code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
115 Wangpan =========== |Build| |PyPI version| 115 Wangpan (115网盘 or 115云) is an unofficial Python API and SDK for 115.com. Supported Python verisons are 2.6, 2.7, 3.3, 3.4. * Documentation: http://115wangpan.readthedocs.org * GitHub: https://github.com/shichao-an/115wangpan * PyPI: https://pypi.python.org/pypi/115wangpan/ Features -------- * Authentication * Persistent session * Tasks management: BitTorrent and links * Files management: uploading, downloading, searching, and editing Installation ------------ `libcurl <http://curl.haxx.se/libcurl/>`_ is required. Install dependencies before installing the python package: Ubuntu: .. code-block:: bash $ sudo apt-get install build-essential libcurl4-openssl-dev python-dev Fedora: .. code-block:: bash $ sudo yum groupinstall "Development Tools" $ sudo yum install libcurl libcurl-devel python-devel Then, you can install with pip: .. code-block:: bash $ pip install 115wangpan Or, if you want to install the latest from GitHub: .. code-block:: bash $ pip install git+https://github.com/shichao-an/115wangpan Usage ----- .. code-block:: python >>> import u115 >>> api = u115.API() >>> api.login('[email protected]', 'password') True >>> tasks = api.get_tasks() >>> task = tasks[0] >>> print task.name 咲-Saki- 阿知賀編 episode of side-A >>> print task.status_human TRANSFERRED >>> print task.size_human 1.6 GiB >>> files = task.list() >>> files [<File: 第8局 修行.mkv>] >>> f = files[0] >>> f.url u'http://cdnuni.115.com/some-very-long-url.mkv' >>> f.directory <Directory: 咲-Saki- 阿知賀編 episode of side-A> >>> f.directory.parent <Directory: 离线下载> CLI commands ------------ * 115 down: for downloading files * 115 up: for creating tasks from torrents and links .. |Build| image:: https://api.travis-ci.org/shichao-an/115wangpan.png?branch=master :target: http://travis-ci.org/shichao-an/115wangpan .. |PyPI version| image:: https://img.shields.io/pypi/v/115wangpan.png :target: https://pypi.python.org/pypi/115wangpan/
115wangpan
/115wangpan-0.7.6.tar.gz/115wangpan-0.7.6/README.rst
README.rst
Changelog ========= 0.7.6 (2015-08-01) ------------------ - Fixed DRY_RUN message print by using print_msg that handles PY2 and PY3 strings - Added -F/--files-only option to 115 down - Fixed files_only parse error - Fixed unexpected kwargs for get_tasks - Fixed Task against added 'url' attr 0.7.5 (2015-07-02) ------------------ - Added environs to make a "workaround" that deals with issue #27 - Fixed Task.is_directory to include 'BEING TRANSFERRED' exception 0.7.4 (2015-06-20) ------------------ - Fixed getting download URL error due to another API change (#23) 0.7.3 (2015-06-16) ------------------ - Fixed previous broken release that does not contain CLI command 115 0.7.2 (2015-06-16) ------------------ - Fixed getting download URL error due to API change (#23) 0.7.1 (2015-06-15) ------------------ - Fixed argparse's required subparser behavior in Python 2.7 (http://bugs.python.org/issue9253) 0.7.0 (2015-06-14) ------------------ - Added public methods: move, edit, mkdir (#13, #19) - Added Pro API support for getting download URL (#21) - Added ``receiver_directory`` - Added logging utility and debugging hooks (#22) - Combined 115down and 115up into a single 115 commands - Supported Python 3.4 by removing ``__del__`` 0.6.0 (2015-05-17) ------------------ - Deprecated ``auto_logout`` argument - Added cookies support to CLI commands 0.5.1 (2015-04-20) ------------------ - 115down: fixed sub-entry range parser to ordered list 0.5.0 (2015-04-12) ------------------ - 115down: supported both keeping directory structure and flattening - Fixed ``Task`` to not inherit ``Directory`` 0.4.2 (2015-04-03) ------------------ - Fixed broken upload due to source page change (``_parse_src_js_var``) 0.4.1 (2015-04-03) ------------------ - 115down: added range support for argument ``sub_num`` (#14) - 115down: added size display for file and task entries 0.4.0 (2015-03-23) ------------------ - Added persistent session (cookies) feature - Added search API - Added CLI commands: 115down and 115up - Fixed #10 0.3.1 (2015-02-03) ------------------ - Fixed broken release 0.3.0 due to a missing dependency 0.3.0 (2015-02-03) ------------------ - Used external package "homura" to replace downloader utility - Merge #8: added add_task_url API 0.2.4 (2014-10-09) ------------------ - Fixed #5: add isatty() so progress refreshes less frequently on non-tty - Fixed parse_src_js_var 0.2.3 (2014-09-23) ------------------ - Fixed #2: ``show_progress`` argument - Added resume download feature 0.2.2 (2014-09-20) ------------------ - Added system dependencies to documentation 0.2.1 (2014-09-20) ------------------ - Fixed ``Task.status_human`` error 0.2.0 (2014-09-20) ------------------ - Added download feature to the API and ``download`` method to ``u115.File`` - Added elaborate exceptions - Added ``auto_logout`` optional argument to ``u115.API.__init__`` - Updated Task status info 0.1.1 (2014-09-11) ------------------ - Fixed broken sdist release of v0.1.0. 0.1.0 (2014-09-11) ------------------ - Initial release.
115wangpan
/115wangpan-0.7.6.tar.gz/115wangpan-0.7.6/CHANGELOG.rst
CHANGELOG.rst
from __future__ import print_function, absolute_import import humanize import inspect import json import logging import os import re import requests import time from hashlib import sha1 from bs4 import BeautifulSoup from requests.cookies import RequestsCookieJar from u115 import conf from u115.utils import (get_timestamp, get_utcdatetime, string_to_datetime, eval_path, quote, unquote, utf8_encode, txt_type, PY3) from homura import download if PY3: from http import cookiejar as cookielib else: import cookielib USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) \ AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2062.94 Safari/537.36' LOGIN_URL = 'http://passport.115.com/?ct=login&ac=ajax&is_ssl=1' LOGOUT_URL = 'http://passport.115.com/?ac=logout' CHECKPOINT_URL = 'http://passport.115.com/?ct=ajax&ac=ajax_check_point' class RequestsLWPCookieJar(cookielib.LWPCookieJar, RequestsCookieJar): """:class:`requests.cookies.RequestsCookieJar` compatible :class:`cookielib.LWPCookieJar`""" pass class RequestsMozillaCookieJar(cookielib.MozillaCookieJar, RequestsCookieJar): """:class:`requests.cookies.RequestsCookieJar` compatible :class:`cookielib.MozillaCookieJar`""" pass class RequestHandler(object): """ Request handler that maintains session :ivar session: underlying :class:`requests.Session` instance """ def __init__(self): self.session = requests.Session() self.session.headers['User-Agent'] = USER_AGENT def get(self, url, params=None): """ Initiate a GET request """ r = self.session.get(url, params=params) return self._response_parser(r, expect_json=False) def post(self, url, data, params=None): """ Initiate a POST request """ r = self.session.post(url, data=data, params=params) return self._response_parser(r, expect_json=False) def send(self, request, expect_json=True, ignore_content=False): """ Send a formatted API request :param request: a formatted request object :type request: :class:`.Request` :param bool expect_json: if True, raise :class:`.InvalidAPIAccess` if response is not in JSON format :param bool ignore_content: whether to ignore setting content of the Response object """ r = self.session.request(method=request.method, url=request.url, params=request.params, data=request.data, files=request.files, headers=request.headers) return self._response_parser(r, expect_json, ignore_content) def _response_parser(self, r, expect_json=True, ignore_content=False): """ :param :class:`requests.Response` r: a response object of the Requests library :param bool expect_json: if True, raise :class:`.InvalidAPIAccess` if response is not in JSON format :param bool ignore_content: whether to ignore setting content of the Response object """ if r.ok: try: j = r.json() return Response(j.get('state'), j) except ValueError: # No JSON-encoded data returned if expect_json: logger = logging.getLogger(conf.LOGGING_API_LOGGER) logger.debug(r.text) raise InvalidAPIAccess('Invalid API access.') # Raw response if ignore_content: res = Response(True, None) else: res = Response(True, r.text) return res else: r.raise_for_status() class Request(object): """Formatted API request class""" def __init__(self, url, method='GET', params=None, data=None, files=None, headers=None): """ Create a Request object :param str url: URL :param str method: request method :param dict params: request parameters :param dict data: form data :param dict files: mulitpart form data :param dict headers: custom request headers """ self.url = url self.method = method self.params = params self.data = data self.files = files self.headers = headers self._debug() def _debug(self): logger = logging.getLogger(conf.LOGGING_API_LOGGER) level = logger.getEffectiveLevel() if level == logging.DEBUG: func = inspect.stack()[2][3] msg = conf.DEBUG_REQ_FMT % (func, self.url, self.method, self.params, self.data) logger.debug(msg) class Response(object): """ Formatted API response class :ivar bool state: whether API access is successful :ivar dict content: result content """ def __init__(self, state, content): self.state = state self.content = content self._debug() def _debug(self): logger = logging.getLogger(conf.LOGGING_API_LOGGER) level = logger.getEffectiveLevel() if level == logging.DEBUG: func = inspect.stack()[4][3] msg = conf.DEBUG_RES_FMT % (func, self.state, self.content) logger.debug(msg) class API(object): """ Request and response interface :ivar passport: :class:`.Passport` object associated with this interface :ivar http: :class:`.RequestHandler` object associated with this interface :cvar int num_tasks_per_page: default number of tasks per page/request :cvar str web_api_url: files API url :cvar str aps_natsort_url: natural sort files API url :cvar str proapi_url: pro API url for downloads """ num_tasks_per_page = 30 web_api_url = 'http://web.api.115.com/files' aps_natsort_url = 'http://aps.115.com/natsort/files.php' proapi_url = 'http://proapi.115.com/app/chrome/down' referer_url = 'http://115.com' def __init__(self, persistent=False, cookies_filename=None, cookies_type='LWPCookieJar'): """ :param bool auto_logout: whether to logout automatically when :class:`.API` object is destroyed .. deprecated:: 0.6.0 Call :meth:`.API.logout` explicitly :param bool persistent: whether to use persistent session that stores cookies on disk :param str cookies_filename: path to the cookies file, use default path (`~/.115cookies`) if None :param str cookies_type: a string representing :class:`cookielib.FileCookieJar` subclass, `LWPCookieJar` (default) or `MozillaCookieJar` """ self.persistent = persistent self.cookies_filename = cookies_filename self.cookies_type = cookies_type self.passport = None self.http = RequestHandler() self.logger = logging.getLogger(conf.LOGGING_API_LOGGER) # Cache attributes to decrease API hits self._user_id = None self._username = None self._signatures = {} self._upload_url = None self._lixian_timestamp = None self._root_directory = None self._downloads_directory = None self._receiver_directory = None self._torrents_directory = None self._task_count = None self._task_quota = None if self.persistent: self.load_cookies() def _reset_cache(self): self._user_id = None self._username = None self._signatures = {} self._upload_url = None self._lixian_timestamp = None self._root_directory = None self._downloads_directory = None self._receiver_directory = None self._torrents_directory = None self._task_count = None self._task_quota = None def _init_cookies(self): # RequestsLWPCookieJar or RequestsMozillaCookieJar cookies_class = globals()['Requests' + self.cookies_type] f = self.cookies_filename or conf.COOKIES_FILENAME self.cookies = cookies_class(f) def load_cookies(self, ignore_discard=True, ignore_expires=True): """Load cookies from the file :attr:`.API.cookies_filename`""" self._init_cookies() if os.path.exists(self.cookies.filename): self.cookies.load(ignore_discard=ignore_discard, ignore_expires=ignore_expires) self._reset_cache() def save_cookies(self, ignore_discard=True, ignore_expires=True): """Save cookies to the file :attr:`.API.cookies_filename`""" if not isinstance(self.cookies, cookielib.FileCookieJar): m = 'Cookies must be a cookielib.FileCookieJar object to be saved.' raise APIError(m) self.cookies.save(ignore_discard=ignore_discard, ignore_expires=ignore_expires) @property def cookies(self): """ Cookies of the current API session (cookies getter shortcut) """ return self.http.session.cookies @cookies.setter def cookies(self, cookies): """ Cookies of the current API session (cookies setter shortcut) """ self.http.session.cookies = cookies def login(self, username=None, password=None, section='default'): """ Created the passport with ``username`` and ``password`` and log in. If either ``username`` or ``password`` is None or omitted, the credentials file will be parsed. :param str username: username to login (email, phone number or user ID) :param str password: password :param str section: section name in the credential file :raise: raises :class:`.AuthenticationError` if failed to login """ if self.has_logged_in: return True if username is None or password is None: credential = conf.get_credential(section) username = credential['username'] password = credential['password'] passport = Passport(username, password) r = self.http.post(LOGIN_URL, passport.form) if r.state is True: # Bind this passport to API self.passport = passport passport.data = r.content['data'] self._user_id = r.content['data']['USER_ID'] return True else: msg = None if 'err_name' in r.content: if r.content['err_name'] == 'account': msg = 'Account does not exist.' elif r.content['err_name'] == 'passwd': msg = 'Password is incorrect.' raise AuthenticationError(msg) def get_user_info(self): """ Get user info :return: a dictionary of user information :rtype: dict """ return self._req_get_user_aq() @property def user_id(self): """ User id of the current API user """ if self._user_id is None: if self.has_logged_in: self._user_id = self._req_get_user_aq()['data']['uid'] else: raise AuthenticationError('Not logged in.') return self._user_id @property def username(self): """ Username of the current API user """ if self._username is None: if self.has_logged_in: self._username = self._get_username() else: raise AuthenticationError('Not logged in.') return self._username @property def has_logged_in(self): """Check whether the API has logged in""" r = self.http.get(CHECKPOINT_URL) if r.state is False: return True # If logged out, flush cache self._reset_cache() return False def logout(self): """Log out""" self.http.get(LOGOUT_URL) self._reset_cache() return True @property def root_directory(self): """Root directory""" if self._root_directory is None: self._load_root_directory() return self._root_directory @property def downloads_directory(self): """Default directory for downloaded files""" if self._downloads_directory is None: self._load_downloads_directory() return self._downloads_directory @property def receiver_directory(self): """Parent directory of the downloads directory""" if self._receiver_directory is None: self._receiver_directory = self.downloads_directory.parent return self._receiver_directory @property def torrents_directory(self): """Default directory that stores uploaded torrents""" if self._torrents_directory is None: self._load_torrents_directory() return self._torrents_directory @property def task_count(self): """ Number of tasks created """ self._req_lixian_task_lists() return self._task_count @property def task_quota(self): """ Task quota (monthly) """ self._req_lixian_task_lists() return self._task_quota def get_tasks(self, count=30): """ Get ``count`` number of tasks :param int count: number of tasks to get :return: a list of :class:`.Task` objects """ return self._load_tasks(count) def add_task_bt(self, filename, select=False): """ Add a new BT task :param str filename: path to torrent file to upload :param bool select: whether to select files in the torrent. * True: it returns the opened torrent (:class:`.Torrent`) and can then iterate files in :attr:`.Torrent.files` and select/unselect them before calling :meth:`.Torrent.submit` * False: it will submit the torrent with default selected files """ filename = eval_path(filename) u = self.upload(filename, self.torrents_directory) t = self._load_torrent(u) if select: return t return t.submit() def add_task_url(self, target_url): """ Add a new URL task :param str target_url: the URL of the file that to be downloaded """ return self._req_lixian_add_task_url(target_url) def get_storage_info(self, human=False): """ Get storage info :param bool human: whether return human-readable size :return: total and used storage :rtype: dict """ res = self._req_get_storage_info() if human: res['total'] = humanize.naturalsize(res['total'], binary=True) res['used'] = humanize.naturalsize(res['used'], binary=True) return res def upload(self, filename, directory=None): """ Upload a file ``filename`` to ``directory`` :param str filename: path to the file to upload :param directory: destionation :class:`.Directory`, defaults to :attribute:`.API.downloads_directory` if None :return: the uploaded file :rtype: :class:`.File` """ filename = eval_path(filename) if directory is None: directory = self.downloads_directory # First request res1 = self._req_upload(filename, directory) data1 = res1['data'] file_id = data1['file_id'] # Second request res2 = self._req_file(file_id) data2 = res2['data'][0] data2.update(**data1) return _instantiate_uploaded_file(self, data2) def download(self, obj, path=None, show_progress=True, resume=True, auto_retry=True, proapi=False): """ Download a file :param obj: :class:`.File` object :param str path: local path :param bool show_progress: whether to show download progress :param bool resume: whether to resume on unfinished downloads identified by filename :param bool auto_retry: whether to retry automatically upon closed transfer until the file's download is finished :param bool proapi: whether to use pro API """ url = obj.get_download_url(proapi) download(url, path=path, session=self.http.session, show_progress=show_progress, resume=resume, auto_retry=auto_retry) def search(self, keyword, count=30): """ Search files or directories :param str keyword: keyword :param int count: number of entries to be listed """ kwargs = {} kwargs['search_value'] = keyword root = self.root_directory entries = root._load_entries(func=self._req_files_search, count=count, page=1, **kwargs) res = [] for entry in entries: if 'pid' in entry: res.append(_instantiate_directory(self, entry)) else: res.append(_instantiate_file(self, entry)) return res def move(self, entries, directory): """ Move one or more entries (file or directory) to the destination directory :param list entries: a list of source entries (:class:`.BaseFile` object) :param directory: destination directory :return: whether the action is successful :raise: :class:`.APIError` if something bad happened """ fcids = [] for entry in entries: if isinstance(entry, File): fcid = entry.fid elif isinstance(entry, Directory): fcid = entry.cid else: raise APIError('Invalid BaseFile instance for an entry.') fcids.append(fcid) if not isinstance(directory, Directory): raise APIError('Invalid destination directory.') if self._req_files_move(directory.cid, fcids): for entry in entries: if isinstance(entry, File): entry.cid = directory.cid entry.reload() return True else: raise APIError('Error moving entries.') def edit(self, entry, name, mark=False): """ Edit an entry (file or directory) :param entry: :class:`.BaseFile` object :param str name: new name for the entry :param bool mark: whether to bookmark the entry """ fcid = None if isinstance(entry, File): fcid = entry.fid elif isinstance(entry, Directory): fcid = entry.cid else: raise APIError('Invalid BaseFile instance for an entry.') is_mark = 0 if mark is True: is_mark = 1 if self._req_files_edit(fcid, name, is_mark): entry.reload() return True else: raise APIError('Error editing the entry.') def mkdir(self, parent, name): """ Create a directory :param parent: the parent directory :param str name: the name of the new directory :return: the new directory :rtype: :class:`.Directory` """ pid = None cid = None if isinstance(parent, Directory): pid = parent.cid else: raise('Invalid Directory instance.') cid = self._req_files_add(pid, name)['cid'] return self._load_directory(cid) def _req_offline_space(self): """Required before accessing lixian tasks""" url = 'http://115.com/' params = { 'ct': 'offline', 'ac': 'space', '_': get_timestamp(13) } _sign = os.environ.get('U115_BROWSER_SIGN') if _sign is not None: _time = os.environ.get('U115_BROWSER_TIME') if _time is None: msg = 'U115_BROWSER_TIME is required given U115_BROWSER_SIGN.' raise APIError(msg) params['sign'] = _sign params['time'] = _time params['uid'] = self.user_id req = Request(url=url, params=params) r = self.http.send(req) if r.state: self._signatures['offline_space'] = r.content['sign'] self._lixian_timestamp = r.content['time'] else: msg = 'Failed to retrieve signatures.' raise RequestFailure(msg) def _req_lixian_task_lists(self, page=1): """ This request will cause the system to create a default downloads directory if it does not exist """ url = 'http://115.com/lixian/' params = {'ct': 'lixian', 'ac': 'task_lists'} self._load_signatures() data = { 'page': page, 'uid': self.user_id, 'sign': self._signatures['offline_space'], 'time': self._lixian_timestamp, } req = Request(method='POST', url=url, params=params, data=data) res = self.http.send(req) if res.state: self._task_count = res.content['count'] self._task_quota = res.content['quota'] return res.content['tasks'] else: msg = 'Failed to get tasks.' raise RequestFailure(msg) def _req_lixian_get_id(self, torrent=False): """Get `cid` of lixian space directory""" url = 'http://115.com/' params = { 'ct': 'lixian', 'ac': 'get_id', 'torrent': 1 if torrent else None, '_': get_timestamp(13) } req = Request(method='GET', url=url, params=params) res = self.http.send(req) return res.content def _req_lixian_torrent(self, u): """ :param u: uploaded torrent file """ self._load_signatures() url = 'http://115.com/lixian/' params = { 'ct': 'lixian', 'ac': 'torrent', } data = { 'pickcode': u.pickcode, 'sha1': u.sha, 'uid': self.user_id, 'sign': self._signatures['offline_space'], 'time': self._lixian_timestamp, } req = Request(method='POST', url=url, params=params, data=data) res = self.http.send(req) if res.state: return res.content else: msg = res.content.get('error_msg') self.logger.error(msg) raise RequestFailure('Failed to open torrent.') def _req_lixian_add_task_bt(self, t): self._load_signatures() url = 'http://115.com/lixian/' params = {'ct': 'lixian', 'ac': 'add_task_bt'} _wanted = [] for i, b in enumerate(t.files): if b.selected: _wanted.append(str(i)) wanted = ','.join(_wanted) data = { 'info_hash': t.info_hash, 'wanted': wanted, 'savepath': t.name, 'uid': self.user_id, 'sign': self._signatures['offline_space'], 'time': self._lixian_timestamp, } req = Request(method='POST', url=url, params=params, data=data) res = self.http.send(req) if res.state: return True else: msg = res.content.get('error_msg') self.logger.error(msg) raise RequestFailure('Failed to create new task.') def _req_lixian_add_task_url(self, target_url): self._load_signatures() url = 'http://115.com/lixian/' params = {'ct': 'lixian', 'ac': 'add_task_url'} data = { 'url': target_url, 'uid': self.user_id, 'sign': self._signatures['offline_space'], 'time': self._lixian_timestamp, } req = Request(method='POST', url=url, params=params, data=data) res = self.http.send(req) if res.state: return True else: msg = res.content.get('error_msg') self.logger.error(msg) raise RequestFailure('Failed to create new task.') def _req_lixian_task_del(self, t): self._load_signatures() url = 'http://115.com/lixian/' params = {'ct': 'lixian', 'ac': 'task_del'} data = { 'hash[0]': t.info_hash, 'uid': self.user_id, 'sign': self._signatures['offline_space'], 'time': self._lixian_timestamp, } req = Request(method='POST', url=url, params=params, data=data) res = self.http.send(req) if res.state: return True else: raise RequestFailure('Failed to delete the task.') def _req_file_userfile(self): url = 'http://115.com/' params = { 'ct': 'file', 'ac': 'userfile', 'is_wl_tpl': 1, } req = Request(method='GET', url=url, params=params) self.http.send(req, expect_json=False, ignore_content=True) def _req_aps_natsort_files(self, cid, offset, limit, o='file_name', asc=1, aid=1, show_dir=1, code=None, scid=None, snap=0, natsort=1, source=None, type=0, format='json', star=None, is_share=None): """ When :meth:`.API._req_files` is called with `o='filename'` and `natsort=1`, API access will fail and :meth:`.API._req_aps_natsort_files` is subsequently called with the same kwargs. Refer to the implementation in :meth:`.Directory.list` """ params = locals() del params['self'] req = Request(method='GET', url=self.aps_natsort_url, params=params) res = self.http.send(req) if res.state: return res.content else: raise RequestFailure('Failed to access files API.') def _req_files(self, cid, offset, limit, o='user_ptime', asc=1, aid=1, show_dir=1, code=None, scid=None, snap=0, natsort=1, source=None, type=0, format='json', star=None, is_share=None): """ :param int type: type of files to be displayed * '' (empty string): marked * None: all * 0: all * 1: documents * 2: images * 3: music * 4: video * 5: zipped * 6: applications * 99: files only """ params = locals() del params['self'] req = Request(method='GET', url=self.web_api_url, params=params) res = self.http.send(req) if res.state: return res.content else: raise RequestFailure('Failed to access files API.') def _req_files_search(self, offset, limit, search_value, aid=-1, date=None, pick_code=None, source=None, type=0, format='json'): params = locals() del params['self'] url = self.web_api_url + '/search' req = Request(method='GET', url=url, params=params) res = self.http.send(req) if res.state: return res.content else: raise RequestFailure('Failed to access files API.') def _req_files_edit(self, fid, file_name=None, is_mark=0): """Edit a file or directory""" url = self.web_api_url + '/edit' data = locals() del data['self'] req = Request(method='POST', url=url, data=data) res = self.http.send(req) if res.state: return True else: raise RequestFailure('Failed to access files API.') def _req_files_add(self, pid, cname): """ Add a directory :param str pid: parent directory id :param str cname: directory name """ url = self.web_api_url + '/add' data = locals() del data['self'] req = Request(method='POST', url=url, data=data) res = self.http.send(req) if res.state: return res.content else: raise RequestFailure('Failed to access files API.') def _req_files_move(self, pid, fids): """ Move files or directories :param str pid: destination directory id :param list fids: a list of ids of files or directories to be moved """ url = self.web_api_url + '/move' data = {} data['pid'] = pid for i, fid in enumerate(fids): data['fid[%d]' % i] = fid req = Request(method='POST', url=url, data=data) res = self.http.send(req) if res.state: return True else: raise RequestFailure('Failed to access files API.') def _req_file(self, file_id): url = self.web_api_url + '/file' data = {'file_id': file_id} req = Request(method='POST', url=url, data=data) res = self.http.send(req) if res.state: return res.content else: raise RequestFailure('Failed to access files API.') def _req_directory(self, cid): """Return name and pid of by cid""" res = self._req_files(cid=cid, offset=0, limit=1, show_dir=1) path = res['path'] count = res['count'] for d in path: if str(d['cid']) == str(cid): res = { 'cid': d['cid'], 'name': d['name'], 'pid': d['pid'], 'count': count, } return res else: raise RequestFailure('No directory found.') def _req_files_download_url(self, pickcode, proapi=False): if '_115_curtime' not in self.cookies: self._req_file_userfile() if not proapi: url = self.web_api_url + '/download' params = {'pickcode': pickcode, '_': get_timestamp(13)} else: url = self.proapi_url params = {'pickcode': pickcode, 'method': 'get_file_url'} headers = { 'Referer': self.referer_url, } req = Request(method='GET', url=url, params=params, headers=headers) res = self.http.send(req) if res.state: if not proapi: return res.content['file_url'] else: fid = res.content['data'].keys()[0] return res.content['data'][fid]['url']['url'] else: raise RequestFailure('Failed to get download URL.') def _req_get_storage_info(self): url = 'http://115.com' params = { 'ct': 'ajax', 'ac': 'get_storage_info', '_': get_timestamp(13), } req = Request(method='GET', url=url, params=params) res = self.http.send(req) return res.content['1'] def _req_upload(self, filename, directory): """Raw request to upload a file ``filename``""" self._upload_url = self._load_upload_url() self.http.get('http://upload.115.com/crossdomain.xml') b = os.path.basename(filename) target = 'U_1_' + str(directory.cid) files = { 'Filename': ('', quote(b), ''), 'target': ('', target, ''), 'Filedata': (quote(b), open(filename, 'rb'), ''), 'Upload': ('', 'Submit Query', ''), } req = Request(method='POST', url=self._upload_url, files=files) res = self.http.send(req) if res.state: return res.content else: msg = None if res.content['code'] == 990002: msg = 'Invalid parameter.' elif res.content['code'] == 1001: msg = 'Torrent upload failed. Please try again later.' raise RequestFailure(msg) def _req_rb_delete(self, fcid, pid): url = 'http://web.api.115.com/rb/delete' data = { 'pid': pid, 'fid[0]': fcid, } req = Request(method='POST', url=url, data=data) res = self.http.send(req) if res.state: return True else: msg = 'Failed to delete this file or directory.' if 'errno' in res.content: if res.content['errno'] == 990005: raise JobError() self.logger.error(res.content['error']) raise APIError(msg) def _req_get_user_aq(self): url = 'http://my.115.com/' data = { 'ct': 'ajax', 'ac': 'get_user_aq' } req = Request(method='POST', url=url, data=data) res = self.http.send(req) if res.state: return res.content def _load_signatures(self, force=True): if not self._signatures or force: self._req_offline_space() def _load_tasks(self, count, page=1, tasks=None): if tasks is None: tasks = [] req_tasks = self._req_lixian_task_lists(page) loaded_tasks = [] if req_tasks is not None: loaded_tasks = [ _instantiate_task(self, t) for t in req_tasks[:count] ] if count <= self.num_tasks_per_page or req_tasks is None: return tasks + loaded_tasks else: return self._load_tasks(count - self.num_tasks_per_page, page + 1, tasks + loaded_tasks) def _load_directory(self, cid): kwargs = self._req_directory(cid) if str(kwargs['pid']) != str(cid): return Directory(api=self, **kwargs) def _load_root_directory(self): """ Load root directory, which has a cid of 0 """ kwargs = self._req_directory(0) self._root_directory = Directory(api=self, **kwargs) def _load_torrents_directory(self): """ Load torrents directory If it does not exist yet, this request will cause the system to create one """ r = self._req_lixian_get_id(torrent=True) self._downloads_directory = self._load_directory(r['cid']) def _load_downloads_directory(self): """ Load downloads directory If it does not exist yet, this request will cause the system to create one """ r = self._req_lixian_get_id(torrent=False) self._downloads_directory = self._load_directory(r['cid']) def _load_upload_url(self): res = self._parse_src_js_var('upload_config_h5') return res['url'] def _load_torrent(self, u): res = self._req_lixian_torrent(u) return _instantiate_torrent(self, res) def _parse_src_js_var(self, variable): """Parse JavaScript variables in the source page""" src_url = 'http://115.com' r = self.http.get(src_url) soup = BeautifulSoup(r.content) scripts = [script.text for script in soup.find_all('script')] text = '\n'.join(scripts) pattern = "%s\s*=\s*(.*);" % (variable.upper()) m = re.search(pattern, text) if not m: msg = 'Cannot parse source JavaScript for %s.' % variable raise APIError(msg) return json.loads(m.group(1).strip()) def _get_username(self): return unquote(self.cookies.get('OOFL')) class Base(object): def __repr__(self): try: u = self.__str__() except (UnicodeEncodeError, UnicodeDecodeError): u = '[Bad Unicode data]' repr_type = type(u) return repr_type('<%s: %s>' % (self.__class__.__name__, u)) def __str__(self): if hasattr(self, '__unicode__'): if PY3: return self.__unicode__() else: return unicode(self).encode('utf-8') return txt_type('%s object' % self.__class__.__name__) class Passport(Base): """ Passport for user authentication :ivar str username: username :ivar str password: user password :ivar dict form: a dictionary of POST data to login :ivar int user_id: user ID of the authenticated user :ivar dict data: data returned upon login """ def __init__(self, username, password): self.username = username self.password = password self.form = self._form() self.data = None def _form(self): vcode = self._vcode() f = { 'login[ssoent]': 'A1', 'login[version]': '2.0', 'login[ssoext]': vcode, 'login[ssoln]': self.username, 'login[ssopw]': self._ssopw(vcode), 'login[ssovcode]': vcode, 'login[safe]': '1', 'login[time]': '0', 'login[safe_login]': '0', 'goto': 'http://115.com/', } return f def _vcode(self): s = '%.6f' % time.time() whole, frac = map(int, s.split('.')) res = '%.8x%.5x' % (whole, frac) return res def _ssopw(self, vcode): p = sha1(utf8_encode(self.password)).hexdigest() u = sha1(utf8_encode(self.username)).hexdigest() v = vcode.upper() pu = sha1(utf8_encode(p + u)).hexdigest() return sha1(utf8_encode(pu + v)).hexdigest() def __unicode__(self): return self.username class BaseFile(Base): def __init__(self, api, cid, name): """ :param API api: associated API object :param str cid: directory id * For file: this represents the directory it belongs to; * For directory: this represents itself :param str name: originally named `n` NOTICE cid, fid and pid are in string format at this time """ self.api = api self.cid = cid self.name = name self._deleted = False def delete(self): """ Delete this file or directory :return: whether deletion is successful :raise: :class:`.APIError` if this file or directory is already deleted """ fcid = None pid = None if isinstance(self, File): fcid = self.fid pid = self.cid elif isinstance(self, Directory): fcid = self.cid pid = self.pid else: raise APIError('Invalid BaseFile instance.') if not self._deleted: if self.api._req_rb_delete(fcid, pid): self._deleted = True return True else: raise APIError('This file or directory is already deleted.') def move(self, directory): """ Move this file or directory to the destination directory :param directory: destination directory :return: whether the action is successful :raise: :class:`.APIError` if something bad happened """ self.api.move([self], directory) def edit(self, name, mark=False): """ Edit this file or directory :param str name: new name for this entry :param bool mark: whether to bookmark this entry """ self.api.edit(self, name, mark) @property def is_deleted(self): """Whether this file or directory is deleted""" return self._deleted def __eq__(self, other): if isinstance(self, File): if isinstance(other, File): return self.fid == other.fid elif isinstance(self, Directory): if isinstance(other, Directory): return self.cid == other.cid return False def __ne__(self, other): return not self.__eq__(other) def __unicode__(self): return self.name class File(BaseFile): """ File in a directory :ivar int fid: file id :ivar str cid: cid of the current directory :ivar int size: size in bytes :ivar str size_human: human-readable size :ivar str file_type: originally named `ico` :ivar str sha: SHA1 hash :ivar datetime.datetime date_created: in "%Y-%m-%d %H:%M:%S" format, originally named `t` :ivar str thumbnail: thumbnail URL, originally named `u` :ivar str pickcode: originally named `pc` """ def __init__(self, api, fid, cid, name, size, file_type, sha, date_created, thumbnail, pickcode, *args, **kwargs): super(File, self).__init__(api, cid, name) self.fid = fid self.size = size self.size_human = humanize.naturalsize(size, binary=True) self.file_type = file_type self.sha = sha self.date_created = date_created self.thumbnail = thumbnail self.pickcode = pickcode self._directory = None self._download_url = None @property def directory(self): """Directory that holds this file""" if self._directory is None: self._directory = self.api._load_directory(self.cid) return self._directory def get_download_url(self, proapi=False): """ Get this file's download URL :param bool proapi: whether to use pro API """ if self._download_url is None: self._download_url = \ self.api._req_files_download_url(self.pickcode, proapi) return self._download_url @property def url(self): """Alias for :meth:`.File.get_download_url` with `proapi=False`""" return self.get_download_url() def download(self, path=None, show_progress=True, resume=True, auto_retry=True, proapi=False): """Download this file""" self.api.download(self, path, show_progress, resume, auto_retry, proapi) @property def is_torrent(self): """Whether the file is a torrent""" return self.file_type == 'torrent' def open_torrent(self): """ Open the torrent (if it is a torrent) :return: opened torrent :rtype: :class:`.Torrent` """ if self.is_torrent: return self.api._load_torrent(self) def reload(self): """ Reload file info and metadata * name * sha * pickcode """ res = self.api._req_file(self.fid) data = res['data'][0] self.name = data['file_name'] self.sha = data['sha1'] self.pickcode = data['pick_code'] class Directory(BaseFile): """ :ivar str cid: cid of this directory :ivar str pid: represents the parent directory it belongs to :ivar int count: number of entries in this directory :ivar datetime.datetime date_created: integer, originally named `t` :ivar str pickcode: string, originally named `pc` """ max_entries_per_load = 24 # Smaller than 24 may cause abnormal result def __init__(self, api, cid, name, pid, count=-1, date_created=None, pickcode=None, is_root=False, *args, **kwargs): super(Directory, self).__init__(api, cid, name) self.pid = pid self._count = count if date_created is not None: self.date_created = date_created self.pickcode = pickcode self._parent = None @property def is_root(self): """Whether this directory is the root directory""" return int(self.cid) == 0 @property def parent(self): """Parent directory that holds this directory""" if self._parent is None: if self.pid is not None: self._parent = self.api._load_directory(self.pid) return self._parent @property def count(self): """Number of entries in this directory""" if self._count == -1: self.reload() return self._count def reload(self): """ Reload directory info and metadata * `name` * `pid` * `count` """ r = self.api._req_directory(self.cid) self.pid = r['pid'] self.name = r['name'] self._count = r['count'] def _load_entries(self, func, count, page=1, entries=None, **kwargs): """ Load entries :param function func: function (:meth:`.API._req_files` or :meth:`.API._req_search`) that returns entries :param int count: number of entries to load. This value should never be greater than self.count :param int page: page number (starting from 1) """ if entries is None: entries = [] res = \ func(offset=(page - 1) * self.max_entries_per_load, limit=self.max_entries_per_load, **kwargs) loaded_entries = [ entry for entry in res['data'][:count] ] #total_count = res['count'] total_count = self.count # count should never be greater than total_count if count > total_count: count = total_count if count <= self.max_entries_per_load: return entries + loaded_entries else: cur_count = count - self.max_entries_per_load return self._load_entries( func=func, count=cur_count, page=page + 1, entries=entries + loaded_entries, **kwargs) def list(self, count=30, order='user_ptime', asc=False, show_dir=True, natsort=True): """ List directory contents :param int count: number of entries to be listed :param str order: order of entries, originally named `o`. This value may be one of `user_ptime` (default), `file_size` and `file_name` :param bool asc: whether in ascending order :param bool show_dir: whether to show directories :param bool natsort: whether to use natural sort Return a list of :class:`.File` or :class:`.Directory` objects """ if self.cid is None: return False self.reload() kwargs = {} # `cid` is the only required argument kwargs['cid'] = self.cid kwargs['asc'] = 1 if asc is True else 0 kwargs['show_dir'] = 1 if show_dir is True else 0 kwargs['natsort'] = 1 if natsort is True else 0 kwargs['o'] = order # When the downloads directory exists along with its parent directory, # the receiver directory, its parent's count (receiver directory's # count) does not include the downloads directory. This behavior is # similar to its parent's parent (root), the count of which does not # include the receiver directory. # The following code fixed this behavior so that a directory's # count correctly reflects the actual number of entries in it # The side-effect that this code may ensure that downloads directory # exists, causing the system to create the receiver directory and # downloads directory, if they do not exist. if self.is_root or self == self.api.receiver_directory: self._count += 1 if self.count <= count: # count should never be greater than self.count count = self.count try: entries = self._load_entries(func=self.api._req_files, count=count, page=1, **kwargs) # When natsort=1 and order='file_name', API access will fail except RequestFailure as e: if natsort is True and order == 'file_name': entries = \ self._load_entries(func=self.api._req_aps_natsort_files, count=count, page=1, **kwargs) else: raise e res = [] for entry in entries: if 'pid' in entry: res.append(_instantiate_directory(self.api, entry)) else: res.append(_instantiate_file(self.api, entry)) return res def mkdir(self, name): """ Create a new directory in this directory """ self.api.mkdir(self, name) class Task(Base): """ BitTorrent or URL task :ivar datetime.datetime add_time: added time :ivar str cid: associated directory id, if any. For a directory task ( e.g. BT task), this is its associated directory's cid. For a file task (e.g. HTTP url task), this is the cid of the downloads directory. This value may be None if the task is failed and has no corresponding directory :ivar str file_id: equivalent to `cid` of :class:`.Directory`. This value may be None if the task is failed and has no corresponding directory :ivar str info_hash: hashed value :ivar datetime.datetime last_update: last updated time :ivar int left_time: left time () :ivar int move: moving state * 0: not transferred * 1: transferred * 2: partially transferred :ivar str name: name of this task :ivar int peers: number of peers :ivar int percent_done: <=100, originally named `percentDone` :ivar int rate_download: download rate (B/s), originally named `rateDownload` :ivar int size: size of task :ivar str size_human: human-readable size :ivar int status: status code * -1: failed * 1: downloading * 2: downloaded * 4: searching resources """ def __init__(self, api, add_time, file_id, info_hash, last_update, left_time, move, name, peers, percent_done, rate_download, size, status, cid, pid, url, *args, **kwargs): self.api = api self.cid = cid self.name = name self.add_time = add_time self.file_id = file_id self.info_hash = info_hash self.last_update = last_update self.left_time = left_time self.move = move self.peers = peers self.percent_done = percent_done self.rate_download = rate_download self.size = size self.size_human = humanize.naturalsize(size, binary=True) self.status = status self.url = url self._directory = None self._deleted = False self._count = -1 @property def is_directory(self): """ :return: whether this task is associated with a directory. :rtype: bool """ if self.cid is None: msg = 'Cannot determine whether this task is a directory.' if not self.is_transferred: msg += ' This task has not been transferred.' raise TaskError(msg) return self.api.downloads_directory.cid != self.cid @property def is_bt(self): """Alias of `is_directory`""" return self.is_directory def delete(self): """ Delete task (does not influence its corresponding directory) :return: whether deletion is successful :raise: :class:`.TaskError` if the task is already deleted """ if not self._deleted: if self.api._req_lixian_task_del(self): self._deleted = True return True raise TaskError('This task is already deleted.') @property def is_deleted(self): """ :return: whether this task is deleted :rtype: bool """ return self._deleted @property def is_transferred(self): """ :return: whether this tasks has been transferred :rtype: bool """ return self.move == 1 @property def status_human(self): """ Human readable status :return: * `DOWNLOADING`: the task is downloading files * `BEING TRANSFERRED`: the task is being transferred * `TRANSFERRED`: the task has been transferred to downloads \ directory * `SEARCHING RESOURCES`: the task is searching resources * `FAILED`: the task is failed * `DELETED`: the task is deleted * `UNKNOWN STATUS` :rtype: str """ res = None if self._deleted: return 'DELETED' if self.status == 1: res = 'DOWNLOADING' elif self.status == 2: if self.move == 0: res = 'BEING TRANSFERRED' elif self.move == 1: res = 'TRANSFERRED' elif self.move == 2: res = 'PARTIALLY TRANSFERRED' elif self.status == 4: res = 'SEARCHING RESOURCES' elif self.status == -1: res = 'FAILED' if res is not None: return res return 'UNKNOWN STATUS' @property def directory(self): """Associated directory, if any, with this task""" if not self.is_directory: msg = 'This task is a file task with no associated directory.' raise TaskError(msg) if self._directory is None: if self.is_transferred: self._directory = self.api._load_directory(self.cid) if self._directory is None: msg = 'No directory assciated with this task: Task is %s.' % \ self.status_human.lower() raise TaskError(msg) return self._directory @property def parent(self): """Parent directory of the associated directory""" return self.directory.parent @property def count(self): """Number of entries in the associated directory""" return self.directory.count def list(self, count=30, order='user_ptime', asc=False, show_dir=True, natsort=True): """ List files of the associated directory to this task. :param int count: number of entries to be listed :param str order: originally named `o` :param bool asc: whether in ascending order :param bool show_dir: whether to show directories """ return self.directory.list(count, order, asc, show_dir, natsort) def __unicode__(self): return self.name class Torrent(Base): """ Opened torrent before becoming a task :ivar api: associated API object :ivar str name: task name, originally named `torrent_name` :ivar int size: task size, originally named `torrent_size` :ivar str info_hash: hashed value :ivar int file_count: number of files included :ivar list files: files included (list of :class:`.TorrentFile`), originally named `torrent_filelist_web` """ def __init__(self, api, name, size, info_hash, file_count, files=None, *args, **kwargs): self.api = api self.name = name self.size = size self.size_human = humanize.naturalsize(size, binary=True) self.info_hash = info_hash self.file_count = file_count self.files = files self.submitted = False def submit(self): """Submit this torrent and create a new task""" if self.api._req_lixian_add_task_bt(self): self.submitted = True return True return False @property def selected_files(self): """List of selected :class:`.TorrentFile` objects of this torrent""" return [f for f in self.files if f.selected] @property def unselected_files(self): """List of unselected :class:`.TorrentFile` objects of this torrent""" return [f for f in self.files if not f.selected] def __unicode__(self): return self.name class TorrentFile(Base): """ File in the torrent file list :param torrent: the torrent that holds this file :type torrent: :class:`.Torrent` :param str path: file path in the torrent :param int size: file size :param bool selected: whether this file is selected """ def __init__(self, torrent, path, size, selected, *args, **kwargs): self.torrent = torrent self.path = path self.size = size self.size_human = humanize.naturalsize(size, binary=True) self.selected = selected def select(self): """Select this file""" self.selected = True def unselect(self): """Unselect this file""" self.selected = False def __unicode__(self): return '[%s] %s' % ('*' if self.selected else ' ', self.path) def _instantiate_task(api, kwargs): """Create a Task object from raw kwargs""" file_id = kwargs['file_id'] kwargs['file_id'] = file_id if str(file_id).strip() else None kwargs['cid'] = kwargs['file_id'] or None kwargs['rate_download'] = kwargs['rateDownload'] kwargs['percent_done'] = kwargs['percentDone'] kwargs['add_time'] = get_utcdatetime(kwargs['add_time']) kwargs['last_update'] = get_utcdatetime(kwargs['last_update']) is_transferred = (kwargs['status'] == 2 and kwargs['move'] == 1) if is_transferred: kwargs['pid'] = api.downloads_directory.cid else: kwargs['pid'] = None del kwargs['rateDownload'] del kwargs['percentDone'] if 'url' in kwargs: if not kwargs['url']: kwargs['url'] = None else: kwargs['url'] = None task = Task(api, **kwargs) if is_transferred: task._parent = api.downloads_directory return task def _instantiate_file(api, kwargs): kwargs['file_type'] = kwargs['ico'] kwargs['date_created'] = string_to_datetime(kwargs['t']) kwargs['pickcode'] = kwargs['pc'] kwargs['name'] = kwargs['n'] kwargs['thumbnail'] = kwargs.get('u') kwargs['size'] = kwargs['s'] del kwargs['ico'] del kwargs['t'] del kwargs['pc'] del kwargs['s'] if 'u' in kwargs: del kwargs['u'] return File(api, **kwargs) def _instantiate_directory(api, kwargs): kwargs['name'] = kwargs['n'] kwargs['date_created'] = get_utcdatetime(float(kwargs['t'])) kwargs['pickcode'] = kwargs.get('pc') return Directory(api, **kwargs) def _instantiate_uploaded_file(api, kwargs): kwargs['fid'] = kwargs['file_id'] kwargs['name'] = kwargs['file_name'] kwargs['pickcode'] = kwargs['pick_code'] kwargs['size'] = kwargs['file_size'] kwargs['sha'] = kwargs['sha1'] kwargs['date_created'] = get_utcdatetime(kwargs['file_ptime']) kwargs['thumbnail'] = None _, ft = os.path.splitext(kwargs['name']) kwargs['file_type'] = ft[1:] return File(api, **kwargs) def _instantiate_torrent(api, kwargs): kwargs['size'] = kwargs['file_size'] kwargs['name'] = kwargs['torrent_name'] file_list = kwargs['torrent_filelist_web'] del kwargs['file_size'] del kwargs['torrent_name'] del kwargs['torrent_filelist_web'] torrent = Torrent(api, **kwargs) torrent.files = [_instantiate_torrent_file(torrent, f) for f in file_list] return torrent def _instantiate_torrent_file(torrent, kwargs): kwargs['selected'] = True if kwargs['wanted'] == 1 else False del kwargs['wanted'] return TorrentFile(torrent, **kwargs) class APIError(Exception): """General error related to API""" def __init__(self, *args, **kwargs): content = kwargs.pop('content', None) self.content = content super(APIError, self).__init__(*args, **kwargs) class TaskError(APIError): """Task has unstable status or no directory operation""" pass class AuthenticationError(APIError): """Authentication error""" pass class InvalidAPIAccess(APIError): """Invalid and forbidden API access""" pass class RequestFailure(APIError): """Request failure""" pass class JobError(APIError): """Job running error (request multiple similar jobs simultaneously)""" def __init__(self, *args, **kwargs): content = kwargs.pop('content', None) self.content = content if not args: msg = 'Your account has a similar job running. Try again later.' args = (msg,) super(JobError, self).__init__(*args, **kwargs)
115wangpan
/115wangpan-0.7.6.tar.gz/115wangpan-0.7.6/u115/api.py
api.py
import functools import os import pickle import subprocess import re from collections import UserDict from typing import Callable from colorit import * from prompt_toolkit import prompt from prompt_toolkit.completion import WordCompleter from prompt_toolkit.shortcuts import yes_no_dialog from greeting import * from help import * colorit.init_colorit() class MyException(Exception): pass class Notepad(UserDict): def __getitem__(self, title): if not title in self.data.keys(): raise MyException(color("This article isn't in the Notepad",Colors.red)) note = self.data[title] return note def add_note(self, note) -> str: self.data.update({note.title.value:note}) return color('Done!',Colors.blue) def delete_note(self, title): try: self.data.pop(title) return color(f"{title} was removed",Colors.purple) except KeyError: return color("This note isn't in the Notepad",Colors.blue) def get_notes(self, file_name): with open(file_name, 'ab+') as fh: fh.seek(0) try: self.data = pickle.load(fh) except EOFError: pass def show_notes_titles(self): res = "\n".join([note for note in notes]) return color(res,Colors.orange) def write_notes(self, file_name): with open(file_name, "wb") as fh: pickle.dump(self, fh) class Field: def __init__(self, value): self.__value = None self.value = value class NoteTag(Field): pass class NoteTitle(Field): @property def value(self): return self.__value @value.setter def value(self, title): if len(title) == 0: raise ValueError(color("The title wasn't added. It should have at least 1 character.",Colors.red)) self.__value = title class NoteBody(Field): pass class Note: def __init__(self, title: NoteTitle, body: NoteBody, tags: list[NoteTag]=None) -> None: self.title = title self.body = body if body else '' self.tags = tags if tags else '' def edit_tags(self, tags: list[NoteTag]): self.tags = tags def edit_title(self, title: NoteTitle): self.title = title def edit_body(self, body: NoteBody): self.body = body def show_note(self): return '\n'.join([f"Title: {self.title.value}", f"Body: {self.body.value}", f"Tags: {self.show_tags()}"]) def show_tags(self): if self.tags == []: return "Tags: Empty",Colors.red return ', '.join([tag.value for tag in self.tags]) def decorator_input(func: Callable) -> Callable: @functools.wraps(func) def wrapper(*words): try: return func(*words) except KeyError as err: return err except IndexError: return color("You didn't enter the title or keywords",Colors.red) except TypeError: return color("Sorry, this command doesn't exist",Colors.red) except Exception as err: return err return wrapper @decorator_input def add_note(*args) -> str: title = NoteTitle(input(color("Enter the title: ",Colors.yellow))) if title.value in notes.data.keys(): raise MyException(color('This title already exists',Colors.red)) body = NoteBody(input(color("Enter the note: ",Colors.yellow))) tags = input(color("Enter tags (separate them with ',') or press Enter to skip this step: ",Colors.yellow)) tags = [NoteTag(t.strip()) for t in tags.split(',')] note = Note(title, body, tags) return notes.add_note(note) @decorator_input def delete_note(*args: str) -> str: return notes.delete_note(args[0]) @decorator_input def edit_note(*args) -> str: title = args[0] if title in notes.data.keys(): note = notes.data.get(title) user_title = input(color("Enter new title or press 'enter' to skip this step: ",Colors.yellow)) if user_title: if not user_title in notes.data.keys(): notes.data[user_title] = notes.data.pop(title) note.edit_title(NoteTitle(user_title)) else: raise MyException(color('This title already exists.',Colors.red)) try: body = edit(note.body.value, 'body') if body: body = NoteBody(body) note.edit_body(body) except Exception as err: print(err) try: tags = edit(note.show_tags(), 'tags') if tags: tags = [NoteTag(t.strip()) for t in tags.split(',')] note.edit_tags(tags) except Exception as err: print(err) return "Done!" @decorator_input def edit(text: str, part) -> str: user_input = input(color(f"Enter any letter if you want to edit {part} or press 'enter' to skip this step. ",Colors.green)) if user_input: with open('edit_note.txt', 'w') as fh: fh.write(text) run_app() mes = '' if part == 'tags': mes = color("Separate tags with ','",Colors.green) input(color(f'Press enter or any letter if you finished editing. Please, make sure you closed the text editor. {mes}',Colors.green)) with open('edit_note.txt', 'r') as fh: edited_text = fh.read() return edited_text @decorator_input def find(*args) -> str: try: re.match(r'^\s*$', args) except TypeError: args = input(color("Enter the phrase you want to find: ",Colors.yellow)) notes_list = [] for note in notes.data.values(): if re.search(args, note.body.value) or re.search(args, note.title.value, flags=re.IGNORECASE): notes_list.append(note.title.value) if len(notes_list) == 0: return "No matches" return '\n'.join([title for title in notes_list]) @decorator_input def find_tags(*args: str) -> str: if len(args) == 0: return "You didn't enter any tags." all_notes = [note for note in notes.data.values()] notes_dict = {title:[] for title in notes.data.keys()} for arg in args: for note in all_notes: if arg in [tag.value for tag in note.tags]: notes_dict[note.title.value].append(arg) sorted_dict = sorted(notes_dict, key=lambda k: len(notes_dict[k]), reverse=True) return '\n'.join([f"{key}:{notes_dict[key]}" for key in sorted_dict if len(notes_dict[key]) > 0]) @decorator_input def goodbye() -> str: return 'Goodbye!' def get_command(words: str) -> Callable: if words[0] == '': raise KeyError ("This command doesn't exist") for key in commands_dict.keys(): try: if re.search(fr'\b{words[0].lower()}\b', str(key)): func = commands_dict[key] return func except (re.error): break raise KeyError ("This command doesn't exist") def run_app(): if os.name == "nt": # For Windows os.startfile('edit_note.txt') else: # For Mac subprocess.call(["open", 'edit_note.txt']) @decorator_input def show_note(*args:str) -> str: note = notes.data.get(args[0]) return note.show_note() notes = Notepad() notes.get_notes('notes.bin') commands_dict = {('add', 'add_note'):add_note, ('edit', 'edit_note'):edit_note, ('show', 'show_note'):show_note, ('showall',):notes.show_notes_titles, ('find_tags',):find_tags, ('find',):find, ('delete',):delete_note, ('goodbye','close','exit','quit'):goodbye } word_completer = WordCompleter(["add", "add_note", "edit", "edit_note", "show", "show_note", "showall" ,"find_tags", "find", "delete" ,"."]) def main_notes(): print(color(greeting,Colors.green)) print(background(color("WRITE HELP TO SEE ALL COMMANDS ",Colors.yellow),Colors.blue)) print(background(color("WRITE 'exit', 'close' or 'bye' to close the bot ",Colors.blue),Colors.yellow)) while True: words = prompt('Enter your command: ', completer=word_completer).split(" ") if words[0].lower() == "help": print(pers_assistant_help()) try: func = get_command(words) except KeyError as error: print(error) continue print(func(*words[1:])) if func.__name__ == 'goodbye': exit = yes_no_dialog( title='EXIT', text='Do you want to close the bot?').run() if exit: notes.write_notes('notes.bin') print(color("Bye, see you soon...",Colors.yellow)) break else: continue
11Team-AssistantBot
/11Team_AssistantBot-1.11.tar.gz/11Team_AssistantBot-1.11/11Team_AssistantBot/Notepad.py
Notepad.py
import pickle import re from datetime import datetime, timedelta from colorit import * from prompt_toolkit import prompt from prompt_toolkit.completion import WordCompleter from prompt_toolkit.shortcuts import yes_no_dialog from Notepad import * from addressbook import * from greeting import greeting from help import * from sort import * colorit.init_colorit() class Error(Exception): pass STOPLIST =[".", "end", "close","exit","bye","good bye"] users = [] def verificate_email(text:str): email_re = re.findall(r"[\w+3\@{1}\w+\.\w+]", text) email = "".join(email_re) if bool(email) == True: return email else: raise Error def verificate_birthday(text:str): date_re = re.findall(r"\d{4}\.\d{2}\.\d{2}", text) date = "".join(date_re) if bool(date) == True: return date else: raise Error def verificate_number(num): #Done flag = True try: number = re.sub(r"[\+\(\)A-Za-z\ ]", "", num) if len(number) == 12: number = "+" + number elif len(number) == 10: number = "+38" + number elif len(number) == 9: number = "+380" + number else: flag = False raise Error except Error: print(color(f"This number dont correct {number}",Colors.red)) return number if flag else "" def add_user(text:str): #Done text = text.split() name = text[0] phone = text[1] if name in ad: return "this user already exist" else: name = Name(name) phone = Phone(phone) rec = Record(name, phone) ad.add_record(rec) return color("Done",Colors.blue) def show_all(nothing= ""): # Done if len(ad) == 0: return (color("AddressBook is empty", Colors.red)) else: number = len(ad) ad.iterator(number) return color("Done",Colors.blue) def add_phone(text:str): text = text.split() name = text[0] phone = text[1] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] phone = Phone(phone) adding.add_phone(phone) return color("Done",Colors.blue) def add_email(text:str): text = text.split() name = text[0] email = text[1] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] email = Email(email) adding.add_email(email) return color("Done",Colors.blue) def add_birthday(text:str): text = text.split() name = text[0] birthday = text[1] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] birthday = Birthday(birthday) adding.add_birthday(birthday) return color("Done",Colors.blue) def add_tags(text:str): text = text.split() name = text[0] tags = " ".join(text[1:]) if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] tags = Tags(tags) adding.add_tags(tags) return color("Done",Colors.blue) def add_adress(text:str): text = text.split() name = text[0] adress = " ".join(text[1:]) if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] adress = Adress(adress) adding.add_adress(adress) return color("Done",Colors.blue) def change_adress(text:str): text = text.split() name = text[0] adress = " ".join(text[1:]) if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] adress = Adress(adress) adding.change_adress(adress) return color("Done",Colors.blue) def change_phone(text:str): text = text.split() name = text[0] oldphone = text[1] newphone = text[2] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] # oldphone = Phone(oldphone) # newphone = Phone(newphone) adding.change_phone(oldphone,newphone) return color("Done",Colors.blue) def change_email(text:str): text = text.split() name = text[0] newemail = text[1] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] newemail = Email(newemail) adding.change_email(newemail) return color("Done",Colors.blue) def change_birthday(text:str): text = text.split() name = text[0] birthday = text[1] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] birthday = Birthday(birthday) adding.change_birthday(birthday) return color("Done",Colors.blue) def remove_phone(text:str): text = text.split() name = text[0] phone = text[1] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) if phone == "-": adding = ad[name] adding.remove_phone(phone) elif name in ad: adding = ad[name] phone = Phone(phone) adding.remove_phone(phone) return color("Done",Colors.blue) def remove_email(text:str): text = text.split() name = text[0] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] adding.remove_email() return color("Done",Colors.blue) def remove_birthday(text:str): text = text.split() name = text[0] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] adding.remove_birthday() return color("Done",Colors.blue) def remove_tags(text:str): text = text.split() name = text[0] tags = " ".join(text[1:]).strip() if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] adding.remove_tags(tags) return color("Done",Colors.blue) def remove_user(text:str): text = text.split() name = text[0] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: del ad[name] return color("Done",Colors.blue) def remove_adress(text:str): text = text.split() name = text[0] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] adding.remove_adress() return color("Done",Colors.blue) def find_name(text): text = text.split() name = text[0] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: print(ad.find_name(name)) return color("Done",Colors.blue) def find_tags(text:str): text = text.split() tags = text[0:] if len(ad) == 0: return color("Addressbook is empty", Colors.red) print(ad.find_tags(tags)) return color("Done",Colors.blue) def find_phone(text:str): text = text.split() phone = text[0] if len(ad) == 0: return color("Addressbook is empty", Colors.red) print(ad.find_phone(phone)) return color("Done",Colors.blue) def when_birthday(text:str): text = text.split() name = text[0] if len(ad) == 0: return color("Addressbook is empty", Colors.red) if name not in ad: return color("This user dont exist in addressbook", Colors.red) elif name in ad: adding = ad[name] print(adding.days_to_birthday()) return color("Done",Colors.blue) def birthdays_within(text:str): days = int(text.split()[0]) flag = False current = datetime.now() future = current + timedelta(days=days) for name, record in ad.items(): if record.get_birthday() is None: pass else: userdate = datetime.strptime(record.get_birthday(), "%Y.%m.%d").date() userdate = userdate.replace(year=current.year) if current.date() < userdate < future.date(): flag = True print(color(f"\n{name.title()} has birthday {record.get_birthday()}",Colors.yellow)) return color("Done",Colors.blue) if flag == True else color("Nobody have birthday in this period",Colors.red) def help(tst=""): instruction = color(""" \nCOMMANDS\n show all add user <FirstName_LastName> <phone> add phone <user> <phone> add email <user> <email> add birthday <user> <date> add tags <user> <tags> add adress <user> <adress> change adress <user> <new_adress> change email <user> <newEmail> change birthday <user> <newBirthday> remove phone <user> <phone> remove email <user> <email> remove birthday <user> remove phone <user> <phone> remove email <user> <email> remove tags <user> <tags> remove user <user> remove adress <user> find name <name> find tags <tags> find phone <phone> sort directory <path to folder> when birthday <name> birthdays within <days-must be integer> """,Colors.orange) return instruction commands = { "help": pers_assistant_help, "add phone": add_phone, "add user": add_user, "show all": show_all, "add email": add_email, "add birthday": add_birthday, "add tags": add_tags, "add adress": add_adress, "change adress": change_adress, "change phone": change_phone, "change email": change_email, "change birthday": change_birthday, "remove phone": remove_phone, "remove email" :remove_email, "remove birthday": remove_birthday, "remove tags": remove_tags, "remove user": remove_user, "remove adress": remove_adress, "find name": find_name, "find tags": find_tags, "find phone": find_phone, "sort directory": sorting, "when birthday": when_birthday, "birthdays within": birthdays_within, } word_completer = WordCompleter([comm for comm in commands.keys()]) def parser(userInput:str): if len(userInput.split()) == 2: return commands[userInput.strip()], "None" for command in commands.keys(): if userInput.startswith(str(command)): text = userInput.replace(command, "") command = commands[command] # print(text.strip().split()) return command, text.strip() def main(): print(color(greeting,Colors.green)) print(background(color("WRITE HELP TO SEE ALL COMMANDS ",Colors.yellow),Colors.blue)) print(background(color("WRITE 'exit', 'close' or 'bye' for close bot ",Colors.blue),Colors.yellow)) ad.load_contacts_from_file() while True: # user_input = input(color("Enter your command: ",Colors.green)).strip().lower() user_input = prompt('Enter your command: ', completer=word_completer) if user_input in STOPLIST: exit = yes_no_dialog( title='EXIT', text='Do you want to close the bot?').run() if exit: print(color("Bye,see tou soon...",Colors.yellow)) break else: continue elif user_input.startswith("help"): print(color(pers_assistant_help(),Colors.green)) continue elif (len(user_input.split())) == 1: print(color("Please write full command", Colors.red)) continue else: try: command, text = parser(user_input) print(command(text)) ad.save_contacts_to_file() except KeyError: print(color("You enter wrong command", Colors.red)) except Error: print(color("You enter wrong command Error", Colors.red)) except TypeError: print(color("You enter wrong command TypeError", Colors.red)) except IndexError: print(color("You enter wrong command or name", Colors.red)) except ValueError: print(color("You enter wrong information", Colors.red)) if __name__ == "__main__": choice = input(color(f"SELECT WHICH BOT YOU WANT TO USE \nEnter 'notes' for use Notes\nEnter 'contacts' for use AdressBook\nEnter >>> ",Colors.green)) if choice == "notes": main_notes() elif choice == "contacts": main() else: user_error = input(color("You choose wrong name push enter to close the bot",Colors.red))
11Team-AssistantBot
/11Team_AssistantBot-1.11.tar.gz/11Team_AssistantBot-1.11/11Team_AssistantBot/main.py
main.py
import pickle import re from collections import UserDict from datetime import datetime from colorit import * colorit.init_colorit() class Error(Exception): #власне виключення pass # def __str__(self) -> str: # return "\n \nSomething went wrong\n Try again!\n" class Field: def __init__(self, value) -> None: self._value = value def __str__(self) -> str: return self._value @property def value(self): return self._value @value.setter def value(self, value): self._value = value class Name(Field): #клас для створення поля name def __str__(self) -> str: self._value : str return self._value.title() class Phone(Field): #клас для створення поля phone @staticmethod #метод який не звязаний з класом def verify(number): #перевирка номеру телефона number = re.sub(r"[\-\(\)\+\ a-zA-Zа-яА-я]", "", number) try: if len(number) == 12: number = "+" + number elif len(number) == 10: number = "+38" + number elif len(number) == 9: number = "+380" + number else: number = False raise Error except Error: print(color("\nYou enter wrong number\n Try again!\n", Colors.red)) if number: return number else: return "-" def __init__(self, value) -> None: self._value = Phone.verify(value) @Field.value.setter def value(self, value): self._value =Phone.verify(value) def __repr__(self) -> str: return self._value def __str__(self) -> str: return self._value class Birthday: @staticmethod #метод який не звязаний з класом def verify_date(birth_date: str): try: birthdate = re.findall(r"\d{4}\.\d{2}\.\d{2}", birth_date) if bool(birthdate) == False: raise Error except Error: print(color("\nYou enter wrong date.\nUse this format - YYYY.MM.DD \nTry again!\n", Colors.red)) if birthdate: return birthdate[0] else: return "-" def __init__(self, birthday) -> None: self.__birthday = self.verify_date(birthday) @property def birthday(self): return self.__birthday @birthday.setter def birthday(self,birthday): self.__birthday = self.verify_date(birthday) def __repr__(self) -> str: return self.__birthday def __str__(self) -> str: return self.__birthday class Email: @staticmethod #метод який не звязаний з класом def verificate_email(text:str): email_re = re.findall(r"\w+3\@{1}\w+\.\w+", text) email = "".join(email_re) try: if bool(email) == True: return email else: raise Error except Error: print(color("\nYou enter wrong email\n Try again!\n", Colors.red)) return "-" def __init__(self, email) -> None: self.__email = self.verificate_email(email) @property def email(self): return self.__email @email.setter def email(self,email): self.__email = self.verificate_email(email) def __repr__(self) -> str: return self.__email def __str__(self) -> str: return self.__email class Adress: def __init__(self, adress) -> None: self.__adress = adress @property def adress(self): return self.__adress @adress.setter def adress(self,adress): self.__adress = self.adress def __repr__(self) -> str: return self.__adress def __str__(self) -> str: return self.__adress class Tags: def __init__(self, tags) -> None: self.__tags = tags @property def tags(self): return self.__tags @tags.setter def tags(self,tags): self.__tags = self.tags def __repr__(self) -> str: return self.__tags def __str__(self) -> str: return self.__tags class Record: #клас для запису инфи def __init__ (self, name : Name, phone: Phone = None, birthday: Birthday = None, email: Email = None, adress: Adress = None, tags :Tags = None): self.name = name self.phone = phone self.birthday = birthday self.email = email self.adress = adress self.tags = [] self.phones = [] if phone: self.phones.append(phone) def get_birthday(self): if self.birthday is None: return None else: return str(self.birthday) def get_tags(self): return self.tags def get_phone(self): return self.phones def add_phone(self, phone: Phone): # додати телефон self.phones.append(phone) def add_birthday(self, birthday: Birthday): # додати телефон if self.birthday is None: self.birthday = birthday else: print(color("This user already have birthday date",Colors.red)) def add_email(self, email:Email): # додати телефон if self.email is None: self.email = email else: print(color("This user already have email",Colors.red)) def add_tags(self, tags:Tags): # додати телефон self.tags.append(tags) def add_adress(self, adress): if self.adress is None: self.adress = adress else: print(color("This user already have adress",Colors.red)) def change_adress(self,adress): # adress = Adress(adress) if self.adress is None: print(color("This user doesnt have adress", Colors.red)) else: self.adress = adress def change_email(self,email): # email = Email(email) if self.email is None: print(color("This user doesnt have adress", Colors.red)) else: self.email = email def change_birthday(self,birthday): # birthday = Birthday(birthday) if self.birthday is None: print(color("This user doesnt have birthday", Colors.red)) else: self.birthday = birthday def remove_email(self): if self.email is None: print(color("This user doesnt have email",Colors.red)) else: self.email = None def remove_birthday(self): if self.birthday is None: print(color("This user doesnt have birthday date",Colors.red)) else: self.birthday = None def remove_phone(self, phone): # видалити телефон # phone = Phone(phone) for ph in self.phones: if str(ph) == str(phone): self.phones.remove(ph) else: print(color("This user doesnt have this phone",Colors.red)) def remove_tags(self, tags): for tag in self.tags: if str(tag) == str(tags): self.tags.remove(tag) else: print(color("This user doesnt have tags which you want to remove",Colors.red)) def remove_adress(self): if self.adress is None: print(color("This user doesnt have adress",Colors.red)) else: self.adress = None def change_phone(self, oldphone, newphone): # зминити телефон користувача oldphone = Phone(oldphone) newphone = Phone(newphone) for phone in self.phones: if str(phone) == str(oldphone): self.phones.remove(phone) self.phones.append(newphone) else: print(color("This user doesnt have oldphone which you want to change",Colors.red)) def days_to_birthday(self): #функция яка показуе скильки днив до наступного др # потрибно допрацювати try: if str(self.birthday) == None: return None current = datetime.now().date() current : datetime user_date = datetime.strptime(str(self.birthday), "%Y.%m.%d") user_date: datetime user_date = user_date.replace(year=current.year).date() if user_date < current: user_date = user_date.replace(year= current.year +1) res = user_date - current return color(f"{res.days} days before next birthday", Colors.purple) else: res = user_date - current return color(f"{res.days} days before next birthday", Colors.purple) except ValueError: return (color("You set wrong date or user doesnt have birthday date\nTry again set new date in format YYYY.MM.DD", Colors.red)) def __repr__(self) -> str: return f"\nPhone - {[str(i) for i in self.phones]},\nBirthday - {self.birthday},\nEmail - {self.email},\nAdress - {self.adress},\nTags - {self.tags}" separator = "___________________________________________________________" class AdressBook(UserDict): #адресна книга def add_record(self, record: Record): self.data[record.name.value] = record def generator(self): # генератор з yield for name, info in self.data.items(): print(color(separator,Colors.purple)) yield color(f"Name - {name.title()} : ",Colors.blue)+ color(f"{info}",Colors.yellow) print(color(separator,Colors.purple)) def iterator(self, value): # функция яка показуе килькисть контактив яку введе користувач value = value gen = self.generator() try: if value > len(self.data): raise Error except: print(color("You set big value, list has less users. Try again.\n", Colors.red)) while value > 0: try: print(next(gen)) value -= 1 except StopIteration: print(color(f"Try enter value less on {value}. Dict has {len(self.data)} contacts",Colors.purple)) return "" return color("Thats all!",Colors.orange) # def save(self): #функция збереження даних адресбук у csv файл # if len(self.data) == 0: # print(color("Your AddressBook is empty",Colors.red)) # with open("savebook.csv", "w", newline="") as file: # fields = ["Name", "Info"] # writer = csv.DictWriter(file, fields) # writer.writeheader() # for name, info in self.data.items(): # name :str # writer.writerow({"Name": name.title(), "Info": str(info)}) # return color("Succesfull save your AddressBook",Colors.green) # def load(self): # функция яка завантажуе контакти з збереженого csv файлу, якшо такого нема буде про це повидомлено # try: # with open("savebook.csv", "r", newline="") as file: # reader = csv.DictReader(file) # for row in reader: # saved = {row["Name"]: row["Info"]} # self.data.update(saved) # print(color("\nSuccesfull load saved AddressBook", Colors.purple)) # except: # print(color("\nDont exist file with saving contacts",Colors.blue)) # return "" def find_tags(self,tags): res = "" finder = False tags = tags[0] for user, info in self.data.items(): for tag in info.get_tags(): if str(tag) == str(tags): finder = True print(color(f"\nFind tags\nUser - {user.title()}{info}",Colors.purple)) return color("Found users",Colors.green) if finder == True else color("Dont find any user",Colors.green) def find_name(self, name: str): #функция для пошуку по имя або телефону res= "" fail = color("Finder not find any matches in AddressBook",Colors.red) for user, info in self.data.items(): if str(user) == name: res += color(f"Find similar contacts:\n\nUser - {user.title()}{info}\n",Colors.purple) return res if len(res)>0 else fail def find_phone(self,phone): finder = False phone = Phone(phone) for user, info in self.data.items(): for ph in info.get_phone(): if str(ph) == str(phone): finder = True print(color(f"\nFind phone\nUser - {user.title()}{info}",Colors.purple)) return color("Found users",Colors.green) if finder == True else color("Dont find any user",Colors.green) def save_contacts_to_file(self): with open('contacts.pickle', 'wb') as file: pickle.dump(self.data, file) def load_contacts_from_file(self): try: with open('contacts.pickle', 'rb') as file: self.data = pickle.load(file) except FileNotFoundError: pass ad = AdressBook() # ПЕРЕВИРКА СКРИПТА # name = Name("Dima") # phone = Phone("0993796625") # birth = Birthday("2001.08.12") # rec = Record(name, phone, birth) # ad = AdressBook() # ad.add_record(rec) # #============================================================================= # name1 = Name("Benderovec") # phone1 = Phone("0993790447") # birth1 = Birthday("2001.08.12") # rec1 = Record(name1, phone1, birth1) # ad.add_record(rec1) # #============================================================================= # # print(rec.days_to_birthday()) # #============================================================================= # name2 = Name("Diana") # phone2 = Phone("099797484") # birth2 = Birthday("2003.04.01") # rec2 = Record(name2, phone2, birth2) # #============================================================================ # ad.add_record(rec2) # print(ad.data) # print(ad.iterator(6)) # print(ad.find("test")) # НА ВСЕ ЩО НИЖЧЕ НЕ ЗВЕРТАТИ УВАГИ!!!!!!!!!!!!!!!!! # result = button_dialog( # title='Button dialog example', # text='Do you want to confirm?', # buttons=[ # ('Yes', True), # ('No', False), # ('Maybe...', None) # ], # ).run() # print(result) # html_completer = WordCompleter(['add user', 'add phone', 'add email', 'add adress']) # text = prompt('Enter command: ', completer=html_completer) # print('You said: %s' % text) # my_completer = WordCompleter(['add phone', 'add user', 'add email', 'add adress']) # text = prompt('Enter HTML: ', completer=my_completer, complete_while_typing=True,) # print(text.split()) # for i in my_completer: # print(i) """ from prompt_toolkit import prompt from prompt_toolkit.completion import WordCompleter html_completer = WordCompleter(['<html>', '<body>', '<head>', '<title>']) text = prompt('Enter HTML: ', completer=html_completer) print('You said: %s' % text) from prompt_toolkit.shortcuts import yes_no_dialog result = yes_no_dialog( title='Yes/No dialog example', text='Do you want to confirm?').run() """
11Team-AssistantBot
/11Team_AssistantBot-1.11.tar.gz/11Team_AssistantBot-1.11/11Team_AssistantBot/addressbook.py
addressbook.py
greeting = """ @@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@ #@@@@ @@@@@@@@@@@@@@@@@@@@ @@@@ @@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ #@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& &@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@/ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ ,@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@( @@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@ .@@@@@ @@@@@@@@@@@@@@@@@@@@ @@@% @@@@@@@@@@@@@@@@@@@@% @@@@& @@@@@@@@@@@@@@@@@@@@@ __ __ _ __ / / /\ \ \___| | ___ ___ _ __ ___ ___ _ \ \ \ \/ \/ / _ \ |/ __/ _ \| '_ ` _ \ / _ \ (_) | | \ /\ / __/ | (_| (_) | | | | | | __/ _ | | \/ \/ \___|_|\___\___/|_| |_| |_|\___| (_) | | /_/ """
11Team-AssistantBot
/11Team_AssistantBot-1.11.tar.gz/11Team_AssistantBot-1.11/11Team_AssistantBot/greeting.py
greeting.py
from pathlib import Path import shutil import os from colorit import * import sys name_extensions = { "images": (".jpeg", ".png", ".jpg", ".svg"), "video": (".avi", ".mp4", ".mov", ".mkv"), "documents": (".doc", ".docx", ".pdf", ".xlsx", ".pptx", ".txt"), "music": (".mp3", ".ogg", ".wav", ".amr"), "archives": (".zip", ".gz", ".tar"), "unknown": "" } RUSS_SYMB = "абвгдеёжзийклмнопрстуфхцчшщъыьэюяєіїґ?<>,!@#[]#$%^&*()-=; " ENG_SYMB = ( "a", "b", "v", "g", "d", "e", "e", "j", "z", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "f", "h", "ts", "ch", "sh", "sch", "", "y", "", "e", "yu", "ya", "je", "i", "ji", "g", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", ) TRANS = {} # current_path = Path("C:\\test_sorted") поганий кейс( for c, t in zip(RUSS_SYMB, ENG_SYMB): TRANS[ord(c)] = t TRANS[ord(c.upper())] = t.upper() def normalize(name: str) -> str: return name.translate(TRANS) def unpack_arch( archive_path, current_path ): shutil.unpack_archive(archive_path, rf"{current_path}\\archives") def create_folder(folder: Path): # створення папок для сортування for name in name_extensions.keys(): if not folder.joinpath(name).exists(): folder.joinpath(name).mkdir() def bypass_files(path_folder): create_folder(path_folder) for item in path_folder.glob("**/*"): if item.is_file(): sort_file(item, path_folder) if item.is_dir() and item.name not in list(name_extensions): if os.path.getsize(item) == 0: shutil.rmtree(item) if item.name in name_extensions: continue def sort_file( file: Path, path_folder: Path ): # сорт if file.suffix in name_extensions["images"]: file.replace(path_folder.joinpath("images", f"{normalize(file.stem)}{file.suffix}")) elif file.suffix in name_extensions["documents"]: file.replace(path_folder.joinpath("documents", f"{normalize(file.stem)}{file.suffix}")) elif file.suffix in name_extensions["music"]: file.replace(path_folder.joinpath("music", f"{normalize(file.stem)}{file.suffix}")) elif file.suffix in name_extensions["video"]: file.replace(path_folder.joinpath("video", f"{normalize(file.stem)}{file.suffix}")) elif file.suffix in name_extensions["archives"]: shutil.unpack_archive(file, path_folder) os.remove(file) else: file.replace(path_folder.joinpath("unknown",f"{normalize(file.stem)}{file.suffix}")) def sorting(pathh): flag = False try: current_path = Path(pathh) except IndexError: print("Type path to folder") # return None if not current_path.exists(): print("Folder is not exist. Try again.") return color(f"Folder is not exist. Try again.",Colors.red) result_list = list(current_path.iterdir()) bypass_files(current_path) flag = True for i in result_list: print(i, "- sorted") return color("Done",Colors.blue) if flag == True else color("Something went wrong",Colors.red) # .\HW6m.py C:\test_sorted
11Team-AssistantBot
/11Team_AssistantBot-1.11.tar.gz/11Team_AssistantBot-1.11/11Team_AssistantBot/sort.py
sort.py
from colorit import * from prettytable import PrettyTable def pers_assistant_help(): pah_com_list = {"tel_book":"TELEPHONE BOOK", "note_book": "NOTE BOOK", "sorted": "SORTED"} all_commands = { "1":[ ["show all", "This command shows all contacts in your address book", "show all"], ["add user", "This command adds a new user in your address book", "add user <FirstName_LastName> <phone>"], ["add tags","This command add a new tags for an existing contact"," add tags <tag>"], ["add phone", "This command adds a new phone number for an existing contact", "add phone <user> <phone>"], ["add email", "This command adds an email for an existing contact", "add email <user> <email>"], ["add birthday", "This command adds a birthday for an existing contact", "add birthday <user> <date>"], ["add adress", "This command adds an address for an existing contact", "add adress <user> <address>"], ["change phone","This command changes an phone for an existing contact","change phone <OldPhone> <NewPhone>"], ["change adress", "This command changes an address for an existing contact", "change adress <user> <new_address>"], ["change email", "This command changes an email address for an existing contact", "change email <user> <new_email>"], ["change birthday", "This command changes a birthday for an existing contact", "change birthday <user> <newBirthday>"], ["find name", "This command finds all existing contacts whose names match the search query", "find name <name>"], ["find phone", "This command finds existing contacts whose phone match the search query", "find phone <phone>"], ["find tags", "This command finds existing contacts whose tags match the search query", "find tags <tag>"] ["remove tags","This command removes a tags for an existing contact", "remove tags <user> <tag>"], ["remove phone", "This command removes a phone number for an existing contact", "remove phone <user> <phone>"], ["remove birthday", "This command removes a birthday for an existing contact", "remove birthday <user>"], ["remove email", "This command removes an email address for an existing contact", "remove email <user> <email>"], ["remove user", "This command removes an existing contact and all the information about it", "remove user <user>"], ["remove adress", "This command removes an existing contact and all the information about it", "remove adress <user> <address>"], ["when birthday", "This command shows a birthday of an existing contact", "when birthday <user>"], ["birthday within","This command shows all users who has birthday in selected period"," birthday within <days - (must be integer)>"] ], "2":[ ["add or add_note", "This command adds a new note in your Notepad", "add(add_note) <title> <body> <tags>"], ["edit or edit_note", "This command changes an existing note in your Notepad", "edit(edit_note) <title>"], ["delete", "This command deletes an existing note in your Notepad", "delete <title>"], ["find_tags", "This command finds and sorts existing notes whose tags match the search query", "find_tags <tag>"], ["find", "This command finds existing notes whose note(body) matches the search query", "find <frase>"], ["show or show_note", "This command shows an existing note in your Notepad", "show(show_note) <title>"], ["showall", "This command shows all existing notes in your Notepad", "showall"], ], "3": [[ "sort directory", "This command sorts all files in the given directory", "sort directory <path to folder>" ]]} print(f'''I'm your personal assistant. I have {pah_com_list['tel_book']}, {pah_com_list['note_book']} and I can {pah_com_list['sorted']} your files in your folder.\n''') while True: print(f'''If you want to know how to work with: "{pah_com_list['tel_book']}" press '1' "{pah_com_list['note_book']}" press '2' function "{pah_com_list['sorted']}" press '3' SEE all comands press '4' EXIT from HELP press any other key''') user_input = input() if user_input not in ["1", "2", "3", "4"]: break elif user_input in ["1", "2", "3"]: my_table = PrettyTable(["Command Name", "Discription", "Example"]) [my_table.add_row(i) for i in all_commands[user_input]] my_table.add_row(["quit, close, goodbye, exit", "This command finish work with your assistant", "quit(close, goodbye, exit)"]) print(my_table) else: my_table = PrettyTable(["Command Name", "Discription", "Example"]) all_commands_list = sorted([i for j in list(all_commands.values()) for i in j]) [my_table.add_row(i) for i in all_commands_list] my_table.add_row(["quit, close, goodbye, exit", "This command finish work with your assistant", "quit(close, goodbye, exit)"]) print(my_table) return color("Done",Colors.blue)
11Team-AssistantBot
/11Team_AssistantBot-1.11.tar.gz/11Team_AssistantBot-1.11/11Team_AssistantBot/help.py
help.py
import sys, platform, os, re if not sys.version_info >= (3, 6): sys.exit('Python 3.6 or higher is required!') try: import eldf except ImportError: sys.exit("Module eldf is not installed!\nPlease install it using this command:\n" + (sys.platform == 'win32')*(os.path.dirname(sys.executable) + '\\Scripts\\') + 'pip3 install eldf') if len(sys.argv) < 2 or '-h' in sys.argv or '--help' in sys.argv: print('''Usage: 11l py-or-11l-source-file [options] Options: --int64 use 64-bit integers -d disable optimizations [makes compilation faster] -t transpile only -e expand includes -v print version''') sys.exit(1) if '-v' in sys.argv: print(open(os.path.join(os.path.dirname(sys.argv[0]), 'version.txt')).read()) sys.exit(0) enopt = not '-d' in sys.argv if not (sys.argv[1].endswith('.py') or sys.argv[1].endswith('.11l')): sys.exit("source-file should have extension '.py' or '.11l'") def show_error(fname, fcontents, e, syntax_error): next_line_pos = fcontents.find("\n", e.pos) if next_line_pos == -1: next_line_pos = len(fcontents) prev_line_pos = fcontents.rfind("\n", 0, e.pos) + 1 sys.exit(('Syntax' if syntax_error else 'Lexical') + ' error: ' + e.message + "\n in file '" + fname + "', line " + str(fcontents[:e.pos].count("\n") + 1) + "\n" + fcontents[prev_line_pos:next_line_pos] + "\n" + re.sub(r'[^\t]', ' ', fcontents[prev_line_pos:e.pos]) + '^'*max(1, e.end - e.pos)) import _11l_to_cpp.tokenizer, _11l_to_cpp.parse if sys.argv[1].endswith('.py'): import python_to_11l.tokenizer, python_to_11l.parse py_source = open(sys.argv[1], encoding = 'utf-8-sig').read() try: _11l_code = python_to_11l.parse.parse_and_to_str(python_to_11l.tokenizer.tokenize(py_source), py_source, sys.argv[1]) except (python_to_11l.parse.Error, python_to_11l.tokenizer.Error) as e: show_error(sys.argv[1], py_source, e, type(e) == python_to_11l.parse.Error) _11l_fname = os.path.splitext(sys.argv[1])[0] + '.11l' open(_11l_fname, 'w', encoding = 'utf-8', newline = "\n").write(_11l_code) else: _11l_fname = sys.argv[1] _11l_code = open(sys.argv[1], encoding = 'utf-8-sig').read() cpp_code = '' if '--int64' in sys.argv: cpp_code += "#define INT_IS_INT64\n" _11l_to_cpp.parse.int_is_int64 = True cpp_code += '#include "' + os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]), '_11l_to_cpp', '11l.hpp')) + "\"\n\n" # replace("\\", "\\\\") is not necessary here (because MSVC for some reason treat backslashes in include path differently than in regular string literals) try: cpp_code += _11l_to_cpp.parse.parse_and_to_str(_11l_to_cpp.tokenizer.tokenize(_11l_code), _11l_code, _11l_fname, append_main = True) except (_11l_to_cpp.parse.Error, _11l_to_cpp.tokenizer.Error) as e: # open(_11l_fname, 'w', encoding = 'utf-8', newline = "\n").write(_11l_code) show_error(_11l_fname, _11l_code, e, type(e) == _11l_to_cpp.parse.Error) if '-e' in sys.argv: included = set() def process_include_directives(src_code, dir = ''): exp_code = '' writepos = 0 while True: i = src_code.find('#include "', writepos) if i == -1: break exp_code += src_code[writepos:i] if src_code[i-2:i] == '//': # skip commented includes exp_code += '#' writepos = i + 1 continue fname_start = i + len('#include "') fname_end = src_code.find('"', fname_start) assert(src_code[fname_end + 1] == "\n") # [-TODO: Add support of comments after #include directives-] fname = src_code[fname_start:fname_end] if fname[1:3] == ':\\' or fname.startswith('/'): # this is an absolute pathname pass else: # this is a relative pathname assert(dir != '') fname = os.path.join(dir, fname) if fname not in included: included.add(fname) exp_code += process_include_directives(open(fname, encoding = 'utf-8-sig').read(), os.path.dirname(fname)) writepos = fname_end + 1 exp_code += src_code[writepos:] return exp_code cpp_code = process_include_directives(cpp_code) cpp_fname = os.path.splitext(sys.argv[1])[0] + '.cpp' open(cpp_fname, 'w', encoding = 'utf-8-sig', newline = "\n").write(cpp_code) # utf-8-sig is for MSVC if '-t' in sys.argv or \ '-e' in sys.argv: sys.exit() if sys.platform == 'win32': was_break = False for version in ['2019', '2017']: for edition in ['BuildTools', 'Community', 'Enterprise', 'Professional']: vcvarsall = 'C:\\Program Files' + ' (x86)'*platform.machine().endswith('64') + '\\Microsoft Visual Studio\\' + version + '\\' + edition + R'\VC\Auxiliary\Build\vcvarsall.bat' if os.path.isfile(vcvarsall): was_break = True #print('Using ' + version + '\\' + edition) break # ^L.break if was_break: break if not was_break: sys.exit('''Unable to find vcvarsall.bat! If you do not have Visual Studio 2017 or 2019 installed please install it or Build Tools for Visual Studio from here[https://visualstudio.microsoft.com/downloads/].''') os.system('"' + vcvarsall + '" ' + ('x64' if platform.machine().endswith('64') else 'x86') + ' > nul && cl.exe /std:c++17 /MT /EHsc /nologo /W3 ' + '/O2 '*enopt + cpp_fname) else: if os.system('g++-8 --version > /dev/null') != 0: sys.exit('GCC 8 is not found!') os.system('g++-8 -std=c++17 -Wfatal-errors -DNDEBUG ' + '-O3 '*enopt + '-march=native -o "' + os.path.splitext(sys.argv[1])[0] + '" "' + cpp_fname + '" -lstdc++fs')
11l
/11l-2021.3-py3-none-any.whl/11l.py
11l.py
try: from python_to_11l.tokenizer import Token import python_to_11l.tokenizer as tokenizer except ImportError: from tokenizer import Token import tokenizer from typing import List, Tuple, Dict, Callable from enum import IntEnum import os, re, eldf class Scope: parent : 'Scope' class Var: type : str node : 'ASTNode' def __init__(self, type, node): assert(type is not None) self.type = type self.node = node def serialize_to_dict(self): node = None if type(self.node) == ASTFunctionDefinition: node = self.node.serialize_to_dict() return {'type': self.type, 'node': node} def deserialize_from_dict(self, d): if d['node'] is not None: self.node = ASTFunctionDefinition() self.node.deserialize_from_dict(d['node']) vars : Dict[str, Var] nonlocals_copy : set nonlocals : set globals : set is_function : bool is_lambda_or_for = False def __init__(self, func_args): self.parent = None if func_args is not None: self.is_function = True self.vars = dict(map(lambda x: (x[0], Scope.Var(x[1], None)), func_args)) else: self.is_function = False self.vars = {} self.nonlocals_copy = set() self.nonlocals = set() self.globals = set() def serialize_to_dict(self, imported_modules): ids_dict = {'Imported modules': imported_modules} for name, id in self.vars.items(): if name not in python_types_to_11l and not id.type.startswith('('): # ) ids_dict[name] = id.serialize_to_dict() return ids_dict def deserialize_from_dict(self, d): for name, id_dict in d.items(): if name != 'Imported modules': id = Scope.Var(id_dict['type'], None) id.deserialize_from_dict(id_dict) self.vars[name] = id def add_var(self, name, error_if_already_defined = False, type = '', err_token = None, node = None): s = self while True: if name in s.nonlocals_copy or name in s.nonlocals or name in s.globals: return False if s.is_function: break s = s.parent if s is None: break if not (name in self.vars): s = self while True: if name in s.vars: return False if s.is_function: break s = s.parent if s is None: break self.vars[name] = Scope.Var(type, node) return True elif error_if_already_defined: raise Error('redefinition of already defined variable is not allowed', err_token if err_token is not None else token) return False def find_and_get_prefix(self, name, token): if name == 'self': return '' if name in ('isinstance', 'len', 'super', 'print', 'input', 'ord', 'chr', 'range', 'zip', 'all', 'any', 'abs', 'pow', 'sum', 'product', 'open', 'min', 'max', 'divmod', 'hex', 'bin', 'map', 'list', 'tuple', 'dict', 'set', 'sorted', 'reversed', 'filter', 'reduce', 'round', 'enumerate', 'hash', 'copy', 'deepcopy', 'NotImplementedError', 'ValueError', 'IndexError'): return '' s = self while True: if name in s.nonlocals_copy: return '@=' if name in s.nonlocals: return '@' if name in s.globals: return ':' if s.is_function and not s.is_lambda_or_for: break s = s.parent if s is None: break capture_level = 0 s = self while True: if name in s.vars: if s.parent is None: # variable is declared in the global scope if s.vars[name].type == '(Module)': return ':::' return ':' if capture_level > 0 else '' else: return capture_level*'@' if s.is_function: capture_level += 1 s = s.parent if s is None: if name in ('id',): return '' raise Error('undefined identifier', token) def find(self, name): s = self while True: id = s.vars.get(name) if id is not None: return id s = s.parent if s is None: return None def var_type(self, name): id = self.find(name) return id.type if id is not None else None scope : Scope class Module: scope : Scope def __init__(self, scope): self.scope = scope modules : Dict[str, Module] = {} class SymbolBase: id : str lbp : int nud_bp : int led_bp : int nud : Callable[['SymbolNode'], 'SymbolNode'] led : Callable[['SymbolNode', 'SymbolNode'], 'SymbolNode'] def set_nud_bp(self, nud_bp, nud): self.nud_bp = nud_bp self.nud = nud def set_led_bp(self, led_bp, led): self.led_bp = led_bp self.led = led def __init__(self): def nud(s): raise Error('unknown unary operator', s.token) self.nud = nud def led(s, l): raise Error('unknown binary operator', s.token) self.led = led class SymbolNode: token : Token symbol : SymbolBase = None children : List['SymbolNode']# = [] parent : 'SymbolNode' = None ast_parent : 'ASTNode' function_call = False iterable_unpacking = False tuple = False is_list = False is_set = False def is_dict(self): return self.symbol.id == '{' and not self.is_set # } slicing = False is_not = False skip_find_and_get_prefix = False scope_prefix : str = '' scope : Scope token_str_override : str def __init__(self, token, token_str_override = None): self.token = token self.children = [] self.scope = scope self.token_str_override = token_str_override def var_type(self): if self.is_parentheses(): return self.children[0].var_type() if self.symbol.id == '*' and self.children[0].var_type() == 'List': return 'List' if self.symbol.id == '+' and (self.children[0].var_type() == 'List' or self.children[1].var_type() == 'List'): return 'List' if self.is_list: return 'List' #if self.symbol.id == '[' and not self.is_list and self.children[0].var_type() == 'str': # ] if self.symbol.id == '[' and self.children[0].var_type() == 'str': # ] return 'str' if self.symbol.id == '*' and self.children[1].var_type() == 'str': return 'str' if self.token.category == Token.Category.STRING_LITERAL: return 'str' if self.symbol.id == '.': if self.children[0].token_str() == 'os' and self.children[1].token_str() == 'pathsep': return 'str' return None if self.symbol.id == 'if': t0 = self.children[0].var_type() if t0 is not None: return t0 return self.children[2].var_type() if self.function_call and self.children[0].token_str() == 'str': return 'str' return self.scope.var_type(self.token.value(source)) def append_child(self, child): child.parent = self self.children.append(child) def leftmost(self): if self.token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL, Token.Category.NAME, Token.Category.CONSTANT) or self.symbol.id == 'lambda': return self.token.start if self.symbol.id == '(': # ) if self.function_call: return self.children[0].token.start else: return self.token.start elif self.symbol.id == '[': # ] if self.is_list: return self.token.start else: return self.children[0].token.start if len(self.children) in (2, 3): return self.children[0].leftmost() return self.token.start def rightmost(self): if self.token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL, Token.Category.NAME, Token.Category.CONSTANT): return self.token.end if self.symbol.id in '([': # ]) if len(self.children) == 0: return self.token.end + 1 return (self.children[-1] or self.children[-2]).rightmost() + 1 return self.children[-1].rightmost() def left_to_right_token(self): return Token(self.leftmost(), self.rightmost(), Token.Category.NAME) def token_str(self): return self.token.value(source) if not self.token_str_override else self.token_str_override def is_parentheses(self): return self.symbol.id == '(' and not self.tuple and not self.function_call # ) def to_str(self): # r = '' # prev_token_end = self.children[0].token.start # for c in self.children: # r += source[prev_token_end:c.token.start] # if c.token.value(source) != 'self': # hack for a while # r += c.token.value(source) # prev_token_end = c.token.end # return r if self.token.category == Token.Category.NAME: if self.scope_prefix == ':' and ((self.parent and self.parent.function_call and self is self.parent.children[0]) or (self.token_str()[0].isupper() and self.token_str() != self.token_str().upper()) or self.token_str() in python_types_to_11l): # global functions and types do not require prefix `:` because global functions and types are ok, but global variables are not so good and they should be marked with `:` return self.token_str() if self.token_str() == 'self' and (self.parent is None or (self.parent.symbol.id != '.' and self.parent.symbol.id != 'lambda')): parent = self while parent.parent is not None: parent = parent.parent ast_parent = parent.ast_parent while ast_parent is not None: if isinstance(ast_parent, ASTFunctionDefinition): if len(ast_parent.function_arguments) and ast_parent.function_arguments[0][0] == 'self' and isinstance(ast_parent.parent, ASTClassDefinition): return '(.)' break ast_parent = ast_parent.parent return self.scope_prefix + self.token_str() if self.token.category == Token.Category.NUMERIC_LITERAL: n = self.token.value(source) i = 0 # if n[0] in '-+': # sign = n[0] # i = 1 # else: # sign = '' sign = '' is_hex = n[i:i+1] == '0' and n[i+1:i+2] in ('x', 'X') is_oct = n[i:i+1] == '0' and n[i+1:i+2] in ('o', 'O') is_bin = n[i:i+1] == '0' and n[i+1:i+2] in ('b', 'B') if is_hex or is_oct or is_bin: i += 2 if is_hex: n = n[i:].replace('_', '') if len(n) <= 2: # ultrashort hexadecimal number n = '0'*(2-len(n)) + n return n[:1] + "'" + n[1:] elif len(n) <= 4: # short hexadecimal number n = '0'*(4-len(n)) + n return n[:2] + "'" + n[2:] else: number_with_separators = '' j = len(n) while j > 4: number_with_separators = "'" + n[j-4:j] + number_with_separators j -= 4 return sign + '0'*(4-j) + n[0:j] + number_with_separators if n[-1] in 'jJ': n = n[:-1] + 'i' return sign + n[i:].replace('_', "'") + ('o' if is_oct else 'b' if is_bin else '') if self.token.category == Token.Category.STRING_LITERAL: def balance_pq_string(s): min_nesting_level = 0 nesting_level = 0 for ch in s: if ch == "‘": nesting_level += 1 elif ch == "’": nesting_level -= 1 min_nesting_level = min(min_nesting_level, nesting_level) nesting_level -= min_nesting_level return "'"*-min_nesting_level + "‘"*-min_nesting_level + "‘" + s + "’" + "’"*nesting_level + "'"*nesting_level s = self.token.value(source) if s[0] in 'rR': l = 3 if s[1:4] in ('"""', "'''") else 1 return balance_pq_string(s[1+l:-l]) elif s[0] in 'bB': return s[1:] + '.code' else: l = 3 if s[0:3] in ('"""', "'''") else 1 if '\\' in s or ('‘' in s and not '’' in s) or (not '‘' in s and '’' in s): if s == R'"\\"' or s == R"'\\'": return R'‘\’' s = s.replace("\n", "\\n\\\n").replace("\\\\n\\\n", "\\\n") if s[0] == '"': return s if l == 1 else '"' + s[3:-3].replace('"', R'\"') + '"' else: return '"' + s[l:-l].replace('"', R'\"').replace(R"\'", "'") + '"' else: return balance_pq_string(s[l:-l]) if self.token.category == Token.Category.CONSTANT: return {'None': 'N', 'False': '0B', 'True': '1B'}[self.token.value(source)] def range_need_space(child1, child2): return not((child1 is None or child1.token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL)) and (child2 is None or child2.token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL))) if self.symbol.id == '(': # ) if self.function_call: if self.children[0].symbol.id == '.': c01 = self.children[0].children[1].token_str() if self.children[0].children[0].symbol.id == '{' and c01 == 'get': # } # replace `{'and':'&', 'or':'|', 'in':'C'}.get(self.symbol.id, 'symbol-' + self.symbol.id)` with `(S .symbol.id {‘and’ {‘&’}; ‘or’ {‘|’}; ‘in’ {‘C’} E ‘symbol-’(.symbol.id)})` parenthesis = ('(', ')') if self.parent is not None else ('', '') return parenthesis[0] + self.children[0].to_str() + parenthesis[1] if c01 == 'join' and not (self.children[0].children[0].symbol.id == '.' and self.children[0].children[0].children[0].token_str() == 'os'): # replace `', '.join(arr)` with `arr.join(‘, ’)` assert(len(self.children) == 3) return (self.children[1].to_str() if self.children[1].token.category == Token.Category.NAME or self.children[1].symbol.id == 'for' or self.children[1].function_call else '(' + self.children[1].to_str() + ')') + '.join(' + (self.children[0].children[0].children[0].to_str() if self.children[0].children[0].is_parentheses() else self.children[0].children[0].to_str()) + ')' if c01 == 'split' and len(self.children) == 5 and not (self.children[0].children[0].token_str() == 're'): # split() second argument [limit] in 11l is similar to JavaScript, Ruby and PHP, but not Python return self.children[0].to_str() + '(' + self.children[1].to_str() + ', ' + self.children[3].to_str() + ' + 1)' if c01 == 'split' and len(self.children) == 1: return self.children[0].to_str() + '_py()' # + '((‘ ’, "\\t", "\\r", "\\n"), group_delimiters\' 1B)' if c01 == 'is_integer' and len(self.children) == 1: # `x.is_integer()` -> `fract(x) == 0` return 'fract(' + self.children[0].children[0].to_str() + ') == 0' if c01 == 'bit_length' and len(self.children) == 1: # `x.bit_length()` -> `bit_length(x)` return 'bit_length(' + self.children[0].children[0].to_str() + ')' repl = {'startswith':'starts_with', 'endswith':'ends_with', 'find':'findi', 'rfind':'rfindi', 'lower':'lowercase', 'islower':'is_lowercase', 'upper':'uppercase', 'isupper':'is_uppercase', 'isdigit':'is_digit', 'isalpha':'is_alpha', 'timestamp':'unix_time', 'lstrip':'ltrim', 'rstrip':'rtrim', 'strip':'trim', 'appendleft':'append_left', 'extendleft':'extend_left', 'popleft':'pop_left', 'issubset':'is_subset'}.get(c01, '') if repl != '': # replace `startswith` with `starts_with`, `endswith` with `ends_with`, etc. c00 = self.children[0].children[0].to_str() if repl == 'uppercase' and c00.endswith('[2..]') and self.children[0].children[0].children[0].symbol.id == '(' and self.children[0].children[0].children[0].children[0].token_str() == 'hex': # ) # `hex(x)[2:].upper()` -> `hex(x)` return 'hex(' + self.children[0].children[0].children[0].children[1].to_str() + ')' #assert(len(self.children) == 3) res = c00 + '.' + repl + '(' def is_char(child): ts = child.token_str() return child.token.category == Token.Category.STRING_LITERAL and (len(ts) == 3 or (ts[:2] == '"\\' and len(ts) == 4)) if repl.endswith('trim') and len(self.children) == 1: # `strip()` -> `trim((‘ ’, "\t", "\r", "\n"))` res += '(‘ ’, "\\t", "\\r", "\\n")' elif repl.endswith('trim') and not is_char(self.children[1]): # `"...".strip("\t ")` -> `"...".trim(Array[Char]("\t "))` assert(len(self.children) == 3) res += 'Array[Char](' + self.children[1].to_str() + ')' else: for i in range(1, len(self.children), 2): assert(self.children[i+1] is None) res += self.children[i].to_str() if i < len(self.children)-2: res += ', ' return res + ')' if self.children[0].children[0].symbol.id == '(' and \ self.children[0].children[0].children[0].token_str() == 'open' and \ len(self.children[0].children[0].children) == 5 and \ self.children[0].children[0].children[4] is None and \ self.children[0].children[0].children[3].token_str() in ("'rb'", '"rb"') and \ self.children[0].children[1].token_str() == 'read': # ) # transform `open(fname, 'rb').read()` into `File(fname).read_bytes()` assert(self.children[0].children[0].children[2] is None) return 'File(' + self.children[0].children[0].children[1].to_str() + ').read_bytes()' if c01 == 'total_seconds': # `delta.total_seconds()` -> `delta.seconds` assert(len(self.children) == 1) return self.children[0].children[0].to_str() + '.seconds' if c01 == 'conjugate' and len(self.children) == 1: # `c.conjugate()` -> `conjugate(c)` return 'conjugate(' + self.children[0].children[0].to_str() + ')' if c01 == 'readlines': # `f.readlines()` -> `f.read_lines(1B)` assert(len(self.children) == 1) return self.children[0].children[0].to_str() + ".read_lines(1B)" if c01 == 'readline': # `f.readline()` -> `f.read_line(1B)` assert(len(self.children) == 1) return self.children[0].children[0].to_str() + ".read_line(1B)" if self.children[0].children[0].token_str() == 're' and self.children[0].children[1].token_str() != 'compile': # `re.search('pattern', 'string')` -> `re:‘pattern’.search(‘string’)` c1_in_braces_if_needed = self.children[1].to_str() if self.children[1].token.category != Token.Category.STRING_LITERAL: c1_in_braces_if_needed = '(' + c1_in_braces_if_needed + ')' if self.children[0].children[1].token_str() == 'split': # `re.split('pattern', 'string')` -> `‘string’.split(re:‘pattern’)` return self.children[3].to_str() + '.split(re:' + c1_in_braces_if_needed + ')' if self.children[0].children[1].token_str() == 'sub': # `re.sub('pattern', 'repl', 'string')` -> `‘string’.replace(re:‘pattern’, ‘repl’)` return self.children[5].to_str() + '.replace(re:' + c1_in_braces_if_needed + ', ' + re.sub(R'\\(\d{1,2})', R'$\1', self.children[3].to_str()) + ')' if self.children[0].children[1].token_str() == 'match': assert c1_in_braces_if_needed[0] != '(', 'only string literal patterns supported in `match()` for a while' # ) if c1_in_braces_if_needed[-2] == '$': # `re.match('pattern$', 'string')` -> `re:‘pattern’.match(‘string’)` return 're:' + c1_in_braces_if_needed[:-2] + c1_in_braces_if_needed[-1] + '.match(' + self.children[3].to_str() + ')' else: # `re.match('pattern', 'string')` -> `re:‘^pattern’.search(‘string’)` return 're:' + c1_in_braces_if_needed[0] + '^' + c1_in_braces_if_needed[1:] + '.search(' + self.children[3].to_str() + ')' c0c1 = self.children[0].children[1].token_str() return 're:' + c1_in_braces_if_needed + '.' + {'fullmatch': 'match', 'findall': 'find_strings', 'finditer': 'find_matches'}.get(c0c1, c0c1) + '(' + self.children[3].to_str() + ')' if self.children[0].children[0].token_str() == 'collections' and self.children[0].children[1].token_str() == 'defaultdict': # `collections.defaultdict(ValueType) # KeyType` -> `DefaultDict[KeyType, ValueType]()` assert(len(self.children) == 3) if source[self.children[1].token.end + 2 : self.children[1].token.end + 3] != '#': raise Error('to use `defaultdict` the type of dict keys must be specified in the comment', self.children[0].children[1].token) sl = slice(self.children[1].token.end + 3, source.find("\n", self.children[1].token.end + 3)) return 'DefaultDict[' + trans_type(source[sl].lstrip(' '), self.scope, Token(sl.start, sl.stop, Token.Category.NAME)) + ', ' \ + trans_type(self.children[1].token_str(), self.scope, self.children[1].token) + ']()' if self.children[0].children[0].token_str() == 'collections' and self.children[0].children[1].token_str() == 'deque': # `collections.deque() # ValueType` -> `Deque[ValueType]()` if len(self.children) == 3: return 'Deque(' + self.children[1].to_str() + ')' assert(len(self.children) == 1) if source[self.token.end + 2 : self.token.end + 3] != '#': raise Error('to use `deque` the type of deque values must be specified in the comment', self.children[0].children[1].token) sl = slice(self.token.end + 3, source.find("\n", self.token.end + 3)) return 'Deque[' + trans_type(source[sl].lstrip(' '), self.scope, Token(sl.start, sl.stop, Token.Category.NAME)) + ']()' if self.children[0].children[0].token_str() == 'int' and self.children[0].children[1].token_str() == 'from_bytes': assert(len(self.children) == 5) if not (self.children[3].token.category == Token.Category.STRING_LITERAL and self.children[3].token_str()[1:-1] == 'little'): raise Error("only 'little' byteorder supported so far", self.children[3].token) return "Int(bytes' " + self.children[1].to_str() + ')' if self.children[0].children[0].token_str() == 'random' and self.children[0].children[1].token_str() == 'shuffle': return 'random:shuffle(&' + self.children[1].to_str() + ')' if self.children[0].children[0].token_str() == 'random' and self.children[0].children[1].token_str() == 'randint': return 'random:(' + self.children[1].to_str() + ' .. ' + self.children[3].to_str() + ')' if self.children[0].children[0].token_str() == 'random' and self.children[0].children[1].token_str() == 'randrange': return 'random:(' + self.children[1].to_str() + (' .< ' + self.children[3].to_str() if len(self.children) == 5 else '') + ')' if self.children[0].children[0].token_str() == 'heapq': res = 'minheap:' + {'heappush':'push', 'heappop':'pop', 'heapify':'heapify'}[self.children[0].children[1].token_str()] + '(&' for i in range(1, len(self.children), 2): assert(self.children[i+1] is None) res += self.children[i].to_str() if i < len(self.children)-2: res += ', ' return res + ')' if self.children[0].children[0].token_str() == 'itertools' and self.children[0].children[1].token_str() == 'count': # `itertools.count(1)` -> `1..` return self.children[1].to_str() + '..' func_name = self.children[0].to_str() if func_name == 'str': func_name = 'String' elif func_name in ('int', 'Int64'): if func_name == 'int': func_name = 'Int' if len(self.children) == 5: return func_name + '(' + self.children[1].to_str() + ", radix' " + self.children[3].to_str() + ')' elif func_name == 'float': if len(self.children) == 3 and self.children[1].token.category == Token.Category.STRING_LITERAL and self.children[1].token_str()[1:-1].lower() in ('infinity', 'inf'): return 'Float.infinity' func_name = 'Float' elif func_name == 'complex': func_name = 'Complex' elif func_name == 'list': # `list(map(...))` -> `map(...)` if len(self.children) == 3 and self.children[1].symbol.id == '(' and self.children[1].children[0].token_str() == 'range': # ) # `list(range(...))` -> `Array(...)` parens = True#len(self.children[1].children) == 7 # if true, then this is a range with step return 'Array' + '('*parens + self.children[1].to_str() + ')'*parens assert(len(self.children) == 3) if self.children[1].symbol.id == '(' and self.children[1].children[0].token_str() in ('map', 'product', 'zip'): # ) return self.children[1].to_str() else: return 'Array(' + self.children[1].to_str() + ')' elif func_name == 'tuple': # `tuple(sorted(...))` -> `tuple_sorted(...)` assert(len(self.children) == 3) if self.children[1].function_call and self.children[1].children[0].token_str() == 'sorted': return 'tuple_' + self.children[1].to_str() elif func_name == 'dict': func_name = 'Dict' elif func_name == 'set': # `set() # KeyType` -> `Set[KeyType]()` if len(self.children) == 3: return 'Set(' + self.children[1].to_str() + ')' assert(len(self.children) == 1) if source[self.token.end + 2 : self.token.end + 3] != '#': # if self.parent is None and type(self.ast_parent) == ASTExprAssignment \ # and self.ast_parent.dest_expression.symbol.id == '.' \ # and self.ast_parent.dest_expression.children[0].token_str() == 'self' \ # and type(self.ast_parent.parent) == ASTFunctionDefinition \ # and self.ast_parent.parent.function_name == '__init__': # return 'Set()' raise Error('to use `set` the type of set keys must be specified in the comment', self.children[0].token) sl = slice(self.token.end + 3, source.find("\n", self.token.end + 3)) return 'Set[' + trans_type(source[sl].lstrip(' '), self.scope, Token(sl.start, sl.stop, Token.Category.NAME)) + ']()' elif func_name == 'open': func_name = 'File' mode = '‘r’' for i in range(1, len(self.children), 2): if self.children[i+1] is None: if i == 3: mode = self.children[i].to_str() else: arg_name = self.children[i].to_str() if arg_name == 'mode': mode = self.children[i+1].to_str() elif arg_name == 'newline': if mode not in ('‘w’', '"w"'): raise Error("`newline` argument is only supported in 'w' mode", self.children[i].token) if self.children[i+1].to_str() != '"\\n"': raise Error(R'the only allowed value for `newline` argument is `"\n"`', self.children[i+1].token) self.children.pop(i+1) self.children.pop(i) break elif func_name == 'product': func_name = 'cart_product' elif func_name == 'deepcopy': func_name = 'copy' elif func_name == 'print' and self.iterable_unpacking: func_name = 'print_elements' if func_name == 'len': # replace `len(container)` with `container.len` assert(len(self.children) == 3) if isinstance(self.ast_parent, (ASTIf, ASTWhile)) if self.parent is None else self.parent.symbol.id == 'if': # `if len(arr)` -> `I !arr.empty` return '!' + self.children[1].to_str() + '.empty' if len(self.children[1].children) == 2 and self.children[1].symbol.id not in ('.', '['): # ] return '(' + self.children[1].to_str() + ')' + '.len' return self.children[1].to_str() + '.len' elif func_name == 'ord': # replace `ord(ch)` with `ch.code` assert(len(self.children) == 3) return self.children[1].to_str() + '.code' elif func_name == 'chr': # replace `chr(code)` with `Char(code' code)` assert(len(self.children) == 3) return "Char(code' " + self.children[1].to_str() + ')' elif func_name == 'isinstance': # replace `isinstance(obj, type)` with `T(obj) >= type` assert(len(self.children) == 5) return 'T(' + self.children[1].to_str() + ') >= ' + self.children[3].to_str() elif func_name in ('map', 'filter'): # replace `map(function, iterable)` with `iterable.map(function)` assert(len(self.children) == 5) b = len(self.children[3].children) > 1 and self.children[3].symbol.id not in ('(', '[') # ]) c1 = self.children[1].to_str() return '('*b + self.children[3].to_str() + ')'*b + '.' + func_name + '(' + {'int':'Int', 'float':'Float', 'str':'String'}.get(c1, c1) + ')' elif func_name == 'reduce': if len(self.children) == 5: # replace `reduce(function, iterable)` with `iterable.reduce(function)` return self.children[3].to_str() + '.reduce(' + self.children[1].to_str() + ')' else: # replace `reduce(function, iterable, initial)` with `iterable.reduce(initial, function)` assert(len(self.children) == 7) return self.children[3].to_str() + '.reduce(' + self.children[5].to_str() + ', ' + self.children[1].to_str() + ')' elif func_name == 'super': # replace `super()` with `T.base` assert(len(self.children) == 1) return 'T.base' elif func_name == 'range': assert(3 <= len(self.children) <= 7) parenthesis = ('(', ')') if self.parent is not None and (self.parent.symbol.id == 'for' or (self.parent.function_call and self.parent.children[0].token_str() in ('map', 'filter', 'reduce'))) else ('', '') if len(self.children) == 3: # replace `range(e)` with `(0 .< e)` space = ' ' * range_need_space(self.children[1], None) c1 = self.children[1].to_str() if c1.endswith(' + 1'): # `range(e + 1)` -> `0 .. e` return parenthesis[0] + '0' + space + '..' + space + c1[:-4] + parenthesis[1] return parenthesis[0] + '0' + space + '.<' + space + c1 + parenthesis[1] else: rangestr = ' .< ' if range_need_space(self.children[1], self.children[3]) else '.<' if len(self.children) == 5: # replace `range(b, e)` with `(b .< e)` if self.children[3].token.category == Token.Category.NUMERIC_LITERAL and self.children[3].token_str().replace('_', '').isdigit() and \ self.children[1].token.category == Token.Category.NUMERIC_LITERAL and self.children[1].token_str().replace('_', '').isdigit(): # if `b` and `e` are numeric literals, then ... return parenthesis[0] + self.children[1].token_str().replace('_', '') + '..' + str(int(self.children[3].token_str().replace('_', '')) - 1) + parenthesis[1] # ... replace `range(b, e)` with `(b..e-1)` c3 = self.children[3].to_str() if c3.endswith(' + 1'): # `range(a, b + 1)` -> `a .. b` return parenthesis[0] + self.children[1].to_str() + rangestr.replace('<', '.') + c3[:-4] + parenthesis[1] return parenthesis[0] + self.children[1].to_str() + rangestr + c3 + parenthesis[1] else: # replace `range(b, e, step)` with `(b .