch_index=batch_index, y=y, n_samples=n_samples, transform_batch=transform_batch, )["px_scale"] def get_sample_rate( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> torch.Tensor: """Returns the tensor of means of the negative binomial distribution Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) n_samples number of samples (Default value = 1) transform_batch int of batch to transform samples into (Default value = None) Returns ------- type tensor of means of the negative binomial distribution with shape ``(batch_size, n_input)`` """ return self.inference( x, batch_index=batch_index, y=y, n_samples=n_samples, transform_batch=transform_batch, )["px_rate"] def get_reconstruction_loss( self, x, px_rate, px_r, px_dropout, **kwargs ) -> torch.Tensor: # Reconstruction Loss if self.gene_likelihood == "zinb": reconst_loss = ( -ZeroInflatedNegativeBinomial( mu=px_rate, theta=px_r, zi_logits=px_dropout ) .log_prob(x) .sum(dim=-1) ) elif self.gene_likelihood == "nb": reconst_loss = ( -NegativeBinomial(mu=px_rate, theta=px_r).log_prob(x).sum(dim=-1) ) elif self.gene_likelihood == "poisson": reconst_loss = -Poisson(px_rate).log_prob(x).sum(dim=-1) return reconst_loss def inference( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> Dict[str, torch.Tensor]: """Helper function used in forward pass """ x_ = x if self.log_variational: x_ = torch.log(1 + x_) # Sampling qz_m, qz_v, z = self.z_encoder(x_, batch_index, y) ql_m, ql_v, library = self.l_encoder(x_, batch_index) if n_samples > 1: qz_m = qz_m.unsqueeze(0).expand((n_samples, qz_m.size(0), qz_m.size(1))) qz_v = qz_v.unsqueeze(0).expand((n_samples, qz_v.size(0), qz_v.size(1))) # when z is normal, untran_z == z untran_z = Normal(qz_m, qz_v.sqrt()).sample() z = self.z_encoder.z_transformation(untran_z) ql_m = ql_m.unsqueeze(0).expand((n_samples, ql_m.size(0), ql_m.size(1))) ql_v = ql_v.unsqueeze(0).expand((n_samples, ql_v.size(0), ql_v.size(1))) library = Normal(ql_m, ql_v.sqrt()).sample() if transform_batch is not None: dec_batch_index = transform_batch * torch.ones_like(batch_index) else: dec_batch_index = batch_index px_scale, px_r, px_rate, px_dropout = self.decoder( self.dispersion, z, library, dec_batch_index, y ) if self.dispersion == "gene-label": px_r = F.linear( one_hot(y, self.n_labels), self.px_r ) # px_r gets transposed - last dimension is nb genes elif self.dispersion == "gene-batch": px_r = F.linear(one_hot(dec_batch_index, self.n_batch), self.px_r) elif self.dispersion == "gene": px_r = self.px_r px_r = torch.exp(px_r) return dict( px_scale=px_scale, px_r=px_r, px_rate=px_rate, px_dropout=px_dropout, qz_m=qz_m, qz_v=qz_v, z=z, ql_m=ql_m, ql_v=ql_v, library=library, ) def forward( self, x, local_l_mean, local_l_var, batch_index=None, y=None ) -> Tuple[torch.Tensor, torch.Tensor]: """Returns the reconstruction loss and the KL divergences Parameters ---------- x tensor of values with shape (batch_size, n_input) local_l_mean tensor of means of the prior distribution of latent variable l with shape (batch_size, 1) local_l_var tensor of variancess of the prior distribution of latent variable l with shape (batch_size, 1) batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) y tensor of cell-types labels with shape (batch_size, n_labels) (Default value = None) Returns ------- type the reconstruction loss and the Kullback divergences """ # Parameters for z latent distribution outputs = self.inference(x, batch_index, y) qz_m = outputs["qz_m"] qz_v = outputs["qz_v"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] px_rate = outputs["px_rate"] px_r = outputs["px_r"] px_dropout = outputs["px_dropout"] # KL Divergence mean = torch.zeros_like(qz_m) scale = torch.ones_like(qz_v) kl_divergence_z = kl(Normal(qz_m, torch.sqrt(qz_v)), Normal(mean, scale)).sum( dim=1 ) kl_divergence_l = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_l_mean, torch.sqrt(local_l_var)), ).sum(dim=1) kl_divergence = kl_divergence_z reconst_loss = self.get_reconstruction_loss(x, px_rate, px_r, px_dropout) return reconst_loss + kl_divergence_l, kl_divergence, 0.0
/scArchest-0.0.1-py3-none-any.whl/scarchest/models/scvi/scvi.py
0.960519
0.525978
scvi.py
pypi
"""Main module.""" import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.distributions import Normal, kl_divergence as kl from typing import Dict, Optional, Tuple, Union, List from scvi.core._distributions import ZeroInflatedNegativeBinomial, NegativeBinomial from scvi.core._log_likelihood import log_mixture_nb from scvi.core.modules.utils import one_hot from scarchest.models.scvi._base import DecoderTOTALVI, EncoderTOTALVI torch.backends.cudnn.benchmark = True # VAE model class totalVI(nn.Module): """ Total variational inference for CITE-seq data. Implements the totalVI model of [GayosoSteier20]_. Parameters ---------- n_input_genes Number of input genes n_input_proteins Number of input proteins n_batch Number of batches n_labels Number of labels n_hidden Number of nodes per hidden layer for encoder and decoder n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs dropout_rate Dropout rate for neural networks genes_dispersion One of the following * ``'gene'`` - genes_dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - genes_dispersion can differ between different batches * ``'gene-label'`` - genes_dispersion can differ between different labels protein_dispersion One of the following * ``'protein'`` - protein_dispersion parameter is constant per protein across cells * ``'protein-batch'`` - protein_dispersion can differ between different batches NOT TESTED * ``'protein-label'`` - protein_dispersion can differ between different labels NOT TESTED log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. gene_likelihood One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution latent_distribution One of * ``'normal'`` - Isotropic normal * ``'ln'`` - Logistic normal with normal params N(0, 1) """ def __init__( self, n_input_genes: int, n_input_proteins: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 256, n_latent: int = 20, n_layers_encoder: int = 1, n_layers_decoder: int = 1, dropout_rate_decoder: float = 0.2, dropout_rate_encoder: float = 0.2, gene_dispersion: str = "gene", protein_dispersion: str = "protein", log_variational: bool = True, gene_likelihood: str = "nb", latent_distribution: str = "ln", protein_batch_mask: List[np.ndarray] = None, encoder_batch: bool = True, ): super().__init__() self.gene_dispersion = gene_dispersion self.n_latent = n_latent self.log_variational = log_variational self.gene_likelihood = gene_likelihood self.n_batch = n_batch self.n_labels = n_labels self.n_input_genes = n_input_genes self.n_input_proteins = n_input_proteins self.protein_dispersion = protein_dispersion self.latent_distribution = latent_distribution self.protein_batch_mask = protein_batch_mask # parameters for prior on rate_back (background protein mean) if n_batch > 0: self.background_pro_alpha = torch.nn.Parameter( torch.randn(n_input_proteins, n_batch) ) self.background_pro_log_beta = torch.nn.Parameter( torch.clamp(torch.randn(n_input_proteins, n_batch), -10, 1) ) else: self.background_pro_alpha = torch.nn.Parameter( torch.randn(n_input_proteins) ) self.background_pro_log_beta = torch.nn.Parameter( torch.clamp(torch.randn(n_input_proteins), -10, 1) ) if self.gene_dispersion == "gene": self.px_r = torch.nn.Parameter(torch.randn(n_input_genes)) elif self.gene_dispersion == "gene-batch": self.px_r = torch.nn.Parameter(torch.randn(n_input_genes, n_batch)) elif self.gene_dispersion == "gene-label": self.px_r = torch.nn.Parameter(torch.randn(n_input_genes, n_labels)) else: # gene-cell pass if self.protein_dispersion == "protein": self.py_r = torch.nn.Parameter(torch.ones(self.n_input_proteins)) elif self.protein_dispersion == "protein-batch": self.py_r = torch.nn.Parameter(torch.ones(self.n_input_proteins, n_batch)) elif self.protein_dispersion == "protein-label": self.py_r = torch.nn.Parameter(torch.ones(self.n_input_proteins, n_labels)) else: # protein-cell pass # z encoder goes from the n_input-dimensional data to an n_latent-d # latent space representation self.encoder = EncoderTOTALVI( n_input_genes + self.n_input_proteins, n_latent, n_layers=n_layers_encoder, n_cat_list=[n_batch] if encoder_batch else None, n_hidden=n_hidden, dropout_rate=dropout_rate_encoder, distribution=latent_distribution, ) self.decoder = DecoderTOTALVI( n_latent, n_input_genes, self.n_input_proteins, n_layers=n_layers_decoder, n_cat_list=[n_batch], n_hidden=n_hidden, dropout_rate=dropout_rate_decoder, ) def sample_from_posterior_z( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, give_mean: bool = False, n_samples: int = 5000, ) -> torch.Tensor: """ Access the tensor of latent values from the posterior. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` batch_index tensor of batch indices give_mean Whether to sample, or give mean of distribution n_samples Number of samples for monte carlo estimation Returns ------- type tensor of shape ``(batch_size, n_latent)`` """ if self.log_variational: x = torch.log(1 + x) y = torch.log(1 + y) qz_m, qz_v, _, _, latent, _ = self.encoder( torch.cat((x, y), dim=-1), batch_index ) z = latent["z"] if give_mean: if self.latent_distribution == "ln": samples = Normal(qz_m, qz_v.sqrt()).sample([n_samples]) z = self.encoder.z_transformation(samples) z = z.mean(dim=0) else: z = qz_m return z def sample_from_posterior_l( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, give_mean: bool = True, ) -> torch.Tensor: """ Provides the tensor of library size from the posterior. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` batch_index tensor of values with shape ``(batch_size, 1)`` give_mean return mean of l or sample from it Returns ------- type tensor of shape ``(batch_size, 1)`` """ if self.log_variational: x = torch.log(1 + x) y = torch.log(1 + y) _, _, ql_m, ql_v, latent, _ = self.encoder( torch.cat((x, y), dim=-1), batch_index ) library_gene = latent["l"] if give_mean is True: return torch.exp(ql_m + 0.5 * ql_v) else: return library_gene def get_sample_dispersion( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, label: Optional[torch.Tensor] = None, n_samples: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns the tensors of dispersions for genes and proteins. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` batch_index array that indicates which batch the cells belong to with shape ``batch_size`` label tensor of cell-types labels with shape ``(batch_size, n_labels)`` n_samples number of samples Returns ------- type tensors of dispersions of the negative binomial distribution """ outputs = self.inference( x, y, batch_index=batch_index, label=label, n_samples=n_samples ) px_r = outputs["px_"]["r"] py_r = outputs["py_"]["r"] return px_r, py_r def get_reconstruction_loss( self, x: torch.Tensor, y: torch.Tensor, px_dict: Dict[str, torch.Tensor], py_dict: Dict[str, torch.Tensor], pro_batch_mask_minibatch: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute reconstruction loss.""" px_ = px_dict py_ = py_dict # Reconstruction Loss if self.gene_likelihood == "zinb": reconst_loss_gene = ( -ZeroInflatedNegativeBinomial( mu=px_["rate"], theta=px_["r"], zi_logits=px_["dropout"] ) .log_prob(x) .sum(dim=-1) ) else: reconst_loss_gene = ( -NegativeBinomial(mu=px_["rate"], theta=px_["r"]) .log_prob(x) .sum(dim=-1) ) reconst_loss_protein_full = -log_mixture_nb( y, py_["rate_back"], py_["rate_fore"], py_["r"], None, py_["mixing"] ) if pro_batch_mask_minibatch is not None: temp_pro_loss_full = torch.zeros_like(reconst_loss_protein_full) temp_pro_loss_full.masked_scatter_( pro_batch_mask_minibatch.bool(), reconst_loss_protein_full ) reconst_loss_protein = temp_pro_loss_full.sum(dim=-1) else: reconst_loss_protein = reconst_loss_protein_full.sum(dim=-1) return reconst_loss_gene, reconst_loss_protein def inference( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, label: Optional[torch.Tensor] = None, n_samples=1, transform_batch: Optional[int] = None, ) -> Dict[str, Union[torch.Tensor, Dict[str, torch.Tensor]]]: """ Internal helper function to compute necessary inference quantities. We use the dictionary ``px_`` to contain the parameters of the ZINB/NB for genes. The rate refers to the mean of the NB, dropout refers to Bernoulli mixing parameters. `scale` refers to the quanity upon which differential expression is performed. For genes, this can be viewed as the mean of the underlying gamma distribution. We use the dictionary ``py_`` to contain the parameters of the Mixture NB distribution for proteins. `rate_fore` refers to foreground mean, while `rate_back` refers to background mean. ``scale`` refers to foreground mean adjusted for background probability and scaled to reside in simplex. ``back_alpha`` and ``back_beta`` are the posterior parameters for ``rate_back``. ``fore_scale`` is the scaling factor that enforces `rate_fore` > `rate_back`. ``px_["r"]`` and ``py_["r"]`` are the inverse dispersion parameters for genes and protein, respectively. """ x_ = x y_ = y if self.log_variational: x_ = torch.log(1 + x_) y_ = torch.log(1 + y_) # Sampling - Encoder gets concatenated genes + proteins qz_m, qz_v, ql_m, ql_v, latent, untran_latent = self.encoder( torch.cat((x_, y_), dim=-1), batch_index ) z = latent["z"] library_gene = latent["l"] untran_z = untran_latent["z"] untran_l = untran_latent["l"] if n_samples > 1: qz_m = qz_m.unsqueeze(0).expand((n_samples, qz_m.size(0), qz_m.size(1))) qz_v = qz_v.unsqueeze(0).expand((n_samples, qz_v.size(0), qz_v.size(1))) untran_z = Normal(qz_m, qz_v.sqrt()).sample() z = self.encoder.z_transformation(untran_z) ql_m = ql_m.unsqueeze(0).expand((n_samples, ql_m.size(0), ql_m.size(1))) ql_v = ql_v.unsqueeze(0).expand((n_samples, ql_v.size(0), ql_v.size(1))) untran_l = Normal(ql_m, ql_v.sqrt()).sample() library_gene = self.encoder.l_transformation(untran_l) if self.gene_dispersion == "gene-label": # px_r gets transposed - last dimension is nb genes px_r = F.linear(one_hot(label, self.n_labels), self.px_r) elif self.gene_dispersion == "gene-batch": px_r = F.linear(one_hot(batch_index, self.n_batch), self.px_r) elif self.gene_dispersion == "gene": px_r = self.px_r px_r = torch.exp(px_r) if self.protein_dispersion == "protein-label": # py_r gets transposed - last dimension is n_proteins py_r = F.linear(one_hot(label, self.n_labels), self.py_r) elif self.protein_dispersion == "protein-batch": py_r = F.linear(one_hot(batch_index, self.n_batch), self.py_r) elif self.protein_dispersion == "protein": py_r = self.py_r py_r = torch.exp(py_r) # Background regularization if self.n_batch > 0: py_back_alpha_prior = F.linear( one_hot(batch_index, self.n_batch), self.background_pro_alpha ) py_back_beta_prior = F.linear( one_hot(batch_index, self.n_batch), torch.exp(self.background_pro_log_beta), ) else: py_back_alpha_prior = self.background_pro_alpha py_back_beta_prior = torch.exp(self.background_pro_log_beta) self.back_mean_prior = Normal(py_back_alpha_prior, py_back_beta_prior) if transform_batch is not None: batch_index = torch.ones_like(batch_index) * transform_batch px_, py_, log_pro_back_mean = self.decoder(z, library_gene, batch_index, label) px_["r"] = px_r py_["r"] = py_r return dict( px_=px_, py_=py_, qz_m=qz_m, qz_v=qz_v, z=z, untran_z=untran_z, ql_m=ql_m, ql_v=ql_v, library_gene=library_gene, untran_l=untran_l, log_pro_back_mean=log_pro_back_mean, ) def forward( self, x: torch.Tensor, y: torch.Tensor, local_l_mean_gene: torch.Tensor, local_l_var_gene: torch.Tensor, batch_index: Optional[torch.Tensor] = None, label: Optional[torch.Tensor] = None, ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor ]: """ Returns the reconstruction loss and the Kullback divergences. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` local_l_mean_gene tensor of means of the prior distribution of latent variable l with shape ``(batch_size, 1)```` local_l_var_gene tensor of variancess of the prior distribution of latent variable l with shape ``(batch_size, 1)`` batch_index array that indicates which batch the cells belong to with shape ``batch_size`` label tensor of cell-types labels with shape (batch_size, n_labels) Returns ------- type the reconstruction loss and the Kullback divergences """ # Parameters for z latent distribution outputs = self.inference(x, y, batch_index, label) qz_m = outputs["qz_m"] qz_v = outputs["qz_v"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] px_ = outputs["px_"] py_ = outputs["py_"] if self.protein_batch_mask is not None: pro_batch_mask_minibatch = torch.zeros_like(y) for b in np.arange(len(torch.unique(batch_index))): b_indices = (batch_index == b).reshape(-1) pro_batch_mask_minibatch[b_indices] = torch.tensor( self.protein_batch_mask[b].astype(np.float32), device=y.device ) else: pro_batch_mask_minibatch = None reconst_loss_gene, reconst_loss_protein = self.get_reconstruction_loss( x, y, px_, py_, pro_batch_mask_minibatch ) # KL Divergence kl_div_z = kl(Normal(qz_m, torch.sqrt(qz_v)), Normal(0, 1)).sum(dim=1) kl_div_l_gene = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_l_mean_gene, torch.sqrt(local_l_var_gene)), ).sum(dim=1) kl_div_back_pro_full = kl( Normal(py_["back_alpha"], py_["back_beta"]), self.back_mean_prior ) if pro_batch_mask_minibatch is not None: kl_div_back_pro = (pro_batch_mask_minibatch * kl_div_back_pro_full).sum( dim=1 ) else: kl_div_back_pro = kl_div_back_pro_full.sum(dim=1) return ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_l_gene, kl_div_back_pro, )
/scArchest-0.0.1-py3-none-any.whl/scarchest/models/scvi/totalvi.py
0.956012
0.525795
totalvi.py
pypi
from typing import Optional import torch import torch.nn as nn from scarchest.models.trvae._utils import one_hot_encoder from .activations import ACTIVATIONS from .losses import mse, kl import numpy as np def dense_block(i, in_features, out_features, use_batchnorm, dropout_rate, activation): model = nn.Sequential() model.add_module(name=f"FC_{i}", module=nn.Linear(in_features, out_features, bias=False)) if use_batchnorm: model.add_module(f"BN_{i}", module=nn.BatchNorm1d(out_features, affine=True)) model.add_module(name=f"ACT_{i}", module=ACTIVATIONS[activation]) if dropout_rate > 0: model.add_module(name=f"DR_{i}", module=nn.Dropout(p=dropout_rate)) return model class MARS(nn.Module): def __init__(self, x_dim: int, conditions: Optional[list] = [], architecture: list = [128, 32], z_dim: int = 10, alpha=1e-3, activation: str = 'elu', output_activation: str = 'relu', use_batchnorm: bool = False, dropout_rate: float = 0.2): super(MARS, self).__init__() self.x_dim = x_dim self.conditions = conditions if isinstance(conditions, list) else [] self.n_conditions = len(self.conditions) self.condition_encoder = {k: v for k, v in zip(self.conditions, range(self.n_conditions))} self.z_dim = z_dim self.alpha = alpha self.architecture = architecture self.use_batchnorm = use_batchnorm self.dropout_rate = dropout_rate self.activation = activation self.output_activation = output_activation self.encoder_architecture = [self.x_dim + self.n_conditions] + self.architecture self.decoder_architecture = [self.z_dim + self.n_conditions] + list(reversed(self.architecture)) self.encoder = nn.Sequential( *[dense_block(i, in_size, out_size, use_batchnorm, dropout_rate, activation) for i, (in_size, out_size) in enumerate(zip(self.encoder_architecture[:-1], self.encoder_architecture[1:]))]) self.mean = nn.Linear(self.encoder_architecture[-1], self.z_dim) self.log_var = nn.Linear(self.encoder_architecture[-1], self.z_dim) self.decoder = nn.Sequential( *[dense_block(i, in_size, out_size, use_batchnorm, dropout_rate, activation) for i, (in_size, out_size) in enumerate(zip(self.decoder_architecture[:-1], self.decoder_architecture[1:]))]) self.decoder.add_module(name='X_hat', module=dense_block('X_hat', self.decoder_architecture[-1], self.x_dim, use_batchnorm, dropout_rate, self.output_activation)) def sampling(self, mu, log_var): """Samples from standard Normal distribution and applies re-parametrization trick. It is actually sampling from latent space distributions with N(mu, var), computed by encoder. Parameters ---------- mu: torch.Tensor Torch Tensor of Means. log_var: torch.Tensor Torch Tensor of log. variances. Returns ------- Torch Tensor of sampled data. """ std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps.mul(std).add(mu) def forward(self, x, c=None): if c is not None: c = one_hot_encoder(c, n_cls=self.n_conditions) xc = torch.cat((x, c), dim=-1) else: xc = x encoded = self.encoder(xc) mean_encoded = self.mean(encoded) log_var_encoded = self.log_var(encoded) encoded = self.sampling(mean_encoded, log_var_encoded) if c is not None: ec = torch.cat((encoded, c), dim=-1) else: ec = encoded decoded = self.decoder(ec) kl_loss = kl(mean_encoded, log_var_encoded) recon_loss = mse(decoded, x) # TODO: support other loss functions loss = recon_loss + self.alpha * kl_loss return encoded, decoded, loss, recon_loss, kl_loss def get_latent(self, x, c=None): x = torch.as_tensor(np.array(x).astype(np.float)).type(torch.float32) if c is not None: c = torch.as_tensor(np.array(c).astype(np.int)) c = one_hot_encoder(c, n_cls=self.n_conditions) xc = torch.cat((x, c), dim=-1) else: xc = x encoded = self.encoder(xc) mean_encoded = self.mean(encoded) log_var_encoded = self.log_var(encoded) encoded = self.sampling(mean_encoded, log_var_encoded) return encoded.cpu().data.numpy()
/scArchest-0.0.1-py3-none-any.whl/scarchest/models/mars/mars.py
0.94285
0.396127
mars.py
pypi
import torch import numpy as np from functools import partial from torch.autograd import Variable from ._utils import partition def _nan2inf(x): return torch.where(torch.isnan(x), torch.zeros_like(x) + np.inf, x) def _nan2zero(x): return torch.where(torch.isnan(x), torch.zeros_like(x), x) def kl(mu, logvar): """Computes KL loss between tensor of means, log. variances and zero mean, unit variance. Parameters ---------- mu: Tensor Torch Tensor of means logvar: Tensor Torch Tensor of log. variances Returns ------- KL loss value """ kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), ) kl_loss = kl_loss / mu.size(0) return kl_loss def mse(recon_x, x): """Computes MSE loss between reconstructed data and ground truth data. Parameters ---------- recon_x: Tensor Torch Tensor of reconstructed data x: Tensor Torch Tensor of ground truth data Returns ------- MSE loss value """ mse_loss = torch.nn.functional.mse_loss(recon_x, x, reduction="mean") return mse_loss def nb(x, mu, theta, eps=1e-8, mean=True): """Computes negative binomial loss. Parameters ---------- x: Tensor Torch Tensor of ground truth data. mu: Tensor Torch Tensor of means of the negative binomial (has to be positive support). theta: Tensor Torch Tensor of inverse dispersion parameter (has to be positive support). eps: Float numerical stability constant. mean: boolean If 'True' NB loss value gets returned, if 'False' NB loss Tensor gets returned with same shape as 'x' (needed for ZINB loss calculation). Returns ------- If 'mean' is 'True' NB loss value gets returned, otherwise Torch tensor of losses gets returned. """ if theta.ndimension() == 1: theta = theta.view(1, theta.size(0)) # In this case, we reshape theta for broadcasting t1 = torch.lgamma(theta + eps) + torch.lgamma(x + 1.0) - torch.lgamma(x + theta + eps) t2 = (theta + x) * torch.log(1.0 + (mu / (theta + eps))) + (x * (torch.log(theta + eps) - torch.log(mu + eps))) final = t1 + t2 final = _nan2inf(final) if mean: final = torch.mean(final) return final def zinb(x, mu, theta, pi, eps=1e-8, ridge_lambda=0.0, mean=True): """Computes zero inflated negative binomial loss. Parameters ---------- x: Tensor Torch Tensor of ground truth data. mu: Tensor Torch Tensor of means of the negative binomial (has to be positive support). theta: Tensor Torch Tensor of inverses dispersion parameter (has to be positive support). pi: Tensor Torch Tensor of logits of the dropout parameter (real support) eps: Float numerical stability constant. ridge_lambda: Float Ridge Coefficient. mean: boolean If 'True' NB loss value gets returned, if 'False' NB loss Tensor gets returned with same shape as 'x' (needed for ZINB loss calculation). Returns ------- If 'mean' is 'True' ZINB loss value gets returned, otherwise Torch tensor of losses gets returned. """ nb_case = nb(x, mu, theta, mean=False) - torch.log(1.0 - pi + eps) if theta.ndimension() == 1: theta = theta.view(1, theta.size(0)) # In this case, we reshape theta for broadcasting zero_nb = torch.pow(theta / (theta + mu + eps), theta) zero_case = -torch.log(pi + ((1.0 - pi) * zero_nb) + eps) result = torch.where((x < 1e-8), zero_case, nb_case) ridge = ridge_lambda * torch.square(pi) result += ridge if mean: result = torch.mean(result) result = _nan2inf(result) return result def pairwise_distance(x, y): if not len(x.shape) == len(y.shape) == 2: raise ValueError('Both inputs should be matrices.') if x.shape[1] != y.shape[1]: raise ValueError('The number of features should be the same.') x = x.view(x.shape[0], x.shape[1], 1) y = torch.transpose(y, 0, 1) output = torch.sum((x - y) ** 2, 1) output = torch.transpose(output, 0, 1) return output def gaussian_kernel_matrix(x, y, sigmas): """Computes multiscale-RBF kernel between x and y. Parameters ---------- x: Tensor Tensor with shape [batch_size, z_dim]. y: Tensor Tensor with shape [batch_size, z_dim]. sigmas: Tensor Returns ------- Returns the computed multiscale-RBF kernel between x and y. """ sigmas = sigmas.view(sigmas.shape[0], 1) beta = 1. / (2. * sigmas) dist = pairwise_distance(x, y).contiguous() dist_ = dist.view(1, -1) s = torch.matmul(beta, dist_) return torch.sum(torch.exp(-s), 0).view_as(dist) def maximum_mean_discrepancy(x, y, kernel=gaussian_kernel_matrix): """Computes Maximum Mean Discrepancy(MMD) between x and y. Parameters ---------- x: Tensor Tensor with shape [batch_size, z_dim] y: Tensor Tensor with shape [batch_size, z_dim] kernel: gaussian_kernel_matrix Returns ------- Returns the computed MMD between x and y. """ cost = torch.mean(kernel(x, x)) cost += torch.mean(kernel(y, y)) cost -= 2 * torch.mean(kernel(x, y)) return cost def mmd_loss_calc(source_features, target_features): """Initializes Maximum Mean Discrepancy(MMD) between source_features and target_features. Parameters ---------- source_features: Tensor Tensor with shape [batch_size, z_dim] target_features: Tensor Tensor with shape [batch_size, z_dim] Returns ------- Returns the computed MMD between x and y. """ sigmas = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] if torch.cuda.is_available(): gaussian_kernel = partial( gaussian_kernel_matrix, sigmas=Variable(torch.cuda.FloatTensor(sigmas)) ) else: gaussian_kernel = partial( gaussian_kernel_matrix, sigmas=Variable(torch.FloatTensor(sigmas)) ) loss_value = maximum_mean_discrepancy(source_features, target_features, kernel=gaussian_kernel) return loss_value def mmd(n_conditions, beta, boundary): """Initializes Maximum Mean Discrepancy(MMD) between every different condition. Parameters ---------- n_conditions: integer Number of classes (conditions) the data contain. beta: float beta coefficient for MMD loss. boundary: integer If not 'None', mmd loss is only calculated on #new conditions. y: Tensor Torch Tensor of computed latent data. c: Tensor Torch Tensor of labels Returns ------- Returns MMD loss. """ def mmd_loss(y, c): # partition separates y into num_cls subsets w.r.t. their labels c conditions_mmd = partition(y, c, n_conditions) loss = 0.0 if boundary is not None: for i in range(boundary): for j in range(boundary, n_conditions): if conditions_mmd[i].size(0) < 2 or conditions_mmd[j].size(0) < 2: continue loss += mmd_loss_calc(conditions_mmd[i], conditions_mmd[j]) else: for i in range(len(conditions_mmd)): if conditions_mmd[i].size(0) < 1: continue for j in range(i): if conditions_mmd[j].size(0) < 1 or i == j: continue loss += mmd_loss_calc(conditions_mmd[i], conditions_mmd[j]) return beta * loss return mmd_loss
/scArchest-0.0.1-py3-none-any.whl/scarchest/models/trvae/losses.py
0.952386
0.853547
losses.py
pypi
import torch import torch.nn as nn from ._utils import one_hot_encoder class CondLayers(nn.Module): def __init__( self, n_in: int, n_out: int, n_cond: int, bias: bool = True, ): super().__init__() self.n_cond = n_cond self.expr_L = nn.Linear(n_in, n_out, bias=bias) if self.n_cond != 0: self.cond_L = nn.Linear(self.n_cond, n_out, bias=False) def forward(self, x: torch.Tensor): if self.n_cond == 0: out = self.expr_L(x) else: expr, cond = torch.split(x, x.shape[1] - self.n_cond, dim=1) out = self.expr_L(expr) + self.cond_L(cond) return out class Encoder(nn.Module): """Scnet Encoder class. Constructs the encoder sub-network of scNet. It will transform primary space input to means and log. variances of latent space with n_dimensions = z_dimension. Parameters ---------- layer_sizes: List List of first and hidden layer sizes latent_dim: Integer Bottleneck layer (z) size. use_bn: Boolean If `True` batch normalization will applied to layers. use_dr: Boolean If `True` dropout will applied to layers. dr_rate: Float Dropput rate applied to all layers, if `dr_rate`==0 no dropput will be applied. num_classes: Integer Number of classes (conditions) the data contain. if `None` the model will be a normal VAE instead of conditional VAE. Returns ------- """ def __init__(self, layer_sizes, latent_dim, use_bn, use_dr, dr_rate, num_classes=None): super().__init__() self.n_classes = 0 if num_classes is not None: self.n_classes = num_classes self.FC = None if len(layer_sizes) > 1: print("Encoder Architecture:") self.FC = nn.Sequential() for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): if i == 0: print("\tInput Layer in, out and cond:", in_size, out_size, self.n_classes) self.FC.add_module(name="L{:d}".format(i), module=CondLayers(in_size, out_size, self.n_classes, bias=False)) else: print("\tHidden Layer", i, "in/out:", in_size, out_size) self.FC.add_module(name="L{:d}".format(i), module=nn.Linear(in_size, out_size, bias=False)) if use_bn: self.FC.add_module("B{:d}".format(i), module=nn.BatchNorm1d(out_size, affine=True)) self.FC.add_module(name="A{:d}".format(i), module=nn.ReLU()) if use_dr: self.FC.add_module(name="D{:d}".format(i), module=nn.Dropout(p=dr_rate)) print("\tMean/Var Layer in/out:", layer_sizes[-1], latent_dim) self.mean_encoder = nn.Linear(layer_sizes[-1], latent_dim) self.log_var_encoder = nn.Linear(layer_sizes[-1], latent_dim) def forward(self, x, c=None): if c is not None: c = one_hot_encoder(c, n_cls=self.n_classes) x = torch.cat((x, c), dim=-1) if self.FC is not None: x = self.FC(x) means = self.mean_encoder(x) log_vars = self.log_var_encoder(x) return means, log_vars class Decoder(nn.Module): """Scnet Decoder class. Constructs the decoder sub-network of scNet. It will transform constructed latent space to the previous space of data with n_dimensions = x_dimension. Parameters ---------- layer_sizes: List List of hidden and last layer sizes latent_dim: Integer Bottleneck layer (z) size. recon_loss: String Definition of Reconstruction-Loss-Method, 'mse', 'nb' or 'zinb'. use_bn: Boolean If `True` batch normalization will applied to layers. use_dr: Boolean If `True` dropout will applied to layers. dr_rate: Float Dropput rate applied to all layers, if `dr_rate`==0 no dropput will be applied. use_mmd: boolean If `True` then MMD will be applied to first decoder layer. num_classes: Integer Number of classes (conditions) the data contain. if `None` the model will be a normal VAE instead of conditional VAE. output_active: String Defines the Activation for the last layer of decoder if 'recon_loss' is 'mse'. Returns ------- """ def __init__(self, layer_sizes, latent_dim, recon_loss, use_bn, use_dr, dr_rate, use_mmd=False, num_classes=None): super().__init__() self.use_mmd = use_mmd self.use_bn = use_bn self.use_dr = use_dr self.recon_loss = recon_loss self.n_classes = 0 if num_classes is not None: self.n_classes = num_classes layer_sizes = [latent_dim] + layer_sizes print("Decoder Architecture:") # Create first Decoder layer self.FirstL = nn.Sequential() print("\tFirst Layer in/out: ", layer_sizes[0], layer_sizes[1]) self.FirstL.add_module(name="L0", module=CondLayers(layer_sizes[0], layer_sizes[1], self.n_classes, bias=False)) if self.use_bn: self.FirstL.add_module("B0", module=nn.BatchNorm1d(layer_sizes[1], affine=True)) self.FirstL.add_module(name="A0", module=nn.ReLU()) if self.use_dr: self.FirstL.add_module(name="D0", module=nn.Dropout(p=dr_rate)) # Create all Decoder hidden layers if len(layer_sizes) > 2: self.HiddenL = nn.Sequential() for i, (in_size, out_size) in enumerate(zip(layer_sizes[1:-1], layer_sizes[2:])): if i+3 < len(layer_sizes): print("\tHidden Layer", i+1, "in/out:", in_size, out_size) self.HiddenL.add_module(name="L{:d}".format(i+1), module=nn.Linear(in_size, out_size, bias=False)) if self.use_bn: self.HiddenL.add_module("B{:d}".format(i+1), module=nn.BatchNorm1d(out_size, affine=True)) self.HiddenL.add_module(name="A{:d}".format(i+1), module=nn.ReLU()) if self.use_dr: self.HiddenL.add_module(name="D{:d}".format(i+1), module=nn.Dropout(p=dr_rate)) else: self.HiddenL = None # Create Output Layers print("\tOutput Layer in/out: ", layer_sizes[-2], layer_sizes[-1], "\n") if self.recon_loss == "mse": self.OutputLayer = nn.Sequential() self.OutputLayer.add_module(name="outputL", module=nn.Linear(layer_sizes[-2], layer_sizes[-1])) self.OutputLayer.add_module(name="outputA", module=nn.ReLU()) if self.recon_loss == "zinb": # mean gamma self.mean_decoder = nn.Linear(layer_sizes[-2], layer_sizes[-1]) # dispersion: here we only deal with gene-cell dispersion case self.disp_decoder = nn.Sequential(nn.Linear(layer_sizes[-2], layer_sizes[-1]), nn.Softplus()) # dropout self.dropout_decoder = nn.Sequential(nn.Linear(layer_sizes[-2], layer_sizes[-1]), nn.Sigmoid()) if self.recon_loss == "nb": # mean gamma self.mean_decoder = nn.Linear(layer_sizes[-2], layer_sizes[-1]) # dispersion: here we only deal with gene-cell dispersion case self.disp_decoder = nn.Sequential(nn.Linear(layer_sizes[-2], layer_sizes[-1]), nn.Softplus()) def forward(self, z, c=None): # Add Condition Labels to Decoder Input if c is not None: c = one_hot_encoder(c, n_cls=self.n_classes) z_cat = torch.cat((z, c), dim=-1) dec_latent = self.FirstL(z_cat) else: dec_latent = self.FirstL(z) # Compute Hidden Output if self.HiddenL is not None: x = self.HiddenL(dec_latent) else: x = dec_latent # Compute Decoder Output if self.recon_loss == "mse": output = self.OutputLayer(x) return output, dec_latent if self.recon_loss == "zinb": # Parameters for ZINB and NB dec_mean_gamma = self.mean_decoder(x) dec_mean_gamma = torch.clamp(torch.exp(dec_mean_gamma), min=1e-4, max=1e4) dec_disp = self.disp_decoder(x) dec_disp = torch.clamp(dec_disp, min=1e-6, max=1e6) dec_dropout = self.dropout_decoder(x) return dec_mean_gamma, dec_dropout, dec_disp, dec_latent if self.recon_loss == "nb": # Parameters for ZINB and NB dec_mean_gamma = self.mean_decoder(x) dec_mean_gamma = torch.clamp(torch.exp(dec_mean_gamma), min=1e-4, max=1e4) dec_disp = self.disp_decoder(x) dec_disp = torch.clamp(dec_disp, min=1e-6, max=1e6) return dec_mean_gamma, dec_disp, dec_latent
/scArchest-0.0.1-py3-none-any.whl/scarchest/models/trvae/modules.py
0.954276
0.410756
modules.py
pypi
from typing import Optional import torch import torch.nn as nn from .modules import Encoder, Decoder from .losses import mse, mmd, zinb, nb, kl class trVAE(nn.Module): """scNet class. This class contains the implementation of Conditional Variational Auto-encoder. Parameters ---------- input_dim: integer Number of input features (i.e. gene in case of scRNA-seq). conditions: integer Number of classes (conditions) the data contain. if `None` the model will be a normal VAE instead of conditional VAE. encoder_layer_sizes: List A list of hidden layer sizes for encoder network. latent_dim: integer Bottleneck layer (z) size. decoder_layer_sizes: List A list of hidden layer sizes for decoder network. recon_loss: String Definition of Reconstruction-Loss-Method, 'mse', 'nb' or 'zinb'. alpha: float Alpha coefficient for KL loss. use_batch_norm: boolean If `True` batch normalization will applied to hidden layers. dr_rate: float Dropput rate applied to all layers, if `dr_rate`==0 no dropput will be applied. use_mmd: boolean If `True` then MMD will be applied to first decoder layer. beta: float beta coefficient for MMD loss. eta: float Eta coefficient for Reconstruction loss. calculate_mmd: String Defines the layer which the mmd loss is calculated on, 'y' for first layer of decoder or 'z' for bottleneck layer. """ def __init__(self, input_dim: int, conditions: list, encoder_layer_sizes: list = [256, 64], latent_dim: int = 32, decoder_layer_sizes: list = [64, 256], dr_rate: float = 0.05, use_batch_norm: bool = False, calculate_mmd: Optional[str] = 'z', mmd_boundary: Optional[int] = None, recon_loss: Optional[str] = 'zinb', alpha: Optional[float] = 0.0005, beta: Optional[float] = 200, eta: Optional[float] = 5000): super().__init__() assert isinstance(encoder_layer_sizes, list) assert isinstance(latent_dim, int) assert isinstance(decoder_layer_sizes, list) assert isinstance(conditions, list) assert recon_loss in ["mse", "nb", "zinb"], "'recon_loss' must be 'mse', 'nb' or 'zinb'" assert calculate_mmd in [None, "y", "z"], "'calculate_mmd' must be None, 'y' or 'z'" print("\nINITIALIZING NEW NETWORK..............") self.input_dim = input_dim self.latent_dim = latent_dim self.n_conditions = len(conditions) self.conditions = conditions self.condition_encoder = {k: v for k, v in zip(conditions, range(len(conditions)))} self.recon_loss = recon_loss self.alpha = alpha self.beta = beta self.eta = eta self.dr_rate = dr_rate if self.dr_rate > 0: self.use_dr = True else: self.use_dr = False self.use_bn = use_batch_norm self.calculate_mmd = calculate_mmd self.mmd_boundary = mmd_boundary self.use_mmd = True if self.calculate_mmd in ['z', 'y'] else False self.enc_layer_sizes = encoder_layer_sizes.copy() self.dec_layer_sizes = decoder_layer_sizes.copy() encoder_layer_sizes.insert(0, self.input_dim) decoder_layer_sizes.append(self.input_dim) self.encoder = Encoder(encoder_layer_sizes, self.latent_dim, self.use_bn, self.use_dr, self.dr_rate, self.n_conditions) self.decoder = Decoder(decoder_layer_sizes, self.latent_dim, self.recon_loss, self.use_bn, self.use_dr, self.dr_rate, self.use_mmd, self.n_conditions) self.freeze = False def sampling(self, mu, log_var): """Samples from standard Normal distribution and applies re-parametrization trick. It is actually sampling from latent space distributions with N(mu, var), computed by encoder. Parameters ---------- mu: torch.Tensor Torch Tensor of Means. log_var: torch.Tensor Torch Tensor of log. variances. Returns ------- Torch Tensor of sampled data. """ std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps.mul(std).add(mu) def generate_with_condition(self, n_samples, c=None): z = torch.randn([n_samples, self.latent_dim]) if c is not None: c = torch.ones([n_samples, 1], device=self.device) * c output = self.decoder(z, c) # If recon Loss is zinb, how to get recon_x? return output def get_latent(self, x, c=None, mean=False): """Map `x` in to the latent space. This function will feed data in encoder and return z for each sample in data. Parameters ---------- x: numpy nd-array Numpy nd-array to be mapped to latent space. `x` has to be in shape [n_obs, input_dim]. c: `numpy nd-array` `numpy nd-array` of original desired labels for each sample. mean: boolean Returns ------- Returns array containing latent space encoding of 'x'. """ if c is not None: c = torch.tensor(c, device=self.device) x = torch.tensor(x, device=self.device) z_mean, z_log_var = self.encoder(x, c) latent = self.sampling(z_mean, z_log_var) if mean: return z_mean return latent.cpu().data.numpy() def get_y(self, x, c=None): """Map `x` in to the y dimension (First Layer of Decoder). This function will feed data in encoder and return y for each sample in data. Parameters ---------- x: numpy nd-array Numpy nd-array to be mapped to latent space. `x` has to be in shape [n_obs, input_dim]. c: `numpy nd-array` `numpy nd-array` of original desired labels for each sample. Returns ------- Returns array containing latent space encoding of 'x' """ if c is not None: c = torch.tensor(c).to(self.device) x = torch.tensor(x).to(self.device) z_mean, z_log_var = self.encoder(x, c) latent = self.sampling(z_mean, z_log_var) output = self.decoder(latent, c) return output[-1].cpu().data.numpy() def calc_recon_binomial_loss(self, outputs, x_raw, size_factor): dec_mean_gamma = outputs["dec_mean_gamma"] size_factor_view = size_factor.unsqueeze(1).expand(dec_mean_gamma.size(0), dec_mean_gamma.size(1)) dec_mean = dec_mean_gamma * size_factor_view if outputs["dec_dropout"] is None: recon_loss = nb(x_raw, dec_mean, outputs["dec_disp"]) else: recon_loss = zinb(x_raw, dec_mean, outputs["dec_disp"], outputs["dec_dropout"]) return recon_loss def inference(self, x, c=None): z1_mean, z1_log_var = self.encoder(x, c) z1 = self.sampling(z1_mean, z1_log_var) outputs = self.decoder(z1, c) recon_x = dec_mean_gamma = dec_dropout = dec_disp = y1 = None if self.recon_loss == "mse": recon_x, y1 = outputs if self.recon_loss == "zinb": dec_mean_gamma, dec_dropout, dec_disp, y1 = outputs if self.recon_loss == "nb": dec_mean_gamma, dec_disp, y1 = outputs return dict( z1_mean=z1_mean, z1_log_var=z1_log_var, z1=z1, y1=y1, recon_x=recon_x, dec_mean_gamma=dec_mean_gamma, dec_dropout=dec_dropout, dec_disp=dec_disp, ) def forward(self, x=None, raw=None, f=None, c=None, y=None): outputs = self.inference(x, c) if outputs["recon_x"] is not None: recon_loss = mse(outputs["recon_x"], x) else: recon_loss = self.calc_recon_binomial_loss(outputs, raw, f) recon_loss *= self.eta kl_div = kl(outputs["z1_mean"], outputs["z1_log_var"]) kl_loss = self.alpha * kl_div mmd_loss = 0 if self.calculate_mmd is not None: mmd_calculator = mmd(self.n_conditions, self.beta, self.mmd_boundary) if self.calculate_mmd == "z": mmd_loss = mmd_calculator(outputs["z1"], c) else: mmd_loss = mmd_calculator(outputs["y1"], c) return recon_loss, kl_loss, mmd_loss
/scArchest-0.0.1-py3-none-any.whl/scarchest/models/trvae/trvae.py
0.970219
0.704795
trvae.py
pypi
import numpy as np from typing import Union import torch import torch.nn as nn import anndata from scvi.data import get_from_registry from scarchest.models import scVI, scANVI from scarchest.trainers import scVITrainer, scANVITrainer, UnlabelledScanviTrainer def weight_update_check(old_network, op_network): for op_name, op_p in op_network.named_parameters(): for name, p in old_network.named_parameters(): if op_name == name: comparison = torch.eq(p, op_p) if False in comparison: print("UPDATED WEIGHTS", op_name) for name, module in op_network.named_modules(): if isinstance(module, nn.BatchNorm1d): if module.affine == False and module.track_running_stats == False: print("FROZEN BATCHNORM:", name) def scvi_operate( network: Union[scVI, scANVI], data: anndata.AnnData, labels_per_class: int = 0, n_epochs: int = 50, freeze: bool = True, freeze_expression: bool = True, remove_dropout: bool = False, ) -> [Union[scVI, scANVI], Union[scVITrainer, scANVITrainer], anndata.AnnData]: """Transfer Learning function for new data. Uses old trained Network and expands it for new conditions. Parameters ---------- network: VAE_M, SCANVI_M A Scvi/Scanvi model object. data: GeneExpressionDataset GeneExpressionDataset object. labels_per_class: Integer Number of labelled Samples used for Retraining n_epochs: Integer Number of epochs for training the network on query data. freeze: Boolean If 'True' freezes every part of the network except the first layers of encoder/decoder. freeze_expression: Boolean If 'True' freeze every weight in first layers except the condition weights. remove_dropout: Boolean If 'True' remove Dropout for Transfer Learning. Returns ------- op_network: VAE_M, SCANVI_M Newly network that got trained on query data. op_trainer: UnsupervisedTrainer, SemiSupervisedTrainer Trainer for the newly network. data: GeneExpressionDataset GeneExpressionDataset object with updated batch labels. """ early_stopping_kwargs = { "early_stopping_metric": "elbo", "save_best_state_metric": "elbo", "patience": 15, "threshold": 0, "reduce_lr_on_plateau": True, "lr_patience": 8, "lr_factor": 0.1, } early_stopping_kwargs_scanvi = { "early_stopping_metric": "accuracy", "save_best_state_metric": "accuracy", "on": "full_dataset", "patience": 15, "threshold": 0.001, "reduce_lr_on_plateau": True, "lr_patience": 8, "lr_factor": 0.1, } # Update DR Rate new_dr = network.dropout_rate if remove_dropout: new_dr = 0.0 n_new_conditions = data.uns["_scvi"]["summary_stats"]["n_batch"] adata = data.copy() adata.obs['_scvi_batch'] = get_from_registry(adata, "batch_indices").astype(np.int8) + network.n_batch n_conditions = network.n_batch + n_new_conditions if type(network) is scVI: print("Create new VAE....") op_network = scVI( n_input=network.n_input, n_batch=n_conditions, n_hidden=network.n_hidden, n_latent=network.n_latent, n_layers=network.n_layers, dropout_rate=new_dr, dispersion=network.dispersion, log_variational=network.log_variational, gene_likelihood=network.gene_likelihood, latent_distribution=network.latent_distribution, modified=network.modified, ) elif type(network) is scANVI: print("Create new SCANVI....") op_network = scANVI( n_input=network.n_input, n_batch=n_conditions, n_labels=network.n_labels, n_hidden=network.n_hidden, n_latent=network.n_latent, n_layers=network.n_layers, dropout_rate=new_dr, dispersion=network.dispersion, log_variational=network.log_variational, gene_likelihood=network.gene_likelihood, y_prior=network.y_prior, labels_groups=network.labels_groups, use_labels_groups=network.use_labels_groups, classifier_parameters=network.cls_parameters, modified=network.modified, ) else: print("Please use a compatible model for this operate function") exit() op_network.new_conditions = n_new_conditions if network.modified: # Expand first Layer weights of z encoder of old network by new conditions encoder_input_weights = network.z_encoder.encoder.fc_layers.Layer0.L.cond_L.weight to_be_added_encoder_input_weights = np.random.randn(encoder_input_weights.size()[0], n_new_conditions) * \ np.sqrt(2 / (encoder_input_weights.size()[0] + 1 + encoder_input_weights.size()[1])) to_be_added_encoder_input_weights = torch.tensor( to_be_added_encoder_input_weights, device=encoder_input_weights.get_device()).float() network.z_encoder.encoder.fc_layers.Layer0.L.cond_L.weight.data = torch.cat( (network.z_encoder.encoder.fc_layers.Layer0.L.cond_L.weight, to_be_added_encoder_input_weights), 1) # Expand first Layer weights of decoder of old network by new conditions decoder_input_weights = network.decoder.px_decoder.fc_layers.Layer0.L.cond_L.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * \ np.sqrt(2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.tensor( to_be_added_decoder_input_weights, device=decoder_input_weights.get_device()).float() network.decoder.px_decoder.fc_layers.Layer0.L.cond_L.weight.data = torch.cat( (network.decoder.px_decoder.fc_layers.Layer0.L.cond_L.weight, to_be_added_decoder_input_weights), 1) else: for layer in network.decoder.px_decoder.fc_layers: decoder_input_weights = layer.L.cond_L.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * \ np.sqrt(2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.tensor( to_be_added_decoder_input_weights, device=decoder_input_weights.get_device()).float() layer.L.cond_L.weight.data = torch.cat( (layer.L.cond_L.weight, to_be_added_decoder_input_weights), 1) # Set the weights of new network to old network weights op_network.load_state_dict(network.state_dict()) # Freeze parts of the network if freeze: op_network.freeze = True for name, p in op_network.named_parameters(): p.requires_grad = False if freeze_expression: if network.modified: if 'cond_L.weight' in name and ('z_encoder' in name or 'px_decoder' in name): p.requires_grad = True if 'l_encoder' in name: p.requires_grad = True else: if 'cond_L.weight' in name and ('z_encoder' in name or 'px_decoder' in name): p.requires_grad = True if 'z_encoder' in name and 'Layer0' in name: p.requires_grad = True if 'l_encoder' in name: p.requires_grad = True else: if network.modified: if ('z_encoder' in name or 'px_decoder' in name) and 'Layer0' in name: p.requires_grad = True if 'l_encoder' in name: p.requires_grad = True else: if 'z_encoder' in name and 'Layer0' in name: p.requires_grad = True if 'px_decoder' in name: p.requires_grad = True # Retrain Networks if type(network) is scVI: op_trainer = scVITrainer( op_network, adata, train_size=0.9, use_cuda=True, frequency=1, early_stopping_kwargs=early_stopping_kwargs ) op_trainer.train(n_epochs=n_epochs, lr=1e-3) if type(network) is scANVI: if labels_per_class == 0: op_trainer = UnlabelledScanviTrainer( op_network, adata, n_labelled_samples_per_class=labels_per_class, train_size=0.9, use_cuda=True, frequency=1, early_stopping_kwargs=early_stopping_kwargs_scanvi ) else: op_trainer = scANVITrainer( op_network, adata, n_labelled_samples_per_class=labels_per_class, classification_ratio=50, train_size=0.9, use_cuda=True, frequency=1, early_stopping_kwargs=early_stopping_kwargs_scanvi ) op_trainer.train(n_epochs=n_epochs, lr=1e-3) weight_update_check(network, op_network) return op_network, op_trainer, adata
/scArchest-0.0.1-py3-none-any.whl/scarchest/surgery/scvi.py
0.883864
0.328893
scvi.py
pypi
import numpy as np from typing import Union import torch from scarchest.models.trvae.trvae import trVAE def trvae_operate(network: trVAE, data_conditions: Union[list, str], freeze: bool = True, freeze_expression: bool = True, remove_dropout: bool = True, ) -> trVAE: """Transfer Learning function for new data. Uses old trained Network and expands it for new conditions. Parameters ---------- network: trVAE A scNet model object. data_conditions: list_str List of Strings of new Conditions. freeze: Boolean If 'True' freezes every part of the network except the first layers of encoder/decoder. remove_dropout: Boolean If 'True' remove Dropout for Transfer Learning. Returns ------- new_network: trVAE New expanded network with old weights for Transfer Learning. """ conditions = network.conditions new_conditions = [] # Check if new conditions are already known for item in data_conditions: if item not in conditions: new_conditions.append(item) n_new_conditions = len(new_conditions) # Add new conditions to overall conditions for condition in new_conditions: conditions.append(condition) # Update DR Rate new_dr = network.dr_rate if remove_dropout: new_dr = 0.0 new_network = trVAE( network.input_dim, conditions=conditions, encoder_layer_sizes=network.enc_layer_sizes, latent_dim=network.latent_dim, decoder_layer_sizes=network.dec_layer_sizes, recon_loss=network.recon_loss, alpha=network.alpha, use_batch_norm=network.use_bn, dr_rate=new_dr, beta=network.beta, eta=network.eta, calculate_mmd=network.calculate_mmd, mmd_boundary=network.mmd_boundary ) # Expand First Layer weights of encoder/decoder of old network by new conditions encoder_input_weights = network.encoder.FC.L0.cond_L.weight to_be_added_encoder_input_weights = np.random.randn(encoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (encoder_input_weights.size()[0] + 1 + encoder_input_weights.size()[1])) to_be_added_encoder_input_weights = torch.from_numpy(to_be_added_encoder_input_weights).float().to(network.device) new_encoder_input_weights = torch.cat((encoder_input_weights, to_be_added_encoder_input_weights), 1) network.encoder.FC.L0.cond_L.weight.data = new_encoder_input_weights decoder_input_weights = network.decoder.FirstL.L0.cond_L.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.from_numpy(to_be_added_decoder_input_weights).float().to(network.device) new_decoder_input_weights = torch.cat((decoder_input_weights, to_be_added_decoder_input_weights), 1) network.decoder.FirstL.L0.cond_L.weight.data = new_decoder_input_weights # Set the weights of new network to old network weights new_network.load_state_dict(network.state_dict()) # Freeze parts of the network if freeze: new_network.freeze = True for name, p in new_network.named_parameters(): p.requires_grad = False if freeze_expression: if 'cond_L.weight' in name: p.requires_grad = True else: if "L0" in name or "B0" in name: p.requires_grad = True return new_network
/scArchest-0.0.1-py3-none-any.whl/scarchest/surgery/trvae.py
0.899817
0.526647
trvae.py
pypi
import numpy as np from typing import Union import torch import scanpy as sc from scarchest.models import MARS from scarchest.trainers import MARSTrainer def mars_operate(network: MARS, new_adata: sc.AnnData, new_tasks: Union[list, str], meta_tasks: list, n_clusters: int, task_key: str, cell_type_key: str, tau: float = 0.2, eta: float = 1.0, freeze: bool = True, remove_dropout: bool = True, ) -> MARS: """Transfer Learning function for new data. Uses old trained Network and expands it for new conditions. Parameters ---------- network: MARS A MARS model object. new_tasks: list_str List of Strings of new Conditions. freeze: Boolean If 'True' freezes every part of the network except the first layers of encoder/decoder. remove_dropout: Boolean If 'True' remove Dropout for Transfer Learning. Returns ------- new_network: MARS New expanded network with old weights for Transfer Learning. """ conditions = network.conditions new_conditions = [] # Check if new conditions are already known for item in new_tasks: if item not in conditions: new_conditions.append(item) n_new_conditions = len(new_conditions) # Add new conditions to overall conditions for condition in new_conditions: conditions.append(condition) # Update DR Rate new_dr = network.dropout_rate if remove_dropout: new_dr = 0.0 new_network = MARS( x_dim=network.x_dim, architecture=network.architecture, z_dim=network.z_dim, conditions=conditions, alpha=network.alpha, activation=network.activation, output_activation=network.output_activation, use_batchnorm=network.use_batchnorm, dropout_rate=new_dr, ) # Expand First Layer weights of encoder/decoder of old network by new conditions encoder_input_weights = network.encoder[0].FC_0.weight to_be_added_encoder_input_weights = np.random.randn(encoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (encoder_input_weights.size()[0] + 1 + encoder_input_weights.size()[1])) to_be_added_encoder_input_weights = torch.from_numpy(to_be_added_encoder_input_weights).float().to(network.device) new_encoder_input_weights = torch.cat((encoder_input_weights, to_be_added_encoder_input_weights), 1) network.encoder[0].FC_0.weight.data = new_encoder_input_weights decoder_input_weights = network.decoder[0].FC_0.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.from_numpy(to_be_added_decoder_input_weights).float().to(network.device) new_decoder_input_weights = torch.cat((decoder_input_weights, to_be_added_decoder_input_weights), 1) network.decoder[0].FC_0.weight.data = new_decoder_input_weights # Set the weights of new network to old network weights new_network.load_state_dict(network.state_dict()) # Freeze parts of the network if freeze: for name, p in new_network.named_parameters(): if "FC_0" not in name: p.requires_grad = False new_trainer = MARSTrainer(model=new_network, adata=new_adata, task_key=task_key, meta_test_tasks=meta_tasks, cell_type_key=cell_type_key, n_clusters=n_clusters, tau=tau, eta=eta, ) return new_network, new_trainer
/scArchest-0.0.1-py3-none-any.whl/scarchest/surgery/mars.py
0.888475
0.432962
mars.py
pypi
import numpy as np class EarlyStopping(object): def __init__(self, mode: str = 'min', early_stopping_metric: str = 'val_loss', save_best_state_metric: str = 'val_loss', benchmark: bool = False, threshold: int = 3, patience: int = 50): self.benchmark = benchmark self.patience = patience self.threshold = threshold self.epoch = 0 self.wait = 0 self.mode = mode self.save_best_state_metric = save_best_state_metric self.early_stopping_metric = early_stopping_metric self.current_performance = np.inf self.best_performance = np.inf self.best_performance_state = np.inf if self.mode == "max": self.best_performance *= -1 self.current_performance *= -1 if patience == 0: self.is_better = lambda a, b: True self.step = lambda a: False def step(self, scalar): self.epoch += 1 if self.benchmark or self.epoch < self.patience: continue_training = True elif self.wait >= self.patience: continue_training = False else: # Shift self.current_performance = scalar improvement = 0 # Compute improvement if self.mode == "max": improvement = self.current_performance - self.best_performance elif self.mode == "min": improvement = self.best_performance - self.current_performance # updating best performance if improvement > 0: self.best_performance = self.current_performance if improvement < self.threshold: self.wait += 1 else: self.wait = 0 continue_training = True if not continue_training: print("\nStopping early: no improvement of more than " + str(self.threshold) + " nats in " + str(self.patience) + " epochs") print("If the early stopping criterion is too strong, " "please instantiate it with different parameters in the train method.") return continue_training def update_state(self, scalar): improved = ((self.mode == "max" and scalar - self.best_performance_state > 0) or (self.mode == "min" and self.best_performance_state - scalar > 0)) if improved: self.best_performance_state = scalar return improved
/scArchest-0.0.1-py3-none-any.whl/scarchest/utils/monitor.py
0.825449
0.201971
monitor.py
pypi
import numpy as np from scipy.stats import itemfreq, entropy from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score, adjusted_rand_score, normalized_mutual_info_score from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import LabelEncoder from scarchest.dataset.trvae.data_handling import remove_sparsity def __entropy_from_indices(indices): return entropy(np.array(itemfreq(indices)[:, 1].astype(np.int32))) def entropy_batch_mixing(adata, label_key='batch', n_neighbors=50, n_pools=50, n_samples_per_pool=100): """Computes Entory of Batch mixing metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. n_neighbors: int Number of nearest neighbors. n_pools: int Number of EBM computation which will be averaged. n_samples_per_pool: int Number of samples to be used in each pool of execution. Returns ------- score: float EBM score. A float between zero and one. """ adata = remove_sparsity(adata) neighbors = NearestNeighbors(n_neighbors=n_neighbors + 1).fit(adata.X) indices = neighbors.kneighbors(adata.X, return_distance=False)[:, 1:] batch_indices = np.vectorize(lambda i: adata.obs[label_key].values[i])(indices) entropies = np.apply_along_axis(__entropy_from_indices, axis=1, arr=batch_indices) # average n_pools entropy results where each result is an average of n_samples_per_pool random samples. if n_pools == 1: score = np.mean(entropies) else: score = np.mean([ np.mean(entropies[np.random.choice(len(entropies), size=n_samples_per_pool)]) for _ in range(n_pools) ]) return score def asw(adata, label_key): """Computes Average Silhouette Width (ASW) metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. Returns ------- score: float ASW score. A float between -1 and 1. """ adata = remove_sparsity(adata) labels = adata.obs[label_key].values labels_encoded = LabelEncoder().fit_transform(labels) return silhouette_score(adata.X, labels_encoded) def ari(adata, label_key): """Computes Adjusted Rand Index (ARI) metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. Returns ------- score: float ARI score. A float between 0 and 1. """ adata = remove_sparsity(adata) n_labels = len(adata.obs[label_key].unique().tolist()) kmeans = KMeans(n_labels, n_init=200) labels_pred = kmeans.fit_predict(adata.X) labels = adata.obs[label_key].values labels_encoded = LabelEncoder().fit_transform(labels) return adjusted_rand_score(labels_encoded, labels_pred) def nmi(adata, label_key): """Computes Normalized Mutual Information (NMI) metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. Returns ------- score: float NMI score. A float between 0 and 1. """ adata = remove_sparsity(adata) n_labels = len(adata.obs[label_key].unique().tolist()) kmeans = KMeans(n_labels, n_init=200) labels_pred = kmeans.fit_predict(adata.X) labels = adata.obs[label_key].values labels_encoded = LabelEncoder().fit_transform(labels) return normalized_mutual_info_score(labels_encoded, labels_pred) def knn_purity(adata, label_key, n_neighbors=30): """Computes KNN Purity metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. n_neighbors: int Number of nearest neighbors. Returns ------- score: float KNN purity score. A float between 0 and 1. """ adata = remove_sparsity(adata) labels = LabelEncoder().fit_transform(adata.obs[label_key].to_numpy()) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1).fit(adata.X) indices = nbrs.kneighbors(adata.X, return_distance=False)[:, 1:] neighbors_labels = np.vectorize(lambda i: labels[i])(indices) # pre cell purity scores scores = ((neighbors_labels - labels.reshape(-1, 1)) == 0).mean(axis=1) res = [ np.mean(scores[labels == i]) for i in np.unique(labels) ] # per cell-type purity return np.mean(res)
/scArchest-0.0.1-py3-none-any.whl/scarchest/metrics/metrics.py
0.939401
0.779028
metrics.py
pypi
from scvi.data import get_from_registry from scarchest.metrics.metrics import entropy_batch_mixing, knn_purity from scarchest.models import scVI, scANVI from scarchest.trainers import scVITrainer, scANVITrainer import numpy as np import scanpy as sc import torch from typing import Union import anndata import matplotlib.pyplot as plt sc.settings.set_figure_params(dpi=100, frameon=False) sc.set_figure_params(dpi=100) torch.set_printoptions(precision=3, sci_mode=False, edgeitems=7) np.set_printoptions(precision=2, edgeitems=7) class SCVI_EVAL: def __init__( self, model: Union[scVI, scANVI], trainer: Union[scVITrainer, scANVITrainer], adata: anndata.AnnData, cell_type_key: str, batch_key: str, ): self.model = model self.trainer = trainer self.adata = adata self.modified = model.modified self.annotated = type(model) is scANVI self.post_adata_2 = None self.predictions = None if self.trainer.use_cuda: self.device = torch.device('cuda') else: self.device = torch.device('cpu') self.x_tensor = torch.tensor(self.adata.X, device=self.device) self.labels = get_from_registry(self.adata, "labels").astype(np.int8) self.label_tensor = torch.tensor(self.labels, device=self.device) self.cell_types = self.adata.obs[cell_type_key].tolist() self.batch_indices = get_from_registry(self.adata, "batch_indices").astype(np.int8) self.batch_tensor = torch.tensor(self.batch_indices, device=self.device) self.batch_names = self.adata.obs[batch_key].tolist() self.post_adata = self.latent_as_anndata() def latent_as_anndata(self): if self.modified: latents = self.model.get_latents( self.x_tensor, y=self.label_tensor, batch_index=self.batch_tensor ) else: latents = self.model.get_latents( self.x_tensor, y=self.label_tensor, ) if self.annotated: latent = latents[0].cpu().detach().numpy() latent2 = latents[1].cpu().detach().numpy() post_adata_2 = sc.AnnData(latent2) post_adata_2.obs['cell_type'] = self.cell_types post_adata_2.obs['batch'] = self.batch_names self.post_adata_2 = post_adata_2 else: latent = latents[0].cpu().detach().numpy() post_adata = sc.AnnData(latent) post_adata.obs['cell_type'] = self.cell_types post_adata.obs['batch'] = self.batch_names return post_adata def get_model_arch(self): for name, p in self.model.named_parameters(): print(name, " - ", p.size(0), p.size(-1)) def plot_latent(self, n_neighbors=8): sc.pp.neighbors(self.post_adata, n_neighbors=n_neighbors) sc.tl.umap(self.post_adata) sc.pl.umap(self.post_adata, color=['cell_type', 'batch'], frameon=False, wspace=0.6) def plot_latent_ann(self, n_neighbors=8): if self.annotated: sc.pp.neighbors(self.post_adata_2, n_neighbors=n_neighbors) sc.tl.umap(self.post_adata_2) sc.pl.umap(self.post_adata_2, color=['cell_type', 'batch'], frameon=False, wspace=0.6) else: print("Second latent space not available for scVI models") def plot_history(self, n_epochs): if self.annotated: elbo_full = self.trainer.history["elbo_full_dataset"] x_1 = np.linspace(0, len(elbo_full), len(elbo_full)) fig, axs = plt.subplots(2, 1) axs[0].plot(x_1, elbo_full, label="Full") accuracy_labelled_set = self.trainer.history["accuracy_labelled_set"] accuracy_unlabelled_set = self.trainer.history["accuracy_unlabelled_set"] if len(accuracy_labelled_set) != 0: x_2 = np.linspace(0, len(accuracy_labelled_set), (len(accuracy_labelled_set))) axs[1].plot(x_2, accuracy_labelled_set, label="accuracy labelled") if len(accuracy_unlabelled_set) != 0: x_3 = np.linspace(0, len(accuracy_unlabelled_set), (len(accuracy_unlabelled_set))) axs[1].plot(x_3, accuracy_unlabelled_set, label="accuracy unlabelled") axs[0].set_xlabel('Epochs') axs[0].set_ylabel('ELBO') axs[1].set_xlabel('Epochs') axs[1].set_ylabel('Accuracy') plt.legend() plt.show() else: elbo_train = self.trainer.history["elbo_train_set"] elbo_test = self.trainer.history["elbo_test_set"] x = np.linspace(0, len(elbo_train), len(elbo_train)) plt.plot(x, elbo_train, label="train") plt.plot(x, elbo_test, label="test") plt.ylim(min(elbo_train) - 50, min(elbo_train) + 1000) plt.legend() plt.show() def get_ebm(self, n_neighbors=50, n_pools=50, n_samples_per_pool=100, verbose=True): ebm_score = entropy_batch_mixing( adata=self.post_adata, label_key='batch', n_neighbors=n_neighbors, n_pools=n_pools, n_samples_per_pool=n_samples_per_pool ) if verbose: print("Entropy of Batchmixing-Score:", ebm_score) return ebm_score def get_knn_purity(self, n_neighbors=50, verbose=True): knn_score = knn_purity( adata=self.post_adata, label_key='cell_type', n_neighbors=n_neighbors ) if verbose: print("KNN Purity-Score:", knn_score) return knn_score def get_latent_score(self): ebm = self.get_ebm(verbose=False) knn = self.get_knn_purity(verbose=False) score = ebm + knn print("Latent-Space Score (KNN + EBM):", score) return score def get_classification_accuracy(self): if self.annotated: if self.modified: predictions = self.model.classify(self.x_tensor, batch_index=self.batch_tensor) else: predictions = self.model.classify(self.x_tensor) self.predictions = predictions.cpu().detach().numpy() self.predictions = np.argmax(self.predictions, axis=1) class_check = np.array(np.expand_dims(self.predictions, axis=1) == self.labels) accuracy = np.sum(class_check) / class_check.shape[0] print("Classification Accuracy: %0.2f" % accuracy) return accuracy else: print("Classification ratio not available for scVI models")
/scArchest-0.0.1-py3-none-any.whl/scarchest/plotting/scvi_eval.py
0.814791
0.278508
scvi_eval.py
pypi
import numpy as np import logging import torch from torch.nn import functional as F from scvi.data._anndata import get_from_registry from scvi import _CONSTANTS from scarchest.trainers.scvi import Trainer, scVITrainer from scarchest.dataset.scvi import AnnotationDataLoader logger = logging.getLogger(__name__) class ClassifierTrainer(Trainer): """Class for training a classifier either on the raw data or on top of the latent space of another model. Parameters ---------- model A model instance from class ``VAE``, ``VAEC``, ``SCANVI`` gene_dataset A gene_dataset instance like ``CortexDataset()`` train_size The train size, a float between 0 and 1 representing proportion of dataset to use for training to use Default: ``0.9``. test_size The test size, a float between 0 and 1 representing proportion of dataset to use for testing to use Default: ``None``. sampling_model Model with z_encoder with which to first transform data. sampling_zl Transform data with sampling_model z_encoder and l_encoder and concat. **kwargs Other keywords arguments from the general Trainer class. Examples -------- >>> gene_dataset = CortexDataset() >>> vae = VAE(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels) >>> classifier = Classifier(vae.n_latent, n_labels=cortex_dataset.n_labels) >>> trainer = ClassifierTrainer(classifier, gene_dataset, sampling_model=vae, train_size=0.5) >>> trainer.train(n_epochs=20, lr=1e-3) >>> trainer.test_set.accuracy() """ def __init__( self, *args, train_size=0.9, test_size=None, sampling_model=None, sampling_zl=False, use_cuda=True, **kwargs ): train_size = float(train_size) if train_size > 1.0 or train_size <= 0.0: raise ValueError( "train_size needs to be greater than 0 and less than or equal to 1" ) self.sampling_model = sampling_model self.sampling_zl = sampling_zl super().__init__(*args, use_cuda=use_cuda, **kwargs) self.train_set, self.test_set, self.validation_set = self.train_test_validation( self.model, self.adata, train_size=train_size, test_size=test_size, type_class=AnnotationDataLoader, ) self.train_set.to_monitor = ["accuracy"] self.test_set.to_monitor = ["accuracy"] self.validation_set.to_monitor = ["accuracy"] self.train_set.model_zl = sampling_zl self.test_set.model_zl = sampling_zl self.validation_set.model_zl = sampling_zl @property def scvi_data_loaders_loop(self): return ["train_set"] def __setattr__(self, key, value): if key in ["train_set", "test_set"]: value.sampling_model = self.sampling_model super().__setattr__(key, value) def loss(self, tensors_labelled): x = tensors_labelled[_CONSTANTS.X_KEY] labels_train = tensors_labelled[_CONSTANTS.LABELS_KEY] if hasattr(self.sampling_model, "classify"): if self.sampling_model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] return F.cross_entropy( self.sampling_model.classify(x, batch_index), labels_train.view(-1) ) return F.cross_entropy( self.sampling_model.classify(x), labels_train.view(-1) ) else: if self.sampling_model.log_variational: x = torch.log(1 + x) if self.sampling_zl: if self.sampling_model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] x_z = self.sampling_model.z_encoder(x, batch_index)[0] x_l = self.sampling_model.l_encoder(x, batch_index)[0] else: x_z = self.sampling_model.z_encoder(x)[0] x_l = self.sampling_model.l_encoder(x)[0] x = torch.cat((x_z, x_l), dim=-1) else: if self.sampling_model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] x = self.sampling_model.z_encoder(x, batch_index)[0] else: x = self.sampling_model.z_encoder(x)[0] return F.cross_entropy(self.model(x), labels_train.view(-1)) def create_scvi_dl( self, model=None, adata=None, shuffle=False, indices=None, type_class=AnnotationDataLoader, ): return super().create_scvi_dl(model, adata, shuffle, indices, type_class) class scANVITrainer(scVITrainer): """Class for the semi-supervised training of an autoencoder. This parent class can be inherited to specify the different training schemes for semi-supervised learning Parameters ---------- n_labelled_samples_per_class number of labelled samples per class """ def __init__( self, model, adata, n_labelled_samples_per_class=50, n_epochs_classifier=1, lr_classification=5 * 1e-3, classification_ratio=50, seed=0, **kwargs ): super().__init__(model, adata, **kwargs) self.model = model self.adata = adata self.n_epochs_classifier = n_epochs_classifier self.lr_classification = lr_classification self.classification_ratio = classification_ratio n_labelled_samples_per_class_array = [ n_labelled_samples_per_class ] * self.adata.uns["_scvi"]["summary_stats"]["n_labels"] labels = np.array(get_from_registry(self.adata, _CONSTANTS.LABELS_KEY)).ravel() np.random.seed(seed=seed) permutation_idx = np.random.permutation(len(labels)) labels = labels[permutation_idx] indices = [] current_nbrs = np.zeros(len(n_labelled_samples_per_class_array)) for idx, (label) in enumerate(labels): label = int(label) if current_nbrs[label] < n_labelled_samples_per_class_array[label]: indices.insert(0, idx) current_nbrs[label] += 1 else: indices.append(idx) indices = np.array(indices) total_labelled = sum(n_labelled_samples_per_class_array) indices_labelled = permutation_idx[indices[:total_labelled]] indices_unlabelled = permutation_idx[indices[total_labelled:]] self.classifier_trainer = ClassifierTrainer( model.classifier, self.adata, metrics_to_monitor=[], silent=True, frequency=0, sampling_model=self.model, ) self.full_dataset = self.create_scvi_dl(shuffle=True) self.labelled_set = self.create_scvi_dl(indices=indices_labelled) self.unlabelled_set = self.create_scvi_dl(indices=indices_unlabelled) for scdl in [self.labelled_set, self.unlabelled_set]: scdl.to_monitor = ["reconstruction_error", "accuracy"] @property def scvi_data_loaders_loop(self): return ["full_dataset", "labelled_set"] def __setattr__(self, key, value): if key == "labelled_set": self.classifier_trainer.train_set = value super().__setattr__(key, value) def loss(self, tensors_all, tensors_labelled): loss = super().loss(tensors_all, feed_labels=False) sample_batch = tensors_labelled[_CONSTANTS.X_KEY] y = tensors_labelled[_CONSTANTS.LABELS_KEY] if self.model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] classification_loss = F.cross_entropy( self.model.classify(sample_batch, batch_index), y.view(-1) ) else: classification_loss = F.cross_entropy( self.model.classify(sample_batch), y.view(-1) ) loss += classification_loss * self.classification_ratio return loss def on_epoch_end(self): self.model.eval() self.classifier_trainer.train( self.n_epochs_classifier, lr=self.lr_classification ) self.model.train() return super().on_epoch_end() def create_scvi_dl( self, model=None, adata=None, shuffle=False, indices=None, type_class=AnnotationDataLoader, ): return super().create_scvi_dl(model, adata, shuffle, indices, type_class) class UnlabelledScanviTrainer(scANVITrainer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def loss(self, all_tensor): return scVITrainer.loss(self, all_tensor, feed_labels=False) @property def scvi_data_loaders_loop(self): return ["full_dataset"]
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/scvi/annotation.py
0.901531
0.458955
annotation.py
pypi
from typing import Union import anndata import logging import torch from scvi import _CONSTANTS from scvi.core.modules import Classifier from scvi.core.modules.utils import one_hot from scarchest.models.scvi import totalVI from scarchest.trainers.scvi import scVITrainer from scarchest.dataset.scvi import TotalDataLoader logger = logging.getLogger(__name__) default_early_stopping_kwargs = { "early_stopping_metric": "elbo", "save_best_state_metric": "elbo", "patience": 45, "threshold": 0, "reduce_lr_on_plateau": True, "lr_patience": 30, "lr_factor": 0.6, "scvi_data_loader_class": TotalDataLoader, } def _unpack_tensors(tensors): x = tensors[_CONSTANTS.X_KEY] local_l_mean = tensors[_CONSTANTS.LOCAL_L_MEAN_KEY] local_l_var = tensors[_CONSTANTS.LOCAL_L_VAR_KEY] batch_index = tensors[_CONSTANTS.BATCH_KEY] labels = tensors[_CONSTANTS.LABELS_KEY] y = tensors[_CONSTANTS.PROTEIN_EXP_KEY] return x, local_l_mean, local_l_var, batch_index, labels, y class totalTrainer(scVITrainer): """ Unsupervised training for totalVI using variational inference. Parameters ---------- model A model instance from class ``TOTALVAE`` adata A registered AnnData object train_size The train size, a float between 0 and 1 representing proportion of dataset to use for training to use Default: ``0.90``. test_size The test size, a float between 0 and 1 representing proportion of dataset to use for testing to use Default: ``0.10``. Note that if train and test do not add to 1 the remainder is placed in a validation set pro_recons_weight Scaling factor on the reconstruction loss for proteins. Default: ``1.0``. n_epochs_kl_warmup Number of epochs for annealing the KL terms for `z` and `mu` of the ELBO (from 0 to 1). If None, no warmup performed, unless `n_iter_kl_warmup` is set. n_iter_kl_warmup Number of minibatches for annealing the KL terms for `z` and `mu` of the ELBO (from 0 to 1). If set to "auto", the number of iterations is equal to 75% of the number of cells. `n_epochs_kl_warmup` takes precedence if it is not None. If both are None, then no warmup is performed. discriminator Classifier used for adversarial training scheme use_adversarial_loss Whether to use adversarial classifier to improve mixing kappa Scaling factor for adversarial loss. If None, follow inverse of kl warmup schedule. early_stopping_kwargs Keyword args for early stopping. If "auto", use totalVI defaults. If None, disable early stopping. """ default_metrics_to_monitor = ["elbo"] def __init__( self, model: totalVI, dataset: anndata.AnnData, train_size: float = 0.90, test_size: float = 0.10, pro_recons_weight: float = 1.0, n_epochs_kl_warmup: int = None, n_iter_kl_warmup: Union[str, int] = "auto", discriminator: Classifier = None, use_adversarial_loss: bool = False, kappa: float = None, early_stopping_kwargs: Union[dict, str, None] = "auto", **kwargs, ): train_size = float(train_size) if train_size > 1.0 or train_size <= 0.0: raise ValueError( "train_size needs to be greater than 0 and less than or equal to 1" ) self.n_genes = model.n_input_genes self.n_proteins = model.n_input_proteins self.use_adversarial_loss = use_adversarial_loss self.kappa = kappa self.pro_recons_weight = pro_recons_weight if early_stopping_kwargs == "auto": early_stopping_kwargs = default_early_stopping_kwargs super().__init__( model, dataset, n_epochs_kl_warmup=n_epochs_kl_warmup, n_iter_kl_warmup=0.75 * len(dataset) if n_iter_kl_warmup == "auto" else n_iter_kl_warmup, early_stopping_kwargs=early_stopping_kwargs, **kwargs, ) if use_adversarial_loss is True and discriminator is None: discriminator = Classifier( n_input=self.model.n_latent, n_hidden=32, n_labels=self.adata.uns["_scvi"]["summary_stats"]["n_batch"], n_layers=2, logits=True, ) self.discriminator = discriminator if self.use_cuda and self.discriminator is not None: self.discriminator.cuda() if isinstance(self, totalTrainer): ( self.train_set, self.test_set, self.validation_set, ) = self.train_test_validation( model, dataset, train_size, test_size, type_class=TotalDataLoader ) self.train_set.to_monitor = [] self.test_set.to_monitor = ["elbo"] self.validation_set.to_monitor = ["elbo"] def loss(self, tensors): ( sample_batch_x, local_l_mean, local_l_var, batch_index, label, sample_batch_y, ) = _unpack_tensors(tensors) ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_l_gene, kl_div_back_pro, ) = self.model( sample_batch_x, sample_batch_y, local_l_mean, local_l_var, batch_index, label, ) loss = torch.mean( reconst_loss_gene + self.pro_recons_weight * reconst_loss_protein + self.kl_weight * kl_div_z + kl_div_l_gene + self.kl_weight * kl_div_back_pro ) return loss def loss_discriminator( self, z, batch_index, predict_true_class=True, return_details=True ): n_classes = self.adata.uns["_scvi"]["summary_stats"]["n_batch"] cls_logits = torch.nn.LogSoftmax(dim=1)(self.discriminator(z)) if predict_true_class: cls_target = one_hot(batch_index, n_classes) else: one_hot_batch = one_hot(batch_index, n_classes) cls_target = torch.zeros_like(one_hot_batch) # place zeroes where true label is cls_target.masked_scatter_( ~one_hot_batch.bool(), torch.ones_like(one_hot_batch) / (n_classes - 1) ) l_soft = cls_logits * cls_target loss = -l_soft.sum(dim=1).mean() return loss def _get_z(self, tensors): ( sample_batch_x, local_l_mean, local_l_var, batch_index, label, sample_batch_y, ) = _unpack_tensors(tensors) z = self.model.sample_from_posterior_z( sample_batch_x, sample_batch_y, batch_index, give_mean=False ) return z def train(self, n_epochs=500, lr=4e-3, eps=0.01, params=None): super().train(n_epochs=n_epochs, lr=lr, eps=eps, params=params) def on_training_loop(self, tensors_dict): if self.use_adversarial_loss: if self.kappa is None: kappa = 1 - self.kl_weight else: kappa = self.kappa batch_index = tensors_dict[0][_CONSTANTS.BATCH_KEY] if kappa > 0: z = self._get_z(*tensors_dict) # Train discriminator d_loss = self.loss_discriminator(z.detach(), batch_index, True) d_loss *= kappa self.d_optimizer.zero_grad() d_loss.backward() self.d_optimizer.step() # Train generative model to fool discriminator fool_loss = self.loss_discriminator(z, batch_index, False) fool_loss *= kappa # Train generative model self.optimizer.zero_grad() self.current_loss = loss = self.loss(*tensors_dict) if kappa > 0: (loss + fool_loss).backward() else: loss.backward() self.optimizer.step() else: self.current_loss = loss = self.loss(*tensors_dict) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def training_extras_init(self, lr_d=1e-3, eps=0.01): if self.discriminator is not None: self.discriminator.train() d_params = filter( lambda p: p.requires_grad, self.discriminator.parameters() ) self.d_optimizer = torch.optim.Adam(d_params, lr=lr_d, eps=eps) def training_extras_end(self): if self.discriminator is not None: self.discriminator.eval()
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/scvi/total_inference.py
0.934947
0.289862
total_inference.py
pypi
import logging import time import numpy as np import torch import torch.nn as nn import anndata from abc import abstractmethod from collections import defaultdict, OrderedDict from itertools import cycle from typing import List from sklearn.model_selection._split import _validate_shuffle_split from torch.utils.data.sampler import SubsetRandomSampler from scvi._utils import track from scvi import _CONSTANTS from scarchest.dataset.scvi import ScviDataLoader logger = logging.getLogger(__name__) class Trainer: """The abstract Trainer class for training a PyTorch model and monitoring its statistics. It should be inherited at least with a ``.loss()`` function to be optimized in the training loop. Parameters ---------- model : A model instance from class ``VAE``, ``VAEC``, ``SCANVI`` adata: A registered anndata object use_cuda : Default: ``True``. metrics_to_monitor : A list of the metrics to monitor. If not specified, will use the ``default_metrics_to_monitor`` as specified in each . Default: ``None``. benchmark : if True, prevents statistics computation in the training. Default: ``False``. frequency : The frequency at which to keep track of statistics. Default: ``None``. early_stopping_metric : The statistics on which to perform early stopping. Default: ``None``. save_best_state_metric : The statistics on which we keep the network weights achieving the best store, and restore them at the end of training. Default: ``None``. on : The data_loader name reference for the ``early_stopping_metric`` and ``save_best_state_metric``, that should be specified if any of them is. Default: ``None``. show_progbar : If False, disables progress bar. seed : Random seed for train/test/validate split Returns ------- """ default_metrics_to_monitor = [] def __init__( self, model, adata: anndata.AnnData, use_cuda: bool = True, metrics_to_monitor: List = None, benchmark: bool = False, frequency: int = None, weight_decay: float = 1e-6, early_stopping_kwargs: dict = None, data_loader_kwargs: dict = None, silent: bool = False, batch_size: int = 128, seed: int = 0, max_nans: int = 10, ): # Model, dataset management self.model = model self.adata = adata self._scvi_data_loaders = OrderedDict() self.seed = seed # For train/test splitting self.use_cuda = use_cuda and torch.cuda.is_available() if self.use_cuda: self.model.cuda() # Data loader attributes self.batch_size = batch_size self.data_loader_kwargs = {"pin_memory": use_cuda} data_loader_kwargs = data_loader_kwargs if data_loader_kwargs else dict() self.data_loader_kwargs.update(data_loader_kwargs) # Optimization attributes self.optimizer = None self.weight_decay = weight_decay self.n_epochs = None self.epoch = -1 # epoch = self.epoch + 1 in compute metrics self.training_time = 0 self.n_iter = 0 # Training NaNs handling self.max_nans = max_nans self.current_loss = None # torch.Tensor training loss self.previous_loss_was_nan = False self.nan_counter = 0 # Counts occuring NaNs during training # Metrics and early stopping self.compute_metrics_time = None if metrics_to_monitor is not None: self.metrics_to_monitor = set(metrics_to_monitor) else: self.metrics_to_monitor = set(self.default_metrics_to_monitor) early_stopping_kwargs = ( early_stopping_kwargs if early_stopping_kwargs else dict() ) self.early_stopping = EarlyStopping(**early_stopping_kwargs) self.benchmark = benchmark self.frequency = frequency if not benchmark else None self.history = defaultdict(list) self.best_state_dict = self.model.state_dict() self.best_epoch = self.epoch if self.early_stopping.early_stopping_metric: self.metrics_to_monitor.add(self.early_stopping.early_stopping_metric) self.silent = silent @torch.no_grad() def compute_metrics(self): begin = time.time() epoch = self.epoch + 1 if self.frequency and ( epoch == 0 or epoch == self.n_epochs or (epoch % self.frequency == 0) ): with torch.set_grad_enabled(False): self.model.eval() logger.debug("\nEPOCH [%d/%d]: " % (epoch, self.n_epochs)) for name, scdl in self._scvi_data_loaders.items(): message = " ".join([s.capitalize() for s in name.split("_")[-2:]]) if scdl.n_cells < 5: logging.debug( message + " is too small to track metrics (<5 samples)" ) continue if hasattr(scdl, "to_monitor"): for metric in scdl.to_monitor: if metric not in self.metrics_to_monitor: logger.debug(message) result = getattr(scdl, metric)() self.history[metric + "_" + name] += [result] for metric in self.metrics_to_monitor: result = getattr(scdl, metric)() self.history[metric + "_" + name] += [result] self.model.train() self.compute_metrics_time += time.time() - begin def train(self, n_epochs=400, lr=1e-3, eps=0.01, params=None, **extras_kwargs): begin = time.time() self.model.train() if params is None: params = filter(lambda p: p.requires_grad, self.model.parameters()) if len(list(params)) == 0: return else: params = filter(lambda p: p.requires_grad, self.model.parameters()) self.optimizer = torch.optim.Adam( params, lr=lr, eps=eps, weight_decay=self.weight_decay ) # Initialization of other model's optimizers self.training_extras_init(**extras_kwargs) self.compute_metrics_time = 0 self.n_epochs = n_epochs self.compute_metrics() self.on_training_begin() for self.epoch in track( range(n_epochs), description="Training...", disable=self.silent ): self.on_epoch_begin() for tensors_dict in self.data_loaders_loop(): if tensors_dict[0][_CONSTANTS.X_KEY].shape[0] < 3: continue self.on_iteration_begin() # Update the model's parameters after seeing the data self.on_training_loop(tensors_dict) # Checks the training status, ensures no nan loss self.on_iteration_end() # Computes metrics and controls early stopping if not self.on_epoch_end(): break if self.early_stopping.save_best_state_metric is not None: self.model.load_state_dict(self.best_state_dict) self.compute_metrics() self.model.eval() self.training_extras_end() self.training_time += (time.time() - begin) - self.compute_metrics_time self.on_training_end() def on_training_loop(self, tensors_dict): if self.model.freeze: for name, module in self.model.named_modules(): if isinstance(module, nn.BatchNorm1d): if not module.weight.requires_grad: module.affine = False module.track_running_stats = False self.current_loss = loss = self.loss(*tensors_dict) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def training_extras_init(self, **extras_kwargs): """Other necessary models to simultaneously train.""" pass def training_extras_end(self): """Place to put extra models in eval mode, etc.""" pass def on_training_begin(self): pass def on_epoch_begin(self): # Epochs refer to a pass through the entire dataset (in minibatches) pass def on_epoch_end(self): self.compute_metrics() on = self.early_stopping.on early_stopping_metric = self.early_stopping.early_stopping_metric save_best_state_metric = self.early_stopping.save_best_state_metric if save_best_state_metric is not None and on is not None: if self.early_stopping.update_state( self.history[save_best_state_metric + "_" + on][-1] ): self.best_state_dict = self.model.state_dict() self.best_epoch = self.epoch continue_training = True if early_stopping_metric is not None and on is not None: continue_training, reduce_lr = self.early_stopping.update( self.history[early_stopping_metric + "_" + on][-1] ) if reduce_lr: logger.info("Reducing LR on epoch {}.".format(self.epoch)) for param_group in self.optimizer.param_groups: param_group["lr"] *= self.early_stopping.lr_factor return continue_training def on_iteration_begin(self): # Iterations refer to minibatches pass def on_iteration_end(self): self.check_training_status() self.n_iter += 1 def on_training_end(self): pass def check_training_status(self): """ Checks if loss is admissible. If not, training is stopped after max_nans consecutive inadmissible loss loss corresponds to the training loss of the model. `max_nans` is the maximum number of consecutive NaNs after which a ValueError will be """ loss_is_nan = torch.isnan(self.current_loss).item() if loss_is_nan: logger.warning("Model training loss was NaN") self.nan_counter += 1 self.previous_loss_was_nan = True else: self.nan_counter = 0 self.previous_loss_was_nan = False if self.nan_counter >= self.max_nans: raise ValueError( "Loss was NaN {} consecutive times: the model is not training properly. " "Consider using a lower learning rate.".format(self.max_nans) ) @property @abstractmethod def scvi_data_loaders_loop(self): pass def data_loaders_loop(self): """Returns an zipped iterable corresponding to loss signature.""" data_loaders_loop = [ self._scvi_data_loaders[name] for name in self.scvi_data_loaders_loop ] return zip( data_loaders_loop[0], *[cycle(data_loader) for data_loader in data_loaders_loop[1:]] ) def register_data_loader(self, name, value): name = name.strip("_") self._scvi_data_loaders[name] = value def __getattr__(self, name): if "_scvi_data_loaders" in self.__dict__: _scvi_data_loaders = self.__dict__["_scvi_data_loaders"] if name.strip("_") in _scvi_data_loaders: return _scvi_data_loaders[name.strip("_")] return object.__getattribute__(self, name) def __delattr__(self, name): if name.strip("_") in self._scvi_data_loaders: del self._scvi_data_loaders[name.strip("_")] else: object.__delattr__(self, name) def __setattr__(self, name, value): if isinstance(value, ScviDataLoader): name = name.strip("_") self.register_data_loader(name, value) else: object.__setattr__(self, name, value) def train_test_validation( self, model=None, adata=None, train_size=0.9, test_size=None, type_class=ScviDataLoader, ): """ Creates data loaders ``train_set``, ``test_set``, ``validation_set``. If ``train_size + test_size < 1`` then ``validation_set`` is non-empty. Parameters ---------- train_size : float, or None (default is 0.9) test_size : float, or None (default is None) model : (Default value = None) adata: (Default value = None) type_class : (Default value = ScviDataLoader) """ train_size = float(train_size) if train_size > 1.0 or train_size <= 0.0: raise ValueError( "train_size needs to be greater than 0 and less than or equal to 1" ) model = self.model if model is None and hasattr(self, "model") else model # what to do here if it has the attribute modle adata = self.adata if adata is None and hasattr(self, "model") else adata n = len(adata) try: n_train, n_test = _validate_shuffle_split(n, test_size, train_size) except ValueError: if train_size != 1.0: raise ValueError( "Choice of train_size={} and test_size={} not understood".format( train_size, test_size ) ) n_train, n_test = n, 0 random_state = np.random.RandomState(seed=self.seed) permutation = random_state.permutation(n) indices_test = permutation[:n_test] indices_train = permutation[n_test: (n_test + n_train)] indices_validation = permutation[(n_test + n_train):] return ( self.create_scvi_dl( model, adata, indices=indices_train, type_class=type_class ), self.create_scvi_dl( model, adata, indices=indices_test, type_class=type_class ), self.create_scvi_dl( model, adata, indices=indices_validation, type_class=type_class ), ) def create_scvi_dl( self, model=None, adata: anndata.AnnData = None, shuffle=False, indices=None, type_class=ScviDataLoader, ): model = self.model if model is None and hasattr(self, "model") else model adata = self.adata if adata is None and hasattr(self, "model") else adata return type_class( model, adata, shuffle=shuffle, indices=indices, use_cuda=self.use_cuda, batch_size=self.batch_size, data_loader_kwargs=self.data_loader_kwargs, ) class SequentialSubsetSampler(SubsetRandomSampler): def __init__(self, indices): self.indices = np.sort(indices) def __iter__(self): return iter(self.indices) class EarlyStopping: def __init__( self, early_stopping_metric: str = None, save_best_state_metric: str = None, on: str = "test_set", patience: int = 15, threshold: int = 3, benchmark: bool = False, reduce_lr_on_plateau: bool = False, lr_patience: int = 10, lr_factor: float = 0.5, scvi_data_loader_class=ScviDataLoader, ): self.benchmark = benchmark self.patience = patience self.threshold = threshold self.epoch = 0 self.wait = 0 self.wait_lr = 0 self.mode = ( getattr(scvi_data_loader_class, early_stopping_metric).mode if early_stopping_metric is not None else None ) # We set the best to + inf because we're dealing with a loss we want to minimize self.current_performance = np.inf self.best_performance = np.inf self.best_performance_state = np.inf # If we want to maximize, we start at - inf if self.mode == "max": self.best_performance *= -1 self.current_performance *= -1 self.mode_save_state = ( getattr(ScviDataLoader, save_best_state_metric).mode if save_best_state_metric is not None else None ) if self.mode_save_state == "max": self.best_performance_state *= -1 self.early_stopping_metric = early_stopping_metric self.save_best_state_metric = save_best_state_metric self.on = on self.reduce_lr_on_plateau = reduce_lr_on_plateau self.lr_patience = lr_patience self.lr_factor = lr_factor def update(self, scalar): self.epoch += 1 if self.benchmark: continue_training = True reduce_lr = False elif self.wait >= self.patience: continue_training = False reduce_lr = False else: # Check if we should reduce the learning rate if not self.reduce_lr_on_plateau: reduce_lr = False elif self.wait_lr >= self.lr_patience: reduce_lr = True self.wait_lr = 0 else: reduce_lr = False # Shift self.current_performance = scalar # Compute improvement if self.mode == "max": improvement = self.current_performance - self.best_performance elif self.mode == "min": improvement = self.best_performance - self.current_performance else: raise NotImplementedError("Unknown optimization mode") # updating best performance if improvement > 0: self.best_performance = self.current_performance if improvement < self.threshold: self.wait += 1 self.wait_lr += 1 else: self.wait = 0 self.wait_lr = 0 continue_training = True if not continue_training: # FIXME: log total number of epochs run logger.info( "\nStopping early: no improvement of more than " + str(self.threshold) + " nats in " + str(self.patience) + " epochs" ) logger.info( "If the early stopping criterion is too strong, " "please instantiate it with different parameters in the train method." ) return continue_training, reduce_lr def update_state(self, scalar): improved = ( self.mode_save_state == "max" and scalar - self.best_performance_state > 0 ) or ( self.mode_save_state == "min" and self.best_performance_state - scalar > 0 ) if improved: self.best_performance_state = scalar return improved
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/scvi/trainer.py
0.919665
0.415017
trainer.py
pypi
import time import torch from sklearn.cluster import KMeans from torch.utils.data import DataLoader from scarchest.dataset.mars import MetaAnnotatedDataset from scarchest.dataset.trvae import AnnotatedDataset from scarchest.models import MARS from ._utils import split_meta_train_tasks, euclidean_dist, print_meta_progress from .meta import MetaTrainer import scanpy as sc class MARSTrainer(MetaTrainer): def __init__(self, model: MARS, adata: sc.AnnData, task_key: str, cell_type_key: str, n_clusters: int, meta_test_tasks: list, tau: float = 0.2, eta: float = 1.0, **kwargs): super().__init__(model, adata, task_key, **kwargs) self.cell_type_key = cell_type_key self.n_clusters = n_clusters self.meta_test_tasks = meta_test_tasks self.tau = tau self.eta = eta self.pre_train_n_epochs = kwargs.pop('pre_train_n_epochs', 100) self.pre_train_batch_size = kwargs.pop('pre_train_batch_size', 128) def on_training_begin(self): self.meta_adata = MetaAnnotatedDataset(adata=self.adata, task_key=self.task_key, meta_test_task=self.meta_test_tasks[0], cell_type_key=self.cell_type_key, task_encoder=self.model.condition_encoder, ) self.meta_train_data_loaders_tr, self.meta_train_data_loaders_ts = split_meta_train_tasks(self.meta_adata, self.train_frac, stratify=True, batch_size=self.batch_size, num_workers=self.n_workers) self.meta_test_data_loader = pre_train_data_loader = DataLoader(dataset=self.meta_adata.meta_test_task_adata, batch_size=self.pre_train_batch_size, num_workers=self.n_workers) self.pre_train_with_meta_test(pre_train_data_loader) self.meta_train_landmarks, self.meta_test_landmarks = self.initialize_landmarks() self.optimizer = torch.optim.Adam(params=list(self.model.encoder.parameters()), lr=self.learning_rate) self.meta_test_landmark_optimizer = torch.optim.Adam(params=[self.meta_test_landmarks], lr=self.learning_rate) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, gamma=self.lr_gamma, step_size=self.lr_step_size) def pre_train_with_meta_test(self, pre_train_data_loader): pre_train_optimizer = torch.optim.Adam(params=list(self.model.parameters()), lr=self.pre_train_learning_rate) for _ in range(self.pre_train_n_epochs): for _, batch_data in enumerate(pre_train_data_loader): x = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) _, decoded, loss, recon_loss, kl_loss = self.model(x, c) pre_train_optimizer.zero_grad() loss.backward() if self.clip_value > 0: torch.nn.utils.clip_grad_value_(self.model.parameters(), self.clip_value) pre_train_optimizer.step() def initialize_landmarks(self): def k_means_initalization(dataset: AnnotatedDataset, n_clusters): encoded = self.model.get_latent(dataset.data, dataset.conditions) k_means = KMeans(n_clusters=n_clusters, random_state=0).fit(encoded) return torch.tensor(k_means.cluster_centers_, device=self.device) meta_train_landmarks = [ torch.zeros(size=(len(adataset.unique_cell_types), self.model.z_dim), requires_grad=True, device=self.device) for adataset in self.meta_adata.meta_train_tasks_adata] meta_test_landmarks = torch.zeros(size=(self.n_clusters, self.model.z_dim), requires_grad=True, device=self.device) k_means_init_train = [k_means_initalization(adataset, n_clusters=len(adataset.unique_cell_types)) for adataset in self.meta_adata.meta_train_tasks_adata] k_means_init_test = k_means_initalization(self.meta_adata.meta_test_task_adata, n_clusters=self.n_clusters) with torch.no_grad(): [landmark.copy_(k_means_init_train[idx]) for idx, landmark in enumerate(meta_train_landmarks)] meta_test_landmarks.copy_(k_means_init_test) return meta_train_landmarks, meta_test_landmarks def train(self, n_epochs=400, evaluate_on_meta_test=True, ): begin = time.time() # Initialize Train/Val Data, Optimizer, Sampler, and Dataloader self.on_training_begin() for self.epoch in range(n_epochs): self.on_epoch_begin() loss, acc = self.on_epoch() # Validation of Model, Monitoring, Early Stopping if evaluate_on_meta_test: valid_loss, valid_acc, test_accuracy = self.on_epoch_end(evaluate_on_meta_test) else: valid_loss, valid_acc = self.on_epoch_end(evaluate_on_meta_test) if self.use_early_stopping: if not self.check_early_stop(): break logs = { 'loss': [loss], 'acc': [acc], 'val_loss': [valid_loss], 'val_acc': [valid_acc], } if evaluate_on_meta_test: logs['test_accuracy'] = [test_accuracy] if self.monitor: print_meta_progress(self.epoch, logs, n_epochs) if hasattr(self, 'best_state_dict') and self.best_state_dict is not None: print("Saving best state of network...") print("Best State was in Epoch", self.best_epoch) self.model.load_state_dict(self.best_state_dict) self.model.eval() self.training_time += (time.time() - begin) # Empty at the moment self.on_training_end() def on_epoch(self): # EM step perfomed on each epoch self.model.train() # Update Landmarks for param in self.model.parameters(): param.requires_grad = False self.meta_test_landmarks.requires_grad = False self.meta_test_landmark_optimizer.zero_grad() for idx, task_data_loader_tr in enumerate(self.meta_train_data_loaders_tr): for task_data in task_data_loader_tr: X = task_data['x'].to(self.device) c = task_data['c'].to(self.device) y = task_data['y'].to(self.device) encoded, _, _, _, _ = self.model(X, c) current_meta_train_landmarks = self.update_meta_train_landmarks(encoded, y, self.meta_train_landmarks[idx], self.tau) self.meta_train_landmarks[idx] = current_meta_train_landmarks.data self.meta_test_landmarks.requires_grad = True for task_data in self.meta_test_data_loader: X = task_data['x'].to(self.device) c = task_data['c'].to(self.device) encoded, _, loss, _, _ = self.model(X, c) loss = self.eta * loss + self.test_loss(encoded, self.meta_test_landmarks, self.tau) loss.backward() self.meta_test_landmark_optimizer.step() # Update Encoder for param in self.model.parameters(): param.requires_grad = True self.meta_test_landmarks.requires_grad = False self.optimizer.zero_grad() loss = torch.tensor(0.0) acc = torch.tensor(0.0) for idx, task_data_loader_tr in enumerate(self.meta_train_data_loaders_tr): for batch_data in task_data_loader_tr: X = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) y = batch_data['y'].to(self.device) encoded, _, loss, _, _ = self.model(X, c) task_loss, task_acc = self.task_loss(encoded, y, self.meta_train_landmarks[idx]) loss = self.eta * loss + task_loss acc += task_acc n_tasks = len(self.meta_train_data_loaders_tr) acc /= n_tasks for batch_data in self.meta_test_data_loader: X = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) encoded, _, loss, _, _ = self.model(X, c) loss = self.eta * loss + self.test_loss(encoded, self.meta_test_landmarks, self.tau) loss = loss / (n_tasks + 1) loss.backward() self.optimizer.step() return loss, acc def on_epoch_end(self, evaluate_on_meta_test=False): self.model.eval() n_tasks = len(self.meta_train_data_loaders_ts) with torch.no_grad(): valid_loss, valid_acc = 0.0, 0.0 for idx, task_data_loader_tr in enumerate(self.meta_train_data_loaders_ts): for task_data in task_data_loader_tr: X = task_data['x'].to(self.device) c = task_data['c'].to(self.device) y = task_data['y'].to(self.device) encoded, _, _, _, _ = self.model(X, c) task_loss, task_acc = self.task_loss(encoded, y, self.meta_train_landmarks[idx]) valid_loss += task_loss valid_acc += task_acc.item() mean_accuracy = valid_acc / n_tasks mean_loss = valid_loss / n_tasks if evaluate_on_meta_test: test_accuracy = 0.0 with torch.no_grad(): for batch_data in self.meta_test_data_loader: X = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) y = batch_data['y'].to(self.device) encoded, _, _, _, _ = self.model(X, c) test_accuracy += self.evaluate_on_unannotated_dataset(encoded, y) * X.shape[0] test_accuracy /= len(self.meta_test_data_loader.dataset) return mean_loss, mean_accuracy, test_accuracy else: return mean_loss, mean_accuracy def evaluate_on_unannotated_dataset(self, encoded, y_true): distances = euclidean_dist(encoded, self.meta_test_landmarks) _, y_pred = torch.max(-distances, dim=1) accuracy = y_pred.eq(y_true).float().mean() return accuracy def task_loss(self, embeddings, labels, landmarks): n_samples = embeddings.shape[0] unique_labels = torch.unique(labels, sorted=True) class_indices = list(map(lambda x: labels.eq(x).nonzero(), unique_labels)) for idx, value in enumerate(unique_labels): labels[labels == value] = idx distances = euclidean_dist(embeddings, landmarks) loss = torch.stack( [distances[indices, landmark_index].sum(0) for landmark_index, indices in enumerate(class_indices)]).sum() / n_samples _, y_pred = torch.max(-distances, dim=1) accuracy = y_pred.eq(labels.squeeze()).float().mean() return loss, accuracy def test_loss(self, embeddings, landmarks, tau): distances = euclidean_dist(embeddings, landmarks) min_distances, y_hat = torch.min(distances, dim=1) unique_predicted_labels = torch.unique(y_hat, sorted=True) loss = torch.stack( [min_distances[y_hat == unique_y_hat].mean(0) for unique_y_hat in unique_predicted_labels]).mean() if tau > 0: landmarks_distances = euclidean_dist(landmarks, landmarks) n_landmarks = landmarks.shape[0] loss -= torch.sum(landmarks_distances) * tau / (n_landmarks * (n_landmarks - 1)) return loss def update_meta_train_landmarks(self, embeddings, labels, previous_landmarks, tau): unique_labels = torch.unique(labels, sorted=True) class_indices = list(map(lambda y: labels.eq(y).nonzero(), unique_labels)) landmarks_mean = torch.stack([embeddings[class_index].mean(0) for class_index in class_indices]).squeeze() if previous_landmarks is None or tau == 0: return landmarks_mean previous_landmarks_sum = previous_landmarks.sum(0) n_landmarks = previous_landmarks.shape[0] landmarks_distance_partial = (tau / (n_landmarks - 1)) * torch.stack( [previous_landmarks_sum - landmark for landmark in previous_landmarks]) landmarks = (1 / (1 - tau)) * (landmarks_mean - landmarks_distance_partial) return landmarks def on_epoch_begin(self): pass def on_iteration_begin(self): pass def on_iteration_end(self): pass def on_training_end(self): pass def check_early_stop(self): return True
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/mars/mars_meta_trainer.py
0.842734
0.242301
mars_meta_trainer.py
pypi
import time import scanpy as sc import torch from torch.utils.data import DataLoader from scarchest.models import MARS from scarchest.trainers.trvae._utils import make_dataset from ._utils import print_meta_progress from .meta import MetaTrainer class MARSPreTrainer(MetaTrainer): def __init__(self, model: MARS, adata: sc.AnnData, task_key: str, **kwargs): super().__init__(model, adata, task_key, **kwargs) def on_training_begin(self): self.train_dataset, self.valid_dataset = make_dataset(self.adata, train_frac=self.train_frac, use_stratified_split=True, condition_key=self.task_key, cell_type_key=None, size_factor_key=None, condition_encoder=self.model.condition_encoder, ) self.train_data_loader = DataLoader(dataset=self.train_dataset, batch_size=self.batch_size, num_workers=self.n_workers) self.valid_data_loader = DataLoader(dataset=self.valid_dataset, batch_size=len(self.valid_dataset), num_workers=1) self.optimizer = torch.optim.Adam(params=list(self.model.parameters()), lr=self.learning_rate) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, gamma=self.lr_gamma, step_size=self.lr_step_size) def train(self, n_epochs=400, ): begin = time.time() # Initialize Train/Val Data, Optimizer, Sampler, and Dataloader self.on_training_begin() for self.epoch in range(n_epochs): self.on_epoch_begin() loss, recon_loss, kl_loss = self.on_epoch() # Validation of Model, Monitoring, Early Stopping valid_loss, valid_recon_loss, valid_kl_loss = self.on_epoch_end() if self.use_early_stopping: if not self.check_early_stop(): break logs = { 'loss': [loss], 'recon_loss': [recon_loss], 'kl_loss': [kl_loss], 'val_loss': [valid_loss], 'val_recon_loss': [valid_recon_loss], 'val_kl_loss': [valid_kl_loss], } if self.monitor: print_meta_progress(self.epoch, logs, n_epochs) if hasattr(self, 'best_state_dict') and self.best_state_dict is not None: print("Saving best state of network...") print("Best State was in Epoch", self.best_epoch) self.model.load_state_dict(self.best_state_dict) self.model.eval() self.training_time += (time.time() - begin) # Empty at the moment self.on_training_end() def on_epoch(self): self.model.train() loss = torch.tensor(0.0) recon_loss = torch.tensor(0.0) kl_loss = torch.tensor(0.0) for batch_data in self.train_data_loader: x = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) _, decoded, batch_loss, batch_recon_loss, batch_kl_loss = self.model(x, c) loss += batch_loss * len(batch_data) kl_loss += batch_kl_loss * len(batch_data) recon_loss += batch_recon_loss * len(batch_data) self.optimizer.zero_grad() batch_loss.backward() if self.clip_value > 0: torch.nn.utils.clip_grad_value_(self.model.parameters(), self.clip_value) self.optimizer.step() loss /= len(self.train_dataset) recon_loss /= len(self.train_dataset) kl_loss /= len(self.train_dataset) return loss, recon_loss, kl_loss def on_epoch_end(self, evaluate_on_meta_test=False): self.model.eval() with torch.no_grad(): valid_loss, valid_recon_loss, valid_kl_loss = 0.0, 0.0, 0.0 for valid_data in self.valid_data_loader: x = valid_data['x'].to(self.device) c = valid_data['c'].to(self.device) _, _, batch_loss, batch_recon_loss, batch_kl_loss = self.model(x, c) valid_loss += batch_loss * len(valid_data) valid_recon_loss += batch_recon_loss * len(valid_data) valid_kl_loss += batch_kl_loss * len(valid_data) valid_loss /= len(self.valid_dataset) valid_kl_loss /= len(self.valid_dataset) valid_recon_loss /= len(self.valid_dataset) return valid_loss, valid_recon_loss, valid_kl_loss def on_epoch_begin(self): pass def on_iteration_begin(self): pass def on_iteration_end(self): pass def on_training_end(self): pass def check_early_stop(self): return True
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/mars/unsupervised.py
0.848157
0.1779
unsupervised.py
pypi
import torch import numpy as np from torch.utils.data import DataLoader, SubsetRandomSampler from scarchest.dataset.mars import MetaAnnotatedDataset from scarchest.trainers.trvae._utils import _print_progress_bar def print_meta_progress(epoch, logs, n_epochs=10000): """Creates Message for '_print_progress_bar'. Parameters ---------- epoch: Integer Current epoch iteration. logs: dict List of all current losses. n_epochs: Integer Maximum value of epochs. Returns ------- """ message = f' - loss: {logs["loss"][-1]:.4f}' train_keys = [key for key in sorted(list(logs.keys())) if (not key.startswith('val_') and not key.startswith('test_') and key != 'loss')] for key in train_keys: message += f' - {key}: {logs[key][-1]:.4f}' message += f' - val_loss: {logs["val_loss"][-1]:.4f}' valid_keys = [key for key in sorted(list(logs.keys())) if (key.startswith('val_') and key != 'val_loss')] for key in valid_keys: message += f' - {key}: {logs[key][-1]:.4f}' test_keys = [key for key in sorted(list(logs.keys())) if (key.startswith('test_'))] for key in test_keys: message += f' - {key}: {logs[key][-1]:.4f}' _print_progress_bar(epoch + 1, n_epochs, prefix='', suffix=message, decimals=1, length=20) def split_meta_train_tasks(meta_adata: MetaAnnotatedDataset, train_fraction: float = 0.8, stratify: bool = False, batch_size: int = 32, num_workers=6): train_data_loaders, valid_data_loaders = [], [] for idx, meta_train_dataset in enumerate(meta_adata.meta_train_tasks_adata): np.random.seed(2020 * idx) n_samples = len(meta_train_dataset) indices = np.arange(n_samples) np.random.shuffle(indices) train_idx = indices[:int(train_fraction * n_samples)] valid_idx = indices[int(train_fraction * n_samples):] train_data_loader = DataLoader(dataset=meta_train_dataset, sampler=SubsetRandomSampler(train_idx), num_workers=num_workers, batch_size=batch_size, pin_memory=True) valid_data_loader = DataLoader(dataset=meta_train_dataset, sampler=SubsetRandomSampler(valid_idx), num_workers=num_workers, batch_size=batch_size, pin_memory=True) train_data_loaders.append(train_data_loader) valid_data_loaders.append(valid_data_loader) return train_data_loaders, valid_data_loaders def euclidean_dist(x, y): ''' Compute euclidean distance between two tensors ''' # x: N x D # y: M x D n = x.size(0) m = y.size(0) d = x.size(1) if d != y.size(1): raise Exception x = x.unsqueeze(1).expand(n, m, d) y = y.unsqueeze(0).expand(n, m, d) return torch.pow(x - y, 2).sum(2)
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/mars/_utils.py
0.893675
0.331241
_utils.py
pypi
from abc import abstractmethod import torch import torch.nn as nn from collections import defaultdict import numpy as np import time from torch.utils.data import DataLoader from torch.utils.data import WeightedRandomSampler from scarchest.utils.monitor import EarlyStopping from ._utils import make_dataset, custom_collate, print_progress class Trainer: def __init__(self, model, adata, condition_key: str = None, cell_type_key: str = None, size_factor_key: str = None, is_label_key: str = None, clip_value: float = 0.0, weight_decay: float = 0.04, train_frac: float = 0.9, early_stopping_kwargs: dict = None, batch_size: int = 512, n_samples: int = None, n_workers: int = 0, **kwargs): self.adata = adata self.condition_key = condition_key self.cell_type_key = cell_type_key self.size_factor_key = size_factor_key self.is_label_key = is_label_key self.clip_value = clip_value self.weight_decay = weight_decay self.train_frac = train_frac early_stopping_kwargs = (early_stopping_kwargs if early_stopping_kwargs else dict()) self.batch_size = batch_size self.n_workers = n_workers self.seed = kwargs.pop("seed", 2020) self.use_stratified_sampling = kwargs.pop("use_stratified_sampling", True) self.use_early_stopping = kwargs.pop("use_early_stopping", True) self.monitor = kwargs.pop("monitor", True) self.use_stratified_split = kwargs.pop("use_stratified_split", False) self.early_stopping = EarlyStopping(**early_stopping_kwargs) torch.manual_seed(self.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(self.seed) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = model.to(self.device) self.model.device = self.device self.epoch = -1 self.iter = 0 self.best_epoch = None self.best_state_dict = None self.current_loss = None self.previous_loss_was_nan = False self.nan_counter = 0 self.optimizer = None self.lr_scheduler = None self.training_time = 0 self.train_data = None self.valid_data = None self.sampler = None self.dataloader_train = None self.dataloader_valid = None self.n_samples = n_samples self.iters_per_epoch = None self.val_iters_per_epoch = None self.iter_logs = defaultdict(list) self.logs = defaultdict(list) def on_training_begin(self): """ Initializes Train-/Test Data and Dataloaders with custom_collate and WeightedRandomSampler for Trainloader. Returns: """ # Create Train/Valid AnnotatetDataset objects self.train_data, self.valid_data = make_dataset(self.adata, train_frac=self.train_frac, use_stratified_split=self.use_stratified_split, condition_key=self.condition_key, cell_type_key=self.cell_type_key, size_factor_key=self.size_factor_key, condition_encoder=self.model.condition_encoder, cell_type_encoder=None ) print("Traindata:", len(self.train_data)) for i in range(len(self.train_data.unique_conditions)): print("Condition:", i, "Counts in TrainData:", np.count_nonzero(self.train_data.conditions == i)) if self.n_samples is None or self.n_samples > len(self.train_data): self.n_samples = len(self.train_data) self.iters_per_epoch = int(np.ceil(self.n_samples / self.batch_size)) if self.use_stratified_sampling: # Create Sampler and Dataloaders stratifier_weights = torch.tensor(self.train_data.stratifier_weights, device=self.device) self.sampler = WeightedRandomSampler(stratifier_weights, num_samples=self.n_samples, replacement=True) self.dataloader_train = torch.utils.data.DataLoader(dataset=self.train_data, batch_size=self.batch_size, sampler=self.sampler, collate_fn=custom_collate, num_workers=self.n_workers) else: self.dataloader_train = torch.utils.data.DataLoader(dataset=self.train_data, batch_size=self.batch_size, shuffle=True, collate_fn=custom_collate, num_workers=self.n_workers) if self.valid_data is not None: print("Valid_data", len(self.valid_data)) for i in range(len(self.valid_data.unique_conditions)): print("Condition:", i, "Counts in TrainData:", np.count_nonzero(self.valid_data.conditions == i)) val_batch_size = self.batch_size if self.batch_size > len(self.valid_data): val_batch_size = len(self.valid_data) self.val_iters_per_epoch = int(np.ceil(len(self.valid_data) / self.batch_size)) self.dataloader_valid = torch.utils.data.DataLoader(dataset=self.valid_data, batch_size=val_batch_size, shuffle=True, collate_fn=custom_collate, num_workers=self.n_workers) @abstractmethod def on_epoch_begin(self): pass @abstractmethod def loss(self, **kwargs): pass @abstractmethod def on_iteration_begin(self): pass def on_iteration(self, batch_data): # Dont update any weight on first layers except condition weights if self.model.freeze: for name, module in self.model.named_modules(): if isinstance(module, nn.BatchNorm1d): if not module.weight.requires_grad: module.affine = False module.track_running_stats = False # Calculate Loss depending on Trainer/Model self.current_loss = loss = self.loss(**batch_data) self.optimizer.zero_grad() loss.backward() # Gradient Clipping if self.clip_value > 0: torch.nn.utils.clip_grad_value_(self.model.parameters(), self.clip_value) self.optimizer.step() @abstractmethod def on_iteration_end(self): pass def on_epoch_end(self): # Get Train Epoch Logs for key in self.iter_logs: if "loss" in key: self.logs["epoch_" + key].append( sum(self.iter_logs[key][-self.iters_per_epoch:]) / self.iters_per_epoch) # Validate Model if self.valid_data is not None: self.validate() # Monitor Logs if self.monitor: print_progress(self.epoch, self.logs, self.n_epochs) def check_early_stop(self): # Calculate Early Stopping and best state early_stopping_metric = self.early_stopping.early_stopping_metric save_best_state_metric = self.early_stopping.save_best_state_metric if save_best_state_metric is not None and self.early_stopping.update_state( self.logs[save_best_state_metric][-1]): self.best_state_dict = self.model.state_dict() self.best_epoch = self.epoch continue_training = True if early_stopping_metric is not None and not self.early_stopping.step(self.logs[early_stopping_metric][-1]): continue_training = False return continue_training # Update Learning Rate self.lr_scheduler.step() return continue_training @abstractmethod def on_training_end(self): pass @torch.no_grad() def validate(self): self.model.eval() # Calculate Validation Losses for val_iter, batch_data in enumerate(self.dataloader_valid): for key1 in batch_data: for key2, batch in batch_data[key1].items(): batch_data[key1][key2] = batch.to(self.device) val_loss = self.loss(**batch_data) # Get Validation Logs for key in self.iter_logs: if "loss" in key: self.logs["val_" + key].append( sum(self.iter_logs[key][-self.val_iters_per_epoch:]) / self.val_iters_per_epoch) self.model.train() def train(self, n_epochs=400, lr=1e-3, lr_gamma=1.0, lr_step_size=100, eps=0.01): begin = time.time() self.model.train() self.n_epochs = n_epochs params = filter(lambda p: p.requires_grad, self.model.parameters()) self.optimizer = torch.optim.Adam(params, lr=lr, eps=eps, weight_decay=self.weight_decay) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, gamma=lr_gamma, step_size=lr_step_size) # Initialize Train/Val Data, Sampler, Dataloader self.on_training_begin() for self.epoch in range(n_epochs): # Empty at the moment self.on_epoch_begin() for self.iter, batch_data in enumerate(self.dataloader_train): for key1 in batch_data: for key2, batch in batch_data[key1].items(): batch_data[key1][key2] = batch.to(self.device) # Empty at the moment self.on_iteration_begin() # Loss Calculation, Gradient Clipping, Freeze first layer, Optimizer Step self.on_iteration(batch_data) # Empty at the moment self.on_iteration_end() # Validation of Model, Monitoring, Early Stopping self.on_epoch_end() if self.use_early_stopping: if not self.check_early_stop(): break if self.best_state_dict is not None: print("Saving best state of network...") print("Best State was in Epoch", self.best_epoch) self.model.load_state_dict(self.best_state_dict) self.model.eval() self.training_time += (time.time() - begin) # Empty at the moment self.on_training_end()
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/trvae/trainer.py
0.816882
0.21262
trainer.py
pypi
import sys import numpy as np import re import torch from torch._six import container_abcs from torch.utils.data import DataLoader, SubsetRandomSampler from scarchest.dataset.trvae import AnnotatedDataset def print_progress(epoch, logs, n_epochs=10000): """Creates Message for '_print_progress_bar'. Parameters ---------- epoch: Integer Current epoch iteration. logs: dict Dictionary of all current losses. n_epochs: Integer Maximum value of epochs. Returns ------- """ message = "" for key in logs: if "loss" in key and ("epoch_" in key or "val_" in key): message += f" - {key:s}: {logs[key][-1]:7.0f}" _print_progress_bar(epoch + 1, n_epochs, prefix='', suffix=message, decimals=1, length=20) def _print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """Prints out message with a progress bar. Parameters ---------- iteration: Integer Current epoch. total: Integer Maximum value of epochs. prefix: String String before the progress bar. suffix: String String after the progress bar. decimals: Integer Digits after comma for all the losses. length: Integer Length of the progress bar. fill: String Symbol for filling the bar. Returns ------- """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filled_len = int(length * iteration // total) bar = fill * filled_len + '-' * (length - filled_len) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percent, '%', suffix)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() def train_test_split(adata, train_frac=0.85, condition_key=None): """Splits 'Anndata' object into training and validation data. Parameters ---------- adata: `~anndata.AnnData` `AnnData` object for training the model. train_frac: float Train-test split fraction. the model will be trained with train_frac for training and 1-train_frac for validation. Returns ------- `AnnData` objects for training and validating the model. """ if train_frac == 1: return adata, None else: indices = np.arange(adata.shape[0]) n_val_samples = int(adata.shape[0] * (1 - train_frac)) if condition_key is not None: conditions = adata.obs[condition_key].unique().tolist() n_conditions = len(conditions) n_val_samples_per_condition = int(n_val_samples / n_conditions) condition_indices_train = [] condition_indices_val = [] for i in range(n_conditions): idx = indices[adata.obs[condition_key] == conditions[i]] np.random.shuffle(idx) condition_indices_val.append(idx[:n_val_samples_per_condition]) condition_indices_train.append(idx[n_val_samples_per_condition:]) train_idx = np.concatenate(condition_indices_train) val_idx = np.concatenate(condition_indices_val) else: np.random.shuffle(indices) val_idx = indices[:n_val_samples] train_idx = indices[n_val_samples:] train_data = adata[train_idx, :] valid_data = adata[val_idx, :] return train_data, valid_data def make_dataset(adata, train_frac=0.9, use_stratified_split=False, condition_key=None, cell_type_key=None, size_factor_key=None, condition_encoder=None, cell_type_encoder=None, ): """Splits 'adata' into train and validation data and converts them into 'CustomDatasetFromAdata' objects. Parameters ---------- Returns ------- Training 'CustomDatasetFromAdata' object, Validation 'CustomDatasetFromAdata' object """ if use_stratified_split: train_adata, validation_adata = train_test_split(adata, train_frac, condition_key=condition_key) else: train_adata, validation_adata = train_test_split(adata, train_frac) data_set_train = AnnotatedDataset(train_adata, condition_key=condition_key, cell_type_key=cell_type_key, size_factors_key=size_factor_key, condition_encoder=condition_encoder, cell_type_encoder=cell_type_encoder,) if train_frac == 1: return data_set_train, None else: data_set_valid = AnnotatedDataset(validation_adata, condition_key=condition_key, cell_type_key=cell_type_key, size_factors_key=size_factor_key, condition_encoder=condition_encoder, cell_type_encoder=cell_type_encoder,) return data_set_train, data_set_valid def custom_collate(batch): r"""Puts each data field into a tensor with outer dimension batch size""" np_str_obj_array_pattern = re.compile(r'[SaUO]') default_collate_err_msg_format = ( "default_collate: batch must contain tensors, numpy arrays, numbers, " "dicts or lists; found {}") elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(default_collate_err_msg_format.format(elem.dtype)) return custom_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, container_abcs.Mapping): if "y" in elem: output = dict(total_batch=dict(), labelled_batch=dict()) for key in elem: total_data = [d[key] for d in batch] labelled_data = list() for d in batch: if d["y"] != -1: labelled_data.append(d[key]) output["total_batch"][key] = custom_collate(total_data) output["labelled_batch"][key] = custom_collate(labelled_data) else: output = dict(total_batch=dict()) output["total_batch"] = {key: custom_collate([d[key] for d in batch]) for key in elem} return output
/scArchest-0.0.1-py3-none-any.whl/scarchest/trainers/trvae/_utils.py
0.747339
0.317903
_utils.py
pypi
from typing import Optional import anndata import logging import torch from torch.distributions import Normal import numpy as np from scvi import _CONSTANTS from scarchest.dataset.scvi import ScviDataLoader from scarchest.models.scvi import totalVI logger = logging.getLogger(__name__) def _unpack_tensors(tensors): x = tensors[_CONSTANTS.X_KEY] local_l_mean = tensors[_CONSTANTS.LOCAL_L_MEAN_KEY] local_l_var = tensors[_CONSTANTS.LOCAL_L_VAR_KEY] batch_index = tensors[_CONSTANTS.BATCH_KEY] labels = tensors[_CONSTANTS.LABELS_KEY] y = tensors[_CONSTANTS.PROTEIN_EXP_KEY] return x, local_l_mean, local_l_var, batch_index, labels, y class TotalDataLoader(ScviDataLoader): """ Extended data loader for totalVI. Parameters ---------- model : A model instance from class ``TOTALVI`` adata: A registered AnnData object shuffle : Specifies if a `RandomSampler` or a `SequentialSampler` should be used indices : Specifies how the data should be split with regards to train/test or labelled/unlabelled use_cuda : Default: ``True`` data_loader_kwargs : Keyword arguments to passed into the `DataLoader` """ def __init__( self, model: totalVI, adata: anndata.AnnData, shuffle: bool = False, indices: Optional[np.ndarray] = None, use_cuda: bool = True, batch_size: int = 256, data_loader_kwargs=dict(), ): super().__init__( model, adata, shuffle=shuffle, indices=indices, use_cuda=use_cuda, batch_size=batch_size, data_loader_kwargs=data_loader_kwargs, ) @property def _data_and_attributes(self): return { _CONSTANTS.X_KEY: np.float32, _CONSTANTS.BATCH_KEY: np.int64, _CONSTANTS.LOCAL_L_MEAN_KEY: np.float32, _CONSTANTS.LOCAL_L_VAR_KEY: np.float32, _CONSTANTS.LABELS_KEY: np.int64, _CONSTANTS.PROTEIN_EXP_KEY: np.float32, } @torch.no_grad() def elbo(self): elbo = self.compute_elbo(self.model) return elbo elbo.mode = "min" @torch.no_grad() def reconstruction_error(self, mode="total"): ll_gene, ll_protein = self.compute_reconstruction_error(self.model) if mode == "total": return ll_gene + ll_protein elif mode == "gene": return ll_gene else: return ll_protein reconstruction_error.mode = "min" @torch.no_grad() def marginal_ll(self, n_mc_samples=1000): ll = self.compute_marginal_log_likelihood() return ll @torch.no_grad() def get_protein_background_mean(self): background_mean = [] for tensors in self: x, _, _, batch_index, label, y = _unpack_tensors(tensors) outputs = self.model.inference( x, y, batch_index=batch_index, label=label, n_samples=1 ) b_mean = outputs["py_"]["rate_back"] background_mean += [np.array(b_mean.cpu())] return np.concatenate(background_mean) def compute_elbo(self, vae: totalVI, **kwargs): """ Computes the ELBO. The ELBO is the reconstruction error + the KL divergences between the variational distributions and the priors. It differs from the marginal log likelihood. Specifically, it is a lower bound on the marginal log likelihood plus a term that is constant with respect to the variational distribution. It still gives good insights on the modeling of the data, and is fast to compute. Parameters ---------- vae vae model **kwargs keyword args for forward """ # Iterate once over the data loader and computes the total log_likelihood elbo = 0 for _, tensors in enumerate(self): x, local_l_mean, local_l_var, batch_index, labels, y = _unpack_tensors( tensors ) ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_gene_l, kl_div_back_pro, ) = vae( x, y, local_l_mean, local_l_var, batch_index=batch_index, label=labels, **kwargs, ) elbo += torch.sum( reconst_loss_gene + reconst_loss_protein + kl_div_z + kl_div_gene_l + kl_div_back_pro ).item() n_samples = len(self.indices) return elbo / n_samples def compute_reconstruction_error(self, vae: totalVI, **kwargs): r""" Computes log p(x/z), which is the reconstruction error. Differs from the marginal log likelihood, but still gives good insights on the modeling of the data, and is fast to compute This is really a helper function to self.ll, self.ll_protein, etc. """ # Iterate once over the data loader and computes the total log_likelihood log_lkl_gene = 0 log_lkl_protein = 0 for _, tensors in enumerate(self): x, local_l_mean, local_l_var, batch_index, labels, y = _unpack_tensors( tensors ) ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_l_gene, kl_div_back_pro, ) = vae( x, y, local_l_mean, local_l_var, batch_index=batch_index, label=labels, **kwargs, ) log_lkl_gene += torch.sum(reconst_loss_gene).item() log_lkl_protein += torch.sum(reconst_loss_protein).item() n_samples = len(self.indices) return log_lkl_gene / n_samples, log_lkl_protein / n_samples def compute_marginal_log_likelihood( self, n_samples_mc: int = 100, batch_size: int = 96 ): """ Computes a biased estimator for log p(x, y), which is the marginal log likelihood. Despite its bias, the estimator still converges to the real value of log p(x, y) when n_samples_mc (for Monte Carlo) goes to infinity (a fairly high value like 100 should be enough). 5000 is the standard in machine learning publications. Due to the Monte Carlo sampling, this method is not as computationally efficient as computing only the reconstruction loss Parameters ---------- n_samples_mc (Default value = 100) batch_size (Default value = 96) """ # Uses MC sampling to compute a tighter lower bound on log p(x) log_lkl = 0 for _, tensors in enumerate(self.update_batch_size(batch_size)): x, local_l_mean, local_l_var, batch_index, labels, y = _unpack_tensors( tensors ) to_sum = torch.zeros(x.size()[0], n_samples_mc) for i in range(n_samples_mc): # Distribution parameters and sampled variables outputs = self.model.inference(x, y, batch_index, labels) qz_m = outputs["qz_m"] qz_v = outputs["qz_v"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] px_ = outputs["px_"] py_ = outputs["py_"] log_library = outputs["untran_l"] # really need not softmax transformed random variable z = outputs["untran_z"] log_pro_back_mean = outputs["log_pro_back_mean"] # Reconstruction Loss ( reconst_loss_gene, reconst_loss_protein, ) = self.model.get_reconstruction_loss(x, y, px_, py_) # Log-probabilities p_l_gene = ( Normal(local_l_mean, local_l_var.sqrt()) .log_prob(log_library) .sum(dim=-1) ) p_z = Normal(0, 1).log_prob(z).sum(dim=-1) p_mu_back = self.model.back_mean_prior.log_prob(log_pro_back_mean).sum( dim=-1 ) p_xy_zl = -(reconst_loss_gene + reconst_loss_protein) q_z_x = Normal(qz_m, qz_v.sqrt()).log_prob(z).sum(dim=-1) q_l_x = Normal(ql_m, ql_v.sqrt()).log_prob(log_library).sum(dim=-1) q_mu_back = ( Normal(py_["back_alpha"], py_["back_beta"]) .log_prob(log_pro_back_mean) .sum(dim=-1) ) to_sum[:, i] = ( p_z + p_l_gene + p_mu_back + p_xy_zl - q_z_x - q_l_x - q_mu_back ) batch_log_lkl = torch.logsumexp(to_sum, dim=-1) - np.log(n_samples_mc) log_lkl += torch.sum(batch_log_lkl).item() n_samples = len(self.indices) # The minus sign is there because we actually look at the negative log likelihood return -log_lkl / n_samples
/scArchest-0.0.1-py3-none-any.whl/scarches/dataset/scvi/total_data_loader.py
0.958079
0.320476
total_data_loader.py
pypi
import numpy as np import logging from sklearn.neighbors import KNeighborsClassifier import torch from scvi.core import unsupervised_clustering_accuracy from scvi import _CONSTANTS from scarchest.dataset.scvi import ScviDataLoader logger = logging.getLogger(__name__) class AnnotationDataLoader(ScviDataLoader): def __init__(self, *args, model_zl=False, **kwargs): super().__init__(*args, **kwargs) self.model_zl = model_zl def accuracy(self): model, cls = ( (self.sampling_model, self.model) if hasattr(self, "sampling_model") else (self.model, None) ) acc = compute_accuracy(model, self, classifier=cls, model_zl=self.model_zl) logger.debug("Acc: %.4f" % (acc)) return acc accuracy.mode = "max" @torch.no_grad() def hierarchical_accuracy(self): all_y, all_y_pred = self.compute_predictions() acc = np.mean(all_y == all_y_pred) all_y_groups = np.array([self.model.labels_groups[y] for y in all_y]) all_y_pred_groups = np.array([self.model.labels_groups[y] for y in all_y_pred]) h_acc = np.mean(all_y_groups == all_y_pred_groups) logger.debug("Hierarchical Acc : %.4f\n" % h_acc) return acc accuracy.mode = "max" @torch.no_grad() def compute_predictions(self, soft=False): """ Parameters ---------- soft (Default value = False) Returns ------- the true labels and the predicted labels """ model, cls = ( (self.sampling_model, self.model) if hasattr(self, "sampling_model") else (self.model, None) ) return compute_predictions( model, self, classifier=cls, soft=soft, model_zl=self.model_zl ) @torch.no_grad() def unsupervised_classification_accuracy(self): all_y, all_y_pred = self.compute_predictions() uca = unsupervised_clustering_accuracy(all_y, all_y_pred)[0] logger.debug("UCA : %.4f" % (uca)) return uca unsupervised_classification_accuracy.mode = "max" @torch.no_grad() def nn_latentspace(self, data_loader): data_train, _, labels_train = self.get_latent() data_test, _, labels_test = data_loader.get_latent() nn = KNeighborsClassifier() nn.fit(data_train, labels_train) score = nn.score(data_test, labels_test) return score @torch.no_grad() def compute_accuracy(vae, data_loader, classifier=None, model_zl=False): all_y, all_y_pred = compute_predictions( vae, data_loader, classifier=classifier, model_zl=model_zl ) return np.mean(all_y == all_y_pred) @torch.no_grad() def compute_predictions( model, data_loader, classifier=None, soft=False, model_zl=False ): all_y_pred = [] all_y = [] for _, tensors in enumerate(data_loader): sample_batch = tensors[_CONSTANTS.X_KEY] labels = tensors[_CONSTANTS.LABELS_KEY] all_y += [labels.view(-1).cpu()] if hasattr(model, "classify"): if model.modified: batch_index = tensors[_CONSTANTS.BATCH_KEY] y_pred = model.classify(sample_batch, batch_index=batch_index) else: y_pred = model.classify(sample_batch) elif classifier is not None: # Then we use the specified classifier if model is not None: if model.log_variational: sample_batch = torch.log(1 + sample_batch) if model_zl: if model.modified: batch_index = tensors[_CONSTANTS.BATCH_KEY] sample_z = model.z_encoder(sample_batch, batch_index)[0] sample_l = model.l_encoder(sample_batch)[0] else: sample_z = model.z_encoder(sample_batch)[0] sample_l = model.l_encoder(sample_batch)[0] sample_batch = torch.cat((sample_z, sample_l), dim=-1) else: if model.modified: batch_index = tensors[_CONSTANTS.BATCH_KEY] sample_batch, _, _ = model.z_encoder(sample_batch, batch_index) else: sample_batch, _, _ = model.z_encoder(sample_batch) y_pred = classifier(sample_batch) else: # The model is the raw classifier y_pred = model(sample_batch) if not soft: y_pred = y_pred.argmax(dim=-1) all_y_pred += [y_pred.cpu()] all_y_pred = np.array(torch.cat(all_y_pred)) all_y = np.array(torch.cat(all_y)) return all_y, all_y_pred
/scArchest-0.0.1-py3-none-any.whl/scarches/dataset/scvi/annotation_data_loader.py
0.849066
0.280179
annotation_data_loader.py
pypi
import numpy as np import scanpy as sc from scarchest.dataset.trvae import AnnotatedDataset from scarchest.dataset.trvae._utils import label_encoder class MetaAnnotatedDataset(object): def __init__(self, adata: sc.AnnData, task_key: str, meta_test_task: str = None, task_encoder=None, cell_type_key=None, cell_type_encoder=None, size_factors_key=None, ): self.adata = adata self.meta_test_task = meta_test_task self.task_key = task_key self.unique_tasks = list(np.unique(self.adata.obs[task_key])) _, self.task_encoder = label_encoder(self.adata, encoder=task_encoder, condition_key=self.task_key) self.meta_train_tasks = [task for task in self.unique_tasks if task != self.meta_test_task] self.meta_test_tasks = [task for task in self.unique_tasks if task == self.meta_test_task] self.cell_type_encoder = cell_type_encoder self.cell_type_key = cell_type_key self.unique_cell_types = np.unique(self.adata.obs[cell_type_key]) if self.cell_type_key else None self.size_factors_key = size_factors_key self.meta_train_tasks_adata = [AnnotatedDataset( adata=self.adata[self.adata.obs[self.task_key] == task], condition_key=self.task_key, condition_encoder=self.task_encoder, cell_type_key=self.cell_type_key, cell_type_encoder=self.cell_type_encoder, ) for task in self.meta_train_tasks] if self.meta_test_task is not None: self.meta_test_task_adata = AnnotatedDataset( adata=self.adata[self.adata.obs[self.task_key] == self.meta_test_task], condition_key=self.task_key, condition_encoder=self.task_encoder, cell_type_key=self.cell_type_key, cell_type_encoder=None, size_factors_key=size_factors_key, ) else: self.meta_test_task_adata = None
/scArchest-0.0.1-py3-none-any.whl/scarches/dataset/mars/meta_anndata.py
0.545165
0.243789
meta_anndata.py
pypi
import numpy as np import torch from torch.utils.data import Dataset from scipy import sparse from .data_handling import remove_sparsity from ._utils import label_encoder class AnnotatedDataset(Dataset): def __init__(self, adata, condition_key=None, condition_encoder=None, cell_type_key=None, cell_type_encoder=None, size_factors_key=None, unique_conditions=None, ): self.adata = adata if sparse.issparse(self.adata.X): self.adata = remove_sparsity(self.adata) self.data = np.asarray(self.adata.X) self.condition_encoder = condition_encoder self.condition_key = condition_key self.unique_conditions = unique_conditions self.cell_type_encoder = cell_type_encoder self.cell_type_key = cell_type_key self.unique_cell_types = None self.size_factors_key = size_factors_key if self.condition_key is not None: if self.unique_conditions is None: self.unique_conditions = adata.obs[condition_key].unique().tolist() self.conditions, self.condition_encoder = label_encoder(self.adata, encoder=self.condition_encoder, condition_key=condition_key) self.conditions = np.array(self.conditions).reshape(-1, ) if self.cell_type_key is not None: self.unique_cell_types = adata.obs[cell_type_key].unique().tolist() self.cell_types, self.cell_type_encoder = label_encoder(self.adata, encoder=self.cell_type_encoder, condition_key=cell_type_key) self.cell_types = np.array(self.cell_types).reshape(-1, ) if self.size_factors_key: self.raw_data = np.array(self.adata.raw.X) self.size_factors = np.array(self.adata.obs[self.size_factors_key].values).reshape(-1, ) def __getitem__(self, index): outputs = dict() outputs["x"] = torch.tensor(self.data[index, :]) if self.condition_key: outputs["c"] = torch.tensor(self.conditions[index]) if self.cell_type_key: outputs["y"] = torch.tensor(self.cell_types[index]) if self.size_factors_key: outputs["raw"] = torch.tensor(self.raw_data[index, :]) outputs["f"] = torch.tensor(self.size_factors[index]) return outputs def __len__(self): return len(self.adata) @property def condition_label_encoder(self) -> dict: return self.condition_encoder @condition_label_encoder.setter def condition_label_encoder(self, value: dict): if value is not None: self.condition_encoder = value @property def cell_type_label_encoder(self) -> dict: return self.cell_type_encoder @cell_type_label_encoder.setter def cell_type_label_encoder(self, value: dict): if value is not None: self.cell_type_encoder = value @property def stratifier_weights(self): condition_coeff = 1 / len(self.conditions) weights_per_condition = list() for i in range(len(self.conditions)): samples_per_condition = np.count_nonzero(self.conditions == i) if samples_per_condition == 0: weights_per_condition.append(0) else: weights_per_condition.append((1 / samples_per_condition) * condition_coeff) strat_weights = np.copy(self.conditions) for i in range(len(self.conditions)): strat_weights = np.where(strat_weights == i, weights_per_condition[i], strat_weights) return strat_weights.astype(float)