< e).step(step)` return '(' + self.children[1].to_str() + rangestr + self.children[3].to_str() + ').step(' + self.children[5].to_str() + ')' elif func_name == 'print': first_named_argument = len(self.children) for i in range(1, len(self.children), 2): if self.children[i+1] is not None: first_named_argument = i break sep = '‘ ’' for i in range(first_named_argument, len(self.children), 2): assert(self.children[i+1] is not None) if self.children[i].to_str() == 'sep': sep = self.children[i+1].to_str() break def surround_with_sep(s, before, after): if (sep in ('‘ ’', '‘’') # special case for ‘ ’ and ‘’ or sep[0] == s[0]): # ‘`‘sep’‘str’‘sep’` -> `‘sepstrsep’`’|‘`"sep""str""sep"` -> `"sepstrsep"`’ return s[0] + sep[1:-1]*before + s[1:-1] + sep[1:-1]*after + s[-1] else: # `"sep"‘str’"sep"`|`‘sep’"str"‘sep’` return sep*before + s + sep*after def parenthesize_if_needed(child): #if child.token.category in (Token.Category.NAME, Token.Category.NUMERIC_LITERAL) or child.symbol.id == '[': # ] # `print(‘Result: ’3)` is currently not supported in 11l if child.token.category == Token.Category.NAME or child.symbol.id in ('[', '('): # )] return child.to_str() else: return '(' + child.to_str() + ')' res = 'print(' for i in range(1, first_named_argument, 2): if i == 1: # it's the first agrument if i == first_named_argument - 2: # it's the only argument — ‘no sep is required’/‘no parentheses are required’ res += self.children[i].to_str() elif self.children[i].token.category == Token.Category.STRING_LITERAL: res += surround_with_sep(self.children[i].to_str(), False, True) else: res += parenthesize_if_needed(self.children[i]) else: if self.children[i].token.category == Token.Category.STRING_LITERAL: if self.children[i-2].token.category == Token.Category.STRING_LITERAL: raise Error('consecutive string literals in `print()` are not supported', self.children[i].token) res += surround_with_sep(self.children[i].to_str(), True, i != first_named_argument - 2) else: if self.children[i-2].token.category != Token.Category.STRING_LITERAL: res += sep res += parenthesize_if_needed(self.children[i]) for i in range(first_named_argument, len(self.children), 2): if self.children[i].to_str() != 'sep': if len(res) > len('print('): # ) res += ', ' res += self.children[i].to_str() + "' " + self.children[i+1].to_str() return res + ')' else: if ':' in func_name: colon_pos = func_name.rfind(':') module_name = func_name[:colon_pos].replace(':', '.') if module_name in modules: tid = modules[module_name].scope.find(func_name[colon_pos+1:]) else: tid = None elif func_name.startswith('.'): s = self.scope while True: if s.is_function and not s.is_lambda_or_for: tid = s.parent.vars.get(func_name[1:]) break s = s.parent if s is None: tid = None break else: tid = self.scope.find(func_name) f_node = tid.node if tid is not None and type(tid.node) == ASTFunctionDefinition else None res = func_name + '(' for i in range(1, len(self.children), 2): if self.children[i+1] is None: if f_node is not None: fargs = f_node.function_arguments[i//2 + int(func_name.startswith('.'))] arg_type_name = fargs[2] if arg_type_name.startswith(('List[', 'Dict[', 'DefaultDict[')) or (arg_type_name != '' and trans_type(arg_type_name, self.scope, self.children[i].token).endswith('&')) or fargs[3] == '&': # ]]] res += '&' res += self.children[i].to_str() else: ci_str = self.children[i].to_str() res += ci_str + "' " if f_node is not None: for farg in f_node.function_arguments: if farg[0] == ci_str: if farg[2].startswith(('List[', 'Dict[')): # ]] res += '&' break res += self.children[i+1].to_str() if i < len(self.children)-2: res += ', ' return res + ')' elif self.tuple: res = '(' for i in range(len(self.children)): res += self.children[i].to_str() if i < len(self.children)-1: res += ', ' if len(self.children) == 1: res += ',' return res + ')' else: assert(len(self.children) == 1) return '(' + self.children[0].to_str() + ')' elif self.symbol.id == '[': # ] if self.is_list: if len(self.children) == 1 and self.children[0].symbol.id == 'for': return self.children[0].to_str() res = '[' for i in range(len(self.children)): res += self.children[i].to_str() if i < len(self.children)-1: res += ', ' return res + ']' elif self.children[0].symbol.id == '{': # } parenthesis = ('(', ')') if self.parent is not None else ('', '') res = parenthesis[0] + 'S ' + self.children[1].to_str() + ' {' for i in range(0, len(self.children[0].children), 2): res += self.children[0].children[i].to_str() + ' {' + self.children[0].children[i+1].to_str() + '}' if i < len(self.children[0].children)-2: res += '; ' return res + '}' + parenthesis[1] else: c0 = self.children[0].to_str() if self.slicing: if len(self.children) == 2: # `a = b[:]` -> `a = copy(b)` assert(self.children[1] is None) return 'copy(' + c0 + ')' if c0.startswith('bin(') and len(self.children) == 3 and self.children[1].token_str() == '2' and self.children[2] is None: # ) # `bin(x)[2:]` -> `bin(x)` return c0 if len(self.children) == 4 and self.children[1] is None and self.children[2] is None and self.children[3].symbol.id == '-' and len(self.children[3].children) == 1 and self.children[3].children[0].token_str() == '1': # replace `result[::-1]` with `reversed(result)` return 'reversed(' + c0 + ')' def for_negative_bound(c): child = self.children[c] if child is None: return None r = child.to_str() if r[0] == '-': # hacky implementation of ‘this rule’[https://docs.python.org/3/reference/simple_stmts.html]:‘If either bound is negative, the sequence's length is added to it.’ r = '(len)' + r return r space = ' ' * range_need_space(self.children[1], self.children[2]) fnb2 = for_negative_bound(2) s = (for_negative_bound(1) or '0') + space + '.' + ('<' + space + fnb2 if fnb2 else '.') if len(self.children) == 4 and self.children[3] is not None: s = '(' + s + ').step(' + self.children[3].to_str() + ')' return c0 + '[' + s + ']' elif self.children[1].to_str() == '-1': return c0 + '.last' else: c1 = self.children[1].to_str() return (c0 + '[' + '(len)'*(c1[0] == '-') # hacky implementation of ‘this rule’[https://docs.python.org/3/reference/simple_stmts.html]:‘the subscript must yield an integer. If it is negative, the sequence's length is added to it.’ + c1 + ']') elif self.symbol.id == '{': # } if len(self.children) == 0: return 'Dict()' if self.is_set: is_not_for = self.children[0].symbol.id != 'for' res = 'Set(' + '['*is_not_for for i in range(len(self.children)): res += self.children[i].to_str() if i < len(self.children)-1: res += ', ' return res + ']'*is_not_for + ')' if self.children[-1].symbol.id == 'for': assert(len(self.children) == 2) c = self.children[1] c2s = c.children[2].to_str() return 'Dict(' + (c2s[1:-1] if c.children[2].function_call and c.children[2].children[0].token_str() == 'range' else c2s) + ', ' + c.children[1].to_str() + ' -> (' + self.children[0].to_str() + ', ' + c.children[0].to_str() + '))' res = '[' for i in range(0, len(self.children), 2): res += self.children[i].to_str() + ' = ' + self.children[i+1].to_str() if i < len(self.children)-2: res += ', ' return res + ']' elif self.symbol.id == 'lambda': r = '(' if len(self.children) != 3 else '' for i in range(0, len(self.children)-1, 2): r += self.children[i].token_str() if self.children[i+1] is not None: r += ' = ' + self.children[i+1].to_str() if i < len(self.children)-3: r += ', ' if len(self.children) != 3: r += ')' return r + ' -> ' + self.children[-1].to_str() elif self.symbol.id == 'for': if self.children[2].token_str() == 'for': # this is a multiloop if self.children[2].children[2].token_str() == 'for': # this is a multiloop3 filtered = len(self.children[2].children[2].children) == 4 res = 'multiloop' + '_filtered'*filtered + '(' + self.children[2].children[0].to_str() + ', ' + self.children[2].children[2].children[0].to_str() + ', ' + self.children[2].children[2].children[2].to_str() fparams = ', (' + self.children[1].token_str() + ', ' + self.children[2].children[1].token_str() + ', ' + self.children[2].children[2].children[1].token_str() + ') -> ' if filtered: res += fparams + self.children[2].children[2].children[3].to_str() res += fparams + self.children[0].to_str() + ')' return res filtered = len(self.children[2].children) == 4 res = 'multiloop' + '_filtered'*filtered + '(' + self.children[2].children[0].to_str() + ', ' + self.children[2].children[2].to_str() fparams = ', (' + self.children[1].token_str() + ', ' + self.children[2].children[1].token_str() + ') -> ' if filtered: res += fparams + self.children[2].children[3].to_str() res += fparams + self.children[0].to_str() + ')' return res res = self.children[2].children[0].children[0].to_str() if self.children[2].symbol.id == '(' and len(self.children[2].children) == 1 and self.children[2].children[0].symbol.id == '.' and len(self.children[2].children[0].children) == 2 and self.children[2].children[0].children[1].token_str() == 'items' else self.children[2].to_str() # ) if len(self.children) == 4: res += '.filter(' + self.children[1].to_str() + ' -> ' + self.children[3].to_str() + ')' if self.children[1].to_str() != self.children[0].to_str(): res += '.map(' + self.children[1].to_str() + ' -> ' + self.children[0].to_str() + ')' return res elif self.symbol.id == 'not': if len(self.children) == 1: if (self.children[0].token.category == Token.Category.OPERATOR_OR_DELIMITER or (self.children[0].token.category == Token.Category.KEYWORD and self.children[0].symbol.id == 'in')) and len(self.children[0].children) == 2: return '!(' + self.children[0].to_str() + ')' else: return '!' + self.children[0].to_str() else: assert(len(self.children) == 2) return self.children[0].to_str() + ' !C ' + self.children[1].to_str() elif self.symbol.id == 'is': if self.children[1].token_str() == 'None': return self.children[0].to_str() + (' != ' if self.is_not else ' == ') + 'N' return '&' + self.children[0].to_str() + (' != ' if self.is_not else ' == ') + '&' + self.children[1].to_str() if len(self.children) == 1: #return '(' + self.symbol.id + self.children[0].to_str() + ')' return {'~':'(-)'}.get(self.symbol.id, self.symbol.id) + self.children[0].to_str() elif len(self.children) == 2: #return '(' + self.children[0].to_str() + ' ' + self.symbol.id + ' ' + self.children[1].to_str() + ')' if self.symbol.id == '.': if self.children[0].symbol.id == '{' and self.children[1].token.category == Token.Category.NAME and self.children[1].token.value(source) == 'get': # } # replace `{'and':'&', 'or':'|', 'in':'C'}.get(self.symbol.id, 'symbol-' + self.symbol.id)` with `(S .symbol.id {‘and’ {‘&’}; ‘or’ {‘|’}; ‘in’ {‘C’} E ‘symbol-’(.symbol.id)})` res = 'S ' + self.parent.children[1].to_str() + ' {' for i in range(0, len(self.children[0].children), 2): res += self.children[0].children[i].to_str() + ' {' + self.children[0].children[i+1].to_str() + '}' if i < len(self.children[0].children)-2: res += '; ' return res + ' E ' + self.parent.children[3].to_str() + '}' c1ts = self.children[1].token_str() if self.children[0].token_str() == 'sys' and c1ts in ('argv', 'exit', 'stdin', 'stdout', 'stderr'): return ':'*(c1ts != 'exit') + c1ts if self.children[0].scope_prefix == ':::': if self.children[0].token_str() in ('math', 'cmath'): c1 = self.children[1].to_str() if c1 not in ('e', 'pi'): if c1 == 'fabs': c1 = 'abs' return c1 r = self.children[0].token_str() + ':' + self.children[1].to_str() return {'tempfile:gettempdir': 'fs:get_temp_dir', 'os:path': 'fs:path', 'os:pathsep': 'os:env_path_sep', 'os:sep': 'fs:path:sep', 'os:system': 'os:', 'os:listdir': 'fs:list_dir', 'os:walk': 'fs:walk_dir', 'os:mkdir': 'fs:create_dir', 'os:makedirs': 'fs:create_dirs', 'os:remove': 'fs:remove_file', 'os:rmdir': 'fs:remove_dir', 'os:rename': 'fs:rename', 'time:time': 'Time().unix_time', 'time:sleep': 'sleep', 'datetime:datetime': 'Time', 'datetime:date': 'Time', 'datetime:timedelta': 'TimeDelta', 're:compile': 're:', 'random:random': 'random:'}.get(r, r) if self.children[0].symbol.id == '.' and self.children[0].children[0].scope_prefix == ':::': if self.children[0].children[0].token_str() == 'datetime': if self.children[0].children[1].token_str() == 'datetime': if self.children[1].token_str() == 'now': # `datetime.datetime.now()` -> `Time()` return 'Time' if self.children[1].token_str() == 'fromtimestamp': # `datetime.datetime.fromtimestamp()` -> `time:from_unix_time()` return 'time:from_unix_time' if self.children[1].token_str() == 'strptime': # `datetime.datetime.strptime()` -> `time:strptime()` return 'time:strptime' if self.children[0].children[1].token_str() == 'date' and self.children[1].token_str() == 'today': # `datetime.date.today()` -> `time:today()` return 'time:today' if self.children[0].children[0].token_str() == 'os' and self.children[0].children[1].token_str() == 'path': r = {'pathsep':'os:env_path_sep', 'isdir':'fs:is_dir', 'isfile':'fs:is_file', 'islink':'fs:is_symlink', 'dirname':'fs:path:dir_name', 'basename':'fs:path:base_name', 'abspath':'fs:path:absolute', 'relpath':'fs:path:relative', 'getsize':'fs:file_size', 'splitext':'fs:path:split_ext'}.get(self.children[1].token_str(), '') if r != '': return r if len(self.children[0].children) == 2 and self.children[0].children[0].scope_prefix == ':::' and self.children[0].children[0].token_str() != 'sys': # for `os.path.join()` [and also take into account `sys.argv.index()`] return self.children[0].to_str() + ':' + self.children[1].to_str() if self.children[0].to_str() == 'self': parent = self while parent.parent: if parent.parent.symbol.id == 'for' and id(parent.parent.children[0]) == id(parent): return '@.' + self.children[1].to_str() parent = parent.parent if parent.symbol.id == 'lambda': if len(parent.children) >= 3 and parent.children[0].token_str() == 'self': return 'self.' + self.children[1].to_str() return '@.' + self.children[1].to_str() ast_parent = parent.ast_parent function_nesting = 0 while type(ast_parent) != ASTProgram: if type(ast_parent) == ASTFunctionDefinition: if len(ast_parent.function_arguments) >= 1 and ast_parent.function_arguments[0][0] == 'self' and type(ast_parent.parent) != ASTClassDefinition: return 'self.' + self.children[1].to_str() function_nesting += 1 if function_nesting == 2: break elif type(ast_parent) == ASTClassDefinition: break ast_parent = ast_parent.parent return ('@' if function_nesting == 2 else '') + '.' + self.children[1].to_str() if c1ts == 'days': return self.children[0].to_str() + '.' + c1ts + '()' return self.children[0].to_str() + '.' + self.children[1].to_str() elif self.symbol.id == '+=' and self.children[1].symbol.id == '[' and self.children[1].is_list: # ] c1 = self.children[1].to_str() return self.children[0].to_str() + ' [+]= ' + (c1[1:-1] if len(self.children[1].children) == 1 and c1.startswith('[') else c1) # ] elif self.symbol.id == '+=' and self.children[1].token.value(source) == '1': return self.children[0].to_str() + '++' elif self.symbol.id == '-=' and self.children[1].token.value(source) == '1': return '--' + self.children[0].to_str() if self.parent else self.children[0].to_str() + '--' elif self.symbol.id == '+=' and ((self.children[0].token.category == Token.Category.NAME and self.children[0].var_type() == 'str') or (self.children[1].symbol.id == '+' and len(self.children[1].children) == 2 and (self.children[1].children[0].token.category == Token.Category.STRING_LITERAL or self.children[1].children[1].token.category == Token.Category.STRING_LITERAL)) or self.children[1].token.category == Token.Category.STRING_LITERAL): return self.children[0].to_str() + ' ‘’= ' + self.children[1].to_str() elif self.symbol.id == '+=' and self.children[0].token.category == Token.Category.NAME and self.children[0].var_type() == 'List': return self.children[0].to_str() + ' [+]= ' + self.children[1].to_str() elif self.symbol.id == '+' and self.children[1].symbol.id == '*' and self.children[0].token.category == Token.Category.STRING_LITERAL \ and self.children[1].children[1].token.category == Token.Category.STRING_LITERAL: # for `outfile.write('<blockquote'+(ch=='<')*' class="re"'+'>')` return self.children[0].to_str() + '(' + self.children[1].to_str() + ')' elif self.symbol.id == '+' and self.children[1].symbol.id == '*' and self.children[1].children[0].token.category == Token.Category.STRING_LITERAL \ and (self.children[0].token.category == Token.Category.STRING_LITERAL or (self.children[0].symbol.id == '+' and self.children[0].children[1].token.category == Token.Category.STRING_LITERAL)): # for `outfile.write("<table"+' style="display: inline"'*(prevci != 0 and instr[prevci-1] != "\n")+...)` and `outfile.write('<pre>' + ins + '</pre>' + "\n"*(not self.habr_html))` return self.children[0].to_str() + '(' + self.children[1].to_str() + ')' elif self.symbol.id == '+' and self.children[1].token.category == Token.Category.STRING_LITERAL and ((self.children[0].symbol.id == '+' and self.children[0].children[1].token.category == Token.Category.STRING_LITERAL) # for `outfile.write(... + '<br /></span>' # ... \n + '<div class="spoiler_text" ...')` or self.children[0].token.category == Token.Category.STRING_LITERAL): # for `pre {margin: 0;}''' + # ... \n '''...` c0 = self.children[0].to_str() c1 = self.children[1].to_str() return c0 + {('"','"'):'‘’', ('"','‘'):'', ('’','‘'):'""', ('’','"'):''}[(c0[-1], c1[0])] + c1 elif self.symbol.id == '+' and (self.children[0].token.category == Token.Category.STRING_LITERAL or self.children[1].token.category == Token.Category.STRING_LITERAL or (self.children[0].symbol.id == '+' and self.children[0].children[1].token.category == Token.Category.STRING_LITERAL)): c1 = self.children[1].to_str() return self.children[0].to_str() + ('(' + c1 + ')' if c1[0] == '.' else c1) elif self.symbol.id == '+' and self.children[1].symbol.id == '*' and (self.children[1].children[0].token.category == Token.Category.STRING_LITERAL # for `self.newlines() + ' ' * (indent*3) + 'F ' + ...` or self.children[1].children[1].token.category == Token.Category.STRING_LITERAL): # for `(... + self.ohd*'</span>')` p = self.children[0].symbol.id == '*' return '('*p + self.children[0].to_str() + ')'*p + '‘’(' + self.children[1].to_str() + ')' elif self.symbol.id == '+' and self.children[0].symbol.id == '*' and self.children[0].children[0].token.category == Token.Category.STRING_LITERAL: # for `' ' * (indent*3) + self.expression.to_str() + "\n"` c1 = self.children[1].to_str() return '(' + self.children[0].to_str() + ')‘’' + ('(' + c1 + ')' if c1[0] == '.' else c1) elif self.symbol.id == '+' and (self.children[0].var_type() == 'str' or self.children[1].var_type() == 'str'): return self.children[0].to_str() + '‘’' + self.children[1].to_str() elif self.symbol.id == '+' and (self.children[0].var_type() == 'List' or self.children[1].var_type() == 'List'): return self.children[0].to_str() + ' [+] ' + self.children[1].to_str() elif self.symbol.id == '<=' and self.children[0].symbol.id == '<=': # replace `'0' <= ch <= '9'` with `ch C ‘0’..‘9’` return self.children[0].children[1].to_str() + ' C ' + self.children[0].children[0].to_str() + (' .. ' if range_need_space(self.children[0].children[0], self.children[1]) else '..') + self.children[1].to_str() elif self.symbol.id == '<' and self.children[0].symbol.id == '<=': # replace `'0' <= ch < '9'` with `ch C ‘0’.<‘9’` return self.children[0].children[1].to_str() + ' C ' + self.children[0].children[0].to_str() + (' .< ' if range_need_space(self.children[0].children[0], self.children[1]) else '.<') + self.children[1].to_str() elif self.symbol.id == '<=' and self.children[0].symbol.id == '<' : # replace `'0' < ch <= '9'` with `ch C ‘0’<.‘9’` return self.children[0].children[1].to_str() + ' C ' + self.children[0].children[0].to_str() + (' <. ' if range_need_space(self.children[0].children[0], self.children[1]) else '<.') + self.children[1].to_str() elif self.symbol.id == '<' and self.children[0].symbol.id == '<' : # replace `'0' <= ch <= '9'` with `ch C ‘0’<.<‘9’` return self.children[0].children[1].to_str() + ' C ' + self.children[0].children[0].to_str() + (' <.< ' if range_need_space(self.children[0].children[0], self.children[1]) else '<.<') + self.children[1].to_str() elif self.symbol.id == '==' and self.children[0].symbol.id == '(' and self.children[0].children[0].to_str() == 'len' and self.children[1].token.value(source) == '0': # ) # replace `len(arr) == 0` with `arr.empty` return self.children[0].children[1].to_str() + '.empty' elif self.symbol.id == '!=' and self.children[0].symbol.id == '(' and self.children[0].children[0].to_str() == 'len' and self.children[1].token.value(source) == '0': # ) # replace `len(arr) != 0` with `!arr.empty` return '!' + self.children[0].children[1].to_str() + '.empty' elif self.symbol.id in ('==', '!=') and self.children[1].symbol.id == '.' and len(self.children[1].children) == 2 and self.children[1].children[1].token_str().isupper(): # replace `token.category == Token.Category.NAME` with `token.category == NAME` #self.skip_find_and_get_prefix = True # this is not needed here because in AST there is still `Token.Category.NAME`, not just `NAME` return self.children[0].to_str() + ' ' + self.symbol.id + ' ' + self.children[1].children[1].token_str() elif self.symbol.id in ('==', '!=') and self.children[0].function_call and self.children[0].children[0].token_str() == 'id' and self.children[1].function_call and self.children[1].children[0].token_str() == 'id': # replace `id(a) == id(b)` with `&a == &b` return '&' + self.children[0].children[1].token_str() + ' ' + self.symbol.id + ' &' + self.children[1].children[1].token_str() elif self.symbol.id == '%' and self.children[0].token.category == Token.Category.STRING_LITERAL: add_parentheses = self.children[1].symbol.id != '(' or self.children[1].function_call # ) fmtstr = self.children[0].to_str() nfmtstr = '' i = 0 while i < len(fmtstr): if fmtstr[i] == '#': nfmtstr += '##' i += 1 continue fmtchr = fmtstr[i+1:i+2] if fmtstr[i] == '%': if fmtchr == '%': nfmtstr += '%' i += 2 elif fmtchr == 'g': nfmtstr += '#.' i += 2 else: nfmtstr += '#' before_period = 0 after_period = 6 period_pos = 0 i += 1 if fmtstr[i] == '-': # left align nfmtstr += '<' i += 1 if fmtstr[i:i+1] == '0' and fmtstr[i+1:i+2].isdigit(): # zero padding nfmtstr += '0' while i < len(fmtstr) and fmtstr[i].isdigit(): before_period = before_period*10 + ord(fmtstr[i]) - ord('0') i += 1 if fmtstr[i:i+1] == '.': period_pos = i i += 1 after_period = 0 while i < len(fmtstr) and fmtstr[i].isdigit(): after_period = after_period*10 + ord(fmtstr[i]) - ord('0') i += 1 if fmtstr[i:i+1] in ('d', 'i'): if before_period != 0: nfmtstr += str(before_period) else: nfmtstr += '.'#'.0' # `#.0` corresponds to `%.0f` rather than `%i` or `%d`, and `'%i' % (1.7)` = `1`, but `‘#.0’.format(1.7)` = `2` elif fmtstr[i:i+1] == 's': if before_period != 0: nfmtstr += str(before_period) else: nfmtstr += '.' elif fmtstr[i:i+1] == 'f': if before_period != 0: b = before_period if after_period != 0: b -= after_period + 1 if b > 1: nfmtstr += str(b) nfmtstr += '.' + str(after_period) elif fmtstr[i:i+1] == 'g': nfmtstr += str(before_period) if period_pos != 0: raise Error('precision in %g conversion type is not supported', Token(self.children[0].token.start + period_pos, self.children[0].token.start + i, Token.Category.STRING_LITERAL)) else: tpos = self.children[0].token.start + i raise Error('unsupported format character `' + fmtstr[i:i+1] + '`', Token(tpos, tpos, Token.Category.STRING_LITERAL)) i += 1 continue nfmtstr += fmtstr[i] i += 1 return nfmtstr + '.format' + '('*add_parentheses + self.children[1].to_str() + ')'*add_parentheses else: return self.children[0].to_str() + ' ' + {'and':'&', 'or':'|', 'in':'C', '//':'I/', '//=':'I/=', '**':'^', '**=':'^=', '^':'(+)', '^=':'(+)=', '|':'[|]', '|=':'[|]=', '&':'[&]', '&=':'[&]='}.get(self.symbol.id, self.symbol.id) + ' ' + self.children[1].to_str() elif len(self.children) == 3: assert(self.symbol.id == 'if') c0 = self.children[0].to_str() if self.children[1].symbol.id == 'is' and self.children[1].is_not and self.children[1].children[1].token.value(source) == 'None' and self.children[1].children[0].to_str() == c0: # replace `a if a is not None else b` with `a ? b` return c0 + ' ? ' + self.children[2].to_str() return 'I ' + self.children[1].to_str() + ' {' + c0 + '} E ' + self.children[2].to_str() return '' symbol_table : Dict[str, SymbolBase] = {} allowed_keywords_in_expressions : List[str] = [] def symbol(id, bp = 0): try: s = symbol_table[id] except KeyError: s = SymbolBase() s.id = id s.lbp = bp symbol_table[id] = s if id[0].isalpha(): # this is keyword-in-expression assert(id.isalpha()) allowed_keywords_in_expressions.append(id) else: s.lbp = max(bp, s.lbp) return s class ASTNode: parent : 'ASTNode' def walk_expressions(self, f): pass def walk_children(self, f): pass class ASTNodeWithChildren(ASTNode): # children : List['ASTNode'] = [] # OMFG! This actually means static (common for all objects of type ASTNode) variable, not default value of member variable, that was unexpected to me as it contradicts C++11 behavior children : List['ASTNode'] tokeni : int def __init__(self): self.children = [] self.tokeni = tokeni def walk_children(self, f): for child in self.children: f(child) def children_to_str(self, indent, t): r = '' if self.tokeni > 0: ti = self.tokeni - 1 while ti > 0 and tokens[ti].category in (Token.Category.DEDENT, Token.Category.STATEMENT_SEPARATOR): ti -= 1 r = (min(source[tokens[ti].end:tokens[self.tokeni].start].count("\n"), 2) - 1) * "\n" r += ' ' * (indent*3) + t + "\n" for c in self.children: r += c.to_str(indent+1) return r class ASTNodeWithExpression(ASTNode): expression : SymbolNode def set_expression(self, expression): self.expression = expression self.expression.ast_parent = self def walk_expressions(self, f): f(self.expression) class ASTProgram(ASTNodeWithChildren): imported_modules : List[str] = None def to_str(self): r = '' for c in self.children: r += c.to_str(0) return r class ASTImport(ASTNode): def __init__(self): self.modules = [] def to_str(self, indent): return ' ' * (indent*3) + '//import ' + ', '.join(self.modules) + "\n" # this is easier than avoid to add empty line here: `import sys\n\ndef f()` -> `\nF f()` class ASTExpression(ASTNodeWithExpression): def to_str(self, indent): return ' ' * (indent*3) + self.expression.to_str() + "\n" class ASTExprAssignment(ASTNodeWithExpression): add_vars : List[bool] drop_list = False is_tuple_assign_expression = False dest_expression : SymbolNode additional_dest_expressions : List[SymbolNode] def __init__(self): # self.add_vars = [] # this is not necessary self.additional_dest_expressions = [] def set_dest_expression(self, dest_expression): self.dest_expression = dest_expression self.dest_expression.ast_parent = self def to_str(self, indent): if type(self.parent) == ASTClassDefinition: assert(len(self.add_vars) == 1 and self.add_vars[0] and not self.is_tuple_assign_expression) return ' ' * (indent*3) + self.dest_expression.to_str() + ' = ' + self.expression.to_str() + "\n" if self.dest_expression.slicing: s = self.dest_expression.to_str() # [ if s.endswith(']') and self.expression.function_call and self.expression.children[0].token_str() == 'reversed' and self.expression.children[1].to_str() == s: l = len(self.dest_expression.children[0].to_str()) return ' ' * (indent*3) + s[:l] + '.reverse_range(' + s[l+1:-1] + ")\n" raise Error('slice assignment is not supported', self.dest_expression.left_to_right_token()) if self.drop_list: return ' ' * (indent*3) + self.dest_expression.to_str() + ".drop()\n" if self.dest_expression.tuple and len(self.dest_expression.children) == 2 and \ self. expression.tuple and len(self. expression.children) == 2 and \ self.dest_expression.children[0].to_str() == self.expression.children[1].to_str() and \ self.dest_expression.children[1].to_str() == self.expression.children[0].to_str(): return ' ' * (indent*3) + 'swap(&' + self.dest_expression.children[0].to_str() + ', &' + self.dest_expression.children[1].to_str() + ")\n" if self.is_tuple_assign_expression or not any(self.add_vars): r = ' ' * (indent*3) + self.dest_expression.to_str() for ade in self.additional_dest_expressions: r += ' = ' + ade.to_str() return r + ' = ' + self.expression.to_str() + "\n" if all(self.add_vars): if self.expression.function_call and self.expression.children[0].token_str() == 'ref': assert(len(self.expression.children) == 3) return ' ' * (indent*3) + 'V& ' + self.dest_expression.to_str() + ' = ' + self.expression.children[1].to_str() + "\n" return ' ' * (indent*3) + 'V ' + self.dest_expression.to_str() + ' = ' + self.expression.to_str() + "\n" assert(self.dest_expression.tuple and len(self.dest_expression.children) == len(self.add_vars)) r = ' ' * (indent*3) + '(' for i in range(len(self.add_vars)): if self.add_vars[i]: r += 'V ' assert(self.dest_expression.children[i].token.category == Token.Category.NAME) r += self.dest_expression.children[i].token_str() if i < len(self.add_vars)-1: r += ', ' return r + ') = ' + self.expression.to_str() + "\n" def walk_expressions(self, f): f(self.dest_expression) super().walk_expressions(f) class ASTAssert(ASTNodeWithExpression): expression2 : SymbolNode = None def set_expression2(self, expression2): self.expression2 = expression2 self.expression2.ast_parent = self def to_str(self, indent): return ' ' * (indent*3) + 'assert(' + (self.expression.children[0].to_str() if self.expression.symbol.id == '(' and not self.expression.tuple and not self.expression.function_call # ) else self.expression.to_str()) + (', ' + self.expression2.to_str() if self.expression2 is not None else '') + ")\n" def walk_expressions(self, f): if self.expression2 is not None: f(self.expression2) super().walk_expressions(f) python_types_to_11l = {'&':'&', 'int':'Int', 'float':'Float', 'complex':'Complex', 'str':'String', 'Char':'Char', 'Int64':'Int64', 'UInt32':'UInt32', 'Byte':'Byte', 'bool':'Bool', 'None':'N', 'List':'', 'Tuple':'Tuple', 'Dict':'Dict', 'DefaultDict':'DefaultDict', 'Set':'Set', 'IO[str]': 'File', 'datetime.date':'Time', 'datetime.datetime':'Time'} def trans_type(ty, scope, type_token): if ty[0] in '\'"': assert(ty[-1] == ty[0]) ty = ty[1:-1] t = python_types_to_11l.get(ty) if t is not None: return t else: p = ty.find('[') if p != -1: assert(ty[-1] == ']') i = p + 1 s = i nesting_level = 0 types = [] while True: if ty[i] == '[': nesting_level += 1 elif ty[i] == ']': if nesting_level == 0: assert(i == len(ty)-1) types.append(trans_type(ty[s:i], scope, type_token)) break nesting_level -= 1 elif ty[i] == ',': if nesting_level == 0: # ignore inner commas if ty[s:i] == '[]' and ty.startswith('Callable['): # ] # for `Callable[[], str]` types.append('()') else: types.append(trans_type(ty[s:i], scope, type_token)) i += 1 while ty[i] == ' ': i += 1 s = i #continue # this is not necessary here i += 1 if ty.startswith('Tuple['): # ] return '(' + ', '.join(types) + ')' if ty.startswith('Dict['): # ] assert(len(types) == 2) return '[' + types[0] + ' = ' + types[1] + ']' if ty.startswith('Callable['): # ] assert(len(types) == 2) return '(' + types[0] + ' -> ' + types[1] + ')' if p == 0: # for `Callable` assert(len(types) != 0) parens = len(types) > 1 return '('*parens + ', '.join(types) + ')'*parens return trans_type(ty[:p], scope, type_token) + '[' + ', '.join(types) + ']' assert(ty.find(',') == -1) if '.' in ty: # for `category : Token.Category` return ty # [-TODO: generalize-] id = scope.find(ty) if id is None: raise Error('class `' + ty + '` is not defined', type_token) if id.type != '(Class)': raise Error('`' + ty + '`: expected a class name (got variable' + (' of type `' + id.type + '`' if id.type != '' else '') + ')', type_token) return ty + '&'*id.node.is_inout class ASTTypeHint(ASTNode): var : str type : str type_args : List[str] scope : Scope type_token : Token is_reference = False def __init__(self): self.scope = scope def trans_type(self, ty): return trans_type(ty, self.scope, self.type_token) def to_str_(self, indent, nullable = False): if self.type == 'Callable': if self.type_args[0] == '': args = '()' else: tt = self.type_args[0].split(',') args = ', '.join(self.trans_type(ty) for ty in tt) if len(tt) > 1: args = '(' + args + ')' return ' ' * (indent*3) + '(' + args + ' -> ' + self.trans_type(self.type_args[1]) + ') ' + self.var elif self.type == 'Optional': assert(len(self.type_args) == 1) return ' ' * (indent*3) + self.trans_type(self.type_args[0]) + ('& ' if self.is_reference else '? ') + self.var return ' ' * (indent*3) + self.trans_type(self.type + ('[' + ', '.join(self.type_args) + ']' if len(self.type_args) else '')) + '?'*nullable + '&'*self.is_reference + ' ' + self.var def to_str(self, indent): return self.to_str_(indent) + "\n" class ASTAssignmentWithTypeHint(ASTTypeHint, ASTNodeWithExpression): def to_str(self, indent): if self.type == 'DefaultDict': assert(self.expression.function_call and self.expression.children[0].to_str() == 'collections:defaultdict') return super().to_str(indent) expression_str = self.expression.to_str() if expression_str == 'N': return super().to_str_(indent, True) + "\n" return super().to_str_(indent) + (' = ' + expression_str if expression_str not in ('[]', 'Dict()') else '') + "\n" class ASTFunctionDefinition(ASTNodeWithChildren): function_name : str function_return_type : str = '' is_const = False function_arguments : List[Tuple[str, str, str, str]]# = [] # (arg_name, default_value, type_name, qualifier) first_named_only_argument = None class VirtualCategory(IntEnum): NO = 0 NEW = 1 OVERRIDE = 2 ABSTRACT = 3 ASSIGN = 4 virtual_category = VirtualCategory.NO scope : Scope def __init__(self): super().__init__() self.function_arguments = [] self.scope = scope def serialize_to_dict(self): return {'function_arguments': ['; '.join(arg) for arg in self.function_arguments]} def deserialize_from_dict(self, d): self.function_arguments = [arg.split('; ') for arg in d['function_arguments']] def to_str(self, indent): if self.function_name in ('move', 'copy', 'ref') and type(self.parent) == ASTProgram: assert(len(self.function_arguments) == 1) return '' fargs = [] for arg in self.function_arguments: farg = '' default_value = arg[1] if arg[2] != '': ty = trans_type(arg[2], self.scope, tokens[self.tokeni]) # if ty.endswith('&'): # fix error ‘expected function's argument name’ at `F trazar(Rayo& =r; prof)` (when there was `r = ...` instead of `rr = ...`) # arg = (arg[0].lstrip('='), arg[1], arg[2]) farg += ty if default_value == 'N': farg += '?' assert(arg[3] == '') farg += ' ' if ty.startswith(('Array[', '[', 'Dict[', 'DefaultDict[')) or arg[3] == '&': # ]]]] farg += '&' else: if arg[3] == '&': farg += '&' farg += arg[0] + ('' if default_value == '' else ' = ' + default_value) fargs.append((farg, arg[2] != '')) if self.first_named_only_argument is not None: fargs.insert(self.first_named_only_argument, ("'", fargs[self.first_named_only_argument][1])) if len(self.function_arguments) and self.function_arguments[0][0] == 'self' and type(self.parent) == ASTClassDefinition: fargs.pop(0) fargs_str = '' if len(fargs): fargs_str = fargs[0][0] prev_type = fargs[0][1] for farg in fargs[1:]: fargs_str += ('; ' if prev_type and not farg[1] else ', ') + farg[0] prev_type = farg[1] if self.virtual_category == self.VirtualCategory.ABSTRACT: return ' ' * (indent*3) + 'F.virtual.abstract ' + self.function_name + '(' + fargs_str + ') -> ' + trans_type(self.function_return_type, self.scope, tokens[self.tokeni]) + "\n" return self.children_to_str(indent, ('F', 'F.virtual.new', 'F.virtual.override', '', 'F.virtual.assign')[self.virtual_category] + '.const'*self.is_const + ' ' + {'__init__':'', '__call__':'()', '__and__':'[&]', '__lt__':'<', '__eq__':'==', '__add__':'+', '__sub__':'-', '__mul__':'*', '__str__':'String'}.get(self.function_name, self.function_name) + '(' + fargs_str + ')' + ('' if self.function_return_type == '' else ' -> ' + trans_type(self.function_return_type, self.scope, tokens[self.tokeni]))) class ASTIf(ASTNodeWithChildren, ASTNodeWithExpression): else_or_elif : ASTNode = None def walk_expressions(self, f): super().walk_expressions(f) if self.else_or_elif is not None and isinstance(self.else_or_elif, ASTElseIf): self.else_or_elif.walk_expressions(f) def walk_children(self, f): super().walk_children(f) if self.else_or_elif is not None: self.else_or_elif.walk_children(f) def to_str(self, indent): return self.children_to_str(indent, 'I ' + self.expression.to_str()) + (self.else_or_elif.to_str(indent) if self.else_or_elif is not None else '') class ASTElse(ASTNodeWithChildren): def to_str(self, indent): return self.children_to_str(indent, 'E') class ASTElseIf(ASTNodeWithChildren, ASTNodeWithExpression): else_or_elif : ASTNode = None def walk_expressions(self, f): super().walk_expressions(f) if self.else_or_elif is not None and isinstance(self.else_or_elif, ASTElseIf): self.else_or_elif.walk_expressions(f) def walk_children(self, f): super().walk_children(f) if self.else_or_elif is not None: self.else_or_elif.walk_children(f) def to_str(self, indent): return self.children_to_str(indent, 'E I ' + self.expression.to_str()) + (self.else_or_elif.to_str(indent) if self.else_or_elif is not None else '') class ASTSwitch(ASTNodeWithExpression): class Case(ASTNodeWithChildren, ASTNodeWithExpression): def __init__(self): super().__init__() self.tokeni = 0 cases : List[Case] def __init__(self): self.cases = [] def walk_children(self, f): for case in self.cases: f(case) def to_str(self, indent): r = ' ' * (indent*3) + 'S ' + self.expression.to_str() + "\n" for case in self.cases: r += case.children_to_str(indent + 1, 'E' if case.expression.token_str() == 'E' else case.expression.to_str()) return r class ASTWhile(ASTNodeWithChildren, ASTNodeWithExpression): def to_str(self, indent): return self.children_to_str(indent, 'L' if self.expression.token.category == Token.Category.CONSTANT and self.expression.token.value(source) == 'True' else 'L ' + self.expression.to_str()) class ASTFor(ASTNodeWithChildren, ASTNodeWithExpression): was_no_break : ASTNodeWithChildren = None loop_variables : List[str] os_walk = False dir_filter = None def walk_children(self, f): super().walk_children(f) if self.was_no_break is not None: self.was_no_break.walk_children(f) def to_str(self, indent): if self.os_walk: dir_filter = '' if self.dir_filter is not None: dir_filter = ", dir_filter' " + self.dir_filter # ( return self.children_to_str(indent, 'L(_fname) ' + self.expression.to_str()[:-1] + dir_filter + ", files_only' 0B)\n" + ' ' * ((indent+1)*3) + 'V ' + self.loop_variables[0] + " = fs:path:dir_name(_fname)\n" + ' ' * ((indent+1)*3) + '[String] ' + self.loop_variables[1] + ', ' + self.loop_variables[2] + "\n" + ' ' * ((indent+1)*3) + 'I fs:is_dir(_fname) {' + self.loop_variables[1] + ' [+]= fs:path:base_name(_fname)} E ' + self.loop_variables[2] + ' [+]= fs:path:base_name(_fname)') if len(self.loop_variables) == 1: r = 'L(' + self.loop_variables[0] + ') ' + (self.expression.children[1].to_str() if self.expression.function_call and self.expression.children[0].token_str() == 'range' and # `L(i) 100` instead of `L(i) 0.<100` len(self.expression.children) == 3 and self.expression.children[1].token.category == Token.Category.NUMERIC_LITERAL else self.expression.to_str()) if self.expression.token.category == Token.Category.NAME: sid = self.expression.scope.find(self.expression.token_str()) if sid.type in ('Dict', 'DefaultDict'): r += '.keys()' elif self.expression.symbol.id == '(' and len(self.expression.children) == 1 and self.expression.children[0].symbol.id == '.' and len(self.expression.children[0].children) == 2 and self.expression.children[0].children[1].token_str() == 'items': # ) r = 'L(' + ', '.join(self.loop_variables) + ') ' + self.expression.children[0].children[0].to_str() else: r = 'L(' + ', '.join(self.loop_variables) + ') ' + self.expression.to_str() # r = 'L(' + ''.join(self.loop_variables) + ') ' + self.expression.to_str() # for index, loop_var in enumerate(self.loop_variables): # r += "\n" + ' ' * ((indent+1)*3) + 'V ' + loop_var + ' = ' + ''.join(self.loop_variables) + '[' + str(index) + ']' r = self.children_to_str(indent, r) if self.was_no_break is not None: r += self.was_no_break.children_to_str(indent, 'L.was_no_break') return r class ASTContinue(ASTNode): def to_str(self, indent): return ' ' * (indent*3) + "L.continue\n" class ASTBreak(ASTNode): def to_str(self, indent): return ' ' * (indent*3) + "L.break\n" class ASTReturn(ASTNodeWithExpression): def to_str(self, indent): return ' ' * (indent*3) + 'R' + (' ' + self.expression.to_str() if self.expression is not None else '') + "\n" def walk_expressions(self, f): if self.expression is not None: f(self.expression) class ASTException(ASTNodeWithExpression): def to_str(self, indent): return ' ' * (indent*3) + 'X ' + self.expression.to_str() + "\n" class ASTExceptionTry(ASTNodeWithChildren): def to_str(self, indent): return self.children_to_str(indent, 'X.try') class ASTExceptionCatch(ASTNodeWithChildren): exception_object_type : str exception_object_name : str = '' def to_str(self, indent): return self.children_to_str(indent, 'X.catch' + (' ' + self.exception_object_type if self.exception_object_type != '' else '') + (' ' + self.exception_object_name if self.exception_object_name != '' else '')) class ASTDel(ASTNodeWithExpression): def to_str(self, indent): assert(self.expression.slicing and len(self.expression.children) == 3) return ' ' * (indent*3) + self.expression.children[0].to_str() + '.del(' + self.expression.children[1].to_str() + ' .< ' + self.expression.children[2].to_str() + ")\n" class ASTClassDefinition(ASTNodeWithChildren): base_class_name : str = None base_class_node : 'ASTClassDefinition' = None class_name : str is_inout = False def find_member_including_base_classes(self, name): for child in self.children: if isinstance(child, ASTTypeHint) and child.var == name: return True if self.base_class_node is not None: return self.base_class_node.find_member_including_base_classes(name) return False def to_str(self, indent): if self.base_class_name == 'IntEnum': r = ' ' * (indent*3) + 'T.enum ' + self.class_name + "\n" current_index = 0 for c in self.children: assert(type(c) == ASTExprAssignment and c.expression.token.category == Token.Category.NUMERIC_LITERAL) r += ' ' * ((indent+1)*3) + c.dest_expression.to_str() if current_index != int(c.expression.token_str()): current_index = int(c.expression.token_str()) r += ' = ' + c.expression.token_str() current_index += 1 r += "\n" return r return self.children_to_str(indent, 'T ' + self.class_name + ('(' + self.base_class_name + ')' if self.base_class_name and self.base_class_name != 'Exception' else '')) class ASTPass(ASTNode): def to_str(self, indent): return ' ' * ((indent-1)*3) + "{\n"\ + ' ' * ((indent-1)*3) + "}\n" class ASTStart(ASTNodeWithChildren): def to_str(self, indent): return self.children_to_str(indent-1, ':start:') class Error(Exception): def __init__(self, message, token): self.message = message self.pos = token.start self.end = token.end def next_token(): # why ‘next_token’: >[https://youtu.be/Nlqv6NtBXcA?t=1203]:‘we'll have an advance method which will fetch the next token’ global token, tokeni, tokensn if token is None and tokeni != -1: raise Error('no more tokens', Token(len(source), len(source), Token.Category.STATEMENT_SEPARATOR)) tokeni += 1 if tokeni == len(tokens): token = None tokensn = None else: token = tokens[tokeni] tokensn = SymbolNode(token) if token.category != Token.Category.INDENT: if token.category != Token.Category.KEYWORD or token.value(source) in allowed_keywords_in_expressions: key : str if token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL): key = '(literal)' elif token.category == Token.Category.NAME: key = '(name)' if token.value(source) in ('V', 'C', 'I', 'E', 'F', 'L', 'N', 'R', 'S', 'T', 'X', 'var', 'fn', 'loop', 'null', 'switch', 'type', 'exception', 'sign'): tokensn.token_str_override = '_' + token.value(source).lower() + '_' elif token.category == Token.Category.CONSTANT: key = '(constant)' elif token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.DEDENT): key = ';' else: key = token.value(source) tokensn.symbol = symbol_table[key] def advance(value): if token.value(source) != value: raise Error('expected `' + value + '`', token) next_token() def peek_token(how_much = 1): return tokens[tokeni+how_much] if tokeni+how_much < len(tokens) else Token() # This implementation is based on [http://svn.effbot.org/public/stuff/sandbox/topdown/tdop-4.py] def expression(rbp = 0): def check_tokensn(): if tokensn.symbol is None: raise Error('no symbol corresponding to token `' + token.value(source) + '` (belonging to ' + str(token.category) +') found while parsing expression', token) check_tokensn() t = tokensn next_token() check_tokensn() left = t.symbol.nud(t) while rbp < tokensn.symbol.lbp: t = tokensn next_token() left = t.symbol.led(t, left) check_tokensn() return left def infix(id, bp): def led(self, left): self.append_child(left) self.append_child(expression(self.symbol.led_bp)) return self symbol(id, bp).set_led_bp(bp, led) def infix_r(id, bp): def led(self, left): self.append_child(left) self.append_child(expression(self.symbol.led_bp - 1)) return self symbol(id, bp).set_led_bp(bp, led) def prefix(id, bp): def nud(self): self.append_child(expression(self.symbol.nud_bp)) return self symbol(id).set_nud_bp(bp, nud) symbol("lambda", 20) symbol("if", 20); symbol("else") # ternary form infix_r("or", 30); infix_r("and", 40); prefix("not", 50) infix("in", 60); infix("not", 60) # not in infix("is", 60); infix("<", 60); infix("<=", 60) infix(">", 60); infix(">=", 60) infix("<>", 60); infix("!=", 60); infix("==", 60) infix("|", 70); infix("^", 80); infix("&", 90) infix("<<", 100); infix(">>", 100) infix("+", 110); infix("-", 110) infix("*", 120); infix("/", 120); infix("//", 120) infix("%", 120) prefix("-", 130); prefix("+", 130); prefix("~", 130) infix_r("**", 140) symbol(".", 150); symbol("[", 150); symbol("(", 150); symbol(")"); symbol("]") infix_r('+=', 10); infix_r('-=', 10); infix_r('*=', 10); infix_r('/=', 10); infix_r('//=', 10); infix_r('%=', 10); infix_r('>>=', 10); infix_r('<<=', 10); infix_r('**=', 10); infix_r('|=', 10); infix_r('^=', 10); infix_r('&=', 10) symbol("(name)").nud = lambda self: self symbol("(literal)").nud = lambda self: self symbol('(constant)').nud = lambda self: self #symbol("(end)") symbol(';') symbol(',') def led(self, left): if token.category != Token.Category.NAME: raise Error('expected an attribute name', token) self.append_child(left) self.append_child(tokensn) next_token() return self symbol('.').led = led def led(self, left): self.function_call = True self.append_child(left) # ( if token.value(source) != ')': while True: if token.value(source) == '*': # >[https://stackoverflow.com/a/19525681/2692494 <- google:‘python iterable unpacking precedence’]:‘The unpacking `*` is not an operator; it's part of the call syntax.’ if len(self.children) != 1: raise Error('iterable unpacking is supported only in first agrument', token) if not (left.token.category == Token.Category.NAME and left.token_str() == 'print'): raise Error('iterable unpacking is supported only for `print()` function', token) self.iterable_unpacking = True next_token() self.append_child(expression()) if token.value(source) == '=': next_token() self.append_child(expression()) else: self.children.append(None) if token.value(source) != ',': break advance(',') # ( advance(')') return self symbol('(').led = led def nud(self): comma = False # (( if token.value(source) != ')': while True: if token.value(source) == ')': break self.append_child(expression()) if token.value(source) != ',': break comma = True advance(',') advance(')') if len(self.children) == 0 or comma: self.tuple = True return self symbol('(').nud = nud # ) def led(self, left): self.append_child(left) if token.value(source) == ':': self.slicing = True self.children.append(None) next_token() # [ if token.value(source) != ']': # for `arr[:]` if token.value(source) == ':': self.children.append(None) next_token() self.append_child(expression()) else: self.append_child(expression()) if token.value(source) == ':': next_token() self.append_child(expression()) else: self.append_child(expression()) if token.value(source) == ':': self.slicing = True next_token() # [[ if token.value(source) != ']': if token.value(source) == ':': self.children.append(None) next_token() self.append_child(expression()) else: self.append_child(expression()) if token.value(source) == ':': next_token() self.append_child(expression()) else: self.children.append(None) advance(']') return self symbol('[').led = led def nud(self): self.is_list = True while True: # [ if token.value(source) == ']': break self.append_child(expression()) if token.value(source) != ',': break advance(',') advance(']') return self symbol('[').nud = nud # ] def nud(self): # {{{{ if token.value(source) != '}': while True: if token.value(source) == '}': break self.append_child(expression()) if token.value(source) != ':': self.is_set = True while True: if token.value(source) != ',': break advance(',') if token.value(source) == '}': break self.append_child(expression()) break advance(':') self.append_child(expression()) if self.children[-1].symbol.id == 'for': for_scope = self.children[-1].children[0].scope def set_scope_recursive(sn): assert(sn.scope == scope) sn.scope = for_scope for child in sn.children: if child is not None: set_scope_recursive(child) set_scope_recursive(self.children[0]) break if token.value(source) != ',': break advance(',') advance('}') return self symbol('{').nud = nud symbol('}') def led(self, left): self.append_child(left) self.append_child(expression()) advance('else') self.append_child(expression()) return self symbol('if').led = led symbol(':'); symbol('='); symbol('->') def nud(self): global scope prev_scope = scope scope = Scope([]) scope.is_lambda_or_for = True scope.parent = prev_scope if token.value(source) != ':': while True: if token.category != Token.Category.NAME: raise Error('expected an argument name', token) tokensn.scope = scope scope.add_var(tokensn.token_str()) self.append_child(tokensn) next_token() if token.value(source) == '=': next_token() self.append_child(expression()) else: self.children.append(None) if token.value(source) != ',': break advance(',') advance(':') self.append_child(expression()) scope = prev_scope return self symbol('lambda').nud = nud def led(self, left): global scope prev_scope = scope scope = for_scope = Scope([]) scope.is_lambda_or_for = True scope.parent = prev_scope def set_scope_recursive(sn): if sn.scope == prev_scope: sn.scope = scope elif sn.scope.parent == prev_scope: # for nested list comprehensions sn.scope.parent = scope else: # this `sn.scope` was already processed assert(sn.scope.parent == scope) for child in sn.children: if child is not None: set_scope_recursive(child) set_scope_recursive(left) tokensn.scope = scope scope.add_var(tokensn.token_str()) self.append_child(left) self.append_child(tokensn) next_token() if token.value(source) == ',': sn = SymbolNode(Token(token.start, token.start, Token.Category.OPERATOR_OR_DELIMITER)) sn.symbol = symbol_table['('] # ) sn.tuple = True sn.append_child(self.children.pop()) self.append_child(sn) next_token() scope.add_var(tokensn.token_str()) sn.append_child(tokensn) next_token() if token.value(source) == ',': next_token() scope.add_var(tokensn.token_str()) sn.append_child(tokensn) next_token() scope = prev_scope advance('in') if_lbp = symbol('if').lbp symbol('if').lbp = 0 self.append_child(expression()) symbol('if').lbp = if_lbp if token.value(source) == 'if': scope = for_scope next_token() self.append_child(expression()) scope = prev_scope if self.children[2].token_str() == 'for': # this is a multiloop for_scope.add_var(self.children[2].children[1].token_str()) def set_scope_recursive(sn): sn.scope = scope for child in sn.children: if child is not None: set_scope_recursive(child) set_scope_recursive(self.children[2].children[0]) def set_for_scope_recursive(sn): sn.scope = for_scope for child in sn.children: if child is not None: set_for_scope_recursive(child) if self.children[2].children[2].token_str() == 'for': # this is a multiloop3 for_scope.add_var(self.children[2].children[2].children[1].token_str()) if len(self.children[2].children[2].children) == 4: set_for_scope_recursive(self.children[2].children[2].children[3]) else: if len(self.children[2].children) == 4: set_for_scope_recursive(self.children[2].children[3]) return self symbol('for', 20).led = led # multitoken operators def led(self, left): if token.value(source) != 'in': raise Error('invalid syntax', token) next_token() self.append_child(left) self.append_child(expression(60)) return self symbol('not').led = led def led(self, left): if token.value(source) == 'not': next_token() self.is_not = True self.append_child(left) self.append_child(expression(60)) return self symbol('is').led = led def parse_internal(this_node, one_line_scope = False): global token def new_scope(node, func_args = None): if token.value(source) != ':': raise Error('expected `:`', Token(tokens[tokeni-1].end, tokens[tokeni-1].end, tokens[tokeni-1].category)) next_token() global scope prev_scope = scope scope = Scope(func_args) scope.parent = prev_scope if token.category != Token.Category.INDENT: # handling of `if ...: break`, `def ...(...): return ...`, etc. if one_line_scope: raise Error('unexpected `:` (only one `:` in one line is allowed)', tokens[tokeni-1]) tokensn.scope = scope # for `if ...: new_var = ...` (though code `if ...: new_var = ...` has no real application, this line is needed for correct error message outputting) parse_internal(node, True) else: next_token() parse_internal(node) scope = prev_scope if token is not None: tokensn.scope = scope def expected(ch): if token.value(source) != ch: raise Error('expected `'+ch+'`', token) next_token() def expected_name(what_name): next_token() if token.category != Token.Category.NAME: raise Error('expected ' + what_name, token) token_value = tokensn.token_str() next_token() return token_value def check_vars_defined(sn : SymbolNode): if sn.token.category == Token.Category.NAME: if sn.parent is None or sn.parent.symbol.id != '.' or sn is sn.parent.children[0]: # in `a.b` only `a` [first child] is checked if not sn.skip_find_and_get_prefix: sn.scope_prefix = sn.scope.find_and_get_prefix(sn.token_str(), sn.token) else: if sn.function_call: check_vars_defined(sn.children[0]) for i in range(1, len(sn.children), 2): if sn.children[i+1] is None: check_vars_defined(sn.children[i]) else: check_vars_defined(sn.children[i+1]) # checking of named arguments (sn.children[i]) is skipped else: for child in sn.children: if child is not None: check_vars_defined(child) while token is not None: if token.category == Token.Category.KEYWORD: global scope if token.value(source) == 'import': if type(this_node) != ASTProgram: raise Error('only global import statements are supported', token) node = ASTImport() next_token() while True: if token.category != Token.Category.NAME: raise Error('expected module name', token) module_name = token.value(source) while peek_token().value(source) == '.': next_token() next_token() if token.category != Token.Category.NAME: raise Error('expected module name', token) module_name += '.' + token.value(source) node.modules.append(module_name) # Process module [transpile it if necessary] if module_name not in ('sys', 'tempfile', 'os', 'time', 'datetime', 'math', 'cmath', 're', 'random', 'collections', 'heapq', 'itertools', 'eldf'): if this_node.imported_modules is not None: this_node.imported_modules.append(module_name) module_file_name = os.path.join(os.path.dirname(file_name), module_name.replace('.', '/')).replace('\\', '/') # `os.path.join()` is needed for case when `os.path.dirname(file_name)` is empty string, `replace('\\', '/')` is needed for passing 'tests/parser/errors.txt' try: modulefstat = os.stat(module_file_name + '.py') except FileNotFoundError: raise Error('can not import module `' + module_name + "`: file '" + module_file_name + ".py' is not found", token) _11l_file_mtime = 0 if os.path.isfile(module_file_name + '.11l'): _11l_file_mtime = os.stat(module_file_name + '.11l').st_mtime modified = _11l_file_mtime == 0 \ or modulefstat.st_mtime > _11l_file_mtime \ or os.stat(__file__).st_mtime > _11l_file_mtime \ or os.stat(os.path.dirname(__file__) + '/tokenizer.py').st_mtime > _11l_file_mtime \ or not os.path.isfile(module_file_name + '.py_global_scope') if not modified: # check for dependent modules modifications py_global_scope = eldf.parse(open(module_file_name + '.py_global_scope', encoding = 'utf-8-sig').read()) py_imported_modules = py_global_scope['Imported modules'] for m in py_imported_modules: if os.stat(os.path.join(os.path.dirname(module_file_name), m.replace('.', '/') + '.py')).st_mtime > _11l_file_mtime: modified = True break if modified: module_source = open(module_file_name + '.py', encoding = 'utf-8-sig').read() imported_modules = [] prev_scope = scope s = parse_and_to_str(tokenizer.tokenize(module_source), module_source, module_file_name + '.py', imported_modules) modules[module_name] = Module(scope) open(module_file_name + '.11l', 'w', encoding = 'utf-8', newline = "\n").write(s) open(module_file_name + '.py_global_scope', 'w', encoding = 'utf-8', newline = "\n").write(eldf.to_eldf(scope.serialize_to_dict(imported_modules))) scope = prev_scope if this_node.imported_modules is not None: this_node.imported_modules.extend(imported_modules) else: module_scope = Scope(None) module_scope.deserialize_from_dict(py_global_scope) modules[module_name] = Module(module_scope) if this_node.imported_modules is not None: this_node.imported_modules.extend(py_imported_modules) if '.' in module_name: scope.add_var(module_name.split('.')[0], True, '(Module)') scope.add_var(module_name, True, '(Module)') next_token() if token.value(source) != ',': break next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) == 'from': next_token() assert(token.value(source) in ('typing', 'functools', 'itertools', 'enum', 'copy')) next_token() advance('import') while True: if token.category != Token.Category.NAME: raise Error('expected name', token) next_token() if token.value(source) != ',': break next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() continue elif token.value(source) == 'def': node = ASTFunctionDefinition() node.function_name = expected_name('function name') scope.add_var(node.function_name, True, node = node) if token.value(source) != '(': # ) raise Error('expected `(` after function name', token) # )( next_token() was_default_argument = False def advance_type(): type_ = token.value(source) next_token() if token.value(source) == '[': # ] nesting_level = 0 while True: type_ += token.value(source) if token.value(source) == '[': next_token() nesting_level += 1 elif token.value(source) == ']': next_token() nesting_level -= 1 if nesting_level == 0: break elif token.value(source) == ',': type_ += ' ' next_token() else: if token.category != Token.Category.NAME: raise Error('expected subtype name', token) next_token() return type_ while token.value(source) != ')': if token.value(source) == '*': assert(node.first_named_only_argument is None) node.first_named_only_argument = len(node.function_arguments) next_token() advance(',') continue if token.category != Token.Category.NAME: raise Error('expected function\'s argument name', token) func_arg_name = tokensn.token_str() next_token() type_ = '' qualifier = '' if token.value(source) == ':': # this is a type hint next_token() if token.category == Token.Category.STRING_LITERAL: type_ = token.value(source)[1:-1] if token.value(source)[0] == '"': # `def insert(i, n : "Node"):` -> `F insert(i, Node &n)` qualifier = '&' next_token() else: type_ = advance_type() if type_ == 'list': type_ = '' qualifier = '&' if token.value(source) == '=': next_token() expr = expression() check_vars_defined(expr) default = expr.to_str() was_default_argument = True else: if was_default_argument and node.first_named_only_argument is None: raise Error('non-default argument follows default argument', tokens[tokeni-1]) default = '' node.function_arguments.append((func_arg_name, default, type_, qualifier)) # (( if token.value(source) not in ',)': raise Error('expected `,` or `)` in function\'s arguments list', token) if token.value(source) == ',': next_token() next_token() if token.value(source) == '->': next_token() if token.value(source) == 'None': node.function_return_type = 'None' next_token() else: node.function_return_type = advance_type() if source[token.end:token.end+7] == ' # -> &': node.function_return_type += '&' elif source[token.end:token.end+8] == ' # const': node.is_const = True node.parent = this_node new_scope(node, map(lambda arg: (arg[0], arg[2]), node.function_arguments)) if len(node.children) == 0: # needed for: n = ASTPass() # class FileToStringProxy: n.parent = node # def __init__(self): node.children.append(n) # self.result = [] # Detect virtual functions and assign `virtual_category` if type(this_node) == ASTClassDefinition and node.function_name != '__init__': if this_node.base_class_node is not None: for child in this_node.base_class_node.children: if type(child) == ASTFunctionDefinition and child.function_name == node.function_name: if child.virtual_category == ASTFunctionDefinition.VirtualCategory.NO: if child.function_return_type == '': raise Error('please specify return type of virtual function', tokens[child.tokeni]) if len(child.children) and type(child.children[0]) == ASTException and child.children[0].expression.symbol.id == '(' and child.children[0].expression.children[0].token.value(source) == 'NotImplementedError': # ) child.virtual_category = ASTFunctionDefinition.VirtualCategory.ABSTRACT else: child.virtual_category = ASTFunctionDefinition.VirtualCategory.NEW node.virtual_category = ASTFunctionDefinition.VirtualCategory.ASSIGN if child.virtual_category == ASTFunctionDefinition.VirtualCategory.ABSTRACT else ASTFunctionDefinition.VirtualCategory.OVERRIDE if node.function_return_type == '': # specifying return type of overriden virtual functions is not necessary — it can be taken from original virtual function definition node.function_return_type = child.function_return_type break elif token.value(source) == 'class': node = ASTClassDefinition() node.class_name = expected_name('class name') scope.add_var(node.class_name, True, '(Class)', node = node) if token.value(source) == '(': node.base_class_name = expected_name('base class name') if node.base_class_name != 'Exception': base_class = scope.find(node.base_class_name) if base_class is None: raise Error('class `' + node.base_class_name + '` is not defined', tokens[tokeni-1]) if base_class.type != '(Class)': raise Error('expected a class name', tokens[tokeni-1]) assert(type(base_class.node) == ASTClassDefinition) node.base_class_node = base_class.node expected(')') if source[token.end:token.end+4] == ' # &': node.is_inout = True new_scope(node) elif token.value(source) == 'pass': node = ASTPass() next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) == 'if': if peek_token().value(source) == '__name__': node = ASTStart() next_token() next_token() assert(token.value(source) == '==') next_token() assert(token.value(source) in ("'__main__'", '"__main__"')) next_token() new_scope(node) else: node = ASTIf() next_token() node.set_expression(expression()) new_scope(node) n = node while token is not None and token.value(source) in ('elif', 'else'): if token.value(source) == 'elif': n.else_or_elif = ASTElseIf() n.else_or_elif.parent = n n = n.else_or_elif next_token() n.set_expression(expression()) new_scope(n) if token is not None and token.value(source) == 'else': n.else_or_elif = ASTElse() n.else_or_elif.parent = n next_token() new_scope(n.else_or_elif) break elif token.value(source) == 'while': node = ASTWhile() next_token() node.set_expression(expression()) if node.expression.token.category in (Token.Category.CONSTANT, Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL) and node.expression.token.value(source) != 'True': raise Error('do you mean `while True`?', node.expression.token) # forbid `while 1:` new_scope(node) elif token.value(source) == 'for': node = ASTFor() next_token() prev_scope = scope scope = Scope(None) scope.parent = prev_scope node.loop_variables = [tokensn.token_str()] scope.add_var(node.loop_variables[0], True) next_token() while token.value(source) == ',': next_token() node.loop_variables.append(tokensn.token_str()) scope.add_var(tokensn.token_str(), True) next_token() advance('in') node.set_expression(expression()) new_scope(node) scope = prev_scope if token is not None and token.value(source) == 'else': node.was_no_break = ASTNodeWithChildren() node.was_no_break.parent = node next_token() new_scope(node.was_no_break) elif token.value(source) == 'continue': node = ASTContinue() next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) == 'break': node = ASTBreak() next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) == 'return': node = ASTReturn() next_token() if token.category in (Token.Category.DEDENT, Token.Category.STATEMENT_SEPARATOR): node.expression = None else: node.set_expression(expression()) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) in ('nonlocal', 'global'): nonlocal_or_global = token.value(source) next_token() while True: if token.category != Token.Category.NAME: raise Error('expected ' + nonlocal_or_global + ' variable name', token) if nonlocal_or_global == 'nonlocal': if source[token.end + 1 : token.end + 5] == "# =\n": scope.nonlocals_copy.add(token.value(source)) else: scope.nonlocals.add(token.value(source)) else: scope.globals.add(token.value(source)) next_token() if token.value(source) == ',': next_token() else: break if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() continue elif token.value(source) == 'assert': node = ASTAssert() next_token() node.set_expression(expression()) if token.value(source) == ',': next_token() node.set_expression2(expression()) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) == 'raise': node = ASTException() next_token() node.set_expression(expression()) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) == 'try': node = ASTExceptionTry() next_token() new_scope(node) elif token.value(source) == 'except': node = ASTExceptionCatch() prev_scope = scope scope = Scope(None) scope.parent = prev_scope if peek_token().value(source) != ':': node.exception_object_type = expected_name('exception object type name') while token.value(source) == '.': node.exception_object_type += ':' + expected_name('type name') if node.exception_object_type.startswith('self:'): node.exception_object_type = '.' + node.exception_object_type[5:] if token.value(source) != ':': advance('as') if token.category != Token.Category.NAME: raise Error('expected exception object name', token) node.exception_object_name = tokensn.token_str() scope.add_var(node.exception_object_name, True) next_token() else: next_token() node.exception_object_type = '' new_scope(node) scope = prev_scope elif token.value(source) == 'del': node = ASTDel() next_token() node.set_expression(expression()) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() else: raise Error('unrecognized statement started with keyword', token) elif token.category == Token.Category.NAME and peek_token().value(source) == '=': name_token = token name_token_str = tokensn.token_str() node = ASTExprAssignment() node.set_dest_expression(tokensn) next_token() next_token() node.set_expression(expression()) if node.expression.symbol.id == '.' and len(node.expression.children) == 2 and node.expression.children[1].token_str().isupper(): # replace `category = Token.Category.NAME` with `category = NAME` node.set_expression(node.expression.children[1]) node.expression.parent = None node.expression.skip_find_and_get_prefix = True # this can not be replaced with `isupper()` check before `find_and_get_prefix()` call because there will be conflict with uppercase [constant] variables, like `WIDTH` or `HEIGHT` (they[‘variables’] will not be checked, but they should) type_name = '' if node.expression.token.category == Token.Category.STRING_LITERAL or (node.expression.function_call and node.expression.children[0].token_str() == 'str') \ or (node.expression.symbol.id == '+' and len(node.expression.children) == 2 and (node.expression.children[0].token.category == Token.Category.STRING_LITERAL or node.expression.children[1].token.category == Token.Category.STRING_LITERAL)): type_name = 'str' elif node.expression.var_type() == 'List': type_name = 'List' elif node.expression.is_dict(): type_name = 'Dict' elif node.expression.function_call and node.expression.children[0].symbol.id == '.' and \ node.expression.children[0].children[0].token_str() == 'collections' and \ node.expression.children[0].children[1].token_str() == 'defaultdict': type_name = 'DefaultDict' node.add_vars = [scope.add_var(name_token_str, False, type_name, name_token)] if node.expression.symbol.id == '[' and len(node.expression.children) == 0: # ] if node.add_vars[0]: raise Error('please specify type of empty list', Token(node.dest_expression.token.start, node.expression.token.end + 1, Token.Category.NAME)) node.drop_list = True if not (token is None or token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.DEDENT)): # `poss_nbors = (x-1,y),(x-1,y+1)` raise Error('expected end of statement', token) # ^ if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() if ((node.dest_expression.token_str() == 'Char' and node.expression.token_str() == 'str') # skip `Char = str` statement or (node.dest_expression.token_str() == 'Byte' and node.expression.token_str() == 'int') # skip `Byte = int` statement or (node.dest_expression.token_str() == 'Int64' and node.expression.token_str() == 'int') # skip `Int64 = int` statement or (node.dest_expression.token_str() == 'UInt64' and node.expression.token_str() == 'int') # skip `UInt64 = int` statement or (node.dest_expression.token_str() == 'UInt32' and node.expression.token_str() == 'int')): # skip `UInt32 = int` statement continue elif token.category == Token.Category.NAME and (peek_token().value(source) == ':' # this is type hint or (token.value(source) == 'self' and peek_token().value(source) == '.' and peek_token(2).category == Token.Category.NAME) and peek_token(3).value(source) == ':'): is_self = peek_token().value(source) == '.' if is_self: if not (type(this_node) == ASTFunctionDefinition and this_node.function_name == '__init__'): raise Error('type annotation for `self.*` is permitted only inside `__init__`', token) next_token() next_token() name_token = token var = tokensn.token_str() next_token() advance(':') if token.category not in (Token.Category.NAME, Token.Category.STRING_LITERAL): raise Error('expected type name', token) type_ = token.value(source) if token.category == Token.Category.NAME else token.value(source)[1:-1] type_token = token next_token() while token.value(source) == '.': # for `category : Token.Category` type_ += '.' + expected_name('type name') if is_self: scope.parent.add_var(var, True, type_, name_token) else: scope.add_var(var, True, type_, name_token) type_args = [] if token.value(source) == '[': next_token() while token.value(source) != ']': if token.value(source) == '[': # for `Callable[[str, int], str]` next_token() if token.value(source) == ']': # for `Callable[[], str]` type_arg = '' else: type_arg = token.value(source) next_token() while token.value(source) == ',': next_token() type_arg += ',' + token.value(source) next_token() # [ advance(']') type_args.append(type_arg) elif peek_token().value(source) == '[': # ] # for `table : List[List[List[str]]] = []` and `empty_list : List[List[str]] = []` type_arg = token.value(source) next_token() nesting_level = 0 while True: type_arg += token.value(source) if token.value(source) == '[': next_token() nesting_level += 1 elif token.value(source) == ']': next_token() nesting_level -= 1 if nesting_level == 0: break elif token.value(source) == ',': type_arg += ' ' next_token() else: assert(token.category == Token.Category.NAME) next_token() type_args.append(type_arg) else: type_args.append(token.value(source)) next_token() while token.value(source) == '.': # for `datetime.date` in `dates : List[datetime.date] = []` type_args[-1] += '.' + expected_name('subtype name') # [[ if token.value(source) not in ',]': raise Error('expected `,` or `]` in type\'s arguments list', token) if token.value(source) == ',': next_token() next_token() if token is not None and token.value(source) == '=': node = ASTAssignmentWithTypeHint() next_token() node.set_expression(expression()) else: node = ASTTypeHint() if source[tokens[tokeni-1].end:tokens[tokeni-1].end+4] == ' # &': node.is_reference = True if not (token is None or token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.DEDENT)): raise Error('expected end of statement', token) node.type_token = type_token node.var = var node.type = type_ node.type_args = type_args assert(token is None or token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.DEDENT)) # [-replace with `raise Error` with meaningful error message after first precedent of triggering this assert-] if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() if is_self: node.parent = this_node.parent this_node.parent.children.append(node) node.walk_expressions(check_vars_defined) continue elif token.category == Token.Category.DEDENT: next_token() if token.category == Token.Category.STATEMENT_SEPARATOR: # Token.Category.EOF next_token() assert(token is None) return else: node_expression = expression() if token is not None and token.value(source) == '=': node = ASTExprAssignment() if node_expression.token.category == Token.Category.NAME: assert(False) #node.add_var = scope.add_var(node_expression.token.value(source)) if node_expression.tuple: node.add_vars = [] for v in node_expression.children: if v.token.category != Token.Category.NAME: node.is_tuple_assign_expression = True break node.add_vars.append(scope.add_var(v.token_str())) else: node.add_vars = [False] node.set_dest_expression(node_expression) next_token() while True: expr = expression() if token is not None and token.value(source) == '=': expr.ast_parent = node node.additional_dest_expressions.append(expr) next_token() else: node.set_expression(expr) break else: node = ASTExpression() node.set_expression(node_expression) if not (token is None or token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.DEDENT)): raise Error('expected end of statement', token) if not (token is None or token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.DEDENT)): # `(w, h) = int(w1), int(h1)` raise Error('expected end of statement', token) # ^ if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() if (type(node) == ASTExprAssignment and node_expression.token_str() == '.' and node_expression.children[0].token_str() == 'self' and type(this_node) == ASTFunctionDefinition and this_node.function_name == '__init__'): # only in constructors assert(type(this_node.parent) == ASTClassDefinition) found_in_base_class = False if this_node.parent.base_class_node is not None: found_in_base_class = this_node.parent.base_class_node.find_member_including_base_classes(node_expression.children[1].token_str()) if not found_in_base_class and scope.parent.add_var(node_expression.children[1].token_str()): if node.expression.symbol.id == '[' and len(node.expression.children) == 0: # ] raise Error('please specify type of empty list', Token(node.dest_expression.leftmost(), node.expression.rightmost(), Token.Category.NAME)) node.add_vars = [True] node.set_dest_expression(node_expression.children[1]) node.parent = this_node.parent this_node.parent.children.append(node) node.walk_expressions(check_vars_defined) continue elif ((node.expression.symbol.id == '[' and len(node.expression.children) == 0) # ] # skip `self.* = []` because `create_array({})` is meaningless or (node.expression.symbol.id == '(' and len(node.expression.children) == 1 and node.expression.children[0].token_str() == 'set')): # ) # skip `self.* = set()` continue node.walk_expressions(check_vars_defined) node.parent = this_node this_node.children.append(node) if one_line_scope and tokens[tokeni-1].value(source) != ';': return return tokens = [] source = '' tokeni = -1 token = Token(0, 0, Token.Category.STATEMENT_SEPARATOR) scope = Scope(None) tokensn = SymbolNode(token) file_name = '' def parse_and_to_str(tokens_, source_, file_name_, imported_modules = None): if len(tokens_) == 0: return ASTProgram().to_str() global tokens, source, tokeni, token, scope, tokensn, file_name prev_tokens = tokens prev_source = source prev_tokeni = tokeni prev_token = token # prev_scope = scope prev_tokensn = tokensn prev_file_name = file_name tokens = tokens_ + [Token(len(source_), len(source_), Token.Category.STATEMENT_SEPARATOR)] source = source_ tokeni = -1 token = None scope = Scope(None) for pytype in python_types_to_11l: scope.add_var(pytype) scope.add_var('IntEnum', True, '(Class)', node = ASTClassDefinition()) file_name = file_name_ next_token() p = ASTProgram() p.imported_modules = imported_modules parse_internal(p) def check_for_and_or(node): def f(e : SymbolNode): if e.symbol.id == 'or' and \ (e.children[0].symbol.id == 'and' or e.children[1].symbol.id == 'and'): if e.children[0].symbol.id == 'and': start = e.children[0].children[0].leftmost() end = e.children[1].rightmost() midend = e.children[0].children[1].rightmost() midstart = e.children[0].children[1].leftmost() else: start = e.children[0].leftmost() end = e.children[1].children[1].rightmost() midend = e.children[1].children[0].rightmost() midstart = e.children[1].children[0].leftmost() raise Error("relative precedence of operators `and` and `or` is undetermined; please add parentheses this way:\n`(" + source[start:midend ] + ')' + source[midend :end] + "`\nor this way:\n`" + source[start:midstart] + '(' + source[midstart:end] + ')`', Token(start, end, Token.Category.OPERATOR_OR_DELIMITER)) for child in e.children: if child is not None: f(child) node.walk_expressions(f) node.walk_children(check_for_and_or) check_for_and_or(p) def transformations(node): if isinstance(node, ASTNodeWithChildren): index = 0 while index < len(node.children): child = node.children[index] if index < len(node.children) - 1 and type(child) == ASTExprAssignment and child.dest_expression.token.category == Token.Category.NAME and type(node.children[index+1]) == ASTIf and type(node.children[index+1].else_or_elif) == ASTElseIf: # transform if-elif-else chain into switch if_node = node.children[index+1] var_name = child.dest_expression.token.value(source) transformation_possible = True while True: if not (if_node.expression.symbol.id == '==' and if_node.expression.children[0].token.category == Token.Category.NAME and if_node.expression.children[0].token.value(source) == var_name and if_node.expression.children[1].token.category in (Token.Category.STRING_LITERAL, Token.Category.NUMERIC_LITERAL)): transformation_possible = False break if_node = if_node.else_or_elif if if_node is None or type(if_node) == ASTElse: break if transformation_possible: tid = child.dest_expression.scope.find(var_name) assert(tid is not None) found_reference_to_var_name = False def find_reference_to_var_name(node): def f(e : SymbolNode): if e.token.category == Token.Category.NAME and e.token_str() == var_name and id(e.scope.find(var_name)) == id(tid): nonlocal found_reference_to_var_name found_reference_to_var_name = True return for child in e.children: if child is not None: f(child) node.walk_expressions(f) node.walk_children(find_reference_to_var_name) if_node = node.children[index+1] while True: if_node.walk_children(find_reference_to_var_name) # looking for switch variable inside switch statements if found_reference_to_var_name: break if type(if_node) == ASTElse: break if_node = if_node.else_or_elif if if_node is None: break if not found_reference_to_var_name: i = index + 2 while i < len(node.children): find_reference_to_var_name(node.children[i]) # looking for switch variable after switch if found_reference_to_var_name: break i += 1 switch_node = ASTSwitch() switch_node.set_expression(child.dest_expression if found_reference_to_var_name else child.expression) if_node = node.children[index+1] while True: case = ASTSwitch.Case() case.parent = switch_node case.set_expression(SymbolNode(Token(0, 0, Token.Category.KEYWORD), 'E') if type(if_node) == ASTElse else if_node.expression.children[1]) case.children = if_node.children for child in case.children: child.parent = case switch_node.cases.append(case) if type(if_node) == ASTElse: break if_node = if_node.else_or_elif if if_node is None: break if found_reference_to_var_name: index += 1 else: node.children.pop(index) node.children.pop(index) node.children.insert(index, switch_node) switch_node.parent = node continue # to update child = node.children[index] if index < len(node.children) - 1 and type(child) == ASTExpression and child.expression.symbol.id == '-=' and child.expression.children[1].token.value(source) == '1' \ and type(node.children[index+1]) == ASTIf and len(node.children[index+1].expression.children) == 2 \ and node.children[index+1].expression.children[0].token.value(source) == child.expression.children[0].token.value(source): # transform `nesting_level -= 1 \n if nesting_level == 0:` into `if --nesting_level == 0` child.expression.parent = node.children[index+1].expression#.children[0].parent node.children[index+1].expression.children[0] = child.expression node.children.pop(index) continue if type(child) == ASTFor: if len(child.loop_variables): # detect loop variables' changing/modification, and add qualifier `=` to changing ones lvars = child.loop_variables found = set() def detect_lvars_modification(node): if type(node) == ASTExprAssignment: nonlocal found if node.dest_expression.token_str() in lvars: found.add(node.dest_expression.token_str()) if len(lvars) == 1: return elif node.dest_expression.tuple: for t in node.dest_expression.children: if t.token_str() in lvars: found.add(t.token_str()) if len(lvars) == 1: return def f(e : SymbolNode): if e.symbol.id[-1] == '=' and e.symbol.id not in ('==', '!=', '<=', '>=') and e.children[0].token_str() in lvars: # +=, -=, *=, /=, etc. nonlocal found found.add(e.children[0].token_str()) node.walk_expressions(f) node.walk_children(detect_lvars_modification) detect_lvars_modification(child) for lvar in found: lvari = lvars.index(lvar) child.loop_variables[lvari] = '=' + child.loop_variables[lvari] if child.expression.symbol.id == '(' and child.expression.children[0].symbol.id == '.' \ and child.expression.children[0].children[0].token_str() == 'os' \ and child.expression.children[0].children[1].token_str() == 'walk': # ) # detect `for ... in os.walk(...)` and remove `dirs[:] = ...` statement child.os_walk = True assert(len(child.loop_variables) == 3) c0 = child.children[0] if (type(c0) == ASTExprAssignment and c0.dest_expression.symbol.id == '[' # ] and len(c0.dest_expression.children) == 2 and c0.dest_expression.children[1] is None and c0.dest_expression.children[0].token_str() == child.loop_variables[1] and c0.expression.symbol.id == '[' # ] and len(c0.expression.children) == 1 and c0.expression.children[0].symbol.id == 'for' and len(c0.expression.children[0].children) == 4 and c0.expression.children[0].children[1].to_str() == c0.expression.children[0].children[0].to_str()): child.dir_filter = c0.expression.children[0].children[1].to_str() + ' -> ' + c0.expression.children[0].children[3].to_str() child.children.pop(0) elif child.expression.symbol.id == '(' and child.expression.children[0].token_str() == 'enumerate': # ) assert(len(child.loop_variables) == 2) set_index_node = ASTExprAssignment() set_index_node.set_dest_expression(SymbolNode(Token(0, 0, Token.Category.NAME), child.loop_variables[0].lstrip('='))) child.loop_variables.pop(0) start = '' if len(child.expression.children) >= 5: if child.expression.children[4] is not None: assert(child.expression.children[3].to_str() == 'start') start = child.expression.children[4].to_str() else: start = child.expression.children[3].to_str() set_index_node.set_expression(SymbolNode(Token(0, 0, Token.Category.NAME), 'L.index' + (' + ' + start if start != '' else ''))) set_index_node.add_vars = [True] set_index_node.parent = child child.children.insert(0, set_index_node) child.expression.children[0].parent = child.expression.parent child.expression.children[0].ast_parent = child.expression.ast_parent child.expression = child.expression.children[1] elif type(child) == ASTFunctionDefinition: # detect function's arguments changing/modification inside this function, and add qualifier `=` to changing ones if len(child.function_arguments): fargs = [farg[0] for farg in child.function_arguments] found = set() def detect_arguments_modification(node): if type(node) == ASTExprAssignment: nonlocal found if node.dest_expression.token_str() in fargs: found.add(node.dest_expression.token_str()) if len(fargs) == 1: return elif node.dest_expression.tuple: for t in node.dest_expression.children: if t.token_str() in fargs: found.add(t.token_str()) if len(fargs) == 1: return def f(e : SymbolNode): if e.symbol.id[-1] == '=' and e.symbol.id not in ('==', '!=', '<=', '>=') and e.children[0].token_str() in fargs: # +=, -=, *=, /=, etc. nonlocal found found.add(e.children[0].token_str()) node.walk_expressions(f) node.walk_children(detect_arguments_modification) detect_arguments_modification(child) for farg in found: fargi = fargs.index(farg) if child.function_arguments[fargi][3] != '&': # if argument already has `&` qualifier, then qualifier `=` is not needed child.function_arguments[fargi] = ('=' + child.function_arguments[fargi][0], child.function_arguments[fargi][1], child.function_arguments[fargi][2], child.function_arguments[fargi][3]) index += 1 node.walk_children(transformations) transformations(p) s = p.to_str() # call `to_str()` moved here [from outside] because it accesses global variables `source` (via `token.value(source)`) and `tokens` (via `tokens[ti]`) tokens = prev_tokens source = prev_source tokeni = prev_tokeni token = prev_token # scope = prev_scope tokensn = prev_tokensn file_name = prev_file_name return s
11l
/11l-2021.3-py3-none-any.whl/python_to_11l/parse.py
parse.py
from typing import List, Tuple Char = str from enum import IntEnum keywords = [ # https://docs.python.org/3/reference/lexical_analysis.html#keywords 'False', 'await', 'else', 'import', 'pass', 'None', 'break', 'except', 'in', 'raise', 'True', 'class', 'finally', 'is', 'return', 'and', 'continue', 'for', 'lambda', 'try', 'as', 'def', 'from', 'nonlocal', 'while', 'assert', 'del', 'global', 'not', 'with', 'async', 'elif', 'if', 'or', 'yield',] operators = [ # https://docs.python.org/3/reference/lexical_analysis.html#operators '+', '-', '*', '**', '/', '//', '%', '@', '<<', '>>', '&', '|', '^', '~', '<', '>', '<=', '>=', '==', '!=',] #operators.sort(key = lambda x: len(x), reverse = True) delimiters = [ # https://docs.python.org/3/reference/lexical_analysis.html#delimiters '(', ')', '[', ']', '{', '}', ',', ':', '.', ';', '@', '=', '->', '+=', '-=', '*=', '/=', '//=', '%=', '@=', '&=', '|=', '^=', '>>=', '<<=', '**=',] #delimiters.sort(key = lambda x: len(x), reverse = True) operators_and_delimiters = sorted(operators + delimiters, key = lambda x: len(x), reverse = True) class Error(Exception): message : str pos : int end : int def __init__(self, message, pos): self.message = message self.pos = pos self.end = pos class Token: class Category(IntEnum): # why ‘Category’: >[https://docs.python.org/3/reference/lexical_analysis.html#other-tokens]:‘the following categories of tokens exist’ NAME = 0 # or IDENTIFIER KEYWORD = 1 CONSTANT = 2 OPERATOR_OR_DELIMITER = 3 NUMERIC_LITERAL = 4 STRING_LITERAL = 5 INDENT = 6 # [https://docs.python.org/3/reference/lexical_analysis.html#indentation][-1] DEDENT = 7 STATEMENT_SEPARATOR = 8 start : int end : int category : Category def __init__(self, start, end, category): self.start = start self.end = end self.category = category def __repr__(self): return str(self.start) def value(self, source): return source[self.start:self.end] def to_str(self, source): return 'Token('+str(self.category)+', "'+self.value(source)+'")' def tokenize(source, newline_chars : List[int] = None, comments : List[Tuple[int, int]] = None): tokens : List[Token] = [] indentation_levels : List[int] = [] nesting_elements : List[Tuple[Char, int]] = [] # parentheses, square brackets or curly braces begin_of_line = True expected_an_indented_block = False i = 0 while i < len(source): if begin_of_line: # at the beginning of each line, the line's indentation level is compared to the last of the indentation_levels [:1] begin_of_line = False linestart = i indentation_level = 0 while i < len(source): if source[i] == ' ': indentation_level += 1 elif source[i] == "\t": indentation_level += 8 # consider tab as just 8 spaces (I know that Python 3 use different rules, but I disagree with Python 3 approach ([-1]:‘Tabs are replaced (from left to right) by one to eight spaces’), so I decided to use this simpler solution) else: break i += 1 if i == len(source): # end of source break if source[i] in "\r\n#": # lines with only whitespace and/or comments do not affect the indentation continue prev_indentation_level = indentation_levels[-1] if len(indentation_levels) else 0 if expected_an_indented_block: if not indentation_level > prev_indentation_level: raise Error('expected an indented block', i) if indentation_level == prev_indentation_level: # [1:] [-1]:‘If it is equal, nothing happens.’ [:2] if len(tokens): tokens.append(Token(linestart-1, linestart, Token.Category.STATEMENT_SEPARATOR)) elif indentation_level > prev_indentation_level: # [2:] [-1]:‘If it is larger, it is pushed on the stack, and one INDENT token is generated.’ [:3] if not expected_an_indented_block: raise Error('unexpected indent', i) expected_an_indented_block = False indentation_levels.append(indentation_level) tokens.append(Token(linestart, i, Token.Category.INDENT)) else: # [3:] [-1]:‘If it is smaller, it ~‘must’ be one of the numbers occurring on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated.’ [:4] while True: indentation_levels.pop() tokens.append(Token(i, i, Token.Category.DEDENT)) level = indentation_levels[-1] if len(indentation_levels) else 0 if level == indentation_level: break if level < indentation_level: raise Error('unindent does not match any outer indentation level', i) ch = source[i] if ch in " \t": i += 1 # just skip whitespace characters elif ch in "\r\n": if newline_chars is not None: newline_chars.append(i) i += 1 if ch == "\r" and source[i:i+1] == "\n": i += 1 if len(nesting_elements) == 0: # [https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining ‘Implicit line joining’]:‘Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using backslashes.’ begin_of_line = True elif ch == '#': comment_start = i i += 1 while i < len(source) and source[i] not in "\r\n": i += 1 if comments is not None: comments.append((comment_start, i)) else: expected_an_indented_block = ch == ':' operator_or_delimiter = '' for op in operators_and_delimiters: if source[i:i+len(op)] == op: operator_or_delimiter = op break lexem_start = i i += 1 category : Token.Category if operator_or_delimiter != '': i = lexem_start + len(operator_or_delimiter) category = Token.Category.OPERATOR_OR_DELIMITER if ch in '([{': nesting_elements.append((ch, lexem_start)) elif ch in ')]}': # ([{ if len(nesting_elements) == 0 or nesting_elements[-1][0] != {')':'(', ']':'[', '}':'{'}[ch]: # }]) raise Error('there is no corresponding opening parenthesis/bracket/brace for `' + ch + '`', lexem_start) nesting_elements.pop() elif ch == ';': category = Token.Category.STATEMENT_SEPARATOR elif ch in ('"', "'") or (ch in 'rRbB' and source[i:i+1] in ('"', "'")): ends : str if ch in 'rRbB': ends = source[i:i+3] if source[i:i+3] in ('"""', "'''") else source[i] else: i -= 1 ends = source[i:i+3] if source[i:i+3] in ('"""', "'''") else ch i += len(ends) while True: if i == len(source): raise Error('unclosed string literal', lexem_start) if source[i] == '\\': i += 1 if i == len(source): continue elif source[i:i+len(ends)] == ends: i += len(ends) break i += 1 category = Token.Category.STRING_LITERAL elif ch.isalpha() or ch == '_': # this is NAME/IDENTIFIER or KEYWORD while i < len(source): ch = source[i] if not (ch.isalpha() or ch == '_' or '0' <= ch <= '9' or ch == '?'): break i += 1 if source[lexem_start:i] in keywords: if source[lexem_start:i] in ('None', 'False', 'True'): category = Token.Category.CONSTANT else: category = Token.Category.KEYWORD else: category = Token.Category.NAME elif (ch in '-+' and '0' <= source[i:i+1] <= '9') or '0' <= ch <= '9': # this is NUMERIC_LITERAL if ch in '-+': assert(False) # considering sign as a part of numeric literal is a bad idea — expressions like `j-3` are cease to parse correctly #sign = ch ch = source[i+1] else: i -= 1 is_hex = ch == '0' and source[i+1:i+2] in ('x', 'X') is_oct = ch == '0' and source[i+1:i+2] in ('o', 'O') is_bin = ch == '0' and source[i+1:i+2] in ('b', 'B') if is_hex or is_oct or is_bin: i += 2 # if not '0' <= source[i:i+1] <= '9': # raise Error('expected digit', i) start = i i += 1 if is_hex: while i < len(source) and ('0' <= source[i] <= '9' or 'a' <= source[i] <= 'z' or 'A' <= source[i] <= 'Z' or source[i] == '_'): i += 1 elif is_oct: while i < len(source) and ('0' <= source[i] <= '7' or source[i] == '_'): i += 1 elif is_bin: while i < len(source) and source[i] in '01_': i += 1 else: while i < len(source) and ('0' <= source[i] <= '9' or source[i] in '_.eE'): if source[i] in 'eE': if source[i+1:i+2] in '-+': i += 1 i += 1 if source[i:i+1] in ('j', 'J'): i += 1 if '_' in source[start:i] and not '.' in source[start:i]: # float numbers do not checked for a while number = source[start:i].replace('_', '') number_with_separators = '' j = len(number) while j > 3: number_with_separators = '_' + number[j-3:j] + number_with_separators j -= 3 number_with_separators = number[0:j] + number_with_separators if source[start:i] != number_with_separators: raise Error('digit separator in this number is located in the wrong place (should be: '+ number_with_separators +')', start) category = Token.Category.NUMERIC_LITERAL elif ch == '\\': if source[i] not in "\r\n": raise Error('only new line character allowed after backslash', i) if source[i] == "\r": i += 1 if source[i] == "\n": i += 1 continue else: raise Error('unexpected character ' + ch, lexem_start) tokens.append(Token(lexem_start, i, category)) if len(nesting_elements): raise Error('there is no corresponding closing parenthesis/bracket/brace for `' + nesting_elements[-1][0] + '`', nesting_elements[-1][1]) if expected_an_indented_block: raise Error('expected an indented block', i) while len(indentation_levels): # [4:] [-1]:‘At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.’ tokens.append(Token(i, i, Token.Category.DEDENT)) indentation_levels.pop() return tokens
11l
/11l-2021.3-py3-none-any.whl/python_to_11l/tokenizer.py
tokenizer.py
try: from tokenizer import Token import tokenizer except ImportError: from .tokenizer import Token from . import tokenizer from typing import List, Tuple, Dict, Callable, Set from enum import IntEnum import os, eldf class Error(Exception): def __init__(self, message, token): self.message = message self.pos = token.start self.end = token.end class Scope: parent : 'Scope' node : 'ASTNode' = None class Id: type : str type_node : 'ASTTypeDefinition' = None ast_nodes : List['ASTNodeWithChildren'] last_occurrence : 'SymbolNode' = None def __init__(self, type, ast_node = None): assert(type is not None) self.type = type self.ast_nodes = [] if ast_node is not None: self.ast_nodes.append(ast_node) def init_type_node(self, scope): if self.type != '': tid = scope.find(self.type) if tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) == ASTTypeDefinition: self.type_node = tid.ast_nodes[0] def serialize_to_dict(self): ast_nodes = [] for ast_node in self.ast_nodes: if type(ast_node) in (ASTFunctionDefinition, ASTTypeDefinition): ast_nodes.append(ast_node.serialize_to_dict()) return {'type': self.type, 'ast_nodes': ast_nodes} def deserialize_from_dict(self, d): #self.type = d['type'] for ast_node_dict in d['ast_nodes']: ast_node = ASTFunctionDefinition() if ast_node_dict['node_type'] == 'function' else ASTTypeDefinition() ast_node.deserialize_from_dict(ast_node_dict) self.ast_nodes.append(ast_node) ids : Dict[str, Id] is_function : bool is_lambda = False def __init__(self, func_args): self.parent = None if func_args is not None: self.is_function = True self.ids = dict(map(lambda x: (x[0], Scope.Id(x[1])), func_args)) else: self.is_function = False self.ids = {} def init_ids_type_node(self): for id in self.ids.values(): id.init_type_node(self.parent) def serialize_to_dict(self): ids_dict = {} for name, id in self.ids.items(): ids_dict[name] = id.serialize_to_dict() return ids_dict def deserialize_from_dict(self, d): for name, id_dict in d.items(): id = Scope.Id(id_dict['type']) id.deserialize_from_dict(id_dict) self.ids[name] = id def find_in_current_function(self, name): s = self while True: if name in s.ids: return True if s.is_function: return False s = s.parent if s is None: return False def find_in_current_type_function(self, name): s = self while True: if name in s.ids: return True if s.is_function and type(s.node) == ASTFunctionDefinition and type(s.node.parent) == ASTTypeDefinition: return False s = s.parent if s is None: return False def find(self, name): s = self while True: id = s.ids.get(name) if id is not None: return id s = s.parent if s is None: return None def find_and_return_scope(self, name): s = self if type(s.node) == ASTTypeDefinition: id = s.ids.get(name) if id is not None: return id, s while True: if type(s.node) != ASTTypeDefinition: id = s.ids.get(name) if id is not None: return id, s s = s.parent if s is None: return None, None def add_function(self, name, ast_node): if name in self.ids: # V &id = .ids.set_if_not_present(name, Id(N)) // [[[or `put_if_absent` as in Java, or `add_if_absent`]]] note that this is an error: `V id = .ids.set_if_not_present(...)`, but you can do this: `V id = copy(.ids.set_if_not_present(...))` assert(type(self.ids[name].ast_nodes[0]) == ASTFunctionDefinition) # assert(id.ast_nodes.empty | T(id.ast_nodes[0]) == ASTFunctionDefinition) self.ids[name].ast_nodes.append(ast_node) # id.ast_nodes [+]= ast_node else: self.ids[name] = Scope.Id('', ast_node) def add_name(self, name, ast_node): if name in self.ids: # I !.ids.set(name, Id(N, ast_node)) if isinstance(ast_node, ASTVariableDeclaration): t = ast_node.type_token elif isinstance(ast_node, ASTNodeWithChildren): t = tokens[ast_node.tokeni + 1] else: t = token raise Error('redefinition of already defined identifier is not allowed', t) # X Error(‘redefinition ...’, ...) self.ids[name] = Scope.Id('', ast_node) scope : Scope class SymbolBase: id : str lbp : int nud_bp : int led_bp : int nud : Callable[['SymbolNode'], 'SymbolNode'] led : Callable[['SymbolNode', 'SymbolNode'], 'SymbolNode'] def set_nud_bp(self, nud_bp, nud): self.nud_bp = nud_bp self.nud = nud def set_led_bp(self, led_bp, led): self.led_bp = led_bp self.led = led def __init__(self): def nud(s): raise Error('unknown unary operator', s.token) self.nud = nud def led(s, l): raise Error('unknown binary operator', s.token) self.led = led int_is_int64 = False class SymbolNode: token : Token symbol : SymbolBase = None children : List['SymbolNode']# = [] parent : 'SymbolNode' = None ast_parent : 'ASTNode' function_call : bool = False tuple : bool = False is_list : bool = False is_dict : bool = False is_type : bool = False postfix : bool = False scope : Scope token_str_override : str def __init__(self, token, token_str_override = None, symbol = None): self.token = token self.children = [] self.scope = scope self.token_str_override = token_str_override self.symbol = symbol def append_child(self, child): child.parent = self self.children.append(child) def leftmost(self): if self.token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL, Token.Category.NAME, Token.Category.CONSTANT): return self.token.start if self.symbol.id == '(': # ) if self.function_call: return self.children[0].token.start else: return self.token.start elif self.symbol.id == '[': # ] if self.is_list or self.is_dict: return self.token.start else: return self.children[0].token.start if len(self.children) in (2, 3): return self.children[0].leftmost() return self.token.start def rightmost(self): if self.token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL, Token.Category.NAME, Token.Category.CONSTANT): return self.token.end if self.symbol.id in '([': # ]) if len(self.children) == 0: return self.token.end + 1 return (self.children[-1] or self.children[-2]).rightmost() + 1 return self.children[-1].rightmost() def left_to_right_token(self): return Token(self.leftmost(), self.rightmost(), Token.Category.NAME) def token_str(self): return self.token.value(source) if not self.token_str_override else self.token_str_override def to_type_str(self): if self.symbol.id == '[': # ] if self.is_list: assert(len(self.children) == 1) return 'Array[' + self.children[0].to_type_str() + ']' elif self.is_dict: assert(len(self.children) == 1 and self.children[0].symbol.id == '=') return 'Dict[' + self.children[0].children[0].to_type_str() + ', ' \ + self.children[0].children[1].to_type_str() + ']' else: assert(self.is_type) r = self.children[0].token.value(source) + '[' for i in range(1, len(self.children)): r += self.children[i].to_type_str() if i < len(self.children) - 1: r += ', ' return r + ']' elif self.symbol.id == '(': # ) if len(self.children) == 1 and self.children[0].symbol.id == '->': r = 'Callable[' c0 = self.children[0] if c0.children[0].symbol.id == '(': # ) for child in c0.children[0].children: r += child.to_type_str() + ', ' else: r += c0.children[0].to_type_str() + ', ' return r + c0.children[1].to_type_str() + ']' else: assert(self.tuple) r = '(' for i in range(len(self.children)): assert(self.children[i].symbol.id != '->') r += self.children[i].to_type_str() if i < len(self.children) - 1: r += ', ' return r + ')' assert(self.token.category == Token.Category.NAME) return self.token_str() def to_str(self): if self.token.category == Token.Category.NAME: if self.token_str() in ('L.index', 'Ц.индекс', 'loop.index', 'цикл.индекс'): parent = self while parent.parent: parent = parent.parent ast_parent = parent.ast_parent while True: if type(ast_parent) == ASTLoop: ast_parent.has_L_index = True break ast_parent = ast_parent.parent return 'Lindex' if self.token_str() == '(.)': # if self.parent is not None and self.parent.symbol.id == '=' and self is self.parent.children[1]: # `... = (.)` -> `... = this;` # return 'this' return '*this' tid = self.scope.find(self.token_str()) if tid is not None and ((len(tid.ast_nodes) and isinstance(tid.ast_nodes[0], ASTVariableDeclaration) and tid.ast_nodes[0].is_ptr and not tid.ast_nodes[0].nullable) # `animals [+]= animal` -> `animals.append(std::move(animal));` or (tid.type_node is not None and (tid.type_node.has_virtual_functions or tid.type_node.has_pointers_to_the_same_type))) \ and (self.parent is None or self.parent.symbol.id not in ('.', ':')): if tid.last_occurrence is None: last_reference = None var_name = self.token_str() def find_last_reference_to_identifier(node): def f(e : SymbolNode): if e.token.category == Token.Category.NAME and e.token_str() == var_name and id(e.scope.find(var_name)) == id(tid): nonlocal last_reference last_reference = e for child in e.children: if child is not None: f(child) node.walk_expressions(f) node.walk_children(find_last_reference_to_identifier) if tid.type_node is not None: find_last_reference_to_identifier(self.scope.node) tid.last_occurrence = last_reference else: for index in range(len(tid.ast_nodes[0].parent.children)): if id(tid.ast_nodes[0].parent.children[index]) == id(tid.ast_nodes[0]): for index in range(index + 1, len(tid.ast_nodes[0].parent.children)): find_last_reference_to_identifier(tid.ast_nodes[0].parent.children[index]) tid.last_occurrence = last_reference break if id(tid.last_occurrence) == id(self): return 'std::move(' + self.token_str() + ')' if tid is not None and len(tid.ast_nodes) and isinstance(tid.ast_nodes[0], ASTVariableDeclaration) and tid.ast_nodes[0].is_ptr and tid.ast_nodes[0].nullable: if self.parent is None or (not (self.parent.symbol.id in ('==', '!=') and self.parent.children[1].token_str() in ('N', 'Н', 'null', 'нуль')) and not (self.parent.symbol.id == '.') and not (self.parent.symbol.id == '?') and not (self.parent.symbol.id == '=' and self is self.parent.children[0])): return '*' + self.token_str() return self.token_str().lstrip('@=').replace(':', '::') if self.token.category == Token.Category.KEYWORD and self.token_str() in ('L.last_iteration', 'Ц.последняя_итерация', 'loop.last_iteration', 'цикл.последняя_итерация'): parent = self while parent.parent: parent = parent.parent ast_parent = parent.ast_parent while True: if type(ast_parent) == ASTLoop: ast_parent.has_L_last_iteration = True break ast_parent = ast_parent.parent return '(__begin == __end)' if self.token.category == Token.Category.NUMERIC_LITERAL: n = self.token_str() if n[-1] in 'oо': return '0' + n[:-1] + 'LL'*int_is_int64 if n[-1] in 'bд': return '0b' + n[:-1] + 'LL'*int_is_int64 if n[-1] == 's': return n[:-1] + 'f' if n[4:5] == "'" or n[-3:-2] == "'" or n[-2:-1] == "'": nn = '' for c in n: nn += {'А':'A','Б':'B','С':'C','Д':'D','Е':'E','Ф':'F'}.get(c, c) if n[-2:-1] == "'": nn = nn.replace("'", '') return '0x' + nn if '.' in n or 'e' in n: return n return n + 'LL'*int_is_int64 if self.token.category == Token.Category.STRING_LITERAL: s = self.token_str() if s[0] == '"': return 'u' + s + '_S' eat_left = 0 while s[eat_left] == "'": eat_left += 1 eat_right = 0 while s[-1-eat_right] == "'": eat_right += 1 s = s[1+eat_left*2:-1-eat_right*2] if '\\' in s or "\n" in s: delimiter = '' # ( while ')' + delimiter + '"' in s: delimiter += "'" return 'uR"' + delimiter + '(' + s + ')' + delimiter + '"_S' return 'u"' + repr(s)[1:-1].replace('"', R'\"').replace(R"\'", "'") + '"_S' if self.token.category == Token.Category.CONSTANT: return {'N': 'nullptr', 'Н': 'nullptr', 'null': 'nullptr', 'нуль': 'nullptr', '0B': 'false', '0В': 'false', '1B': 'true', '1В': 'true'}[self.token_str()] def is_char(child): ts = child.token_str() return child.token.category == Token.Category.STRING_LITERAL and (len(ts) == 3 or (ts[:2] == '"\\' and len(ts) == 4)) def char_or_str(child, is_char): if is_char: if child.token_str()[1:-1] == "\\": return R"u'\\'_C" return "u'" + child.token_str()[1:-1].replace("'", R"\'") + "'_C" return child.to_str() if self.symbol.id == '(': # ) if self.function_call: func_name = self.children[0].to_str() f_node = None if self.children[0].symbol.id == '.': if len(self.children[0].children) == 1: s = self.scope while True: if s.is_function: if type(s.node) != ASTFunctionDefinition: assert(s.is_lambda) raise Error('probably `@` is missing (before this dot)', self.children[0].token) if type(s.node.parent) == ASTTypeDefinition: assert(s.node.parent.scope == s.parent) fid = s.node.parent.find_id_including_base_types(self.children[0].children[0].to_str()) if fid is None: raise Error('call of undefined method `' + func_name + '`', self.children[0].children[0].token) if len(fid.ast_nodes) > 1: raise Error('methods\' overloading is not supported for now', self.children[0].children[0].token) f_node = fid.ast_nodes[0] if type(f_node) == ASTTypeDefinition: if len(f_node.constructors) == 0: f_node = ASTFunctionDefinition() else: if len(f_node.constructors) > 1: raise Error('constructors\' overloading is not supported for now (see type `' + f_node.type_name + '`)', self.children[0].left_to_right_token()) f_node = f_node.constructors[0] break s = s.parent assert(s) elif func_name.endswith('.map') and self.children[2].token.category == Token.Category.NAME and self.children[2].token_str()[0].isupper(): c2 = self.children[2].to_str() return func_name + '([](const auto &x){return ' + {'Int':'to_int', 'Int64':'to_int64', 'UInt64':'to_uint64', 'UInt32':'to_uint32', 'Float':'to_float'}.get(c2, c2) + '(x);})' elif func_name.endswith('.split'): f_node = type_of(self.children[0]) if f_node is None: # assume this is String method f_node = builtins_scope.find('String').ast_nodes[0].scope.ids.get('split').ast_nodes[0] elif self.children[0].children[1].token.value(source) == 'union': func_name = self.children[0].children[0].to_str() + '.set_union' else: f_node = type_of(self.children[0]) elif func_name == 'Int': if self.children[1] is not None and self.children[1].token_str() == "bytes'": return 'int_from_bytes(' + self.children[2].to_str() + ')' func_name = 'to_int' f_node = builtins_scope.find('Int').ast_nodes[0].constructors[0] elif func_name == 'Int64': func_name = 'to_int64' f_node = builtins_scope.find('Int').ast_nodes[0].constructors[0] elif func_name == 'UInt64': func_name = 'to_uint64' f_node = builtins_scope.find('Int').ast_nodes[0].constructors[0] elif func_name == 'UInt32': func_name = 'to_uint32' f_node = builtins_scope.find('Int').ast_nodes[0].constructors[0] elif func_name == 'Float': func_name = 'to_float' elif func_name == 'Char' and self.children[2].token.category == Token.Category.STRING_LITERAL: assert(self.children[1] is None) # [-TODO: write a good error message-] if not is_char(self.children[2]): raise Error('Char can be constructed only from single character string literals', self.children[2].token) return char_or_str(self.children[2], True) elif func_name.startswith('Array['): # ] func_name = 'Array<' + func_name[6:-1] + '>' elif func_name == 'Array': # `list(range(1,10))` -> `Array(1.<10)` -> `create_array(range_el(1, 10))` func_name = 'create_array' elif self.children[0].symbol.id == '[' and self.children[0].is_list: # ] # `[Type]()` -> `Array<Type>()` func_name = trans_type(self.children[0].to_type_str(), self.children[0].scope, self.children[0].token) elif func_name == 'Dict': func_name = 'create_dict' elif func_name.startswith('DefaultDict['): # ] func_name = 'DefaultDict<' + ', '.join(trans_type(c.to_type_str(), c.scope, c.token) for c in self.children[0].children[1:]) + '>' elif func_name in ('Set', 'Deque'): func_name = 'create_set' if func_name == 'Set' else 'create_deque' if self.children[2].is_list: c = self.children[2].children res = func_name + ('<' + trans_type(c[0].children[0].token_str(), self.scope, c[0].children[0].token) + '>' if len(c) > 1 and c[0].function_call and c[0].children[0].token_str()[0].isupper() else '') + '({' for i in range(len(c)): res += c[i].to_str() if i < len(c)-1: res += ', ' return res + '})' elif func_name.startswith(('Set[', 'Deque[')): # ]] c = self.children[0].children[1] func_name = func_name[:func_name.find('[')] + '<' + trans_type(c.to_type_str(), c.scope, c.token) + '>' # ] elif func_name == 'sum' and self.children[2].function_call and self.children[2].children[0].symbol.id == '.' and self.children[2].children[0].children[1].token_str() == 'map': assert(len(self.children) == 3) return 'sum_map(' + self.children[2].children[0].children[0].to_str() + ', ' + self.children[2].children[2].to_str() + ')' elif func_name in ('min', 'max') and len(self.children) == 5 and self.children[3] is not None and self.children[3].token_str() == "key'": return func_name + '_with_key(' + self.children[2].to_str() + ', ' + self.children[4].to_str() + ')' elif func_name == 'copy': s = self.scope while True: if s.is_function: if type(s.node.parent) == ASTTypeDefinition: fid = s.parent.ids.get('copy') if fid is not None: func_name = '::copy' break s = s.parent assert(s) elif func_name == 'move': func_name = 'std::move' elif func_name == '*this': func_name = '(*this)' # function call has higher precedence than dereference in C++, so `*this(...)` is equivalent to `*(this(...))` elif self.children[0].symbol.id == '[': # ] pass elif self.children[0].function_call: # for `enumFromTo(0)(1000)` pass else: if self.children[0].symbol.id == ':': fid, sc = find_module(self.children[0].children[0].to_str()).scope.find_and_return_scope(self.children[0].children[1].token_str()) else: fid, sc = self.scope.find_and_return_scope(func_name) if fid is None: raise Error('call of undefined function `' + func_name + '`', self.children[0].left_to_right_token()) if len(fid.ast_nodes) > 1: raise Error('functions\' overloading is not supported for now', self.children[0].left_to_right_token()) if len(fid.ast_nodes) == 0: if sc.is_function: # for calling of function arguments, e.g. `F amb(comp, ...)...comp(prev, opt)` f_node = None else: raise Error('node of function `' + func_name + '` is not found', self.children[0].left_to_right_token()) else: f_node = fid.ast_nodes[0] if type(f_node) == ASTLoop: # for `L(justify) [(s, w) -> ...]...justify(...)` f_node = None else: #assert(type(f_node) in (ASTFunctionDefinition, ASTTypeDefinition) or (type(f_node) in (ASTVariableInitialization, ASTVariableDeclaration) and f_node.function_pointer) # or (type(f_node) == ASTVariableInitialization and f_node.expression.symbol.id == '->')) if type(f_node) == ASTTypeDefinition: if f_node.has_virtual_functions or f_node.has_pointers_to_the_same_type: func_name = 'std::make_unique<' + func_name + '>' # elif f_node.has_pointers_to_the_same_type: # func_name = 'make_SharedPtr<' + func_name + '>' if len(f_node.constructors) == 0: f_node = ASTFunctionDefinition() else: if len(f_node.constructors) > 1: raise Error('constructors\' overloading is not supported for now (see type `' + f_node.type_name + '`)', self.children[0].left_to_right_token()) f_node = f_node.constructors[0] last_function_arg = 0 res = func_name + '(' for i in range(1, len(self.children), 2): if self.children[i] is None: cstr = self.children[i+1].to_str() if f_node is not None and type(f_node) == ASTFunctionDefinition: if last_function_arg >= len(f_node.function_arguments): raise Error('too many arguments for function `' + func_name + '`', self.children[0].left_to_right_token()) if f_node.first_named_only_argument is not None and last_function_arg >= f_node.first_named_only_argument: raise Error('argument `' + f_node.function_arguments[last_function_arg][0] + '` of function `' + func_name + '` is named-only', self.children[i+1].token) if len(f_node.function_arguments[last_function_arg]) > 3 and '&' in f_node.function_arguments[last_function_arg][3] and not (self.children[i+1].symbol.id == '&' and len(self.children[i+1].children) == 1): raise Error('argument `' + f_node.function_arguments[last_function_arg][0] + '` of function `' + func_name + '` is in-out, but there is no `&` prefix', self.children[i+1].token) if f_node.function_arguments[last_function_arg][2] == 'File?': tid = self.scope.find(self.children[i+1].token_str()) if tid is None or tid.type != 'File?': res += '&' elif f_node.function_arguments[last_function_arg][2].endswith('?') and f_node.function_arguments[last_function_arg][2] != 'Int?' and not cstr.startswith(('std::make_unique<', 'make_SharedPtr<')): res += '&' res += cstr last_function_arg += 1 else: if f_node is None or type(f_node) != ASTFunctionDefinition: raise Error('function `' + func_name + '` is not found (you can remove named arguments in function call to suppress this error)', self.children[0].left_to_right_token()) argument_name = self.children[i].token_str()[:-1] while True: if last_function_arg == len(f_node.function_arguments): raise Error('argument `' + argument_name + '` is not found in function `' + func_name + '`', self.children[i].token) if f_node.function_arguments[last_function_arg][0] == argument_name: last_function_arg += 1 break if f_node.function_arguments[last_function_arg][1] == '': raise Error('argument `' + f_node.function_arguments[last_function_arg][0] + '` of function `' + func_name + '` has no default value, please specify its value here', self.children[i].token) res += f_node.function_arguments[last_function_arg][1] + ', ' last_function_arg += 1 if f_node.function_arguments[last_function_arg-1][2].endswith('?') and not '->' in f_node.function_arguments[last_function_arg-1][2]: res += '&' res += self.children[i+1].to_str() if i < len(self.children)-2: res += ', ' if f_node is not None: if type(f_node) == ASTFunctionDefinition: while last_function_arg < len(f_node.function_arguments): if f_node.function_arguments[last_function_arg][1] == '': t = self.children[len(self.children)-1].token raise Error('missing required argument `'+ f_node.function_arguments[last_function_arg][0] + '`', Token(t.end, t.end, Token.Category.DELIMITER)) last_function_arg += 1 elif f_node.function_pointer: if last_function_arg != len(f_node.type_args): raise Error('wrong number of arguments passed to function pointer', Token(self.children[0].token.end, self.children[0].token.end, Token.Category.DELIMITER)) return res + ')' elif self.tuple: res = 'make_tuple(' for i in range(len(self.children)): res += self.children[i].to_str() if i < len(self.children)-1: res += ', ' return res + ')' else: assert(len(self.children) == 1) if self.children[0].symbol.id in ('..', '.<', '.+', '<.', '<.<'): # чтобы вместо `(range_el(0, seq.len()))` было `range_el(0, seq.len())` return self.children[0].to_str() return '(' + self.children[0].to_str() + ')' elif self.symbol.id == '[': # ] if self.is_list: if len(self.children) == 0: raise Error('empty array is not supported', self.left_to_right_token()) type_of_values_is_char = True for child in self.children: if not is_char(child): type_of_values_is_char = False break res = 'create_array' + ('<' + trans_type(self.children[0].children[0].token_str(), self.scope, self.children[0].children[0].token) + '>' if len(self.children) > 1 and self.children[0].function_call and self.children[0].children[0].token_str()[0].isupper() and self.children[0].children[0].token_str() not in ('Array', 'Set') else '') + '({' for i in range(len(self.children)): res += char_or_str(self.children[i], type_of_values_is_char) if i < len(self.children)-1: res += ', ' return res + '})' elif self.is_dict: char_key = True char_val = True for child in self.children: assert(child.symbol.id == '=') if not is_char(child.children[0]): char_key = False if not is_char(child.children[1]): char_val = False res = 'create_dict(dict_of' for child in self.children: c0 = child.children[0] if c0.symbol.id == '.' and len(c0.children) == 2 and c0.children[1].token_str().isupper(): c0str = c0.to_str().replace('.', '::') # replace `python_to_11l:tokenizer:Token.Category.NAME` with `python_to_11l::tokenizer::Token::Category::NAME` else: c0str = char_or_str(c0, char_key) res += '(' + c0str + ', ' + char_or_str(child.children[1], char_val) + ')' return res + ')' elif self.children[1].token.category == Token.Category.NUMERIC_LITERAL: return '_get<' + self.children[1].to_str() + '>(' + self.children[0].to_str() + ')' # for support tuples (e.g. `(1, 2)[0]` -> `_get<0>(make_tuple(1, 2))`) else: c1 = self.children[1].to_str() if c1.startswith('(len)'): return self.children[0].to_str() + '.at_plus_len(' + c1[len('(len)'):] + ')' return self.children[0].to_str() + '[' + c1 + ']' elif self.symbol.id in ('S', 'В', 'switch', 'выбрать'): char_val = True for i in range(1, len(self.children), 2): if not is_char(self.children[i+1]): char_val = False res = '[&](const auto &a){return ' # `[&]` is for `cc = {'а':'A','б':'B','с':'C','д':'D','е':'E','ф':'F'}.get(c.lower(), c)` -> `[&](const auto &a){return a == u'а'_C ? u"A"_S : ... : c;}(c.lower())` was_break = False for i in range(1, len(self.children), 2): if self.children[i].token.value(source) in ('E', 'И', 'else', 'иначе'): res += char_or_str(self.children[i+1], char_val) was_break = True break res += ('a == ' + (char_or_str(self.children[i], is_char(self.children[i]))[:-2] if self.children[i].token.category == Token.Category.STRING_LITERAL else self.children[i].to_str()) if self.children[i].symbol.id not in ('..', '.<', '.+', '<.', '<.