/scArchest-0.0.1-py3-none-any.whl/scarches/dataset/trvae/anndata.py
0.822082
0.316132
anndata.py
pypi
import scanpy as sc from scipy import sparse def hvg_batch(adata, batch_key=None, target_genes=2000, flavor='cell_ranger', n_bins=20, adataout=False): """ Method to select HVGs based on mean dispersions of genes that are highly variable genes in all batches. Using a the top target_genes per batch by average normalize dispersion. If target genes still hasn't been reached, then HVGs in all but one batches are used to fill up. This is continued until HVGs in a single batch are considered. """ adata_hvg = adata if adataout else adata.copy() n_batches = len(adata_hvg.obs[batch_key].cat.categories) # Calculate double target genes per dataset sc.pp.highly_variable_genes(adata_hvg, flavor=flavor, n_top_genes=target_genes, n_bins=n_bins, batch_key=batch_key) nbatch1_dispersions = adata_hvg.var['dispersions_norm'][adata_hvg.var.highly_variable_nbatches > len(adata_hvg.obs[batch_key].cat.categories) - 1] nbatch1_dispersions.sort_values(ascending=False, inplace=True) if len(nbatch1_dispersions) > target_genes: hvg = nbatch1_dispersions.index[:target_genes] else: enough = False print(f'Using {len(nbatch1_dispersions)} HVGs from full intersect set') hvg = nbatch1_dispersions.index[:] not_n_batches = 1 while not enough: target_genes_diff = target_genes - len(hvg) tmp_dispersions = adata_hvg.var['dispersions_norm'][adata_hvg.var.highly_variable_nbatches == (n_batches - not_n_batches)] if len(tmp_dispersions) < target_genes_diff: print(f'Using {len(tmp_dispersions)} HVGs from n_batch-{not_n_batches} set') hvg = hvg.append(tmp_dispersions.index) not_n_batches += 1 else: print(f'Using {target_genes_diff} HVGs from n_batch-{not_n_batches} set') tmp_dispersions.sort_values(ascending=False, inplace=True) hvg = hvg.append(tmp_dispersions.index[:target_genes_diff]) enough = True print(f'Using {len(hvg)} HVGs') if not adataout: del adata_hvg return hvg.tolist() else: return adata_hvg[:, hvg].copy() def remove_sparsity(adata): """ If ``adata.X`` is a sparse matrix, this will convert it in to normal matrix. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated data matrix. Returns ------- adata: :class:`~anndata.AnnData` Annotated dataset. """ if sparse.issparse(adata.X): new_adata = sc.AnnData(X=adata.X.A, obs=adata.obs.copy(deep=True), var=adata.var.copy(deep=True)) return new_adata return adata def preprocess_data(adata, filter_min_counts=True, size_factors=True, target_sum=None, log_trans_input=True, batch_key=None, n_top_genes=1000, scale=False): """Preprocesses the `adata`. Parameters ---------- adata: `~anndata.AnnData` Annotated data matrix. filter_min_counts: boolean If 'True' filter out Genes and Cells under min_count. size_factors: boolean If 'True' add Size Factors for ZINB/NB loss to 'adata'. target_sum: log_trans_input: boolean If 'True' logarithmize the data matrix. batch_key: n_top_genes: int Only keeps n highest variable genes in 'adata' scale: boolean If 'True' scale data to unit variance and zero mean. Returns ------- adata: `~anndata.AnnData` Preprocessed annotated data matrix. """ if filter_min_counts: sc.pp.filter_genes(adata, min_counts=1) sc.pp.filter_cells(adata, min_counts=1) adata_count = adata.copy() obs = adata.obs_keys() if size_factors and 'size_factors' not in obs: sc.pp.normalize_total(adata, target_sum=target_sum, exclude_highly_expressed=False, key_added='size_factors') if log_trans_input: sc.pp.log1p(adata) if 0 < n_top_genes < adata.shape[1]: if batch_key: genes = hvg_batch(adata.copy(), batch_key=batch_key, adataout=False, target_genes=n_top_genes) else: sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes) genes = adata.var['highly_variable'] adata = adata[:, genes] adata_count = adata_count[:, genes] if scale: sc.pp.scale(adata) if sparse.issparse(adata_count.X): adata_count.X = adata_count.X.A if sparse.issparse(adata.X): adata.X = adata.X.A if adata.raw is None: adata.raw = adata_count.copy() return adata
/scArchest-0.0.1-py3-none-any.whl/scarches/dataset/trvae/data_handling.py
0.808823
0.525308
data_handling.py
pypi
import numpy as np import torch from typing import Sequence from torch.distributions import Normal, Categorical, kl_divergence as kl from scvi.core.modules.utils import broadcast_labels from scarchest.models.scvi._base import Decoder, Encoder from .classifier import Classifier from .scvi import scVI class scANVI(scVI): """Single-cell annotation using variational inference. This is an implementation of the scANVI model descibed in [Xu19]_, inspired from M1 + M2 model, as described in (https://arxiv.org/pdf/1406.5298.pdf). Parameters ---------- n_input Number of input genes n_batch Number of batches n_labels Number of labels n_hidden Number of nodes per hidden layer n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. reconstruction_loss One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution y_prior If None, initialized to uniform probability over cell types labels_groups Label group designations use_labels_groups Whether to use the label groups Returns ------- Examples -------- >>> gene_dataset = CortexDataset() >>> scanvi = SCANVI(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels) >>> gene_dataset = SyntheticDataset(n_labels=3) >>> scanvi = SCANVI(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=3, y_prior=torch.tensor([[0.1,0.5,0.4]]), labels_groups=[0,0,1]) """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers: int = 1, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, gene_likelihood: str = "zinb", y_prior=None, labels_groups: Sequence[int] = None, use_labels_groups: bool = False, classifier_parameters: dict = dict(), modified: bool = False, ): super().__init__( n_input, n_batch=n_batch, n_labels=n_labels, n_hidden=n_hidden, n_latent=n_latent, n_layers=n_layers, dropout_rate=dropout_rate, dispersion=dispersion, log_variational=log_variational, gene_likelihood=gene_likelihood, modified=modified, ) # Classifier takes n_latent as input self.cls_parameters = { "n_layers": n_layers, "n_hidden": n_hidden, "dropout_rate": dropout_rate, } self.cls_parameters.update(classifier_parameters) self.classifier = Classifier(n_latent, n_labels=n_labels, **self.cls_parameters) self.encoder_z2_z1 = Encoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, ) self.decoder_z1_z2 = Decoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, ) self.y_prior = torch.nn.Parameter( y_prior if y_prior is not None else (1 / n_labels) * torch.ones(1, n_labels), requires_grad=False, ) self.use_labels_groups = use_labels_groups self.labels_groups = ( np.array(labels_groups) if labels_groups is not None else None ) if self.use_labels_groups: assert labels_groups is not None, "Specify label groups" unique_groups = np.unique(self.labels_groups) self.n_groups = len(unique_groups) assert (unique_groups == np.arange(self.n_groups)).all() self.classifier_groups = Classifier( n_latent, n_hidden, self.n_groups, n_layers, dropout_rate ) self.groups_index = torch.nn.ParameterList( [ torch.nn.Parameter( torch.tensor( (self.labels_groups == i).astype(np.uint8), dtype=torch.uint8, ), requires_grad=False, ) for i in range(self.n_groups) ] ) def classify(self, x, batch_index=None): if self.log_variational: x = torch.log(1 + x) qz_m, _, z = self.z_encoder(x, batch_index) # We classify using the inferred mean parameter of z_1 in the latent space z = qz_m if self.use_labels_groups: w_g = self.classifier_groups(z) unw_y = self.classifier(z) w_y = torch.zeros_like(unw_y) for i, group_index in enumerate(self.groups_index): unw_y_g = unw_y[:, group_index] w_y[:, group_index] = unw_y_g / ( unw_y_g.sum(dim=-1, keepdim=True) + 1e-8 ) w_y[:, group_index] *= w_g[:, [i]] else: w_y = self.classifier(z) return w_y def get_latents(self, x, y=None, batch_index=None): zs = super().get_latents(x, batch_index=batch_index) qz2_m, qz2_v, z2 = self.encoder_z2_z1(zs[0], y) if not self.training: z2 = qz2_m return [zs[0], z2] def forward(self, x, local_l_mean, local_l_var, batch_index=None, y=None): is_labelled = False if y is None else True outputs = self.inference(x, batch_index, y) px_r = outputs["px_r"] px_rate = outputs["px_rate"] px_dropout = outputs["px_dropout"] qz1_m = outputs["qz_m"] qz1_v = outputs["qz_v"] z1 = outputs["z"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] # Enumerate choices of label ys, z1s = broadcast_labels(y, z1, n_broadcast=self.n_labels) qz2_m, qz2_v, z2 = self.encoder_z2_z1(z1s, ys) pz1_m, pz1_v = self.decoder_z1_z2(z2, ys) reconst_loss = self.get_reconstruction_loss(x, px_rate, px_r, px_dropout) # KL Divergence mean = torch.zeros_like(qz2_m) scale = torch.ones_like(qz2_v) kl_divergence_z2 = kl( Normal(qz2_m, torch.sqrt(qz2_v)), Normal(mean, scale) ).sum(dim=1) loss_z1_unweight = -Normal(pz1_m, torch.sqrt(pz1_v)).log_prob(z1s).sum(dim=-1) loss_z1_weight = Normal(qz1_m, torch.sqrt(qz1_v)).log_prob(z1).sum(dim=-1) kl_divergence_l = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_l_mean, torch.sqrt(local_l_var)), ).sum(dim=1) if is_labelled: return ( reconst_loss + loss_z1_weight + loss_z1_unweight, kl_divergence_z2 + kl_divergence_l, 0.0, ) probs = self.classifier(z1) reconst_loss += loss_z1_weight + ( (loss_z1_unweight).view(self.n_labels, -1).t() * probs ).sum(dim=1) kl_divergence = (kl_divergence_z2.view(self.n_labels, -1).t() * probs).sum( dim=1 ) kl_divergence += kl( Categorical(probs=probs), Categorical(probs=self.y_prior.repeat(probs.size(0), 1)), ) kl_divergence += kl_divergence_l return reconst_loss, kl_divergence, 0.0
/scArchest-0.0.1-py3-none-any.whl/scarches/models/scvi/scanvi.py
0.911155
0.59796
scanvi.py
pypi
"""Main module.""" import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal, kl_divergence as kl from scvi.core._distributions import ( ZeroInflatedNegativeBinomial, NegativeBinomial, Poisson, ) from scvi.core.modules.utils import one_hot from scarchest.models.scvi._base import Encoder, DecoderSCVI from typing import Tuple, Dict torch.backends.cudnn.benchmark = True # VAE model class scVI(nn.Module): """Variational auto-encoder model. This is an implementation of the scVI model descibed in [Lopez18]_ Parameters ---------- n_input Number of input genes n_batch Number of batches, if 0, no batch correction is performed. n_labels Number of labels n_hidden Number of nodes per hidden layer n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. reconstruction_loss One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution * ``'poisson'`` - Poisson distribution Examples -------- >>> gene_dataset = CortexDataset() >>> vae = VAE(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels) """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers: int = 1, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, gene_likelihood: str = "zinb", latent_distribution: str = "normal", modified: bool = False, ): super().__init__() self.n_input = n_input self.n_batch = n_batch self.n_labels = n_labels self.n_hidden = n_hidden self.n_latent = n_latent self.n_layers = n_layers self.dropout_rate = dropout_rate self.dispersion = dispersion self.log_variational = log_variational self.gene_likelihood = gene_likelihood self.latent_distribution = latent_distribution # Added for scArches self.modified = modified self.freeze = False self.new_conditions = 0 if self.dispersion == "gene": self.px_r = torch.nn.Parameter(torch.randn(n_input)) elif self.dispersion == "gene-batch": self.px_r = torch.nn.Parameter(torch.randn(n_input, n_batch)) elif self.dispersion == "gene-label": self.px_r = torch.nn.Parameter(torch.randn(n_input, n_labels)) elif self.dispersion == "gene-cell": pass else: raise ValueError( "dispersion must be one of ['gene', 'gene-batch'," " 'gene-label', 'gene-cell'], but input was " "{}.format(self.dispersion)" ) # z encoder goes from the n_input-dimensional data to an n_latent-d # latent space representation self.z_encoder = Encoder( n_input, n_latent, n_cat_list=[n_batch] if self.modified else None, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=self.dropout_rate, distribution=latent_distribution, modified=self.modified ) # l encoder goes from n_input-dimensional data to 1-d library size self.l_encoder = Encoder( n_input, 1, n_layers=1, n_hidden=n_hidden, dropout_rate=self.dropout_rate, ) # decoder goes from n_latent-dimensional space to n_input-d data self.decoder = DecoderSCVI( n_latent, n_input, n_cat_list=[n_batch], n_layers=n_layers, n_hidden=n_hidden, modified=modified ) def get_latents(self, x, y=None, batch_index=None) -> torch.Tensor: """Returns the result of ``sample_from_posterior_z`` inside a list Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) batch_index tensor of study/batch labels with shape ``(batch_size, n_labels)`` (Default value = None) Returns ------- type one element list of tensor """ return [self.sample_from_posterior_z(x, y=y, batch_index=batch_index)] def sample_from_posterior_z( self, x, y=None, batch_index=None, give_mean=False, n_samples=5000 ) -> torch.Tensor: """Samples the tensor of latent values from the posterior Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) batch_index tensor of study/batch labels with shape ``(batch_size, n_labels)`` (Default value = None) give_mean is True when we want the mean of the posterior distribution rather than sampling (Default value = False) n_samples how many MC samples to average over for transformed mean (Default value = 5000) Returns ------- type tensor of shape ``(batch_size, n_latent)`` """ if self.log_variational: x = torch.log(1 + x) qz_m, qz_v, z = self.z_encoder(x, batch_index, y) # y only used in VAEC if give_mean: if self.latent_distribution == "ln": samples = Normal(qz_m, qz_v.sqrt()).sample([n_samples]) z = self.z_encoder.z_transformation(samples) z = z.mean(dim=0) else: z = qz_m return z def sample_from_posterior_l(self, x, batch_index=None, give_mean=True) -> torch.Tensor: """Samples the tensor of library sizes from the posterior Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` batch_index tensor of study/batch labels with shape ``(batch_size, n_labels)`` (Default value = None) give_mean Return mean or sample Returns ------- type tensor of shape ``(batch_size, 1)`` """ if self.log_variational: x = torch.log(1 + x) ql_m, ql_v, library = self.l_encoder(x, batch_index) if give_mean is False: library = library else: library = torch.distributions.LogNormal(ql_m, ql_v.sqrt()).mean return library def get_sample_scale( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> torch.Tensor: """Returns the tensor of predicted frequencies of expression Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) n_samples number of samples (Default value = 1) transform_batch int of batch to transform samples into (Default value = None) Returns ------- type tensor of predicted frequencies of expression with shape ``(batch_size, n_input)`` """ return self.inference( x, batch_index=batch_index, y=y, n_samples=n_samples, transform_batch=transform_batch, )["px_scale"] def get_sample_rate( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> torch.Tensor: """Returns the tensor of means of the negative binomial distribution Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) n_samples number of samples (Default value = 1) transform_batch int of batch to transform samples into (Default value = None) Returns ------- type tensor of means of the negative binomial distribution with shape ``(batch_size, n_input)`` """ return self.inference( x, batch_index=batch_index, y=y, n_samples=n_samples, transform_batch=transform_batch, )["px_rate"] def get_reconstruction_loss( self, x, px_rate, px_r, px_dropout, **kwargs ) -> torch.Tensor: # Reconstruction Loss if self.gene_likelihood == "zinb": reconst_loss = ( -ZeroInflatedNegativeBinomial( mu=px_rate, theta=px_r, zi_logits=px_dropout ) .log_prob(x) .sum(dim=-1) ) elif self.gene_likelihood == "nb": reconst_loss = ( -NegativeBinomial(mu=px_rate, theta=px_r).log_prob(x).sum(dim=-1) ) elif self.gene_likelihood == "poisson": reconst_loss = -Poisson(px_rate).log_prob(x).sum(dim=-1) return reconst_loss def inference( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> Dict[str, torch.Tensor]: """Helper function used in forward pass """ x_ = x if self.log_variational: x_ = torch.log(1 + x_) # Sampling qz_m, qz_v, z = self.z_encoder(x_, batch_index, y) ql_m, ql_v, library = self.l_encoder(x_, batch_index) if n_samples > 1: qz_m = qz_m.unsqueeze(0).expand((n_samples, qz_m.size(0), qz_m.size(1))) qz_v = qz_v.unsqueeze(0).expand((n_samples, qz_v.size(0), qz_v.size(1))) # when z is normal, untran_z == z untran_z = Normal(qz_m, qz_v.sqrt()).sample() z = self.z_encoder.z_transformation(untran_z) ql_m = ql_m.unsqueeze(0).expand((n_samples, ql_m.size(0), ql_m.size(1))) ql_v = ql_v.unsqueeze(0).expand((n_samples, ql_v.size(0), ql_v.size(1))) library = Normal(ql_m, ql_v.sqrt()).sample() if transform_batch is not None: dec_batch_index = transform_batch * torch.ones_like(batch_index) else: dec_batch_index = batch_index px_scale, px_r, px_rate, px_dropout = self.decoder( self.dispersion, z, library, dec_batch_index, y ) if self.dispersion == "gene-label": px_r = F.linear( one_hot(y, self.n_labels), self.px_r ) # px_r gets transposed - last dimension is nb genes elif self.dispersion == "gene-batch": px_r = F.linear(one_hot(dec_batch_index, self.n_batch), self.px_r) elif self.dispersion == "gene": px_r = self.px_r px_r = torch.exp(px_r) return dict( px_scale=px_scale, px_r=px_r, px_rate=px_rate, px_dropout=px_dropout, qz_m=qz_m, qz_v=qz_v, z=z, ql_m=ql_m, ql_v=ql_v, library=library, ) def forward( self, x, local_l_mean, local_l_var, batch_index=None, y=None ) -> Tuple[torch.Tensor, torch.Tensor]: """Returns the reconstruction loss and the KL divergences Parameters ---------- x tensor of values with shape (batch_size, n_input) local_l_mean tensor of means of the prior distribution of latent variable l with shape (batch_size, 1) local_l_var tensor of variancess of the prior distribution of latent variable l with shape (batch_size, 1) batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) y tensor of cell-types labels with shape (batch_size, n_labels) (Default value = None) Returns ------- type the reconstruction loss and the Kullback divergences """ # Parameters for z latent distribution outputs = self.inference(x, batch_index, y) qz_m = outputs["qz_m"] qz_v = outputs["qz_v"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] px_rate = outputs["px_rate"] px_r = outputs["px_r"] px_dropout = outputs["px_dropout"] # KL Divergence mean = torch.zeros_like(qz_m) scale = torch.ones_like(qz_v) kl_divergence_z = kl(Normal(qz_m, torch.sqrt(qz_v)), Normal(mean, scale)).sum( dim=1 ) kl_divergence_l = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_l_mean, torch.sqrt(local_l_var)), ).sum(dim=1) kl_divergence = kl_divergence_z reconst_loss = self.get_reconstruction_loss(x, px_rate, px_r, px_dropout) return reconst_loss + kl_divergence_l, kl_divergence, 0.0
/scArchest-0.0.1-py3-none-any.whl/scarches/models/scvi/scvi.py
0.960519
0.525978
scvi.py
pypi
"""Main module.""" import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.distributions import Normal, kl_divergence as kl from typing import Dict, Optional, Tuple, Union, List from scvi.core._distributions import ZeroInflatedNegativeBinomial, NegativeBinomial from scvi.core._log_likelihood import log_mixture_nb from scvi.core.modules.utils import one_hot from scarchest.models.scvi._base import DecoderTOTALVI, EncoderTOTALVI torch.backends.cudnn.benchmark = True # VAE model class totalVI(nn.Module): """ Total variational inference for CITE-seq data. Implements the totalVI model of [GayosoSteier20]_. Parameters ---------- n_input_genes Number of input genes n_input_proteins Number of input proteins n_batch Number of batches n_labels Number of labels n_hidden Number of nodes per hidden layer for encoder and decoder n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs dropout_rate Dropout rate for neural networks genes_dispersion One of the following * ``'gene'`` - genes_dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - genes_dispersion can differ between different batches * ``'gene-label'`` - genes_dispersion can differ between different labels protein_dispersion One of the following * ``'protein'`` - protein_dispersion parameter is constant per protein across cells * ``'protein-batch'`` - protein_dispersion can differ between different batches NOT TESTED * ``'protein-label'`` - protein_dispersion can differ between different labels NOT TESTED log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. gene_likelihood One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution latent_distribution One of * ``'normal'`` - Isotropic normal * ``'ln'`` - Logistic normal with normal params N(0, 1) """ def __init__( self, n_input_genes: int, n_input_proteins: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 256, n_latent: int = 20, n_layers_encoder: int = 1, n_layers_decoder: int = 1, dropout_rate_decoder: float = 0.2, dropout_rate_encoder: float = 0.2, gene_dispersion: str = "gene", protein_dispersion: str = "protein", log_variational: bool = True, gene_likelihood: str = "nb", latent_distribution: str = "ln", protein_batch_mask: List[np.ndarray] = None, encoder_batch: bool = True, ): super().__init__() self.gene_dispersion = gene_dispersion self.n_latent = n_latent self.log_variational = log_variational self.gene_likelihood = gene_likelihood self.n_batch = n_batch self.n_labels = n_labels self.n_input_genes = n_input_genes self.n_input_proteins = n_input_proteins self.protein_dispersion = protein_dispersion self.latent_distribution = latent_distribution self.protein_batch_mask = protein_batch_mask # parameters for prior on rate_back (background protein mean) if n_batch > 0: self.background_pro_alpha = torch.nn.Parameter( torch.randn(n_input_proteins, n_batch) ) self.background_pro_log_beta = torch.nn.Parameter( torch.clamp(torch.randn(n_input_proteins, n_batch), -10, 1) ) else: self.background_pro_alpha = torch.nn.Parameter( torch.randn(n_input_proteins) ) self.background_pro_log_beta = torch.nn.Parameter( torch.clamp(torch.randn(n_input_proteins), -10, 1) ) if self.gene_dispersion == "gene": self.px_r = torch.nn.Parameter(torch.randn(n_input_genes)) elif self.gene_dispersion == "gene-batch": self.px_r = torch.nn.Parameter(torch.randn(n_input_genes, n_batch)) elif self.gene_dispersion == "gene-label": self.px_r = torch.nn.Parameter(torch.randn(n_input_genes, n_labels)) else: # gene-cell pass if self.protein_dispersion == "protein": self.py_r = torch.nn.Parameter(torch.ones(self.n_input_proteins)) elif self.protein_dispersion == "protein-batch": self.py_r = torch.nn.Parameter(torch.ones(self.n_input_proteins, n_batch)) elif self.protein_dispersion == "protein-label": self.py_r = torch.nn.Parameter(torch.ones(self.n_input_proteins, n_labels)) else: # protein-cell pass # z encoder goes from the n_input-dimensional data to an n_latent-d # latent space representation self.encoder = EncoderTOTALVI( n_input_genes + self.n_input_proteins, n_latent, n_layers=n_layers_encoder, n_cat_list=[n_batch] if encoder_batch else None, n_hidden=n_hidden, dropout_rate=dropout_rate_encoder, distribution=latent_distribution, ) self.decoder = DecoderTOTALVI( n_latent, n_input_genes, self.n_input_proteins, n_layers=n_layers_decoder, n_cat_list=[n_batch], n_hidden=n_hidden, dropout_rate=dropout_rate_decoder, ) def sample_from_posterior_z( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, give_mean: bool = False, n_samples: int = 5000, ) -> torch.Tensor: """ Access the tensor of latent values from the posterior. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` batch_index tensor of batch indices give_mean Whether to sample, or give mean of distribution n_samples Number of samples for monte carlo estimation Returns ------- type tensor of shape ``(batch_size, n_latent)`` """ if self.log_variational: x = torch.log(1 + x) y = torch.log(1 + y) qz_m, qz_v, _, _, latent, _ = self.encoder( torch.cat((x, y), dim=-1), batch_index ) z = latent["z"] if give_mean: if self.latent_distribution == "ln": samples = Normal(qz_m, qz_v.sqrt()).sample([n_samples]) z = self.encoder.z_transformation(samples) z = z.mean(dim=0) else: z = qz_m return z def sample_from_posterior_l( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, give_mean: bool = True, ) -> torch.Tensor: """ Provides the tensor of library size from the posterior. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` batch_index tensor of values with shape ``(batch_size, 1)`` give_mean return mean of l or sample from it Returns ------- type tensor of shape ``(batch_size, 1)`` """ if self.log_variational: x = torch.log(1 + x) y = torch.log(1 + y) _, _, ql_m, ql_v, latent, _ = self.encoder( torch.cat((x, y), dim=-1), batch_index ) library_gene = latent["l"] if give_mean is True: return torch.exp(ql_m + 0.5 * ql_v) else: return library_gene def get_sample_dispersion( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, label: Optional[torch.Tensor] = None, n_samples: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns the tensors of dispersions for genes and proteins. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` batch_index array that indicates which batch the cells belong to with shape ``batch_size`` label tensor of cell-types labels with shape ``(batch_size, n_labels)`` n_samples number of samples Returns ------- type tensors of dispersions of the negative binomial distribution """ outputs = self.inference( x, y, batch_index=batch_index, label=label, n_samples=n_samples ) px_r = outputs["px_"]["r"] py_r = outputs["py_"]["r"] return px_r, py_r def get_reconstruction_loss( self, x: torch.Tensor, y: torch.Tensor, px_dict: Dict[str, torch.Tensor], py_dict: Dict[str, torch.Tensor], pro_batch_mask_minibatch: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute reconstruction loss.""" px_ = px_dict py_ = py_dict # Reconstruction Loss if self.gene_likelihood == "zinb": reconst_loss_gene = ( -ZeroInflatedNegativeBinomial( mu=px_["rate"], theta=px_["r"], zi_logits=px_["dropout"] ) .log_prob(x) .sum(dim=-1) ) else: reconst_loss_gene = ( -NegativeBinomial(mu=px_["rate"], theta=px_["r"]) .log_prob(x) .sum(dim=-1) ) reconst_loss_protein_full = -log_mixture_nb( y, py_["rate_back"], py_["rate_fore"], py_["r"], None, py_["mixing"] ) if pro_batch_mask_minibatch is not None: temp_pro_loss_full = torch.zeros_like(reconst_loss_protein_full) temp_pro_loss_full.masked_scatter_( pro_batch_mask_minibatch.bool(), reconst_loss_protein_full ) reconst_loss_protein = temp_pro_loss_full.sum(dim=-1) else: reconst_loss_protein = reconst_loss_protein_full.sum(dim=-1) return reconst_loss_gene, reconst_loss_protein def inference( self, x: torch.Tensor, y: torch.Tensor, batch_index: Optional[torch.Tensor] = None, label: Optional[torch.Tensor] = None, n_samples=1, transform_batch: Optional[int] = None, ) -> Dict[str, Union[torch.Tensor, Dict[str, torch.Tensor]]]: """ Internal helper function to compute necessary inference quantities. We use the dictionary ``px_`` to contain the parameters of the ZINB/NB for genes. The rate refers to the mean of the NB, dropout refers to Bernoulli mixing parameters. `scale` refers to the quanity upon which differential expression is performed. For genes, this can be viewed as the mean of the underlying gamma distribution. We use the dictionary ``py_`` to contain the parameters of the Mixture NB distribution for proteins. `rate_fore` refers to foreground mean, while `rate_back` refers to background mean. ``scale`` refers to foreground mean adjusted for background probability and scaled to reside in simplex. ``back_alpha`` and ``back_beta`` are the posterior parameters for ``rate_back``. ``fore_scale`` is the scaling factor that enforces `rate_fore` > `rate_back`. ``px_["r"]`` and ``py_["r"]`` are the inverse dispersion parameters for genes and protein, respectively. """ x_ = x y_ = y if self.log_variational: x_ = torch.log(1 + x_) y_ = torch.log(1 + y_) # Sampling - Encoder gets concatenated genes + proteins qz_m, qz_v, ql_m, ql_v, latent, untran_latent = self.encoder( torch.cat((x_, y_), dim=-1), batch_index ) z = latent["z"] library_gene = latent["l"] untran_z = untran_latent["z"] untran_l = untran_latent["l"] if n_samples > 1: qz_m = qz_m.unsqueeze(0).expand((n_samples, qz_m.size(0), qz_m.size(1))) qz_v = qz_v.unsqueeze(0).expand((n_samples, qz_v.size(0), qz_v.size(1))) untran_z = Normal(qz_m, qz_v.sqrt()).sample() z = self.encoder.z_transformation(untran_z) ql_m = ql_m.unsqueeze(0).expand((n_samples, ql_m.size(0), ql_m.size(1))) ql_v = ql_v.unsqueeze(0).expand((n_samples, ql_v.size(0), ql_v.size(1))) untran_l = Normal(ql_m, ql_v.sqrt()).sample() library_gene = self.encoder.l_transformation(untran_l) if self.gene_dispersion == "gene-label": # px_r gets transposed - last dimension is nb genes px_r = F.linear(one_hot(label, self.n_labels), self.px_r) elif self.gene_dispersion == "gene-batch": px_r = F.linear(one_hot(batch_index, self.n_batch), self.px_r) elif self.gene_dispersion == "gene": px_r = self.px_r px_r = torch.exp(px_r) if self.protein_dispersion == "protein-label": # py_r gets transposed - last dimension is n_proteins py_r = F.linear(one_hot(label, self.n_labels), self.py_r) elif self.protein_dispersion == "protein-batch": py_r = F.linear(one_hot(batch_index, self.n_batch), self.py_r) elif self.protein_dispersion == "protein": py_r = self.py_r py_r = torch.exp(py_r) # Background regularization if self.n_batch > 0: py_back_alpha_prior = F.linear( one_hot(batch_index, self.n_batch), self.background_pro_alpha ) py_back_beta_prior = F.linear( one_hot(batch_index, self.n_batch), torch.exp(self.background_pro_log_beta), ) else: py_back_alpha_prior = self.background_pro_alpha py_back_beta_prior = torch.exp(self.background_pro_log_beta) self.back_mean_prior = Normal(py_back_alpha_prior, py_back_beta_prior) if transform_batch is not None: batch_index = torch.ones_like(batch_index) * transform_batch px_, py_, log_pro_back_mean = self.decoder(z, library_gene, batch_index, label) px_["r"] = px_r py_["r"] = py_r return dict( px_=px_, py_=py_, qz_m=qz_m, qz_v=qz_v, z=z, untran_z=untran_z, ql_m=ql_m, ql_v=ql_v, library_gene=library_gene, untran_l=untran_l, log_pro_back_mean=log_pro_back_mean, ) def forward( self, x: torch.Tensor, y: torch.Tensor, local_l_mean_gene: torch.Tensor, local_l_var_gene: torch.Tensor, batch_index: Optional[torch.Tensor] = None, label: Optional[torch.Tensor] = None, ) -> Tuple[ torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor ]: """ Returns the reconstruction loss and the Kullback divergences. Parameters ---------- x tensor of values with shape ``(batch_size, n_input_genes)`` y tensor of values with shape ``(batch_size, n_input_proteins)`` local_l_mean_gene tensor of means of the prior distribution of latent variable l with shape ``(batch_size, 1)```` local_l_var_gene tensor of variancess of the prior distribution of latent variable l with shape ``(batch_size, 1)`` batch_index array that indicates which batch the cells belong to with shape ``batch_size`` label tensor of cell-types labels with shape (batch_size, n_labels) Returns ------- type the reconstruction loss and the Kullback divergences """ # Parameters for z latent distribution outputs = self.inference(x, y, batch_index, label) qz_m = outputs["qz_m"] qz_v = outputs["qz_v"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] px_ = outputs["px_"] py_ = outputs["py_"] if self.protein_batch_mask is not None: pro_batch_mask_minibatch = torch.zeros_like(y) for b in np.arange(len(torch.unique(batch_index))): b_indices = (batch_index == b).reshape(-1) pro_batch_mask_minibatch[b_indices] = torch.tensor( self.protein_batch_mask[b].astype(np.float32), device=y.device ) else: pro_batch_mask_minibatch = None reconst_loss_gene, reconst_loss_protein = self.get_reconstruction_loss( x, y, px_, py_, pro_batch_mask_minibatch ) # KL Divergence kl_div_z = kl(Normal(qz_m, torch.sqrt(qz_v)), Normal(0, 1)).sum(dim=1) kl_div_l_gene = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_l_mean_gene, torch.sqrt(local_l_var_gene)), ).sum(dim=1) kl_div_back_pro_full = kl( Normal(py_["back_alpha"], py_["back_beta"]), self.back_mean_prior ) if pro_batch_mask_minibatch is not None: kl_div_back_pro = (pro_batch_mask_minibatch * kl_div_back_pro_full).sum( dim=1 ) else: kl_div_back_pro = kl_div_back_pro_full.sum(dim=1) return ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_l_gene, kl_div_back_pro, )
/scArchest-0.0.1-py3-none-any.whl/scarches/models/scvi/totalvi.py
0.956012
0.525795
totalvi.py
pypi
from typing import Optional import torch import torch.nn as nn from scarchest.models.trvae._utils import one_hot_encoder from .activations import ACTIVATIONS from .losses import mse, kl import numpy as np def dense_block(i, in_features, out_features, use_batchnorm, dropout_rate, activation): model = nn.Sequential() model.add_module(name=f"FC_{i}", module=nn.Linear(in_features, out_features, bias=False)) if use_batchnorm: model.add_module(f"BN_{i}", module=nn.BatchNorm1d(out_features, affine=True)) model.add_module(name=f"ACT_{i}", module=ACTIVATIONS[activation]) if dropout_rate > 0: model.add_module(name=f"DR_{i}", module=nn.Dropout(p=dropout_rate)) return model class MARS(nn.Module): def __init__(self, x_dim: int, conditions: Optional[list] = [], architecture: list = [128, 32], z_dim: int = 10, alpha=1e-3, activation: str = 'elu', output_activation: str = 'relu', use_batchnorm: bool = False, dropout_rate: float = 0.2): super(MARS, self).__init__() self.x_dim = x_dim self.conditions = conditions if isinstance(conditions, list) else [] self.n_conditions = len(self.conditions) self.condition_encoder = {k: v for k, v in zip(self.conditions, range(self.n_conditions))} self.z_dim = z_dim self.alpha = alpha self.architecture = architecture self.use_batchnorm = use_batchnorm self.dropout_rate = dropout_rate self.activation = activation self.output_activation = output_activation self.encoder_architecture = [self.x_dim + self.n_conditions] + self.architecture self.decoder_architecture = [self.z_dim + self.n_conditions] + list(reversed(self.architecture)) self.encoder = nn.Sequential( *[dense_block(i, in_size, out_size, use_batchnorm, dropout_rate, activation) for i, (in_size, out_size) in enumerate(zip(self.encoder_architecture[:-1], self.encoder_architecture[1:]))]) self.mean = nn.Linear(self.encoder_architecture[-1], self.z_dim) self.log_var = nn.Linear(self.encoder_architecture[-1], self.z_dim) self.decoder = nn.Sequential( *[dense_block(i, in_size, out_size, use_batchnorm, dropout_rate, activation) for i, (in_size, out_size) in enumerate(zip(self.decoder_architecture[:-1], self.decoder_architecture[1:]))]) self.decoder.add_module(name='X_hat', module=dense_block('X_hat', self.decoder_architecture[-1], self.x_dim, use_batchnorm, dropout_rate, self.output_activation)) def sampling(self, mu, log_var): """Samples from standard Normal distribution and applies re-parametrization trick. It is actually sampling from latent space distributions with N(mu, var), computed by encoder. Parameters ---------- mu: torch.Tensor Torch Tensor of Means. log_var: torch.Tensor Torch Tensor of log. variances. Returns ------- Torch Tensor of sampled data. """ std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps.mul(std).add(mu) def forward(self, x, c=None): if c is not None: c = one_hot_encoder(c, n_cls=self.n_conditions) xc = torch.cat((x, c), dim=-1) else: xc = x encoded = self.encoder(xc) mean_encoded = self.mean(encoded) log_var_encoded = self.log_var(encoded) encoded = self.sampling(mean_encoded, log_var_encoded) if c is not None: ec = torch.cat((encoded, c), dim=-1) else: ec = encoded decoded = self.decoder(ec) kl_loss = kl(mean_encoded, log_var_encoded) recon_loss = mse(decoded, x) # TODO: support other loss functions loss = recon_loss + self.alpha * kl_loss return encoded, decoded, loss, recon_loss, kl_loss def get_latent(self, x, c=None): x = torch.as_tensor(np.array(x).astype(np.float)).type(torch.float32) if c is not None: c = torch.as_tensor(np.array(c).astype(np.int)) c = one_hot_encoder(c, n_cls=self.n_conditions) xc = torch.cat((x, c), dim=-1) else: xc = x encoded = self.encoder(xc) mean_encoded = self.mean(encoded) log_var_encoded = self.log_var(encoded) encoded = self.sampling(mean_encoded, log_var_encoded) return encoded.cpu().data.numpy()
/scArchest-0.0.1-py3-none-any.whl/scarches/models/mars/mars.py
0.94285
0.396127
mars.py
pypi
import torch import numpy as np from functools import partial from torch.autograd import Variable from ._utils import partition def _nan2inf(x): return torch.where(torch.isnan(x), torch.zeros_like(x) + np.inf, x) def _nan2zero(x): return torch.where(torch.isnan(x), torch.zeros_like(x), x) def kl(mu, logvar): """Computes KL loss between tensor of means, log. variances and zero mean, unit variance. Parameters ---------- mu: Tensor Torch Tensor of means logvar: Tensor Torch Tensor of log. variances Returns ------- KL loss value """ kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), ) kl_loss = kl_loss / mu.size(0) return kl_loss def mse(recon_x, x): """Computes MSE loss between reconstructed data and ground truth data. Parameters ---------- recon_x: Tensor Torch Tensor of reconstructed data x: Tensor Torch Tensor of ground truth data Returns ------- MSE loss value """ mse_loss = torch.nn.functional.mse_loss(recon_x, x, reduction="mean") return mse_loss def nb(x, mu, theta, eps=1e-8, mean=True): """Computes negative binomial loss. Parameters ---------- x: Tensor Torch Tensor of ground truth data. mu: Tensor Torch Tensor of means of the negative binomial (has to be positive support). theta: Tensor Torch Tensor of inverse dispersion parameter (has to be positive support). eps: Float numerical stability constant. mean: boolean If 'True' NB loss value gets returned, if 'False' NB loss Tensor gets returned with same shape as 'x' (needed for ZINB loss calculation). Returns ------- If 'mean' is 'True' NB loss value gets returned, otherwise Torch tensor of losses gets returned. """ if theta.ndimension() == 1: theta = theta.view(1, theta.size(0)) # In this case, we reshape theta for broadcasting t1 = torch.lgamma(theta + eps) + torch.lgamma(x + 1.0) - torch.lgamma(x + theta + eps) t2 = (theta + x) * torch.log(1.0 + (mu / (theta + eps))) + (x * (torch.log(theta + eps) - torch.log(mu + eps))) final = t1 + t2 final = _nan2inf(final) if mean: final = torch.mean(final) return final def zinb(x, mu, theta, pi, eps=1e-8, ridge_lambda=0.0, mean=True): """Computes zero inflated negative binomial loss. Parameters ---------- x: Tensor Torch Tensor of ground truth data. mu: Tensor Torch Tensor of means of the negative binomial (has to be positive support). theta: Tensor Torch Tensor of inverses dispersion parameter (has to be positive support). pi: Tensor Torch Tensor of logits of the dropout parameter (real support) eps: Float numerical stability constant. ridge_lambda: Float Ridge Coefficient. mean: boolean If 'True' NB loss value gets returned, if 'False' NB loss Tensor gets returned with same shape as 'x' (needed for ZINB loss calculation). Returns ------- If 'mean' is 'True' ZINB loss value gets returned, otherwise Torch tensor of losses gets returned. """ nb_case = nb(x, mu, theta, mean=False) - torch.log(1.0 - pi + eps) if theta.ndimension() == 1: theta = theta.view(1, theta.size(0)) # In this case, we reshape theta for broadcasting zero_nb = torch.pow(theta / (theta + mu + eps), theta) zero_case = -torch.log(pi + ((1.0 - pi) * zero_nb) + eps) result = torch.where((x < 1e-8), zero_case, nb_case) ridge = ridge_lambda * torch.square(pi) result += ridge if mean: result = torch.mean(result) result = _nan2inf(result) return result def pairwise_distance(x, y): if not len(x.shape) == len(y.shape) == 2: raise ValueError('Both inputs should be matrices.') if x.shape[1] != y.shape[1]: raise ValueError('The number of features should be the same.') x = x.view(x.shape[0], x.shape[1], 1) y = torch.transpose(y, 0, 1) output = torch.sum((x - y) ** 2, 1) output = torch.transpose(output, 0, 1) return output def gaussian_kernel_matrix(x, y, sigmas): """Computes multiscale-RBF kernel between x and y. Parameters ---------- x: Tensor Tensor with shape [batch_size, z_dim]. y: Tensor Tensor with shape [batch_size, z_dim]. sigmas: Tensor Returns ------- Returns the computed multiscale-RBF kernel between x and y. """ sigmas = sigmas.view(sigmas.shape[0], 1) beta = 1. / (2. * sigmas) dist = pairwise_distance(x, y).contiguous() dist_ = dist.view(1, -1) s = torch.matmul(beta, dist_) return torch.sum(torch.exp(-s), 0).view_as(dist) def maximum_mean_discrepancy(x, y, kernel=gaussian_kernel_matrix): """Computes Maximum Mean Discrepancy(MMD) between x and y. Parameters ---------- x: Tensor Tensor with shape [batch_size, z_dim] y: Tensor Tensor with shape [batch_size, z_dim] kernel: gaussian_kernel_matrix Returns ------- Returns the computed MMD between x and y. """ cost = torch.mean(kernel(x, x)) cost += torch.mean(kernel(y, y)) cost -= 2 * torch.mean(kernel(x, y)) return cost def mmd_loss_calc(source_features, target_features): """Initializes Maximum Mean Discrepancy(MMD) between source_features and target_features. Parameters ---------- source_features: Tensor Tensor with shape [batch_size, z_dim] target_features: Tensor Tensor with shape [batch_size, z_dim] Returns ------- Returns the computed MMD between x and y. """ sigmas = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] if torch.cuda.is_available(): gaussian_kernel = partial( gaussian_kernel_matrix, sigmas=Variable(torch.cuda.FloatTensor(sigmas)) ) else: gaussian_kernel = partial( gaussian_kernel_matrix, sigmas=Variable(torch.FloatTensor(sigmas)) ) loss_value = maximum_mean_discrepancy(source_features, target_features, kernel=gaussian_kernel) return loss_value def mmd(n_conditions, beta, boundary): """Initializes Maximum Mean Discrepancy(MMD) between every different condition. Parameters ---------- n_conditions: integer Number of classes (conditions) the data contain. beta: float beta coefficient for MMD loss. boundary: integer If not 'None', mmd loss is only calculated on #new conditions. y: Tensor Torch Tensor of computed latent data. c: Tensor Torch Tensor of labels Returns ------- Returns MMD loss. """ def mmd_loss(y, c): # partition separates y into num_cls subsets w.r.t. their labels c conditions_mmd = partition(y, c, n_conditions) loss = 0.0 if boundary is not None: for i in range(boundary): for j in range(boundary, n_conditions): if conditions_mmd[i].size(0) < 2 or conditions_mmd[j].size(0) < 2: continue loss += mmd_loss_calc(conditions_mmd[i], conditions_mmd[j]) else: for i in range(len(conditions_mmd)): if conditions_mmd[i].size(0) < 1: continue for j in range(i): if conditions_mmd[j].size(0) < 1 or i == j: continue loss += mmd_loss_calc(conditions_mmd[i], conditions_mmd[j]) return beta * loss return mmd_loss
/scArchest-0.0.1-py3-none-any.whl/scarches/models/trvae/losses.py
0.952386
0.853547
losses.py
pypi
import torch import torch.nn as nn from ._utils import one_hot_encoder class CondLayers(nn.Module): def __init__( self, n_in: int, n_out: int, n_cond: int, bias: bool = True, ): super().__init__() self.n_cond = n_cond self.expr_L = nn.Linear(n_in, n_out, bias=bias) if self.n_cond != 0: self.cond_L = nn.Linear(self.n_cond, n_out, bias=False) def forward(self, x: torch.Tensor): if self.n_cond == 0: out = self.expr_L(x) else: expr, cond = torch.split(x, x.shape[1] - self.n_cond, dim=1) out = self.expr_L(expr) + self.cond_L(cond) return out class Encoder(nn.Module): """Scnet Encoder class. Constructs the encoder sub-network of scNet. It will transform primary space input to means and log. variances of latent space with n_dimensions = z_dimension. Parameters ---------- layer_sizes: List List of first and hidden layer sizes latent_dim: Integer Bottleneck layer (z) size. use_bn: Boolean If `True` batch normalization will applied to layers. use_dr: Boolean If `True` dropout will applied to layers. dr_rate: Float Dropput rate applied to all layers, if `dr_rate`==0 no dropput will be applied. num_classes: Integer Number of classes (conditions) the data contain. if `None` the model will be a normal VAE instead of conditional VAE. Returns ------- """ def __init__(self, layer_sizes, latent_dim, use_bn, use_dr, dr_rate, num_classes=None): super().__init__() self.n_classes = 0 if num_classes is not None: self.n_classes = num_classes self.FC = None if len(layer_sizes) > 1: print("Encoder Architecture:") self.FC = nn.Sequential() for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): if i == 0: print("\tInput Layer in, out and cond:", in_size, out_size, self.n_classes) self.FC.add_module(name="L{:d}".format(i), module=CondLayers(in_size, out_size, self.n_classes, bias=False)) else: print("\tHidden Layer", i, "in/out:", in_size, out_size) self.FC.add_module(name="L{:d}".format(i), module=nn.Linear(in_size, out_size, bias=False)) if use_bn: self.FC.add_module("B{:d}".format(i), module=nn.BatchNorm1d(out_size, affine=True)) self.FC.add_module(name="A{:d}".format(i), module=nn.ReLU()) if use_dr: self.FC.add_module(name="D{:d}".format(i), module=nn.Dropout(p=dr_rate)) print("\tMean/Var Layer in/out:", layer_sizes[-1], latent_dim) self.mean_encoder = nn.Linear(layer_sizes[-1], latent_dim) self.log_var_encoder = nn.Linear(layer_sizes[-1], latent_dim) def forward(self, x, c=None): if c is not None: c = one_hot_encoder(c, n_cls=self.n_classes) x = torch.cat((x, c), dim=-1) if self.FC is not None: x = self.FC(x) means = self.mean_encoder(x) log_vars = self.log_var_encoder(x) return means, log_vars class Decoder(nn.Module): """Scnet Decoder class. Constructs the decoder sub-network of scNet. It will transform constructed latent space to the previous space of data with n_dimensions = x_dimension. Parameters ---------- layer_sizes: List List of hidden and last layer sizes latent_dim: Integer Bottleneck layer (z) size. recon_loss: String Definition of Reconstruction-Loss-Method, 'mse', 'nb' or 'zinb'. use_bn: Boolean If `True` batch normalization will applied to layers. use_dr: Boolean If `True` dropout will applied to layers. dr_rate: Float Dropput rate applied to all layers, if `dr_rate`==0 no dropput will be applied. use_mmd: boolean If `True` then MMD will be applied to first decoder layer. num_classes: Integer Number of classes (conditions) the data contain. if `None` the model will be a normal VAE instead of conditional VAE. output_active: String Defines the Activation for the last layer of decoder if 'recon_loss' is 'mse'. Returns ------- """ def __init__(self, layer_sizes, latent_dim, recon_loss, use_bn, use_dr, dr_rate, use_mmd=False, num_classes=None): super().__init__() self.use_mmd = use_mmd self.use_bn = use_bn self.use_dr = use_dr self.recon_loss = recon_loss self.n_classes = 0 if num_classes is not None: self.n_classes = num_classes layer_sizes = [latent_dim] + layer_sizes print("Decoder Architecture:") # Create first Decoder layer self.FirstL = nn.Sequential() print("\tFirst Layer in/out: ", layer_sizes[0], layer_sizes[1]) self.FirstL.add_module(name="L0", module=CondLayers(layer_sizes[0], layer_sizes[1], self.n_classes, bias=False)) if self.use_bn: self.FirstL.add_module("B0", module=nn.BatchNorm1d(layer_sizes[1], affine=True)) self.FirstL.add_module(name="A0", module=nn.ReLU()) if self.use_dr: self.FirstL.add_module(name="D0", module=nn.Dropout(p=dr_rate)) # Create all Decoder hidden layers if len(layer_sizes) > 2: self.HiddenL = nn.Sequential() for i, (in_size, out_size) in enumerate(zip(layer_sizes[1:-1], layer_sizes[2:])): if i+3 < len(layer_sizes): print("\tHidden Layer", i+1, "in/out:", in_size, out_size) self.HiddenL.add_module(name="L{:d}".format(i+1), module=nn.Linear(in_size, out_size, bias=False)) if self.use_bn: self.HiddenL.add_module("B{:d}".format(i+1), module=nn.BatchNorm1d(out_size, affine=True)) self.HiddenL.add_module(name="A{:d}".format(i+1), module=nn.ReLU()) if self.use_dr: self.HiddenL.add_module(name="D{:d}".format(i+1), module=nn.Dropout(p=dr_rate)) else: self.HiddenL = None # Create Output Layers print("\tOutput Layer in/out: ", layer_sizes[-2], layer_sizes[-1], "\n") if self.recon_loss == "mse": self.OutputLayer = nn.Sequential() self.OutputLayer.add_module(name="outputL", module=nn.Linear(layer_sizes[-2], layer_sizes[-1])) self.OutputLayer.add_module(name="outputA", module=nn.ReLU()) if self.recon_loss == "zinb": # mean gamma self.mean_decoder = nn.Linear(layer_sizes[-2], layer_sizes[-1]) # dispersion: here we only deal with gene-cell dispersion case self.disp_decoder = nn.Sequential(nn.Linear(layer_sizes[-2], layer_sizes[-1]), nn.Softplus()) # dropout self.dropout_decoder = nn.Sequential(nn.Linear(layer_sizes[-2], layer_sizes[-1]), nn.Sigmoid()) if self.recon_loss == "nb": # mean gamma self.mean_decoder = nn.Linear(layer_sizes[-2], layer_sizes[-1]) # dispersion: here we only deal with gene-cell dispersion case self.disp_decoder = nn.Sequential(nn.Linear(layer_sizes[-2], layer_sizes[-1]), nn.Softplus()) def forward(self, z, c=None): # Add Condition Labels to Decoder Input if c is not None: c = one_hot_encoder(c, n_cls=self.n_classes) z_cat = torch.cat((z, c), dim=-1) dec_latent = self.FirstL(z_cat) else: dec_latent = self.FirstL(z) # Compute Hidden Output if self.HiddenL is not None: x = self.HiddenL(dec_latent) else: x = dec_latent # Compute Decoder Output if self.recon_loss == "mse": output = self.OutputLayer(x) return output, dec_latent if self.recon_loss == "zinb": # Parameters for ZINB and NB dec_mean_gamma = self.mean_decoder(x) dec_mean_gamma = torch.clamp(torch.exp(dec_mean_gamma), min=1e-4, max=1e4) dec_disp = self.disp_decoder(x) dec_disp = torch.clamp(dec_disp, min=1e-6, max=1e6) dec_dropout = self.dropout_decoder(x) return dec_mean_gamma, dec_dropout, dec_disp, dec_latent if self.recon_loss == "nb": # Parameters for ZINB and NB dec_mean_gamma = self.mean_decoder(x) dec_mean_gamma = torch.clamp(torch.exp(dec_mean_gamma), min=1e-4, max=1e4) dec_disp = self.disp_decoder(x) dec_disp = torch.clamp(dec_disp, min=1e-6, max=1e6) return dec_mean_gamma, dec_disp, dec_latent
/scArchest-0.0.1-py3-none-any.whl/scarches/models/trvae/modules.py
0.954276
0.410756
modules.py
pypi
from typing import Optional import torch import torch.nn as nn from .modules import Encoder, Decoder from .losses import mse, mmd, zinb, nb, kl class trVAE(nn.Module): """scNet class. This class contains the implementation of Conditional Variational Auto-encoder. Parameters ---------- input_dim: integer Number of input features (i.e. gene in case of scRNA-seq). conditions: integer Number of classes (conditions) the data contain. if `None` the model will be a normal VAE instead of conditional VAE. encoder_layer_sizes: List A list of hidden layer sizes for encoder network. latent_dim: integer Bottleneck layer (z) size. decoder_layer_sizes: List A list of hidden layer sizes for decoder network. recon_loss: String Definition of Reconstruction-Loss-Method, 'mse', 'nb' or 'zinb'. alpha: float Alpha coefficient for KL loss. use_batch_norm: boolean If `True` batch normalization will applied to hidden layers. dr_rate: float Dropput rate applied to all layers, if `dr_rate`==0 no dropput will be applied. use_mmd: boolean If `True` then MMD will be applied to first decoder layer. beta: float beta coefficient for MMD loss. eta: float Eta coefficient for Reconstruction loss. calculate_mmd: String Defines the layer which the mmd loss is calculated on, 'y' for first layer of decoder or 'z' for bottleneck layer. """ def __init__(self, input_dim: int, conditions: list, encoder_layer_sizes: list = [256, 64], latent_dim: int = 32, decoder_layer_sizes: list = [64, 256], dr_rate: float = 0.05, use_batch_norm: bool = False, calculate_mmd: Optional[str] = 'z', mmd_boundary: Optional[int] = None, recon_loss: Optional[str] = 'zinb', alpha: Optional[float] = 0.0005, beta: Optional[float] = 200, eta: Optional[float] = 5000): super().__init__() assert isinstance(encoder_layer_sizes, list) assert isinstance(latent_dim, int) assert isinstance(decoder_layer_sizes, list) assert isinstance(conditions, list) assert recon_loss in ["mse", "nb", "zinb"], "'recon_loss' must be 'mse', 'nb' or 'zinb'" assert calculate_mmd in [None, "y", "z"], "'calculate_mmd' must be None, 'y' or 'z'" print("\nINITIALIZING NEW NETWORK..............") self.input_dim = input_dim self.latent_dim = latent_dim self.n_conditions = len(conditions) self.conditions = conditions self.condition_encoder = {k: v for k, v in zip(conditions, range(len(conditions)))} self.recon_loss = recon_loss self.alpha = alpha self.beta = beta self.eta = eta self.dr_rate = dr_rate if self.dr_rate > 0: self.use_dr = True else: self.use_dr = False self.use_bn = use_batch_norm self.calculate_mmd = calculate_mmd self.mmd_boundary = mmd_boundary self.use_mmd = True if self.calculate_mmd in ['z', 'y'] else False self.enc_layer_sizes = encoder_layer_sizes.copy() self.dec_layer_sizes = decoder_layer_sizes.copy() encoder_layer_sizes.insert(0, self.input_dim) decoder_layer_sizes.append(self.input_dim) self.encoder = Encoder(encoder_layer_sizes, self.latent_dim, self.use_bn, self.use_dr, self.dr_rate, self.n_conditions) self.decoder = Decoder(decoder_layer_sizes, self.latent_dim, self.recon_loss, self.use_bn, self.use_dr, self.dr_rate, self.use_mmd, self.n_conditions) self.freeze = False def sampling(self, mu, log_var): """Samples from standard Normal distribution and applies re-parametrization trick. It is actually sampling from latent space distributions with N(mu, var), computed by encoder. Parameters ---------- mu: torch.Tensor Torch Tensor of Means. log_var: torch.Tensor Torch Tensor of log. variances. Returns ------- Torch Tensor of sampled data. """ std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps.mul(std).add(mu) def generate_with_condition(self, n_samples, c=None): z = torch.randn([n_samples, self.latent_dim]) if c is not None: c = torch.ones([n_samples, 1], device=self.device) * c output = self.decoder(z, c) # If recon Loss is zinb, how to get recon_x? return output def get_latent(self, x, c=None, mean=False): """Map `x` in to the latent space. This function will feed data in encoder and return z for each sample in data. Parameters ---------- x: numpy nd-array Numpy nd-array to be mapped to latent space. `x` has to be in shape [n_obs, input_dim]. c: `numpy nd-array` `numpy nd-array` of original desired labels for each sample. mean: boolean Returns ------- Returns array containing latent space encoding of 'x'. """ if c is not None: c = torch.tensor(c, device=self.device) x = torch.tensor(x, device=self.device) z_mean, z_log_var = self.encoder(x, c) latent = self.sampling(z_mean, z_log_var) if mean: return z_mean return latent.cpu().data.numpy() def get_y(self, x, c=None): """Map `x` in to the y dimension (First Layer of Decoder). This function will feed data in encoder and return y for each sample in data. Parameters ---------- x: numpy nd-array Numpy nd-array to be mapped to latent space. `x` has to be in shape [n_obs, input_dim]. c: `numpy nd-array` `numpy nd-array` of original desired labels for each sample. Returns ------- Returns array containing latent space encoding of 'x' """ if c is not None: c = torch.tensor(c).to(self.device) x = torch.tensor(x).to(self.device) z_mean, z_log_var = self.encoder(x, c) latent = self.sampling(z_mean, z_log_var) output = self.decoder(latent, c) return output[-1].cpu().data.numpy() def calc_recon_binomial_loss(self, outputs, x_raw, size_factor): dec_mean_gamma = outputs["dec_mean_gamma"] size_factor_view = size_factor.unsqueeze(1).expand(dec_mean_gamma.size(0), dec_mean_gamma.size(1)) dec_mean = dec_mean_gamma * size_factor_view if outputs["dec_dropout"] is None: recon_loss = nb(x_raw, dec_mean, outputs["dec_disp"]) else: recon_loss = zinb(x_raw, dec_mean, outputs["dec_disp"], outputs["dec_dropout"]) return recon_loss def inference(self, x, c=None): z1_mean, z1_log_var = self.encoder(x, c) z1 = self.sampling(z1_mean, z1_log_var) outputs = self.decoder(z1, c) recon_x = dec_mean_gamma = dec_dropout = dec_disp = y1 = None if self.recon_loss == "mse": recon_x, y1 = outputs if self.recon_loss == "zinb": dec_mean_gamma, dec_dropout, dec_disp, y1 = outputs if self.recon_loss == "nb": dec_mean_gamma, dec_disp, y1 = outputs return dict( z1_mean=z1_mean, z1_log_var=z1_log_var, z1=z1, y1=y1, recon_x=recon_x, dec_mean_gamma=dec_mean_gamma, dec_dropout=dec_dropout, dec_disp=dec_disp, ) def forward(self, x=None, raw=None, f=None, c=None, y=None): outputs = self.inference(x, c) if outputs["recon_x"] is not None: recon_loss = mse(outputs["recon_x"], x) else: recon_loss = self.calc_recon_binomial_loss(outputs, raw, f) recon_loss *= self.eta kl_div = kl(outputs["z1_mean"], outputs["z1_log_var"]) kl_loss = self.alpha * kl_div mmd_loss = 0 if self.calculate_mmd is not None: mmd_calculator = mmd(self.n_conditions, self.beta, self.mmd_boundary) if self.calculate_mmd == "z": mmd_loss = mmd_calculator(outputs["z1"], c) else: mmd_loss = mmd_calculator(outputs["y1"], c) return recon_loss, kl_loss, mmd_loss
/scArchest-0.0.1-py3-none-any.whl/scarches/models/trvae/trvae.py
0.970219
0.704795
trvae.py
pypi
import numpy as np from typing import Union import torch import torch.nn as nn import anndata from scvi.data import get_from_registry from scarchest.models import scVI, scANVI from scarchest.trainers import scVITrainer, scANVITrainer, UnlabelledScanviTrainer def weight_update_check(old_network, op_network): for op_name, op_p in op_network.named_parameters(): for name, p in old_network.named_parameters(): if op_name == name: comparison = torch.eq(p, op_p) if False in comparison: print("UPDATED WEIGHTS", op_name) for name, module in op_network.named_modules(): if isinstance(module, nn.BatchNorm1d): if module.affine == False and module.track_running_stats == False: print("FROZEN BATCHNORM:", name) def scvi_operate( network: Union[scVI, scANVI], data: anndata.AnnData, labels_per_class: int = 0, n_epochs: int = 50, freeze: bool = True, freeze_expression: bool = True, remove_dropout: bool = False, ) -> [Union[scVI, scANVI], Union[scVITrainer, scANVITrainer], anndata.AnnData]: """Transfer Learning function for new data. Uses old trained Network and expands it for new conditions. Parameters ---------- network: VAE_M, SCANVI_M A Scvi/Scanvi model object. data: GeneExpressionDataset GeneExpressionDataset object. labels_per_class: Integer Number of labelled Samples used for Retraining n_epochs: Integer Number of epochs for training the network on query data. freeze: Boolean If 'True' freezes every part of the network except the first layers of encoder/decoder. freeze_expression: Boolean If 'True' freeze every weight in first layers except the condition weights. remove_dropout: Boolean If 'True' remove Dropout for Transfer Learning. Returns ------- op_network: VAE_M, SCANVI_M Newly network that got trained on query data. op_trainer: UnsupervisedTrainer, SemiSupervisedTrainer Trainer for the newly network. data: GeneExpressionDataset GeneExpressionDataset object with updated batch labels. """ early_stopping_kwargs = { "early_stopping_metric": "elbo", "save_best_state_metric": "elbo", "patience": 15, "threshold": 0, "reduce_lr_on_plateau": True, "lr_patience": 8, "lr_factor": 0.1, } early_stopping_kwargs_scanvi = { "early_stopping_metric": "accuracy", "save_best_state_metric": "accuracy", "on": "full_dataset", "patience": 15, "threshold": 0.001, "reduce_lr_on_plateau": True, "lr_patience": 8, "lr_factor": 0.1, } # Update DR Rate new_dr = network.dropout_rate if remove_dropout: new_dr = 0.0 n_new_conditions = data.uns["_scvi"]["summary_stats"]["n_batch"] adata = data.copy() adata.obs['_scvi_batch'] = get_from_registry(adata, "batch_indices").astype(np.int8) + network.n_batch n_conditions = network.n_batch + n_new_conditions if type(network) is scVI: print("Create new VAE....") op_network = scVI( n_input=network.n_input, n_batch=n_conditions, n_hidden=network.n_hidden, n_latent=network.n_latent, n_layers=network.n_layers, dropout_rate=new_dr, dispersion=network.dispersion, log_variational=network.log_variational, gene_likelihood=network.gene_likelihood, latent_distribution=network.latent_distribution, modified=network.modified, ) elif type(network) is scANVI: print("Create new SCANVI....") op_network = scANVI( n_input=network.n_input, n_batch=n_conditions, n_labels=network.n_labels, n_hidden=network.n_hidden, n_latent=network.n_latent, n_layers=network.n_layers, dropout_rate=new_dr, dispersion=network.dispersion, log_variational=network.log_variational, gene_likelihood=network.gene_likelihood, y_prior=network.y_prior, labels_groups=network.labels_groups, use_labels_groups=network.use_labels_groups, classifier_parameters=network.cls_parameters, modified=network.modified, ) else: print("Please use a compatible model for this operate function") exit() op_network.new_conditions = n_new_conditions if network.modified: # Expand first Layer weights of z encoder of old network by new conditions encoder_input_weights = network.z_encoder.encoder.fc_layers.Layer0.L.cond_L.weight to_be_added_encoder_input_weights = np.random.randn(encoder_input_weights.size()[0], n_new_conditions) * \ np.sqrt(2 / (encoder_input_weights.size()[0] + 1 + encoder_input_weights.size()[1])) to_be_added_encoder_input_weights = torch.tensor( to_be_added_encoder_input_weights, device=encoder_input_weights.get_device()).float() network.z_encoder.encoder.fc_layers.Layer0.L.cond_L.weight.data = torch.cat( (network.z_encoder.encoder.fc_layers.Layer0.L.cond_L.weight, to_be_added_encoder_input_weights), 1) # Expand first Layer weights of decoder of old network by new conditions decoder_input_weights = network.decoder.px_decoder.fc_layers.Layer0.L.cond_L.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * \ np.sqrt(2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.tensor( to_be_added_decoder_input_weights, device=decoder_input_weights.get_device()).float() network.decoder.px_decoder.fc_layers.Layer0.L.cond_L.weight.data = torch.cat( (network.decoder.px_decoder.fc_layers.Layer0.L.cond_L.weight, to_be_added_decoder_input_weights), 1) else: for layer in network.decoder.px_decoder.fc_layers: decoder_input_weights = layer.L.cond_L.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * \ np.sqrt(2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.tensor( to_be_added_decoder_input_weights, device=decoder_input_weights.get_device()).float() layer.L.cond_L.weight.data = torch.cat( (layer.L.cond_L.weight, to_be_added_decoder_input_weights), 1) # Set the weights of new network to old network weights op_network.load_state_dict(network.state_dict()) # Freeze parts of the network if freeze: op_network.freeze = True for name, p in op_network.named_parameters(): p.requires_grad = False if freeze_expression: if network.modified: if 'cond_L.weight' in name and ('z_encoder' in name or 'px_decoder' in name): p.requires_grad = True if 'l_encoder' in name: p.requires_grad = True else: if 'cond_L.weight' in name and ('z_encoder' in name or 'px_decoder' in name): p.requires_grad = True if 'z_encoder' in name and 'Layer0' in name: p.requires_grad = True if 'l_encoder' in name: p.requires_grad = True else: if network.modified: if ('z_encoder' in name or 'px_decoder' in name) and 'Layer0' in name: p.requires_grad = True if 'l_encoder' in name: p.requires_grad = True else: if 'z_encoder' in name and 'Layer0' in name: p.requires_grad = True if 'px_decoder' in name: p.requires_grad = True # Retrain Networks if type(network) is scVI: op_trainer = scVITrainer( op_network, adata, train_size=0.9, use_cuda=True, frequency=1, early_stopping_kwargs=early_stopping_kwargs ) op_trainer.train(n_epochs=n_epochs, lr=1e-3) if type(network) is scANVI: if labels_per_class == 0: op_trainer = UnlabelledScanviTrainer( op_network, adata, n_labelled_samples_per_class=labels_per_class, train_size=0.9, use_cuda=True, frequency=1, early_stopping_kwargs=early_stopping_kwargs_scanvi ) else: op_trainer = scANVITrainer( op_network, adata, n_labelled_samples_per_class=labels_per_class, classification_ratio=50, train_size=0.9, use_cuda=True, frequency=1, early_stopping_kwargs=early_stopping_kwargs_scanvi ) op_trainer.train(n_epochs=n_epochs, lr=1e-3) weight_update_check(network, op_network) return op_network, op_trainer, adata
/scArchest-0.0.1-py3-none-any.whl/scarches/surgery/scvi.py
0.883864
0.328893
scvi.py
pypi
import numpy as np from typing import Union import torch from scarchest.models.trvae.trvae import trVAE def trvae_operate(network: trVAE, data_conditions: Union[list, str], freeze: bool = True, freeze_expression: bool = True, remove_dropout: bool = True, ) -> trVAE: """Transfer Learning function for new data. Uses old trained Network and expands it for new conditions. Parameters ---------- network: trVAE A scNet model object. data_conditions: list_str List of Strings of new Conditions. freeze: Boolean If 'True' freezes every part of the network except the first layers of encoder/decoder. remove_dropout: Boolean If 'True' remove Dropout for Transfer Learning. Returns ------- new_network: trVAE New expanded network with old weights for Transfer Learning. """ conditions = network.conditions new_conditions = [] # Check if new conditions are already known for item in data_conditions: if item not in conditions: new_conditions.append(item) n_new_conditions = len(new_conditions) # Add new conditions to overall conditions for condition in new_conditions: conditions.append(condition) # Update DR Rate new_dr = network.dr_rate if remove_dropout: new_dr = 0.0 new_network = trVAE( network.input_dim, conditions=conditions, encoder_layer_sizes=network.enc_layer_sizes, latent_dim=network.latent_dim, decoder_layer_sizes=network.dec_layer_sizes, recon_loss=network.recon_loss, alpha=network.alpha, use_batch_norm=network.use_bn, dr_rate=new_dr, beta=network.beta, eta=network.eta, calculate_mmd=network.calculate_mmd, mmd_boundary=network.mmd_boundary ) # Expand First Layer weights of encoder/decoder of old network by new conditions encoder_input_weights = network.encoder.FC.L0.cond_L.weight to_be_added_encoder_input_weights = np.random.randn(encoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (encoder_input_weights.size()[0] + 1 + encoder_input_weights.size()[1])) to_be_added_encoder_input_weights = torch.from_numpy(to_be_added_encoder_input_weights).float().to(network.device) new_encoder_input_weights = torch.cat((encoder_input_weights, to_be_added_encoder_input_weights), 1) network.encoder.FC.L0.cond_L.weight.data = new_encoder_input_weights decoder_input_weights = network.decoder.FirstL.L0.cond_L.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.from_numpy(to_be_added_decoder_input_weights).float().to(network.device) new_decoder_input_weights = torch.cat((decoder_input_weights, to_be_added_decoder_input_weights), 1) network.decoder.FirstL.L0.cond_L.weight.data = new_decoder_input_weights # Set the weights of new network to old network weights new_network.load_state_dict(network.state_dict()) # Freeze parts of the network if freeze: new_network.freeze = True for name, p in new_network.named_parameters(): p.requires_grad = False if freeze_expression: if 'cond_L.weight' in name: p.requires_grad = True else: if "L0" in name or "B0" in name: p.requires_grad = True return new_network
/scArchest-0.0.1-py3-none-any.whl/scarches/surgery/trvae.py
0.899817
0.526647
trvae.py
pypi
import numpy as np from typing import Union import torch import scanpy as sc from scarchest.models import MARS from scarchest.trainers import MARSTrainer def mars_operate(network: MARS, new_adata: sc.AnnData, new_tasks: Union[list, str], meta_tasks: list, n_clusters: int, task_key: str, cell_type_key: str, tau: float = 0.2, eta: float = 1.0, freeze: bool = True, remove_dropout: bool = True, ) -> MARS: """Transfer Learning function for new data. Uses old trained Network and expands it for new conditions. Parameters ---------- network: MARS A MARS model object. new_tasks: list_str List of Strings of new Conditions. freeze: Boolean If 'True' freezes every part of the network except the first layers of encoder/decoder. remove_dropout: Boolean If 'True' remove Dropout for Transfer Learning. Returns ------- new_network: MARS New expanded network with old weights for Transfer Learning. """ conditions = network.conditions new_conditions = [] # Check if new conditions are already known for item in new_tasks: if item not in conditions: new_conditions.append(item) n_new_conditions = len(new_conditions) # Add new conditions to overall conditions for condition in new_conditions: conditions.append(condition) # Update DR Rate new_dr = network.dropout_rate if remove_dropout: new_dr = 0.0 new_network = MARS( x_dim=network.x_dim, architecture=network.architecture, z_dim=network.z_dim, conditions=conditions, alpha=network.alpha, activation=network.activation, output_activation=network.output_activation, use_batchnorm=network.use_batchnorm, dropout_rate=new_dr, ) # Expand First Layer weights of encoder/decoder of old network by new conditions encoder_input_weights = network.encoder[0].FC_0.weight to_be_added_encoder_input_weights = np.random.randn(encoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (encoder_input_weights.size()[0] + 1 + encoder_input_weights.size()[1])) to_be_added_encoder_input_weights = torch.from_numpy(to_be_added_encoder_input_weights).float().to(network.device) new_encoder_input_weights = torch.cat((encoder_input_weights, to_be_added_encoder_input_weights), 1) network.encoder[0].FC_0.weight.data = new_encoder_input_weights decoder_input_weights = network.decoder[0].FC_0.weight to_be_added_decoder_input_weights = np.random.randn(decoder_input_weights.size()[0], n_new_conditions) * np.sqrt( 2 / (decoder_input_weights.size()[0] + 1 + decoder_input_weights.size()[1])) to_be_added_decoder_input_weights = torch.from_numpy(to_be_added_decoder_input_weights).float().to(network.device) new_decoder_input_weights = torch.cat((decoder_input_weights, to_be_added_decoder_input_weights), 1) network.decoder[0].FC_0.weight.data = new_decoder_input_weights # Set the weights of new network to old network weights new_network.load_state_dict(network.state_dict()) # Freeze parts of the network if freeze: for name, p in new_network.named_parameters(): if "FC_0" not in name: p.requires_grad = False new_trainer = MARSTrainer(model=new_network, adata=new_adata, task_key=task_key, meta_test_tasks=meta_tasks, cell_type_key=cell_type_key, n_clusters=n_clusters, tau=tau, eta=eta, ) return new_network, new_trainer
/scArchest-0.0.1-py3-none-any.whl/scarches/surgery/mars.py
0.888475
0.432962
mars.py
pypi
import numpy as np class EarlyStopping(object): def __init__(self, mode: str = 'min', early_stopping_metric: str = 'val_loss', save_best_state_metric: str = 'val_loss', benchmark: bool = False, threshold: int = 3, patience: int = 50): self.benchmark = benchmark self.patience = patience self.threshold = threshold self.epoch = 0 self.wait = 0 self.mode = mode self.save_best_state_metric = save_best_state_metric self.early_stopping_metric = early_stopping_metric self.current_performance = np.inf self.best_performance = np.inf self.best_performance_state = np.inf if self.mode == "max": self.best_performance *= -1 self.current_performance *= -1 if patience == 0: self.is_better = lambda a, b: True self.step = lambda a: False def step(self, scalar): self.epoch += 1 if self.benchmark or self.epoch < self.patience: continue_training = True elif self.wait >= self.patience: continue_training = False else: # Shift self.current_performance = scalar improvement = 0 # Compute improvement if self.mode == "max": improvement = self.current_performance - self.best_performance elif self.mode == "min": improvement = self.best_performance - self.current_performance # updating best performance if improvement > 0: self.best_performance = self.current_performance if improvement < self.threshold: self.wait += 1 else: self.wait = 0 continue_training = True if not continue_training: print("\nStopping early: no improvement of more than " + str(self.threshold) + " nats in " + str(self.patience) + " epochs") print("If the early stopping criterion is too strong, " "please instantiate it with different parameters in the train method.") return continue_training def update_state(self, scalar): improved = ((self.mode == "max" and scalar - self.best_performance_state > 0) or (self.mode == "min" and self.best_performance_state - scalar > 0)) if improved: self.best_performance_state = scalar return improved
/scArchest-0.0.1-py3-none-any.whl/scarches/utils/monitor.py
0.825449
0.201971
monitor.py
pypi
import numpy as np from scipy.stats import itemfreq, entropy from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score, adjusted_rand_score, normalized_mutual_info_score from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import LabelEncoder from scarchest.dataset.trvae.data_handling import remove_sparsity def __entropy_from_indices(indices): return entropy(np.array(itemfreq(indices)[:, 1].astype(np.int32))) def entropy_batch_mixing(adata, label_key='batch', n_neighbors=50, n_pools=50, n_samples_per_pool=100): """Computes Entory of Batch mixing metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. n_neighbors: int Number of nearest neighbors. n_pools: int Number of EBM computation which will be averaged. n_samples_per_pool: int Number of samples to be used in each pool of execution. Returns ------- score: float EBM score. A float between zero and one. """ adata = remove_sparsity(adata) neighbors = NearestNeighbors(n_neighbors=n_neighbors + 1).fit(adata.X) indices = neighbors.kneighbors(adata.X, return_distance=False)[:, 1:] batch_indices = np.vectorize(lambda i: adata.obs[label_key].values[i])(indices) entropies = np.apply_along_axis(__entropy_from_indices, axis=1, arr=batch_indices) # average n_pools entropy results where each result is an average of n_samples_per_pool random samples. if n_pools == 1: score = np.mean(entropies) else: score = np.mean([ np.mean(entropies[np.random.choice(len(entropies), size=n_samples_per_pool)]) for _ in range(n_pools) ]) return score def asw(adata, label_key): """Computes Average Silhouette Width (ASW) metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. Returns ------- score: float ASW score. A float between -1 and 1. """ adata = remove_sparsity(adata) labels = adata.obs[label_key].values labels_encoded = LabelEncoder().fit_transform(labels) return silhouette_score(adata.X, labels_encoded) def ari(adata, label_key): """Computes Adjusted Rand Index (ARI) metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. Returns ------- score: float ARI score. A float between 0 and 1. """ adata = remove_sparsity(adata) n_labels = len(adata.obs[label_key].unique().tolist()) kmeans = KMeans(n_labels, n_init=200) labels_pred = kmeans.fit_predict(adata.X) labels = adata.obs[label_key].values labels_encoded = LabelEncoder().fit_transform(labels) return adjusted_rand_score(labels_encoded, labels_pred) def nmi(adata, label_key): """Computes Normalized Mutual Information (NMI) metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. Returns ------- score: float NMI score. A float between 0 and 1. """ adata = remove_sparsity(adata) n_labels = len(adata.obs[label_key].unique().tolist()) kmeans = KMeans(n_labels, n_init=200) labels_pred = kmeans.fit_predict(adata.X) labels = adata.obs[label_key].values labels_encoded = LabelEncoder().fit_transform(labels) return normalized_mutual_info_score(labels_encoded, labels_pred) def knn_purity(adata, label_key, n_neighbors=30): """Computes KNN Purity metric for ``adata`` given the batch column name. Parameters ---------- adata: :class:`~anndata.AnnData` Annotated dataset. label_key: str Name of the column which contains information about different studies in ``adata.obs`` data frame. n_neighbors: int Number of nearest neighbors. Returns ------- score: float KNN purity score. A float between 0 and 1. """ adata = remove_sparsity(adata) labels = LabelEncoder().fit_transform(adata.obs[label_key].to_numpy()) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1).fit(adata.X) indices = nbrs.kneighbors(adata.X, return_distance=False)[:, 1:] neighbors_labels = np.vectorize(lambda i: labels[i])(indices) # pre cell purity scores scores = ((neighbors_labels - labels.reshape(-1, 1)) == 0).mean(axis=1) res = [ np.mean(scores[labels == i]) for i in np.unique(labels) ] # per cell-type purity return np.mean(res)
/scArchest-0.0.1-py3-none-any.whl/scarches/metrics/metrics.py
0.939401
0.779028
metrics.py
pypi
from scvi.data import get_from_registry from scarchest.metrics.metrics import entropy_batch_mixing, knn_purity from scarchest.models import scVI, scANVI from scarchest.trainers import scVITrainer, scANVITrainer import numpy as np import scanpy as sc import torch from typing import Union import anndata import matplotlib.pyplot as plt sc.settings.set_figure_params(dpi=100, frameon=False) sc.set_figure_params(dpi=100) torch.set_printoptions(precision=3, sci_mode=False, edgeitems=7) np.set_printoptions(precision=2, edgeitems=7) class SCVI_EVAL: def __init__( self, model: Union[scVI, scANVI], trainer: Union[scVITrainer, scANVITrainer], adata: anndata.AnnData, cell_type_key: str, batch_key: str, ): self.model = model self.trainer = trainer self.adata = adata self.modified = model.modified self.annotated = type(model) is scANVI self.post_adata_2 = None self.predictions = None if self.trainer.use_cuda: self.device = torch.device('cuda') else: self.device = torch.device('cpu') self.x_tensor = torch.tensor(self.adata.X, device=self.device) self.labels = get_from_registry(self.adata, "labels").astype(np.int8) self.label_tensor = torch.tensor(self.labels, device=self.device) self.cell_types = self.adata.obs[cell_type_key].tolist() self.batch_indices = get_from_registry(self.adata, "batch_indices").astype(np.int8) self.batch_tensor = torch.tensor(self.batch_indices, device=self.device) self.batch_names = self.adata.obs[batch_key].tolist() self.post_adata = self.latent_as_anndata() def latent_as_anndata(self): if self.modified: latents = self.model.get_latents( self.x_tensor, y=self.label_tensor, batch_index=self.batch_tensor ) else: latents = self.model.get_latents( self.x_tensor, y=self.label_tensor, ) if self.annotated: latent = latents[0].cpu().detach().numpy() latent2 = latents[1].cpu().detach().numpy() post_adata_2 = sc.AnnData(latent2) post_adata_2.obs['cell_type'] = self.cell_types post_adata_2.obs['batch'] = self.batch_names self.post_adata_2 = post_adata_2 else: latent = latents[0].cpu().detach().numpy() post_adata = sc.AnnData(latent) post_adata.obs['cell_type'] = self.cell_types post_adata.obs['batch'] = self.batch_names return post_adata def get_model_arch(self): for name, p in self.model.named_parameters(): print(name, " - ", p.size(0), p.size(-1)) def plot_latent(self, n_neighbors=8): sc.pp.neighbors(self.post_adata, n_neighbors=n_neighbors) sc.tl.umap(self.post_adata) sc.pl.umap(self.post_adata, color=['cell_type', 'batch'], frameon=False, wspace=0.6) def plot_latent_ann(self, n_neighbors=8): if self.annotated: sc.pp.neighbors(self.post_adata_2, n_neighbors=n_neighbors) sc.tl.umap(self.post_adata_2) sc.pl.umap(self.post_adata_2, color=['cell_type', 'batch'], frameon=False, wspace=0.6) else: print("Second latent space not available for scVI models") def plot_history(self, n_epochs): if self.annotated: elbo_full = self.trainer.history["elbo_full_dataset"] x_1 = np.linspace(0, len(elbo_full), len(elbo_full)) fig, axs = plt.subplots(2, 1) axs[0].plot(x_1, elbo_full, label="Full") accuracy_labelled_set = self.trainer.history["accuracy_labelled_set"] accuracy_unlabelled_set = self.trainer.history["accuracy_unlabelled_set"] if len(accuracy_labelled_set) != 0: x_2 = np.linspace(0, len(accuracy_labelled_set), (len(accuracy_labelled_set))) axs[1].plot(x_2, accuracy_labelled_set, label="accuracy labelled") if len(accuracy_unlabelled_set) != 0: x_3 = np.linspace(0, len(accuracy_unlabelled_set), (len(accuracy_unlabelled_set))) axs[1].plot(x_3, accuracy_unlabelled_set, label="accuracy unlabelled") axs[0].set_xlabel('Epochs') axs[0].set_ylabel('ELBO') axs[1].set_xlabel('Epochs') axs[1].set_ylabel('Accuracy') plt.legend() plt.show() else: elbo_train = self.trainer.history["elbo_train_set"] elbo_test = self.trainer.history["elbo_test_set"] x = np.linspace(0, len(elbo_train), len(elbo_train)) plt.plot(x, elbo_train, label="train") plt.plot(x, elbo_test, label="test") plt.ylim(min(elbo_train) - 50, min(elbo_train) + 1000) plt.legend() plt.show() def get_ebm(self, n_neighbors=50, n_pools=50, n_samples_per_pool=100, verbose=True): ebm_score = entropy_batch_mixing( adata=self.post_adata, label_key='batch', n_neighbors=n_neighbors, n_pools=n_pools, n_samples_per_pool=n_samples_per_pool ) if verbose: print("Entropy of Batchmixing-Score:", ebm_score) return ebm_score def get_knn_purity(self, n_neighbors=50, verbose=True): knn_score = knn_purity( adata=self.post_adata, label_key='cell_type', n_neighbors=n_neighbors ) if verbose: print("KNN Purity-Score:", knn_score) return knn_score def get_latent_score(self): ebm = self.get_ebm(verbose=False) knn = self.get_knn_purity(verbose=False) score = ebm + knn print("Latent-Space Score (KNN + EBM):", score) return score def get_classification_accuracy(self): if self.annotated: if self.modified: predictions = self.model.classify(self.x_tensor, batch_index=self.batch_tensor) else: predictions = self.model.classify(self.x_tensor) self.predictions = predictions.cpu().detach().numpy() self.predictions = np.argmax(self.predictions, axis=1) class_check = np.array(np.expand_dims(self.predictions, axis=1) == self.labels) accuracy = np.sum(class_check) / class_check.shape[0] print("Classification Accuracy: %0.2f" % accuracy) return accuracy else: print("Classification ratio not available for scVI models")
/scArchest-0.0.1-py3-none-any.whl/scarches/plotting/scvi_eval.py
0.814791
0.278508
scvi_eval.py
pypi
import numpy as np import logging import torch from torch.nn import functional as F from scvi.data._anndata import get_from_registry from scvi import _CONSTANTS from scarchest.trainers.scvi import Trainer, scVITrainer from scarchest.dataset.scvi import AnnotationDataLoader logger = logging.getLogger(__name__) class ClassifierTrainer(Trainer): """Class for training a classifier either on the raw data or on top of the latent space of another model. Parameters ---------- model A model instance from class ``VAE``, ``VAEC``, ``SCANVI`` gene_dataset A gene_dataset instance like ``CortexDataset()`` train_size The train size, a float between 0 and 1 representing proportion of dataset to use for training to use Default: ``0.9``. test_size The test size, a float between 0 and 1 representing proportion of dataset to use for testing to use Default: ``None``. sampling_model Model with z_encoder with which to first transform data. sampling_zl Transform data with sampling_model z_encoder and l_encoder and concat. **kwargs Other keywords arguments from the general Trainer class. Examples -------- >>> gene_dataset = CortexDataset() >>> vae = VAE(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels) >>> classifier = Classifier(vae.n_latent, n_labels=cortex_dataset.n_labels) >>> trainer = ClassifierTrainer(classifier, gene_dataset, sampling_model=vae, train_size=0.5) >>> trainer.train(n_epochs=20, lr=1e-3) >>> trainer.test_set.accuracy() """ def __init__( self, *args, train_size=0.9, test_size=None, sampling_model=None, sampling_zl=False, use_cuda=True, **kwargs ): train_size = float(train_size) if train_size > 1.0 or train_size <= 0.0: raise ValueError( "train_size needs to be greater than 0 and less than or equal to 1" ) self.sampling_model = sampling_model self.sampling_zl = sampling_zl super().__init__(*args, use_cuda=use_cuda, **kwargs) self.train_set, self.test_set, self.validation_set = self.train_test_validation( self.model, self.adata, train_size=train_size, test_size=test_size, type_class=AnnotationDataLoader, ) self.train_set.to_monitor = ["accuracy"] self.test_set.to_monitor = ["accuracy"] self.validation_set.to_monitor = ["accuracy"] self.train_set.model_zl = sampling_zl self.test_set.model_zl = sampling_zl self.validation_set.model_zl = sampling_zl @property def scvi_data_loaders_loop(self): return ["train_set"] def __setattr__(self, key, value): if key in ["train_set", "test_set"]: value.sampling_model = self.sampling_model super().__setattr__(key, value) def loss(self, tensors_labelled): x = tensors_labelled[_CONSTANTS.X_KEY] labels_train = tensors_labelled[_CONSTANTS.LABELS_KEY] if hasattr(self.sampling_model, "classify"): if self.sampling_model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] return F.cross_entropy( self.sampling_model.classify(x, batch_index), labels_train.view(-1) ) return F.cross_entropy( self.sampling_model.classify(x), labels_train.view(-1) ) else: if self.sampling_model.log_variational: x = torch.log(1 + x) if self.sampling_zl: if self.sampling_model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] x_z = self.sampling_model.z_encoder(x, batch_index)[0] x_l = self.sampling_model.l_encoder(x, batch_index)[0] else: x_z = self.sampling_model.z_encoder(x)[0] x_l = self.sampling_model.l_encoder(x)[0] x = torch.cat((x_z, x_l), dim=-1) else: if self.sampling_model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] x = self.sampling_model.z_encoder(x, batch_index)[0] else: x = self.sampling_model.z_encoder(x)[0] return F.cross_entropy(self.model(x), labels_train.view(-1)) def create_scvi_dl( self, model=None, adata=None, shuffle=False, indices=None, type_class=AnnotationDataLoader, ): return super().create_scvi_dl(model, adata, shuffle, indices, type_class) class scANVITrainer(scVITrainer): """Class for the semi-supervised training of an autoencoder. This parent class can be inherited to specify the different training schemes for semi-supervised learning Parameters ---------- n_labelled_samples_per_class number of labelled samples per class """ def __init__( self, model, adata, n_labelled_samples_per_class=50, n_epochs_classifier=1, lr_classification=5 * 1e-3, classification_ratio=50, seed=0, **kwargs ): super().__init__(model, adata, **kwargs) self.model = model self.adata = adata self.n_epochs_classifier = n_epochs_classifier self.lr_classification = lr_classification self.classification_ratio = classification_ratio n_labelled_samples_per_class_array = [ n_labelled_samples_per_class ] * self.adata.uns["_scvi"]["summary_stats"]["n_labels"] labels = np.array(get_from_registry(self.adata, _CONSTANTS.LABELS_KEY)).ravel() np.random.seed(seed=seed) permutation_idx = np.random.permutation(len(labels)) labels = labels[permutation_idx] indices = [] current_nbrs = np.zeros(len(n_labelled_samples_per_class_array)) for idx, (label) in enumerate(labels): label = int(label) if current_nbrs[label] < n_labelled_samples_per_class_array[label]: indices.insert(0, idx) current_nbrs[label] += 1 else: indices.append(idx) indices = np.array(indices) total_labelled = sum(n_labelled_samples_per_class_array) indices_labelled = permutation_idx[indices[:total_labelled]] indices_unlabelled = permutation_idx[indices[total_labelled:]] self.classifier_trainer = ClassifierTrainer( model.classifier, self.adata, metrics_to_monitor=[], silent=True, frequency=0, sampling_model=self.model, ) self.full_dataset = self.create_scvi_dl(shuffle=True) self.labelled_set = self.create_scvi_dl(indices=indices_labelled) self.unlabelled_set = self.create_scvi_dl(indices=indices_unlabelled) for scdl in [self.labelled_set, self.unlabelled_set]: scdl.to_monitor = ["reconstruction_error", "accuracy"] @property def scvi_data_loaders_loop(self): return ["full_dataset", "labelled_set"] def __setattr__(self, key, value): if key == "labelled_set": self.classifier_trainer.train_set = value super().__setattr__(key, value) def loss(self, tensors_all, tensors_labelled): loss = super().loss(tensors_all, feed_labels=False) sample_batch = tensors_labelled[_CONSTANTS.X_KEY] y = tensors_labelled[_CONSTANTS.LABELS_KEY] if self.model.modified: batch_index = tensors_labelled[_CONSTANTS.BATCH_KEY] classification_loss = F.cross_entropy( self.model.classify(sample_batch, batch_index), y.view(-1) ) else: classification_loss = F.cross_entropy( self.model.classify(sample_batch), y.view(-1) ) loss += classification_loss * self.classification_ratio return loss def on_epoch_end(self): self.model.eval() self.classifier_trainer.train( self.n_epochs_classifier, lr=self.lr_classification ) self.model.train() return super().on_epoch_end() def create_scvi_dl( self, model=None, adata=None, shuffle=False, indices=None, type_class=AnnotationDataLoader, ): return super().create_scvi_dl(model, adata, shuffle, indices, type_class) class UnlabelledScanviTrainer(scANVITrainer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def loss(self, all_tensor): return scVITrainer.loss(self, all_tensor, feed_labels=False) @property def scvi_data_loaders_loop(self): return ["full_dataset"]
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/scvi/annotation.py
0.901531
0.458955
annotation.py
pypi
from typing import Union import anndata import logging import torch from scvi import _CONSTANTS from scvi.core.modules import Classifier from scvi.core.modules.utils import one_hot from scarchest.models.scvi import totalVI from scarchest.trainers.scvi import scVITrainer from scarchest.dataset.scvi import TotalDataLoader logger = logging.getLogger(__name__) default_early_stopping_kwargs = { "early_stopping_metric": "elbo", "save_best_state_metric": "elbo", "patience": 45, "threshold": 0, "reduce_lr_on_plateau": True, "lr_patience": 30, "lr_factor": 0.6, "scvi_data_loader_class": TotalDataLoader, } def _unpack_tensors(tensors): x = tensors[_CONSTANTS.X_KEY] local_l_mean = tensors[_CONSTANTS.LOCAL_L_MEAN_KEY] local_l_var = tensors[_CONSTANTS.LOCAL_L_VAR_KEY] batch_index = tensors[_CONSTANTS.BATCH_KEY] labels = tensors[_CONSTANTS.LABELS_KEY] y = tensors[_CONSTANTS.PROTEIN_EXP_KEY] return x, local_l_mean, local_l_var, batch_index, labels, y class totalTrainer(scVITrainer): """ Unsupervised training for totalVI using variational inference. Parameters ---------- model A model instance from class ``TOTALVAE`` adata A registered AnnData object train_size The train size, a float between 0 and 1 representing proportion of dataset to use for training to use Default: ``0.90``. test_size The test size, a float between 0 and 1 representing proportion of dataset to use for testing to use Default: ``0.10``. Note that if train and test do not add to 1 the remainder is placed in a validation set pro_recons_weight Scaling factor on the reconstruction loss for proteins. Default: ``1.0``. n_epochs_kl_warmup Number of epochs for annealing the KL terms for `z` and `mu` of the ELBO (from 0 to 1). If None, no warmup performed, unless `n_iter_kl_warmup` is set. n_iter_kl_warmup Number of minibatches for annealing the KL terms for `z` and `mu` of the ELBO (from 0 to 1). If set to "auto", the number of iterations is equal to 75% of the number of cells. `n_epochs_kl_warmup` takes precedence if it is not None. If both are None, then no warmup is performed. discriminator Classifier used for adversarial training scheme use_adversarial_loss Whether to use adversarial classifier to improve mixing kappa Scaling factor for adversarial loss. If None, follow inverse of kl warmup schedule. early_stopping_kwargs Keyword args for early stopping. If "auto", use totalVI defaults. If None, disable early stopping. """ default_metrics_to_monitor = ["elbo"] def __init__( self, model: totalVI, dataset: anndata.AnnData, train_size: float = 0.90, test_size: float = 0.10, pro_recons_weight: float = 1.0, n_epochs_kl_warmup: int = None, n_iter_kl_warmup: Union[str, int] = "auto", discriminator: Classifier = None, use_adversarial_loss: bool = False, kappa: float = None, early_stopping_kwargs: Union[dict, str, None] = "auto", **kwargs, ): train_size = float(train_size) if train_size > 1.0 or train_size <= 0.0: raise ValueError( "train_size needs to be greater than 0 and less than or equal to 1" ) self.n_genes = model.n_input_genes self.n_proteins = model.n_input_proteins self.use_adversarial_loss = use_adversarial_loss self.kappa = kappa self.pro_recons_weight = pro_recons_weight if early_stopping_kwargs == "auto": early_stopping_kwargs = default_early_stopping_kwargs super().__init__( model, dataset, n_epochs_kl_warmup=n_epochs_kl_warmup, n_iter_kl_warmup=0.75 * len(dataset) if n_iter_kl_warmup == "auto" else n_iter_kl_warmup, early_stopping_kwargs=early_stopping_kwargs, **kwargs, ) if use_adversarial_loss is True and discriminator is None: discriminator = Classifier( n_input=self.model.n_latent, n_hidden=32, n_labels=self.adata.uns["_scvi"]["summary_stats"]["n_batch"], n_layers=2, logits=True, ) self.discriminator = discriminator if self.use_cuda and self.discriminator is not None: self.discriminator.cuda() if isinstance(self, totalTrainer): ( self.train_set, self.test_set, self.validation_set, ) = self.train_test_validation( model, dataset, train_size, test_size, type_class=TotalDataLoader ) self.train_set.to_monitor = [] self.test_set.to_monitor = ["elbo"] self.validation_set.to_monitor = ["elbo"] def loss(self, tensors): ( sample_batch_x, local_l_mean, local_l_var, batch_index, label, sample_batch_y, ) = _unpack_tensors(tensors) ( reconst_loss_gene, reconst_loss_protein, kl_div_z, kl_div_l_gene, kl_div_back_pro, ) = self.model( sample_batch_x, sample_batch_y, local_l_mean, local_l_var, batch_index, label, ) loss = torch.mean( reconst_loss_gene + self.pro_recons_weight * reconst_loss_protein + self.kl_weight * kl_div_z + kl_div_l_gene + self.kl_weight * kl_div_back_pro ) return loss def loss_discriminator( self, z, batch_index, predict_true_class=True, return_details=True ): n_classes = self.adata.uns["_scvi"]["summary_stats"]["n_batch"] cls_logits = torch.nn.LogSoftmax(dim=1)(self.discriminator(z)) if predict_true_class: cls_target = one_hot(batch_index, n_classes) else: one_hot_batch = one_hot(batch_index, n_classes) cls_target = torch.zeros_like(one_hot_batch) # place zeroes where true label is cls_target.masked_scatter_( ~one_hot_batch.bool(), torch.ones_like(one_hot_batch) / (n_classes - 1) ) l_soft = cls_logits * cls_target loss = -l_soft.sum(dim=1).mean() return loss def _get_z(self, tensors): ( sample_batch_x, local_l_mean, local_l_var, batch_index, label, sample_batch_y, ) = _unpack_tensors(tensors) z = self.model.sample_from_posterior_z( sample_batch_x, sample_batch_y, batch_index, give_mean=False ) return z def train(self, n_epochs=500, lr=4e-3, eps=0.01, params=None): super().train(n_epochs=n_epochs, lr=lr, eps=eps, params=params) def on_training_loop(self, tensors_dict): if self.use_adversarial_loss: if self.kappa is None: kappa = 1 - self.kl_weight else: kappa = self.kappa batch_index = tensors_dict[0][_CONSTANTS.BATCH_KEY] if kappa > 0: z = self._get_z(*tensors_dict) # Train discriminator d_loss = self.loss_discriminator(z.detach(), batch_index, True) d_loss *= kappa self.d_optimizer.zero_grad() d_loss.backward() self.d_optimizer.step() # Train generative model to fool discriminator fool_loss = self.loss_discriminator(z, batch_index, False) fool_loss *= kappa # Train generative model self.optimizer.zero_grad() self.current_loss = loss = self.loss(*tensors_dict) if kappa > 0: (loss + fool_loss).backward() else: loss.backward() self.optimizer.step() else: self.current_loss = loss = self.loss(*tensors_dict) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def training_extras_init(self, lr_d=1e-3, eps=0.01): if self.discriminator is not None: self.discriminator.train() d_params = filter( lambda p: p.requires_grad, self.discriminator.parameters() ) self.d_optimizer = torch.optim.Adam(d_params, lr=lr_d, eps=eps) def training_extras_end(self): if self.discriminator is not None: self.discriminator.eval()
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/scvi/total_inference.py
0.934947
0.289862
total_inference.py
pypi
import logging import time import numpy as np import torch import torch.nn as nn import anndata from abc import abstractmethod from collections import defaultdict, OrderedDict from itertools import cycle from typing import List from sklearn.model_selection._split import _validate_shuffle_split from torch.utils.data.sampler import SubsetRandomSampler from scvi._utils import track from scvi import _CONSTANTS from scarchest.dataset.scvi import ScviDataLoader logger = logging.getLogger(__name__) class Trainer: """The abstract Trainer class for training a PyTorch model and monitoring its statistics. It should be inherited at least with a ``.loss()`` function to be optimized in the training loop. Parameters ---------- model : A model instance from class ``VAE``, ``VAEC``, ``SCANVI`` adata: A registered anndata object use_cuda : Default: ``True``. metrics_to_monitor : A list of the metrics to monitor. If not specified, will use the ``default_metrics_to_monitor`` as specified in each . Default: ``None``. benchmark : if True, prevents statistics computation in the training. Default: ``False``. frequency : The frequency at which to keep track of statistics. Default: ``None``. early_stopping_metric : The statistics on which to perform early stopping. Default: ``None``. save_best_state_metric : The statistics on which we keep the network weights achieving the best store, and restore them at the end of training. Default: ``None``. on : The data_loader name reference for the ``early_stopping_metric`` and ``save_best_state_metric``, that should be specified if any of them is. Default: ``None``. show_progbar : If False, disables progress bar. seed : Random seed for train/test/validate split Returns ------- """ default_metrics_to_monitor = [] def __init__( self, model, adata: anndata.AnnData, use_cuda: bool = True, metrics_to_monitor: List = None, benchmark: bool = False, frequency: int = None, weight_decay: float = 1e-6, early_stopping_kwargs: dict = None, data_loader_kwargs: dict = None, silent: bool = False, batch_size: int = 128, seed: int = 0, max_nans: int = 10, ): # Model, dataset management self.model = model self.adata = adata self._scvi_data_loaders = OrderedDict() self.seed = seed # For train/test splitting self.use_cuda = use_cuda and torch.cuda.is_available() if self.use_cuda: self.model.cuda() # Data loader attributes self.batch_size = batch_size self.data_loader_kwargs = {"pin_memory": use_cuda} data_loader_kwargs = data_loader_kwargs if data_loader_kwargs else dict() self.data_loader_kwargs.update(data_loader_kwargs) # Optimization attributes self.optimizer = None self.weight_decay = weight_decay self.n_epochs = None self.epoch = -1 # epoch = self.epoch + 1 in compute metrics self.training_time = 0 self.n_iter = 0 # Training NaNs handling self.max_nans = max_nans self.current_loss = None # torch.Tensor training loss self.previous_loss_was_nan = False self.nan_counter = 0 # Counts occuring NaNs during training # Metrics and early stopping self.compute_metrics_time = None if metrics_to_monitor is not None: self.metrics_to_monitor = set(metrics_to_monitor) else: self.metrics_to_monitor = set(self.default_metrics_to_monitor) early_stopping_kwargs = ( early_stopping_kwargs if early_stopping_kwargs else dict() ) self.early_stopping = EarlyStopping(**early_stopping_kwargs) self.benchmark = benchmark self.frequency = frequency if not benchmark else None self.history = defaultdict(list) self.best_state_dict = self.model.state_dict() self.best_epoch = self.epoch if self.early_stopping.early_stopping_metric: self.metrics_to_monitor.add(self.early_stopping.early_stopping_metric) self.silent = silent @torch.no_grad() def compute_metrics(self): begin = time.time() epoch = self.epoch + 1 if self.frequency and ( epoch == 0 or epoch == self.n_epochs or (epoch % self.frequency == 0) ): with torch.set_grad_enabled(False): self.model.eval() logger.debug("\nEPOCH [%d/%d]: " % (epoch, self.n_epochs)) for name, scdl in self._scvi_data_loaders.items(): message = " ".join([s.capitalize() for s in name.split("_")[-2:]]) if scdl.n_cells < 5: logging.debug( message + " is too small to track metrics (<5 samples)" ) continue if hasattr(scdl, "to_monitor"): for metric in scdl.to_monitor: if metric not in self.metrics_to_monitor: logger.debug(message) result = getattr(scdl, metric)() self.history[metric + "_" + name] += [result] for metric in self.metrics_to_monitor: result = getattr(scdl, metric)() self.history[metric + "_" + name] += [result] self.model.train() self.compute_metrics_time += time.time() - begin def train(self, n_epochs=400, lr=1e-3, eps=0.01, params=None, **extras_kwargs): begin = time.time() self.model.train() if params is None: params = filter(lambda p: p.requires_grad, self.model.parameters()) if len(list(params)) == 0: return else: params = filter(lambda p: p.requires_grad, self.model.parameters()) self.optimizer = torch.optim.Adam( params, lr=lr, eps=eps, weight_decay=self.weight_decay ) # Initialization of other model's optimizers self.training_extras_init(**extras_kwargs) self.compute_metrics_time = 0 self.n_epochs = n_epochs self.compute_metrics() self.on_training_begin() for self.epoch in track( range(n_epochs), description="Training...", disable=self.silent ): self.on_epoch_begin() for tensors_dict in self.data_loaders_loop(): if tensors_dict[0][_CONSTANTS.X_KEY].shape[0] < 3: continue self.on_iteration_begin() # Update the model's parameters after seeing the data self.on_training_loop(tensors_dict) # Checks the training status, ensures no nan loss self.on_iteration_end() # Computes metrics and controls early stopping if not self.on_epoch_end(): break if self.early_stopping.save_best_state_metric is not None: self.model.load_state_dict(self.best_state_dict) self.compute_metrics() self.model.eval() self.training_extras_end() self.training_time += (time.time() - begin) - self.compute_metrics_time self.on_training_end() def on_training_loop(self, tensors_dict): if self.model.freeze: for name, module in self.model.named_modules(): if isinstance(module, nn.BatchNorm1d): if not module.weight.requires_grad: module.affine = False module.track_running_stats = False self.current_loss = loss = self.loss(*tensors_dict) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def training_extras_init(self, **extras_kwargs): """Other necessary models to simultaneously train.""" pass def training_extras_end(self): """Place to put extra models in eval mode, etc.""" pass def on_training_begin(self): pass def on_epoch_begin(self): # Epochs refer to a pass through the entire dataset (in minibatches) pass def on_epoch_end(self): self.compute_metrics() on = self.early_stopping.on early_stopping_metric = self.early_stopping.early_stopping_metric save_best_state_metric = self.early_stopping.save_best_state_metric if save_best_state_metric is not None and on is not None: if self.early_stopping.update_state( self.history[save_best_state_metric + "_" + on][-1] ): self.best_state_dict = self.model.state_dict() self.best_epoch = self.epoch continue_training = True if early_stopping_metric is not None and on is not None: continue_training, reduce_lr = self.early_stopping.update( self.history[early_stopping_metric + "_" + on][-1] ) if reduce_lr: logger.info("Reducing LR on epoch {}.".format(self.epoch)) for param_group in self.optimizer.param_groups: param_group["lr"] *= self.early_stopping.lr_factor return continue_training def on_iteration_begin(self): # Iterations refer to minibatches pass def on_iteration_end(self): self.check_training_status() self.n_iter += 1 def on_training_end(self): pass def check_training_status(self): """ Checks if loss is admissible. If not, training is stopped after max_nans consecutive inadmissible loss loss corresponds to the training loss of the model. `max_nans` is the maximum number of consecutive NaNs after which a ValueError will be """ loss_is_nan = torch.isnan(self.current_loss).item() if loss_is_nan: logger.warning("Model training loss was NaN") self.nan_counter += 1 self.previous_loss_was_nan = True else: self.nan_counter = 0 self.previous_loss_was_nan = False if self.nan_counter >= self.max_nans: raise ValueError( "Loss was NaN {} consecutive times: the model is not training properly. " "Consider using a lower learning rate.".format(self.max_nans) ) @property @abstractmethod def scvi_data_loaders_loop(self): pass def data_loaders_loop(self): """Returns an zipped iterable corresponding to loss signature.""" data_loaders_loop = [ self._scvi_data_loaders[name] for name in self.scvi_data_loaders_loop ] return zip( data_loaders_loop[0], *[cycle(data_loader) for data_loader in data_loaders_loop[1:]] ) def register_data_loader(self, name, value): name = name.strip("_") self._scvi_data_loaders[name] = value def __getattr__(self, name): if "_scvi_data_loaders" in self.__dict__: _scvi_data_loaders = self.__dict__["_scvi_data_loaders"] if name.strip("_") in _scvi_data_loaders: return _scvi_data_loaders[name.strip("_")] return object.__getattribute__(self, name) def __delattr__(self, name): if name.strip("_") in self._scvi_data_loaders: del self._scvi_data_loaders[name.strip("_")] else: object.__delattr__(self, name) def __setattr__(self, name, value): if isinstance(value, ScviDataLoader): name = name.strip("_") self.register_data_loader(name, value) else: object.__setattr__(self, name, value) def train_test_validation( self, model=None, adata=None, train_size=0.9, test_size=None, type_class=ScviDataLoader, ): """ Creates data loaders ``train_set``, ``test_set``, ``validation_set``. If ``train_size + test_size < 1`` then ``validation_set`` is non-empty. Parameters ---------- train_size : float, or None (default is 0.9) test_size : float, or None (default is None) model : (Default value = None) adata: (Default value = None) type_class : (Default value = ScviDataLoader) """ train_size = float(train_size) if train_size > 1.0 or train_size <= 0.0: raise ValueError( "train_size needs to be greater than 0 and less than or equal to 1" ) model = self.model if model is None and hasattr(self, "model") else model # what to do here if it has the attribute modle adata = self.adata if adata is None and hasattr(self, "model") else adata n = len(adata) try: n_train, n_test = _validate_shuffle_split(n, test_size, train_size) except ValueError: if train_size != 1.0: raise ValueError( "Choice of train_size={} and test_size={} not understood".format( train_size, test_size ) ) n_train, n_test = n, 0 random_state = np.random.RandomState(seed=self.seed) permutation = random_state.permutation(n) indices_test = permutation[:n_test] indices_train = permutation[n_test: (n_test + n_train)] indices_validation = permutation[(n_test + n_train):] return ( self.create_scvi_dl( model, adata, indices=indices_train, type_class=type_class ), self.create_scvi_dl( model, adata, indices=indices_test, type_class=type_class ), self.create_scvi_dl( model, adata, indices=indices_validation, type_class=type_class ), ) def create_scvi_dl( self, model=None, adata: anndata.AnnData = None, shuffle=False, indices=None, type_class=ScviDataLoader, ): model = self.model if model is None and hasattr(self, "model") else model adata = self.adata if adata is None and hasattr(self, "model") else adata return type_class( model, adata, shuffle=shuffle, indices=indices, use_cuda=self.use_cuda, batch_size=self.batch_size, data_loader_kwargs=self.data_loader_kwargs, ) class SequentialSubsetSampler(SubsetRandomSampler): def __init__(self, indices): self.indices = np.sort(indices) def __iter__(self): return iter(self.indices) class EarlyStopping: def __init__( self, early_stopping_metric: str = None, save_best_state_metric: str = None, on: str = "test_set", patience: int = 15, threshold: int = 3, benchmark: bool = False, reduce_lr_on_plateau: bool = False, lr_patience: int = 10, lr_factor: float = 0.5, scvi_data_loader_class=ScviDataLoader, ): self.benchmark = benchmark self.patience = patience self.threshold = threshold self.epoch = 0 self.wait = 0 self.wait_lr = 0 self.mode = ( getattr(scvi_data_loader_class, early_stopping_metric).mode if early_stopping_metric is not None else None ) # We set the best to + inf because we're dealing with a loss we want to minimize self.current_performance = np.inf self.best_performance = np.inf self.best_performance_state = np.inf # If we want to maximize, we start at - inf if self.mode == "max": self.best_performance *= -1 self.current_performance *= -1 self.mode_save_state = ( getattr(ScviDataLoader, save_best_state_metric).mode if save_best_state_metric is not None else None ) if self.mode_save_state == "max": self.best_performance_state *= -1 self.early_stopping_metric = early_stopping_metric self.save_best_state_metric = save_best_state_metric self.on = on self.reduce_lr_on_plateau = reduce_lr_on_plateau self.lr_patience = lr_patience self.lr_factor = lr_factor def update(self, scalar): self.epoch += 1 if self.benchmark: continue_training = True reduce_lr = False elif self.wait >= self.patience: continue_training = False reduce_lr = False else: # Check if we should reduce the learning rate if not self.reduce_lr_on_plateau: reduce_lr = False elif self.wait_lr >= self.lr_patience: reduce_lr = True self.wait_lr = 0 else: reduce_lr = False # Shift self.current_performance = scalar # Compute improvement if self.mode == "max": improvement = self.current_performance - self.best_performance elif self.mode == "min": improvement = self.best_performance - self.current_performance else: raise NotImplementedError("Unknown optimization mode") # updating best performance if improvement > 0: self.best_performance = self.current_performance if improvement < self.threshold: self.wait += 1 self.wait_lr += 1 else: self.wait = 0 self.wait_lr = 0 continue_training = True if not continue_training: # FIXME: log total number of epochs run logger.info( "\nStopping early: no improvement of more than " + str(self.threshold) + " nats in " + str(self.patience) + " epochs" ) logger.info( "If the early stopping criterion is too strong, " "please instantiate it with different parameters in the train method." ) return continue_training, reduce_lr def update_state(self, scalar): improved = ( self.mode_save_state == "max" and scalar - self.best_performance_state > 0 ) or ( self.mode_save_state == "min" and self.best_performance_state - scalar > 0 ) if improved: self.best_performance_state = scalar return improved
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/scvi/trainer.py
0.919665
0.415017
trainer.py
pypi
import time import torch from sklearn.cluster import KMeans from torch.utils.data import DataLoader from scarchest.dataset.mars import MetaAnnotatedDataset from scarchest.dataset.trvae import AnnotatedDataset from scarchest.models import MARS from ._utils import split_meta_train_tasks, euclidean_dist, print_meta_progress from .meta import MetaTrainer import scanpy as sc class MARSTrainer(MetaTrainer): def __init__(self, model: MARS, adata: sc.AnnData, task_key: str, cell_type_key: str, n_clusters: int, meta_test_tasks: list, tau: float = 0.2, eta: float = 1.0, **kwargs): super().__init__(model, adata, task_key, **kwargs) self.cell_type_key = cell_type_key self.n_clusters = n_clusters self.meta_test_tasks = meta_test_tasks self.tau = tau self.eta = eta self.pre_train_n_epochs = kwargs.pop('pre_train_n_epochs', 100) self.pre_train_batch_size = kwargs.pop('pre_train_batch_size', 128) def on_training_begin(self): self.meta_adata = MetaAnnotatedDataset(adata=self.adata, task_key=self.task_key, meta_test_task=self.meta_test_tasks[0], cell_type_key=self.cell_type_key, task_encoder=self.model.condition_encoder, ) self.meta_train_data_loaders_tr, self.meta_train_data_loaders_ts = split_meta_train_tasks(self.meta_adata, self.train_frac, stratify=True, batch_size=self.batch_size, num_workers=self.n_workers) self.meta_test_data_loader = pre_train_data_loader = DataLoader(dataset=self.meta_adata.meta_test_task_adata, batch_size=self.pre_train_batch_size, num_workers=self.n_workers) self.pre_train_with_meta_test(pre_train_data_loader) self.meta_train_landmarks, self.meta_test_landmarks = self.initialize_landmarks() self.optimizer = torch.optim.Adam(params=list(self.model.encoder.parameters()), lr=self.learning_rate) self.meta_test_landmark_optimizer = torch.optim.Adam(params=[self.meta_test_landmarks], lr=self.learning_rate) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, gamma=self.lr_gamma, step_size=self.lr_step_size) def pre_train_with_meta_test(self, pre_train_data_loader): pre_train_optimizer = torch.optim.Adam(params=list(self.model.parameters()), lr=self.pre_train_learning_rate) for _ in range(self.pre_train_n_epochs): for _, batch_data in enumerate(pre_train_data_loader): x = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) _, decoded, loss, recon_loss, kl_loss = self.model(x, c) pre_train_optimizer.zero_grad() loss.backward() if self.clip_value > 0: torch.nn.utils.clip_grad_value_(self.model.parameters(), self.clip_value) pre_train_optimizer.step() def initialize_landmarks(self): def k_means_initalization(dataset: AnnotatedDataset, n_clusters): encoded = self.model.get_latent(dataset.data, dataset.conditions) k_means = KMeans(n_clusters=n_clusters, random_state=0).fit(encoded) return torch.tensor(k_means.cluster_centers_, device=self.device) meta_train_landmarks = [ torch.zeros(size=(len(adataset.unique_cell_types), self.model.z_dim), requires_grad=True, device=self.device) for adataset in self.meta_adata.meta_train_tasks_adata] meta_test_landmarks = torch.zeros(size=(self.n_clusters, self.model.z_dim), requires_grad=True, device=self.device) k_means_init_train = [k_means_initalization(adataset, n_clusters=len(adataset.unique_cell_types)) for adataset in self.meta_adata.meta_train_tasks_adata] k_means_init_test = k_means_initalization(self.meta_adata.meta_test_task_adata, n_clusters=self.n_clusters) with torch.no_grad(): [landmark.copy_(k_means_init_train[idx]) for idx, landmark in enumerate(meta_train_landmarks)] meta_test_landmarks.copy_(k_means_init_test) return meta_train_landmarks, meta_test_landmarks def train(self, n_epochs=400, evaluate_on_meta_test=True, ): begin = time.time() # Initialize Train/Val Data, Optimizer, Sampler, and Dataloader self.on_training_begin() for self.epoch in range(n_epochs): self.on_epoch_begin() loss, acc = self.on_epoch() # Validation of Model, Monitoring, Early Stopping if evaluate_on_meta_test: valid_loss, valid_acc, test_accuracy = self.on_epoch_end(evaluate_on_meta_test) else: valid_loss, valid_acc = self.on_epoch_end(evaluate_on_meta_test) if self.use_early_stopping: if not self.check_early_stop(): break logs = { 'loss': [loss], 'acc': [acc], 'val_loss': [valid_loss], 'val_acc': [valid_acc], } if evaluate_on_meta_test: logs['test_accuracy'] = [test_accuracy] if self.monitor: print_meta_progress(self.epoch, logs, n_epochs) if hasattr(self, 'best_state_dict') and self.best_state_dict is not None: print("Saving best state of network...") print("Best State was in Epoch", self.best_epoch) self.model.load_state_dict(self.best_state_dict) self.model.eval() self.training_time += (time.time() - begin) # Empty at the moment self.on_training_end() def on_epoch(self): # EM step perfomed on each epoch self.model.train() # Update Landmarks for param in self.model.parameters(): param.requires_grad = False self.meta_test_landmarks.requires_grad = False self.meta_test_landmark_optimizer.zero_grad() for idx, task_data_loader_tr in enumerate(self.meta_train_data_loaders_tr): for task_data in task_data_loader_tr: X = task_data['x'].to(self.device) c = task_data['c'].to(self.device) y = task_data['y'].to(self.device) encoded, _, _, _, _ = self.model(X, c) current_meta_train_landmarks = self.update_meta_train_landmarks(encoded, y, self.meta_train_landmarks[idx], self.tau) self.meta_train_landmarks[idx] = current_meta_train_landmarks.data self.meta_test_landmarks.requires_grad = True for task_data in self.meta_test_data_loader: X = task_data['x'].to(self.device) c = task_data['c'].to(self.device) encoded, _, loss, _, _ = self.model(X, c) loss = self.eta * loss + self.test_loss(encoded, self.meta_test_landmarks, self.tau) loss.backward() self.meta_test_landmark_optimizer.step() # Update Encoder for param in self.model.parameters(): param.requires_grad = True self.meta_test_landmarks.requires_grad = False self.optimizer.zero_grad() loss = torch.tensor(0.0) acc = torch.tensor(0.0) for idx, task_data_loader_tr in enumerate(self.meta_train_data_loaders_tr): for batch_data in task_data_loader_tr: X = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) y = batch_data['y'].to(self.device) encoded, _, loss, _, _ = self.model(X, c) task_loss, task_acc = self.task_loss(encoded, y, self.meta_train_landmarks[idx]) loss = self.eta * loss + task_loss acc += task_acc n_tasks = len(self.meta_train_data_loaders_tr) acc /= n_tasks for batch_data in self.meta_test_data_loader: X = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) encoded, _, loss, _, _ = self.model(X, c) loss = self.eta * loss + self.test_loss(encoded, self.meta_test_landmarks, self.tau) loss = loss / (n_tasks + 1) loss.backward() self.optimizer.step() return loss, acc def on_epoch_end(self, evaluate_on_meta_test=False): self.model.eval() n_tasks = len(self.meta_train_data_loaders_ts) with torch.no_grad(): valid_loss, valid_acc = 0.0, 0.0 for idx, task_data_loader_tr in enumerate(self.meta_train_data_loaders_ts): for task_data in task_data_loader_tr: X = task_data['x'].to(self.device) c = task_data['c'].to(self.device) y = task_data['y'].to(self.device) encoded, _, _, _, _ = self.model(X, c) task_loss, task_acc = self.task_loss(encoded, y, self.meta_train_landmarks[idx]) valid_loss += task_loss valid_acc += task_acc.item() mean_accuracy = valid_acc / n_tasks mean_loss = valid_loss / n_tasks if evaluate_on_meta_test: test_accuracy = 0.0 with torch.no_grad(): for batch_data in self.meta_test_data_loader: X = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) y = batch_data['y'].to(self.device) encoded, _, _, _, _ = self.model(X, c) test_accuracy += self.evaluate_on_unannotated_dataset(encoded, y) * X.shape[0] test_accuracy /= len(self.meta_test_data_loader.dataset) return mean_loss, mean_accuracy, test_accuracy else: return mean_loss, mean_accuracy def evaluate_on_unannotated_dataset(self, encoded, y_true): distances = euclidean_dist(encoded, self.meta_test_landmarks) _, y_pred = torch.max(-distances, dim=1) accuracy = y_pred.eq(y_true).float().mean() return accuracy def task_loss(self, embeddings, labels, landmarks): n_samples = embeddings.shape[0] unique_labels = torch.unique(labels, sorted=True) class_indices = list(map(lambda x: labels.eq(x).nonzero(), unique_labels)) for idx, value in enumerate(unique_labels): labels[labels == value] = idx distances = euclidean_dist(embeddings, landmarks) loss = torch.stack( [distances[indices, landmark_index].sum(0) for landmark_index, indices in enumerate(class_indices)]).sum() / n_samples _, y_pred = torch.max(-distances, dim=1) accuracy = y_pred.eq(labels.squeeze()).float().mean() return loss, accuracy def test_loss(self, embeddings, landmarks, tau): distances = euclidean_dist(embeddings, landmarks) min_distances, y_hat = torch.min(distances, dim=1) unique_predicted_labels = torch.unique(y_hat, sorted=True) loss = torch.stack( [min_distances[y_hat == unique_y_hat].mean(0) for unique_y_hat in unique_predicted_labels]).mean() if tau > 0: landmarks_distances = euclidean_dist(landmarks, landmarks) n_landmarks = landmarks.shape[0] loss -= torch.sum(landmarks_distances) * tau / (n_landmarks * (n_landmarks - 1)) return loss def update_meta_train_landmarks(self, embeddings, labels, previous_landmarks, tau): unique_labels = torch.unique(labels, sorted=True) class_indices = list(map(lambda y: labels.eq(y).nonzero(), unique_labels)) landmarks_mean = torch.stack([embeddings[class_index].mean(0) for class_index in class_indices]).squeeze() if previous_landmarks is None or tau == 0: return landmarks_mean previous_landmarks_sum = previous_landmarks.sum(0) n_landmarks = previous_landmarks.shape[0] landmarks_distance_partial = (tau / (n_landmarks - 1)) * torch.stack( [previous_landmarks_sum - landmark for landmark in previous_landmarks]) landmarks = (1 / (1 - tau)) * (landmarks_mean - landmarks_distance_partial) return landmarks def on_epoch_begin(self): pass def on_iteration_begin(self): pass def on_iteration_end(self): pass def on_training_end(self): pass def check_early_stop(self): return True
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/mars/mars_meta_trainer.py
0.842734
0.242301
mars_meta_trainer.py
pypi
import time import scanpy as sc import torch from torch.utils.data import DataLoader from scarchest.models import MARS from scarchest.trainers.trvae._utils import make_dataset from ._utils import print_meta_progress from .meta import MetaTrainer class MARSPreTrainer(MetaTrainer): def __init__(self, model: MARS, adata: sc.AnnData, task_key: str, **kwargs): super().__init__(model, adata, task_key, **kwargs) def on_training_begin(self): self.train_dataset, self.valid_dataset = make_dataset(self.adata, train_frac=self.train_frac, use_stratified_split=True, condition_key=self.task_key, cell_type_key=None, size_factor_key=None, condition_encoder=self.model.condition_encoder, ) self.train_data_loader = DataLoader(dataset=self.train_dataset, batch_size=self.batch_size, num_workers=self.n_workers) self.valid_data_loader = DataLoader(dataset=self.valid_dataset, batch_size=len(self.valid_dataset), num_workers=1) self.optimizer = torch.optim.Adam(params=list(self.model.parameters()), lr=self.learning_rate) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, gamma=self.lr_gamma, step_size=self.lr_step_size) def train(self, n_epochs=400, ): begin = time.time() # Initialize Train/Val Data, Optimizer, Sampler, and Dataloader self.on_training_begin() for self.epoch in range(n_epochs): self.on_epoch_begin() loss, recon_loss, kl_loss = self.on_epoch() # Validation of Model, Monitoring, Early Stopping valid_loss, valid_recon_loss, valid_kl_loss = self.on_epoch_end() if self.use_early_stopping: if not self.check_early_stop(): break logs = { 'loss': [loss], 'recon_loss': [recon_loss], 'kl_loss': [kl_loss], 'val_loss': [valid_loss], 'val_recon_loss': [valid_recon_loss], 'val_kl_loss': [valid_kl_loss], } if self.monitor: print_meta_progress(self.epoch, logs, n_epochs) if hasattr(self, 'best_state_dict') and self.best_state_dict is not None: print("Saving best state of network...") print("Best State was in Epoch", self.best_epoch) self.model.load_state_dict(self.best_state_dict) self.model.eval() self.training_time += (time.time() - begin) # Empty at the moment self.on_training_end() def on_epoch(self): self.model.train() loss = torch.tensor(0.0) recon_loss = torch.tensor(0.0) kl_loss = torch.tensor(0.0) for batch_data in self.train_data_loader: x = batch_data['x'].to(self.device) c = batch_data['c'].to(self.device) _, decoded, batch_loss, batch_recon_loss, batch_kl_loss = self.model(x, c) loss += batch_loss * len(batch_data) kl_loss += batch_kl_loss * len(batch_data) recon_loss += batch_recon_loss * len(batch_data) self.optimizer.zero_grad() batch_loss.backward() if self.clip_value > 0: torch.nn.utils.clip_grad_value_(self.model.parameters(), self.clip_value) self.optimizer.step() loss /= len(self.train_dataset) recon_loss /= len(self.train_dataset) kl_loss /= len(self.train_dataset) return loss, recon_loss, kl_loss def on_epoch_end(self, evaluate_on_meta_test=False): self.model.eval() with torch.no_grad(): valid_loss, valid_recon_loss, valid_kl_loss = 0.0, 0.0, 0.0 for valid_data in self.valid_data_loader: x = valid_data['x'].to(self.device) c = valid_data['c'].to(self.device) _, _, batch_loss, batch_recon_loss, batch_kl_loss = self.model(x, c) valid_loss += batch_loss * len(valid_data) valid_recon_loss += batch_recon_loss * len(valid_data) valid_kl_loss += batch_kl_loss * len(valid_data) valid_loss /= len(self.valid_dataset) valid_kl_loss /= len(self.valid_dataset) valid_recon_loss /= len(self.valid_dataset) return valid_loss, valid_recon_loss, valid_kl_loss def on_epoch_begin(self): pass def on_iteration_begin(self): pass def on_iteration_end(self): pass def on_training_end(self): pass def check_early_stop(self): return True
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/mars/unsupervised.py
0.848157
0.1779
unsupervised.py
pypi
import torch import numpy as np from torch.utils.data import DataLoader, SubsetRandomSampler from scarchest.dataset.mars import MetaAnnotatedDataset from scarchest.trainers.trvae._utils import _print_progress_bar def print_meta_progress(epoch, logs, n_epochs=10000): """Creates Message for '_print_progress_bar'. Parameters ---------- epoch: Integer Current epoch iteration. logs: dict List of all current losses. n_epochs: Integer Maximum value of epochs. Returns ------- """ message = f' - loss: {logs["loss"][-1]:.4f}' train_keys = [key for key in sorted(list(logs.keys())) if (not key.startswith('val_') and not key.startswith('test_') and key != 'loss')] for key in train_keys: message += f' - {key}: {logs[key][-1]:.4f}' message += f' - val_loss: {logs["val_loss"][-1]:.4f}' valid_keys = [key for key in sorted(list(logs.keys())) if (key.startswith('val_') and key != 'val_loss')] for key in valid_keys: message += f' - {key}: {logs[key][-1]:.4f}' test_keys = [key for key in sorted(list(logs.keys())) if (key.startswith('test_'))] for key in test_keys: message += f' - {key}: {logs[key][-1]:.4f}' _print_progress_bar(epoch + 1, n_epochs, prefix='', suffix=message, decimals=1, length=20) def split_meta_train_tasks(meta_adata: MetaAnnotatedDataset, train_fraction: float = 0.8, stratify: bool = False, batch_size: int = 32, num_workers=6): train_data_loaders, valid_data_loaders = [], [] for idx, meta_train_dataset in enumerate(meta_adata.meta_train_tasks_adata): np.random.seed(2020 * idx) n_samples = len(meta_train_dataset) indices = np.arange(n_samples) np.random.shuffle(indices) train_idx = indices[:int(train_fraction * n_samples)] valid_idx = indices[int(train_fraction * n_samples):] train_data_loader = DataLoader(dataset=meta_train_dataset, sampler=SubsetRandomSampler(train_idx), num_workers=num_workers, batch_size=batch_size, pin_memory=True) valid_data_loader = DataLoader(dataset=meta_train_dataset, sampler=SubsetRandomSampler(valid_idx), num_workers=num_workers, batch_size=batch_size, pin_memory=True) train_data_loaders.append(train_data_loader) valid_data_loaders.append(valid_data_loader) return train_data_loaders, valid_data_loaders def euclidean_dist(x, y): ''' Compute euclidean distance between two tensors ''' # x: N x D # y: M x D n = x.size(0) m = y.size(0) d = x.size(1) if d != y.size(1): raise Exception x = x.unsqueeze(1).expand(n, m, d) y = y.unsqueeze(0).expand(n, m, d) return torch.pow(x - y, 2).sum(2)
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/mars/_utils.py
0.893675
0.331241
_utils.py
pypi
from abc import abstractmethod import torch import torch.nn as nn from collections import defaultdict import numpy as np import time from torch.utils.data import DataLoader from torch.utils.data import WeightedRandomSampler from scarchest.utils.monitor import EarlyStopping from ._utils import make_dataset, custom_collate, print_progress class Trainer: def __init__(self, model, adata, condition_key: str = None, cell_type_key: str = None, size_factor_key: str = None, is_label_key: str = None, clip_value: float = 0.0, weight_decay: float = 0.04, train_frac: float = 0.9, early_stopping_kwargs: dict = None, batch_size: int = 512, n_samples: int = None, n_workers: int = 0, **kwargs): self.adata = adata self.condition_key = condition_key self.cell_type_key = cell_type_key self.size_factor_key = size_factor_key self.is_label_key = is_label_key self.clip_value = clip_value self.weight_decay = weight_decay self.train_frac = train_frac early_stopping_kwargs = (early_stopping_kwargs if early_stopping_kwargs else dict()) self.batch_size = batch_size self.n_workers = n_workers self.seed = kwargs.pop("seed", 2020) self.use_stratified_sampling = kwargs.pop("use_stratified_sampling", True) self.use_early_stopping = kwargs.pop("use_early_stopping", True) self.monitor = kwargs.pop("monitor", True) self.use_stratified_split = kwargs.pop("use_stratified_split", False) self.early_stopping = EarlyStopping(**early_stopping_kwargs) torch.manual_seed(self.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(self.seed) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = model.to(self.device) self.model.device = self.device self.epoch = -1 self.iter = 0 self.best_epoch = None self.best_state_dict = None self.current_loss = None self.previous_loss_was_nan = False self.nan_counter = 0 self.optimizer = None self.lr_scheduler = None self.training_time = 0 self.train_data = None self.valid_data = None self.sampler = None self.dataloader_train = None self.dataloader_valid = None self.n_samples = n_samples self.iters_per_epoch = None self.val_iters_per_epoch = None self.iter_logs = defaultdict(list) self.logs = defaultdict(list) def on_training_begin(self): """ Initializes Train-/Test Data and Dataloaders with custom_collate and WeightedRandomSampler for Trainloader. Returns: """ # Create Train/Valid AnnotatetDataset objects self.train_data, self.valid_data = make_dataset(self.adata, train_frac=self.train_frac, use_stratified_split=self.use_stratified_split, condition_key=self.condition_key, cell_type_key=self.cell_type_key, size_factor_key=self.size_factor_key, condition_encoder=self.model.condition_encoder, cell_type_encoder=None ) print("Traindata:", len(self.train_data)) for i in range(len(self.train_data.unique_conditions)): print("Condition:", i, "Counts in TrainData:", np.count_nonzero(self.train_data.conditions == i)) if self.n_samples is None or self.n_samples > len(self.train_data): self.n_samples = len(self.train_data) self.iters_per_epoch = int(np.ceil(self.n_samples / self.batch_size)) if self.use_stratified_sampling: # Create Sampler and Dataloaders stratifier_weights = torch.tensor(self.train_data.stratifier_weights, device=self.device) self.sampler = WeightedRandomSampler(stratifier_weights, num_samples=self.n_samples, replacement=True) self.dataloader_train = torch.utils.data.DataLoader(dataset=self.train_data, batch_size=self.batch_size, sampler=self.sampler, collate_fn=custom_collate, num_workers=self.n_workers) else: self.dataloader_train = torch.utils.data.DataLoader(dataset=self.train_data, batch_size=self.batch_size, shuffle=True, collate_fn=custom_collate, num_workers=self.n_workers) if self.valid_data is not None: print("Valid_data", len(self.valid_data)) for i in range(len(self.valid_data.unique_conditions)): print("Condition:", i, "Counts in TrainData:", np.count_nonzero(self.valid_data.conditions == i)) val_batch_size = self.batch_size if self.batch_size > len(self.valid_data): val_batch_size = len(self.valid_data) self.val_iters_per_epoch = int(np.ceil(len(self.valid_data) / self.batch_size)) self.dataloader_valid = torch.utils.data.DataLoader(dataset=self.valid_data, batch_size=val_batch_size, shuffle=True, collate_fn=custom_collate, num_workers=self.n_workers) @abstractmethod def on_epoch_begin(self): pass @abstractmethod def loss(self, **kwargs): pass @abstractmethod def on_iteration_begin(self): pass def on_iteration(self, batch_data): # Dont update any weight on first layers except condition weights if self.model.freeze: for name, module in self.model.named_modules(): if isinstance(module, nn.BatchNorm1d): if not module.weight.requires_grad: module.affine = False module.track_running_stats = False # Calculate Loss depending on Trainer/Model self.current_loss = loss = self.loss(**batch_data) self.optimizer.zero_grad() loss.backward() # Gradient Clipping if self.clip_value > 0: torch.nn.utils.clip_grad_value_(self.model.parameters(), self.clip_value) self.optimizer.step() @abstractmethod def on_iteration_end(self): pass def on_epoch_end(self): # Get Train Epoch Logs for key in self.iter_logs: if "loss" in key: self.logs["epoch_" + key].append( sum(self.iter_logs[key][-self.iters_per_epoch:]) / self.iters_per_epoch) # Validate Model if self.valid_data is not None: self.validate() # Monitor Logs if self.monitor: print_progress(self.epoch, self.logs, self.n_epochs) def check_early_stop(self): # Calculate Early Stopping and best state early_stopping_metric = self.early_stopping.early_stopping_metric save_best_state_metric = self.early_stopping.save_best_state_metric if save_best_state_metric is not None and self.early_stopping.update_state( self.logs[save_best_state_metric][-1]): self.best_state_dict = self.model.state_dict() self.best_epoch = self.epoch continue_training = True if early_stopping_metric is not None and not self.early_stopping.step(self.logs[early_stopping_metric][-1]): continue_training = False return continue_training # Update Learning Rate self.lr_scheduler.step() return continue_training @abstractmethod def on_training_end(self): pass @torch.no_grad() def validate(self): self.model.eval() # Calculate Validation Losses for val_iter, batch_data in enumerate(self.dataloader_valid): for key1 in batch_data: for key2, batch in batch_data[key1].items(): batch_data[key1][key2] = batch.to(self.device) val_loss = self.loss(**batch_data) # Get Validation Logs for key in self.iter_logs: if "loss" in key: self.logs["val_" + key].append( sum(self.iter_logs[key][-self.val_iters_per_epoch:]) / self.val_iters_per_epoch) self.model.train() def train(self, n_epochs=400, lr=1e-3, lr_gamma=1.0, lr_step_size=100, eps=0.01): begin = time.time() self.model.train() self.n_epochs = n_epochs params = filter(lambda p: p.requires_grad, self.model.parameters()) self.optimizer = torch.optim.Adam(params, lr=lr, eps=eps, weight_decay=self.weight_decay) self.lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=self.optimizer, gamma=lr_gamma, step_size=lr_step_size) # Initialize Train/Val Data, Sampler, Dataloader self.on_training_begin() for self.epoch in range(n_epochs): # Empty at the moment self.on_epoch_begin() for self.iter, batch_data in enumerate(self.dataloader_train): for key1 in batch_data: for key2, batch in batch_data[key1].items(): batch_data[key1][key2] = batch.to(self.device) # Empty at the moment self.on_iteration_begin() # Loss Calculation, Gradient Clipping, Freeze first layer, Optimizer Step self.on_iteration(batch_data) # Empty at the moment self.on_iteration_end() # Validation of Model, Monitoring, Early Stopping self.on_epoch_end() if self.use_early_stopping: if not self.check_early_stop(): break if self.best_state_dict is not None: print("Saving best state of network...") print("Best State was in Epoch", self.best_epoch) self.model.load_state_dict(self.best_state_dict) self.model.eval() self.training_time += (time.time() - begin) # Empty at the moment self.on_training_end()
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/trvae/trainer.py
0.816882
0.21262
trainer.py
pypi
import sys import numpy as np import re import torch from torch._six import container_abcs from torch.utils.data import DataLoader, SubsetRandomSampler from scarchest.dataset.trvae import AnnotatedDataset def print_progress(epoch, logs, n_epochs=10000): """Creates Message for '_print_progress_bar'. Parameters ---------- epoch: Integer Current epoch iteration. logs: dict Dictionary of all current losses. n_epochs: Integer Maximum value of epochs. Returns ------- """ message = "" for key in logs: if "loss" in key and ("epoch_" in key or "val_" in key): message += f" - {key:s}: {logs[key][-1]:7.0f}" _print_progress_bar(epoch + 1, n_epochs, prefix='', suffix=message, decimals=1, length=20) def _print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """Prints out message with a progress bar. Parameters ---------- iteration: Integer Current epoch. total: Integer Maximum value of epochs. prefix: String String before the progress bar. suffix: String String after the progress bar. decimals: Integer Digits after comma for all the losses. length: Integer Length of the progress bar. fill: String Symbol for filling the bar. Returns ------- """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filled_len = int(length * iteration // total) bar = fill * filled_len + '-' * (length - filled_len) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percent, '%', suffix)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() def train_test_split(adata, train_frac=0.85, condition_key=None): """Splits 'Anndata' object into training and validation data. Parameters ---------- adata: `~anndata.AnnData` `AnnData` object for training the model. train_frac: float Train-test split fraction. the model will be trained with train_frac for training and 1-train_frac for validation. Returns ------- `AnnData` objects for training and validating the model. """ if train_frac == 1: return adata, None else: indices = np.arange(adata.shape[0]) n_val_samples = int(adata.shape[0] * (1 - train_frac)) if condition_key is not None: conditions = adata.obs[condition_key].unique().tolist() n_conditions = len(conditions) n_val_samples_per_condition = int(n_val_samples / n_conditions) condition_indices_train = [] condition_indices_val = [] for i in range(n_conditions): idx = indices[adata.obs[condition_key] == conditions[i]] np.random.shuffle(idx) condition_indices_val.append(idx[:n_val_samples_per_condition]) condition_indices_train.append(idx[n_val_samples_per_condition:]) train_idx = np.concatenate(condition_indices_train) val_idx = np.concatenate(condition_indices_val) else: np.random.shuffle(indices) val_idx = indices[:n_val_samples] train_idx = indices[n_val_samples:] train_data = adata[train_idx, :] valid_data = adata[val_idx, :] return train_data, valid_data def make_dataset(adata, train_frac=0.9, use_stratified_split=False, condition_key=None, cell_type_key=None, size_factor_key=None, condition_encoder=None, cell_type_encoder=None, ): """Splits 'adata' into train and validation data and converts them into 'CustomDatasetFromAdata' objects. Parameters ---------- Returns ------- Training 'CustomDatasetFromAdata' object, Validation 'CustomDatasetFromAdata' object """ if use_stratified_split: train_adata, validation_adata = train_test_split(adata, train_frac, condition_key=condition_key) else: train_adata, validation_adata = train_test_split(adata, train_frac) data_set_train = AnnotatedDataset(train_adata, condition_key=condition_key, cell_type_key=cell_type_key, size_factors_key=size_factor_key, condition_encoder=condition_encoder, cell_type_encoder=cell_type_encoder,) if train_frac == 1: return data_set_train, None else: data_set_valid = AnnotatedDataset(validation_adata, condition_key=condition_key, cell_type_key=cell_type_key, size_factors_key=size_factor_key, condition_encoder=condition_encoder, cell_type_encoder=cell_type_encoder,) return data_set_train, data_set_valid def custom_collate(batch): r"""Puts each data field into a tensor with outer dimension batch size""" np_str_obj_array_pattern = re.compile(r'[SaUO]') default_collate_err_msg_format = ( "default_collate: batch must contain tensors, numpy arrays, numbers, " "dicts or lists; found {}") elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' and elem_type.__name__ != 'string_': elem = batch[0] if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(default_collate_err_msg_format.format(elem.dtype)) return custom_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, container_abcs.Mapping): if "y" in elem: output = dict(total_batch=dict(), labelled_batch=dict()) for key in elem: total_data = [d[key] for d in batch] labelled_data = list() for d in batch: if d["y"] != -1: labelled_data.append(d[key]) output["total_batch"][key] = custom_collate(total_data) output["labelled_batch"][key] = custom_collate(labelled_data) else: output = dict(total_batch=dict()) output["total_batch"] = {key: custom_collate([d[key] for d in batch]) for key in elem} return output