<') else 'in(a, ' + self.children[i].to_str() + ')') + ' ? ' + char_or_str(self.children[i+1], char_val) + ' : ' # L.was_no_break # res ‘’= ‘throw KeyError(a)’ return res + ('throw KeyError(a)' if not was_break else '') + ';}(' + self.children[0].to_str() + ')' if len(self.children) == 1: #return '(' + self.symbol.id + self.children[0].to_str() + ')' if self.postfix: return self.children[0].to_str() + self.symbol.id elif self.symbol.id == ':': c0 = self.children[0].to_str() if c0 in ('stdin', 'stdout', 'stderr'): return '_' + c0 if importing_module: return os.path.basename(file_name)[:-4] + '::' + c0 return '::' + c0 elif self.symbol.id == '.': c0 = self.children[0].to_str() sn = self while True: if sn.symbol.id == '.' and len(sn.children) == 3: return 'T.' + c0 + '()'*(c0 in ('len', 'last', 'empty')) # T means *‘t’emporary [variable], and it can be safely used because `T` is a keyletter if sn.parent is None: n = sn.ast_parent while n is not None: if type(n) == ASTWith: return 'T.' + c0 n = n.parent break sn = sn.parent if self.scope.find_in_current_function(c0): return 'this->' + c0 else: return c0 elif self.symbol.id == '..': c0 = self.children[0].to_str() if c0.startswith('(len)'): return 'range_elen_i(' + c0[len('(len)'):] + ')' else: return 'range_ei(' + c0 + ')' elif self.symbol.id == '&': assert(self.parent.function_call) return self.children[0].to_str() else: return {'(-)':'~'}.get(self.symbol.id, self.symbol.id) + self.children[0].to_str() elif len(self.children) == 2: #return '(' + self.children[0].to_str() + ' ' + self.symbol.id + ' ' + self.children[1].to_str() + ')' def char_if_len_1(child): return char_or_str(child, is_char(child)) if self.symbol.id == '.': cts0 = self.children[0].token_str() c1 = self.children[1].to_str() if cts0 == '@': if self.scope.find_in_current_type_function(c1): return 'this->' + c1 else: return c1 if cts0 == '.' and len(self.children[0].children) == 1: # `.left.tree_indent()` -> `left->tree_indent()` c00 = self.children[0].children[0].token_str() id_ = self.scope.find(c00) if id_ is None and type(self.scope.node) == ASTFunctionDefinition and type(self.scope.node.parent) == ASTTypeDefinition: id_ = self.scope.node.parent.find_id_including_base_types(c00) if id_ is not None and len(id_.ast_nodes) and type(id_.ast_nodes[0]) in (ASTVariableInitialization, ASTVariableDeclaration): if id_.ast_nodes[0].is_reference: return c00 + '->' + c1 tid = self.scope.find(id_.ast_nodes[0].type.rstrip('?')) if tid is not None and len(tid.ast_nodes) and type(tid.ast_nodes[0]) == ASTTypeDefinition and tid.ast_nodes[0].has_pointers_to_the_same_type: return c00 + '->' + c1 if cts0 == ':' and len(self.children[0].children) == 1: # `:token_node.symbol` -> `::token_node->symbol` id_ = global_scope.find(self.children[0].children[0].token_str()) if id_ is not None and len(id_.ast_nodes) and type(id_.ast_nodes[0]) in (ASTVariableInitialization, ASTVariableDeclaration): tid = self.scope.find(id_.ast_nodes[0].type)#.rstrip('?') if tid is not None and len(tid.ast_nodes) and type(tid.ast_nodes[0]) == ASTTypeDefinition and tid.ast_nodes[0].has_pointers_to_the_same_type: return '::' + self.children[0].children[0].token_str() + '->' + c1 if cts0 == '.' and len(self.children[0].children) == 2: # // for `ASTNode token_node; token_node.symbol.id = sid` -> `... token_node->symbol->id = sid` t_node = type_of(self.children[0]) # \\ and `ASTNode token_node; ... :token_node.symbol.id = sid` -> `... ::token_node->symbol->id = sid` if t_node is not None and type(t_node) in (ASTVariableDeclaration, ASTVariableInitialization) and (t_node.is_reference or t_node.is_ptr): # ( # t_node.is_shared_ptr): return self.children[0].to_str() + '->' + c1 if cts0 == '(': # ) # `parse(expr_str).eval()` -> `parse(expr_str)->eval()` fid, sc = self.scope.find_and_return_scope(self.children[0].children[0].token_str()) if fid is not None and len(fid.ast_nodes) == 1: f_node = fid.ast_nodes[0] if type(f_node) == ASTFunctionDefinition and f_node.function_return_type != '': frtid = sc.find(f_node.function_return_type) if frtid is not None and len(frtid.ast_nodes) == 1 and type(frtid.ast_nodes[0]) == ASTTypeDefinition and frtid.ast_nodes[0].has_pointers_to_the_same_type: return self.children[0].to_str() + '->' + c1 if cts0 in ('Float', 'Float32') and c1 == 'infinity': return 'std::numeric_limits<' + cpp_type_from_11l[cts0] + '>::infinity()' id_, s = self.scope.find_and_return_scope(cts0.lstrip('@=')) if id_ is not None: if id_.type != '' and id_.type.endswith('?'): return cts0.lstrip('@=') + '->' + c1 if len(id_.ast_nodes) and type(id_.ast_nodes[0]) == ASTLoop and id_.ast_nodes[0].is_loop_variable_a_ptr and cts0 == id_.ast_nodes[0].loop_variable: return cts0 + '->' + c1 if len(id_.ast_nodes) and type(id_.ast_nodes[0]) == ASTVariableInitialization and (id_.ast_nodes[0].is_ptr): # ( # or id_.ast_nodes[0].is_shared_ptr): return self.children[0].to_str() + '->' + c1 + '()'*(c1 in ('len', 'last', 'empty')) # `to_str()` is needed for such case: `animal.say(); animals [+]= animal; animal.say()` -> `animal->say(); animals.append(animal); std::move(animal)->say();` if len(id_.ast_nodes) and type(id_.ast_nodes[0]) in (ASTVariableInitialization, ASTVariableDeclaration): # `Node tree = ...; tree.tree_indent()` -> `... tree->tree_indent()` # ( tid = self.scope.find(id_.ast_nodes[0].type)#.rstrip('?')) if tid is not None and len(tid.ast_nodes) and type(tid.ast_nodes[0]) == ASTTypeDefinition and tid.ast_nodes[0].has_pointers_to_the_same_type: return cts0 + '->' + c1 if id_.type != '' and s.is_function: tid = s.find(id_.type) if tid is not None and len(tid.ast_nodes) and type(tid.ast_nodes[0]) == ASTTypeDefinition and tid.ast_nodes[0].has_pointers_to_the_same_type: return cts0 + '->' + c1 if c1.isupper(): c0 = self.children[0].to_str() #assert(c0[0].isupper()) return c0.replace('.', '::') + '::' + c1 # replace `Token.Category.STATEMENT_SEPARATOR` with `Token::Category::STATEMENT_SEPARATOR` return char_if_len_1(self.children[0]) + '.' + c1 + '()'*(c1 in ('len', 'last', 'empty', 'real', 'imag') and not (self.parent is not None and self.parent.function_call and self is self.parent.children[0])) # char_if_len_1 is needed here because `u"0"_S.code` (have gotten from #(11l)‘‘0’.code’) is illegal [correct: `u'0'_C.code`] elif self.symbol.id == ':': c0 = self.children[0].to_str() c0 = {'time':'timens', # 'time': a symbol with this name already exists and therefore this name cannot be used as a namespace name 'random':'randomns'}.get(c0, c0) # GCC: .../11l-lang/_11l_to_cpp/11l_hpp/random.hpp:1:11: error: ‘namespace random { }’ redeclared as different kind of symbol c1 = self.children[1].to_str() return c0 + '::' + (c1 if c1 != '' else '_') elif self.symbol.id == '->': captured_variables = set() def gather_captured_variables(sn): if sn.token.category == Token.Category.NAME: if sn.token_str().startswith('@'): by_ref = True # sn.parent.children[0] is sn and ((sn.parent.symbol.id[-1] == '=' and sn.parent.symbol.id not in ('==', '!=')) # or (sn.parent.symbol.id == '.' and sn.parent.children[1].token_str() == 'append')) t = sn.token_str()[1:] if t.startswith('='): t = t[1:] by_ref = False captured_variables.add('this' if t == '' else '&'*by_ref + t) elif sn.token.value(source) == '(.)': captured_variables.add('this') else: for child in sn.children: if child is not None and child.symbol.id != '->': gather_captured_variables(child) gather_captured_variables(self.children[1]) return '[' + ', '.join(sorted(captured_variables)) + '](' + ', '.join(map(lambda c: 'const ' + ('auto &' if c.symbol.id != '=' else 'decltype(' + c.children[1].to_str() + ') &') + c.to_str(), self.children[0].children if self.children[0].symbol.id == '(' else [self.children[0]])) + '){return ' + self.children[1].to_str() + ';}' # ) elif self.symbol.id in ('..', '.<', '.+', '<.', '<.<'): s = {'..':'ee', '.<':'el', '.+':'ep', '<.':'le', '<.<':'ll'}[self.symbol.id] c0 = char_if_len_1(self.children[0]) c1 = char_if_len_1(self.children[1]) b = s[0] if c0.startswith('(len)'): b += 'len' c0 = c0[len('(len)'):] e = s[1] if c1.startswith('(len)'): e += 'len' c1 = c1[len('(len)'):] return 'range_' + b + '_'*(len(b) > 1 or len(e) > 1) + e + '(' + c0 + ', ' + c1 + ')' elif self.symbol.id in ('C', 'С', 'in'): return 'in(' + char_if_len_1(self.children[0]) + ', ' + self.children[1].to_str() + ')' elif self.symbol.id in ('!C', '!С', '!in'): return '!in(' + char_if_len_1(self.children[0]) + ', ' + self.children[1].to_str() + ')' elif self.symbol.id in ('I/', 'Ц/'): return 'idiv(' + self.children[0].to_str() + ', ' + self.children[1].to_str() + ')' elif self.symbol.id in ('I/=', 'Ц/='): return self.children[0].to_str() + ' = idiv(' + self.children[0].to_str() + ', ' + self.children[1].to_str() + ')' elif self.symbol.id in ('==', '!=') and self.children[1].token.category == Token.Category.STRING_LITERAL: return self.children[0].to_str() + ' ' + self.symbol.id + ' ' + char_if_len_1(self.children[1])[:-2] elif self.symbol.id in ('==', '!=', '=') and self.children[1].token.category == Token.Category.NAME and self.children[1].token_str().isupper(): # `token.category == NAME` -> `token.category == decltype(token.category)::NAME` and `category = NAME` -> `category = decltype(category)::NAME` return self.children[0].to_str() + ' ' + self.symbol.id + ' decltype(' + self.children[0].to_str() + ')::' + self.children[1].token_str() elif self.symbol.id in ('==', '!=') and self.children[0].symbol.id == '&' and len(self.children[0].children) == 1 and self.children[1].symbol.id == '&' and len(self.children[1].children) == 1: # `&a == &b` -> `&a == &b` id_, s = self.scope.find_and_return_scope(self.children[0].children[0].token_str()) if id_ is not None and len(id_.ast_nodes) and type(id_.ast_nodes[0]) == ASTLoop and id_.ast_nodes[0].is_loop_variable_a_ptr and self.children[0].children[0].token_str() == id_.ast_nodes[0].loop_variable: # `L(obj)...&obj != &objChoque` -> `...&*obj != objChoque` return '&*' + self.children[0].children[0].token_str() + ' ' + self.symbol.id + ' ' + self.children[1].children[0].token_str() return '&' + self.children[0].children[0].token_str() + ' ' + self.symbol.id + ' &' + self.children[1].children[0].token_str() elif self.symbol.id == '==' and self.children[0].symbol.id == '==': # replace `a == b == c` with `equal(a, b, c)` def f(child): if child.symbol.id == '==': return f(child.children[0]) + ', ' + child.children[1].to_str() return child.to_str() return 'equal(' + f(self) + ')' elif self.symbol.id == '=' and self.children[0].symbol.id == '[': # ] # replace `a[k] = v` with `a.set(k, v)` if self.children[0].children[1].token.category == Token.Category.NUMERIC_LITERAL: # replace `a[0] = v` with `_set<0>(a, v)` to support tuples return '_set<' + self.children[0].children[1].to_str() + '>(' + self.children[0].children[0].to_str() + ', ' + char_if_len_1(self.children[1]) + ')' else: c01 = self.children[0].children[1].to_str() if c01.startswith('(len)'): return self.children[0].children[0].to_str() + '.set_plus_len(' + c01[len('(len)'):] + ', ' + char_if_len_1(self.children[1]) + ')' else: return self.children[0].children[0].to_str() + '.set(' + c01 + ', ' + char_if_len_1(self.children[1]) + ')' elif self.symbol.id == '[+]=': # replace `a [+]= v` with `a.append(v)` return self.children[0].to_str() + '.append(' + self.children[1].to_str() + ')' elif self.symbol.id == '=' and self.children[0].tuple: #assert(False) return 'assign_from_tuple(' + ', '.join(c.to_str() for c in self.children[0].children) + ', ' + self.children[1].to_str() + ')' elif self.symbol.id == '?': return '[&]{auto R = ' + self.children[0].to_str() + '; return R != nullptr ? *R : ' + self.children[1].to_str() + ';}()' elif self.symbol.id == '^': c1 = self.children[1].to_str() if c1 == '2': return 'square(' + self.children[0].to_str() + ')' if c1 == '3': return 'cube(' + self.children[0].to_str() + ')' return 'pow(' + self.children[0].to_str() + ', ' + c1 + ')' elif self.symbol.id == '%': return 'mod(' + self.children[0].to_str() + ', ' + self.children[1].to_str() + ')' elif self.symbol.id == '[&]' and self.parent is not None and self.parent.symbol.id in ('==', '!='): # there is a difference in precedence of operators `&` and `==`/`!=` in Python/11l and C++ return '(' + self.children[0].to_str() + ' & ' + self.children[1].to_str() + ')' elif self.symbol.id == '(concat)' and self.parent is not None and self.parent.symbol.id in ('+', '-', '==', '!='): # `print(‘id = ’id+1)` -> `print((‘id = ’id)+1)`, `a & b != u"1x"` -> `(a & b) != u"1x"` [[[`'-'` is needed because `print(‘id = ’id-1)` also should generate a compile-time error]]] return '(' + self.children[0].to_str() + ' & ' + self.children[1].to_str() + ')' else: def is_integer(t): return t.category == Token.Category.NUMERIC_LITERAL and ('.' not in t.value(source)) and ('e' not in t.value(source)) if self.symbol.id == '/' and (is_integer(self.children[0].token) or is_integer(self.children[1].token)): if is_integer(self.children[0].token): return self.children[0].token_str() + '.0 / ' + self.children[1].to_str() else: return self.children[0].to_str() + ' / ' + self.children[1].token_str() + '.0' if self.symbol.id == '=' and self.children[0].symbol.id == '.' and len(self.children[0].children) == 2: # `:token_node.symbol = :symbol_table[...]` -> `::token_node->symbol = &::symbol_table[...]` t_node = type_of(self.children[0]) if t_node is not None and type(t_node) in (ASTVariableDeclaration, ASTVariableInitialization) and t_node.is_reference: c1s = self.children[1].to_str() return self.children[0].to_str() + ' = ' + '&'*(c1s != 'nullptr') + c1s return self.children[0].to_str() + ' ' + {'&':'&&', '|':'||', '[&]':'&', '[&]=':'&=', '[|]':'|', '[|]=':'|=', '(concat)':'&', '[+]':'+', '‘’=':'&=', '(+)':'^', '(+)=':'^='}.get(self.symbol.id, self.symbol.id) + ' ' + self.children[1].to_str() elif len(self.children) == 3: if self.children[1].token.category == Token.Category.SCOPE_BEGIN: assert(self.symbol.id == '.') if self.children[2].symbol.id == '?': # not necessary, just to beautify generated C++ return '[&](auto &&T){auto X = ' + self.children[2].children[0].to_str() + '; return X != nullptr ? *X : ' + self.children[2].children[1].to_str() + ';}(' + self.children[0].to_str() + ')' return '[&](auto &&T){return ' + self.children[2].to_str() + ';}(' + self.children[0].to_str() + ')' # why I prefer `auto &&T` to `auto&& T`: ampersand is related to the variable, but not to the type, for example in `int &i, j` `j` is not a reference, but just an integer assert(self.symbol.id in ('I', 'Е', 'if', 'если')) return self.children[0].to_str() + ' ? ' + self.children[1].to_str() + ' : ' + self.children[2].to_str() return '' symbol_table : Dict[str, SymbolBase] = {} allowed_keywords_in_expressions : List[str] = [] def symbol(id, bp = 0): try: s = symbol_table[id] except KeyError: s = SymbolBase() s.id = id s.lbp = bp symbol_table[id] = s if id[0].isalpha() and not id in ('I/', 'Ц/', 'I/=', 'Ц/=', 'C', 'С', 'in'): # this is keyword-in-expression assert(id.isalpha() or id in ('L.last_iteration', 'Ц.последняя_итерация', 'loop.last_iteration', 'цикл.последняя_итерация')) allowed_keywords_in_expressions.append(id) else: s.lbp = max(bp, s.lbp) return s class ASTNode: parent : 'ASTNode' = None access_specifier_public = 1 def walk_expressions(self, f): pass def walk_children(self, f): pass class ASTNodeWithChildren(ASTNode): # children : List['ASTNode'] = [] # OMFG! This actually means static (common for all objects of type ASTNode) variable, not default value of member variable, that was unexpected to me as it contradicts C++11 behavior children : List['ASTNode'] tokeni : int #scope : Scope def __init__(self): self.children = [] self.tokeni = tokeni def walk_children(self, f): for child in self.children: f(child) def children_to_str(self, indent, t, place_opening_curly_bracket_on_its_own_line = True, add_at_beginning = ''): r = '' if self.tokeni > 0: ti = self.tokeni - 1 while ti > 0 and tokens[ti].category in (Token.Category.SCOPE_END, Token.Category.STATEMENT_SEPARATOR): ti -= 1 r = (min(source[tokens[ti].end:tokens[self.tokeni].start].count("\n"), 2) - 1) * "\n" r += ' ' * (indent*4) + t + (("\n" + ' ' * (indent*4) + "{\n") if place_opening_curly_bracket_on_its_own_line else " {\n") # } r += add_at_beginning for c in self.children: r += c.to_str(indent+1) return r + ' ' * (indent*4) + "}\n" def children_to_str_detect_single_stmt(self, indent, r, check_for_if = False): def has_if(node): while True: if not isinstance(node, ASTNodeWithChildren) or len(node.children) != 1: return False if type(node) == ASTIf: return True node = node.children[0] if (len(self.children) != 1 or (check_for_if and (type(self.children[0]) == ASTIf or has_if(self.children[0]))) # for correctly handling of dangling-else or type(self.children[0]) == ASTLoopRemoveCurrentElementAndContinue): # `L.remove_current_element_and_continue` ‘раскрывается в 2 строки кода’\‘is translated into 2 statements’ return self.children_to_str(indent, r, False) assert(len(self.children) == 1) c0str = self.children[0].to_str(indent+1) if c0str.startswith(' ' * ((indent+1)*4) + "was_break = true;\n"): return self.children_to_str(indent, r, False) return ' ' * (indent*4) + r + "\n" + c0str class ASTNodeWithExpression(ASTNode): expression : SymbolNode def set_expression(self, expression): self.expression = expression self.expression.ast_parent = self def walk_expressions(self, f): f(self.expression) class ASTProgram(ASTNodeWithChildren): beginning_extra = '' def to_str(self): r = self.beginning_extra prev_global_statement = True code_block_id = 1 for c in self.children: global_statement = type(c) in (ASTVariableDeclaration, ASTVariableInitialization, ASTTupleInitialization, ASTFunctionDefinition, ASTTypeDefinition, ASTTypeAlias, ASTTypeEnum, ASTMain) if global_statement != prev_global_statement: prev_global_statement = global_statement if not global_statement: sname = 'CodeBlock' + str(code_block_id) r += "\n"*(c is not self.children[0]) + 'struct ' + sname + "\n{\n " + sname + "()\n {\n" else: r += " }\n} code_block_" + str(code_block_id) + ";\n" code_block_id += 1 r += c.to_str(2*(not global_statement)) if prev_global_statement != True: # {{ r += " }\n} code_block_" + str(code_block_id) + ";\n" return r class ASTExpression(ASTNodeWithExpression): def to_str(self, indent): if self.expression.symbol.id == '=' and type(self.parent) == ASTTypeDefinition: return ' ' * (indent*4) + 'decltype(' + self.expression.children[1].to_str() + ') ' + self.expression.to_str() + ";\n" return ' ' * (indent*4) + self.expression.to_str() + ";\n" cpp_type_from_11l = {'auto&':'auto&', 'V':'auto', 'П':'auto', 'var':'auto', 'перем':'auto', 'Int':'int', 'Int64':'Int64', 'UInt64':'UInt64', 'UInt32':'uint32_t', 'Float':'double', 'Float32':'float', 'Complex':'Complex', 'String':'String', 'Bool':'bool', 'Byte':'Byte', 'N':'void', 'Н':'void', 'null':'void', 'нуль':'void', 'Array':'Array', 'Tuple':'Tuple', 'Dict':'Dict', 'DefaultDict':'DefaultDict', 'Set':'Set', 'Deque':'Deque'} def trans_type(ty, scope, type_token, ast_type_node = None, is_reference = False): if ty[-1] == '?': ty = ty[:-1] t = cpp_type_from_11l.get(ty) if t is not None: if t == 'int' and int_is_int64: return 'Int64' return t else: if '.' in ty: # for `Token.Category category` return ty.replace('.', '::') # [-TODO: generalize-] if ty.startswith('('): assert(ty[-1] == ')') i = 1 s = i nesting_level = 0 types = '' while True: if ty[i] in ('(', '['): nesting_level += 1 elif ty[i] in (')', ']'): if nesting_level == 0: assert(i == len(ty)-1) types += trans_type(ty[s:i], scope, type_token, ast_type_node) break nesting_level -= 1 elif ty[i] == ',': if nesting_level == 0: # ignore inner commas types += trans_type(ty[s:i], scope, type_token, ast_type_node) + ', ' i += 1 while ty[i] == ' ': i += 1 s = i continue i += 1 tuple_types = types.split(', ') if tuple_types[0] in ('int', 'float', 'double') and tuple_types.count(tuple_types[0]) == len(tuple_types) and len(tuple_types) in range(2, 5): return {'int':'i', 'float':'', 'double':'d'}[tuple_types[0]] + 'vec' + str(len(tuple_types)) return 'Tuple<' + types + '>' p = ty.find('[') # ] if p != -1: if '=' in ty: assert(p == 0 and ty[0] == '[' and ty[-1] == ']') tylist = ty[1:-1].split('=') assert(len(tylist) == 2) return 'Dict<' + trans_type(tylist[0], scope, type_token, ast_type_node) + ', ' \ + trans_type(tylist[1], scope, type_token, ast_type_node) + '>' if ty.startswith('Callable['): # ] tylist = ty[p+1:-1].split(', ') def trans_ty(ty): tt = trans_type(ty, scope, type_token, ast_type_node) return tt if tt.startswith('std::unique_ptr<') else 'const ' + tt + ('&'*(ty not in ('Int', 'Float'))) return 'std::function<' + trans_type(tylist[-1], scope, type_token, ast_type_node) + '(' + ', '.join(trans_ty(t) for t in tylist[:-1]) + ')>' return (trans_type(ty[:p], scope, type_token, ast_type_node) if p != 0 else 'Array') + '<' + trans_type(ty[p+1:-1], scope, type_token, ast_type_node) + '>' p = ty.find(',') if p != -1: return trans_type(ty[:p], scope, type_token, ast_type_node) + ', ' + trans_type(ty[p+1:].lstrip(' '), scope, type_token, ast_type_node) id = scope.find(ty) if id is None or len(id.ast_nodes) == 0: raise Error('type `' + ty + '` is not defined', type_token) if type(id.ast_nodes[0]) in (ASTTypeAlias, ASTTypeEnum): return ty if type(id.ast_nodes[0]) != ASTTypeDefinition: raise Error('`' + ty + '`: expected a type name', type_token) if id.ast_nodes[0].has_virtual_functions or id.ast_nodes[0].has_pointers_to_the_same_type: if ast_type_node is not None and tokens[id.ast_nodes[0].tokeni].start > type_token.start: # if type `ty` was declared after this variable, insert a forward declaration of type `ty` ast_type_node.forward_declared_types.add(ty) return ty if is_reference else 'std::unique_ptr<' + ty + '>'# if id.ast_nodes[0].has_virtual_functions else 'SharedPtr<' + ty + '>' return ty class ASTVariableDeclaration(ASTNode): vars : List[str] type : str type_args : List[str] is_const = False function_pointer = False is_reference = False scope : Scope type_token : Token is_ptr = False nullable = False #is_shared_ptr = False def __init__(self): self.scope = scope def trans_type(self, ty, is_reference = False): if ty.endswith('&'): assert(trans_type(ty[:-1], self.scope, self.type_token, self.parent if type(self.parent) == ASTTypeDefinition else None, is_reference) == 'auto') return 'auto&' return trans_type(ty, self.scope, self.type_token, self.parent if type(self.parent) == ASTTypeDefinition else None, is_reference) def to_str(self, indent): if self.function_pointer: def trans_type(ty): tt = self.trans_type(ty) return tt if tt.startswith('std::unique_ptr<') else 'const ' + tt + ('&'*(ty not in ('Int', 'Float'))) return ' ' * (indent*4) + 'std::function<' + self.trans_type(self.type) + '(' + ', '.join(trans_type(ty) for ty in self.type_args) + ')> ' + ', '.join(self.vars) + ";\n" return ' ' * (indent*4) + 'const '*self.is_const + self.trans_type(self.type, self.is_reference) + ('<' + ', '.join(self.trans_type(ty) for ty in self.type_args) + '>' if len(self.type_args) else '') + ' ' + '*'*self.is_reference + ', '.join(self.vars) + ";\n" class ASTVariableInitialization(ASTVariableDeclaration, ASTNodeWithExpression): def to_str(self, indent): return super().to_str(indent)[:-2] + ' = ' + self.expression.to_str() + ";\n" class ASTTupleInitialization(ASTNodeWithExpression): dest_vars : List[str] is_const = False bind_array = False def __init__(self): self.dest_vars = [] def to_str(self, indent): e = self.expression.to_str() if self.bind_array: e = 'bind_array<' + str(len(self.dest_vars)) + '>(' + e + ')' return ' ' * (indent*4) + 'const '*self.is_const + 'auto [' + ', '.join(self.dest_vars) + '] = ' + e + ";\n" class ASTTupleAssignment(ASTNodeWithExpression): dest_vars : List[Tuple[str, bool]] def __init__(self): self.dest_vars = [] def to_str(self, indent): r = '' for i, dv in enumerate(self.dest_vars): if dv[1]: r += ' ' * (indent*4) + 'TUPLE_ELEMENT_T(' + str(i) + ', ' + self.expression.to_str() + ') ' + dv[0] + ";\n" return r + ' ' * (indent*4) + 'assign_from_tuple(' + ', '.join(dv[0] for dv in self.dest_vars) + ', ' + self.expression.to_str() + ')' + ";\n" class ASTWith(ASTNodeWithChildren, ASTNodeWithExpression): def to_str(self, indent): return self.children_to_str(indent, '[&](auto &&T)', False)[:-1] + '(' + self.expression.to_str() + ");\n" class ASTFunctionDefinition(ASTNodeWithChildren): function_name : str = '' function_return_type : str = '' is_const = False function_arguments : List[Tuple[str, str, str, str]]# = [] # (arg_name, default_value, type_, qualifier) first_named_only_argument = None last_non_default_argument : int class VirtualCategory(IntEnum): NO = 0 NEW = 1 OVERRIDE = 2 ABSTRACT = 3 ASSIGN = 4 FINAL = 5 virtual_category = VirtualCategory.NO scope : Scope member_initializer_list = '' def __init__(self, function_arguments = None, function_return_type = ''): super().__init__() self.function_arguments = function_arguments or [] self.function_return_type = function_return_type self.scope = scope def serialize_to_dict(self, node_type = True): r = {} if node_type: # 'node_type' is inserted in dict before 'function_arguments' as this looks more logical in .11l_global_scope r['node_type'] = 'function' r['function_arguments'] = ['; '.join(arg) for arg in self.function_arguments] return r def deserialize_from_dict(self, d): self.function_arguments = [arg.split('; ') for arg in d['function_arguments']] def to_str(self, indent): is_const = False if type(self.parent) == ASTTypeDefinition: if self.function_name == '': # this is constructor s = self.parent.type_name elif self.function_name == '(destructor)': s = '~' + self.parent.type_name elif self.function_name == 'String': s = 'operator String' is_const = True else: s = ('auto' if self.function_return_type == '' else trans_type(self.function_return_type, self.scope, tokens[self.tokeni])) + ' ' + \ {'()':'operator()', '[&]':'operator&', '<':'operator<', '==':'operator==', '+':'operator+', '-':'operator-', '*':'operator*'}.get(self.function_name, self.function_name) if self.virtual_category != self.VirtualCategory.NO: arguments = [] for index, arg in enumerate(self.function_arguments): if arg[2] == '': # if there is no type specified raise Error('type should be specified for argument `' + arg[0] + '` [for virtual functions all arguments should have types]', tokens[self.tokeni]) else: arguments.append( ('' if '=' in arg[3] or '&' in arg[3] else 'const ') + trans_type(arg[2].rstrip('?'), self.scope, tokens[self.tokeni]) + '* '*0 + ' ' + ('&' if '&' in arg[3] or '=' not in arg[3] else '') + arg[0] + ('' if arg[1] == '' or index < self.last_non_default_argument else ' = ' + arg[1])) s = 'virtual ' + s + '(' + ', '.join(arguments) + ')' + ('', ' override', ' = 0', ' override', ' final')[self.virtual_category - 1] return ' ' * (indent*4) + s + ";\n" if self.virtual_category == self.VirtualCategory.ABSTRACT else self.children_to_str(indent, s) elif type(self.parent) != ASTProgram: # local functions [i.e. functions inside functions] are represented as C++ lambdas captured_variables = set() def gather_captured_variables(node): def f(sn : SymbolNode): if sn.token.category == Token.Category.NAME: if sn.token.value(source)[0] == '@': by_ref = True # sn.parent and sn.parent.children[0] is sn and sn.parent.symbol.id[-1] == '=' and sn.parent.symbol.id not in ('==', '!=') t = sn.token.value(source)[1:] if t.startswith('='): t = t[1:] by_ref = False captured_variables.add('this' if t == '' else '&'*by_ref + t) elif sn.token.value(source) == '(.)': captured_variables.add('this') else: for child in sn.children: if child is not None: f(child) node.walk_expressions(f) node.walk_children(gather_captured_variables) gather_captured_variables(self) arguments = [] for arg in self.function_arguments: if arg[2] == '': # if there is no type specified arguments.append(('auto ' if '=' in arg[3] else 'const auto &') + arg[0] if arg[1] == '' else ('' if '=' in arg[3] else 'const ') + 'decltype(' + arg[1] + ') ' + arg[0] + ' = ' + arg[1]) else: tid = self.scope.parent.find(arg[2].rstrip('?')) if tid is not None and len(tid.ast_nodes) and type(tid.ast_nodes[0]) == ASTTypeDefinition and (tid.ast_nodes[0].has_virtual_functions or tid.ast_nodes[0].has_pointers_to_the_same_type): arguments.append('std::unique_ptr<' + arg[2].rstrip('?') + '> ' + arg[0] + ('' if arg[1] == '' else ' = ' + arg[1])) else: arguments.append(('' if '=' in arg[3] else 'const ') + trans_type(arg[2], self.scope, tokens[self.tokeni]) + ' ' + ('&'*((arg[2] not in ('Int', 'Float')) and ('=' not in arg[3]))) + arg[0] + ('' if arg[1] == '' else ' = ' + arg[1])) return self.children_to_str(indent, ('auto' if self.function_return_type == '' else 'std::function<' + trans_type(self.function_return_type, self.scope, tokens[self.tokeni]) + '(' + ', '.join(trans_type(arg[2], self.scope, tokens[self.tokeni]) for arg in self.function_arguments) + ')>') + ' ' + self.function_name + ' = [' + ', '.join(sorted(filter(lambda v: not '&'+v in captured_variables, captured_variables))) + '](' + ', '.join(arguments) + ')')[:-1] + ";\n" else: s = ('auto' if self.function_return_type == '' else trans_type(self.function_return_type, self.scope, tokens[self.tokeni])) + ' ' + self.function_name if len(self.function_arguments) == 0: return self.children_to_str(indent, s + '()' + ' const'*(self.is_const or is_const)) templates = [] arguments = [] for index, arg in enumerate(self.function_arguments): if arg[2] == '': # if there is no type specified templates.append('typename T' + str(index + 1) + ('' if arg[1] == '' or index < self.last_non_default_argument else ' = decltype(' + arg[1] + ')')) arguments.append(('T' + str(index + 1) + ' ' if '=' in arg[3] else 'const '*(arg[3] != '&') + 'T' + str(index + 1) + ' &') + arg[0] + ('' if arg[1] == '' or index < self.last_non_default_argument else ' = ' + arg[1])) else: tid = self.scope.parent.find(arg[2].rstrip('?')) if tid is not None and len(tid.ast_nodes) and type(tid.ast_nodes[0]) == ASTTypeDefinition and (tid.ast_nodes[0].has_virtual_functions or tid.ast_nodes[0].has_pointers_to_the_same_type): arguments.append('std::unique_ptr<' + arg[2].rstrip('?') + '> ' #+ ('' if '=' in arg[3] else 'const ') + arg[3] # add `&` if needed + arg[0] + ('' if arg[1] == '' or index < self.last_non_default_argument else ' = ' + arg[1])) elif arg[2].endswith('?'): arguments.append(trans_type(arg[2].rstrip('?'), self.scope, tokens[self.tokeni]) + '* ' + ('' if '=' in arg[3] else 'const ') + arg[0] + ('' if arg[1] == '' or index < self.last_non_default_argument else ' = ' + arg[1])) else: ty = trans_type(arg[2], self.scope, tokens[self.tokeni]) arguments.append( (('' if arg[3] == '=' else 'const ') + ty + ' ' + '&'*(arg[2] not in ('Int', 'Float') and arg[3] != '=') if arg[3] != '&' else ty + ' &') + arg[0] + ('' if arg[1] == '' or index < self.last_non_default_argument else ' = ' + arg[1])) if self.member_initializer_list == '' and self.function_name == '' and type(self.parent) == ASTTypeDefinition: i = 0 while i < len(self.children): c = self.children[i] if isinstance(c, ASTExpression) and c.expression.symbol.id == '=' \ and c.expression.children[0].symbol.id == '.' \ and len(c.expression.children[0].children) == 1 \ and c.expression.children[0].children[0].token.category == Token.Category.NAME \ and c.expression.children[1].token.category == Token.Category.NAME \ and c.expression.children[1].token_str() in (arg[0] for arg in self.function_arguments): if self.scope.parent.ids.get(c.expression.children[0].children[0].token_str()) is None: # this member variable is defined in the base type/class i += 1 continue if self.member_initializer_list == '': self.member_initializer_list = " :\n" else: self.member_initializer_list += ",\n" ec1 = c.expression.children[1].token_str() for index, arg in enumerate(self.function_arguments): if arg[0] == ec1: if arguments[index].startswith('std::unique_ptr<'): ec1 = 'std::move(' + ec1 + ')' break self.member_initializer_list += ' ' * ((indent+1)*4) + c.expression.children[0].children[0].token_str() + '(' + ec1 + ')' self.children.pop(i) continue i += 1 r = self.children_to_str(indent, ('template <' + ', '.join(templates) + '> ')*(len(templates) != 0) + s + '(' + ', '.join(arguments) + ')' + ' const'*(self.is_const or self.function_name in tokenizer.sorted_operators) + self.member_initializer_list) if isinstance(self.parent, ASTTypeDefinition) and self.function_name in ('+', '-', '*', '/') and self.function_name + '=' not in self.parent.scope.ids: r += ' ' * (indent*4) + 'template <typename Ty> auto &operator' + self.function_name + "=(const Ty &t)\n" r += ' ' * (indent*4) + "{\n" r += ' ' * ((indent+1)*4) + '*this = *this ' + self.function_name + " t;\n" r += ' ' * ((indent+1)*4) + "return *this;\n" r += ' ' * (indent*4) + "}\n" return r class ASTIf(ASTNodeWithChildren, ASTNodeWithExpression): else_or_elif : ASTNode = None likely = 0 def walk_children(self, f): super().walk_children(f) if self.else_or_elif is not None: self.else_or_elif.walk_children(f) def to_str(self, indent): if self.likely == 0: s = 'if (' + self.expression.to_str() + ')' elif self.likely == 1: s = 'if (likely(' + self.expression.to_str() + '))' else: assert(self.likely == -1) s = 'if (unlikely(' + self.expression.to_str() + '))' return self.children_to_str_detect_single_stmt(indent, s, check_for_if = True) + (self.else_or_elif.to_str(indent) if self.else_or_elif is not None else '') class ASTElseIf(ASTNodeWithChildren, ASTNodeWithExpression): else_or_elif : ASTNode = None def walk_children(self, f): super().walk_children(f) if self.else_or_elif is not None: self.else_or_elif.walk_children(f) def to_str(self, indent): return self.children_to_str_detect_single_stmt(indent, 'else if (' + self.expression.to_str() + ')', check_for_if = True) + (self.else_or_elif.to_str(indent) if self.else_or_elif is not None else '') class ASTElse(ASTNodeWithChildren): def to_str(self, indent): return self.children_to_str_detect_single_stmt(indent, 'else') class ASTSwitch(ASTNodeWithExpression): class Case(ASTNodeWithChildren, ASTNodeWithExpression): pass cases : List[Case] has_string_case = False def __init__(self): self.cases = [] def walk_children(self, f): for case in self.cases: for child in case.children: f(child) def to_str(self, indent): def is_char(child): ts = child.token_str() return child.token.category == Token.Category.STRING_LITERAL and (len(ts) == 3 or (ts[:2] == '"\\' and len(ts) == 4)) def char_if_len_1(child): if is_char(child): if child.token_str()[1:-1] == "\\": return R"u'\\'" return "u'" + child.token_str()[1:-1].replace("'", R"\'") + "'" return child.to_str() if self.has_string_case: # C++ does not support strings in case labels so insert if-elif-else chain in this case r = '' for case in self.cases: if case.expression.token_str() in ('E', 'И', 'else', 'иначе'): assert(id(case) == id(self.cases[-1])) r += case.children_to_str_detect_single_stmt(indent, 'else') else: r += case.children_to_str_detect_single_stmt(indent, ('if' if id(case) == id(self.cases[0]) else 'else if') + ' (' + self.expression.to_str() + ' == ' + char_if_len_1(case.expression) + ')', check_for_if = True) return r r = ' ' * (indent*4) + 'switch (' + self.expression.to_str() + ")\n" + ' ' * (indent*4) + "{\n" for case in self.cases: r += ' ' * (indent*4) + ('default' if case.expression.token_str() in ('E', 'И', 'else', 'иначе') else 'case ' + char_if_len_1(case.expression)) + ":\n" for c in case.children: r += c.to_str(indent+1) r += ' ' * ((indent+1)*4) + "break;\n" return r + ' ' * (indent*4) + "}\n" class ASTLoopWasNoBreak(ASTNodeWithChildren): def to_str(self, indent): return '' class ASTLoop(ASTNodeWithChildren, ASTNodeWithExpression): loop_variable : str = None is_loop_variable_a_reference = False copy_loop_variable = False break_label_needed = -1 has_continue = False has_L_index = False has_L_last_iteration = False has_L_remove_current_element_and_continue = False is_loop_variable_a_ptr = False was_no_break_node : ASTLoopWasNoBreak = None def has_L_was_no_break(self): return self.was_no_break_node is not None def to_str(self, indent): r = '' if self.has_L_was_no_break(): r = ' ' * (indent*4) + "{bool was_break = false;\n" loop_auto = False if self.expression is not None and self.expression.token.category == Token.Category.NUMERIC_LITERAL: lv = self.loop_variable if self.loop_variable is not None else 'Lindex' tr = 'for (int ' + lv + ' = 0; ' + lv + ' < ' + self.expression.to_str() + '; ' + lv + '++)' else: if self.loop_variable is not None or (self.expression is not None and self.expression.symbol.id in ('..', '.<')): if self.loop_variable is not None and ',' in self.loop_variable: tr = 'for (auto ' + '&&'*(not self.copy_loop_variable) + '[' + self.loop_variable + '] : ' + self.expression.to_str() + ')' else: loop_auto = True tr = 'for (auto ' + ('&' if self.is_loop_variable_a_reference else '&&'*(self.is_loop_variable_a_ptr or (not self.copy_loop_variable and not ( self.expression.symbol.id in ('..', '.<') or (self.expression.symbol.id == '(' and self.expression.children[0].symbol.id == '.' and self.expression.children[0].children[0].symbol.id == '(' and self.expression.children[0].children[0].children[0].symbol.id in ('..', '.<'))))) # )) ) + (self.loop_variable if self.loop_variable is not None else '__unused') + ' : ' + self.expression.to_str() + ')' else: if self.expression is not None and self.expression.token.category == Token.Category.NAME: l = tokens[self.tokeni].value(source) raise Error('please write `' + l + ' ' + self.expression.token_str() + ' != 0` or `' + l + ' 1..' + self.expression.token_str() + '` instead of `' + l + ' ' + self.expression.token_str() + '`', Token(tokens[self.tokeni].start, self.expression.token.end, Token.Category.NAME)) tr = 'while (' + (self.expression.to_str() if self.expression is not None else 'true') + ')' rr = self.children_to_str_detect_single_stmt(indent, tr) if self.has_L_remove_current_element_and_continue: if not loop_auto: raise Error('this kind of loop does not support `L.remove_current_element_and_continue`', tokens[self.tokeni]) if self.has_L_last_iteration: raise Error('`L.last_iteration` can not be used with `L.remove_current_element_and_continue`', tokens[self.tokeni]) if self.has_L_index: raise Error('`L.index` can not be used with `L.remove_current_element_and_continue`', tokens[self.tokeni]) # { rr = ' ' * (indent*4) + '{auto &&__range = ' + self.expression.to_str() + ";\n" \ + ' ' * (indent*4) + "auto __end = __range.end();\n" \ + ' ' * (indent*4) + "auto __dst = __range.begin();\n" \ + self.children_to_str(indent, 'for (auto __src = __range.begin(); __src != __end;)', False, add_at_beginning = ' ' * ((indent+1)*4) + 'auto &&'+ self.loop_variable + " = *__src;\n")[:-indent*4-2] \ + ' ' * ((indent+1)*4) + "if (__dst != __src)\n" \ + ' ' * ((indent+1)*4) + " *__dst = std::move(*__src);\n" \ + ' ' * ((indent+1)*4) + "++__dst;\n" \ + ' ' * ((indent+1)*4) + "++__src;\n" \ + ' ' * (indent*4) + "}\n" \ + ' ' * (indent*4) + "__range.erase(__dst, __end);}\n" if self.has_L_last_iteration: if not loop_auto: raise Error('this kind of loop does not support `L.last_iteration`', tokens[self.tokeni]) rr = ' ' * (indent*4) + '{auto &&__range = ' + self.expression.to_str() \ + ";\n" + self.children_to_str(indent, 'for (auto __begin = __range.begin(), __end = __range.end(); __begin != __end;)', False, add_at_beginning = ' ' * ((indent+1)*4) + 'auto &&'+ self.loop_variable + " = *__begin; ++__begin;\n") elif self.has_L_index and not (self.loop_variable is None and self.expression is not None and self.expression.token.category == Token.Category.NUMERIC_LITERAL): rr = self.children_to_str(indent, tr, False) if self.has_L_index and not (self.loop_variable is None and self.expression is not None and self.expression.token.category == Token.Category.NUMERIC_LITERAL): if self.has_continue: brace_pos = int(rr[0] == "\n") + indent*4 + len(tr) + 1 rr = rr[:brace_pos+1] + rr[brace_pos:] # { r += ' ' * (indent*4) + "{int Lindex = 0;\n" + rr[:-indent*4-2] + "} on_continue:\n"*self.has_continue + ' ' * ((indent+1)*4) + "Lindex++;\n" + ' ' * (indent*4) + "}}\n" else: r += rr if self.has_L_last_iteration: r = r[:-1] + "}\n" if self.has_L_was_no_break(): # { r += self.was_no_break_node.children_to_str_detect_single_stmt(indent, 'if (!was_break)') + ' ' * (indent*4) + "}\n" if self.break_label_needed != -1: r += ' ' * (indent*4) + 'break_' + ('' if self.break_label_needed == 0 else str(self.break_label_needed)) + ":;\n" return r def walk_expressions(self, f): if self.expression is not None: f(self.expression) class ASTContinue(ASTNode): token : Token def to_str(self, indent): n = self.parent while True: if type(n) == ASTLoop: n.has_continue = True break n = n.parent if n is None: raise Error('loop corresponding to this statement is not found', self.token) return ' ' * (indent*4) + 'goto on_'*n.has_L_index + "continue;\n" break_label_index = -1 class ASTLoopBreak(ASTNode): loop_variable : str = '' loop_level = 0 token : Token def to_str(self, indent): r = '' n = self.parent loop_level = 0 while True: if type(n) == ASTLoop: if loop_level == self.loop_level if self.loop_variable == '' else self.loop_variable == n.loop_variable: if n.has_L_was_no_break(): r = ' ' * (indent*4) + "was_break = true;\n" if loop_level > 0: if n.break_label_needed == -1: global break_label_index break_label_index += 1 n.break_label_needed = break_label_index return r + ' ' * (indent*4) + 'goto break_' + ('' if n.break_label_needed == 0 else str(n.break_label_needed)) + ";\n" break loop_level += 1 n = n.parent if n is None: raise Error('loop corresponding to this `' + '^'*self.loop_level + 'L' + ('(' + self.loop_variable + ')')*(self.loop_variable != '') + '.break` statement is not found', self.token) n = self.parent while True: if type(n) == ASTSwitch: n = n.parent while True: if type(n) == ASTLoop: if n.break_label_needed == -1: break_label_index += 1 n.break_label_needed = break_label_index return r + ' ' * (indent*4) + 'goto break_' + ('' if n.break_label_needed == 0 else str(n.break_label_needed)) + ";\n" n = n.parent if type(n) == ASTLoop: break n = n.parent return r + ' ' * (indent*4) + "break;\n" class ASTLoopRemoveCurrentElementAndContinue(ASTNode): def to_str(self, indent): n = self.parent while True: if type(n) == ASTLoop: n.has_L_remove_current_element_and_continue = True break n = n.parent return ' ' * (indent*4) + "++__src;\n" \ + ' ' * (indent*4) + "continue;\n" class ASTReturn(ASTNodeWithExpression): def to_str(self, indent): expr_str = '' if self.expression is not None: if self.expression.is_list and len(self.expression.children) == 0: # `R []` n = self.parent while type(n) != ASTFunctionDefinition: n = n.parent if n.function_return_type == '': raise Error('Function returning an empty array should have return type specified', self.expression.left_to_right_token()) if not n.function_return_type.startswith('Array['): # ] raise Error('Function returning an empty array should have an Array based return type', self.expression.left_to_right_token()) expr_str = trans_type(n.function_return_type, self.expression.scope, self.expression.token) + '()' elif self.expression.function_call and self.expression.children[0].token_str() == 'Dict' and len(self.expression.children) == 1: # `R Dict()` n = self.parent while type(n) != ASTFunctionDefinition: n = n.parent if n.function_return_type == '': raise Error('Function returning an empty dict should have return type specified', self.expression.left_to_right_token()) if not n.function_return_type.startswith('Dict['): # ] raise Error('Function returning an empty dict should have a Dict based return type', self.expression.left_to_right_token()) expr_str = trans_type(n.function_return_type, self.expression.scope, self.expression.token) + '()' else: expr_str = self.expression.to_str() return ' ' * (indent*4) + 'return' + (' ' + expr_str if expr_str != '' else '') + ";\n" def walk_expressions(self, f): if self.expression is not None: f(self.expression) class ASTException(ASTNodeWithExpression): def to_str(self, indent): return ' ' * (indent*4) + 'throw ' + self.expression.to_str() + ";\n" class ASTExceptionTry(ASTNodeWithChildren): def to_str(self, indent): return self.children_to_str(indent, 'try') class ASTExceptionCatch(ASTNodeWithChildren): exception_object_type : str exception_object_name : str = '' def to_str(self, indent): if self.exception_object_type == '': return self.children_to_str(indent, 'catch (...)') return self.children_to_str(indent, 'catch (const ' + self.exception_object_type + '&' + (' ' + self.exception_object_name if self.exception_object_name != '' else '') + ')') class ASTTypeDefinition(ASTNodeWithChildren): base_types : List[str] type_name : str constructors : List[ASTFunctionDefinition] has_virtual_functions = False has_pointers_to_the_same_type = False forward_declared_types : Set[str] serializable = False def __init__(self, constructors = None): super().__init__() self.base_types = [] self.constructors = constructors or [] self.scope = scope # needed for built-in types, e.g. `File(full_fname, ‘w’, encoding' ‘utf-8-sig’).write(...)` self.forward_declared_types = set() def serialize_to_dict(self): return {'node_type': 'type', 'constructors': [c.serialize_to_dict(False) for c in self.constructors]} def deserialize_from_dict(self, d): for c_dict in d['constructors']: c = ASTFunctionDefinition() c.deserialize_from_dict(c_dict) self.constructors.append(c) def find_id_including_base_types(self, id): tid = self.scope.ids.get(id) if tid is None: for base_type_name in self.base_types: tid = self.scope.parent.find(base_type_name) assert(tid is not None and len(tid.ast_nodes) == 1) assert(isinstance(tid.ast_nodes[0], ASTTypeDefinition)) tid = tid.ast_nodes[0].find_id_including_base_types(id) if tid is not None: break return tid def set_serializable_to_children(self): self.serializable = True for c in self.children: if type(c) == ASTTypeDefinition: c.set_serializable_to_children() def to_str(self, indent): r = '' if self.tokeni > 0: ti = self.tokeni - 1 while ti > 0 and tokens[ti].category in (Token.Category.SCOPE_END, Token.Category.STATEMENT_SEPARATOR): ti -= 1 r = (source[tokens[ti].end:tokens[self.tokeni].start].count("\n")-1) * "\n" base_types = [] # if self.has_pointers_to_the_same_type: # base_types += ['SharedObject'] base_types += self.base_types r += ' ' * (indent*4) \ + 'class ' + self.type_name + (' : ' + ', '.join(map(lambda c: 'public ' + c, base_types)) if len(base_types) else '') \ + "\n" + ' ' * (indent*4) + "{\n" access_specifier_public = -1 for c in self.children: if c.access_specifier_public != access_specifier_public: r += ' ' * (indent*4) + ['private', 'public'][c.access_specifier_public] + ":\n" access_specifier_public = c.access_specifier_public r += c.to_str(indent+1) if len(self.forward_declared_types): r = "\n".join(' ' * (indent*4) + 'class ' + t + ';' for t in self.forward_declared_types) + "\n\n" + r if self.serializable: r += "\n" + ' ' * ((indent+1)*4) + "void serialize(ldf::Serializer &s)\n" + ' ' * ((indent+1)*4) + "{\n" for c in self.children: if type(c) in (ASTVariableDeclaration, ASTVariableInitialization): for var in c.vars: r += ' ' * ((indent+2)*4) + 's(u"' + var + '", ' + (var if var != 's' else 'this->s') + ");\n" r += ' ' * ((indent+1)*4) + "}\n" return r + ' ' * (indent*4) + "};\n" class ASTTypeAlias(ASTNode): name : str defining_type : str # this term is taken from C++ Standard (‘using identifier attribute-specifier-seqopt = defining-type-id ;’) template_params : List[str] def __init__(self): self.template_params = [] def to_str(self, indent): r = ' ' * (indent*4) if len(self.template_params): r += 'template <' + ', '.join(self.template_params) + '> ' return r + 'using ' + self.name + ' = ' + self.defining_type + ";\n" class ASTTypeEnum(ASTNode): enum_name : str enumerators : List[str] def __init__(self): super().__init__() self.enumerators = [] def to_str(self, indent): r = ' ' * (indent*4) + 'enum class ' + self.enum_name + " {\n" for i in range(len(self.enumerators)): r += ' ' * ((indent+1)*4) + self.enumerators[i] if i < len(self.enumerators) - 1: r += ',' r += "\n" return r + ' ' * (indent*4) + "};\n" class ASTMain(ASTNodeWithChildren): found_reference_to_argv = False def to_str(self, indent): if importing_module: return '' if not self.found_reference_to_argv: return self.children_to_str(indent, 'int main()') return self.children_to_str(indent, 'int MAIN_WITH_ARGV()', add_at_beginning = ' ' * ((indent+1)*4) + "INIT_ARGV();\n\n") def type_of(sn): assert(sn.symbol.id == '.' and len(sn.children) == 2) if sn.children[0].symbol.id == '.': if len(sn.children[0].children) == 1: return None left = type_of(sn.children[0]) if left is None: # `Array[Array[Array[String]]] table... table.last.append([...])` return None elif sn.children[0].symbol.id == '[': # ] return None elif sn.children[0].symbol.id == '(': # ) if not sn.children[0].function_call: return None if sn.children[0].children[0].symbol.id == '.': return None tid = sn.scope.find(sn.children[0].children[0].token_str()) if tid is None: return None if type(tid.ast_nodes[0]) == ASTFunctionDefinition: # `input().split(...)` if tid.ast_nodes[0].function_return_type == '': return None type_name = tid.ast_nodes[0].function_return_type tid = tid.ast_nodes[0].scope.find(type_name) else: # `Converter(habr_html, ohd).to_html(instr, outfilef)` type_name = sn.children[0].children[0].token_str() assert(tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) == ASTTypeDefinition) tid = tid.ast_nodes[0].scope.ids.get(sn.children[1].token_str()) if not (tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) in (ASTVariableDeclaration, ASTVariableInitialization, ASTFunctionDefinition)): if type_name == 'auto&': return None raise Error('method `' + sn.children[1].token_str() + '` is not found in type `' + type_name + '`', sn.left_to_right_token()) return tid.ast_nodes[0] elif sn.children[0].symbol.id == ':': if len(sn.children[0].children) == 2: return None # [-TODO-] assert(len(sn.children[0].children) == 1) tid = global_scope.find(sn.children[0].children[0].token_str()) if tid is None or len(tid.ast_nodes) != 1: raise Error('`' + sn.children[0].children[0].token_str() + '` is not found in global scope', sn.left_to_right_token()) # this error occurs without this code: ` or (self.token_str()[0].isupper() and self.token_str() != self.token_str().upper())` left = tid.ast_nodes[0] elif sn.children[0].token_str() == '@': s = sn.scope while True: if s.is_function: if s.is_lambda: assert(s.node is None) snp = s.parent.node else: snp = s.node.parent if type(snp) == ASTFunctionDefinition: if type(snp.parent) == ASTTypeDefinition: fid = snp.parent.find_id_including_base_types(sn.children[1].token_str()) if fid is None: raise Error('call of undefined method `' + sn.children[1].token_str() + '`', sn.left_to_right_token()) if len(fid.ast_nodes) > 1: raise Error('methods\' overloading is not supported for now', sn.left_to_right_token()) f_node = fid.ast_nodes[0] if type(f_node) == ASTFunctionDefinition: return f_node break s = s.parent assert(s) return None elif sn.children[0].token_str().startswith('@'): return None # [-TODO-] else: if sn.children[0].token.category == Token.Category.STRING_LITERAL: tid = builtins_scope.ids.get('String') tid = tid.ast_nodes[0].scope.ids.get(sn.children[1].token_str()) if not (tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) == ASTFunctionDefinition): raise Error('method `' + sn.children[1].token_str() + '` is not found in type `String`', sn.left_to_right_token()) return tid.ast_nodes[0] tid, s = sn.scope.find_and_return_scope(sn.children[0].token_str()) if tid is None: raise Error('identifier is not found', sn.children[0].token) if len(tid.ast_nodes) != 1: # for `F f(active_window, s)... R s.find(‘.’) ? s.len` if tid.type != '' and s.is_function: # for `F nud(ASTNode self)... self.symbol.nud_bp` if '[' in tid.type: # ] # for `F decompress(Array[Int] &compressed)` return None tid = s.find(tid.type) assert(tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) == ASTTypeDefinition) tid = tid.ast_nodes[0].scope.ids.get(sn.children[1].token_str()) if not (tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) in (ASTVariableDeclaration, ASTVariableInitialization, ASTFunctionDefinition, ASTExpression)): # `ASTExpression` is needed to fix an error ‘identifier `disInter` is not found in `r`’ in '9.yopyra.py' (when there is no `disInter : float`) raise Error('identifier `' + sn.children[1].token_str() + '` is not found in `' + sn.children[0].token_str() + '`', sn.children[1].token) if isinstance(tid.ast_nodes[0], ASTExpression): return None return tid.ast_nodes[0] return None left = tid.ast_nodes[0] if type(left) == ASTLoop: return None if type(left) in (ASTTypeDefinition, ASTTupleInitialization, ASTTupleAssignment): return None # [-TODO-] if type(left) not in (ASTVariableDeclaration, ASTVariableInitialization): raise Error('left type is `' + str(type(left)) + '`', sn.left_to_right_token()) if left.type in ('V', 'П', 'var', 'перем', 'V?', 'П?', 'var?', 'перем?', 'V&', 'П&', 'var&', 'перем&'): # for `V selection_strings = ... selection_strings.map(...)` assert(type(left) == ASTVariableInitialization) if left.expression.function_call and left.expression.children[0].token.category == Token.Category.NAME and left.expression.children[0].token_str()[0].isupper(): # for `V n = Node()` tid = sn.scope.find(left.expression.children[0].token_str()) assert(tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) == ASTTypeDefinition) tid = tid.ast_nodes[0].find_id_including_base_types(sn.children[1].token_str()) if not (tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) in (ASTVariableDeclaration, ASTVariableInitialization, ASTFunctionDefinition, ASTExpression)): # `ASTExpression` is needed to fix an error ‘identifier `Vhor` is not found in type `Scene`’ in '9.yopyra.py' (when `Vhor = .look.pVectorial(.upCamara)`, i.e. when there is no `Vhor : Vector`) raise Error('identifier `' + sn.children[1].token_str() + '` is not found in type `' + left.expression.children[0].token_str() + '`', sn.left_to_right_token()) # error message example: method `remove` is not found in type `Array` if isinstance(tid.ast_nodes[0], ASTExpression): return None return tid.ast_nodes[0] if ((left.expression.function_call and left.expression.children[0].symbol.id == '.' and len(left.expression.children[0].children) == 2 and left.expression.children[0].children[1].token_str() in ('map', 'filter')) # for `V a = ....map(Int); a.sort(reverse' 1B)` or left.expression.is_list): # for `V employees = [...]; employees.sort(key' e -> e.name)` tid = builtins_scope.find('Array').ast_nodes[0].scope.ids.get(sn.children[1].token_str()) if not (tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) in (ASTVariableDeclaration, ASTVariableInitialization, ASTFunctionDefinition)): raise Error('member `' + sn.children[1].token_str() + '` is not found in type `Array`', sn.left_to_right_token()) return tid.ast_nodes[0] return None # if len(left.type_args): # `Array[String] ending_tags... ending_tags.append(‘</blockquote>’)` # return None # [-TODO-] if left.type == 'T': return None tid = left.scope.find(left.type.rstrip('?')) if not (tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) == ASTTypeDefinition): if left.type.startswith('('): # ) return None raise Error('type `' + left.type + '` is not found', sn.left_to_right_token()) tid = tid.ast_nodes[0].scope.ids.get(sn.children[1].token_str()) if not (tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) in (ASTVariableDeclaration, ASTVariableInitialization, ASTFunctionDefinition)): raise Error('member `' + sn.children[1].token_str() + '` is not found in type `' + left.type.rstrip('?') + '`', sn.left_to_right_token()) return tid.ast_nodes[0] # List of C++ keywords is taken from here[https://en.cppreference.com/w/cpp/keyword] cpp_keywords = {'alignas', 'alignof', 'and', 'and_eq', 'asm', 'auto', 'bitand', 'bitor', 'bool', 'break', 'case', 'catch', 'char', 'char8_t', 'char16_t', 'char32_t', 'class', 'compl', 'concept', 'const', 'consteval', 'constexpr', 'constinit', 'const_cast', 'continue', 'co_await', 'co_return', 'co_yield', 'decltype', 'default', 'delete', 'do', 'double', 'dynamic_cast', 'else', 'enum', 'explicit', 'export', 'extern', 'false', 'float', 'for', 'friend', 'goto', 'if', 'inline', 'int', 'long', 'mutable', 'namespace', 'new', 'noexcept', 'not', 'not_eq', 'nullptr', 'operator', 'or', 'or_eq', 'private', 'protected', 'public', 'reflexpr', 'register', 'reinterpret_cast', 'requires', 'return', 'short', 'signed', 'sizeof', 'static', 'static_assert', 'static_cast', 'struct', 'switch', 'template', 'this', 'thread_local', 'throw', 'true', 'try', 'typedef', 'typeid', 'typename', 'union', 'unsigned', 'using', 'virtual', 'void', 'volatile', 'wchar_t', 'while', 'xor', 'xor_eq', 'j0', 'j1', 'jn', 'y0', 'y1', 'yn', 'pascal', 'main'} def next_token(): # why ‘next_token’: >[https://youtu.be/Nlqv6NtBXcA?t=1203]:‘we'll have an advance method which will fetch the next token’ global token, tokeni, tokensn if token is None and tokeni != -1: raise Error('no more tokens', Token(len(source), len(source), Token.Category.STATEMENT_SEPARATOR)) tokeni += 1 if tokeni == len(tokens): token = None tokensn = None else: token = tokens[tokeni] tokensn = SymbolNode(token) if token.category != Token.Category.KEYWORD or token.value(source) in allowed_keywords_in_expressions: key : str if token.category in (Token.Category.NUMERIC_LITERAL, Token.Category.STRING_LITERAL): key = '(literal)' elif token.category == Token.Category.NAME: key = '(name)' if token.value(source)[0] == '@': if token.value(source)[1:2] == '=': if token.value(source)[2:] in cpp_keywords: tokensn.token_str_override = '@=_' + token.value(source)[2:] + '_' elif token.value(source)[1:] in cpp_keywords: tokensn.token_str_override = '@_' + token.value(source)[1:] + '_' elif token.value(source) in cpp_keywords: tokensn.token_str_override = '_' + token.value(source) + '_' elif token.category == Token.Category.CONSTANT: key = '(constant)' elif token.category == Token.Category.STRING_CONCATENATOR: key = '(concat)' elif token.category == Token.Category.SCOPE_BEGIN: key = '{' # } elif token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.SCOPE_END): key = ';' else: key = token.value(source) tokensn.symbol = symbol_table[key] def advance(value): if token.value(source) != value: raise Error('expected `' + value + '`', token) next_token() def peek_token(how_much = 1): return tokens[tokeni+how_much] if tokeni+how_much < len(tokens) else Token() # This implementation is based on [http://svn.effbot.org/public/stuff/sandbox/topdown/tdop-4.py] def expression(rbp = 0): def check_tokensn(): if tokensn is None: raise Error('unexpected end of source', Token(len(source), len(source), Token.Category.STATEMENT_SEPARATOR)) if tokensn.symbol is None: raise Error('no symbol corresponding to token `' + token.value(source) + '` (belonging to ' + str(token.category) +') found while parsing expression', token) check_tokensn() t = tokensn next_token() check_tokensn() left = t.symbol.nud(t) while rbp < tokensn.symbol.lbp: t = tokensn next_token() left = t.symbol.led(t, left) check_tokensn() return left def infix(id, bp): def led(self, left): self.append_child(left) self.append_child(expression(self.symbol.led_bp)) return self symbol(id, bp).set_led_bp(bp, led) def infix_r(id, bp): def led(self, left): self.append_child(left) self.append_child(expression(self.symbol.led_bp - 1)) return self symbol(id, bp).set_led_bp(bp, led) def postfix(id, bp): def led(self, left): self.postfix = True self.append_child(left) return self symbol(id, bp).led = led def prefix(id, bp): def nud(self): self.append_child(expression(self.symbol.nud_bp)) return self symbol(id).set_nud_bp(bp, nud) infix('[+]', 20); #infix('->', 15) # for `(0 .< h).map(_ -> [0] * @w [+] [1])` infix('?', 25) # based on C# operator precedence ([http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf]) infix('|', 30); infix('&', 40) infix('==', 50); infix('!=', 50); infix('C', 50); infix('С', 50); infix('in', 50); infix('!C', 50); infix('!С', 50); infix('!in', 50) #infix('(concat)', 52) # `instr[prevci - 1 .< prevci]‘’prevc C ("/\\", "\\/")` = `(instr[prevci - 1 .< prevci]‘’prevc) C ("/\\", "\\/")` infix('..', 55); infix('.<', 55); infix('.+', 55); infix('<.', 55); infix('<.<', 55) # ch C ‘0’..‘9’ = ch C (‘0’..‘9’) #postfix('..', 55) infix('<', 60); infix('<=', 60) infix('>', 60); infix('>=', 60) infix('[|]', 70); infix('(+)', 80); infix('[&]', 90) infix('<<', 100); infix('>>', 100) infix('+', 110); infix('-', 110) infix('(concat)', 115) # `print(‘id = ’id+1)` = `print((‘id = ’id)+1)`, `str(c) + str(1-c)*charstack[0]` -> `String(c)‘’String(1 - c) * charstack[0]` = `String(c)‘’(String(1 - c) * charstack[0])` infix('*', 120); infix('/', 120); infix('I/', 120); infix('Ц/', 120) infix('%', 120) prefix('-', 130); prefix('+', 130); prefix('!', 130); prefix('(-)', 130); prefix('--', 130); prefix('++', 130); prefix('&', 130) infix_r('^', 140) symbol('.', 150); symbol(':', 150); symbol('[', 150); symbol('(', 150); symbol(')'); symbol(']'); postfix('--', 150); postfix('++', 150) prefix('.', 150); prefix(':', 150) infix_r('=', 10); infix_r('+=', 10); infix_r('-=', 10); infix_r('*=', 10); infix_r('/=', 10); infix_r('I/=', 10); infix_r('Ц/=', 10); infix_r('%=', 10); infix_r('>>=', 10); infix_r('<<=', 10); infix_r('^=', 10) infix_r('[+]=', 10); infix_r('[&]=', 10); infix_r('[|]=', 10); infix_r('(+)=', 10); infix_r('‘’=', 10) symbol('(name)').nud = lambda self: self symbol('(literal)').nud = lambda self: self symbol('(constant)').nud = lambda self: self symbol('(.)').nud = lambda self: self symbol('L.last_iteration').nud = lambda self: self symbol('Ц.последняя_итерация').nud = lambda self: self symbol('loop.last_iteration').nud = lambda self: self symbol('цикл.последняя_итерация').nud = lambda self: self symbol(';') symbol(',') symbol("',") def led(self, left): self.append_child(left) global scope prev_scope = scope scope = Scope([]) scope.parent = prev_scope scope.is_lambda = True tokensn.scope = scope for c in left.children if left.symbol.id == '(' else [left]: # ) if not c.token_str()[0].isupper(): # for `((ASTNode, ASTNode) -> ASTNode) led` and `[String = ((Float, Float) -> Float)] b` (fix error 'redefinition of already defined identifier is not allowed') scope.add_name(c.token_str(), None) self.append_child(expression(self.symbol.led_bp)) scope = prev_scope return self symbol('->', 15).set_led_bp(15, led) def led(self, left): self.append_child(left) # [( if token.value(source) not in (']', ')') and token.category != Token.Category.SCOPE_BEGIN: self.append_child(expression(self.symbol.led_bp)) return self symbol('..', 55).set_led_bp(55, led) def led(self, left): if token.category == Token.Category.SCOPE_BEGIN: self.append_child(left) self.append_child(tokensn) if token.value(source) == '{': # } # if current token is a `{` then it is "with"-expression, but not "with"-statement next_token() self.append_child(expression()) advance('}') return self if token.category != Token.Category.NAME: raise Error('expected an attribute name', token) self.append_child(left) self.append_child(tokensn) next_token() return self symbol('.').led = led class Module: scope : Scope def __init__(self, scope): self.scope = scope modules : Dict[str, Module] = {} builtin_modules : Dict[str, Module] = {} def find_module(name): if name in modules: return modules[name] return builtin_modules[name] def led(self, left): if token.category != Token.Category.NAME and token.value(source) != '(' and token.category != Token.Category.STRING_LITERAL: # ) raise Error('expected an identifier name or string literal', token) # Process module [transpile it if necessary and load it] global scope module_name = left.to_str() if module_name not in modules and module_name not in builtin_modules: module_file_name = os.path.join(os.path.dirname(file_name), module_name.replace('::', '/')).replace('\\', '/') # `os.path.join()` is needed for case when `os.path.dirname(file_name)` is empty string, `replace('\\', '/')` is needed for passing 'tests/parser/errors.txt' try: modulefstat = os.stat(module_file_name + '.11l') except FileNotFoundError: raise Error('can not import module `' + module_name + "`: file '" + module_file_name + ".11l' is not found", left.token) hpp_file_mtime = 0 if os.path.isfile(module_file_name + '.hpp'): hpp_file_mtime = os.stat(module_file_name + '.hpp').st_mtime if hpp_file_mtime == 0 \ or modulefstat.st_mtime > hpp_file_mtime \ or os.stat(__file__).st_mtime > hpp_file_mtime \ or os.stat(os.path.dirname(__file__) + '/tokenizer.py').st_mtime > hpp_file_mtime \ or not os.path.isfile(module_file_name + '.11l_global_scope'): module_source = open(module_file_name + '.11l', encoding = 'utf-8-sig').read() prev_scope = scope s = parse_and_to_str(tokenizer.tokenize(module_source), module_source, module_file_name + '.11l', True) open(module_file_name + '.hpp', 'w', encoding = 'utf-8-sig', newline = "\n").write(s) # utf-8-sig is for MSVC (fix of error C2015: too many characters in constant [`u'‘'`]) # ’ modules[module_name] = Module(scope) assert(scope.is_function == False) # serializing `is_function` member variable is not necessary because it is always equal to `False` open(module_file_name + '.11l_global_scope', 'w', encoding = 'utf-8', newline = "\n").write(eldf.to_eldf(scope.serialize_to_dict())) scope = prev_scope else: module_scope = Scope(None) module_scope.deserialize_from_dict(eldf.parse(open(module_file_name + '.11l_global_scope', encoding = 'utf-8-sig').read())) modules[module_name] = Module(module_scope) self.append_child(left) if token.category == Token.Category.STRING_LITERAL: # for `re:‘pattern’` self.append_child(SymbolNode(Token(token.start, token.start, Token.Category.NAME), symbol = symbol_table['(name)'])) sn = SymbolNode(Token(token.start, token.start, Token.Category.DELIMITER)) sn.symbol = symbol_table['('] # ) sn.function_call = True sn.append_child(self) sn.children.append(None) sn.append_child(tokensn) next_token() return sn elif token.value(source) != '(': # ) self.append_child(tokensn) next_token() else: # for `os:(...)` and `time:(...)` self.append_child(SymbolNode(Token(token.start, token.start, Token.Category.NAME), symbol = symbol_table['(name)'])) return self symbol(':').led = led def led(self, left): self.function_call = True self.append_child(left) # ( if token.value(source) != ')': while True: if token.category != Token.Category.STRING_LITERAL and token.value(source)[-1] == "'": self.append_child(tokensn) next_token() self.append_child(expression()) else: self.children.append(None) self.append_child(expression()) if token.value(source) != ',': break advance(',') # ( advance(')') return self symbol('(').led = led def nud(self): comma = False # (( if token.value(source) != ')': while True: if token.value(source) == ')': break self.append_child(expression()) if token.value(source) != ',': break comma = True advance(',') advance(')') if len(self.children) == 0 or comma: self.tuple = True return self symbol('(').nud = nud # ) def led(self, left): self.append_child(left) if token.value(source)[0].isupper() or (token.value(source) == '(' and source[token.start+1].isupper()): # ) # type name must starts with an upper case letter self.is_type = True while True: self.append_child(expression()) if token.value(source) != ',': break advance(',') else: self.append_child(expression()) # [ advance(']') return self symbol('[').led = led def nud(self): i = 1 # [[ if token.value(source) != ']': # for `R []` if token.value(source) == '(': # for `V celltable = [(1, 2) = 1, (1, 3) = 1, (0, 3) = 1]` while peek_token(i).value(source) != ')': i += 1 while peek_token(i).value(source) not in ('=', ',', ']'): # for `V cat_to_class_python = [python_to_11l:tokenizer:Token.Category.NAME = ‘identifier’, ...]` i += 1 if peek_token(i).value(source) == '=': self.is_dict = True while True: # [ self.append_child(expression()) if token.value(source) != ',': break advance(',') advance(']') else: self.is_list = True if token.value(source) != ']': while True: # [[ # if token.value(source) == ']': # break self.append_child(expression()) if token.value(source) != ',': break advance(',') advance(']') return self symbol('[').nud = nud # ] def advance_scope_begin(): if token.category != Token.Category.SCOPE_BEGIN: raise Error('expected a new scope (indented block or opening curly bracket)', token) next_token() def nud(self): self.append_child(expression()) advance_scope_begin() while token.category != Token.Category.SCOPE_END: if token.value(source) in ('E', 'И', 'else', 'иначе'): self.append_child(tokensn) next_token() if token.category == Token.Category.SCOPE_BEGIN: next_token() self.append_child(expression()) if token.category != Token.Category.SCOPE_END: raise Error('expected end of scope (dedented block or closing curly bracket)', token) next_token() else: self.append_child(expression()) else: self.append_child(expression()) advance_scope_begin() self.append_child(expression()) if token.category != Token.Category.SCOPE_END: raise Error('expected end of scope (dedented block or closing curly bracket)', token) next_token() if token.category == Token.Category.STATEMENT_SEPARATOR: next_token() next_token() return self symbol('S').nud = nud symbol('В').nud = nud symbol('switch').nud = nud symbol('выбрать').nud = nud def nud(self): self.append_child(expression()) advance_scope_begin() self.append_child(expression()) if token.category != Token.Category.SCOPE_END: raise Error('expected end of scope (dedented block or closing curly bracket)', token) next_token() if not token.value(source) in ('E', 'И', 'else', 'иначе'): raise Error('expected else block', token) next_token() self.append_child(expression()) return self symbol('I').nud = nud symbol('Е').nud = nud symbol('if').nud = nud symbol('если').nud = nud symbol('{') # } def parse_internal(this_node): global token, scope def new_scope(node, func_args = None, call_advance_scope_begin = True): if call_advance_scope_begin: advance_scope_begin() global scope prev_scope = scope scope = Scope(func_args) scope.parent = prev_scope scope.init_ids_type_node() scope.node = node tokensn.scope = scope # можно избавиться от этой строки, если не делать вызов next_token() в advance_scope_begin() node.scope = scope parse_internal(node) scope = prev_scope if token is not None: tokensn.scope = scope def expected_name(what_name): next_token() if token.category != Token.Category.NAME: raise Error('expected ' + what_name, token) token_value = tokensn.token_str() next_token() return token_value def is_tuple_assignment(): if token.value(source) == '(': ti = 1 while peek_token(ti).value(source) != ')': if peek_token(ti).value(source) in ('[', '.'): # ] # `(u[i], u[j]) = (u[j], u[i])`, `(.x, .y, .z) = (vx, vy, vz)` return False ti += 1 return peek_token(ti + 1).value(source) == '=' return False access_specifier_private = False while token is not None: if token.value(source) == ':' and peek_token().value(source) in ('start', 'старт') and peek_token(2).value(source) == ':': node = ASTMain() next_token() next_token() advance(':') assert(token.category == Token.Category.STATEMENT_SEPARATOR) next_token() new_scope(node, [], False) elif token.value(source) == '.' and type(this_node) == ASTTypeDefinition: access_specifier_private = True next_token() continue elif token.category == Token.Category.KEYWORD: if token.value(source).startswith(('F', 'Ф', 'fn', 'фн')): node = ASTFunctionDefinition() if '.virtual.' in token.value(source) or \ '.виртуал.' in token.value(source): subkw = token.value(source)[token.value(source).rfind('.')+1:] if subkw in ('new', 'новая' ): node.virtual_category = node.VirtualCategory.NEW elif subkw in ('override', 'переопр' ): node.virtual_category = node.VirtualCategory.OVERRIDE elif subkw in ('abstract', 'абстракт'): node.virtual_category = node.VirtualCategory.ABSTRACT elif subkw in ('assign', 'опред' ): node.virtual_category = node.VirtualCategory.ASSIGN elif subkw in ('final', 'финал' ): node.virtual_category = node.VirtualCategory.FINAL elif token.value(source) in ('F.destructor', 'Ф.деструктор', 'fn.destructor', 'фн.деструктор'): if type(this_node) != ASTTypeDefinition: raise Error('destructor declaration allowed only inside types', token) node.function_name = '(destructor)' # can not use `~` here because `~` can be an operator overload if '.const' in token.value(source) or \ '.конст' in token.value(source): node.is_const = True next_token() if node.function_name != '(destructor)': if token.category == Token.Category.NAME: node.function_name = tokensn.token_str() next_token() elif token.value(source) == '(': # this is constructor [`F () {...}` or `F (...) {...}`] or operator() [`F ()(...) {...}`] if peek_token().value(source) == ')' and peek_token(2).value(source) == '(': # ) # this is operator() next_token() next_token() node.function_name = '()' else: node.function_name = '' if type(this_node) == ASTTypeDefinition: this_node.constructors.append(node) elif token.category == Token.Category.OPERATOR: node.function_name = token.value(source) next_token() else: raise Error('incorrect function name', token) if token.value(source) != '(': # ) raise Error('expected `(` after function name', token) # )( next_token() was_default_argument = False prev_type_name = '' while token.value(source) != ')': if token.value(source) == "',": assert(node.first_named_only_argument is None) node.first_named_only_argument = len(node.function_arguments) next_token() continue type_ = '' # ( if token.value(source)[0].isupper() and peek_token().value(source) not in (',', ')'): # this is a type name type_ = token.value(source) next_token() if token.value(source) == '[': # ] nesting_level = 0 while True: type_ += token.value(source) if token.value(source) == '[': next_token() nesting_level += 1 elif token.value(source) == ']': next_token() nesting_level -= 1 if nesting_level == 0: break elif token.value(source) == ',': type_ += ' ' next_token() elif token.value(source) == '=': next_token() else: if token.category != Token.Category.NAME: raise Error('expected subtype name', token) next_token() if token.value(source) == '(': type_ += '(' next_token() while token.value(source) != ')': type_ += token.value(source) if token.value(source) == ',': type_ += ' ' next_token() next_token() type_ += ')' if token.value(source) == '?': type_ += '?' next_token() if token.value(source) == '(': # ) type_ = expression().to_type_str() if type_ == '': type_ = prev_type_name qualifier = '' if token.value(source) == '=': qualifier = '=' next_token() elif token.value(source) == '&': qualifier = '&' next_token() if token.category != Token.Category.NAME: raise Error('expected function\'s argument name', token) func_arg_name = tokensn.token_str() next_token() if token.value(source) == '=': next_token() default = expression().to_str() was_default_argument = True else: if was_default_argument and node.first_named_only_argument is None: raise Error('non-default argument follows default argument', tokens[tokeni-1]) default = '' node.function_arguments.append((func_arg_name, default, type_, qualifier)) # (( if token.value(source) not in ',;)': raise Error('expected `)`, `;` or `,` in function\'s arguments list', token) if token.value(source) == ',': next_token() prev_type_name = type_ elif token.value(source) == ';': next_token() prev_type_name = '' node.last_non_default_argument = len(node.function_arguments) - 1 while node.last_non_default_argument >= 0 and node.function_arguments[node.last_non_default_argument][1] != '': node.last_non_default_argument -= 1 if node.function_name not in cpp_type_from_11l: # there was an error in line `String sitem` because of `F String()` scope.add_function(node.function_name, node) next_token() if token.value(source) == '->': next_token() if token.value(source) in ('N', 'Н', 'null', 'нуль'): node.function_return_type = token.value(source) next_token() elif token.value(source) == '&': node.function_return_type = 'auto&' next_token() else: node.function_return_type = expression().to_type_str() if node.virtual_category != node.VirtualCategory.ABSTRACT: new_scope(node, map(lambda arg: (arg[0], arg[2]), node.function_arguments)) else: if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) in ('T', 'Т', 'type', 'тип', 'T.serializable', 'Т.сериализуемый', 'type.serializable', 'тип.сериализуемый'): serializable = token.value(source) in ('T.serializable', 'Т.сериализуемый', 'type.serializable', 'тип.сериализуемый') node = ASTTypeDefinition() node.type_name = expected_name('type name') if token.value(source) in ('[', '='): # ] # this is a type alias n = ASTTypeAlias() n.name = node.type_name node = n scope.add_name(node.name, node) prev_scope = scope scope = Scope(None) scope.parent = prev_scope if token.value(source) == '[': next_token() while True: if token.category == Token.Category.KEYWORD and token.value(source) in ('T', 'Т', 'type', 'тип'): next_token() assert(token.category == Token.Category.NAME) scope.add_name(token.value(source), ASTTypeDefinition()) node.template_params.append('typename ' + token.value(source)) else: expr = expression() type_name = trans_type(expr.to_type_str(), scope, expr.left_to_right_token()) assert(token.category == Token.Category.NAME) scope.add_name(token.value(source), ASTTypeDefinition()) # :(hack): node.template_params.append(type_name + ' ' + token.value(source)) next_token() if token.value(source) == ']': next_token() break advance(',') advance('=') expr = expression() node.defining_type = trans_type(expr.to_type_str(), scope, expr.left_to_right_token()) scope = prev_scope if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() else: scope.add_name(node.type_name, node) if token.value(source) == '(': while True: node.base_types.append(expected_name('base type name')) if token.value(source) != ',': break if token.value(source) != ')': # ( raise Error('expected `)`', token) next_token() new_scope(node) if serializable: node.set_serializable_to_children() for child in node.children: if type(child) == ASTFunctionDefinition and child.virtual_category != child.VirtualCategory.NO: node.has_virtual_functions = True break elif token.value(source) in ('T.enum', 'Т.перечисл', 'type.enum', 'тип.перечисл'): node = ASTTypeEnum() node.enum_name = expected_name('enum name') scope.add_name(node.enum_name, node) advance_scope_begin() while True: if token.category != Token.Category.NAME: raise Error('expected an enumerator name', token) enumerator = token.value(source) if not enumerator.isupper(): raise Error('enumerators must be uppercase', token) next_token() if token.value(source) == '=': next_token() enumerator += ' = ' + expression().to_str() node.enumerators.append(enumerator) if token.category == Token.Category.SCOPE_END: next_token() break assert(token.category == Token.Category.STATEMENT_SEPARATOR) next_token() elif token.value(source).startswith(('I', 'Е', 'if', 'если')): node = ASTIf() if '.' in token.value(source): subkw = token.value(source)[token.value(source).find('.')+1:] if subkw in ('likely', 'часто'): node.likely = 1 else: assert(subkw in ('unlikely', 'редко')) node.likely = -1 next_token() node.set_expression(expression()) new_scope(node) n = node while token is not None and token.value(source) in ('E', 'И', 'else', 'иначе'): if peek_token().value(source) in ('I', 'Е', 'if', 'если'): n.else_or_elif = ASTElseIf() n.else_or_elif.parent = n n = n.else_or_elif next_token() next_token() n.set_expression(expression()) new_scope(n) if token is not None and token.value(source) in ('E', 'И', 'else', 'иначе') and not peek_token().value(source) in ('I', 'Е', 'if', 'если'): n.else_or_elif = ASTElse() n.else_or_elif.parent = n next_token() if token.category == Token.Category.SCOPE_BEGIN: new_scope(n.else_or_elif) else: # for support `I fs:is_dir(_fname) {...} E ...` (without this `else` only `I fs:is_dir(_fname) {...} E {...}` is allowed) expr_node = ASTExpression() expr_node.set_expression(expression()) expr_node.parent = n.else_or_elif n.else_or_elif.children.append(expr_node) if not (token is None or token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.SCOPE_END)): raise Error('expected end of statement', token) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() break elif token.value(source) in ('S', 'В', 'switch', 'выбрать'): node = ASTSwitch() next_token() node.set_expression(expression()) advance_scope_begin() while token.category != Token.Category.SCOPE_END: case = ASTSwitch.Case() case.parent = node if token.value(source) in ('E', 'И', 'else', 'иначе'): case.set_expression(tokensn) next_token() else: case.set_expression(expression()) ts = case.expression.token_str() if case.expression.token.category == Token.Category.STRING_LITERAL and not (len(ts) == 3 or (ts[:2] == '"\\' and len(ts) == 4)): node.has_string_case = True new_scope(case) node.cases.append(case) next_token() elif token.value(source) in ('L', 'Ц', 'loop', 'цикл'): if peek_token().value(source) == '(' and peek_token(4).value(source) == '.' and peek_token(4).start == peek_token(3).end: assert(peek_token(5).value(source) in ('break', 'прервать')) node = ASTLoopBreak() node.token = token next_token() node.loop_variable = expected_name('loop variable') advance(')') advance('.') next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() else: node = ASTLoop() next_token() prev_scope = scope scope = Scope(None) scope.parent = prev_scope if token.category == Token.Category.SCOPE_BEGIN: node.expression = None else: if token.value(source) == '(' and token.start == tokens[tokeni-1].end: if peek_token().value(source) == '&': node.is_loop_variable_a_reference = True next_token() elif peek_token().value(source) == '=': node.copy_loop_variable = True next_token() node.loop_variable = expected_name('loop variable') while token.value(source) == ',': if peek_token().value(source) == '=': node.copy_loop_variable = True next_token() node.loop_variable += ', ' + expected_name('loop variable') advance(')') node.set_expression(expression()) if node.loop_variable is not None: # check if loop variable is a [smart] pointer lv_node = None if node.expression.token.category == Token.Category.NAME: id = scope.find(node.expression.token_str()) if id is not None and len(id.ast_nodes) == 1: lv_node = id.ast_nodes[0] elif node.expression.symbol.id == '.' and len(node.expression.children) == 2: lv_node = type_of(node.expression) if lv_node is not None and isinstance(lv_node, ASTVariableDeclaration) and lv_node.type == 'Array': tid = scope.find(lv_node.type_args[0]) if tid is not None and len(tid.ast_nodes) == 1 and type(tid.ast_nodes[0]) == ASTTypeDefinition and tid.ast_nodes[0].has_virtual_functions: node.is_loop_variable_a_ptr = True scope.add_name(node.loop_variable, node) new_scope(node) scope = prev_scope if token is not None and token.value(source) in ('L.was_no_break', 'Ц.не_был_прерван', 'loop.was_no_break', 'цикл.не_был_прерван'): node.was_no_break_node = ASTLoopWasNoBreak() node.was_no_break_node.parent = node next_token() new_scope(node.was_no_break_node) elif token.value(source) in ('L.continue', 'Ц.продолжить', 'loop.continue', 'цикл.продолжить'): node = ASTContinue() node.token = token next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) in ('L.break', 'Ц.прервать', 'loop.break', 'цикл.прервать'): node = ASTLoopBreak() node.token = token next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) in ('L.remove_current_element_and_continue', 'Ц.удалить_текущий_элемент_и_продолжить', 'loop.remove_current_element_and_continue', 'цикл.удалить_текущий_элемент_и_продолжить'): node = ASTLoopRemoveCurrentElementAndContinue() next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) in ('R', 'Р', 'return', 'вернуть'): node = ASTReturn() next_token() if token.category in (Token.Category.SCOPE_END, Token.Category.STATEMENT_SEPARATOR): node.expression = None else: node.set_expression(expression()) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) in ('X', 'Х', 'exception', 'исключение'): node = ASTException() next_token() node.set_expression(expression()) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.value(source) in ('X.try', 'Х.контроль', 'exception.try', 'исключение.контроль'): node = ASTExceptionTry() next_token() new_scope(node) elif token.value(source) in ('X.catch', 'Х.перехват', 'exception.catch', 'исключение.перехват'): node = ASTExceptionCatch() if peek_token().category != Token.Category.SCOPE_BEGIN: if peek_token().value(source) == '.': next_token() node.exception_object_type = expected_name('exception object type name').replace(':', '::') if token.value(source) == ':': next_token() node.exception_object_type += '::' + token.value(source) next_token() if token.category == Token.Category.NAME: node.exception_object_name = token.value(source) next_token() else: next_token() node.exception_object_type = '' new_scope(node) else: raise Error('unrecognized statement started with keyword', token) elif token.value(source) == '^': node = ASTLoopBreak() node.token = token node.loop_level = 1 next_token() while token.value(source) == '^': node.loop_level += 1 next_token() if token.value(source) not in ('L.break', 'Ц.прервать', 'loop.break', 'цикл.прервать'): raise Error('expected `L.break`', token) next_token() if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif token.category == Token.Category.SCOPE_END: next_token() if token.category == Token.Category.STATEMENT_SEPARATOR and token.end == len(source): # Token.Category.EOF next_token() assert(token is None) return elif token.category == Token.Category.STATEMENT_SEPARATOR: # this `if` was added in revision 105[‘Almost complete work on tests/python_to_cpp/pqmarkup.txt’] in order to support `hor_col_align = S instr[j .< j + 2] {‘<<’ {‘left’}; ‘>>’ {‘right’}; ‘><’ {‘center’}; ‘<>’ {‘justify’}}` [there was no STATEMENT_SEPARATOR after this line of code] next_token() if token is not None: assert(token.category != Token.Category.STATEMENT_SEPARATOR) continue elif ((token.value(source) in ('V', 'П', 'var', 'перем') and peek_token().value(source) == '(') # ) # this is `V (a, b) = ...` or (token.value(source) == '-' and peek_token().value(source) in ('V', 'П', 'var', 'перем') and peek_token(2).value(source) == '(')): # this is `-V (a, b) = ...` node = ASTTupleInitialization() if token.value(source) == '-': node.is_const = True next_token() next_token() next_token() while True: assert(token.category == Token.Category.NAME) name = tokensn.token_str() node.dest_vars.append(name) scope.add_name(name, node) next_token() if token.value(source) == ')': break advance(',') next_token() advance('=') node.set_expression(expression()) if node.expression.function_call and node.expression.children[0].symbol.id == '.' \ and len(node.expression.children[0].children) == 2 \ and (node.expression.children[0].children[1].token_str() in ('split', 'split_py') # `V (name, ...) = ....split(...)` ~> `(V name, V ...) = ....split(...)` -> `...assign_from_tuple(name, ...);` (because `auto [name, ...] = ....split(...);` does not working) or (node.expression.children[0].children[1].token_str() == 'map' # for `V (w, h) = lines[1].split_py().map(i -> Int(i))` and node.expression.children[0].children[0].function_call) and node.expression.children[0].children[0].children[0].symbol.id == '.' and len(node.expression.children[0].children[0].children[0].children) == 2 and node.expression.children[0].children[0].children[0].children[1].token_str() in ('split', 'split_py')): # n = node # node = ASTTupleAssignment() # for dv in n.dest_vars: # node.dest_vars.append((dv, True)) # node.set_expression(n.expression) node.bind_array = True if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() elif is_tuple_assignment(): # this is `(a, b) = ...` or `(a, V b) = ...` or `(V a, b) = ...` node = ASTTupleAssignment() next_token() while True: if token.category != Token.Category.NAME: raise Error('expected variable name', token) add_var = False if token.value(source) in ('V', 'П', 'var', 'перем'): add_var = True next_token() assert(token.category == Token.Category.NAME) name = tokensn.token_str() node.dest_vars.append((name, add_var)) if add_var: scope.add_name(name, node) next_token() # ( if token.value(source) == ')': break advance(',') next_token() advance('=') node.set_expression(expression()) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() else: node_expression = expression() if node_expression.symbol.id == '.' and node_expression.children[1].token.category == Token.Category.SCOPE_BEGIN: # this is a "with"-statement node = ASTWith() node.set_expression(node_expression.children[0]) new_scope(node) else: if node_expression.symbol.id == '&' and node_expression.children[0].token.category == Token.Category.NAME and node_expression.children[1].token.category == Token.Category.NAME: # this is a reference declaration (e.g. `Symbol& symbol`) node = ASTVariableDeclaration() node.is_reference = True node.vars = [node_expression.children[1].token_str()] node.type = node_expression.children[0].token_str() node.type_token = node_expression.token node.type_args = [] scope.add_name(node.vars[0], node) elif token.category == Token.Category.NAME and tokens[tokeni-1].category != Token.Category.SCOPE_END: var_name = tokensn.token_str() next_token() if token.value(source) == '=': next_token() node = ASTVariableInitialization() node.set_expression(expression()) if node_expression.token.value(source) not in ('V', 'П', 'var', 'перем'): if node_expression.token.value(source) in ('V?', 'П?', 'var?', 'перем?'): node.is_ptr = True node.nullable = True else: id = scope.find(node_expression.token_str()) if id is not None and len(id.ast_nodes) != 0: if type(id.ast_nodes[0]) == ASTTypeDefinition and (id.ast_nodes[0].has_virtual_functions or id.ast_nodes[0].has_pointers_to_the_same_type): node.is_ptr = True elif node.expression.function_call and node.expression.children[0].token.category == Token.Category.NAME and node.expression.children[0].token_str()[0].isupper(): # for `V animal = Sheep(); animal.say()` -> `...; animal->say();` id = scope.find(node.expression.children[0].token_str()) if not (id is not None and len(id.ast_nodes) != 0): raise Error('identifier `' + node.expression.children[0].token_str() + '` is not found', node.expression.children[0].token) if type(id.ast_nodes[0]) == ASTTypeDefinition: # support for functions beginning with an uppercase letter (e.g. Extract_Min) if id.ast_nodes[0].has_virtual_functions or id.ast_nodes[0].has_pointers_to_the_same_type: node.is_ptr = True # elif id.ast_nodes[0].has_pointers_to_the_same_type: # node.is_shared_ptr = True node.vars = [var_name] else: node = ASTVariableDeclaration() id = scope.find(node_expression.token_str().rstrip('?')) if id is not None: assert(len(id.ast_nodes) == 1) if type(id.ast_nodes[0]) not in (ASTTypeDefinition, ASTTypeEnum): raise Error('identifier is of type `' + type(id.ast_nodes[0]).__name__ + '` (should be ASTTypeDefinition or ASTTypeEnum)', node_expression.token) # this error was in line `String sitem` because of `F String()` if type(id.ast_nodes[0]) == ASTTypeDefinition: if id.ast_nodes[0].has_virtual_functions or id.ast_nodes[0].has_pointers_to_the_same_type: node.is_ptr = True # elif id.ast_nodes[0].has_pointers_to_the_same_type: # node.is_shared_ptr = True node.vars = [var_name] while token.value(source) == ',': node.vars.append(expected_name('variable name')) node.type = node_expression.token.value(source) if node.type == '-' and len(node_expression.children) == 1: node.is_const = True node_expression = node_expression.children[0] node.type = node_expression.token.value(source) node.type_token = node_expression.token node.type_args = [] if node.type == '[': # ] if node_expression.is_dict: assert(len(node_expression.children) == 1) node.type = 'Dict' node.type_args = [node_expression.children[0].children[0].to_type_str(), node_expression.children[0].children[1].to_type_str()] elif node_expression.is_list: assert(len(node_expression.children) == 1) node.type = 'Array' node.type_args = [node_expression.children[0].to_type_str()] else: assert(node_expression.is_type) node.type = node_expression.children[0].token.value(source) for i in range(1, len(node_expression.children)): node.type_args.append(node_expression.children[i].to_type_str()) elif node.type == '(': # ) if len(node_expression.children) == 1 and node_expression.children[0].symbol.id == '->': node.function_pointer = True c0 = node_expression.children[0] assert(c0.children[1].token.category == Token.Category.NAME or c0.children[1].token_str() in ('N', 'Н', 'null', 'нуль')) node.type = c0.children[1].token_str() # return value type if c0.children[0].token.category == Token.Category.NAME: node.type_args.append(c0.children[0].token_str()) else: assert(c0.children[0].symbol.id == '(') # ) for child in c0.children[0].children: assert(child.token.category == Token.Category.NAME) node.type_args.append(child.token_str()) else: # this is a tuple for child in node_expression.children: node.type_args.append(child.to_type_str()) node.type = '(' + ', '.join(node.type_args) + ')' node.type_args.clear() elif node.type == '.': node.type = node_expression.to_str() if not (node.type[0].isupper() or node.type[0] == '(' or node.type in ('var', 'перем')): # ) raise Error('type name must starts with an upper case letter', node.type_token) for var in node.vars: scope.add_name(var, node) if type(this_node) == ASTTypeDefinition and this_node.type_name == node.type.rstrip('?'): this_node.has_pointers_to_the_same_type = True node.is_ptr = True # node.is_shared_ptr = True else: node = ASTExpression() node.set_expression(node_expression) if isinstance(this_node, ASTTypeDefinition) and node_expression.symbol.id == '=': # fix error ‘identifier `disInter` is not found in `r`’ in '9.yopyra.py' scope.add_name(node_expression.children[0].token_str(), node) if not (token is None or token.category in (Token.Category.STATEMENT_SEPARATOR, Token.Category.SCOPE_END) or tokens[tokeni-1].category == Token.Category.SCOPE_END): raise Error('expected end of statement', token) if token is not None and token.category == Token.Category.STATEMENT_SEPARATOR: next_token() if access_specifier_private: node.access_specifier_public = 0 access_specifier_private = False node.parent = this_node this_node.children.append(node) return tokens = [] source = '' tokeni = -1 token = Token(0, 0, Token.Category.STATEMENT_SEPARATOR) #scope = Scope(None) #tokensn = SymbolNode(token) file_name = '' importing_module = False def token_to_str(token_str_override, token_category = Token.Category.STRING_LITERAL): return SymbolNode(Token(0, 0, token_category), token_str_override).to_str() builtins_scope = Scope(None) scope = builtins_scope global_scope : Scope tokensn = SymbolNode(token) f = ASTFunctionDefinition([('object', token_to_str('‘’'), ''), ('end', token_to_str(R'"\n"'), 'String'), ('flush', token_to_str('0B', Token.Category.CONSTANT), 'Bool')]) f.first_named_only_argument = 1 builtins_scope.add_function('print', f) f = ASTFunctionDefinition([('object', token_to_str('‘’'), ''), ('sep', token_to_str('‘ ’'), 'String'), ('end', token_to_str(R'"\n"'), 'String'), ('flush', token_to_str('0B', Token.Category.CONSTANT), 'Bool')]) f.first_named_only_argument = 1 builtins_scope.add_function('print_elements', f) builtins_scope.add_function('input', ASTFunctionDefinition([('prompt', token_to_str('‘’'), 'String')], 'String')) builtins_scope.add_function('assert', ASTFunctionDefinition([('expression', '', 'Bool'), ('message', token_to_str('‘’'), 'String')])) builtins_scope.add_function('exit', ASTFunctionDefinition([('arg', '0', '')])) builtins_scope.add_function('swap', ASTFunctionDefinition([('a', '', '', '&'), ('b', '', '', '&')])) builtins_scope.add_function('zip', ASTFunctionDefinition([('iterable1', '', ''), ('iterable2', '', ''), ('iterable3', token_to_str('N', Token.Category.CONSTANT), '')])) builtins_scope.add_function('all', ASTFunctionDefinition([('iterable', '', '')])) builtins_scope.add_function('any', ASTFunctionDefinition([('iterable', '', '')])) builtins_scope.add_function('cart_product', ASTFunctionDefinition([('iterable1', '', ''), ('iterable2', '', ''), ('iterable3', token_to_str('N', Token.Category.CONSTANT), '')])) builtins_scope.add_function('multiloop', ASTFunctionDefinition([('iterable1', '', ''), ('iterable2', '', ''), ('function', '', ''), ('optional', token_to_str('N', Token.Category.CONSTANT), '')])) builtins_scope.add_function('multiloop_filtered', ASTFunctionDefinition([('iterable1', '', ''), ('iterable2', '', ''), ('filter_function', '', ''), ('function', '', ''), ('optional', token_to_str('N', Token.Category.CONSTANT), '')])) builtins_scope.add_function('sum', ASTFunctionDefinition([('iterable', '', '')])) builtins_scope.add_function('product', ASTFunctionDefinition([('iterable', '', '')])) builtins_scope.add_function('enumerate', ASTFunctionDefinition([('iterable', '', ''), ('start', '0', 'Int')])) builtins_scope.add_function('sorted', ASTFunctionDefinition([('iterable', '', ''), ('key', token_to_str('N', Token.Category.CONSTANT), ''), ('reverse', token_to_str('0B', Token.Category.CONSTANT), 'Bool')])) builtins_scope.add_function('tuple_sorted', ASTFunctionDefinition([('tuple', '', ''), ('key', token_to_str('N', Token.Category.CONSTANT), ''), ('reverse', token_to_str('0B', Token.Category.CONSTANT), 'Bool')])) builtins_scope.add_function('reversed', ASTFunctionDefinition([('iterable', '', '')])) builtins_scope.add_function('min', ASTFunctionDefinition([('arg1', '', ''), ('arg2', token_to_str('N', Token.Category.CONSTANT), ''), ('arg3', token_to_str('N', Token.Category.CONSTANT), '')])) builtins_scope.add_function('max', ASTFunctionDefinition([('arg1', '', ''), ('arg2', token_to_str('N', Token.Category.CONSTANT), ''), ('arg3', token_to_str('N', Token.Category.CONSTANT), '')])) builtins_scope.add_function('divmod', ASTFunctionDefinition([('x', '', ''), ('y', '', '')])) builtins_scope.add_function('factorial', ASTFunctionDefinition([('x', '', '')])) builtins_scope.add_function('gcd', ASTFunctionDefinition([('a', '', ''), ('b', '', '')])) builtins_scope.add_function('hex', ASTFunctionDefinition([('x', '', '')])) builtins_scope.add_function('bin', ASTFunctionDefinition([('x', '', '')])) builtins_scope.add_function('copy', ASTFunctionDefinition([('object', '', '')])) builtins_scope.add_function('move', ASTFunctionDefinition([('object', '', '')])) builtins_scope.add_function('hash', ASTFunctionDefinition([('object', '', '')])) builtins_scope.add_function('rotl', ASTFunctionDefinition([('value', '', 'Int'), ('shift', '', 'Int')])) builtins_scope.add_function('rotr', ASTFunctionDefinition([('value', '', 'Int'), ('shift', '', 'Int')])) builtins_scope.add_function('bsr', ASTFunctionDefinition([('x', '', '')])) builtins_scope.add_function('bsf', ASTFunctionDefinition([('x', '', '')])) builtins_scope.add_function('bit_length', ASTFunctionDefinition([('x', '', '')])) builtins_scope.add_function('round', ASTFunctionDefinition([('number', '', 'Float'), ('ndigits', '0', '')])) builtins_scope.add_function('sleep', ASTFunctionDefinition([('secs', '', 'Float')])) builtins_scope.add_function('ceil', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('floor', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('trunc', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('fract', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('wrap', ASTFunctionDefinition([('x', '', 'Float'), ('min_value', '', 'Float'), ('max_value', '', 'Float')])) builtins_scope.add_function('abs', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('exp', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('log', ASTFunctionDefinition([('x', '', 'Float'), ('base', '0', 'Float')])) builtins_scope.add_function('log2', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('log10', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('pow', ASTFunctionDefinition([('x', '', 'Float'), ('y', '', 'Float')])) builtins_scope.add_function('sqrt', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('acos', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('asin', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('atan', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('atan2', ASTFunctionDefinition([('x', '', 'Float'), ('y', '', 'Float')])) builtins_scope.add_function('cos', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('sin', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('tan', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('degrees', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('radians', ASTFunctionDefinition([('x', '', 'Float')])) builtins_scope.add_function('dot', ASTFunctionDefinition([('v1', '', ''), ('v2', '', '')])) builtins_scope.add_function('cross', ASTFunctionDefinition([('v1', '', ''), ('v2', '', '')])) builtins_scope.add_function('perp', ASTFunctionDefinition([('v', '', '')])) builtins_scope.add_function('sqlen', ASTFunctionDefinition([('v', '', '')])) builtins_scope.add_function('length', ASTFunctionDefinition([('v', '', '')])) builtins_scope.add_function('normalize', ASTFunctionDefinition([('v', '', '')])) builtins_scope.add_function('conjugate', ASTFunctionDefinition([('c', '', '')])) builtins_scope.add_function('ValueError', ASTFunctionDefinition([('s', '', 'String')])) builtins_scope.add_function('IndexError', ASTFunctionDefinition([('index', '', 'Int')])) def add_builtin_global_var(var_name, var_type, var_type_args = []): var = ASTVariableDeclaration() var.vars = [var_name] var.type = var_type var.type_args = var_type_args builtins_scope.add_name(var_name, var) add_builtin_global_var('argv', 'Array', ['String']) add_builtin_global_var('stdin', 'File') add_builtin_global_var('stdout', 'File') add_builtin_global_var('stderr', 'File') builtins_scope.add_name('Char', ASTTypeDefinition([ASTFunctionDefinition([('code', '', 'Int')])])) char_scope = Scope(None) char_scope.add_name('is_digit', ASTFunctionDefinition([])) builtins_scope.ids['Char'].ast_nodes[0].scope = char_scope builtins_scope.add_name('File', ASTTypeDefinition([ASTFunctionDefinition([('name', '', 'String'), ('mode', token_to_str('‘r’'), 'String'), ('encoding', token_to_str('‘utf-8’'), 'String')])])) file_scope = Scope(None) file_scope.add_name('read_bytes', ASTFunctionDefinition([])) file_scope.add_name('write_bytes', ASTFunctionDefinition([('bytes', '', '[Byte]')])) file_scope.add_name('read', ASTFunctionDefinition([('size', token_to_str('N', Token.Category.CONSTANT), 'Int?')])) file_scope.add_name('write', ASTFunctionDefinition([('s', '', 'String')])) file_scope.add_name('read_lines', ASTFunctionDefinition([('keep_newline', token_to_str('0B', Token.Category.CONSTANT), 'Bool')])) file_scope.add_name('read_line', ASTFunctionDefinition([('keep_newline', token_to_str('0B', Token.Category.CONSTANT), 'Bool')])) file_scope.add_name('flush', ASTFunctionDefinition([])) file_scope.add_name('close', ASTFunctionDefinition([])) builtins_scope.ids['File'].ast_nodes[0].scope = file_scope for type_ in cpp_type_from_11l: builtins_scope.add_name(type_, ASTTypeDefinition([ASTFunctionDefinition([('object', token_to_str('‘’'), '')])])) f = ASTFunctionDefinition([('x', '', ''), ('radix', '10', 'Int')]) f.first_named_only_argument = 1 builtins_scope.ids['Int'].ast_nodes[0] = ASTTypeDefinition([f]) string_scope = Scope(None) str_last_member_var_decl = ASTVariableDeclaration() str_last_member_var_decl.type = 'Char' string_scope.add_name('last', str_last_member_var_decl) string_scope.add_name('starts_with', ASTFunctionDefinition([('prefix', '', 'String')])) string_scope.add_name('ends_with', ASTFunctionDefinition([('suffix', '', 'String')])) string_scope.add_name('split', ASTFunctionDefinition([('delim', '', 'String'), ('limit', token_to_str('N', Token.Category.CONSTANT), 'Int?'), ('group_delimiters', token_to_str('0B', Token.Category.CONSTANT), 'Bool')])) string_scope.add_name('split_py', ASTFunctionDefinition([])) string_scope.add_name('rtrim', ASTFunctionDefinition([('s', '', 'String'), ('limit', token_to_str('N', Token.Category.CONSTANT), 'Int?')])) string_scope.add_name('ltrim', ASTFunctionDefinition([('s', '', 'String'), ('limit', token_to_str('N', Token.Category.CONSTANT), 'Int?')])) string_scope.add_name('trim', ASTFunctionDefinition([('s', '', 'String')])) string_scope.add_name('find', ASTFunctionDefinition([('s', '', 'String')])) string_scope.add_name('findi', ASTFunctionDefinition([('s', '', 'String'), ('start', '0', 'Int')])) string_scope.add_name('rfindi', ASTFunctionDefinition([('s', '', 'String'), ('start', '0', 'Int'), ('end', token_to_str('N', Token.Category.CONSTANT), 'Int?')])) string_scope.add_name('count', ASTFunctionDefinition([('s', '', 'String')])) string_scope.add_name('replace', ASTFunctionDefinition([('old', '', 'String'), ('new', '', 'String')])) string_scope.add_name('lowercase', ASTFunctionDefinition([])) string_scope.add_name('uppercase', ASTFunctionDefinition([])) string_scope.add_name('zfill', ASTFunctionDefinition([('width', '', 'Int')])) string_scope.add_name('center', ASTFunctionDefinition([('width', '', 'Int'), ('fillchar', token_to_str('‘ ’'), 'Char')])) string_scope.add_name('ljust', ASTFunctionDefinition([('width', '', 'Int'), ('fillchar', token_to_str('‘ ’'), 'Char')])) string_scope.add_name('rjust', ASTFunctionDefinition([('width', '', 'Int'), ('fillchar', token_to_str('‘ ’'), 'Char')])) string_scope.add_name('format', ASTFunctionDefinition([('arg', token_to_str('N', Token.Category.CONSTANT), '')] * 32)) string_scope.add_name('map', ASTFunctionDefinition([('function', '', '(Char -> T)')])) builtins_scope.ids['String'].ast_nodes[0].scope = string_scope array_scope = Scope(None) arr_last_member_var_decl = ASTVariableDeclaration() arr_last_member_var_decl.type = 'T' array_scope.add_name('last', arr_last_member_var_decl) array_scope.add_name('append', ASTFunctionDefinition([('x', '', '')])) array_scope.add_name('extend', ASTFunctionDefinition([('t', '', '')])) array_scope.add_name('remove', ASTFunctionDefinition([('x', '', '')])) array_scope.add_name('count', ASTFunctionDefinition([('x', '', '')])) array_scope.add_name('index', ASTFunctionDefinition([('x', '', ''), ('i', '0', 'Int')])) array_scope.add_name('pop', ASTFunctionDefinition([('i', '-1', 'Int')])) array_scope.add_name('insert', ASTFunctionDefinition([('i', '', 'Int'), ('x', '', '')])) array_scope.add_name('reverse', ASTFunctionDefinition([])) array_scope.add_name('reverse_range', ASTFunctionDefinition([('range', '', 'Range')])) array_scope.add_name('next_permutation', ASTFunctionDefinition([])) array_scope.add_name('clear', ASTFunctionDefinition([])) array_scope.add_name('drop', ASTFunctionDefinition([])) array_scope.add_name('map', ASTFunctionDefinition([('f', '', '')])) array_scope.add_name('filter', ASTFunctionDefinition([('f', '', '')])) array_scope.add_name('join', ASTFunctionDefinition([('sep', '', 'String')])) array_scope.add_name('sort', ASTFunctionDefinition([('key', token_to_str('N', Token.Category.CONSTANT), ''), ('reverse', token_to_str('0B', Token.Category.CONSTANT), 'Bool')])) builtins_scope.ids['Array'].ast_nodes[0].scope = array_scope dict_scope = Scope(None) dict_scope.add_name('find', ASTFunctionDefinition([('k', '', '')])) dict_scope.add_name('keys', ASTFunctionDefinition([])) dict_scope.add_name('values', ASTFunctionDefinition([])) builtins_scope.ids['Dict'].ast_nodes[0].scope = dict_scope builtins_scope.ids['DefaultDict'].ast_nodes[0].scope = dict_scope set_scope = Scope(None) set_scope.add_name('intersection', ASTFunctionDefinition([('other', '', 'Set')])) set_scope.add_name('difference', ASTFunctionDefinition([('other', '', 'Set')])) set_scope.add_name('symmetric_difference', ASTFunctionDefinition([('other', '', 'Set')])) set_scope.add_name('is_subset', ASTFunctionDefinition([('other', '', 'Set')])) set_scope.add_name('add', ASTFunctionDefinition([('elem', '', '')])) set_scope.add_name('discard', ASTFunctionDefinition([('elem', '', '')])) set_scope.add_name('map', ASTFunctionDefinition([('f', '', '')])) builtins_scope.ids['Set'].ast_nodes[0].scope = set_scope deque_scope = Scope(None) deque_scope.add_name('append', ASTFunctionDefinition([('x', '', '')])) deque_scope.add_name('pop_left', ASTFunctionDefinition([])) builtins_scope.ids['Deque'].ast_nodes[0].scope = deque_scope module_scope = Scope(None) builtin_modules['math'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('get_temp_dir', ASTFunctionDefinition([])) module_scope.add_function('list_dir', ASTFunctionDefinition([('path', token_to_str('‘.’'), 'String')])) module_scope.add_function('walk_dir', ASTFunctionDefinition([('path', token_to_str('‘.’'), 'String'), ('dir_filter', token_to_str('N', Token.Category.CONSTANT), '(String -> Bool)?'), ('files_only', token_to_str('1B', Token.Category.CONSTANT), 'Bool')])) module_scope.add_function('is_dir', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('is_file', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('is_symlink', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('file_size', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('create_dir', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('create_dirs', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('remove_file', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('remove_dir', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('remove_all', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('rename', ASTFunctionDefinition([('old_path', '', 'String'), ('new_path', '', 'String')])) builtin_modules['fs'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('join', ASTFunctionDefinition([('path1', '', 'String'), ('path2', '', 'String')])) module_scope.add_function('base_name', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('dir_name', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('absolute', ASTFunctionDefinition([('path', '', 'String')])) module_scope.add_function('relative', ASTFunctionDefinition([('path', '', 'String'), ('base', '', 'String')])) module_scope.add_function('split_ext', ASTFunctionDefinition([('path', '', 'String')])) builtin_modules['fs::path'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('', ASTFunctionDefinition([('command', '', 'String')])) module_scope.add_function('getenv', ASTFunctionDefinition([('name', '', 'String'), ('default', token_to_str('‘’'), 'String')])) module_scope.add_function('setenv', ASTFunctionDefinition([('name', '', 'String'), ('value', '', 'String')])) builtin_modules['os'] = Module(module_scope) builtins_scope.add_name('Time', ASTTypeDefinition([ASTFunctionDefinition([('year', '0', 'Int'), ('month', '1', 'Int'), ('day', '1', 'Int'), ('hour', '0', 'Int'), ('minute', '0', 'Int'), ('second', '0', 'Float')])])) time_scope = Scope(None) time_scope.add_name('unix_time', ASTFunctionDefinition([])) time_scope.add_name('strftime', ASTFunctionDefinition([('format', '', 'String')])) time_scope.add_name('format', ASTFunctionDefinition([('format', '', 'String')])) builtins_scope.ids['Time'].ast_nodes[0].scope = time_scope f = ASTFunctionDefinition([('days', '0', 'Float'), ('hours', '0', 'Float'), ('minutes', '0', 'Float'), ('seconds', '0', 'Float'), ('milliseconds', '0', 'Float'), ('microseconds', '0', 'Float'), ('weeks', '0', 'Float')]) f.first_named_only_argument = 0 builtins_scope.add_name('TimeDelta', ASTTypeDefinition([f])) time_delta_scope = Scope(None) time_delta_scope.add_name('days', ASTFunctionDefinition([])) builtins_scope.ids['TimeDelta'].ast_nodes[0].scope = time_delta_scope module_scope = Scope(None) module_scope.add_function('perf_counter', ASTFunctionDefinition([])) module_scope.add_function('today', ASTFunctionDefinition([])) module_scope.add_function('from_unix_time', ASTFunctionDefinition([('unix_time', '', 'Float')])) module_scope.add_function('strptime', ASTFunctionDefinition([('datetime_string', '', 'String'), ('format', '', 'String')])) builtin_modules['time'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('', ASTFunctionDefinition([('pattern', '', 'String')])) builtin_modules['re'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('', ASTFunctionDefinition([('stop', '1', 'Float')])) module_scope.add_function('seed', ASTFunctionDefinition([('s', '', 'Int')])) module_scope.add_function('shuffle', ASTFunctionDefinition([('container', '', '', '&')])) module_scope.add_function('choice', ASTFunctionDefinition([('container', '', '')])) builtin_modules['random'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('push', ASTFunctionDefinition([('array', '', '', '&'), ('item', '', '')])) module_scope.add_function('pop', ASTFunctionDefinition([('array', '', '', '&')])) module_scope.add_function('heapify', ASTFunctionDefinition([('array', '', '', '&')])) builtin_modules['minheap'] = Module(module_scope) builtin_modules['maxheap'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('to_object', ASTFunctionDefinition([('json_str', '', 'String'), ('obj', '', '', '&')])) module_scope.add_function('from_object', ASTFunctionDefinition([('obj', '', ''), ('indent', '4', '')])) builtin_modules['json'] = Module(module_scope) module_scope = Scope(None) module_scope.add_function('to_object', ASTFunctionDefinition([('eldf_str', '', 'String'), ('obj', '', '', '&')])) module_scope.add_function('from_object', ASTFunctionDefinition([('obj', '', ''), ('indent', '4', 'Int')])) module_scope.add_function('from_json', ASTFunctionDefinition([('json_str', '', 'String')])) module_scope.add_function('to_json', ASTFunctionDefinition([('eldf_str', '', 'String')])) module_scope.add_function('reparse', ASTFunctionDefinition([('eldf_str', '', 'String')])) module_scope.add_function('test_parse', ASTFunctionDefinition([('eldf_str', '', 'String')])) builtin_modules['eldf'] = Module(module_scope) def parse_and_to_str(tokens_, source_, file_name_, importing_module_ = False, append_main = False, suppress_error_please_wrap_in_copy = False): # option suppress_error_please_wrap_in_copy is needed to simplify conversion of large Python source into C++ if len(tokens_) == 0: return ASTProgram().to_str() global tokens, source, tokeni, token, break_label_index, scope, global_scope, tokensn, file_name, importing_module, modules prev_tokens = tokens prev_source = source prev_tokeni = tokeni prev_token = token # prev_scope = scope prev_tokensn = tokensn prev_file_name = file_name prev_importing_module = importing_module prev_break_label_index = break_label_index tokens = tokens_ + [Token(len(source_), len(source_), Token.Category.STATEMENT_SEPARATOR)] source = source_ tokeni = -1 token = None break_label_index = -1 scope = Scope(None) if not importing_module_: global_scope = scope scope.parent = builtins_scope file_name = file_name_ importing_module = importing_module_ prev_modules = modules modules = {} next_token() p = ASTProgram() parse_internal(p) if len(modules): p.beginning_extra = "\n".join(map(lambda m: 'namespace ' + m.replace('::', ' { namespace ') + " {\n#include \"" + m.replace('::', '/') + ".hpp\"\n}" + '}'*m.count('::'), modules)) + "\n\n" found_reference_to_argv = False def find_reference_to_argv(node): def f(e : SymbolNode): if len(e.children) == 1 and e.symbol.id == ':' and e.children[0].token_str() == 'argv': nonlocal found_reference_to_argv found_reference_to_argv = True return for child in e.children: if child is not None: f(child) node.walk_expressions(f) node.walk_children(find_reference_to_argv) find_reference_to_argv(p) if found_reference_to_argv: if type(p.children[-1]) != ASTMain: raise Error("`sys.argv`->`:argv` can be used only after `if __name__ == '__main__':`->`:start:`", tokens[-1]) p.children[-1].found_reference_to_argv = True p.beginning_extra += "Array<String> argv;\n\n" s = p.to_str() # call `to_str()` moved here [from outside] because it accesses global variables `source` (via `token.value(source)`) and `tokens` (via `tokens[ti]`) if append_main and type(p.children[-1]) != ASTMain: s += "\nint main()\n{\n}\n" tokens = prev_tokens source = prev_source tokeni = prev_tokeni token = prev_token # scope = prev_scope tokensn = prev_tokensn file_name = prev_file_name importing_module = prev_importing_module break_label_index = prev_break_label_index modules = prev_modules return s
11l
/11l-2021.3-py3-none-any.whl/_11l_to_cpp/parse.py
parse.py