/scArchest-0.0.1-py3-none-any.whl/scarches/trainers/trvae/_utils.py
0.747339
0.317903
_utils.py
pypi
# scBC scBC —— a single-cell transcriptome Bayesian biClustering framework. This document will help you easily go through the scBC model. ## Installation To install our package, run ```bash conda install -c conda-forge scvi-tools #pip install scvi-tools pip install scBC ``` ## Quick start To simply illustrate how one can run our scBC model, here we use the subsampled HEART dataset as an example. We have prepared four subsampled datasets in advance (HEART, PBMC, LUAD and BC), which can be downloaded locally with simple codes: ```python from scBC import data heart = data.load_data("HEART") ``` If you can't download the data automatically, you can also download them manually from our [repository](https://github.com/GYQ-form/scBC/tree/main/data) and place them in your working directory. Now you are ready to set up the scBC model: ```python from scBC.model import scBC my_model = scBC(adata=heart,batch_key='cell_source') ``` Notice that `adata` must be an [AnnData](https://anndata.readthedocs.io/en/latest/generated/anndata.AnnData.html#anndata.AnnData) object. `batch_key` specify the specific column in adata.var to be used as batch annotation. We first train the VAE model with the default setting: ```python my_model.train_VI() ``` Then we can get the reconstructed data, we use 10 posterior samples to estimate the mean expression: ```python my_model.get_reconst_data(n_samples=10) ``` Since scBC encourage prior information about genes' co-expression to be provided, before conducting biclustering, we first generate a prior edge. Thankfully, we have also provide an API for automatically generating prior edge from biomart database, just run with default setting: ```python my_model.get_edge() ``` Now a edge array has been stored in my_model.edge. Run biclustering will automatically use it, we set the number of biclusters as 3 here: ```python my_model.Biclustering(L=3) ``` Take a look at the results: ```python my_model.S ``` Or maybe we are more interest in the strong classification result at cell level: ```python my_model.strong_class() ``` ## Parameter lists Here we give some parameter lists for readers to use flexibly: ### model #### scBC.model.scBC() - **adata**: *AnnData object with an observed n $\times$ p matrix, p is the number of measurements and n is the number of subjects.* - **layer**: *if not None, uses this as the key in adata.layers for raw count data.* - **batch_key**: *key in adata.obs for batch information. Categories will automatically be converted into integer categories and saved to adata.obs['_scvi_batch']. If None, assigns the same batch to all the data.* - **labels_key**: *key in adata.obs for label information. Categories will automatically be converted into integer categories and saved to adata.obs['_scvi_labels']. If None, assigns the same label to all the data.* - **size_factor_key**: *key in adata.obs for size factor information. Instead of using library size as a size factor, the provided size factor column will be used as offset in the mean of the likelihood. Assumed to be on linear scale.* - **categorical_covariate_keys**: *keys in adata.obs that correspond to categorical data. These covariates can be added in addition to the batch covariate and are also treated as nuisance factors (i.e., the model tries to minimize their effects on the latent space). Thus, these should not be used for biologically-relevant factors that you do not want to correct for.* - **continuous_covariate_keys**: *keys in adata.obs that correspond to continuous data. These covariates can be added in addition to the batch covariate and are also treated as nuisance factors (i.e., the model tries to minimize their effects on the latent space). Thus, these should not be used for biologically-relevant factors that you do not want to correct for.* #### Attributes - `self.adata` - The AnnData used when initializing the scBC object. - `self.p` - Number of measurements(genes) of the expression matrix - `self.n` - Number of subjects(cells) of the expression matrx - `self.vi_model` - The scvi model - `self.reconst_data` - Reconstructed expression matrix with n $\times$ p - `self.W` - **W** matrix after biclustering - `self.Z` - **Z** matrix after biclustering - `self.mu` - Parameter matrix $\pmb\mu$ after biclustering - `self.convg_trail` - The converge trail of biclustering process (likelihood value) - `self.S` - A list containing L dictionaries. The $i_{th}$ dictionary is the $i_{th}$ bicluster's results - `self.niter` - Iteration time during biclustering - `self.edge` - The prior edge array --- ### Methods #### scBC.train_VI() - **n_hidden**: Number of nodes per hidden layer. - **n_latent**: Dimensionality of the latent space. - **n_layers**: Number of hidden layers used for encoder and decoder NNs. - **dropout_rate**: Dropout rate for neural networks. - **dispersion**: One of the following: - ``'gene'`` - dispersion parameter of NB is constant per gene across cells - ``'gene-batch'`` - dispersion can differ between different batches - ``'gene-label'`` - dispersion can differ between different labels - ``'gene-cell'`` - dispersion can differ for every gene in every cell - **gene_likelihood**: One of: - ``'nb'`` - Negative binomial distribution - ``'zinb'`` - Zero-inflated negative binomial distribution - ``'poisson'`` - Poisson distribution - **latent_distribution**: One of: - ``'normal'`` - Normal distribution - ``'ln'`` - Logistic normal distribution (Normal(0, I) transformed by softmax) - **max_epochs**: Number of passes through the dataset. If `None`, defaults to `np.min([round((20000 / n_cells) * 400), 400])` - **use_gpu**: Use default GPU if available (if None or True), or index of GPU to use (if int), or name of GPU (if `str`, e.g., `'cuda:0'`), or use CPU (if False). - **batch_size**: Minibatch size to use during training. - **early_stopping**: Perform early stopping. --- #### scBC.get_reconst_data() - **n_samples**: Number of posterior samples to use for estimation. - **batch_size**: Minibatch size for data loading into model. --- #### scBC.get_edge() - **gene_list**: A list containing HGNC gene names used to find prior edge in hsapiens_gene_ensembl dataset. Different actions will be performed based on the data type you provide: - `str` - take self.adata.var[gene_list] as the gene set - `list` - use the provided list as the gene set to be searched - `None(default)` --- use the variable names(self.adata.var_names) as the gene set - **dataset**: The dataset to be used for extracting prior information. Default is <u>hsapiens\_gene\_ensembl</u>. - **intensity**: A integer denoting the intensity of the prior. Generally speaking, the larger the number, the more prior information returned (the bigger the edge array is). --- #### scBC.Biclustering() - **L**: number of the maximum biclusters - **mat**: a p x n numpy array used for biclustering. We will use the reconstructed data after calling scBC.get_reconst_data(). However, you can explicitly provide one rather than using the reconstructed data. - **edge**: a 2-colounm matrix providing prior network information of some measurements. We prefer to use the edge given here, if not provided, we will use scBC.edge as a candidate. Edge can be automaticly generated using scBC.get_edge(). Running Biclustering() without any edge prior is also feasible. - **dist_type**: a p-element vector, each element represents the distribution type of measurements. 0 is Gaussian, 1 is Binomial, 2 is Negative Binomial, 3 is Poisson. If not given, all measurements are deemed to follow Gaussian distribution. - **param**: a p-element vector, each element is the required parameter for the correspondence distribution. $\zeta$ for Gaussian, $n_j$ for Binomial, $r_j$ for Negative Binomial, $N$ for Poisson. Default is set as a 1 vector. - **initWZ**: select between "random" and "svd". If "random", randomly generated N(0,1) numbers are used, o.w. use SVD results for initialization. - **maxiter**: allowed maximum number of iterations. - **tol**: desired total difference of solutions. --- ## simulation We also provide an API for simulation in scBC.data: #### scBC.data.simulate_data() - **L**: number of biclusters - **p**: number of measurements(genes) - **n**: number of objects(cells) - **dropout**: dropout rate (between 0 and 1) - **batch_num**: number of batches you want to simulate #### return value A dictionary containing several simulation results: | key | word | | :--: | :--------------------------------------------------: | | W | The **W** matrix | | Z | The **Z** matrix | | dat | AnnData object with expression matrix (n $\times$ p) | | S | The ground truth result | | edge | Randomly generated prior edge array | During simulation, the scale of the FGM increases adaptively with the size of the simulated dataset (actually the size of p). The parameter $\pmb\mu$ is computed by the multiplicative model $\pmb\mu = \pmb{WZ}$, where **W** is a p×L matrix and **Z** is an L×n matrix. The number of non-zero elements in each column of **W** is set as p/20, and the number of non-zero elements in each row of **Z** is set as n/10. The row indices of non-zero elements in **W** and the column indices of **Z** with non-zero elements are randomly drawn from 1 to p and 1 to n. The nonzero element values for both **W** and **Z** are generated from a normal distribution with mean 1.5 and standard deviation 0.1, and are randomly assigned to be positive or negative. The prior edge is generated along with W. When generating **X**, each element is generated from $NB(r_j,\frac1{1+e^{-\mu_{ij}}})$ , and the parameter is randomly drawn from 5 to 20. Finally, in order to simulate different batches, we divided the dataset into `batch_num` parts, each with different intensities of noise. The implementation of dropout is to perform Bernoulli censoring at each data point according to the given dropout rate parameter. The simulation data generation process is shown as follows. ![simulation](https://user-images.githubusercontent.com/79566479/232784233-e0a07e0e-bbc3-449c-91b6-5e0936d48159.png)
/scBC-0.3.0.tar.gz/scBC-0.3.0/README.md
0.480722
0.956022
README.md
pypi
# scBayesDeconv Package which allow the deconvolution of two added random variables using bayesian mixture approaches. ``` Z = X + Y ``` where `X` we call it the autofluorescence,`Y` the deconvolution and`Z` the convolution; which are random variables. If we have a sample of values from distribution `X` and `Z`, the package tryes to deconvolve the signal to obtain a distribution of `Y`. The kinds of bayesian mixtures are implemented: 1. Gaussian 2. Gamma ## Installation The package can be installed from the PyPi repository with the command: ```shell pip install scBayesDeconv ``` ### Problems with nstallation from PyPi In case of problems, you can always compile the package from the git repository. The requirements for installation are: 1. CMake 2. A C++ compiler and at least c++11 standard (g++, Visual Studio, Clang...) 3. The scikit-build library for python (if not, `pip install scikit-build`) In the gaussian deconvolution folder, create the binary installation. ```shell python setup.py bdist_wheel ``` This will generate a wheel in automatically created `dist` folder. Now, we can install it. ```shell pip install ./dist/* ``` If everything is okey, you should be happily running the code after a few seconds of compilation ;) ## Small tutorial The package behaves very similar to the [scikit-learn](https://scikit-learn.org/) package. Consider that we have two arrays of data, one with some noise `dataNoise` and the second with the convolved data `dataConvolved`. Import the package ```python import scBayesDeconv as gd ``` Declare one of the two models. The models consider by default one gaussian for the noise and one gaussian for the convolved data. Consider that we want to fit the noise to one and the convolved data with three. ```python model = gd.mcmcsampler(K=1, Kc=3) ``` or ```python model = gd.nestedsampler(K=1, Kc=3) ``` Once declared, fit the model: ```python model.fit(dataNoise,dataConvolved) ``` With the model fit, we can sample from the model ```python model.sample_autofluorescence(size=100) model.sample_deconvolution(size=100) model.sample_convolution(size=100) ``` or evaluate at certain positions. This will return the mean value, as well as any specified percentiles (by default at 0.05 and 0.95). ```python x = np.arange(0,1,0.1) model.score_autofluorescence(x, percentiles=[0.05,0.5,0.95]) model.score_deconvolution(x, percentiles=[0.05,0.5,0.95]) model.score_convolution(x, percentiles=[0.05,0.5,0.95]) ``` In addition, for the mcmcsampler, it is possible to obtain some resume statistics of the sampler in order to check if the sampling process has converged to the posterior. ```python model.statistics() ``` An rhat close to 1 indicates that the posterior chains have mixed appropiately. neff is an indicator of the effective number of independent samples drawn from the model. For more information, have a look to the [Stan](https://mc-stan.org/) package and its associated bayesian statistics book, [Chaper 11](http://www.stat.columbia.edu/~gelman/book/). ### Which model should I use? Both models correspond to the same posterior likelihood with the only difference on how samples from this posterior are drawn. The **mcmc** sampler is based in Gibbs and MCMC markov chain steps with help of indicator variables. This are extensively explained in the book of [Gelman](http://www.stat.columbia.edu/~gelman/book/). Such sampler have the benefit of converging *fast* to a mode of the posterior and have the nice property of concentrating around *solutions with sparse number of components*. Howerver, the posterior distribution of the bayesian deconvolution model is multimodal and, for big noises, can lead to high degeneracies of the system. In such cases, samplers based in markov chains have severe dificulties to converge. Fro the above reasons, this sampler should be used mainly for exploratory purposes in order to have a general idea of the deconvolution as well as the number of components required to describe appropiately the posterior. The **nested** sampler is based in the ideas of nested sampling introduced by [Skilling](https://projecteuclid.org/euclid.ba/1340370944). Such sampling methods have more power in order to explore complex distributions with multimodalities and complex degeneracies. The counterpart is that the sampler does not select component sparse regions of the space and the exploration becomes fast computationally expensive with the number of components. In order to speed the computation, we wrapped the well documented and recently published library for dynamic nested sampling [Dynesty](https://dynesty.readthedocs.io/en/latest/) around C++ in order to obtain reasonable sampling times for samples of data of the order of magnitude tipically encountered flow citometry datasets. The posteriors obtained through this sampling method capture better the complexity of the gaussian deconvolution in a non-prohibitive amount of time, in contrast to the mcmc sampler. Overall, one should use the mcmc sampler for exploration and number of components selection and feed that information to a selected nested sampler model in order to obtain the most reliable results within reasonable computational time.
/scBayesDeconv-0.1.tar.gz/scBayesDeconv-0.1/README.md
0.554953
0.99406
README.md
pypi
import numpy as np import pandas as pd def _binarize_discarded(gene: pd.Series, *args): """Helper function for the binarization of discarded genes. Not intended to be called directly. The inclusion of the variadic argument *args was introduced to avoid type errors when calling it from scboolseq.core.scBoolSeq""" return pd.Series(np.nan, index=gene.index) def _binarize_bimodal(gene: pd.Series, criteria: pd.DataFrame, *args): """Helper function for the binarization of bimodal genes. Not intended to be called directly. The inclusion of the variadic argument *args was introduced to avoid type errors when calling it from scboolseq.core.scBoolSeq""" _binary_gene = pd.Series(np.nan, index=gene.index) _criterion = criteria.loc[gene.name, :] bim_thresh_up = _criterion["bim_thresh_up"] bim_thresh_down = _criterion["bim_thresh_down"] _binary_gene[gene >= bim_thresh_up] = 1.0 _binary_gene[gene <= bim_thresh_down] = 0.0 return _binary_gene def _binarize_unimodal_and_zeroinf( gene: pd.Series, criteria: pd.DataFrame, alpha: float ): """Helper function for the binarization of unimodal and zero-inflated genes. Not intended to be called directly.""" _binary_gene = pd.Series(np.nan, index=gene.index) _criterion = criteria.loc[gene.name, :] unim_thresh_up = _criterion["unimodal_high_quantile"] + alpha * _criterion["IQR"] unim_thresh_down = _criterion["unimodal_low_quantile"] - alpha * _criterion["IQR"] _binary_gene[gene > unim_thresh_up] = 1.0 _binary_gene[gene < unim_thresh_down] = 0.0 return _binary_gene _binarization_function_by_category = { "ZeroInf": _binarize_unimodal_and_zeroinf, "Unimodal": _binarize_unimodal_and_zeroinf, "Bimodal": _binarize_bimodal, "Discarded": _binarize_discarded, } def _binarize_gene(gene: pd.Series, criteria: pd.DataFrame, alpha: float) -> pd.Series: """Helper function for the binarization of a single gene. Not intended to be called directly. It is internally used by scboolseq.binarization._binarize and scboolseq.binarization.binarize""" return _binarization_function_by_category[criteria.loc[gene.name, "Category"]]( gene, criteria, alpha ) def _binarize(criteria: pd.DataFrame, alpha: float, data: pd.DataFrame) -> pd.DataFrame: """binarize `data` according to `criteria`, using `alpha` multiplier for the IQR, for Unimodal and ZeroInf genes.""" return data.apply(_binarize_gene, args=[criteria, alpha]) def binarize(data: pd.DataFrame, criteria: pd.DataFrame, alpha: float) -> pd.DataFrame: """binarize `data` according to `criteria`, using `alpha` multiplier for the IQR, for Unimodal and ZeroInf genes.""" return data.apply(_binarize_gene, args=[criteria, alpha]) def binarise(*args, **kwargs) -> pd.DataFrame: """alias for binarize. See scBoolSeq.binarization.binarize""" return binarize(*args, **kwargs)
/scBoolSeq-0.8.3-py3-none-any.whl/scboolseq/binarization.py
0.87879
0.437523
binarization.py
pypi
__all__ = ["normalize", "normalise", "log_transform", "log_normalize", "log_normalise"] import numpy as np import pandas as pd from typing import Optional def normalize(raw_counts: pd.DataFrame, method: Optional[str] = None) -> pd.DataFrame: """ Normalize count matrix. Parameters ---------- raw_counts_df: pandas.DataFrame A raw count matrix containing the number of reads per gene (row), per sample (column). method: str, optional (default: "RPM") Choose from : { "RPM" or "CPM": Reads (counts) per million mapped reads (library-size correct) * RPM does not consider the transcript length normalization. * suitable for sequencing protocols where reads are generated irrespective of gene length "RPKM", "TPM" : to be implemented } Returns ------- a pandas.DataFrame, containing normalized read counts """ method = method or "RPM" method = method.upper() if method not in ["RPM", "CPM", "RPKM", "TPM"]: raise ValueError(f"unrecognized method {method}") if method == "RPM" or method == "CPM": return raw_counts / raw_counts.sum() * 1e6 else: raise NotImplementedError( "\n".join( [ "method {method} has not been implemented.", "Feel free to open a pull request at :", "https://github.com/bnediction/scBoolSeq", ] ) ) def normalise(*args, **kwargs) -> pd.DataFrame: """alias for normalize. See help(normalize)""" return normalize(*args, **kwargs) def log_transform( data: pd.DataFrame, base: Optional[int] = None, constant: Optional[int] = None ) -> pd.DataFrame: """ log transform expression data Parameters ---------- data: pd.DataFrame Annotated data matrix. base: int, optional (default: 2) The base used to calculate logarithm constant: int, optional (default: 1) The number to be added to all entries, to prevent indetermination of the transformation when a read is equal to zero. Returns ------- a pandas.DataFrame, containing log-transformed counts np.log(data + constante) / np.log(base) i.e. np.log(data + 1) / np.log(2) for default parameters """ base = base or 2 constant = constant or 1 return np.log(data + constant) / np.log(base) def log_normalize( data: pd.DataFrame, method: Optional[str] = None, base: Optional[int] = None, constant: Optional[int] = None, ) -> pd.DataFrame: """ Chain the call to normalize and log_transform Parameters ---------- data: pandas.DataFrame raw expression counts method: String optional """ _normalized = normalize(data, method=method) return log_transform(_normalized, base=base, constant=constant) def log_normalise(*args, **kwargs) -> pd.DataFrame: """alias for log_normalize. See help(log_normalize)""" return log_normalize(*args, **kwargs)
/scBoolSeq-0.8.3-py3-none-any.whl/scboolseq/utils/normalization.py
0.94843
0.499634
normalization.py
pypi
from pathlib import ( Path as _Path_, PosixPath as _PosixPath_, WindowsPath as _WindowsPath_, ) import os import argparse from time import time class Timer(object): """A simple timer class used to measure execution time, without all the problems related to using timeit.""" def __init__(self, description): self.description = description self.start: float self.end: float def __enter__(self): self.start = time() def __exit__(self, exc_type, exc_value, exc_traceback): self.end = time() print(f"{self.description}: {round(self.end - self.start, 5)}", flush=True) class Path(_Path_): """ Basically a wrapper for pathlib.Path, created to modify pathlib.Path.glob's behaviour : Added a method lglob() which returns a list instead of a generator. Thanks to this tread on code review : https://codereview.stackexchange.com/questions/162426/subclassing-pathlib-path """ def __new__(cls, *args, **kvps): return super().__new__( WindowsPath if os.name == "nt" else PosixPath, *args, **kvps ) def lglob(self, expr: str): return list(super().glob(expr)) @property def abs(self): return super().absolute().as_posix() class WindowsPath(_WindowsPath_, Path): """Helper for Path, not to be directly initialized.""" class PosixPath(_PosixPath_, Path): """Helper for Path, not to be directly initialized.""" class ObjDict(dict): """ Instantiate a dictionary that allows accessing values with object notation (as if they were attributes): ex: x.foo = 5 instead of x['foo'] = 5 The best part is that both ways work ! Ideal for working with TOML files. Additional features include : * lkeys property : same as dict.keys() but returns a list directly. * lvalues property : same as dict.values() but returns a list directly. Original code snippet found here : https://goodcode.io/articles/python-dict-object/ """ @property def lkeys(self): return list(super().keys()) @property def lvalues(self): return list(super().values()) @property def litems(self): return super().items() def __getattr__(self, name): if name in self: return self[name] else: raise AttributeError("No such attribute: " + name) def __setattr__(self, name, value): self[name] = value def __delattr__(self, name): if name in self: del self[name] else: raise AttributeError("No such attribute: " + name) class StoreDictKeyPair(argparse.Action): """Created this argparse action to save kwargs to a dict, to be passed to pandas.read_csv() this functionality will be developed in the future. """ def __init__(self, option_strings, dest, nargs=None, **kwargs): self._nargs = nargs super(StoreDictKeyPair, self).__init__( option_strings, dest, nargs=nargs, **kwargs ) def __call__(self, parser, namespace, values, option_string=None): my_dict = {} for kv in values: k, v = kv.split("=") my_dict[k] = v setattr(namespace, self.dest, my_dict)
/scBoolSeq-0.8.3-py3-none-any.whl/scboolseq/utils/customobjs.py
0.847463
0.314327
customobjs.py
pypi
# scButterfly: single-cell cross-modality translation via multi-use dual-aligned variational autoencoders ## Installation It's prefered to create a new environment for scButterfly ``` conda create scButterfly python==3.9 conda activate scButterfly ``` scButterfly is available on PyPI, and could be installed using ``` # CUDA 11.6 pip install scButterfly --extra-index-url https://download.pytorch.org/whl/cu116 # CUDA 11.3 pip install scButterfly --extra-index-url https://download.pytorch.org/whl/cu113 # CUDA 10.2 pip install scButterfly --extra-index-url https://download.pytorch.org/whl/cu102 # CPU only pip install scButterfly --extra-index-url https://download.pytorch.org/whl/cpu ``` Installation via Github is also provided ``` git clone https://github.com/Biox-NKU/scButterfly cd scButterfly python setup.py install ``` ## Quick Start scButterfly could be easily used following 3 steps: Data Preprocessing, Model training, Predicting and evaluating.more details could be find in [scButterfly documents](http://scbutterfly.readthedocs.io/). Generate a butterfly model first for following process: ```python from scButterfly.butterfly import Butterfly butterfly = Butterfly() ``` ### 1. Data Preprocessing * Before data preprocessing, you should load scRNA-seq and scATAC-seq data via `butterfly.load_data`: ```python butterfly.load_data(RNA_data, ATAC_data, train_id, test_id, validation_id) ``` | Parameters | Description | | ------------- | ------------------------------------------------------------------------------------------ | | RNA_data | AnnData object of shape `n_obs` × `n_vars`. Rows correspond to cells and columns to genes. | | ATAC_data | AnnData object of shape `n_obs` × `n_vars`. Rows correspond to cells and columns to peaks. | | train_id | A list of cell IDs for training. | | test_id | A list of cell IDs for testing. | | validation_id | An optional list of cell IDs for validation, if setted None, butterfly will use a default setting of 20% cells in train_id. | Anndata object is a Python object/container designed to store single-cell data in Python packege [**anndata**](https://anndata.readthedocs.io/en/latest/) which is seamlessly integrated with [**scanpy**](https://scanpy.readthedocs.io/en/stable/), a widely-used Python library for single-cell data analysis. * For data preprocessing, you could use `butterfly.data_preprocessing`: ```python butterfly.data_preprocessing() ``` You could save processed data or output process logging to a file using following parameters. | Parameters | Description | | ------------ | -------------------------------------------------------------------------------------------- | | save_data | optional, choose save the processed data or not, default False. | | file_path | optional, the path for saving processed data, only used if `save_data` is True, default None. | | logging_path | optional, the path for output process logging, if not save, set it None, default None. | scButterfly also support to refine this process using other parameters (more details on [scButterfly documents](http://scbutterfly.readthedocs.io/)), however, we strongly recommend the default settings to keep the best result for model. ### 2. Model training * Before model training, you could choose to use data amplification or not. If using data amplification, scButterfly will generate some artificial training sample using cell type labels(if `cell_type` in `adata.obs`) or cluster labels get with Leiden algorithm and [**MultiVI**](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html) method, a single-cell multi-omics data joint analysis method in Python packages [**scvi-tools**](https://docs.scvi-tools.org/en/stable/). scButterfly provide data amplification API: ```python butterfly.amplification(amp_type) ``` You could choose parameter `amp_type` from `cell_type_amplification` or `MultiVI_amplification`, this will cause more training time used, but promise better result for predicting. * If you choose `cell_type_amplification`, scButterfly will try to find `cell_type` in `adata.obs`. If failed, it will automaticly transfer to `MultiVI_amplification`. * If you choose `MultiVI_amplification`, scButterfly will train a MultiVI model first. * If you just want to using truth data for training, set `amp_type = None`. * You could construct a scButterfly model as following: ```python butterfly.construct_model(chrom_list) ``` scButterfly need a list of peaks count for each chromosome, remember to sort peaks with chromosomes. | Parameters | Description | | ------------ | ---------------------------------------------------------------------------------------------- | | chrom_list | a list of peaks count for each chromosome, remember to sort peaks with chromosomes. | | logging_path | optional, the path for output model structure logging, if not save, set it None, default None. | * scButterfly model could be easily trained as following: ```python butterfly.train_model() ``` | Parameters | Description | | ------------ | --------------------------------------------------------------------------------------- | | output_path | optional, path for model check point, if None, using './model' as path, default None. | | load_model | optional, the path for load pretrained model, if not load, set it None, default None. | | logging_path | optional, the path for output training logging, if not save, set it None, default None. | scButterfly also support to refine the model structure and training process using other parameters for `butterfly.construct_model()` and `butterfly.train_model()` (more details on [scButterfly documents](http://scbutterfly.readthedocs.io/)). ### 3. Predicting and evaluating * scButterfly provide a predicting API, you could get both RNA and ATAC prediction as follow: ```python A2R_predict, R2A_predict = butterly.test_model() ``` A series of evaluating method also be integrated in this function, you could get these evaluation using parameters: | Parameters | Description | | ------------- | ------------------------------------------------------------------------------------------- | | output_path | optional, path for model evaluating output, if None, using './model' as path, default None. | | load_model | optional, the path for load pretrained model, if not load, set it None, default False. | | model_path | optional, the path for pretrained model, only used if `load_model` is True, default None. | | test_relation | optional, test the correlation evaluation or not, including **Preason** and **Spearman** correlation for scRNA-seq prediction, **AUROC** and **AUPR** for scATAC-seq prediction, default False. | | test_cluster | optional, test the correlation evaluation or not, including **ARI**, **AMI**, **NMI**, **HOM**, **COM**, default False. | | test_figure | optional, draw the **tSNE** for prediction or not, default False. | | output_data | optional, output the prediction to file or not, if True, output the prediction to `output_path/A2R_predict.h5ad` and `output_path/R2A_predict.h5ad`, default False. | ## Document and tutorial ### We provide a tutorial and richer document for scButterfly in [scButterfly documents](http://scbutterfly.readthedocs.io/), including more details of provided APIs for customing data preprocessing, model structure and training strategy.
/scButterfly-0.0.4.tar.gz/scButterfly-0.0.4/README.md
0.501709
0.902136
README.md
pypi
import argparse from scCASE import run if __name__ == '__main__': def parse_args(): parser = argparse.ArgumentParser(description='Parameters') parser.add_argument('--method', type=str, default='scCASE', help='scCASE or scCASER.') parser.add_argument('--data_path', type=str,default=None, help='The path and file name of the target data.') parser.add_argument('--ref_path', type=str, default=None, help='The path and file name of the reference data.') parser.add_argument('--data_format', type=str, default="count matrix", help='The format of data and reference data, including count matrix(csv/txt/tsv) and h5ad. Default:count matrix') parser.add_argument('--data_sep', type=str, default=",", help='The Separator of target data, only for count matrix file. Default:,') parser.add_argument('--ref_sep', type=str, default=",", help='The Separator of reference data, only for count matrix file. Default:,') parser.add_argument('--type_number_range', type=range, default=range(3, 15), help='The range of possible number of cell types. Default:(2:15)') parser.add_argument('--output_path', type=str, default="./", help='The path of the result. Defalut:./') parser.add_argument('--save_other_matrixs', type=bool, default=False, help='If save the matrices including Z,W and H. Default:False') parser.add_argument('--obs_key', type=str, default=None, help='The key of cell name in adata.obs. Default:celltype') parser.add_argument('--var_key', type=str, default=None, help='The key of peaks name in adata.var. Default:peaks') parser.add_argument('--threshold', type=float, default=0.01 , help='The threshold of preprocessing. Default:0.01') parser.add_argument('--saveZ', type=bool, default=False , help='If save the initialized matrix Z. If you need to use this method multiple times for the same data, with different parameters, please select True, which can significantly accelerate the speed') parser.add_argument('--changeK', type=str, default="+0" , help='Change the parameter K.') parser.add_argument('--changeK_ref', type=str, default="+0" , help='Change the parameter K of reference.') return parser.parse_args() args = parse_args() method = args.method data_path = args.data_path ref_path = args.ref_path data_format = args.data_format data_sep = args.data_sep ref_sep = args.ref_sep type_number_range = args.type_number_range output_path = args.output_path save_other_matrixs_ = True #save_other_matrixs_ var_key = args.var_key obs_key = args.obs_key threshold = args.threshold saveZ = args.saveZ changeK = args.changeK changeK_ref = args.changeK_ref result = run(data_path,ref_path,method,data_format,data_sep,ref_sep,type_number_range,output_path,save_other_matrixs_,obs_key,var_key,threshold,saveZ,changeK,changeK_ref,True)
/scCASE-0.0.4-py3-none-any.whl/scCASE-0.0.4.data/scripts/scCASE.py
0.473657
0.191781
scCASE.py
pypi
# scCODA - Compositional analysis of single-cell data This notebook serves as a tutorial for using the *scCODA* package ([Büttner, Ostner et al., 2021](https://www.nature.com/articles/s41467-021-27150-6)) to analyze changes in cell composition data. The package is intended to be used with cell composition from single-cell RNA-seq experiments, however there are no technical restrictions that prevent the use of data from other sources. The data we use in the following example comes from [Haber et al., 2017](https://www.nature.com/articles/nature24489). It contains samples from the small intestinal epithelium of mice with different conditions. This tutorial is designed to be executed on a standard computer (any operating system) in a Python environment with scCODA, Jupyter notebook and all their dependencies installed. Running the tutorial takes about 1.5 minutes on a 2020 Apple MacBook Pro (16GB RAM). ``` # Setup import warnings warnings.filterwarnings("ignore") import pandas as pd import pickle as pkl import matplotlib.pyplot as plt from sccoda.util import comp_ana as mod from sccoda.util import cell_composition_data as dat from sccoda.util import data_visualization as viz import sccoda.datasets as scd ``` ### Data preparation ``` # Load data cell_counts = scd.haber() print(cell_counts) ``` Looking at the data, we see that we have 4 control samples, and 3 conditions with 2 samples each. To use the models in *scCODA*, we first have to convert the data into an [anndata](https://github.com/theislab/anndata) object. This can be done easily with the `sccoda.util.cell_composition_data` module. The resulting object separates our data components: Cell counts are stored in `data.X`, covariates in `data.obs`. ``` # Convert data to anndata object data_all = dat.from_pandas(cell_counts, covariate_columns=["Mouse"]) # Extract condition from mouse name and add it as an extra column to the covariates data_all.obs["Condition"] = data_all.obs["Mouse"].str.replace(r"_[0-9]", "") print(data_all) ``` For our first example, we want to look at how the Salmonella infection influences the cell composition. Therefore, we subset our data. ``` # Select control and salmonella data data_salm = data_all[data_all.obs["Condition"].isin(["Control", "Salm"])] print(data_salm.obs) ``` Plotting the data, we can see that there is a large increase of Enterocytes in the infected sampes, while most other cell types slightly decrease. Since scRNA-seq experiments are limited in the number of cells per sample, the count data is compositional, which leads to negative correlations between the cell types. Thus, the slight decreases in many cell types might be fully caused by the increase in Enterocytes. ``` viz.boxplots(data_salm, feature_name="Condition") plt.show() ``` *Note that the use of* anndata *in* scCODA *is different from the use in scRNA-seq pipelines, e.g.* scanpy. *To convert* scanpy *objects to a scCODA dataset, have a look at `dat.from_scanpy.* ### Model setup and inference We can now create the model and run inference on it. Creating a `sccoda.util.comp_ana.CompositionalAnalysis` class object sets up the compositional model and prepares everxthing for parameter inference. It needs these informations: - The data object from above. - The `formula` parameter. It specifies how the covariates are used in the model. It can process R-style formulas via the [patsy](https://patsy.readthedocs.io/en/latest/) package, e.g. `formula="Cov1 + Cov2 + Cov3"`. Here, we simply use the "Condition" covariate of our dataset - The `reference_cell_type` parameter is used to specify a cell type that is believed to be unchanged by the covariates in `formula`. This is necessary, because compositional analysis must always be performed relative to a reference (See [Büttner, Ostner et al., 2021](https://www.nature.com/articles/s41467-021-27150-6) for a more thorough explanation). If no knowledge about such a cell type exists prior to the analysis, taking a cell type that has a nearly constant relative abundance over all samples is often a good choice. It is also possible to let scCODA find a suited reference cell type by using `reference_cell_type="automatic"`. Here, we take Goblet cells as the reference. ``` model_salm = mod.CompositionalAnalysis(data_salm, formula="Condition", reference_cell_type="Goblet") ``` HMC sampling is then initiated by calling `model.sample_hmc()`, which produces a `sccoda.util.result_classes.CAResult` object. ``` # Run MCMC sim_results = model_salm.sample_hmc() ``` ### Result interpretation Calling `summary()` on the results object, we can see the most relevant information for further analysis: ``` sim_results.summary() ``` **Model properties** First, the summary shows an overview over the model properties: * Number of samples/cell types * The reference cell type. * The formula used The model has two types of parameters that are relevant for analysis - intercepts and effects. These can be interpreted like in a standard regression model: Intercepts show how the cell types are distributed without any active covariates, effects show ho the covariates influence the cell types. **Intercepts** The first column of the intercept summary shows the parameters determined by the MCMC inference. The "Expected sample" column gives some context to the numerical values. If we had a new sample (with no active covariates) with a total number of cells equal to the mean sampling depth of the dataset, then this distribution over the cell types would be most likely. **Effects** For the effect summary, the first column again shows the inferred parameters for all combinations of covariates and cell types. Most important is the distinctions between zero and non-zero entries A value of zero means that no statistically credible effect was detected. For a value other than zero, a credible change was detected. A positive sign indicates an increase, a negative sign a decrease in abundance. Since the numerical values of the "Final parameter" columns are not straightforward to interpret, the "Expected sample" and "log2-fold change" columns give us an idea on the magnitude of the change. The expected sample is calculated for each covariate separately (covariate value = 1, all other covariates = 0), with the same method as for the intercepts. The log-fold change is then calculated between this expected sample and the expected sample with no active covariates from the intercept section. Since the data is compositional, cell types for which no credible change was detected, are will change in abundance as well, as soon as a credible effect is detected on another cell type due to the sum-to-one constraint. **Interpretation** In the salmonella case, we see only a credible increase of Enterocytes, while all other cell types are unaffected by the disease. The log-fold change of Enterocytes between control and infected samples with the same total cell count lies at about 1.54. We can also easily filter out all credible effects: ``` print(sim_results.credible_effects()) ``` ### Adjusting the False discovery rate scCODA selects credible effects based on their inclusion probability. The cutoff between credible and non-credible effects depends on the desired false discovery rate (FDR). A smaller FDR value will produce more conservative results, but might miss some effects, while a larger FDR value selects more effects at the cost of a larger number of false discoveries. The desired FDR level can be easily set after inference via `sim_results.set_fdr()`. Per default, the value is 0.05, but we recommend to increase it if no effects are found at a more conservative level. In our example, setting a desired FDR of 0.4 reveals effects on Endocrine and Enterocyte cells. ``` sim_results.set_fdr(est_fdr=0.4) sim_results.summary() ``` ### Saving results The compositional analysis results can be saved as a pickle object via `results.save(<path_to_file>)`. ``` # saving path = "test" sim_results.save(path) # loading with open(path, "rb") as f: sim_results_2 = pkl.load(f) sim_results_2.summary() ```
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/docs/source/getting_started.ipynb
0.516839
0.976736
getting_started.ipynb
pypi
# scCODA - Compositional analysis of single-cell data This notebook serves as a tutorial for using the *scCODA* package ([Büttner, Ostner et al., 2021](https://www.nature.com/articles/s41467-021-27150-6)) to analyze changes in cell composition data. The package is intended to be used with cell composition from single-cell RNA-seq experiments, however there are no technical restrictions that prevent the use of data from other sources. The data we use in the following example comes from [Haber et al., 2017](https://www.nature.com/articles/nature24489). It contains samples from the small intestinal epithelium of mice with different conditions. This tutorial is designed to be executed on a standard computer (any operating system) in a Python environment with scCODA, Jupyter notebook and all their dependencies installed. Running the tutorial takes about 1.5 minutes on a 2020 Apple MacBook Pro (16GB RAM). ``` # Setup import importlib import warnings warnings.filterwarnings("ignore") import pandas as pd import pickle as pkl import matplotlib.pyplot as plt from sccoda.util import comp_ana as mod from sccoda.util import cell_composition_data as dat from sccoda.util import data_visualization as viz import sccoda.datasets as scd ``` ### Data preparation ``` # Load data cell_counts = scd.haber() print(cell_counts) ``` Looking at the data, we see that we have 4 control samples, and 3 conditions with 2 samples each. To use the models in *scCODA*, we first have to convert the data into an [anndata](https://github.com/theislab/anndata) object. This can be done easily with the `sccoda.util.cell_composition_data` module. The resulting object separates our data components: Cell counts are stored in `data.X`, covariates in `data.obs`. ``` # Convert data to anndata object data_all = dat.from_pandas(cell_counts, covariate_columns=["Mouse"]) # Extract condition from mouse name and add it as an extra column to the covariates data_all.obs["Condition"] = data_all.obs["Mouse"].str.replace(r"_[0-9]", "", regex=True) print(data_all) ``` For our first example, we want to look at how the Salmonella infection influences the cell composition. Therefore, we subset our data. ``` # Select control and salmonella data data_salm = data_all[data_all.obs["Condition"].isin(["Control", "Salm"])] print(data_salm.obs) ``` Plotting the data, we can see that there is a large increase of Enterocytes in the infected sampes, while most other cell types slightly decrease. Since scRNA-seq experiments are limited in the number of cells per sample, the count data is compositional, which leads to negative correlations between the cell types. Thus, the slight decreases in many cell types might be fully caused by the increase in Enterocytes. ``` viz.boxplots(data_salm, feature_name="Condition") plt.show() ``` *Note that the use of* anndata *in* scCODA *is different from the use in scRNA-seq pipelines, e.g.* scanpy. *To convert* scanpy *objects to a scCODA dataset, have a look at `dat.from_scanpy.* ### Model setup and inference We can now create the model and run inference on it. Creating a `sccoda.util.comp_ana.CompositionalAnalysis` class object sets up the compositional model and prepares everxthing for parameter inference. It needs these informations: - The data object from above. - The `formula` parameter. It specifies how the covariates are used in the model. It can process R-style formulas via the [patsy](https://patsy.readthedocs.io/en/latest/) package, e.g. `formula="Cov1 + Cov2 + Cov3"`. Here, we simply use the "Condition" covariate of our dataset - The `reference_cell_type` parameter is used to specify a cell type that is believed to be unchanged by the covariates in `formula`. This is necessary, because compositional analysis must always be performed relative to a reference (See [Büttner, Ostner et al., 2021](https://www.nature.com/articles/s41467-021-27150-6) for a more thorough explanation). If no knowledge about such a cell type exists prior to the analysis, taking a cell type that has a nearly constant relative abundance over all samples is often a good choice. It is also possible to let scCODA find a suited reference cell type by using `reference_cell_type="automatic"`. Here, we take Goblet cells as the reference. ``` model_salm = mod.CompositionalAnalysis(data_salm, formula="Condition", reference_cell_type="Goblet") ``` HMC sampling is then initiated by calling `model.sample_hmc()`, which produces a `sccoda.util.result_classes.CAResult` object. ``` # Run MCMC sim_results = model_salm.sample_hmc() ``` ### Result interpretation Calling `summary()` on the results object, we can see the most relevant information for further analysis: ``` sim_results.summary() ``` **Model properties** First, the summary shows an overview over the model properties: * Number of samples/cell types * The reference cell type. * The formula used The model has two types of parameters that are relevant for analysis - intercepts and effects. These can be interpreted like in a standard regression model: Intercepts show how the cell types are distributed without any active covariates, effects show ho the covariates influence the cell types. **Intercepts** The first column of the intercept summary shows the parameters determined by the MCMC inference. The "Expected sample" column gives some context to the numerical values. If we had a new sample (with no active covariates) with a total number of cells equal to the mean sampling depth of the dataset, then this distribution over the cell types would be most likely. **Effects** For the effect summary, the first column again shows the inferred parameters for all combinations of covariates and cell types. Most important is the distinctions between zero and non-zero entries A value of zero means that no statistically credible effect was detected. For a value other than zero, a credible change was detected. A positive sign indicates an increase, a negative sign a decrease in abundance. Since the numerical values of the "Final Parameter" column are not straightforward to interpret, the "Expected sample" and "log2-fold change" columns give us an idea on the magnitude of the change. The expected sample is calculated for each covariate separately (covariate value = 1, all other covariates = 0), with the same method as for the intercepts. The log-fold change is then calculated between this expected sample and the expected sample with no active covariates from the intercept section. Since the data is compositional, cell types for which no credible change was detected, can still change in abundance as well, as soon as a credible effect is detected on another cell type due to the sum-to-one constraint. If there are no credible effects for a covariate, its expected sample will be identical to the intercept sample, therefore the log2-fold change is 0. **Interpretation** In the salmonella case, we see only a credible increase of Enterocytes, while all other cell types are unaffected by the disease. The log-fold change of Enterocytes between control and infected samples with the same total cell count lies at about 1.54. We can also easily filter out all credible effects: ``` print(sim_results.credible_effects()) ``` ### Adjusting the False discovery rate scCODA selects credible effects based on their inclusion probability. The cutoff between credible and non-credible effects depends on the desired false discovery rate (FDR). A smaller FDR value will produce more conservative results, but might miss some effects, while a larger FDR value selects more effects at the cost of a larger number of false discoveries. The desired FDR level can be easily set after inference via `sim_results.set_fdr()`. Per default, the value is 0.05, but we recommend to increase it if no effects are found at a more conservative level. In our example, setting a desired FDR of 0.4 reveals effects on Endocrine and Enterocyte cells. ``` sim_results.set_fdr(est_fdr=0.4) sim_results.summary() ``` ### Saving results The compositional analysis results can be saved as a pickle object via `results.save(<path_to_file>)`. ``` # saving path = "test" sim_results.save(path) # loading with open(path, "rb") as f: sim_results_2 = pkl.load(f) sim_results_2.summary() ```
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/tutorials/getting_started.ipynb
0.502686
0.993944
getting_started.ipynb
pypi
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib import cm, rcParams from matplotlib.colors import ListedColormap from anndata import AnnData from typing import Optional, Tuple, Collection, Union, List sns.set_style("ticks") def stackbar( y: np.ndarray, type_names: List[str], title: str, level_names: List[str], figsize: Optional[Tuple[int, int]] = None, dpi: Optional[int] = 100, cmap: Optional[ListedColormap] = cm.tab20, plot_legend: Optional[bool] = True, ) -> plt.Subplot: """ Plots a stacked barplot for one (discrete) covariate Typical use (only inside stacked_barplot): plot_one_stackbar(data.X, data.var.index, "xyz", data.obs.index) Parameters ---------- y The count data, collapsed onto the level of interest. i.e. a binary covariate has two rows, one for each group, containing the count mean of each cell type type_names The names of all cell types title Plot title, usually the covariate's name level_names names of the covariate's levels figsize figure size dpi dpi setting cmap The color map for the barplot plot_legend If True, adds a legend Returns ------- Returns a plot ax a plot """ n_bars, n_types = y.shape figsize = rcParams["figure.figsize"] if figsize is None else figsize fig, ax = plt.subplots(figsize=figsize, dpi=dpi) r = np.array(range(n_bars)) sample_sums = np.sum(y, axis=1) barwidth = 0.85 cum_bars = np.zeros(n_bars) for n in range(n_types): bars = [i / j * 100 for i, j in zip([y[k][n] for k in range(n_bars)], sample_sums)] plt.bar(r, bars, bottom=cum_bars, color=cmap(n % cmap.N), width=barwidth, label=type_names[n], linewidth=0) cum_bars += bars ax.set_title(title) if plot_legend: ax.legend(loc='upper left', bbox_to_anchor=(1, 1), ncol=1) ax.set_xticks(r) ax.set_xticklabels(level_names, rotation=45) ax.set_ylabel("Proportion") return ax def stacked_barplot( data: AnnData, feature_name: str, figsize: Optional[Tuple[int, int]] = None, dpi: Optional[int] = 100, cmap: Optional[ListedColormap] = cm.tab20, plot_legend: Optional[bool] = True, level_order: List[str] = None ) -> plt.Subplot: """ Plots a stacked barplot for all levels of a covariate or all samples (if feature_name=="samples"). Usage: plot_feature_stackbars(data, ["cov1", "cov2", "cov3"]) Parameters ---------- data A scCODA compositional data object feature_name The name of the covariate to plot. If feature_name=="samples", one bar for every sample will be plotted figsize figure size dpi dpi setting cmap The color map for the barplot plot_legend If True, adds a legend level_order Custom ordering of bars on the x-axis Returns ------- Returns a plot g: a plot """ # cell type names type_names = data.var.index # option to plot one stacked barplot per sample if feature_name == "samples": if level_order: assert set(level_order) == set(data.obs.index), "level order is inconsistent with levels" data = data[level_order] g = stackbar( data.X, type_names=data.var.index, title="samples", level_names=data.obs.index, figsize=figsize, dpi=dpi, cmap=cmap, plot_legend=plot_legend, ) else: # Order levels if level_order: assert set(level_order) == set(data.obs[feature_name]), "level order is inconsistent with levels" levels = level_order elif hasattr(data.obs[feature_name], 'cat'): levels = data.obs[feature_name].cat.categories.to_list() else: levels = pd.unique(data.obs[feature_name]) n_levels = len(levels) feature_totals = np.zeros([n_levels, data.X.shape[1]]) for level in range(n_levels): l_indices = np.where(data.obs[feature_name] == levels[level]) feature_totals[level] = np.sum(data.X[l_indices], axis=0) g = stackbar( feature_totals, type_names=type_names, title=feature_name, level_names=levels, figsize=figsize, dpi=dpi, cmap=cmap, plot_legend=plot_legend, ) return g def boxplots( data: AnnData, feature_name: str, y_scale: str = "relative", plot_facets: bool = False, add_dots: bool = False, cell_types: Optional[list] = None, args_boxplot: Optional[dict] = {}, args_swarmplot: Optional[dict] = {}, figsize: Optional[Tuple[int, int]] = None, dpi: Optional[int] = 100, cmap: Optional[str] = "Blues", plot_legend: Optional[bool] = True, level_order: List[str] = None ) -> Optional[Tuple[plt.Subplot, sns.axisgrid.FacetGrid]]: """\ Grouped boxplot visualization. The cell counts for each cell type are shown as a group of boxplots, with intra--group separation by a covariate from data.obs. The cell type groups can either be ordered along the x-axis of a single plot (plot_facets=False) or as plot facets (plot_facets=True). Parameters ---------- data A scCODA-compatible data object feature_name The name of the feature in data.obs to plot y_scale Transformation to of cell counts. Options: "relative" - Relative abundance, "log" - log(count), "count" - absolute abundance (cell counts) plot_facets If False, plot cell types on the x-axis. If True, plot as facets add_dots If True, overlay a scatterplot with one dot for each data point cell_types Subset of cell types that should be plotted args_boxplot Arguments passed to sns.boxplot args_swarmplot Arguments passed to sns.swarmplot figsize figure size dpi dpi setting cmap The seaborn color map for the barplot plot_legend If True, adds a legend level_order Custom ordering of bars on the x-axis Returns ------- Depending on `plot_facets`, returns a :class:`~plt.AxesSubplot` (`plot_facets = False`) or :class:`~sns.axisgrid.FacetGrid` (`plot_facets = True`) object ax if `plot_facets = False` g if `plot_facets = True` """ # y scale transformations if y_scale == "relative": sample_sums = np.sum(data.X, axis=1, keepdims=True) X = data.X/sample_sums value_name = "Proportion" # add pseudocount 1 if using log scale (needs to be improved) elif y_scale == "log": X = np.log(data.X + 1) value_name = "log(count)" elif y_scale == "count": X = data.X value_name = "count" else: raise ValueError("Invalid y_scale transformation") count_df = pd.DataFrame(X, columns=data.var.index, index=data.obs.index).\ merge(data.obs[feature_name], left_index=True, right_index=True) plot_df = pd.melt(count_df, id_vars=feature_name, var_name="Cell type", value_name=value_name) if cell_types is not None: plot_df = plot_df[plot_df["Cell type"].isin(cell_types)] if plot_facets: if level_order is None: level_order = pd.unique(plot_df[feature_name]) K = X.shape[1] g = sns.FacetGrid( plot_df, col="Cell type", sharey=False, col_wrap=int(np.floor(np.sqrt(K))), height=5, aspect=2, ) g.map( sns.boxplot, feature_name, value_name, palette=cmap, order=level_order, **args_boxplot ) if add_dots: if "hue" in args_swarmplot: hue = args_swarmplot.pop("hue") else: hue = None if hue is None: g.map( sns.swarmplot, feature_name, value_name, color="black", order=level_order, **args_swarmplot ).set_titles("{col_name}") else: g.map( sns.swarmplot, feature_name, value_name, hue, order=level_order, **args_swarmplot ).set_titles("{col_name}") return g else: if level_order: args_boxplot["hue_order"] = level_order args_swarmplot["hue_order"] = level_order fig, ax = plt.subplots(figsize=figsize, dpi=dpi) sns.boxplot(x="Cell type", y=value_name, hue=feature_name, data=plot_df, fliersize=1, palette=cmap, ax=ax, **args_boxplot) if add_dots: sns.swarmplot( x="Cell type", y=value_name, data=plot_df, hue=feature_name, ax=ax, dodge=True, color="black", **args_swarmplot ) cell_types = pd.unique(plot_df["Cell type"]) ax.set_xticklabels(cell_types, rotation=90) if plot_legend: handles, labels = ax.get_legend_handles_labels() handout = [] labelout = [] for h, l in zip(handles, labels): if l not in labelout: labelout.append(l) handout.append(h) ax.legend(handout, labelout, loc='upper left', bbox_to_anchor=(1, 1), ncol=1, title=feature_name) plt.tight_layout() return ax def rel_abundance_dispersion_plot( data: AnnData, abundant_threshold: Optional[float] = 0.9, default_color: Optional[str] = "Grey", abundant_color: Optional[str] = "Red", label_cell_types: bool = "True", figsize: Optional[Tuple[int, int]] = None, dpi: Optional[int] = 100, ) -> plt.Subplot: """ Plots total variance of relative abundance versus minimum relative abundance of all cell types for determination of a reference cell type. If the count of the cell type is larger than 0 in more than abundant_threshold percent of all samples, the cell type will be marked in a different color. Parameters ---------- data A scCODA compositional data object abundant_threshold Presence threshold for abundant cell types. default_color bar color for all non-minimal cell types, default: "Grey" abundant_color bar color for cell types with abundant percentage larger than abundant_threshold, default: "Red" label_cell_types boolean - label dots with cell type names figsize figure size dpi dpi setting Returns ------- Returns a plot ax a plot """ fig, ax = plt.subplots(figsize=figsize, dpi=dpi) rel_abun = data.X / np.sum(data.X, axis=1, keepdims=True) percent_zero = np.sum(data.X == 0, axis=0) / data.X.shape[0] nonrare_ct = np.where(percent_zero < 1-abundant_threshold)[0] # select reference cell_type_disp = np.var(rel_abun, axis=0) / np.mean(rel_abun, axis=0) is_abundant = [x in nonrare_ct for x in range(data.X.shape[1])] # Scatterplot plot_df = pd.DataFrame({ "Total dispersion": cell_type_disp, "Cell type": data.var.index, "Presence": 1-percent_zero, "Is abundant": is_abundant }) if len(np.unique(plot_df["Is abundant"])) > 1: palette = [default_color, abundant_color] elif np.unique(plot_df["Is abundant"]) == [False]: palette = [default_color] else: palette = [abundant_color] sns.scatterplot( data=plot_df, x="Presence", y="Total dispersion", hue="Is abundant", palette=palette ) # Text labels for abundant cell types abundant_df = plot_df.loc[plot_df["Is abundant"] == True, :] def label_point(x, y, val, ax): a = pd.concat({'x': x, 'y': y, 'val': val}, axis=1) for i, point in a.iterrows(): ax.text(point['x'] + .02*ax.get_xlim()[1], point['y'], str(point['val'])) if label_cell_types: label_point( abundant_df["Presence"], abundant_df["Total dispersion"], abundant_df["Cell type"], plt.gca() ) ax.legend(loc='upper left', bbox_to_anchor=(1, 1), ncol=1, title="Is abundant") plt.tight_layout() return ax
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/sccoda/util/data_visualization.py
0.895177
0.622717
data_visualization.py
pypi
import numpy as np import arviz as az import pandas as pd import pickle as pkl from typing import Optional, Tuple, Collection, Union, List class CAResultConverter(az.data.io_dict.DictConverter): """ Helper class for result conversion into arviz's format """ def to_result_data(self, sampling_stats, model_specs): post = self.posterior_to_xarray() ss = self.sample_stats_to_xarray() postp = self.posterior_predictive_to_xarray() prior = self.prior_to_xarray() ssp = self.sample_stats_prior_to_xarray() prip = self.prior_predictive_to_xarray() obs = self.observed_data_to_xarray() return CAResult( sampling_stats, model_specs, **{ "posterior": post, "sample_stats": ss, "posterior_predictive": postp, "prior": prior, "sample_stats_prior": ssp, "prior_predictive": prip, "observed_data": obs, } ) class CAResult(az.InferenceData): """ Result class for scCODA, extends the arviz framework for inference data. The CAResult class is an extension of az.InferenceData, that adds some information about the compositional model and is able to print humanly readable results. It supports all functionality from az.InferenceData. """ def __init__( self, sampling_stats: dict, model_specs: dict, **kwargs ): """ Gathers sampling information from a compositional model and converts it to a ``az.InferenceData`` object. The following attributes are added during class initialization: ``self.sampling_stats``: dict - see below ``self.model_specs``: dict - see below ``self.intercept_df``: Intercept dataframe from ``CAResult.summary_prepare`` ``self.effect_df``: Effect dataframe from ``CAResult.summary_prepare`` Parameters ---------- sampling_stats Information and statistics about the MCMC sampling procedure. Default keys: - "chain_length": Length of MCMC chain (with burnin samples) - "num_burnin": Number of burnin samples - "acc_rate": MCMC Acceptance rate - "duration": Duration of MCMC sampling model_specs All information and statistics about the model specifications. Default keys: - "formula": Formula string - "reference": int - identifier of reference cell type Added during class initialization: - "threshold_prob": Threshold for inclusion probability that separates significant from non-significant effects kwargs passed to az.InferenceData. This includes the MCMC chain states and statistics for eachs MCMC sample. """ super(self.__class__, self).__init__(**kwargs) self.sampling_stats = sampling_stats self.model_specs = model_specs if "ind" in list(self.posterior.data_vars): self.is_sccoda = True else: self.is_sccoda = False intercept_df, effect_df = self.summary_prepare() self.intercept_df = intercept_df self.effect_df = effect_df def summary_prepare( self, est_fdr: float = 0.05, *args, **kwargs ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Generates summary dataframes for intercepts and slopes. This function builds on and supports all functionalities from ``az.summary``. Parameters ---------- est_fdr Desired FDR value args Passed to ``az.summary`` kwargs Passed to ``az.summary`` Returns ------- Intercept and effect DataFrames intercept_df -- pandas df Summary of intercept parameters. Contains one row per cell type. Columns: - Final Parameter: Final intercept model parameter - HDI X%: Upper and lower boundaries of confidence interval (width specified via hdi_prob=) - SD: Standard deviation of MCMC samples - Expected sample: Expected cell counts for a sample with no present covariates. See the tutorial for more explanation effect_df -- pandas df Summary of effect (slope) parameters. Contains one row per covariate/cell type combination. Columns: - Final Parameter: Final effect model parameter. If this parameter is 0, the effect is not significant, else it is. - HDI X%: Upper and lower boundaries of confidence interval (width specified via hdi_prob=) - SD: Standard deviation of MCMC samples - Expected sample: Expected cell counts for a sample with only the current covariate set to 1. See the tutorial for more explanation - log2-fold change: Log2-fold change between expected cell counts with no covariates and with only the current covariate - Inclusion probability: Share of MCMC samples, for which this effect was not set to 0 by the spike-and-slab prior. """ # initialize summary df from arviz and separate into intercepts and effects. summ = az.summary(self, *args, **kwargs, kind="stats", var_names=["alpha", "beta"]) effect_df = summ.loc[summ.index.str.match("|".join(["beta"]))].copy() intercept_df = summ.loc[summ.index.str.match("|".join(["alpha"]))].copy() # Build neat index cell_types = self.posterior.coords["cell_type"].values covariates = self.posterior.coords["covariate"].values intercept_df.index = pd.Index(cell_types, name="Cell Type") effect_df.index = pd.MultiIndex.from_product([covariates, cell_types], names=["Covariate", "Cell Type"]) # Calculation of columns that are not from az.summary intercept_df = self.complete_alpha_df(intercept_df) effect_df = self.complete_beta_df(intercept_df, effect_df, est_fdr) # Give nice column names, remove unnecessary columns hdis = intercept_df.columns[intercept_df.columns.str.contains("hdi")] hdis_new = hdis.str.replace("hdi_", "HDI ") # Credible interval if self.is_sccoda is True: ind_post = self.posterior["ind"] b_raw_sel = self.posterior["b_raw"] * ind_post.where(ind_post >= 1e-3) res = az.convert_to_inference_data(b_raw_sel) summary_sel = az.summary(res, kind="stats", var_names=["x"], skipna=True, *args, **kwargs) ref_index = self.model_specs["reference"] n_conditions = len(self.posterior.coords["covariate"]) n_cell_types = len(self.posterior.coords["cell_type"]) def insert_row(idx, df, df_insert): return pd.concat([df.iloc[:idx, ], df_insert, df.iloc[idx:, ]]).reset_index(drop=True) for i in range(n_conditions): summary_sel = insert_row((i*n_cell_types) + ref_index, summary_sel, pd.DataFrame.from_dict(data={"mean": [0], "sd": [0], hdis[0]: [0], hdis[1]: [0]})) effect_df.loc[:, hdis[0]] = list(summary_sel[hdis[0]]) effect_df.loc[:, hdis[1]] = list(summary_sel.loc[:, hdis[1]]) intercept_df = intercept_df.loc[:, ["final_parameter", hdis[0], hdis[1], "sd", "expected_sample"]].copy() intercept_df = intercept_df.rename(columns=dict(zip( intercept_df.columns, ["Final Parameter", hdis_new[0], hdis_new[1], "SD", "Expected Sample"] ))) effect_df = effect_df.loc[:, ["final_parameter", hdis[0], hdis[1], "sd", "inclusion_prob", "expected_sample", "log_fold"]].copy() effect_df = effect_df.rename(columns=dict(zip( effect_df.columns, ["Final Parameter", hdis_new[0], hdis_new[1], "SD", "Inclusion probability", "Expected Sample", "log2-fold change"] ))) return intercept_df, effect_df def complete_beta_df( self, intercept_df: pd.DataFrame, effect_df: pd.DataFrame, target_fdr: float=0.05, ) -> pd.DataFrame: """ Evaluation of MCMC results for effect parameters. This function is only used within self.summary_prepare. This function also calculates the posterior inclusion probability for each effect and decides whether effects are significant. Parameters ---------- intercept_df Intercept summary, see ``self.summary_prepare`` effect_df Effect summary, see ``self.summary_prepare`` target_fdr Desired FDR value Returns ------- effect DataFrame effect_df DataFrame with inclusion probability, final parameters, expected sample """ beta_inc_prob = [] beta_nonzero_mean = [] beta_raw = np.array(self.posterior["beta"])[0] # Calculate inclusion prob, nonzero mean for every effect for j in range(beta_raw.shape[1]): for i in range(beta_raw.shape[2]): beta_i_raw = beta_raw[:, j, i] beta_i_raw_nonzero = np.where(np.abs(beta_i_raw) > 1e-3)[0] prob = beta_i_raw_nonzero.shape[0] / beta_i_raw.shape[0] beta_inc_prob.append(prob) if len(beta_i_raw[beta_i_raw_nonzero]) > 0: beta_nonzero_mean.append(beta_i_raw[beta_i_raw_nonzero].mean()) else: beta_nonzero_mean.append(0) effect_df.loc[:, "inclusion_prob"] = beta_inc_prob effect_df.loc[:, "mean_nonzero"] = beta_nonzero_mean # Inclusion prob threshold value. Direct posterior probability approach cf. Newton et al. (2004) if self.is_sccoda is True: def opt_thresh(result, alpha): incs = np.array(result.loc[result["inclusion_prob"] > 0, "inclusion_prob"]) incs[::-1].sort() for c in np.unique(incs): fdr = np.mean(1 - incs[incs >= c]) if fdr < alpha: # ceiling with 3 decimals precision c = np.floor(c * 10 ** 3) / 10 ** 3 return c, fdr return 1., 0 threshold, fdr_ = opt_thresh(effect_df, target_fdr) self.model_specs["threshold_prob"] = threshold # Decide whether betas are significant or not, set non-significant ones to 0 effect_df.loc[:, "final_parameter"] = np.where(effect_df.loc[:, "inclusion_prob"] >= threshold, effect_df.loc[:, "mean_nonzero"], 0) else: effect_df.loc[:, "final_parameter"] = effect_df.loc[:, "mean_nonzero"] # Get expected sample, log-fold change D = len(effect_df.index.levels[0]) K = len(effect_df.index.levels[1]) y_bar = np.mean(np.sum(np.array(self.observed_data.y), axis=1)) alpha_par = intercept_df.loc[:, "final_parameter"] alphas_exp = np.exp(alpha_par) alpha_sample = (alphas_exp / np.sum(alphas_exp) * y_bar).values beta_mean = alpha_par beta_sample = [] log_sample = [] for d in range(D): beta_d = effect_df.loc[:, "final_parameter"].values[(d*K):((d+1)*K)] beta_d = (beta_mean + beta_d) beta_d = np.exp(beta_d) beta_d = beta_d / np.sum(beta_d) * y_bar beta_sample = np.append(beta_sample, beta_d) log_sample = np.append(log_sample, np.log2(beta_d/alpha_sample)) effect_df.loc[:, "expected_sample"] = beta_sample effect_df.loc[:, "log_fold"] = log_sample return effect_df def complete_alpha_df( self, intercept_df: pd.DataFrame ) -> pd.DataFrame: """ Evaluation of MCMC results for intercepts. This function is only used within self.summary_prepare. Parameters ---------- intercept_df Intercept summary, see self.summary_prepare Returns ------- intercept DataFrame intercept_df Summary DataFrame with expected sample, final parameters """ intercept_df = intercept_df.rename(columns={"mean": "final_parameter"}) # Get expected sample y_bar = np.mean(np.sum(np.array(self.observed_data.y), axis=1)) alphas_exp = np.exp(intercept_df.loc[:, "final_parameter"]) alpha_sample = (alphas_exp / np.sum(alphas_exp) * y_bar).values intercept_df.loc[:, "expected_sample"] = alpha_sample return intercept_df def summary( self, *args, **kwargs ): """ Printing method for scCODA's summary. Usage: ``result.summary()`` Parameters ---------- args Passed to az.summary kwargs Passed to az.summary Returns ------- prints to console """ # If other than default values for e.g. confidence interval are specified, # recalculate them for intercept and effect DataFrames if args or kwargs: intercept_df, effect_df = self.summary_prepare(*args, **kwargs) else: intercept_df = self.intercept_df effect_df = self.effect_df # Get number of samples, cell types if self.sampling_stats["y_hat"] is not None: data_dims = self.sampling_stats["y_hat"].shape else: data_dims = (10, 5) # Cut down DataFrames to relevant info alphas_print = intercept_df.loc[:, ["Final Parameter", "Expected Sample"]] betas_print = effect_df.loc[:, ["Final Parameter", "Expected Sample", "log2-fold change"]] # Print everything neatly print("Compositional Analysis summary:") print("") print("Data: %d samples, %d cell types" % data_dims) print("Reference index: %s" % str(self.model_specs["reference"])) print("Formula: %s" % self.model_specs["formula"]) print("") print("Intercepts:") print(alphas_print) print("") print("") print("Effects:") print(betas_print) def summary_extended( self, *args, **kwargs ): """ Extended (diagnostic) printing function that shows more info about the sampling result Parameters ---------- args Passed to az.summary kwargs Passed to az.summary Returns ------- Prints to console """ # If other than default values for e.g. confidence interval are specified, # recalculate them for intercept and effect DataFrames if args or kwargs: intercept_df, effect_df = self.summary_prepare(*args, **kwargs) else: intercept_df = self.intercept_df effect_df = self.effect_df # Get number of samples, cell types data_dims = self.sampling_stats["y_hat"].shape # Print everything print("Compositional Analysis summary (extended):") print("") print("Data: %d samples, %d cell types" % data_dims) print("Reference index: %s" % str(self.model_specs["reference"])) print("Formula: %s" % self.model_specs["formula"]) if self.is_sccoda: print("Spike-and-slab threshold: {threshold:.3f}".format(threshold=self.model_specs["threshold_prob"])) print("") print("MCMC Sampling: Sampled {num_results} chain states ({num_burnin} burnin samples) in {duration:.3f} sec. " "Acceptance rate: {ar:.1f}%".format(num_results=self.sampling_stats["chain_length"], num_burnin=self.sampling_stats["num_burnin"], duration=self.sampling_stats["duration"], ar=(100*self.sampling_stats["acc_rate"]))) print("") print("Intercepts:") print(intercept_df) print("") print("") print("Effects:") print(effect_df) def compare_parameters_to_truth( self, b_true: pd.Series, w_true: pd.Series, *args, **kwargs ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Extends data frames from summary_prepare by a comparison to some ground truth slope and intercept values that are assumed to be from the same generative model (e.g. in data_generation) Parameters ---------- b_true Ground truth slope values. Length must be same as number of cell types w_true Ground truth intercept values. Length must be same as number of cell types*number of covariates args Passed to az.summary kwargs Passed to az.summary Returns ------- Extends intercept and effect DataFrames intercept_df Summary DataFrame for intercepts effect_df Summary DataFrame for effects """ intercept_df, effect_df = self.summary_prepare(*args, **kwargs) intercept_df.columns = intercept_df.columns.str.replace('final_parameter', 'predicted') effect_df.columns = effect_df.columns.str.replace('final_parameter', 'predicted') # Get true params, join to calculated parameters b_true = b_true.rename("truth") intercept_df = intercept_df.join(b_true) w_true = w_true.rename("truth") effect_df = effect_df.join(w_true) # decide whether effects are found correctly intercept_df['dist_to_truth'] = intercept_df['truth'] - intercept_df['predicted'] intercept_df['effect_correct'] = ((intercept_df['truth'] == 0) == (intercept_df['predicted'] == 0)) effect_df['dist_to_truth'] = effect_df['truth'] - effect_df['predicted'] effect_df['effect_correct'] = ((effect_df['truth'] == 0) == (effect_df['predicted'] == 0)) return intercept_df, effect_df def distance_to_truth(self) -> pd.DataFrame: """ Compares real cell count matrix to the posterior mode cell count matrix that arises from the calculated parameters Returns ------- DataFrame with distances ret DataFrame """ # Get absolute (counts) and relative error matrices y = np.array(self.observed_data.y) y_hat = self.sampling_stats["y_hat"] err = np.abs(y_hat - y) err_rel = err / y err_rel[np.isinf(err_rel)] = 1. err_rel[np.isnan(err_rel)] = 0. # Calculate mean errors for each cell type and overall avg_abs_cell_type_error = np.mean(err, axis=0, dtype=np.float64) avg_rel_cell_type_error = np.mean(err_rel, axis=0, dtype=np.float64) avg_abs_total_error = np.mean(err, dtype=np.float64) avg_rel_total_error = np.mean(err_rel, dtype=np.float64) ret = pd.DataFrame({'Cell Type': np.arange(y.shape[1] + 1), 'Absolute Error': np.append(avg_abs_total_error, avg_abs_cell_type_error), 'Relative Error': np.append(avg_rel_total_error, avg_rel_cell_type_error), 'Actual Means': np.append(np.mean(y, axis=(0, 1)), np.mean(y, axis=0)), 'Predicted Means': np.append(np.mean(y_hat, axis=(0, 1)), np.mean(y_hat, axis=0))}) ret['Cell Type'][0] = 'Total' return ret def credible_effects( self, est_fdr=None ) -> pd.Series: """ Decides which effects of the scCODA model are credible based on an adjustable inclusion probability threshold. Parameters ---------- est_fdr Estimated false discovery rate. Must be between 0 and 1 Returns ------- Credible effect decision series out Boolean values whether effects are credible under inc_prob_threshold """ if type(est_fdr) == float: if est_fdr < 0 or est_fdr > 1: raise ValueError("est_fdr must be between 0 and 1!") else: _, eff_df = self.summary_prepare(est_fdr=est_fdr) else: eff_df = self.effect_df out = eff_df["Final Parameter"] != 0 out.rename("credible change") return out def save( self, path_to_file: str ): """ Function to save scCODA results to disk via pickle. Caution: Files can quickly become very large! Parameters ---------- path_to_file saving location on disk Returns ------- """ with open(path_to_file, "wb") as f: pkl.dump(self, file=f, protocol=4) def set_fdr( self, est_fdr: float, *args, **kwargs): """ Direct posterior probability approach to calculate credible effects while keeping the expected FDR at a certain level Parameters ---------- est_fdr Desired FDR value args passed to self.summary_prepare kwargs passed to self.summary_prepare Returns ------- Adjusts self.intercept_df and self.effect_df """ intercept_df, effect_df = self.summary_prepare(est_fdr=est_fdr, *args, **kwargs) self.intercept_df = intercept_df self.effect_df = effect_df
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/sccoda/util/result_classes.py
0.89069
0.580233
result_classes.py
pypi
import numpy as np import anndata as ad import pandas as pd from scipy.special import softmax from anndata import AnnData from typing import Optional, Tuple, Collection, Union, List def generate_case_control( cases: int = 1, K: int = 5, n_total: int = 1000, n_samples: List[any] = [5, 5], sigma: Optional[np.ndarray] = None, b_true: Optional[np.ndarray] = None, w_true: Optional[np.ndarray] = None ) -> AnnData: """ Generates compositional data with binary covariates. Parameters ---------- cases number of covariates. This will lead to D=2**cases columns in X, one for each combination of active/inactive covariates. K Number of cell types n_total number of cells per sample n_samples Number of samples per case combination. len(n_samples)=[2**cases] sigma correlation matrix for cell types,size KxK b_true bias coefficients, size K w_true Effect matrix, size DxK Returns ------- compositional data data Anndata object """ D = cases**2 # Uniform intercepts if none are specifed if b_true is None: b_true = np.random.uniform(-3, 3, size=K).astype(np.float64) # bias (alpha) # Randomly select covariates that should correlate if none are specified if w_true is None: n_d = np.random.choice(range(D), size=1) n_k = np.random.choice(range(K), size=1) w_true = sparse_effect_matrix(D, K, n_d, n_k) # Sigma is identity if not specified else if sigma is None: sigma = np.identity(K) * 0.05 # noise = noise_std_true * np.random.randn(N, 1).astype(np.float64) # Initialize x, y x = np.zeros((sum(n_samples), cases)) y = np.zeros((sum(n_samples), K)) c = 0 # Binary representation of a number x as list of fixed length def binary(num, length): return [int(x_n) for x_n in bin(num)[2:].zfill(length)] # For all combinations of cases for i in range(2**cases): # For each sample with this combination for j in range(n_samples[i]): # row of x is binary representation x[c+j] = binary(i, cases) # Generate y alpha = np.random.multivariate_normal(mean=x[c+j, :].T @ w_true + b_true, cov=sigma).astype( np.float64) concentration = softmax(alpha).astype(np.float64) z = np.random.multinomial(n_total, concentration) y[c+j] = z c = c+n_samples[i] x = x.astype(np.float64) y = y.astype(np.float64) x_names = ["x_" + str(n) for n in range(x.shape[1])] x_df = pd.DataFrame(x, columns=x_names) x_df.index = x_df.index.astype(str) data = ad.AnnData(X=y, obs=x_df, uns={"b_true": b_true, "w_true": w_true}) return data def b_w_from_abs_change( counts_before: np.ndarray = np.array([200, 200, 200, 200, 200]), abs_change: np.ndarray = np.array([50, 0, 0, 0, 0]), n_total: int = 1000 ) -> Tuple[np.ndarray, np.ndarray]: """ Calculates intercepts and slopes from a starting count and an absolute change for the first cell type Parameters ---------- counts_before cell counts for control samples abs_change change of first cell type in terms of cell counts n_total number of cells per sample. This stays constant over all samples!!! Returns ------- Returns an intercept and an effect array intercepts intercept parameters slopes slope parameters """ K = counts_before.shape[0] # calculate intercepts for control samples b = np.log(counts_before / n_total) # count vector after applying the effect. counts_after = counts_before + abs_change da = np.where(abs_change!=0)[0] sum_after_da = np.sum(counts_after[da]) non_da = [x for x in np.arange(K) if x not in da] n_non_da = len(non_da) count_non_da = (n_total - sum_after_da)/n_non_da counts_after[non_da] = count_non_da # Get parameter vector with effect b_after = np.log(counts_after / n_total) # w is the difference of b before and after w = b_after - b # Transform w such that only first entry is nonzero w = w - w[K - 1] return b, w def counts_from_first( b_0: int = 200, n_total: int = 1000, K: int = 5 ) -> np.ndarray: """ Calculates a count vector from a given first entry, length and sum. The entries 2...K will get the same value. Parameters ---------- b_0 size of first entry n_total total sum of all entries K length of output vector (number of cell types) Returns ------- An intercept array b count vector (not necessarily integer), size K """ b = np.repeat((n_total-b_0)/(K-1), K) b[0] = b_0 return b def sparse_effect_matrix( D: int, K: int, n_d: int, n_k: int ) -> np.ndarray: """ Generates a sparse effect matrix Parameters ---------- D Number of covariates K Number of cell types n_d Number of covariates that effect each cell type n_k Number of cell types that are affected by each covariate Returns ------- An effect matrix w_true Effect matrix """ # Choose indices of affected cell types and covariates randomly d_eff = np.random.choice(range(D), size=n_d, replace=False) k_eff = np.random.choice(range(K), size=n_k, replace=False) # Possible entries of w_true w_choice = [0.3, 0.5, 1] w_true = np.zeros((D, K)) # Fill in w_true for i in d_eff: for j in k_eff: c = np.random.choice(3, 1) w_true[i, j] = w_choice[c] return w_true
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/sccoda/util/data_generation.py
0.898003
0.752808
data_generation.py
pypi
import numpy as np import patsy as pt from anndata import AnnData from sccoda.model import scCODA_model as dm from typing import Union, Optional class CompositionalAnalysis: """ Initializer class for scCODA models. This class is called when performing compositional analysis with scCODA. Usage: model = CompositionalAnalysis(data, formula="covariate1 + covariate2", reference_cell_type="CellTypeA") Calling an scCODA model requires these parameters: data anndata object with cell counts as data.X and covariates saved in data.obs formula patsy-style formula for building the covariate matrix. Categorical covariates are handled automatically, with the covariate value of the first sample being used as the reference category. To set a different level as the base category for a categorical covariate, use "C(<CovariateName>, Treatment('<ReferenceLevelName>'))" reference_cell_type Column index that sets the reference cell type. Can either reference the name of a column or a column number (starting at 0). If "automatic", the cell type with the lowest dispersion in relative abundance that is present in at least 90% of samlpes will be chosen. """ def __new__( cls, data: AnnData, formula: str, reference_cell_type: Union[str, int] = "automatic", automatic_reference_absence_threshold: float = 0.05, ) -> dm.scCODAModel: """ Builds count and covariate matrix, returns a CompositionalModel object Usage: model = CompositionalAnalysis(data, formula="covariate1 + covariate2", reference_cell_type="CellTypeA") Parameters ---------- data anndata object with cell counts as data.X and covariates saved in data.obs formula R-style formula for building the covariate matrix. Categorical covariates are handled automatically, with the covariate value of the first sample being used as the reference category. To set a different level as the base category for a categorical covariate, use "C(<CovariateName>, Treatment('<ReferenceLevelName>'))" reference_cell_type Column index that sets the reference cell type. Can either reference the name of a column or the n-th column (indexed at 0). If "automatic", the cell type with the lowest dispersion in relative abundance that is present in at least 90% of samlpes will be chosen. automatic_reference_absence_threshold If using reference_cell_type = "automatic", determine what the maximum fraction of zero entries for a cell type is to be considered as a possible reference cell type Returns ------- A compositional model model A scCODA.models.scCODA_model.CompositionalModel object """ cell_types = data.var.index.to_list() # Get count data data_matrix = data.X.astype("float64") # Build covariate matrix from R-like formula covariate_matrix = pt.dmatrix(formula, data.obs) covariate_names = covariate_matrix.design_info.column_names[1:] covariate_matrix = covariate_matrix[:, 1:] # Invoke instance of the correct model depending on reference cell type # Automatic reference selection (dispersion-based) if reference_cell_type == "automatic": percent_zero = np.sum(data_matrix == 0, axis=0)/data_matrix.shape[0] nonrare_ct = np.where(percent_zero < automatic_reference_absence_threshold)[0] if len(nonrare_ct) == 0: raise ValueError("No cell types that have large enough presence! Please increase automatic_reference_absence_threshold") rel_abun = data_matrix / np.sum(data_matrix, axis=1, keepdims=True) # select reference cell_type_disp = np.var(rel_abun, axis=0)/np.mean(rel_abun, axis=0) min_var = np.min(cell_type_disp[nonrare_ct]) ref_index = np.where(cell_type_disp == min_var)[0][0] ref_cell_type = cell_types[ref_index] print(f"Automatic reference selection! Reference cell type set to {ref_cell_type}") return dm.scCODAModel( covariate_matrix=np.array(covariate_matrix), data_matrix=data_matrix, cell_types=cell_types, covariate_names=covariate_names, reference_cell_type=ref_index, formula=formula, ) # Column name as reference cell type elif reference_cell_type in cell_types: num_index = cell_types.index(reference_cell_type) return dm.scCODAModel( covariate_matrix=np.array(covariate_matrix), data_matrix=data_matrix, cell_types=cell_types, covariate_names=covariate_names, reference_cell_type=num_index, formula=formula, ) # Numeric reference cell type elif isinstance(reference_cell_type, int) & (reference_cell_type < len(cell_types)) & (reference_cell_type >= 0): return dm.scCODAModel( covariate_matrix=np.array(covariate_matrix), data_matrix=data_matrix, cell_types=cell_types, covariate_names=covariate_names, reference_cell_type=reference_cell_type, formula=formula, ) # None of the above: Throw error else: raise NameError("Reference index is not a valid cell type name or numerical index!")
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/sccoda/util/comp_ana.py
0.93811
0.724432
comp_ana.py
pypi
import pandas as pd import anndata as ad import os import numpy as np from anndata import AnnData from typing import Optional, Tuple, Collection, Union, List def read_anndata_one_sample( adata: AnnData, cell_type_identifier: str, covariate_key: Optional[str] = None ) -> Tuple[np.ndarray, dict]: """ Converts a single scRNA-seq data set from scanpy (anndata format) to a row of a cell count matrix. It is assumed that a column of adata.obs (e.g. Louvain clustering results) contains the cell type assignment. Additionally, covariates (control/disease group, ...) can be specified as a subdict in adata.uns Usage: ``cell_counts, covs = from_scanpy(adata, cell_type_identifier="Louvain", covariate_key="covariates")`` Parameters ---------- adata single-cell data object from scanpy cell_type_identifier column name in adata.obs that specifies the cell types covariate_key key for adata.uns, where the covariate values are stored Returns ------- A numpy array for the cell counts and a dict for the covariates cell_counts cell count vector covs covariate dictionary """ # Calculate cell counts for the sample cell_counts = adata.obs[cell_type_identifier].value_counts() # extracting covariates from uns if covariate_key is not None: covs = adata.uns[covariate_key] return cell_counts, covs else: return cell_counts def from_scanpy_list( samples: List[AnnData], cell_type_identifier: str, covariate_key: Optional[str] = None, covariate_df: Optional[pd.DataFrame] = None ) -> AnnData: """ Creates a compositional analysis data set from a list of scanpy data sets. To use this function, all data sets need to have one identically named column in adata.obs that contains the cell type assignment. Covariates can either be specified via a key in adata.uns, or as a separate DataFrame Usage: ``data = from_scanpy_list([adata1, adata2, adata3], cell_type_identifier="Louvain", covariate_df="covariates")`` Parameters ---------- samples list of scanpy data sets cell_type_identifier column name in adata.obs that specifies the cell types covariate_key key for adata.uns, where covariate values are stored covariate_df DataFrame with covariates Returns ------- A compositional analysis data set data A compositional analysis data set """ count_data = pd.DataFrame() covariate_data = pd.DataFrame() # iterate over anndata objects for each sample if covariate_key is not None: for s in samples: cell_counts, covs = read_anndata_one_sample(s, cell_type_identifier, covariate_key) cell_counts = pd.DataFrame(cell_counts).T count_data = pd.concat([count_data, cell_counts]) covariate_data = pd.concat([covariate_data, pd.Series(covs).to_frame().T], ignore_index=True) elif covariate_df is not None: for s in samples: cell_counts = read_anndata_one_sample(s, cell_type_identifier) cell_counts = pd.DataFrame(cell_counts).T count_data = pd.concat([count_data, cell_counts]) covariate_data = covariate_df else: print("No covariate information specified!") return # Replace NaNs count_data = count_data.fillna(0) covariate_data.index = covariate_data.index.astype(str) var_dat = count_data.sum(axis=0).rename("n_cells").to_frame() var_dat.index = var_dat.index.astype(str) return ad.AnnData(X=count_data.values, var=var_dat, obs=covariate_data) def from_scanpy_dir( path: str, cell_type_identifier: str, covariate_key: Optional[str] = None, covariate_df: Optional[pd.DataFrame] = None ) -> AnnData: """ Creates a compositional analysis data set from all scanpy data sets in a directory. To use this function, all data sets need to have one identically named column in adata.obs that contains the cell type assignment. Covariates can either be specified via a key in adata.uns, or as a separate DataFrame Usage: ``data = from_scanpy_dir("./path/to/directory", cell_type_identifier="Louvain", covariate_key="covariates")`` Parameters ---------- path path to directory cell_type_identifier column name in adata.obs that specifies the cell types covariate_key key for adata.uns, where covariate values are stored covariate_df DataFrame with covariates Returns ------- A compositional analysis data set data A compositional analysis data set """ count_data = pd.DataFrame() covariate_data = pd.DataFrame() filenames = os.listdir(path) if covariate_key is not None: for f in filenames: adata = ad.read_h5ad(f) cell_counts, covs = read_anndata_one_sample(adata, cell_type_identifier, covariate_key) cell_counts = pd.DataFrame(cell_counts).T count_data = pd.concat([count_data, cell_counts]) covariate_data = pd.concat([covariate_data, pd.Series(covs).to_frame().T], ignore_index=True) elif covariate_df is not None: for f in filenames: adata = ad.read_h5ad(f) cell_counts = read_anndata_one_sample(adata, cell_type_identifier) cell_counts = pd.DataFrame(cell_counts).T count_data = pd.concat([count_data, cell_counts]) covariate_data = covariate_df else: print("No covariate information specified!") return # Replace NaNs count_data = count_data.fillna(0) covariate_data.index = covariate_data.index.astype(str) var_dat = count_data.sum(axis=0).rename("n_cells").to_frame() var_dat.index = var_dat.index.astype(str) return ad.AnnData(X=count_data.values, var=var_dat, obs=covariate_data) def from_scanpy( adata: AnnData, cell_type_identifier: str, sample_identifier: str, covariate_key: Optional[str] = None, covariate_df: Optional[pd.DataFrame] = None ) -> AnnData: """ Creates a compositional analysis dataset from a single anndata object, as it is produced by e.g. scanpy. The anndata object needs to have a column in adata.obs that contains the cell type assignment, and one column that specifies the grouping into samples. Covariates can either be specified via a key in adata.uns, or as a separate DataFrame. NOTE: The order of samples in the returned dataset is determined by the first occurence of cells from each sample in `adata` Parameters ---------- adata list of scanpy data sets cell_type_identifier column name in adata.obs that specifies the cell types sample_identifier column name in adata.obs that specifies the sample covariate_key key for adata.uns, where covariate values are stored covariate_df DataFrame with covariates Returns ------- A compositional analysis data set data A compositional analysis data set """ groups = adata.obs.value_counts([sample_identifier, cell_type_identifier]) count_data = groups.unstack(level=cell_type_identifier) count_data = count_data.fillna(0) if covariate_key is not None: covariate_df = pd.DataFrame(adata.uns[covariate_key]) elif covariate_df is None: print("No covariate information specified!") covariate_df = pd.DataFrame(index=count_data.index) if set(covariate_df.index) != set(count_data.index): raise ValueError("anndata sample names and covariate_df index do not have the same elements!") covs_ord = covariate_df.reindex(count_data.index) covs_ord.index = covs_ord.index.astype(str) var_dat = count_data.sum(axis=0).rename("n_cells").to_frame() var_dat.index = var_dat.index.astype(str) return ad.AnnData(X=count_data.values, var=var_dat, obs=covs_ord) def from_pandas( df: pd.DataFrame, covariate_columns: List[str] ) -> AnnData: """ Converts a Pandas DataFrame into a compositional analysis data set. The DataFrame must contain one row per sample, columns can be cell types or covariates Note that all columns that are not specified as covariates are assumed to be cell types. Usage: ``data = from_pandas(df, covariate_columns=["cov1", "cov2"])`` Parameters ---------- df A pandas DataFrame with each row representing a sample; the columns can be cell counts or covariates covariate_columns List of column names that are interpreted as covariates; all other columns will be seen as cell types Returns ------- A compositional analysis data set data A compositional analysis data set """ covariate_data = df.loc[:, covariate_columns] covariate_data.index = covariate_data.index.astype(str) count_data = df.loc[:, ~df.columns.isin(covariate_data)] celltypes = pd.DataFrame(index=count_data.columns) return ad.AnnData(X=count_data.values, var=celltypes, obs=covariate_data)
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/sccoda/util/cell_composition_data.py
0.924048
0.683314
cell_composition_data.py
pypi
import numpy as np import time import warnings import tensorflow as tf import tensorflow_probability as tfp from sccoda.util import result_classes as res from typing import Optional, Tuple, Collection, Union, List tfd = tfp.distributions tfb = tfp.bijectors class CompositionalModel: """ Dynamical framework for formulation and inference of Bayesian models for compositional data analysis. This framework is used to implement scCODA's model as a subclass of this class. Tensorflow probability then allows to run a multitude of inference algorithms on these models without the need to specify them every time. A `CompositionalModel` consists of the following parameters: - `covariate_matrix`: Numpy array that specifies the independent variables (X). Generated equivalently to the covariate matrix of a linear regression. - `data_matrix`: Dependent variable (Y). Includes the raw cell type counts for every sample. - `cell_types`, covariate_names: Names of cell types and covariates - `formula`: String that represents which covariates to include and how to transform them. Used analogously to the formula in R's lm function A specific compositional model is then implemented as a child class, with the following additional parameters specified in the constructor: - `target_log_prob_fn`: Log-probability function of the model. For more specific information, please refer to (tensorflow probability's API)[https://www.tensorflow.org/probability/api_docs/python/tfp] - `param_names`: Names of prior and intermediate parameters that are included in the model output. The order has to be the same as in the states_burnin output of `self.get_y_hat` - `init_params`: Initial values for the inference method Methods implemented by this class: - `sampling`: General MCMC sampling that uses a transition kernel - `get_chains_after_burnin`: Application of burn-in to MCMC sampling results - MCMC sampling methods (`sample_hmc`, `sample_hmc_da`, `sample_nuts`) Methods implemented by a child class: - `get_y_hat`: Calculation of intermediate parameters for all MCMC chain states and posterior mode of the cell count matrix """ def __init__( self, covariate_matrix: np.ndarray, data_matrix: np.ndarray, cell_types: List[str], covariate_names: List[str], formula: str, *args, **kwargs ): """ Generalized Constructor of Bayesian compositional model class. Parameters ---------- covariate_matrix covariate matrix, size NxD data_matrix cell count matrix, size NxK cell_types Cell type names covariate_names Covariate names formula Formula (R-style) """ dtype = tf.float64 self.x = tf.convert_to_tensor(covariate_matrix, dtype) # Add pseudocount if zeroes are present. if np.count_nonzero(data_matrix) != np.size(data_matrix): print("Zero counts encountered in data! Added a pseudocount of 0.5.") data_matrix[data_matrix == 0] = 0.5 self.y = tf.convert_to_tensor(data_matrix, dtype) sample_counts = np.sum(data_matrix, axis=1) self.n_total = tf.cast(sample_counts, dtype) self.cell_types = cell_types self.covariate_names = covariate_names self.formula = formula # Get dimensions of data self.N, self.D = self.x.shape self.K = self.y.shape[1] # Check input data if self.N != self.y.shape[0]: raise ValueError("Wrong input dimensions X[{},:] != y[{},:]".format(self.x.shape[0], self.y.shape[0])) if self.N != len(self.n_total): raise ValueError("Wrong input dimensions X[{},:] != n_total[{}]".format(self.x.shape[0], len(self.n_total))) def sampling( self, num_results: int, num_burnin: int, kernel, init_state: dict, trace_fn, ) -> Tuple[List[any], List[any], float]: """ MCMC sampling process (tensorflow 2) Parameters ---------- num_results MCMC chain length (default 20000) num_burnin Number of burnin iterations (default 5000) kernel tensorflow MCMC kernel object init_state Starting parameters trace_fn tracing function Returns ------- MCMC chain states and results states States of MCMC chain kernel_results sampling meta-information duration Duration of MCMC sampling process """ # HMC sampling function @tf.function(autograph=False) def sample_mcmc(num_results_, num_burnin_, kernel_, current_state_, trace_fn): return tfp.mcmc.sample_chain( num_results=num_results_, num_burnin_steps=num_burnin_, kernel=kernel_, current_state=current_state_, trace_fn=trace_fn ) # The actual sampling process start = time.time() states, kernel_results = sample_mcmc(num_results, num_burnin, kernel, init_state, trace_fn) duration = time.time() - start print("MCMC sampling finished. ({:.3f} sec)".format(duration)) return states, kernel_results, duration def get_chains_after_burnin( self, samples: List[any], kernel_results: List[any], num_burnin: int, is_nuts: bool = False ) -> Tuple[List[any], dict, float]: """ Application of burn-in after MCMC sampling. Cuts the first `num_burnin` samples from all inferred variables and diagnostic statistics. Parameters ---------- samples all kernel states kernel_results Kernel meta-information. The tracked statistics depend on the sampling method. num_burnin number of burn-in iterations is_nuts Specifies whether NUTS sampling was used Returns ------- MCMC chain without burn-in, sampling statistics, acceptance rate states_burnin Kernel states without burn-in samples stats sampling statistics p_accept acceptance rate of MCMC process """ # Samples after burn-in states_burnin = [] stats = {} # Apply burn-in to MCMC results for s in samples: states_burnin.append(s[num_burnin:].numpy()) # Apply burn-in to sampling statistics for k, v in kernel_results.items(): stats[k] = v[num_burnin:].numpy() # Calculation of acceptance rate (different for NUTS sampling) if is_nuts: p_accept = np.mean(np.exp(kernel_results["log_accept_ratio"].numpy())) else: acceptances = kernel_results["is_accepted"].numpy() # Calculate acceptance rate p_accept = sum(acceptances) / acceptances.shape[0] print('Acceptance rate: %0.1f%%' % (100 * p_accept)) return states_burnin, stats, p_accept def sample_hmc( self, num_results: int = int(20e3), num_burnin: int = int(5e3), num_adapt_steps: Optional[int] = None, num_leapfrog_steps: Optional[int] = 10, step_size: float = 0.01, verbose: bool = True ) -> res.CAResult: """ Hamiltonian Monte Carlo (HMC) sampling in tensorflow 2. Tracked diagnostic statistics: - `target_log_prob`: Value of the model's log-probability - `diverging`: Marks samples as diverging (NOTE: Handle with care, the spike-and-slab prior of scCODA usually leads to many samples being flagged as diverging) - `is_accepted`: Whether the proposed sample was accepted in the algorithm's acceptance step - `step_size`: The step size used by the algorithm in each step Parameters ---------- num_results MCMC chain length (default 20000) num_burnin Number of burnin iterations (default 5000) num_adapt_steps Length of step size adaptation procedure num_leapfrog_steps HMC leapfrog steps (default 10) step_size Initial step size (default 0.01) verbose If true, a progress bar is printed during MCMC sampling Returns ------- results object result Compositional analysis result """ # HMC transition kernel hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=self.target_log_prob_fn, step_size=step_size, num_leapfrog_steps=num_leapfrog_steps) hmc_kernel = tfp.mcmc.TransformedTransitionKernel( inner_kernel=hmc_kernel, bijector=self.constraining_bijectors) # Set default value for adaptation steps if none given if num_adapt_steps is None: num_adapt_steps = int(0.8 * num_burnin) # Add step size adaptation (Andrieu, Thomas - 2008) hmc_kernel = tfp.mcmc.SimpleStepSizeAdaptation( inner_kernel=hmc_kernel, num_adaptation_steps=num_adapt_steps, target_accept_prob=0.75) if verbose: pbar = tfp.experimental.mcmc.ProgressBarReducer(num_results) hmc_kernel = tfp.experimental.mcmc.WithReductions(hmc_kernel, pbar) # diagnostics tracing function def trace_fn(_, pkr): return { 'target_log_prob': pkr.inner_results.inner_results.inner_results.accepted_results.target_log_prob, 'diverging': (pkr.inner_results.inner_results.inner_results.log_accept_ratio < -1000.), 'is_accepted': pkr.inner_results.inner_results.inner_results.is_accepted, 'step_size': pkr.inner_results.inner_results.inner_results.accepted_results.step_size, } else: # diagnostics tracing function def trace_fn(_, pkr): return { 'target_log_prob': pkr.inner_results.inner_results.accepted_results.target_log_prob, 'diverging': (pkr.inner_results.inner_results.log_accept_ratio < -1000.), 'is_accepted': pkr.inner_results.inner_results.is_accepted, 'step_size': pkr.inner_results.inner_results.accepted_results.step_size, } # The actual HMC sampling process states, kernel_results, duration = self.sampling(num_results, num_burnin, hmc_kernel, self.init_params, trace_fn) if verbose: pbar.bar.close() # apply burn-in states_burnin, sample_stats, acc_rate = self.get_chains_after_burnin(states, kernel_results, num_burnin, is_nuts=False) # Calculate posterior predictive y_hat = self.get_y_hat(states_burnin, num_results, num_burnin) sampling_stats = {"chain_length": num_results, "num_burnin": num_burnin, "acc_rate": acc_rate, "duration": duration, "y_hat": y_hat} result = self.make_result(states_burnin, sample_stats, sampling_stats) return result def sample_hmc_da( self, num_results: int = int(20e3), num_burnin: int = int(5e3), num_adapt_steps: Optional[int] = None, num_leapfrog_steps: Optional[int] = 10, step_size: float = 0.01, verbose: bool = True ) -> res.CAResult: """ HMC sampling with dual-averaging step size adaptation (Nesterov, 2009) Tracked diagnostic statistics: - `target_log_prob`: Value of the model's log-probability - `diverging`: Marks samples as diverging (NOTE: Handle with care, the spike-and-slab prior of scCODA usually leads to many samples being flagged as diverging) - `log_acc_ratio`: log-acceptance ratio - `is_accepted`: Whether the proposed sample was accepted in the algorithm's acceptance step - `step_size`: The step size used by the algorithm in each step Parameters ---------- num_results MCMC chain length (default 20000) num_burnin Number of burnin iterations (default 5000) num_adapt_steps Length of step size adaptation procedure num_leapfrog_steps HMC leapfrog steps (default 10) step_size Initial step size (default 0.01) verbose If true, a progress bar is printed during MCMC sampling Returns ------- result object result Compositional analysis result """ # HMC transition kernel hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=self.target_log_prob_fn, step_size=step_size, num_leapfrog_steps=num_leapfrog_steps) hmc_kernel = tfp.mcmc.TransformedTransitionKernel( inner_kernel=hmc_kernel, bijector=self.constraining_bijectors) # Set default value for adaptation steps if none given if num_adapt_steps is None: num_adapt_steps = int(0.8 * num_burnin) # Add step size adaptation hmc_kernel = tfp.mcmc.DualAveragingStepSizeAdaptation( inner_kernel=hmc_kernel, num_adaptation_steps=num_adapt_steps, target_accept_prob=0.75, decay_rate=0.75) if verbose: pbar = tfp.experimental.mcmc.ProgressBarReducer(num_results) hmc_kernel = tfp.experimental.mcmc.WithReductions(hmc_kernel, pbar) # tracing function def trace_fn(_, pkr): return { 'target_log_prob': pkr.inner_results.inner_results.inner_results.accepted_results.target_log_prob, 'diverging': (pkr.inner_results.inner_results.inner_results.log_accept_ratio < -1000.), "log_acc_ratio": pkr.inner_results.inner_results.inner_results.log_accept_ratio, 'is_accepted': pkr.inner_results.inner_results.inner_results.is_accepted, 'step_size': tf.exp(pkr.inner_results.log_averaging_step[0]), } else: # tracing function def trace_fn(_, pkr): return { 'target_log_prob': pkr.inner_results.inner_results.accepted_results.target_log_prob, 'diverging': (pkr.inner_results.inner_results.log_accept_ratio < -1000.), "log_acc_ratio": pkr.inner_results.inner_results.log_accept_ratio, 'is_accepted': pkr.inner_results.inner_results.is_accepted, 'step_size': tf.exp(pkr.log_averaging_step[0]), } # HMC sampling states, kernel_results, duration = self.sampling(num_results, num_burnin, hmc_kernel, self.init_params, trace_fn) states_burnin, sample_stats, acc_rate = self.get_chains_after_burnin(states, kernel_results, num_burnin, is_nuts=False) if verbose: pbar.bar.close() y_hat = self.get_y_hat(states_burnin, num_results, num_burnin) sampling_stats = {"chain_length": num_results, "num_burnin": num_burnin, "acc_rate": acc_rate, "duration": duration, "y_hat": y_hat} result = self.make_result(states_burnin, sample_stats, sampling_stats) return result def sample_nuts( self, num_results: int = int(10e3), num_burnin: int = int(5e3), num_adapt_steps: Optional[int] = None, max_tree_depth: int = 10, step_size: float = 0.01, verbose: float = True ) -> res.CAResult: """ HMC with No-U-turn (NUTS) sampling. This method is untested and might yield different results than expected. Tracked diagnostic statistics: - `target_log_prob`: Value of the model's log-probability - `leapfrogs_taken`: Number of leapfrog steps taken by the integrator - `diverging`: Marks samples as diverging (NOTE: Handle with care, the spike-and-slab prior of scCODA usually leads to many samples being flagged as diverging) - `energy`: HMC "Energy" value for each step - `log_accept_ratio`: log-acceptance ratio - `step_size`: The step size used by the algorithm in each step - `reached_max_depth`: Whether the NUTS algorithm reached the maximum sampling depth in each step - `is_accepted`: Whether the proposed sample was accepted in the algorithm's acceptance step Parameters ---------- num_results MCMC chain length (default 10000) num_burnin Number of burnin iterations (default 5000) num_adapt_steps Length of step size adaptation procedure max_tree_depth Maximum tree depth (default 10) step_size Initial step size (default 0.01) verbose If true, a progress bar is printed during MCMC sampling Returns ------- result object result Compositional analysis result """ # NUTS transition kernel nuts_kernel = tfp.mcmc.NoUTurnSampler( target_log_prob_fn=self.target_log_prob_fn, step_size=tf.cast(step_size, tf.float64), max_tree_depth=max_tree_depth) nuts_kernel = tfp.mcmc.TransformedTransitionKernel( inner_kernel=nuts_kernel, bijector=self.constraining_bijectors ) # Set default value for adaptation steps if num_adapt_steps is None: num_adapt_steps = int(0.8 * num_burnin) # Step size adaptation (Nesterov, 2009) nuts_kernel = tfp.mcmc.DualAveragingStepSizeAdaptation( inner_kernel=nuts_kernel, num_adaptation_steps=num_adapt_steps, target_accept_prob=tf.cast(0.75, tf.float64), decay_rate=0.75, step_size_setter_fn=lambda pkr, new_step_size: pkr._replace( inner_results=pkr.inner_results._replace(step_size=new_step_size) ), step_size_getter_fn=lambda pkr: pkr.inner_results.step_size, log_accept_prob_getter_fn=lambda pkr: pkr.inner_results.log_accept_ratio, ) if verbose: pbar = tfp.experimental.mcmc.ProgressBarReducer(num_results) nuts_kernel = tfp.experimental.mcmc.WithReductions(nuts_kernel, pbar) # trace function def trace_fn(_, pkr): return { "target_log_prob": pkr.inner_results.inner_results.inner_results.target_log_prob, "leapfrogs_taken": pkr.inner_results.inner_results.inner_results.leapfrogs_taken, "diverging": pkr.inner_results.inner_results.inner_results.has_divergence, "energy": pkr.inner_results.inner_results.inner_results.energy, "log_accept_ratio": pkr.inner_results.inner_results.inner_results.log_accept_ratio, "step_size": pkr.inner_results.inner_results.inner_results.step_size, "reach_max_depth": pkr.inner_results.inner_results.inner_results.reach_max_depth, "is_accepted": pkr.inner_results.inner_results.inner_results.is_accepted, } else: # trace function def trace_fn(_, pkr): return { "target_log_prob": pkr.inner_results.inner_results.target_log_prob, "leapfrogs_taken": pkr.inner_results.inner_results.leapfrogs_taken, "diverging": pkr.inner_results.inner_results.has_divergence, "energy": pkr.inner_results.inner_results.energy, "log_accept_ratio": pkr.inner_results.inner_results.log_accept_ratio, "step_size": pkr.inner_results.inner_results.step_size, "reach_max_depth": pkr.inner_results.inner_results.reach_max_depth, "is_accepted": pkr.inner_results.inner_results.is_accepted, } # HMC sampling states, kernel_results, duration = self.sampling(num_results, num_burnin, nuts_kernel, self.init_params, trace_fn) states_burnin, sample_stats, acc_rate = self.get_chains_after_burnin(states, kernel_results, num_burnin, is_nuts=True) if verbose: pbar.bar.close() y_hat = self.get_y_hat(states_burnin, num_results, num_burnin) sampling_stats = {"chain_length": num_results, "num_burnin": num_burnin, "acc_rate": acc_rate, "duration": duration, "y_hat": y_hat} result = self.make_result(states_burnin, sample_stats, sampling_stats) return result def make_result( self, states_burnin, sample_stats: dict, sampling_stats: dict ): """ Result object generating function. Transforms chain states to result object. Parameters ---------- states_burnin MCMC chain states after burn-in removal sample_stats Dict with information about the MCMC samples sampling_stats Dict with information about the sampling process Returns ------- result object result Compositional analysis result """ params = dict(zip(self.param_names, states_burnin)) # Result object generation process. Uses arviz's data structure. # Get names of cell types that are not the reference if self.reference_cell_type is not None: cell_types_nb = self.cell_types[:self.reference_cell_type] + self.cell_types[self.reference_cell_type + 1:] else: cell_types_nb = self.cell_types posterior = {var_name: [var] for var_name, var in params.items() if "prediction" not in var_name} if "prediction" in self.param_names: posterior_predictive = {"prediction": [params["prediction"]]} else: posterior_predictive = {} observed_data = {"y": self.y} dims = {"alpha": ["cell_type"], "sigma_d": ["covariate"], "b_offset": ["covariate", "cell_type_nb"], "ind_raw": ["covariate", "cell_type_nb"], "ind": ["covariate", "cell_type_nb"], "b_raw": ["covariate", "cell_type_nb"], "beta": ["covariate", "cell_type"], "concentration": ["sample", "cell_type"], "prediction": ["sample", "cell_type"] } coords = {"cell_type": self.cell_types, "cell_type_nb": cell_types_nb, "covariate": self.covariate_names, "sample": range(self.y.shape[0]) } model_specs = {"reference": self.reference_cell_type, "formula": self.formula} return res.CAResultConverter(posterior=posterior, posterior_predictive=posterior_predictive, observed_data=observed_data, dims=dims, sample_stats=sample_stats, coords=coords).to_result_data(sampling_stats=sampling_stats, model_specs=model_specs) class scCODAModel(CompositionalModel): """ Statistical model for single-cell differential composition analysis with specification of a reference cell type. This is the standard scCODA model and recommenced for all uses. The hierarchical formulation of the model for one sample is: .. math:: y|x &\\sim DirMult(\\phi, \\bar{y}) \\\\ \\log(\\phi) &= \\alpha + x \\beta \\\\ \\alpha_k &\\sim N(0, 5) \\quad &\\forall k \\in [K] \\\\ \\beta_{m, \\hat{k}} &= 0 &\\forall m \\in [M]\\\\ \\beta_{m, k} &= \\tau_{m, k} \\tilde{\\beta}_{m, k} \\quad &\\forall m \\in [M], k \\in \\{[K] \\smallsetminus \\hat{k}\\} \\\\ \\tau_{m, k} &= \\frac{\\exp(t_{m, k})}{1+ \\exp(t_{m, k})} \\quad &\\forall m \\in [M], k \\in \\{[K] \\smallsetminus \\hat{k}\\} \\\\ \\frac{t_{m, k}}{50} &\\sim N(0, 1) \\quad &\\forall m \\in [M], k \\in \\{[K] \\smallsetminus \\hat{k}\\} \\\\ \\tilde{\\beta}_{m, k} &= \\sigma_m^2 \\cdot \\gamma_{m, k} \\quad &\\forall m \\in [M], k \\in \\{[K] \\smallsetminus \\hat{k}\\} \\\\ \\sigma_m^2 &\\sim HC(0, 1) \\quad &\\forall m \\in [M] \\\\ \\gamma_{m, k} &\\sim N(0,1) \\quad &\\forall m \\in [M], k \\in \\{[K] \\smallsetminus \\hat{k}\\} \\\\ with y being the cell counts and x the covariates. For further information, see `scCODA: A Bayesian model for compositional single-cell data analysis` (Büttner, Ostner et al., 2020) """ def __init__( self, reference_cell_type: int, *args, **kwargs): """ Constructor of model class. Defines model structure, log-probability function, parameter names, and MCMC starting values. Parameters ---------- reference_cell_type Index of reference cell type (column in count data matrix) args arguments passed to top-level class kwargs arguments passed to top-level class """ super(self.__class__, self).__init__(*args, **kwargs) self.reference_cell_type = reference_cell_type dtype = tf.float64 # All parameters that are returned for analysis self.param_names = ["sigma_d", "b_offset", "ind_raw", "alpha", "ind", "b_raw", "beta", "concentration", "prediction"] alpha_size = [self.K] beta_size = [self.D, self.K] sigma_size = [self.D, 1] beta_nobl_size = [self.D, self.K-1] Root = tfd.JointDistributionCoroutine.Root def model(): sigma_d = yield Root(tfd.Independent( tfd.HalfCauchy(tf.zeros(sigma_size, dtype=dtype), tf.ones(sigma_size, dtype=dtype), name="sigma_d"), reinterpreted_batch_ndims=2)) b_offset = yield Root(tfd.Independent( tfd.Normal( loc=tf.zeros(beta_nobl_size, dtype=dtype), scale=tf.ones(beta_nobl_size, dtype=dtype), name="b_offset"), reinterpreted_batch_ndims=2)) # Spike-and-slab ind_raw = yield Root(tfd.Independent( tfd.Normal( loc=tf.zeros(shape=beta_nobl_size, dtype=dtype), scale=tf.ones(shape=beta_nobl_size, dtype=dtype), name="ind_raw"), reinterpreted_batch_ndims=2)) ind_scaled = ind_raw * 50 ind = tf.exp(ind_scaled) / (1 + tf.exp(ind_scaled)) b_raw = sigma_d * b_offset beta = ind * b_raw # Include slope 0 for reference cell type beta = tf.concat(axis=1, values=[beta[:, :reference_cell_type], tf.zeros(shape=[self.D, 1], dtype=dtype), beta[:, reference_cell_type:]]) alpha = yield Root(tfd.Independent( tfd.Normal( loc=tf.zeros(alpha_size, dtype=dtype), scale=tf.ones(alpha_size, dtype=dtype) * 5, name="alpha"), reinterpreted_batch_ndims=1)) concentrations = tf.exp(alpha + tf.matmul(self.x, beta)) # Cell count prediction via DirMult predictions = yield Root(tfd.Independent( tfd.DirichletMultinomial( total_count=tf.cast(self.n_total, dtype), concentration=concentrations, name="predictions"), reinterpreted_batch_ndims=1)) self.model_struct = tfd.JointDistributionCoroutine(model) # Joint posterior distribution @tf.function(experimental_compile=True) def target_log_prob_fn(*argsl): return self.model_struct.log_prob(list(argsl) + [tf.cast(self.y, dtype)]) self.target_log_prob_fn = target_log_prob_fn # MCMC starting values self.init_params = [ tf.ones(sigma_size, name="init_sigma_d", dtype=dtype), tf.random.normal(beta_nobl_size, 0, 1, name='init_b_offset', dtype=dtype), tf.zeros(beta_nobl_size, name='init_ind_raw', dtype=dtype), tf.random.normal(alpha_size, 0, 1, name='init_alpha', dtype=dtype) ] self.constraining_bijectors = [tfb.Identity() for x in range(len(self.init_params))] # Calculate predicted cell counts (for analysis purposes) def get_y_hat( self, states_burnin: List[any], num_results: int, num_burnin: int ) -> np.ndarray: """ Calculate posterior mode of cell counts (for analysis purposes) and add intermediate parameters that are no priors to MCMC results. Parameters ---------- states_burnin MCMC chain without burn-in samples num_results Chain length (with burn-in) num_burnin Number of burn-in samples Returns ------- posterior mode y_mean posterior mode of cell counts """ chain_size_y = [num_results - num_burnin, self.N, self.K] chain_size_beta = [num_results - num_burnin, self.D, self.K] alphas = states_burnin[3] alphas_final = alphas.mean(axis=0) ind_raw = states_burnin[2] * 50 sigma_d = states_burnin[0] b_offset = states_burnin[1] ind_ = np.exp(ind_raw) / (1 + np.exp(ind_raw)) b_raw_ = np.einsum("...jk, ...jl->...jk", b_offset, sigma_d) beta_temp = np.einsum("..., ...", ind_, b_raw_) beta_ = np.zeros(chain_size_beta) for i in range(num_results - num_burnin): beta_[i] = np.concatenate([beta_temp[i, :, :self.reference_cell_type], np.zeros(shape=[self.D, 1], dtype=np.float64), beta_temp[i, :, self.reference_cell_type:]], axis=1) conc_ = np.exp(np.einsum("jk, ...kl->...jl", self.x, beta_) + alphas.reshape((num_results - num_burnin, 1, self.K))) predictions_ = np.zeros(chain_size_y) for i in range(num_results - num_burnin): pred = tfd.DirichletMultinomial(self.n_total, conc_[i, :, :]).mean().numpy() predictions_[i, :, :] = pred betas_final = beta_.mean(axis=0) states_burnin.append(ind_) states_burnin.append(b_raw_) states_burnin.append(beta_) states_burnin.append(conc_) states_burnin.append(predictions_) concentration = np.exp(np.matmul(self.x, betas_final) + alphas_final).astype(np.float64) y_mean = concentration / np.sum(concentration, axis=1, keepdims=True) * self.n_total.numpy()[:, np.newaxis] return y_mean
/scCODA-0.1.9.tar.gz/scCODA-0.1.9/sccoda/model/scCODA_model.py
0.943777
0.72526
scCODA_model.py
pypi
# How to use scConnect to build and analyze a connectivity graph scConnect integrate into a Scanpy analysis pipeline by utilizing the AnnData objects. This tutorial will not cover usage of scanpy, but tutorials for this can be found [here](https://scanpy.readthedocs.io/en/latest/tutorials.html). We will cover four aspects: * Gene calling * Inference of interactions * Construction of multi-directional graph * Analysis of graph However, before we begin, we will nend a dataset to work on. We will investigate the mouse brain dataset from [Saunder et al.](https://www.sciencedirect.com/science/article/pii/S0092867418309553). The original dataset contains hundreds of thousands of cells, but we will investigate meta cells (summation of all reads of cells from the same cell type) which drastically decrease the size of the dataset. All meta cells has two levels of annotations. the First level relates to the tissue from which the cell originates. These are: * Hippocampus (HC) * Thalamus (TH) * Frontal cortex (FC) * Striatum (STR) * Globus Pallidus and nucleus basalis (GP) * Entopeducular nucleus and subthalamic nucleus (ENT) * Substantia nigra and ventral tegmental area (SN) * Cerebellum (CB) * Posterior cortex (PC) the second level is the cell type annotation, such as *Fast-spiking interneuron, Pvalb+* # loading the dataset Lets begin by importing all the packages we will need. ``` import pandas as pd import scanpy as sc import scConnect as cn import matplotlib import matplotlib.pyplot as plt ``` We read in the meta cells using `sc.read_csv()` and add the metadata to adata.obs. ``` adata = sc.read_csv("data/metacells.BrainCellAtlas_Saunders_version_2018.04.01.csv").T meta = pd.read_excel("data/annotation.BrainCellAtlas_Saunders_version_2018.04.01.xlsx", index_col="tissue_subcluster") adata.obs = meta adata.obs.head(10) ``` Notice that we have cells of many different types. We will focus on neurons in our analysis, and hence we will only keep these meta cells. ``` adata = adata[adata.obs["class"] == "NEURON"] adata ``` In many pipelines, we whould now normalize and logaritmize the read values to better visualize differences in gene expression. we will do the same here. *Note that scConnect will later transform all values back to reads. If we were to perform some more advanced transformations, we can specifically discribe this to correcly transform the read values.* ``` sc.pp.normalize_total(adata, exclude_highly_expressed=True) sc.pp.log1p(adata) ``` We now have everything that we need to proceed with scConnect: * AnnData object * Cell type annotations in adata.obs scConnect already come packaged with a database for the mouse genome, but if you want to analyse any other species you can set up a database using `cn.database.setup_database()` and provide the species name: *mmusculus* for Mouse, *hsapiens* for human etc. You can further select which receptor types that you want to include in the database. * enzyme * transporter * gpcr * catalytic_receptor * other_protein * vgic * lgic * other_ic * nhr Here we select receptors that are present at the synapses of neurons. Note: In future verions, receptor type selection will be passed to `cn.connect.receptors()` instead, and all databases will contain the full set of receptors. You can read more about receptor types [here](https://www.guidetopharmacology.org/targets.jsp). Guide to Pharmacology (GTF) update their database regularly, and we include the latest database version available for each scConnect release. If you would like to update scConnect, and still use an older GTP database version, you can set this using `cn.database.version`. **Note:** You will only have to run this once, as the files are changed in the package. If you run another pipeline with other database setting for the same species, you will have to rerun this database setup. ``` # set correct database ONLY RUN WHEN DATABASE HAS CHANGED cn.database.version = "2019-5" #cn.database.setup_database("mmusculus", receptor_types=["lgic", "vgic", "gpcr", "catalytic_receptor"]) ``` # Gene calling The gene/protein correlation is quite weak at a single cell level, however, at a cell type level (grouping cells by cell type) the correlation is much better. During gene celling, we achieve this by grouping all cells (in our case meta cells) by some cell annotation. For our purposes we will group all cells from each brain regoin (*tissue*) and assess the mean gene expression. This will produce a new matrix with *tissues* as columns and genes as rows. At this stage, we will also describe how the counts/reads have been transformer in order to transform them back to counts/reads. We do this by providing `"log1p"` to the transformation argument. This argument also accepts a function that would transform the values correcly. ``` adata_tissue = cn.genecall.meanExpression(adata, groupby="tissue", normalization=False, use_raw=False, transformation="log1p") adata_tissue.uns["gene_call"].head(10) ``` Next step is to connect gene expression to ligands and reecptors. We do this using `cn.connect.ligands()` and `cn.connect.receptors()`. The results are stored under `adata.uns["receptors"]` and `adata.und["ligands"]` respectivly. ``` adata_tissue = cn.connect.ligands(adata_tissue) adata_tissue = cn.connect.receptors(adata_tissue) pd.DataFrame(adata_tissue.uns["ligands"]).head(10) ``` # Constructing the graph A graph is built up of two parts; edges and nodes. An edge describe a relationship between two nodes, and the edge can be directional, meaning that the described edge only is true in one direction. Here, we describe interactions (edges) between two tissues (nodes), and we base this by infering interactions between two tissue if they have a matching ligand-receptor pair, that we know can interact with each other. This information is fetched from GTF and was included when we ran the database setup earlier. ## Detecting edges We can detect eges between two AnnData object that has ligands and receptor annotation in them. In our case, we whould like to detect edges between the tissues of ust one AnnData object. We can do this by passing the same adata as emmitor and as target to `cn.connect.interactions()`. This produce a list of all interaction between all tissues. ## Collecting metadata about the tissues using `cn.connect.nodes()` we can collect all metadata about the different tissues, as we want to include this in our graph later on ``` edges = cn.connect.interactions(adata_tissue, adata_tissue, self_reference=True) nodes = cn.connect.nodes(adata_tissue) ``` We can construct the graph by passing in the edge list and the node list to `cn.graph.build_graph()`. The result is a `networkX.MultiDiGraph`. ``` G_tissue = cn.graph.build_graph(edges, nodes) ``` # Analysis of the graph The data in the graph is complex, and several types of analysis might be suitable for different purposes. scConnect can run a Dash web application for interactive exploratory analysis of the graph, and it is recommended to initally use this method to get a feeling of the graph. The web app is run by passing the graph object to `cn.app.graph()`. Click on the link to open the application. **note:** If no link is shown, run the cell twise. ``` from importlib import reload cn.app = reload(cn.app) cn.app.graph(G_tissue, mode=None, debug=False) ``` ## web app If you are statically viewing this notebook, here is a short description of the web app's functionallity. ### Network graph In the main network graph, you can select either a node or an edge. Here we have selected the SN population. ![network graph](assets/network_graph.png) ### Connectivity graph Focusing on the SN population we will get a connectivity graph with all incomming and outgoing interactions the the SN population. Note that you can filter interactions based on scores so to only detect the strongest (score), or most specific (weighted score). Hovering over the interactions provide you with further details. ![connectivity graph](assets/connectivity_graph.png) ### Ligands and receptors You can also investigate the ligand and receptors expressed by the population. Note that the plot is dynamic, and you can zoom in and pan around. Further more, you can search for specific receptors or ligands. ![ligands and receptors](assets/ligands_receptors_plot.png) ### Interactions Selecting an edge in the main network graph provides a list of all interactions between the source and target node. This table can be sorted on score and weighted score and provide information about the ligand, receptor and receptor family in the interaction. ![interactions](assets/interaction.png) ## Splitting the graph on interaction By splitting the graph on interactions, we can assess the contribution of a specific ligand and receptor pair to the graph. This is especially usefull if you are interested in something perticular. We split the graph with `cn.graph.split_graph()` which returns a dictionary with interactions as keys and `networkX.DiGraph` as values. ``` Gs_tissue = cn.graph.split_graph(G_tissue) ``` We can visualize a `networkX.DiGraph` using the `cn.graph.plot_adjacency_matrix()`, and by utilizing the built in interaction module of jupyter notebooks, we can interactivly browse the different interacitons. ``` import ipywidgets as widgets options = list(Gs_tissue.keys()) options.sort() def f(interaction): return cn.graph.plot_adjacency_matrix(Gs_tissue[interaction], weight="log_score", width=400, height=400, fontsize=15, fontscale=1.0) widgets.interact(f, interaction=widgets.Dropdown(options=options, index=0)) ``` ## Interaction differences Sometimes you would like to compare the interactions that two populations are involved in. This could be between two treatment groups to assess how the connectivity changed. For our purposes, we will compare the interactions made by pariental cortex (PC) and frontal cordex (FC). Using the threshold of 2, we will only plot interactions that is 2 times stronger in any of the populations. Red values are stronger in node a (PC) and blue values are stronger in node b (FC). Color bar is log10(ratio) **Note:** *Receptor familiy is plotted for each row, so this function prints out the receptor families used in order, and a corresponding color bar. This is for publishing reasons, as you might want to build this figure with these components seperatly. This might change in furure releases to produce publishable images direcly.* ``` cn.graph.compare_interactions_plot(G_tissue, node_a="PC", node_b="FC", th=2, figsize_i=(10, 7), figsize_o=(10, 15)) ``` ## Manual access to data Data is accessable directly from the MultiDiGraph and from the AnnData objects them self. Future releases will contain functions to simplify plotting of this information, such as the selected receptor and ligand plots bellow where the bar colors match the web app node colors. ``` import numpy as np import numpy as np import networkx as nx import seaborn as sns import matplotlib.pyplot as plt df = pd.DataFrame(adata_tissue.uns["receptors"]).loc[["D1 receptor"]] nodes = pd.Categorical(G_tissue.nodes()) # make a list of RGBA tuples, one for each node colors = plt.cm.tab20c(nodes.codes/len(nodes.codes), bytes=False) # zip node to color color_map_nodes = dict(zip(nodes, colors)) f = sns.barplot(data=np.log10(df+1), palette=color_map_nodes) f.set_xlabel("Tissue") f.set_ylabel("Receptor score, log10(score)") f.set_aspect(8, "box") plt.xticks(rotation=90) import numpy as np import numpy as np import networkx as nx import seaborn as sns import matplotlib.pyplot as plt df = pd.DataFrame(adata_tissue.uns["receptors"]).loc[["D2 receptor"]] nodes = pd.Categorical(G_tissue.nodes()) # make a list of RGBA tuples, one for each node colors = plt.cm.tab20c(nodes.codes/len(nodes.codes), bytes=False) # zip node to color color_map_nodes = dict(zip(nodes, colors)) f = sns.barplot(data=np.log10(df+1), palette=color_map_nodes) f.set_xlabel("Tissue") f.set_ylabel("Receptor score, log10(score)") f.set_aspect(20, "box") plt.xticks(rotation=90) df = pd.DataFrame(adata_tissue.uns["ligands"]).loc[["dopamine"]] np.log10(df+1) import numpy as np import networkx as nx import seaborn as sns import matplotlib.pyplot as plt df = pd.DataFrame(adata_tissue.uns["ligands"]).loc[["dopamine"]] np.log10(df+1) nodes = pd.Categorical(G_tissue.nodes()) # make a list of RGBA tuples, one for each node colors = plt.cm.tab20c(nodes.codes/len(nodes.codes), bytes=False) # zip node to color color_map_nodes = dict(zip(nodes, colors)) f = sns.barplot(data=np.log10(df+1), palette=color_map_nodes) f.set_xlabel("Tissue") f.set_ylabel("ligand score, log10(score)") f.set_aspect(5, "box") plt.xticks(rotation=90) ``` # Further help I hope this tutorial introduced you the the posibilities with scConnect. For further information please visit the projects [github](https://github.com/JonETJakobsson/scConnect) and [documentation](https://scconnect.readthedocs.io/en/latest/). ``` ```
/scConnect-1.0.2.tar.gz/scConnect-1.0.2/tutorial/Connecting brain regions.ipynb
0.444565
0.986954
Connecting brain regions.ipynb
pypi
========= Work flow ========= +++++++++++++++++++++ Building the database +++++++++++++++++++++ The current version of scConnect have version 2019-5 of the latest ligand, receptor and interaction data from `guide to pharmacology`__ allready compiled. Should you find the need to change to an older database version, download and replace the csv files under data/GTP_tables/ and run :py:func:`scConnect.database.setup_database`. If you have allready built this database, set the version using :py:const:`scConnect.database.version` __ https://www.guidetopharmacology.org/download.jsp +++++++++++++++++++++++++++++++++++++++ Working with AnnData objects and Scanpy +++++++++++++++++++++++++++++++++++++++ scConnect rely heavily on the workflow and data structures included in the scRNA-seq package `scanpy`__. Please refer to their documentation for working with single cell data and how to detect cell populations. __ https://scanpy.readthedocs.io/en/stable/ To run the functions in this package, you will need an AnnData object with any kind of cell population groups under adata.obs. +++++++++++++++ Make gene calls +++++++++++++++ In order to link gene expression to precence or absence of ligands and receptors for cell populations, we must decide how to measure gene expression on a cell population basis. There are several algorithms to do this: **Using threshold parameters** .. autosummary:: scConnect.genecall.betabinomialTrinarization scConnect.genecall.meanThreshold scConnect.genecall.medianThreshold **Non-parametric** .. autosummary:: scConnect.genecall.percentExpression scConnect.genecall.meanExpression Calculating ligand scores for peptide ligands are staight forward, as this can be equal to the gene call. Calculating molecular ligands involves more genes, as synthesis, vesicle transporters and reuptake transporters are all nesesary to produce and transport the ligand. Further more, some genes cannot be expressed as these whould convert the ligand to another ligand, these we call exclusion genes. .. math:: Ligand promoting factor (p) = geom(max(transporters), geom(synthesis), max(reuptake)) .. math:: exclusion facor (e) = (p - Exclusion)/p .. math:: molecular ligand score = p * e ????????????????????????????????????????? Optimizing threshold settings for neurons ????????????????????????????????????????? One common feature of neuronal tissue is that it contain cells that are either glutamatergic or gabaergic, but they do rarle express both neurotransmitters. The neurons hence *segregate* into excitatory or inhibitory phenotypes. This feature can be used to find the lowest threshold that replicates this biological feature, and can be used as a guide when selecting a threshold. The effect on this segregation can be assesed for all thresholds using :py:func:`scConnect.genecall.optimize_segregation` (only testing betabinomial trinarization). Select the lowest threshold value producing the highest segregation score and run :py:func:`scConnect.genecall.betabinomialTrinarization` with this threshold. Visualize the segregation using :py:func:`scConnect.genecall.plot_segregation`. ++++++++++++++++++++++++ Deciding what to connect ++++++++++++++++++++++++ After running the gene call algorithm of your choice, it is time to link the gene calls to ligands and receptors. To do this, run the following functions on all datasets that you want to investigate connectivity between. .. autosummary:: scConnect.connect.ligands scConnect.connect.receptors Interactions between cell populations are found using :py:func:`scConnect.connect.interactions`. It expects two datasets, one **emitter** and one **target** dataset. If you are interested in the interactions between cell populations in just one dataset, supply this dataset as both emitter and target. The end goal is to build a graph representing all the interactions that occur between our cell populations. To build a graph, we need a list of all interactions, here named an edge list, and also information about the cell types, here named node list. :py:func:`scConnect.connect.interactions` returns a python list containing edge information, and several edge lists can be added together using the `+` operator. .. warning:: Cell population names has to be unique between different datasets and will otherwise be considered the same population in the graph. It is usefull to export information about ligand and receptor expression for cell populations from all datasets before building a connectivity graph. This is done by supplying a list of all datasets to :py:func:`scConnect.connect.nodes`. This will provide a list of all nodes with relevant metadata. ++++++++++++++++++ Building the graph ++++++++++++++++++ The graph is constructed using :py:func:`scConnect.graph.build_graph` with the edge list and node list as arguments. When the graph is constructed some edge metrics are automatically calculated: .. autosummary:: scConnect.graph.loyalty scConnect.graph.promiscuity scConnect.graph.weighted_score The graph is a networkX multi directional graph, with each ligand receptor pair constituting an edge between two nodes. For further information on how to work with the graph, please refer to `networkX documentation`__ __ https://networkx.github.io/documentation/stable/ +++++++++++++++++++ Analysing the graph +++++++++++++++++++ to be continued..