R""" После данной обработки отступы перестают играть роль — границу `scope` всегда определяют фигурные скобки. Также здесь выполняется склеивание строк, и таким образом границу statement\утверждения задаёт либо символ `;`, либо символ новой строки (при условии, что перед ним не стоит символ `…`!). =============================================================================================================== Ошибки: --------------------------------------------------------------------------------------------------------------- Error: `if/else/fn/loop/switch/type` scope is empty. --------------------------------------------------------------------------------------------------------------- Существуют операторы, которые всегда требуют нового scope\блока, который можно обозначить двумя способами: 1. Начать следующую строку с отступом относительно предыдущей, например: if condition\условие scope\блок 2. Заключить блок\scope в фигурные скобки: if condition\условие {scope\блок} Примечание. При использовании второго способа блок\scope может иметь произвольный уровень отступа: if condition\условие { scope\блок } --------------------------------------------------------------------------------------------------------------- Error: `if/else/fn/loop/switch/type` scope is empty, after applied implied line joining: ```...``` --------------------------------------------------------------------------------------------------------------- Сообщение об ошибке аналогично предыдущему, но выделено в отдельное сообщение об ошибке, так как может возникать по вине ошибочного срабатывания автоматического склеивания строк (и показывается оно тогда, когда было произведено склеивание строк в месте данной ошибки). --------------------------------------------------------------------------------------------------------------- Error: mixing tabs and spaces in indentation: `...` --------------------------------------------------------------------------------------------------------------- В одной строке для отступа используется смесь пробелов и символов табуляции. Выберите что-либо одно (желательно сразу для всего файла): либо пробелы для отступа, либо табуляцию. Примечание: внутри строковых литералов, в комментариях, а также внутри строк кода можно смешивать пробелы и табуляцию. Эта ошибка генерируется только при проверке отступов (отступ — последовательность символов пробелов или табуляции от самого начала строки до первого символа отличного от пробела и табуляции). --------------------------------------------------------------------------------------------------------------- Error: inconsistent indentations: ```...``` --------------------------------------------------------------------------------------------------------------- В текущей строке кода для отступа используются пробелы, а в предыдущей строке — табуляция (либо наоборот). [[[ Сообщение было предназначено для несколько другой ошибки: для любых двух соседних строк, если взять отступ одной из них, то другой отступ должен начинаться с него же {если отступ текущей строки отличается от отступа предыдущей, то: 1. Когда отступ текущей строки начинается на отступ предыдущей строки, это INDENT. 2. Когда отступ предыдущей строки начинается на отступ текущей строки, это DEDENT. }. Например: if a: SSTABif b: SSTABTABi = 0 SSTABSi = 0 Последняя пара строк не удовлетворяет этому требованию, так как ни строка ‘SSTABTAB’ не начинается на строку ‘SSTABS’, ни ‘SSTABS’ не начинается на ‘SSTABTAB’. Эта проверка имела бы смысл в случае разрешения смешения пробелов и табуляции для отступа в пределах одной строки (а это разрешено в Python). Но я решил отказаться от этой идеи, а лучшего текста сообщения для этой ошибки не придумал. ]]] --------------------------------------------------------------------------------------------------------------- Error: unindent does not match any outer indentation level --------------------------------------------------------------------------------------------------------------- [-Добавить описание ошибки.-] =============================================================================================================== """ from enum import IntEnum from typing import List, Tuple Char = str keywords = ['V', 'C', 'I', 'E', 'F', 'L', 'N', 'R', 'S', 'T', 'X', 'П', 'С', 'Е', 'И', 'Ф', 'Ц', 'Н', 'Р', 'В', 'Т', 'Х', 'var', 'in', 'if', 'else', 'fn', 'loop', 'null', 'return', 'switch', 'type', 'exception', 'перем', 'С', 'если', 'иначе', 'фн', 'цикл', 'нуль', 'вернуть', 'выбрать', 'тип', 'исключение'] #keywords.remove('C'); keywords.remove('С'); keywords.remove('in') # it is more convenient to consider C/in as an operator, not a keyword (however, this line is not necessary) # new_scope_keywords = ['else', 'fn', 'if', 'loop', 'switch', 'type'] # Решил отказаться от учёта new_scope_keywords на уровне лексического анализатора из-за loop.break и case в switch empty_list_of_str : List[str] = [] binary_operators : List[List[str]] = [empty_list_of_str, [str('+'), '-', '*', '/', '%', '^', '&', '|', '<', '>', '=', '?'], ['<<', '>>', '<=', '>=', '==', '!=', '+=', '-=', '*=', '/=', '%=', '&=', '|=', '^=', '->', '..', '.<', '.+', '<.', 'I/', 'Ц/', 'C ', 'С '], ['<<=', '>>=', '‘’=', '[+]', '[&]', '[|]', '(+)', '<.<', 'I/=', 'Ц/=', 'in ', '!C ', '!С '], ['[+]=', '[&]=', '[|]=', '(+)=', '!in ']] unary_operators : List[List[str]] = [empty_list_of_str, [str('!')], ['++', '--'], ['(-)']] sorted_operators = sorted(binary_operators[1] + binary_operators[2] + binary_operators[3] + binary_operators[4] + unary_operators[1] + unary_operators[2] + unary_operators[3], key = lambda x: len(x), reverse = True) binary_operators[1].remove('^') # for `^L.break` support binary_operators[2].remove('..') # for `L(n) 1..` class Error(Exception): message : str pos : int end : int def __init__(self, message, pos): self.message = message self.pos = pos self.end = pos class Token: class Category(IntEnum): # why ‘Category’: >[https://docs.python.org/3/reference/lexical_analysis.html#other-tokens]:‘the following categories of tokens exist’ NAME = 0 # or IDENTIFIER KEYWORD = 1 CONSTANT = 2 DELIMITER = 3 # SEPARATOR = 3 OPERATOR = 4 NUMERIC_LITERAL = 5 STRING_LITERAL = 6 STRING_CONCATENATOR = 7 # special token inserted between adjacent string literal and some identifier SCOPE_BEGIN = 8 # similar to ‘INDENT token in Python’[https://docs.python.org/3/reference/lexical_analysis.html][-1] SCOPE_END = 9 # similar to ‘DEDENT token in Python’[-1] STATEMENT_SEPARATOR = 10 start : int end : int category : Category def __init__(self, start, end, category): self.start = start self.end = end self.category = category def __repr__(self): return str(self.start) def value(self, source): return source[self.start:self.end] def to_str(self, source): return 'Token('+str(self.category)+', "'+self.value(source)+'")' def tokenize(source : str, implied_scopes : List[Tuple[Char, int]] = None, line_continuations : List[int] = None, comments : List[Tuple[int, int]] = None): tokens : List[Token] = [] indentation_levels : List[Tuple[int, bool]] = [] nesting_elements : List[Tuple[Char, int]] = [] # логически этот стек можно объединить с indentation_levels, но так немного удобнее (конкретно: для проверок `nesting_elements[-1][0] != ...`) i = 0 begin_of_line = True indentation_tabs : bool prev_linestart : int def skip_multiline_comment(): nonlocal i, source, comments comment_start = i lbr = source[i+1] rbr = {"‘": "’", "(": ")", "{": "}", "[": "]"}[lbr] i += 2 nesting_level = 1 while True: ch = source[i] i += 1 if ch == lbr: nesting_level += 1 elif ch == rbr: nesting_level -= 1 if nesting_level == 0: break if i == len(source): raise Error('there is no corresponding opening parenthesis/bracket/brace/qoute for `' + lbr + '`', comment_start+1) if comments is not None: comments.append((comment_start, i)) while i < len(source): if begin_of_line: # at the beginning of each line, the line's indentation level is compared to the last indentation_levels [:1] begin_of_line = False linestart = i tabs = False spaces = False while i < len(source): if source[i] == ' ': spaces = True elif source[i] == "\t": tabs = True else: break i += 1 if i == len(source): # end of source break ii = i if source[i:i+2] in (R'\‘', R'\(', R'\{', R'\['): # ]})’ skip_multiline_comment() while i < len(source) and source[i] in " \t": # skip whitespace characters i += 1 if i == len(source): # end of source break if source[i] in "\r\n" or source[i:i+2] in ('//', R'\\'): # lines with only whitespace and/or comments do not affect the indentation continue if source[i] in "{}": # Indentation level of lines starting with { or } is ignored continue if len(tokens) \ and tokens[-1].category == Token.Category.STRING_CONCATENATOR \ and source[i] in '"\'‘': # ’ and not source[i+1:i+2] in ({'"':'"', '‘':'’'}[source[i]],): if line_continuations is not None: line_continuations.append(tokens[-1].end) if source[i:i+2] in ('""', '‘’'): i += 2 continue if len(tokens) \ and tokens[-1].category == Token.Category.STRING_LITERAL \ and source[i:i+2] in ('""', '‘’'): if line_continuations is not None: line_continuations.append(tokens[-1].end) tokens.append(Token(i, i, Token.Category.STRING_CONCATENATOR)) i += 2 continue if (len(tokens) and tokens[-1].category == Token.Category.OPERATOR and tokens[-1].value(source) in binary_operators[tokens[-1].end - tokens[-1].start] # ‘Every line of code which ends with any binary operator should be joined with the following line of code.’:[https://github.com/JuliaLang/julia/issues/2097#issuecomment-339924750][-339924750]< and source[tokens[-1].end-4:tokens[-1].end] != '-> &'): # for `F symbol(id, bp = 0) -> &` if line_continuations is not None: line_continuations.append(tokens[-1].end) continue # if not (len(indentation_levels) and indentation_levels[-1][0] == -1): # сразу после символа `{` это [:правило] не действует ...а хотя не могу подобрать пример, который бы показывал необходимость такой проверки, а потому оставлю этот if закомментированным # } if ((source[i ] in binary_operators[1] or source[i:i+2] in binary_operators[2] or source[i:i+3] in binary_operators[3] or source[i:i+4] in binary_operators[4]) # [правило:] ‘Every line of code which begins with any binary operator should be joined with the previous line of code.’:[-339924750]< and not (source[i ] in unary_operators[1] # Rude fix for: or source[i:i+2] in unary_operators[2] # a=b or source[i:i+3] in unary_operators[3]) # ++i // Plus symbol at the beginning here should not be treated as binary + operator, so there is no implied line joining and (source[i] not in ('&', '-') or source[i+1:i+2] == ' ')): # Символы `&` и `-` обрабатываются по-особенному — склеивание строк происходит только если после одного из этих символов стоит пробел if len(tokens) == 0: raise Error('source can not starts with a binary operator', i) if line_continuations is not None: line_continuations.append(tokens[-1].end) continue if source[i:i+2] == R'\.': # // Support for constructions like: ||| You need just to add `\` at the each line starting from dot: if len(tokens): # \\ result = abc.method1() ||| result = abc.method1() i += 1 # \\ .method2() ||| \.method2() #else: # with `if len(tokens): i += 1` there is no need for this else branch # raise Error('unexpected character `\`') if line_continuations is not None: line_continuations.append(tokens[-1].end) continue if tabs and spaces: next_line_pos = source.find("\n", i) raise Error('mixing tabs and spaces in indentation: `' + source[linestart:i].replace(' ', 'S').replace("\t", 'TAB') + source[i:next_line_pos if next_line_pos != -1 else len(source)] + '`', i) indentation_level = ii - linestart if len(indentation_levels) and indentation_levels[-1][0] == -1: # сразу после символа `{` идёт новый произвольный отступ (понижение уровня отступа может быть полезно, если вдруг отступ оказался слишком большой), который действует вплоть до парного символа `}` indentation_levels[-1] = (indentation_level, indentation_levels[-1][1]) #indentation_levels[-1][0] = indentation_level # || maybe this is unnecessary (actually it is necessary, see test "fn f()\n{\na = 1") // } indentation_tabs = tabs else: prev_indentation_level = indentation_levels[-1][0] if len(indentation_levels) else 0 if indentation_level > 0 and prev_indentation_level > 0 and indentation_tabs != tabs: e = i + 1 while e < len(source) and source[e] not in "\r\n": e += 1 raise Error("inconsistent indentations:\n```\n" + prev_indentation_level*('TAB' if indentation_tabs else 'S') + source[prev_linestart:linestart] + (ii-linestart)*('TAB' if tabs else 'S') + source[ii:e] + "\n```", ii) prev_linestart = ii if indentation_level == prev_indentation_level: # [1:] [-1]:‘If it is equal, nothing happens.’ :)(: [:2] if len(tokens) and tokens[-1].category != Token.Category.SCOPE_END: tokens.append(Token(linestart-1, linestart, Token.Category.STATEMENT_SEPARATOR)) elif indentation_level > prev_indentation_level: # [2:] [-1]:‘If it is larger, it is pushed on the stack, and one INDENT token is generated.’ [:3] if prev_indentation_level == 0: # len(indentation_levels) == 0 or indentation_levels[-1][0] == 0: indentation_tabs = tabs # первоначальная/новая установка символа для отступа (либо табуляция, либо пробелы) производится только от нулевого уровня отступа indentation_levels.append((indentation_level, False)) tokens.append(Token(linestart, ii, Token.Category.SCOPE_BEGIN)) if implied_scopes is not None: implied_scopes.append((Char('{'), tokens[-2].end + (1 if source[tokens[-2].end] in " \n" else 0))) else: # [3:] [-1]:‘If it is smaller, it ~‘must’ be one of the numbers occurring on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated.’ [:4] while True: if indentation_levels[-1][1]: raise Error('too much unindent, what is this unindent intended for?', ii) indentation_levels.pop() tokens.append(Token(ii, ii, Token.Category.SCOPE_END)) if implied_scopes is not None: implied_scopes.append((Char('}'), ii)) level = indentation_levels[-1][0] if len(indentation_levels) else 0 #level, explicit_scope_via_curly_braces = indentation_levels[-1] if len(indentation_levels) else [0, False] if level == indentation_level: break if level < indentation_level: raise Error('unindent does not match any outer indentation level', ii) ch = source[i] if ch in " \t": i += 1 # just skip whitespace characters elif ch in "\r\n": #if newline_chars is not None: # rejected this code as it does not count newline characters inside comments and string literals # newline_chars.append(i) i += 1 if ch == "\r" and source[i:i+1] == "\n": i += 1 if len(nesting_elements) == 0 or nesting_elements[-1][0] not in '([': # если мы внутри скобок, то начинать новую строку не нужно # ]) begin_of_line = True elif (ch == '/' and source[i+1:i+2] == '/' ) \ or (ch == '\\' and source[i+1:i+2] == '\\'): # single-line comment comment_start = i i += 2 while i < len(source) and source[i] not in "\r\n": i += 1 if comments is not None: comments.append((comment_start, i)) elif ch == '\\' and source[i+1:i+2] in "‘({[": # multi-line comment # ]})’ skip_multiline_comment() else: def is_hexadecimal_digit(ch): return '0' <= ch <= '9' or 'A' <= ch <= 'F' or 'a' <= ch <= 'f' or ch in 'абсдефАБСДЕФ' operator_s = '' # if ch in 'CС' and not (source[i+1:i+2].isalpha() or source[i+1:i+2].isdigit()): # without this check [and if 'C' is in binary_operators] when identifier starts with `C` (for example `Circle`), then this first letter of identifier is mistakenly considered as an operator # operator_s = ch # else: for op in sorted_operators: if source[i:i+len(op)] == op: operator_s = op break lexem_start = i i += 1 category : Token.Category if operator_s != '': i = lexem_start + len(operator_s) if source[i-1] == ' ': # for correct handling of operator 'C '/'in ' in external tools (e.g. keyletters_to_keywords.py) i -= 1 category = Token.Category.OPERATOR elif ch.isalpha() or ch in ('_', '@'): # this is NAME/IDENTIFIER or KEYWORD if ch == '@': while i < len(source) and source[i] == '@': i += 1 if i < len(source) and source[i] == '=': i += 1 while i < len(source): ch = source[i] if not (ch.isalpha() or ch in '_?:' or '0' <= ch <= '9'): break i += 1 # Tokenize `fs:path:dirname` to ['fs:path', ':', 'dirname'] j = i - 1 while j > lexem_start: if source[j] == ':': i = j break j -= 1 if source[i:i+1] == '/' and source[i-1:i] in 'IЦ': if source[i-2:i-1] == ' ': category = Token.Category.OPERATOR else: raise Error('please clarify your intention by putting space character before or after `I`', i-1) elif source[i:i+1] == "'": # this is a named argument, a raw string or a hexadecimal number i += 1 if source[i:i+1] == ' ': # this is a named argument category = Token.Category.NAME elif source[i:i+1] in ('‘', "'"): # ’ # this is a raw string i -= 1 category = Token.Category.NAME else: # this is a hexadecimal number while i < len(source) and (is_hexadecimal_digit(source[i]) or source[i] == "'"): i += 1 if not (source[lexem_start+4:lexem_start+5] == "'" or source[i-3:i-2] == "'" or source[i-2:i-1] == "'"): raise Error('digit separator in this hexadecimal number is located in the wrong place', lexem_start) category = Token.Category.NUMERIC_LITERAL elif source[lexem_start:i] in keywords: if source[lexem_start:i] in ('V', 'П', 'var', 'перем'): # it is more convenient to consider V/var as [type] name, not a keyword category = Token.Category.NAME if source[i:i+1] == '&': i += 1 elif source[lexem_start:i] in ('N', 'Н', 'null', 'нуль'): category = Token.Category.CONSTANT else: category = Token.Category.KEYWORD if source[i:i+1] == '.': # this is composite keyword like `L.break` i += 1 while i < len(source) and (source[i].isalpha() or source[i] in '_.'): i += 1 if source[lexem_start:i] in ('L.index', 'Ц.индекс', 'loop.index', 'цикл.индекс'): # for correct STRING_CONCATENATOR insertion category = Token.Category.NAME else: category = Token.Category.NAME elif '0' <= ch <= '9': # this is NUMERIC_LITERAL or CONSTANT 0B or 1B if ch in '01' and source[i:i+1] in ('B', 'В') and not (is_hexadecimal_digit(source[i+1:i+2]) or source[i+1:i+2] == "'"): i += 1 category = Token.Category.CONSTANT else: is_hex = False while i < len(source) and is_hexadecimal_digit(source[i]): if not ('0' <= source[i] <= '9'): if source[i] in 'eE' and source[i+1:i+2] in ('-', '+'): # fix `1e-10` break is_hex = True i += 1 next_digit_separator = 0 is_oct_or_bin = False if i < len(source) and source[i] == "'": if i - lexem_start in (2, 1): # special handling for 12'345/1'234 (чтобы это не считалось short/ultrashort hexadecimal number) j = i + 1 while j < len(source) and is_hexadecimal_digit(source[j]): if not ('0' <= source[j] <= '9'): is_hex = True j += 1 next_digit_separator = j - 1 - i elif i - lexem_start == 4: # special handling for 1010'1111b (чтобы это не считалось hexadecimal number) j = i + 1 while j < len(source) and ((is_hexadecimal_digit(source[j]) and not source[j] in 'bд') or source[j] == "'"): # I know, checking for `in 'bд'` is hacky j += 1 if j < len(source) and source[j] in 'oоbд': is_oct_or_bin = True if i < len(source) and source[i] == "'" and ((i - lexem_start == 4 and not is_oct_or_bin) or (i - lexem_start in (2, 1) and (next_digit_separator != 3 or is_hex))): # this is a hexadecimal number if i - lexem_start == 2: # this is a short hexadecimal number while True: i += 1 if i + 2 > len(source) or not is_hexadecimal_digit(source[i]) or not is_hexadecimal_digit(source[i+1]): raise Error('wrong short hexadecimal number', lexem_start) i += 2 if i < len(source) and is_hexadecimal_digit(source[i]): raise Error('expected end of short hexadecimal number', i) if source[i:i+1] != "'": break elif i - lexem_start == 1: # this is an ultrashort hexadecimal number i += 1 if i + 1 > len(source) or not is_hexadecimal_digit(source[i]): raise Error('wrong ultrashort hexadecimal number', lexem_start) i += 1 if i < len(source) and is_hexadecimal_digit(source[i]): raise Error('expected end of ultrashort hexadecimal number', i) else: i += 1 while i < len(source) and is_hexadecimal_digit(source[i]): i += 1 if (i - lexem_start) % 5 == 4 and i < len(source): if source[i] != "'": if not is_hexadecimal_digit(source[i]): break raise Error('here should be a digit separator in hexadecimal number', i) i += 1 if i < len(source) and source[i] == "'": raise Error('digit separator in hexadecimal number is located in the wrong place', i) if (i - lexem_start) % 5 != 4: raise Error('after this digit separator there should be 4 digits in hexadecimal number', source.rfind("'", 0, i)) else: while i < len(source) and ('0' <= source[i] <= '9' or source[i] in "'.eE"): if source[i:i+2] in ('..', '.<', '.+'): break if source[i] in 'eE': if source[i+1:i+2] in '-+': i += 1 i += 1 if source[i:i+1] in ('o', 'о', 'b', 'д', 's', 'i'): i += 1 elif "'" in source[lexem_start:i] and not '.' in source[lexem_start:i]: # float numbers do not checked for a while number = source[lexem_start:i].replace("'", '') number_with_separators = '' j = len(number) while j > 3: number_with_separators = "'" + number[j-3:j] + number_with_separators j -= 3 number_with_separators = number[0:j] + number_with_separators if source[lexem_start:i] != number_with_separators: raise Error('digit separator in this number is located in the wrong place (should be: '+ number_with_separators +')', lexem_start) category = Token.Category.NUMERIC_LITERAL elif ch == "'" and source[i:i+1] == ',': # this is a named-only arguments mark i += 1 category = Token.Category.DELIMITER elif ch == '"': if source[i] == '"' \ and tokens[-1].category == Token.Category.STRING_CONCATENATOR \ and tokens[-2].category == Token.Category.STRING_LITERAL \ and tokens[-2].value(source)[0] == '‘': # ’ // for cases like r = abc‘some big ...’"" i += 1 # \\ ‘... string’ continue # [( startqpos = i - 1 if len(tokens) and tokens[-1].end == startqpos and ((tokens[-1].category == Token.Category.NAME and tokens[-1].value(source)[-1] != "'") or tokens[-1].value(source) in (')', ']')): tokens.append(Token(lexem_start, lexem_start, Token.Category.STRING_CONCATENATOR)) while True: if i == len(source): raise Error('unclosed string literal', startqpos) ch = source[i] i += 1 if ch == '\\': if i == len(source): continue i += 1 elif ch == '"': break if source[i:i+1].isalpha() or source[i:i+1] in ('_', '@', ':', '‘', '('): # )’ tokens.append(Token(lexem_start, i, Token.Category.STRING_LITERAL)) tokens.append(Token(i, i, Token.Category.STRING_CONCATENATOR)) continue category = Token.Category.STRING_LITERAL elif ch in "‘'": if source[i] == '’' \ and tokens[-1].category == Token.Category.STRING_CONCATENATOR \ and tokens[-2].category == Token.Category.STRING_LITERAL \ and tokens[-2].value(source)[0] == '"': # // for cases like r = abc"some big ..."‘’ i += 1 # \\ ‘... string’ continue # ‘[( if len(tokens) and tokens[-1].end == i - 1 and ((tokens[-1].category == Token.Category.NAME and tokens[-1].value(source)[-1] != "'") or tokens[-1].value(source) in (')', ']')): tokens.append(Token(lexem_start, lexem_start, Token.Category.STRING_CONCATENATOR)) if source[i] == '’': # for cases like `a‘’b` i += 1 continue i -= 1 while i < len(source) and source[i] == "'": i += 1 if source[i:i+1] != '‘': # ’ raise Error('expected left single quotation mark', i) startqpos = i i += 1 nesting_level = 1 while True: if i == len(source): raise Error('unpaired left single quotation mark', startqpos) ch = source[i] i += 1 if ch == "‘": nesting_level += 1 elif ch == "’": nesting_level -= 1 if nesting_level == 0: break while i < len(source) and source[i] == "'": i += 1 if source[i:i+1].isalpha() or source[i:i+1] in ('_', '@', ':', '"', '('): # ) tokens.append(Token(lexem_start, i, Token.Category.STRING_LITERAL)) tokens.append(Token(i, i, Token.Category.STRING_CONCATENATOR)) continue category = Token.Category.STRING_LITERAL elif ch == '{': indentation_levels.append((-1, True)) nesting_elements.append((Char('{'), lexem_start)) # } category = Token.Category.SCOPE_BEGIN elif ch == '}': if len(nesting_elements) == 0 or nesting_elements[-1][0] != '{': raise Error('there is no corresponding opening brace for `}`', lexem_start) nesting_elements.pop() while indentation_levels[-1][1] != True: tokens.append(Token(lexem_start, lexem_start, Token.Category.SCOPE_END)) if implied_scopes is not None: # { implied_scopes.append((Char('}'), lexem_start)) indentation_levels.pop() assert(indentation_levels.pop()[1] == True) category = Token.Category.SCOPE_END elif ch == ';': category = Token.Category.STATEMENT_SEPARATOR elif ch in (',', '.', ':'): category = Token.Category.DELIMITER elif ch in '([': if source[lexem_start:lexem_start+3] == '(.)': i += 2 category = Token.Category.NAME else: nesting_elements.append((ch, lexem_start)) category = Token.Category.DELIMITER elif ch in '])': # ([ if len(nesting_elements) == 0 or nesting_elements[-1][0] != {']':'[', ')':'('}[ch]: # ]) raise Error('there is no corresponding opening parenthesis/bracket for `' + ch + '`', lexem_start) nesting_elements.pop() category = Token.Category.DELIMITER else: raise Error('unexpected character `' + ch + '`', lexem_start) tokens.append(Token(lexem_start, i, category)) if len(nesting_elements): raise Error('there is no corresponding closing parenthesis/bracket/brace for `' + nesting_elements[-1][0] + '`', nesting_elements[-1][1]) # [4:] [-1]:‘At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.’ while len(indentation_levels): assert(indentation_levels[-1][1] != True) tokens.append(Token(i, i, Token.Category.SCOPE_END)) if implied_scopes is not None: # { implied_scopes.append((Char('}'), i-1 if source[-1] == "\n" else i)) indentation_levels.pop() return tokens
11l
/11l-2021.3-py3-none-any.whl/_11l_to_cpp/tokenizer.py
tokenizer.py
from io import BytesIO from django.core.files.images import ImageFile from faker.providers import BaseProvider from x11x_wagtail_blog.models import AboutTheAuthor class X11XWagtailBlogProvider(BaseProvider): """ Provider for the wonderful faker library. Add `X11XWagtailBlogProvider` to a standard faker to generate data for your test code. >>> from faker import Faker >>> fake = Faker() >>> fake.add_provider(X11XWagtailBlogProvider) >>> fake.avatar_image_content() # doctest: +NORMALIZE_QUOTES b'\\x89PNG... """ def avatar_image_content(self, *, size=(32, 32)) -> bytes: """ Generate an avatar image of the given size. By default, the image will be a PNG 32 pixels by 32 pixels. The use of the image generation functions require the PIL library to be installed. :param tuple[int, int] size: The width and height of the image to generate. :return bytes: Returns the binary content of the PNG. >>> fake.avatar_image_content(size=(4, 4)) # doctest: +NORMALIZE_QUOTES b'\\x89PNG... """ return self.generator.image( size=size, image_format="png", ) def avatar_image_file(self) -> ImageFile: """ Generates a `django.core.files.images.ImageFile` that can be assigned to a user's profile. The use of the image generation functions require the PIL library to be installed. >>> fake.avatar_image_file() <ImageFile: ....png> """ return ImageFile( BytesIO(self.avatar_image_content()), self.generator.file_name(extension="png"), ) def about_the_author(self, author) -> AboutTheAuthor: """ Generates an AboutTheAuthor snippet. """ return AboutTheAuthor( author=author, body=self.generator.paragraph(), ) def title_image_content(self, *, size=(2, 2)) -> bytes: """ Generates image content suitable for the 'title_image'. Unless ``size`` is given, a 2x2 pixel image will be generated. >>> fake.title_image_content() # doctest: +NORMALIZE_QUOTES b'\\x89PNG... :param tuple[int, int] size: The width and height of the image to generate. :return bytes: Returns the content of the title image. """ return self.generator.image( size=size, image_format="png", ) def title_image_file(self, *, name=None) -> ImageFile: """ Generates a `django.core.files.images.ImageFile` that can be assigned to a user's profile. >>> fake.title_image_file(name="this-name.png") <ImageFile: this-name.png> :param str name: The name of the image file to generate. :return ImageFile: Returns an `ImageFile` """ name = name or self.generator.file_name(extension="png") return ImageFile( BytesIO(self.title_image_content()), name, )
11x-wagtail-blog
/11x_wagtail_blog-0.2.0-py3-none-any.whl/x11x_wagtail_blog/fakers.py
fakers.py
from django.conf import settings from django.db import models from django.utils import timezone from modelcluster.fields import ParentalKey from wagtail.admin.panels import FieldPanel, InlinePanel from wagtail.fields import StreamField, RichTextField from wagtail.models import Page from wagtail.snippets.blocks import SnippetChooserBlock from wagtail.snippets.models import register_snippet _RICH_TEXT_SUMMARY_FEATURES = getattr(settings, "X11X_WAGTAIL_BLOG_SUMMARY_FEATURES", ["bold", "italic", "code", "superscript", "subscript", "strikethrough"]) @register_snippet class AboutTheAuthor(models.Model): """ A snippet holding the content of an 'About the Author' section for particular authors. These snippets are intended to be organized by the various authors of a website. Individual users may have several 'about' blurbs that they can choose depending on what a particular article calls for. """ author = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.RESTRICT, editable=True, blank=False, related_name="about_the_author_snippets", ) "A reference to the author this snippet is about." body = RichTextField() "A paragraph or two describing the associated author." panels = [ FieldPanel("author"), FieldPanel("body"), ] def __str__(self): return str(self.author) class RelatedArticles(models.Model): """ You should never have to instantiate ``RelatedArticles`` directly. This is a model to implement the m2m relationship between articles. """ related_to = ParentalKey("ExtensibleArticlePage", verbose_name="Article", related_name="related_article_to") related_from = ParentalKey("ExtensibleArticlePage", verbose_name="Article", related_name="related_article_from") class ExtensibleArticlePage(Page): """ `ExtensibleArticlePage` is the base class for blog articles. Inherit from `ExtensibleArticlePage` when and add your own ``body`` element. `ExtensibleArticlePage` are NOT creatable through the wagtail admin. """ date = models.DateTimeField(default=timezone.now, null=False, blank=False, editable=True) "Date to appear in the article subheading." summary = RichTextField(features=_RICH_TEXT_SUMMARY_FEATURES, default="", blank=True, null=False) "The article's summary. `summary` will show up in index pages." title_image = models.ForeignKey( "wagtailimages.Image", on_delete=models.RESTRICT, related_name="+", null=True, blank=True, ) "The image to use in the title header or section of the article." authors = StreamField( [ ("about_the_authors", SnippetChooserBlock(AboutTheAuthor)), ], default=list, use_json_field=True, blank=True, ) "About the author sections to include with the article.." is_creatable = False settings_panels = Page.settings_panels + [ FieldPanel("date"), FieldPanel("owner"), ] pre_body_content_panels = Page.content_panels + [ FieldPanel("title_image"), FieldPanel("summary"), ] "Admin `FieldPanels` intended to be displayed BEFORE a ``body`` field." post_body_content_panels = [ FieldPanel("authors"), InlinePanel( "related_article_from", label="Related Articles", panels=[FieldPanel("related_to")] ) ] "Admin `FieldPanel` s intended to be displayed AFTER a ``body`` field." def has_authors(self): """ Returns ``True`` if this article has one or more 'about the authors' snippet. ``False`` otherwise. """ return len(self.authors) > 0 @classmethod def with_body_panels(cls, panels): """ A helper method that concatenates all the admin panels of this class with the admin panels intended to enter content of the main body. :param panels: Panels intended to show up under the "Title" and "Summary" sections, but before the 'trailing' sections. """ return cls.pre_body_content_panels + panels + cls.post_body_content_panels def get_template(self, request, *args, **kwargs): """ Returns the default template. This method will likely be removed in the (very) near future. This method may be overridden (like all wagtail pages) to return the intended template. :deprecated: """ return getattr(settings, "X11X_WAGTAIL_BLOG_ARTICLE_TEMPLATE", "x11x_wagtail_blog/article_page.html") def has_related_articles(self): """ Returns `True` if this page has related articles associated with it. Returns ``False`` otherwise. """ return self.related_article_from.all().count() > 0 @property def related_articles(self): """ An iterable of related articles related to this one. """ return [to.related_to for to in self.related_article_from.all()] @related_articles.setter def related_articles(self, value): """ Sets the articles related to this one. :param list[ExtensibleArticlePage] value: A list of related articles. """ self.related_article_from = [ RelatedArticles( related_from=self, related_to=v ) for v in value ]
11x-wagtail-blog
/11x_wagtail_blog-0.2.0-py3-none-any.whl/x11x_wagtail_blog/models.py
models.py
from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import modelcluster.fields import wagtail.fields import wagtail.snippets.blocks import x11x_wagtail_blog.models class Migration(migrations.Migration): initial = True dependencies = [ ("wagtailcore", "0083_workflowcontenttype"), ("wagtailimages", "0025_alter_image_file_alter_rendition_file"), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name="ExtensibleArticlePage", fields=[ ( "page_ptr", models.OneToOneField( auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to="wagtailcore.page", ), ), ("date", models.DateTimeField(default=django.utils.timezone.now)), ("summary", wagtail.fields.RichTextField(blank=True, default="")), ( "authors", wagtail.fields.StreamField( [ ( "about_the_authors", wagtail.snippets.blocks.SnippetChooserBlock(x11x_wagtail_blog.models.AboutTheAuthor), ) ], blank=True, default=list, use_json_field=True, ), ), ( "title_image", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.RESTRICT, related_name="+", to="wagtailimages.image", ), ), ], options={ "abstract": False, }, bases=("wagtailcore.page",), ), migrations.CreateModel( name="RelatedArticles", fields=[ ("id", models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name="ID")), ( "related_from", modelcluster.fields.ParentalKey( on_delete=django.db.models.deletion.CASCADE, related_name="related_article_from", to="x11x_wagtail_blog.extensiblearticlepage", verbose_name="Article", ), ), ( "related_to", modelcluster.fields.ParentalKey( on_delete=django.db.models.deletion.CASCADE, related_name="related_article_to", to="x11x_wagtail_blog.extensiblearticlepage", verbose_name="Article", ), ), ], ), migrations.CreateModel( name="AboutTheAuthor", fields=[ ("id", models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name="ID")), ("body", wagtail.fields.RichTextField()), ( "author", models.ForeignKey( on_delete=django.db.models.deletion.RESTRICT, related_name="about_the_author_snippets", to=settings.AUTH_USER_MODEL, ), ), ], ), ]
11x-wagtail-blog
/11x_wagtail_blog-0.2.0-py3-none-any.whl/x11x_wagtail_blog/migrations/0001_initial.py
0001_initial.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Gaussian(Distribution): """ Gaussian distribution class for calculating and visualizing a Gaussian distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats extracted from the data file """ def __init__(self, mu=0, sigma=1): Distribution.__init__(self, mu, sigma) def calculate_mean(self): """Function to calculate the mean of the data set. Args: None Returns: float: mean of the data set """ avg = 1.0 * sum(self.data) / len(self.data) self.mean = avg return self.mean def calculate_stdev(self, sample=True): """Function to calculate the standard deviation of the data set. Args: sample (bool): whether the data represents a sample or population Returns: float: standard deviation of the data set """ if sample: n = len(self.data) - 1 else: n = len(self.data) mean = self.calculate_mean() sigma = 0 for d in self.data: sigma += (d - mean) ** 2 sigma = math.sqrt(sigma / n) self.stdev = sigma return self.stdev def plot_histogram(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.hist(self.data) plt.title('Histogram of Data') plt.xlabel('data') plt.ylabel('count') def pdf(self, x): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ return (1.0 / (self.stdev * math.sqrt(2*math.pi))) * math.exp(-0.5*((x - self.mean) / self.stdev) ** 2) def plot_histogram_pdf(self, n_spaces = 50): """Function to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot """ mu = self.mean sigma = self.stdev min_range = min(self.data) max_range = max(self.data) # calculates the interval between x values interval = 1.0 * (max_range - min_range) / n_spaces x = [] y = [] # calculate the x values to visualize for i in range(n_spaces): tmp = min_range + interval*i x.append(tmp) y.append(self.pdf(tmp)) # make the plots fig, axes = plt.subplots(2,sharex=True) fig.subplots_adjust(hspace=.5) axes[0].hist(self.data, density=True) axes[0].set_title('Normed Histogram of Data') axes[0].set_ylabel('Density') axes[1].plot(x, y) axes[1].set_title('Normal Distribution for \n Sample Mean and Sample Standard Deviation') axes[0].set_ylabel('Density') plt.show() return x, y def __add__(self, other): """Function to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution """ result = Gaussian() result.mean = self.mean + other.mean result.stdev = math.sqrt(self.stdev ** 2 + other.stdev ** 2) return result def __repr__(self): """Function to output the characteristics of the Gaussian instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}".format(self.mean, self.stdev)
12-distributions
/12_distributions-0.1.tar.gz/12_distributions-0.1/12_distributions/Gaussiandistribution.py
Gaussiandistribution.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Binomial(Distribution): """ Binomial distribution class for calculating and visualizing a Binomial distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats to be extracted from the data file p (float) representing the probability of an event occurring n (int) number of trials TODO: Fill out all functions below """ def __init__(self, prob=.5, size=20): self.n = size self.p = prob Distribution.__init__(self, self.calculate_mean(), self.calculate_stdev()) def calculate_mean(self): """Function to calculate the mean from p and n Args: None Returns: float: mean of the data set """ self.mean = self.p * self.n return self.mean def calculate_stdev(self): """Function to calculate the standard deviation from p and n. Args: None Returns: float: standard deviation of the data set """ self.stdev = math.sqrt(self.n * self.p * (1 - self.p)) return self.stdev def replace_stats_with_data(self): """Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value """ self.n = len(self.data) self.p = 1.0 * sum(self.data) / len(self.data) self.mean = self.calculate_mean() self.stdev = self.calculate_stdev() def plot_bar(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.bar(x = ['0', '1'], height = [(1 - self.p) * self.n, self.p * self.n]) plt.title('Bar Chart of Data') plt.xlabel('outcome') plt.ylabel('count') def pdf(self, k): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ a = math.factorial(self.n) / (math.factorial(k) * (math.factorial(self.n - k))) b = (self.p ** k) * (1 - self.p) ** (self.n - k) return a * b def plot_bar_pdf(self): """Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot """ x = [] y = [] # calculate the x values to visualize for i in range(self.n + 1): x.append(i) y.append(self.pdf(i)) # make the plots plt.bar(x, y) plt.title('Distribution of Outcomes') plt.ylabel('Probability') plt.xlabel('Outcome') plt.show() return x, y def __add__(self, other): """Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution """ try: assert self.p == other.p, 'p values are not equal' except AssertionError as error: raise result = Binomial() result.n = self.n + other.n result.p = self.p result.calculate_mean() result.calculate_stdev() return result def __repr__(self): """Function to output the characteristics of the Binomial instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}, p {}, n {}".\ format(self.mean, self.stdev, self.p, self.n)
12-distributions
/12_distributions-0.1.tar.gz/12_distributions-0.1/12_distributions/Binomialdistribution.py
Binomialdistribution.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Gaussian(Distribution): """ Gaussian distribution class for calculating and visualizing a Gaussian distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats extracted from the data file """ def __init__(self, mu=0, sigma=1): Distribution.__init__(self, mu, sigma) def calculate_mean(self): """Function to calculate the mean of the data set. Args: None Returns: float: mean of the data set """ avg = 1.0 * sum(self.data) / len(self.data) self.mean = avg return self.mean def calculate_stdev(self, sample=True): """Function to calculate the standard deviation of the data set. Args: sample (bool): whether the data represents a sample or population Returns: float: standard deviation of the data set """ if sample: n = len(self.data) - 1 else: n = len(self.data) mean = self.calculate_mean() sigma = 0 for d in self.data: sigma += (d - mean) ** 2 sigma = math.sqrt(sigma / n) self.stdev = sigma return self.stdev def plot_histogram(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.hist(self.data) plt.title('Histogram of Data') plt.xlabel('data') plt.ylabel('count') def pdf(self, x): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ return (1.0 / (self.stdev * math.sqrt(2*math.pi))) * math.exp(-0.5*((x - self.mean) / self.stdev) ** 2) def plot_histogram_pdf(self, n_spaces = 50): """Function to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot """ mu = self.mean sigma = self.stdev min_range = min(self.data) max_range = max(self.data) # calculates the interval between x values interval = 1.0 * (max_range - min_range) / n_spaces x = [] y = [] # calculate the x values to visualize for i in range(n_spaces): tmp = min_range + interval*i x.append(tmp) y.append(self.pdf(tmp)) # make the plots fig, axes = plt.subplots(2,sharex=True) fig.subplots_adjust(hspace=.5) axes[0].hist(self.data, density=True) axes[0].set_title('Normed Histogram of Data') axes[0].set_ylabel('Density') axes[1].plot(x, y) axes[1].set_title('Normal Distribution for \n Sample Mean and Sample Standard Deviation') axes[0].set_ylabel('Density') plt.show() return x, y def __add__(self, other): """Function to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution """ result = Gaussian() result.mean = self.mean + other.mean result.stdev = math.sqrt(self.stdev ** 2 + other.stdev ** 2) return result def __repr__(self): """Function to output the characteristics of the Gaussian instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}".format(self.mean, self.stdev)
12-test
/[email protected]/[email protected]/distributions/Gaussiandistribution.py
Gaussiandistribution.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Binomial(Distribution): """ Binomial distribution class for calculating and visualizing a Binomial distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats to be extracted from the data file p (float) representing the probability of an event occurring n (int) number of trials TODO: Fill out all functions below """ def __init__(self, prob=.5, size=20): self.n = size self.p = prob Distribution.__init__(self, self.calculate_mean(), self.calculate_stdev()) def calculate_mean(self): """Function to calculate the mean from p and n Args: None Returns: float: mean of the data set """ self.mean = self.p * self.n return self.mean def calculate_stdev(self): """Function to calculate the standard deviation from p and n. Args: None Returns: float: standard deviation of the data set """ self.stdev = math.sqrt(self.n * self.p * (1 - self.p)) return self.stdev def replace_stats_with_data(self): """Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value """ self.n = len(self.data) self.p = 1.0 * sum(self.data) / len(self.data) self.mean = self.calculate_mean() self.stdev = self.calculate_stdev() def plot_bar(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.bar(x = ['0', '1'], height = [(1 - self.p) * self.n, self.p * self.n]) plt.title('Bar Chart of Data') plt.xlabel('outcome') plt.ylabel('count') def pdf(self, k): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ a = math.factorial(self.n) / (math.factorial(k) * (math.factorial(self.n - k))) b = (self.p ** k) * (1 - self.p) ** (self.n - k) return a * b def plot_bar_pdf(self): """Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot """ x = [] y = [] # calculate the x values to visualize for i in range(self.n + 1): x.append(i) y.append(self.pdf(i)) # make the plots plt.bar(x, y) plt.title('Distribution of Outcomes') plt.ylabel('Probability') plt.xlabel('Outcome') plt.show() return x, y def __add__(self, other): """Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution """ try: assert self.p == other.p, 'p values are not equal' except AssertionError as error: raise result = Binomial() result.n = self.n + other.n result.p = self.p result.calculate_mean() result.calculate_stdev() return result def __repr__(self): """Function to output the characteristics of the Binomial instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}, p {}, n {}".\ format(self.mean, self.stdev, self.p, self.n)
12-test
/[email protected]/[email protected]/distributions/Binomialdistribution.py
Binomialdistribution.py
![Logo](https://storage.googleapis.com/tf_model_garden/tf_model_garden_logo.png) # TensorFlow Research Models This directory contains code implementations and pre-trained models of published research papers. The research models are maintained by their respective authors. ## Table of Contents - [TensorFlow Research Models](#tensorflow-research-models) - [Table of Contents](#table-of-contents) - [Modeling Libraries and Models](#modeling-libraries-and-models) - [Models and Implementations](#models-and-implementations) - [Computer Vision](#computer-vision) - [Natural Language Processing](#natural-language-processing) - [Audio and Speech](#audio-and-speech) - [Reinforcement Learning](#reinforcement-learning) - [Others](#others) - [Old Models and Implementations in TensorFlow 1](#old-models-and-implementations-in-tensorflow-1) - [Contributions](#contributions) ## Modeling Libraries and Models | Directory | Name | Description | Maintainer(s) | |-----------|------|-------------|---------------| | [object_detection](object_detection) | TensorFlow Object Detection API | A framework that makes it easy to construct, train and deploy object detection models<br /><br />A collection of object detection models pre-trained on the COCO dataset, the Kitti dataset, the Open Images dataset, the AVA v2.1 dataset, and the iNaturalist Species Detection Dataset| jch1, tombstone, pkulzc | | [slim](slim) | TensorFlow-Slim Image Classification Model Library | A lightweight high-level API of TensorFlow for defining, training and evaluating image classification models <br />• Inception V1/V2/V3/V4<br />• Inception-ResNet-v2<br />• ResNet V1/V2<br />• VGG 16/19<br />• MobileNet V1/V2/V3<br />• NASNet-A_Mobile/Large<br />• PNASNet-5_Large/Mobile | sguada, marksandler2 | ## Models and Implementations ### Computer Vision | Directory | Paper(s) | Conference | Maintainer(s) | |-----------|----------|------------|---------------| | [attention_ocr](attention_ocr) | [Attention-based Extraction of Structured Information from Street View Imagery](https://arxiv.org/abs/1704.03549) | ICDAR 2017 | xavigibert | | [autoaugment](autoaugment) | [1] [AutoAugment](https://arxiv.org/abs/1805.09501)<br />[2] [Wide Residual Networks](https://arxiv.org/abs/1605.07146)<br />[3] [Shake-Shake regularization](https://arxiv.org/abs/1705.07485)<br />[4] [ShakeDrop Regularization for Deep Residual Learning](https://arxiv.org/abs/1802.02375) | [1] CVPR 2019<br />[2] BMVC 2016<br /> [3] ICLR 2017<br /> [4] ICLR 2018 | barretzoph | | [deeplab](deeplab) | [1] [DeepLabv1: Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs](https://arxiv.org/abs/1412.7062)<br />[2] [DeepLabv2: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs](https://arxiv.org/abs/1606.00915)<br />[3] [DeepLabv3: Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)<br />[4] [DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611)<br />| [1] ICLR 2015 <br />[2] TPAMI 2017 <br />[4] ECCV 2018 | aquariusjay, yknzhu | | [delf](delf) | [1] DELF (DEep Local Features): [Large-Scale Image Retrieval with Attentive Deep Local Features](https://arxiv.org/abs/1612.06321)<br />[2] [Detect-to-Retrieve: Efficient Regional Aggregation for Image Search](https://arxiv.org/abs/1812.01584)<br />[3] DELG (DEep Local and Global features): [Unifying Deep Local and Global Features for Image Search](https://arxiv.org/abs/2001.05027)<br />[4] GLDv2: [Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval](https://arxiv.org/abs/2004.01804) | [1] ICCV 2017<br />[2] CVPR 2019<br />[4] CVPR 2020 | andrefaraujo | | [lstm_object_detection](lstm_object_detection) | [Mobile Video Object Detection with Temporally-Aware Feature Maps](https://arxiv.org/abs/1711.06368) | CVPR 2018 | yinxiaoli, yongzhe2160, lzyuan | | [marco](marco) | MARCO: [Classification of crystallization outcomes using deep convolutional neural networks](https://arxiv.org/abs/1803.10342) | | vincentvanhoucke | | [vid2depth](vid2depth) | [Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints](https://arxiv.org/abs/1802.05522) | CVPR 2018 | rezama | ### Natural Language Processing | Directory | Paper(s) | Conference | Maintainer(s) | |-----------|----------|------------|---------------| | [adversarial_text](adversarial_text) | [1] [Adversarial Training Methods for Semi-Supervised Text](https://arxiv.org/abs/1605.07725) Classification<br />[2] [Semi-supervised Sequence Learning](https://arxiv.org/abs/1511.01432) | [1] ICLR 2017<br />[2] NIPS 2015 | rsepassi, a-dai | | [cvt_text](cvt_text) | [Semi-Supervised Sequence Modeling with Cross-View Training](https://arxiv.org/abs/1809.08370) | EMNLP 2018 | clarkkev, lmthang | ### Audio and Speech | Directory | Paper(s) | Conference | Maintainer(s) | |-----------|----------|------------|---------------| | [audioset](audioset) | [1] [Audio Set: An ontology and human-labeled dataset for audio events](https://research.google/pubs/pub45857/)<br />[2] [CNN Architectures for Large-Scale Audio Classification](https://research.google/pubs/pub45611/) | ICASSP 2017 | plakal, dpwe | | [deep_speech](deep_speech) | [Deep Speech 2](https://arxiv.org/abs/1512.02595) | ICLR 2016 | yhliang2018 | ### Reinforcement Learning | Directory | Paper(s) | Conference | Maintainer(s) | |-----------|----------|------------|---------------| | [efficient-hrl](efficient-hrl) | [1] [Data-Efficient Hierarchical Reinforcement Learning](https://arxiv.org/abs/1805.08296)<br />[2] [Near-Optimal Representation Learning for Hierarchical Reinforcement Learning](https://arxiv.org/abs/1810.01257) | [1] NIPS 2018<br /> [2] ICLR 2019 | ofirnachum | | [pcl_rl](pcl_rl) | [1] [Improving Policy Gradient by Exploring Under-appreciated Rewards](https://arxiv.org/abs/1611.09321)<br />[2] [Bridging the Gap Between Value and Policy Based Reinforcement Learning](https://arxiv.org/abs/1702.08892)<br />[3] [Trust-PCL: An Off-Policy Trust Region Method for Continuous Control](https://arxiv.org/abs/1707.01891) | [1] ICLR 2017<br />[2] NIPS 2017<br />[3] ICLR 2018 | ofirnachum | ### Others | Directory | Paper(s) | Conference | Maintainer(s) | |-----------|----------|------------|---------------| | [lfads](lfads) | [LFADS - Latent Factor Analysis via Dynamical Systems](https://arxiv.org/abs/1608.06315) | | jazcollins, sussillo | | [rebar](rebar) | [REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models](https://arxiv.org/abs/1703.07370) | NIPS 2017 | gjtucker | ### Old Models and Implementations in TensorFlow 1 :warning: If you are looking for old models, please visit the [Archive branch](https://github.com/tensorflow/models/tree/archive/research). --- ## Contributions If you want to contribute, please review the [contribution guidelines](https://github.com/tensorflow/models/wiki/How-to-contribute).
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/README.md
README.md
"""Build and train mobilenet_v1 with options for quantization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from tensorflow.contrib import quantize as contrib_quantize from datasets import dataset_factory from nets import mobilenet_v1 from preprocessing import preprocessing_factory flags = tf.app.flags flags.DEFINE_string('master', '', 'Session master') flags.DEFINE_integer('task', 0, 'Task') flags.DEFINE_integer('ps_tasks', 0, 'Number of ps') flags.DEFINE_integer('batch_size', 64, 'Batch size') flags.DEFINE_integer('num_classes', 1001, 'Number of classes to distinguish') flags.DEFINE_integer('number_of_steps', None, 'Number of training steps to perform before stopping') flags.DEFINE_integer('image_size', 224, 'Input image resolution') flags.DEFINE_float('depth_multiplier', 1.0, 'Depth multiplier for mobilenet') flags.DEFINE_bool('quantize', False, 'Quantize training') flags.DEFINE_string('fine_tune_checkpoint', '', 'Checkpoint from which to start finetuning.') flags.DEFINE_string('checkpoint_dir', '', 'Directory for writing training checkpoints and logs') flags.DEFINE_string('dataset_dir', '', 'Location of dataset') flags.DEFINE_integer('log_every_n_steps', 100, 'Number of steps per log') flags.DEFINE_integer('save_summaries_secs', 100, 'How often to save summaries, secs') flags.DEFINE_integer('save_interval_secs', 100, 'How often to save checkpoints, secs') FLAGS = flags.FLAGS _LEARNING_RATE_DECAY_FACTOR = 0.94 def get_learning_rate(): if FLAGS.fine_tune_checkpoint: # If we are fine tuning a checkpoint we need to start at a lower learning # rate since we are farther along on training. return 1e-4 else: return 0.045 def get_quant_delay(): if FLAGS.fine_tune_checkpoint: # We can start quantizing immediately if we are finetuning. return 0 else: # We need to wait for the model to train a bit before we quantize if we are # training from scratch. return 250000 def imagenet_input(is_training): """Data reader for imagenet. Reads in imagenet data and performs pre-processing on the images. Args: is_training: bool specifying if train or validation dataset is needed. Returns: A batch of images and labels. """ if is_training: dataset = dataset_factory.get_dataset('imagenet', 'train', FLAGS.dataset_dir) else: dataset = dataset_factory.get_dataset('imagenet', 'validation', FLAGS.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=is_training, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) image_preprocessing_fn = preprocessing_factory.get_preprocessing( 'mobilenet_v1', is_training=is_training) image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size) images, labels = tf.train.batch([image, label], batch_size=FLAGS.batch_size, num_threads=4, capacity=5 * FLAGS.batch_size) labels = slim.one_hot_encoding(labels, FLAGS.num_classes) return images, labels def build_model(): """Builds graph for model to train with rewrites for quantization. Returns: g: Graph with fake quantization ops and batch norm folding suitable for training quantized weights. train_tensor: Train op for execution during training. """ g = tf.Graph() with g.as_default(), tf.device( tf.train.replica_device_setter(FLAGS.ps_tasks)): inputs, labels = imagenet_input(is_training=True) with slim.arg_scope(mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)): logits, _ = mobilenet_v1.mobilenet_v1( inputs, is_training=True, depth_multiplier=FLAGS.depth_multiplier, num_classes=FLAGS.num_classes) tf.losses.softmax_cross_entropy(labels, logits) # Call rewriter to produce graph with fake quant ops and folded batch norms # quant_delay delays start of quantization till quant_delay steps, allowing # for better model accuracy. if FLAGS.quantize: contrib_quantize.create_training_graph(quant_delay=get_quant_delay()) total_loss = tf.losses.get_total_loss(name='total_loss') # Configure the learning rate using an exponential decay. num_epochs_per_decay = 2.5 imagenet_size = 1271167 decay_steps = int(imagenet_size / FLAGS.batch_size * num_epochs_per_decay) learning_rate = tf.train.exponential_decay( get_learning_rate(), tf.train.get_or_create_global_step(), decay_steps, _LEARNING_RATE_DECAY_FACTOR, staircase=True) opt = tf.train.GradientDescentOptimizer(learning_rate) train_tensor = slim.learning.create_train_op( total_loss, optimizer=opt) slim.summaries.add_scalar_summary(total_loss, 'total_loss', 'losses') slim.summaries.add_scalar_summary(learning_rate, 'learning_rate', 'training') return g, train_tensor def get_checkpoint_init_fn(): """Returns the checkpoint init_fn if the checkpoint is provided.""" if FLAGS.fine_tune_checkpoint: variables_to_restore = slim.get_variables_to_restore() global_step_reset = tf.assign( tf.train.get_or_create_global_step(), 0) # When restoring from a floating point model, the min/max values for # quantized weights and activations are not present. # We instruct slim to ignore variables that are missing during restoration # by setting ignore_missing_vars=True slim_init_fn = slim.assign_from_checkpoint_fn( FLAGS.fine_tune_checkpoint, variables_to_restore, ignore_missing_vars=True) def init_fn(sess): slim_init_fn(sess) # If we are restoring from a floating point model, we need to initialize # the global step to zero for the exponential decay to result in # reasonable learning rates. sess.run(global_step_reset) return init_fn else: return None def train_model(): """Trains mobilenet_v1.""" g, train_tensor = build_model() with g.as_default(): slim.learning.train( train_tensor, FLAGS.checkpoint_dir, is_chief=(FLAGS.task == 0), master=FLAGS.master, log_every_n_steps=FLAGS.log_every_n_steps, graph=g, number_of_steps=FLAGS.number_of_steps, save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs, init_fn=get_checkpoint_init_fn(), global_step=tf.train.get_global_step()) def main(unused_arg): train_model() if __name__ == '__main__': tf.app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/mobilenet_v1_train.py
mobilenet_v1_train.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): """Builds the 35x35 resnet block.""" with tf.variable_scope(scope, 'Block35', [net], reuse=reuse): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3') mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2]) up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, activation_fn=None, scope='Conv2d_1x1') scaled_up = up * scale if activation_fn == tf.nn.relu6: # Use clip_by_value to simulate bandpass activation. scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0) net += scaled_up if activation_fn: net = activation_fn(net) return net def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): """Builds the 17x17 resnet block.""" with tf.variable_scope(scope, 'Block17', [net], reuse=reuse): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7], scope='Conv2d_0b_1x7') tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1], scope='Conv2d_0c_7x1') mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2]) up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, activation_fn=None, scope='Conv2d_1x1') scaled_up = up * scale if activation_fn == tf.nn.relu6: # Use clip_by_value to simulate bandpass activation. scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0) net += scaled_up if activation_fn: net = activation_fn(net) return net def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): """Builds the 8x8 resnet block.""" with tf.variable_scope(scope, 'Block8', [net], reuse=reuse): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3], scope='Conv2d_0b_1x3') tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1], scope='Conv2d_0c_3x1') mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2]) up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, activation_fn=None, scope='Conv2d_1x1') scaled_up = up * scale if activation_fn == tf.nn.relu6: # Use clip_by_value to simulate bandpass activation. scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0) net += scaled_up if activation_fn: net = activation_fn(net) return net def inception_resnet_v2_base(inputs, final_endpoint='Conv2d_7b_1x1', output_stride=16, align_feature_maps=False, scope=None, activation_fn=tf.nn.relu): """Inception model from http://arxiv.org/abs/1602.07261. Constructs an Inception Resnet v2 network from inputs to the given final endpoint. This method can construct the network up to the final inception block Conv2d_7b_1x1. Args: inputs: a tensor of size [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a', 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1'] output_stride: A scalar that specifies the requested ratio of input to output spatial resolution. Only supports 8 and 16. align_feature_maps: When true, changes all the VALID paddings in the network to SAME padding so that the feature maps are aligned. scope: Optional variable_scope. activation_fn: Activation function for block scopes. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or if the output_stride is not 8 or 16, or if the output_stride is 8 and we request an end point after 'PreAuxLogits'. """ if output_stride != 8 and output_stride != 16: raise ValueError('output_stride must be 8 or 16.') padding = 'SAME' if align_feature_maps else 'VALID' end_points = {} def add_and_check_final(name, net): end_points[name] = net return name == final_endpoint with tf.variable_scope(scope, 'InceptionResnetV2', [inputs]): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # 149 x 149 x 32 net = slim.conv2d(inputs, 32, 3, stride=2, padding=padding, scope='Conv2d_1a_3x3') if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points # 147 x 147 x 32 net = slim.conv2d(net, 32, 3, padding=padding, scope='Conv2d_2a_3x3') if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points # 147 x 147 x 64 net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3') if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points # 73 x 73 x 64 net = slim.max_pool2d(net, 3, stride=2, padding=padding, scope='MaxPool_3a_3x3') if add_and_check_final('MaxPool_3a_3x3', net): return net, end_points # 73 x 73 x 80 net = slim.conv2d(net, 80, 1, padding=padding, scope='Conv2d_3b_1x1') if add_and_check_final('Conv2d_3b_1x1', net): return net, end_points # 71 x 71 x 192 net = slim.conv2d(net, 192, 3, padding=padding, scope='Conv2d_4a_3x3') if add_and_check_final('Conv2d_4a_3x3', net): return net, end_points # 35 x 35 x 192 net = slim.max_pool2d(net, 3, stride=2, padding=padding, scope='MaxPool_5a_3x3') if add_and_check_final('MaxPool_5a_3x3', net): return net, end_points # 35 x 35 x 320 with tf.variable_scope('Mixed_5b'): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5, scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3, scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME', scope='AvgPool_0a_3x3') tower_pool_1 = slim.conv2d(tower_pool, 64, 1, scope='Conv2d_0b_1x1') net = tf.concat( [tower_conv, tower_conv1_1, tower_conv2_2, tower_pool_1], 3) if add_and_check_final('Mixed_5b', net): return net, end_points # TODO(alemi): Register intermediate endpoints net = slim.repeat(net, 10, block35, scale=0.17, activation_fn=activation_fn) # 17 x 17 x 1088 if output_stride == 8, # 33 x 33 x 1088 if output_stride == 16 use_atrous = output_stride == 8 with tf.variable_scope('Mixed_6a'): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 384, 3, stride=1 if use_atrous else 2, padding=padding, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3, scope='Conv2d_0b_3x3') tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3, stride=1 if use_atrous else 2, padding=padding, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): tower_pool = slim.max_pool2d(net, 3, stride=1 if use_atrous else 2, padding=padding, scope='MaxPool_1a_3x3') net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3) if add_and_check_final('Mixed_6a', net): return net, end_points # TODO(alemi): register intermediate endpoints with slim.arg_scope([slim.conv2d], rate=2 if use_atrous else 1): net = slim.repeat(net, 20, block17, scale=0.10, activation_fn=activation_fn) if add_and_check_final('PreAuxLogits', net): return net, end_points if output_stride == 8: # TODO(gpapan): Properly support output_stride for the rest of the net. raise ValueError('output_stride==8 is only supported up to the ' 'PreAuxlogits end_point for now.') # 8 x 8 x 2080 with tf.variable_scope('Mixed_7a'): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2, padding=padding, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2, padding=padding, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2, padding=padding, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_3'): tower_pool = slim.max_pool2d(net, 3, stride=2, padding=padding, scope='MaxPool_1a_3x3') net = tf.concat( [tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3) if add_and_check_final('Mixed_7a', net): return net, end_points # TODO(alemi): register intermediate endpoints net = slim.repeat(net, 9, block8, scale=0.20, activation_fn=activation_fn) net = block8(net, activation_fn=None) # 8 x 8 x 1536 net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1') if add_and_check_final('Conv2d_7b_1x1', net): return net, end_points raise ValueError('final_endpoint (%s) not recognized', final_endpoint) def inception_resnet_v2(inputs, num_classes=1001, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionResnetV2', create_aux_logits=True, activation_fn=tf.nn.relu): """Creates the Inception Resnet V2 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. Dimension batch_size may be undefined. If create_aux_logits is false, also height and width may be undefined. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. create_aux_logits: Whether to include the auxilliary logits. activation_fn: Activation function for conv2d. Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: the set of end_points from the inception model. """ end_points = {} with tf.variable_scope( scope, 'InceptionResnetV2', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_resnet_v2_base(inputs, scope=scope, activation_fn=activation_fn) if create_aux_logits and num_classes: with tf.variable_scope('AuxLogits'): aux = end_points['PreAuxLogits'] aux = slim.avg_pool2d(aux, 5, stride=3, padding='VALID', scope='Conv2d_1a_3x3') aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1') aux = slim.conv2d(aux, 768, aux.get_shape()[1:3], padding='VALID', scope='Conv2d_2a_5x5') aux = slim.flatten(aux) aux = slim.fully_connected(aux, num_classes, activation_fn=None, scope='Logits') end_points['AuxLogits'] = aux with tf.variable_scope('Logits'): # TODO(sguada,arnoegw): Consider adding a parameter global_pool which # can be set to False to disable pooling here (as in resnet_*()). kernel_size = net.get_shape()[1:3] if kernel_size.is_fully_defined(): net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a_8x8') else: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if not num_classes: return net, end_points net = slim.flatten(net) net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='Dropout') end_points['PreLogitsFlatten'] = net logits = slim.fully_connected(net, num_classes, activation_fn=None, scope='Logits') end_points['Logits'] = logits end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions') return logits, end_points inception_resnet_v2.default_image_size = 299 def inception_resnet_v2_arg_scope( weight_decay=0.00004, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, activation_fn=tf.nn.relu, batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS, batch_norm_scale=False): """Returns the scope with the default parameters for inception_resnet_v2. Args: weight_decay: the weight decay for weights variables. batch_norm_decay: decay for the moving average of batch_norm momentums. batch_norm_epsilon: small float added to variance to avoid dividing by zero. activation_fn: Activation function for conv2d. batch_norm_updates_collections: Collection for the update ops for batch norm. batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the activations in the batch normalization layer. Returns: a arg_scope with the parameters needed for inception_resnet_v2. """ # Set weight_decay for weights in conv2d and fully_connected layers. with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay), biases_regularizer=slim.l2_regularizer(weight_decay)): batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'updates_collections': batch_norm_updates_collections, 'fused': None, # Use fused batch norm if possible. 'scale': batch_norm_scale, } # Set activation_fn and parameters for batch_norm. with slim.arg_scope([slim.conv2d], activation_fn=activation_fn, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params) as scope: return scope
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/inception_resnet_v2.py
inception_resnet_v2.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import i3d_utils # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( 0.0, stddev) conv3d_spatiotemporal = i3d_utils.conv3d_spatiotemporal inception_block_v1_3d = i3d_utils.inception_block_v1_3d arg_scope = slim.arg_scope def s3dg_arg_scope(weight_decay=1e-7, batch_norm_decay=0.999, batch_norm_epsilon=0.001): """Defines default arg_scope for S3D-G. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: sc: An arg_scope to use for the models. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, # Turns off fused batch norm. 'fused': False, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': ['moving_vars'], 'moving_variance': ['moving_vars'], } } with arg_scope([slim.conv3d, conv3d_spatiotemporal], weights_regularizer=slim.l2_regularizer(weight_decay), activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with arg_scope([conv3d_spatiotemporal], separable=True) as sc: return sc def self_gating(input_tensor, scope, data_format='NDHWC'): """Feature gating as used in S3D-G. Transforms the input features by aggregating features from all spatial and temporal locations, and applying gating conditioned on the aggregated features. More details can be found at: https://arxiv.org/abs/1712.04851 Args: input_tensor: A 5-D float tensor of size [batch_size, num_frames, height, width, channels]. scope: scope for `variable_scope`. data_format: An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. Returns: A tensor with the same shape as input_tensor. """ index_c = data_format.index('C') index_d = data_format.index('D') index_h = data_format.index('H') index_w = data_format.index('W') input_shape = input_tensor.get_shape().as_list() t = input_shape[index_d] w = input_shape[index_w] h = input_shape[index_h] num_channels = input_shape[index_c] spatiotemporal_average = slim.avg_pool3d( input_tensor, [t, w, h], stride=1, data_format=data_format, scope=scope + '/self_gating/avg_pool3d') weights = slim.conv3d( spatiotemporal_average, num_channels, [1, 1, 1], activation_fn=None, normalizer_fn=None, biases_initializer=None, data_format=data_format, weights_initializer=trunc_normal(0.01), scope=scope + '/self_gating/transformer_W') tile_multiples = [1, t, w, h] tile_multiples.insert(index_c, 1) weights = tf.tile(weights, tile_multiples) weights = tf.nn.sigmoid(weights) return tf.multiply(weights, input_tensor) def s3dg_base(inputs, first_temporal_kernel_size=3, temporal_conv_startat='Conv2d_2c_3x3', gating_startat='Conv2d_2c_3x3', final_endpoint='Mixed_5c', min_depth=16, depth_multiplier=1.0, data_format='NDHWC', scope='InceptionV1'): """Defines the I3D/S3DG base architecture. Note that we use the names as defined in Inception V1 to facilitate checkpoint conversion from an image-trained Inception V1 checkpoint to I3D checkpoint. Args: inputs: A 5-D float tensor of size [batch_size, num_frames, height, width, channels]. first_temporal_kernel_size: Specifies the temporal kernel size for the first conv3d filter. A larger value slows down the model but provides little accuracy improvement. The default is 7 in the original I3D and S3D-G but 3 gives better performance. Must be set to one of 1, 3, 5 or 7. temporal_conv_startat: Specifies the first conv block to use 3D or separable 3D convs rather than 2D convs (implemented as [1, k, k] 3D conv). This is used to construct the inverted pyramid models. 'Conv2d_2c_3x3' is the first valid block to use separable 3D convs. If provided block name is not present, all valid blocks will use separable 3D convs. Note that 'Conv2d_1a_7x7' cannot be made into a separable 3D conv, but can be made into a 2D or 3D conv using the `first_temporal_kernel_size` option. gating_startat: Specifies the first conv block to use self gating. 'Conv2d_2c_3x3' is the first valid block to use self gating. If provided block name is not present, all valid blocks will use separable 3D convs. final_endpoint: Specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c'] min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. data_format: An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. scope: Optional variable_scope. Returns: A dictionary from components of the network to the corresponding activation. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or if depth_multiplier <= 0. """ assert data_format in ['NDHWC', 'NCDHW'] end_points = {} t = 1 # For inverted pyramid models, we start with gating switched off. use_gating = False self_gating_fn = None def gating_fn(inputs, scope): return self_gating(inputs, scope, data_format=data_format) if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with tf.variable_scope(scope, 'InceptionV1', [inputs]): with arg_scope([slim.conv3d], weights_initializer=trunc_normal(0.01)): with arg_scope([slim.conv3d, slim.max_pool3d, conv3d_spatiotemporal], stride=1, data_format=data_format, padding='SAME'): # batch_size x 32 x 112 x 112 x 64 end_point = 'Conv2d_1a_7x7' if first_temporal_kernel_size not in [1, 3, 5, 7]: raise ValueError( 'first_temporal_kernel_size can only be 1, 3, 5 or 7.') # Separable conv is slow when used at first conv layer. net = conv3d_spatiotemporal( inputs, depth(64), [first_temporal_kernel_size, 7, 7], stride=2, separable=False, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 32 x 56 x 56 x 64 end_point = 'MaxPool_2a_3x3' net = slim.max_pool3d(net, [1, 3, 3], stride=[1, 2, 2], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 32 x 56 x 56 x 64 end_point = 'Conv2d_2b_1x1' net = slim.conv3d(net, depth(64), [1, 1, 1], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 32 x 56 x 56 x 192 end_point = 'Conv2d_2c_3x3' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = conv3d_spatiotemporal(net, depth(192), [t, 3, 3], scope=end_point) if use_gating: net = self_gating(net, scope=end_point, data_format=data_format) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 32 x 28 x 28 x 192 end_point = 'MaxPool_3a_3x3' net = slim.max_pool3d(net, [1, 3, 3], stride=[1, 2, 2], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 32 x 28 x 28 x 256 end_point = 'Mixed_3b' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(64), num_outputs_1_0a=depth(96), num_outputs_1_0b=depth(128), num_outputs_2_0a=depth(16), num_outputs_2_0b=depth(32), num_outputs_3_0b=depth(32), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_3c' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(128), num_outputs_1_0a=depth(128), num_outputs_1_0b=depth(192), num_outputs_2_0a=depth(32), num_outputs_2_0b=depth(96), num_outputs_3_0b=depth(64), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_4a_3x3' net = slim.max_pool3d(net, [3, 3, 3], stride=[2, 2, 2], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 16 x 14 x 14 x 512 end_point = 'Mixed_4b' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(192), num_outputs_1_0a=depth(96), num_outputs_1_0b=depth(208), num_outputs_2_0a=depth(16), num_outputs_2_0b=depth(48), num_outputs_3_0b=depth(64), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 16 x 14 x 14 x 512 end_point = 'Mixed_4c' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(160), num_outputs_1_0a=depth(112), num_outputs_1_0b=depth(224), num_outputs_2_0a=depth(24), num_outputs_2_0b=depth(64), num_outputs_3_0b=depth(64), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 16 x 14 x 14 x 512 end_point = 'Mixed_4d' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(128), num_outputs_1_0a=depth(128), num_outputs_1_0b=depth(256), num_outputs_2_0a=depth(24), num_outputs_2_0b=depth(64), num_outputs_3_0b=depth(64), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 16 x 14 x 14 x 528 end_point = 'Mixed_4e' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(112), num_outputs_1_0a=depth(144), num_outputs_1_0b=depth(288), num_outputs_2_0a=depth(32), num_outputs_2_0b=depth(64), num_outputs_3_0b=depth(64), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 16 x 14 x 14 x 832 end_point = 'Mixed_4f' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(256), num_outputs_1_0a=depth(160), num_outputs_1_0b=depth(320), num_outputs_2_0a=depth(32), num_outputs_2_0b=depth(128), num_outputs_3_0b=depth(128), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_5a_2x2' net = slim.max_pool3d(net, [2, 2, 2], stride=[2, 2, 2], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 8 x 7 x 7 x 832 end_point = 'Mixed_5b' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(256), num_outputs_1_0a=depth(160), num_outputs_1_0b=depth(320), num_outputs_2_0a=depth(32), num_outputs_2_0b=depth(128), num_outputs_3_0b=depth(128), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points # batch_size x 8 x 7 x 7 x 1024 end_point = 'Mixed_5c' if temporal_conv_startat == end_point: t = 3 if gating_startat == end_point: use_gating = True self_gating_fn = gating_fn net = inception_block_v1_3d( net, num_outputs_0_0a=depth(384), num_outputs_1_0a=depth(192), num_outputs_1_0b=depth(384), num_outputs_2_0a=depth(48), num_outputs_2_0b=depth(128), num_outputs_3_0b=depth(128), temporal_kernel_size=t, self_gating_fn=self_gating_fn, data_format=data_format, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def s3dg(inputs, num_classes=1000, first_temporal_kernel_size=3, temporal_conv_startat='Conv2d_2c_3x3', gating_startat='Conv2d_2c_3x3', final_endpoint='Mixed_5c', min_depth=16, depth_multiplier=1.0, dropout_keep_prob=0.8, is_training=True, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, data_format='NDHWC', scope='InceptionV1'): """Defines the S3D-G architecture. The default image size used to train this network is 224x224. Args: inputs: A 5-D float tensor of size [batch_size, num_frames, height, width, channels]. num_classes: number of predicted classes. first_temporal_kernel_size: Specifies the temporal kernel size for the first conv3d filter. A larger value slows down the model but provides little accuracy improvement. Must be set to one of 1, 3, 5 or 7. temporal_conv_startat: Specifies the first conv block to use separable 3D convs rather than 2D convs (implemented as [1, k, k] 3D conv). This is used to construct the inverted pyramid models. 'Conv2d_2c_3x3' is the first valid block to use separable 3D convs. If provided block name is not present, all valid blocks will use separable 3D convs. gating_startat: Specifies the first conv block to use self gating. 'Conv2d_2c_3x3' is the first valid block to use self gating. If provided block name is not present, all valid blocks will use separable 3D convs. final_endpoint: Specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c'] min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. dropout_keep_prob: the percentage of activation values that are retained. is_training: whether is training or not. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. data_format: An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. scope: Optional variable_scope. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation. """ assert data_format in ['NDHWC', 'NCDHW'] # Final pooling and prediction with tf.variable_scope( scope, 'InceptionV1', [inputs, num_classes], reuse=reuse) as scope: with arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = s3dg_base( inputs, first_temporal_kernel_size=first_temporal_kernel_size, temporal_conv_startat=temporal_conv_startat, gating_startat=gating_startat, final_endpoint=final_endpoint, min_depth=min_depth, depth_multiplier=depth_multiplier, data_format=data_format, scope=scope) with tf.variable_scope('Logits'): if data_format.startswith('NC'): net = tf.transpose(a=net, perm=[0, 2, 3, 4, 1]) kernel_size = i3d_utils.reduced_kernel_size_3d(net, [2, 7, 7]) net = slim.avg_pool3d( net, kernel_size, stride=1, data_format='NDHWC', scope='AvgPool_0a_7x7') net = slim.dropout(net, dropout_keep_prob, scope='Dropout_0b') logits = slim.conv3d( net, num_classes, [1, 1, 1], activation_fn=None, normalizer_fn=None, data_format='NDHWC', scope='Conv2d_0c_1x1') # Temporal average pooling. logits = tf.reduce_mean(input_tensor=logits, axis=1) if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points s3dg.default_image_size = 224
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/s3dg.py
s3dg.py
"""Utilities for building I3D network models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf import tf_slim as slim add_arg_scope = slim.add_arg_scope layers = slim.layers def center_initializer(): """Centering Initializer for I3D. This initializer allows identity mapping for temporal convolution at the initialization, which is critical for a desired convergence behavior for training a seprable I3D model. The centering behavior of this initializer requires an odd-sized kernel, typically set to 3. Returns: A weight initializer op used in temporal convolutional layers. Raises: ValueError: Input tensor data type has to be tf.float32. ValueError: If input tensor is not a 5-D tensor. ValueError: If input and output channel dimensions are different. ValueError: If spatial kernel sizes are not 1. ValueError: If temporal kernel size is even. """ def _initializer(shape, dtype=tf.float32, partition_info=None): # pylint: disable=unused-argument """Initializer op.""" if dtype != tf.float32 and dtype != tf.bfloat16: raise ValueError( 'Input tensor data type has to be tf.float32 or tf.bfloat16.') if len(shape) != 5: raise ValueError('Input tensor has to be 5-D.') if shape[3] != shape[4]: raise ValueError('Input and output channel dimensions must be the same.') if shape[1] != 1 or shape[2] != 1: raise ValueError('Spatial kernel sizes must be 1 (pointwise conv).') if shape[0] % 2 == 0: raise ValueError('Temporal kernel size has to be odd.') center_pos = int(shape[0] / 2) init_mat = np.zeros( [shape[0], shape[1], shape[2], shape[3], shape[4]], dtype=np.float32) for i in range(0, shape[3]): init_mat[center_pos, 0, 0, i, i] = 1.0 init_op = tf.constant(init_mat, dtype=dtype) return init_op return _initializer @add_arg_scope def conv3d_spatiotemporal(inputs, num_outputs, kernel_size, stride=1, padding='SAME', activation_fn=None, normalizer_fn=None, normalizer_params=None, weights_regularizer=None, separable=False, data_format='NDHWC', scope=''): """A wrapper for conv3d to model spatiotemporal representations. This allows switching between original 3D convolution and separable 3D convolutions for spatial and temporal features respectively. On Kinetics, seprable 3D convolutions yields better classification performance. Args: inputs: a 5-D tensor `[batch_size, depth, height, width, channels]`. num_outputs: integer, the number of output filters. kernel_size: a list of length 3 `[kernel_depth, kernel_height, kernel_width]` of the filters. Can be an int if all values are the same. stride: a list of length 3 `[stride_depth, stride_height, stride_width]`. Can be an int if all strides are the same. padding: one of `VALID` or `SAME`. activation_fn: activation function. normalizer_fn: normalization function to use instead of `biases`. normalizer_params: dictionary of normalization function parameters. weights_regularizer: Optional regularizer for the weights. separable: If `True`, use separable spatiotemporal convolutions. data_format: An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. scope: scope for `variable_scope`. Returns: A tensor representing the output of the (separable) conv3d operation. """ assert len(kernel_size) == 3 if separable and kernel_size[0] != 1: spatial_kernel_size = [1, kernel_size[1], kernel_size[2]] temporal_kernel_size = [kernel_size[0], 1, 1] if isinstance(stride, list) and len(stride) == 3: spatial_stride = [1, stride[1], stride[2]] temporal_stride = [stride[0], 1, 1] else: spatial_stride = [1, stride, stride] temporal_stride = [stride, 1, 1] net = layers.conv3d( inputs, num_outputs, spatial_kernel_size, stride=spatial_stride, padding=padding, activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, weights_regularizer=weights_regularizer, data_format=data_format, scope=scope) net = layers.conv3d( net, num_outputs, temporal_kernel_size, stride=temporal_stride, padding=padding, scope=scope + '/temporal', activation_fn=activation_fn, normalizer_fn=None, data_format=data_format, weights_initializer=center_initializer()) return net else: return layers.conv3d( inputs, num_outputs, kernel_size, stride=stride, padding=padding, activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, weights_regularizer=weights_regularizer, data_format=data_format, scope=scope) @add_arg_scope def inception_block_v1_3d(inputs, num_outputs_0_0a, num_outputs_1_0a, num_outputs_1_0b, num_outputs_2_0a, num_outputs_2_0b, num_outputs_3_0b, temporal_kernel_size=3, self_gating_fn=None, data_format='NDHWC', scope=''): """A 3D Inception v1 block. This allows use of separable 3D convolutions and self-gating, as described in: Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu and Kevin Murphy, Rethinking Spatiotemporal Feature Learning For Video Understanding. https://arxiv.org/abs/1712.04851. Args: inputs: a 5-D tensor `[batch_size, depth, height, width, channels]`. num_outputs_0_0a: integer, the number of output filters for Branch 0, operation Conv2d_0a_1x1. num_outputs_1_0a: integer, the number of output filters for Branch 1, operation Conv2d_0a_1x1. num_outputs_1_0b: integer, the number of output filters for Branch 1, operation Conv2d_0b_3x3. num_outputs_2_0a: integer, the number of output filters for Branch 2, operation Conv2d_0a_1x1. num_outputs_2_0b: integer, the number of output filters for Branch 2, operation Conv2d_0b_3x3. num_outputs_3_0b: integer, the number of output filters for Branch 3, operation Conv2d_0b_1x1. temporal_kernel_size: integer, the size of the temporal convolutional filters in the conv3d_spatiotemporal blocks. self_gating_fn: function which optionally performs self-gating. Must have two arguments, `inputs` and `scope`, and return one output tensor the same size as `inputs`. If `None`, no self-gating is applied. data_format: An optional string from: "NDHWC", "NCDHW". Defaults to "NDHWC". The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. scope: scope for `variable_scope`. Returns: A 5-D tensor `[batch_size, depth, height, width, out_channels]`, where `out_channels = num_outputs_0_0a + num_outputs_1_0b + num_outputs_2_0b + num_outputs_3_0b`. """ use_gating = self_gating_fn is not None with tf.variable_scope(scope): with tf.variable_scope('Branch_0'): branch_0 = layers.conv3d( inputs, num_outputs_0_0a, [1, 1, 1], scope='Conv2d_0a_1x1') if use_gating: branch_0 = self_gating_fn(branch_0, scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = layers.conv3d( inputs, num_outputs_1_0a, [1, 1, 1], scope='Conv2d_0a_1x1') branch_1 = conv3d_spatiotemporal( branch_1, num_outputs_1_0b, [temporal_kernel_size, 3, 3], scope='Conv2d_0b_3x3') if use_gating: branch_1 = self_gating_fn(branch_1, scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = layers.conv3d( inputs, num_outputs_2_0a, [1, 1, 1], scope='Conv2d_0a_1x1') branch_2 = conv3d_spatiotemporal( branch_2, num_outputs_2_0b, [temporal_kernel_size, 3, 3], scope='Conv2d_0b_3x3') if use_gating: branch_2 = self_gating_fn(branch_2, scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = layers.max_pool3d(inputs, [3, 3, 3], scope='MaxPool_0a_3x3') branch_3 = layers.conv3d( branch_3, num_outputs_3_0b, [1, 1, 1], scope='Conv2d_0b_1x1') if use_gating: branch_3 = self_gating_fn(branch_3, scope='Conv2d_0b_1x1') index_c = data_format.index('C') assert 1 <= index_c <= 4, 'Cannot identify channel dimension.' output = tf.concat([branch_0, branch_1, branch_2, branch_3], index_c) return output def reduced_kernel_size_3d(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are large enough. Args: input_tensor: input tensor of size [batch_size, time, height, width, channels]. kernel_size: desired kernel size of length 3, corresponding to time, height and width. Returns: a tensor with the kernel size. """ assert len(kernel_size) == 3 shape = input_tensor.get_shape().as_list() assert len(shape) == 5 if None in shape[1:4]: kernel_size_out = kernel_size else: kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1]), min(shape[3], kernel_size[2])] return kernel_size_out
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/i3d_utils.py
i3d_utils.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import tensorflow.compat.v1 as tf import tf_slim as slim def pix2pix_arg_scope(): """Returns a default argument scope for isola_net. Returns: An arg scope. """ # These parameters come from the online port, which don't necessarily match # those in the paper. # TODO(nsilberman): confirm these values with Philip. instance_norm_params = { 'center': True, 'scale': True, 'epsilon': 0.00001, } with slim.arg_scope( [slim.conv2d, slim.conv2d_transpose], normalizer_fn=slim.instance_norm, normalizer_params=instance_norm_params, weights_initializer=tf.random_normal_initializer(0, 0.02)) as sc: return sc def upsample(net, num_outputs, kernel_size, method='nn_upsample_conv'): """Upsamples the given inputs. Args: net: A `Tensor` of size [batch_size, height, width, filters]. num_outputs: The number of output filters. kernel_size: A list of 2 scalars or a 1x2 `Tensor` indicating the scale, relative to the inputs, of the output dimensions. For example, if kernel size is [2, 3], then the output height and width will be twice and three times the input size. method: The upsampling method. Returns: An `Tensor` which was upsampled using the specified method. Raises: ValueError: if `method` is not recognized. """ net_shape = tf.shape(input=net) height = net_shape[1] width = net_shape[2] if method == 'nn_upsample_conv': net = tf.image.resize( net, [kernel_size[0] * height, kernel_size[1] * width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) net = slim.conv2d(net, num_outputs, [4, 4], activation_fn=None) elif method == 'conv2d_transpose': net = slim.conv2d_transpose( net, num_outputs, [4, 4], stride=kernel_size, activation_fn=None) else: raise ValueError('Unknown method: [%s]' % method) return net class Block( collections.namedtuple('Block', ['num_filters', 'decoder_keep_prob'])): """Represents a single block of encoder and decoder processing. The Image-to-Image translation paper works a bit differently than the original U-Net model. In particular, each block represents a single operation in the encoder which is concatenated with the corresponding decoder representation. A dropout layer follows the concatenation and convolution of the concatenated features. """ pass def _default_generator_blocks(): """Returns the default generator block definitions. Returns: A list of generator blocks. """ return [ Block(64, 0.5), Block(128, 0.5), Block(256, 0.5), Block(512, 0), Block(512, 0), Block(512, 0), Block(512, 0), ] def pix2pix_generator(net, num_outputs, blocks=None, upsample_method='nn_upsample_conv', is_training=False): # pylint: disable=unused-argument """Defines the network architecture. Args: net: A `Tensor` of size [batch, height, width, channels]. Note that the generator currently requires square inputs (e.g. height=width). num_outputs: The number of (per-pixel) outputs. blocks: A list of generator blocks or `None` to use the default generator definition. upsample_method: The method of upsampling images, one of 'nn_upsample_conv' or 'conv2d_transpose' is_training: Whether or not we're in training or testing mode. Returns: A `Tensor` representing the model output and a dictionary of model end points. Raises: ValueError: if the input heights do not match their widths. """ end_points = {} blocks = blocks or _default_generator_blocks() input_size = net.get_shape().as_list() input_size[3] = num_outputs upsample_fn = functools.partial(upsample, method=upsample_method) encoder_activations = [] ########### # Encoder # ########### with tf.variable_scope('encoder'): with slim.arg_scope([slim.conv2d], kernel_size=[4, 4], stride=2, activation_fn=tf.nn.leaky_relu): for block_id, block in enumerate(blocks): # No normalizer for the first encoder layers as per 'Image-to-Image', # Section 5.1.1 if block_id == 0: # First layer doesn't use normalizer_fn net = slim.conv2d(net, block.num_filters, normalizer_fn=None) elif block_id < len(blocks) - 1: net = slim.conv2d(net, block.num_filters) else: # Last layer doesn't use activation_fn nor normalizer_fn net = slim.conv2d( net, block.num_filters, activation_fn=None, normalizer_fn=None) encoder_activations.append(net) end_points['encoder%d' % block_id] = net ########### # Decoder # ########### reversed_blocks = list(blocks) reversed_blocks.reverse() with tf.variable_scope('decoder'): # Dropout is used at both train and test time as per 'Image-to-Image', # Section 2.1 (last paragraph). with slim.arg_scope([slim.dropout], is_training=True): for block_id, block in enumerate(reversed_blocks): if block_id > 0: net = tf.concat([net, encoder_activations[-block_id - 1]], axis=3) # The Relu comes BEFORE the upsample op: net = tf.nn.relu(net) net = upsample_fn(net, block.num_filters, [2, 2]) if block.decoder_keep_prob > 0: net = slim.dropout(net, keep_prob=block.decoder_keep_prob) end_points['decoder%d' % block_id] = net with tf.variable_scope('output'): # Explicitly set the normalizer_fn to None to override any default value # that may come from an arg_scope, such as pix2pix_arg_scope. logits = slim.conv2d( net, num_outputs, [4, 4], activation_fn=None, normalizer_fn=None) logits = tf.reshape(logits, input_size) end_points['logits'] = logits end_points['predictions'] = tf.tanh(logits) return logits, end_points def pix2pix_discriminator(net, num_filters, padding=2, pad_mode='REFLECT', activation_fn=tf.nn.leaky_relu, is_training=False): """Creates the Image2Image Translation Discriminator. Args: net: A `Tensor` of size [batch_size, height, width, channels] representing the input. num_filters: A list of the filters in the discriminator. The length of the list determines the number of layers in the discriminator. padding: Amount of reflection padding applied before each convolution. pad_mode: mode for tf.pad, one of "CONSTANT", "REFLECT", or "SYMMETRIC". activation_fn: activation fn for slim.conv2d. is_training: Whether or not the model is training or testing. Returns: A logits `Tensor` of size [batch_size, N, N, 1] where N is the number of 'patches' we're attempting to discriminate and a dictionary of model end points. """ del is_training end_points = {} num_layers = len(num_filters) def padded(net, scope): if padding: with tf.variable_scope(scope): spatial_pad = tf.constant( [[0, 0], [padding, padding], [padding, padding], [0, 0]], dtype=tf.int32) return tf.pad(tensor=net, paddings=spatial_pad, mode=pad_mode) else: return net with slim.arg_scope([slim.conv2d], kernel_size=[4, 4], stride=2, padding='valid', activation_fn=activation_fn): # No normalization on the input layer. net = slim.conv2d( padded(net, 'conv0'), num_filters[0], normalizer_fn=None, scope='conv0') end_points['conv0'] = net for i in range(1, num_layers - 1): net = slim.conv2d( padded(net, 'conv%d' % i), num_filters[i], scope='conv%d' % i) end_points['conv%d' % i] = net # Stride 1 on the last layer. net = slim.conv2d( padded(net, 'conv%d' % (num_layers - 1)), num_filters[-1], stride=1, scope='conv%d' % (num_layers - 1)) end_points['conv%d' % (num_layers - 1)] = net # 1-dim logits, stride 1, no activation, no normalization. logits = slim.conv2d( padded(net, 'conv%d' % num_layers), 1, stride=1, activation_fn=None, normalizer_fn=None, scope='conv%d' % num_layers) end_points['logits'] = logits end_points['predictions'] = tf.sigmoid(logits) return logits, end_points
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/pix2pix.py
pix2pix.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow.compat.v1 as tf import tf_slim as slim class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])): """A named tuple describing a ResNet block. Its parts are: scope: The scope of the `Block`. unit_fn: The ResNet unit function which takes as input a `Tensor` and returns another `Tensor` with the output of the ResNet unit. args: A list of length equal to the number of units in the `Block`. The list contains one (depth, depth_bottleneck, stride) tuple for each unit in the block to serve as argument to unit_fn. """ def subsample(inputs, factor, scope=None): """Subsamples the input along the spatial dimensions. Args: inputs: A `Tensor` of size [batch, height_in, width_in, channels]. factor: The subsampling factor. scope: Optional variable_scope. Returns: output: A `Tensor` of size [batch, height_out, width_out, channels] with the input, either intact (if factor == 1) or subsampled (if factor > 1). """ if factor == 1: return inputs else: return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope) def conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None): """Strided 2-D convolution with 'SAME' padding. When stride > 1, then we do explicit zero-padding, followed by conv2d with 'VALID' padding. Note that net = conv2d_same(inputs, num_outputs, 3, stride=stride) is equivalent to net = slim.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME') net = subsample(net, factor=stride) whereas net = slim.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME') is different when the input's height or width is even, which is why we add the current function. For more details, see ResnetUtilsTest.testConv2DSameEven(). Args: inputs: A 4-D tensor of size [batch, height_in, width_in, channels]. num_outputs: An integer, the number of output filters. kernel_size: An int with the kernel_size of the filters. stride: An integer, the output stride. rate: An integer, rate for atrous convolution. scope: Scope. Returns: output: A 4-D tensor of size [batch, height_out, width_out, channels] with the convolution output. """ if stride == 1: return slim.conv2d(inputs, num_outputs, kernel_size, stride=1, rate=rate, padding='SAME', scope=scope) else: kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg inputs = tf.pad( tensor=inputs, paddings=[[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride, rate=rate, padding='VALID', scope=scope) @slim.add_arg_scope def stack_blocks_dense(net, blocks, output_stride=None, store_non_strided_activations=False, outputs_collections=None): """Stacks ResNet `Blocks` and controls output feature density. First, this function creates scopes for the ResNet in the form of 'block_name/unit_1', 'block_name/unit_2', etc. Second, this function allows the user to explicitly control the ResNet output_stride, which is the ratio of the input to output spatial resolution. This is useful for dense prediction tasks such as semantic segmentation or object detection. Most ResNets consist of 4 ResNet blocks and subsample the activations by a factor of 2 when transitioning between consecutive ResNet blocks. This results to a nominal ResNet output_stride equal to 8. If we set the output_stride to half the nominal network stride (e.g., output_stride=4), then we compute responses twice. Control of the output feature density is implemented by atrous convolution. Args: net: A `Tensor` of size [batch, height, width, channels]. blocks: A list of length equal to the number of ResNet `Blocks`. Each element is a ResNet `Block` object describing the units in the `Block`. output_stride: If `None`, then the output will be computed at the nominal network stride. If output_stride is not `None`, it specifies the requested ratio of input to output spatial resolution, which needs to be equal to the product of unit strides from the start up to some level of the ResNet. For example, if the ResNet employs units with strides 1, 2, 1, 3, 4, 1, then valid values for the output_stride are 1, 2, 6, 24 or None (which is equivalent to output_stride=24). store_non_strided_activations: If True, we compute non-strided (undecimated) activations at the last unit of each block and store them in the `outputs_collections` before subsampling them. This gives us access to higher resolution intermediate activations which are useful in some dense prediction problems but increases 4x the computation and memory cost at the last unit of each block. outputs_collections: Collection to add the ResNet block outputs. Returns: net: Output tensor with stride equal to the specified output_stride. Raises: ValueError: If the target output_stride is not valid. """ # The current_stride variable keeps track of the effective stride of the # activations. This allows us to invoke atrous convolution whenever applying # the next residual unit would result in the activations having stride larger # than the target output_stride. current_stride = 1 # The atrous convolution rate parameter. rate = 1 for block in blocks: with tf.variable_scope(block.scope, 'block', [net]) as sc: block_stride = 1 for i, unit in enumerate(block.args): if store_non_strided_activations and i == len(block.args) - 1: # Move stride from the block's last unit to the end of the block. block_stride = unit.get('stride', 1) unit = dict(unit, stride=1) with tf.variable_scope('unit_%d' % (i + 1), values=[net]): # If we have reached the target output_stride, then we need to employ # atrous convolution with stride=1 and multiply the atrous rate by the # current unit's stride for use in subsequent layers. if output_stride is not None and current_stride == output_stride: net = block.unit_fn(net, rate=rate, **dict(unit, stride=1)) rate *= unit.get('stride', 1) else: net = block.unit_fn(net, rate=1, **unit) current_stride *= unit.get('stride', 1) if output_stride is not None and current_stride > output_stride: raise ValueError('The target output_stride cannot be reached.') # Collect activations at the block's end before performing subsampling. net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net) # Subsampling of the block's output activations. if output_stride is not None and current_stride == output_stride: rate *= block_stride else: net = subsample(net, block_stride) current_stride *= block_stride if output_stride is not None and current_stride > output_stride: raise ValueError('The target output_stride cannot be reached.') if output_stride is not None and current_stride != output_stride: raise ValueError('The target output_stride cannot be reached.') return net def resnet_arg_scope( weight_decay=0.0001, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True, activation_fn=tf.nn.relu, use_batch_norm=True, batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS): """Defines the default ResNet arg scope. TODO(gpapan): The batch-normalization related default values above are appropriate for use in conjunction with the reference ResNet models released at https://github.com/KaimingHe/deep-residual-networks. When training ResNets from scratch, they might need to be tuned. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: The moving average decay when estimating layer activation statistics in batch normalization. batch_norm_epsilon: Small constant to prevent division by zero when normalizing activations by their variance in batch normalization. batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the activations in the batch normalization layer. activation_fn: The activation function which is used in ResNet. use_batch_norm: Whether or not to use batch normalization. batch_norm_updates_collections: Collection for the update ops for batch norm. Returns: An `arg_scope` to use for the resnet models. """ batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'updates_collections': batch_norm_updates_collections, 'fused': None, # Use fused batch norm if possible. } with slim.arg_scope( [slim.conv2d], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=slim.variance_scaling_initializer(), activation_fn=activation_fn, normalizer_fn=slim.batch_norm if use_batch_norm else None, normalizer_params=batch_norm_params): with slim.arg_scope([slim.batch_norm], **batch_norm_params): # The following implies padding='SAME' for pool1, which makes feature # alignment easier for dense prediction tasks. This is also used in # https://github.com/facebook/fb.resnet.torch. However the accompanying # code of 'Deep Residual Learning for Image Recognition' uses # padding='VALID' for pool1. You can switch to that choice by setting # slim.arg_scope([slim.max_pool2d], padding='VALID'). with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc: return arg_sc
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/resnet_utils.py
resnet_utils.py
"""Contains a factory for building various models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tf_slim as slim from nets import alexnet from nets import cifarnet from nets import i3d from nets import inception from nets import lenet from nets import mobilenet_v1 from nets import overfeat from nets import resnet_v1 from nets import resnet_v2 from nets import s3dg from nets import vgg from nets.mobilenet import mobilenet_v2 from nets.mobilenet import mobilenet_v3 from nets.nasnet import nasnet from nets.nasnet import pnasnet networks_map = { 'alexnet_v2': alexnet.alexnet_v2, 'cifarnet': cifarnet.cifarnet, 'overfeat': overfeat.overfeat, 'vgg_a': vgg.vgg_a, 'vgg_16': vgg.vgg_16, 'vgg_19': vgg.vgg_19, 'inception_v1': inception.inception_v1, 'inception_v2': inception.inception_v2, 'inception_v3': inception.inception_v3, 'inception_v4': inception.inception_v4, 'inception_resnet_v2': inception.inception_resnet_v2, 'i3d': i3d.i3d, 's3dg': s3dg.s3dg, 'lenet': lenet.lenet, 'resnet_v1_50': resnet_v1.resnet_v1_50, 'resnet_v1_101': resnet_v1.resnet_v1_101, 'resnet_v1_152': resnet_v1.resnet_v1_152, 'resnet_v1_200': resnet_v1.resnet_v1_200, 'resnet_v2_50': resnet_v2.resnet_v2_50, 'resnet_v2_101': resnet_v2.resnet_v2_101, 'resnet_v2_152': resnet_v2.resnet_v2_152, 'resnet_v2_200': resnet_v2.resnet_v2_200, 'mobilenet_v1': mobilenet_v1.mobilenet_v1, 'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_075, 'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_050, 'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_025, 'mobilenet_v2': mobilenet_v2.mobilenet, 'mobilenet_v2_140': mobilenet_v2.mobilenet_v2_140, 'mobilenet_v2_035': mobilenet_v2.mobilenet_v2_035, 'mobilenet_v3_small': mobilenet_v3.small, 'mobilenet_v3_large': mobilenet_v3.large, 'mobilenet_v3_small_minimalistic': mobilenet_v3.small_minimalistic, 'mobilenet_v3_large_minimalistic': mobilenet_v3.large_minimalistic, 'mobilenet_edgetpu': mobilenet_v3.edge_tpu, 'mobilenet_edgetpu_075': mobilenet_v3.edge_tpu_075, 'nasnet_cifar': nasnet.build_nasnet_cifar, 'nasnet_mobile': nasnet.build_nasnet_mobile, 'nasnet_large': nasnet.build_nasnet_large, 'pnasnet_large': pnasnet.build_pnasnet_large, 'pnasnet_mobile': pnasnet.build_pnasnet_mobile, } arg_scopes_map = { 'alexnet_v2': alexnet.alexnet_v2_arg_scope, 'cifarnet': cifarnet.cifarnet_arg_scope, 'overfeat': overfeat.overfeat_arg_scope, 'vgg_a': vgg.vgg_arg_scope, 'vgg_16': vgg.vgg_arg_scope, 'vgg_19': vgg.vgg_arg_scope, 'inception_v1': inception.inception_v3_arg_scope, 'inception_v2': inception.inception_v3_arg_scope, 'inception_v3': inception.inception_v3_arg_scope, 'inception_v4': inception.inception_v4_arg_scope, 'inception_resnet_v2': inception.inception_resnet_v2_arg_scope, 'i3d': i3d.i3d_arg_scope, 's3dg': s3dg.s3dg_arg_scope, 'lenet': lenet.lenet_arg_scope, 'resnet_v1_50': resnet_v1.resnet_arg_scope, 'resnet_v1_101': resnet_v1.resnet_arg_scope, 'resnet_v1_152': resnet_v1.resnet_arg_scope, 'resnet_v1_200': resnet_v1.resnet_arg_scope, 'resnet_v2_50': resnet_v2.resnet_arg_scope, 'resnet_v2_101': resnet_v2.resnet_arg_scope, 'resnet_v2_152': resnet_v2.resnet_arg_scope, 'resnet_v2_200': resnet_v2.resnet_arg_scope, 'mobilenet_v1': mobilenet_v1.mobilenet_v1_arg_scope, 'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_arg_scope, 'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_arg_scope, 'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_arg_scope, 'mobilenet_v2': mobilenet_v2.training_scope, 'mobilenet_v2_035': mobilenet_v2.training_scope, 'mobilenet_v2_140': mobilenet_v2.training_scope, 'mobilenet_v3_small': mobilenet_v3.training_scope, 'mobilenet_v3_large': mobilenet_v3.training_scope, 'mobilenet_v3_small_minimalistic': mobilenet_v3.training_scope, 'mobilenet_v3_large_minimalistic': mobilenet_v3.training_scope, 'mobilenet_edgetpu': mobilenet_v3.training_scope, 'mobilenet_edgetpu_075': mobilenet_v3.training_scope, 'nasnet_cifar': nasnet.nasnet_cifar_arg_scope, 'nasnet_mobile': nasnet.nasnet_mobile_arg_scope, 'nasnet_large': nasnet.nasnet_large_arg_scope, 'pnasnet_large': pnasnet.pnasnet_large_arg_scope, 'pnasnet_mobile': pnasnet.pnasnet_mobile_arg_scope, } def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False): """Returns a network_fn such as `logits, end_points = network_fn(images)`. Args: name: The name of the network. num_classes: The number of classes to use for classification. If 0 or None, the logits layer is omitted and its input features are returned instead. weight_decay: The l2 coefficient for the model weights. is_training: `True` if the model is being used for training and `False` otherwise. Returns: network_fn: A function that applies the model to a batch of images. It has the following signature: net, end_points = network_fn(images) The `images` input is a tensor of shape [batch_size, height, width, 3 or 1] with height = width = network_fn.default_image_size. (The permissibility and treatment of other sizes depends on the network_fn.) The returned `end_points` are a dictionary of intermediate activations. The returned `net` is the topmost layer, depending on `num_classes`: If `num_classes` was a non-zero integer, `net` is a logits tensor of shape [batch_size, num_classes]. If `num_classes` was 0 or `None`, `net` is a tensor with the input to the logits layer of shape [batch_size, 1, 1, num_features] or [batch_size, num_features]. Dropout has not been applied to this (even if the network's original classification does); it remains for the caller to do this or not. Raises: ValueError: If network `name` is not recognized. """ if name not in networks_map: raise ValueError('Name of network unknown %s' % name) func = networks_map[name] @functools.wraps(func) def network_fn(images, **kwargs): arg_scope = arg_scopes_map[name](weight_decay=weight_decay) with slim.arg_scope(arg_scope): return func(images, num_classes=num_classes, is_training=is_training, **kwargs) if hasattr(func, 'default_image_size'): network_fn.default_image_size = func.default_image_size return network_fn
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/nets_factory.py
nets_factory.py
"""Contains the definition for inception v2 classification network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import inception_utils # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( 0.0, stddev) def inception_v2_base(inputs, final_endpoint='Mixed_5c', min_depth=16, depth_multiplier=1.0, use_separable_conv=True, data_format='NHWC', include_root_block=True, scope=None): """Inception v2 (6a2). Constructs an Inception v2 network from inputs to the given final endpoint. This method can construct the network up to the layer inception(5b) as described in http://arxiv.org/abs/1502.03167. Args: inputs: a tensor of shape [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c']. If include_root_block is False, ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3'] will not be available. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. use_separable_conv: Use a separable convolution for the first layer Conv2d_1a_7x7. If this is False, use a normal convolution instead. data_format: Data format of the activations ('NHWC' or 'NCHW'). include_root_block: If True, include the convolution and max-pooling layers before the inception modules. If False, excludes those layers. scope: Optional variable_scope. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0 """ # end_points will collect relevant activations for external use, for example # summaries or losses. end_points = {} # Used to find thinned depths for each layer. if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) if data_format != 'NHWC' and data_format != 'NCHW': raise ValueError('data_format must be either NHWC or NCHW.') if data_format == 'NCHW' and use_separable_conv: raise ValueError( 'separable convolution only supports NHWC layout. NCHW data format can' ' only be used when use_separable_conv is False.' ) concat_dim = 3 if data_format == 'NHWC' else 1 with tf.variable_scope(scope, 'InceptionV2', [inputs]): with slim.arg_scope( [slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME', data_format=data_format): net = inputs if include_root_block: # Note that sizes in the comments below assume an input spatial size of # 224x224, however, the inputs can be of any size greater 32x32. # 224 x 224 x 3 end_point = 'Conv2d_1a_7x7' if use_separable_conv: # depthwise_multiplier here is different from depth_multiplier. # depthwise_multiplier determines the output channels of the initial # depthwise conv (see docs for tf.nn.separable_conv2d), while # depth_multiplier controls the # channels of the subsequent 1x1 # convolution. Must have # in_channels * depthwise_multipler <= out_channels # so that the separable convolution is not overparameterized. depthwise_multiplier = min(int(depth(64) / 3), 8) net = slim.separable_conv2d( inputs, depth(64), [7, 7], depth_multiplier=depthwise_multiplier, stride=2, padding='SAME', weights_initializer=trunc_normal(1.0), scope=end_point) else: # Use a normal convolution instead of a separable convolution. net = slim.conv2d( inputs, depth(64), [7, 7], stride=2, weights_initializer=trunc_normal(1.0), scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 112 x 112 x 64 end_point = 'MaxPool_2a_3x3' net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 56 x 56 x 64 end_point = 'Conv2d_2b_1x1' net = slim.conv2d( net, depth(64), [1, 1], scope=end_point, weights_initializer=trunc_normal(0.1)) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 56 x 56 x 64 end_point = 'Conv2d_2c_3x3' net = slim.conv2d(net, depth(192), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 56 x 56 x 192 end_point = 'MaxPool_3a_3x3' net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 28 x 28 x 192 # Inception module. end_point = 'Mixed_3b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(64), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(32), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 28 x 28 x 256 end_point = 'Mixed_3c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(64), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 28 x 28 x 320 end_point = 'Mixed_4a' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, depth(160), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d( branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d( branch_1, depth(96), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d( net, [3, 3], stride=2, scope='MaxPool_1a_3x3') net = tf.concat(axis=concat_dim, values=[branch_0, branch_1, branch_2]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(224), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(64), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d( branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(96), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(128), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(128), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(96), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(128), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(96), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(128), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(128), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4d' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(160), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(160), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(160), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(96), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_4e' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(96), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(192), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(160), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(192), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(192), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(96), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 14 x 14 x 576 end_point = 'Mixed_5a' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_1a_3x3') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 7 x 7 x 1024 end_point = 'Mixed_5b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(160), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 7 x 7 x 1024 end_point = 'Mixed_5c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat( axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v2(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, min_depth=16, depth_multiplier=1.0, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, scope='InceptionV2', global_pool=False): """Inception v2 model for classification. Constructs an Inception v2 network for classification as described in http://arxiv.org/abs/1502.03167. The default image size used to train this network is 224x224. Args: inputs: a tensor of shape [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: the percentage of activation values that are retained. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. global_pool: Optional boolean flag to control the avgpooling before the logits layer. If false or unset, pooling is done with a fixed window that reduces default-sized inputs to 1x1, while larger inputs lead to larger outputs. If true, any input size is pooled down to 1x1. Returns: net: a Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the non-dropped-out input to the logits layer if num_classes is 0 or None. end_points: a dictionary from components of the network to the corresponding activation. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0 """ if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') # Final pooling and prediction with tf.variable_scope( scope, 'InceptionV2', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_v2_base( inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier) with tf.variable_scope('Logits'): if global_pool: # Global average pooling. net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net else: # Pooling with a fixed kernel size. kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7]) net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a_{}x{}'.format(*kernel_size)) end_points['AvgPool_1a'] = net if not num_classes: return net, end_points # 1 x 1 x 1024 net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b') end_points['PreLogits'] = net logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points inception_v2.default_image_size = 224 def _reduced_kernel_size_for_small_input(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are is large enough. Args: input_tensor: input tensor of size [batch_size, height, width, channels]. kernel_size: desired kernel size of length 2: [kernel_height, kernel_width] Returns: a tensor with the kernel size. TODO(jrru): Make this function work with unknown shapes. Theoretically, this can be done with the code below. Problems are two-fold: (1) If the shape was known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot handle tensors that define the kernel size. shape = tf.shape(input_tensor) return = tf.stack([tf.minimum(shape[1], kernel_size[0]), tf.minimum(shape[2], kernel_size[1])]) """ shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size_out = kernel_size else: kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])] return kernel_size_out inception_v2_arg_scope = inception_utils.inception_arg_scope
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/inception_v2.py
inception_v2.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim def inception_arg_scope( weight_decay=0.00004, use_batch_norm=True, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, activation_fn=tf.nn.relu, batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS, batch_norm_scale=False): """Defines the default arg scope for inception models. Args: weight_decay: The weight decay to use for regularizing the model. use_batch_norm: "If `True`, batch_norm is applied after each convolution. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. activation_fn: Activation function for conv2d. batch_norm_updates_collections: Collection for the update ops for batch norm. batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the activations in the batch normalization layer. Returns: An `arg_scope` to use for the inception models. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, # collection containing update_ops. 'updates_collections': batch_norm_updates_collections, # use fused batch norm if possible. 'fused': None, 'scale': batch_norm_scale, } if use_batch_norm: normalizer_fn = slim.batch_norm normalizer_params = batch_norm_params else: normalizer_fn = None normalizer_params = {} # Set weight_decay for weights in Conv and FC layers. with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope( [slim.conv2d], weights_initializer=slim.variance_scaling_initializer(), activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) as sc: return sc
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/inception_utils.py
inception_utils.py
"""Contains the definition for inception v1 classification network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import inception_utils # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( 0.0, stddev) def inception_v1_base(inputs, final_endpoint='Mixed_5c', include_root_block=True, scope='InceptionV1'): """Defines the Inception V1 base architecture. This architecture is defined in: Going deeper with convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. http://arxiv.org/pdf/1409.4842v1.pdf. Args: inputs: a tensor of size [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c']. If include_root_block is False, ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3'] will not be available. include_root_block: If True, include the convolution and max-pooling layers before the inception modules. If False, excludes those layers. scope: Optional variable_scope. Returns: A dictionary from components of the network to the corresponding activation. Raises: ValueError: if final_endpoint is not set to one of the predefined values. """ end_points = {} with tf.variable_scope(scope, 'InceptionV1', [inputs]): with slim.arg_scope( [slim.conv2d, slim.fully_connected], weights_initializer=trunc_normal(0.01)): with slim.arg_scope([slim.conv2d, slim.max_pool2d], stride=1, padding='SAME'): net = inputs if include_root_block: end_point = 'Conv2d_1a_7x7' net = slim.conv2d(inputs, 64, [7, 7], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_2a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Conv2d_2b_1x1' net = slim.conv2d(net, 64, [1, 1], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Conv2d_2c_3x3' net = slim.conv2d(net, 192, [3, 3], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_3a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_3b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 128, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 32, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 32, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_3c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 192, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_4a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 208, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 48, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4d' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 256, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4e' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 144, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 288, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4f' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 320, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_5a_2x2' net = slim.max_pool2d(net, [2, 2], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_5b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 320, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0a_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_5c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 384, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if final_endpoint == end_point: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v1(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, scope='InceptionV1', global_pool=False): """Defines the Inception V1 architecture. This architecture is defined in: Going deeper with convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. http://arxiv.org/pdf/1409.4842v1.pdf. The default image size used to train this network is 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: the percentage of activation values that are retained. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. global_pool: Optional boolean flag to control the avgpooling before the logits layer. If false or unset, pooling is done with a fixed window that reduces default-sized inputs to 1x1, while larger inputs lead to larger outputs. If true, any input size is pooled down to 1x1. Returns: net: a Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the non-dropped-out input to the logits layer if num_classes is 0 or None. end_points: a dictionary from components of the network to the corresponding activation. """ # Final pooling and prediction with tf.variable_scope( scope, 'InceptionV1', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_v1_base(inputs, scope=scope) with tf.variable_scope('Logits'): if global_pool: # Global average pooling. net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net else: # Pooling with a fixed kernel size. net = slim.avg_pool2d(net, [7, 7], stride=1, scope='AvgPool_0a_7x7') end_points['AvgPool_0a_7x7'] = net if not num_classes: return net, end_points net = slim.dropout(net, dropout_keep_prob, scope='Dropout_0b') logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_0c_1x1') if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points inception_v1.default_image_size = 224 inception_v1_arg_scope = inception_utils.inception_arg_scope
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/inception_v1.py
inception_v1.py
"""Validate mobilenet_v1 with options for quantization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tensorflow.compat.v1 as tf import tf_slim as slim from tensorflow.contrib import quantize as contrib_quantize from datasets import dataset_factory from nets import mobilenet_v1 from preprocessing import preprocessing_factory flags = tf.app.flags flags.DEFINE_string('master', '', 'Session master') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('num_classes', 1001, 'Number of classes to distinguish') flags.DEFINE_integer('num_examples', 50000, 'Number of examples to evaluate') flags.DEFINE_integer('image_size', 224, 'Input image resolution') flags.DEFINE_float('depth_multiplier', 1.0, 'Depth multiplier for mobilenet') flags.DEFINE_bool('quantize', False, 'Quantize training') flags.DEFINE_string('checkpoint_dir', '', 'The directory for checkpoints') flags.DEFINE_string('eval_dir', '', 'Directory for writing eval event logs') flags.DEFINE_string('dataset_dir', '', 'Location of dataset') FLAGS = flags.FLAGS def imagenet_input(is_training): """Data reader for imagenet. Reads in imagenet data and performs pre-processing on the images. Args: is_training: bool specifying if train or validation dataset is needed. Returns: A batch of images and labels. """ if is_training: dataset = dataset_factory.get_dataset('imagenet', 'train', FLAGS.dataset_dir) else: dataset = dataset_factory.get_dataset('imagenet', 'validation', FLAGS.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=is_training, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) image_preprocessing_fn = preprocessing_factory.get_preprocessing( 'mobilenet_v1', is_training=is_training) image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size) images, labels = tf.train.batch( tensors=[image, label], batch_size=FLAGS.batch_size, num_threads=4, capacity=5 * FLAGS.batch_size) return images, labels def metrics(logits, labels): """Specify the metrics for eval. Args: logits: Logits output from the graph. labels: Ground truth labels for inputs. Returns: Eval Op for the graph. """ labels = tf.squeeze(labels) names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({ 'Accuracy': tf.metrics.accuracy( tf.argmax(input=logits, axis=1), labels), 'Recall_5': tf.metrics.recall_at_k(labels, logits, 5), }) for name, value in names_to_values.iteritems(): slim.summaries.add_scalar_summary( value, name, prefix='eval', print_summary=True) return names_to_updates.values() def build_model(): """Build the mobilenet_v1 model for evaluation. Returns: g: graph with rewrites after insertion of quantization ops and batch norm folding. eval_ops: eval ops for inference. variables_to_restore: List of variables to restore from checkpoint. """ g = tf.Graph() with g.as_default(): inputs, labels = imagenet_input(is_training=False) scope = mobilenet_v1.mobilenet_v1_arg_scope( is_training=False, weight_decay=0.0) with slim.arg_scope(scope): logits, _ = mobilenet_v1.mobilenet_v1( inputs, is_training=False, depth_multiplier=FLAGS.depth_multiplier, num_classes=FLAGS.num_classes) if FLAGS.quantize: contrib_quantize.create_eval_graph() eval_ops = metrics(logits, labels) return g, eval_ops def eval_model(): """Evaluates mobilenet_v1.""" g, eval_ops = build_model() with g.as_default(): num_batches = math.ceil(FLAGS.num_examples / float(FLAGS.batch_size)) slim.evaluation.evaluate_once( FLAGS.master, FLAGS.checkpoint_dir, logdir=FLAGS.eval_dir, num_evals=num_batches, eval_op=eval_ops) def main(unused_arg): eval_model() if __name__ == '__main__': tf.app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/mobilenet_v1_eval.py
mobilenet_v1_eval.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import inception_utils def block_inception_a(inputs, scope=None, reuse=None): """Builds Inception-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope( scope, 'BlockInceptionA', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 96, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 96, [1, 1], scope='Conv2d_0b_1x1') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) def block_reduction_a(inputs, scope=None, reuse=None): """Builds Reduction-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope( scope, 'BlockReductionA', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 384, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, 256, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) def block_inception_b(inputs, scope=None, reuse=None): """Builds Inception-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope( scope, 'BlockInceptionB', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 224, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 256, [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, 224, [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, 224, [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, 256, [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) def block_reduction_b(inputs, scope=None, reuse=None): """Builds Reduction-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope( scope, 'BlockReductionB', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 256, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 320, [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, 320, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) def block_inception_c(inputs, scope=None, reuse=None): """Builds Inception-C block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope( scope, 'BlockInceptionC', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, 256, [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, 256, [3, 1], scope='Conv2d_0c_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 448, [3, 1], scope='Conv2d_0b_3x1') branch_2 = slim.conv2d(branch_2, 512, [1, 3], scope='Conv2d_0c_1x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, 256, [1, 3], scope='Conv2d_0d_1x3'), slim.conv2d(branch_2, 256, [3, 1], scope='Conv2d_0e_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 256, [1, 1], scope='Conv2d_0b_1x1') return tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) def inception_v4_base(inputs, final_endpoint='Mixed_7d', scope=None): """Creates the Inception V4 network up to the given final endpoint. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] scope: Optional variable_scope. Returns: logits: the logits outputs of the model. end_points: the set of end_points from the inception model. Raises: ValueError: if final_endpoint is not set to one of the predefined values, """ end_points = {} def add_and_check_final(name, net): end_points[name] = net return name == final_endpoint with tf.variable_scope(scope, 'InceptionV4', [inputs]): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # 299 x 299 x 3 net = slim.conv2d(inputs, 32, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points # 149 x 149 x 32 net = slim.conv2d(net, 32, [3, 3], padding='VALID', scope='Conv2d_2a_3x3') if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points # 147 x 147 x 32 net = slim.conv2d(net, 64, [3, 3], scope='Conv2d_2b_3x3') if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points # 147 x 147 x 64 with tf.variable_scope('Mixed_3a'): with tf.variable_scope('Branch_0'): branch_0 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_0a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 96, [3, 3], stride=2, padding='VALID', scope='Conv2d_0a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_3a', net): return net, end_points # 73 x 73 x 160 with tf.variable_scope('Mixed_4a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 64, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 64, [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_4a', net): return net, end_points # 71 x 71 x 192 with tf.variable_scope('Mixed_5a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_5a', net): return net, end_points # 35 x 35 x 384 # 4 x Inception-A blocks for idx in range(4): block_scope = 'Mixed_5' + chr(ord('b') + idx) net = block_inception_a(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 35 x 35 x 384 # Reduction-A block net = block_reduction_a(net, 'Mixed_6a') if add_and_check_final('Mixed_6a', net): return net, end_points # 17 x 17 x 1024 # 7 x Inception-B blocks for idx in range(7): block_scope = 'Mixed_6' + chr(ord('b') + idx) net = block_inception_b(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 17 x 17 x 1024 # Reduction-B block net = block_reduction_b(net, 'Mixed_7a') if add_and_check_final('Mixed_7a', net): return net, end_points # 8 x 8 x 1536 # 3 x Inception-C blocks for idx in range(3): block_scope = 'Mixed_7' + chr(ord('b') + idx) net = block_inception_c(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v4(inputs, num_classes=1001, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionV4', create_aux_logits=True): """Creates the Inception V4 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. create_aux_logits: Whether to include the auxiliary logits. Returns: net: a Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the non-dropped input to the logits layer if num_classes is 0 or None. end_points: the set of end_points from the inception model. """ end_points = {} with tf.variable_scope( scope, 'InceptionV4', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_v4_base(inputs, scope=scope) with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # Auxiliary Head logits if create_aux_logits and num_classes: with tf.variable_scope('AuxLogits'): # 17 x 17 x 1024 aux_logits = end_points['Mixed_6h'] aux_logits = slim.avg_pool2d(aux_logits, [5, 5], stride=3, padding='VALID', scope='AvgPool_1a_5x5') aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='Conv2d_1b_1x1') aux_logits = slim.conv2d(aux_logits, 768, aux_logits.get_shape()[1:3], padding='VALID', scope='Conv2d_2a') aux_logits = slim.flatten(aux_logits) aux_logits = slim.fully_connected(aux_logits, num_classes, activation_fn=None, scope='Aux_logits') end_points['AuxLogits'] = aux_logits # Final pooling and prediction # TODO(sguada,arnoegw): Consider adding a parameter global_pool which # can be set to False to disable pooling here (as in resnet_*()). with tf.variable_scope('Logits'): # 8 x 8 x 1536 kernel_size = net.get_shape()[1:3] if kernel_size.is_fully_defined(): net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a') else: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if not num_classes: return net, end_points # 1 x 1 x 1536 net = slim.dropout(net, dropout_keep_prob, scope='Dropout_1b') net = slim.flatten(net, scope='PreLogitsFlatten') end_points['PreLogitsFlatten'] = net # 1536 logits = slim.fully_connected(net, num_classes, activation_fn=None, scope='Logits') end_points['Logits'] = logits end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions') return logits, end_points inception_v4.default_image_size = 299 inception_v4_arg_scope = inception_utils.inception_arg_scope
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/inception_v4.py
inception_v4.py
"""Export quantized tflite model from a trained checkpoint.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl import app from absl import flags import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds from nets import nets_factory from preprocessing import preprocessing_factory flags.DEFINE_string("model_name", None, "The name of the architecture to quantize.") flags.DEFINE_string("checkpoint_path", None, "Path to the training checkpoint.") flags.DEFINE_string("dataset_name", "imagenet2012", "Name of the dataset to use for quantization calibration.") flags.DEFINE_string("dataset_dir", None, "Dataset location.") flags.DEFINE_string( "dataset_split", "train", "The dataset split (train, validation etc.) to use for calibration.") flags.DEFINE_string("output_tflite", None, "Path to output tflite file.") flags.DEFINE_boolean( "use_model_specific_preprocessing", False, "When true, uses the preprocessing corresponding to the model as specified " "in preprocessing factory.") flags.DEFINE_boolean("enable_ema", True, "Load exponential moving average version of variables.") flags.DEFINE_integer( "num_steps", 1000, "Number of post-training quantization calibration steps to run.") flags.DEFINE_integer("image_size", 224, "Size of the input image.") flags.DEFINE_integer("num_classes", 1001, "Number of output classes for the model.") FLAGS = flags.FLAGS # Mean and standard deviation used for normalizing the image tensor. _MEAN_RGB = 127.5 _STD_RGB = 127.5 def _preprocess_for_quantization(image_data, image_size, crop_padding=32): """Crops to center of image with padding then scales, normalizes image_size. Args: image_data: A 3D Tensor representing the RGB image data. Image can be of arbitrary height and width. image_size: image height/width dimension. crop_padding: the padding size to use when centering the crop. Returns: A decoded and cropped image Tensor. Image is normalized to [-1,1]. """ shape = tf.shape(image_data) image_height = shape[0] image_width = shape[1] padded_center_crop_size = tf.cast( (image_size * 1.0 / (image_size + crop_padding)) * tf.cast(tf.minimum(image_height, image_width), tf.float32), tf.int32) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 image = tf.image.crop_to_bounding_box( image_data, offset_height=offset_height, offset_width=offset_width, target_height=padded_center_crop_size, target_width=padded_center_crop_size) image = tf.image.resize([image], [image_size, image_size], method=tf.image.ResizeMethod.BICUBIC)[0] image = tf.cast(image, tf.float32) image -= tf.constant(_MEAN_RGB) image /= tf.constant(_STD_RGB) return image def restore_model(sess, checkpoint_path, enable_ema=True): """Restore variables from the checkpoint into the provided session. Args: sess: A tensorflow session where the checkpoint will be loaded. checkpoint_path: Path to the trained checkpoint. enable_ema: (optional) Whether to load the exponential moving average (ema) version of the tensorflow variables. Defaults to True. """ if enable_ema: ema = tf.train.ExponentialMovingAverage(decay=0.0) ema_vars = tf.trainable_variables() + tf.get_collection("moving_vars") for v in tf.global_variables(): if "moving_mean" in v.name or "moving_variance" in v.name: ema_vars.append(v) ema_vars = list(set(ema_vars)) var_dict = ema.variables_to_restore(ema_vars) else: var_dict = None sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(var_dict, max_to_keep=1) saver.restore(sess, checkpoint_path) def _representative_dataset_gen(): """Gets a python generator of numpy arrays for the given dataset.""" image_size = FLAGS.image_size dataset = tfds.builder(FLAGS.dataset_name, data_dir=FLAGS.dataset_dir) dataset.download_and_prepare() data = dataset.as_dataset()[FLAGS.dataset_split] iterator = tf.data.make_one_shot_iterator(data) if FLAGS.use_model_specific_preprocessing: preprocess_fn = functools.partial( preprocessing_factory.get_preprocessing(name=FLAGS.model_name), output_height=image_size, output_width=image_size) else: preprocess_fn = functools.partial( _preprocess_for_quantization, image_size=image_size) features = iterator.get_next() image = features["image"] image = preprocess_fn(image) image = tf.reshape(image, [1, image_size, image_size, 3]) for _ in range(FLAGS.num_steps): yield [image.eval()] def main(_): with tf.Graph().as_default(), tf.Session() as sess: network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=FLAGS.num_classes, is_training=False) image_size = FLAGS.image_size images = tf.placeholder( tf.float32, shape=(1, image_size, image_size, 3), name="images") logits, _ = network_fn(images) output_tensor = tf.nn.softmax(logits) restore_model(sess, FLAGS.checkpoint_path, enable_ema=FLAGS.enable_ema) converter = tf.lite.TFLiteConverter.from_session(sess, [images], [output_tensor]) converter.representative_dataset = tf.lite.RepresentativeDataset( _representative_dataset_gen) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] tflite_buffer = converter.convert() with tf.gfile.GFile(FLAGS.output_tflite, "wb") as output_tflite: output_tflite.write(tflite_buffer) print("tflite model written to %s" % FLAGS.output_tflite) if __name__ == "__main__": flags.mark_flag_as_required("model_name") flags.mark_flag_as_required("checkpoint_path") flags.mark_flag_as_required("dataset_dir") flags.mark_flag_as_required("output_tflite") app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/post_training_quantization.py
post_training_quantization.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( 0.0, stddev) def overfeat_arg_scope(weight_decay=0.0005): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME'): with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: return arg_sc def overfeat(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='overfeat', global_pool=False): """Contains the model definition for the OverFeat network. The definition for the network was obtained from: OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus and Yann LeCun, 2014 http://arxiv.org/abs/1312.6229 Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 231x231. To use in fully convolutional mode, set spatial_squeeze to false. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original OverFeat.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'overfeat', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.conv2d(net, 256, [5, 5], padding='VALID', scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.conv2d(net, 512, [3, 3], scope='conv3') net = slim.conv2d(net, 1024, [3, 3], scope='conv4') net = slim.conv2d(net, 1024, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. with slim.arg_scope( [slim.conv2d], weights_initializer=trunc_normal(0.005), biases_initializer=tf.constant_initializer(0.1)): net = slim.conv2d(net, 3072, [6, 6], padding='VALID', scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict( end_points_collection) if global_pool: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, biases_initializer=tf.zeros_initializer(), scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points overfeat.default_image_size = 231
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/overfeat.py
overfeat.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import i3d_utils from nets import s3dg # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( 0.0, stddev) conv3d_spatiotemporal = i3d_utils.conv3d_spatiotemporal def i3d_arg_scope(weight_decay=1e-7, batch_norm_decay=0.999, batch_norm_epsilon=0.001, use_renorm=False, separable_conv3d=False): """Defines default arg_scope for I3D. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. use_renorm: Whether to use batch renormalization or not. separable_conv3d: Whether to use separable 3d Convs. Returns: sc: An arg_scope to use for the models. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, # Turns off fused batch norm. 'fused': False, 'renorm': use_renorm, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': ['moving_vars'], 'moving_variance': ['moving_vars'], } } with slim.arg_scope( [slim.conv3d, conv3d_spatiotemporal], weights_regularizer=slim.l2_regularizer(weight_decay), activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params): with slim.arg_scope( [conv3d_spatiotemporal], separable=separable_conv3d) as sc: return sc def i3d_base(inputs, final_endpoint='Mixed_5c', scope='InceptionV1'): """Defines the I3D base architecture. Note that we use the names as defined in Inception V1 to facilitate checkpoint conversion from an image-trained Inception V1 checkpoint to I3D checkpoint. Args: inputs: A 5-D float tensor of size [batch_size, num_frames, height, width, channels]. final_endpoint: Specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c'] scope: Optional variable_scope. Returns: A dictionary from components of the network to the corresponding activation. Raises: ValueError: if final_endpoint is not set to one of the predefined values. """ return s3dg.s3dg_base( inputs, first_temporal_kernel_size=7, temporal_conv_startat='Conv2d_2c_3x3', gating_startat=None, final_endpoint=final_endpoint, min_depth=16, depth_multiplier=1.0, data_format='NDHWC', scope=scope) def i3d(inputs, num_classes=1000, dropout_keep_prob=0.8, is_training=True, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, scope='InceptionV1'): """Defines the I3D architecture. The default image size used to train this network is 224x224. Args: inputs: A 5-D float tensor of size [batch_size, num_frames, height, width, channels]. num_classes: number of predicted classes. dropout_keep_prob: the percentage of activation values that are retained. is_training: whether is training or not. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation. """ # Final pooling and prediction with tf.variable_scope( scope, 'InceptionV1', [inputs, num_classes], reuse=reuse) as scope: with slim.arg_scope( [slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = i3d_base(inputs, scope=scope) with tf.variable_scope('Logits'): kernel_size = i3d_utils.reduced_kernel_size_3d(net, [2, 7, 7]) net = slim.avg_pool3d( net, kernel_size, stride=1, scope='AvgPool_0a_7x7') net = slim.dropout(net, dropout_keep_prob, scope='Dropout_0b') logits = slim.conv3d( net, num_classes, [1, 1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_0c_1x1') # Temporal average pooling. logits = tf.reduce_mean(input_tensor=logits, axis=1) if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points i3d.default_image_size = 224
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/i3d.py
i3d.py
"""Contains a variant of the CIFAR-10 model definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( stddev=stddev) def cifarnet(images, num_classes=10, is_training=False, dropout_keep_prob=0.5, prediction_fn=slim.softmax, scope='CifarNet'): """Creates a variant of the CifarNet model. Note that since the output is a set of 'logits', the values fall in the interval of (-infinity, infinity). Consequently, to convert the outputs to a probability distribution over the characters, one will need to convert them using the softmax function: logits = cifarnet.cifarnet(images, is_training=False) probabilities = tf.nn.softmax(logits) predictions = tf.argmax(logits, 1) Args: images: A batch of `Tensors` of size [batch_size, height, width, channels]. num_classes: the number of classes in the dataset. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: specifies whether or not we're currently training the model. This variable will determine the behaviour of the dropout layer. dropout_keep_prob: the percentage of activation values that are retained. prediction_fn: a function to get predictions out of logits. scope: Optional variable_scope. Returns: net: a 2D Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the input to the logits layer if num_classes is 0 or None. end_points: a dictionary from components of the network to the corresponding activation. """ end_points = {} with tf.variable_scope(scope, 'CifarNet', [images]): net = slim.conv2d(images, 64, [5, 5], scope='conv1') end_points['conv1'] = net net = slim.max_pool2d(net, [2, 2], 2, scope='pool1') end_points['pool1'] = net net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm1') net = slim.conv2d(net, 64, [5, 5], scope='conv2') end_points['conv2'] = net net = tf.nn.lrn(net, 4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm2') net = slim.max_pool2d(net, [2, 2], 2, scope='pool2') end_points['pool2'] = net net = slim.flatten(net) end_points['Flatten'] = net net = slim.fully_connected(net, 384, scope='fc3') end_points['fc3'] = net net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout3') net = slim.fully_connected(net, 192, scope='fc4') end_points['fc4'] = net if not num_classes: return net, end_points logits = slim.fully_connected( net, num_classes, biases_initializer=tf.zeros_initializer(), weights_initializer=trunc_normal(1 / 192.0), weights_regularizer=None, activation_fn=None, scope='logits') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points cifarnet.default_image_size = 32 def cifarnet_arg_scope(weight_decay=0.004): """Defines the default cifarnet argument scope. Args: weight_decay: The weight decay to use for regularizing the model. Returns: An `arg_scope` to use for the inception v3 model. """ with slim.arg_scope( [slim.conv2d], weights_initializer=tf.truncated_normal_initializer( stddev=5e-2), activation_fn=tf.nn.relu): with slim.arg_scope( [slim.fully_connected], biases_initializer=tf.constant_initializer(0.1), weights_initializer=trunc_normal(0.04), weights_regularizer=slim.l2_regularizer(weight_decay), activation_fn=tf.nn.relu) as sc: return sc
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/cifarnet.py
cifarnet.py
"""Defines the CycleGAN generator and discriminator networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow.compat.v1 as tf import tf_slim as slim from tensorflow.python.framework import tensor_util def cyclegan_arg_scope(instance_norm_center=True, instance_norm_scale=True, instance_norm_epsilon=0.001, weights_init_stddev=0.02, weight_decay=0.0): """Returns a default argument scope for all generators and discriminators. Args: instance_norm_center: Whether instance normalization applies centering. instance_norm_scale: Whether instance normalization applies scaling. instance_norm_epsilon: Small float added to the variance in the instance normalization to avoid dividing by zero. weights_init_stddev: Standard deviation of the random values to initialize the convolution kernels with. weight_decay: Magnitude of weight decay applied to all convolution kernel variables of the generator. Returns: An arg-scope. """ instance_norm_params = { 'center': instance_norm_center, 'scale': instance_norm_scale, 'epsilon': instance_norm_epsilon, } weights_regularizer = None if weight_decay and weight_decay > 0.0: weights_regularizer = slim.l2_regularizer(weight_decay) with slim.arg_scope( [slim.conv2d], normalizer_fn=slim.instance_norm, normalizer_params=instance_norm_params, weights_initializer=tf.random_normal_initializer( 0, weights_init_stddev), weights_regularizer=weights_regularizer) as sc: return sc def cyclegan_upsample(net, num_outputs, stride, method='conv2d_transpose', pad_mode='REFLECT', align_corners=False): """Upsamples the given inputs. Args: net: A Tensor of size [batch_size, height, width, filters]. num_outputs: The number of output filters. stride: A list of 2 scalars or a 1x2 Tensor indicating the scale, relative to the inputs, of the output dimensions. For example, if kernel size is [2, 3], then the output height and width will be twice and three times the input size. method: The upsampling method: 'nn_upsample_conv', 'bilinear_upsample_conv', or 'conv2d_transpose'. pad_mode: mode for tf.pad, one of "CONSTANT", "REFLECT", or "SYMMETRIC". align_corners: option for method, 'bilinear_upsample_conv'. If true, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Returns: A Tensor which was upsampled using the specified method. Raises: ValueError: if `method` is not recognized. """ with tf.variable_scope('upconv'): net_shape = tf.shape(input=net) height = net_shape[1] width = net_shape[2] # Reflection pad by 1 in spatial dimensions (axes 1, 2 = h, w) to make a 3x3 # 'valid' convolution produce an output with the same dimension as the # input. spatial_pad_1 = np.array([[0, 0], [1, 1], [1, 1], [0, 0]]) if method == 'nn_upsample_conv': net = tf.image.resize( net, [stride[0] * height, stride[1] * width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) net = tf.pad(tensor=net, paddings=spatial_pad_1, mode=pad_mode) net = slim.conv2d(net, num_outputs, kernel_size=[3, 3], padding='valid') elif method == 'bilinear_upsample_conv': net = tf.image.resize_bilinear( net, [stride[0] * height, stride[1] * width], align_corners=align_corners) net = tf.pad(tensor=net, paddings=spatial_pad_1, mode=pad_mode) net = slim.conv2d(net, num_outputs, kernel_size=[3, 3], padding='valid') elif method == 'conv2d_transpose': # This corrects 1 pixel offset for images with even width and height. # conv2d is left aligned and conv2d_transpose is right aligned for even # sized images (while doing 'SAME' padding). # Note: This doesn't reflect actual model in paper. net = slim.conv2d_transpose( net, num_outputs, kernel_size=[3, 3], stride=stride, padding='valid') net = net[:, 1:, 1:, :] else: raise ValueError('Unknown method: [%s]' % method) return net def _dynamic_or_static_shape(tensor): shape = tf.shape(input=tensor) static_shape = tensor_util.constant_value(shape) return static_shape if static_shape is not None else shape def cyclegan_generator_resnet(images, arg_scope_fn=cyclegan_arg_scope, num_resnet_blocks=6, num_filters=64, upsample_fn=cyclegan_upsample, kernel_size=3, tanh_linear_slope=0.0, is_training=False): """Defines the cyclegan resnet network architecture. As closely as possible following https://github.com/junyanz/CycleGAN/blob/master/models/architectures.lua#L232 FYI: This network requires input height and width to be divisible by 4 in order to generate an output with shape equal to input shape. Assertions will catch this if input dimensions are known at graph construction time, but there's no protection if unknown at graph construction time (you'll see an error). Args: images: Input image tensor of shape [batch_size, h, w, 3]. arg_scope_fn: Function to create the global arg_scope for the network. num_resnet_blocks: Number of ResNet blocks in the middle of the generator. num_filters: Number of filters of the first hidden layer. upsample_fn: Upsampling function for the decoder part of the generator. kernel_size: Size w or list/tuple [h, w] of the filter kernels for all inner layers. tanh_linear_slope: Slope of the linear function to add to the tanh over the logits. is_training: Whether the network is created in training mode or inference only mode. Not actually needed, just for compliance with other generator network functions. Returns: A `Tensor` representing the model output and a dictionary of model end points. Raises: ValueError: If the input height or width is known at graph construction time and not a multiple of 4. """ # Neither dropout nor batch norm -> dont need is_training del is_training end_points = {} input_size = images.shape.as_list() height, width = input_size[1], input_size[2] if height and height % 4 != 0: raise ValueError('The input height must be a multiple of 4.') if width and width % 4 != 0: raise ValueError('The input width must be a multiple of 4.') num_outputs = input_size[3] if not isinstance(kernel_size, (list, tuple)): kernel_size = [kernel_size, kernel_size] kernel_height = kernel_size[0] kernel_width = kernel_size[1] pad_top = (kernel_height - 1) // 2 pad_bottom = kernel_height // 2 pad_left = (kernel_width - 1) // 2 pad_right = kernel_width // 2 paddings = np.array( [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], dtype=np.int32) spatial_pad_3 = np.array([[0, 0], [3, 3], [3, 3], [0, 0]]) with slim.arg_scope(arg_scope_fn()): ########### # Encoder # ########### with tf.variable_scope('input'): # 7x7 input stage net = tf.pad(tensor=images, paddings=spatial_pad_3, mode='REFLECT') net = slim.conv2d(net, num_filters, kernel_size=[7, 7], padding='VALID') end_points['encoder_0'] = net with tf.variable_scope('encoder'): with slim.arg_scope([slim.conv2d], kernel_size=kernel_size, stride=2, activation_fn=tf.nn.relu, padding='VALID'): net = tf.pad(tensor=net, paddings=paddings, mode='REFLECT') net = slim.conv2d(net, num_filters * 2) end_points['encoder_1'] = net net = tf.pad(tensor=net, paddings=paddings, mode='REFLECT') net = slim.conv2d(net, num_filters * 4) end_points['encoder_2'] = net ################### # Residual Blocks # ################### with tf.variable_scope('residual_blocks'): with slim.arg_scope([slim.conv2d], kernel_size=kernel_size, stride=1, activation_fn=tf.nn.relu, padding='VALID'): for block_id in xrange(num_resnet_blocks): with tf.variable_scope('block_{}'.format(block_id)): res_net = tf.pad(tensor=net, paddings=paddings, mode='REFLECT') res_net = slim.conv2d(res_net, num_filters * 4) res_net = tf.pad(tensor=res_net, paddings=paddings, mode='REFLECT') res_net = slim.conv2d(res_net, num_filters * 4, activation_fn=None) net += res_net end_points['resnet_block_%d' % block_id] = net ########### # Decoder # ########### with tf.variable_scope('decoder'): with slim.arg_scope([slim.conv2d], kernel_size=kernel_size, stride=1, activation_fn=tf.nn.relu): with tf.variable_scope('decoder1'): net = upsample_fn(net, num_outputs=num_filters * 2, stride=[2, 2]) end_points['decoder1'] = net with tf.variable_scope('decoder2'): net = upsample_fn(net, num_outputs=num_filters, stride=[2, 2]) end_points['decoder2'] = net with tf.variable_scope('output'): net = tf.pad(tensor=net, paddings=spatial_pad_3, mode='REFLECT') logits = slim.conv2d( net, num_outputs, [7, 7], activation_fn=None, normalizer_fn=None, padding='valid') logits = tf.reshape(logits, _dynamic_or_static_shape(images)) end_points['logits'] = logits end_points['predictions'] = tf.tanh(logits) + logits * tanh_linear_slope return end_points['predictions'], end_points
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/cyclegan.py
cyclegan.py
"""Contains the definition for inception v3 classification network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import inception_utils # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( 0.0, stddev) def inception_v3_base(inputs, final_endpoint='Mixed_7c', min_depth=16, depth_multiplier=1.0, scope=None): """Inception model from http://arxiv.org/abs/1512.00567. Constructs an Inception v3 network from inputs to the given final endpoint. This method can construct the network up to the final inception block Mixed_7c. Note that the names of the layers in the paper do not correspond to the names of the endpoints registered by this function although they build the same network. Here is a mapping from the old_names to the new names: Old name | New name ======================================= conv0 | Conv2d_1a_3x3 conv1 | Conv2d_2a_3x3 conv2 | Conv2d_2b_3x3 pool1 | MaxPool_3a_3x3 conv3 | Conv2d_3b_1x1 conv4 | Conv2d_4a_3x3 pool2 | MaxPool_5a_3x3 mixed_35x35x256a | Mixed_5b mixed_35x35x288a | Mixed_5c mixed_35x35x288b | Mixed_5d mixed_17x17x768a | Mixed_6a mixed_17x17x768b | Mixed_6b mixed_17x17x768c | Mixed_6c mixed_17x17x768d | Mixed_6d mixed_17x17x768e | Mixed_6e mixed_8x8x1280a | Mixed_7a mixed_8x8x2048a | Mixed_7b mixed_8x8x2048b | Mixed_7c Args: inputs: a tensor of size [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. scope: Optional variable_scope. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0 """ # end_points will collect relevant activations for external use, for example # summaries or losses. end_points = {} if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with tf.variable_scope(scope, 'InceptionV3', [inputs]): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='VALID'): # 299 x 299 x 3 end_point = 'Conv2d_1a_3x3' net = slim.conv2d(inputs, depth(32), [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 149 x 149 x 32 end_point = 'Conv2d_2a_3x3' net = slim.conv2d(net, depth(32), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 147 x 147 x 32 end_point = 'Conv2d_2b_3x3' net = slim.conv2d(net, depth(64), [3, 3], padding='SAME', scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 147 x 147 x 64 end_point = 'MaxPool_3a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 73 x 73 x 64 end_point = 'Conv2d_3b_1x1' net = slim.conv2d(net, depth(80), [1, 1], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 73 x 73 x 80. end_point = 'Conv2d_4a_3x3' net = slim.conv2d(net, depth(192), [3, 3], scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 71 x 71 x 192. end_point = 'MaxPool_5a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # 35 x 35 x 192. # Inception blocks with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # mixed: 35 x 35 x 256. end_point = 'Mixed_5b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(64), [5, 5], scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(32), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_1: 35 x 35 x 288. end_point = 'Mixed_5c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0b_1x1') branch_1 = slim.conv2d(branch_1, depth(64), [5, 5], scope='Conv_1_0c_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(64), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_2: 35 x 35 x 288. end_point = 'Mixed_5d' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(64), [5, 5], scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(96), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(64), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_3: 17 x 17 x 768. end_point = 'Mixed_6a' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(384), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, depth(96), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_1x1') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed4: 17 x 17 x 768. end_point = 'Mixed_6b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(128), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(128), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(128), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(128), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_5: 17 x 17 x 768. end_point = 'Mixed_6c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(160), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(160), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_6: 17 x 17 x 768. end_point = 'Mixed_6d' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(160), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(160), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(160), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_7: 17 x 17 x 768. end_point = 'Mixed_6e' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(192), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(192), [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, depth(192), [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, depth(192), [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_8: 8 x 8 x 1280. end_point = 'Mixed_7a' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, depth(320), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(192), [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, depth(192), [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, depth(192), [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_9: 8 x 8 x 2048. end_point = 'Mixed_7b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0b_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d( branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'), slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points # mixed_10: 8 x 8 x 2048. end_point = 'Mixed_7c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0c_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d( branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'), slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) end_points[end_point] = net if end_point == final_endpoint: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v3(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, min_depth=16, depth_multiplier=1.0, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, create_aux_logits=True, scope='InceptionV3', global_pool=False): """Inception model from http://arxiv.org/abs/1512.00567. "Rethinking the Inception Architecture for Computer Vision" Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna. With the default arguments this method constructs the exact model defined in the paper. However, one can experiment with variations of the inception_v3 network by changing arguments dropout_keep_prob, min_depth and depth_multiplier. The default image size used to train this network is 299x299. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. is_training: whether is training or not. dropout_keep_prob: the percentage of activation values that are retained. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. create_aux_logits: Whether to create the auxiliary logits. scope: Optional variable_scope. global_pool: Optional boolean flag to control the avgpooling before the logits layer. If false or unset, pooling is done with a fixed window that reduces default-sized inputs to 1x1, while larger inputs lead to larger outputs. If true, any input size is pooled down to 1x1. Returns: net: a Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the non-dropped-out input to the logits layer if num_classes is 0 or None. end_points: a dictionary from components of the network to the corresponding activation. Raises: ValueError: if 'depth_multiplier' is less than or equal to zero. """ if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth = lambda d: max(int(d * depth_multiplier), min_depth) with tf.variable_scope( scope, 'InceptionV3', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_v3_base( inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier) # Auxiliary Head logits if create_aux_logits and num_classes: with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): aux_logits = end_points['Mixed_6e'] with tf.variable_scope('AuxLogits'): aux_logits = slim.avg_pool2d( aux_logits, [5, 5], stride=3, padding='VALID', scope='AvgPool_1a_5x5') aux_logits = slim.conv2d(aux_logits, depth(128), [1, 1], scope='Conv2d_1b_1x1') # Shape of feature map before the final layer. kernel_size = _reduced_kernel_size_for_small_input( aux_logits, [5, 5]) aux_logits = slim.conv2d( aux_logits, depth(768), kernel_size, weights_initializer=trunc_normal(0.01), padding='VALID', scope='Conv2d_2a_{}x{}'.format(*kernel_size)) aux_logits = slim.conv2d( aux_logits, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, weights_initializer=trunc_normal(0.001), scope='Conv2d_2b_1x1') if spatial_squeeze: aux_logits = tf.squeeze(aux_logits, [1, 2], name='SpatialSqueeze') end_points['AuxLogits'] = aux_logits # Final pooling and prediction with tf.variable_scope('Logits'): if global_pool: # Global average pooling. net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='GlobalPool') end_points['global_pool'] = net else: # Pooling with a fixed kernel size. kernel_size = _reduced_kernel_size_for_small_input(net, [8, 8]) net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a_{}x{}'.format(*kernel_size)) end_points['AvgPool_1a'] = net if not num_classes: return net, end_points # 1 x 1 x 2048 net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b') end_points['PreLogits'] = net # 2048 logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') # 1000 end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points inception_v3.default_image_size = 299 def _reduced_kernel_size_for_small_input(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are is large enough. Args: input_tensor: input tensor of size [batch_size, height, width, channels]. kernel_size: desired kernel size of length 2: [kernel_height, kernel_width] Returns: a tensor with the kernel size. TODO(jrru): Make this function work with unknown shapes. Theoretically, this can be done with the code below. Problems are two-fold: (1) If the shape was known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot handle tensors that define the kernel size. shape = tf.shape(input_tensor) return = tf.stack([tf.minimum(shape[1], kernel_size[0]), tf.minimum(shape[2], kernel_size[1])]) """ shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size_out = kernel_size else: kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])] return kernel_size_out inception_v3_arg_scope = inception_utils.inception_arg_scope
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/inception_v3.py
inception_v3.py
"""Contains a variant of the LeNet model definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim def lenet(images, num_classes=10, is_training=False, dropout_keep_prob=0.5, prediction_fn=slim.softmax, scope='LeNet'): """Creates a variant of the LeNet model. Note that since the output is a set of 'logits', the values fall in the interval of (-infinity, infinity). Consequently, to convert the outputs to a probability distribution over the characters, one will need to convert them using the softmax function: logits = lenet.lenet(images, is_training=False) probabilities = tf.nn.softmax(logits) predictions = tf.argmax(logits, 1) Args: images: A batch of `Tensors` of size [batch_size, height, width, channels]. num_classes: the number of classes in the dataset. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: specifies whether or not we're currently training the model. This variable will determine the behaviour of the dropout layer. dropout_keep_prob: the percentage of activation values that are retained. prediction_fn: a function to get predictions out of logits. scope: Optional variable_scope. Returns: net: a 2D Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the inon-dropped-out nput to the logits layer if num_classes is 0 or None. end_points: a dictionary from components of the network to the corresponding activation. """ end_points = {} with tf.variable_scope(scope, 'LeNet', [images]): net = end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1') net = end_points['pool1'] = slim.max_pool2d(net, [2, 2], 2, scope='pool1') net = end_points['conv2'] = slim.conv2d(net, 64, [5, 5], scope='conv2') net = end_points['pool2'] = slim.max_pool2d(net, [2, 2], 2, scope='pool2') net = slim.flatten(net) end_points['Flatten'] = net net = end_points['fc3'] = slim.fully_connected(net, 1024, scope='fc3') if not num_classes: return net, end_points net = end_points['dropout3'] = slim.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout3') logits = end_points['Logits'] = slim.fully_connected( net, num_classes, activation_fn=None, scope='fc4') end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points lenet.default_image_size = 28 def lenet_arg_scope(weight_decay=0.0): """Defines the default lenet argument scope. Args: weight_decay: The weight decay to use for regularizing the model. Returns: An `arg_scope` to use for the inception v3 model. """ with slim.arg_scope( [slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=tf.truncated_normal_initializer(stddev=0.1), activation_fn=tf.nn.relu) as sc: return sc
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/lenet.py
lenet.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import resnet_utils resnet_arg_scope = resnet_utils.resnet_arg_scope class NoOpScope(object): """No-op context manager.""" def __enter__(self): return None def __exit__(self, exc_type, exc_value, traceback): return False @slim.add_arg_scope def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None, use_bounded_activations=False): """Bottleneck residual unit variant with BN after convolutions. This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope. use_bounded_activations: Whether or not to use bounded activations. Bounded activations better lend themselves to quantized inference. Returns: The ResNet unit's output. """ with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc: depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4) if depth == depth_in: shortcut = resnet_utils.subsample(inputs, stride, 'shortcut') else: shortcut = slim.conv2d( inputs, depth, [1, 1], stride=stride, activation_fn=tf.nn.relu6 if use_bounded_activations else None, scope='shortcut') residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1') residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2') residual = slim.conv2d(residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3') if use_bounded_activations: # Use clip_by_value to simulate bandpass activation. residual = tf.clip_by_value(residual, -6.0, 6.0) output = tf.nn.relu6(shortcut + residual) else: output = tf.nn.relu(shortcut + residual) return slim.utils.collect_named_outputs(outputs_collections, sc.name, output) def resnet_v1(inputs, blocks, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, store_non_strided_activations=False, reuse=None, scope=None): """Generator for v1 ResNet models. This function generates a family of ResNet v1 models. See the resnet_v1_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Training for image classification on Imagenet is usually done with [224, 224] inputs, resulting in [7, 7] feature maps at the output of the last ResNet block for the ResNets defined in [1] that have nominal stride equal to 32. However, for dense prediction tasks we advise that one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block. For dense prediction tasks, the ResNet needs to run in fully-convolutional (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all have nominal stride equal to 32 and a good choice in FCN mode is to use output_stride=16 in order to increase the density of the computed features at small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If 0 or None, we return the features before the logit layer. is_training: whether batch_norm layers are in training mode. If this is set to None, the callers can specify slim.batch_norm's is_training parameter from an outer slim.arg_scope. global_pool: If True, we perform global average pooling before computing the logits. Set to True for image classification, False for dense prediction. output_stride: If None, then the output will be computed at the nominal network stride. If output_stride is not None, it specifies the requested ratio of input to output spatial resolution. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. spatial_squeeze: if True, logits is of shape [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. To use this parameter, the input images must be smaller than 300x300 pixels, in which case the output logit layer does not contain spatial information and can be removed. store_non_strided_activations: If True, we compute non-strided (undecimated) activations at the last unit of each block and store them in the `outputs_collections` before subsampling them. This gives us access to higher resolution intermediate activations which are useful in some dense prediction problems but increases 4x the computation and memory cost at the last unit of each block. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is 0 or None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes a non-zero integer, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with tf.variable_scope( scope, 'resnet_v1', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' with slim.arg_scope([slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense], outputs_collections=end_points_collection): with (slim.arg_scope([slim.batch_norm], is_training=is_training) if is_training is not None else NoOpScope()): net = inputs if include_root_block: if output_stride is not None: if output_stride % 4 != 0: raise ValueError('The output_stride needs to be a multiple of 4.') output_stride /= 4 net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1') net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1') net = resnet_utils.stack_blocks_dense(net, blocks, output_stride, store_non_strided_activations) # Convert end_points_collection into a dictionary of end_points. end_points = slim.utils.convert_collection_to_dict( end_points_collection) if global_pool: # Global average pooling. net = tf.reduce_mean( input_tensor=net, axis=[1, 2], name='pool5', keepdims=True) end_points['global_pool'] = net if num_classes: net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits') end_points[sc.name + '/logits'] = net if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='SpatialSqueeze') end_points[sc.name + '/spatial_squeeze'] = net end_points['predictions'] = slim.softmax(net, scope='predictions') return net, end_points resnet_v1.default_image_size = 224 def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }]) def resnet_v1_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, store_non_strided_activations=False, min_base_depth=8, depth_multiplier=1, reuse=None, scope='resnet_v1_50'): """ResNet-50 model of [1]. See resnet_v1() for arg and return description.""" depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth) blocks = [ resnet_v1_block('block1', base_depth=depth_func(64), num_units=3, stride=2), resnet_v1_block('block2', base_depth=depth_func(128), num_units=4, stride=2), resnet_v1_block('block3', base_depth=depth_func(256), num_units=6, stride=2), resnet_v1_block('block4', base_depth=depth_func(512), num_units=3, stride=1), ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, store_non_strided_activations=store_non_strided_activations, reuse=reuse, scope=scope) resnet_v1_50.default_image_size = resnet_v1.default_image_size def resnet_v1_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, store_non_strided_activations=False, min_base_depth=8, depth_multiplier=1, reuse=None, scope='resnet_v1_101'): """ResNet-101 model of [1]. See resnet_v1() for arg and return description.""" depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth) blocks = [ resnet_v1_block('block1', base_depth=depth_func(64), num_units=3, stride=2), resnet_v1_block('block2', base_depth=depth_func(128), num_units=4, stride=2), resnet_v1_block('block3', base_depth=depth_func(256), num_units=23, stride=2), resnet_v1_block('block4', base_depth=depth_func(512), num_units=3, stride=1), ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, store_non_strided_activations=store_non_strided_activations, reuse=reuse, scope=scope) resnet_v1_101.default_image_size = resnet_v1.default_image_size def resnet_v1_152(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, store_non_strided_activations=False, spatial_squeeze=True, min_base_depth=8, depth_multiplier=1, reuse=None, scope='resnet_v1_152'): """ResNet-152 model of [1]. See resnet_v1() for arg and return description.""" depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth) blocks = [ resnet_v1_block('block1', base_depth=depth_func(64), num_units=3, stride=2), resnet_v1_block('block2', base_depth=depth_func(128), num_units=8, stride=2), resnet_v1_block('block3', base_depth=depth_func(256), num_units=36, stride=2), resnet_v1_block('block4', base_depth=depth_func(512), num_units=3, stride=1), ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, store_non_strided_activations=store_non_strided_activations, reuse=reuse, scope=scope) resnet_v1_152.default_image_size = resnet_v1.default_image_size def resnet_v1_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, store_non_strided_activations=False, spatial_squeeze=True, min_base_depth=8, depth_multiplier=1, reuse=None, scope='resnet_v1_200'): """ResNet-200 model of [2]. See resnet_v1() for arg and return description.""" depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth) blocks = [ resnet_v1_block('block1', base_depth=depth_func(64), num_units=3, stride=2), resnet_v1_block('block2', base_depth=depth_func(128), num_units=24, stride=2), resnet_v1_block('block3', base_depth=depth_func(256), num_units=36, stride=2), resnet_v1_block('block4', base_depth=depth_func(512), num_units=3, stride=1), ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, store_non_strided_activations=store_non_strided_activations, reuse=reuse, scope=scope) resnet_v1_200.default_image_size = resnet_v1.default_image_size
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/resnet_v1.py
resnet_v1.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim # pylint: disable=g-long-lambda trunc_normal = lambda stddev: tf.truncated_normal_initializer( 0.0, stddev) def alexnet_v2_arg_scope(weight_decay=0.0005): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, biases_initializer=tf.constant_initializer(0.1), weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope([slim.conv2d], padding='SAME'): with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: return arg_sc def alexnet_v2(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='alexnet_v2', global_pool=False): """AlexNet version 2. Described in: http://arxiv.org/pdf/1404.5997v2.pdf Parameters from: github.com/akrizhevsky/cuda-convnet2/blob/master/layers/ layers-imagenet-1gpu.cfg Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224 or set global_pool=True. To use in fully convolutional mode, set spatial_squeeze to false. The LRN layers have been removed and change the initializers from random_normal_initializer to xavier_initializer. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: the number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the logits. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original AlexNet.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'alexnet_v2', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=[end_points_collection]): net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1') net = slim.max_pool2d(net, [3, 3], 2, scope='pool1') net = slim.conv2d(net, 192, [5, 5], scope='conv2') net = slim.max_pool2d(net, [3, 3], 2, scope='pool2') net = slim.conv2d(net, 384, [3, 3], scope='conv3') net = slim.conv2d(net, 384, [3, 3], scope='conv4') net = slim.conv2d(net, 256, [3, 3], scope='conv5') net = slim.max_pool2d(net, [3, 3], 2, scope='pool5') # Use conv2d instead of fully_connected layers. with slim.arg_scope( [slim.conv2d], weights_initializer=trunc_normal(0.005), biases_initializer=tf.constant_initializer(0.1)): net = slim.conv2d(net, 4096, [5, 5], padding='VALID', scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict( end_points_collection) if global_pool: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, biases_initializer=tf.zeros_initializer(), scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points alexnet_v2.default_image_size = 224
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/alexnet.py
alexnet.py
"""DCGAN generator and discriminator from https://arxiv.org/abs/1511.06434.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from math import log from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow.compat.v1 as tf import tf_slim as slim def _validate_image_inputs(inputs): inputs.get_shape().assert_has_rank(4) inputs.get_shape()[1:3].assert_is_fully_defined() if inputs.get_shape()[1] != inputs.get_shape()[2]: raise ValueError('Input tensor does not have equal width and height: ', inputs.get_shape()[1:3]) width = inputs.get_shape().as_list()[1] if log(width, 2) != int(log(width, 2)): raise ValueError('Input tensor `width` is not a power of 2: ', width) # TODO(joelshor): Use fused batch norm by default. Investigate why some GAN # setups need the gradient of gradient FusedBatchNormGrad. def discriminator(inputs, depth=64, is_training=True, reuse=None, scope='Discriminator', fused_batch_norm=False): """Discriminator network for DCGAN. Construct discriminator network from inputs to the final endpoint. Args: inputs: A tensor of size [batch_size, height, width, channels]. Must be floating point. depth: Number of channels in first convolution layer. is_training: Whether the network is for training or not. reuse: Whether or not the network variables should be reused. `scope` must be given to be reused. scope: Optional variable_scope. fused_batch_norm: If `True`, use a faster, fused implementation of batch norm. Returns: logits: The pre-softmax activations, a tensor of size [batch_size, 1] end_points: a dictionary from components of the network to their activation. Raises: ValueError: If the input image shape is not 4-dimensional, if the spatial dimensions aren't defined at graph construction time, if the spatial dimensions aren't square, or if the spatial dimensions aren't a power of two. """ normalizer_fn = slim.batch_norm normalizer_fn_args = { 'is_training': is_training, 'zero_debias_moving_mean': True, 'fused': fused_batch_norm, } _validate_image_inputs(inputs) inp_shape = inputs.get_shape().as_list()[1] end_points = {} with tf.variable_scope( scope, values=[inputs], reuse=reuse) as scope: with slim.arg_scope([normalizer_fn], **normalizer_fn_args): with slim.arg_scope([slim.conv2d], stride=2, kernel_size=4, activation_fn=tf.nn.leaky_relu): net = inputs for i in xrange(int(log(inp_shape, 2))): scope = 'conv%i' % (i + 1) current_depth = depth * 2**i normalizer_fn_ = None if i == 0 else normalizer_fn net = slim.conv2d( net, current_depth, normalizer_fn=normalizer_fn_, scope=scope) end_points[scope] = net logits = slim.conv2d(net, 1, kernel_size=1, stride=1, padding='VALID', normalizer_fn=None, activation_fn=None) logits = tf.reshape(logits, [-1, 1]) end_points['logits'] = logits return logits, end_points # TODO(joelshor): Use fused batch norm by default. Investigate why some GAN # setups need the gradient of gradient FusedBatchNormGrad. def generator(inputs, depth=64, final_size=32, num_outputs=3, is_training=True, reuse=None, scope='Generator', fused_batch_norm=False): """Generator network for DCGAN. Construct generator network from inputs to the final endpoint. Args: inputs: A tensor with any size N. [batch_size, N] depth: Number of channels in last deconvolution layer. final_size: The shape of the final output. num_outputs: Number of output features. For images, this is the number of channels. is_training: whether is training or not. reuse: Whether or not the network has its variables should be reused. scope must be given to be reused. scope: Optional variable_scope. fused_batch_norm: If `True`, use a faster, fused implementation of batch norm. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, 32, 32, channels] end_points: a dictionary from components of the network to their activation. Raises: ValueError: If `inputs` is not 2-dimensional. ValueError: If `final_size` isn't a power of 2 or is less than 8. """ normalizer_fn = slim.batch_norm normalizer_fn_args = { 'is_training': is_training, 'zero_debias_moving_mean': True, 'fused': fused_batch_norm, } inputs.get_shape().assert_has_rank(2) if log(final_size, 2) != int(log(final_size, 2)): raise ValueError('`final_size` (%i) must be a power of 2.' % final_size) if final_size < 8: raise ValueError('`final_size` (%i) must be greater than 8.' % final_size) end_points = {} num_layers = int(log(final_size, 2)) - 1 with tf.variable_scope( scope, values=[inputs], reuse=reuse) as scope: with slim.arg_scope([normalizer_fn], **normalizer_fn_args): with slim.arg_scope([slim.conv2d_transpose], normalizer_fn=normalizer_fn, stride=2, kernel_size=4): net = tf.expand_dims(tf.expand_dims(inputs, 1), 1) # First upscaling is different because it takes the input vector. current_depth = depth * 2 ** (num_layers - 1) scope = 'deconv1' net = slim.conv2d_transpose( net, current_depth, stride=1, padding='VALID', scope=scope) end_points[scope] = net for i in xrange(2, num_layers): scope = 'deconv%i' % (i) current_depth = depth * 2 ** (num_layers - i) net = slim.conv2d_transpose(net, current_depth, scope=scope) end_points[scope] = net # Last layer has different normalizer and activation. scope = 'deconv%i' % (num_layers) net = slim.conv2d_transpose( net, depth, normalizer_fn=None, activation_fn=None, scope=scope) end_points[scope] = net # Convert to proper channels. scope = 'logits' logits = slim.conv2d( net, num_outputs, normalizer_fn=None, activation_fn=None, kernel_size=1, stride=1, padding='VALID', scope=scope) end_points[scope] = logits logits.get_shape().assert_has_rank(4) logits.get_shape().assert_is_compatible_with( [None, final_size, final_size, num_outputs]) return logits, end_points
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/dcgan.py
dcgan.py
# Tensorflow mandates these. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import functools import tensorflow.compat.v1 as tf import tf_slim as slim # Conv and DepthSepConv namedtuple define layers of the MobileNet architecture # Conv defines 3x3 convolution layers # DepthSepConv defines 3x3 depthwise convolution followed by 1x1 convolution. # stride is the stride of the convolution # depth is the number of channels or filters in a layer Conv = namedtuple('Conv', ['kernel', 'stride', 'depth']) DepthSepConv = namedtuple('DepthSepConv', ['kernel', 'stride', 'depth']) # MOBILENETV1_CONV_DEFS specifies the MobileNet body MOBILENETV1_CONV_DEFS = [ Conv(kernel=[3, 3], stride=2, depth=32), DepthSepConv(kernel=[3, 3], stride=1, depth=64), DepthSepConv(kernel=[3, 3], stride=2, depth=128), DepthSepConv(kernel=[3, 3], stride=1, depth=128), DepthSepConv(kernel=[3, 3], stride=2, depth=256), DepthSepConv(kernel=[3, 3], stride=1, depth=256), DepthSepConv(kernel=[3, 3], stride=2, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=2, depth=1024), DepthSepConv(kernel=[3, 3], stride=1, depth=1024) ] def _fixed_padding(inputs, kernel_size, rate=1): """Pads the input along the spatial dimensions independently of input size. Pads the input such that if it was used in a convolution with 'VALID' padding, the output would have the same dimensions as if the unpadded input was used in a convolution with 'SAME' padding. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. rate: An integer, rate for atrous convolution. Returns: output: A tensor of size [batch, height_out, width_out, channels] with the input, either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1), kernel_size[1] + (kernel_size[1] - 1) * (rate - 1)] pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1] pad_beg = [pad_total[0] // 2, pad_total[1] // 2] pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]] padded_inputs = tf.pad( tensor=inputs, paddings=[[0, 0], [pad_beg[0], pad_end[0]], [pad_beg[1], pad_end[1]], [0, 0]]) return padded_inputs def mobilenet_v1_base(inputs, final_endpoint='Conv2d_13_pointwise', min_depth=8, depth_multiplier=1.0, conv_defs=None, output_stride=None, use_explicit_padding=False, scope=None): """Mobilenet v1. Constructs a Mobilenet v1 network from inputs to the given final endpoint. Args: inputs: a tensor of shape [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_0', 'Conv2d_1_pointwise', 'Conv2d_2_pointwise', 'Conv2d_3_pointwise', 'Conv2d_4_pointwise', 'Conv2d_5'_pointwise, 'Conv2d_6_pointwise', 'Conv2d_7_pointwise', 'Conv2d_8_pointwise', 'Conv2d_9_pointwise', 'Conv2d_10_pointwise', 'Conv2d_11_pointwise', 'Conv2d_12_pointwise', 'Conv2d_13_pointwise']. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. conv_defs: A list of ConvDef namedtuples specifying the net architecture. output_stride: An integer that specifies the requested ratio of input to output spatial resolution. If not None, then we invoke atrous convolution if necessary to prevent the network from reducing the spatial resolution of the activation maps. Allowed values are 8 (accurate fully convolutional mode), 16 (fast fully convolutional mode), 32 (classification mode). use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. scope: Optional variable_scope. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0, or the target output_stride is not allowed. """ depth = lambda d: max(int(d * depth_multiplier), min_depth) end_points = {} # Used to find thinned depths for each layer. if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') if conv_defs is None: conv_defs = MOBILENETV1_CONV_DEFS if output_stride is not None and output_stride not in [8, 16, 32]: raise ValueError('Only allowed output_stride values are 8, 16, 32.') padding = 'SAME' if use_explicit_padding: padding = 'VALID' with tf.variable_scope(scope, 'MobilenetV1', [inputs]): with slim.arg_scope([slim.conv2d, slim.separable_conv2d], padding=padding): # The current_stride variable keeps track of the output stride of the # activations, i.e., the running product of convolution strides up to the # current network layer. This allows us to invoke atrous convolution # whenever applying the next convolution would result in the activations # having output stride larger than the target output_stride. current_stride = 1 # The atrous convolution rate parameter. rate = 1 net = inputs for i, conv_def in enumerate(conv_defs): end_point_base = 'Conv2d_%d' % i if output_stride is not None and current_stride == output_stride: # If we have reached the target output_stride, then we need to employ # atrous convolution with stride=1 and multiply the atrous rate by the # current unit's stride for use in subsequent layers. layer_stride = 1 layer_rate = rate rate *= conv_def.stride else: layer_stride = conv_def.stride layer_rate = 1 current_stride *= conv_def.stride if isinstance(conv_def, Conv): end_point = end_point_base if use_explicit_padding: net = _fixed_padding(net, conv_def.kernel) net = slim.conv2d(net, depth(conv_def.depth), conv_def.kernel, stride=conv_def.stride, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points elif isinstance(conv_def, DepthSepConv): end_point = end_point_base + '_depthwise' # By passing filters=None # separable_conv2d produces only a depthwise convolution layer if use_explicit_padding: net = _fixed_padding(net, conv_def.kernel, layer_rate) net = slim.separable_conv2d(net, None, conv_def.kernel, depth_multiplier=1, stride=layer_stride, rate=layer_rate, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points end_point = end_point_base + '_pointwise' net = slim.conv2d(net, depth(conv_def.depth), [1, 1], stride=1, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points else: raise ValueError('Unknown convolution type %s for layer %d' % (conv_def.ltype, i)) raise ValueError('Unknown final endpoint %s' % final_endpoint) def mobilenet_v1(inputs, num_classes=1000, dropout_keep_prob=0.999, is_training=True, min_depth=8, depth_multiplier=1.0, conv_defs=None, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, scope='MobilenetV1', global_pool=False): """Mobilenet v1 model for classification. Args: inputs: a tensor of shape [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. dropout_keep_prob: the percentage of activation values that are retained. is_training: whether is training or not. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. conv_defs: A list of ConvDef namedtuples specifying the net architecture. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. global_pool: Optional boolean flag to control the avgpooling before the logits layer. If false or unset, pooling is done with a fixed window that reduces default-sized inputs to 1x1, while larger inputs lead to larger outputs. If true, any input size is pooled down to 1x1. Returns: net: a 2D Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the non-dropped-out input to the logits layer if num_classes is 0 or None. end_points: a dictionary from components of the network to the corresponding activation. Raises: ValueError: Input rank is invalid. """ input_shape = inputs.get_shape().as_list() if len(input_shape) != 4: raise ValueError('Invalid input tensor rank, expected 4, was: %d' % len(input_shape)) with tf.variable_scope( scope, 'MobilenetV1', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = mobilenet_v1_base(inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier, conv_defs=conv_defs) with tf.variable_scope('Logits'): if global_pool: # Global average pooling. net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net else: # Pooling with a fixed kernel size. kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7]) net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a') end_points['AvgPool_1a'] = net if not num_classes: return net, end_points # 1 x 1 x 1024 net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b') logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits if prediction_fn: end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points mobilenet_v1.default_image_size = 224 def wrapped_partial(func, *args, **kwargs): partial_func = functools.partial(func, *args, **kwargs) functools.update_wrapper(partial_func, func) return partial_func mobilenet_v1_075 = wrapped_partial(mobilenet_v1, depth_multiplier=0.75) mobilenet_v1_050 = wrapped_partial(mobilenet_v1, depth_multiplier=0.50) mobilenet_v1_025 = wrapped_partial(mobilenet_v1, depth_multiplier=0.25) def _reduced_kernel_size_for_small_input(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are large enough. Args: input_tensor: input tensor of size [batch_size, height, width, channels]. kernel_size: desired kernel size of length 2: [kernel_height, kernel_width] Returns: a tensor with the kernel size. """ shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size_out = kernel_size else: kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])] return kernel_size_out def mobilenet_v1_arg_scope( is_training=True, weight_decay=0.00004, stddev=0.09, regularize_depthwise=False, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS, normalizer_fn=slim.batch_norm): """Defines the default MobilenetV1 arg scope. Args: is_training: Whether or not we're training the model. If this is set to None, the parameter is not added to the batch_norm arg_scope. weight_decay: The weight decay to use for regularizing the model. stddev: The standard deviation of the trunctated normal weight initializer. regularize_depthwise: Whether or not apply regularization on depthwise. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. batch_norm_updates_collections: Collection for the update ops for batch norm. normalizer_fn: Normalization function to apply after convolution. Returns: An `arg_scope` to use for the mobilenet v1 model. """ batch_norm_params = { 'center': True, 'scale': True, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'updates_collections': batch_norm_updates_collections, } if is_training is not None: batch_norm_params['is_training'] = is_training # Set weight_decay for weights in Conv and DepthSepConv layers. weights_init = tf.truncated_normal_initializer(stddev=stddev) regularizer = slim.l2_regularizer(weight_decay) if regularize_depthwise: depthwise_regularizer = regularizer else: depthwise_regularizer = None with slim.arg_scope([slim.conv2d, slim.separable_conv2d], weights_initializer=weights_init, activation_fn=tf.nn.relu6, normalizer_fn=normalizer_fn): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer): with slim.arg_scope([slim.separable_conv2d], weights_regularizer=depthwise_regularizer) as sc: return sc
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/mobilenet_v1.py
mobilenet_v1.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim from nets import resnet_utils resnet_arg_scope = resnet_utils.resnet_arg_scope @slim.add_arg_scope def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None): """Bottleneck residual unit variant with BN before convolutions. This is the full preactivation residual unit variant proposed in [2]. See Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope. Returns: The ResNet unit's output. """ with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc: depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4) preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact') if depth == depth_in: shortcut = resnet_utils.subsample(inputs, stride, 'shortcut') else: shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride, normalizer_fn=None, activation_fn=None, scope='shortcut') residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, scope='conv1') residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2') residual = slim.conv2d(residual, depth, [1, 1], stride=1, normalizer_fn=None, activation_fn=None, scope='conv3') output = shortcut + residual return slim.utils.collect_named_outputs(outputs_collections, sc.name, output) def resnet_v2(inputs, blocks, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope=None): """Generator for v2 (preactivation) ResNet models. This function generates a family of ResNet v2 models. See the resnet_v2_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Training for image classification on Imagenet is usually done with [224, 224] inputs, resulting in [7, 7] feature maps at the output of the last ResNet block for the ResNets defined in [1] that have nominal stride equal to 32. However, for dense prediction tasks we advise that one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block. For dense prediction tasks, the ResNet needs to run in fully-convolutional (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all have nominal stride equal to 32 and a good choice in FCN mode is to use output_stride=16 in order to increase the density of the computed features at small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If 0 or None, we return the features before the logit layer. is_training: whether batch_norm layers are in training mode. global_pool: If True, we perform global average pooling before computing the logits. Set to True for image classification, False for dense prediction. output_stride: If None, then the output will be computed at the nominal network stride. If output_stride is not None, it specifies the requested ratio of input to output spatial resolution. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. If excluded, `inputs` should be the results of an activation-less convolution. spatial_squeeze: if True, logits is of shape [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. To use this parameter, the input images must be smaller than 300x300 pixels, in which case the output logit layer does not contain spatial information and can be removed. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is 0 or None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes is a non-zero integer, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with tf.variable_scope( scope, 'resnet_v2', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' with slim.arg_scope([slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense], outputs_collections=end_points_collection): with slim.arg_scope([slim.batch_norm], is_training=is_training): net = inputs if include_root_block: if output_stride is not None: if output_stride % 4 != 0: raise ValueError('The output_stride needs to be a multiple of 4.') output_stride /= 4 # We do not include batch normalization or activation functions in # conv1 because the first ResNet unit will perform these. Cf. # Appendix of [2]. with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None): net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1') net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1') net = resnet_utils.stack_blocks_dense(net, blocks, output_stride) # This is needed because the pre-activation variant does not have batch # normalization or activation functions in the residual unit output. See # Appendix of [2]. net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm') # Convert end_points_collection into a dictionary of end_points. end_points = slim.utils.convert_collection_to_dict( end_points_collection) if global_pool: # Global average pooling. net = tf.reduce_mean( input_tensor=net, axis=[1, 2], name='pool5', keepdims=True) end_points['global_pool'] = net if num_classes: net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits') end_points[sc.name + '/logits'] = net if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='SpatialSqueeze') end_points[sc.name + '/spatial_squeeze'] = net end_points['predictions'] = slim.softmax(net, scope='predictions') return net, end_points resnet_v2.default_image_size = 224 def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }]) resnet_v2.default_image_size = 224 def resnet_v2_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_50'): """ResNet-50 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), resnet_v2_block('block3', base_depth=256, num_units=6, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_50.default_image_size = resnet_v2.default_image_size def resnet_v2_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), resnet_v2_block('block3', base_depth=256, num_units=23, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_101.default_image_size = resnet_v2.default_image_size def resnet_v2_152(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_152'): """ResNet-152 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=8, stride=2), resnet_v2_block('block3', base_depth=256, num_units=36, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_152.default_image_size = resnet_v2.default_image_size def resnet_v2_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_200'): """ResNet-200 model of [2]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=24, stride=2), resnet_v2_block('block3', base_depth=256, num_units=36, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_200.default_image_size = resnet_v2.default_image_size
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/resnet_v2.py
resnet_v2.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc: return arg_sc def vgg_a(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, reuse=None, scope='vgg_a', fc_conv_padding='VALID', global_pool=False): """Oxford Net VGG 11-Layers version A Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope(scope, 'vgg_a', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 1, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 1, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 2, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_a.default_image_size = 224 def vgg_16(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, reuse=None, scope='vgg_16', fc_conv_padding='VALID', global_pool=False): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope( scope, 'vgg_16', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_16.default_image_size = 224 def vgg_19(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, reuse=None, scope='vgg_19', fc_conv_padding='VALID', global_pool=False): """Oxford Net VGG 19-Layers version E Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer are returned instead. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional scope for the variables. fc_conv_padding: the type of padding to use for the fully connected layer that is implemented as a convolutional layer. Use 'SAME' padding if you are applying the network in a fully convolutional manner and want to get a prediction map downsampled by a factor of 32 as an output. Otherwise, the output prediction map will be (input / 32) - 6 in case of 'VALID' padding. global_pool: Optional boolean flag. If True, the input to the classification layer is avgpooled to size 1x1, for any input size. (This is not part of the original VGG architecture.) Returns: net: the output of the logits layer (if num_classes is a non-zero integer), or the non-dropped-out input to the logits layer (if num_classes is 0 or None). end_points: a dict of tensors with intermediate activations. """ with tf.variable_scope( scope, 'vgg_19', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 4, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if global_pool: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool') end_points['global_pool'] = net if num_classes: net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_19.default_image_size = 224 # Alias vgg_d = vgg_16 vgg_e = vgg_19
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/vgg.py
vgg.py
"""Convolution blocks for mobilenet.""" import contextlib import functools import tensorflow.compat.v1 as tf import tf_slim as slim def _fixed_padding(inputs, kernel_size, rate=1): """Pads the input along the spatial dimensions independently of input size. Pads the input such that if it was used in a convolution with 'VALID' padding, the output would have the same dimensions as if the unpadded input was used in a convolution with 'SAME' padding. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. rate: An integer, rate for atrous convolution. Returns: output: A tensor of size [batch, height_out, width_out, channels] with the input, either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1), kernel_size[0] + (kernel_size[0] - 1) * (rate - 1)] pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1] pad_beg = [pad_total[0] // 2, pad_total[1] // 2] pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]] padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg[0], pad_end[0]], [pad_beg[1], pad_end[1]], [0, 0]]) return padded_inputs def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def _split_divisible(num, num_ways, divisible_by=8): """Evenly splits num, num_ways so each piece is a multiple of divisible_by.""" assert num % divisible_by == 0 assert num / num_ways >= divisible_by # Note: want to round down, we adjust each split to match the total. base = num // num_ways // divisible_by * divisible_by result = [] accumulated = 0 for i in range(num_ways): r = base while accumulated + r < num * (i + 1) / num_ways: r += divisible_by result.append(r) accumulated += r assert accumulated == num return result @contextlib.contextmanager def _v1_compatible_scope_naming(scope): """v1 compatible scope naming.""" if scope is None: # Create uniqified separable blocks. with tf.variable_scope(None, default_name='separable') as s, \ tf.name_scope(s.original_name_scope): yield '' else: # We use scope_depthwise, scope_pointwise for compatibility with V1 ckpts. # which provide numbered scopes. scope += '_' yield scope @slim.add_arg_scope def split_separable_conv2d(input_tensor, num_outputs, scope=None, normalizer_fn=None, stride=1, rate=1, endpoints=None, use_explicit_padding=False): """Separable mobilenet V1 style convolution. Depthwise convolution, with default non-linearity, followed by 1x1 depthwise convolution. This is similar to slim.separable_conv2d, but differs in tha it applies batch normalization and non-linearity to depthwise. This matches the basic building of Mobilenet Paper (https://arxiv.org/abs/1704.04861) Args: input_tensor: input num_outputs: number of outputs scope: optional name of the scope. Note if provided it will use scope_depthwise for deptwhise, and scope_pointwise for pointwise. normalizer_fn: which normalizer function to use for depthwise/pointwise stride: stride rate: output rate (also known as dilation rate) endpoints: optional, if provided, will export additional tensors to it. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. Returns: output tesnor """ with _v1_compatible_scope_naming(scope) as scope: dw_scope = scope + 'depthwise' endpoints = endpoints if endpoints is not None else {} kernel_size = [3, 3] padding = 'SAME' if use_explicit_padding: padding = 'VALID' input_tensor = _fixed_padding(input_tensor, kernel_size, rate) net = slim.separable_conv2d( input_tensor, None, kernel_size, depth_multiplier=1, stride=stride, rate=rate, normalizer_fn=normalizer_fn, padding=padding, scope=dw_scope) endpoints[dw_scope] = net pw_scope = scope + 'pointwise' net = slim.conv2d( net, num_outputs, [1, 1], stride=1, normalizer_fn=normalizer_fn, scope=pw_scope) endpoints[pw_scope] = net return net def expand_input_by_factor(n, divisible_by=8): return lambda num_inputs, **_: _make_divisible(num_inputs * n, divisible_by) def split_conv(input_tensor, num_outputs, num_ways, scope, divisible_by=8, **kwargs): """Creates a split convolution. Split convolution splits the input and output into 'num_blocks' blocks of approximately the same size each, and only connects $i$-th input to $i$ output. Args: input_tensor: input tensor num_outputs: number of output filters num_ways: num blocks to split by. scope: scope for all the operators. divisible_by: make sure that every part is divisiable by this. **kwargs: will be passed directly into conv2d operator Returns: tensor """ b = input_tensor.get_shape().as_list()[3] if num_ways == 1 or min(b // num_ways, num_outputs // num_ways) < divisible_by: # Don't do any splitting if we end up with less than 8 filters # on either side. return slim.conv2d(input_tensor, num_outputs, [1, 1], scope=scope, **kwargs) outs = [] input_splits = _split_divisible(b, num_ways, divisible_by=divisible_by) output_splits = _split_divisible( num_outputs, num_ways, divisible_by=divisible_by) inputs = tf.split(input_tensor, input_splits, axis=3, name='split_' + scope) base = scope for i, (input_tensor, out_size) in enumerate(zip(inputs, output_splits)): scope = base + '_part_%d' % (i,) n = slim.conv2d(input_tensor, out_size, [1, 1], scope=scope, **kwargs) n = tf.identity(n, scope + '_output') outs.append(n) return tf.concat(outs, 3, name=scope + '_concat') @slim.add_arg_scope def expanded_conv(input_tensor, num_outputs, expansion_size=expand_input_by_factor(6), stride=1, rate=1, kernel_size=(3, 3), residual=True, normalizer_fn=None, split_projection=1, split_expansion=1, split_divisible_by=8, expansion_transform=None, depthwise_location='expansion', depthwise_channel_multiplier=1, endpoints=None, use_explicit_padding=False, padding='SAME', inner_activation_fn=None, depthwise_activation_fn=None, project_activation_fn=tf.identity, depthwise_fn=slim.separable_conv2d, expansion_fn=split_conv, projection_fn=split_conv, scope=None): """Depthwise Convolution Block with expansion. Builds a composite convolution that has the following structure expansion (1x1) -> depthwise (kernel_size) -> projection (1x1) Args: input_tensor: input num_outputs: number of outputs in the final layer. expansion_size: the size of expansion, could be a constant or a callable. If latter it will be provided 'num_inputs' as an input. For forward compatibility it should accept arbitrary keyword arguments. Default will expand the input by factor of 6. stride: depthwise stride rate: depthwise rate kernel_size: depthwise kernel residual: whether to include residual connection between input and output. normalizer_fn: batchnorm or otherwise split_projection: how many ways to split projection operator (that is conv expansion->bottleneck) split_expansion: how many ways to split expansion op (that is conv bottleneck->expansion) ops will keep depth divisible by this value. split_divisible_by: make sure every split group is divisible by this number. expansion_transform: Optional function that takes expansion as a single input and returns output. depthwise_location: where to put depthwise covnvolutions supported values None, 'input', 'output', 'expansion' depthwise_channel_multiplier: depthwise channel multiplier: each input will replicated (with different filters) that many times. So if input had c channels, output will have c x depthwise_channel_multpilier. endpoints: An optional dictionary into which intermediate endpoints are placed. The keys "expansion_output", "depthwise_output", "projection_output" and "expansion_transform" are always populated, even if the corresponding functions are not invoked. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. padding: Padding type to use if `use_explicit_padding` is not set. inner_activation_fn: activation function to use in all inner convolutions. If none, will rely on slim default scopes. depthwise_activation_fn: activation function to use for deptwhise only. If not provided will rely on slim default scopes. If both inner_activation_fn and depthwise_activation_fn are provided, depthwise_activation_fn takes precedence over inner_activation_fn. project_activation_fn: activation function for the project layer. (note this layer is not affected by inner_activation_fn) depthwise_fn: Depthwise convolution function. expansion_fn: Expansion convolution function. If use custom function then "split_expansion" and "split_divisible_by" will be ignored. projection_fn: Projection convolution function. If use custom function then "split_projection" and "split_divisible_by" will be ignored. scope: optional scope. Returns: Tensor of depth num_outputs Raises: TypeError: on inval """ conv_defaults = {} dw_defaults = {} if inner_activation_fn is not None: conv_defaults['activation_fn'] = inner_activation_fn dw_defaults['activation_fn'] = inner_activation_fn if depthwise_activation_fn is not None: dw_defaults['activation_fn'] = depthwise_activation_fn # pylint: disable=g-backslash-continuation with tf.variable_scope(scope, default_name='expanded_conv') as s, \ tf.name_scope(s.original_name_scope), \ slim.arg_scope((slim.conv2d,), **conv_defaults), \ slim.arg_scope((slim.separable_conv2d,), **dw_defaults): prev_depth = input_tensor.get_shape().as_list()[3] if depthwise_location not in [None, 'input', 'output', 'expansion']: raise TypeError('%r is unknown value for depthwise_location' % depthwise_location) if use_explicit_padding: if padding != 'SAME': raise TypeError('`use_explicit_padding` should only be used with ' '"SAME" padding.') padding = 'VALID' depthwise_func = functools.partial( depthwise_fn, num_outputs=None, kernel_size=kernel_size, depth_multiplier=depthwise_channel_multiplier, stride=stride, rate=rate, normalizer_fn=normalizer_fn, padding=padding, scope='depthwise') # b1 -> b2 * r -> b2 # i -> (o * r) (bottleneck) -> o input_tensor = tf.identity(input_tensor, 'input') net = input_tensor if depthwise_location == 'input': if use_explicit_padding: net = _fixed_padding(net, kernel_size, rate) net = depthwise_func(net, activation_fn=None) net = tf.identity(net, name='depthwise_output') if endpoints is not None: endpoints['depthwise_output'] = net if callable(expansion_size): inner_size = expansion_size(num_inputs=prev_depth) else: inner_size = expansion_size if inner_size > net.shape[3]: if expansion_fn == split_conv: expansion_fn = functools.partial( expansion_fn, num_ways=split_expansion, divisible_by=split_divisible_by, stride=1) net = expansion_fn( net, inner_size, scope='expand', normalizer_fn=normalizer_fn) net = tf.identity(net, 'expansion_output') if endpoints is not None: endpoints['expansion_output'] = net if depthwise_location == 'expansion': if use_explicit_padding: net = _fixed_padding(net, kernel_size, rate) net = depthwise_func(net) net = tf.identity(net, name='depthwise_output') if endpoints is not None: endpoints['depthwise_output'] = net if expansion_transform: net = expansion_transform(expansion_tensor=net, input_tensor=input_tensor) # Note in contrast with expansion, we always have # projection to produce the desired output size. if projection_fn == split_conv: projection_fn = functools.partial( projection_fn, num_ways=split_projection, divisible_by=split_divisible_by, stride=1) net = projection_fn( net, num_outputs, scope='project', normalizer_fn=normalizer_fn, activation_fn=project_activation_fn) if endpoints is not None: endpoints['projection_output'] = net if depthwise_location == 'output': if use_explicit_padding: net = _fixed_padding(net, kernel_size, rate) net = depthwise_func(net, activation_fn=None) net = tf.identity(net, name='depthwise_output') if endpoints is not None: endpoints['depthwise_output'] = net if callable(residual): # custom residual net = residual(input_tensor=input_tensor, output_tensor=net) elif (residual and # stride check enforces that we don't add residuals when spatial # dimensions are None stride == 1 and # Depth matches net.get_shape().as_list()[3] == input_tensor.get_shape().as_list()[3]): net += input_tensor return tf.identity(net, name='output') @slim.add_arg_scope def squeeze_excite(input_tensor, divisible_by=8, squeeze_factor=3, inner_activation_fn=tf.nn.relu, gating_fn=tf.sigmoid, squeeze_input_tensor=None, pool=None): """Squeeze excite block for Mobilenet V3. If the squeeze_input_tensor - or the input_tensor if squeeze_input_tensor is None - contains variable dimensions (Nonetype in tensor shape), perform average pooling (as the first step in the squeeze operation) by calling reduce_mean across the H/W of the input tensor. Args: input_tensor: input tensor to apply SE block to. divisible_by: ensures all inner dimensions are divisible by this number. squeeze_factor: the factor of squeezing in the inner fully connected layer inner_activation_fn: non-linearity to be used in inner layer. gating_fn: non-linearity to be used for final gating function squeeze_input_tensor: custom tensor to use for computing gating activation. If provided the result will be input_tensor * SE(squeeze_input_tensor) instead of input_tensor * SE(input_tensor). pool: if number is provided will average pool with that kernel size to compute inner tensor, followed by bilinear upsampling. Returns: Gated input_tensor. (e.g. X * SE(X)) """ with tf.variable_scope('squeeze_excite'): if squeeze_input_tensor is None: squeeze_input_tensor = input_tensor input_size = input_tensor.shape.as_list()[1:3] pool_height, pool_width = squeeze_input_tensor.shape.as_list()[1:3] stride = 1 if pool is not None and pool_height >= pool: pool_height, pool_width, stride = pool, pool, pool input_channels = squeeze_input_tensor.shape.as_list()[3] output_channels = input_tensor.shape.as_list()[3] squeeze_channels = _make_divisible( input_channels / squeeze_factor, divisor=divisible_by) if pool is None: pooled = tf.reduce_mean(squeeze_input_tensor, axis=[1, 2], keepdims=True) else: pooled = tf.nn.avg_pool( squeeze_input_tensor, (1, pool_height, pool_width, 1), strides=(1, stride, stride, 1), padding='VALID') squeeze = slim.conv2d( pooled, kernel_size=(1, 1), num_outputs=squeeze_channels, normalizer_fn=None, activation_fn=inner_activation_fn) excite_outputs = output_channels excite = slim.conv2d(squeeze, num_outputs=excite_outputs, kernel_size=[1, 1], normalizer_fn=None, activation_fn=gating_fn) if pool is not None: # Note: As of 03/20/2019 only BILINEAR (the default) with # align_corners=True has gradients implemented in TPU. excite = tf.image.resize_images( excite, input_size, align_corners=True) result = input_tensor * excite return result
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/mobilenet/conv_blocks.py
conv_blocks.py
"""Mobilenet Base Class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import contextlib import copy import os import tensorflow.compat.v1 as tf import tf_slim as slim @slim.add_arg_scope def apply_activation(x, name=None, activation_fn=None): return activation_fn(x, name=name) if activation_fn else x def _fixed_padding(inputs, kernel_size, rate=1): """Pads the input along the spatial dimensions independently of input size. Pads the input such that if it was used in a convolution with 'VALID' padding, the output would have the same dimensions as if the unpadded input was used in a convolution with 'SAME' padding. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. rate: An integer, rate for atrous convolution. Returns: output: A tensor of size [batch, height_out, width_out, channels] with the input, either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1), kernel_size[0] + (kernel_size[0] - 1) * (rate - 1)] pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1] pad_beg = [pad_total[0] // 2, pad_total[1] // 2] pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]] padded_inputs = tf.pad( tensor=inputs, paddings=[[0, 0], [pad_beg[0], pad_end[0]], [pad_beg[1], pad_end[1]], [0, 0]]) return padded_inputs def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return int(new_v) @contextlib.contextmanager def _set_arg_scope_defaults(defaults): """Sets arg scope defaults for all items present in defaults. Args: defaults: dictionary/list of pairs, containing a mapping from function to a dictionary of default args. Yields: context manager where all defaults are set. """ if hasattr(defaults, 'items'): items = list(defaults.items()) else: items = defaults if not items: yield else: func, default_arg = items[0] with slim.arg_scope(func, **default_arg): with _set_arg_scope_defaults(items[1:]): yield @slim.add_arg_scope def depth_multiplier(output_params, multiplier, divisible_by=8, min_depth=8, **unused_kwargs): if 'num_outputs' not in output_params: return d = output_params['num_outputs'] output_params['num_outputs'] = _make_divisible(d * multiplier, divisible_by, min_depth) _Op = collections.namedtuple('Op', ['op', 'params', 'multiplier_func']) def op(opfunc, multiplier_func=depth_multiplier, **params): multiplier = params.pop('multiplier_transform', multiplier_func) return _Op(opfunc, params=params, multiplier_func=multiplier) class NoOpScope(object): """No-op context manager.""" def __enter__(self): return None def __exit__(self, exc_type, exc_value, traceback): return False def safe_arg_scope(funcs, **kwargs): """Returns `slim.arg_scope` with all None arguments removed. Args: funcs: Functions to pass to `arg_scope`. **kwargs: Arguments to pass to `arg_scope`. Returns: arg_scope or No-op context manager. Note: can be useful if None value should be interpreted as "do not overwrite this parameter value". """ filtered_args = {name: value for name, value in kwargs.items() if value is not None} if filtered_args: return slim.arg_scope(funcs, **filtered_args) else: return NoOpScope() @slim.add_arg_scope def mobilenet_base( # pylint: disable=invalid-name inputs, conv_defs, multiplier=1.0, final_endpoint=None, output_stride=None, use_explicit_padding=False, scope=None, is_training=False): """Mobilenet base network. Constructs a network from inputs to the given final endpoint. By default the network is constructed in inference mode. To create network in training mode use: with slim.arg_scope(mobilenet.training_scope()): logits, endpoints = mobilenet_base(...) Args: inputs: a tensor of shape [batch_size, height, width, channels]. conv_defs: A list of op(...) layers specifying the net architecture. multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. final_endpoint: The name of last layer, for early termination for for V1-based networks: last layer is "layer_14", for V2: "layer_20" output_stride: An integer that specifies the requested ratio of input to output spatial resolution. If not None, then we invoke atrous convolution if necessary to prevent the network from reducing the spatial resolution of the activation maps. Allowed values are 1 or any even number, excluding zero. Typical values are 8 (accurate fully convolutional mode), 16 (fast fully convolutional mode), and 32 (classification mode). NOTE- output_stride relies on all consequent operators to support dilated operators via "rate" parameter. This might require wrapping non-conv operators to operate properly. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. scope: optional variable scope. is_training: How to setup batch_norm and other ops. Note: most of the time this does not need be set directly. Use mobilenet.training_scope() to set up training instead. This parameter is here for backward compatibility only. It is safe to set it to the value matching training_scope(is_training=...). It is also safe to explicitly set it to False, even if there is outer training_scope set to to training. (The network will be built in inference mode). If this is set to None, no arg_scope is added for slim.batch_norm's is_training parameter. Returns: tensor_out: output tensor. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: depth_multiplier <= 0, or the target output_stride is not allowed. """ if multiplier <= 0: raise ValueError('multiplier is not greater than zero.') # Set conv defs defaults and overrides. conv_defs_defaults = conv_defs.get('defaults', {}) conv_defs_overrides = conv_defs.get('overrides', {}) if use_explicit_padding: conv_defs_overrides = copy.deepcopy(conv_defs_overrides) conv_defs_overrides[ (slim.conv2d, slim.separable_conv2d)] = {'padding': 'VALID'} if output_stride is not None: if output_stride == 0 or (output_stride > 1 and output_stride % 2): raise ValueError('Output stride must be None, 1 or a multiple of 2.') # a) Set the tensorflow scope # b) set padding to default: note we might consider removing this # since it is also set by mobilenet_scope # c) set all defaults # d) set all extra overrides. # pylint: disable=g-backslash-continuation with _scope_all(scope, default_scope='Mobilenet'), \ safe_arg_scope([slim.batch_norm], is_training=is_training), \ _set_arg_scope_defaults(conv_defs_defaults), \ _set_arg_scope_defaults(conv_defs_overrides): # The current_stride variable keeps track of the output stride of the # activations, i.e., the running product of convolution strides up to the # current network layer. This allows us to invoke atrous convolution # whenever applying the next convolution would result in the activations # having output stride larger than the target output_stride. current_stride = 1 # The atrous convolution rate parameter. rate = 1 net = inputs # Insert default parameters before the base scope which includes # any custom overrides set in mobilenet. end_points = {} scopes = {} for i, opdef in enumerate(conv_defs['spec']): params = dict(opdef.params) opdef.multiplier_func(params, multiplier) stride = params.get('stride', 1) if output_stride is not None and current_stride == output_stride: # If we have reached the target output_stride, then we need to employ # atrous convolution with stride=1 and multiply the atrous rate by the # current unit's stride for use in subsequent layers. layer_stride = 1 layer_rate = rate rate *= stride else: layer_stride = stride layer_rate = 1 current_stride *= stride # Update params. params['stride'] = layer_stride # Only insert rate to params if rate > 1 and kernel size is not [1, 1]. if layer_rate > 1: if tuple(params.get('kernel_size', [])) != (1, 1): # We will apply atrous rate in the following cases: # 1) When kernel_size is not in params, the operation then uses # default kernel size 3x3. # 2) When kernel_size is in params, and if the kernel_size is not # equal to (1, 1) (there is no need to apply atrous convolution to # any 1x1 convolution). params['rate'] = layer_rate # Set padding if use_explicit_padding: if 'kernel_size' in params: net = _fixed_padding(net, params['kernel_size'], layer_rate) else: params['use_explicit_padding'] = True end_point = 'layer_%d' % (i + 1) try: net = opdef.op(net, **params) except Exception: print('Failed to create op %i: %r params: %r' % (i, opdef, params)) raise end_points[end_point] = net scope = os.path.dirname(net.name) scopes[scope] = end_point if final_endpoint is not None and end_point == final_endpoint: break # Add all tensors that end with 'output' to # endpoints for t in net.graph.get_operations(): scope = os.path.dirname(t.name) bn = os.path.basename(t.name) if scope in scopes and t.name.endswith('output'): end_points[scopes[scope] + '/' + bn] = t.outputs[0] return net, end_points @contextlib.contextmanager def _scope_all(scope, default_scope=None): with tf.variable_scope(scope, default_name=default_scope) as s,\ tf.name_scope(s.original_name_scope): yield s @slim.add_arg_scope def mobilenet(inputs, num_classes=1001, prediction_fn=slim.softmax, reuse=None, scope='Mobilenet', base_only=False, use_reduce_mean_for_pooling=False, **mobilenet_args): """Mobilenet model for classification, supports both V1 and V2. Note: default mode is inference, use mobilenet.training_scope to create training network. Args: inputs: a tensor of shape [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. prediction_fn: a function to get predictions out of logits (default softmax). reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. base_only: if True will only create the base of the network (no pooling and no logits). use_reduce_mean_for_pooling: if True use the reduce_mean for pooling. If True use the global_pool function that provides some optimization. **mobilenet_args: passed to mobilenet_base verbatim. - conv_defs: list of conv defs - multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. - output_stride: will ensure that the last layer has at most total stride. If the architecture calls for more stride than that provided (e.g. output_stride=16, but the architecture has 5 stride=2 operators), it will replace output_stride with fractional convolutions using Atrous Convolutions. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation tensor. Raises: ValueError: Input rank is invalid. """ is_training = mobilenet_args.get('is_training', False) input_shape = inputs.get_shape().as_list() if len(input_shape) != 4: raise ValueError('Expected rank 4 input, was: %d' % len(input_shape)) with tf.variable_scope(scope, 'Mobilenet', reuse=reuse) as scope: inputs = tf.identity(inputs, 'input') net, end_points = mobilenet_base(inputs, scope=scope, **mobilenet_args) if base_only: return net, end_points net = tf.identity(net, name='embedding') with tf.variable_scope('Logits'): net = global_pool(net, use_reduce_mean_for_pooling) end_points['global_pool'] = net if not num_classes: return net, end_points net = slim.dropout(net, scope='Dropout', is_training=is_training) # 1 x 1 x num_classes # Note: legacy scope name. logits = slim.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, biases_initializer=tf.zeros_initializer(), scope='Conv2d_1c_1x1') logits = tf.squeeze(logits, [1, 2]) logits = tf.identity(logits, name='output') end_points['Logits'] = logits if prediction_fn: end_points['Predictions'] = prediction_fn(logits, 'Predictions') return logits, end_points def global_pool(input_tensor, use_reduce_mean_for_pooling=False, pool_op=tf.nn.avg_pool2d): """Applies avg pool to produce 1x1 output. NOTE: This function is funcitonally equivalenet to reduce_mean, but it has baked in average pool which has better support across hardware. Args: input_tensor: input tensor use_reduce_mean_for_pooling: if True use reduce_mean for pooling pool_op: pooling op (avg pool is default) Returns: a tensor batch_size x 1 x 1 x depth. """ if use_reduce_mean_for_pooling: return tf.reduce_mean( input_tensor, [1, 2], keepdims=True, name='ReduceMean') else: shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size = tf.convert_to_tensor(value=[ 1, tf.shape(input=input_tensor)[1], tf.shape(input=input_tensor)[2], 1 ]) else: kernel_size = [1, shape[1], shape[2], 1] output = pool_op( input_tensor, ksize=kernel_size, strides=[1, 1, 1, 1], padding='VALID') # Recover output shape, for unknown shape. output.set_shape([None, 1, 1, None]) return output def training_scope(is_training=True, weight_decay=0.00004, stddev=0.09, dropout_keep_prob=0.8, bn_decay=0.997): """Defines Mobilenet training scope. Usage: with slim.arg_scope(mobilenet.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) # the network created will be trainble with dropout/batch norm # initialized appropriately. Args: is_training: if set to False this will ensure that all customizations are set to non-training mode. This might be helpful for code that is reused across both training/evaluation, but most of the time training_scope with value False is not needed. If this is set to None, the parameters is not added to the batch_norm arg_scope. weight_decay: The weight decay to use for regularizing the model. stddev: Standard deviation for initialization, if negative uses xavier. dropout_keep_prob: dropout keep probability (not set if equals to None). bn_decay: decay for the batch norm moving averages (not set if equals to None). Returns: An argument scope to use via arg_scope. """ # Note: do not introduce parameters that would change the inference # model here (for example whether to use bias), modify conv_def instead. batch_norm_params = { 'decay': bn_decay, 'is_training': is_training } if stddev < 0: weight_intitializer = slim.initializers.xavier_initializer() else: weight_intitializer = tf.truncated_normal_initializer( stddev=stddev) # Set weight_decay for weights in Conv and FC layers. with slim.arg_scope( [slim.conv2d, slim.fully_connected, slim.separable_conv2d], weights_initializer=weight_intitializer, normalizer_fn=slim.batch_norm), \ slim.arg_scope([mobilenet_base, mobilenet], is_training=is_training),\ safe_arg_scope([slim.batch_norm], **batch_norm_params), \ safe_arg_scope([slim.dropout], is_training=is_training, keep_prob=dropout_keep_prob), \ slim.arg_scope([slim.conv2d], \ weights_regularizer=slim.l2_regularizer(weight_decay)), \ slim.arg_scope([slim.separable_conv2d], weights_regularizer=None) as s: return s
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/mobilenet/mobilenet.py
mobilenet.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import functools import numpy as np import tensorflow.compat.v1 as tf import tf_slim as slim from nets.mobilenet import conv_blocks as ops from nets.mobilenet import mobilenet as lib op = lib.op expand_input = ops.expand_input_by_factor # Squeeze Excite with all parameters filled-in, we use hard-sigmoid # for gating function and relu for inner activation function. squeeze_excite = functools.partial( ops.squeeze_excite, squeeze_factor=4, inner_activation_fn=tf.nn.relu, gating_fn=lambda x: tf.nn.relu6(x+3)*0.16667) # Wrap squeeze excite op as expansion_transform that takes # both expansion and input tensor. _se4 = lambda expansion_tensor, input_tensor: squeeze_excite(expansion_tensor) def hard_swish(x): with tf.name_scope('hard_swish'): return x * tf.nn.relu6(x + np.float32(3)) * np.float32(1. / 6.) def reduce_to_1x1(input_tensor, default_size=7, **kwargs): h, w = input_tensor.shape.as_list()[1:3] if h is not None and w == h: k = [h, h] else: k = [default_size, default_size] return slim.avg_pool2d(input_tensor, kernel_size=k, **kwargs) def mbv3_op(ef, n, k, s=1, act=tf.nn.relu, se=None, **kwargs): """Defines a single Mobilenet V3 convolution block. Args: ef: expansion factor n: number of output channels k: stride of depthwise s: stride act: activation function in inner layers se: squeeze excite function. **kwargs: passed to expanded_conv Returns: An object (lib._Op) for inserting in conv_def, representing this operation. """ return op( ops.expanded_conv, expansion_size=expand_input(ef), kernel_size=(k, k), stride=s, num_outputs=n, inner_activation_fn=act, expansion_transform=se, **kwargs) def mbv3_fused(ef, n, k, s=1, **kwargs): """Defines a single Mobilenet V3 convolution block. Args: ef: expansion factor n: number of output channels k: stride of depthwise s: stride **kwargs: will be passed to mbv3_op Returns: An object (lib._Op) for inserting in conv_def, representing this operation. """ expansion_fn = functools.partial(slim.conv2d, kernel_size=k, stride=s) return mbv3_op( ef, n, k=1, s=s, depthwise_location=None, expansion_fn=expansion_fn, **kwargs) mbv3_op_se = functools.partial(mbv3_op, se=_se4) DEFAULTS = { (ops.expanded_conv,): dict( normalizer_fn=slim.batch_norm, residual=True), (slim.conv2d, slim.fully_connected, slim.separable_conv2d): { 'normalizer_fn': slim.batch_norm, 'activation_fn': tf.nn.relu, }, (slim.batch_norm,): { 'center': True, 'scale': True }, } DEFAULTS_GROUP_NORM = { (ops.expanded_conv,): dict(normalizer_fn=slim.group_norm, residual=True), (slim.conv2d, slim.fully_connected, slim.separable_conv2d): { 'normalizer_fn': slim.group_norm, 'activation_fn': tf.nn.relu, }, (slim.group_norm,): { 'groups': 8 }, } # Compatible checkpoint: http://mldash/5511169891790690458#scalars V3_LARGE = dict( defaults=dict(DEFAULTS), spec=([ # stage 1 op(slim.conv2d, stride=2, num_outputs=16, kernel_size=(3, 3), activation_fn=hard_swish), mbv3_op(ef=1, n=16, k=3), mbv3_op(ef=4, n=24, k=3, s=2), mbv3_op(ef=3, n=24, k=3, s=1), mbv3_op_se(ef=3, n=40, k=5, s=2), mbv3_op_se(ef=3, n=40, k=5, s=1), mbv3_op_se(ef=3, n=40, k=5, s=1), mbv3_op(ef=6, n=80, k=3, s=2, act=hard_swish), mbv3_op(ef=2.5, n=80, k=3, s=1, act=hard_swish), mbv3_op(ef=184/80., n=80, k=3, s=1, act=hard_swish), mbv3_op(ef=184/80., n=80, k=3, s=1, act=hard_swish), mbv3_op_se(ef=6, n=112, k=3, s=1, act=hard_swish), mbv3_op_se(ef=6, n=112, k=3, s=1, act=hard_swish), mbv3_op_se(ef=6, n=160, k=5, s=2, act=hard_swish), mbv3_op_se(ef=6, n=160, k=5, s=1, act=hard_swish), mbv3_op_se(ef=6, n=160, k=5, s=1, act=hard_swish), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=960, activation_fn=hard_swish), op(reduce_to_1x1, default_size=7, stride=1, padding='VALID'), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=1280, normalizer_fn=None, activation_fn=hard_swish) ])) # 72.2% accuracy. V3_LARGE_MINIMALISTIC = dict( defaults=dict(DEFAULTS), spec=([ # stage 1 op(slim.conv2d, stride=2, num_outputs=16, kernel_size=(3, 3)), mbv3_op(ef=1, n=16, k=3), mbv3_op(ef=4, n=24, k=3, s=2), mbv3_op(ef=3, n=24, k=3, s=1), mbv3_op(ef=3, n=40, k=3, s=2), mbv3_op(ef=3, n=40, k=3, s=1), mbv3_op(ef=3, n=40, k=3, s=1), mbv3_op(ef=6, n=80, k=3, s=2), mbv3_op(ef=2.5, n=80, k=3, s=1), mbv3_op(ef=184 / 80., n=80, k=3, s=1), mbv3_op(ef=184 / 80., n=80, k=3, s=1), mbv3_op(ef=6, n=112, k=3, s=1), mbv3_op(ef=6, n=112, k=3, s=1), mbv3_op(ef=6, n=160, k=3, s=2), mbv3_op(ef=6, n=160, k=3, s=1), mbv3_op(ef=6, n=160, k=3, s=1), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=960), op(reduce_to_1x1, default_size=7, stride=1, padding='VALID'), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=1280, normalizer_fn=None) ])) # Compatible run: http://mldash/2023283040014348118#scalars V3_SMALL = dict( defaults=dict(DEFAULTS), spec=([ # stage 1 op(slim.conv2d, stride=2, num_outputs=16, kernel_size=(3, 3), activation_fn=hard_swish), mbv3_op_se(ef=1, n=16, k=3, s=2), mbv3_op(ef=72./16, n=24, k=3, s=2), mbv3_op(ef=(88./24), n=24, k=3, s=1), mbv3_op_se(ef=4, n=40, k=5, s=2, act=hard_swish), mbv3_op_se(ef=6, n=40, k=5, s=1, act=hard_swish), mbv3_op_se(ef=6, n=40, k=5, s=1, act=hard_swish), mbv3_op_se(ef=3, n=48, k=5, s=1, act=hard_swish), mbv3_op_se(ef=3, n=48, k=5, s=1, act=hard_swish), mbv3_op_se(ef=6, n=96, k=5, s=2, act=hard_swish), mbv3_op_se(ef=6, n=96, k=5, s=1, act=hard_swish), mbv3_op_se(ef=6, n=96, k=5, s=1, act=hard_swish), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=576, activation_fn=hard_swish), op(reduce_to_1x1, default_size=7, stride=1, padding='VALID'), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=1024, normalizer_fn=None, activation_fn=hard_swish) ])) # 62% accuracy. V3_SMALL_MINIMALISTIC = dict( defaults=dict(DEFAULTS), spec=([ # stage 1 op(slim.conv2d, stride=2, num_outputs=16, kernel_size=(3, 3)), mbv3_op(ef=1, n=16, k=3, s=2), mbv3_op(ef=72. / 16, n=24, k=3, s=2), mbv3_op(ef=(88. / 24), n=24, k=3, s=1), mbv3_op(ef=4, n=40, k=3, s=2), mbv3_op(ef=6, n=40, k=3, s=1), mbv3_op(ef=6, n=40, k=3, s=1), mbv3_op(ef=3, n=48, k=3, s=1), mbv3_op(ef=3, n=48, k=3, s=1), mbv3_op(ef=6, n=96, k=3, s=2), mbv3_op(ef=6, n=96, k=3, s=1), mbv3_op(ef=6, n=96, k=3, s=1), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=576), op(reduce_to_1x1, default_size=7, stride=1, padding='VALID'), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=1024, normalizer_fn=None) ])) # EdgeTPU friendly variant of MobilenetV3 that uses fused convolutions # instead of depthwise in the early layers. V3_EDGETPU = dict( defaults=dict(DEFAULTS), spec=[ op(slim.conv2d, stride=2, num_outputs=32, kernel_size=(3, 3)), mbv3_fused(k=3, s=1, ef=1, n=16), mbv3_fused(k=3, s=2, ef=8, n=32), mbv3_fused(k=3, s=1, ef=4, n=32), mbv3_fused(k=3, s=1, ef=4, n=32), mbv3_fused(k=3, s=1, ef=4, n=32), mbv3_fused(k=3, s=2, ef=8, n=48), mbv3_fused(k=3, s=1, ef=4, n=48), mbv3_fused(k=3, s=1, ef=4, n=48), mbv3_fused(k=3, s=1, ef=4, n=48), mbv3_op(k=3, s=2, ef=8, n=96), mbv3_op(k=3, s=1, ef=4, n=96), mbv3_op(k=3, s=1, ef=4, n=96), mbv3_op(k=3, s=1, ef=4, n=96), mbv3_op(k=3, s=1, ef=8, n=96, residual=False), mbv3_op(k=3, s=1, ef=4, n=96), mbv3_op(k=3, s=1, ef=4, n=96), mbv3_op(k=3, s=1, ef=4, n=96), mbv3_op(k=5, s=2, ef=8, n=160), mbv3_op(k=5, s=1, ef=4, n=160), mbv3_op(k=5, s=1, ef=4, n=160), mbv3_op(k=5, s=1, ef=4, n=160), mbv3_op(k=3, s=1, ef=8, n=192), op(slim.conv2d, stride=1, num_outputs=1280, kernel_size=(1, 1)), ]) @slim.add_arg_scope def mobilenet(input_tensor, num_classes=1001, depth_multiplier=1.0, scope='MobilenetV3', conv_defs=None, finegrain_classification_mode=False, use_groupnorm=False, **kwargs): """Creates mobilenet V3 network. Inference mode is created by default. To create training use training_scope below. with slim.arg_scope(mobilenet_v3.training_scope()): logits, endpoints = mobilenet_v3.mobilenet(input_tensor) Args: input_tensor: The input tensor num_classes: number of classes depth_multiplier: The multiplier applied to scale number of channels in each layer. scope: Scope of the operator conv_defs: Which version to create. Could be large/small or any conv_def (see mobilenet_v3.py for examples). finegrain_classification_mode: When set to True, the model will keep the last layer large even for small multipliers. Following https://arxiv.org/abs/1801.04381 it improves performance for ImageNet-type of problems. *Note* ignored if final_endpoint makes the builder exit earlier. use_groupnorm: When set to True, use group_norm as normalizer_fn. **kwargs: passed directly to mobilenet.mobilenet: prediction_fn- what prediction function to use. reuse-: whether to reuse variables (if reuse set to true, scope must be given). Returns: logits/endpoints pair Raises: ValueError: On invalid arguments """ if conv_defs is None: conv_defs = V3_LARGE if 'multiplier' in kwargs: raise ValueError('mobilenetv2 doesn\'t support generic ' 'multiplier parameter use "depth_multiplier" instead.') if use_groupnorm: conv_defs = copy.deepcopy(conv_defs) conv_defs['defaults'] = dict(DEFAULTS_GROUP_NORM) conv_defs['defaults'].update({ (slim.group_norm,): { 'groups': kwargs.pop('groups', 8) } }) if finegrain_classification_mode: conv_defs = copy.deepcopy(conv_defs) conv_defs['spec'][-1] = conv_defs['spec'][-1]._replace( multiplier_func=lambda params, multiplier: params) depth_args = {} with slim.arg_scope((lib.depth_multiplier,), **depth_args): return lib.mobilenet( input_tensor, num_classes=num_classes, conv_defs=conv_defs, scope=scope, multiplier=depth_multiplier, **kwargs) mobilenet.default_image_size = 224 training_scope = lib.training_scope @slim.add_arg_scope def mobilenet_base(input_tensor, depth_multiplier=1.0, **kwargs): """Creates base of the mobilenet (no pooling and no logits) .""" return mobilenet( input_tensor, depth_multiplier=depth_multiplier, base_only=True, **kwargs) def wrapped_partial(func, new_defaults=None, **kwargs): """Partial function with new default parameters and updated docstring.""" if not new_defaults: new_defaults = {} def func_wrapper(*f_args, **f_kwargs): new_kwargs = dict(new_defaults) new_kwargs.update(f_kwargs) return func(*f_args, **new_kwargs) functools.update_wrapper(func_wrapper, func) partial_func = functools.partial(func_wrapper, **kwargs) functools.update_wrapper(partial_func, func) return partial_func large = wrapped_partial(mobilenet, conv_defs=V3_LARGE) small = wrapped_partial(mobilenet, conv_defs=V3_SMALL) edge_tpu = wrapped_partial(mobilenet, new_defaults={'scope': 'MobilenetEdgeTPU'}, conv_defs=V3_EDGETPU) edge_tpu_075 = wrapped_partial( mobilenet, new_defaults={'scope': 'MobilenetEdgeTPU'}, conv_defs=V3_EDGETPU, depth_multiplier=0.75, finegrain_classification_mode=True) # Minimalistic model that does not have Squeeze Excite blocks, # Hardswish, or 5x5 depthwise convolution. # This makes the model very friendly for a wide range of hardware large_minimalistic = wrapped_partial(mobilenet, conv_defs=V3_LARGE_MINIMALISTIC) small_minimalistic = wrapped_partial(mobilenet, conv_defs=V3_SMALL_MINIMALISTIC) def _reduce_consecutive_layers(conv_defs, start_id, end_id, multiplier=0.5): """Reduce the outputs of consecutive layers with multiplier. Args: conv_defs: Mobilenet conv_defs. start_id: 0-based index of the starting conv_def to be reduced. end_id: 0-based index of the last conv_def to be reduced. multiplier: The multiplier by which to reduce the conv_defs. Returns: Mobilenet conv_defs where the output sizes from layers [start_id, end_id], inclusive, are reduced by multiplier. Raises: ValueError if any layer to be reduced does not have the 'num_outputs' attribute. """ defs = copy.deepcopy(conv_defs) for d in defs['spec'][start_id:end_id+1]: d.params.update({ 'num_outputs': np.int(np.round(d.params['num_outputs'] * multiplier)) }) return defs V3_LARGE_DETECTION = _reduce_consecutive_layers(V3_LARGE, 13, 16) V3_SMALL_DETECTION = _reduce_consecutive_layers(V3_SMALL, 9, 12) __all__ = ['training_scope', 'mobilenet', 'V3_LARGE', 'V3_SMALL', 'large', 'small', 'V3_LARGE_DETECTION', 'V3_SMALL_DETECTION']
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/mobilenet/mobilenet_v3.py