/scConnect-1.0.2.tar.gz/scConnect-1.0.2/docs/source/Tutorials.rst
0.857127
0.65466
Tutorials.rst
pypi
# scETM: single-cell Embedded Topic Model A generative topic model that facilitates integrative analysis of large-scale single-cell RNA sequencing data. The full description of scETM and its application on published single cell RNA-seq datasets are available [here](https://www.biorxiv.org/content/10.1101/2021.01.13.426593v1). This repository includes detailed instructions for installation and requirements, demos, and scripts used for the benchmarking of 7 other state-of-art methods. ## Contents ## - [scETM: single-cell Embedded Topic Model](#scetm-single-cell-embedded-topic-model) - [Contents](#contents) - [1 Model Overview](#1-model-overview) - [2 Installation](#2-installation) - [3 Usage](#3-usage) - [Data format](#data-format) - [A taste of scETM](#a-taste-of-scetm) - [p-scETM](#p-scetm) - [Transfer learning](#transfer-learning) - [Tensorboard Integration](#tensorboard-integration) - [4 Benchmarking](#4-benchmarking) ## 1 Model Overview ![](doc/scETM.png "scETM model overview") **(a)** Probabilistic graphical model of scETM. We model the scRNA-profile read count matrix y<sub>d,g</sub> in cell d and gene g across S subjects or studies by a multinomial distribution with the rate parameterized by cell topic mixture θ, topic embedding α, gene embedding ρ, and batch effects λ. **(b)** Matrix factorization view of scETM. **(c)** Encoder architecture for inferring the cell topic mixture θ. ## 2 Installation Python version: 3.7+ scETM is included in PyPI, so you can install it by ```bash pip install scETM ``` To enable GPU computing (which significantly boosts the performance), please install [PyTorch](https://pytorch.org/) with GPU support **before** installing scETM. ## 3 Usage **A step-by-step scETM tutorial can be found in [here](/notebooks/scETM%20introductory%20tutorial.ipynb).** ### Data format scETM requires a cells-by-genes matrix `adata` as input, in the format of an AnnData object. Detailed description about AnnData can be found [here](https://anndata.readthedocs.io/en/latest/). By default, scETM looks for batch information in the 'batch_indices' column of the `adata.obs` DataFrame, and cell type identity in the 'cell_types' column. If your data stores the batch and cell type information in different columns, pass them to the `batch_col` and `cell_type_col` arguments, respectively, when calling scETM functions. ### A taste of scETM ```python from scETM import scETM, UnsupervisedTrainer, evaluate import anndata # Prepare the source dataset, Mouse Pancreas mp = anndata.read_h5ad("MousePancreas.h5ad") # Initialize model model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True) # The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging. trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results") # Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches. trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4) # Obtain scETM cell, gene and topic embeddings. Unnormalized cell embeddings will be stored at mp.obsm['delta'], normalized cell embeddings at mp.obsm['theta'], gene embeddings at mp.varm['rho'], topic embeddings at mp.uns['alpha']. model.get_all_embeddings_and_nll(mp) # Evaluate the model and save the embedding plot evaluate(mp, embedding_key="delta", plot_fname="scETM_MP", plot_dir="figures/scETM_MP") ``` ### p-scETM p-scETM is a variant of scETM where part or all of the the gene embedding matrix ρ is fixed to a pathways-by-genes matrix, which can be downloaded from the [pathDIP4 pathway database](http://ophid.utoronto.ca/pathDIP/Download.jsp). We only keep pathways that contain more than 5 genes. If it is desired to fix the gene embedding matrix ρ during training, let trainable_gene_emb_dim be zero. In this case, the gene set used to train the model would be the intersection of the genes in the scRNA-seq data and the genes in the gene-by-pathway matrix. Otherwise, if trainable_gene_emb_dim is set to a positive value, all the genes in the scRNA-seq data would be kept. ### Transfer learning ```python from scETM import scETM, UnsupervisedTrainer, prepare_for_transfer import anndata # Prepare the source dataset, Mouse Pancreas mp = anndata.read_h5ad("MousePancreas.h5ad") # Initialize model model = scETM(mp.n_vars, mp.obs.batch_indices.nunique(), enable_batch_bias=True) # The trainer object will set up the random seed, optimizer, training and evaluation loop, checkpointing and logging. trainer = UnsupervisedTrainer(model, mp, train_instance_name="MP", ckpt_dir="../results") # Train the model on adata for 12000 epochs, and evaluate every 1000 epochs. Use 4 threads to sample minibatches. trainer.train(n_epochs=12000, eval_every=1000, n_samplers=4) # Load the target dataset, Human Pancreas hp = anndata.read_h5ad('HumanPancreas.h5ad') # Align the source dataset's gene names (which are mouse genes) to the target dataset (which are human genes) mp_genes = mp.var_names.str.upper() mp_genes.drop_duplicates(inplace=True) # Generate a new model and a modified dataset from the previously trained model and the mp_genes model, hp = prepare_for_transfer(model, hp, mp_genes, keep_tgt_unique_genes=True, # Keep target-unique genes in the model and the target dataset fix_shared_genes=True # Fix parameters related to shared genes in the model ) # Instantiate another trainer to fine-tune the model trainer = UnsupervisedTrainer(model, hp, train_instance_name="HP_all_fix", ckpt_dir="../results", init_lr=5e-4) trainer.train(n_epochs=800, eval_every=200) ``` ### Tensorboard Integration If a Tensorboard SummaryWriter is passed to the `writer` argument of the `UnsupervisedTrainer.train` method, the package will store. ## 4 Benchmarking The commands used for running [Harmony](https://github.com/immunogenomics/harmony), [Scanorama](https://github.com/brianhie/scanorama), [Seurat](https://satijalab.org/seurat/), [scVAE-GM](https://github.com/scvae/scvae), [scVI](https://github.com/YosefLab/scvi-tools), [LIGER](https://github.com/welch-lab/liger), [scVI-LD](https://www.biorxiv.org/content/10.1101/737601v1.full.pdf) are available in the [scripts](/scripts) folder.
/scETM-0.5.1a0.tar.gz/scETM-0.5.1a0/README.md
0.900426
0.960025
README.md
pypi
import numpy as np import torch from sklearn.manifold import TSNE import torch.nn as nn class tSNE(nn.Module): def __init__(self, data, n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0, n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric='euclidean', init='random', verbose=0, random_state=None, method='barnes_hut', angle=0.5, n_jobs=None, square_distances='legacy'): self.data = data.numpy() self.perplexity = perplexity self.n_components = n_components self.early_exaggeration = early_exaggeration self.n_iter = n_iter self.learning_rate = learning_rate self.n_iter_without_progress = n_iter_without_progress self.min_grad_norm = min_grad_norm self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state self.method = method self.angle = angle self.n_jobs = n_jobs self.square_distances = square_distances def forward(self): self.reducer = TSNE(perplexity=self.perplexity, n_components=self.n_components, early_exaggeration=self.early_exaggeration, n_iter=self.n_iter, learning_rate=self.learning_rate, n_iter_without_progress=self.n_iter_without_progress, min_grad_norm=self.min_grad_norm, metric=self.metric, init=self.init, verbose=self.verbose, random_state=self.random_state, method=self.method, angle=self.angle, n_jobs=self.n_jobs, square_distances=self.square_distances) self.Y = self.reducer.fit_transform(self.data) return self.Y
/Dim_reduction/TSNE.py
0.909594
0.240412
TSNE.py
pypi
import warnings import itertools import numpy as np import pandas as pd import statsmodels.api as sm from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler from math import sqrt import torch import torch.nn as nn import numpy as np from tqdm import tqdm import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torch.utils.data import DataLoader from torch.optim import Adam from torch.nn import init from scFlash.utils.modules import scTask class Basic(): def __init__(self): pass def initialize_weights(self,m): #add this to utils file if (isinstance(m, nn.Linear) or isinstance(m, nn.Conv1d)): init.uniform_(m.weight.data,a=0.0,b=1.0) #init.xavier_uniform_(m.weight.data) def Layer(self,i, o, activation=None, p=0., bias=True): ll=nn.Linear(i, o, bias=bias) self.initialize_weights(ll) activation = activation.upper() if activation is not None else activation model = [ll] if activation == 'SELU': model += [nn.SELU(inplace=True)] elif activation == 'RELU': model += [nn.ReLU(inplace=True)] elif activation == 'LeakyReLU'.upper(): model += [nn.LeakyReLU(inplace=True)] elif activation == 'Sigmoid'.upper(): model += [nn.Sigmoid()] elif activation == 'Tanh'.upper(): model += [nn.Tanh()] elif type(activation) is str: raise ValueError('{} activation not implemented.'.format(activation)) if p > 0.: model += [nn.Dropout(p)] return nn.Sequential(*model) class Encoder(nn.Module): """Encoder network for dimensionality reduction to latent space""" def __init__(self, input_size, output_size=1, hidden_layer_depth=5,hidden_size=1024, activation='Sigmoid', dropout_rate=0.): super(Encoder, self).__init__() basic=Basic() self.hidden_size = hidden_size self.input_size = input_size self.output_size = output_size self.activation=activation self.input_layer = basic.Layer(input_size, hidden_size,activation=activation,p=dropout_rate) net = [basic.Layer(hidden_size, hidden_size, activation='RELU',p=dropout_rate) for _ in range(hidden_layer_depth-1)] net.append(basic.Layer(hidden_size, hidden_size, activation='Sigmoid',p=dropout_rate)) self.hidden_network = nn.Sequential(*net) self.output_layer = basic.Layer(hidden_size, output_size,activation='Sigmoid') def forward(self, x): out = self.input_layer(x) out = self.hidden_network(out) out = self.output_layer(out) return out class Lambda(nn.Module): """Application of Gaussian noise to the latent space""" def __init__(self, i=1, o=1, scale=1E-3): super(Lambda, self).__init__() self.scale = scale self.z_mean = nn.Linear(i, o) self.z_log_var = nn.Linear(i, o) def forward(self, x): self.mu = self.z_mean(x) self.log_v = self.z_log_var(x) eps = self.scale * Variable(torch.randn(*self.log_v.size())).type_as(self.log_v) return self.mu + torch.exp(self.log_v / 2.) * eps class Decoder(nn.Module): """Decoder network for reconstruction from latent space""" def __init__(self, output_size, input_size=1, hidden_layer_depth=5, hidden_size=1024, activation='Sigmoid', dropout_rate=0.): super(Decoder, self).__init__() basic=Basic() self.input_layer = basic.Layer(input_size, input_size, activation='RELU') net = [basic.Layer(input_size, hidden_size,activation='RELU', p=dropout_rate)] net += [basic.Layer(hidden_size, hidden_size, activation='RELU',p=dropout_rate) for _ in range(hidden_layer_depth-1)] net += [basic.Layer(hidden_size, hidden_size, activation='Sigmoid',p=dropout_rate) ] self.hidden_network = nn.Sequential(*net) self.output_layer = basic.Layer(hidden_size, output_size,activation='Sigmoid') def forward(self, x): out = self.input_layer(x) out = self.hidden_network(out) out = self.output_layer(out) return out """VAE DEFINITION""" class VAE(nn.Module): def __init__(self, input_dim, encoder_size=1, batch_size=100, hidden_layer_depth=3, hidden_size=2048, scale=1E-3, dropout_rate=0., activation='Sigmoid', verbose=True, **kwargs): super(VAE, self).__init__() basic = Basic() input_size = input_dim self.encoder = Encoder(input_size, output_size=encoder_size, hidden_layer_depth=hidden_layer_depth, hidden_size=hidden_size, activation=activation,dropout_rate=dropout_rate) self.lmbd = Lambda(encoder_size, encoder_size, scale=scale) self.decoder = Decoder(input_size, input_size=encoder_size, hidden_layer_depth=hidden_layer_depth, hidden_size=hidden_size, activation=activation, dropout_rate=dropout_rate) self.verbose = verbose self.input_size = input_size self.encoder_size = encoder_size self.apply(basic.initialize_weights) #self.optimizer = optim.Adam(self.parameters(), lr=lr) self.is_fit = False def vae_loss(self, x_decoded_mean, x): x_decoded_mean = x_decoded_mean[0] kl_loss=nn.functional.kl_div(x, x_decoded_mean, size_average=None, reduce=None, reduction='batchmean', log_target=False) loss = nn.functional.binary_cross_entropy(nn.functional.softmax(x_decoded_mean,-1), nn.functional.softmax(x,-1), reduction='sum') # LOSS FUNCTION REQUIRES INPUT IN THE RANGE OF 0 TO 1 #loss = nn.functional.binary_cross_entropy(x_decoded_mean,x, reduction='sum') return loss+kl_loss def get_loss(self): return {'vae_loss': self.vae_loss} def forward(self, x): u = self.encoder(x) u_p = self.lmbd(u) out = self.decoder(u_p) return out , u def _func(self, x): return np.concatenate([i[0] for i in x])
/Dim_reduction/VAE.py
0.841044
0.368974
VAE.py
pypi
# scHiCTools ### Summary A computational toolbox for analyzing single cell Hi-C (high-throughput sequencing for 3C) data which includes functions for: 1. Load single-cell HiC datasets 2. Smoothing the contact maps with linear convolution, random walk or network enhancing 3. Calculating embeddings for single cell HiC datasets efficiently with reproducibility measures include InnerProduct, HiCRep and Selfish ### Installation **Required Python Packages** - Python (version >= 3.6) - numpy (version >= 1.15.4) - scipy (version >= 1.0) - matplotlib (version >=3.1.1) - pandas (version >=0.19) - simplejson - six - h5py **`interactive_scatter` feature requirement** - plotly (version >= >=4.8.0) **Install from GitHub** You can install the package with following command: ```console $ git clone https://github.com/liu-bioinfo-lab/scHiCTools.git $ cd scHiCTools $ python setup.py install ``` **Install from PyPI** ```console $ pip install scHiCTools ``` **Install optional interactive dependencie** ```console $ pip install scHiCTools[interactive_scatter] ``` or ```console $ pip install -e .[interactive_scatter] ``` ### Usage **Supported Formats** - Pre-processed Matrices: If the data is already processed into matrices for intra-chromosomal contacts, the chromosome from the same cell must be stored in the same folder with chromosome names as file names (e.g., scHiC/cell_1/chr1.txt). You only need to provide the folder name for a cell (e.g., scHiC/cell_1). - npy: numpy.array / numpy.matrix - npz: scipy.sparse.coo_matrix - matrix: matrix stored as pure text - matrix_txt: matrix stored as .txt file - HiCRep: the format required by HiCRep package - Edge List <br /> For all formats below:<br /> &nbsp; str - strand (forward / reverse)<br /> &nbsp; chr - chromosome<br /> &nbsp; pos - position<br /> &nbsp; score - contact reads<br /> &nbsp; frag - fragments (will be ignored)<br /> &nbsp; mapq - map quality<br /> - Shortest ``` <chr1> <pos1> <chr2> <pos2> ``` - Shortest_Score ``` <chr1> <pos1> <chr2> <pos2> <score> ``` - Short ``` <str1> <chr1> <pos1> <frag1> <str2> <chr2> <pos2> <frag2> ``` - Short_Score ``` <str1> <chr1> <pos1> <frag1> <str2> <chr2> <pos2> <frag2> <score> ``` - Medium ``` <readname> <str1> <chr1> <pos1> <frag1> <str2> <chr2> <pos2> <frag2> <mapq1> <mapq2> ``` - Long ``` <str1> <chr1> <pos1> <frag1> <str2> <chr2> <pos2> <frag2> <mapq1> <cigar1> <sequence1> <mapq2> <cigar2> <sequence2> <readname1> <readname2> ``` - 4DN ``` ## pairs format v1.0 #columns: readID chr1 position1 chr2 position2 strand1 strand2 ``` - .hic format: we adapted "straw" from JuiceTools. - .mcool format: we adapted "dump" from cool. - Other formats: simply give the indices (start from 1) in the order of<br /> "chromosome1 - position1 - chromosome2 - position2 - score" or<br /> "chromosome1 - position1 - chromosome2 - position2" or<br /> "chromosome1 - position1 - chromosome2 - position2 - mapq1 - mapq2".<br /> For example, you can provide "2356" or [2, 3, 5, 6] if the file takes this format: ``` <name> <chromosome1> <position1> <frag1> <chromosome2> <position2> <frag2> <strand1> <strand2> contact_1 chr1 3000000 1 chr1 3001000 1 + - ``` **Import Package** ```console >>>import scHiCTools ``` **Load scHiC data** The scHiC data is stored in a series of files, with each of the files corresponding to one cell. You need to specify the list of scHiC file paths. Only intra-chromosomal interactions are counted. ```console >>>from scHiCTools import scHiCs >>>files = ['./cell_1', './cell_2', './cell_3'] >>>loaded_data = scHiCs( ... files, reference_genome='mm9', ... resolution=500000, keep_n_strata=10, ... format='customized', adjust_resolution=True, ... customized_format=12345, header=0, chromosomes='except Y', ... operations=['OE_norm', 'convolution'] ... ) ``` - reference genome (dict or str): now supporting 'mm9', 'mm10', 'hg19', 'hg38'. If your reference genome is not in ['mm9', 'mm10', 'hg19', 'hg38'], you need to provide the lengths of chromosomes you are going to use with a Python dict. e.g. {'chr1': 150000000, 'chr2': 130000000, 'chr3': 200000000} - resolution (int): the resolution to separate genome into bins. If using .hic file format, the given resolution must match with the resolutions in .hic file. - keep_n_strata (None or int): only store contacts within n strata near the diagonal. Default: 10. If 'None', it will not store strata - store_full_map (bool): whether store full contact maps in numpy matrices or scipy sparse matrices,If False, it will save memory. - sparse (bool): whether to use sparse matrices - format (str): file format, supported formats: 'shortest', 'shortest_score', 'short', 'short_score' , 'medium', 'long', '4DN', '.hic', '.mcool', 'npy', 'npz', 'matrix', 'HiCRep', 'matrix_txt' and 'customized'. Default: 'customized'. - customized_format (int or str or list): the column indices in the order of "chromosome 1 - position 1 - chromosome 2 - position 2 - contact reads" or "chromosome 1 - position 1 - chromosome 2 - position 2" or "chromosome 1 - position 1 - chromosome 2 - position 2 - map quality 1 - map quality 2". e.g. if the line is "chr1 5000000 chr2 3500000 2", the format should be '12345' or [1, 2, 3, 4, 5]; if there is no column indicating number of reads, you can just provide 4 numbers like '1234', and contact read will be set as 1. Default: '12345'. - adjust_resolution: whether to adjust resolution for the input file. Sometimes the input file is already in the proper resolution (e.g. position 3000000 has already been changed to 6 with 500kb resolution). For this situation you can set adjust_resolution=False. Default: True. - map_filter (float): keep all contacts with mapq higher than this threshold. Default: 0.0 - header (int): how many header lines does the file have. Default: 0. - chromosomes (list or str): chromosomes to use, eg. ['chr1', 'chr2'], or just 'except Y', 'except XY', 'all'. Default: 'all', which means chr 1-19 + XY for mouse and chr 1-22 + XY for human. - operations (list or None): the operations use for pre-processing or smoothing the maps given in a list. The operations will happen in the given order. Supported operations: 'logarithm', 'power', 'convolution', 'random_walk', 'network_enhancing', 'OE_norm', 'VC_norm', 'VC_SQRT_norm', 'KR_norm'。 Default: None. - For preprocessing and smoothing operations, sometimes you need additional arguments (introduced in next sub-section). You can also skip pre-processing and smoothing in loading step (operations=None), and do them in next lines. **Plot number of contacts and select cells** You can plot the number of contacts of your cells. ```console >>>loaded_data.plot_contacts(hist=True, percent=True) ``` If hist is `True`, plot Histogram of the number of contacts. If percent is `True`, plot the scatter plot of cells with of short-range contacts (< 2 Mb) versus contacts at the mitotic band (2-12 Mb). You can select cells based on number of contacts: ```console >>>loaded_data.select_cells(min_n_contacts=10000,max_short_range_contact=0.99) ``` The above command select cells have number of contacts bigger than 10000 and percent of short range contacts small than .99. **Pre-processing and Smoothing Operations** Stand alone pre-processing and smoothing: ```console >>>loaded_data.processing(['random_walk', 'network_enhancing']) ``` If you didn't store full map (i.e. store_full_map=False), processing is not doable in a separate step. - logarithm: new_W_ij = log_(base) (W_ij + epsilon). Additional arguments: - log_base: default: e - epsilon: default: 1 - power: new_W_ij = (W_ij)^pow. Additional argument: - pow: default: 0.5 (i.e., sqrt(W_ij)) - VC_norm: VC normalization - each value divided by the sum of corresponding row then divided by the sum of corresponding column - VC_SQRT_norm: VC_SQRT normalization - each value divided by the sqrt of the sum of corresponding row then divided by the sqrt of the sum of corresponding column - KR_norm: KR normalization - iterating until the sum of each row / column is one Argument: - maximum_error_rate (float): iteration ends when max error is smaller than (maximum_error_rate). Default: 1e-4 - OE_norm: OE normalization - each value divided by the average of its corresponding strata (diagonal line) - convolution: smoothing with a N by N convolution kernel, with each value equal to 1/N^2. Argument: - kernel_shape: an integer. e.g. kernel_shape=3 means a 3*3 matrix with each value = 1/9. Default: 3. - Random walk: multiply by a transition matrix (also calculated from contact map itself). Argument: - random_walk_ratio: a value between 0 and 1, e.g. if ratio=0.9, the result will be 0.9 * matrix_after_random_walk + 0.1 * original_matrix. Default: 1.0. - Network enhancing: transition matrix only comes from k-nearest neighbors of each line. Arguments: - kNN: value 'k' in kNN. Default: 20. - iterations: number of iterations for network enhancing. Default: 1 - alpha: similar with random_walk_ratio. Default: 0.9 **Learn Embeddings** ```console >>>embs = loaded_data.learn_embedding( ... dim=2, similarity_method='inner_product', embedding_method='MDS', ... n_strata=None, aggregation='median', return_distance=False ... ) ``` This function will return the embeddings in the format of a numpy array with shape ( # of cells, # of dimensions). - dim (int): the dimension for the embedding - similarity_method (str): reproducibility measure, 'InnerProduct', 'HiCRep' or 'Selfish'. Default: 'InnerProduct' - embedding_method (str): 'MDS', 'tSNE' or 'UMAP' - n_strata (int): only consider contacts within this genomic distance. Default: None. If it is None, it will use the all strata kept (the argument keep_n_strata from previous loading process). Thus n_strata and keep_n_strata (loading step) cannot be None at the same time. - aggregation (str): method to aggregate different chromosomes, 'mean' or 'median'. Default: 'median'. - return_distance (bool): if True, return (embeddings, distance_matrix); if False, only return embeddings. Default: False. - Some additional argument for Selfish: - n_windows (int): split contact map into n windows, default: 10 - sigma (float): sigma in the Gaussian-like kernel: default: 1.6 **Clustering** There are two functions to cluster cells. ```console >>>label=loaded_data.clustering( ... n_clusters=4, clustering_method='kmeans', similarity_method='innerproduct', ... aggregation='median', n_strata=None ... ) ``` `clustering` function returns a numpy array of cell labels clustered. - n_clusters (int): Number of clusters. - clustering_method (str): Clustering method in 'kmeans', 'spectral_clustering' or 'HAC'(hierarchical agglomerative clustering). - similarity_method (str): Reproducibility measure. Value in ‘InnerProduct’, ‘HiCRep’ or ‘Selfish’. - aggregation (str): Method to aggregate different chromosomes. Value is either 'mean' or 'median'. Default: 'median'. - n_strata (int or None): Only consider contacts within this genomic distance. If it is None, it will use the all strata kept (the argument keep_n_strata) from previous loading process. Default: None. - print_time (bool): Whether to print the processing time. Default: False. ```console >>>hicluster=loaded_data.scHiCluster(dim=2,cutoff=0.8,n_PCs=10,k=4) ``` `scHiCluster` function returns two componments. First componment is a numpy array of embedding of cells using HiCluster. Second componment is a numpy of cell labels clustered by HiCluster. - dim (int): Number of dimension of embedding. Default: 2. - cutoff (float): The cutoff proportion to convert the real contact matrix into binary matrix. Default: 0.8. - n_PCs (int): Number of principal components. Default: 10. - k (int): Number of clusters. Default: 4. **Visualization** ```console >>>scatter(data, dimension="2D", point_size=3, sty='default', ... label=None, title=None, alpha=None, aes_label=None ... ) >>>plt.show() ``` This function is to plot scatter plot of embedding points of single cell data. Scatter plot of either two-dimensions or three-dimensions will be generated. - data (numpy.array): A numpy array which has 2 or 3 columns, every row represent a point. - dimension (str): Specifiy the dimension of the plot, either "2D" or "3D". Default: "2D". - point_size (float): Set the size of the points in scatter plot. Default: 3. - sty (str): Styles of Matplotlib. Default: 'default'. - label (list or None): specifiy the label of each point. Default: None. - title (str): Title of the plot. Default: None. - alpha (float): The alpha blending value. Default: None. - aes_label (list): Set the label of every axis. Default: None. "scHiCTools" also support interactive scatter plot which require the module 'plotly' ```console >>>interactive_scatter(loaded_data, data, out_file, dimension='2D', point_size=3, ... label=None, title=None, alpha=1, aes_label=None) ``` This function is to generate an interactive scatter plot of embedded single cell data. The plot will be stored in a file. - schic (scHiCs): A `scHiCs` object. - data (numpy.array): A numpy array which has 2 or 3 columns, every row represent a point. - out_file (str): Output file path. - dimension (str): Specifiy the dimension of the plot, either "2D" or "3D". The default is "2D". - point_size (float): Set the size of the points in scatter plot. The default is 3. - label (list or None): Specifiy the label of each point. The default is None. - title (str): Title of the plot. The default is None. - alpha (float): The alpha blending value. The default is 1. - aes_label (list): Set the label of every axis. The default is None. ### Citation Xinjun Li, Fan Feng, Wai Yan Leung and Jie Liu. "scHiCTools: a computational toolbox for analyzing single cell Hi-C data." bioRxiv (2019): 769513. ### References A. R. Ardakany, F. Ay, and S. Lonardi. Selfish: Discovery of differential chromatininteractions via a self-similarity measure.bioRxiv, 2019. N. C. Durand, J. T. Robinson, M. S. Shamim, I. Machol, J. P. Mesirov, E. S. Lander, and E. Lieberman Aiden. "Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom." Cell Systems 3(1), 2016. J. Liu, D. Lin, G. Yardimci, and W. S. Noble. Unsupervised embedding of single-cellHi-C data.Bioinformatics, 34:96–104, 2018. T. Nagano, Y. Lubling, C. Várnai, C. Dudley, W. Leung, Y. Baran, N. M. Cohen,S. Wingett, P. Fraser, and A. Tanay. Cell-cycle dynamics of chromosomal organization at single-cell resolution.Nature, 547:61–67, 2017. B. Wang, A. Pourshafeie, M. Zitnik, J. Zhu, C. D. Bustamante, S. Batzoglou, andJ. Leskovec. Network enhancement as a general method to denoise weighted biological networks.Nature Communications, 9(1):3108, 2018. T. Yang, F. Zhang, G. G. Y. mcı, F. Song, R. C. Hardison, W. S. Noble, F. Yue, andQ. Li. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient.Genome Research, 27(11):1939–1949, 2017. G. G. Yardımcı, H. Ozadam, M. E. Sauria, O. Ursu, K. K. Yan, T. Yang,A. Chakraborty, A. Kaul, B. R. Lajoie, F. Song, et al. Measuring the reproducibilityand quality of hi-c data.Genome Biology, 20(1):57, 2019.
/scHiCTools-0.0.3.tar.gz/scHiCTools-0.0.3/README.md
0.899257
0.938969
README.md
pypi
# Author: Vlad Niculae # Lars Buitinck # Mathieu Blondel <[email protected]> # Tom Dupre la Tour # License: BSD 3 clause from math import sqrt import warnings import numbers import numpy as np import scipy.sparse as sp from datetime import datetime from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_random_state, check_array from sklearn.utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from sklearn.utils.validation import check_is_fitted from sklearn.exceptions import ConvergenceWarning from cdnmf_fast import _update_cdnmf_fast EPSILON = np.finfo(np.float32).eps INTEGER_TYPES = (numbers.Integral, np.integer) def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from https://stackoverflow.com/q/13426580 .. deprecated:: 0.22.0 Parameters ---------- X : array_like The input array or sparse matrix Returns ------- Float The min value of X """ if sp.issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ Parameters ---------- x : array-like Vector for which to compute the norm """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T). Parameters ---------- X : array-like First matrix Y : array-like Second matrix """ return np.dot(_safe_ravel(X), _safe_ravel(Y)) def _check_non_negative(X, whom, accept_nan=False): """ Check if there is any negative value in an array. Parameters ---------- X : array-like or sparse matrix Input data. whom : string Who passed X to this function. accept_nan : boolean If True, NaN values are accepted in X. """ # avoid X.min() on sparse matrix since it also sorts the indices if sp.issparse(X): if X.format in ['lil', 'dok']: X = X.tocsr() if X.data.size == 0: X = np.arange(1) else: X = X.data if accept_nan: X_min = np.nanmin(X) else: X_min = np.min(X) if np.isnan(X_min): raise ValueError("NaN values in data passed to %s" % whom) if X_min < 0: raise ValueError("Negative values in data passed to %s" % whom) def _check_init(A, shape, whom): A = check_array(A) if np.shape(A) != shape: raise ValueError('Array with wrong shape passed to %s. Expected %s, ' 'but got %s ' % (whom, shape, np.shape(A))) _check_non_negative(A, whom) if np.max(A) == 0: raise ValueError('Array passed to %s is full of zeros.' % whom) def _safe_squared_norm(X): """Squared Euclidean or Frobenius norm of X, safe for numpy masked arrays. """ X = _safe_ravel(X) if isinstance(X, np.ma.masked_array): return float(np.ma.dot(X, X)) else: return np.dot(X, X) def _safe_ravel(X): """Guarantee that we preserve masked array in ravel. """ if isinstance(X, np.ma.masked_array): return np.ma.ravel(X) else: return np.ravel(X) def _safe_mean(X): """Compute the arithmetic mean of an array, safe for sparse and NaN values """ if sp.issparse(X): return X.mean() else: return np.nanmean(X) def _special_dot_X(W, H, X, out=None): """Computes np.dot(W, H) in a special way: - If X is sparse, np.dot(W, H) is computed only where X is non zero, and a sparse matrix is returned, with the same sparsity as X. - If X is masked, np.dot(W, H) is computed entirely, and a masked array is returned, with the same mask as X. - If X is dense, np.dot(W, H) is computed entirely, and returned as a dense array. """ if sp.issparse(X): ii, jj = X.nonzero() dot_vals = np.multiply(W[ii, :], H.T[jj, :]).sum(axis=1) WH = sp.coo_matrix((dot_vals, (ii, jj)), shape=X.shape) return WH.tocsr() elif isinstance(X, np.ma.masked_array): WH = np.ma.masked_array(np.dot(W, H, out=out), mask=X.mask) WH._sharedmask = False return WH else: return np.dot(W, H, out=out) def _safe_dot(X, Ht): """Computes np.dot(X, Ht) such that the sparse and the masked cases are handled correctly. Note that the masked case do not return a masked array. """ if isinstance(X, np.ma.masked_array) or isinstance(Ht, np.ma.masked_array): return np.asarray(np.ma.dot(X, Ht)) else: return safe_sparse_dot(X, Ht) def _compute_regularization(alpha, l1_ratio, regularization): """Compute L1 and L2 regularization coefficients for W and H""" alpha_H = 0. alpha_W = 0. if regularization in ('both', 'components'): alpha_H = float(alpha) if regularization in ('both', 'transformation'): alpha_W = float(alpha) l1_reg_W = alpha_W * l1_ratio l1_reg_H = alpha_H * l1_ratio l2_reg_W = alpha_W * (1. - l1_ratio) l2_reg_H = alpha_H * (1. - l1_ratio) return l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H def _loss(X, W, H): """Compute the Frobenius *squared* norm of X - dot(W, H). Parameters ---------- X : float or array-like, shape (n_samples, n_features) Numpy masked arrays or arrays containing NaN are accepted. W : float or dense array-like, shape (n_samples, n_components) H : float or dense array-like, shape (n_components, n_features) Returns ------- res : float Frobenius norm of X and np.dot(X, H) """ # The method can be called with scalars if not sp.issparse(X): X = np.atleast_2d(X) W = np.atleast_2d(W) H = np.atleast_2d(H) # Frobenius norm # Avoid the creation of the dense np.dot(W, H) if X is sparse. if sp.issparse(X): norm_X = np.dot(X.data, X.data) norm_WH = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) res = (norm_X + norm_WH - 2. * cross_prod) / 2. else: res = _safe_squared_norm(X - np.dot(W, H)) / 2. assert not np.isnan(res) assert res >= 0 return np.sqrt(res * 2) def _initialize_nmf(X, n_components, init=None, eps=1e-6, random_state=None): """Algorithms for NMF initialization. Computes an initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix to be decomposed. n_components : integer The number of components desired in the approximation. init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' Method used to initialize the procedure. Default: None. Valid options: - None: 'nndsvd' if n_components <= min(n_samples, n_features), otherwise 'random'. - 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) - 'custom': use custom matrices W and H eps : float Truncate all values less then this in output to zero. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``random`` == 'nndsvdar' or 'random'. Returns ------- W : array-like, shape (n_samples, n_components) Initial guesses for solving X ~= WH H : array-like, shape (n_components, n_features) Initial guesses for solving X ~= WH References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ _check_non_negative(X, "NMF initialization", accept_nan=True) n_samples, n_features = X.shape if (init is not None and init != 'random' and n_components > min(n_samples, n_features)): raise ValueError("init = '{}' can only be used when " "n_components <= min(n_samples, n_features)" .format(init)) if init is None: if n_components <= min(n_samples, n_features): init = 'nndsvd' else: init = 'random' # Random initialization if init == 'random': X_mean = _safe_mean(X) avg = np.sqrt(X_mean / n_components) rng = check_random_state(random_state) H = avg * rng.randn(n_components, n_features) W = avg * rng.randn(n_samples, n_components) # we do not write np.abs(H, out=H) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(H, H) np.abs(W, W) return W, H if not sp.issparse(X) and np.any(np.isnan(X)): raise ValueError("NMF initializations with NNDSVD are not available " "with missing values (np.nan).") # NNDSVD initialization U, S, V = randomized_svd(X, n_components, random_state=random_state) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if init == "nndsvd": pass elif init == "nndsvda": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif init == "nndsvdar": rng = check_random_state(random_state) avg = X.mean() W[W == 0] = abs(avg * rng.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * rng.randn(len(H[H == 0])) / 100) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'random', 'nndsvd', 'nndsvda', 'nndsvdar'))) return W, H def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle, random_state): """Helper function for _fit_coordinate_descent Update W to minimize the objective function, iterating once over all coordinates. By symmetry, to update H, one can call _update_coordinate_descent(X.T, Ht, W, ...) """ n_components = Ht.shape[1] HHt = np.dot(Ht.T, Ht) XHt = safe_sparse_dot(X, Ht) # L2 regularization corresponds to increase of the diagonal of HHt if l2_reg != 0.: # adds l2_reg only on the diagonal HHt.flat[::n_components + 1] += l2_reg # L1 regularization corresponds to decrease of each element of XHt if l1_reg != 0.: XHt -= l1_reg if shuffle: permutation = random_state.permutation(n_components) else: permutation = np.arange(n_components) # The following seems to be required on 64-bit Windows w/ Python 3.5. permutation = np.asarray(permutation, dtype=np.intp) return _update_cdnmf_fast(W, HHt, XHt, permutation) def _fit_coordinate_descent(X, W, H, tol=1e-4, max_iter=200, l1_reg_W=0, l1_reg_H=0, l2_reg_W=0, l2_reg_H=0, verbose=0, shuffle=False, random_state=None): """Compute Non-negative Matrix Factorization (NMF) with Coordinate Descent The objective function is minimized with an alternating minimization of W and H. Each minimization is done with a cyclic (up to a permutation of the features) Coordinate Descent. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Initial guess for the solution. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. l1_reg_W : double, default: 0. L1 regularization parameter for W. l1_reg_H : double, default: 0. L1 regularization parameter for H. l2_reg_W : double, default: 0. L2 regularization parameter for W. l2_reg_H : double, default: 0. L2 regularization parameter for H. update_H : boolean, default: True Set to True, both W and H will be estimated from initial guesses. Set to False, only W will be estimated. verbose : integer, default: 0 The verbosity level. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- W : array-like, shape (n_samples, n_components) Solution to the non-negative least squares problem. H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. n_iter : int The number of iterations done by the algorithm. References ---------- Cichocki, Andrzej, and Phan, Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ # so W and Ht are both in C order in memory Ht = check_array(H.T, order='C') X = check_array(X, accept_sparse='csr') rng = check_random_state(random_state) for n_iter in range(max_iter): violation = 0. # Update W violation += _update_coordinate_descent(X, W, Ht, l1_reg_W, l2_reg_W, shuffle, rng) # Update H violation += _update_coordinate_descent(X.T, Ht, W, l1_reg_H, l2_reg_H, shuffle, rng) if n_iter == 0: violation_init = violation if violation_init == 0: break _violation = violation / violation_init if verbose == 1: print(f"{datetime.now().strftime('%m/%d/%Y %H:%M:%S')}, iteration: {n_iter: }, " f"violation: {_violation: .8f}") elif verbose == 2: err = _loss(X, W, Ht.T) print(f"{datetime.now().strftime('%m/%d/%Y %H:%M:%S')}, iteration: {n_iter: }, " f"violation: {_violation: .8f}, error: {err: .8f}") if violation / violation_init <= tol: if verbose: print(f"{datetime.now().strftime('%m/%d/%Y %H:%M:%S')}, " f"Converged at iteration {n_iter + 1}") break return W, Ht.T, n_iter def non_negative_factorization(X, W=None, H=None, n_components=None, init=None, tol=1e-4, max_iter=200, alpha=0., l1_ratio=0., regularization=None, random_state=None, verbose=0, shuffle=False): r"""Compute Non-negative Matrix Factorization (NMF) Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is:: 0.5 * ||X - WH||_Fro^2 + 0.5 * alpha * ||W||_Fro^2 + 0.5 * alpha * ||H||_Fro^2 Where:: ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm) The objective function is minimized with an alternating minimization of W and H. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) If init='custom', it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init='custom', it is used as initial guess for the solution. If update_H=False, it is used as a constant, to solve for W only. n_components : integer Number of components, if n_components is not set all features are kept. init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: 'random'. The default value will change from 'random' to None in version 0.23 to make it consistent with decomposition.NMF. Valid options: - None: 'nndsvd' if n_components < n_features, otherwise 'random'. - 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) - 'custom': use custom matrices W and H tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. regularization : 'both' | 'components' | 'transformation' | None Select whether the regularization affects the components (H), the transformation (W), both or none of them. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : integer, default: 0 The verbosity level. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. Returns ------- W : array-like, shape (n_samples, n_components) Solution to the non-negative least squares problem. H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. n_iter : int Actual number of iterations. References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ X = check_array(X, accept_sparse=('csr', 'csc'), dtype=float, force_all_finite=False) _check_non_negative(X, "NMF (input X)", accept_nan=True) if sp.issparse(X) and np.any(np.isnan(X.data)): raise ValueError("X contains NaN values, and NMF with missing " "values is not implemented for sparse matrices.") n_samples, n_features = X.shape if n_components is None: n_components = n_features if not isinstance(n_components, INTEGER_TYPES) or n_components <= 0: raise ValueError("Number of components must be a positive integer;" " got (n_components=%r)" % n_components) if not isinstance(max_iter, INTEGER_TYPES) or max_iter < 0: raise ValueError("Maximum number of iterations must be a positive " "integer; got (max_iter=%r)" % max_iter) if not isinstance(tol, numbers.Number) or tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % tol) # check W and H, or initialize them if init == 'custom': _check_init(H, (n_components, n_features), "NMF (input H)") _check_init(W, (n_samples, n_components), "NMF (input W)") else: W, H = _initialize_nmf(X, n_components, init=init, random_state=random_state) l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H = _compute_regularization( alpha, l1_ratio, regularization) W, H, n_iter = _fit_coordinate_descent(X, W, H, tol, max_iter, l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H, verbose=verbose, shuffle=shuffle, random_state=random_state) if n_iter == max_iter and tol > 0: warnings.warn("Maximum number of iteration %d reached. Increase it to" " improve convergence." % max_iter, ConvergenceWarning) return W, H, n_iter class NMF(BaseEstimator, TransformerMixin): r"""Non-Negative Matrix Factorization (NMF) Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is:: 0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2 Where:: ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm) For multiplicative-update ('mu') solver, the Frobenius norm (0.5 * ||X - WH||_Fro^2) can be changed into another beta-divergence loss, by changing the beta_loss parameter. The objective function is minimized with an alternating minimization of W and H. Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all features are kept. init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: None. Valid options: - None: 'nndsvd' if n_components <= min(n_samples, n_features), otherwise random. - 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) - 'custom': use custom matrices W and H tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. .. versionadded:: 0.17 *alpha* used in the Coordinate Descent solver. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. .. versionadded:: 0.17 Regularization parameter *l1_ratio* used in the Coordinate Descent solver. verbose : bool, default=False Whether to be verbose. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. .. versionadded:: 0.17 *shuffle* parameter used in the Coordinate Descent solver. Attributes ---------- components_ : array, [n_components, n_features] Factorization matrix, sometimes called 'dictionary'. reconstruction_err_ : number Frobenius norm of the matrix difference, or beta-divergence, between the training data ``X`` and the reconstructed data ``WH`` from the fitted model. n_iter_ : int Actual number of iterations. Examples -------- >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import NMF >>> model = NMF(n_components=2, init='random', random_state=0) >>> W = model.fit_transform(X) >>> H = model.components_ References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the beta-divergence. Neural Computation, 23(9). """ def __init__(self, n_components=None, init=None, tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., verbose=0, shuffle=False): self.n_components = n_components self.init = init self.tol = tol self.max_iter = max_iter self.random_state = random_state self.alpha = alpha self.l1_ratio = l1_ratio self.verbose = verbose self.shuffle = shuffle def fit_transform(self, X, y=None, W=None, H=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed y : Ignored W : array-like, shape (n_samples, n_components) If init='custom', it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init='custom', it is used as initial guess for the solution. Returns ------- W : array, shape (n_samples, n_components) Transformed data. """ X = check_array(X, accept_sparse=('csr', 'csc'), dtype=float, force_all_finite=False) W, H, n_iter_ = non_negative_factorization( X=X, W=W, H=H, n_components=self.n_components, init=self.init, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle) self.reconstruction_err_ = _loss(X, W, H) self.n_components_ = H.shape[0] self.components_ = H self.n_iter_ = n_iter_ return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed y : Ignored Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be transformed by the model Returns ------- W : array, shape (n_samples, n_components) Transformed data """ check_is_fitted(self, 'n_components_') W, _, n_iter_ = non_negative_factorization( X=X, W=None, H=self.components_, n_components=self.n_components_, init=self.init, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle) return W def inverse_transform(self, W): """Transform data back to its original space. Parameters ---------- W : {array-like, sparse matrix}, shape (n_samples, n_components) Transformed data matrix Returns ------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix of original shape .. versionadded:: 0.18 """ check_is_fitted(self, 'n_components_') return np.dot(W, self.components_)
/scOpen-1.0.1.tar.gz/scOpen-1.0.1/scopen/MF.py
0.901176
0.601828
MF.py
pypi
# scRFE ``` # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) # sc.pp.filter_cells(dataMatrix, min_genes=0) # sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] print ('na data removed') return dataMatrix def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' #make labels based on A/B of # classofInterest return dataMatrix def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group', ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators, randomState, min_cells, keep_small_categories, nJobs, oobScore, Step, Cv): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, random_state = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, classOfInterest = 'classification_group', ) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] #'A' or 'B' labels from labelSplit clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, min_cells = 15, keep_small_categories = True, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- adata : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs nEstimators : int The number of trees in the forest randomState : int Controls random number being used min_cells : int Minimum number of cells in a given class to downsample. keep_small_categories : bool Whether to keep classes with small number of observations, or to remove. nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) dataMatrix = filterNormalize (dataMatrix, classOfInterest) results_df = pd.DataFrame() for labelOfInterest in np.unique(dataMatrix.obs[classOfInterest]): dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest( dataMatrix = dataMatrix_labelOfInterest, classOfInterest = classOfInterest, labelOfInterest = labelOfInterest, nEstimators = nEstimators, randomState = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, nJobs = nJobs, oobScore = oobScore, Step = Step, Cv = Cv) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df adata = read_h5ad('/Users/madelinepark/Downloads/Liver_droplet.h5ad') scRFE (adata, classOfInterest = 'age', nEstimators = 10, Cv = 3) ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFEv1.4.2.ipynb
0.787114
0.846451
scRFEv1.4.2.ipynb
pypi
# Visualization: Venn Diagram ``` import numpy as np import pandas as pd import scanpy as sc from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from matplotlib import pyplot as plt import matplotlib_venn from matplotlib import pyplot as plt from matplotlib_venn import venn2, venn3, venn3_circles ``` # Venn Diagram ``` # Read in SORTED results for each feature (ex: age) # Highest gini scores and their corresponding genes at top, fill the column in descending order sorted_24 = pd.read_csv('/Users/madelinepark/src2/maca-data-analysis/rf-rfe-results/cv_24m_facs_sorted.csv') sorted_3 = pd.read_csv('/Users/madelinepark/src2/maca-data-analysis/rf-rfe-results/cv_3m_facs_sorted.csv') # compare 3m vs 24m results compare_3_24 = venn2([set(sorted_24['24m']), set(sorted_3['3m'])], set_labels=('3m','24m')) ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/venn-diagram.ipynb
0.508544
0.665143
venn-diagram.ipynb
pypi
# scRFE ``` # madeline editting 06/22 # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) sc.pp.filter_cells(dataMatrix, min_genes=0) sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] return dataMatrix def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' return dataMatrix def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group' ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ print(min_cells) counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, classOfInterest = 'classification_group', random_state = None, min_cells = 15, keep_small_categories = False) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) # print("Original dataset ", dataMatrix.shape) dataMatrix = filterNormalize (dataMatrix, classOfInterest) # print("Filtered dataset ",dataMatrix.shape) # print(pd.DataFrame(dataMatrix.obs.groupby([classOfInterest])[classOfInterest].count())) results_df = pd.DataFrame() for labelOfInterest in np.unique(dataMatrix.obs[classOfInterest]): # print(labelOfInterest) dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest(dataMatrix_labelOfInterest, classOfInterest, labelOfInterest = labelOfInterest) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df # liverTFAge = scRFE (adata = adataLiver, classOfInterest = 'age', # nEstimators = 10, randomState = 0, # nJobs = -1, oobScore = True, Step = 0.2, Cv = 3) ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFEjun24.ipynb
0.728652
0.868994
scRFEjun24.ipynb
pypi
# # scRFE # In[154]: # madeline editting 06/22 # In[186]: # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg # In[187]: # adataLiver = read_h5ad('/Users/madelinepark/Downloads/Liver_droplet.h5ad') # In[188]: # mouse_tfs = pd.read_csv("/Users/madelinepark/Downloads/GO_term_summary_20171110_222852.csv") # mouse_tfs.head() # In[191]: def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix # In[192]: def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) sc.pp.filter_cells(dataMatrix, min_genes=0) sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] return dataMatrix # In[193]: def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' return dataMatrix # In[194]: def downsampleToSmallestCategory(dataMatrix, classOfInterest = 'classification_group', random_state = None, min_cells = 15, keep_small_categories = True ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() # In[199]: def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, classOfInterest = 'classification_group', random_state = None, min_cells = 15, keep_small_categories = False) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ # In[200]: def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df # In[201]: def scRFE(adata, classOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) print("Original dataset ", dataMatrix.shape) dataMatrix = filterNormalize (dataMatrix, classOfInterest) print("Filtered dataset ",dataMatrix.shape) print(pd.DataFrame(dataMatrix.obs.groupby([classOfInterest])[classOfInterest].count())) results_df = pd.DataFrame() for labelOfInterest in np.unique(dataMatrix.obs[classOfInterest]): print(labelOfInterest) dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest(dataMatrix_labelOfInterest, classOfInterest, labelOfInterest = labelOfInterest) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df # In[ ]: # liverTFAge = scRFE (adata = adataLiver, classOfInterest = 'age', # nEstimators = 10, randomState = 0, # nJobs = -1, oobScore = True, Step = 0.2, Cv = 3) # In[ ]:
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFEjun24.py
0.67694
0.606469
scRFEjun24.py
pypi
# # scRFE # In[3]: # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg # In[84]: def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix # In[101]: def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) # sc.pp.filter_cells(dataMatrix, min_genes=0) # sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] print ('na data removed') return dataMatrix # In[86]: def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' #make labels based on A/B of # classofInterest return dataMatrix # In[92]: def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group', ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() # In[93]: def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators, randomState, min_cells, keep_small_categories, nJobs, oobScore, Step, Cv): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, random_state = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, classOfInterest = 'classification_group', ) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] #'A' or 'B' labels from labelSplit clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ # In[94]: def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df # In[99]: def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, min_cells = 15, keep_small_categories = True, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used min_cells : int Minimum number of cells in a given class to downsample. keep_small_categories : bool Whether to keep classes with small number of observations, or to remove. nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) dataMatrix = filterNormalize (dataMatrix, classOfInterest) results_df = pd.DataFrame() for labelOfInterest in sorted(np.unique(dataMatrix.obs[classOfInterest])): dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest( dataMatrix = dataMatrix_labelOfInterest, classOfInterest = classOfInterest, labelOfInterest = labelOfInterest, nEstimators = nEstimators, randomState = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, nJobs = nJobs, oobScore = oobScore, Step = Step, Cv = Cv) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFEv1.4.2.py
0.7478
0.643721
scRFEv1.4.2.py
pypi
# scRFEjun19 ``` # AnnDatasubset # Angela sent to Madeline on June 22 # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg mouse_tfs = pd.read_csv("/home/angela/maca/GO_term_summary_20171110_222852.csv") mouse_tfs.head() adata = read_h5ad( "/home/angela/maca/tabula-muris-senis/0_data_ingest/01_figure_1/tabula-muris-senis-droplet-processed-official-annotations.h5ad") adata adata = adata[:,adata.var_names[adata.var_names.isin(mouse_tfs['Symbol'])]] adata # adataLiver = read_h5ad('/Users/madelinepark/Downloads/Liver_droplet.h5ad') adataLiver = adata[adata.obs['tissue']=='Liver'].copy() adataLiver def remove_cats(adata): cat_columns = adata.obs.select_dtypes(['category']).columns adata.obs[cat_columns] = adata.obs[cat_columns].astype(str) return adata def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) # sc.logging.print_versions() # sc.settings.verbosity = 3 # sc.logging.print_versions() # dataMatrix.obs['n_counts'] = dataMatrix.X.sum(axis=1).A1 sc.pp.filter_cells(dataMatrix, min_genes=0) sc.pp.filter_genes(dataMatrix, min_cells=0) # dataMatrix = dataMatrix[dataMatrix.obs['n_counts'] > 1500, :] # sc.pp.normalize_per_cell(dataMatrix, counts_per_cell_after=1e5) # sc.pp.log1p(dataMatrix) # dataMatrix.raw = dataMatrix dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] return dataMatrix def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' return dataMatrix def downsampleToSmallestCategory(dataMatrix, classOfInterest = 'classification_group', random_state = None, min_cells = 15, keep_small_categories = True ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, classOfInterest = 'classification_group', random_state = None, min_cells = 15, keep_small_categories = False) print('downsampled Matrix') # print("labelOfInterest") print(pd.DataFrame(downsampledMatrix.obs.groupby(['classification_group',classOfInterest])[classOfInterest].count())) # display (downsampledMatrix.obs['classification_group']) # print(set(downsampledMatrix.obs['classification_group'])) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] # display(downsampledMatrix.obs) dataMatrix.obs['classification_group'] = 'B' # print('corresponding') # display(downsampledMatrix.obs) return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE(adata, classOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = remove_cats(dataMatrix) print("Original dataset ",dataMatrix.shape) dataMatrix = filterNormalize (dataMatrix, classOfInterest) print("Filtered dataset ",dataMatrix.shape) print(pd.DataFrame(dataMatrix.obs.groupby([classOfInterest])[classOfInterest].count())) results_df = pd.DataFrame() for labelOfInterest in np.unique(dataMatrix.obs[classOfInterest]): print(labelOfInterest) dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest(dataMatrix_labelOfInterest, classOfInterest, labelOfInterest = labelOfInterest) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) # finaldf = makeOneForest (dataMatrix, classOfInterest, labelOfInterest = labelOfInterest)[2] return results_df senis_facs_tfs_age = scRFE (adata, classOfInterest = 'age', nEstimators = 10, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 3) adata senis_facs_tfs_age age = '24m' sum(senis_droplet_tfs_age[age].isin(senis_facs_tfs_age[age]))/sum(~senis_droplet_tfs_age[age].isna())*100 sum(senis_facs_tfs_age['3m'].isin(senis_droplet_tfs_age['3m']))/sum(~senis_facs_tfs_age['3m'].isna())*100 sum(~senis_facs_tfs_age['3m'].isna()),sum(~senis_droplet_tfs_age['3m'].isna()) sum(senis_facs_tfs_age['3m'].isin(senis_droplet_tfs_age['3m'])) senis_droplet_tfs_age.to_csv("senis_droplet_tfs_age.csv") senis_facs_tfs_age.to_csv("senis_facs_tfs_age.csv") liverAgeSmallnorm = scRFE (dataMatrix = adataLiver, classOfInterest = 'age', nEstimators = 10, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 3) liverAgeSmall.to_csv("scRFE_Liver_droplet_age.csv") liverAgeSmallnonorm liverAgeSmallnorm.to_csv("scRFE_Liver_facs_age.csv") ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFE_jun19_FROMANGELA.ipynb
0.580233
0.803482
scRFE_jun19_FROMANGELA.ipynb
pypi
# Sorting Results ``` # Imports import numpy as np import pandas as pd import scanpy as sc from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV cd scrfe test results kidney_facs_1000_age = pd.read_csv('KidneyFacsAge1000TissReset.csv') # kidney_facs_1000_age def sortVals(df): cols = df.columns.to_list() print(cols[1]) return df.sort_values(by = cols[2], ascending=False) sortVals(kidney_facs_1000_age) kidney_facs_1000_cell = pd.read_csv('KidneyFacsCell1000TissReset.csv') sortVals(kidney_facs_1000_cell).head() heart_droplet_1000_age = pd.read_csv('HeartDropletAge1000TissReset.csv') sortVals(heart_droplet_1000_age).head() ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/SortingResults.ipynb
0.417509
0.525673
SortingResults.ipynb
pypi
# # scRFE # In[3]: # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg # In[84]: def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix # In[101]: def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) # sc.pp.filter_cells(dataMatrix, min_genes=0) # sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] print ('na data removed') return dataMatrix # In[86]: def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' #make labels based on A/B of # classofInterest return dataMatrix # In[92]: def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group', ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() # In[93]: def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators, randomState, min_cells, keep_small_categories, nJobs, oobScore, Step, Cv): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, random_state = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, classOfInterest = 'classification_group', ) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] #'A' or 'B' labels from labelSplit clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ # In[94]: def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df # In[99]: def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, min_cells = 15, keep_small_categories = True, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used min_cells : int Minimum number of cells in a given class to downsample. keep_small_categories : bool Whether to keep classes with small number of observations, or to remove. nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) dataMatrix = filterNormalize (dataMatrix, classOfInterest) results_df = pd.DataFrame() for labelOfInterest in sorted(np.unique(dataMatrix.obs[classOfInterest])): dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest( dataMatrix = dataMatrix_labelOfInterest, classOfInterest = classOfInterest, labelOfInterest = labelOfInterest, nEstimators = nEstimators, randomState = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, nJobs = nJobs, oobScore = oobScore, Step = Step, Cv = Cv) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFEV142.py
0.811415
0.555496
scRFEV142.py
pypi
# # scRFE Tutorial # # Here we present an example of how to use scRFE. We analyze the Limb Muscle Facs data from the Tabula-Muris-Senis dataset that is available on Figshare. We split the data by age. # More features were selected than ideal in this model, because we used a very small number of estimators and a low CV score, for time's sake. This results are not accurate though, and we recommend running the code with 1000 estimators and CV>=5 with an EC2 instance. # ### Imports # In[2]: # Imports import numpy as np import pandas as pd import scanpy as sc from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV # ### Read in anndata file # In[3]: adata = read_h5ad('/Users/madelinepark/Downloads/Limb_Muscle_facs.h5ad') tiss = adata # In[4]: list(set(tiss.obs['age'])) # ### Run scRFE # we decreased n_estimators and cv so that the code will run faster, but you should increase both before using # In[5]: tiss.obs['age_type_of_interest'] = 'rest' results_age_cv = pd.DataFrame() for c in list(set(tiss.obs['age'])): print(c) clf = RandomForestClassifier(n_estimators=10, random_state=0, n_jobs=-1, oob_score=True) selector = RFECV(clf, step=0.2, cv=3, n_jobs=4) # step = % rounded down at each iteration age_of_interest = c tiss.obs.loc[tiss.obs[tiss.obs['age'] == age_of_interest].index,'age_type_of_interest'] = age_of_interest feat_labels = tiss.var_names X = tiss.X y = tiss.obs['age_type_of_interest'] print('training...') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05, random_state=0) clf.fit(X_train, y_train) selector.fit(X_train, y_train) print(type(feat_labels)) #adding this to test feature_selected = feat_labels[selector.support_] print('result writing') column_headings = [] column_headings.append(c) column_headings.append(c + '_gini') resaux = pd.DataFrame(columns=column_headings) resaux[c] = feature_selected resaux[c + '_gini'] = (selector.estimator_.feature_importances_) print(feature_selected) print (selector.estimator_.feature_importances_) results_age_cv = pd.concat([results_age_cv,resaux],axis=1) tiss.obs['age_type_of_interest'] = 'rest' results_age_cv # In[ ]: # In[ ]: # In[ ]:
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFE-tutorial.py
0.509764
0.759805
scRFE-tutorial.py
pypi
# scRFE ``` # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) # sc.pp.filter_cells(dataMatrix, min_genes=0) # sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] print ('na data removed') return dataMatrix def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' #make labels based on A/B of # classofInterest return dataMatrix def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group', ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators, randomState, min_cells, keep_small_categories, nJobs, oobScore, Step, Cv): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, random_state = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, classOfInterest = 'classification_group', ) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] #'A' or 'B' labels from labelSplit clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, min_cells = 15, keep_small_categories = True, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used min_cells : int Minimum number of cells in a given class to downsample. keep_small_categories : bool Whether to keep classes with small number of observations, or to remove. nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) dataMatrix = filterNormalize (dataMatrix, classOfInterest) results_df = pd.DataFrame() for labelOfInterest in sorted(np.unique(dataMatrix.obs[classOfInterest])): dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest( dataMatrix = dataMatrix_labelOfInterest, classOfInterest = classOfInterest, labelOfInterest = labelOfInterest, nEstimators = nEstimators, randomState = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, nJobs = nJobs, oobScore = oobScore, Step = Step, Cv = Cv) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/scRFEdefaultParams.ipynb
0.760562
0.885483
scRFEdefaultParams.ipynb
pypi
# Visualization: Venn Diagram ``` import numpy as np import pandas as pd import scanpy as sc from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from matplotlib import pyplot as plt import matplotlib_venn from matplotlib import pyplot as plt from matplotlib_venn import venn2, venn3, venn3_circles ``` # Venn Diagram ``` # Read in SORTED results for each feature (ex: age) # Highest gini scores and their corresponding genes at top, fill the column in descending order sorted_24 = pd.read_csv('/Users/madelinepark/src2/maca-data-analysis/rf-rfe-results/cv_24m_facs_sorted.csv') sorted_3 = pd.read_csv('/Users/madelinepark/src2/maca-data-analysis/rf-rfe-results/cv_3m_facs_sorted.csv') # compare 3m vs 24m results compare_3_24 = venn2([set(sorted_24['24m']), set(sorted_3['3m'])], set_labels=('3m','24m')) ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/.ipynb_checkpoints/venn-diagram-checkpoint.ipynb
0.508544
0.665143
venn-diagram-checkpoint.ipynb
pypi