mobilenet_v3.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import functools import tensorflow.compat.v1 as tf import tf_slim as slim from nets.mobilenet import conv_blocks as ops from nets.mobilenet import mobilenet as lib op = lib.op expand_input = ops.expand_input_by_factor # pyformat: disable # Architecture: https://arxiv.org/abs/1801.04381 V2_DEF = dict( defaults={ # Note: these parameters of batch norm affect the architecture # that's why they are here and not in training_scope. (slim.batch_norm,): {'center': True, 'scale': True}, (slim.conv2d, slim.fully_connected, slim.separable_conv2d): { 'normalizer_fn': slim.batch_norm, 'activation_fn': tf.nn.relu6 }, (ops.expanded_conv,): { 'expansion_size': expand_input(6), 'split_expansion': 1, 'normalizer_fn': slim.batch_norm, 'residual': True }, (slim.conv2d, slim.separable_conv2d): {'padding': 'SAME'} }, spec=[ op(slim.conv2d, stride=2, num_outputs=32, kernel_size=[3, 3]), op(ops.expanded_conv, expansion_size=expand_input(1, divisible_by=1), num_outputs=16), op(ops.expanded_conv, stride=2, num_outputs=24), op(ops.expanded_conv, stride=1, num_outputs=24), op(ops.expanded_conv, stride=2, num_outputs=32), op(ops.expanded_conv, stride=1, num_outputs=32), op(ops.expanded_conv, stride=1, num_outputs=32), op(ops.expanded_conv, stride=2, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=64), op(ops.expanded_conv, stride=1, num_outputs=96), op(ops.expanded_conv, stride=1, num_outputs=96), op(ops.expanded_conv, stride=1, num_outputs=96), op(ops.expanded_conv, stride=2, num_outputs=160), op(ops.expanded_conv, stride=1, num_outputs=160), op(ops.expanded_conv, stride=1, num_outputs=160), op(ops.expanded_conv, stride=1, num_outputs=320), op(slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=1280) ], ) # pyformat: enable # Mobilenet v2 Definition with group normalization. V2_DEF_GROUP_NORM = copy.deepcopy(V2_DEF) V2_DEF_GROUP_NORM['defaults'] = { (slim.conv2d, slim.fully_connected, slim.separable_conv2d): { 'normalizer_fn': slim.group_norm, # pylint: disable=C0330 'activation_fn': tf.nn.relu6, # pylint: disable=C0330 }, # pylint: disable=C0330 (ops.expanded_conv,): { 'expansion_size': ops.expand_input_by_factor(6), 'split_expansion': 1, 'normalizer_fn': slim.group_norm, 'residual': True }, (slim.conv2d, slim.separable_conv2d): { 'padding': 'SAME' } } @slim.add_arg_scope def mobilenet(input_tensor, num_classes=1001, depth_multiplier=1.0, scope='MobilenetV2', conv_defs=None, finegrain_classification_mode=False, min_depth=None, divisible_by=None, activation_fn=None, **kwargs): """Creates mobilenet V2 network. Inference mode is created by default. To create training use training_scope below. with slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) Args: input_tensor: The input tensor num_classes: number of classes depth_multiplier: The multiplier applied to scale number of channels in each layer. scope: Scope of the operator conv_defs: Allows to override default conv def. finegrain_classification_mode: When set to True, the model will keep the last layer large even for small multipliers. Following https://arxiv.org/abs/1801.04381 suggests that it improves performance for ImageNet-type of problems. *Note* ignored if final_endpoint makes the builder exit earlier. min_depth: If provided, will ensure that all layers will have that many channels after application of depth multiplier. divisible_by: If provided will ensure that all layers # channels will be divisible by this number. activation_fn: Activation function to use, defaults to tf.nn.relu6 if not specified. **kwargs: passed directly to mobilenet.mobilenet: prediction_fn- what prediction function to use. reuse-: whether to reuse variables (if reuse set to true, scope must be given). Returns: logits/endpoints pair Raises: ValueError: On invalid arguments """ if conv_defs is None: conv_defs = V2_DEF if 'multiplier' in kwargs: raise ValueError('mobilenetv2 doesn\'t support generic ' 'multiplier parameter use "depth_multiplier" instead.') if finegrain_classification_mode: conv_defs = copy.deepcopy(conv_defs) if depth_multiplier < 1: conv_defs['spec'][-1].params['num_outputs'] /= depth_multiplier if activation_fn: conv_defs = copy.deepcopy(conv_defs) defaults = conv_defs['defaults'] conv_defaults = ( defaults[(slim.conv2d, slim.fully_connected, slim.separable_conv2d)]) conv_defaults['activation_fn'] = activation_fn depth_args = {} # NB: do not set depth_args unless they are provided to avoid overriding # whatever default depth_multiplier might have thanks to arg_scope. if min_depth is not None: depth_args['min_depth'] = min_depth if divisible_by is not None: depth_args['divisible_by'] = divisible_by with slim.arg_scope((lib.depth_multiplier,), **depth_args): return lib.mobilenet( input_tensor, num_classes=num_classes, conv_defs=conv_defs, scope=scope, multiplier=depth_multiplier, **kwargs) mobilenet.default_image_size = 224 def wrapped_partial(func, *args, **kwargs): partial_func = functools.partial(func, *args, **kwargs) functools.update_wrapper(partial_func, func) return partial_func # Wrappers for mobilenet v2 with depth-multipliers. Be noticed that # 'finegrain_classification_mode' is set to True, which means the embedding # layer will not be shrinked when given a depth-multiplier < 1.0. mobilenet_v2_140 = wrapped_partial(mobilenet, depth_multiplier=1.4) mobilenet_v2_050 = wrapped_partial(mobilenet, depth_multiplier=0.50, finegrain_classification_mode=True) mobilenet_v2_035 = wrapped_partial(mobilenet, depth_multiplier=0.35, finegrain_classification_mode=True) @slim.add_arg_scope def mobilenet_base(input_tensor, depth_multiplier=1.0, **kwargs): """Creates base of the mobilenet (no pooling and no logits) .""" return mobilenet(input_tensor, depth_multiplier=depth_multiplier, base_only=True, **kwargs) @slim.add_arg_scope def mobilenet_base_group_norm(input_tensor, depth_multiplier=1.0, **kwargs): """Creates base of the mobilenet (no pooling and no logits) .""" kwargs['conv_defs'] = V2_DEF_GROUP_NORM kwargs['conv_defs']['defaults'].update({ (slim.group_norm,): { 'groups': kwargs.pop('groups', 8) } }) return mobilenet( input_tensor, depth_multiplier=depth_multiplier, base_only=True, **kwargs) def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs) __all__ = ['training_scope', 'mobilenet_base', 'mobilenet', 'V2_DEF']
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/mobilenet/mobilenet_v2.py
mobilenet_v2.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import tensorflow.compat.v1 as tf import tf_slim as slim from tensorflow.contrib import training as contrib_training from nets.nasnet import nasnet_utils arg_scope = slim.arg_scope # Notes for training NASNet Cifar Model # ------------------------------------- # batch_size: 32 # learning rate: 0.025 # cosine (single period) learning rate decay # auxiliary head loss weighting: 0.4 # clip global norm of all gradients by 5 def cifar_config(): return contrib_training.HParams( stem_multiplier=3.0, drop_path_keep_prob=0.6, num_cells=18, use_aux_head=1, num_conv_filters=32, dense_dropout_keep_prob=1.0, filter_scaling_rate=2.0, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=0, # 600 epochs with a batch size of 32 # This is used for the drop path probabilities since it needs to increase # the drop out probability over the course of training. total_training_steps=937500, use_bounded_activation=False, ) # Notes for training large NASNet model on ImageNet # ------------------------------------- # batch size (per replica): 16 # learning rate: 0.015 * 100 # learning rate decay factor: 0.97 # num epochs per decay: 2.4 # sync sgd with 100 replicas # auxiliary head loss weighting: 0.4 # label smoothing: 0.1 # clip global norm of all gradients by 10 def large_imagenet_config(): return contrib_training.HParams( stem_multiplier=3.0, dense_dropout_keep_prob=0.5, num_cells=18, filter_scaling_rate=2.0, num_conv_filters=168, drop_path_keep_prob=0.7, use_aux_head=1, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=1, total_training_steps=250000, use_bounded_activation=False, ) # Notes for training the mobile NASNet ImageNet model # ------------------------------------- # batch size (per replica): 32 # learning rate: 0.04 * 50 # learning rate scaling factor: 0.97 # num epochs per decay: 2.4 # sync sgd with 50 replicas # auxiliary head weighting: 0.4 # label smoothing: 0.1 # clip global norm of all gradients by 10 def mobile_imagenet_config(): return contrib_training.HParams( stem_multiplier=1.0, dense_dropout_keep_prob=0.5, num_cells=12, filter_scaling_rate=2.0, drop_path_keep_prob=1.0, num_conv_filters=44, use_aux_head=1, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=0, total_training_steps=250000, use_bounded_activation=False, ) def _update_hparams(hparams, is_training): """Update hparams for given is_training option.""" if not is_training: hparams.set_hparam('drop_path_keep_prob', 1.0) def nasnet_cifar_arg_scope(weight_decay=5e-4, batch_norm_decay=0.9, batch_norm_epsilon=1e-5): """Defines the default arg scope for the NASNet-A Cifar model. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: An `arg_scope` to use for the NASNet Cifar Model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, 'fused': True, } weights_regularizer = slim.l2_regularizer(weight_decay) weights_initializer = slim.variance_scaling_initializer(mode='FAN_OUT') with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d], weights_regularizer=weights_regularizer, weights_initializer=weights_initializer): with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'): with arg_scope([slim.conv2d, slim.separable_conv2d], activation_fn=None, biases_initializer=None): with arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc def nasnet_mobile_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997, batch_norm_epsilon=1e-3): """Defines the default arg scope for the NASNet-A Mobile ImageNet model. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: An `arg_scope` to use for the NASNet Mobile Model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, 'fused': True, } weights_regularizer = slim.l2_regularizer(weight_decay) weights_initializer = slim.variance_scaling_initializer(mode='FAN_OUT') with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d], weights_regularizer=weights_regularizer, weights_initializer=weights_initializer): with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'): with arg_scope([slim.conv2d, slim.separable_conv2d], activation_fn=None, biases_initializer=None): with arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc def nasnet_large_arg_scope(weight_decay=5e-5, batch_norm_decay=0.9997, batch_norm_epsilon=1e-3): """Defines the default arg scope for the NASNet-A Large ImageNet model. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: An `arg_scope` to use for the NASNet Large Model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, 'fused': True, } weights_regularizer = slim.l2_regularizer(weight_decay) weights_initializer = slim.variance_scaling_initializer(mode='FAN_OUT') with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d], weights_regularizer=weights_regularizer, weights_initializer=weights_initializer): with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'): with arg_scope([slim.conv2d, slim.separable_conv2d], activation_fn=None, biases_initializer=None): with arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc def _build_aux_head(net, end_points, num_classes, hparams, scope): """Auxiliary head used for all models across all datasets.""" activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu with tf.variable_scope(scope): aux_logits = tf.identity(net) with tf.variable_scope('aux_logits'): aux_logits = slim.avg_pool2d( aux_logits, [5, 5], stride=3, padding='VALID') aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj') aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0') aux_logits = activation_fn(aux_logits) # Shape of feature map before the final layer. shape = aux_logits.shape if hparams.data_format == 'NHWC': shape = shape[1:3] else: shape = shape[2:4] aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID') aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1') aux_logits = activation_fn(aux_logits) aux_logits = slim.flatten(aux_logits) aux_logits = slim.fully_connected(aux_logits, num_classes) end_points['AuxLogits'] = aux_logits def _imagenet_stem(inputs, hparams, stem_cell, current_step=None): """Stem used for models trained on ImageNet.""" num_stem_cells = 2 # 149 x 149 x 32 num_stem_filters = int(32 * hparams.stem_multiplier) net = slim.conv2d( inputs, num_stem_filters, [3, 3], stride=2, scope='conv0', padding='VALID') net = slim.batch_norm(net, scope='conv0_bn') # Run the reduction cells cell_outputs = [None, net] filter_scaling = 1.0 / (hparams.filter_scaling_rate**num_stem_cells) for cell_num in range(num_stem_cells): net = stem_cell( net, scope='cell_stem_{}'.format(cell_num), filter_scaling=filter_scaling, stride=2, prev_layer=cell_outputs[-2], cell_num=cell_num, current_step=current_step) cell_outputs.append(net) filter_scaling *= hparams.filter_scaling_rate return net, cell_outputs def _cifar_stem(inputs, hparams): """Stem used for models trained on Cifar.""" num_stem_filters = int(hparams.num_conv_filters * hparams.stem_multiplier) net = slim.conv2d( inputs, num_stem_filters, 3, scope='l1_stem_3x3') net = slim.batch_norm(net, scope='l1_stem_bn') return net, [None, net] def build_nasnet_cifar(images, num_classes, is_training=True, config=None, current_step=None): """Build NASNet model for the Cifar Dataset.""" hparams = cifar_config() if config is None else copy.deepcopy(config) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info( 'A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(a=images, perm=[0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='cifar', current_step=current_step) build_nasnet_cifar.default_image_size = 32 def build_nasnet_mobile(images, num_classes, is_training=True, final_endpoint=None, config=None, current_step=None): """Build NASNet Mobile model for the ImageNet Dataset.""" hparams = (mobile_imagenet_config() if config is None else copy.deepcopy(config)) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info( 'A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(a=images, perm=[0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 # If ImageNet, then add an additional two for the stem cells total_num_cells += 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='imagenet', final_endpoint=final_endpoint, current_step=current_step) build_nasnet_mobile.default_image_size = 224 def build_nasnet_large(images, num_classes, is_training=True, final_endpoint=None, config=None, current_step=None): """Build NASNet Large model for the ImageNet Dataset.""" hparams = (large_imagenet_config() if config is None else copy.deepcopy(config)) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info( 'A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(a=images, perm=[0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 # If ImageNet, then add an additional two for the stem cells total_num_cells += 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='imagenet', final_endpoint=final_endpoint, current_step=current_step) build_nasnet_large.default_image_size = 331 def _build_nasnet_base(images, normal_cell, reduction_cell, num_classes, hparams, is_training, stem_type, final_endpoint=None, current_step=None): """Constructs a NASNet image model.""" end_points = {} def add_and_check_endpoint(endpoint_name, net): end_points[endpoint_name] = net return final_endpoint and (endpoint_name == final_endpoint) # Find where to place the reduction cells or stride normal cells reduction_indices = nasnet_utils.calc_reduction_layers( hparams.num_cells, hparams.num_reduction_layers) stem_cell = reduction_cell if stem_type == 'imagenet': stem = lambda: _imagenet_stem(images, hparams, stem_cell) elif stem_type == 'cifar': stem = lambda: _cifar_stem(images, hparams) else: raise ValueError('Unknown stem_type: ', stem_type) net, cell_outputs = stem() if add_and_check_endpoint('Stem', net): return net, end_points # Setup for building in the auxiliary head. aux_head_cell_idxes = [] if len(reduction_indices) >= 2: aux_head_cell_idxes.append(reduction_indices[1] - 1) # Run the cells filter_scaling = 1.0 # true_cell_num accounts for the stem cells true_cell_num = 2 if stem_type == 'imagenet' else 0 activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu for cell_num in range(hparams.num_cells): stride = 1 if hparams.skip_reduction_layer_input: prev_layer = cell_outputs[-2] if cell_num in reduction_indices: filter_scaling *= hparams.filter_scaling_rate net = reduction_cell( net, scope='reduction_cell_{}'.format(reduction_indices.index(cell_num)), filter_scaling=filter_scaling, stride=2, prev_layer=cell_outputs[-2], cell_num=true_cell_num, current_step=current_step) if add_and_check_endpoint( 'Reduction_Cell_{}'.format(reduction_indices.index(cell_num)), net): return net, end_points true_cell_num += 1 cell_outputs.append(net) if not hparams.skip_reduction_layer_input: prev_layer = cell_outputs[-2] net = normal_cell( net, scope='cell_{}'.format(cell_num), filter_scaling=filter_scaling, stride=stride, prev_layer=prev_layer, cell_num=true_cell_num, current_step=current_step) if add_and_check_endpoint('Cell_{}'.format(cell_num), net): return net, end_points true_cell_num += 1 if (hparams.use_aux_head and cell_num in aux_head_cell_idxes and num_classes and is_training): aux_net = activation_fn(net) _build_aux_head(aux_net, end_points, num_classes, hparams, scope='aux_{}'.format(cell_num)) cell_outputs.append(net) # Final softmax layer with tf.variable_scope('final_layer'): net = activation_fn(net) net = nasnet_utils.global_avg_pool(net) if add_and_check_endpoint('global_pool', net) or not num_classes: return net, end_points net = slim.dropout(net, hparams.dense_dropout_keep_prob, scope='dropout') logits = slim.fully_connected(net, num_classes) if add_and_check_endpoint('Logits', logits): return net, end_points predictions = tf.nn.softmax(logits, name='predictions') if add_and_check_endpoint('Predictions', predictions): return net, end_points return logits, end_points
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/nasnet/nasnet.py
nasnet.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tf_slim as slim arg_scope = slim.arg_scope DATA_FORMAT_NCHW = 'NCHW' DATA_FORMAT_NHWC = 'NHWC' INVALID = 'null' # The cap for tf.clip_by_value, it's hinted from the activation distribution # that the majority of activation values are in the range [-6, 6]. CLIP_BY_VALUE_CAP = 6 def calc_reduction_layers(num_cells, num_reduction_layers): """Figure out what layers should have reductions.""" reduction_layers = [] for pool_num in range(1, num_reduction_layers + 1): layer_num = (float(pool_num) / (num_reduction_layers + 1)) * num_cells layer_num = int(layer_num) reduction_layers.append(layer_num) return reduction_layers @slim.add_arg_scope def get_channel_index(data_format=INVALID): assert data_format != INVALID axis = 3 if data_format == 'NHWC' else 1 return axis @slim.add_arg_scope def get_channel_dim(shape, data_format=INVALID): assert data_format != INVALID assert len(shape) == 4 if data_format == 'NHWC': return int(shape[3]) elif data_format == 'NCHW': return int(shape[1]) else: raise ValueError('Not a valid data_format', data_format) @slim.add_arg_scope def global_avg_pool(x, data_format=INVALID): """Average pool away the height and width spatial dimensions of x.""" assert data_format != INVALID assert data_format in ['NHWC', 'NCHW'] assert x.shape.ndims == 4 if data_format == 'NHWC': return tf.reduce_mean(input_tensor=x, axis=[1, 2]) else: return tf.reduce_mean(input_tensor=x, axis=[2, 3]) @slim.add_arg_scope def factorized_reduction(net, output_filters, stride, data_format=INVALID): """Reduces the shape of net without information loss due to striding.""" assert data_format != INVALID if stride == 1: net = slim.conv2d(net, output_filters, 1, scope='path_conv') net = slim.batch_norm(net, scope='path_bn') return net if data_format == 'NHWC': stride_spec = [1, stride, stride, 1] else: stride_spec = [1, 1, stride, stride] # Skip path 1 path1 = tf.nn.avg_pool2d( net, ksize=[1, 1, 1, 1], strides=stride_spec, padding='VALID', data_format=data_format) path1 = slim.conv2d(path1, int(output_filters / 2), 1, scope='path1_conv') # Skip path 2 # First pad with 0's on the right and bottom, then shift the filter to # include those 0's that were added. if data_format == 'NHWC': pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]] path2 = tf.pad(tensor=net, paddings=pad_arr)[:, 1:, 1:, :] concat_axis = 3 else: pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]] path2 = tf.pad(tensor=net, paddings=pad_arr)[:, :, 1:, 1:] concat_axis = 1 path2 = tf.nn.avg_pool2d( path2, ksize=[1, 1, 1, 1], strides=stride_spec, padding='VALID', data_format=data_format) # If odd number of filters, add an additional one to the second path. final_filter_size = int(output_filters / 2) + int(output_filters % 2) path2 = slim.conv2d(path2, final_filter_size, 1, scope='path2_conv') # Concat and apply BN final_path = tf.concat(values=[path1, path2], axis=concat_axis) final_path = slim.batch_norm(final_path, scope='final_path_bn') return final_path @slim.add_arg_scope def drop_path(net, keep_prob, is_training=True): """Drops out a whole example hiddenstate with the specified probability.""" if is_training: batch_size = tf.shape(input=net)[0] noise_shape = [batch_size, 1, 1, 1] random_tensor = keep_prob random_tensor += tf.random.uniform(noise_shape, dtype=tf.float32) binary_tensor = tf.cast(tf.floor(random_tensor), net.dtype) keep_prob_inv = tf.cast(1.0 / keep_prob, net.dtype) net = net * keep_prob_inv * binary_tensor return net def _operation_to_filter_shape(operation): splitted_operation = operation.split('x') filter_shape = int(splitted_operation[0][-1]) assert filter_shape == int( splitted_operation[1][0]), 'Rectangular filters not supported.' return filter_shape def _operation_to_num_layers(operation): splitted_operation = operation.split('_') if 'x' in splitted_operation[-1]: return 1 return int(splitted_operation[-1]) def _operation_to_info(operation): """Takes in operation name and returns meta information. An example would be 'separable_3x3_4' -> (3, 4). Args: operation: String that corresponds to convolution operation. Returns: Tuple of (filter shape, num layers). """ num_layers = _operation_to_num_layers(operation) filter_shape = _operation_to_filter_shape(operation) return num_layers, filter_shape def _stacked_separable_conv(net, stride, operation, filter_size, use_bounded_activation): """Takes in an operations and parses it to the correct sep operation.""" num_layers, kernel_size = _operation_to_info(operation) activation_fn = tf.nn.relu6 if use_bounded_activation else tf.nn.relu for layer_num in range(num_layers - 1): net = activation_fn(net) net = slim.separable_conv2d( net, filter_size, kernel_size, depth_multiplier=1, scope='separable_{0}x{0}_{1}'.format(kernel_size, layer_num + 1), stride=stride) net = slim.batch_norm( net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, layer_num + 1)) stride = 1 net = activation_fn(net) net = slim.separable_conv2d( net, filter_size, kernel_size, depth_multiplier=1, scope='separable_{0}x{0}_{1}'.format(kernel_size, num_layers), stride=stride) net = slim.batch_norm( net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, num_layers)) return net def _operation_to_pooling_type(operation): """Takes in the operation string and returns the pooling type.""" splitted_operation = operation.split('_') return splitted_operation[0] def _operation_to_pooling_shape(operation): """Takes in the operation string and returns the pooling kernel shape.""" splitted_operation = operation.split('_') shape = splitted_operation[-1] assert 'x' in shape filter_height, filter_width = shape.split('x') assert filter_height == filter_width return int(filter_height) def _operation_to_pooling_info(operation): """Parses the pooling operation string to return its type and shape.""" pooling_type = _operation_to_pooling_type(operation) pooling_shape = _operation_to_pooling_shape(operation) return pooling_type, pooling_shape def _pooling(net, stride, operation, use_bounded_activation): """Parses operation and performs the correct pooling operation on net.""" padding = 'SAME' pooling_type, pooling_shape = _operation_to_pooling_info(operation) if use_bounded_activation: net = tf.nn.relu6(net) if pooling_type == 'avg': net = slim.avg_pool2d(net, pooling_shape, stride=stride, padding=padding) elif pooling_type == 'max': net = slim.max_pool2d(net, pooling_shape, stride=stride, padding=padding) else: raise NotImplementedError('Unimplemented pooling type: ', pooling_type) return net class NasNetABaseCell(object): """NASNet Cell class that is used as a 'layer' in image architectures. Args: num_conv_filters: The number of filters for each convolution operation. operations: List of operations that are performed in the NASNet Cell in order. used_hiddenstates: Binary array that signals if the hiddenstate was used within the cell. This is used to determine what outputs of the cell should be concatenated together. hiddenstate_indices: Determines what hiddenstates should be combined together with the specified operations to create the NASNet cell. use_bounded_activation: Whether or not to use bounded activations. Bounded activations better lend themselves to quantized inference. """ def __init__(self, num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation=False): self._num_conv_filters = num_conv_filters self._operations = operations self._used_hiddenstates = used_hiddenstates self._hiddenstate_indices = hiddenstate_indices self._drop_path_keep_prob = drop_path_keep_prob self._total_num_cells = total_num_cells self._total_training_steps = total_training_steps self._use_bounded_activation = use_bounded_activation def _reduce_prev_layer(self, prev_layer, curr_layer): """Matches dimension of prev_layer to the curr_layer.""" # Set the prev layer to the current layer if it is none if prev_layer is None: return curr_layer curr_num_filters = self._filter_size prev_num_filters = get_channel_dim(prev_layer.shape) curr_filter_shape = int(curr_layer.shape[2]) prev_filter_shape = int(prev_layer.shape[2]) activation_fn = tf.nn.relu6 if self._use_bounded_activation else tf.nn.relu if curr_filter_shape != prev_filter_shape: prev_layer = activation_fn(prev_layer) prev_layer = factorized_reduction( prev_layer, curr_num_filters, stride=2) elif curr_num_filters != prev_num_filters: prev_layer = activation_fn(prev_layer) prev_layer = slim.conv2d( prev_layer, curr_num_filters, 1, scope='prev_1x1') prev_layer = slim.batch_norm(prev_layer, scope='prev_bn') return prev_layer def _cell_base(self, net, prev_layer): """Runs the beginning of the conv cell before the predicted ops are run.""" num_filters = self._filter_size # Check to be sure prev layer stuff is setup correctly prev_layer = self._reduce_prev_layer(prev_layer, net) net = tf.nn.relu6(net) if self._use_bounded_activation else tf.nn.relu(net) net = slim.conv2d(net, num_filters, 1, scope='1x1') net = slim.batch_norm(net, scope='beginning_bn') # num_or_size_splits=1 net = [net] net.append(prev_layer) return net def __call__(self, net, scope=None, filter_scaling=1, stride=1, prev_layer=None, cell_num=-1, current_step=None): """Runs the conv cell.""" self._cell_num = cell_num self._filter_scaling = filter_scaling self._filter_size = int(self._num_conv_filters * filter_scaling) i = 0 with tf.variable_scope(scope): net = self._cell_base(net, prev_layer) for iteration in range(5): with tf.variable_scope('comb_iter_{}'.format(iteration)): left_hiddenstate_idx, right_hiddenstate_idx = ( self._hiddenstate_indices[i], self._hiddenstate_indices[i + 1]) original_input_left = left_hiddenstate_idx < 2 original_input_right = right_hiddenstate_idx < 2 h1 = net[left_hiddenstate_idx] h2 = net[right_hiddenstate_idx] operation_left = self._operations[i] operation_right = self._operations[i+1] i += 2 # Apply conv operations with tf.variable_scope('left'): h1 = self._apply_conv_operation(h1, operation_left, stride, original_input_left, current_step) with tf.variable_scope('right'): h2 = self._apply_conv_operation(h2, operation_right, stride, original_input_right, current_step) # Combine hidden states using 'add'. with tf.variable_scope('combine'): h = h1 + h2 if self._use_bounded_activation: h = tf.nn.relu6(h) # Add hiddenstate to the list of hiddenstates we can choose from net.append(h) with tf.variable_scope('cell_output'): net = self._combine_unused_states(net) return net def _apply_conv_operation(self, net, operation, stride, is_from_original_input, current_step): """Applies the predicted conv operation to net.""" # Dont stride if this is not one of the original hiddenstates if stride > 1 and not is_from_original_input: stride = 1 input_filters = get_channel_dim(net.shape) filter_size = self._filter_size if 'separable' in operation: net = _stacked_separable_conv(net, stride, operation, filter_size, self._use_bounded_activation) if self._use_bounded_activation: net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP) elif operation in ['none']: if self._use_bounded_activation: net = tf.nn.relu6(net) # Check if a stride is needed, then use a strided 1x1 here if stride > 1 or (input_filters != filter_size): if not self._use_bounded_activation: net = tf.nn.relu(net) net = slim.conv2d(net, filter_size, 1, stride=stride, scope='1x1') net = slim.batch_norm(net, scope='bn_1') if self._use_bounded_activation: net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP) elif 'pool' in operation: net = _pooling(net, stride, operation, self._use_bounded_activation) if input_filters != filter_size: net = slim.conv2d(net, filter_size, 1, stride=1, scope='1x1') net = slim.batch_norm(net, scope='bn_1') if self._use_bounded_activation: net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP) else: raise ValueError('Unimplemented operation', operation) if operation != 'none': net = self._apply_drop_path(net, current_step=current_step) return net def _combine_unused_states(self, net): """Concatenate the unused hidden states of the cell.""" used_hiddenstates = self._used_hiddenstates final_height = int(net[-1].shape[2]) final_num_filters = get_channel_dim(net[-1].shape) assert len(used_hiddenstates) == len(net) for idx, used_h in enumerate(used_hiddenstates): curr_height = int(net[idx].shape[2]) curr_num_filters = get_channel_dim(net[idx].shape) # Determine if a reduction should be applied to make the number of # filters match. should_reduce = final_num_filters != curr_num_filters should_reduce = (final_height != curr_height) or should_reduce should_reduce = should_reduce and not used_h if should_reduce: stride = 2 if final_height != curr_height else 1 with tf.variable_scope('reduction_{}'.format(idx)): net[idx] = factorized_reduction( net[idx], final_num_filters, stride) states_to_combine = ( [h for h, is_used in zip(net, used_hiddenstates) if not is_used]) # Return the concat of all the states concat_axis = get_channel_index() net = tf.concat(values=states_to_combine, axis=concat_axis) return net @slim.add_arg_scope # No public API. For internal use only. def _apply_drop_path(self, net, current_step=None, use_summaries=False, drop_connect_version='v3'): """Apply drop_path regularization. Args: net: the Tensor that gets drop_path regularization applied. current_step: a float32 Tensor with the current global_step value, to be divided by hparams.total_training_steps. Usually None, which defaults to tf.train.get_or_create_global_step() properly casted. use_summaries: a Python boolean. If set to False, no summaries are output. drop_connect_version: one of 'v1', 'v2', 'v3', controlling whether the dropout rate is scaled by current_step (v1), layer (v2), or both (v3, the default). Returns: The dropped-out value of `net`. """ drop_path_keep_prob = self._drop_path_keep_prob if drop_path_keep_prob < 1.0: assert drop_connect_version in ['v1', 'v2', 'v3'] if drop_connect_version in ['v2', 'v3']: # Scale keep prob by layer number assert self._cell_num != -1 # The added 2 is for the reduction cells num_cells = self._total_num_cells layer_ratio = (self._cell_num + 1)/float(num_cells) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('layer_ratio', layer_ratio) drop_path_keep_prob = 1 - layer_ratio * (1 - drop_path_keep_prob) if drop_connect_version in ['v1', 'v3']: # Decrease the keep probability over time if current_step is None: current_step = tf.train.get_or_create_global_step() current_step = tf.cast(current_step, tf.float32) drop_path_burn_in_steps = self._total_training_steps current_ratio = current_step / drop_path_burn_in_steps current_ratio = tf.minimum(1.0, current_ratio) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('current_ratio', current_ratio) drop_path_keep_prob = (1 - current_ratio * (1 - drop_path_keep_prob)) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('drop_path_keep_prob', drop_path_keep_prob) net = drop_path(net, drop_path_keep_prob) return net class NasNetANormalCell(NasNetABaseCell): """NASNetA Normal Cell.""" def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation=False): operations = ['separable_5x5_2', 'separable_3x3_2', 'separable_5x5_2', 'separable_3x3_2', 'avg_pool_3x3', 'none', 'avg_pool_3x3', 'avg_pool_3x3', 'separable_3x3_2', 'none'] used_hiddenstates = [1, 0, 0, 0, 0, 0, 0] hiddenstate_indices = [0, 1, 1, 1, 0, 1, 1, 1, 0, 0] super(NasNetANormalCell, self).__init__(num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation) class NasNetAReductionCell(NasNetABaseCell): """NASNetA Reduction Cell.""" def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation=False): operations = ['separable_5x5_2', 'separable_7x7_2', 'max_pool_3x3', 'separable_7x7_2', 'avg_pool_3x3', 'separable_5x5_2', 'none', 'avg_pool_3x3', 'separable_3x3_2', 'max_pool_3x3'] used_hiddenstates = [1, 1, 1, 0, 0, 0, 0] hiddenstate_indices = [0, 1, 0, 1, 0, 1, 3, 2, 2, 0] super(NasNetAReductionCell, self).__init__(num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/nasnet/nasnet_utils.py
nasnet_utils.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import tensorflow.compat.v1 as tf import tf_slim as slim from tensorflow.contrib import training as contrib_training from nets.nasnet import nasnet from nets.nasnet import nasnet_utils arg_scope = slim.arg_scope def large_imagenet_config(): """Large ImageNet configuration based on PNASNet-5.""" return contrib_training.HParams( stem_multiplier=3.0, dense_dropout_keep_prob=0.5, num_cells=12, filter_scaling_rate=2.0, num_conv_filters=216, drop_path_keep_prob=0.6, use_aux_head=1, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=1, total_training_steps=250000, use_bounded_activation=False, ) def mobile_imagenet_config(): """Mobile ImageNet configuration based on PNASNet-5.""" return contrib_training.HParams( stem_multiplier=1.0, dense_dropout_keep_prob=0.5, num_cells=9, filter_scaling_rate=2.0, num_conv_filters=54, drop_path_keep_prob=1.0, use_aux_head=1, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=1, total_training_steps=250000, use_bounded_activation=False, ) def pnasnet_large_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): """Default arg scope for the PNASNet Large ImageNet model.""" return nasnet.nasnet_large_arg_scope( weight_decay, batch_norm_decay, batch_norm_epsilon) def pnasnet_mobile_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): """Default arg scope for the PNASNet Mobile ImageNet model.""" return nasnet.nasnet_mobile_arg_scope(weight_decay, batch_norm_decay, batch_norm_epsilon) def _build_pnasnet_base(images, normal_cell, num_classes, hparams, is_training, final_endpoint=None): """Constructs a PNASNet image model.""" end_points = {} def add_and_check_endpoint(endpoint_name, net): end_points[endpoint_name] = net return final_endpoint and (endpoint_name == final_endpoint) # Find where to place the reduction cells or stride normal cells reduction_indices = nasnet_utils.calc_reduction_layers( hparams.num_cells, hparams.num_reduction_layers) # pylint: disable=protected-access stem = lambda: nasnet._imagenet_stem(images, hparams, normal_cell) # pylint: enable=protected-access net, cell_outputs = stem() if add_and_check_endpoint('Stem', net): return net, end_points # Setup for building in the auxiliary head. aux_head_cell_idxes = [] if len(reduction_indices) >= 2: aux_head_cell_idxes.append(reduction_indices[1] - 1) # Run the cells filter_scaling = 1.0 # true_cell_num accounts for the stem cells true_cell_num = 2 activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu for cell_num in range(hparams.num_cells): is_reduction = cell_num in reduction_indices stride = 2 if is_reduction else 1 if is_reduction: filter_scaling *= hparams.filter_scaling_rate if hparams.skip_reduction_layer_input or not is_reduction: prev_layer = cell_outputs[-2] net = normal_cell( net, scope='cell_{}'.format(cell_num), filter_scaling=filter_scaling, stride=stride, prev_layer=prev_layer, cell_num=true_cell_num) if add_and_check_endpoint('Cell_{}'.format(cell_num), net): return net, end_points true_cell_num += 1 cell_outputs.append(net) if (hparams.use_aux_head and cell_num in aux_head_cell_idxes and num_classes and is_training): aux_net = activation_fn(net) # pylint: disable=protected-access nasnet._build_aux_head(aux_net, end_points, num_classes, hparams, scope='aux_{}'.format(cell_num)) # pylint: enable=protected-access # Final softmax layer with tf.variable_scope('final_layer'): net = activation_fn(net) net = nasnet_utils.global_avg_pool(net) if add_and_check_endpoint('global_pool', net) or not num_classes: return net, end_points net = slim.dropout(net, hparams.dense_dropout_keep_prob, scope='dropout') logits = slim.fully_connected(net, num_classes) if add_and_check_endpoint('Logits', logits): return net, end_points predictions = tf.nn.softmax(logits, name='predictions') if add_and_check_endpoint('Predictions', predictions): return net, end_points return logits, end_points def build_pnasnet_large(images, num_classes, is_training=True, final_endpoint=None, config=None): """Build PNASNet Large model for the ImageNet Dataset.""" hparams = copy.deepcopy(config) if config else large_imagenet_config() # pylint: disable=protected-access nasnet._update_hparams(hparams, is_training) # pylint: enable=protected-access if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info( 'A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(a=images, perm=[0, 3, 1, 2]) # Calculate the total number of cells in the network. # There is no distinction between reduction and normal cells in PNAS so the # total number of cells is equal to the number normal cells plus the number # of stem cells (two by default). total_num_cells = hparams.num_cells + 2 normal_cell = PNasNetNormalCell(hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope( [slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_pnasnet_base( images, normal_cell=normal_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, final_endpoint=final_endpoint) build_pnasnet_large.default_image_size = 331 def build_pnasnet_mobile(images, num_classes, is_training=True, final_endpoint=None, config=None): """Build PNASNet Mobile model for the ImageNet Dataset.""" hparams = copy.deepcopy(config) if config else mobile_imagenet_config() # pylint: disable=protected-access nasnet._update_hparams(hparams, is_training) # pylint: enable=protected-access if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info( 'A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(a=images, perm=[0, 3, 1, 2]) # Calculate the total number of cells in the network. # There is no distinction between reduction and normal cells in PNAS so the # total number of cells is equal to the number normal cells plus the number # of stem cells (two by default). total_num_cells = hparams.num_cells + 2 normal_cell = PNasNetNormalCell(hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope( [slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope( [ slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim ], data_format=hparams.data_format): return _build_pnasnet_base( images, normal_cell=normal_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, final_endpoint=final_endpoint) build_pnasnet_mobile.default_image_size = 224 class PNasNetNormalCell(nasnet_utils.NasNetABaseCell): """PNASNet Normal Cell.""" def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation=False): # Configuration for the PNASNet-5 model. operations = [ 'separable_5x5_2', 'max_pool_3x3', 'separable_7x7_2', 'max_pool_3x3', 'separable_5x5_2', 'separable_3x3_2', 'separable_3x3_2', 'max_pool_3x3', 'separable_3x3_2', 'none' ] used_hiddenstates = [1, 1, 0, 0, 0, 0, 0] hiddenstate_indices = [1, 1, 0, 0, 0, 0, 4, 0, 1, 0] super(PNasNetNormalCell, self).__init__( num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/nets/nasnet/pnasnet.py
pnasnet.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf _PADDING = 4 def preprocess_for_train(image, output_height, output_width, padding=_PADDING, add_image_summaries=True, use_grayscale=False): """Preprocesses the given image for training. Note that the actual resizing scale is sampled from [`resize_size_min`, `resize_size_max`]. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. padding: The amound of padding before and after each dimension of the image. add_image_summaries: Enable image summaries. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: A preprocessed image. """ if add_image_summaries: tf.summary.image('image', tf.expand_dims(image, 0)) # Transform the image to floats. image = tf.to_float(image) if use_grayscale: image = tf.image.rgb_to_grayscale(image) if padding > 0: image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]]) # Randomly crop a [height, width] section of the image. distorted_image = tf.random_crop(image, [output_height, output_width, 3]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) if add_image_summaries: tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0)) # Because these operations are not commutative, consider randomizing # the order their operation. distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. return tf.image.per_image_standardization(distorted_image) def preprocess_for_eval(image, output_height, output_width, add_image_summaries=True, use_grayscale=False): """Preprocesses the given image for evaluation. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. add_image_summaries: Enable image summaries. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: A preprocessed image. """ if add_image_summaries: tf.summary.image('image', tf.expand_dims(image, 0)) # Transform the image to floats. image = tf.to_float(image) if use_grayscale: image = tf.image.rgb_to_grayscale(image) # Resize and crop if needed. resized_image = tf.image.resize_image_with_crop_or_pad(image, output_width, output_height) if add_image_summaries: tf.summary.image('resized_image', tf.expand_dims(resized_image, 0)) # Subtract off the mean and divide by the variance of the pixels. return tf.image.per_image_standardization(resized_image) def preprocess_image(image, output_height, output_width, is_training=False, add_image_summaries=True, use_grayscale=False): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. add_image_summaries: Enable image summaries. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: A preprocessed image. """ if is_training: return preprocess_for_train( image, output_height, output_width, add_image_summaries=add_image_summaries, use_grayscale=use_grayscale) else: return preprocess_for_eval( image, output_height, output_width, add_image_summaries=add_image_summaries, use_grayscale=use_grayscale)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/preprocessing/cifarnet_preprocessing.py
cifarnet_preprocessing.py
"""Contains a factory for building various models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from preprocessing import cifarnet_preprocessing from preprocessing import inception_preprocessing from preprocessing import lenet_preprocessing from preprocessing import vgg_preprocessing def get_preprocessing(name, is_training=False, use_grayscale=False): """Returns preprocessing_fn(image, height, width, **kwargs). Args: name: The name of the preprocessing function. is_training: `True` if the model is being used for training and `False` otherwise. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: preprocessing_fn: A function that preprocessing a single image (pre-batch). It has the following signature: image = preprocessing_fn(image, output_height, output_width, ...). Raises: ValueError: If Preprocessing `name` is not recognized. """ preprocessing_fn_map = { 'cifarnet': cifarnet_preprocessing, 'inception': inception_preprocessing, 'inception_v1': inception_preprocessing, 'inception_v2': inception_preprocessing, 'inception_v3': inception_preprocessing, 'inception_v4': inception_preprocessing, 'inception_resnet_v2': inception_preprocessing, 'lenet': lenet_preprocessing, 'mobilenet_v1': inception_preprocessing, 'mobilenet_v2': inception_preprocessing, 'mobilenet_v2_035': inception_preprocessing, 'mobilenet_v3_small': inception_preprocessing, 'mobilenet_v3_large': inception_preprocessing, 'mobilenet_v3_small_minimalistic': inception_preprocessing, 'mobilenet_v3_large_minimalistic': inception_preprocessing, 'mobilenet_edgetpu': inception_preprocessing, 'mobilenet_edgetpu_075': inception_preprocessing, 'mobilenet_v2_140': inception_preprocessing, 'nasnet_mobile': inception_preprocessing, 'nasnet_large': inception_preprocessing, 'pnasnet_mobile': inception_preprocessing, 'pnasnet_large': inception_preprocessing, 'resnet_v1_50': vgg_preprocessing, 'resnet_v1_101': vgg_preprocessing, 'resnet_v1_152': vgg_preprocessing, 'resnet_v1_200': vgg_preprocessing, 'resnet_v2_50': vgg_preprocessing, 'resnet_v2_101': vgg_preprocessing, 'resnet_v2_152': vgg_preprocessing, 'resnet_v2_200': vgg_preprocessing, 'vgg': vgg_preprocessing, 'vgg_a': vgg_preprocessing, 'vgg_16': vgg_preprocessing, 'vgg_19': vgg_preprocessing, } if name not in preprocessing_fn_map: raise ValueError('Preprocessing name [%s] was not recognized' % name) def preprocessing_fn(image, output_height, output_width, **kwargs): return preprocessing_fn_map[name].preprocess_image( image, output_height, output_width, is_training=is_training, use_grayscale=use_grayscale, **kwargs) return preprocessing_fn
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/preprocessing/preprocessing_factory.py
preprocessing_factory.py
"""Provides utilities to preprocess images for the Inception networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.python.ops import control_flow_ops def apply_with_random_selector(x, func, num_cases): """Computes func(x, sel), with sel sampled from [0...num_cases-1]. Args: x: input Tensor. func: Python function to apply. num_cases: Python int32, number of cases to sample sel from. Returns: The result of func(x, sel), where func receives the value of the selector as a python integer, but sel is sampled dynamically. """ sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32) # Pass the real x only to one of the func calls. return control_flow_ops.merge([ func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) for case in range(num_cases)])[0] def distort_color(image, color_ordering=0, fast_mode=True, scope=None): """Distort the color of a Tensor image. Each color distortion is non-commutative and thus ordering of the color ops matters. Ideally we would randomly permute the ordering of the color ops. Rather then adding that level of complication, we select a distinct ordering of color ops for each preprocessing thread. Args: image: 3-D Tensor containing single image in [0, 1]. color_ordering: Python int, a type of distortion (valid values: 0-3). fast_mode: Avoids slower ops (random_hue and random_contrast) scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] Raises: ValueError: if color_ordering not in [0, 3] """ with tf.name_scope(scope, 'distort_color', [image]): if fast_mode: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) else: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) elif color_ordering == 2: image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) elif color_ordering == 3: image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: raise ValueError('color_ordering must be in [0, 3]') # The random_* ops do not necessarily clamp. return tf.clip_by_value(image, 0.0, 1.0) def distorted_bounding_box_crop(image, bbox, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using a one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image: 3-D Tensor of image (it will be converted to floats in [0, 1]). bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `floats`. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `floats`. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional scope for name_scope. Returns: A tuple, a 3-D Tensor cropped_image and the distorted bbox """ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bbox]): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an # allowed range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box # Crop the image to the specified bounding box. cropped_image = tf.slice(image, bbox_begin, bbox_size) return cropped_image, distort_bbox def preprocess_for_train(image, height, width, bbox, fast_mode=True, scope=None, add_image_summaries=True, random_crop=True, use_grayscale=False): """Distort one image for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Additionally it would create image_summaries to display the different transformations applied to the image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations (i.e. bi-cubic resizing, random_hue or random_contrast). scope: Optional scope for name_scope. add_image_summaries: Enable image summaries. random_crop: Enable random cropping of images during preprocessing for training. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: 3-D float Tensor of distorted image used for training with range [-1, 1]. """ with tf.name_scope(scope, 'distort_image', [image, height, width, bbox]): if bbox is None: bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox) if add_image_summaries: tf.summary.image('image_with_bounding_boxes', image_with_box) if not random_crop: distorted_image = image else: distorted_image, distorted_bbox = distorted_bounding_box_crop(image, bbox) # Restore the shape since the dynamic slice based upon the bbox_size loses # the third dimension. distorted_image.set_shape([None, None, 3]) image_with_distorted_box = tf.image.draw_bounding_boxes( tf.expand_dims(image, 0), distorted_bbox) if add_image_summaries: tf.summary.image('images_with_distorted_bounding_box', image_with_distorted_box) # This resizing operation may distort the images because the aspect # ratio is not respected. We select a resize method in a round robin # fashion based on the thread number. # Note that ResizeMethod contains 4 enumerated resizing methods. # We select only 1 case for fast_mode bilinear. num_resize_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, method: tf.image.resize_images(x, [height, width], method), num_cases=num_resize_cases) if add_image_summaries: tf.summary.image(('cropped_' if random_crop else '') + 'resized_image', tf.expand_dims(distorted_image, 0)) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Randomly distort the colors. There are 1 or 4 ways to do it. num_distort_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, ordering: distort_color(x, ordering, fast_mode), num_cases=num_distort_cases) if use_grayscale: distorted_image = tf.image.rgb_to_grayscale(distorted_image) if add_image_summaries: tf.summary.image('final_distorted_image', tf.expand_dims(distorted_image, 0)) distorted_image = tf.subtract(distorted_image, 0.5) distorted_image = tf.multiply(distorted_image, 2.0) return distorted_image def preprocess_for_eval(image, height, width, central_fraction=0.875, scope=None, central_crop=True, use_grayscale=False): """Prepare one image for evaluation. If height and width are specified it would output an image with that size by applying resize_bilinear. If central_fraction is specified it would crop the central fraction of the input image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer central_fraction: Optional Float, fraction of the image to crop. scope: Optional scope for name_scope. central_crop: Enable central cropping of images during preprocessing for evaluation. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: 3-D float Tensor of prepared image. """ with tf.name_scope(scope, 'eval_image', [image, height, width]): if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) if use_grayscale: image = tf.image.rgb_to_grayscale(image) # Crop the central region of the image with an area containing 87.5% of # the original image. if central_crop and central_fraction: image = tf.image.central_crop(image, central_fraction=central_fraction) if height and width: # Resize the image to the specified height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image def preprocess_image(image, height, width, is_training=False, bbox=None, fast_mode=True, add_image_summaries=True, crop_image=True, use_grayscale=False): """Pre-process one image for training or evaluation. Args: image: 3-D Tensor [height, width, channels] with the image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer, image expected height. width: integer, image expected width. is_training: Boolean. If true it would transform an image for train, otherwise it would transform it for evaluation. bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations. add_image_summaries: Enable image summaries. crop_image: Whether to enable cropping of images during preprocessing for both training and evaluation. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box """ if is_training: return preprocess_for_train( image, height, width, bbox, fast_mode, add_image_summaries=add_image_summaries, random_crop=crop_image, use_grayscale=use_grayscale) else: return preprocess_for_eval( image, height, width, central_crop=crop_image, use_grayscale=use_grayscale)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/preprocessing/inception_preprocessing.py
inception_preprocessing.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 _RESIZE_SIDE_MIN = 256 _RESIZE_SIDE_MAX = 512 def _crop(image, offset_height, offset_width, crop_height, crop_width): """Crops the given image using the provided offsets and sizes. Note that the method doesn't assume we know the input image size but it does assume we know the input image rank. Args: image: an image of shape [height, width, channels]. offset_height: a scalar tensor indicating the height offset. offset_width: a scalar tensor indicating the width offset. crop_height: the height of the cropped image. crop_width: the width of the cropped image. Returns: the cropped (and resized) image. Raises: InvalidArgumentError: if the rank is not 3 or if the image dimensions are less than the crop size. """ original_shape = tf.shape(image) rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) with tf.control_dependencies([rank_assertion]): cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]]) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0])) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. with tf.control_dependencies([size_assertion]): image = tf.slice(image, offsets, cropped_shape) return tf.reshape(image, cropped_shape) def _random_crop(image_list, crop_height, crop_width): """Crops the given list of images. The function applies the same crop to each image in the list. This can be effectively applied when there are multiple image inputs of the same dimension such as: image, depths, normals = _random_crop([image, depths, normals], 120, 150) Args: image_list: a list of image tensors of the same dimension but possibly varying channel. crop_height: the new height. crop_width: the new width. Returns: the image_list with cropped images. Raises: ValueError: if there are multiple image inputs provided with different size or the images are smaller than the crop dimensions. """ if not image_list: raise ValueError('Empty image_list.') # Compute the rank assertions. rank_assertions = [] for i in range(len(image_list)): image_rank = tf.rank(image_list[i]) rank_assert = tf.Assert( tf.equal(image_rank, 3), ['Wrong rank for tensor %s [expected] [actual]', image_list[i].name, 3, image_rank]) rank_assertions.append(rank_assert) with tf.control_dependencies([rank_assertions[0]]): image_shape = tf.shape(image_list[0]) image_height = image_shape[0] image_width = image_shape[1] crop_size_assert = tf.Assert( tf.logical_and( tf.greater_equal(image_height, crop_height), tf.greater_equal(image_width, crop_width)), ['Crop size greater than the image size.']) asserts = [rank_assertions[0], crop_size_assert] for i in range(1, len(image_list)): image = image_list[i] asserts.append(rank_assertions[i]) with tf.control_dependencies([rank_assertions[i]]): shape = tf.shape(image) height = shape[0] width = shape[1] height_assert = tf.Assert( tf.equal(height, image_height), ['Wrong height for tensor %s [expected][actual]', image.name, height, image_height]) width_assert = tf.Assert( tf.equal(width, image_width), ['Wrong width for tensor %s [expected][actual]', image.name, width, image_width]) asserts.extend([height_assert, width_assert]) # Create a random bounding box. # # Use tf.random_uniform and not numpy.random.rand as doing the former would # generate random numbers at graph eval time, unlike the latter which # generates random numbers at graph definition time. with tf.control_dependencies(asserts): max_offset_height = tf.reshape(image_height - crop_height + 1, []) with tf.control_dependencies(asserts): max_offset_width = tf.reshape(image_width - crop_width + 1, []) offset_height = tf.random_uniform( [], maxval=max_offset_height, dtype=tf.int32) offset_width = tf.random_uniform( [], maxval=max_offset_width, dtype=tf.int32) return [_crop(image, offset_height, offset_width, crop_height, crop_width) for image in image_list] def _central_crop(image_list, crop_height, crop_width): """Performs central crops of the given image list. Args: image_list: a list of image tensors of the same dimension but possibly varying channel. crop_height: the height of the image following the crop. crop_width: the width of the image following the crop. Returns: the list of cropped images. """ outputs = [] for image in image_list: image_height = tf.shape(image)[0] image_width = tf.shape(image)[1] offset_height = (image_height - crop_height) / 2 offset_width = (image_width - crop_width) / 2 outputs.append(_crop(image, offset_height, offset_width, crop_height, crop_width)) return outputs def _mean_image_subtraction(image, means): """Subtracts the given means from each image channel. For example: means = [123.68, 116.779, 103.939] image = _mean_image_subtraction(image, means) Note that the rank of `image` must be known. Args: image: a tensor of size [height, width, C]. means: a C-vector of values to subtract from each channel. Returns: the centered image. Raises: ValueError: If the rank of `image` is unknown, if `image` has a rank other than three or if the number of channels in `image` doesn't match the number of values in `means`. """ if image.get_shape().ndims != 3: raise ValueError('Input must be of size [height, width, C>0]') num_channels = image.get_shape().as_list()[-1] if len(means) != num_channels: raise ValueError('len(means) must match the number of channels') channels = tf.split(axis=2, num_or_size_splits=num_channels, value=image) for i in range(num_channels): channels[i] -= means[i] return tf.concat(axis=2, values=channels) def _smallest_size_at_least(height, width, smallest_side): """Computes new shape with the smallest side equal to `smallest_side`. Computes new shape with the smallest side equal to `smallest_side` while preserving the original aspect ratio. Args: height: an int32 scalar tensor indicating the current height. width: an int32 scalar tensor indicating the current width. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: new_height: an int32 scalar tensor indicating the new height. new_width: and int32 scalar tensor indicating the new width. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) height = tf.to_float(height) width = tf.to_float(width) smallest_side = tf.to_float(smallest_side) scale = tf.cond(tf.greater(height, width), lambda: smallest_side / width, lambda: smallest_side / height) new_height = tf.to_int32(tf.rint(height * scale)) new_width = tf.to_int32(tf.rint(width * scale)) return new_height, new_width def _aspect_preserving_resize(image, smallest_side): """Resize images preserving the original aspect ratio. Args: image: A 3-D image `Tensor`. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: resized_image: A 3-D tensor containing the resized image. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) shape = tf.shape(image) height = shape[0] width = shape[1] new_height, new_width = _smallest_size_at_least(height, width, smallest_side) image = tf.expand_dims(image, 0) resized_image = tf.image.resize_bilinear(image, [new_height, new_width], align_corners=False) resized_image = tf.squeeze(resized_image) resized_image.set_shape([None, None, 3]) return resized_image def preprocess_for_train(image, output_height, output_width, resize_side_min=_RESIZE_SIDE_MIN, resize_side_max=_RESIZE_SIDE_MAX, use_grayscale=False): """Preprocesses the given image for training. Note that the actual resizing scale is sampled from [`resize_size_min`, `resize_size_max`]. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. resize_side_min: The lower bound for the smallest side of the image for aspect-preserving resizing. resize_side_max: The upper bound for the smallest side of the image for aspect-preserving resizing. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: A preprocessed image. """ resize_side = tf.random_uniform( [], minval=resize_side_min, maxval=resize_side_max+1, dtype=tf.int32) image = _aspect_preserving_resize(image, resize_side) image = _random_crop([image], output_height, output_width)[0] image.set_shape([output_height, output_width, 3]) image = tf.to_float(image) if use_grayscale: image = tf.image.rgb_to_grayscale(image) image = tf.image.random_flip_left_right(image) return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN]) def preprocess_for_eval(image, output_height, output_width, resize_side, use_grayscale=False): """Preprocesses the given image for evaluation. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. resize_side: The smallest side of the image for aspect-preserving resizing. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: A preprocessed image. """ image = _aspect_preserving_resize(image, resize_side) image = _central_crop([image], output_height, output_width)[0] image.set_shape([output_height, output_width, 3]) image = tf.to_float(image) if use_grayscale: image = tf.image.rgb_to_grayscale(image) return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN]) def preprocess_image(image, output_height, output_width, is_training=False, resize_side_min=_RESIZE_SIDE_MIN, resize_side_max=_RESIZE_SIDE_MAX, use_grayscale=False): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. resize_side_min: The lower bound for the smallest side of the image for aspect-preserving resizing. If `is_training` is `False`, then this value is used for rescaling. resize_side_max: The upper bound for the smallest side of the image for aspect-preserving resizing. If `is_training` is `False`, this value is ignored. Otherwise, the resize side is sampled from [resize_size_min, resize_size_max]. use_grayscale: Whether to convert the image from RGB to grayscale. Returns: A preprocessed image. """ if is_training: return preprocess_for_train(image, output_height, output_width, resize_side_min, resize_side_max, use_grayscale) else: return preprocess_for_eval(image, output_height, output_width, resize_side_min, use_grayscale)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/preprocessing/vgg_preprocessing.py
vgg_preprocessing.py
r"""Downloads and converts MNIST data to TFRecords of TF-Example protos. This module downloads the MNIST data, uncompresses it, reads the files that make up the MNIST data and creates two TFRecord datasets: one for train and one for test. Each TFRecord dataset is comprised of a set of TF-Example protocol buffers, each of which contain a single image and label. The script should take about a minute to run. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import sys import numpy as np from six.moves import urllib import tensorflow.compat.v1 as tf from datasets import dataset_utils # The URLs where the MNIST data can be downloaded. _DATA_URL = 'http://yann.lecun.com/exdb/mnist/' _TRAIN_DATA_FILENAME = 'train-images-idx3-ubyte.gz' _TRAIN_LABELS_FILENAME = 'train-labels-idx1-ubyte.gz' _TEST_DATA_FILENAME = 't10k-images-idx3-ubyte.gz' _TEST_LABELS_FILENAME = 't10k-labels-idx1-ubyte.gz' _IMAGE_SIZE = 28 _NUM_CHANNELS = 1 # The names of the classes. _CLASS_NAMES = [ 'zero', 'one', 'two', 'three', 'four', 'five', 'size', 'seven', 'eight', 'nine', ] def _extract_images(filename, num_images): """Extract the images into a numpy array. Args: filename: The path to an MNIST images file. num_images: The number of images in the file. Returns: A numpy array of shape [number_of_images, height, width, channels]. """ print('Extracting images from: ', filename) with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read( _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS) data = np.frombuffer(buf, dtype=np.uint8) data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS) return data def _extract_labels(filename, num_labels): """Extract the labels into a vector of int64 label IDs. Args: filename: The path to an MNIST labels file. num_labels: The number of labels in the file. Returns: A numpy array of shape [number_of_labels] """ print('Extracting labels from: ', filename) with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(1 * num_labels) labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64) return labels def _add_to_tfrecord(data_filename, labels_filename, num_images, tfrecord_writer): """Loads data from the binary MNIST files and writes files to a TFRecord. Args: data_filename: The filename of the MNIST images. labels_filename: The filename of the MNIST labels. num_images: The number of images in the dataset. tfrecord_writer: The TFRecord writer to use for writing. """ images = _extract_images(data_filename, num_images) labels = _extract_labels(labels_filename, num_images) shape = (_IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS) with tf.Graph().as_default(): image = tf.placeholder(dtype=tf.uint8, shape=shape) encoded_png = tf.image.encode_png(image) with tf.Session('') as sess: for j in range(num_images): sys.stdout.write('\r>> Converting image %d/%d' % (j + 1, num_images)) sys.stdout.flush() png_string = sess.run(encoded_png, feed_dict={image: images[j]}) example = dataset_utils.image_to_tfexample( png_string, 'png'.encode(), _IMAGE_SIZE, _IMAGE_SIZE, labels[j]) tfrecord_writer.write(example.SerializeToString()) def _get_output_filename(dataset_dir, split_name): """Creates the output filename. Args: dataset_dir: The directory where the temporary files are stored. split_name: The name of the train/test split. Returns: An absolute file path. """ return '%s/mnist_%s.tfrecord' % (dataset_dir, split_name) def _download_dataset(dataset_dir): """Downloads MNIST locally. Args: dataset_dir: The directory where the temporary files are stored. """ for filename in [_TRAIN_DATA_FILENAME, _TRAIN_LABELS_FILENAME, _TEST_DATA_FILENAME, _TEST_LABELS_FILENAME]: filepath = os.path.join(dataset_dir, filename) if not os.path.exists(filepath): print('Downloading file %s...' % filename) def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %.1f%%' % ( float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(_DATA_URL + filename, filepath, _progress) print() with tf.gfile.GFile(filepath) as f: size = f.size() print('Successfully downloaded', filename, size, 'bytes.') def _clean_up_temporary_files(dataset_dir): """Removes temporary files used to create the dataset. Args: dataset_dir: The directory where the temporary files are stored. """ for filename in [_TRAIN_DATA_FILENAME, _TRAIN_LABELS_FILENAME, _TEST_DATA_FILENAME, _TEST_LABELS_FILENAME]: filepath = os.path.join(dataset_dir, filename) tf.gfile.Remove(filepath) def run(dataset_dir): """Runs the download and conversion operation. Args: dataset_dir: The dataset directory where the dataset is stored. """ if not tf.gfile.Exists(dataset_dir): tf.gfile.MakeDirs(dataset_dir) training_filename = _get_output_filename(dataset_dir, 'train') testing_filename = _get_output_filename(dataset_dir, 'test') if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename): print('Dataset files already exist. Exiting without re-creating them.') return _download_dataset(dataset_dir) # First, process the training data: with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer: data_filename = os.path.join(dataset_dir, _TRAIN_DATA_FILENAME) labels_filename = os.path.join(dataset_dir, _TRAIN_LABELS_FILENAME) _add_to_tfrecord(data_filename, labels_filename, 60000, tfrecord_writer) # Next, process the testing data: with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer: data_filename = os.path.join(dataset_dir, _TEST_DATA_FILENAME) labels_filename = os.path.join(dataset_dir, _TEST_LABELS_FILENAME) _add_to_tfrecord(data_filename, labels_filename, 10000, tfrecord_writer) # Finally, write the labels file: labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES)) dataset_utils.write_label_file(labels_to_class_names, dataset_dir) _clean_up_temporary_files(dataset_dir) print('\nFinished converting the MNIST dataset!')
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/download_and_convert_mnist.py
download_and_convert_mnist.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow.compat.v1 as tf import tf_slim as slim from datasets import dataset_utils _FILE_PATTERN = 'cifar10_%s.tfrecord' SPLITS_TO_SIZES = {'train': 50000, 'test': 10000} _NUM_CLASSES = 10 _ITEMS_TO_DESCRIPTIONS = { 'image': 'A [32 x 32 x 3] color image.', 'label': 'A single integer between 0 and 9', } def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading cifar10. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if not reader: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='png'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)), } items_to_handlers = { 'image': slim.tfexample_decoder.Image(shape=[32, 32, 3]), 'label': slim.tfexample_decoder.Tensor('image/class/label'), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None if dataset_utils.has_labels(dataset_dir): labels_to_names = dataset_utils.read_label_file(dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=SPLITS_TO_SIZES[split_name], items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, num_classes=_NUM_CLASSES, labels_to_names=labels_to_names)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/cifar10.py
cifar10.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from six.moves import urllib import tensorflow.compat.v1 as tf import tf_slim as slim from datasets import dataset_utils # TODO(nsilberman): Add tfrecord file type once the script is updated. _FILE_PATTERN = '%s-*' _SPLITS_TO_SIZES = { 'train': 1281167, 'validation': 50000, } _ITEMS_TO_DESCRIPTIONS = { 'image': 'A color image of varying height and width.', 'label': 'The label id of the image, integer between 0 and 999', 'label_text': 'The text of the label.', 'object/bbox': 'A list of bounding boxes.', 'object/label': 'A list of labels, one per each object.', } _NUM_CLASSES = 1001 # If set to false, will not try to set label_to_names in dataset # by reading them from labels.txt or github. LOAD_READABLE_NAMES = True def create_readable_names_for_imagenet_labels(): """Create a dict mapping label id to human readable string. Returns: labels_to_names: dictionary where keys are integers from to 1000 and values are human-readable names. We retrieve a synset file, which contains a list of valid synset labels used by ILSVRC competition. There is one synset one per line, eg. # n01440764 # n01443537 We also retrieve a synset_to_human_file, which contains a mapping from synsets to human-readable names for every synset in Imagenet. These are stored in a tsv format, as follows: # n02119247 black fox # n02119359 silver fox We assign each synset (in alphabetical order) an integer, starting from 1 (since 0 is reserved for the background class). Code is based on https://github.com/tensorflow/models/blob/master/research/inception/inception/data/build_imagenet_data.py#L463 """ # pylint: disable=g-line-too-long base_url = 'https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/' synset_url = '{}/imagenet_lsvrc_2015_synsets.txt'.format(base_url) synset_to_human_url = '{}/imagenet_metadata.txt'.format(base_url) filename, _ = urllib.request.urlretrieve(synset_url) synset_list = [s.strip() for s in open(filename).readlines()] num_synsets_in_ilsvrc = len(synset_list) assert num_synsets_in_ilsvrc == 1000 filename, _ = urllib.request.urlretrieve(synset_to_human_url) synset_to_human_list = open(filename).readlines() num_synsets_in_all_imagenet = len(synset_to_human_list) assert num_synsets_in_all_imagenet == 21842 synset_to_human = {} for s in synset_to_human_list: parts = s.strip().split('\t') assert len(parts) == 2 synset = parts[0] human = parts[1] synset_to_human[synset] = human label_index = 1 labels_to_names = {0: 'background'} for synset in synset_list: name = synset_to_human[synset] labels_to_names[label_index] = name label_index += 1 return labels_to_names def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading ImageNet. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in _SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if reader is None: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature( (), tf.string, default_value=''), 'image/format': tf.FixedLenFeature( (), tf.string, default_value='jpeg'), 'image/class/label': tf.FixedLenFeature( [], dtype=tf.int64, default_value=-1), 'image/class/text': tf.FixedLenFeature( [], dtype=tf.string, default_value=''), 'image/object/bbox/xmin': tf.VarLenFeature( dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature( dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature( dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature( dtype=tf.float32), 'image/object/class/label': tf.VarLenFeature( dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'label': slim.tfexample_decoder.Tensor('image/class/label'), 'label_text': slim.tfexample_decoder.Tensor('image/class/text'), 'object/bbox': slim.tfexample_decoder.BoundingBox( ['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), 'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None if LOAD_READABLE_NAMES: if dataset_utils.has_labels(dataset_dir): labels_to_names = dataset_utils.read_label_file(dataset_dir) else: labels_to_names = create_readable_names_for_imagenet_labels() dataset_utils.write_label_file(labels_to_names, dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=_SPLITS_TO_SIZES[split_name], items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, num_classes=_NUM_CLASSES, labels_to_names=labels_to_names)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/imagenet.py
imagenet.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow.compat.v1 as tf import tf_slim as slim from datasets import dataset_utils _FILE_PATTERN = 'mnist_%s.tfrecord' _SPLITS_TO_SIZES = {'train': 60000, 'test': 10000} _NUM_CLASSES = 10 _ITEMS_TO_DESCRIPTIONS = { 'image': 'A [28 x 28 x 1] grayscale image.', 'label': 'A single integer between 0 and 9', } def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading MNIST. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in _SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if reader is None: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='raw'), 'image/class/label': tf.FixedLenFeature( [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)), } items_to_handlers = { 'image': slim.tfexample_decoder.Image(shape=[28, 28, 1], channels=1), 'label': slim.tfexample_decoder.Tensor('image/class/label', shape=[]), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None if dataset_utils.has_labels(dataset_dir): labels_to_names = dataset_utils.read_label_file(dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=_SPLITS_TO_SIZES[split_name], num_classes=_NUM_CLASSES, items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, labels_to_names=labels_to_names)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/mnist.py
mnist.py
r"""Downloads and converts Flowers data to TFRecords of TF-Example protos. This module downloads the Flowers data, uncompresses it, reads the files that make up the Flowers data and creates two TFRecord datasets: one for train and one for test. Each TFRecord dataset is comprised of a set of TF-Example protocol buffers, each of which contain a single image and label. The script should take about a minute to run. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import random import sys from six.moves import range from six.moves import zip import tensorflow.compat.v1 as tf from datasets import dataset_utils # The URL where the Flowers data can be downloaded. _DATA_URL = 'http://download.tensorflow.org/example_images/flower_photos.tgz' # The number of images in the validation set. _NUM_VALIDATION = 350 # Seed for repeatability. _RANDOM_SEED = 0 # The number of shards per dataset split. _NUM_SHARDS = 5 class ImageReader(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def read_image_dims(self, sess, image_data): image = self.decode_jpeg(sess, image_data) return image.shape[0], image.shape[1] def decode_jpeg(self, sess, image_data): image = sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def _get_filenames_and_classes(dataset_dir): """Returns a list of filenames and inferred class names. Args: dataset_dir: A directory containing a set of subdirectories representing class names. Each subdirectory should contain PNG or JPG encoded images. Returns: A list of image file paths, relative to `dataset_dir` and the list of subdirectories, representing class names. """ flower_root = os.path.join(dataset_dir, 'flower_photos') directories = [] class_names = [] for filename in os.listdir(flower_root): path = os.path.join(flower_root, filename) if os.path.isdir(path): directories.append(path) class_names.append(filename) photo_filenames = [] for directory in directories: for filename in os.listdir(directory): path = os.path.join(directory, filename) photo_filenames.append(path) return photo_filenames, sorted(class_names) def _get_dataset_filename(dataset_dir, split_name, shard_id): output_filename = 'flowers_%s_%05d-of-%05d.tfrecord' % ( split_name, shard_id, _NUM_SHARDS) return os.path.join(dataset_dir, output_filename) def _convert_dataset(split_name, filenames, class_names_to_ids, dataset_dir): """Converts the given filenames to a TFRecord dataset. Args: split_name: The name of the dataset, either 'train' or 'validation'. filenames: A list of absolute paths to png or jpg images. class_names_to_ids: A dictionary from class names (strings) to ids (integers). dataset_dir: The directory where the converted datasets are stored. """ assert split_name in ['train', 'validation'] num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS))) with tf.Graph().as_default(): image_reader = ImageReader() with tf.Session('') as sess: for shard_id in range(_NUM_SHARDS): output_filename = _get_dataset_filename( dataset_dir, split_name, shard_id) with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: start_ndx = shard_id * num_per_shard end_ndx = min((shard_id+1) * num_per_shard, len(filenames)) for i in range(start_ndx, end_ndx): sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( i+1, len(filenames), shard_id)) sys.stdout.flush() # Read the filename: image_data = tf.gfile.GFile(filenames[i], 'rb').read() height, width = image_reader.read_image_dims(sess, image_data) class_name = os.path.basename(os.path.dirname(filenames[i])) class_id = class_names_to_ids[class_name] example = dataset_utils.image_to_tfexample( image_data, b'jpg', height, width, class_id) tfrecord_writer.write(example.SerializeToString()) sys.stdout.write('\n') sys.stdout.flush() def _clean_up_temporary_files(dataset_dir): """Removes temporary files used to create the dataset. Args: dataset_dir: The directory where the temporary files are stored. """ filename = _DATA_URL.split('/')[-1] filepath = os.path.join(dataset_dir, filename) tf.gfile.Remove(filepath) tmp_dir = os.path.join(dataset_dir, 'flower_photos') tf.gfile.DeleteRecursively(tmp_dir) def _dataset_exists(dataset_dir): for split_name in ['train', 'validation']: for shard_id in range(_NUM_SHARDS): output_filename = _get_dataset_filename( dataset_dir, split_name, shard_id) if not tf.gfile.Exists(output_filename): return False return True def run(dataset_dir): """Runs the download and conversion operation. Args: dataset_dir: The dataset directory where the dataset is stored. """ if not tf.gfile.Exists(dataset_dir): tf.gfile.MakeDirs(dataset_dir) if _dataset_exists(dataset_dir): print('Dataset files already exist. Exiting without re-creating them.') return dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir) photo_filenames, class_names = _get_filenames_and_classes(dataset_dir) class_names_to_ids = dict( list(zip(class_names, list(range(len(class_names)))))) # Divide into train and test: random.seed(_RANDOM_SEED) random.shuffle(photo_filenames) training_filenames = photo_filenames[_NUM_VALIDATION:] validation_filenames = photo_filenames[:_NUM_VALIDATION] # First, convert the training and validation sets. _convert_dataset('train', training_filenames, class_names_to_ids, dataset_dir) _convert_dataset('validation', validation_filenames, class_names_to_ids, dataset_dir) # Finally, write the labels file: labels_to_class_names = dict( list(zip(list(range(len(class_names))), class_names))) dataset_utils.write_label_file(labels_to_class_names, dataset_dir) _clean_up_temporary_files(dataset_dir) print('\nFinished converting the Flowers dataset!')
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/download_and_convert_flowers.py
download_and_convert_flowers.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os.path import sys import xml.etree.ElementTree as ET from six.moves import xrange # pylint: disable=redefined-builtin class BoundingBox(object): pass def GetItem(name, root, index=0): count = 0 for item in root.iter(name): if count == index: return item.text count += 1 # Failed to find "index" occurrence of item. return -1 def GetInt(name, root, index=0): return int(GetItem(name, root, index)) def FindNumberBoundingBoxes(root): index = 0 while True: if GetInt('xmin', root, index) == -1: break index += 1 return index def ProcessXMLAnnotation(xml_file): """Process a single XML file containing a bounding box.""" # pylint: disable=broad-except try: tree = ET.parse(xml_file) except Exception: print('Failed to parse: ' + xml_file, file=sys.stderr) return None # pylint: enable=broad-except root = tree.getroot() num_boxes = FindNumberBoundingBoxes(root) boxes = [] for index in xrange(num_boxes): box = BoundingBox() # Grab the 'index' annotation. box.xmin = GetInt('xmin', root, index) box.ymin = GetInt('ymin', root, index) box.xmax = GetInt('xmax', root, index) box.ymax = GetInt('ymax', root, index) box.width = GetInt('width', root) box.height = GetInt('height', root) box.filename = GetItem('filename', root) + '.JPEG' box.label = GetItem('name', root) xmin = float(box.xmin) / float(box.width) xmax = float(box.xmax) / float(box.width) ymin = float(box.ymin) / float(box.height) ymax = float(box.ymax) / float(box.height) # Some images contain bounding box annotations that # extend outside of the supplied image. See, e.g. # n03127925/n03127925_147.xml # Additionally, for some bounding boxes, the min > max # or the box is entirely outside of the image. min_x = min(xmin, xmax) max_x = max(xmin, xmax) box.xmin_scaled = min(max(min_x, 0.0), 1.0) box.xmax_scaled = min(max(max_x, 0.0), 1.0) min_y = min(ymin, ymax) max_y = max(ymin, ymax) box.ymin_scaled = min(max(min_y, 0.0), 1.0) box.ymax_scaled = min(max(max_y, 0.0), 1.0) boxes.append(box) return boxes if __name__ == '__main__': if len(sys.argv) < 2 or len(sys.argv) > 3: print('Invalid usage\n' 'usage: process_bounding_boxes.py <dir> [synsets-file]', file=sys.stderr) sys.exit(-1) xml_files = glob.glob(sys.argv[1] + '/*/*.xml') print('Identified %d XML files in %s' % (len(xml_files), sys.argv[1]), file=sys.stderr) if len(sys.argv) == 3: labels = set([l.strip() for l in open(sys.argv[2]).readlines()]) print('Identified %d synset IDs in %s' % (len(labels), sys.argv[2]), file=sys.stderr) else: labels = None skipped_boxes = 0 skipped_files = 0 saved_boxes = 0 saved_files = 0 for file_index, one_file in enumerate(xml_files): # Example: <...>/n06470073/n00141669_6790.xml label = os.path.basename(os.path.dirname(one_file)) # Determine if the annotation is from an ImageNet Challenge label. if labels is not None and label not in labels: skipped_files += 1 continue bboxes = ProcessXMLAnnotation(one_file) assert bboxes is not None, 'No bounding boxes found in ' + one_file found_box = False for bbox in bboxes: if labels is not None: if bbox.label != label: # Note: There is a slight bug in the bounding box annotation data. # Many of the dog labels have the human label 'Scottish_deerhound' # instead of the synset ID 'n02092002' in the bbox.label field. As a # simple hack to overcome this issue, we only exclude bbox labels # *which are synset ID's* that do not match original synset label for # the XML file. if bbox.label in labels: skipped_boxes += 1 continue # Guard against improperly specified boxes. if (bbox.xmin_scaled >= bbox.xmax_scaled or bbox.ymin_scaled >= bbox.ymax_scaled): skipped_boxes += 1 continue # Note bbox.filename occasionally contains '%s' in the name. This is # data set noise that is fixed by just using the basename of the XML file. image_filename = os.path.splitext(os.path.basename(one_file))[0] print('%s.JPEG,%.4f,%.4f,%.4f,%.4f' % (image_filename, bbox.xmin_scaled, bbox.ymin_scaled, bbox.xmax_scaled, bbox.ymax_scaled)) saved_boxes += 1 found_box = True if found_box: saved_files += 1 else: skipped_files += 1 if not file_index % 5000: print('--> processed %d of %d XML files.' % (file_index + 1, len(xml_files)), file=sys.stderr) print('--> skipped %d boxes and %d XML files.' % (skipped_boxes, skipped_files), file=sys.stderr) print('Finished processing %d XML files.' % len(xml_files), file=sys.stderr) print('Skipped %d XML files not in ImageNet Challenge.' % skipped_files, file=sys.stderr) print('Skipped %d bounding boxes not in ImageNet Challenge.' % skipped_boxes, file=sys.stderr) print('Wrote %d bounding boxes from %d annotated images.' % (saved_boxes, saved_files), file=sys.stderr) print('Finished.', file=sys.stderr)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/process_bounding_boxes.py
process_bounding_boxes.py
r"""Downloads and converts VisualWakewords data to TFRecords of TF-Example protos. This module downloads the COCO dataset, uncompresses it, derives the VisualWakeWords dataset to create two TFRecord datasets: one for train and one for test. Each TFRecord dataset is comprised of a set of TF-Example protocol buffers, each of which contain a single image and label. The script should take several minutes to run. Please note that this tool creates sharded output files. VisualWakeWords dataset is used to design tiny models classifying two classes, such as person/not-person. The two steps to generate the VisualWakeWords dataset from the COCO dataset are given below: 1. Use COCO annotations to create VisualWakeWords annotations: Note: A bounding box is 'valid' if it has the foreground_class_of_interest (e.g. person) and it's area is greater than 0.5% of the image area. The resulting annotations file has the following fields, where 'images' are the same as COCO dataset. 'categories' only contains information about the foreground_class_of_interest (e.g. person) and 'annotations' maps an image to objects (a list of valid bounding boxes) and label (value is 1 if it has atleast one valid bounding box, otherwise 0) images[{ "id", "width", "height", "file_name", "flickr_url", "coco_url", "license", "date_captured", }] categories{ "id": {"id", "name", "supercategory"} } annotations{ "image_id": {"objects":[{"area", "bbox" : [x,y,width,height]}], "label"} } 2. Use VisualWakeWords annotations to create TFRecords: The resulting TFRecord file contains the following features: { image/height, image/width, image/source_id, image/encoded, image/class/label_text, image/class/label, image/object/class/text, image/object/bbox/ymin, image/object/bbox/xmin, image/object/bbox/ymax, image/object/bbox/xmax, image/object/area image/filename, image/format, image/key/sha256} For classification models, you need the image/encoded and image/class/label. Example usage: Run download_and_convert_data.py in the parent directory as follows: python download_and_convert_visualwakewords.py --logtostderr \ --dataset_name=visualwakewords \ --dataset_dir="${DATASET_DIR}" \ --small_object_area_threshold=0.005 \ --foreground_class_of_interest='person' """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow.compat.v1 as tf from datasets import download_and_convert_visualwakewords_lib tf.logging.set_verbosity(tf.logging.INFO) tf.app.flags.DEFINE_string( 'coco_dirname', 'coco_dataset', 'A subdirectory in visualwakewords dataset directory' 'containing the coco dataset') FLAGS = tf.app.flags.FLAGS def run(dataset_dir, small_object_area_threshold, foreground_class_of_interest): """Runs the download and conversion operation. Args: dataset_dir: The dataset directory where the dataset is stored. small_object_area_threshold: Threshold of fraction of image area below which small objects are filtered foreground_class_of_interest: Build a binary classifier based on the presence or absence of this object in the image. """ # 1. Download the coco dataset into a subdirectory under the visualwakewords # dataset directory coco_dir = os.path.join(dataset_dir, FLAGS.coco_dirname) if not tf.gfile.IsDirectory(coco_dir): tf.gfile.MakeDirs(coco_dir) download_and_convert_visualwakewords_lib.download_coco_dataset(coco_dir) # Path to COCO annotations train_annotations_file = os.path.join(coco_dir, 'annotations', 'instances_train2014.json') val_annotations_file = os.path.join(coco_dir, 'annotations', 'instances_val2014.json') train_image_dir = os.path.join(coco_dir, 'train2014') val_image_dir = os.path.join(coco_dir, 'val2014') # Path to VisualWakeWords annotations visualwakewords_annotations_train = os.path.join( dataset_dir, 'instances_visualwakewords_train2014.json') visualwakewords_annotations_val = os.path.join( dataset_dir, 'instances_visualwakewords_val2014.json') visualwakewords_labels_filename = os.path.join(dataset_dir, 'labels.txt') train_output_path = os.path.join(dataset_dir, 'train.record') val_output_path = os.path.join(dataset_dir, 'val.record') # 2. Create a labels file tf.logging.info('Creating a labels file...') download_and_convert_visualwakewords_lib.create_labels_file( foreground_class_of_interest, visualwakewords_labels_filename) # 3. Use COCO annotations to create VisualWakeWords annotations tf.logging.info('Creating train VisualWakeWords annotations...') download_and_convert_visualwakewords_lib.create_visual_wakeword_annotations( train_annotations_file, visualwakewords_annotations_train, small_object_area_threshold, foreground_class_of_interest) tf.logging.info('Creating validation VisualWakeWords annotations...') download_and_convert_visualwakewords_lib.create_visual_wakeword_annotations( val_annotations_file, visualwakewords_annotations_val, small_object_area_threshold, foreground_class_of_interest) # 4. Use VisualWakeWords annotations to create the TFRecords tf.logging.info('Creating train TFRecords for VisualWakeWords dataset...') download_and_convert_visualwakewords_lib.create_tf_record_for_visualwakewords_dataset( visualwakewords_annotations_train, train_image_dir, train_output_path, num_shards=100) tf.logging.info( 'Creating validation TFRecords for VisualWakeWords dataset...') download_and_convert_visualwakewords_lib.create_tf_record_for_visualwakewords_dataset( visualwakewords_annotations_val, val_image_dir, val_output_path, num_shards=10)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/download_and_convert_visualwakewords.py
download_and_convert_visualwakewords.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow.compat.v1 as tf import tf_slim as slim from datasets import dataset_utils _FILE_PATTERN = '%s.record-*' _SPLITS_TO_SIZES = { 'train': 82783, 'val': 40504, } _ITEMS_TO_DESCRIPTIONS = { 'image': 'A color image of varying height and width.', 'label': 'The label id of the image, an integer in {0, 1}', 'object/bbox': 'A list of bounding boxes.', } _NUM_CLASSES = 2 # labels file LABELS_FILENAME = 'labels.txt' def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading ImageNet. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in _SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if reader is None: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/class/label': tf.FixedLenFeature([], dtype=tf.int64, default_value=-1), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'label': slim.tfexample_decoder.Tensor('image/class/label'), 'object/bbox': slim.tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), } decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) labels_to_names = None labels_file = os.path.join(dataset_dir, LABELS_FILENAME) if tf.gfile.Exists(labels_file): labels_to_names = dataset_utils.read_label_file(dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=_SPLITS_TO_SIZES[split_name], items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, num_classes=_NUM_CLASSES, labels_to_names=labels_to_names)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/visualwakewords.py
visualwakewords.py
"""Contains utilities for downloading and converting datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import tarfile import zipfile from six.moves import urllib import tensorflow.compat.v1 as tf LABELS_FILENAME = 'labels.txt' def int64_feature(values): """Returns a TF-Feature of int64s. Args: values: A scalar or list of values. Returns: A TF-Feature. """ if not isinstance(values, (tuple, list)): values = [values] return tf.train.Feature(int64_list=tf.train.Int64List(value=values)) def bytes_list_feature(values): """Returns a TF-Feature of list of bytes. Args: values: A string or list of strings. Returns: A TF-Feature. """ return tf.train.Feature(bytes_list=tf.train.BytesList(value=values)) def float_list_feature(values): """Returns a TF-Feature of list of floats. Args: values: A float or list of floats. Returns: A TF-Feature. """ return tf.train.Feature(float_list=tf.train.FloatList(value=values)) def bytes_feature(values): """Returns a TF-Feature of bytes. Args: values: A string. Returns: A TF-Feature. """ return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values])) def float_feature(values): """Returns a TF-Feature of floats. Args: values: A scalar of list of values. Returns: A TF-Feature. """ if not isinstance(values, (tuple, list)): values = [values] return tf.train.Feature(float_list=tf.train.FloatList(value=values)) def image_to_tfexample(image_data, image_format, height, width, class_id): return tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': bytes_feature(image_data), 'image/format': bytes_feature(image_format), 'image/class/label': int64_feature(class_id), 'image/height': int64_feature(height), 'image/width': int64_feature(width), })) def download_url(url, dataset_dir): """Downloads the tarball or zip file from url into filepath. Args: url: The URL of a tarball or zip file. dataset_dir: The directory where the temporary files are stored. Returns: filepath: path where the file is downloaded. """ filename = url.split('/')[-1] filepath = os.path.join(dataset_dir, filename) def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(url, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') return filepath def download_and_uncompress_tarball(tarball_url, dataset_dir): """Downloads the `tarball_url` and uncompresses it locally. Args: tarball_url: The URL of a tarball file. dataset_dir: The directory where the temporary files are stored. """ filepath = download_url(tarball_url, dataset_dir) tarfile.open(filepath, 'r:gz').extractall(dataset_dir) def download_and_uncompress_zipfile(zip_url, dataset_dir): """Downloads the `zip_url` and uncompresses it locally. Args: zip_url: The URL of a zip file. dataset_dir: The directory where the temporary files are stored. """ filename = zip_url.split('/')[-1] filepath = os.path.join(dataset_dir, filename) if tf.gfile.Exists(filepath): print('File {filename} has been already downloaded at {filepath}. ' 'Unzipping it....'.format(filename=filename, filepath=filepath)) else: filepath = download_url(zip_url, dataset_dir) with zipfile.ZipFile(filepath, 'r') as zip_file: for member in zip_file.namelist(): memberpath = os.path.join(dataset_dir, member) # extract only if file doesn't exist if not (os.path.exists(memberpath) or os.path.isfile(memberpath)): zip_file.extract(member, dataset_dir) def write_label_file(labels_to_class_names, dataset_dir, filename=LABELS_FILENAME): """Writes a file with the list of class names. Args: labels_to_class_names: A map of (integer) labels to class names. dataset_dir: The directory in which the labels file should be written. filename: The filename where the class names are written. """ labels_filename = os.path.join(dataset_dir, filename) with tf.gfile.Open(labels_filename, 'w') as f: for label in labels_to_class_names: class_name = labels_to_class_names[label] f.write('%d:%s\n' % (label, class_name)) def has_labels(dataset_dir, filename=LABELS_FILENAME): """Specifies whether or not the dataset directory contains a label map file. Args: dataset_dir: The directory in which the labels file is found. filename: The filename where the class names are written. Returns: `True` if the labels file exists and `False` otherwise. """ return tf.gfile.Exists(os.path.join(dataset_dir, filename)) def read_label_file(dataset_dir, filename=LABELS_FILENAME): """Reads the labels file and returns a mapping from ID to class name. Args: dataset_dir: The directory in which the labels file is found. filename: The filename where the class names are written. Returns: A map from a label (integer) to class name. """ labels_filename = os.path.join(dataset_dir, filename) with tf.gfile.Open(labels_filename, 'rb') as f: lines = f.read().decode() lines = lines.split('\n') lines = filter(None, lines) labels_to_class_names = {} for line in lines: index = line.index(':') labels_to_class_names[int(line[:index])] = line[index+1:] return labels_to_class_names def open_sharded_output_tfrecords(exit_stack, base_path, num_shards): """Opens all TFRecord shards for writing and adds them to an exit stack. Args: exit_stack: A context2.ExitStack used to automatically closed the TFRecords opened in this function. base_path: The base path for all shards num_shards: The number of shards Returns: The list of opened TFRecords. Position k in the list corresponds to shard k. """ tf_record_output_filenames = [ '{}-{:05d}-of-{:05d}'.format(base_path, idx, num_shards) for idx in range(num_shards) ] tfrecords = [ exit_stack.enter_context(tf.python_io.TFRecordWriter(file_name)) for file_name in tf_record_output_filenames ] return tfrecords
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/dataset_utils.py
dataset_utils.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow.compat.v1 as tf import tf_slim as slim from datasets import dataset_utils _FILE_PATTERN = 'flowers_%s_*.tfrecord' SPLITS_TO_SIZES = {'train': 3320, 'validation': 350} _NUM_CLASSES = 5 _ITEMS_TO_DESCRIPTIONS = { 'image': 'A color image of varying size.', 'label': 'A single integer between 0 and 4', } def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading flowers. Args: split_name: A train/validation split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/validation split. """ if split_name not in SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if reader is None: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='png'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)), } items_to_handlers = { 'image': slim.tfexample_decoder.Image(), 'label': slim.tfexample_decoder.Tensor('image/class/label'), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None if dataset_utils.has_labels(dataset_dir): labels_to_names = dataset_utils.read_label_file(dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=SPLITS_TO_SIZES[split_name], items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, num_classes=_NUM_CLASSES, labels_to_names=labels_to_names)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/flowers.py
flowers.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os import random import sys import threading import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow.compat.v1 as tf tf.app.flags.DEFINE_string('train_directory', '/tmp/', 'Training data directory') tf.app.flags.DEFINE_string('validation_directory', '/tmp/', 'Validation data directory') tf.app.flags.DEFINE_string('output_directory', '/tmp/', 'Output data directory') tf.app.flags.DEFINE_integer('train_shards', 1024, 'Number of shards in training TFRecord files.') tf.app.flags.DEFINE_integer('validation_shards', 128, 'Number of shards in validation TFRecord files.') tf.app.flags.DEFINE_integer('num_threads', 8, 'Number of threads to preprocess the images.') # The labels file contains a list of valid labels are held in this file. # Assumes that the file contains entries as such: # n01440764 # n01443537 # n01484850 # where each line corresponds to a label expressed as a synset. We map # each synset contained in the file to an integer (based on the alphabetical # ordering). See below for details. tf.app.flags.DEFINE_string('labels_file', 'imagenet_lsvrc_2015_synsets.txt', 'Labels file') # This file containing mapping from synset to human-readable label. # Assumes each line of the file looks like: # # n02119247 black fox # n02119359 silver fox # n02119477 red fox, Vulpes fulva # # where each line corresponds to a unique mapping. Note that each line is # formatted as <synset>\t<human readable label>. tf.app.flags.DEFINE_string('imagenet_metadata_file', 'imagenet_metadata.txt', 'ImageNet metadata file') # This file is the output of process_bounding_box.py # Assumes each line of the file looks like: # # n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 # # where each line corresponds to one bounding box annotation associated # with an image. Each line can be parsed as: # # <JPEG file name>, <xmin>, <ymin>, <xmax>, <ymax> # # Note that there might exist mulitple bounding box annotations associated # with an image file. tf.app.flags.DEFINE_string('bounding_box_file', './imagenet_2012_bounding_boxes.csv', 'Bounding box file') FLAGS = tf.app.flags.FLAGS def _int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _float_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def _bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _convert_to_example(filename, image_buffer, label, synset, human, bbox, height, width): """Build an Example proto for an example. Args: filename: string, path to an image file, e.g., '/path/to/example.JPG' image_buffer: string, JPEG encoding of RGB image label: integer, identifier for the ground truth for the network synset: string, unique WordNet ID specifying the label, e.g., 'n02323233' human: string, human-readable label, e.g., 'red fox, Vulpes vulpes' bbox: list of bounding boxes; each box is a list of integers specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong to the same label as the image label. height: integer, image height in pixels width: integer, image width in pixels Returns: Example proto """ xmin = [] ymin = [] xmax = [] ymax = [] for b in bbox: assert len(b) == 4 # pylint: disable=expression-not-assigned [l.append(point) for l, point in zip([xmin, ymin, xmax, ymax], b)] # pylint: enable=expression-not-assigned colorspace = 'RGB' channels = 3 image_format = 'JPEG' example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': _int64_feature(height), 'image/width': _int64_feature(width), 'image/colorspace': _bytes_feature(colorspace), 'image/channels': _int64_feature(channels), 'image/class/label': _int64_feature(label), 'image/class/synset': _bytes_feature(synset), 'image/class/text': _bytes_feature(human), 'image/object/bbox/xmin': _float_feature(xmin), 'image/object/bbox/xmax': _float_feature(xmax), 'image/object/bbox/ymin': _float_feature(ymin), 'image/object/bbox/ymax': _float_feature(ymax), 'image/object/bbox/label': _int64_feature([label] * len(xmin)), 'image/format': _bytes_feature(image_format), 'image/filename': _bytes_feature(os.path.basename(filename)), 'image/encoded': _bytes_feature(image_buffer)})) return example class ImageCoder(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Create a single Session to run all image coding calls. self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._png_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_png(self._png_data, channels=3) self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that converts CMYK JPEG data to RGB JPEG data. self._cmyk_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_jpeg(self._cmyk_data, channels=0) self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def png_to_jpeg(self, image_data): return self._sess.run(self._png_to_jpeg, feed_dict={self._png_data: image_data}) def cmyk_to_rgb(self, image_data): return self._sess.run(self._cmyk_to_rgb, feed_dict={self._cmyk_data: image_data}) def decode_jpeg(self, image_data): image = self._sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def _is_png(filename): """Determine if a file contains a PNG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a PNG. """ # File list from: # https://groups.google.com/forum/embed/?place=forum/torch7#!topic/torch7/fOSTXHIESSU return 'n02105855_2933.JPEG' in filename def _is_cmyk(filename): """Determine if file contains a CMYK JPEG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a JPEG encoded with CMYK color space. """ # File list from: # https://github.com/cytsai/ilsvrc-cmyk-image-list blacklist = ['n01739381_1309.JPEG', 'n02077923_14822.JPEG', 'n02447366_23489.JPEG', 'n02492035_15739.JPEG', 'n02747177_10752.JPEG', 'n03018349_4028.JPEG', 'n03062245_4620.JPEG', 'n03347037_9675.JPEG', 'n03467068_12171.JPEG', 'n03529860_11437.JPEG', 'n03544143_17228.JPEG', 'n03633091_5218.JPEG', 'n03710637_5125.JPEG', 'n03961711_5286.JPEG', 'n04033995_2932.JPEG', 'n04258138_17003.JPEG', 'n04264628_27969.JPEG', 'n04336792_7448.JPEG', 'n04371774_5854.JPEG', 'n04596742_4225.JPEG', 'n07583066_647.JPEG', 'n13037406_4650.JPEG'] return filename.split('/')[-1] in blacklist def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. image_data = tf.gfile.GFile(filename, 'r').read() # Clean the dirty data. if _is_png(filename): # 1 image is a PNG. print('Converting PNG to JPEG for %s' % filename) image_data = coder.png_to_jpeg(image_data) elif _is_cmyk(filename): # 22 JPEG images are in CMYK colorspace. print('Converting CMYK to RGB for %s' % filename) image_data = coder.cmyk_to_rgb(image_data) # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image_data, height, width def _process_image_files_batch(coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards): """Processes and saves list of images as TFRecord in 1 thread. Args: coder: instance of ImageCoder to provide TensorFlow image coding utils. thread_index: integer, unique batch to run index is within [0, len(ranges)). ranges: list of pairs of integers specifying ranges of each batches to analyze in parallel. name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ # Each thread produces N shards where N = int(num_shards / num_threads). # For instance, if num_shards = 128, and the num_threads = 2, then the first # thread would produce shards [0, 64). num_threads = len(ranges) assert not num_shards % num_threads num_shards_per_batch = int(num_shards / num_threads) shard_ranges = np.linspace(ranges[thread_index][0], ranges[thread_index][1], num_shards_per_batch + 1).astype(int) num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] counter = 0 for s in xrange(num_shards_per_batch): # Generate a sharded version of the file name, e.g. 'train-00002-of-00010' shard = thread_index * num_shards_per_batch + s output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards) output_file = os.path.join(FLAGS.output_directory, output_filename) writer = tf.python_io.TFRecordWriter(output_file) shard_counter = 0 files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) for i in files_in_shard: filename = filenames[i] label = labels[i] synset = synsets[i] human = humans[i] bbox = bboxes[i] image_buffer, height, width = _process_image(filename, coder) example = _convert_to_example(filename, image_buffer, label, synset, human, bbox, height, width) writer.write(example.SerializeToString()) shard_counter += 1 counter += 1 if not counter % 1000: print('%s [thread %d]: Processed %d of %d images in thread batch.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() writer.close() print('%s [thread %d]: Wrote %d images to %s' % (datetime.now(), thread_index, shard_counter, output_file)) sys.stdout.flush() shard_counter = 0 print('%s [thread %d]: Wrote %d images to %d shards.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() def _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards): """Process and save list of images as TFRecord of Example protos. Args: name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file synsets: list of strings; each string is a unique WordNet ID labels: list of integer; each integer identifies the ground truth humans: list of strings; each string is a human-readable label bboxes: list of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. num_shards: integer number of shards for this data set. """ assert len(filenames) == len(synsets) assert len(filenames) == len(labels) assert len(filenames) == len(humans) assert len(filenames) == len(bboxes) # Break all images into batches with a [ranges[i][0], ranges[i][1]]. spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int) ranges = [] threads = [] for i in xrange(len(spacing) - 1): ranges.append([spacing[i], spacing[i+1]]) # Launch a thread for each batch. print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges)) sys.stdout.flush() # Create a mechanism for monitoring when all threads are finished. coord = tf.train.Coordinator() # Create a generic TensorFlow-based utility for converting all image codings. coder = ImageCoder() threads = [] for thread_index in xrange(len(ranges)): args = (coder, thread_index, ranges, name, filenames, synsets, labels, humans, bboxes, num_shards) t = threading.Thread(target=_process_image_files_batch, args=args) t.start() threads.append(t) # Wait for all the threads to terminate. coord.join(threads) print('%s: Finished writing all %d images in data set.' % (datetime.now(), len(filenames))) sys.stdout.flush() def _find_image_files(data_dir, labels_file): """Build a list of all images files and labels in the data set. Args: data_dir: string, path to the root directory of images. Assumes that the ImageNet data set resides in JPEG files located in the following directory structure. data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG where 'n01440764' is the unique synset label associated with these images. labels_file: string, path to the labels file. The list of valid labels are held in this file. Assumes that the file contains entries as such: n01440764 n01443537 n01484850 where each line corresponds to a label expressed as a synset. We map each synset contained in the file to an integer (based on the alphabetical ordering) starting with the integer 1 corresponding to the synset contained in the first line. The reason we start the integer labels at 1 is to reserve label 0 as an unused background class. Returns: filenames: list of strings; each string is a path to an image file. synsets: list of strings; each string is a unique WordNet ID. labels: list of integer; each integer identifies the ground truth. """ print('Determining list of input files and labels from %s.' % data_dir) challenge_synsets = [ l.strip() for l in tf.gfile.GFile(labels_file, 'r').readlines() ] labels = [] filenames = [] synsets = [] # Leave label index 0 empty as a background class. label_index = 1 # Construct the list of JPEG files and labels. for synset in challenge_synsets: jpeg_file_path = '%s/%s/*.JPEG' % (data_dir, synset) matching_files = tf.gfile.Glob(jpeg_file_path) labels.extend([label_index] * len(matching_files)) synsets.extend([synset] * len(matching_files)) filenames.extend(matching_files) if not label_index % 100: print('Finished finding files in %d of %d classes.' % ( label_index, len(challenge_synsets))) label_index += 1 # Shuffle the ordering of all image files in order to guarantee # random ordering of the images with respect to label in the # saved TFRecord files. Make the randomization repeatable. shuffled_index = range(len(filenames)) random.seed(12345) random.shuffle(shuffled_index) filenames = [filenames[i] for i in shuffled_index] synsets = [synsets[i] for i in shuffled_index] labels = [labels[i] for i in shuffled_index] print('Found %d JPEG files across %d labels inside %s.' % (len(filenames), len(challenge_synsets), data_dir)) return filenames, synsets, labels def _find_human_readable_labels(synsets, synset_to_human): """Build a list of human-readable labels. Args: synsets: list of strings; each string is a unique WordNet ID. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' Returns: List of human-readable strings corresponding to each synset. """ humans = [] for s in synsets: assert s in synset_to_human, ('Failed to find: %s' % s) humans.append(synset_to_human[s]) return humans def _find_image_bounding_boxes(filenames, image_to_bboxes): """Find the bounding boxes for a given image file. Args: filenames: list of strings; each string is a path to an image file. image_to_bboxes: dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. Returns: List of bounding boxes for each image. Note that each entry in this list might contain from 0+ entries corresponding to the number of bounding box annotations for the image. """ num_image_bbox = 0 bboxes = [] for f in filenames: basename = os.path.basename(f) if basename in image_to_bboxes: bboxes.append(image_to_bboxes[basename]) num_image_bbox += 1 else: bboxes.append([]) print('Found %d images with bboxes out of %d images' % ( num_image_bbox, len(filenames))) return bboxes def _process_dataset(name, directory, num_shards, synset_to_human, image_to_bboxes): """Process a complete data set and save it as a TFRecord. Args: name: string, unique identifier specifying the data set. directory: string, root path to the data set. num_shards: integer number of shards for this data set. synset_to_human: dict of synset to human labels, e.g., 'n02119022' --> 'red fox, Vulpes vulpes' image_to_bboxes: dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. """ filenames, synsets, labels = _find_image_files(directory, FLAGS.labels_file) humans = _find_human_readable_labels(synsets, synset_to_human) bboxes = _find_image_bounding_boxes(filenames, image_to_bboxes) _process_image_files(name, filenames, synsets, labels, humans, bboxes, num_shards) def _build_synset_lookup(imagenet_metadata_file): """Build lookup for synset to human-readable label. Args: imagenet_metadata_file: string, path to file containing mapping from synset to human-readable label. Assumes each line of the file looks like: n02119247 black fox n02119359 silver fox n02119477 red fox, Vulpes fulva where each line corresponds to a unique mapping. Note that each line is formatted as <synset>\t<human readable label>. Returns: Dictionary of synset to human labels, such as: 'n02119022' --> 'red fox, Vulpes vulpes' """ lines = tf.gfile.GFile(imagenet_metadata_file, 'r').readlines() synset_to_human = {} for l in lines: if l: parts = l.strip().split('\t') assert len(parts) == 2 synset = parts[0] human = parts[1] synset_to_human[synset] = human return synset_to_human def _build_bounding_box_lookup(bounding_box_file): """Build a lookup from image file to bounding boxes. Args: bounding_box_file: string, path to file with bounding boxes annotations. Assumes each line of the file looks like: n00007846_64193.JPEG,0.0060,0.2620,0.7545,0.9940 where each line corresponds to one bounding box annotation associated with an image. Each line can be parsed as: <JPEG file name>, <xmin>, <ymin>, <xmax>, <ymax> Note that there might exist mulitple bounding box annotations associated with an image file. This file is the output of process_bounding_boxes.py. Returns: Dictionary mapping image file names to a list of bounding boxes. This list contains 0+ bounding boxes. """ lines = tf.gfile.GFile(bounding_box_file, 'r').readlines() images_to_bboxes = {} num_bbox = 0 num_image = 0 for l in lines: if l: parts = l.split(',') assert len(parts) == 5, ('Failed to parse: %s' % l) filename = parts[0] xmin = float(parts[1]) ymin = float(parts[2]) xmax = float(parts[3]) ymax = float(parts[4]) box = [xmin, ymin, xmax, ymax] if filename not in images_to_bboxes: images_to_bboxes[filename] = [] num_image += 1 images_to_bboxes[filename].append(box) num_bbox += 1 print('Successfully read %d bounding boxes ' 'across %d images.' % (num_bbox, num_image)) return images_to_bboxes def main(unused_argv): assert not FLAGS.train_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards') assert not FLAGS.validation_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with ' 'FLAGS.validation_shards') print('Saving results to %s' % FLAGS.output_directory) # Build a map from synset to human-readable label. synset_to_human = _build_synset_lookup(FLAGS.imagenet_metadata_file) image_to_bboxes = _build_bounding_box_lookup(FLAGS.bounding_box_file) # Run it! _process_dataset('validation', FLAGS.validation_directory, FLAGS.validation_shards, synset_to_human, image_to_bboxes) _process_dataset('train', FLAGS.train_directory, FLAGS.train_shards, synset_to_human, image_to_bboxes) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/build_imagenet_data.py
build_imagenet_data.py
r"""Downloads and converts cifar10 data to TFRecords of TF-Example protos. This module downloads the cifar10 data, uncompresses it, reads the files that make up the cifar10 data and creates two TFRecord datasets: one for train and one for test. Each TFRecord dataset is comprised of a set of TF-Example protocol buffers, each of which contain a single image and label. The script should take several minutes to run. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import tarfile import numpy as np from six.moves import cPickle from six.moves import urllib import tensorflow.compat.v1 as tf from datasets import dataset_utils # The URL where the CIFAR data can be downloaded. _DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' # The number of training files. _NUM_TRAIN_FILES = 5 # The height and width of each image. _IMAGE_SIZE = 32 # The names of the classes. _CLASS_NAMES = [ 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck', ] def _add_to_tfrecord(filename, tfrecord_writer, offset=0): """Loads data from the cifar10 pickle files and writes files to a TFRecord. Args: filename: The filename of the cifar10 pickle file. tfrecord_writer: The TFRecord writer to use for writing. offset: An offset into the absolute number of images previously written. Returns: The new offset. """ with tf.gfile.Open(filename, 'rb') as f: if sys.version_info < (3,): data = cPickle.load(f) else: data = cPickle.load(f, encoding='bytes') images = data[b'data'] num_images = images.shape[0] images = images.reshape((num_images, 3, 32, 32)) labels = data[b'labels'] with tf.Graph().as_default(): image_placeholder = tf.placeholder(dtype=tf.uint8) encoded_image = tf.image.encode_png(image_placeholder) with tf.Session('') as sess: for j in range(num_images): sys.stdout.write('\r>> Reading file [%s] image %d/%d' % ( filename, offset + j + 1, offset + num_images)) sys.stdout.flush() image = np.squeeze(images[j]).transpose((1, 2, 0)) label = labels[j] png_string = sess.run(encoded_image, feed_dict={image_placeholder: image}) example = dataset_utils.image_to_tfexample( png_string, b'png', _IMAGE_SIZE, _IMAGE_SIZE, label) tfrecord_writer.write(example.SerializeToString()) return offset + num_images def _get_output_filename(dataset_dir, split_name): """Creates the output filename. Args: dataset_dir: The dataset directory where the dataset is stored. split_name: The name of the train/test split. Returns: An absolute file path. """ return '%s/cifar10_%s.tfrecord' % (dataset_dir, split_name) def _download_and_uncompress_dataset(dataset_dir): """Downloads cifar10 and uncompresses it locally. Args: dataset_dir: The directory where the temporary files are stored. """ filename = _DATA_URL.split('/')[-1] filepath = os.path.join(dataset_dir, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(_DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dataset_dir) def _clean_up_temporary_files(dataset_dir): """Removes temporary files used to create the dataset. Args: dataset_dir: The directory where the temporary files are stored. """ filename = _DATA_URL.split('/')[-1] filepath = os.path.join(dataset_dir, filename) tf.gfile.Remove(filepath) tmp_dir = os.path.join(dataset_dir, 'cifar-10-batches-py') tf.gfile.DeleteRecursively(tmp_dir) def run(dataset_dir): """Runs the download and conversion operation. Args: dataset_dir: The dataset directory where the dataset is stored. """ if not tf.gfile.Exists(dataset_dir): tf.gfile.MakeDirs(dataset_dir) training_filename = _get_output_filename(dataset_dir, 'train') testing_filename = _get_output_filename(dataset_dir, 'test') if tf.gfile.Exists(training_filename) and tf.gfile.Exists(testing_filename): print('Dataset files already exist. Exiting without re-creating them.') return dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir) # First, process the training data: with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer: offset = 0 for i in range(_NUM_TRAIN_FILES): filename = os.path.join(dataset_dir, 'cifar-10-batches-py', 'data_batch_%d' % (i + 1)) # 1-indexed. offset = _add_to_tfrecord(filename, tfrecord_writer, offset) # Next, process the testing data: with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer: filename = os.path.join(dataset_dir, 'cifar-10-batches-py', 'test_batch') _add_to_tfrecord(filename, tfrecord_writer) # Finally, write the labels file: labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES)) dataset_utils.write_label_file(labels_to_class_names, dataset_dir) _clean_up_temporary_files(dataset_dir) print('\nFinished converting the Cifar10 dataset!')
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/download_and_convert_cifar10.py
download_and_convert_cifar10.py
r"""Helper functions to generate the Visual WakeWords dataset. It filters raw COCO annotations file to Visual WakeWords Dataset annotations. The resulting annotations and COCO images are then converted to TF records. See download_and_convert_visualwakewords.py for the sample usage. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import hashlib import io import json import os import contextlib2 import PIL.Image import six import tensorflow.compat.v1 as tf from datasets import dataset_utils tf.logging.set_verbosity(tf.logging.INFO) tf.app.flags.DEFINE_string( 'coco_train_url', 'http://images.cocodataset.org/zips/train2014.zip', 'Link to zip file containing coco training data') tf.app.flags.DEFINE_string( 'coco_validation_url', 'http://images.cocodataset.org/zips/val2014.zip', 'Link to zip file containing coco validation data') tf.app.flags.DEFINE_string( 'coco_annotations_url', 'http://images.cocodataset.org/annotations/annotations_trainval2014.zip', 'Link to zip file containing coco annotation data') FLAGS = tf.app.flags.FLAGS def download_coco_dataset(dataset_dir): """Download the coco dataset. Args: dataset_dir: Path where coco dataset should be downloaded. """ dataset_utils.download_and_uncompress_zipfile(FLAGS.coco_train_url, dataset_dir) dataset_utils.download_and_uncompress_zipfile(FLAGS.coco_validation_url, dataset_dir) dataset_utils.download_and_uncompress_zipfile(FLAGS.coco_annotations_url, dataset_dir) def create_labels_file(foreground_class_of_interest, visualwakewords_labels_file): """Generate visualwakewords labels file. Args: foreground_class_of_interest: category from COCO dataset that is filtered by the visualwakewords dataset visualwakewords_labels_file: output visualwakewords label file """ labels_to_class_names = {0: 'background', 1: foreground_class_of_interest} with open(visualwakewords_labels_file, 'w') as fp: for label in labels_to_class_names: fp.write(str(label) + ':' + str(labels_to_class_names[label]) + '\n') def create_visual_wakeword_annotations(annotations_file, visualwakewords_annotations_file, small_object_area_threshold, foreground_class_of_interest): """Generate visual wakewords annotations file. Loads COCO annotation json files to generate visualwakewords annotations file. Args: annotations_file: JSON file containing COCO bounding box annotations visualwakewords_annotations_file: path to output annotations file small_object_area_threshold: threshold on fraction of image area below which small object bounding boxes are filtered foreground_class_of_interest: category from COCO dataset that is filtered by the visual wakewords dataset """ # default object of interest is person foreground_class_of_interest_id = 1 with tf.gfile.GFile(annotations_file, 'r') as fid: groundtruth_data = json.load(fid) images = groundtruth_data['images'] # Create category index category_index = {} for category in groundtruth_data['categories']: if category['name'] == foreground_class_of_interest: foreground_class_of_interest_id = category['id'] category_index[category['id']] = category # Create annotations index, a map of image_id to it's annotations tf.logging.info('Building annotations index...') annotations_index = collections.defaultdict( lambda: collections.defaultdict(list)) # structure is { "image_id": {"objects" : [list of the image annotations]}} for annotation in groundtruth_data['annotations']: annotations_index[annotation['image_id']]['objects'].append(annotation) missing_annotation_count = len(images) - len(annotations_index) tf.logging.info('%d images are missing annotations.', missing_annotation_count) # Create filtered annotations index annotations_index_filtered = {} for idx, image in enumerate(images): if idx % 100 == 0: tf.logging.info('On image %d of %d', idx, len(images)) annotations = annotations_index[image['id']] annotations_filtered = _filter_annotations( annotations, image, small_object_area_threshold, foreground_class_of_interest_id) annotations_index_filtered[image['id']] = annotations_filtered with open(visualwakewords_annotations_file, 'w') as fp: json.dump( { 'images': images, 'annotations': annotations_index_filtered, 'categories': category_index }, fp) def _filter_annotations(annotations, image, small_object_area_threshold, foreground_class_of_interest_id): """Filters COCO annotations to visual wakewords annotations. Args: annotations: dicts with keys: { u'objects': [{u'id', u'image_id', u'category_id', u'segmentation', u'area', u'bbox' : [x,y,width,height], u'iscrowd'}] } Notice that bounding box coordinates in the official COCO dataset are given as [x, y, width, height] tuples using absolute coordinates where x, y represent the top-left (0-indexed) corner. image: dict with keys: [u'license', u'file_name', u'coco_url', u'height', u'width', u'date_captured', u'flickr_url', u'id'] small_object_area_threshold: threshold on fraction of image area below which small objects are filtered foreground_class_of_interest_id: category of COCO dataset which visual wakewords filters Returns: annotations_filtered: dict with keys: { u'objects': [{"area", "bbox" : [x,y,width,height]}], u'label', } """ objects = [] image_area = image['height'] * image['width'] for annotation in annotations['objects']: normalized_object_area = annotation['area'] / image_area category_id = int(annotation['category_id']) # Filter valid bounding boxes if category_id == foreground_class_of_interest_id and \ normalized_object_area > small_object_area_threshold: objects.append({ u'area': annotation['area'], u'bbox': annotation['bbox'], }) label = 1 if objects else 0 return { 'objects': objects, 'label': label, } def create_tf_record_for_visualwakewords_dataset(annotations_file, image_dir, output_path, num_shards): """Loads Visual WakeWords annotations/images and converts to tf.Record format. Args: annotations_file: JSON file containing bounding box annotations. image_dir: Directory containing the image files. output_path: Path to output tf.Record file. num_shards: number of output file shards. """ with contextlib2.ExitStack() as tf_record_close_stack, \ tf.gfile.GFile(annotations_file, 'r') as fid: output_tfrecords = dataset_utils.open_sharded_output_tfrecords( tf_record_close_stack, output_path, num_shards) groundtruth_data = json.load(fid) images = groundtruth_data['images'] annotations_index = groundtruth_data['annotations'] annotations_index = {int(k): v for k, v in six.iteritems(annotations_index)} # convert 'unicode' key to 'int' key after we parse the json file for idx, image in enumerate(images): if idx % 100 == 0: tf.logging.info('On image %d of %d', idx, len(images)) annotations = annotations_index[image['id']] tf_example = _create_tf_example(image, annotations, image_dir) shard_idx = idx % num_shards output_tfrecords[shard_idx].write(tf_example.SerializeToString()) def _create_tf_example(image, annotations, image_dir): """Converts image and annotations to a tf.Example proto. Args: image: dict with keys: [u'license', u'file_name', u'coco_url', u'height', u'width', u'date_captured', u'flickr_url', u'id'] annotations: dict with objects (a list of image annotations) and a label. {u'objects':[{"area", "bbox" : [x,y,width,height}], u'label'}. Notice that bounding box coordinates in the COCO dataset are given as[x, y, width, height] tuples using absolute coordinates where x, y represent the top-left (0-indexed) corner. This function also converts to the format that can be used by the Tensorflow Object Detection API (which is [ymin, xmin, ymax, xmax] with coordinates normalized relative to image size). image_dir: directory containing the image files. Returns: tf_example: The converted tf.Example Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ image_height = image['height'] image_width = image['width'] filename = image['file_name'] image_id = image['id'] full_path = os.path.join(image_dir, filename) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) key = hashlib.sha256(encoded_jpg).hexdigest() xmin, xmax, ymin, ymax, area = [], [], [], [], [] for obj in annotations['objects']: (x, y, width, height) = tuple(obj['bbox']) xmin.append(float(x) / image_width) xmax.append(float(x + width) / image_width) ymin.append(float(y) / image_height) ymax.append(float(y + height) / image_height) area.append(obj['area']) feature_dict = { 'image/height': dataset_utils.int64_feature(image_height), 'image/width': dataset_utils.int64_feature(image_width), 'image/filename': dataset_utils.bytes_feature(filename.encode('utf8')), 'image/source_id': dataset_utils.bytes_feature(str(image_id).encode('utf8')), 'image/key/sha256': dataset_utils.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_utils.bytes_feature(encoded_jpg), 'image/format': dataset_utils.bytes_feature('jpeg'.encode('utf8')), 'image/class/label': dataset_utils.int64_feature(annotations['label']), 'image/object/bbox/xmin': dataset_utils.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_utils.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_utils.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_utils.float_list_feature(ymax), 'image/object/area': dataset_utils.float_list_feature(area), } example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) return example
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/download_and_convert_visualwakewords_lib.py
download_and_convert_visualwakewords_lib.py
r"""Process the ImageNet Challenge bounding boxes for TensorFlow model training. Associate the ImageNet 2012 Challenge validation data set with labels. The raw ImageNet validation data set is expected to reside in JPEG files located in the following directory structure. data_dir/ILSVRC2012_val_00000001.JPEG data_dir/ILSVRC2012_val_00000002.JPEG ... data_dir/ILSVRC2012_val_00050000.JPEG This script moves the files into a directory structure like such: data_dir/n01440764/ILSVRC2012_val_00000293.JPEG data_dir/n01440764/ILSVRC2012_val_00000543.JPEG ... where 'n01440764' is the unique synset label associated with these images. This directory reorganization requires a mapping from validation image number (i.e. suffix of the original file) to the associated label. This is provided in the ImageNet development kit via a Matlab file. In order to make life easier and divorce ourselves from Matlab, we instead supply a custom text file that provides this mapping for us. Sample usage: ./preprocess_imagenet_validation_data.py ILSVRC2012_img_val \ imagenet_2012_validation_synset_labels.txt """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from six.moves import xrange # pylint: disable=redefined-builtin if __name__ == '__main__': if len(sys.argv) < 3: print('Invalid usage\n' 'usage: preprocess_imagenet_validation_data.py ' '<validation data dir> <validation labels file>') sys.exit(-1) data_dir = sys.argv[1] validation_labels_file = sys.argv[2] # Read in the 50000 synsets associated with the validation data set. labels = [l.strip() for l in open(validation_labels_file).readlines()] unique_labels = set(labels) # Make all sub-directories in the validation data dir. for label in unique_labels: labeled_data_dir = os.path.join(data_dir, label) os.makedirs(labeled_data_dir) # Move all of the image to the appropriate sub-directory. for i in xrange(len(labels)): basename = 'ILSVRC2012_val_000%.5d.JPEG' % (i + 1) original_filename = os.path.join(data_dir, basename) if not os.path.exists(original_filename): print('Failed to find: ', original_filename) sys.exit(-1) new_filename = os.path.join(data_dir, labels[i], basename) os.rename(original_filename, new_filename)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/datasets/preprocess_imagenet_validation_data.py
preprocess_imagenet_validation_data.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow.compat.v1 as tf import tf_slim as slim __all__ = ['create_clones', 'deploy', 'optimize_clones', 'DeployedModel', 'DeploymentConfig', 'Clone', ] # Namedtuple used to represent a clone during deployment. Clone = collections.namedtuple('Clone', ['outputs', # Whatever model_fn() returned. 'scope', # The scope used to create it. 'device', # The device used to create. ]) # Namedtuple used to represent a DeployedModel, returned by deploy(). DeployedModel = collections.namedtuple('DeployedModel', ['train_op', # The `train_op` 'summary_op', # The `summary_op` 'total_loss', # The loss `Tensor` 'clones', # A list of `Clones` tuples. ]) # Default parameters for DeploymentConfig _deployment_params = {'num_clones': 1, 'clone_on_cpu': False, 'replica_id': 0, 'num_replicas': 1, 'num_ps_tasks': 0, 'worker_job_name': 'worker', 'ps_job_name': 'ps'} def create_clones(config, model_fn, args=None, kwargs=None): """Creates multiple clones according to config using a `model_fn`. The returned values of `model_fn(*args, **kwargs)` are collected along with the scope and device used to created it in a namedtuple `Clone(outputs, scope, device)` Note: it is assumed that any loss created by `model_fn` is collected at the tf.GraphKeys.LOSSES collection. To recover the losses, summaries or update_ops created by the clone use: ```python losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope) summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, clone.scope) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, clone.scope) ``` The deployment options are specified by the config object and support deploying one or several clones on different GPUs and one or several replicas of such clones. The argument `model_fn` is called `config.num_clones` times to create the model clones as `model_fn(*args, **kwargs)`. If `config` specifies deployment on multiple replicas then the default tensorflow device is set appropriatly for each call to `model_fn` and for the slim variable creation functions: model and global variables will be created on the `ps` device, the clone operations will be on the `worker` device. Args: config: A DeploymentConfig object. model_fn: A callable. Called as `model_fn(*args, **kwargs)` args: Optional list of arguments to pass to `model_fn`. kwargs: Optional list of keyword arguments to pass to `model_fn`. Returns: A list of namedtuples `Clone`. """ clones = [] args = args or [] kwargs = kwargs or {} with slim.arg_scope([slim.model_variable, slim.variable], device=config.variables_device()): # Create clones. for i in range(0, config.num_clones): with tf.name_scope(config.clone_scope(i)) as clone_scope: clone_device = config.clone_device(i) with tf.device(clone_device): with tf.variable_scope(tf.get_variable_scope(), reuse=True if i > 0 else None): outputs = model_fn(*args, **kwargs) clones.append(Clone(outputs, clone_scope, clone_device)) return clones def _gather_clone_loss(clone, num_clones, regularization_losses): """Gather the loss for a single clone. Args: clone: A Clone namedtuple. num_clones: The number of clones being deployed. regularization_losses: Possibly empty list of regularization_losses to add to the clone losses. Returns: A tensor for the total loss for the clone. Can be None. """ # The return value. sum_loss = None # Individual components of the loss that will need summaries. clone_loss = None regularization_loss = None # Compute and aggregate losses on the clone device. with tf.device(clone.device): all_losses = [] clone_losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope) if clone_losses: clone_loss = tf.add_n(clone_losses, name='clone_loss') if num_clones > 1: clone_loss = tf.div(clone_loss, 1.0 * num_clones, name='scaled_clone_loss') all_losses.append(clone_loss) if regularization_losses: regularization_loss = tf.add_n(regularization_losses, name='regularization_loss') all_losses.append(regularization_loss) if all_losses: sum_loss = tf.add_n(all_losses) # Add the summaries out of the clone device block. if clone_loss is not None: tf.summary.scalar('/'.join(filter(None, ['Losses', clone.scope, 'clone_loss'])), clone_loss) if regularization_loss is not None: tf.summary.scalar('Losses/regularization_loss', regularization_loss) return sum_loss def _optimize_clone(optimizer, clone, num_clones, regularization_losses, **kwargs): """Compute losses and gradients for a single clone. Args: optimizer: A tf.Optimizer object. clone: A Clone namedtuple. num_clones: The number of clones being deployed. regularization_losses: Possibly empty list of regularization_losses to add to the clone losses. **kwargs: Dict of kwarg to pass to compute_gradients(). Returns: A tuple (clone_loss, clone_grads_and_vars). - clone_loss: A tensor for the total loss for the clone. Can be None. - clone_grads_and_vars: List of (gradient, variable) for the clone. Can be empty. """ sum_loss = _gather_clone_loss(clone, num_clones, regularization_losses) clone_grad = None if sum_loss is not None: with tf.device(clone.device): clone_grad = optimizer.compute_gradients(sum_loss, **kwargs) return sum_loss, clone_grad def optimize_clones(clones, optimizer, regularization_losses=None, **kwargs): """Compute clone losses and gradients for the given list of `Clones`. Note: The regularization_losses are added to the first clone losses. Args: clones: List of `Clones` created by `create_clones()`. optimizer: An `Optimizer` object. regularization_losses: Optional list of regularization losses. If None it will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to exclude them. **kwargs: Optional list of keyword arguments to pass to `compute_gradients`. Returns: A tuple (total_loss, grads_and_vars). - total_loss: A Tensor containing the average of the clone losses including the regularization loss. - grads_and_vars: A List of tuples (gradient, variable) containing the sum of the gradients for each variable. """ grads_and_vars = [] clones_losses = [] num_clones = len(clones) if regularization_losses is None: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss, clone_grad = _optimize_clone( optimizer, clone, num_clones, regularization_losses, **kwargs) if clone_loss is not None: clones_losses.append(clone_loss) grads_and_vars.append(clone_grad) # Only use regularization_losses for the first clone regularization_losses = None # Compute the total_loss summing all the clones_losses. total_loss = tf.add_n(clones_losses, name='total_loss') # Sum the gradients across clones. grads_and_vars = _sum_clones_gradients(grads_and_vars) return total_loss, grads_and_vars def deploy(config, model_fn, args=None, kwargs=None, optimizer=None, summarize_gradients=False): """Deploys a Slim-constructed model across multiple clones. The deployment options are specified by the config object and support deploying one or several clones on different GPUs and one or several replicas of such clones. The argument `model_fn` is called `config.num_clones` times to create the model clones as `model_fn(*args, **kwargs)`. The optional argument `optimizer` is an `Optimizer` object. If not `None`, the deployed model is configured for training with that optimizer. If `config` specifies deployment on multiple replicas then the default tensorflow device is set appropriatly for each call to `model_fn` and for the slim variable creation functions: model and global variables will be created on the `ps` device, the clone operations will be on the `worker` device. Args: config: A `DeploymentConfig` object. model_fn: A callable. Called as `model_fn(*args, **kwargs)` args: Optional list of arguments to pass to `model_fn`. kwargs: Optional list of keyword arguments to pass to `model_fn`. optimizer: Optional `Optimizer` object. If passed the model is deployed for training with that optimizer. summarize_gradients: Whether or not add summaries to the gradients. Returns: A `DeployedModel` namedtuple. """ # Gather initial summaries. summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) # Create Clones. clones = create_clones(config, model_fn, args, kwargs) first_clone = clones[0] # Gather update_ops from the first clone. These contain, for example, # the updates for the batch_norm variables created by model_fn. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone.scope) train_op = None total_loss = None with tf.device(config.optimizer_device()): if optimizer: # Place the global step on the device storing the variables. with tf.device(config.variables_device()): global_step = slim.get_or_create_global_step() # Compute the gradients for the clones. total_loss, clones_gradients = optimize_clones(clones, optimizer) if clones_gradients: if summarize_gradients: # Add summaries to the gradients. summaries |= set(_add_gradients_summaries(clones_gradients)) # Create gradient updates. grad_updates = optimizer.apply_gradients(clones_gradients, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops) with tf.control_dependencies([update_op]): train_op = tf.identity(total_loss, name='train_op') else: clones_losses = [] regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss = _gather_clone_loss(clone, len(clones), regularization_losses) if clone_loss is not None: clones_losses.append(clone_loss) # Only use regularization_losses for the first clone regularization_losses = None if clones_losses: total_loss = tf.add_n(clones_losses, name='total_loss') # Add the summaries from the first clone. These contain the summaries # created by model_fn and either optimize_clones() or _gather_clone_loss(). summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone.scope)) if total_loss is not None: # Add total_loss to summary. summaries.add(tf.summary.scalar('total_loss', total_loss)) if summaries: # Merge all summaries together. summary_op = tf.summary.merge(list(summaries), name='summary_op') else: summary_op = None return DeployedModel(train_op, summary_op, total_loss, clones) def _sum_clones_gradients(clone_grads): """Calculate the sum gradient for each shared variable across all clones. This function assumes that the clone_grads has been scaled appropriately by 1 / num_clones. Args: clone_grads: A List of List of tuples (gradient, variable), one list per `Clone`. Returns: List of tuples of (gradient, variable) where the gradient has been summed across all clones. """ sum_grads = [] for grad_and_vars in zip(*clone_grads): # Note that each grad_and_vars looks like the following: # ((grad_var0_clone0, var0), ... (grad_varN_cloneN, varN)) grads = [] var = grad_and_vars[0][1] for g, v in grad_and_vars: assert v == var if g is not None: grads.append(g) if grads: if len(grads) > 1: sum_grad = tf.add_n(grads, name=var.op.name + '/sum_grads') else: sum_grad = grads[0] sum_grads.append((sum_grad, var)) return sum_grads def _add_gradients_summaries(grads_and_vars): """Add histogram summaries to gradients. Note: The summaries are also added to the SUMMARIES collection. Args: grads_and_vars: A list of gradient to variable pairs (tuples). Returns: The _list_ of the added summaries for grads_and_vars. """ summaries = [] for grad, var in grads_and_vars: if grad is not None: if isinstance(grad, tf.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append(tf.summary.histogram(var.op.name + ':gradient', grad_values)) summaries.append(tf.summary.histogram(var.op.name + ':gradient_norm', tf.global_norm([grad_values]))) else: tf.logging.info('Var %s has no gradient', var.op.name) return summaries class DeploymentConfig(object): """Configuration for deploying a model with `deploy()`. You can pass an instance of this class to `deploy()` to specify exactly how to deploy the model to build. If you do not pass one, an instance built from the default deployment_hparams will be used. """ def __init__(self, num_clones=1, clone_on_cpu=False, replica_id=0, num_replicas=1, num_ps_tasks=0, worker_job_name='worker', ps_job_name='ps'): """Create a DeploymentConfig. The config describes how to deploy a model across multiple clones and replicas. The model will be replicated `num_clones` times in each replica. If `clone_on_cpu` is True, each clone will placed on CPU. If `num_replicas` is 1, the model is deployed via a single process. In that case `worker_device`, `num_ps_tasks`, and `ps_device` are ignored. If `num_replicas` is greater than 1, then `worker_device` and `ps_device` must specify TensorFlow devices for the `worker` and `ps` jobs and `num_ps_tasks` must be positive. Args: num_clones: Number of model clones to deploy in each replica. clone_on_cpu: If True clones would be placed on CPU. replica_id: Integer. Index of the replica for which the model is deployed. Usually 0 for the chief replica. num_replicas: Number of replicas to use. num_ps_tasks: Number of tasks for the `ps` job. 0 to not use replicas. worker_job_name: A name for the worker job. ps_job_name: A name for the parameter server job. Raises: ValueError: If the arguments are invalid. """ if num_replicas > 1: if num_ps_tasks < 1: raise ValueError('When using replicas num_ps_tasks must be positive') if num_replicas > 1 or num_ps_tasks > 0: if not worker_job_name: raise ValueError('Must specify worker_job_name when using replicas') if not ps_job_name: raise ValueError('Must specify ps_job_name when using parameter server') if replica_id >= num_replicas: raise ValueError('replica_id must be less than num_replicas') self._num_clones = num_clones self._clone_on_cpu = clone_on_cpu self._replica_id = replica_id self._num_replicas = num_replicas self._num_ps_tasks = num_ps_tasks self._ps_device = '/job:' + ps_job_name if num_ps_tasks > 0 else '' self._worker_device = '/job:' + worker_job_name if num_ps_tasks > 0 else '' @property def num_clones(self): return self._num_clones @property def clone_on_cpu(self): return self._clone_on_cpu @property def replica_id(self): return self._replica_id @property def num_replicas(self): return self._num_replicas @property def num_ps_tasks(self): return self._num_ps_tasks @property def ps_device(self): return self._ps_device @property def worker_device(self): return self._worker_device def caching_device(self): """Returns the device to use for caching variables. Variables are cached on the worker CPU when using replicas. Returns: A device string or None if the variables do not need to be cached. """ if self._num_ps_tasks > 0: return lambda op: op.device else: return None def clone_device(self, clone_index): """Device used to create the clone and all the ops inside the clone. Args: clone_index: Int, representing the clone_index. Returns: A value suitable for `tf.device()`. Raises: ValueError: if `clone_index` is greater or equal to the number of clones". """ if clone_index >= self._num_clones: raise ValueError('clone_index must be less than num_clones') device = '' if self._num_ps_tasks > 0: device += self._worker_device if self._clone_on_cpu: device += '/device:CPU:0' else: device += '/device:GPU:%d' % clone_index return device def clone_scope(self, clone_index): """Name scope to create the clone. Args: clone_index: Int, representing the clone_index. Returns: A name_scope suitable for `tf.name_scope()`. Raises: ValueError: if `clone_index` is greater or equal to the number of clones". """ if clone_index >= self._num_clones: raise ValueError('clone_index must be less than num_clones') scope = '' if self._num_clones > 1: scope = 'clone_%d' % clone_index return scope def optimizer_device(self): """Device to use with the optimizer. Returns: A value suitable for `tf.device()`. """ if self._num_ps_tasks > 0 or self._num_clones > 0: return self._worker_device + '/device:CPU:0' else: return '' def inputs_device(self): """Device to use to build the inputs. Returns: A value suitable for `tf.device()`. """ device = '' if self._num_ps_tasks > 0: device += self._worker_device device += '/device:CPU:0' return device def variables_device(self): """Returns the device to use for variables created inside the clone. Returns: A value suitable for `tf.device()`. """ device = '' if self._num_ps_tasks > 0: device += self._ps_device device += '/device:CPU:0' class _PSDeviceChooser(object): """Slim device chooser for variables when using PS.""" def __init__(self, device, tasks): self._device = device self._tasks = tasks self._task = 0 def choose(self, op): if op.device: return op.device node_def = op if isinstance(op, tf.NodeDef) else op.node_def if node_def.op.startswith('Variable'): t = self._task self._task = (self._task + 1) % self._tasks d = '%s/task:%d' % (self._device, t) return d else: return op.device if not self._num_ps_tasks: return device else: chooser = _PSDeviceChooser(device, self._num_ps_tasks) return chooser.choose
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/slim/deployment/model_deploy.py
model_deploy.py
r"""Creates and runs `Estimator` for object detection model on TPUs. This uses the TPUEstimator API to define and run a model in TRAIN/EVAL modes. """ # pylint: enable=line-too-long from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow.compat.v1 as tf from object_detection import model_lib tf.flags.DEFINE_bool('use_tpu', True, 'Use TPUs rather than plain CPUs') # Cloud TPU Cluster Resolvers flags.DEFINE_string( 'gcp_project', default=None, help='Project name for the Cloud TPU-enabled project. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_string( 'tpu_zone', default=None, help='GCE zone where the Cloud TPU is located in. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_string( 'tpu_name', default=None, help='Name of the Cloud TPU for Cluster Resolvers.') flags.DEFINE_integer('num_shards', 8, 'Number of shards (TPU cores).') flags.DEFINE_integer('iterations_per_loop', 100, 'Number of iterations per TPU training loop.') # For mode=train_and_eval, evaluation occurs after training is finished. # Note: independently of steps_per_checkpoint, estimator will save the most # recent checkpoint every 10 minutes by default for train_and_eval flags.DEFINE_string('mode', 'train', 'Mode to run: train, eval') flags.DEFINE_integer('train_batch_size', None, 'Batch size for training. If ' 'this is not provided, batch size is read from training ' 'config.') flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.') flags.DEFINE_boolean('eval_training_data', False, 'If training data should be evaluated for this job.') flags.DEFINE_integer('sample_1_of_n_eval_examples', 1, 'Will sample one of ' 'every n eval input examples, where n is provided.') flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample ' 'one of every n train input examples for evaluation, ' 'where n is provided. This is only used if ' '`eval_training_data` is True.') flags.DEFINE_string( 'model_dir', None, 'Path to output model directory ' 'where event and checkpoint files will be written.') flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config ' 'file.') flags.DEFINE_integer( 'max_eval_retries', 0, 'If running continuous eval, the maximum number of ' 'retries upon encountering tf.errors.InvalidArgumentError. If negative, ' 'will always retry the evaluation.' ) FLAGS = tf.flags.FLAGS def main(unused_argv): flags.mark_flag_as_required('model_dir') flags.mark_flag_as_required('pipeline_config_path') tpu_cluster_resolver = ( tf.distribute.cluster_resolver.TPUClusterResolver( tpu=[FLAGS.tpu_name], zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)) tpu_grpc_url = tpu_cluster_resolver.get_master() config = tf.estimator.tpu.RunConfig( master=tpu_grpc_url, evaluation_master=tpu_grpc_url, model_dir=FLAGS.model_dir, tpu_config=tf.estimator.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_shards)) kwargs = {} if FLAGS.train_batch_size: kwargs['batch_size'] = FLAGS.train_batch_size train_and_eval_dict = model_lib.create_estimator_and_inputs( run_config=config, pipeline_config_path=FLAGS.pipeline_config_path, train_steps=FLAGS.num_train_steps, sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples, sample_1_of_n_eval_on_train_examples=( FLAGS.sample_1_of_n_eval_on_train_examples), use_tpu_estimator=True, use_tpu=FLAGS.use_tpu, num_shards=FLAGS.num_shards, save_final_config=FLAGS.mode == 'train', **kwargs) estimator = train_and_eval_dict['estimator'] train_input_fn = train_and_eval_dict['train_input_fn'] eval_input_fns = train_and_eval_dict['eval_input_fns'] eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn'] train_steps = train_and_eval_dict['train_steps'] if FLAGS.mode == 'train': estimator.train(input_fn=train_input_fn, max_steps=train_steps) # Continuously evaluating. if FLAGS.mode == 'eval': if FLAGS.eval_training_data: name = 'training_data' input_fn = eval_on_train_input_fn else: name = 'validation_data' # Currently only a single eval input is allowed. input_fn = eval_input_fns[0] model_lib.continuous_eval(estimator, FLAGS.model_dir, input_fn, train_steps, name, FLAGS.max_eval_retries) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/model_tpu_main.py
model_tpu_main.py
"""Common utility functions for evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import re import time import numpy as np from six.moves import range import tensorflow.compat.v1 as tf import tf_slim as slim from object_detection.core import box_list from object_detection.core import box_list_ops from object_detection.core import keypoint_ops from object_detection.core import standard_fields as fields from object_detection.metrics import coco_evaluation from object_detection.metrics import lvis_evaluation from object_detection.protos import eval_pb2 from object_detection.utils import label_map_util from object_detection.utils import object_detection_evaluation from object_detection.utils import ops from object_detection.utils import shape_utils from object_detection.utils import visualization_utils as vis_utils EVAL_KEYPOINT_METRIC = 'coco_keypoint_metrics' # A dictionary of metric names to classes that implement the metric. The classes # in the dictionary must implement # utils.object_detection_evaluation.DetectionEvaluator interface. EVAL_METRICS_CLASS_DICT = { 'coco_detection_metrics': coco_evaluation.CocoDetectionEvaluator, 'coco_keypoint_metrics': coco_evaluation.CocoKeypointEvaluator, 'coco_mask_metrics': coco_evaluation.CocoMaskEvaluator, 'coco_panoptic_metrics': coco_evaluation.CocoPanopticSegmentationEvaluator, 'lvis_mask_metrics': lvis_evaluation.LVISMaskEvaluator, 'oid_challenge_detection_metrics': object_detection_evaluation.OpenImagesDetectionChallengeEvaluator, 'oid_challenge_segmentation_metrics': object_detection_evaluation .OpenImagesInstanceSegmentationChallengeEvaluator, 'pascal_voc_detection_metrics': object_detection_evaluation.PascalDetectionEvaluator, 'weighted_pascal_voc_detection_metrics': object_detection_evaluation.WeightedPascalDetectionEvaluator, 'precision_at_recall_detection_metrics': object_detection_evaluation.PrecisionAtRecallDetectionEvaluator, 'pascal_voc_instance_segmentation_metrics': object_detection_evaluation.PascalInstanceSegmentationEvaluator, 'weighted_pascal_voc_instance_segmentation_metrics': object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator, 'oid_V2_detection_metrics': object_detection_evaluation.OpenImagesDetectionEvaluator, } EVAL_DEFAULT_METRIC = 'coco_detection_metrics' def write_metrics(metrics, global_step, summary_dir): """Write metrics to a summary directory. Args: metrics: A dictionary containing metric names and values. global_step: Global step at which the metrics are computed. summary_dir: Directory to write tensorflow summaries to. """ tf.logging.info('Writing metrics to tf summary.') summary_writer = tf.summary.FileWriterCache.get(summary_dir) for key in sorted(metrics): summary = tf.Summary(value=[ tf.Summary.Value(tag=key, simple_value=metrics[key]), ]) summary_writer.add_summary(summary, global_step) tf.logging.info('%s: %f', key, metrics[key]) tf.logging.info('Metrics written to tf summary.') # TODO(rathodv): Add tests. def visualize_detection_results(result_dict, tag, global_step, categories, summary_dir='', export_dir='', agnostic_mode=False, show_groundtruth=False, groundtruth_box_visualization_color='black', min_score_thresh=.5, max_num_predictions=20, skip_scores=False, skip_labels=False, keep_image_id_for_visualization_export=False): """Visualizes detection results and writes visualizations to image summaries. This function visualizes an image with its detected bounding boxes and writes to image summaries which can be viewed on tensorboard. It optionally also writes images to a directory. In the case of missing entry in the label map, unknown class name in the visualization is shown as "N/A". Args: result_dict: a dictionary holding groundtruth and detection data corresponding to each image being evaluated. The following keys are required: 'original_image': a numpy array representing the image with shape [1, height, width, 3] or [1, height, width, 1] 'detection_boxes': a numpy array of shape [N, 4] 'detection_scores': a numpy array of shape [N] 'detection_classes': a numpy array of shape [N] The following keys are optional: 'groundtruth_boxes': a numpy array of shape [N, 4] 'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2] Detections are assumed to be provided in decreasing order of score and for display, and we assume that scores are probabilities between 0 and 1. tag: tensorboard tag (string) to associate with image. global_step: global step at which the visualization are generated. categories: a list of dictionaries representing all possible categories. Each dict in this list has the following keys: 'id': (required) an integer id uniquely identifying this category 'name': (required) string representing category name e.g., 'cat', 'dog', 'pizza' 'supercategory': (optional) string representing the supercategory e.g., 'animal', 'vehicle', 'food', etc summary_dir: the output directory to which the image summaries are written. export_dir: the output directory to which images are written. If this is empty (default), then images are not exported. agnostic_mode: boolean (default: False) controlling whether to evaluate in class-agnostic mode or not. show_groundtruth: boolean (default: False) controlling whether to show groundtruth boxes in addition to detected boxes groundtruth_box_visualization_color: box color for visualizing groundtruth boxes min_score_thresh: minimum score threshold for a box to be visualized max_num_predictions: maximum number of detections to visualize skip_scores: whether to skip score when drawing a single detection skip_labels: whether to skip label when drawing a single detection keep_image_id_for_visualization_export: whether to keep image identifier in filename when exported to export_dir Raises: ValueError: if result_dict does not contain the expected keys (i.e., 'original_image', 'detection_boxes', 'detection_scores', 'detection_classes') """ detection_fields = fields.DetectionResultFields input_fields = fields.InputDataFields if not set([ input_fields.original_image, detection_fields.detection_boxes, detection_fields.detection_scores, detection_fields.detection_classes, ]).issubset(set(result_dict.keys())): raise ValueError('result_dict does not contain all expected keys.') if show_groundtruth and input_fields.groundtruth_boxes not in result_dict: raise ValueError('If show_groundtruth is enabled, result_dict must contain ' 'groundtruth_boxes.') tf.logging.info('Creating detection visualizations.') category_index = label_map_util.create_category_index(categories) image = np.squeeze(result_dict[input_fields.original_image], axis=0) if image.shape[2] == 1: # If one channel image, repeat in RGB. image = np.tile(image, [1, 1, 3]) detection_boxes = result_dict[detection_fields.detection_boxes] detection_scores = result_dict[detection_fields.detection_scores] detection_classes = np.int32((result_dict[ detection_fields.detection_classes])) detection_keypoints = result_dict.get(detection_fields.detection_keypoints) detection_masks = result_dict.get(detection_fields.detection_masks) detection_boundaries = result_dict.get(detection_fields.detection_boundaries) # Plot groundtruth underneath detections if show_groundtruth: groundtruth_boxes = result_dict[input_fields.groundtruth_boxes] groundtruth_keypoints = result_dict.get(input_fields.groundtruth_keypoints) vis_utils.visualize_boxes_and_labels_on_image_array( image=image, boxes=groundtruth_boxes, classes=None, scores=None, category_index=category_index, keypoints=groundtruth_keypoints, use_normalized_coordinates=False, max_boxes_to_draw=None, groundtruth_box_visualization_color=groundtruth_box_visualization_color) vis_utils.visualize_boxes_and_labels_on_image_array( image, detection_boxes, detection_classes, detection_scores, category_index, instance_masks=detection_masks, instance_boundaries=detection_boundaries, keypoints=detection_keypoints, use_normalized_coordinates=False, max_boxes_to_draw=max_num_predictions, min_score_thresh=min_score_thresh, agnostic_mode=agnostic_mode, skip_scores=skip_scores, skip_labels=skip_labels) if export_dir: if keep_image_id_for_visualization_export and result_dict[fields. InputDataFields() .key]: export_path = os.path.join(export_dir, 'export-{}-{}.png'.format( tag, result_dict[fields.InputDataFields().key])) else: export_path = os.path.join(export_dir, 'export-{}.png'.format(tag)) vis_utils.save_image_array_as_png(image, export_path) summary = tf.Summary(value=[ tf.Summary.Value( tag=tag, image=tf.Summary.Image( encoded_image_string=vis_utils.encode_image_array_as_png_str( image))) ]) summary_writer = tf.summary.FileWriterCache.get(summary_dir) summary_writer.add_summary(summary, global_step) tf.logging.info('Detection visualizations written to summary with tag %s.', tag) def _run_checkpoint_once(tensor_dict, evaluators=None, batch_processor=None, checkpoint_dirs=None, variables_to_restore=None, restore_fn=None, num_batches=1, master='', save_graph=False, save_graph_dir='', losses_dict=None, eval_export_path=None, process_metrics_fn=None): """Evaluates metrics defined in evaluators and returns summaries. This function loads the latest checkpoint in checkpoint_dirs and evaluates all metrics defined in evaluators. The metrics are processed in batch by the batch_processor. Args: tensor_dict: a dictionary holding tensors representing a batch of detections and corresponding groundtruth annotations. evaluators: a list of object of type DetectionEvaluator to be used for evaluation. Note that the metric names produced by different evaluators must be unique. batch_processor: a function taking four arguments: 1. tensor_dict: the same tensor_dict that is passed in as the first argument to this function. 2. sess: a tensorflow session 3. batch_index: an integer representing the index of the batch amongst all batches By default, batch_processor is None, which defaults to running: return sess.run(tensor_dict) To skip an image, it suffices to return an empty dictionary in place of result_dict. checkpoint_dirs: list of directories to load into an EnsembleModel. If it has only one directory, EnsembleModel will not be used -- a DetectionModel will be instantiated directly. Not used if restore_fn is set. variables_to_restore: None, or a dictionary mapping variable names found in a checkpoint to model variables. The dictionary would normally be generated by creating a tf.train.ExponentialMovingAverage object and calling its variables_to_restore() method. Not used if restore_fn is set. restore_fn: None, or a function that takes a tf.Session object and correctly restores all necessary variables from the correct checkpoint file. If None, attempts to restore from the first directory in checkpoint_dirs. num_batches: the number of batches to use for evaluation. master: the location of the Tensorflow session. save_graph: whether or not the Tensorflow graph is stored as a pbtxt file. save_graph_dir: where to store the Tensorflow graph on disk. If save_graph is True this must be non-empty. losses_dict: optional dictionary of scalar detection losses. eval_export_path: Path for saving a json file that contains the detection results in json format. process_metrics_fn: a callback called with evaluation results after each evaluation is done. It could be used e.g. to back up checkpoints with best evaluation scores, or to call an external system to update evaluation results in order to drive best hyper-parameter search. Parameters are: int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics, str checkpoint_file path. Returns: global_step: the count of global steps. all_evaluator_metrics: A dictionary containing metric names and values. Raises: ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least one element. ValueError: if save_graph is True and save_graph_dir is not defined. """ if save_graph and not save_graph_dir: raise ValueError('`save_graph_dir` must be defined.') sess = tf.Session(master, graph=tf.get_default_graph()) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) sess.run(tf.tables_initializer()) checkpoint_file = None if restore_fn: restore_fn(sess) else: if not checkpoint_dirs: raise ValueError('`checkpoint_dirs` must have at least one entry.') checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0]) saver = tf.train.Saver(variables_to_restore) saver.restore(sess, checkpoint_file) if save_graph: tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt') counters = {'skipped': 0, 'success': 0} aggregate_result_losses_dict = collections.defaultdict(list) with slim.queues.QueueRunners(sess): try: for batch in range(int(num_batches)): if (batch + 1) % 100 == 0: tf.logging.info('Running eval ops batch %d/%d', batch + 1, num_batches) if not batch_processor: try: if not losses_dict: losses_dict = {} result_dict, result_losses_dict = sess.run([tensor_dict, losses_dict]) counters['success'] += 1 except tf.errors.InvalidArgumentError: tf.logging.info('Skipping image') counters['skipped'] += 1 result_dict = {} else: result_dict, result_losses_dict = batch_processor( tensor_dict, sess, batch, counters, losses_dict=losses_dict) if not result_dict: continue for key, value in iter(result_losses_dict.items()): aggregate_result_losses_dict[key].append(value) for evaluator in evaluators: # TODO(b/65130867): Use image_id tensor once we fix the input data # decoders to return correct image_id. # TODO(akuznetsa): result_dict contains batches of images, while # add_single_ground_truth_image_info expects a single image. Fix if (isinstance(result_dict, dict) and fields.InputDataFields.key in result_dict and result_dict[fields.InputDataFields.key]): image_id = result_dict[fields.InputDataFields.key] else: image_id = batch evaluator.add_single_ground_truth_image_info( image_id=image_id, groundtruth_dict=result_dict) evaluator.add_single_detected_image_info( image_id=image_id, detections_dict=result_dict) tf.logging.info('Running eval batches done.') except tf.errors.OutOfRangeError: tf.logging.info('Done evaluating -- epoch limit reached') finally: # When done, ask the threads to stop. tf.logging.info('# success: %d', counters['success']) tf.logging.info('# skipped: %d', counters['skipped']) all_evaluator_metrics = {} if eval_export_path and eval_export_path is not None: for evaluator in evaluators: if (isinstance(evaluator, coco_evaluation.CocoDetectionEvaluator) or isinstance(evaluator, coco_evaluation.CocoMaskEvaluator)): tf.logging.info('Started dumping to json file.') evaluator.dump_detections_to_json_file( json_output_path=eval_export_path) tf.logging.info('Finished dumping to json file.') for evaluator in evaluators: metrics = evaluator.evaluate() evaluator.clear() if any(key in all_evaluator_metrics for key in metrics): raise ValueError('Metric names between evaluators must not collide.') all_evaluator_metrics.update(metrics) global_step = tf.train.global_step(sess, tf.train.get_global_step()) for key, value in iter(aggregate_result_losses_dict.items()): all_evaluator_metrics['Losses/' + key] = np.mean(value) if process_metrics_fn and checkpoint_file: m = re.search(r'model.ckpt-(\d+)$', checkpoint_file) if not m: tf.logging.error('Failed to parse checkpoint number from: %s', checkpoint_file) else: checkpoint_number = int(m.group(1)) process_metrics_fn(checkpoint_number, all_evaluator_metrics, checkpoint_file) sess.close() return (global_step, all_evaluator_metrics) # TODO(rathodv): Add tests. def repeated_checkpoint_run(tensor_dict, summary_dir, evaluators, batch_processor=None, checkpoint_dirs=None, variables_to_restore=None, restore_fn=None, num_batches=1, eval_interval_secs=120, max_number_of_evaluations=None, max_evaluation_global_step=None, master='', save_graph=False, save_graph_dir='', losses_dict=None, eval_export_path=None, process_metrics_fn=None): """Periodically evaluates desired tensors using checkpoint_dirs or restore_fn. This function repeatedly loads a checkpoint and evaluates a desired set of tensors (provided by tensor_dict) and hands the resulting numpy arrays to a function result_processor which can be used to further process/save/visualize the results. Args: tensor_dict: a dictionary holding tensors representing a batch of detections and corresponding groundtruth annotations. summary_dir: a directory to write metrics summaries. evaluators: a list of object of type DetectionEvaluator to be used for evaluation. Note that the metric names produced by different evaluators must be unique. batch_processor: a function taking three arguments: 1. tensor_dict: the same tensor_dict that is passed in as the first argument to this function. 2. sess: a tensorflow session 3. batch_index: an integer representing the index of the batch amongst all batches By default, batch_processor is None, which defaults to running: return sess.run(tensor_dict) checkpoint_dirs: list of directories to load into a DetectionModel or an EnsembleModel if restore_fn isn't set. Also used to determine when to run next evaluation. Must have at least one element. variables_to_restore: None, or a dictionary mapping variable names found in a checkpoint to model variables. The dictionary would normally be generated by creating a tf.train.ExponentialMovingAverage object and calling its variables_to_restore() method. Not used if restore_fn is set. restore_fn: a function that takes a tf.Session object and correctly restores all necessary variables from the correct checkpoint file. num_batches: the number of batches to use for evaluation. eval_interval_secs: the number of seconds between each evaluation run. max_number_of_evaluations: the max number of iterations of the evaluation. If the value is left as None the evaluation continues indefinitely. max_evaluation_global_step: global step when evaluation stops. master: the location of the Tensorflow session. save_graph: whether or not the Tensorflow graph is saved as a pbtxt file. save_graph_dir: where to save on disk the Tensorflow graph. If store_graph is True this must be non-empty. losses_dict: optional dictionary of scalar detection losses. eval_export_path: Path for saving a json file that contains the detection results in json format. process_metrics_fn: a callback called with evaluation results after each evaluation is done. It could be used e.g. to back up checkpoints with best evaluation scores, or to call an external system to update evaluation results in order to drive best hyper-parameter search. Parameters are: int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics, str checkpoint_file path. Returns: metrics: A dictionary containing metric names and values in the latest evaluation. Raises: ValueError: if max_num_of_evaluations is not None or a positive number. ValueError: if checkpoint_dirs doesn't have at least one element. """ if max_number_of_evaluations and max_number_of_evaluations <= 0: raise ValueError( '`max_number_of_evaluations` must be either None or a positive number.') if max_evaluation_global_step and max_evaluation_global_step <= 0: raise ValueError( '`max_evaluation_global_step` must be either None or positive.') if not checkpoint_dirs: raise ValueError('`checkpoint_dirs` must have at least one entry.') last_evaluated_model_path = None number_of_evaluations = 0 while True: start = time.time() tf.logging.info('Starting evaluation at ' + time.strftime( '%Y-%m-%d-%H:%M:%S', time.gmtime())) model_path = tf.train.latest_checkpoint(checkpoint_dirs[0]) if not model_path: tf.logging.info('No model found in %s. Will try again in %d seconds', checkpoint_dirs[0], eval_interval_secs) elif model_path == last_evaluated_model_path: tf.logging.info('Found already evaluated checkpoint. Will try again in ' '%d seconds', eval_interval_secs) else: last_evaluated_model_path = model_path global_step, metrics = _run_checkpoint_once( tensor_dict, evaluators, batch_processor, checkpoint_dirs, variables_to_restore, restore_fn, num_batches, master, save_graph, save_graph_dir, losses_dict=losses_dict, eval_export_path=eval_export_path, process_metrics_fn=process_metrics_fn) write_metrics(metrics, global_step, summary_dir) if (max_evaluation_global_step and global_step >= max_evaluation_global_step): tf.logging.info('Finished evaluation!') break number_of_evaluations += 1 if (max_number_of_evaluations and number_of_evaluations >= max_number_of_evaluations): tf.logging.info('Finished evaluation!') break time_to_next_eval = start + eval_interval_secs - time.time() if time_to_next_eval > 0: time.sleep(time_to_next_eval) return metrics def _scale_box_to_absolute(args): boxes, image_shape = args return box_list_ops.to_absolute_coordinates( box_list.BoxList(boxes), image_shape[0], image_shape[1]).get() def _resize_detection_masks(arg_tuple): """Resizes detection masks. Args: arg_tuple: A (detection_boxes, detection_masks, image_shape, pad_shape) tuple where detection_boxes is a tf.float32 tensor of size [num_masks, 4] containing the box corners. Row i contains [ymin, xmin, ymax, xmax] of the box corresponding to mask i. Note that the box corners are in normalized coordinates. detection_masks is a tensor of size [num_masks, mask_height, mask_width]. image_shape is a tensor of shape [2] pad_shape is a tensor of shape [2] --- this is assumed to be greater than or equal to image_shape along both dimensions and represents a shape to-be-padded-to. Returns: """ detection_boxes, detection_masks, image_shape, pad_shape = arg_tuple detection_masks_reframed = ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image_shape[0], image_shape[1]) pad_instance_dim = tf.zeros([3, 1], dtype=tf.int32) pad_hw_dim = tf.concat([tf.zeros([1], dtype=tf.int32), pad_shape - image_shape], axis=0) pad_hw_dim = tf.expand_dims(pad_hw_dim, 1) paddings = tf.concat([pad_instance_dim, pad_hw_dim], axis=1) detection_masks_reframed = tf.pad(detection_masks_reframed, paddings) # If the masks are currently float, binarize them. Otherwise keep them as # integers, since they have already been thresholded. if detection_masks_reframed.dtype == tf.float32: detection_masks_reframed = tf.greater(detection_masks_reframed, 0.5) return tf.cast(detection_masks_reframed, tf.uint8) def resize_detection_masks(detection_boxes, detection_masks, original_image_spatial_shapes): """Resizes per-box detection masks to be relative to the entire image. Note that this function only works when the spatial size of all images in the batch is the same. If not, this function should be used with batch_size=1. Args: detection_boxes: A [batch_size, num_instances, 4] float tensor containing bounding boxes. detection_masks: A [batch_size, num_instances, height, width] float tensor containing binary instance masks per box. original_image_spatial_shapes: a [batch_size, 3] shaped int tensor holding the spatial dimensions of each image in the batch. Returns: masks: Masks resized to the spatial extents given by (original_image_spatial_shapes[0, 0], original_image_spatial_shapes[0, 1]) """ # modify original image spatial shapes to be max along each dim # in evaluator, should have access to original_image_spatial_shape field # in add_Eval_Dict max_spatial_shape = tf.reduce_max( original_image_spatial_shapes, axis=0, keep_dims=True) tiled_max_spatial_shape = tf.tile( max_spatial_shape, multiples=[tf.shape(original_image_spatial_shapes)[0], 1]) return shape_utils.static_or_dynamic_map_fn( _resize_detection_masks, elems=[detection_boxes, detection_masks, original_image_spatial_shapes, tiled_max_spatial_shape], dtype=tf.uint8) def _resize_groundtruth_masks(args): """Resizes groundtruth masks to the original image size.""" mask, true_image_shape, original_image_shape, pad_shape = args true_height = true_image_shape[0] true_width = true_image_shape[1] mask = mask[:, :true_height, :true_width] mask = tf.expand_dims(mask, 3) mask = tf.image.resize_images( mask, original_image_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True) paddings = tf.concat( [tf.zeros([3, 1], dtype=tf.int32), tf.expand_dims( tf.concat([tf.zeros([1], dtype=tf.int32), pad_shape-original_image_shape], axis=0), 1)], axis=1) mask = tf.pad(tf.squeeze(mask, 3), paddings) return tf.cast(mask, tf.uint8) def _resize_surface_coordinate_masks(args): detection_boxes, surface_coords, image_shape = args surface_coords_v, surface_coords_u = tf.unstack(surface_coords, axis=-1) surface_coords_v_reframed = ops.reframe_box_masks_to_image_masks( surface_coords_v, detection_boxes, image_shape[0], image_shape[1]) surface_coords_u_reframed = ops.reframe_box_masks_to_image_masks( surface_coords_u, detection_boxes, image_shape[0], image_shape[1]) return tf.stack([surface_coords_v_reframed, surface_coords_u_reframed], axis=-1) def _scale_keypoint_to_absolute(args): keypoints, image_shape = args return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1]) def result_dict_for_single_example(image, key, detections, groundtruth=None, class_agnostic=False, scale_to_absolute=False): """Merges all detection and groundtruth information for a single example. Note that evaluation tools require classes that are 1-indexed, and so this function performs the offset. If `class_agnostic` is True, all output classes have label 1. Args: image: A single 4D uint8 image tensor of shape [1, H, W, C]. key: A single string tensor identifying the image. detections: A dictionary of detections, returned from DetectionModel.postprocess(). groundtruth: (Optional) Dictionary of groundtruth items, with fields: 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in normalized coordinates. 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes. 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 3D int64 tensor of instance masks (Optional). 'groundtruth_keypoints': [num_boxes, num_keypoints, 2] float32 tensor with keypoints (Optional). class_agnostic: Boolean indicating whether the detections are class-agnostic (i.e. binary). Default False. scale_to_absolute: Boolean indicating whether boxes and keypoints should be scaled to absolute coordinates. Note that for IoU based evaluations, it does not matter whether boxes are expressed in absolute or relative coordinates. Default False. Returns: A dictionary with: 'original_image': A [1, H, W, C] uint8 image tensor. 'key': A string tensor with image identifier. 'detection_boxes': [max_detections, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. 'detection_scores': [max_detections] float32 tensor of scores. 'detection_classes': [max_detections] int64 tensor of 1-indexed classes. 'detection_masks': [max_detections, H, W] float32 tensor of binarized masks, reframed to full image masks. 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. (Optional) 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes. (Optional) 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 3D int64 tensor of instance masks (Optional). 'groundtruth_keypoints': [num_boxes, num_keypoints, 2] float32 tensor with keypoints (Optional). """ if groundtruth: max_gt_boxes = tf.shape( groundtruth[fields.InputDataFields.groundtruth_boxes])[0] for gt_key in groundtruth: # expand groundtruth dict along the batch dimension. groundtruth[gt_key] = tf.expand_dims(groundtruth[gt_key], 0) for detection_key in detections: detections[detection_key] = tf.expand_dims( detections[detection_key][0], axis=0) batched_output_dict = result_dict_for_batched_example( image, tf.expand_dims(key, 0), detections, groundtruth, class_agnostic, scale_to_absolute, max_gt_boxes=max_gt_boxes) exclude_keys = [ fields.InputDataFields.original_image, fields.DetectionResultFields.num_detections, fields.InputDataFields.num_groundtruth_boxes ] output_dict = { fields.InputDataFields.original_image: batched_output_dict[fields.InputDataFields.original_image] } for key in batched_output_dict: # remove the batch dimension. if key not in exclude_keys: output_dict[key] = tf.squeeze(batched_output_dict[key], 0) return output_dict def result_dict_for_batched_example(images, keys, detections, groundtruth=None, class_agnostic=False, scale_to_absolute=False, original_image_spatial_shapes=None, true_image_shapes=None, max_gt_boxes=None, label_id_offset=1): """Merges all detection and groundtruth information for a single example. Note that evaluation tools require classes that are 1-indexed, and so this function performs the offset. If `class_agnostic` is True, all output classes have label 1. The groundtruth coordinates of boxes/keypoints in 'groundtruth' dictionary are normalized relative to the (potentially padded) input image, while the coordinates in 'detection' dictionary are normalized relative to the true image shape. Args: images: A single 4D uint8 image tensor of shape [batch_size, H, W, C]. keys: A [batch_size] string/int tensor with image identifier. detections: A dictionary of detections, returned from DetectionModel.postprocess(). groundtruth: (Optional) Dictionary of groundtruth items, with fields: 'groundtruth_boxes': [batch_size, max_number_of_boxes, 4] float32 tensor of boxes, in normalized coordinates. 'groundtruth_classes': [batch_size, max_number_of_boxes] int64 tensor of 1-indexed classes. 'groundtruth_area': [batch_size, max_number_of_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd':[batch_size, max_number_of_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [batch_size, max_number_of_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [batch_size, max_number_of_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 4D int64 tensor of instance masks (Optional). 'groundtruth_keypoints': [batch_size, max_number_of_boxes, num_keypoints, 2] float32 tensor with keypoints (Optional). 'groundtruth_keypoint_visibilities': [batch_size, max_number_of_boxes, num_keypoints] bool tensor with keypoint visibilities (Optional). 'groundtruth_labeled_classes': [batch_size, num_classes] int64 tensor of 1-indexed classes. (Optional) 'groundtruth_dp_num_points': [batch_size, max_number_of_boxes] int32 tensor. (Optional) 'groundtruth_dp_part_ids': [batch_size, max_number_of_boxes, max_sampled_points] int32 tensor. (Optional) 'groundtruth_dp_surface_coords_list': [batch_size, max_number_of_boxes, max_sampled_points, 4] float32 tensor. (Optional) class_agnostic: Boolean indicating whether the detections are class-agnostic (i.e. binary). Default False. scale_to_absolute: Boolean indicating whether boxes and keypoints should be scaled to absolute coordinates. Note that for IoU based evaluations, it does not matter whether boxes are expressed in absolute or relative coordinates. Default False. original_image_spatial_shapes: A 2D int32 tensor of shape [batch_size, 2] used to resize the image. When set to None, the image size is retained. true_image_shapes: A 2D int32 tensor of shape [batch_size, 3] containing the size of the unpadded original_image. max_gt_boxes: [batch_size] tensor representing the maximum number of groundtruth boxes to pad. label_id_offset: offset for class ids. Returns: A dictionary with: 'original_image': A [batch_size, H, W, C] uint8 image tensor. 'original_image_spatial_shape': A [batch_size, 2] tensor containing the original image sizes. 'true_image_shape': A [batch_size, 3] tensor containing the size of the unpadded original_image. 'key': A [batch_size] string tensor with image identifier. 'detection_boxes': [batch_size, max_detections, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. 'detection_scores': [batch_size, max_detections] float32 tensor of scores. 'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed classes. 'detection_masks': [batch_size, max_detections, H, W] uint8 tensor of instance masks, reframed to full image masks. Note that these may be binarized (e.g. {0, 1}), or may contain 1-indexed part labels. (Optional) 'detection_keypoints': [batch_size, max_detections, num_keypoints, 2] float32 tensor containing keypoint coordinates. (Optional) 'detection_keypoint_scores': [batch_size, max_detections, num_keypoints] float32 tensor containing keypoint scores. (Optional) 'detection_surface_coords': [batch_size, max_detection, H, W, 2] float32 tensor with normalized surface coordinates (e.g. DensePose UV coordinates). (Optional) 'num_detections': [batch_size] int64 tensor containing number of valid detections. 'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. (Optional) 'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed classes. (Optional) 'groundtruth_area': [batch_size, num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [batch_size, num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [batch_size, num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [batch_size, num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 4D int64 tensor of instance masks (Optional). 'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32 tensor with keypoints (Optional). 'groundtruth_keypoint_visibilities': [batch_size, num_boxes, num_keypoints] bool tensor with keypoint visibilities (Optional). 'groundtruth_labeled_classes': [batch_size, num_classes] int64 tensor of 1-indexed classes. (Optional) 'num_groundtruth_boxes': [batch_size] tensor containing the maximum number of groundtruth boxes per image. Raises: ValueError: if original_image_spatial_shape is not 2D int32 tensor of shape [2]. ValueError: if true_image_shapes is not 2D int32 tensor of shape [3]. """ input_data_fields = fields.InputDataFields if original_image_spatial_shapes is None: original_image_spatial_shapes = tf.tile( tf.expand_dims(tf.shape(images)[1:3], axis=0), multiples=[tf.shape(images)[0], 1]) else: if (len(original_image_spatial_shapes.shape) != 2 and original_image_spatial_shapes.shape[1] != 2): raise ValueError( '`original_image_spatial_shape` should be a 2D tensor of shape ' '[batch_size, 2].') if true_image_shapes is None: true_image_shapes = tf.tile( tf.expand_dims(tf.shape(images)[1:4], axis=0), multiples=[tf.shape(images)[0], 1]) else: if (len(true_image_shapes.shape) != 2 and true_image_shapes.shape[1] != 3): raise ValueError('`true_image_shapes` should be a 2D tensor of ' 'shape [batch_size, 3].') output_dict = { input_data_fields.original_image: images, input_data_fields.key: keys, input_data_fields.original_image_spatial_shape: ( original_image_spatial_shapes), input_data_fields.true_image_shape: true_image_shapes } detection_fields = fields.DetectionResultFields detection_boxes = detections[detection_fields.detection_boxes] detection_scores = detections[detection_fields.detection_scores] num_detections = tf.cast(detections[detection_fields.num_detections], dtype=tf.int32) if class_agnostic: detection_classes = tf.ones_like(detection_scores, dtype=tf.int64) else: detection_classes = ( tf.to_int64(detections[detection_fields.detection_classes]) + label_id_offset) if scale_to_absolute: output_dict[detection_fields.detection_boxes] = ( shape_utils.static_or_dynamic_map_fn( _scale_box_to_absolute, elems=[detection_boxes, original_image_spatial_shapes], dtype=tf.float32)) else: output_dict[detection_fields.detection_boxes] = detection_boxes output_dict[detection_fields.detection_classes] = detection_classes output_dict[detection_fields.detection_scores] = detection_scores output_dict[detection_fields.num_detections] = num_detections if detection_fields.detection_masks in detections: detection_masks = detections[detection_fields.detection_masks] output_dict[detection_fields.detection_masks] = resize_detection_masks( detection_boxes, detection_masks, original_image_spatial_shapes) if detection_fields.detection_surface_coords in detections: detection_surface_coords = detections[ detection_fields.detection_surface_coords] output_dict[detection_fields.detection_surface_coords] = ( shape_utils.static_or_dynamic_map_fn( _resize_surface_coordinate_masks, elems=[detection_boxes, detection_surface_coords, original_image_spatial_shapes], dtype=tf.float32)) if detection_fields.detection_keypoints in detections: detection_keypoints = detections[detection_fields.detection_keypoints] output_dict[detection_fields.detection_keypoints] = detection_keypoints if scale_to_absolute: output_dict[detection_fields.detection_keypoints] = ( shape_utils.static_or_dynamic_map_fn( _scale_keypoint_to_absolute, elems=[detection_keypoints, original_image_spatial_shapes], dtype=tf.float32)) if detection_fields.detection_keypoint_scores in detections: output_dict[detection_fields.detection_keypoint_scores] = detections[ detection_fields.detection_keypoint_scores] else: output_dict[detection_fields.detection_keypoint_scores] = tf.ones_like( detections[detection_fields.detection_keypoints][:, :, :, 0]) if groundtruth: if max_gt_boxes is None: if input_data_fields.num_groundtruth_boxes in groundtruth: max_gt_boxes = groundtruth[input_data_fields.num_groundtruth_boxes] else: raise ValueError( 'max_gt_boxes must be provided when processing batched examples.') if input_data_fields.groundtruth_instance_masks in groundtruth: masks = groundtruth[input_data_fields.groundtruth_instance_masks] max_spatial_shape = tf.reduce_max( original_image_spatial_shapes, axis=0, keep_dims=True) tiled_max_spatial_shape = tf.tile( max_spatial_shape, multiples=[tf.shape(original_image_spatial_shapes)[0], 1]) groundtruth[input_data_fields.groundtruth_instance_masks] = ( shape_utils.static_or_dynamic_map_fn( _resize_groundtruth_masks, elems=[masks, true_image_shapes, original_image_spatial_shapes, tiled_max_spatial_shape], dtype=tf.uint8)) output_dict.update(groundtruth) image_shape = tf.cast(tf.shape(images), tf.float32) image_height, image_width = image_shape[1], image_shape[2] def _scale_box_to_normalized_true_image(args): """Scale the box coordinates to be relative to the true image shape.""" boxes, true_image_shape = args true_image_shape = tf.cast(true_image_shape, tf.float32) true_height, true_width = true_image_shape[0], true_image_shape[1] normalized_window = tf.stack([0.0, 0.0, true_height / image_height, true_width / image_width]) return box_list_ops.change_coordinate_frame( box_list.BoxList(boxes), normalized_window).get() groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes] groundtruth_boxes = shape_utils.static_or_dynamic_map_fn( _scale_box_to_normalized_true_image, elems=[groundtruth_boxes, true_image_shapes], dtype=tf.float32) output_dict[input_data_fields.groundtruth_boxes] = groundtruth_boxes if input_data_fields.groundtruth_keypoints in groundtruth: # If groundtruth_keypoints is in the groundtruth dictionary. Update the # coordinates to conform with the true image shape. def _scale_keypoints_to_normalized_true_image(args): """Scale the box coordinates to be relative to the true image shape.""" keypoints, true_image_shape = args true_image_shape = tf.cast(true_image_shape, tf.float32) true_height, true_width = true_image_shape[0], true_image_shape[1] normalized_window = tf.stack( [0.0, 0.0, true_height / image_height, true_width / image_width]) return keypoint_ops.change_coordinate_frame(keypoints, normalized_window) groundtruth_keypoints = groundtruth[ input_data_fields.groundtruth_keypoints] groundtruth_keypoints = shape_utils.static_or_dynamic_map_fn( _scale_keypoints_to_normalized_true_image, elems=[groundtruth_keypoints, true_image_shapes], dtype=tf.float32) output_dict[ input_data_fields.groundtruth_keypoints] = groundtruth_keypoints if scale_to_absolute: groundtruth_boxes = output_dict[input_data_fields.groundtruth_boxes] output_dict[input_data_fields.groundtruth_boxes] = ( shape_utils.static_or_dynamic_map_fn( _scale_box_to_absolute, elems=[groundtruth_boxes, original_image_spatial_shapes], dtype=tf.float32)) if input_data_fields.groundtruth_keypoints in groundtruth: groundtruth_keypoints = output_dict[ input_data_fields.groundtruth_keypoints] output_dict[input_data_fields.groundtruth_keypoints] = ( shape_utils.static_or_dynamic_map_fn( _scale_keypoint_to_absolute, elems=[groundtruth_keypoints, original_image_spatial_shapes], dtype=tf.float32)) # For class-agnostic models, groundtruth classes all become 1. if class_agnostic: groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes] groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64) output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes output_dict[input_data_fields.num_groundtruth_boxes] = max_gt_boxes return output_dict def get_evaluators(eval_config, categories, evaluator_options=None): """Returns the evaluator class according to eval_config, valid for categories. Args: eval_config: An `eval_pb2.EvalConfig`. categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. 'keypoints': (optional) dict mapping this category's keypoints to unique ids. evaluator_options: A dictionary of metric names (see EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization keyword arguments. For example: evalator_options = { 'coco_detection_metrics': {'include_metrics_per_category': True} } Returns: An list of instances of DetectionEvaluator. Raises: ValueError: if metric is not in the metric class dictionary. """ evaluator_options = evaluator_options or {} eval_metric_fn_keys = eval_config.metrics_set if not eval_metric_fn_keys: eval_metric_fn_keys = [EVAL_DEFAULT_METRIC] evaluators_list = [] for eval_metric_fn_key in eval_metric_fn_keys: if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT: raise ValueError('Metric not found: {}'.format(eval_metric_fn_key)) kwargs_dict = (evaluator_options[eval_metric_fn_key] if eval_metric_fn_key in evaluator_options else {}) evaluators_list.append(EVAL_METRICS_CLASS_DICT[eval_metric_fn_key]( categories, **kwargs_dict)) if isinstance(eval_config, eval_pb2.EvalConfig): parameterized_metrics = eval_config.parameterized_metric for parameterized_metric in parameterized_metrics: assert parameterized_metric.HasField('parameterized_metric') if parameterized_metric.WhichOneof( 'parameterized_metric') == EVAL_KEYPOINT_METRIC: keypoint_metrics = parameterized_metric.coco_keypoint_metrics # Create category to keypoints mapping dict. category_keypoints = {} class_label = keypoint_metrics.class_label category = None for cat in categories: if cat['name'] == class_label: category = cat break if not category: continue keypoints_for_this_class = category['keypoints'] category_keypoints = [{ 'id': keypoints_for_this_class[kp_name], 'name': kp_name } for kp_name in keypoints_for_this_class] # Create keypoint evaluator for this category. evaluators_list.append(EVAL_METRICS_CLASS_DICT[EVAL_KEYPOINT_METRIC]( category['id'], category_keypoints, class_label, keypoint_metrics.keypoint_label_to_sigmas)) return evaluators_list def get_eval_metric_ops_for_evaluators(eval_config, categories, eval_dict): """Returns eval metrics ops to use with `tf.estimator.EstimatorSpec`. Args: eval_config: An `eval_pb2.EvalConfig`. categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. eval_dict: An evaluation dictionary, returned from result_dict_for_single_example(). Returns: A dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in tf.EstimatorSpec. """ eval_metric_ops = {} evaluator_options = evaluator_options_from_eval_config(eval_config) evaluators_list = get_evaluators(eval_config, categories, evaluator_options) for evaluator in evaluators_list: eval_metric_ops.update(evaluator.get_estimator_eval_metric_ops( eval_dict)) return eval_metric_ops def evaluator_options_from_eval_config(eval_config): """Produces a dictionary of evaluation options for each eval metric. Args: eval_config: An `eval_pb2.EvalConfig`. Returns: evaluator_options: A dictionary of metric names (see EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization keyword arguments. For example: evalator_options = { 'coco_detection_metrics': {'include_metrics_per_category': True} } """ eval_metric_fn_keys = eval_config.metrics_set evaluator_options = {} for eval_metric_fn_key in eval_metric_fn_keys: if eval_metric_fn_key in ( 'coco_detection_metrics', 'coco_mask_metrics', 'lvis_mask_metrics'): evaluator_options[eval_metric_fn_key] = { 'include_metrics_per_category': ( eval_config.include_metrics_per_category) } if (hasattr(eval_config, 'all_metrics_per_category') and eval_config.all_metrics_per_category): evaluator_options[eval_metric_fn_key].update({ 'all_metrics_per_category': eval_config.all_metrics_per_category }) # For coco detection eval, if the eval_config proto contains the # "skip_predictions_for_unlabeled_class" field, include this field in # evaluator_options. if eval_metric_fn_key == 'coco_detection_metrics' and hasattr( eval_config, 'skip_predictions_for_unlabeled_class'): evaluator_options[eval_metric_fn_key].update({ 'skip_predictions_for_unlabeled_class': (eval_config.skip_predictions_for_unlabeled_class) }) for super_category in eval_config.super_categories: if 'super_categories' not in evaluator_options[eval_metric_fn_key]: evaluator_options[eval_metric_fn_key]['super_categories'] = {} key = super_category value = eval_config.super_categories[key].split(',') evaluator_options[eval_metric_fn_key]['super_categories'][key] = value if eval_metric_fn_key == 'lvis_mask_metrics' and hasattr( eval_config, 'export_path'): evaluator_options[eval_metric_fn_key].update({ 'export_path': eval_config.export_path }) elif eval_metric_fn_key == 'precision_at_recall_detection_metrics': evaluator_options[eval_metric_fn_key] = { 'recall_lower_bound': (eval_config.recall_lower_bound), 'recall_upper_bound': (eval_config.recall_upper_bound) } return evaluator_options def has_densepose(eval_dict): return (fields.DetectionResultFields.detection_masks in eval_dict and fields.DetectionResultFields.detection_surface_coords in eval_dict)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/eval_util.py
eval_util.py
"""Functions to export object detection inference graph.""" import os import tempfile import tensorflow.compat.v1 as tf import tf_slim as slim from tensorflow.core.protobuf import saver_pb2 from tensorflow.python.tools import freeze_graph # pylint: disable=g-direct-tensorflow-import from object_detection.builders import graph_rewriter_builder from object_detection.builders import model_builder from object_detection.core import standard_fields as fields from object_detection.data_decoders import tf_example_decoder from object_detection.utils import config_util from object_detection.utils import shape_utils # pylint: disable=g-import-not-at-top try: from tensorflow.contrib import tfprof as contrib_tfprof from tensorflow.contrib.quantize.python import graph_matcher except ImportError: # TF 2.0 doesn't ship with contrib. pass # pylint: enable=g-import-not-at-top freeze_graph_with_def_protos = freeze_graph.freeze_graph_with_def_protos def parse_side_inputs(side_input_shapes_string, side_input_names_string, side_input_types_string): """Parses side input flags. Args: side_input_shapes_string: The shape of the side input tensors, provided as a comma-separated list of integers. A value of -1 is used for unknown dimensions. A `/` denotes a break, starting the shape of the next side input tensor. side_input_names_string: The names of the side input tensors, provided as a comma-separated list of strings. side_input_types_string: The type of the side input tensors, provided as a comma-separated list of types, each of `string`, `integer`, or `float`. Returns: side_input_shapes: A list of shapes. side_input_names: A list of strings. side_input_types: A list of tensorflow dtypes. """ if side_input_shapes_string: side_input_shapes = [] for side_input_shape_list in side_input_shapes_string.split('/'): side_input_shape = [ int(dim) if dim != '-1' else None for dim in side_input_shape_list.split(',') ] side_input_shapes.append(side_input_shape) else: raise ValueError('When using side_inputs, side_input_shapes must be ' 'specified in the input flags.') if side_input_names_string: side_input_names = list(side_input_names_string.split(',')) else: raise ValueError('When using side_inputs, side_input_names must be ' 'specified in the input flags.') if side_input_types_string: typelookup = {'float': tf.float32, 'int': tf.int32, 'string': tf.string} side_input_types = [ typelookup[side_input_type] for side_input_type in side_input_types_string.split(',') ] else: raise ValueError('When using side_inputs, side_input_types must be ' 'specified in the input flags.') return side_input_shapes, side_input_names, side_input_types def rewrite_nn_resize_op(is_quantized=False): """Replaces a custom nearest-neighbor resize op with the Tensorflow version. Some graphs use this custom version for TPU-compatibility. Args: is_quantized: True if the default graph is quantized. """ def remove_nn(): """Remove nearest neighbor upsampling structures and replace with TF op.""" input_pattern = graph_matcher.OpTypePattern( 'FakeQuantWithMinMaxVars' if is_quantized else '*') stack_1_pattern = graph_matcher.OpTypePattern( 'Pack', inputs=[input_pattern, input_pattern], ordered_inputs=False) stack_2_pattern = graph_matcher.OpTypePattern( 'Pack', inputs=[stack_1_pattern, stack_1_pattern], ordered_inputs=False) reshape_pattern = graph_matcher.OpTypePattern( 'Reshape', inputs=[stack_2_pattern, 'Const'], ordered_inputs=False) consumer_pattern1 = graph_matcher.OpTypePattern( 'Add|AddV2|Max|Mul', inputs=[reshape_pattern, '*'], ordered_inputs=False) consumer_pattern2 = graph_matcher.OpTypePattern( 'StridedSlice', inputs=[reshape_pattern, '*', '*', '*'], ordered_inputs=False) def replace_matches(consumer_pattern): """Search for nearest neighbor pattern and replace with TF op.""" match_counter = 0 matcher = graph_matcher.GraphMatcher(consumer_pattern) for match in matcher.match_graph(tf.get_default_graph()): match_counter += 1 projection_op = match.get_op(input_pattern) reshape_op = match.get_op(reshape_pattern) consumer_op = match.get_op(consumer_pattern) nn_resize = tf.image.resize_nearest_neighbor( projection_op.outputs[0], reshape_op.outputs[0].shape.dims[1:3], align_corners=False, name=os.path.split(reshape_op.name)[0] + '/resize_nearest_neighbor') for index, op_input in enumerate(consumer_op.inputs): if op_input == reshape_op.outputs[0]: consumer_op._update_input(index, nn_resize) # pylint: disable=protected-access break return match_counter match_counter = replace_matches(consumer_pattern1) match_counter += replace_matches(consumer_pattern2) tf.logging.info('Found and fixed {} matches'.format(match_counter)) return match_counter # Applying twice because both inputs to Add could be NN pattern total_removals = 0 while remove_nn(): total_removals += 1 # This number is chosen based on the nas-fpn architecture. if total_removals > 4: raise ValueError('Graph removal encountered a infinite loop.') def replace_variable_values_with_moving_averages(graph, current_checkpoint_file, new_checkpoint_file, no_ema_collection=None): """Replaces variable values in the checkpoint with their moving averages. If the current checkpoint has shadow variables maintaining moving averages of the variables defined in the graph, this function generates a new checkpoint where the variables contain the values of their moving averages. Args: graph: a tf.Graph object. current_checkpoint_file: a checkpoint containing both original variables and their moving averages. new_checkpoint_file: file path to write a new checkpoint. no_ema_collection: A list of namescope substrings to match the variables to eliminate EMA. """ with graph.as_default(): variable_averages = tf.train.ExponentialMovingAverage(0.0) ema_variables_to_restore = variable_averages.variables_to_restore() ema_variables_to_restore = config_util.remove_unnecessary_ema( ema_variables_to_restore, no_ema_collection) with tf.Session() as sess: read_saver = tf.train.Saver(ema_variables_to_restore) read_saver.restore(sess, current_checkpoint_file) write_saver = tf.train.Saver() write_saver.save(sess, new_checkpoint_file) def _image_tensor_input_placeholder(input_shape=None): """Returns input placeholder and a 4-D uint8 image tensor.""" if input_shape is None: input_shape = (None, None, None, 3) input_tensor = tf.placeholder( dtype=tf.uint8, shape=input_shape, name='image_tensor') return input_tensor, input_tensor def _side_input_tensor_placeholder(side_input_shape, side_input_name, side_input_type): """Returns side input placeholder and side input tensor.""" side_input_tensor = tf.placeholder( dtype=side_input_type, shape=side_input_shape, name=side_input_name) return side_input_tensor, side_input_tensor def _tf_example_input_placeholder(input_shape=None): """Returns input that accepts a batch of strings with tf examples. Args: input_shape: the shape to resize the output decoded images to (optional). Returns: a tuple of input placeholder and the output decoded images. """ batch_tf_example_placeholder = tf.placeholder( tf.string, shape=[None], name='tf_example') def decode(tf_example_string_tensor): tensor_dict = tf_example_decoder.TfExampleDecoder().decode( tf_example_string_tensor) image_tensor = tensor_dict[fields.InputDataFields.image] if input_shape is not None: image_tensor = tf.image.resize(image_tensor, input_shape[1:3]) return image_tensor return (batch_tf_example_placeholder, shape_utils.static_or_dynamic_map_fn( decode, elems=batch_tf_example_placeholder, dtype=tf.uint8, parallel_iterations=32, back_prop=False)) def _encoded_image_string_tensor_input_placeholder(input_shape=None): """Returns input that accepts a batch of PNG or JPEG strings. Args: input_shape: the shape to resize the output decoded images to (optional). Returns: a tuple of input placeholder and the output decoded images. """ batch_image_str_placeholder = tf.placeholder( dtype=tf.string, shape=[None], name='encoded_image_string_tensor') def decode(encoded_image_string_tensor): image_tensor = tf.image.decode_image(encoded_image_string_tensor, channels=3) image_tensor.set_shape((None, None, 3)) if input_shape is not None: image_tensor = tf.image.resize(image_tensor, input_shape[1:3]) return image_tensor return (batch_image_str_placeholder, tf.map_fn( decode, elems=batch_image_str_placeholder, dtype=tf.uint8, parallel_iterations=32, back_prop=False)) input_placeholder_fn_map = { 'image_tensor': _image_tensor_input_placeholder, 'encoded_image_string_tensor': _encoded_image_string_tensor_input_placeholder, 'tf_example': _tf_example_input_placeholder } def add_output_tensor_nodes(postprocessed_tensors, output_collection_name='inference_op'): """Adds output nodes for detection boxes and scores. Adds the following nodes for output tensors - * num_detections: float32 tensor of shape [batch_size]. * detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4] containing detected boxes. * detection_scores: float32 tensor of shape [batch_size, num_boxes] containing scores for the detected boxes. * detection_multiclass_scores: (Optional) float32 tensor of shape [batch_size, num_boxes, num_classes_with_background] for containing class score distribution for detected boxes including background if any. * detection_features: (Optional) float32 tensor of shape [batch, num_boxes, roi_height, roi_width, depth] containing classifier features for each detected box * detection_classes: float32 tensor of shape [batch_size, num_boxes] containing class predictions for the detected boxes. * detection_keypoints: (Optional) float32 tensor of shape [batch_size, num_boxes, num_keypoints, 2] containing keypoints for each detection box. * detection_masks: (Optional) float32 tensor of shape [batch_size, num_boxes, mask_height, mask_width] containing masks for each detection box. Args: postprocessed_tensors: a dictionary containing the following fields 'detection_boxes': [batch, max_detections, 4] 'detection_scores': [batch, max_detections] 'detection_multiclass_scores': [batch, max_detections, num_classes_with_background] 'detection_features': [batch, num_boxes, roi_height, roi_width, depth] 'detection_classes': [batch, max_detections] 'detection_masks': [batch, max_detections, mask_height, mask_width] (optional). 'detection_keypoints': [batch, max_detections, num_keypoints, 2] (optional). 'num_detections': [batch] output_collection_name: Name of collection to add output tensors to. Returns: A tensor dict containing the added output tensor nodes. """ detection_fields = fields.DetectionResultFields label_id_offset = 1 boxes = postprocessed_tensors.get(detection_fields.detection_boxes) scores = postprocessed_tensors.get(detection_fields.detection_scores) multiclass_scores = postprocessed_tensors.get( detection_fields.detection_multiclass_scores) box_classifier_features = postprocessed_tensors.get( detection_fields.detection_features) raw_boxes = postprocessed_tensors.get(detection_fields.raw_detection_boxes) raw_scores = postprocessed_tensors.get(detection_fields.raw_detection_scores) classes = postprocessed_tensors.get( detection_fields.detection_classes) + label_id_offset keypoints = postprocessed_tensors.get(detection_fields.detection_keypoints) masks = postprocessed_tensors.get(detection_fields.detection_masks) num_detections = postprocessed_tensors.get(detection_fields.num_detections) outputs = {} outputs[detection_fields.detection_boxes] = tf.identity( boxes, name=detection_fields.detection_boxes) outputs[detection_fields.detection_scores] = tf.identity( scores, name=detection_fields.detection_scores) if multiclass_scores is not None: outputs[detection_fields.detection_multiclass_scores] = tf.identity( multiclass_scores, name=detection_fields.detection_multiclass_scores) if box_classifier_features is not None: outputs[detection_fields.detection_features] = tf.identity( box_classifier_features, name=detection_fields.detection_features) outputs[detection_fields.detection_classes] = tf.identity( classes, name=detection_fields.detection_classes) outputs[detection_fields.num_detections] = tf.identity( num_detections, name=detection_fields.num_detections) if raw_boxes is not None: outputs[detection_fields.raw_detection_boxes] = tf.identity( raw_boxes, name=detection_fields.raw_detection_boxes) if raw_scores is not None: outputs[detection_fields.raw_detection_scores] = tf.identity( raw_scores, name=detection_fields.raw_detection_scores) if keypoints is not None: outputs[detection_fields.detection_keypoints] = tf.identity( keypoints, name=detection_fields.detection_keypoints) if masks is not None: outputs[detection_fields.detection_masks] = tf.identity( masks, name=detection_fields.detection_masks) for output_key in outputs: tf.add_to_collection(output_collection_name, outputs[output_key]) return outputs def write_saved_model(saved_model_path, frozen_graph_def, inputs, outputs): """Writes SavedModel to disk. If checkpoint_path is not None bakes the weights into the graph thereby eliminating the need of checkpoint files during inference. If the model was trained with moving averages, setting use_moving_averages to true restores the moving averages, otherwise the original set of variables is restored. Args: saved_model_path: Path to write SavedModel. frozen_graph_def: tf.GraphDef holding frozen graph. inputs: A tensor dictionary containing the inputs to a DetectionModel. outputs: A tensor dictionary containing the outputs of a DetectionModel. """ with tf.Graph().as_default(): with tf.Session() as sess: tf.import_graph_def(frozen_graph_def, name='') builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path) tensor_info_inputs = {} if isinstance(inputs, dict): for k, v in inputs.items(): tensor_info_inputs[k] = tf.saved_model.utils.build_tensor_info(v) else: tensor_info_inputs['inputs'] = tf.saved_model.utils.build_tensor_info( inputs) tensor_info_outputs = {} for k, v in outputs.items(): tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v) detection_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs=tensor_info_inputs, outputs=tensor_info_outputs, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME )) builder.add_meta_graph_and_variables( sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants .DEFAULT_SERVING_SIGNATURE_DEF_KEY: detection_signature, }, ) builder.save() def write_graph_and_checkpoint(inference_graph_def, model_path, input_saver_def, trained_checkpoint_prefix): """Writes the graph and the checkpoint into disk.""" for node in inference_graph_def.node: node.device = '' with tf.Graph().as_default(): tf.import_graph_def(inference_graph_def, name='') with tf.Session() as sess: saver = tf.train.Saver( saver_def=input_saver_def, save_relative_paths=True) saver.restore(sess, trained_checkpoint_prefix) saver.save(sess, model_path) def _get_outputs_from_inputs(input_tensors, detection_model, output_collection_name, **side_inputs): inputs = tf.cast(input_tensors, dtype=tf.float32) preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs) output_tensors = detection_model.predict( preprocessed_inputs, true_image_shapes, **side_inputs) postprocessed_tensors = detection_model.postprocess( output_tensors, true_image_shapes) return add_output_tensor_nodes(postprocessed_tensors, output_collection_name) def build_detection_graph(input_type, detection_model, input_shape, output_collection_name, graph_hook_fn, use_side_inputs=False, side_input_shapes=None, side_input_names=None, side_input_types=None): """Build the detection graph.""" if input_type not in input_placeholder_fn_map: raise ValueError('Unknown input type: {}'.format(input_type)) placeholder_args = {} side_inputs = {} if input_shape is not None: if (input_type != 'image_tensor' and input_type != 'encoded_image_string_tensor' and input_type != 'tf_example' and input_type != 'tf_sequence_example'): raise ValueError('Can only specify input shape for `image_tensor`, ' '`encoded_image_string_tensor`, `tf_example`, ' ' or `tf_sequence_example` inputs.') placeholder_args['input_shape'] = input_shape placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type]( **placeholder_args) placeholder_tensors = {'inputs': placeholder_tensor} if use_side_inputs: for idx, side_input_name in enumerate(side_input_names): side_input_placeholder, side_input = _side_input_tensor_placeholder( side_input_shapes[idx], side_input_name, side_input_types[idx]) print(side_input) side_inputs[side_input_name] = side_input placeholder_tensors[side_input_name] = side_input_placeholder outputs = _get_outputs_from_inputs( input_tensors=input_tensors, detection_model=detection_model, output_collection_name=output_collection_name, **side_inputs) # Add global step to the graph. slim.get_or_create_global_step() if graph_hook_fn: graph_hook_fn() return outputs, placeholder_tensors def _export_inference_graph(input_type, detection_model, use_moving_averages, trained_checkpoint_prefix, output_directory, additional_output_tensor_names=None, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None, write_inference_graph=False, temp_checkpoint_prefix='', use_side_inputs=False, side_input_shapes=None, side_input_names=None, side_input_types=None): """Export helper.""" tf.gfile.MakeDirs(output_directory) frozen_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') saved_model_path = os.path.join(output_directory, 'saved_model') model_path = os.path.join(output_directory, 'model.ckpt') outputs, placeholder_tensor_dict = build_detection_graph( input_type=input_type, detection_model=detection_model, input_shape=input_shape, output_collection_name=output_collection_name, graph_hook_fn=graph_hook_fn, use_side_inputs=use_side_inputs, side_input_shapes=side_input_shapes, side_input_names=side_input_names, side_input_types=side_input_types) profile_inference_graph(tf.get_default_graph()) saver_kwargs = {} if use_moving_averages: if not temp_checkpoint_prefix: # This check is to be compatible with both version of SaverDef. if os.path.isfile(trained_checkpoint_prefix): saver_kwargs['write_version'] = saver_pb2.SaverDef.V1 temp_checkpoint_prefix = tempfile.NamedTemporaryFile().name else: temp_checkpoint_prefix = tempfile.mkdtemp() replace_variable_values_with_moving_averages( tf.get_default_graph(), trained_checkpoint_prefix, temp_checkpoint_prefix) checkpoint_to_use = temp_checkpoint_prefix else: checkpoint_to_use = trained_checkpoint_prefix saver = tf.train.Saver(**saver_kwargs) input_saver_def = saver.as_saver_def() write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=checkpoint_to_use) if write_inference_graph: inference_graph_def = tf.get_default_graph().as_graph_def() inference_graph_path = os.path.join(output_directory, 'inference_graph.pbtxt') for node in inference_graph_def.node: node.device = '' with tf.gfile.GFile(inference_graph_path, 'wb') as f: f.write(str(inference_graph_def)) if additional_output_tensor_names is not None: output_node_names = ','.join(list(outputs.keys())+( additional_output_tensor_names)) else: output_node_names = ','.join(outputs.keys()) frozen_graph_def = freeze_graph.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=checkpoint_to_use, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', output_graph=frozen_graph_path, clear_devices=True, initializer_nodes='') write_saved_model(saved_model_path, frozen_graph_def, placeholder_tensor_dict, outputs) def export_inference_graph(input_type, pipeline_config, trained_checkpoint_prefix, output_directory, input_shape=None, output_collection_name='inference_op', additional_output_tensor_names=None, write_inference_graph=False, use_side_inputs=False, side_input_shapes=None, side_input_names=None, side_input_types=None): """Exports inference graph for the model specified in the pipeline config. Args: input_type: Type of input for the graph. Can be one of ['image_tensor', 'encoded_image_string_tensor', 'tf_example']. pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto. trained_checkpoint_prefix: Path to the trained checkpoint file. output_directory: Path to write outputs. input_shape: Sets a fixed shape for an `image_tensor` input. If not specified, will default to [None, None, None, 3]. output_collection_name: Name of collection to add output tensors to. If None, does not add output tensors to a collection. additional_output_tensor_names: list of additional output tensors to include in the frozen graph. write_inference_graph: If true, writes inference graph to disk. use_side_inputs: If True, the model requires side_inputs. side_input_shapes: List of shapes of the side input tensors, required if use_side_inputs is True. side_input_names: List of names of the side input tensors, required if use_side_inputs is True. side_input_types: List of types of the side input tensors, required if use_side_inputs is True. """ detection_model = model_builder.build(pipeline_config.model, is_training=False) graph_rewriter_fn = None if pipeline_config.HasField('graph_rewriter'): graph_rewriter_config = pipeline_config.graph_rewriter graph_rewriter_fn = graph_rewriter_builder.build(graph_rewriter_config, is_training=False) _export_inference_graph( input_type, detection_model, pipeline_config.eval_config.use_moving_averages, trained_checkpoint_prefix, output_directory, additional_output_tensor_names, input_shape, output_collection_name, graph_hook_fn=graph_rewriter_fn, write_inference_graph=write_inference_graph, use_side_inputs=use_side_inputs, side_input_shapes=side_input_shapes, side_input_names=side_input_names, side_input_types=side_input_types) pipeline_config.eval_config.use_moving_averages = False config_util.save_pipeline_config(pipeline_config, output_directory) def profile_inference_graph(graph): """Profiles the inference graph. Prints model parameters and computation FLOPs given an inference graph. BatchNorms are excluded from the parameter count due to the fact that BatchNorms are usually folded. BatchNorm, Initializer, Regularizer and BiasAdd are not considered in FLOP count. Args: graph: the inference graph. """ tfprof_vars_option = ( contrib_tfprof.model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS) tfprof_flops_option = contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS # Batchnorm is usually folded during inference. tfprof_vars_option['trim_name_regexes'] = ['.*BatchNorm.*'] # Initializer and Regularizer are only used in training. tfprof_flops_option['trim_name_regexes'] = [ '.*BatchNorm.*', '.*Initializer.*', '.*Regularizer.*', '.*BiasAdd.*' ] contrib_tfprof.model_analyzer.print_model_analysis( graph, tfprof_options=tfprof_vars_option) contrib_tfprof.model_analyzer.print_model_analysis( graph, tfprof_options=tfprof_flops_option)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/exporter.py
exporter.py
r"""Tool to export an object detection model for inference. Prepares an object detection tensorflow graph for inference using model configuration and a trained checkpoint. Outputs inference graph, associated checkpoint files, a frozen inference graph and a SavedModel (https://tensorflow.github.io/serving/serving_basic.html). The inference graph contains one of three input nodes depending on the user specified option. * `image_tensor`: Accepts a uint8 4-D tensor of shape [None, None, None, 3] * `encoded_image_string_tensor`: Accepts a 1-D string tensor of shape [None] containing encoded PNG or JPEG images. Image resolutions are expected to be the same if more than 1 image is provided. * `tf_example`: Accepts a 1-D string tensor of shape [None] containing serialized TFExample protos. Image resolutions are expected to be the same if more than 1 image is provided. and the following output nodes returned by the model.postprocess(..): * `num_detections`: Outputs float32 tensors of the form [batch] that specifies the number of valid boxes per image in the batch. * `detection_boxes`: Outputs float32 tensors of the form [batch, num_boxes, 4] containing detected boxes. * `detection_scores`: Outputs float32 tensors of the form [batch, num_boxes] containing class scores for the detections. * `detection_classes`: Outputs float32 tensors of the form [batch, num_boxes] containing classes for the detections. * `raw_detection_boxes`: Outputs float32 tensors of the form [batch, raw_num_boxes, 4] containing detection boxes without post-processing. * `raw_detection_scores`: Outputs float32 tensors of the form [batch, raw_num_boxes, num_classes_with_background] containing class score logits for raw detection boxes. * `detection_masks`: (Optional) Outputs float32 tensors of the form [batch, num_boxes, mask_height, mask_width] containing predicted instance masks for each box if its present in the dictionary of postprocessed tensors returned by the model. * detection_multiclass_scores: (Optional) Outputs float32 tensor of shape [batch, num_boxes, num_classes_with_background] for containing class score distribution for detected boxes including background if any. * detection_features: (Optional) float32 tensor of shape [batch, num_boxes, roi_height, roi_width, depth] containing classifier features Notes: * This tool uses `use_moving_averages` from eval_config to decide which weights to freeze. Example Usage: -------------- python export_inference_graph.py \ --input_type image_tensor \ --pipeline_config_path path/to/ssd_inception_v2.config \ --trained_checkpoint_prefix path/to/model.ckpt \ --output_directory path/to/exported_model_directory The expected output would be in the directory path/to/exported_model_directory (which is created if it does not exist) with contents: - inference_graph.pbtxt - model.ckpt.data-00000-of-00001 - model.ckpt.info - model.ckpt.meta - frozen_inference_graph.pb + saved_model (a directory) Config overrides (see the `config_override` flag) are text protobufs (also of type pipeline_pb2.TrainEvalPipelineConfig) which are used to override certain fields in the provided pipeline_config_path. These are useful for making small changes to the inference graph that differ from the training or eval config. Example Usage (in which we change the second stage post-processing score threshold to be 0.5): python export_inference_graph.py \ --input_type image_tensor \ --pipeline_config_path path/to/ssd_inception_v2.config \ --trained_checkpoint_prefix path/to/model.ckpt \ --output_directory path/to/exported_model_directory \ --config_override " \ model{ \ faster_rcnn { \ second_stage_post_processing { \ batch_non_max_suppression { \ score_threshold: 0.5 \ } \ } \ } \ }" """ import tensorflow.compat.v1 as tf from google.protobuf import text_format from object_detection import exporter from object_detection.protos import pipeline_pb2 flags = tf.app.flags flags.DEFINE_string('input_type', 'image_tensor', 'Type of input node. Can be ' 'one of [`image_tensor`, `encoded_image_string_tensor`, ' '`tf_example`]') flags.DEFINE_string('input_shape', None, 'If input_type is `image_tensor`, this can explicitly set ' 'the shape of this input tensor to a fixed size. The ' 'dimensions are to be provided as a comma-separated list ' 'of integers. A value of -1 can be used for unknown ' 'dimensions. If not specified, for an `image_tensor, the ' 'default shape will be partially specified as ' '`[None, None, None, 3]`.') flags.DEFINE_string('pipeline_config_path', None, 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file.') flags.DEFINE_string('trained_checkpoint_prefix', None, 'Path to trained checkpoint, typically of the form ' 'path/to/model.ckpt') flags.DEFINE_string('output_directory', None, 'Path to write outputs.') flags.DEFINE_string('config_override', '', 'pipeline_pb2.TrainEvalPipelineConfig ' 'text proto to override pipeline_config_path.') flags.DEFINE_boolean('write_inference_graph', False, 'If true, writes inference graph to disk.') flags.DEFINE_string('additional_output_tensor_names', None, 'Additional Tensors to output, to be specified as a comma ' 'separated list of tensor names.') flags.DEFINE_boolean('use_side_inputs', False, 'If True, uses side inputs as well as image inputs.') flags.DEFINE_string('side_input_shapes', None, 'If use_side_inputs is True, this explicitly sets ' 'the shape of the side input tensors to a fixed size. The ' 'dimensions are to be provided as a comma-separated list ' 'of integers. A value of -1 can be used for unknown ' 'dimensions. A `/` denotes a break, starting the shape of ' 'the next side input tensor. This flag is required if ' 'using side inputs.') flags.DEFINE_string('side_input_types', None, 'If use_side_inputs is True, this explicitly sets ' 'the type of the side input tensors. The ' 'dimensions are to be provided as a comma-separated list ' 'of types, each of `string`, `integer`, or `float`. ' 'This flag is required if using side inputs.') flags.DEFINE_string('side_input_names', None, 'If use_side_inputs is True, this explicitly sets ' 'the names of the side input tensors required by the model ' 'assuming the names will be a comma-separated list of ' 'strings. This flag is required if using side inputs.') tf.app.flags.mark_flag_as_required('pipeline_config_path') tf.app.flags.mark_flag_as_required('trained_checkpoint_prefix') tf.app.flags.mark_flag_as_required('output_directory') FLAGS = flags.FLAGS def main(_): pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) text_format.Merge(FLAGS.config_override, pipeline_config) if FLAGS.input_shape: input_shape = [ int(dim) if dim != '-1' else None for dim in FLAGS.input_shape.split(',') ] else: input_shape = None if FLAGS.use_side_inputs: side_input_shapes, side_input_names, side_input_types = ( exporter.parse_side_inputs( FLAGS.side_input_shapes, FLAGS.side_input_names, FLAGS.side_input_types)) else: side_input_shapes = None side_input_names = None side_input_types = None if FLAGS.additional_output_tensor_names: additional_output_tensor_names = list( FLAGS.additional_output_tensor_names.split(',')) else: additional_output_tensor_names = None exporter.export_inference_graph( FLAGS.input_type, pipeline_config, FLAGS.trained_checkpoint_prefix, FLAGS.output_directory, input_shape=input_shape, write_inference_graph=FLAGS.write_inference_graph, additional_output_tensor_names=additional_output_tensor_names, use_side_inputs=FLAGS.use_side_inputs, side_input_shapes=side_input_shapes, side_input_names=side_input_names, side_input_types=side_input_types) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/export_inference_graph.py
export_inference_graph.py
r"""Tool to export an object detection model for inference. Prepares an object detection tensorflow graph for inference using model configuration and a trained checkpoint. Outputs associated checkpoint files, a SavedModel, and a copy of the model config. The inference graph contains one of three input nodes depending on the user specified option. * `image_tensor`: Accepts a uint8 4-D tensor of shape [1, None, None, 3] * `float_image_tensor`: Accepts a float32 4-D tensor of shape [1, None, None, 3] * `encoded_image_string_tensor`: Accepts a 1-D string tensor of shape [None] containing encoded PNG or JPEG images. Image resolutions are expected to be the same if more than 1 image is provided. * `tf_example`: Accepts a 1-D string tensor of shape [None] containing serialized TFExample protos. Image resolutions are expected to be the same if more than 1 image is provided. * `image_and_boxes_tensor`: Accepts a 4-D image tensor of size [1, None, None, 3] and a boxes tensor of size [1, None, 4] of normalized bounding boxes. To be able to support this option, the model needs to implement a predict_masks_from_boxes method. See the documentation for DetectionFromImageAndBoxModule for details. and the following output nodes returned by the model.postprocess(..): * `num_detections`: Outputs float32 tensors of the form [batch] that specifies the number of valid boxes per image in the batch. * `detection_boxes`: Outputs float32 tensors of the form [batch, num_boxes, 4] containing detected boxes. * `detection_scores`: Outputs float32 tensors of the form [batch, num_boxes] containing class scores for the detections. * `detection_classes`: Outputs float32 tensors of the form [batch, num_boxes] containing classes for the detections. Example Usage: -------------- python exporter_main_v2.py \ --input_type image_tensor \ --pipeline_config_path path/to/ssd_inception_v2.config \ --trained_checkpoint_dir path/to/checkpoint \ --output_directory path/to/exported_model_directory --use_side_inputs True/False \ --side_input_shapes dim_0,dim_1,...dim_a/.../dim_0,dim_1,...,dim_z \ --side_input_names name_a,name_b,...,name_c \ --side_input_types type_1,type_2 The expected output would be in the directory path/to/exported_model_directory (which is created if it does not exist) holding two subdirectories (corresponding to checkpoint and SavedModel, respectively) and a copy of the pipeline config. Config overrides (see the `config_override` flag) are text protobufs (also of type pipeline_pb2.TrainEvalPipelineConfig) which are used to override certain fields in the provided pipeline_config_path. These are useful for making small changes to the inference graph that differ from the training or eval config. Example Usage (in which we change the second stage post-processing score threshold to be 0.5): python exporter_main_v2.py \ --input_type image_tensor \ --pipeline_config_path path/to/ssd_inception_v2.config \ --trained_checkpoint_dir path/to/checkpoint \ --output_directory path/to/exported_model_directory \ --config_override " \ model{ \ faster_rcnn { \ second_stage_post_processing { \ batch_non_max_suppression { \ score_threshold: 0.5 \ } \ } \ } \ }" If side inputs are desired, the following arguments could be appended (the example below is for Context R-CNN). --use_side_inputs True \ --side_input_shapes 1,2000,2057/1 \ --side_input_names context_features,valid_context_size \ --side_input_types tf.float32,tf.int32 """ from absl import app from absl import flags import tensorflow.compat.v2 as tf from google.protobuf import text_format from object_detection import exporter_lib_v2 from object_detection.protos import pipeline_pb2 tf.enable_v2_behavior() FLAGS = flags.FLAGS flags.DEFINE_string('input_type', 'image_tensor', 'Type of input node. Can be ' 'one of [`image_tensor`, `encoded_image_string_tensor`, ' '`tf_example`, `float_image_tensor`, ' '`image_and_boxes_tensor`]') flags.DEFINE_string('pipeline_config_path', None, 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file.') flags.DEFINE_string('trained_checkpoint_dir', None, 'Path to trained checkpoint directory') flags.DEFINE_string('output_directory', None, 'Path to write outputs.') flags.DEFINE_string('config_override', '', 'pipeline_pb2.TrainEvalPipelineConfig ' 'text proto to override pipeline_config_path.') flags.DEFINE_boolean('use_side_inputs', False, 'If True, uses side inputs as well as image inputs.') flags.DEFINE_string('side_input_shapes', '', 'If use_side_inputs is True, this explicitly sets ' 'the shape of the side input tensors to a fixed size. The ' 'dimensions are to be provided as a comma-separated list ' 'of integers. A value of -1 can be used for unknown ' 'dimensions. A `/` denotes a break, starting the shape of ' 'the next side input tensor. This flag is required if ' 'using side inputs.') flags.DEFINE_string('side_input_types', '', 'If use_side_inputs is True, this explicitly sets ' 'the type of the side input tensors. The ' 'dimensions are to be provided as a comma-separated list ' 'of types, each of `string`, `integer`, or `float`. ' 'This flag is required if using side inputs.') flags.DEFINE_string('side_input_names', '', 'If use_side_inputs is True, this explicitly sets ' 'the names of the side input tensors required by the model ' 'assuming the names will be a comma-separated list of ' 'strings. This flag is required if using side inputs.') flags.mark_flag_as_required('pipeline_config_path') flags.mark_flag_as_required('trained_checkpoint_dir') flags.mark_flag_as_required('output_directory') def main(_): pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.io.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) text_format.Merge(FLAGS.config_override, pipeline_config) exporter_lib_v2.export_inference_graph( FLAGS.input_type, pipeline_config, FLAGS.trained_checkpoint_dir, FLAGS.output_directory, FLAGS.use_side_inputs, FLAGS.side_input_shapes, FLAGS.side_input_types, FLAGS.side_input_names) if __name__ == '__main__': app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/exporter_main_v2.py
exporter_main_v2.py
import os import tempfile import numpy as np import tensorflow.compat.v1 as tf from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.core.protobuf import saver_pb2 from object_detection import exporter from object_detection.builders import graph_rewriter_builder from object_detection.builders import model_builder from object_detection.builders import post_processing_builder from object_detection.core import box_list from object_detection.utils import tf_version _DEFAULT_NUM_CHANNELS = 3 _DEFAULT_NUM_COORD_BOX = 4 if tf_version.is_tf1(): from tensorflow.tools.graph_transforms import TransformGraph # pylint: disable=g-import-not-at-top def get_const_center_size_encoded_anchors(anchors): """Exports center-size encoded anchors as a constant tensor. Args: anchors: a float32 tensor of shape [num_anchors, 4] containing the anchor boxes Returns: encoded_anchors: a float32 constant tensor of shape [num_anchors, 4] containing the anchor boxes. """ anchor_boxlist = box_list.BoxList(anchors) y, x, h, w = anchor_boxlist.get_center_coordinates_and_sizes() num_anchors = y.get_shape().as_list() with tf.Session() as sess: y_out, x_out, h_out, w_out = sess.run([y, x, h, w]) encoded_anchors = tf.constant( np.transpose(np.stack((y_out, x_out, h_out, w_out))), dtype=tf.float32, shape=[num_anchors[0], _DEFAULT_NUM_COORD_BOX], name='anchors') return encoded_anchors def append_postprocessing_op(frozen_graph_def, max_detections, max_classes_per_detection, nms_score_threshold, nms_iou_threshold, num_classes, scale_values, detections_per_class=100, use_regular_nms=False, additional_output_tensors=()): """Appends postprocessing custom op. Args: frozen_graph_def: Frozen GraphDef for SSD model after freezing the checkpoint max_detections: Maximum number of detections (boxes) to show max_classes_per_detection: Number of classes to display per detection nms_score_threshold: Score threshold used in Non-maximal suppression in post-processing nms_iou_threshold: Intersection-over-union threshold used in Non-maximal suppression in post-processing num_classes: number of classes in SSD detector scale_values: scale values is a dict with following key-value pairs {y_scale: 10, x_scale: 10, h_scale: 5, w_scale: 5} that are used in decode centersize boxes detections_per_class: In regular NonMaxSuppression, number of anchors used for NonMaxSuppression per class use_regular_nms: Flag to set postprocessing op to use Regular NMS instead of Fast NMS. additional_output_tensors: Array of additional tensor names to output. Tensors are appended after postprocessing output. Returns: transformed_graph_def: Frozen GraphDef with postprocessing custom op appended TFLite_Detection_PostProcess custom op node has four outputs: detection_boxes: a float32 tensor of shape [1, num_boxes, 4] with box locations detection_classes: a float32 tensor of shape [1, num_boxes] with class indices detection_scores: a float32 tensor of shape [1, num_boxes] with class scores num_boxes: a float32 tensor of size 1 containing the number of detected boxes """ new_output = frozen_graph_def.node.add() new_output.op = 'TFLite_Detection_PostProcess' new_output.name = 'TFLite_Detection_PostProcess' new_output.attr['_output_quantized'].CopyFrom( attr_value_pb2.AttrValue(b=True)) new_output.attr['_output_types'].list.type.extend([ types_pb2.DT_FLOAT, types_pb2.DT_FLOAT, types_pb2.DT_FLOAT, types_pb2.DT_FLOAT ]) new_output.attr['_support_output_type_float_in_quantized_op'].CopyFrom( attr_value_pb2.AttrValue(b=True)) new_output.attr['max_detections'].CopyFrom( attr_value_pb2.AttrValue(i=max_detections)) new_output.attr['max_classes_per_detection'].CopyFrom( attr_value_pb2.AttrValue(i=max_classes_per_detection)) new_output.attr['nms_score_threshold'].CopyFrom( attr_value_pb2.AttrValue(f=nms_score_threshold.pop())) new_output.attr['nms_iou_threshold'].CopyFrom( attr_value_pb2.AttrValue(f=nms_iou_threshold.pop())) new_output.attr['num_classes'].CopyFrom( attr_value_pb2.AttrValue(i=num_classes)) new_output.attr['y_scale'].CopyFrom( attr_value_pb2.AttrValue(f=scale_values['y_scale'].pop())) new_output.attr['x_scale'].CopyFrom( attr_value_pb2.AttrValue(f=scale_values['x_scale'].pop())) new_output.attr['h_scale'].CopyFrom( attr_value_pb2.AttrValue(f=scale_values['h_scale'].pop())) new_output.attr['w_scale'].CopyFrom( attr_value_pb2.AttrValue(f=scale_values['w_scale'].pop())) new_output.attr['detections_per_class'].CopyFrom( attr_value_pb2.AttrValue(i=detections_per_class)) new_output.attr['use_regular_nms'].CopyFrom( attr_value_pb2.AttrValue(b=use_regular_nms)) new_output.input.extend( ['raw_outputs/box_encodings', 'raw_outputs/class_predictions', 'anchors']) # Transform the graph to append new postprocessing op input_names = [] output_names = ['TFLite_Detection_PostProcess' ] + list(additional_output_tensors) transforms = ['strip_unused_nodes'] transformed_graph_def = TransformGraph(frozen_graph_def, input_names, output_names, transforms) return transformed_graph_def def export_tflite_graph(pipeline_config, trained_checkpoint_prefix, output_dir, add_postprocessing_op, max_detections, max_classes_per_detection, detections_per_class=100, use_regular_nms=False, binary_graph_name='tflite_graph.pb', txt_graph_name='tflite_graph.pbtxt', additional_output_tensors=()): """Exports a tflite compatible graph and anchors for ssd detection model. Anchors are written to a tensor and tflite compatible graph is written to output_dir/tflite_graph.pb. Args: pipeline_config: a pipeline.proto object containing the configuration for SSD model to export. trained_checkpoint_prefix: a file prefix for the checkpoint containing the trained parameters of the SSD model. output_dir: A directory to write the tflite graph and anchor file to. add_postprocessing_op: If add_postprocessing_op is true: frozen graph adds a TFLite_Detection_PostProcess custom op max_detections: Maximum number of detections (boxes) to show max_classes_per_detection: Number of classes to display per detection detections_per_class: In regular NonMaxSuppression, number of anchors used for NonMaxSuppression per class use_regular_nms: Flag to set postprocessing op to use Regular NMS instead of Fast NMS. binary_graph_name: Name of the exported graph file in binary format. txt_graph_name: Name of the exported graph file in text format. additional_output_tensors: Array of additional tensor names to output. Additional tensors are appended to the end of output tensor list. Raises: ValueError: if the pipeline config contains models other than ssd or uses an fixed_shape_resizer and provides a shape as well. """ tf.gfile.MakeDirs(output_dir) if pipeline_config.model.WhichOneof('model') != 'ssd': raise ValueError('Only ssd models are supported in tflite. ' 'Found {} in config'.format( pipeline_config.model.WhichOneof('model'))) num_classes = pipeline_config.model.ssd.num_classes nms_score_threshold = { pipeline_config.model.ssd.post_processing.batch_non_max_suppression .score_threshold } nms_iou_threshold = { pipeline_config.model.ssd.post_processing.batch_non_max_suppression .iou_threshold } scale_values = {} scale_values['y_scale'] = { pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.y_scale } scale_values['x_scale'] = { pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.x_scale } scale_values['h_scale'] = { pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.height_scale } scale_values['w_scale'] = { pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.width_scale } image_resizer_config = pipeline_config.model.ssd.image_resizer image_resizer = image_resizer_config.WhichOneof('image_resizer_oneof') num_channels = _DEFAULT_NUM_CHANNELS if image_resizer == 'fixed_shape_resizer': height = image_resizer_config.fixed_shape_resizer.height width = image_resizer_config.fixed_shape_resizer.width if image_resizer_config.fixed_shape_resizer.convert_to_grayscale: num_channels = 1 shape = [1, height, width, num_channels] else: raise ValueError( 'Only fixed_shape_resizer' 'is supported with tflite. Found {}'.format( image_resizer_config.WhichOneof('image_resizer_oneof'))) image = tf.placeholder( tf.float32, shape=shape, name='normalized_input_image_tensor') detection_model = model_builder.build( pipeline_config.model, is_training=False) predicted_tensors = detection_model.predict(image, true_image_shapes=None) # The score conversion occurs before the post-processing custom op _, score_conversion_fn = post_processing_builder.build( pipeline_config.model.ssd.post_processing) class_predictions = score_conversion_fn( predicted_tensors['class_predictions_with_background']) with tf.name_scope('raw_outputs'): # 'raw_outputs/box_encodings': a float32 tensor of shape [1, num_anchors, 4] # containing the encoded box predictions. Note that these are raw # predictions and no Non-Max suppression is applied on them and # no decode center size boxes is applied to them. tf.identity(predicted_tensors['box_encodings'], name='box_encodings') # 'raw_outputs/class_predictions': a float32 tensor of shape # [1, num_anchors, num_classes] containing the class scores for each anchor # after applying score conversion. tf.identity(class_predictions, name='class_predictions') # 'anchors': a float32 tensor of shape # [4, num_anchors] containing the anchors as a constant node. tf.identity( get_const_center_size_encoded_anchors(predicted_tensors['anchors']), name='anchors') # Add global step to the graph, so we know the training step number when we # evaluate the model. tf.train.get_or_create_global_step() # graph rewriter is_quantized = pipeline_config.HasField('graph_rewriter') if is_quantized: graph_rewriter_config = pipeline_config.graph_rewriter graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() if pipeline_config.model.ssd.feature_extractor.HasField('fpn'): exporter.rewrite_nn_resize_op(is_quantized) # freeze the graph saver_kwargs = {} if pipeline_config.eval_config.use_moving_averages: saver_kwargs['write_version'] = saver_pb2.SaverDef.V1 moving_average_checkpoint = tempfile.NamedTemporaryFile() exporter.replace_variable_values_with_moving_averages( tf.get_default_graph(), trained_checkpoint_prefix, moving_average_checkpoint.name) checkpoint_to_use = moving_average_checkpoint.name else: checkpoint_to_use = trained_checkpoint_prefix saver = tf.train.Saver(**saver_kwargs) input_saver_def = saver.as_saver_def() frozen_graph_def = exporter.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=checkpoint_to_use, output_node_names=','.join([ 'raw_outputs/box_encodings', 'raw_outputs/class_predictions', 'anchors' ] + list(additional_output_tensors)), restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', clear_devices=True, output_graph='', initializer_nodes='') # Add new operation to do post processing in a custom op (TF Lite only) if add_postprocessing_op: transformed_graph_def = append_postprocessing_op( frozen_graph_def, max_detections, max_classes_per_detection, nms_score_threshold, nms_iou_threshold, num_classes, scale_values, detections_per_class, use_regular_nms, additional_output_tensors=additional_output_tensors) else: # Return frozen without adding post-processing custom op transformed_graph_def = frozen_graph_def binary_graph = os.path.join(output_dir, binary_graph_name) with tf.gfile.GFile(binary_graph, 'wb') as f: f.write(transformed_graph_def.SerializeToString()) txt_graph = os.path.join(output_dir, txt_graph_name) with tf.gfile.GFile(txt_graph, 'w') as f: f.write(str(transformed_graph_def))
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/export_tflite_ssd_graph_lib.py
export_tflite_ssd_graph_lib.py
"""Model input function for tf-learn object detection model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tensorflow.compat.v1 as tf from object_detection.builders import dataset_builder from object_detection.builders import image_resizer_builder from object_detection.builders import model_builder from object_detection.builders import preprocessor_builder from object_detection.core import box_list from object_detection.core import box_list_ops from object_detection.core import densepose_ops from object_detection.core import keypoint_ops from object_detection.core import preprocessor from object_detection.core import standard_fields as fields from object_detection.data_decoders import tf_example_decoder from object_detection.protos import eval_pb2 from object_detection.protos import image_resizer_pb2 from object_detection.protos import input_reader_pb2 from object_detection.protos import model_pb2 from object_detection.protos import train_pb2 from object_detection.utils import config_util from object_detection.utils import ops as util_ops from object_detection.utils import shape_utils HASH_KEY = 'hash' HASH_BINS = 1 << 31 SERVING_FED_EXAMPLE_KEY = 'serialized_example' _LABEL_OFFSET = 1 # A map of names to methods that help build the input pipeline. INPUT_BUILDER_UTIL_MAP = { 'dataset_build': dataset_builder.build, 'model_build': model_builder.build, } def _multiclass_scores_or_one_hot_labels(multiclass_scores, groundtruth_boxes, groundtruth_classes, num_classes): """Returns one-hot encoding of classes when multiclass_scores is empty.""" # Replace groundtruth_classes tensor with multiclass_scores tensor when its # non-empty. If multiclass_scores is empty fall back on groundtruth_classes # tensor. def true_fn(): return tf.reshape(multiclass_scores, [tf.shape(groundtruth_boxes)[0], num_classes]) def false_fn(): return tf.one_hot(groundtruth_classes, num_classes) return tf.cond(tf.size(multiclass_scores) > 0, true_fn, false_fn) def convert_labeled_classes_to_k_hot(groundtruth_labeled_classes, num_classes, map_empty_to_ones=False): """Returns k-hot encoding of the labeled classes. If map_empty_to_ones is enabled and the input labeled_classes is empty, this function assumes all classes are exhaustively labeled, thus returning an all-one encoding. Args: groundtruth_labeled_classes: a Tensor holding a sparse representation of labeled classes. num_classes: an integer representing the number of classes map_empty_to_ones: boolean (default: False). Set this to be True to default to an all-ones result if given an empty `groundtruth_labeled_classes`. Returns: A k-hot (and 0-indexed) tensor representation of `groundtruth_labeled_classes`. """ # If the input labeled_classes is empty, it assumes all classes are # exhaustively labeled, thus returning an all-one encoding. def true_fn(): return tf.sparse_to_dense( groundtruth_labeled_classes - _LABEL_OFFSET, [num_classes], tf.constant(1, dtype=tf.float32), validate_indices=False) def false_fn(): return tf.ones(num_classes, dtype=tf.float32) if map_empty_to_ones: return tf.cond(tf.size(groundtruth_labeled_classes) > 0, true_fn, false_fn) return true_fn() def _remove_unrecognized_classes(class_ids, unrecognized_label): """Returns class ids with unrecognized classes filtered out.""" recognized_indices = tf.squeeze( tf.where(tf.greater(class_ids, unrecognized_label)), -1) return tf.gather(class_ids, recognized_indices) def assert_or_prune_invalid_boxes(boxes): """Makes sure boxes have valid sizes (ymax >= ymin, xmax >= xmin). When the hardware supports assertions, the function raises an error when boxes have an invalid size. If assertions are not supported (e.g. on TPU), boxes with invalid sizes are filtered out. Args: boxes: float tensor of shape [num_boxes, 4] Returns: boxes: float tensor of shape [num_valid_boxes, 4] with invalid boxes filtered out. Raises: tf.errors.InvalidArgumentError: When we detect boxes with invalid size. This is not supported on TPUs. """ ymin, xmin, ymax, xmax = tf.split( boxes, num_or_size_splits=4, axis=1) height_check = tf.Assert(tf.reduce_all(ymax >= ymin), [ymin, ymax]) width_check = tf.Assert(tf.reduce_all(xmax >= xmin), [xmin, xmax]) with tf.control_dependencies([height_check, width_check]): boxes_tensor = tf.concat([ymin, xmin, ymax, xmax], axis=1) boxlist = box_list.BoxList(boxes_tensor) # TODO(b/149221748) Remove pruning when XLA supports assertions. boxlist = box_list_ops.prune_small_boxes(boxlist, 0) return boxlist.get() def transform_input_data(tensor_dict, model_preprocess_fn, image_resizer_fn, num_classes, data_augmentation_fn=None, merge_multiple_boxes=False, retain_original_image=False, use_multiclass_scores=False, use_bfloat16=False, retain_original_image_additional_channels=False, keypoint_type_weight=None): """A single function that is responsible for all input data transformations. Data transformation functions are applied in the following order. 1. If key fields.InputDataFields.image_additional_channels is present in tensor_dict, the additional channels will be merged into fields.InputDataFields.image. 2. data_augmentation_fn (optional): applied on tensor_dict. 3. model_preprocess_fn: applied only on image tensor in tensor_dict. 4. keypoint_type_weight (optional): If groundtruth keypoints are in the tensor dictionary, per-keypoint weights are produced. These weights are initialized by `keypoint_type_weight` (or ones if left None). Then, for all keypoints that are not visible, the weights are set to 0 (to avoid penalizing the model in a loss function). 5. image_resizer_fn: applied on original image and instance mask tensor in tensor_dict. 6. one_hot_encoding: applied to classes tensor in tensor_dict. 7. merge_multiple_boxes (optional): when groundtruth boxes are exactly the same they can be merged into a single box with an associated k-hot class label. Args: tensor_dict: dictionary containing input tensors keyed by fields.InputDataFields. model_preprocess_fn: model's preprocess function to apply on image tensor. This function must take in a 4-D float tensor and return a 4-D preprocess float tensor and a tensor containing the true image shape. image_resizer_fn: image resizer function to apply on groundtruth instance `masks. This function must take a 3-D float tensor of an image and a 3-D tensor of instance masks and return a resized version of these along with the true shapes. num_classes: number of max classes to one-hot (or k-hot) encode the class labels. data_augmentation_fn: (optional) data augmentation function to apply on input `tensor_dict`. merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes and classes for a given image if the boxes are exactly the same. retain_original_image: (optional) whether to retain original image in the output dictionary. use_multiclass_scores: whether to use multiclass scores as class targets instead of one-hot encoding of `groundtruth_classes`. When this is True and multiclass_scores is empty, one-hot encoding of `groundtruth_classes` is used as a fallback. use_bfloat16: (optional) a bool, whether to use bfloat16 in training. retain_original_image_additional_channels: (optional) Whether to retain original image additional channels in the output dictionary. keypoint_type_weight: A list (of length num_keypoints) containing groundtruth loss weights to use for each keypoint. If None, will use a weight of 1. Returns: A dictionary keyed by fields.InputDataFields containing the tensors obtained after applying all the transformations. Raises: KeyError: If both groundtruth_labeled_classes and groundtruth_image_classes are provided by the decoder in tensor_dict since both fields are considered to contain the same information. """ out_tensor_dict = tensor_dict.copy() input_fields = fields.InputDataFields labeled_classes_field = input_fields.groundtruth_labeled_classes image_classes_field = input_fields.groundtruth_image_classes verified_neg_classes_field = input_fields.groundtruth_verified_neg_classes not_exhaustive_field = input_fields.groundtruth_not_exhaustive_classes if (labeled_classes_field in out_tensor_dict and image_classes_field in out_tensor_dict): raise KeyError('groundtruth_labeled_classes and groundtruth_image_classes' 'are provided by the decoder, but only one should be set.') for field, map_empty_to_ones in [ (labeled_classes_field, True), (image_classes_field, True), (verified_neg_classes_field, False), (not_exhaustive_field, False)]: if field in out_tensor_dict: out_tensor_dict[field] = _remove_unrecognized_classes( out_tensor_dict[field], unrecognized_label=-1) out_tensor_dict[field] = convert_labeled_classes_to_k_hot( out_tensor_dict[field], num_classes, map_empty_to_ones) if input_fields.multiclass_scores in out_tensor_dict: out_tensor_dict[ input_fields .multiclass_scores] = _multiclass_scores_or_one_hot_labels( out_tensor_dict[input_fields.multiclass_scores], out_tensor_dict[input_fields.groundtruth_boxes], out_tensor_dict[input_fields.groundtruth_classes], num_classes) if input_fields.groundtruth_boxes in out_tensor_dict: out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates( out_tensor_dict) out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict) if retain_original_image: out_tensor_dict[input_fields.original_image] = tf.cast( image_resizer_fn(out_tensor_dict[input_fields.image], None)[0], tf.uint8) if input_fields.image_additional_channels in out_tensor_dict: channels = out_tensor_dict[input_fields.image_additional_channels] out_tensor_dict[input_fields.image] = tf.concat( [out_tensor_dict[input_fields.image], channels], axis=2) if retain_original_image_additional_channels: out_tensor_dict[ input_fields.image_additional_channels] = tf.cast( image_resizer_fn(channels, None)[0], tf.uint8) # Apply data augmentation ops. if data_augmentation_fn is not None: out_tensor_dict = data_augmentation_fn(out_tensor_dict) # Apply model preprocessing ops and resize instance masks. image = out_tensor_dict[input_fields.image] preprocessed_resized_image, true_image_shape = model_preprocess_fn( tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0)) preprocessed_shape = tf.shape(preprocessed_resized_image) new_height, new_width = preprocessed_shape[1], preprocessed_shape[2] im_box = tf.stack([ 0.0, 0.0, tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]), tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1]) ]) if input_fields.groundtruth_boxes in tensor_dict: bboxes = out_tensor_dict[input_fields.groundtruth_boxes] boxlist = box_list.BoxList(bboxes) realigned_bboxes = box_list_ops.change_coordinate_frame(boxlist, im_box) realigned_boxes_tensor = realigned_bboxes.get() valid_boxes_tensor = assert_or_prune_invalid_boxes(realigned_boxes_tensor) out_tensor_dict[ input_fields.groundtruth_boxes] = valid_boxes_tensor if input_fields.groundtruth_keypoints in tensor_dict: keypoints = out_tensor_dict[input_fields.groundtruth_keypoints] realigned_keypoints = keypoint_ops.change_coordinate_frame(keypoints, im_box) out_tensor_dict[ input_fields.groundtruth_keypoints] = realigned_keypoints flds_gt_kpt = input_fields.groundtruth_keypoints flds_gt_kpt_vis = input_fields.groundtruth_keypoint_visibilities flds_gt_kpt_weights = input_fields.groundtruth_keypoint_weights if flds_gt_kpt_vis not in out_tensor_dict: out_tensor_dict[flds_gt_kpt_vis] = tf.ones_like( out_tensor_dict[flds_gt_kpt][:, :, 0], dtype=tf.bool) flds_gt_kpt_depth = fields.InputDataFields.groundtruth_keypoint_depths flds_gt_kpt_depth_weight = ( fields.InputDataFields.groundtruth_keypoint_depth_weights) if flds_gt_kpt_depth in out_tensor_dict: out_tensor_dict[flds_gt_kpt_depth] = out_tensor_dict[flds_gt_kpt_depth] out_tensor_dict[flds_gt_kpt_depth_weight] = out_tensor_dict[ flds_gt_kpt_depth_weight] out_tensor_dict[flds_gt_kpt_weights] = ( keypoint_ops.keypoint_weights_from_visibilities( out_tensor_dict[flds_gt_kpt_vis], keypoint_type_weight)) dp_surface_coords_fld = input_fields.groundtruth_dp_surface_coords if dp_surface_coords_fld in tensor_dict: dp_surface_coords = out_tensor_dict[dp_surface_coords_fld] realigned_dp_surface_coords = densepose_ops.change_coordinate_frame( dp_surface_coords, im_box) out_tensor_dict[dp_surface_coords_fld] = realigned_dp_surface_coords if use_bfloat16: preprocessed_resized_image = tf.cast( preprocessed_resized_image, tf.bfloat16) if input_fields.context_features in out_tensor_dict: out_tensor_dict[input_fields.context_features] = tf.cast( out_tensor_dict[input_fields.context_features], tf.bfloat16) out_tensor_dict[input_fields.image] = tf.squeeze( preprocessed_resized_image, axis=0) out_tensor_dict[input_fields.true_image_shape] = tf.squeeze( true_image_shape, axis=0) if input_fields.groundtruth_instance_masks in out_tensor_dict: masks = out_tensor_dict[input_fields.groundtruth_instance_masks] _, resized_masks, _ = image_resizer_fn(image, masks) if use_bfloat16: resized_masks = tf.cast(resized_masks, tf.bfloat16) out_tensor_dict[ input_fields.groundtruth_instance_masks] = resized_masks zero_indexed_groundtruth_classes = out_tensor_dict[ input_fields.groundtruth_classes] - _LABEL_OFFSET if use_multiclass_scores: out_tensor_dict[ input_fields.groundtruth_classes] = out_tensor_dict[ input_fields.multiclass_scores] else: out_tensor_dict[input_fields.groundtruth_classes] = tf.one_hot( zero_indexed_groundtruth_classes, num_classes) out_tensor_dict.pop(input_fields.multiclass_scores, None) if input_fields.groundtruth_confidences in out_tensor_dict: groundtruth_confidences = out_tensor_dict[ input_fields.groundtruth_confidences] # Map the confidences to the one-hot encoding of classes out_tensor_dict[input_fields.groundtruth_confidences] = ( tf.reshape(groundtruth_confidences, [-1, 1]) * out_tensor_dict[input_fields.groundtruth_classes]) else: groundtruth_confidences = tf.ones_like( zero_indexed_groundtruth_classes, dtype=tf.float32) out_tensor_dict[input_fields.groundtruth_confidences] = ( out_tensor_dict[input_fields.groundtruth_classes]) if merge_multiple_boxes: merged_boxes, merged_classes, merged_confidences, _ = ( util_ops.merge_boxes_with_multiple_labels( out_tensor_dict[input_fields.groundtruth_boxes], zero_indexed_groundtruth_classes, groundtruth_confidences, num_classes)) merged_classes = tf.cast(merged_classes, tf.float32) out_tensor_dict[input_fields.groundtruth_boxes] = merged_boxes out_tensor_dict[input_fields.groundtruth_classes] = merged_classes out_tensor_dict[input_fields.groundtruth_confidences] = ( merged_confidences) if input_fields.groundtruth_boxes in out_tensor_dict: out_tensor_dict[input_fields.num_groundtruth_boxes] = tf.shape( out_tensor_dict[input_fields.groundtruth_boxes])[0] return out_tensor_dict def pad_input_data_to_static_shapes(tensor_dict, max_num_boxes, num_classes, spatial_image_shape=None, max_num_context_features=None, context_feature_length=None, max_dp_points=336): """Pads input tensors to static shapes. In case num_additional_channels > 0, we assume that the additional channels have already been concatenated to the base image. Args: tensor_dict: Tensor dictionary of input data max_num_boxes: Max number of groundtruth boxes needed to compute shapes for padding. num_classes: Number of classes in the dataset needed to compute shapes for padding. spatial_image_shape: A list of two integers of the form [height, width] containing expected spatial shape of the image. max_num_context_features (optional): The maximum number of context features needed to compute shapes padding. context_feature_length (optional): The length of the context feature. max_dp_points (optional): The maximum number of DensePose sampled points per instance. The default (336) is selected since the original DensePose paper (https://arxiv.org/pdf/1802.00434.pdf) indicates that the maximum number of samples per part is 14, and therefore 24 * 14 = 336 is the maximum sampler per instance. Returns: A dictionary keyed by fields.InputDataFields containing padding shapes for tensors in the dataset. Raises: ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we detect that additional channels have not been concatenated yet, or if max_num_context_features is not specified and context_features is in the tensor dict. """ if not spatial_image_shape or spatial_image_shape == [-1, -1]: height, width = None, None else: height, width = spatial_image_shape # pylint: disable=unpacking-non-sequence input_fields = fields.InputDataFields num_additional_channels = 0 if input_fields.image_additional_channels in tensor_dict: num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[ input_fields.image_additional_channels].shape[2]) # We assume that if num_additional_channels > 0, then it has already been # concatenated to the base image (but not the ground truth). num_channels = 3 if input_fields.image in tensor_dict: num_channels = shape_utils.get_dim_as_int( tensor_dict[input_fields.image].shape[2]) if num_additional_channels: if num_additional_channels >= num_channels: raise ValueError( 'Image must be already concatenated with additional channels.') if (input_fields.original_image in tensor_dict and shape_utils.get_dim_as_int( tensor_dict[input_fields.original_image].shape[2]) == num_channels): raise ValueError( 'Image must be already concatenated with additional channels.') if input_fields.context_features in tensor_dict and ( max_num_context_features is None): raise ValueError('max_num_context_features must be specified in the model ' 'config if include_context is specified in the input ' 'config') padding_shapes = { input_fields.image: [height, width, num_channels], input_fields.original_image_spatial_shape: [2], input_fields.image_additional_channels: [ height, width, num_additional_channels ], input_fields.source_id: [], input_fields.filename: [], input_fields.key: [], input_fields.groundtruth_difficult: [max_num_boxes], input_fields.groundtruth_boxes: [max_num_boxes, 4], input_fields.groundtruth_classes: [max_num_boxes, num_classes], input_fields.groundtruth_instance_masks: [ max_num_boxes, height, width ], input_fields.groundtruth_instance_mask_weights: [max_num_boxes], input_fields.groundtruth_is_crowd: [max_num_boxes], input_fields.groundtruth_group_of: [max_num_boxes], input_fields.groundtruth_area: [max_num_boxes], input_fields.groundtruth_weights: [max_num_boxes], input_fields.groundtruth_confidences: [ max_num_boxes, num_classes ], input_fields.num_groundtruth_boxes: [], input_fields.groundtruth_label_types: [max_num_boxes], input_fields.groundtruth_label_weights: [max_num_boxes], input_fields.true_image_shape: [3], input_fields.groundtruth_image_classes: [num_classes], input_fields.groundtruth_image_confidences: [num_classes], input_fields.groundtruth_labeled_classes: [num_classes], } if input_fields.original_image in tensor_dict: padding_shapes[input_fields.original_image] = [ height, width, shape_utils.get_dim_as_int(tensor_dict[input_fields. original_image].shape[2]) ] if input_fields.groundtruth_keypoints in tensor_dict: tensor_shape = ( tensor_dict[input_fields.groundtruth_keypoints].shape) padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1]), shape_utils.get_dim_as_int(tensor_shape[2])] padding_shapes[input_fields.groundtruth_keypoints] = padding_shape if input_fields.groundtruth_keypoint_visibilities in tensor_dict: tensor_shape = tensor_dict[input_fields. groundtruth_keypoint_visibilities].shape padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])] padding_shapes[input_fields. groundtruth_keypoint_visibilities] = padding_shape if fields.InputDataFields.groundtruth_keypoint_depths in tensor_dict: tensor_shape = tensor_dict[fields.InputDataFields. groundtruth_keypoint_depths].shape padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])] padding_shapes[fields.InputDataFields. groundtruth_keypoint_depths] = padding_shape padding_shapes[fields.InputDataFields. groundtruth_keypoint_depth_weights] = padding_shape if input_fields.groundtruth_keypoint_weights in tensor_dict: tensor_shape = ( tensor_dict[input_fields.groundtruth_keypoint_weights].shape) padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])] padding_shapes[input_fields. groundtruth_keypoint_weights] = padding_shape if input_fields.groundtruth_dp_num_points in tensor_dict: padding_shapes[ input_fields.groundtruth_dp_num_points] = [max_num_boxes] padding_shapes[ input_fields.groundtruth_dp_part_ids] = [ max_num_boxes, max_dp_points] padding_shapes[ input_fields.groundtruth_dp_surface_coords] = [ max_num_boxes, max_dp_points, 4] if input_fields.groundtruth_track_ids in tensor_dict: padding_shapes[ input_fields.groundtruth_track_ids] = [max_num_boxes] if input_fields.groundtruth_verified_neg_classes in tensor_dict: padding_shapes[ input_fields.groundtruth_verified_neg_classes] = [num_classes] if input_fields.groundtruth_not_exhaustive_classes in tensor_dict: padding_shapes[ input_fields.groundtruth_not_exhaustive_classes] = [num_classes] # Prepare for ContextRCNN related fields. if input_fields.context_features in tensor_dict: padding_shape = [max_num_context_features, context_feature_length] padding_shapes[input_fields.context_features] = padding_shape tensor_shape = tf.shape( tensor_dict[fields.InputDataFields.context_features]) tensor_dict[fields.InputDataFields.valid_context_size] = tensor_shape[0] padding_shapes[fields.InputDataFields.valid_context_size] = [] if fields.InputDataFields.context_feature_length in tensor_dict: padding_shapes[fields.InputDataFields.context_feature_length] = [] if fields.InputDataFields.context_features_image_id_list in tensor_dict: padding_shapes[fields.InputDataFields.context_features_image_id_list] = [ max_num_context_features] if input_fields.is_annotated in tensor_dict: padding_shapes[input_fields.is_annotated] = [] padded_tensor_dict = {} for tensor_name in tensor_dict: padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd( tensor_dict[tensor_name], padding_shapes[tensor_name]) # Make sure that the number of groundtruth boxes now reflects the # padded/clipped tensors. if input_fields.num_groundtruth_boxes in padded_tensor_dict: padded_tensor_dict[input_fields.num_groundtruth_boxes] = ( tf.minimum( padded_tensor_dict[input_fields.num_groundtruth_boxes], max_num_boxes)) return padded_tensor_dict def augment_input_data(tensor_dict, data_augmentation_options): """Applies data augmentation ops to input tensors. Args: tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields. data_augmentation_options: A list of tuples, where each tuple contains a function and a dictionary that contains arguments and their values. Usually, this is the output of core/preprocessor.build. Returns: A dictionary of tensors obtained by applying data augmentation ops to the input tensor dictionary. """ tensor_dict[fields.InputDataFields.image] = tf.expand_dims( tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0) include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks in tensor_dict) include_instance_mask_weights = ( fields.InputDataFields.groundtruth_instance_mask_weights in tensor_dict) include_keypoints = (fields.InputDataFields.groundtruth_keypoints in tensor_dict) include_keypoint_visibilities = ( fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict) include_keypoint_depths = ( fields.InputDataFields.groundtruth_keypoint_depths in tensor_dict) include_label_weights = (fields.InputDataFields.groundtruth_weights in tensor_dict) include_label_confidences = (fields.InputDataFields.groundtruth_confidences in tensor_dict) include_multiclass_scores = (fields.InputDataFields.multiclass_scores in tensor_dict) dense_pose_fields = [fields.InputDataFields.groundtruth_dp_num_points, fields.InputDataFields.groundtruth_dp_part_ids, fields.InputDataFields.groundtruth_dp_surface_coords] include_dense_pose = all(field in tensor_dict for field in dense_pose_fields) tensor_dict = preprocessor.preprocess( tensor_dict, data_augmentation_options, func_arg_map=preprocessor.get_default_func_arg_map( include_label_weights=include_label_weights, include_label_confidences=include_label_confidences, include_multiclass_scores=include_multiclass_scores, include_instance_masks=include_instance_masks, include_instance_mask_weights=include_instance_mask_weights, include_keypoints=include_keypoints, include_keypoint_visibilities=include_keypoint_visibilities, include_dense_pose=include_dense_pose, include_keypoint_depths=include_keypoint_depths)) tensor_dict[fields.InputDataFields.image] = tf.squeeze( tensor_dict[fields.InputDataFields.image], axis=0) return tensor_dict def _get_labels_dict(input_dict): """Extracts labels dict from input dict.""" required_label_keys = [ fields.InputDataFields.num_groundtruth_boxes, fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_weights, ] labels_dict = {} for key in required_label_keys: labels_dict[key] = input_dict[key] optional_label_keys = [ fields.InputDataFields.groundtruth_confidences, fields.InputDataFields.groundtruth_labeled_classes, fields.InputDataFields.groundtruth_keypoints, fields.InputDataFields.groundtruth_keypoint_depths, fields.InputDataFields.groundtruth_keypoint_depth_weights, fields.InputDataFields.groundtruth_instance_masks, fields.InputDataFields.groundtruth_instance_mask_weights, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_group_of, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_keypoint_visibilities, fields.InputDataFields.groundtruth_keypoint_weights, fields.InputDataFields.groundtruth_dp_num_points, fields.InputDataFields.groundtruth_dp_part_ids, fields.InputDataFields.groundtruth_dp_surface_coords, fields.InputDataFields.groundtruth_track_ids, fields.InputDataFields.groundtruth_verified_neg_classes, fields.InputDataFields.groundtruth_not_exhaustive_classes ] for key in optional_label_keys: if key in input_dict: labels_dict[key] = input_dict[key] if fields.InputDataFields.groundtruth_difficult in labels_dict: labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast( labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32) return labels_dict def _replace_empty_string_with_random_number(string_tensor): """Returns string unchanged if non-empty, and random string tensor otherwise. The random string is an integer 0 and 2**63 - 1, casted as string. Args: string_tensor: A tf.tensor of dtype string. Returns: out_string: A tf.tensor of dtype string. If string_tensor contains the empty string, out_string will contain a random integer casted to a string. Otherwise string_tensor is returned unchanged. """ empty_string = tf.constant('', dtype=tf.string, name='EmptyString') random_source_id = tf.as_string( tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64)) out_string = tf.cond( tf.equal(string_tensor, empty_string), true_fn=lambda: random_source_id, false_fn=lambda: string_tensor) return out_string def _get_features_dict(input_dict, include_source_id=False): """Extracts features dict from input dict.""" source_id = _replace_empty_string_with_random_number( input_dict[fields.InputDataFields.source_id]) hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape], fields.InputDataFields.original_image_spatial_shape: input_dict[fields.InputDataFields.original_image_spatial_shape] } if include_source_id: features[fields.InputDataFields.source_id] = source_id if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] if fields.InputDataFields.image_additional_channels in input_dict: features[fields.InputDataFields.image_additional_channels] = input_dict[ fields.InputDataFields.image_additional_channels] if fields.InputDataFields.context_features in input_dict: features[fields.InputDataFields.context_features] = input_dict[ fields.InputDataFields.context_features] if fields.InputDataFields.valid_context_size in input_dict: features[fields.InputDataFields.valid_context_size] = input_dict[ fields.InputDataFields.valid_context_size] if fields.InputDataFields.context_features_image_id_list in input_dict: features[fields.InputDataFields.context_features_image_id_list] = ( input_dict[fields.InputDataFields.context_features_image_id_list]) return features def create_train_input_fn(train_config, train_input_config, model_config): """Creates a train `input` function for `Estimator`. Args: train_config: A train_pb2.TrainConfig. train_input_config: An input_reader_pb2.InputReader. model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in TRAIN mode. """ def _train_input_fn(params=None): return train_input(train_config, train_input_config, model_config, params=params) return _train_input_fn def train_input(train_config, train_input_config, model_config, model=None, params=None, input_context=None): """Returns `features` and `labels` tensor dictionaries for training. Args: train_config: A train_pb2.TrainConfig. train_input_config: An input_reader_pb2.InputReader. model_config: A model_pb2.DetectionModel. model: A pre-constructed Detection Model. If None, one will be created from the config. params: Parameter dictionary passed from the estimator. input_context: optional, A tf.distribute.InputContext object used to shard filenames and compute per-replica batch_size when this function is being called per-replica. Returns: A tf.data.Dataset that holds (features, labels) tuple. features: Dictionary of feature tensors. features[fields.InputDataFields.image] is a [batch_size, H, W, C] float32 tensor with preprocessed images. features[HASH_KEY] is a [batch_size] int32 tensor representing unique identifiers for the images. features[fields.InputDataFields.true_image_shape] is a [batch_size, 3] int32 tensor representing the true image shapes, as preprocessed images could be padded. features[fields.InputDataFields.original_image] (optional) is a [batch_size, H, W, C] float32 tensor with original images. labels: Dictionary of groundtruth tensors. labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size] int32 tensor indicating the number of groundtruth boxes. labels[fields.InputDataFields.groundtruth_boxes] is a [batch_size, num_boxes, 4] float32 tensor containing the corners of the groundtruth boxes. labels[fields.InputDataFields.groundtruth_classes] is a [batch_size, num_boxes, num_classes] float32 one-hot tensor of classes. labels[fields.InputDataFields.groundtruth_weights] is a [batch_size, num_boxes] float32 tensor containing groundtruth weights for the boxes. -- Optional -- labels[fields.InputDataFields.groundtruth_instance_masks] is a [batch_size, num_boxes, H, W] float32 tensor containing only binary values, which represent instance masks for objects. labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a [batch_size, num_boxes] float32 tensor containing groundtruth weights for each instance mask. labels[fields.InputDataFields.groundtruth_keypoints] is a [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing keypoints for each box. labels[fields.InputDataFields.groundtruth_weights] is a [batch_size, num_boxes, num_keypoints] float32 tensor containing groundtruth weights for the keypoints. labels[fields.InputDataFields.groundtruth_visibilities] is a [batch_size, num_boxes, num_keypoints] bool tensor containing groundtruth visibilities for each keypoint. labels[fields.InputDataFields.groundtruth_labeled_classes] is a [batch_size, num_classes] float32 k-hot tensor of classes. labels[fields.InputDataFields.groundtruth_dp_num_points] is a [batch_size, num_boxes] int32 tensor with the number of sampled DensePose points per object. labels[fields.InputDataFields.groundtruth_dp_part_ids] is a [batch_size, num_boxes, max_sampled_points] int32 tensor with the DensePose part ids (0-indexed) per object. labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the DensePose surface coordinates. The format is (y, x, v, u), where (y, x) are normalized image coordinates and (v, u) are normalized surface part coordinates. labels[fields.InputDataFields.groundtruth_track_ids] is a [batch_size, num_boxes] int32 tensor with the track ID for each object. Raises: TypeError: if the `train_config`, `train_input_config` or `model_config` are not of the correct type. """ if not isinstance(train_config, train_pb2.TrainConfig): raise TypeError('For training mode, the `train_config` must be a ' 'train_pb2.TrainConfig.') if not isinstance(train_input_config, input_reader_pb2.InputReader): raise TypeError('The `train_input_config` must be a ' 'input_reader_pb2.InputReader.') if not isinstance(model_config, model_pb2.DetectionModel): raise TypeError('The `model_config` must be a ' 'model_pb2.DetectionModel.') if model is None: model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build']( model_config, is_training=True).preprocess else: model_preprocess_fn = model.preprocess num_classes = config_util.get_number_of_classes(model_config) def transform_and_pad_input_data_fn(tensor_dict): """Combines transform and pad operation.""" data_augmentation_options = [ preprocessor_builder.build(step) for step in train_config.data_augmentation_options ] data_augmentation_fn = functools.partial( augment_input_data, data_augmentation_options=data_augmentation_options) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) keypoint_type_weight = train_input_config.keypoint_type_weight or None transform_data_fn = functools.partial( transform_input_data, model_preprocess_fn=model_preprocess_fn, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=data_augmentation_fn, merge_multiple_boxes=train_config.merge_multiple_label_boxes, retain_original_image=train_config.retain_original_images, use_multiclass_scores=train_config.use_multiclass_scores, use_bfloat16=train_config.use_bfloat16, keypoint_type_weight=keypoint_type_weight) tensor_dict = pad_input_data_to_static_shapes( tensor_dict=transform_data_fn(tensor_dict), max_num_boxes=train_input_config.max_number_of_boxes, num_classes=num_classes, spatial_image_shape=config_util.get_spatial_image_size( image_resizer_config), max_num_context_features=config_util.get_max_num_context_features( model_config), context_feature_length=config_util.get_context_feature_length( model_config)) include_source_id = train_input_config.include_source_id return (_get_features_dict(tensor_dict, include_source_id), _get_labels_dict(tensor_dict)) reduce_to_frame_fn = get_reduce_to_frame_fn(train_input_config, True) dataset = INPUT_BUILDER_UTIL_MAP['dataset_build']( train_input_config, transform_input_data_fn=transform_and_pad_input_data_fn, batch_size=params['batch_size'] if params else train_config.batch_size, input_context=input_context, reduce_to_frame_fn=reduce_to_frame_fn) return dataset def create_eval_input_fn(eval_config, eval_input_config, model_config): """Creates an eval `input` function for `Estimator`. Args: eval_config: An eval_pb2.EvalConfig. eval_input_config: An input_reader_pb2.InputReader. model_config: A model_pb2.DetectionModel. Returns: `input_fn` for `Estimator` in EVAL mode. """ def _eval_input_fn(params=None): return eval_input(eval_config, eval_input_config, model_config, params=params) return _eval_input_fn def eval_input(eval_config, eval_input_config, model_config, model=None, params=None, input_context=None): """Returns `features` and `labels` tensor dictionaries for evaluation. Args: eval_config: An eval_pb2.EvalConfig. eval_input_config: An input_reader_pb2.InputReader. model_config: A model_pb2.DetectionModel. model: A pre-constructed Detection Model. If None, one will be created from the config. params: Parameter dictionary passed from the estimator. input_context: optional, A tf.distribute.InputContext object used to shard filenames and compute per-replica batch_size when this function is being called per-replica. Returns: A tf.data.Dataset that holds (features, labels) tuple. features: Dictionary of feature tensors. features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor with preprocessed images. features[HASH_KEY] is a [1] int32 tensor representing unique identifiers for the images. features[fields.InputDataFields.true_image_shape] is a [1, 3] int32 tensor representing the true image shapes, as preprocessed images could be padded. features[fields.InputDataFields.original_image] is a [1, H', W', C] float32 tensor with the original image. labels: Dictionary of groundtruth tensors. labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4] float32 tensor containing the corners of the groundtruth boxes. labels[fields.InputDataFields.groundtruth_classes] is a [num_boxes, num_classes] float32 one-hot tensor of classes. labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes] float32 tensor containing object areas. labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes] bool tensor indicating if the boxes enclose a crowd. labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes] int32 tensor indicating if the boxes represent difficult instances. -- Optional -- labels[fields.InputDataFields.groundtruth_instance_masks] is a [1, num_boxes, H, W] float32 tensor containing only binary values, which represent instance masks for objects. labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a [1, num_boxes] float32 tensor containing groundtruth weights for each instance mask. labels[fields.InputDataFields.groundtruth_weights] is a [batch_size, num_boxes, num_keypoints] float32 tensor containing groundtruth weights for the keypoints. labels[fields.InputDataFields.groundtruth_visibilities] is a [batch_size, num_boxes, num_keypoints] bool tensor containing groundtruth visibilities for each keypoint. labels[fields.InputDataFields.groundtruth_group_of] is a [1, num_boxes] bool tensor indicating if the box covers more than 5 instances of the same class which heavily occlude each other. labels[fields.InputDataFields.groundtruth_labeled_classes] is a [num_boxes, num_classes] float32 k-hot tensor of classes. labels[fields.InputDataFields.groundtruth_dp_num_points] is a [batch_size, num_boxes] int32 tensor with the number of sampled DensePose points per object. labels[fields.InputDataFields.groundtruth_dp_part_ids] is a [batch_size, num_boxes, max_sampled_points] int32 tensor with the DensePose part ids (0-indexed) per object. labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the DensePose surface coordinates. The format is (y, x, v, u), where (y, x) are normalized image coordinates and (v, u) are normalized surface part coordinates. labels[fields.InputDataFields.groundtruth_track_ids] is a [batch_size, num_boxes] int32 tensor with the track ID for each object. Raises: TypeError: if the `eval_config`, `eval_input_config` or `model_config` are not of the correct type. """ params = params or {} if not isinstance(eval_config, eval_pb2.EvalConfig): raise TypeError('For eval mode, the `eval_config` must be a ' 'train_pb2.EvalConfig.') if not isinstance(eval_input_config, input_reader_pb2.InputReader): raise TypeError('The `eval_input_config` must be a ' 'input_reader_pb2.InputReader.') if not isinstance(model_config, model_pb2.DetectionModel): raise TypeError('The `model_config` must be a ' 'model_pb2.DetectionModel.') if eval_config.force_no_resize: arch = model_config.WhichOneof('model') arch_config = getattr(model_config, arch) image_resizer_proto = image_resizer_pb2.ImageResizer() image_resizer_proto.identity_resizer.CopyFrom( image_resizer_pb2.IdentityResizer()) arch_config.image_resizer.CopyFrom(image_resizer_proto) if model is None: model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build']( model_config, is_training=False).preprocess else: model_preprocess_fn = model.preprocess def transform_and_pad_input_data_fn(tensor_dict): """Combines transform and pad operation.""" num_classes = config_util.get_number_of_classes(model_config) image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) keypoint_type_weight = eval_input_config.keypoint_type_weight or None transform_data_fn = functools.partial( transform_input_data, model_preprocess_fn=model_preprocess_fn, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None, retain_original_image=eval_config.retain_original_images, retain_original_image_additional_channels= eval_config.retain_original_image_additional_channels, keypoint_type_weight=keypoint_type_weight) tensor_dict = pad_input_data_to_static_shapes( tensor_dict=transform_data_fn(tensor_dict), max_num_boxes=eval_input_config.max_number_of_boxes, num_classes=config_util.get_number_of_classes(model_config), spatial_image_shape=config_util.get_spatial_image_size( image_resizer_config), max_num_context_features=config_util.get_max_num_context_features( model_config), context_feature_length=config_util.get_context_feature_length( model_config)) include_source_id = eval_input_config.include_source_id return (_get_features_dict(tensor_dict, include_source_id), _get_labels_dict(tensor_dict)) reduce_to_frame_fn = get_reduce_to_frame_fn(eval_input_config, False) dataset = INPUT_BUILDER_UTIL_MAP['dataset_build']( eval_input_config, batch_size=params['batch_size'] if params else eval_config.batch_size, transform_input_data_fn=transform_and_pad_input_data_fn, input_context=input_context, reduce_to_frame_fn=reduce_to_frame_fn) return dataset def create_predict_input_fn(model_config, predict_input_config): """Creates a predict `input` function for `Estimator`. Args: model_config: A model_pb2.DetectionModel. predict_input_config: An input_reader_pb2.InputReader. Returns: `input_fn` for `Estimator` in PREDICT mode. """ def _predict_input_fn(params=None): """Decodes serialized tf.Examples and returns `ServingInputReceiver`. Args: params: Parameter dictionary passed from the estimator. Returns: `ServingInputReceiver`. """ del params example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example') num_classes = config_util.get_number_of_classes(model_config) model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build']( model_config, is_training=False).preprocess image_resizer_config = config_util.get_image_resizer_config(model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_fn = functools.partial( transform_input_data, model_preprocess_fn=model_preprocess_fn, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None) decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=False, num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0) return tf.estimator.export.ServingInputReceiver( features={ fields.InputDataFields.image: images, fields.InputDataFields.true_image_shape: true_image_shape}, receiver_tensors={SERVING_FED_EXAMPLE_KEY: example}) return _predict_input_fn def get_reduce_to_frame_fn(input_reader_config, is_training): """Returns a function reducing sequence tensors to single frame tensors. If the input type is not TF_SEQUENCE_EXAMPLE, the tensors are passed through this function unchanged. Otherwise, when in training mode, a single frame is selected at random from the sequence example, and the tensors for that frame are converted to single frame tensors, with all associated context features. In evaluation mode all frames are converted to single frame tensors with copied context tensors. After the sequence example tensors are converted into one or many single frame tensors, the images from each frame are decoded. Args: input_reader_config: An input_reader_pb2.InputReader. is_training: Whether we are in training mode. Returns: `reduce_to_frame_fn` for the dataset builder """ if input_reader_config.input_type != ( input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE')): return lambda dataset, dataset_map_fn, batch_size, config: dataset else: def reduce_to_frame(dataset, dataset_map_fn, batch_size, input_reader_config): """Returns a function reducing sequence tensors to single frame tensors. Args: dataset: A tf dataset containing sequence tensors. dataset_map_fn: A function that handles whether to map_with_legacy_function for this dataset batch_size: used if map_with_legacy_function is true to determine num_parallel_calls input_reader_config: used if map_with_legacy_function is true to determine num_parallel_calls Returns: A tf dataset containing single frame tensors. """ if is_training: def get_single_frame(tensor_dict): """Returns a random frame from a sequence. Picks a random frame and returns slices of sequence tensors corresponding to the random frame. Returns non-sequence tensors unchanged. Args: tensor_dict: A dictionary containing sequence tensors. Returns: Tensors for a single random frame within the sequence. """ num_frames = tf.cast( tf.shape(tensor_dict[fields.InputDataFields.source_id])[0], dtype=tf.int32) if input_reader_config.frame_index == -1: frame_index = tf.random.uniform((), minval=0, maxval=num_frames, dtype=tf.int32) else: frame_index = tf.constant(input_reader_config.frame_index, dtype=tf.int32) out_tensor_dict = {} for key in tensor_dict: if key in fields.SEQUENCE_FIELDS: # Slice random frame from sequence tensors out_tensor_dict[key] = tensor_dict[key][frame_index] else: # Copy all context tensors. out_tensor_dict[key] = tensor_dict[key] return out_tensor_dict dataset = dataset_map_fn(dataset, get_single_frame, batch_size, input_reader_config) else: dataset = dataset_map_fn(dataset, util_ops.tile_context_tensors, batch_size, input_reader_config) dataset = dataset.unbatch() # Decode frame here as SequenceExample tensors contain encoded images. dataset = dataset_map_fn(dataset, util_ops.decode_image, batch_size, input_reader_config) return dataset return reduce_to_frame