``` # testing scRFE from scRFE import scRFE from scRFE import scRFEimplot from scRFE.scRFE import makeOneForest import numpy as np import pandas as pd from anndata import read_h5ad adata = read_h5ad('/Users/madelinepark/Downloads/Liver_droplet.h5ad') madeForest = makeOneForest(dataMatrix=adata, classOfInterest='age', labelOfInterest='3m', nEstimators=10, randomState=0, min_cells=15, keep_small_categories=True, nJobs=-1, oobScore=True, Step=0.2, Cv=3, verbosity=True) type(madeForest[4]) from scRFE.scRFE import scRFEimplot scRFEimplot(X_new=madeForest[3], y = madeForest[4]) ``` # scRFE ``` # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg adata = read_h5ad('/Users/madelinepark/Downloads/Liver_droplet.h5ad') def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix def filterNormalize (dataMatrix, classOfInterest, verbosity): np.random.seed(644685) # sc.pp.filter_cells(dataMatrix, min_genes=0) # sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] if verbosity == True: print ('na data removed') return dataMatrix filterNormalize(dataMatrix = adata, classOfInterest = 'age', verbosity = True) def labelSplit (dataMatrix, classOfInterest, labelOfInterest, verbosity): dataMatrix = filterNormalize (dataMatrix, classOfInterest, verbosity) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' #make labels based on A/B of # classofInterest return dataMatrix def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, verbosity, classOfInterest = 'classification_group' ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators, randomState, min_cells, keep_small_categories, nJobs, oobScore, Step, Cv, verbosity): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest, verbosity) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, random_state = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, verbosity = verbosity, classOfInterest = 'classification_group', ) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] #'A' or 'B' labels from labelSplit clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, min_cells = 15, keep_small_categories = True, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5, verbosity = True): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- adata : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs nEstimators : int The number of trees in the forest randomState : int Controls random number being used min_cells : int Minimum number of cells in a given class to downsample. keep_small_categories : bool Whether to keep classes with small number of observations, or to remove. nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) dataMatrix = filterNormalize (dataMatrix, classOfInterest, verbosity) results_df = pd.DataFrame() for labelOfInterest in np.unique(dataMatrix.obs[classOfInterest]): dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest( dataMatrix = dataMatrix_labelOfInterest, classOfInterest = classOfInterest, labelOfInterest = labelOfInterest, nEstimators = nEstimators, randomState = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, nJobs = nJobs, oobScore = oobScore, Step = Step, Cv = Cv, verbosity=verbosity) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df adata = read_h5ad('/Users/madelinepark/Downloads/Liver_droplet.h5ad') scRFE (adata, classOfInterest = 'age', nEstimators = 10, Cv = 3) import logging logging.info('%s before you %s', 'Look', 'leap!') def logprint (verbosity): if verbosity == True: print('hi') logprint(verbosity=True) ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/.ipynb_checkpoints/scRFE-Copy1-checkpoint.ipynb
0.624064
0.739822
scRFE-Copy1-checkpoint.ipynb
pypi
# Sorting Results ``` # Imports import numpy as np import pandas as pd import scanpy as sc from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV cd scrfe test results kidney_facs_1000_age = pd.read_csv('KidneyFacsAge1000TissReset.csv') # kidney_facs_1000_age def sortVals(df): cols = df.columns.to_list() print(cols[1]) return df.sort_values(by = cols[2], ascending=False) sortVals(kidney_facs_1000_age) kidney_facs_1000_cell = pd.read_csv('KidneyFacsCell1000TissReset.csv') sortVals(kidney_facs_1000_cell).head() heart_droplet_1000_age = pd.read_csv('HeartDropletAge1000TissReset.csv') sortVals(heart_droplet_1000_age).head() ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/.ipynb_checkpoints/SortingResults-checkpoint.ipynb
0.417509
0.525673
SortingResults-checkpoint.ipynb
pypi
# scRFE ``` # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) # sc.pp.filter_cells(dataMatrix, min_genes=0) # sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] print ('na data removed') return dataMatrix def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' #make labels based on A/B of # classofInterest return dataMatrix def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group', ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators, randomState, min_cells, keep_small_categories, nJobs, oobScore, Step, Cv): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, random_state = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, classOfInterest = 'classification_group', ) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] #'A' or 'B' labels from labelSplit clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, min_cells = 15, keep_small_categories = True, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- adata : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs nEstimators : int The number of trees in the forest randomState : int Controls random number being used min_cells : int Minimum number of cells in a given class to downsample. keep_small_categories : bool Whether to keep classes with small number of observations, or to remove. nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) dataMatrix = filterNormalize (dataMatrix, classOfInterest) results_df = pd.DataFrame() for labelOfInterest in np.unique(dataMatrix.obs[classOfInterest]): dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest( dataMatrix = dataMatrix_labelOfInterest, classOfInterest = classOfInterest, labelOfInterest = labelOfInterest, nEstimators = nEstimators, randomState = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, nJobs = nJobs, oobScore = oobScore, Step = Step, Cv = Cv) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df adata = read_h5ad('/Users/madelinepark/Downloads/Liver_droplet.h5ad') scRFE (adata, classOfInterest = 'age', nEstimators = 10, Cv = 3) ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/practiceScripts/.ipynb_checkpoints/scRFEv1.4.2-checkpoint.ipynb
0.787114
0.846451
scRFEv1.4.2-checkpoint.ipynb
pypi
## Matrix plots July 16 ``` import numpy as np import pandas as pd import scanpy as sc from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from matplotlib import pyplot as plt sc.settings.verbosity = 3 # verbosity: errors (0), warnings (1), info (2), hints (3) sc.logging.print_versions() #results_file = './write/pbmc3k.h5ad' # the file that will store the analysis results, change this #does the results file have to be h5ad? ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/visualization/matrixPlotsJul16.ipynb
0.596668
0.5526
matrixPlotsJul16.ipynb
pypi
# scRFE ``` # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) # sc.pp.filter_cells(dataMatrix, min_genes=0) # sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] print ('na data removed') return dataMatrix def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' #make labels based on A/B of # classofInterest return dataMatrix def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group', ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators, randomState, min_cells, keep_small_categories, nJobs, oobScore, Step, Cv): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, random_state = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, classOfInterest = 'classification_group', ) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] #'A' or 'B' labels from labelSplit clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, min_cells = 15, keep_small_categories = True, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used min_cells : int Minimum number of cells in a given class to downsample. keep_small_categories : bool Whether to keep classes with small number of observations, or to remove. nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) dataMatrix = filterNormalize (dataMatrix, classOfInterest) results_df = pd.DataFrame() for labelOfInterest in sorted(np.unique(dataMatrix.obs[classOfInterest])): dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest( dataMatrix = dataMatrix_labelOfInterest, classOfInterest = classOfInterest, labelOfInterest = labelOfInterest, nEstimators = nEstimators, randomState = randomState, min_cells = min_cells, keep_small_categories = keep_small_categories, nJobs = nJobs, oobScore = oobScore, Step = Step, Cv = Cv) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/.ipynb_checkpoints/scRFEdefaultParams-checkpoint.ipynb
0.760562
0.885483
scRFEdefaultParams-checkpoint.ipynb
pypi
# scRFE ``` # madeline editting 06/22 # Imports import numpy as np import pandas as pd import scanpy as sc import random from anndata import read_h5ad from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV import seaborn as sns import matplotlib.pyplot as plt import scanpy.external as sce import logging as logg def columnToString (dataMatrix): cat_columns = dataMatrix.obs.select_dtypes(['category']).columns dataMatrix.obs[cat_columns] = dataMatrix.obs[cat_columns].astype(str) return dataMatrix def filterNormalize (dataMatrix, classOfInterest): np.random.seed(644685) sc.pp.filter_cells(dataMatrix, min_genes=0) sc.pp.filter_genes(dataMatrix, min_cells=0) dataMatrix = dataMatrix[dataMatrix.obs[classOfInterest]!='nan'] dataMatrix = dataMatrix[~dataMatrix.obs[classOfInterest].isna()] return dataMatrix def labelSplit (dataMatrix, classOfInterest, labelOfInterest): dataMatrix = filterNormalize (dataMatrix, classOfInterest) dataMatrix.obs['classification_group'] = 'B' dataMatrix.obs.loc[dataMatrix.obs[dataMatrix.obs[classOfInterest]==labelOfInterest] .index,'classification_group'] = 'A' return dataMatrix def downsampleToSmallestCategory(dataMatrix, random_state, min_cells, keep_small_categories, classOfInterest = 'classification_group' ) -> sc.AnnData: """ returns an annData object in which all categories in 'classOfInterest' have the same size classOfInterest column with the categories to downsample min_cells Minimum number of cells to downsample. Categories having less than `min_cells` are discarded unless keep_small_categories is True keep_small_categories Be default categories with less than min_cells are discarded. Set to true to keep them """ print(min_cells) counts = dataMatrix.obs[classOfInterest].value_counts(sort=False) if len(counts[counts < min_cells]) > 0 and keep_small_categories is False: logg.warning( "The following categories have less than {} cells and will be " "ignored: {}".format(min_cells, dict(counts[counts < min_cells])) ) min_size = min(counts[counts >= min_cells]) sample_selection = None for sample, num_cells in counts.items(): if num_cells <= min_cells: if keep_small_categories: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample].index) else: continue else: sel = dataMatrix.obs.index.isin( dataMatrix.obs[dataMatrix.obs[classOfInterest] == sample] .sample(min_size, random_state=random_state) .index ) if sample_selection is None: sample_selection = sel else: sample_selection |= sel logg.info( "The cells in category {!r} had been down-sampled to have each {} cells. " "The original counts where {}".format(classOfInterest, min_size, dict(counts)) ) return dataMatrix[sample_selection].copy() def makeOneForest (dataMatrix, classOfInterest, labelOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest for one label in a class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- feature_selected : list list of top features from random forest selector.estimator_.feature_importances_ : list list of top ginis corresponding to to features """ splitDataMatrix = labelSplit (dataMatrix, classOfInterest, labelOfInterest) downsampledMatrix = downsampleToSmallestCategory (dataMatrix = splitDataMatrix, classOfInterest = 'classification_group', random_state = None, min_cells = 15, keep_small_categories = False) feat_labels = downsampledMatrix.var_names X = downsampledMatrix.X y = downsampledMatrix.obs['classification_group'] clf = RandomForestClassifier(n_estimators = nEstimators, random_state = randomState, n_jobs = nJobs, oob_score = oobScore) selector = RFECV(clf, step = Step, cv = Cv) clf.fit(X, y) selector.fit(X, y) feature_selected = feat_labels[selector.support_] dataMatrix.obs['classification_group'] = 'B' return feature_selected, selector.estimator_.feature_importances_ def resultWrite (classOfInterest, results_df, labelOfInterest, feature_selected, feature_importance): column_headings = [] column_headings.append(labelOfInterest) column_headings.append(labelOfInterest + '_gini') resaux = pd.DataFrame(columns = column_headings) resaux[labelOfInterest] = feature_selected resaux[labelOfInterest + '_gini'] = feature_importance resaux = resaux.sort_values(by = [labelOfInterest + '_gini'], ascending = False) resaux.reset_index(drop = True, inplace = True) results_df = pd.concat([results_df, resaux], axis=1) return results_df def scRFE (adata, classOfInterest, nEstimators = 5000, randomState = 0, nJobs = -1, oobScore = True, Step = 0.2, Cv = 5): """ Builds and runs a random forest with one vs all classification for each label for one class of interest Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs labelOfInterest : str The specific label within the class that the random forezt will run a "one vs all" classification on nEstimators : int The number of trees in the forest randomState : int Controls random number being used nJobs : int The number of jobs to run in parallel oobScore : bool Whether to use out-of-bag samples to estimate the generalization accuracy Step : float Corresponds to percentage of features to remove at each iteration Cv : int Determines the cross-validation splitting strategy Returns ------- results_df : pd.DataFrame Dataframe with results for each label in the class, formatted as "label" for one column, then "label + gini" for the corresponding column """ dataMatrix = adata.copy() dataMatrix = columnToString (dataMatrix) # print("Original dataset ", dataMatrix.shape) dataMatrix = filterNormalize (dataMatrix, classOfInterest) # print("Filtered dataset ",dataMatrix.shape) # print(pd.DataFrame(dataMatrix.obs.groupby([classOfInterest])[classOfInterest].count())) results_df = pd.DataFrame() for labelOfInterest in np.unique(dataMatrix.obs[classOfInterest]): # print(labelOfInterest) dataMatrix_labelOfInterest = dataMatrix.copy() feature_selected, feature_importance = makeOneForest(dataMatrix_labelOfInterest, classOfInterest, labelOfInterest = labelOfInterest) results_df = resultWrite (classOfInterest, results_df, labelOfInterest = labelOfInterest, feature_selected = feature_selected, feature_importance = feature_importance) return results_df # liverTFAge = scRFE (adata = adataLiver, classOfInterest = 'age', # nEstimators = 10, randomState = 0, # nJobs = -1, oobScore = True, Step = 0.2, Cv = 3) ```
/scRFE-1.5.6.tar.gz/scRFE-1.5.6/scripts/.ipynb_checkpoints/scRFEjun24-checkpoint.ipynb
0.728652
0.868994
scRFEjun24-checkpoint.ipynb
pypi
from time import time import os import torch from torch_geometric.data import InMemoryDataset, Data from collections import defaultdict import episcanpy.api as epi import scanpy as sc import numpy as np import pandas as pd import anndata as ad from anndata import AnnData from typing import Optional, Mapping, List, Union from scipy import sparse import sklearn import cosg import pickle import random def tfidf(X: Union[np.ndarray, sparse.spmatrix]) -> Union[np.ndarray, sparse.spmatrix]: r""" TF-IDF normalization (following the Seurat v3 approach) Parameters ---------- X Input matrix Returns ------- X_tfidf TF-IDF normalized matrix """ idf = X.shape[0] / X.sum(axis=0) if sparse.issparse(X): tf = X.multiply(1 / X.sum(axis=1)) return tf.multiply(idf) else: tf = X / X.sum(axis=1, keepdims=True) return tf * idf def lsi( adata: AnnData, n_components: int = 20, use_highly_variable: Optional[bool] = None, **kwargs ) -> None: r""" LSI analysis (following the Seurat v3 approach) Parameters ---------- adata Input dataset n_components Number of dimensions to use use_highly_variable Whether to use highly variable features only, stored in ``adata.var['highly_variable']``. By default uses them if they have been determined beforehand. **kwargs Additional keyword arguments are passed to :func:`sklearn.utils.extmath.randomized_svd` """ if "random_state" not in kwargs: kwargs["random_state"] = 0 # Keep deterministic as the default behavior if use_highly_variable is None: use_highly_variable = "highly_variable" in adata.var adata_use = adata[:, adata.var["highly_variable"]] if use_highly_variable else adata X = tfidf(adata_use.X) X_norm = sklearn.preprocessing.normalize(X, norm="l1") X_norm = np.log1p(X_norm * 1e4) X_lsi = sklearn.utils.extmath.randomized_svd(X_norm, n_components, **kwargs)[0] X_lsi -= X_lsi.mean(axis=1, keepdims=True) X_lsi /= X_lsi.std(axis=1, ddof=1, keepdims=True) adata.obsm["X_lsi"] = X_lsi def aggregate_obs( adata: AnnData, by: str, X_agg: Optional[str] = "sum", obs_agg: Optional[Mapping[str, str]] = None, obsm_agg: Optional[Mapping[str, str]] = None, layers_agg: Optional[Mapping[str, str]] = None ) -> AnnData: r""" Aggregate obs in a given dataset by certain categories Parameters ---------- adata Dataset to be aggregated by Specify a column in ``adata.obs`` used for aggregation, must be discrete. X_agg Aggregation function for ``adata.X``, must be one of ``{"sum", "mean", ``None``}``. Setting to ``None`` discards the ``adata.X`` matrix. obs_agg Aggregation methods for ``adata.obs``, indexed by obs columns, must be one of ``{"sum", "mean", "majority"}``, where ``"sum"`` and ``"mean"`` are for continuous data, and ``"majority"`` is for discrete data. Fields not specified will be discarded. obsm_agg Aggregation methods for ``adata.obsm``, indexed by obsm keys, must be one of ``{"sum", "mean"}``. Fields not specified will be discarded. layers_agg Aggregation methods for ``adata.layers``, indexed by layer keys, must be one of ``{"sum", "mean"}``. Fields not specified will be discarded. Returns ------- aggregated Aggregated dataset """ obs_agg = obs_agg or {} obsm_agg = obsm_agg or {} layers_agg = layers_agg or {} by = adata.obs[by] agg_idx = pd.Index(by.cat.categories) \ if pd.api.types.is_categorical_dtype(by) \ else pd.Index(np.unique(by)) agg_sum = sparse.coo_matrix(( np.ones(adata.shape[0]), ( agg_idx.get_indexer(by), np.arange(adata.shape[0]) ) )).tocsr() agg_mean = agg_sum.multiply(1 / agg_sum.sum(axis=1)) agg_method = { "sum": lambda x: agg_sum @ x, "mean": lambda x: agg_mean @ x, "majority": lambda x: pd.crosstab(by, x).idxmax(axis=1).loc[agg_idx].to_numpy() } X = agg_method[X_agg](adata.X) if X_agg and adata.X is not None else None obs = pd.DataFrame({ k: agg_method[v](adata.obs[k]) for k, v in obs_agg.items() }, index=agg_idx.astype(str)) obsm = { k: agg_method[v](adata.obsm[k]) for k, v in obsm_agg.items() } layers = { k: agg_method[v](adata.layers[k]) for k, v in layers_agg.items() } for c in obs: if pd.api.types.is_categorical_dtype(adata.obs[c]): obs[c] = pd.Categorical(obs[c], categories=adata.obs[c].cat.categories) return AnnData( X=X, obs=obs, var=adata.var, obsm=obsm, varm=adata.varm, layers=layers, dtype=None if X is None else X.dtype ) class ATACDataset(object): def __init__(self, data_root: str, raw_filename: str, file_chrom: str): self.data_root = data_root self.raw_filename = raw_filename self.adata = self.load_matrix() # self.adata.raw = self.adata.copy() self.path_process = os.path.join(data_root, 'processed_files') if not os.path.exists(self.path_process): os.mkdir(self.path_process) self.file_peaks_sort = os.path.join(self.path_process, 'peaks.sort.bed') if os.path.exists(self.file_peaks_sort): os.remove(self.file_peaks_sort) self.file_chrom = file_chrom self.generate_peaks_file() self.all_promoter_genes = None self.all_proximal_genes = None self.adata_merge = None self.other_peaks = None self.df_graph = None self.list_graph = None self.array_peak = None self.array_celltype = None self.df_rna = None self.dict_promoter = None self.df_gene_peaks = None self.df_proximal = None self.df_distal = None self.df_eqtl = None self.df_tf = None def load_matrix(self): if self.raw_filename[-5:] == '.h5ad': adata_atac = sc.read_h5ad(os.path.join(self.data_root, self.raw_filename)) elif self.raw_filename[-4:] == '.tsv': adata_atac = ad.read_text( os.path.join(self.data_root, self.raw_filename), delimiter='\t', first_column_names=True, dtype='int') epi.pp.sparse(adata_atac) else: raise ImportError("Input format error!") return adata_atac def generate_peaks_file(self): df_chrom = pd.read_csv(self.file_chrom, sep='\t', header=None, index_col=0) df_chrom = df_chrom.iloc[:24] file_peaks_atac = os.path.join(self.path_process, 'peaks.bed') fmt_peak = "{chrom_peak}\t{start_peak}\t{end_peak}\t{peak_id}\n" with open(file_peaks_atac, 'w') as w_peak: for one_peak in self.adata.var.index: chrom_peak = one_peak.strip().split('-')[0] # locs = one_peak.strip().split(':')[1] if chrom_peak in df_chrom.index: start_peak = one_peak.strip().split('-')[1] end_peak = one_peak.strip().split('-')[2] peak_id = one_peak w_peak.write(fmt_peak.format(**locals())) os.system(f"bedtools sort -i {file_peaks_atac} > {self.file_peaks_sort}") def hg19tohg38(self, len_down: int = 200, len_up: int = 1000): path_peak = os.path.join(self.data_root, 'peaks_process') if not os.path.exists(path_peak): os.mkdir(path_peak) file_chain = '/root/tools/files_liftOver/hg19ToHg38.over.chain.gz' liftover = '/root/tools/liftOver' file_ummap = os.path.join(path_peak, 'unmap.bed') file_peaks_hg38 = os.path.join(path_peak, 'peaks_hg38.bed') os.system(f"{liftover} {self.file_peaks_sort} {file_chain} {file_peaks_hg38} {file_ummap}") df_hg38 = pd.read_csv(file_peaks_hg38, sep='\t', header=None) df_hg38['peak_hg38'] = df_hg38.apply(lambda x: f"{x[0]}-{x[1]}-{x[2]}", axis=1) df_hg38['length'] = df_hg38.iloc[:, 2] - df_hg38.iloc[:, 1] df_hg38 = df_hg38.loc[df_hg38['length'] < len_up, :] df_hg38 = df_hg38.loc[df_hg38['length'] > len_down, :] sel_peaks_hg19 = df_hg38.iloc[:, 3] adata_atac_out = self.adata[:, sel_peaks_hg19] adata_atac_out.var['peaks_hg19'] = adata_atac_out.var.index adata_atac_out.var.index = df_hg38['peak_hg38'] self.adata = adata_atac_out def quality_control(self, min_features: int = 1000, max_features: int = 50000, min_percent: Optional[float] = None, min_cells: Optional[int] = None): adata_atac = self.adata epi.pp.filter_cells(adata_atac, min_features=min_features) epi.pp.filter_cells(adata_atac, max_features=max_features) if min_percent is not None: by = adata_atac.obs['celltype'] agg_idx = pd.Index(by.cat.categories) \ if pd.api.types.is_categorical_dtype(by) \ else pd.Index(np.unique(by)) agg_sum = sparse.coo_matrix(( np.ones(adata_atac.shape[0]), ( agg_idx.get_indexer(by), np.arange(adata_atac.shape[0]) ) )).tocsr() sum_x = agg_sum @ (adata_atac.X != 0) df_percent = pd.DataFrame( sum_x.toarray(), index=agg_idx, columns=adata_atac.var.index ) / adata_atac.obs.value_counts('celltype').loc[agg_idx].to_numpy()[:, np.newaxis] df_percent_max = np.max(df_percent, axis=0) sel_peaks = df_percent.columns[df_percent_max > min_percent] self.adata = self.adata[:, sel_peaks] elif min_cells is not None: epi.pp.filter_features(adata_atac, min_cells=min_cells) def select_genes(self, num_peak=120000): adata_atac = self.adata sc.pp.normalize_total(adata_atac) sc.pp.log1p(adata_atac) sc.pp.highly_variable_genes(adata_atac, n_top_genes=num_peak, flavor='seurat') self.adata = self.adata[:, adata_atac.var.highly_variable] def deepen_atac(self, num_pc=100, n_iter=15, num_cell_merge=10): random.seed(1234) adata_atac_sample_cluster = self.adata.copy() lsi(adata_atac_sample_cluster, n_components=num_pc, n_iter=n_iter) sc.pp.neighbors(adata_atac_sample_cluster, use_rep="X_lsi", metric="cosine", n_neighbors=num_cell_merge, n_pcs=num_pc) list_atac_index = [] list_neigh_index = [] for cell_atac in list(adata_atac_sample_cluster.obs.index): cell_atac = [cell_atac] cell_atac_index = np.where(adata_atac_sample_cluster.obs.index == cell_atac[0])[0] cell_neighbor_idx = \ np.nonzero( adata_atac_sample_cluster.obsp['connectivities'].getcol( np.where( adata_atac_sample_cluster.obs.index == cell_atac[0])[0]).toarray())[0] # cell_sample_atac = np.hstack([cell_atac_index, cell_neighbor_idx]) # cell_sample_atac = np.hstack([cell_atac_index, # cell_neighbor_idx[0:(num_cell_merge-1)]]) num_sample = min(num_cell_merge, len(cell_neighbor_idx)) cell_sample_atac = np.hstack([cell_atac_index, np.random.choice(cell_neighbor_idx, num_sample, replace=False)]) list_atac_index.extend([cell_atac_index[0] for _ in range(num_sample + 1)]) list_neigh_index.append(cell_sample_atac) agg_sum = sparse.coo_matrix(( np.ones(len(list_atac_index)), (np.hstack(list_neigh_index), np.array(list_atac_index)) )).tocsr() array_atac = agg_sum @ self.adata.X # self.adata = self.adata.copy() self.adata.X = None self.adata.X = array_atac # epi.pp.sparse(self.adata) def add_promoter(self, file_tss, flank_proximal=2000): sc.pp.normalize_total(self.adata) sc.pp.log1p(self.adata) df_tss = pd.read_csv(file_tss, sep='\t', header=None) df_tss.columns = ['chrom', 'tss', 'symbol', 'ensg_id', 'strand'] df_tss = df_tss.drop_duplicates(subset='symbol') df_tss.index = df_tss['symbol'] df_tss['tss_start'] = df_tss['tss'] - 2000 df_tss['tss_end'] = df_tss['tss'] + 2000 df_tss['proximal_start'] = df_tss['tss'] - flank_proximal df_tss['proximal_end'] = df_tss['tss'] + flank_proximal file_promoter = os.path.join(self.path_process, 'promoter.txt') file_proximal = os.path.join(self.path_process, 'proximal.txt') df_promoter = \ df_tss.loc[:, ['chrom', 'tss_start', 'tss_end', 'symbol', 'ensg_id', 'strand']] df_promoter.to_csv(file_promoter, sep='\t', header=False, index=False) df_proximal = \ df_tss.loc[:, ['chrom', 'proximal_start', 'proximal_end', 'symbol', 'ensg_id', 'strand']] df_proximal.to_csv(file_proximal, sep='\t', header=False, index=False) self.generate_peaks_file() # add promoter to adata file_peaks_promoter = os.path.join(self.path_process, 'peaks_promoter.txt') os.system(f"bedtools intersect -a {self.file_peaks_sort} -b {file_promoter} -wao " f"> {file_peaks_promoter}") dict_promoter = defaultdict(list) with open(file_peaks_promoter, 'r') as w_pro: for line in w_pro: list_line = line.strip().split('\t') if list_line[4] == '.': continue gene_symbol = list_line[7] peak = list_line[3] gene_tss = df_tss.loc[gene_symbol, 'tss'] coor_cre = (int(list_line[2]) + int(list_line[1]))/2 dist_gene_cre = abs(gene_tss - coor_cre) dict_promoter[gene_symbol].append((peak, dist_gene_cre)) all_genes = dict_promoter.keys() list_peaks_promoter = [] list_genes_promoter = [] for gene_symbol in all_genes: sub_peaks = dict_promoter[gene_symbol] sel_peak = '' min_dist = 2000 for sub_peak in sub_peaks: if sub_peak[1] < min_dist: sel_peak = sub_peak[0] min_dist = sub_peak[1] if sel_peak != '': list_peaks_promoter.append(sel_peak) list_genes_promoter.append(gene_symbol) self.all_promoter_genes = list_genes_promoter adata_gene_promoter = self.adata[:, list_peaks_promoter] adata_promoter = \ ad.AnnData(X=adata_gene_promoter.X, var=pd.DataFrame(data={'cRE_type': np.full(len(list_genes_promoter), 'Promoter')}, index=list_genes_promoter), obs=pd.DataFrame(index=adata_gene_promoter.obs.index)) adata_peak = self.adata.copy() adata_peak.obs = pd.DataFrame(index=self.adata.obs.index) adata_peak.var = pd.DataFrame(data={'node_type': np.full(adata_peak.var.shape[0], 'cRE')}, index=adata_peak.var.index) adata_merge = ad.concat([adata_promoter, adata_peak], axis=1) self.adata_merge = adata_merge # proximal regulation file_peaks_proximal = os.path.join(self.path_process, 'peaks_proximal.txt') os.system(f"bedtools intersect -a {self.file_peaks_sort} -b {file_proximal} -wao " f"> {file_peaks_proximal}") dict_proximal = defaultdict(list) with open(file_peaks_proximal, 'r') as w_pro: for line in w_pro: list_line = line.strip().split('\t') if list_line[4] == '.': continue gene_symbol = list_line[7].strip().split('<-')[0] peak = list_line[3] dict_proximal[gene_symbol].append(peak) self.dict_promoter = dict_proximal all_genes = dict_proximal.keys() list_peaks_proximal = [] list_genes_proximal = [] for gene_symbol in all_genes: sub_peaks = dict_proximal[gene_symbol] list_genes_proximal.extend([gene_symbol for _ in range(len(sub_peaks))]) list_peaks_proximal.extend(sub_peaks) self.all_proximal_genes = set(list_genes_proximal) self.df_gene_peaks = \ pd.DataFrame({'gene': list_genes_proximal, 'peak': list_peaks_proximal}) self.df_proximal = \ pd.DataFrame({'region1': list_genes_proximal, 'region2': list_peaks_proximal, 'type': ['proximal']*len(list_peaks_proximal)}) set_gene = set(self.df_rna.columns).intersection(self.all_promoter_genes) self.df_proximal = \ self.df_proximal.loc[self.df_proximal["region1"].apply(lambda x: x in set_gene), :] return def build_graph(self, path_interaction, sel_interaction='PO'): file_pp = os.path.join(path_interaction, 'PP.txt') file_po = os.path.join(path_interaction, 'PO.txt') if sel_interaction == 'PP' or sel_interaction == 'ALL': df_pp_pre = pd.read_csv(file_pp, sep='\t', header=None) df_pp_pre = \ df_pp_pre.loc[df_pp_pre.apply( lambda x: x.iloc[0] in self.all_promoter_genes and x.iloc[1] in self.all_promoter_genes, axis=1), :] df_pp_pre.columns = ['region1', 'gene'] df_gene_peaks = self.df_gene_peaks.copy() df_gene_peaks.columns = ['gene', 'region2'] df_pp = pd.merge(left=df_pp_pre, right=df_gene_peaks, on='gene') df_pp = df_pp.loc[:, ['region1', 'region2']] if sel_interaction == 'PO' or sel_interaction == 'ALL': file_po_peaks = os.path.join(self.path_process, 'peaks_PO.bed') os.system(f"bedtools intersect -a {self.file_peaks_sort} -b {file_po} -wao " f"> {file_po_peaks}") list_dict = [] with open(file_po_peaks, 'r') as r_po: for line in r_po: list_line = line.strip().split('\t') peak = list_line[3] gene_symbol = list_line[8] if gene_symbol in self.all_promoter_genes: list_dict.append({"region1": gene_symbol, "region2": peak}) df_po = pd.DataFrame(list_dict) if sel_interaction == 'PP': df_interaction = df_pp elif sel_interaction == 'PO': df_interaction = df_po elif sel_interaction == 'ALL': df_interaction = pd.concat([df_pp, df_po]) else: print("Error: please set correct parameter 'sel_interaction'! ") return self.df_distal = df_interaction.drop_duplicates() self.df_distal['type'] = ['distal']*self.df_distal.shape[0] set_gene = set(self.df_rna.columns) self.df_distal = \ self.df_distal.loc[self.df_distal["region1"].apply(lambda x: x in set_gene), :] self.df_graph = pd.concat([self.df_proximal, self.df_distal], axis=0) return def add_eqtl(self, file_eqtl): file_eqtl_peaks = os.path.join(self.path_process, 'peaks_eQTL.bed') os.system(f"bedtools intersect -a {self.file_peaks_sort} -b {file_eqtl} -wao " f"> {file_eqtl_peaks}") list_dict_eqtl = [] with open(file_eqtl_peaks, 'r') as r_po: for line in r_po: list_line = line.strip().split('\t') peak = list_line[3] gene_symbol = list_line[8] if gene_symbol in self.all_promoter_genes: list_dict_eqtl.append({"region1": gene_symbol, "region2": peak}) df_eqtl = pd.DataFrame(list_dict_eqtl) df_eqtl = df_eqtl.drop_duplicates() df_eqtl['type'] = ['eQTL']*df_eqtl.shape[0] self.df_eqtl = df_eqtl set_gene = set(self.df_rna.columns) self.df_eqtl = \ self.df_eqtl.loc[self.df_eqtl["region1"].apply(lambda x: x in set_gene), :] self.df_graph = pd.concat([self.df_graph, self.df_eqtl], axis=0) self.df_graph = self.df_graph.drop_duplicates(subset=["region1", "region2"], keep='first') def build_tf_graph(self, file_tf): df_tf = pd.read_csv(file_tf, sep='\t', header=None) df_tf = df_tf.iloc[:, :2] df_tf.columns = ['TF', 'TargetGene'] set_gene = set(self.df_rna.columns).intersection(self.all_promoter_genes) df_tf = df_tf.loc[df_tf.apply( lambda x: x.iloc[0] in set_gene and x.iloc[1] in set_gene, axis=1), :] df_tf_self = pd.DataFrame({'TF': sorted(list(set_gene)), 'TargetGene': sorted(list(set_gene))}) self.df_tf = pd.concat([df_tf_self, df_tf], axis=0) def generate_data_list(self): graph_data = self.df_graph graph_tf = self.df_tf adata_atac = self.adata adata_merge = self.adata_merge all_cre_gene = set(graph_data['region1']).union(set(graph_data['region2'])) all_tf_gene = set(graph_tf['TF']).union(set(graph_tf['TargetGene'])) all_peaks = all_cre_gene.union(all_tf_gene) adata_merge_peak = adata_merge[:, [one_peak for one_peak in adata_merge.var.index if one_peak in all_peaks]] array_peak = np.array(adata_merge_peak.var.index) list_gene_peak = [one_peak for one_peak in array_peak if one_peak[:3] != 'chr'] self.df_rna = self.df_rna.loc[:, list_gene_peak] self.df_rna = self.df_rna / np.array(np.sum(self.df_rna, axis=1))[:, np.newaxis] array_celltype = np.unique(np.array(adata_atac.obs['celltype'])) # cRE-Gene array_region1 = graph_data['region1'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) array_region2 = graph_data['region2'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) df_graph_index = torch.tensor([np.array(array_region2), np.array(array_region1)], dtype=torch.int64) # TF-Gene array_tf = graph_tf['TF'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) array_target = graph_tf['TargetGene'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) df_graph_tf = torch.tensor([np.array(array_tf), np.array(array_target)], dtype=torch.int64) df_merge_peak = adata_merge_peak.to_df() list_graph = [] for i_cell in range(0, adata_atac.n_obs): one_cell = adata_atac.obs.index[i_cell] label = adata_atac.obs.loc[one_cell, 'celltype'] label_rna = adata_atac.obs.loc[one_cell, 'celltype_rna'] label_exp = self.df_rna.loc[label_rna, list_gene_peak].tolist() label_idx = torch.tensor(np.argwhere(array_celltype == label)[0], dtype=torch.int64) cell_data = Data(x=torch.reshape(torch.Tensor(df_merge_peak.loc[one_cell, :]), (adata_merge_peak.shape[1], 1)), edge_index=df_graph_index, edge_tf=df_graph_tf.T, y=label_idx, y_exp=torch.tensor(label_exp), cell=one_cell) list_graph.append(cell_data) self.list_graph = list_graph self.array_peak = array_peak self.array_celltype = array_celltype return class ATACGraphDataset(InMemoryDataset): def __init__(self, root: str, data_list: List = None): self.data_list = data_list super(ATACGraphDataset, self).__init__(root) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_file_names(self): return ['some_file_1'] @property def processed_file_names(self): return ['data.pt'] def download(self): pass def process(self): # Read data into huge `Data` list. data_list = self.data_list data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0]) def prepare_model_input(path_data_root, file_atac, df_rna_celltype, min_features=None, max_features=None, min_percent=0.05, hg19tohg38=False, deepen_data=True): if not os.path.exists(path_data_root): os.mkdir(path_data_root) file_chrom_hg38 = '/root/gene_activity/data/genome/hg38.chrom.sizes' # file_atac = '../raw_data/pbmc_10XM_ATAC_2.h5ad' dataset_ATAC = ATACDataset(data_root=path_data_root, raw_filename=file_atac, file_chrom=file_chrom_hg38) # dataset_ATAC.adata.obs['celltype'] = dataset_ATAC.adata.obs['seurat_annotations'] if hg19tohg38: dataset_ATAC.hg19tohg38() vec_num_feature = np.array(np.sum(dataset_ATAC.adata.X != 0, axis=1)) if min_features is None: default_min = int(np.percentile(vec_num_feature, 1)) min_features = default_min if max_features is None: default_max = int(np.percentile(vec_num_feature, 99)) max_features = default_max dataset_ATAC.quality_control(min_features=min_features, max_features=max_features, min_percent=min_percent) # dataset_ATAC.quality_control(min_features=3000, min_cells=5) # deep atac if deepen_data: dataset_ATAC.deepen_atac(num_cell_merge=10) # add RNA-seq data dataset_ATAC.df_rna = df_rna_celltype file_gene_hg38 = '/root/scATAC/Gene_anno/Gene_hg38/genes.protein.tss.tsv' dataset_ATAC.add_promoter(file_gene_hg38) # Hi-C path_hic = '/root/scATAC/pcHi-C/all_pcHiC/hg38_3' dataset_ATAC.build_graph(path_hic, sel_interaction='ALL') dataset_ATAC.add_eqtl('/root/scATAC/eQTL/eQTL_process/all_tissue_SNP_Gene.txt') # df_graph_PLAC = dataset_ATAC.df_graph # TF path_tf = '/root/scATAC/TRRUST/trrust_rawdata.human.tsv' dataset_ATAC.build_tf_graph(path_tf) # df_graph_TF = dataset_ATAC.df_tf dataset_ATAC.generate_data_list() list_graph_data = dataset_ATAC.list_graph path_graph_input = os.path.join(path_data_root, 'input_graph') os.system(f"rm -rf {path_graph_input}") os.mkdir(path_graph_input) dataset_atac_graph = ATACGraphDataset(path_graph_input, list_graph_data) # save data file_atac_test = os.path.join(path_data_root, 'dataset_atac.pkl') with open(file_atac_test, 'wb') as w_pkl: str_pkl = pickle.dumps(dataset_ATAC) w_pkl.write(str_pkl) return dataset_ATAC, dataset_atac_graph if __name__ == '__main__': time_start = time() time_end = time() print(time_end - time_start)
/scReGAT-0.0.4.tar.gz/scReGAT-0.0.4/scregat/data_process_2.py
0.867485
0.419767
data_process_2.py
pypi
from time import time import os import torch from torch_geometric.data import InMemoryDataset, Data from collections import defaultdict import episcanpy.api as epi import scanpy as sc import numpy as np import pandas as pd from pandas import DataFrame import anndata as ad from anndata import AnnData from typing import Optional, Mapping, List, Union from scipy import sparse import sklearn from statsmodels.distributions.empirical_distribution import ECDF import pickle import random def tfidf(X: Union[np.ndarray, sparse.spmatrix]) -> Union[np.ndarray, sparse.spmatrix]: r""" TF-IDF normalization (following the Seurat v3 approach) Parameters ---------- X Input matrix Returns ------- X_tfidf TF-IDF normalized matrix """ idf = X.shape[0] / X.sum(axis=0) if sparse.issparse(X): tf = X.multiply(1 / X.sum(axis=1)) return tf.multiply(idf) else: tf = X / X.sum(axis=1, keepdims=True) return tf * idf def lsi( adata: AnnData, n_components: int = 20, use_top_features: Optional[bool] = False, min_cutoff: float = 0.05, **kwargs ) -> None: r""" LSI analysis Parameters ---------- adata Input dataset n_components Number of dimensions to use use_top_features Whether to find most frequently observed features and use them min_cutoff Cutoff for feature to be included in the ``adata.var['select_feature']``. For example, '0.05' to set the top 95% most common features as the selected features. **kwargs Additional keyword arguments are passed to :func:`sklearn.utils.extmath.randomized_svd` """ if "random_state" not in kwargs: kwargs["random_state"] = 0 # Keep deterministic as the default behavior adata_use = adata.copy() if use_top_features: adata_use.var['featurecounts'] = np.array(np.sum(adata_use.X, axis=0))[0] df_var = adata_use.var.sort_values(by='featurecounts') ecdf = ECDF(df_var['featurecounts']) df_var['percentile'] = ecdf(df_var['featurecounts']) df_var["selected_feature"] = (df_var['percentile'] > min_cutoff) adata_use.var = df_var.loc[adata_use.var.index, :] # factor_size = int(np.median(np.array(np.sum(adata_use.X, axis=1)))) X_norm = np.log1p(tfidf(adata_use.X) * 1e4) if use_top_features: X_norm = X_norm.toarray()[:, adata_use.var["selected_feature"]] else: X_norm = X_norm.toarray() svd = sklearn.decomposition.TruncatedSVD(n_components=n_components, algorithm='arpack') X_lsi = svd.fit_transform(X_norm) X_lsi -= X_lsi.mean(axis=1, keepdims=True) X_lsi /= X_lsi.std(axis=1, ddof=1, keepdims=True) adata.obsm["X_lsi"] = X_lsi class ATACDataset(object): def __init__(self, data_root: str, raw_filename: str, file_chrom: str): self.data_root = data_root self.raw_filename = raw_filename self.adata = self.load_matrix() # self.adata.raw = self.adata.copy() self.path_process = os.path.join(data_root, 'processed_files') if not os.path.exists(self.path_process): os.mkdir(self.path_process) self.file_peaks_sort = os.path.join(self.path_process, 'peaks.sort.bed') if os.path.exists(self.file_peaks_sort): os.remove(self.file_peaks_sort) self.file_chrom = file_chrom # tools basepath = os.path.abspath(__file__) folder = os.path.dirname(basepath) self.bedtools = os.path.join(folder, '../tools/bedtools/bin/bedtools') self.liftover = os.path.join(folder, '../tools/liftOver') self.file_chain = os.path.join(folder, '../tools/files_liftOver/hg19ToHg38.over.chain.gz') self.generate_peaks_file() self.all_promoter_genes = None self.all_proximal_genes = None self.adata_merge = None self.other_peaks = None self.df_graph = None self.list_graph = None self.array_peak = None self.array_celltype = None self.df_rna = None self.dict_promoter = None self.df_gene_peaks = None self.df_proximal = None self.df_distal = None self.df_eqtl = None self.df_tf = None def load_matrix(self): if self.raw_filename[-5:] == '.h5ad': adata_atac = sc.read_h5ad(os.path.join(self.data_root, self.raw_filename)) elif self.raw_filename[-4:] == '.tsv': adata_atac = ad.read_text( os.path.join(self.data_root, self.raw_filename), delimiter='\t', first_column_names=True, dtype='int') epi.pp.sparse(adata_atac) else: raise ImportError("Input format error!") return adata_atac def generate_peaks_file(self): df_chrom = pd.read_csv(self.file_chrom, sep='\t', header=None, index_col=0) df_chrom = df_chrom.iloc[:24] file_peaks_atac = os.path.join(self.path_process, 'peaks.bed') fmt_peak = "{chrom_peak}\t{start_peak}\t{end_peak}\t{peak_id}\n" with open(file_peaks_atac, 'w') as w_peak: for one_peak in self.adata.var.index: chrom_peak = one_peak.strip().split('-')[0] # locs = one_peak.strip().split(':')[1] if chrom_peak in df_chrom.index: start_peak = one_peak.strip().split('-')[1] end_peak = one_peak.strip().split('-')[2] peak_id = one_peak w_peak.write(fmt_peak.format(**locals())) os.system(f"{self.bedtools} sort -i {file_peaks_atac} > {self.file_peaks_sort}") def hg19tohg38(self): path_peak = os.path.join(self.data_root, 'peaks_process') if not os.path.exists(path_peak): os.mkdir(path_peak) file_ummap = os.path.join(path_peak, 'unmap.bed') file_peaks_hg38 = os.path.join(path_peak, 'peaks_hg38.bed') os.system(f"{self.liftover} {self.file_peaks_sort} {self.file_chain} " f"{file_peaks_hg38} {file_ummap}") df_hg19 = pd.read_csv(self.file_peaks_sort, sep='\t', header=None) df_hg19['length'] = df_hg19.iloc[:, 2] - df_hg19.iloc[:, 1] len_down = np.min(df_hg19['length']) - 20 len_up = np.max(df_hg19['length']) + 100 df_hg38 = pd.read_csv(file_peaks_hg38, sep='\t', header=None) df_hg38['peak_hg38'] = df_hg38.apply(lambda x: f"{x[0]}-{x[1]}-{x[2]}", axis=1) df_hg38['length'] = df_hg38.iloc[:, 2] - df_hg38.iloc[:, 1] df_hg38 = df_hg38.loc[df_hg38['length'] < len_up, :] df_hg38 = df_hg38.loc[df_hg38['length'] > len_down, :] sel_peaks_hg19 = df_hg38.iloc[:, 3] adata_atac_out = self.adata[:, sel_peaks_hg19] adata_atac_out.var['peaks_hg19'] = adata_atac_out.var.index adata_atac_out.var.index = df_hg38['peak_hg38'] self.adata = adata_atac_out def quality_control(self, min_features: int = 1000, max_features: int = 60000, min_percent: Optional[float] = None, min_cells: Optional[int] = None): adata_atac = self.adata epi.pp.filter_cells(adata_atac, min_features=min_features) epi.pp.filter_cells(adata_atac, max_features=max_features) if min_percent is not None: by = adata_atac.obs['celltype'] agg_idx = pd.Index(by.cat.categories) \ if pd.api.types.is_categorical_dtype(by) \ else pd.Index(np.unique(by)) agg_sum = sparse.coo_matrix(( np.ones(adata_atac.shape[0]), ( agg_idx.get_indexer(by), np.arange(adata_atac.shape[0]) ) )).tocsr() sum_x = agg_sum @ (adata_atac.X != 0) df_percent = pd.DataFrame( sum_x.toarray(), index=agg_idx, columns=adata_atac.var.index ) / adata_atac.obs.value_counts('celltype').loc[agg_idx].to_numpy()[:, np.newaxis] df_percent_max = np.max(df_percent, axis=0) sel_peaks = df_percent.columns[df_percent_max > min_percent] self.adata = self.adata[:, sel_peaks] elif min_cells is not None: epi.pp.filter_features(adata_atac, min_cells=min_cells) def deepen_atac(self, num_pc: int = 50, num_cell_merge: int = 10): random.seed(1234) adata_atac_sample_cluster = self.adata.copy() lsi(adata_atac_sample_cluster, n_components=num_pc) adata_atac_sample_cluster.obsm["X_lsi"] = adata_atac_sample_cluster.obsm["X_lsi"][:, 1:] sc.pp.neighbors(adata_atac_sample_cluster, use_rep="X_lsi", metric="cosine", n_neighbors=int(num_cell_merge), n_pcs=num_pc) list_atac_index = [] list_neigh_index = [] for cell_atac in list(adata_atac_sample_cluster.obs.index): cell_atac = [cell_atac] cell_atac_index = np.where(adata_atac_sample_cluster.obs.index == cell_atac[0])[0] cell_neighbor_idx = \ np.nonzero( adata_atac_sample_cluster.obsp['connectivities'].getcol( cell_atac_index).toarray())[0] if num_cell_merge >= len(cell_neighbor_idx): cell_sample_atac = np.hstack([cell_atac_index, cell_neighbor_idx]) else: cell_sample_atac = np.hstack([cell_atac_index, np.random.choice(cell_neighbor_idx, num_cell_merge, replace=False)]) list_atac_index.extend([cell_atac_index[0] for _ in range(len(cell_sample_atac))]) list_neigh_index.append(cell_sample_atac) agg_sum = sparse.coo_matrix(( np.ones(len(list_atac_index)), (np.array(list_atac_index), np.hstack(list_neigh_index)) )).tocsr() array_atac = agg_sum @ self.adata.X # self.adata = self.adata.copy() self.adata.X = None self.adata.X = array_atac def add_promoter(self, file_tss: str, flank_proximal: int = 2000): sc.pp.normalize_total(self.adata) sc.pp.log1p(self.adata) df_tss = pd.read_csv(file_tss, sep='\t', header=None) df_tss.columns = ['chrom', 'tss', 'symbol', 'ensg_id', 'strand'] df_tss = df_tss.drop_duplicates(subset='symbol') df_tss.index = df_tss['symbol'] df_tss['tss_start'] = df_tss['tss'] - 2000 df_tss['tss_end'] = df_tss['tss'] + 2000 df_tss['proximal_start'] = df_tss['tss'] - flank_proximal df_tss['proximal_end'] = df_tss['tss'] + flank_proximal file_promoter = os.path.join(self.path_process, 'promoter.txt') file_proximal = os.path.join(self.path_process, 'proximal.txt') df_promoter = \ df_tss.loc[:, ['chrom', 'tss_start', 'tss_end', 'symbol', 'ensg_id', 'strand']] df_promoter.to_csv(file_promoter, sep='\t', header=False, index=False) df_proximal = \ df_tss.loc[:, ['chrom', 'proximal_start', 'proximal_end', 'symbol', 'ensg_id', 'strand']] df_proximal.to_csv(file_proximal, sep='\t', header=False, index=False) self.generate_peaks_file() # add promoter to adata file_peaks_promoter = os.path.join(self.path_process, 'peaks_promoter.txt') os.system(f"{self.bedtools} intersect -a {self.file_peaks_sort} -b {file_promoter} -wao " f"> {file_peaks_promoter}") dict_promoter = defaultdict(list) with open(file_peaks_promoter, 'r') as w_pro: for line in w_pro: list_line = line.strip().split('\t') if list_line[4] == '.': continue gene_symbol = list_line[7] peak = list_line[3] gene_tss = df_tss.loc[gene_symbol, 'tss'] coor_cre = (int(list_line[2]) + int(list_line[1]))/2 dist_gene_cre = abs(gene_tss - coor_cre) dict_promoter[gene_symbol].append((peak, dist_gene_cre)) all_genes = dict_promoter.keys() list_peaks_promoter = [] list_genes_promoter = [] for gene_symbol in all_genes: sub_peaks = dict_promoter[gene_symbol] sel_peak = '' min_dist = 2000 for sub_peak in sub_peaks: if sub_peak[1] < min_dist: sel_peak = sub_peak[0] min_dist = sub_peak[1] if sel_peak != '': list_peaks_promoter.append(sel_peak) list_genes_promoter.append(gene_symbol) self.all_promoter_genes = list_genes_promoter adata_gene_promoter = self.adata[:, list_peaks_promoter] adata_promoter = \ ad.AnnData(X=adata_gene_promoter.X, var=pd.DataFrame(data={'cRE_type': np.full(len(list_genes_promoter), 'Promoter')}, index=list_genes_promoter), obs=pd.DataFrame(index=adata_gene_promoter.obs.index)) adata_peak = self.adata.copy() adata_peak.obs = pd.DataFrame(index=self.adata.obs.index) adata_peak.var = pd.DataFrame(data={'node_type': np.full(adata_peak.var.shape[0], 'cRE')}, index=adata_peak.var.index) adata_merge = ad.concat([adata_promoter, adata_peak], axis=1) self.adata_merge = adata_merge # proximal regulation file_peaks_proximal = os.path.join(self.path_process, 'peaks_proximal.txt') os.system(f"{self.bedtools} intersect -a {self.file_peaks_sort} -b {file_proximal} -wao " f"> {file_peaks_proximal}") dict_proximal = defaultdict(list) with open(file_peaks_proximal, 'r') as w_pro: for line in w_pro: list_line = line.strip().split('\t') if list_line[4] == '.': continue gene_symbol = list_line[7].strip().split('<-')[0] peak = list_line[3] dict_proximal[gene_symbol].append(peak) self.dict_promoter = dict_proximal all_genes = dict_proximal.keys() list_peaks_proximal = [] list_genes_proximal = [] for gene_symbol in all_genes: sub_peaks = dict_proximal[gene_symbol] list_genes_proximal.extend([gene_symbol for _ in range(len(sub_peaks))]) list_peaks_proximal.extend(sub_peaks) self.all_proximal_genes = set(list_genes_proximal) self.df_gene_peaks = \ pd.DataFrame({'gene': list_genes_proximal, 'peak': list_peaks_proximal}) self.df_proximal = \ pd.DataFrame({'region1': list_genes_proximal, 'region2': list_peaks_proximal, 'type': ['proximal']*len(list_peaks_proximal)}) set_gene = set(self.df_rna.columns).intersection(self.all_promoter_genes) self.df_proximal = \ self.df_proximal.loc[self.df_proximal["region1"].apply(lambda x: x in set_gene), :] return def build_graph(self, path_interaction: str, sel_interaction: str = 'PO'): file_pp = os.path.join(path_interaction, 'PP.txt') file_po = os.path.join(path_interaction, 'PO.txt') if sel_interaction == 'PP' or sel_interaction == 'ALL': df_pp_pre = pd.read_csv(file_pp, sep='\t', header=None) df_pp_pre = \ df_pp_pre.loc[df_pp_pre.apply( lambda x: x.iloc[0] in self.all_promoter_genes and x.iloc[1] in self.all_promoter_genes, axis=1), :] df_pp_pre.columns = ['region1', 'gene'] df_gene_peaks = self.df_gene_peaks.copy() df_gene_peaks.columns = ['gene', 'region2'] df_pp = pd.merge(left=df_pp_pre, right=df_gene_peaks, on='gene') df_pp = df_pp.loc[:, ['region1', 'region2']] if sel_interaction == 'PO' or sel_interaction == 'ALL': file_po_peaks = os.path.join(self.path_process, 'peaks_PO.bed') os.system(f"{self.bedtools} intersect -a {self.file_peaks_sort} -b {file_po} -wao " f"> {file_po_peaks}") list_dict = [] with open(file_po_peaks, 'r') as r_po: for line in r_po: list_line = line.strip().split('\t') peak = list_line[3] gene_symbol = list_line[8] if gene_symbol in self.all_promoter_genes: list_dict.append({"region1": gene_symbol, "region2": peak}) df_po = pd.DataFrame(list_dict) if sel_interaction == 'PP': df_interaction = df_pp elif sel_interaction == 'PO': df_interaction = df_po elif sel_interaction == 'ALL': df_interaction = pd.concat([df_pp, df_po]) else: print("Error: please set correct parameter 'sel_interaction'! ") return self.df_distal = df_interaction.drop_duplicates() self.df_distal['type'] = ['distal']*self.df_distal.shape[0] set_gene = set(self.df_rna.columns) self.df_distal = \ self.df_distal.loc[self.df_distal["region1"].apply(lambda x: x in set_gene), :] self.df_graph = pd.concat([self.df_proximal, self.df_distal], axis=0) return def add_eqtl(self, file_eqtl: str): file_eqtl_peaks = os.path.join(self.path_process, 'peaks_eQTL.bed') os.system(f"{self.bedtools} intersect -a {self.file_peaks_sort} -b {file_eqtl} -wao " f"> {file_eqtl_peaks}") list_dict_eqtl = [] with open(file_eqtl_peaks, 'r') as r_po: for line in r_po: list_line = line.strip().split('\t') peak = list_line[3] gene_symbol = list_line[8] if gene_symbol in self.all_promoter_genes: list_dict_eqtl.append({"region1": gene_symbol, "region2": peak}) df_eqtl = pd.DataFrame(list_dict_eqtl) df_eqtl = df_eqtl.drop_duplicates() df_eqtl['type'] = ['eQTL']*df_eqtl.shape[0] self.df_eqtl = df_eqtl set_gene = set(self.df_rna.columns) self.df_eqtl = \ self.df_eqtl.loc[self.df_eqtl["region1"].apply(lambda x: x in set_gene), :] self.df_graph = pd.concat([self.df_graph, self.df_eqtl], axis=0) self.df_graph = self.df_graph.drop_duplicates(subset=["region1", "region2"], keep='first') def build_tf_graph(self, file_tf: str): df_tf = pd.read_csv(file_tf, sep='\t', header=None) df_tf = df_tf.iloc[:, :2] df_tf.columns = ['TF', 'TargetGene'] set_gene = set(self.df_rna.columns).intersection(self.all_promoter_genes) df_tf = df_tf.loc[df_tf.apply( lambda x: x.iloc[0] in set_gene and x.iloc[1] in set_gene, axis=1), :] df_tf_self = pd.DataFrame({'TF': sorted(list(set_gene)), 'TargetGene': sorted(list(set_gene))}) self.df_tf = pd.concat([df_tf_self, df_tf], axis=0) def generate_data_list(self): graph_data = self.df_graph graph_tf = self.df_tf adata_atac = self.adata adata_merge = self.adata_merge all_cre_gene = set(graph_data['region1']).union(set(graph_data['region2'])) all_tf_gene = set(graph_tf['TF']).union(set(graph_tf['TargetGene'])) all_peaks = all_cre_gene.union(all_tf_gene) adata_merge_peak = adata_merge[:, [one_peak for one_peak in adata_merge.var.index if one_peak in all_peaks]] array_peak = np.array(adata_merge_peak.var.index) list_gene_peak = [one_peak for one_peak in array_peak if one_peak[:3] != 'chr'] self.df_rna = self.df_rna.loc[:, list_gene_peak] self.df_rna = self.df_rna / np.array(np.sum(self.df_rna, axis=1))[:, np.newaxis] array_celltype = np.unique(np.array(adata_atac.obs['celltype'])) # cRE-Gene array_region1 = graph_data['region1'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) array_region2 = graph_data['region2'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) df_graph_index = torch.tensor([np.array(array_region2), np.array(array_region1)], dtype=torch.int64) # TF-Gene array_tf = graph_tf['TF'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) array_target = graph_tf['TargetGene'].apply(lambda x: np.argwhere(array_peak == x)[0, 0]) df_graph_tf = torch.tensor([np.array(array_tf), np.array(array_target)], dtype=torch.int64) df_merge_peak = adata_merge_peak.to_df() list_graph = [] for i_cell in range(0, adata_atac.n_obs): one_cell = adata_atac.obs.index[i_cell] label = adata_atac.obs.loc[one_cell, 'celltype'] label_rna = adata_atac.obs.loc[one_cell, 'celltype_rna'] label_exp = self.df_rna.loc[label_rna, list_gene_peak].tolist() label_idx = torch.tensor(np.argwhere(array_celltype == label)[0], dtype=torch.int64) cell_data = Data(x=torch.reshape(torch.Tensor(df_merge_peak.loc[one_cell, :]), (adata_merge_peak.shape[1], 1)), edge_index=df_graph_index, edge_tf=df_graph_tf.T, y=label_idx, y_exp=torch.tensor(label_exp), cell=one_cell) list_graph.append(cell_data) self.list_graph = list_graph self.array_peak = array_peak self.array_celltype = array_celltype return class ATACGraphDataset(InMemoryDataset): def __init__(self, root: str, data_list: List = None): self.data_list = data_list super(ATACGraphDataset, self).__init__(root) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_file_names(self): return ['some_file_1'] @property def processed_file_names(self): return ['data.pt'] def download(self): pass def process(self): # Read data into huge `Data` list. data_list = self.data_list data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0]) def prepare_model_input(path_data_root: str, file_atac: str, df_rna_celltype: DataFrame, min_features: Optional[float] = None, max_features: Optional[float] = None, min_percent: Optional[float] = 0.05, hg19tohg38: bool = False, deepen_data: bool = True): if not os.path.exists(path_data_root): os.mkdir(path_data_root) basepath = os.path.abspath(__file__) file_chrom_hg38 = os.path.join(os.path.dirname(basepath), '../data/hg38.chrom.sizes') # file_atac = '../raw_data/pbmc_10XM_ATAC_2.h5ad' dataset_ATAC = ATACDataset(data_root=path_data_root, raw_filename=file_atac, file_chrom=file_chrom_hg38) # dataset_ATAC.adata.obs['celltype'] = dataset_ATAC.adata.obs['seurat_annotations'] if hg19tohg38: dataset_ATAC.hg19tohg38() vec_num_feature = np.array(np.sum(dataset_ATAC.adata.X != 0, axis=1)) if min_features is None: default_min = int(np.percentile(vec_num_feature, 1)) min_features = default_min if max_features is None: default_max = int(np.percentile(vec_num_feature, 99)) max_features = default_max dataset_ATAC.quality_control(min_features=min_features, max_features=max_features, min_percent=min_percent) # dataset_ATAC.quality_control(min_features=3000, min_cells=5) # deep atac if deepen_data: dataset_ATAC.deepen_atac(num_cell_merge=10) # add RNA-seq data dataset_ATAC.df_rna = df_rna_celltype file_gene_hg38 = os.path.join(os.path.dirname(basepath), '../data/genes.protein.tss.tsv') dataset_ATAC.add_promoter(file_gene_hg38) # Hi-C path_hic = os.path.join(os.path.dirname(basepath), '../data') dataset_ATAC.build_graph(path_hic, sel_interaction='ALL') dataset_ATAC.add_eqtl( os.path.join(os.path.dirname(basepath), '../data/all_tissue_SNP_Gene.txt')) # df_graph_PLAC = dataset_ATAC.df_graph # TF path_tf = os.path.join(os.path.dirname(basepath), '../data/trrust_rawdata.human.tsv') dataset_ATAC.build_tf_graph(path_tf) # df_graph_TF = dataset_ATAC.df_tf dataset_ATAC.generate_data_list() list_graph_data = dataset_ATAC.list_graph path_graph_input = os.path.join(path_data_root, 'input_graph') os.system(f"rm -rf {path_graph_input}") os.mkdir(path_graph_input) dataset_atac_graph = ATACGraphDataset(path_graph_input, list_graph_data) # save data file_atac_test = os.path.join(path_data_root, 'dataset_atac.pkl') with open(file_atac_test, 'wb') as w_pkl: str_pkl = pickle.dumps(dataset_ATAC) w_pkl.write(str_pkl) return dataset_ATAC, dataset_atac_graph if __name__ == '__main__': time_start = time() time_end = time() print(time_end - time_start)
/scReGAT-0.0.4.tar.gz/scReGAT-0.0.4/scregat/data_process.py
0.813127
0.342544
data_process.py
pypi
import os import numpy as np import torch import torch.nn as nn import random def seed_all(seed_value, cuda_deterministic=False): """ 设置所有的随机种子 """ random.seed(seed_value) os.environ['PYTHONHASHSEED'] = str(seed_value) np.random.seed(seed_value) torch.manual_seed(seed_value) if torch.cuda.is_available(): torch.cuda.manual_seed(seed_value) torch.cuda.manual_seed_all(seed_value) # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html if cuda_deterministic: # slower, more reproducible torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False else: # faster, less reproducible torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True class MMDLoss(nn.Module): def __init__(self, kernel_type='rbf', kernel_mul=2.0, kernel_num=5, fix_sigma=None, **kwargs): super(MMDLoss, self).__init__() self.kernel_num = kernel_num self.kernel_mul = kernel_mul self.fix_sigma = None self.kernel_type = kernel_type def guassian_kernel(self, source, target, kernel_mul, kernel_num, fix_sigma): n_samples = int(source.size()[0]) + int(target.size()[0]) total = torch.cat([source, target], dim=0) total0 = total.unsqueeze(0).expand( int(total.size(0)), int(total.size(0)), int(total.size(1))) total1 = total.unsqueeze(1).expand( int(total.size(0)), int(total.size(0)), int(total.size(1))) L2_distance = ((total0-total1)**2).sum(2) if fix_sigma: bandwidth = fix_sigma else: bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples) bandwidth /= kernel_mul ** (kernel_num // 2) bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)] kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list] tmp = 0 for x in kernel_val: tmp += x return tmp def linear_mmd2(self, f_of_X, f_of_Y): loss = 0.0 delta = f_of_X.float().mean(0) - f_of_Y.float().mean(0) loss = delta.dot(delta.T) return loss def forward(self, source, target): if self.kernel_type == 'linear': return self.linear_mmd2(source, target) elif self.kernel_type == 'rbf': batch_size = int(source.size()[0]) kernels = self.guassian_kernel( source, target, kernel_mul=self.kernel_mul, kernel_num=self.kernel_num, fix_sigma=self.fix_sigma) XX = torch.mean(kernels[:batch_size, :batch_size]) YY = torch.mean(kernels[batch_size:, batch_size:]) XY = torch.mean(kernels[:batch_size, batch_size:]) YX = torch.mean(kernels[batch_size:, :batch_size]) loss = torch.mean(XX + YY - XY - YX) return loss
/scSTEM-0.0.2-py3-none-any.whl/STEM/utils.py
0.801392
0.336372
utils.py
pypi
import torch from torch.utils.data import DataLoader, Dataset from torch import nn, optim from torch.nn import functional as F import torch.optim.lr_scheduler as lr_scheduler import os import numpy as np import time from .utils import * import scipy class STData(Dataset): def __init__(self,data,coord): self.data = data self.coord = coord def __getitem__(self, index): return self.data[index], self.coord[index] def __len__(self): return self.data.shape[0] class SCData(Dataset): def __init__(self,data): self.data = data def __getitem__(self, index): return self.data[index] def __len__(self): return self.data.shape[0] class FeatureNet(nn.Module): def __init__(self, n_genes, n_embedding=[512,256,128],dp=0): super(FeatureNet, self).__init__() self.fc1 = nn.Linear(n_genes, n_embedding[0]) self.bn1 = nn.LayerNorm(n_embedding[0]) self.fc2 = nn.Linear(n_embedding[0], n_embedding[1]) self.bn2 = nn.LayerNorm(n_embedding[1]) self.fc3 = nn.Linear(n_embedding[1], n_embedding[2]) self.dp = nn.Dropout(dp) def forward(self, x,isdp = False): if isdp: x = self.dp(x) x = F.relu(self.bn1(self.fc1(x))) x = F.relu(self.bn2(self.fc2(x))) x = self.fc3(x) return x class BaseModel(nn.Module): def __init__(self, opt): super(BaseModel, self).__init__() self.opt = opt self.device = opt.device self.train_log = opt.outf + '/train.log' self.model_path = opt.outf + '/model.pth' if not os.path.exists(opt.outf): os.mkdir(opt.outf) self.best_acc_tgt = 0 with open(self.train_log, 'a') as f: localtime = time.asctime( time.localtime(time.time()) ) f.write(localtime+str((opt.device,opt.outf,opt.n_genes,opt.no_bn,opt.lr,opt.sigma,opt.alpha,opt.verbose,opt.mmdbatch,opt.dp))+'\n') def set_requires_grad(self, nets, requires_grad=False): if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad def save(self): torch.save(self.state_dict(), self.model_path) def load(self): print('===> Loading model from {}'.format(self.model_path)) try: self.load_state_dict(torch.load(self.model_path)) print('<=== Success!') except: print('<==== Failed!') class SOmodel(BaseModel): def __init__(self, opt): super(SOmodel, self).__init__(opt) self.netE = FeatureNet(opt.n_genes,dp=opt.dp) self.optimizer = torch.optim.AdamW(self.netE.parameters(), lr=opt.lr) self.lr_scheduler = lr_scheduler.StepLR(optimizer=self.optimizer,step_size=200, gamma=0.5) self.loss_names = ['E','E_pred','E_circle','E_mmd'] self.mmd_fn = MMDLoss() self.sigma = opt.sigma self.alpha = opt.alpha self.verbose = opt.verbose self.mmdbatch = opt.mmdbatch def train_onestep(self,stdata,scdata,coord,ratio): if self.sigma == 0: self.nettrue = torch.eye(coord.shape[0]) else: self.nettrue = torch.tensor(scipy.spatial.distance.cdist(coord,coord)).to(torch.float32) sigma = self.sigma self.nettrue = torch.exp(-self.nettrue**2/(2*sigma**2))/(np.sqrt(2*np.pi)*sigma) self.nettrue = F.normalize(self.nettrue,p=1,dim=1) self.nettrue = self.nettrue.to(self.device) stdata = stdata.to(self.device) scdata = scdata.to(self.device) self.e_seq_st = self.netE(stdata,True) self.e_seq_sc = self.netE(scdata,False) self.optimizer.zero_grad() self.netpred = self.e_seq_st.mm(self.e_seq_st.t()) self.st2sc = F.softmax(self.e_seq_st.mm(self.e_seq_sc.t()),dim=1) self.sc2st = F.softmax(self.e_seq_sc.mm(self.e_seq_st.t()),dim=1) self.st2st = torch.log(self.st2sc.mm(self.sc2st)+1e-7) self.loss_E_pred = F.cross_entropy(self.netpred, self.nettrue,reduction='mean') self.loss_E_circle = F.kl_div(self.st2st,self.nettrue,reduction='none').sum(1).mean() ranidx = np.random.randint(0,self.e_seq_sc.shape[0],self.mmdbatch) self.loss_E_mmd = self.mmd_fn(self.e_seq_st,self.e_seq_sc[ranidx]) self.loss_E = self.loss_E_pred + self.alpha*self.loss_E_mmd + ratio*self.loss_E_circle self.loss_E.backward() self.optimizer.step() def togpu(self): self.netE.to(self.device) def modeleval(self): self.netE.eval() def train(self,epoch,scdataloader,stdata,coord): with open(self.train_log, 'a') as f: localtime = time.asctime( time.localtime(time.time()) ) f.write(localtime+'\n') loss_curve = { loss: [] for loss in self.loss_names } for i in range(epoch): self.netE.train() for batch_idx, (scdata) in enumerate(scdataloader): scdata = scdata.to(torch.float32) self.train_onestep(stdata,scdata,coord,max((i-50)/(epoch-50),0)) for loss in self.loss_names: loss_curve[loss].append(getattr(self, 'loss_' + loss).item()) self.lr_scheduler.step() loss_msg = '[Train][{}] Loss:'.format(i+1) for loss in self.loss_names: loss_msg += ' {} {:.3f}'.format(loss, loss_curve[loss][-1]) if (i + 1) % 1 == 0: print(loss_msg) print(self.lr_scheduler.get_last_lr()) with open(self.train_log, 'a') as f: f.write(loss_msg + "\n") return loss_curve def train_spatialbatch(self,epoch,scdata,stdataloader): with open(self.train_log, 'a') as f: localtime = time.asctime( time.localtime(time.time()) ) f.write(localtime+'\n') loss_curve = { loss: [] for loss in self.loss_names } for i in range(epoch): self.netE.train() self.netD.train() for batch_idx, (stdata,coord) in enumerate(stdataloader): stdata = stdata.to(torch.float32) self.train_onestep(stdata,scdata,coord,max((i-50)/(epoch-50),0)) for loss in self.loss_names: loss_curve[loss].append(getattr(self, 'loss_' + loss).item()) for lr_scheduler in self.lr_schedulers: lr_scheduler.step() loss_msg = '[Train][{}] Loss:'.format(i+1) for loss in self.loss_names: loss_msg += ' {} {:.3f}'.format(loss, loss_curve[loss][-1]) if (i + 1) % 1 == 0: print(loss_msg) print(self.lr_scheduler_D.get_last_lr(),self.lr_scheduler_G.get_last_lr()) with open(self.train_log, 'a') as f: f.write(loss_msg + "\n") return loss_curve def train_wholedata(self,epoch,scdata,stdata,coord): with open(self.train_log, 'a') as f: localtime = time.asctime( time.localtime(time.time()) ) f.write(localtime+'\n') loss_curve = { loss: [] for loss in self.loss_names } for i in range(epoch): self.netE.train() scdata = scdata.to(torch.float32) if isinstance(stdata,list): shuffle_list = np.random.randint(0,len(stdata),len(stdata)) for idx in shuffle_list: self.train_onestep(stdata[idx],scdata,coord[idx],max((i-50)/(epoch-50),0)) else: self.train_onestep(stdata,scdata,coord,max((i-50)/(epoch-50),0)) for loss in self.loss_names: loss_curve[loss].append(getattr(self, 'loss_' + loss).item()) self.lr_scheduler.step() loss_msg = '[Train][{}] Loss:'.format(i) for loss in self.loss_names: loss_msg += ' {} {:.3f}'.format(loss, loss_curve[loss][-1]) if (i + 1) % 1 == 0: if self.verbose: print(loss_msg) print(self.lr_scheduler.get_last_lr()) with open(self.train_log, 'a') as f: f.write(loss_msg + "\n") return loss_curve
/scSTEM-0.0.2-py3-none-any.whl/STEM/model.py
0.846101
0.339499
model.py
pypi
import tensorflow as tf def _variable_with_weight_decay(name, shape, stddev, wd): """ Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints stddev: standard deviation of a truncated Gaussian wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. Returns: Variable Tensor Altschuler & Wu Lab 2018. Software provided as is under Apache License 2.0. """ dtype = tf.float32 var = _variable_on_cpu( name, shape, tf.truncated_normal_initializer(stddev=stddev, dtype=dtype)) if wd != 0: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def _variable_on_cpu(name, shape, initializer): """Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor Altschuler & Wu Lab 2018. Software provided as is under Apache License 2.0. """ with tf.device('/cpu:0'): dtype = tf.float32 var = tf.get_variable( name, shape, initializer=initializer, dtype=dtype) return var def average_gradients(tower_grads): """ Summarize the gradient calculated by each GPU. Altschuler & Wu Lab 2018. Software provided as is under Apache License 2.0. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, var1 in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads
/scScope_cpu-0.1.5.tar.gz/scScope_cpu-0.1.5/scscope/ops.py
0.844409
0.578865
ops.py
pypi