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/inputs.py
inputs.py
r"""Constructs model, inputs, and training environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import functools import os import tensorflow.compat.v1 as tf import tensorflow.compat.v2 as tf2 import tf_slim as slim from object_detection import eval_util from object_detection import exporter as exporter_lib from object_detection import inputs from object_detection.builders import graph_rewriter_builder from object_detection.builders import model_builder from object_detection.builders import optimizer_builder from object_detection.core import standard_fields as fields from object_detection.utils import config_util from object_detection.utils import label_map_util from object_detection.utils import ops from object_detection.utils import shape_utils from object_detection.utils import variables_helper from object_detection.utils import visualization_utils as vis_utils # pylint: disable=g-import-not-at-top try: from tensorflow.contrib import learn as contrib_learn except ImportError: # TF 2.0 doesn't ship with contrib. pass # pylint: enable=g-import-not-at-top # A map of names to methods that help build the model. MODEL_BUILD_UTIL_MAP = { 'get_configs_from_pipeline_file': config_util.get_configs_from_pipeline_file, 'create_pipeline_proto_from_configs': config_util.create_pipeline_proto_from_configs, 'merge_external_params_with_configs': config_util.merge_external_params_with_configs, 'create_train_input_fn': inputs.create_train_input_fn, 'create_eval_input_fn': inputs.create_eval_input_fn, 'create_predict_input_fn': inputs.create_predict_input_fn, 'detection_model_fn_base': model_builder.build, } def _prepare_groundtruth_for_eval(detection_model, class_agnostic, max_number_of_boxes): """Extracts groundtruth data from detection_model and prepares it for eval. Args: detection_model: A `DetectionModel` object. class_agnostic: Whether the detections are class_agnostic. max_number_of_boxes: Max number of groundtruth boxes. Returns: A tuple of: groundtruth: Dictionary with the following fields: 'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in normalized coordinates. 'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed classes. 'groundtruth_masks': 4D float32 tensor of instance masks (if provided in groundtruth) 'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating is_crowd annotations (if provided in groundtruth). 'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating the area (in the original absolute coordinates) of annotations (if provided in groundtruth). 'num_groundtruth_boxes': [batch_size] tensor containing the maximum number of groundtruth boxes per image.. 'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32 tensor of keypoints (if provided in groundtruth). 'groundtruth_dp_num_points_list': [batch_size, num_boxes] int32 tensor with the number of DensePose points for each instance (if provided in groundtruth). 'groundtruth_dp_part_ids_list': [batch_size, num_boxes, max_sampled_points] int32 tensor with the part ids for each DensePose sampled point (if provided in groundtruth). 'groundtruth_dp_surface_coords_list': [batch_size, num_boxes, max_sampled_points, 4] containing the DensePose surface coordinates for each sampled point (if provided in groundtruth). 'groundtruth_track_ids_list': [batch_size, num_boxes] int32 tensor with track ID for each instance (if provided in groundtruth). 'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating group_of annotations (if provided in groundtruth). 'groundtruth_labeled_classes': [batch_size, num_classes] int64 tensor of 1-indexed classes. 'groundtruth_verified_neg_classes': [batch_size, num_classes] float32 K-hot representation of 1-indexed classes which were verified as not present in the image. 'groundtruth_not_exhaustive_classes': [batch_size, num_classes] K-hot representation of 1-indexed classes which don't have all of their instances marked exhaustively. class_agnostic: Boolean indicating whether detections are class agnostic. """ input_data_fields = fields.InputDataFields() groundtruth_boxes = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.boxes)) groundtruth_boxes_shape = tf.shape(groundtruth_boxes) # For class-agnostic models, groundtruth one-hot encodings collapse to all # ones. if class_agnostic: groundtruth_classes_one_hot = tf.ones( [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1]) else: groundtruth_classes_one_hot = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.classes)) label_id_offset = 1 # Applying label id offset (b/63711816) groundtruth_classes = ( tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset) groundtruth = { input_data_fields.groundtruth_boxes: groundtruth_boxes, input_data_fields.groundtruth_classes: groundtruth_classes } if detection_model.groundtruth_has_field(fields.BoxListFields.masks): groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.masks)) if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd): groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.is_crowd)) if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area): groundtruth[input_data_fields.groundtruth_area] = tf.stack( detection_model.groundtruth_lists(input_data_fields.groundtruth_area)) if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints): groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.keypoints)) if detection_model.groundtruth_has_field( fields.BoxListFields.keypoint_depths): groundtruth[input_data_fields.groundtruth_keypoint_depths] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.keypoint_depths)) groundtruth[ input_data_fields.groundtruth_keypoint_depth_weights] = tf.stack( detection_model.groundtruth_lists( fields.BoxListFields.keypoint_depth_weights)) if detection_model.groundtruth_has_field( fields.BoxListFields.keypoint_visibilities): groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack( detection_model.groundtruth_lists( fields.BoxListFields.keypoint_visibilities)) if detection_model.groundtruth_has_field(fields.BoxListFields.group_of): groundtruth[input_data_fields.groundtruth_group_of] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.group_of)) label_id_offset_paddings = tf.constant([[0, 0], [1, 0]]) if detection_model.groundtruth_has_field( input_data_fields.groundtruth_verified_neg_classes): groundtruth[input_data_fields.groundtruth_verified_neg_classes] = tf.pad( tf.stack(detection_model.groundtruth_lists( input_data_fields.groundtruth_verified_neg_classes)), label_id_offset_paddings) if detection_model.groundtruth_has_field( input_data_fields.groundtruth_not_exhaustive_classes): groundtruth[ input_data_fields.groundtruth_not_exhaustive_classes] = tf.pad( tf.stack(detection_model.groundtruth_lists( input_data_fields.groundtruth_not_exhaustive_classes)), label_id_offset_paddings) if detection_model.groundtruth_has_field( fields.BoxListFields.densepose_num_points): groundtruth[input_data_fields.groundtruth_dp_num_points] = tf.stack( detection_model.groundtruth_lists( fields.BoxListFields.densepose_num_points)) if detection_model.groundtruth_has_field( fields.BoxListFields.densepose_part_ids): groundtruth[input_data_fields.groundtruth_dp_part_ids] = tf.stack( detection_model.groundtruth_lists( fields.BoxListFields.densepose_part_ids)) if detection_model.groundtruth_has_field( fields.BoxListFields.densepose_surface_coords): groundtruth[input_data_fields.groundtruth_dp_surface_coords] = tf.stack( detection_model.groundtruth_lists( fields.BoxListFields.densepose_surface_coords)) if detection_model.groundtruth_has_field(fields.BoxListFields.track_ids): groundtruth[input_data_fields.groundtruth_track_ids] = tf.stack( detection_model.groundtruth_lists(fields.BoxListFields.track_ids)) if detection_model.groundtruth_has_field( input_data_fields.groundtruth_labeled_classes): groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.pad( tf.stack( detection_model.groundtruth_lists( input_data_fields.groundtruth_labeled_classes)), label_id_offset_paddings) groundtruth[input_data_fields.num_groundtruth_boxes] = ( tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]])) return groundtruth def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True): """Unstacks all tensors in `tensor_dict` along 0th dimension. Unstacks tensor from the tensor dict along 0th dimension and returns a tensor_dict containing values that are lists of unstacked, unpadded tensors. Tensors in the `tensor_dict` are expected to be of one of the three shapes: 1. [batch_size] 2. [batch_size, height, width, channels] 3. [batch_size, num_boxes, d1, d2, ... dn] When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3 above are sliced along the `num_boxes` dimension using the value in tensor field.InputDataFields.num_groundtruth_boxes. Note that this function has a static list of input data fields and has to be kept in sync with the InputDataFields defined in core/standard_fields.py Args: tensor_dict: A dictionary of batched groundtruth tensors. unpad_groundtruth_tensors: Whether to remove padding along `num_boxes` dimension of the groundtruth tensors. Returns: A dictionary where the keys are from fields.InputDataFields and values are a list of unstacked (optionally unpadded) tensors. Raises: ValueError: If unpad_tensors is True and `tensor_dict` does not contain `num_groundtruth_boxes` tensor. """ unbatched_tensor_dict = { key: tf.unstack(tensor) for key, tensor in tensor_dict.items() } if unpad_groundtruth_tensors: if (fields.InputDataFields.num_groundtruth_boxes not in unbatched_tensor_dict): raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. ' 'Keys available: {}'.format( unbatched_tensor_dict.keys())) unbatched_unpadded_tensor_dict = {} unpad_keys = set([ # List of input data fields that are padded along the num_boxes # dimension. This list has to be kept in sync with InputDataFields in # standard_fields.py. fields.InputDataFields.groundtruth_instance_masks, fields.InputDataFields.groundtruth_instance_mask_weights, fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_keypoints, fields.InputDataFields.groundtruth_keypoint_depths, fields.InputDataFields.groundtruth_keypoint_depth_weights, fields.InputDataFields.groundtruth_keypoint_visibilities, fields.InputDataFields.groundtruth_dp_num_points, fields.InputDataFields.groundtruth_dp_part_ids, fields.InputDataFields.groundtruth_dp_surface_coords, fields.InputDataFields.groundtruth_track_ids, fields.InputDataFields.groundtruth_group_of, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_weights ]).intersection(set(unbatched_tensor_dict.keys())) for key in unpad_keys: unpadded_tensor_list = [] for num_gt, padded_tensor in zip( unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes], unbatched_tensor_dict[key]): tensor_shape = shape_utils.combined_static_and_dynamic_shape( padded_tensor) slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32) slice_size = tf.stack( [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]]) unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size) unpadded_tensor_list.append(unpadded_tensor) unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict) return unbatched_tensor_dict def provide_groundtruth(model, labels): """Provides the labels to a model as groundtruth. This helper function extracts the corresponding boxes, classes, keypoints, weights, masks, etc. from the labels, and provides it as groundtruth to the models. Args: model: The detection model to provide groundtruth to. labels: The labels for the training or evaluation inputs. """ gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes] gt_classes_list = labels[fields.InputDataFields.groundtruth_classes] gt_masks_list = None if fields.InputDataFields.groundtruth_instance_masks in labels: gt_masks_list = labels[ fields.InputDataFields.groundtruth_instance_masks] gt_mask_weights_list = None if fields.InputDataFields.groundtruth_instance_mask_weights in labels: gt_mask_weights_list = labels[ fields.InputDataFields.groundtruth_instance_mask_weights] gt_keypoints_list = None if fields.InputDataFields.groundtruth_keypoints in labels: gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints] gt_keypoint_depths_list = None gt_keypoint_depth_weights_list = None if fields.InputDataFields.groundtruth_keypoint_depths in labels: gt_keypoint_depths_list = ( labels[fields.InputDataFields.groundtruth_keypoint_depths]) gt_keypoint_depth_weights_list = ( labels[fields.InputDataFields.groundtruth_keypoint_depth_weights]) gt_keypoint_visibilities_list = None if fields.InputDataFields.groundtruth_keypoint_visibilities in labels: gt_keypoint_visibilities_list = labels[ fields.InputDataFields.groundtruth_keypoint_visibilities] gt_dp_num_points_list = None if fields.InputDataFields.groundtruth_dp_num_points in labels: gt_dp_num_points_list = labels[ fields.InputDataFields.groundtruth_dp_num_points] gt_dp_part_ids_list = None if fields.InputDataFields.groundtruth_dp_part_ids in labels: gt_dp_part_ids_list = labels[ fields.InputDataFields.groundtruth_dp_part_ids] gt_dp_surface_coords_list = None if fields.InputDataFields.groundtruth_dp_surface_coords in labels: gt_dp_surface_coords_list = labels[ fields.InputDataFields.groundtruth_dp_surface_coords] gt_track_ids_list = None if fields.InputDataFields.groundtruth_track_ids in labels: gt_track_ids_list = labels[ fields.InputDataFields.groundtruth_track_ids] gt_weights_list = None if fields.InputDataFields.groundtruth_weights in labels: gt_weights_list = labels[fields.InputDataFields.groundtruth_weights] gt_confidences_list = None if fields.InputDataFields.groundtruth_confidences in labels: gt_confidences_list = labels[ fields.InputDataFields.groundtruth_confidences] gt_is_crowd_list = None if fields.InputDataFields.groundtruth_is_crowd in labels: gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd] gt_group_of_list = None if fields.InputDataFields.groundtruth_group_of in labels: gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of] gt_area_list = None if fields.InputDataFields.groundtruth_area in labels: gt_area_list = labels[fields.InputDataFields.groundtruth_area] gt_labeled_classes = None if fields.InputDataFields.groundtruth_labeled_classes in labels: gt_labeled_classes = labels[ fields.InputDataFields.groundtruth_labeled_classes] gt_verified_neg_classes = None if fields.InputDataFields.groundtruth_verified_neg_classes in labels: gt_verified_neg_classes = labels[ fields.InputDataFields.groundtruth_verified_neg_classes] gt_not_exhaustive_classes = None if fields.InputDataFields.groundtruth_not_exhaustive_classes in labels: gt_not_exhaustive_classes = labels[ fields.InputDataFields.groundtruth_not_exhaustive_classes] model.provide_groundtruth( groundtruth_boxes_list=gt_boxes_list, groundtruth_classes_list=gt_classes_list, groundtruth_confidences_list=gt_confidences_list, groundtruth_labeled_classes=gt_labeled_classes, groundtruth_masks_list=gt_masks_list, groundtruth_mask_weights_list=gt_mask_weights_list, groundtruth_keypoints_list=gt_keypoints_list, groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list, groundtruth_dp_num_points_list=gt_dp_num_points_list, groundtruth_dp_part_ids_list=gt_dp_part_ids_list, groundtruth_dp_surface_coords_list=gt_dp_surface_coords_list, groundtruth_weights_list=gt_weights_list, groundtruth_is_crowd_list=gt_is_crowd_list, groundtruth_group_of_list=gt_group_of_list, groundtruth_area_list=gt_area_list, groundtruth_track_ids_list=gt_track_ids_list, groundtruth_verified_neg_classes=gt_verified_neg_classes, groundtruth_not_exhaustive_classes=gt_not_exhaustive_classes, groundtruth_keypoint_depths_list=gt_keypoint_depths_list, groundtruth_keypoint_depth_weights_list=gt_keypoint_depth_weights_list) def create_model_fn(detection_model_fn, configs, hparams=None, use_tpu=False, postprocess_on_cpu=False): """Creates a model function for `Estimator`. Args: detection_model_fn: Function that returns a `DetectionModel` instance. configs: Dictionary of pipeline config objects. hparams: `HParams` object. use_tpu: Boolean indicating whether model should be constructed for use on TPU. postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess is scheduled on the host cpu. Returns: `model_fn` for `Estimator`. """ train_config = configs['train_config'] eval_input_config = configs['eval_input_config'] eval_config = configs['eval_config'] def model_fn(features, labels, mode, params=None): """Constructs the object detection model. Args: features: Dictionary of feature tensors, returned from `input_fn`. labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL, otherwise None. mode: Mode key from tf.estimator.ModeKeys. params: Parameter dictionary passed from the estimator. Returns: An `EstimatorSpec` that encapsulates the model and its serving configurations. """ params = params or {} total_loss, train_op, detections, export_outputs = None, None, None, None is_training = mode == tf.estimator.ModeKeys.TRAIN # Make sure to set the Keras learning phase. True during training, # False for inference. tf.keras.backend.set_learning_phase(is_training) # Set policy for mixed-precision training with Keras-based models. if use_tpu and train_config.use_bfloat16: from tensorflow.python.keras.engine import base_layer_utils # pylint: disable=g-import-not-at-top # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0. base_layer_utils.enable_v2_dtype_behavior() tf2.keras.mixed_precision.set_global_policy('mixed_bfloat16') detection_model = detection_model_fn( is_training=is_training, add_summaries=(not use_tpu)) scaffold_fn = None if mode == tf.estimator.ModeKeys.TRAIN: labels = unstack_batch( labels, unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors) elif mode == tf.estimator.ModeKeys.EVAL: # For evaling on train data, it is necessary to check whether groundtruth # must be unpadded. boxes_shape = ( labels[fields.InputDataFields.groundtruth_boxes].get_shape() .as_list()) unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu labels = unstack_batch( labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors) if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL): provide_groundtruth(detection_model, labels) preprocessed_images = features[fields.InputDataFields.image] side_inputs = detection_model.get_side_inputs(features) if use_tpu and train_config.use_bfloat16: with tf.tpu.bfloat16_scope(): prediction_dict = detection_model.predict( preprocessed_images, features[fields.InputDataFields.true_image_shape], **side_inputs) prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict) else: prediction_dict = detection_model.predict( preprocessed_images, features[fields.InputDataFields.true_image_shape], **side_inputs) def postprocess_wrapper(args): return detection_model.postprocess(args[0], args[1]) if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT): if use_tpu and postprocess_on_cpu: detections = tf.tpu.outside_compilation( postprocess_wrapper, (prediction_dict, features[fields.InputDataFields.true_image_shape])) else: detections = postprocess_wrapper(( prediction_dict, features[fields.InputDataFields.true_image_shape])) if mode == tf.estimator.ModeKeys.TRAIN: load_pretrained = hparams.load_pretrained if hparams else False if train_config.fine_tune_checkpoint and load_pretrained: if not train_config.fine_tune_checkpoint_type: # train_config.from_detection_checkpoint field is deprecated. For # backward compatibility, set train_config.fine_tune_checkpoint_type # based on train_config.from_detection_checkpoint. if train_config.from_detection_checkpoint: train_config.fine_tune_checkpoint_type = 'detection' else: train_config.fine_tune_checkpoint_type = 'classification' asg_map = detection_model.restore_map( fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type, load_all_detection_checkpoint_vars=( train_config.load_all_detection_checkpoint_vars)) available_var_map = ( variables_helper.get_variables_available_in_checkpoint( asg_map, train_config.fine_tune_checkpoint, include_global_step=False)) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint, available_var_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint, available_var_map) if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL): if (mode == tf.estimator.ModeKeys.EVAL and eval_config.use_dummy_loss_in_eval): total_loss = tf.constant(1.0) losses_dict = {'Loss/total_loss': total_loss} else: losses_dict = detection_model.loss( prediction_dict, features[fields.InputDataFields.true_image_shape]) losses = [loss_tensor for loss_tensor in losses_dict.values()] if train_config.add_regularization_loss: regularization_losses = detection_model.regularization_losses() if use_tpu and train_config.use_bfloat16: regularization_losses = ops.bfloat16_to_float32_nested( regularization_losses) if regularization_losses: regularization_loss = tf.add_n( regularization_losses, name='regularization_loss') losses.append(regularization_loss) losses_dict['Loss/regularization_loss'] = regularization_loss total_loss = tf.add_n(losses, name='total_loss') losses_dict['Loss/total_loss'] = total_loss if 'graph_rewriter_config' in configs: graph_rewriter_fn = graph_rewriter_builder.build( configs['graph_rewriter_config'], is_training=is_training) graph_rewriter_fn() # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we # can write learning rate summaries on TPU without host calls. global_step = tf.train.get_or_create_global_step() training_optimizer, optimizer_summary_vars = optimizer_builder.build( train_config.optimizer) if mode == tf.estimator.ModeKeys.TRAIN: if use_tpu: training_optimizer = tf.tpu.CrossShardOptimizer(training_optimizer) # Optionally freeze some layers by setting their gradients to be zero. trainable_variables = None include_variables = ( train_config.update_trainable_variables if train_config.update_trainable_variables else None) exclude_variables = ( train_config.freeze_variables if train_config.freeze_variables else None) trainable_variables = slim.filter_variables( tf.trainable_variables(), include_patterns=include_variables, exclude_patterns=exclude_variables) clip_gradients_value = None if train_config.gradient_clipping_by_norm > 0: clip_gradients_value = train_config.gradient_clipping_by_norm if not use_tpu: for var in optimizer_summary_vars: tf.summary.scalar(var.op.name, var) summaries = [] if use_tpu else None if train_config.summarize_gradients: summaries = ['gradients', 'gradient_norm', 'global_gradient_norm'] train_op = slim.optimizers.optimize_loss( loss=total_loss, global_step=global_step, learning_rate=None, clip_gradients=clip_gradients_value, optimizer=training_optimizer, update_ops=detection_model.updates(), variables=trainable_variables, summaries=summaries, name='') # Preventing scope prefix on all variables. if mode == tf.estimator.ModeKeys.PREDICT: exported_output = exporter_lib.add_output_tensor_nodes(detections) export_outputs = { tf.saved_model.signature_constants.PREDICT_METHOD_NAME: tf.estimator.export.PredictOutput(exported_output) } eval_metric_ops = None scaffold = None if mode == tf.estimator.ModeKeys.EVAL: class_agnostic = ( fields.DetectionResultFields.detection_classes not in detections) groundtruth = _prepare_groundtruth_for_eval( detection_model, class_agnostic, eval_input_config.max_number_of_boxes) use_original_images = fields.InputDataFields.original_image in features if use_original_images: eval_images = features[fields.InputDataFields.original_image] true_image_shapes = tf.slice( features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3]) original_image_spatial_shapes = features[fields.InputDataFields .original_image_spatial_shape] else: eval_images = features[fields.InputDataFields.image] true_image_shapes = None original_image_spatial_shapes = None eval_dict = eval_util.result_dict_for_batched_example( eval_images, features[inputs.HASH_KEY], detections, groundtruth, class_agnostic=class_agnostic, scale_to_absolute=True, original_image_spatial_shapes=original_image_spatial_shapes, true_image_shapes=true_image_shapes) if fields.InputDataFields.image_additional_channels in features: eval_dict[fields.InputDataFields.image_additional_channels] = features[ fields.InputDataFields.image_additional_channels] if class_agnostic: category_index = label_map_util.create_class_agnostic_category_index() else: category_index = label_map_util.create_category_index_from_labelmap( eval_input_config.label_map_path) vis_metric_ops = None if not use_tpu and use_original_images: keypoint_edges = [ (kp.start, kp.end) for kp in eval_config.keypoint_edge] eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections( category_index, max_examples_to_draw=eval_config.num_visualizations, max_boxes_to_draw=eval_config.max_num_boxes_to_visualize, min_score_thresh=eval_config.min_score_threshold, use_normalized_coordinates=False, keypoint_edges=keypoint_edges or None) vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops( eval_dict) # Eval metrics on a single example. eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators( eval_config, list(category_index.values()), eval_dict) for loss_key, loss_tensor in iter(losses_dict.items()): eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor) for var in optimizer_summary_vars: eval_metric_ops[var.op.name] = (var, tf.no_op()) if vis_metric_ops is not None: eval_metric_ops.update(vis_metric_ops) eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()} if eval_config.use_moving_averages: variable_averages = tf.train.ExponentialMovingAverage(0.0) variables_to_restore = variable_averages.variables_to_restore() keep_checkpoint_every_n_hours = ( train_config.keep_checkpoint_every_n_hours) saver = tf.train.Saver( variables_to_restore, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours) scaffold = tf.train.Scaffold(saver=saver) # EVAL executes on CPU, so use regular non-TPU EstimatorSpec. if use_tpu and mode != tf.estimator.ModeKeys.EVAL: return tf.estimator.tpu.TPUEstimatorSpec( mode=mode, scaffold_fn=scaffold_fn, predictions=detections, loss=total_loss, train_op=train_op, eval_metrics=eval_metric_ops, export_outputs=export_outputs) else: if scaffold is None: keep_checkpoint_every_n_hours = ( train_config.keep_checkpoint_every_n_hours) saver = tf.train.Saver( sharded=True, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) scaffold = tf.train.Scaffold(saver=saver) return tf.estimator.EstimatorSpec( mode=mode, predictions=detections, loss=total_loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs=export_outputs, scaffold=scaffold) return model_fn def create_estimator_and_inputs(run_config, hparams=None, pipeline_config_path=None, config_override=None, train_steps=None, sample_1_of_n_eval_examples=1, sample_1_of_n_eval_on_train_examples=1, model_fn_creator=create_model_fn, use_tpu_estimator=False, use_tpu=False, num_shards=1, params=None, override_eval_num_epochs=True, save_final_config=False, postprocess_on_cpu=False, export_to_tpu=None, **kwargs): """Creates `Estimator`, input functions, and steps. Args: run_config: A `RunConfig`. hparams: (optional) A `HParams`. pipeline_config_path: A path to a pipeline config file. config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to override the config from `pipeline_config_path`. train_steps: Number of training steps. If None, the number of training steps is set from the `TrainConfig` proto. sample_1_of_n_eval_examples: Integer representing how often an eval example should be sampled. If 1, will sample all examples. sample_1_of_n_eval_on_train_examples: Similar to `sample_1_of_n_eval_examples`, except controls the sampling of training data for evaluation. model_fn_creator: A function that creates a `model_fn` for `Estimator`. Follows the signature: * Args: * `detection_model_fn`: Function that returns `DetectionModel` instance. * `configs`: Dictionary of pipeline config objects. * `hparams`: `HParams` object. * Returns: `model_fn` for `Estimator`. use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False, an `Estimator` will be returned. use_tpu: Boolean, whether training and evaluation should run on TPU. Only used if `use_tpu_estimator` is True. num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator` is True. params: Parameter dictionary passed from the estimator. Only used if `use_tpu_estimator` is True. override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for eval_input. save_final_config: Whether to save final config (obtained after applying overrides) to `estimator.model_dir`. postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true, postprocess is scheduled on the host cpu. export_to_tpu: When use_tpu and export_to_tpu are true, `export_savedmodel()` exports a metagraph for serving on TPU besides the one on CPU. **kwargs: Additional keyword arguments for configuration override. Returns: A dictionary with the following fields: 'estimator': An `Estimator` or `TPUEstimator`. 'train_input_fn': A training input function. 'eval_input_fns': A list of all evaluation input functions. 'eval_input_names': A list of names for each evaluation input. 'eval_on_train_input_fn': An evaluation-on-train input function. 'predict_input_fn': A prediction input function. 'train_steps': Number of training steps. Either directly from input or from configuration. """ get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[ 'get_configs_from_pipeline_file'] merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[ 'merge_external_params_with_configs'] create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[ 'create_pipeline_proto_from_configs'] create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn'] create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn'] create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn'] detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base'] configs = get_configs_from_pipeline_file( pipeline_config_path, config_override=config_override) kwargs.update({ 'train_steps': train_steps, 'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu }) if sample_1_of_n_eval_examples >= 1: kwargs.update({ 'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples }) if override_eval_num_epochs: kwargs.update({'eval_num_epochs': 1}) tf.logging.warning( 'Forced number of epochs for all eval validations to be 1.') configs = merge_external_params_with_configs( configs, hparams, kwargs_dict=kwargs) model_config = configs['model'] train_config = configs['train_config'] train_input_config = configs['train_input_config'] eval_config = configs['eval_config'] eval_input_configs = configs['eval_input_configs'] eval_on_train_input_config = copy.deepcopy(train_input_config) eval_on_train_input_config.sample_1_of_n_examples = ( sample_1_of_n_eval_on_train_examples) if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1: tf.logging.warning('Expected number of evaluation epochs is 1, but ' 'instead encountered `eval_on_train_input_config' '.num_epochs` = ' '{}. Overwriting `num_epochs` to 1.'.format( eval_on_train_input_config.num_epochs)) eval_on_train_input_config.num_epochs = 1 # update train_steps from config but only when non-zero value is provided if train_steps is None and train_config.num_steps != 0: train_steps = train_config.num_steps detection_model_fn = functools.partial( detection_model_fn_base, model_config=model_config) # Create the input functions for TRAIN/EVAL/PREDICT. train_input_fn = create_train_input_fn( train_config=train_config, train_input_config=train_input_config, model_config=model_config) eval_input_fns = [] for eval_input_config in eval_input_configs: eval_input_fns.append( create_eval_input_fn( eval_config=eval_config, eval_input_config=eval_input_config, model_config=model_config)) eval_input_names = [ eval_input_config.name for eval_input_config in eval_input_configs ] eval_on_train_input_fn = create_eval_input_fn( eval_config=eval_config, eval_input_config=eval_on_train_input_config, model_config=model_config) predict_input_fn = create_predict_input_fn( model_config=model_config, predict_input_config=eval_input_configs[0]) # Read export_to_tpu from hparams if not passed. if export_to_tpu is None and hparams is not None: export_to_tpu = hparams.get('export_to_tpu', False) tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s', use_tpu, export_to_tpu) model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu, postprocess_on_cpu) if use_tpu_estimator: estimator = tf.estimator.tpu.TPUEstimator( model_fn=model_fn, train_batch_size=train_config.batch_size, # For each core, only batch size 1 is supported for eval. eval_batch_size=num_shards * 1 if use_tpu else 1, use_tpu=use_tpu, config=run_config, export_to_tpu=export_to_tpu, eval_on_tpu=False, # Eval runs on CPU, so disable eval on TPU params=params if params else {}) else: estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config) # Write the as-run pipeline config to disk. if run_config.is_chief and save_final_config: pipeline_config_final = create_pipeline_proto_from_configs(configs) config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir) return dict( estimator=estimator, train_input_fn=train_input_fn, eval_input_fns=eval_input_fns, eval_input_names=eval_input_names, eval_on_train_input_fn=eval_on_train_input_fn, predict_input_fn=predict_input_fn, train_steps=train_steps) def create_train_and_eval_specs(train_input_fn, eval_input_fns, eval_on_train_input_fn, predict_input_fn, train_steps, eval_on_train_data=False, final_exporter_name='Servo', eval_spec_names=None): """Creates a `TrainSpec` and `EvalSpec`s. Args: train_input_fn: Function that produces features and labels on train data. eval_input_fns: A list of functions that produce features and labels on eval data. eval_on_train_input_fn: Function that produces features and labels for evaluation on train data. predict_input_fn: Function that produces features for inference. train_steps: Number of training steps. eval_on_train_data: Whether to evaluate model on training data. Default is False. final_exporter_name: String name given to `FinalExporter`. eval_spec_names: A list of string names for each `EvalSpec`. Returns: Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is True, the last `EvalSpec` in the list will correspond to training data. The rest EvalSpecs in the list are evaluation datas. """ train_spec = tf.estimator.TrainSpec( input_fn=train_input_fn, max_steps=train_steps) if eval_spec_names is None: eval_spec_names = [str(i) for i in range(len(eval_input_fns))] eval_specs = [] for index, (eval_spec_name, eval_input_fn) in enumerate( zip(eval_spec_names, eval_input_fns)): # Uses final_exporter_name as exporter_name for the first eval spec for # backward compatibility. if index == 0: exporter_name = final_exporter_name else: exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name) exporter = tf.estimator.FinalExporter( name=exporter_name, serving_input_receiver_fn=predict_input_fn) eval_specs.append( tf.estimator.EvalSpec( name=eval_spec_name, input_fn=eval_input_fn, steps=None, exporters=exporter)) if eval_on_train_data: eval_specs.append( tf.estimator.EvalSpec( name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None)) return train_spec, eval_specs def _evaluate_checkpoint(estimator, input_fn, checkpoint_path, name, max_retries=0): """Evaluates a checkpoint. Args: estimator: Estimator object to use for evaluation. input_fn: Input function to use for evaluation. checkpoint_path: Path of the checkpoint to evaluate. name: Namescope for eval summary. max_retries: Maximum number of times to retry the evaluation on encountering a tf.errors.InvalidArgumentError. If negative, will always retry the evaluation. Returns: Estimator evaluation results. """ always_retry = True if max_retries < 0 else False retries = 0 while always_retry or retries <= max_retries: try: return estimator.evaluate( input_fn=input_fn, steps=None, checkpoint_path=checkpoint_path, name=name) except tf.errors.InvalidArgumentError as e: if always_retry or retries < max_retries: tf.logging.info('Retrying checkpoint evaluation after exception: %s', e) retries += 1 else: raise e def continuous_eval_generator(estimator, model_dir, input_fn, train_steps, name, max_retries=0): """Perform continuous evaluation on checkpoints written to a model directory. Args: estimator: Estimator object to use for evaluation. model_dir: Model directory to read checkpoints for continuous evaluation. input_fn: Input function to use for evaluation. train_steps: Number of training steps. This is used to infer the last checkpoint and stop evaluation loop. name: Namescope for eval summary. max_retries: Maximum number of times to retry the evaluation on encountering a tf.errors.InvalidArgumentError. If negative, will always retry the evaluation. Yields: Pair of current step and eval_results. """ def terminate_eval(): tf.logging.info('Terminating eval after 180 seconds of no checkpoints') return True for ckpt in tf.train.checkpoints_iterator( model_dir, min_interval_secs=180, timeout=None, timeout_fn=terminate_eval): tf.logging.info('Starting Evaluation.') try: eval_results = _evaluate_checkpoint( estimator=estimator, input_fn=input_fn, checkpoint_path=ckpt, name=name, max_retries=max_retries) tf.logging.info('Eval results: %s' % eval_results) # Terminate eval job when final checkpoint is reached current_step = int(os.path.basename(ckpt).split('-')[1]) yield (current_step, eval_results) if current_step >= train_steps: tf.logging.info( 'Evaluation finished after training step %d' % current_step) break except tf.errors.NotFoundError: tf.logging.info( 'Checkpoint %s no longer exists, skipping checkpoint' % ckpt) def continuous_eval(estimator, model_dir, input_fn, train_steps, name, max_retries=0): """Performs continuous evaluation on checkpoints written to a model directory. Args: estimator: Estimator object to use for evaluation. model_dir: Model directory to read checkpoints for continuous evaluation. input_fn: Input function to use for evaluation. train_steps: Number of training steps. This is used to infer the last checkpoint and stop evaluation loop. name: Namescope for eval summary. max_retries: Maximum number of times to retry the evaluation on encountering a tf.errors.InvalidArgumentError. If negative, will always retry the evaluation. """ for current_step, eval_results in continuous_eval_generator( estimator, model_dir, input_fn, train_steps, name, max_retries): tf.logging.info('Step %s, Eval results: %s', current_step, eval_results) def populate_experiment(run_config, hparams, pipeline_config_path, train_steps=None, eval_steps=None, model_fn_creator=create_model_fn, **kwargs): """Populates an `Experiment` object. EXPERIMENT CLASS IS DEPRECATED. Please switch to tf.estimator.train_and_evaluate. As an example, see model_main.py. Args: run_config: A `RunConfig`. hparams: A `HParams`. pipeline_config_path: A path to a pipeline config file. train_steps: Number of training steps. If None, the number of training steps is set from the `TrainConfig` proto. eval_steps: Number of evaluation steps per evaluation cycle. If None, the number of evaluation steps is set from the `EvalConfig` proto. model_fn_creator: A function that creates a `model_fn` for `Estimator`. Follows the signature: * Args: * `detection_model_fn`: Function that returns `DetectionModel` instance. * `configs`: Dictionary of pipeline config objects. * `hparams`: `HParams` object. * Returns: `model_fn` for `Estimator`. **kwargs: Additional keyword arguments for configuration override. Returns: An `Experiment` that defines all aspects of training, evaluation, and export. """ tf.logging.warning('Experiment is being deprecated. Please use ' 'tf.estimator.train_and_evaluate(). See model_main.py for ' 'an example.') train_and_eval_dict = create_estimator_and_inputs( run_config, hparams, pipeline_config_path, train_steps=train_steps, eval_steps=eval_steps, model_fn_creator=model_fn_creator, save_final_config=True, **kwargs) estimator = train_and_eval_dict['estimator'] train_input_fn = train_and_eval_dict['train_input_fn'] eval_input_fns = train_and_eval_dict['eval_input_fns'] predict_input_fn = train_and_eval_dict['predict_input_fn'] train_steps = train_and_eval_dict['train_steps'] export_strategies = [ contrib_learn.utils.saved_model_export_utils.make_export_strategy( serving_input_fn=predict_input_fn) ] return contrib_learn.Experiment( estimator=estimator, train_input_fn=train_input_fn, eval_input_fn=eval_input_fns[0], train_steps=train_steps, eval_steps=None, export_strategies=export_strategies, eval_delay_secs=120, )
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/model_lib.py
model_lib.py
r"""Constructs model, inputs, and training environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import pprint import time import numpy as np import tensorflow.compat.v1 as tf from object_detection import eval_util from object_detection import inputs from object_detection import model_lib from object_detection.builders import optimizer_builder from object_detection.core import standard_fields as fields from object_detection.protos import train_pb2 from object_detection.utils import config_util from object_detection.utils import label_map_util from object_detection.utils import ops from object_detection.utils import variables_helper from object_detection.utils import visualization_utils as vutils MODEL_BUILD_UTIL_MAP = model_lib.MODEL_BUILD_UTIL_MAP NUM_STEPS_PER_ITERATION = 100 RESTORE_MAP_ERROR_TEMPLATE = ( 'Since we are restoring a v2 style checkpoint' ' restore_map was expected to return a (str -> Model) mapping,' ' but we received a ({} -> {}) mapping instead.' ) def _compute_losses_and_predictions_dicts( model, features, labels, add_regularization_loss=True): """Computes the losses dict and predictions dict for a model on inputs. Args: model: a DetectionModel (based on Keras). features: Dictionary of feature tensors from the input dataset. Should be in the format output by `inputs.train_input` and `inputs.eval_input`. features[fields.InputDataFields.image] is a [batch_size, H, W, C] float32 tensor with preprocessed images. features[HASH_KEY] is a [batch_size] int32 tensor representing unique identifiers for the images. features[fields.InputDataFields.true_image_shape] is a [batch_size, 3] int32 tensor representing the true image shapes, as preprocessed images could be padded. features[fields.InputDataFields.original_image] (optional) is a [batch_size, H, W, C] float32 tensor with original images. labels: A dictionary of groundtruth tensors post-unstacking. The original labels are of the form returned by `inputs.train_input` and `inputs.eval_input`. The shapes may have been modified by unstacking with `model_lib.unstack_batch`. However, the dictionary includes the following fields. labels[fields.InputDataFields.num_groundtruth_boxes] is a int32 tensor indicating the number of valid groundtruth boxes per image. labels[fields.InputDataFields.groundtruth_boxes] is a float32 tensor containing the corners of the groundtruth boxes. labels[fields.InputDataFields.groundtruth_classes] is a float32 one-hot tensor of classes. labels[fields.InputDataFields.groundtruth_weights] is a float32 tensor containing groundtruth weights for the boxes. -- Optional -- labels[fields.InputDataFields.groundtruth_instance_masks] is a float32 tensor containing only binary values, which represent instance masks for objects. labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a float32 tensor containing weights for the instance masks. labels[fields.InputDataFields.groundtruth_keypoints] is a float32 tensor containing keypoints for each box. labels[fields.InputDataFields.groundtruth_dp_num_points] is an int32 tensor with the number of sampled DensePose points per object. labels[fields.InputDataFields.groundtruth_dp_part_ids] is an int32 tensor with the DensePose part ids (0-indexed) per object. labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a float32 tensor with the DensePose surface coordinates. labels[fields.InputDataFields.groundtruth_group_of] is a tf.bool tensor containing group_of annotations. labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32 k-hot tensor of classes. labels[fields.InputDataFields.groundtruth_track_ids] is a int32 tensor of track IDs. labels[fields.InputDataFields.groundtruth_keypoint_depths] is a float32 tensor containing keypoint depths information. labels[fields.InputDataFields.groundtruth_keypoint_depth_weights] is a float32 tensor containing the weights of the keypoint depth feature. add_regularization_loss: Whether or not to include the model's regularization loss in the losses dictionary. Returns: A tuple containing the losses dictionary (with the total loss under the key 'Loss/total_loss'), and the predictions dictionary produced by `model.predict`. """ model_lib.provide_groundtruth(model, labels) preprocessed_images = features[fields.InputDataFields.image] prediction_dict = model.predict( preprocessed_images, features[fields.InputDataFields.true_image_shape], **model.get_side_inputs(features)) prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict) losses_dict = model.loss( prediction_dict, features[fields.InputDataFields.true_image_shape]) losses = [loss_tensor for loss_tensor in losses_dict.values()] if add_regularization_loss: # TODO(kaftan): As we figure out mixed precision & bfloat 16, we may ## need to convert these regularization losses from bfloat16 to float32 ## as well. regularization_losses = model.regularization_losses() if regularization_losses: regularization_losses = ops.bfloat16_to_float32_nested( regularization_losses) regularization_loss = tf.add_n( regularization_losses, name='regularization_loss') losses.append(regularization_loss) losses_dict['Loss/regularization_loss'] = regularization_loss total_loss = tf.add_n(losses, name='total_loss') losses_dict['Loss/total_loss'] = total_loss return losses_dict, prediction_dict def _ensure_model_is_built(model, input_dataset, unpad_groundtruth_tensors): """Ensures that model variables are all built, by running on a dummy input. Args: model: A DetectionModel to be built. input_dataset: The tf.data Dataset the model is being trained on. Needed to get the shapes for the dummy loss computation. unpad_groundtruth_tensors: A parameter passed to unstack_batch. """ features, labels = iter(input_dataset).next() @tf.function def _dummy_computation_fn(features, labels): model._is_training = False # pylint: disable=protected-access tf.keras.backend.set_learning_phase(False) labels = model_lib.unstack_batch( labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors) return _compute_losses_and_predictions_dicts(model, features, labels) strategy = tf.compat.v2.distribute.get_strategy() if hasattr(tf.distribute.Strategy, 'run'): strategy.run( _dummy_computation_fn, args=( features, labels, )) else: strategy.experimental_run_v2( _dummy_computation_fn, args=( features, labels, )) def normalize_dict(values_dict, num_replicas): num_replicas = tf.constant(num_replicas, dtype=tf.float32) return {key: tf.math.divide(loss, num_replicas) for key, loss in values_dict.items()} def reduce_dict(strategy, reduction_dict, reduction_op): # TODO(anjalisridhar): explore if it is safe to remove the # num_replicas # scaling of the loss and switch this to a ReduceOp.Mean return { name: strategy.reduce(reduction_op, loss, axis=None) for name, loss in reduction_dict.items() } # TODO(kaftan): Explore removing learning_rate from this method & returning ## The full losses dict instead of just total_loss, then doing all summaries ## saving in a utility method called by the outer training loop. # TODO(kaftan): Explore adding gradient summaries def eager_train_step(detection_model, features, labels, unpad_groundtruth_tensors, optimizer, add_regularization_loss=True, clip_gradients_value=None, num_replicas=1.0): """Process a single training batch. This method computes the loss for the model on a single training batch, while tracking the gradients with a gradient tape. It then updates the model variables with the optimizer, clipping the gradients if clip_gradients_value is present. This method can run eagerly or inside a tf.function. Args: detection_model: A DetectionModel (based on Keras) to train. features: Dictionary of feature tensors from the input dataset. Should be in the format output by `inputs.train_input. features[fields.InputDataFields.image] is a [batch_size, H, W, C] float32 tensor with preprocessed images. features[HASH_KEY] is a [batch_size] int32 tensor representing unique identifiers for the images. features[fields.InputDataFields.true_image_shape] is a [batch_size, 3] int32 tensor representing the true image shapes, as preprocessed images could be padded. features[fields.InputDataFields.original_image] (optional, not used during training) is a [batch_size, H, W, C] float32 tensor with original images. labels: A dictionary of groundtruth tensors. This method unstacks these labels using model_lib.unstack_batch. The stacked labels are of the form returned by `inputs.train_input` and `inputs.eval_input`. labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size] int32 tensor indicating the number of valid groundtruth boxes per image. labels[fields.InputDataFields.groundtruth_boxes] is a [batch_size, num_boxes, 4] float32 tensor containing the corners of the groundtruth boxes. labels[fields.InputDataFields.groundtruth_classes] is a [batch_size, num_boxes, num_classes] float32 one-hot tensor of classes. num_classes includes the background class. labels[fields.InputDataFields.groundtruth_weights] is a [batch_size, num_boxes] float32 tensor containing groundtruth weights for the boxes. -- Optional -- labels[fields.InputDataFields.groundtruth_instance_masks] is a [batch_size, num_boxes, H, W] float32 tensor containing only binary values, which represent instance masks for objects. labels[fields.InputDataFields.groundtruth_instance_mask_weights] is a [batch_size, num_boxes] float32 tensor containing weights for the instance masks. labels[fields.InputDataFields.groundtruth_keypoints] is a [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing keypoints for each box. labels[fields.InputDataFields.groundtruth_dp_num_points] is a [batch_size, num_boxes] int32 tensor with the number of DensePose sampled points per instance. labels[fields.InputDataFields.groundtruth_dp_part_ids] is a [batch_size, num_boxes, max_sampled_points] int32 tensor with the part ids (0-indexed) for each instance. labels[fields.InputDataFields.groundtruth_dp_surface_coords] is a [batch_size, num_boxes, max_sampled_points, 4] float32 tensor with the surface coordinates for each point. Each surface coordinate is of the form (y, x, v, u) where (y, x) are normalized image locations and (v, u) are part-relative normalized surface coordinates. labels[fields.InputDataFields.groundtruth_labeled_classes] is a float32 k-hot tensor of classes. labels[fields.InputDataFields.groundtruth_track_ids] is a int32 tensor of track IDs. labels[fields.InputDataFields.groundtruth_keypoint_depths] is a float32 tensor containing keypoint depths information. labels[fields.InputDataFields.groundtruth_keypoint_depth_weights] is a float32 tensor containing the weights of the keypoint depth feature. unpad_groundtruth_tensors: A parameter passed to unstack_batch. optimizer: The training optimizer that will update the variables. add_regularization_loss: Whether or not to include the model's regularization loss in the losses dictionary. clip_gradients_value: If this is present, clip the gradients global norm at this value using `tf.clip_by_global_norm`. num_replicas: The number of replicas in the current distribution strategy. This is used to scale the total loss so that training in a distribution strategy works correctly. Returns: The total loss observed at this training step """ # """Execute a single training step in the TF v2 style loop.""" is_training = True detection_model._is_training = is_training # pylint: disable=protected-access tf.keras.backend.set_learning_phase(is_training) labels = model_lib.unstack_batch( labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors) with tf.GradientTape() as tape: losses_dict, _ = _compute_losses_and_predictions_dicts( detection_model, features, labels, add_regularization_loss) losses_dict = normalize_dict(losses_dict, num_replicas) trainable_variables = detection_model.trainable_variables total_loss = losses_dict['Loss/total_loss'] gradients = tape.gradient(total_loss, trainable_variables) if clip_gradients_value: gradients, _ = tf.clip_by_global_norm(gradients, clip_gradients_value) optimizer.apply_gradients(zip(gradients, trainable_variables)) return losses_dict def validate_tf_v2_checkpoint_restore_map(checkpoint_restore_map): """Ensure that given dict is a valid TF v2 style restore map. Args: checkpoint_restore_map: A nested dict mapping strings to tf.keras.Model objects. Raises: ValueError: If they keys in checkpoint_restore_map are not strings or if the values are not keras Model objects. """ for key, value in checkpoint_restore_map.items(): if not (isinstance(key, str) and (isinstance(value, tf.Module) or isinstance(value, tf.train.Checkpoint))): if isinstance(key, str) and isinstance(value, dict): validate_tf_v2_checkpoint_restore_map(value) else: raise TypeError( RESTORE_MAP_ERROR_TEMPLATE.format(key.__class__.__name__, value.__class__.__name__)) def is_object_based_checkpoint(checkpoint_path): """Returns true if `checkpoint_path` points to an object-based checkpoint.""" var_names = [var[0] for var in tf.train.list_variables(checkpoint_path)] return '_CHECKPOINTABLE_OBJECT_GRAPH' in var_names def load_fine_tune_checkpoint(model, checkpoint_path, checkpoint_type, checkpoint_version, run_model_on_dummy_input, input_dataset, unpad_groundtruth_tensors): """Load a fine tuning classification or detection checkpoint. To make sure the model variables are all built, this method first executes the model by computing a dummy loss. (Models might not have built their variables before their first execution) It then loads an object-based classification or detection checkpoint. This method updates the model in-place and does not return a value. Args: model: A DetectionModel (based on Keras) to load a fine-tuning checkpoint for. checkpoint_path: Directory with checkpoints file or path to checkpoint. checkpoint_type: Whether to restore from a full detection checkpoint (with compatible variable names) or to restore from a classification checkpoint for initialization prior to training. Valid values: `detection`, `classification`. checkpoint_version: train_pb2.CheckpointVersion.V1 or V2 enum indicating whether to load checkpoints in V1 style or V2 style. In this binary we only support V2 style (object-based) checkpoints. run_model_on_dummy_input: Whether to run the model on a dummy input in order to ensure that all model variables have been built successfully before loading the fine_tune_checkpoint. input_dataset: The tf.data Dataset the model is being trained on. Needed to get the shapes for the dummy loss computation. unpad_groundtruth_tensors: A parameter passed to unstack_batch. Raises: IOError: if `checkpoint_path` does not point at a valid object-based checkpoint ValueError: if `checkpoint_version` is not train_pb2.CheckpointVersion.V2 """ if not is_object_based_checkpoint(checkpoint_path): raise IOError('Checkpoint is expected to be an object-based checkpoint.') if checkpoint_version == train_pb2.CheckpointVersion.V1: raise ValueError('Checkpoint version should be V2') if run_model_on_dummy_input: _ensure_model_is_built(model, input_dataset, unpad_groundtruth_tensors) restore_from_objects_dict = model.restore_from_objects( fine_tune_checkpoint_type=checkpoint_type) validate_tf_v2_checkpoint_restore_map(restore_from_objects_dict) ckpt = tf.train.Checkpoint(**restore_from_objects_dict) ckpt.restore( checkpoint_path).expect_partial().assert_existing_objects_matched() def get_filepath(strategy, filepath): """Get appropriate filepath for worker. Args: strategy: A tf.distribute.Strategy object. filepath: A path to where the Checkpoint object is stored. Returns: A temporary filepath for non-chief workers to use or the original filepath for the chief. """ if strategy.extended.should_checkpoint: return filepath else: # TODO(vighneshb) Replace with the public API when TF exposes it. task_id = strategy.extended._task_id # pylint:disable=protected-access return os.path.join(filepath, 'temp_worker_{:03d}'.format(task_id)) def clean_temporary_directories(strategy, filepath): """Temporary directory clean up for MultiWorker Mirrored Strategy. This is needed for all non-chief workers. Args: strategy: A tf.distribute.Strategy object. filepath: The filepath for the temporary directory. """ if not strategy.extended.should_checkpoint: if tf.io.gfile.exists(filepath) and tf.io.gfile.isdir(filepath): tf.io.gfile.rmtree(filepath) def train_loop( pipeline_config_path, model_dir, config_override=None, train_steps=None, use_tpu=False, save_final_config=False, checkpoint_every_n=1000, checkpoint_max_to_keep=7, record_summaries=True, performance_summary_exporter=None, num_steps_per_iteration=NUM_STEPS_PER_ITERATION, **kwargs): """Trains a model using eager + functions. This method: 1. Processes the pipeline configs 2. (Optionally) saves the as-run config 3. Builds the model & optimizer 4. Gets the training input data 5. Loads a fine-tuning detection or classification checkpoint if requested 6. Loops over the train data, executing distributed training steps inside tf.functions. 7. Checkpoints the model every `checkpoint_every_n` training steps. 8. Logs the training metrics as TensorBoard summaries. Args: pipeline_config_path: A path to a pipeline config file. model_dir: The directory to save checkpoints and summaries to. config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to override the config from `pipeline_config_path`. train_steps: Number of training steps. If None, the number of training steps is set from the `TrainConfig` proto. use_tpu: Boolean, whether training and evaluation should run on TPU. save_final_config: Whether to save final config (obtained after applying overrides) to `model_dir`. checkpoint_every_n: Checkpoint every n training steps. checkpoint_max_to_keep: int, the number of most recent checkpoints to keep in the model directory. record_summaries: Boolean, whether or not to record summaries defined by the model or the training pipeline. This does not impact the summaries of the loss values which are always recorded. Examples of summaries that are controlled by this flag include: - Image summaries of training images. - Intermediate tensors which maybe logged by meta architectures. performance_summary_exporter: function for exporting performance metrics. num_steps_per_iteration: int, The number of training steps to perform in each iteration. **kwargs: Additional keyword arguments for configuration override. """ ## Parse the configs get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[ 'get_configs_from_pipeline_file'] merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[ 'merge_external_params_with_configs'] create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[ 'create_pipeline_proto_from_configs'] steps_per_sec_list = [] configs = get_configs_from_pipeline_file( pipeline_config_path, config_override=config_override) kwargs.update({ 'train_steps': train_steps, 'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu }) configs = merge_external_params_with_configs( configs, None, kwargs_dict=kwargs) model_config = configs['model'] train_config = configs['train_config'] train_input_config = configs['train_input_config'] unpad_groundtruth_tensors = train_config.unpad_groundtruth_tensors add_regularization_loss = train_config.add_regularization_loss clip_gradients_value = None if train_config.gradient_clipping_by_norm > 0: clip_gradients_value = train_config.gradient_clipping_by_norm # update train_steps from config but only when non-zero value is provided if train_steps is None and train_config.num_steps != 0: train_steps = train_config.num_steps if kwargs['use_bfloat16']: tf.compat.v2.keras.mixed_precision.set_global_policy('mixed_bfloat16') if train_config.load_all_detection_checkpoint_vars: raise ValueError('train_pb2.load_all_detection_checkpoint_vars ' 'unsupported in TF2') config_util.update_fine_tune_checkpoint_type(train_config) fine_tune_checkpoint_type = train_config.fine_tune_checkpoint_type fine_tune_checkpoint_version = train_config.fine_tune_checkpoint_version # Write the as-run pipeline config to disk. if save_final_config: tf.logging.info('Saving pipeline config file to directory {}'.format( model_dir)) pipeline_config_final = create_pipeline_proto_from_configs(configs) config_util.save_pipeline_config(pipeline_config_final, model_dir) # Build the model, optimizer, and training input strategy = tf.compat.v2.distribute.get_strategy() with strategy.scope(): detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']( model_config=model_config, is_training=True, add_summaries=record_summaries) def train_dataset_fn(input_context): """Callable to create train input.""" # Create the inputs. train_input = inputs.train_input( train_config=train_config, train_input_config=train_input_config, model_config=model_config, model=detection_model, input_context=input_context) train_input = train_input.repeat() return train_input train_input = strategy.experimental_distribute_datasets_from_function( train_dataset_fn) global_step = tf.Variable( 0, trainable=False, dtype=tf.compat.v2.dtypes.int64, name='global_step', aggregation=tf.compat.v2.VariableAggregation.ONLY_FIRST_REPLICA) optimizer, (learning_rate,) = optimizer_builder.build( train_config.optimizer, global_step=global_step) # We run the detection_model on dummy inputs in order to ensure that the # model and all its variables have been properly constructed. Specifically, # this is currently necessary prior to (potentially) creating shadow copies # of the model variables for the EMA optimizer. if train_config.optimizer.use_moving_average: _ensure_model_is_built(detection_model, train_input, unpad_groundtruth_tensors) optimizer.shadow_copy(detection_model) if callable(learning_rate): learning_rate_fn = learning_rate else: learning_rate_fn = lambda: learning_rate ## Train the model # Get the appropriate filepath (temporary or not) based on whether the worker # is the chief. summary_writer_filepath = get_filepath(strategy, os.path.join(model_dir, 'train')) summary_writer = tf.compat.v2.summary.create_file_writer( summary_writer_filepath) with summary_writer.as_default(): with strategy.scope(): with tf.compat.v2.summary.record_if( lambda: global_step % num_steps_per_iteration == 0): # Load a fine-tuning checkpoint. if train_config.fine_tune_checkpoint: variables_helper.ensure_checkpoint_supported( train_config.fine_tune_checkpoint, fine_tune_checkpoint_type, model_dir) load_fine_tune_checkpoint( detection_model, train_config.fine_tune_checkpoint, fine_tune_checkpoint_type, fine_tune_checkpoint_version, train_config.run_fine_tune_checkpoint_dummy_computation, train_input, unpad_groundtruth_tensors) ckpt = tf.compat.v2.train.Checkpoint( step=global_step, model=detection_model, optimizer=optimizer) manager_dir = get_filepath(strategy, model_dir) if not strategy.extended.should_checkpoint: checkpoint_max_to_keep = 1 manager = tf.compat.v2.train.CheckpointManager( ckpt, manager_dir, max_to_keep=checkpoint_max_to_keep) # We use the following instead of manager.latest_checkpoint because # manager_dir does not point to the model directory when we are running # in a worker. latest_checkpoint = tf.train.latest_checkpoint(model_dir) ckpt.restore(latest_checkpoint) def train_step_fn(features, labels): """Single train step.""" if record_summaries: tf.compat.v2.summary.image( name='train_input_images', step=global_step, data=features[fields.InputDataFields.image], max_outputs=3) losses_dict = eager_train_step( detection_model, features, labels, unpad_groundtruth_tensors, optimizer, add_regularization_loss=add_regularization_loss, clip_gradients_value=clip_gradients_value, num_replicas=strategy.num_replicas_in_sync) global_step.assign_add(1) return losses_dict def _sample_and_train(strategy, train_step_fn, data_iterator): features, labels = data_iterator.next() if hasattr(tf.distribute.Strategy, 'run'): per_replica_losses_dict = strategy.run( train_step_fn, args=(features, labels)) else: per_replica_losses_dict = ( strategy.experimental_run_v2( train_step_fn, args=(features, labels))) return reduce_dict( strategy, per_replica_losses_dict, tf.distribute.ReduceOp.SUM) @tf.function def _dist_train_step(data_iterator): """A distributed train step.""" if num_steps_per_iteration > 1: for _ in tf.range(num_steps_per_iteration - 1): # Following suggestion on yaqs/5402607292645376 with tf.name_scope(''): _sample_and_train(strategy, train_step_fn, data_iterator) return _sample_and_train(strategy, train_step_fn, data_iterator) train_input_iter = iter(train_input) if int(global_step.value()) == 0: manager.save() checkpointed_step = int(global_step.value()) logged_step = global_step.value() last_step_time = time.time() for _ in range(global_step.value(), train_steps, num_steps_per_iteration): losses_dict = _dist_train_step(train_input_iter) time_taken = time.time() - last_step_time last_step_time = time.time() steps_per_sec = num_steps_per_iteration * 1.0 / time_taken tf.compat.v2.summary.scalar( 'steps_per_sec', steps_per_sec, step=global_step) steps_per_sec_list.append(steps_per_sec) logged_dict = losses_dict.copy() logged_dict['learning_rate'] = learning_rate_fn() for key, val in logged_dict.items(): tf.compat.v2.summary.scalar(key, val, step=global_step) if global_step.value() - logged_step >= 100: logged_dict_np = {name: value.numpy() for name, value in logged_dict.items()} tf.logging.info( 'Step {} per-step time {:.3f}s'.format( global_step.value(), time_taken / num_steps_per_iteration)) tf.logging.info(pprint.pformat(logged_dict_np, width=40)) logged_step = global_step.value() if ((int(global_step.value()) - checkpointed_step) >= checkpoint_every_n): manager.save() checkpointed_step = int(global_step.value()) # Remove the checkpoint directories of the non-chief workers that # MultiWorkerMirroredStrategy forces us to save during sync distributed # training. clean_temporary_directories(strategy, manager_dir) clean_temporary_directories(strategy, summary_writer_filepath) # TODO(pkanwar): add accuracy metrics. if performance_summary_exporter is not None: metrics = { 'steps_per_sec': np.mean(steps_per_sec_list), 'steps_per_sec_p50': np.median(steps_per_sec_list), 'steps_per_sec_max': max(steps_per_sec_list), 'last_batch_loss': float(losses_dict['Loss/total_loss']) } mixed_precision = 'bf16' if kwargs['use_bfloat16'] else 'fp32' performance_summary_exporter(metrics, mixed_precision) def prepare_eval_dict(detections, groundtruth, features): """Prepares eval dictionary containing detections and groundtruth. Takes in `detections` from the model, `groundtruth` and `features` returned from the eval tf.data.dataset and creates a dictionary of tensors suitable for detection eval modules. Args: detections: A dictionary of tensors returned by `model.postprocess`. groundtruth: `inputs.eval_input` returns an eval dataset of (features, labels) tuple. `groundtruth` must be set to `labels`. Please note that: * fields.InputDataFields.groundtruth_classes must be 0-indexed and in its 1-hot representation. * fields.InputDataFields.groundtruth_verified_neg_classes must be 0-indexed and in its multi-hot repesentation. * fields.InputDataFields.groundtruth_not_exhaustive_classes must be 0-indexed and in its multi-hot repesentation. * fields.InputDataFields.groundtruth_labeled_classes must be 0-indexed and in its multi-hot repesentation. features: `inputs.eval_input` returns an eval dataset of (features, labels) tuple. This argument must be set to a dictionary containing the following keys and their corresponding values from `features` -- * fields.InputDataFields.image * fields.InputDataFields.original_image * fields.InputDataFields.original_image_spatial_shape * fields.InputDataFields.true_image_shape * inputs.HASH_KEY Returns: eval_dict: A dictionary of tensors to pass to eval module. class_agnostic: Whether to evaluate detection in class agnostic mode. """ groundtruth_boxes = groundtruth[fields.InputDataFields.groundtruth_boxes] groundtruth_boxes_shape = tf.shape(groundtruth_boxes) # For class-agnostic models, groundtruth one-hot encodings collapse to all # ones. class_agnostic = ( fields.DetectionResultFields.detection_classes not in detections) if class_agnostic: groundtruth_classes_one_hot = tf.ones( [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1]) else: groundtruth_classes_one_hot = groundtruth[ fields.InputDataFields.groundtruth_classes] label_id_offset = 1 # Applying label id offset (b/63711816) groundtruth_classes = ( tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset) groundtruth[fields.InputDataFields.groundtruth_classes] = groundtruth_classes label_id_offset_paddings = tf.constant([[0, 0], [1, 0]]) if fields.InputDataFields.groundtruth_verified_neg_classes in groundtruth: groundtruth[ fields.InputDataFields.groundtruth_verified_neg_classes] = tf.pad( groundtruth[ fields.InputDataFields.groundtruth_verified_neg_classes], label_id_offset_paddings) if fields.InputDataFields.groundtruth_not_exhaustive_classes in groundtruth: groundtruth[ fields.InputDataFields.groundtruth_not_exhaustive_classes] = tf.pad( groundtruth[ fields.InputDataFields.groundtruth_not_exhaustive_classes], label_id_offset_paddings) if fields.InputDataFields.groundtruth_labeled_classes in groundtruth: groundtruth[fields.InputDataFields.groundtruth_labeled_classes] = tf.pad( groundtruth[fields.InputDataFields.groundtruth_labeled_classes], label_id_offset_paddings) use_original_images = fields.InputDataFields.original_image in features if use_original_images: eval_images = features[fields.InputDataFields.original_image] true_image_shapes = features[fields.InputDataFields.true_image_shape][:, :3] original_image_spatial_shapes = features[ fields.InputDataFields.original_image_spatial_shape] else: eval_images = features[fields.InputDataFields.image] true_image_shapes = None original_image_spatial_shapes = None eval_dict = eval_util.result_dict_for_batched_example( eval_images, features[inputs.HASH_KEY], detections, groundtruth, class_agnostic=class_agnostic, scale_to_absolute=True, original_image_spatial_shapes=original_image_spatial_shapes, true_image_shapes=true_image_shapes) return eval_dict, class_agnostic def concat_replica_results(tensor_dict): new_tensor_dict = {} for key, values in tensor_dict.items(): new_tensor_dict[key] = tf.concat(values, axis=0) return new_tensor_dict def eager_eval_loop( detection_model, configs, eval_dataset, use_tpu=False, postprocess_on_cpu=False, global_step=None, ): """Evaluate the model eagerly on the evaluation dataset. This method will compute the evaluation metrics specified in the configs on the entire evaluation dataset, then return the metrics. It will also log the metrics to TensorBoard. Args: detection_model: A DetectionModel (based on Keras) to evaluate. configs: Object detection configs that specify the evaluators that should be used, as well as whether regularization loss should be included and if bfloat16 should be used on TPUs. eval_dataset: Dataset containing evaluation data. use_tpu: Whether a TPU is being used to execute the model for evaluation. postprocess_on_cpu: Whether model postprocessing should happen on the CPU when using a TPU to execute the model. global_step: A variable containing the training step this model was trained to. Used for logging purposes. Returns: A dict of evaluation metrics representing the results of this evaluation. """ del postprocess_on_cpu train_config = configs['train_config'] eval_input_config = configs['eval_input_config'] eval_config = configs['eval_config'] add_regularization_loss = train_config.add_regularization_loss is_training = False detection_model._is_training = is_training # pylint: disable=protected-access tf.keras.backend.set_learning_phase(is_training) evaluator_options = eval_util.evaluator_options_from_eval_config( eval_config) batch_size = eval_config.batch_size class_agnostic_category_index = ( label_map_util.create_class_agnostic_category_index()) class_agnostic_evaluators = eval_util.get_evaluators( eval_config, list(class_agnostic_category_index.values()), evaluator_options) class_aware_evaluators = None if eval_input_config.label_map_path: class_aware_category_index = ( label_map_util.create_category_index_from_labelmap( eval_input_config.label_map_path)) class_aware_evaluators = eval_util.get_evaluators( eval_config, list(class_aware_category_index.values()), evaluator_options) evaluators = None loss_metrics = {} @tf.function def compute_eval_dict(features, labels): """Compute the evaluation result on an image.""" # For evaling on train data, it is necessary to check whether groundtruth # must be unpadded. boxes_shape = ( labels[fields.InputDataFields.groundtruth_boxes].get_shape().as_list()) unpad_groundtruth_tensors = (boxes_shape[1] is not None and not use_tpu and batch_size == 1) groundtruth_dict = labels labels = model_lib.unstack_batch( labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors) losses_dict, prediction_dict = _compute_losses_and_predictions_dicts( detection_model, features, labels, add_regularization_loss) prediction_dict = detection_model.postprocess( prediction_dict, features[fields.InputDataFields.true_image_shape]) eval_features = { fields.InputDataFields.image: features[fields.InputDataFields.image], fields.InputDataFields.original_image: features[fields.InputDataFields.original_image], fields.InputDataFields.original_image_spatial_shape: features[fields.InputDataFields.original_image_spatial_shape], fields.InputDataFields.true_image_shape: features[fields.InputDataFields.true_image_shape], inputs.HASH_KEY: features[inputs.HASH_KEY], } return losses_dict, prediction_dict, groundtruth_dict, eval_features agnostic_categories = label_map_util.create_class_agnostic_category_index() per_class_categories = label_map_util.create_category_index_from_labelmap( eval_input_config.label_map_path) keypoint_edges = [ (kp.start, kp.end) for kp in eval_config.keypoint_edge] strategy = tf.compat.v2.distribute.get_strategy() for i, (features, labels) in enumerate(eval_dataset): try: (losses_dict, prediction_dict, groundtruth_dict, eval_features) = strategy.run( compute_eval_dict, args=(features, labels)) except Exception as exc: # pylint:disable=broad-except tf.logging.info('Encountered %s exception.', exc) tf.logging.info('A replica probably exhausted all examples. Skipping ' 'pending examples on other replicas.') break (local_prediction_dict, local_groundtruth_dict, local_eval_features) = tf.nest.map_structure( strategy.experimental_local_results, [prediction_dict, groundtruth_dict, eval_features]) local_prediction_dict = concat_replica_results(local_prediction_dict) local_groundtruth_dict = concat_replica_results(local_groundtruth_dict) local_eval_features = concat_replica_results(local_eval_features) eval_dict, class_agnostic = prepare_eval_dict(local_prediction_dict, local_groundtruth_dict, local_eval_features) for loss_key, loss_tensor in iter(losses_dict.items()): losses_dict[loss_key] = strategy.reduce(tf.distribute.ReduceOp.MEAN, loss_tensor, None) if class_agnostic: category_index = agnostic_categories else: category_index = per_class_categories if i % 100 == 0: tf.logging.info('Finished eval step %d', i) use_original_images = fields.InputDataFields.original_image in features if (use_original_images and i < eval_config.num_visualizations): sbys_image_list = vutils.draw_side_by_side_evaluation_image( eval_dict, category_index=category_index, max_boxes_to_draw=eval_config.max_num_boxes_to_visualize, min_score_thresh=eval_config.min_score_threshold, use_normalized_coordinates=False, keypoint_edges=keypoint_edges or None) for j, sbys_image in enumerate(sbys_image_list): tf.compat.v2.summary.image( name='eval_side_by_side_{}_{}'.format(i, j), step=global_step, data=sbys_image, max_outputs=eval_config.num_visualizations) if eval_util.has_densepose(eval_dict): dp_image_list = vutils.draw_densepose_visualizations( eval_dict) for j, dp_image in enumerate(dp_image_list): tf.compat.v2.summary.image( name='densepose_detections_{}_{}'.format(i, j), step=global_step, data=dp_image, max_outputs=eval_config.num_visualizations) if evaluators is None: if class_agnostic: evaluators = class_agnostic_evaluators else: evaluators = class_aware_evaluators for evaluator in evaluators: evaluator.add_eval_dict(eval_dict) for loss_key, loss_tensor in iter(losses_dict.items()): if loss_key not in loss_metrics: loss_metrics[loss_key] = [] loss_metrics[loss_key].append(loss_tensor) eval_metrics = {} for evaluator in evaluators: eval_metrics.update(evaluator.evaluate()) for loss_key in loss_metrics: eval_metrics[loss_key] = tf.reduce_mean(loss_metrics[loss_key]) eval_metrics = {str(k): v for k, v in eval_metrics.items()} tf.logging.info('Eval metrics at step %d', global_step.numpy()) for k in eval_metrics: tf.compat.v2.summary.scalar(k, eval_metrics[k], step=global_step) tf.logging.info('\t+ %s: %f', k, eval_metrics[k]) return eval_metrics def eval_continuously( pipeline_config_path, config_override=None, train_steps=None, sample_1_of_n_eval_examples=1, sample_1_of_n_eval_on_train_examples=1, use_tpu=False, override_eval_num_epochs=True, postprocess_on_cpu=False, model_dir=None, checkpoint_dir=None, wait_interval=180, timeout=3600, eval_index=0, save_final_config=False, **kwargs): """Run continuous evaluation of a detection model eagerly. This method builds the model, and continously restores it from the most recent training checkpoint in the checkpoint directory & evaluates it on the evaluation data. Args: pipeline_config_path: A path to a pipeline config file. config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to override the config from `pipeline_config_path`. train_steps: Number of training steps. If None, the number of training steps is set from the `TrainConfig` proto. sample_1_of_n_eval_examples: Integer representing how often an eval example should be sampled. If 1, will sample all examples. sample_1_of_n_eval_on_train_examples: Similar to `sample_1_of_n_eval_examples`, except controls the sampling of training data for evaluation. use_tpu: Boolean, whether training and evaluation should run on TPU. override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for eval_input. postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true, postprocess is scheduled on the host cpu. model_dir: Directory to output resulting evaluation summaries to. checkpoint_dir: Directory that contains the training checkpoints. wait_interval: The mimmum number of seconds to wait before checking for a new checkpoint. timeout: The maximum number of seconds to wait for a checkpoint. Execution will terminate if no new checkpoints are found after these many seconds. eval_index: int, If given, only evaluate the dataset at the given index. By default, evaluates dataset at 0'th index. save_final_config: Whether to save the pipeline config file to the model directory. **kwargs: Additional keyword arguments for configuration override. """ get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[ 'get_configs_from_pipeline_file'] create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[ 'create_pipeline_proto_from_configs'] merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[ 'merge_external_params_with_configs'] configs = get_configs_from_pipeline_file( pipeline_config_path, config_override=config_override) kwargs.update({ 'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples, 'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu }) if train_steps is not None: kwargs['train_steps'] = train_steps if override_eval_num_epochs: kwargs.update({'eval_num_epochs': 1}) tf.logging.warning( 'Forced number of epochs for all eval validations to be 1.') configs = merge_external_params_with_configs( configs, None, kwargs_dict=kwargs) if model_dir and save_final_config: tf.logging.info('Saving pipeline config file to directory {}'.format( model_dir)) pipeline_config_final = create_pipeline_proto_from_configs(configs) config_util.save_pipeline_config(pipeline_config_final, model_dir) model_config = configs['model'] train_input_config = configs['train_input_config'] eval_config = configs['eval_config'] eval_input_configs = configs['eval_input_configs'] eval_on_train_input_config = copy.deepcopy(train_input_config) eval_on_train_input_config.sample_1_of_n_examples = ( sample_1_of_n_eval_on_train_examples) if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1: tf.logging.warning('Expected number of evaluation epochs is 1, but ' 'instead encountered `eval_on_train_input_config' '.num_epochs` = ' '{}. Overwriting `num_epochs` to 1.'.format( eval_on_train_input_config.num_epochs)) eval_on_train_input_config.num_epochs = 1 if kwargs['use_bfloat16']: tf.compat.v2.keras.mixed_precision.set_global_policy('mixed_bfloat16') eval_input_config = eval_input_configs[eval_index] strategy = tf.compat.v2.distribute.get_strategy() with strategy.scope(): detection_model = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']( model_config=model_config, is_training=True) eval_input = strategy.experimental_distribute_dataset( inputs.eval_input( eval_config=eval_config, eval_input_config=eval_input_config, model_config=model_config, model=detection_model)) global_step = tf.compat.v2.Variable( 0, trainable=False, dtype=tf.compat.v2.dtypes.int64) optimizer, _ = optimizer_builder.build( configs['train_config'].optimizer, global_step=global_step) for latest_checkpoint in tf.train.checkpoints_iterator( checkpoint_dir, timeout=timeout, min_interval_secs=wait_interval): ckpt = tf.compat.v2.train.Checkpoint( step=global_step, model=detection_model, optimizer=optimizer) # We run the detection_model on dummy inputs in order to ensure that the # model and all its variables have been properly constructed. Specifically, # this is currently necessary prior to (potentially) creating shadow copies # of the model variables for the EMA optimizer. if eval_config.use_moving_averages: unpad_groundtruth_tensors = (eval_config.batch_size == 1 and not use_tpu) _ensure_model_is_built(detection_model, eval_input, unpad_groundtruth_tensors) optimizer.shadow_copy(detection_model) ckpt.restore(latest_checkpoint).expect_partial() if eval_config.use_moving_averages: optimizer.swap_weights() summary_writer = tf.compat.v2.summary.create_file_writer( os.path.join(model_dir, 'eval', eval_input_config.name)) with summary_writer.as_default(): eager_eval_loop( detection_model, configs, eval_input, use_tpu=use_tpu, postprocess_on_cpu=postprocess_on_cpu, global_step=global_step, )
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/model_lib_v2.py
model_lib_v2.py
r"""Creates and runs TF2 object detection models. For local training/evaluation run: PIPELINE_CONFIG_PATH=path/to/pipeline.config MODEL_DIR=/tmp/model_outputs NUM_TRAIN_STEPS=10000 SAMPLE_1_OF_N_EVAL_EXAMPLES=1 python model_main_tf2.py -- \ --model_dir=$MODEL_DIR --num_train_steps=$NUM_TRAIN_STEPS \ --sample_1_of_n_eval_examples=$SAMPLE_1_OF_N_EVAL_EXAMPLES \ --pipeline_config_path=$PIPELINE_CONFIG_PATH \ --alsologtostderr """ from absl import flags import tensorflow.compat.v2 as tf from object_detection import model_lib_v2 flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config ' 'file.') flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.') flags.DEFINE_bool('eval_on_train_data', False, 'Enable evaluating on train ' 'data (only supported in distributed training).') flags.DEFINE_integer('sample_1_of_n_eval_examples', None, 'Will sample one of ' 'every n eval input examples, where n is provided.') flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample ' 'one of every n train input examples for evaluation, ' 'where n is provided. This is only used if ' '`eval_training_data` is True.') flags.DEFINE_string( 'model_dir', None, 'Path to output model directory ' 'where event and checkpoint files will be written.') flags.DEFINE_string( 'checkpoint_dir', None, 'Path to directory holding a checkpoint. If ' '`checkpoint_dir` is provided, this binary operates in eval-only mode, ' 'writing resulting metrics to `model_dir`.') flags.DEFINE_integer('eval_timeout', 3600, 'Number of seconds to wait for an' 'evaluation checkpoint before exiting.') flags.DEFINE_bool('use_tpu', False, 'Whether the job is executing on a TPU.') flags.DEFINE_string( 'tpu_name', default=None, help='Name of the Cloud TPU for Cluster Resolvers.') flags.DEFINE_integer( 'num_workers', 1, 'When num_workers > 1, training uses ' 'MultiWorkerMirroredStrategy. When num_workers = 1 it uses ' 'MirroredStrategy.') flags.DEFINE_integer( 'checkpoint_every_n', 1000, 'Integer defining how often we checkpoint.') flags.DEFINE_boolean('record_summaries', True, ('Whether or not to record summaries defined by the model' ' or the training pipeline. This does not impact the' ' summaries of the loss values which are always' ' recorded.')) FLAGS = flags.FLAGS def main(unused_argv): flags.mark_flag_as_required('model_dir') flags.mark_flag_as_required('pipeline_config_path') tf.config.set_soft_device_placement(True) if FLAGS.checkpoint_dir: model_lib_v2.eval_continuously( pipeline_config_path=FLAGS.pipeline_config_path, model_dir=FLAGS.model_dir, train_steps=FLAGS.num_train_steps, sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples, sample_1_of_n_eval_on_train_examples=( FLAGS.sample_1_of_n_eval_on_train_examples), checkpoint_dir=FLAGS.checkpoint_dir, wait_interval=300, timeout=FLAGS.eval_timeout) else: if FLAGS.use_tpu: # TPU is automatically inferred if tpu_name is None and # we are running under cloud ai-platform. resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.experimental.TPUStrategy(resolver) elif FLAGS.num_workers > 1: strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() else: strategy = tf.compat.v2.distribute.MirroredStrategy() with strategy.scope(): model_lib_v2.train_loop( pipeline_config_path=FLAGS.pipeline_config_path, model_dir=FLAGS.model_dir, train_steps=FLAGS.num_train_steps, use_tpu=FLAGS.use_tpu, checkpoint_every_n=FLAGS.checkpoint_every_n, record_summaries=FLAGS.record_summaries) if __name__ == '__main__': tf.compat.v1.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/model_main_tf2.py
model_main_tf2.py
r"""Exports an SSD detection model to use with tf-lite. Outputs file: * A tflite compatible frozen graph - $output_directory/tflite_graph.pb The exported graph has the following input and output nodes. Inputs: 'normalized_input_image_tensor': a float32 tensor of shape [1, height, width, 3] containing the normalized input image. Note that the height and width must be compatible with the height and width configured in the fixed_shape_image resizer options in the pipeline config proto. In floating point Mobilenet model, 'normalized_image_tensor' has values between [-1,1). This typically means mapping each pixel (linearly) to a value between [-1, 1]. Input image values between 0 and 255 are scaled by (1/128.0) and then a value of -1 is added to them to ensure the range is [-1,1). In quantized Mobilenet model, 'normalized_image_tensor' has values between [0, 255]. In general, see the `preprocess` function defined in the feature extractor class in the object_detection/models directory. Outputs: If add_postprocessing_op is true: frozen graph adds a TFLite_Detection_PostProcess custom op node has four outputs: detection_boxes: a float32 tensor of shape [1, num_boxes, 4] with box locations detection_classes: a float32 tensor of shape [1, num_boxes] with class indices detection_scores: a float32 tensor of shape [1, num_boxes] with class scores num_boxes: a float32 tensor of size 1 containing the number of detected boxes else: the graph has two outputs: 'raw_outputs/box_encodings': a float32 tensor of shape [1, num_anchors, 4] containing the encoded box predictions. 'raw_outputs/class_predictions': a float32 tensor of shape [1, num_anchors, num_classes] containing the class scores for each anchor after applying score conversion. Example Usage: -------------- python object_detection/export_tflite_ssd_graph.py \ --pipeline_config_path path/to/ssd_mobilenet.config \ --trained_checkpoint_prefix path/to/model.ckpt \ --output_directory path/to/exported_model_directory The expected output would be in the directory path/to/exported_model_directory (which is created if it does not exist) with contents: - tflite_graph.pbtxt - tflite_graph.pb Config overrides (see the `config_override` flag) are text protobufs (also of type pipeline_pb2.TrainEvalPipelineConfig) which are used to override certain fields in the provided pipeline_config_path. These are useful for making small changes to the inference graph that differ from the training or eval config. Example Usage (in which we change the NMS iou_threshold to be 0.5 and NMS score_threshold to be 0.0): python object_detection/export_tflite_ssd_graph.py \ --pipeline_config_path path/to/ssd_mobilenet.config \ --trained_checkpoint_prefix path/to/model.ckpt \ --output_directory path/to/exported_model_directory --config_override " \ model{ \ ssd{ \ post_processing { \ batch_non_max_suppression { \ score_threshold: 0.0 \ iou_threshold: 0.5 \ } \ } \ } \ } \ " """ import tensorflow.compat.v1 as tf from google.protobuf import text_format from object_detection import export_tflite_ssd_graph_lib from object_detection.protos import pipeline_pb2 flags = tf.app.flags flags.DEFINE_string('output_directory', None, 'Path to write outputs.') flags.DEFINE_string( 'pipeline_config_path', None, 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file.') flags.DEFINE_string('trained_checkpoint_prefix', None, 'Checkpoint prefix.') flags.DEFINE_integer('max_detections', 10, 'Maximum number of detections (boxes) to show.') flags.DEFINE_integer('max_classes_per_detection', 1, 'Maximum number of classes to output per detection box.') flags.DEFINE_integer( 'detections_per_class', 100, 'Number of anchors used per class in Regular Non-Max-Suppression.') flags.DEFINE_bool('add_postprocessing_op', True, 'Add TFLite custom op for postprocessing to the graph.') flags.DEFINE_bool( 'use_regular_nms', False, 'Flag to set postprocessing op to use Regular NMS instead of Fast NMS.') flags.DEFINE_string( 'config_override', '', 'pipeline_pb2.TrainEvalPipelineConfig ' 'text proto to override pipeline_config_path.') FLAGS = flags.FLAGS def main(argv): del argv # Unused. flags.mark_flag_as_required('output_directory') flags.mark_flag_as_required('pipeline_config_path') flags.mark_flag_as_required('trained_checkpoint_prefix') pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) text_format.Merge(FLAGS.config_override, pipeline_config) export_tflite_ssd_graph_lib.export_tflite_graph( pipeline_config, FLAGS.trained_checkpoint_prefix, FLAGS.output_directory, FLAGS.add_postprocessing_op, FLAGS.max_detections, FLAGS.max_classes_per_detection, use_regular_nms=FLAGS.use_regular_nms) if __name__ == '__main__': tf.app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/export_tflite_ssd_graph.py
export_tflite_ssd_graph.py
"""Library to export TFLite-compatible SavedModel from TF2 detection models.""" import os import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf from object_detection.builders import model_builder from object_detection.builders import post_processing_builder from object_detection.core import box_list from object_detection.core import standard_fields as fields _DEFAULT_NUM_CHANNELS = 3 _DEFAULT_NUM_COORD_BOX = 4 _MAX_CLASSES_PER_DETECTION = 1 _DETECTION_POSTPROCESS_FUNC = 'TFLite_Detection_PostProcess' def get_const_center_size_encoded_anchors(anchors): """Exports center-size encoded anchors as a constant tensor. Args: anchors: a float32 tensor of shape [num_anchors, 4] containing the anchor boxes Returns: encoded_anchors: a float32 constant tensor of shape [num_anchors, 4] containing the anchor boxes. """ anchor_boxlist = box_list.BoxList(anchors) y, x, h, w = anchor_boxlist.get_center_coordinates_and_sizes() num_anchors = y.get_shape().as_list() with tf1.Session() as sess: y_out, x_out, h_out, w_out = sess.run([y, x, h, w]) encoded_anchors = tf1.constant( np.transpose(np.stack((y_out, x_out, h_out, w_out))), dtype=tf1.float32, shape=[num_anchors[0], _DEFAULT_NUM_COORD_BOX], name='anchors') return num_anchors[0], encoded_anchors class SSDModule(tf.Module): """Inference Module for TFLite-friendly SSD models.""" def __init__(self, pipeline_config, detection_model, max_detections, use_regular_nms): """Initialization. Args: pipeline_config: The original pipeline_pb2.TrainEvalPipelineConfig detection_model: The detection model to use for inference. max_detections: Max detections desired from the TFLite model. use_regular_nms: If True, TFLite model uses the (slower) multi-class NMS. """ self._process_config(pipeline_config) self._pipeline_config = pipeline_config self._model = detection_model self._max_detections = max_detections self._use_regular_nms = use_regular_nms def _process_config(self, pipeline_config): self._num_classes = pipeline_config.model.ssd.num_classes self._nms_score_threshold = pipeline_config.model.ssd.post_processing.batch_non_max_suppression.score_threshold self._nms_iou_threshold = pipeline_config.model.ssd.post_processing.batch_non_max_suppression.iou_threshold self._scale_values = {} self._scale_values[ 'y_scale'] = pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.y_scale self._scale_values[ 'x_scale'] = pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.x_scale self._scale_values[ 'h_scale'] = pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.height_scale self._scale_values[ 'w_scale'] = pipeline_config.model.ssd.box_coder.faster_rcnn_box_coder.width_scale image_resizer_config = pipeline_config.model.ssd.image_resizer image_resizer = image_resizer_config.WhichOneof('image_resizer_oneof') self._num_channels = _DEFAULT_NUM_CHANNELS if image_resizer == 'fixed_shape_resizer': self._height = image_resizer_config.fixed_shape_resizer.height self._width = image_resizer_config.fixed_shape_resizer.width if image_resizer_config.fixed_shape_resizer.convert_to_grayscale: self._num_channels = 1 else: raise ValueError( 'Only fixed_shape_resizer' 'is supported with tflite. Found {}'.format( image_resizer_config.WhichOneof('image_resizer_oneof'))) def input_shape(self): """Returns shape of TFLite model input.""" return [1, self._height, self._width, self._num_channels] def postprocess_implements_signature(self): """Returns tf.implements signature for MLIR legalization of TFLite NMS.""" implements_signature = [ 'name: "%s"' % _DETECTION_POSTPROCESS_FUNC, 'attr { key: "max_detections" value { i: %d } }' % self._max_detections, 'attr { key: "max_classes_per_detection" value { i: %d } }' % _MAX_CLASSES_PER_DETECTION, 'attr { key: "use_regular_nms" value { b: %s } }' % str(self._use_regular_nms).lower(), 'attr { key: "nms_score_threshold" value { f: %f } }' % self._nms_score_threshold, 'attr { key: "nms_iou_threshold" value { f: %f } }' % self._nms_iou_threshold, 'attr { key: "y_scale" value { f: %f } }' % self._scale_values['y_scale'], 'attr { key: "x_scale" value { f: %f } }' % self._scale_values['x_scale'], 'attr { key: "h_scale" value { f: %f } }' % self._scale_values['h_scale'], 'attr { key: "w_scale" value { f: %f } }' % self._scale_values['w_scale'], 'attr { key: "num_classes" value { i: %d } }' % self._num_classes ] implements_signature = ' '.join(implements_signature) return implements_signature def _get_postprocess_fn(self, num_anchors, num_classes): # There is no TF equivalent for TFLite's custom post-processing op. # So we add an 'empty' composite function here, that is legalized to the # custom op with MLIR. @tf.function( experimental_implements=self.postprocess_implements_signature()) # pylint: disable=g-unused-argument,unused-argument def dummy_post_processing(box_encodings, class_predictions, anchors): boxes = tf.constant(0.0, dtype=tf.float32, name='boxes') scores = tf.constant(0.0, dtype=tf.float32, name='scores') classes = tf.constant(0.0, dtype=tf.float32, name='classes') num_detections = tf.constant(0.0, dtype=tf.float32, name='num_detections') return boxes, classes, scores, num_detections return dummy_post_processing @tf.function def inference_fn(self, image): """Encapsulates SSD inference for TFLite conversion. NOTE: The Args & Returns sections below indicate the TFLite model signature, and not what the TF graph does (since the latter does not include the custom NMS op used by TFLite) Args: image: a float32 tensor of shape [num_anchors, 4] containing the anchor boxes Returns: num_detections: a float32 scalar denoting number of total detections. classes: a float32 tensor denoting class ID for each detection. scores: a float32 tensor denoting score for each detection. boxes: a float32 tensor denoting coordinates of each detected box. """ predicted_tensors = self._model.predict(image, true_image_shapes=None) # The score conversion occurs before the post-processing custom op _, score_conversion_fn = post_processing_builder.build( self._pipeline_config.model.ssd.post_processing) class_predictions = score_conversion_fn( predicted_tensors['class_predictions_with_background']) with tf.name_scope('raw_outputs'): # 'raw_outputs/box_encodings': a float32 tensor of shape # [1, num_anchors, 4] containing the encoded box predictions. Note that # these are raw predictions and no Non-Max suppression is applied on # them and no decode center size boxes is applied to them. box_encodings = tf.identity( predicted_tensors['box_encodings'], name='box_encodings') # 'raw_outputs/class_predictions': a float32 tensor of shape # [1, num_anchors, num_classes] containing the class scores for each # anchor after applying score conversion. class_predictions = tf.identity( class_predictions, name='class_predictions') # 'anchors': a float32 tensor of shape # [4, num_anchors] containing the anchors as a constant node. num_anchors, anchors = get_const_center_size_encoded_anchors( predicted_tensors['anchors']) anchors = tf.identity(anchors, name='anchors') # tf.function@ seems to reverse order of inputs, so reverse them here. return self._get_postprocess_fn(num_anchors, self._num_classes)(box_encodings, class_predictions, anchors)[::-1] class CenterNetModule(tf.Module): """Inference Module for TFLite-friendly CenterNet models. The exported CenterNet model includes the preprocessing and postprocessing logics so the caller should pass in the raw image pixel values. It supports both object detection and keypoint estimation task. """ def __init__(self, pipeline_config, max_detections, include_keypoints, label_map_path=''): """Initialization. Args: pipeline_config: The original pipeline_pb2.TrainEvalPipelineConfig max_detections: Max detections desired from the TFLite model. include_keypoints: If set true, the output dictionary will include the keypoint coordinates and keypoint confidence scores. label_map_path: Path to the label map which is used by CenterNet keypoint estimation task. If provided, the label_map_path in the configuration will be replaced by this one. """ self._max_detections = max_detections self._include_keypoints = include_keypoints self._process_config(pipeline_config) if include_keypoints and label_map_path: pipeline_config.model.center_net.keypoint_label_map_path = label_map_path self._pipeline_config = pipeline_config self._model = model_builder.build( self._pipeline_config.model, is_training=False) def get_model(self): return self._model def _process_config(self, pipeline_config): self._num_classes = pipeline_config.model.center_net.num_classes center_net_config = pipeline_config.model.center_net image_resizer_config = center_net_config.image_resizer image_resizer = image_resizer_config.WhichOneof('image_resizer_oneof') self._num_channels = _DEFAULT_NUM_CHANNELS if image_resizer == 'fixed_shape_resizer': self._height = image_resizer_config.fixed_shape_resizer.height self._width = image_resizer_config.fixed_shape_resizer.width if image_resizer_config.fixed_shape_resizer.convert_to_grayscale: self._num_channels = 1 else: raise ValueError( 'Only fixed_shape_resizer' 'is supported with tflite. Found {}'.format(image_resizer)) center_net_config.object_center_params.max_box_predictions = ( self._max_detections) if not self._include_keypoints: del center_net_config.keypoint_estimation_task[:] def input_shape(self): """Returns shape of TFLite model input.""" return [1, self._height, self._width, self._num_channels] @tf.function def inference_fn(self, image): """Encapsulates CenterNet inference for TFLite conversion. Args: image: a float32 tensor of shape [1, image_height, image_width, channel] denoting the image pixel values. Returns: A dictionary of predicted tensors: classes: a float32 tensor with shape [1, max_detections] denoting class ID for each detection. scores: a float32 tensor with shape [1, max_detections] denoting score for each detection. boxes: a float32 tensor with shape [1, max_detections, 4] denoting coordinates of each detected box. keypoints: a float32 with shape [1, max_detections, num_keypoints, 2] denoting the predicted keypoint coordinates (normalized in between 0-1). Note that [:, :, :, 0] represents the y coordinates and [:, :, :, 1] represents the x coordinates. keypoint_scores: a float32 with shape [1, max_detections, num_keypoints] denoting keypoint confidence scores. """ image = tf.cast(image, tf.float32) image, shapes = self._model.preprocess(image) prediction_dict = self._model.predict(image, None) detections = self._model.postprocess( prediction_dict, true_image_shapes=shapes) field_names = fields.DetectionResultFields classes_field = field_names.detection_classes classes = tf.cast(detections[classes_field], tf.float32) num_detections = tf.cast(detections[field_names.num_detections], tf.float32) if self._include_keypoints: model_outputs = (detections[field_names.detection_boxes], classes, detections[field_names.detection_scores], num_detections, detections[field_names.detection_keypoints], detections[field_names.detection_keypoint_scores]) else: model_outputs = (detections[field_names.detection_boxes], classes, detections[field_names.detection_scores], num_detections) # tf.function@ seems to reverse order of inputs, so reverse them here. return model_outputs[::-1] def export_tflite_model(pipeline_config, trained_checkpoint_dir, output_directory, max_detections, use_regular_nms, include_keypoints=False, label_map_path=''): """Exports inference SavedModel for TFLite conversion. NOTE: Only supports SSD meta-architectures for now, and the output model will have static-shaped, single-batch input. This function creates `output_directory` if it does not already exist, which will hold the intermediate SavedModel that can be used with the TFLite converter. Args: pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto. trained_checkpoint_dir: Path to the trained checkpoint file. output_directory: Path to write outputs. max_detections: Max detections desired from the TFLite model. use_regular_nms: If True, TFLite model uses the (slower) multi-class NMS. Note that this argument is only used by the SSD model. include_keypoints: Decides whether to also output the keypoint predictions. Note that this argument is only used by the CenterNet model. label_map_path: Path to the label map which is used by CenterNet keypoint estimation task. If provided, the label_map_path in the configuration will be replaced by this one. Raises: ValueError: if pipeline is invalid. """ output_saved_model_directory = os.path.join(output_directory, 'saved_model') # Build the underlying model using pipeline config. # TODO(b/162842801): Add support for other architectures. if pipeline_config.model.WhichOneof('model') == 'ssd': detection_model = model_builder.build( pipeline_config.model, is_training=False) ckpt = tf.train.Checkpoint(model=detection_model) # The module helps build a TF SavedModel appropriate for TFLite conversion. detection_module = SSDModule(pipeline_config, detection_model, max_detections, use_regular_nms) elif pipeline_config.model.WhichOneof('model') == 'center_net': detection_module = CenterNetModule( pipeline_config, max_detections, include_keypoints, label_map_path=label_map_path) ckpt = tf.train.Checkpoint(model=detection_module.get_model()) else: raise ValueError('Only ssd or center_net models are supported in tflite. ' 'Found {} in config'.format( pipeline_config.model.WhichOneof('model'))) manager = tf.train.CheckpointManager( ckpt, trained_checkpoint_dir, max_to_keep=1) status = ckpt.restore(manager.latest_checkpoint).expect_partial() # Getting the concrete function traces the graph and forces variables to # be constructed; only after this can we save the saved model. status.assert_existing_objects_matched() concrete_function = detection_module.inference_fn.get_concrete_function( tf.TensorSpec( shape=detection_module.input_shape(), dtype=tf.float32, name='input')) status.assert_existing_objects_matched() # Export SavedModel. tf.saved_model.save( detection_module, output_saved_model_directory, signatures=concrete_function)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/export_tflite_graph_lib_tf2.py
export_tflite_graph_lib_tf2.py
"""Binary to run train and evaluation on object detection model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow.compat.v1 as tf from object_detection import model_lib flags.DEFINE_string( 'model_dir', None, 'Path to output model directory ' 'where event and checkpoint files will be written.') flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config ' 'file.') flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.') flags.DEFINE_boolean('eval_training_data', False, 'If training data should be evaluated for this job. Note ' 'that one call only use this in eval-only mode, and ' '`checkpoint_dir` must be supplied.') flags.DEFINE_integer('sample_1_of_n_eval_examples', 1, 'Will sample one of ' 'every n eval input examples, where n is provided.') flags.DEFINE_integer('sample_1_of_n_eval_on_train_examples', 5, 'Will sample ' 'one of every n train input examples for evaluation, ' 'where n is provided. This is only used if ' '`eval_training_data` is True.') flags.DEFINE_string( 'checkpoint_dir', None, 'Path to directory holding a checkpoint. If ' '`checkpoint_dir` is provided, this binary operates in eval-only mode, ' 'writing resulting metrics to `model_dir`.') flags.DEFINE_boolean( 'run_once', False, 'If running in eval-only mode, whether to run just ' 'one round of eval vs running continuously (default).' ) flags.DEFINE_integer( 'max_eval_retries', 0, 'If running continuous eval, the maximum number of ' 'retries upon encountering tf.errors.InvalidArgumentError. If negative, ' 'will always retry the evaluation.' ) FLAGS = flags.FLAGS def main(unused_argv): flags.mark_flag_as_required('model_dir') flags.mark_flag_as_required('pipeline_config_path') config = tf.estimator.RunConfig(model_dir=FLAGS.model_dir) train_and_eval_dict = model_lib.create_estimator_and_inputs( run_config=config, pipeline_config_path=FLAGS.pipeline_config_path, train_steps=FLAGS.num_train_steps, sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples, sample_1_of_n_eval_on_train_examples=( FLAGS.sample_1_of_n_eval_on_train_examples)) estimator = train_and_eval_dict['estimator'] train_input_fn = train_and_eval_dict['train_input_fn'] eval_input_fns = train_and_eval_dict['eval_input_fns'] eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn'] predict_input_fn = train_and_eval_dict['predict_input_fn'] train_steps = train_and_eval_dict['train_steps'] if FLAGS.checkpoint_dir: if FLAGS.eval_training_data: name = 'training_data' input_fn = eval_on_train_input_fn else: name = 'validation_data' # The first eval input will be evaluated. input_fn = eval_input_fns[0] if FLAGS.run_once: estimator.evaluate(input_fn, steps=None, checkpoint_path=tf.train.latest_checkpoint( FLAGS.checkpoint_dir)) else: model_lib.continuous_eval(estimator, FLAGS.checkpoint_dir, input_fn, train_steps, name, FLAGS.max_eval_retries) else: train_spec, eval_specs = model_lib.create_train_and_eval_specs( train_input_fn, eval_input_fns, eval_on_train_input_fn, predict_input_fn, train_steps, eval_on_train_data=False) # Currently only a single Eval Spec is allowed. tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0]) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/model_main.py
model_main.py
"""Functions to export object detection inference graph.""" import ast import os import tensorflow.compat.v2 as tf from object_detection.builders import model_builder from object_detection.core import standard_fields as fields from object_detection.data_decoders import tf_example_decoder from object_detection.utils import config_util INPUT_BUILDER_UTIL_MAP = { 'model_build': model_builder.build, } def _decode_image(encoded_image_string_tensor): image_tensor = tf.image.decode_image(encoded_image_string_tensor, channels=3) image_tensor.set_shape((None, None, 3)) return image_tensor def _decode_tf_example(tf_example_string_tensor): tensor_dict = tf_example_decoder.TfExampleDecoder().decode( tf_example_string_tensor) image_tensor = tensor_dict[fields.InputDataFields.image] return image_tensor def _combine_side_inputs(side_input_shapes='', side_input_types='', side_input_names=''): """Zips the side inputs together. Args: side_input_shapes: forward-slash-separated list of comma-separated lists describing input shapes. side_input_types: comma-separated list of the types of the inputs. side_input_names: comma-separated list of the names of the inputs. Returns: a zipped list of side input tuples. """ side_input_shapes = [ ast.literal_eval('[' + x + ']') for x in side_input_shapes.split('/') ] side_input_types = eval('[' + side_input_types + ']') # pylint: disable=eval-used side_input_names = side_input_names.split(',') return zip(side_input_shapes, side_input_types, side_input_names) class DetectionInferenceModule(tf.Module): """Detection Inference Module.""" def __init__(self, detection_model, use_side_inputs=False, zipped_side_inputs=None): """Initializes a module for detection. Args: detection_model: the detection model to use for inference. use_side_inputs: whether to use side inputs. zipped_side_inputs: the zipped side inputs. """ self._model = detection_model def _get_side_input_signature(self, zipped_side_inputs): sig = [] side_input_names = [] for info in zipped_side_inputs: sig.append(tf.TensorSpec(shape=info[0], dtype=info[1], name=info[2])) side_input_names.append(info[2]) return sig def _get_side_names_from_zip(self, zipped_side_inputs): return [side[2] for side in zipped_side_inputs] def _preprocess_input(self, batch_input, decode_fn): # Input preprocessing happends on the CPU. We don't need to use the device # placement as it is automatically handled by TF. def _decode_and_preprocess(single_input): image = decode_fn(single_input) image = tf.cast(image, tf.float32) image, true_shape = self._model.preprocess(image[tf.newaxis, :, :, :]) return image[0], true_shape[0] images, true_shapes = tf.map_fn( _decode_and_preprocess, elems=batch_input, parallel_iterations=32, back_prop=False, fn_output_signature=(tf.float32, tf.int32)) return images, true_shapes def _run_inference_on_images(self, images, true_shapes, **kwargs): """Cast image to float and run inference. Args: images: float32 Tensor of shape [None, None, None, 3]. true_shapes: int32 Tensor of form [batch, 3] **kwargs: additional keyword arguments. Returns: Tensor dictionary holding detections. """ label_id_offset = 1 prediction_dict = self._model.predict(images, true_shapes, **kwargs) detections = self._model.postprocess(prediction_dict, true_shapes) classes_field = fields.DetectionResultFields.detection_classes detections[classes_field] = ( tf.cast(detections[classes_field], tf.float32) + label_id_offset) for key, val in detections.items(): detections[key] = tf.cast(val, tf.float32) return detections class DetectionFromImageModule(DetectionInferenceModule): """Detection Inference Module for image inputs.""" def __init__(self, detection_model, use_side_inputs=False, zipped_side_inputs=None): """Initializes a module for detection. Args: detection_model: the detection model to use for inference. use_side_inputs: whether to use side inputs. zipped_side_inputs: the zipped side inputs. """ if zipped_side_inputs is None: zipped_side_inputs = [] sig = [tf.TensorSpec(shape=[1, None, None, 3], dtype=tf.uint8, name='input_tensor')] if use_side_inputs: sig.extend(self._get_side_input_signature(zipped_side_inputs)) self._side_input_names = self._get_side_names_from_zip(zipped_side_inputs) def call_func(input_tensor, *side_inputs): kwargs = dict(zip(self._side_input_names, side_inputs)) images, true_shapes = self._preprocess_input(input_tensor, lambda x: x) return self._run_inference_on_images(images, true_shapes, **kwargs) self.__call__ = tf.function(call_func, input_signature=sig) # TODO(kaushikshiv): Check if omitting the signature also works. super(DetectionFromImageModule, self).__init__(detection_model, use_side_inputs, zipped_side_inputs) def get_true_shapes(input_tensor): input_shape = tf.shape(input_tensor) batch = input_shape[0] image_shape = input_shape[1:] true_shapes = tf.tile(image_shape[tf.newaxis, :], [batch, 1]) return true_shapes class DetectionFromFloatImageModule(DetectionInferenceModule): """Detection Inference Module for float image inputs.""" @tf.function( input_signature=[ tf.TensorSpec(shape=[None, None, None, 3], dtype=tf.float32)]) def __call__(self, input_tensor): images, true_shapes = self._preprocess_input(input_tensor, lambda x: x) return self._run_inference_on_images(images, true_shapes) class DetectionFromEncodedImageModule(DetectionInferenceModule): """Detection Inference Module for encoded image string inputs.""" @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) def __call__(self, input_tensor): images, true_shapes = self._preprocess_input(input_tensor, _decode_image) return self._run_inference_on_images(images, true_shapes) class DetectionFromTFExampleModule(DetectionInferenceModule): """Detection Inference Module for TF.Example inputs.""" @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) def __call__(self, input_tensor): images, true_shapes = self._preprocess_input(input_tensor, _decode_tf_example) return self._run_inference_on_images(images, true_shapes) def export_inference_graph(input_type, pipeline_config, trained_checkpoint_dir, output_directory, use_side_inputs=False, side_input_shapes='', side_input_types='', side_input_names=''): """Exports inference graph for the model specified in the pipeline config. This function creates `output_directory` if it does not already exist, which will hold a copy of the pipeline config with filename `pipeline.config`, and two subdirectories named `checkpoint` and `saved_model` (containing the exported checkpoint and SavedModel respectively). Args: input_type: Type of input for the graph. Can be one of ['image_tensor', 'encoded_image_string_tensor', 'tf_example']. pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto. trained_checkpoint_dir: Path to the trained checkpoint file. output_directory: Path to write outputs. use_side_inputs: boolean that determines whether side inputs should be included in the input signature. side_input_shapes: forward-slash-separated list of comma-separated lists describing input shapes. side_input_types: comma-separated list of the types of the inputs. side_input_names: comma-separated list of the names of the inputs. Raises: ValueError: if input_type is invalid. """ output_checkpoint_directory = os.path.join(output_directory, 'checkpoint') output_saved_model_directory = os.path.join(output_directory, 'saved_model') detection_model = INPUT_BUILDER_UTIL_MAP['model_build']( pipeline_config.model, is_training=False) ckpt = tf.train.Checkpoint( model=detection_model) manager = tf.train.CheckpointManager( ckpt, trained_checkpoint_dir, max_to_keep=1) status = ckpt.restore(manager.latest_checkpoint).expect_partial() if input_type not in DETECTION_MODULE_MAP: raise ValueError('Unrecognized `input_type`') if use_side_inputs and input_type != 'image_tensor': raise ValueError('Side inputs supported for image_tensor input type only.') zipped_side_inputs = [] if use_side_inputs: zipped_side_inputs = _combine_side_inputs(side_input_shapes, side_input_types, side_input_names) detection_module = DETECTION_MODULE_MAP[input_type](detection_model, use_side_inputs, list(zipped_side_inputs)) # Getting the concrete function traces the graph and forces variables to # be constructed --- only after this can we save the checkpoint and # saved model. concrete_function = detection_module.__call__.get_concrete_function() status.assert_existing_objects_matched() exported_checkpoint_manager = tf.train.CheckpointManager( ckpt, output_checkpoint_directory, max_to_keep=1) exported_checkpoint_manager.save(checkpoint_number=0) tf.saved_model.save(detection_module, output_saved_model_directory, signatures=concrete_function) config_util.save_pipeline_config(pipeline_config, output_directory) class DetectionFromImageAndBoxModule(DetectionInferenceModule): """Detection Inference Module for image with bounding box inputs. The saved model will require two inputs (image and normalized boxes) and run per-box mask prediction. To be compatible with this exporter, the detection model has to implement a called predict_masks_from_boxes( prediction_dict, true_image_shapes, provided_boxes, **params), where - prediciton_dict is a dict returned by the predict method. - true_image_shapes is a tensor of size [batch_size, 3], containing the true shape of each image in case it is padded. - provided_boxes is a [batch_size, num_boxes, 4] size tensor containing boxes specified in normalized coordinates. """ def __init__(self, detection_model, use_side_inputs=False, zipped_side_inputs=None): """Initializes a module for detection. Args: detection_model: the detection model to use for inference. use_side_inputs: whether to use side inputs. zipped_side_inputs: the zipped side inputs. """ assert hasattr(detection_model, 'predict_masks_from_boxes') super(DetectionFromImageAndBoxModule, self).__init__(detection_model, use_side_inputs, zipped_side_inputs) def _run_segmentation_on_images(self, image, boxes, **kwargs): """Run segmentation on images with provided boxes. Args: image: uint8 Tensor of shape [1, None, None, 3]. boxes: float32 tensor of shape [1, None, 4] containing normalized box coordinates. **kwargs: additional keyword arguments. Returns: Tensor dictionary holding detections (including masks). """ label_id_offset = 1 image = tf.cast(image, tf.float32) image, shapes = self._model.preprocess(image) prediction_dict = self._model.predict(image, shapes, **kwargs) detections = self._model.predict_masks_from_boxes(prediction_dict, shapes, boxes) classes_field = fields.DetectionResultFields.detection_classes detections[classes_field] = ( tf.cast(detections[classes_field], tf.float32) + label_id_offset) for key, val in detections.items(): detections[key] = tf.cast(val, tf.float32) return detections @tf.function(input_signature=[ tf.TensorSpec(shape=[1, None, None, 3], dtype=tf.uint8), tf.TensorSpec(shape=[1, None, 4], dtype=tf.float32) ]) def __call__(self, input_tensor, boxes): return self._run_segmentation_on_images(input_tensor, boxes) DETECTION_MODULE_MAP = { 'image_tensor': DetectionFromImageModule, 'encoded_image_string_tensor': DetectionFromEncodedImageModule, 'tf_example': DetectionFromTFExampleModule, 'float_image_tensor': DetectionFromFloatImageModule, 'image_and_boxes_tensor': DetectionFromImageAndBoxModule, }
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/exporter_lib_v2.py
exporter_lib_v2.py
r"""Exports TF2 detection SavedModel for conversion to TensorFlow Lite. Link to the TF2 Detection Zoo: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md The output folder will contain an intermediate SavedModel that can be used with the TfLite converter. NOTE: This only supports SSD meta-architectures for now. One input: image: a float32 tensor of shape[1, height, width, 3] containing the *normalized* input image. NOTE: See the `preprocess` function defined in the feature extractor class in the object_detection/models directory. Four Outputs: detection_boxes: a float32 tensor of shape [1, num_boxes, 4] with box locations detection_classes: a float32 tensor of shape [1, num_boxes] with class indices detection_scores: a float32 tensor of shape [1, num_boxes] with class scores num_boxes: a float32 tensor of size 1 containing the number of detected boxes Example Usage: -------------- python object_detection/export_tflite_graph_tf2.py \ --pipeline_config_path path/to/ssd_model/pipeline.config \ --trained_checkpoint_dir path/to/ssd_model/checkpoint \ --output_directory path/to/exported_model_directory The expected output SavedModel would be in the directory path/to/exported_model_directory (which is created if it does not exist). Config overrides (see the `config_override` flag) are text protobufs (also of type pipeline_pb2.TrainEvalPipelineConfig) which are used to override certain fields in the provided pipeline_config_path. These are useful for making small changes to the inference graph that differ from the training or eval config. Example Usage 1 (in which we change the NMS iou_threshold to be 0.5 and NMS score_threshold to be 0.0): python object_detection/export_tflite_model_tf2.py \ --pipeline_config_path path/to/ssd_model/pipeline.config \ --trained_checkpoint_dir path/to/ssd_model/checkpoint \ --output_directory path/to/exported_model_directory --config_override " \ model{ \ ssd{ \ post_processing { \ batch_non_max_suppression { \ score_threshold: 0.0 \ iou_threshold: 0.5 \ } \ } \ } \ } \ " Example Usage 2 (export CenterNet model for keypoint estimation task with fixed shape resizer and customized input resolution): python object_detection/export_tflite_model_tf2.py \ --pipeline_config_path path/to/ssd_model/pipeline.config \ --trained_checkpoint_dir path/to/ssd_model/checkpoint \ --output_directory path/to/exported_model_directory \ --keypoint_label_map_path path/to/label_map.txt \ --max_detections 10 \ --centernet_include_keypoints true \ --config_override " \ model{ \ center_net { \ image_resizer { \ fixed_shape_resizer { \ height: 320 \ width: 320 \ } \ } \ } \ }" \ """ from absl import app from absl import flags import tensorflow.compat.v2 as tf from google.protobuf import text_format from object_detection import export_tflite_graph_lib_tf2 from object_detection.protos import pipeline_pb2 tf.enable_v2_behavior() FLAGS = flags.FLAGS flags.DEFINE_string( 'pipeline_config_path', None, 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file.') flags.DEFINE_string('trained_checkpoint_dir', None, 'Path to trained checkpoint directory') flags.DEFINE_string('output_directory', None, 'Path to write outputs.') flags.DEFINE_string( 'config_override', '', 'pipeline_pb2.TrainEvalPipelineConfig ' 'text proto to override pipeline_config_path.') flags.DEFINE_integer('max_detections', 10, 'Maximum number of detections (boxes) to return.') # SSD-specific flags flags.DEFINE_bool( 'ssd_use_regular_nms', False, 'Flag to set postprocessing op to use Regular NMS instead of Fast NMS ' '(Default false).') # CenterNet-specific flags flags.DEFINE_bool( 'centernet_include_keypoints', False, 'Whether to export the predicted keypoint tensors. Only CenterNet model' ' supports this flag.' ) flags.DEFINE_string( 'keypoint_label_map_path', None, 'Path of the label map used by CenterNet keypoint estimation task. If' ' provided, the label map path in the pipeline config will be replaced by' ' this one. Note that it is only used when exporting CenterNet model for' ' keypoint estimation task.' ) def main(argv): del argv # Unused. flags.mark_flag_as_required('pipeline_config_path') flags.mark_flag_as_required('trained_checkpoint_dir') flags.mark_flag_as_required('output_directory') pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.io.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Parse(f.read(), pipeline_config) override_config = pipeline_pb2.TrainEvalPipelineConfig() text_format.Parse(FLAGS.config_override, override_config) pipeline_config.MergeFrom(override_config) export_tflite_graph_lib_tf2.export_tflite_model( pipeline_config, FLAGS.trained_checkpoint_dir, FLAGS.output_directory, FLAGS.max_detections, FLAGS.ssd_use_regular_nms, FLAGS.centernet_include_keypoints, FLAGS.keypoint_label_map_path) if __name__ == '__main__': app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/export_tflite_graph_tf2.py
export_tflite_graph_tf2.py
import tensorflow.compat.v1 as tf from object_detection.core import matcher from object_detection.utils import shape_utils class ArgMaxMatcher(matcher.Matcher): """Matcher based on highest value. This class computes matches from a similarity matrix. Each column is matched to a single row. To support object detection target assignment this class enables setting both matched_threshold (upper threshold) and unmatched_threshold (lower thresholds) defining three categories of similarity which define whether examples are positive, negative, or ignored: (1) similarity >= matched_threshold: Highest similarity. Matched/Positive! (2) matched_threshold > similarity >= unmatched_threshold: Medium similarity. Depending on negatives_lower_than_unmatched, this is either Unmatched/Negative OR Ignore. (3) unmatched_threshold > similarity: Lowest similarity. Depending on flag negatives_lower_than_unmatched, either Unmatched/Negative OR Ignore. For ignored matches this class sets the values in the Match object to -2. """ def __init__(self, matched_threshold, unmatched_threshold=None, negatives_lower_than_unmatched=True, force_match_for_each_row=False, use_matmul_gather=False): """Construct ArgMaxMatcher. Args: matched_threshold: Threshold for positive matches. Positive if sim >= matched_threshold, where sim is the maximum value of the similarity matrix for a given column. Set to None for no threshold. unmatched_threshold: Threshold for negative matches. Negative if sim < unmatched_threshold. Defaults to matched_threshold when set to None. negatives_lower_than_unmatched: Boolean which defaults to True. If True then negative matches are the ones below the unmatched_threshold, whereas ignored matches are in between the matched and umatched threshold. If False, then negative matches are in between the matched and unmatched threshold, and everything lower than unmatched is ignored. force_match_for_each_row: If True, ensures that each row is matched to at least one column (which is not guaranteed otherwise if the matched_threshold is high). Defaults to False. See argmax_matcher_test.testMatcherForceMatch() for an example. use_matmul_gather: Force constructed match objects to use matrix multiplication based gather instead of standard tf.gather. (Default: False). Raises: ValueError: if unmatched_threshold is set but matched_threshold is not set or if unmatched_threshold > matched_threshold. """ super(ArgMaxMatcher, self).__init__(use_matmul_gather=use_matmul_gather) if (matched_threshold is None) and (unmatched_threshold is not None): raise ValueError('Need to also define matched_threshold when' 'unmatched_threshold is defined') self._matched_threshold = matched_threshold if unmatched_threshold is None: self._unmatched_threshold = matched_threshold else: if unmatched_threshold > matched_threshold: raise ValueError('unmatched_threshold needs to be smaller or equal' 'to matched_threshold') self._unmatched_threshold = unmatched_threshold if not negatives_lower_than_unmatched: if self._unmatched_threshold == self._matched_threshold: raise ValueError('When negatives are in between matched and ' 'unmatched thresholds, these cannot be of equal ' 'value. matched: {}, unmatched: {}'.format( self._matched_threshold, self._unmatched_threshold)) self._force_match_for_each_row = force_match_for_each_row self._negatives_lower_than_unmatched = negatives_lower_than_unmatched def _match(self, similarity_matrix, valid_rows): """Tries to match each column of the similarity matrix to a row. Args: similarity_matrix: tensor of shape [N, M] representing any similarity metric. valid_rows: a boolean tensor of shape [N] indicating valid rows. Returns: Match object with corresponding matches for each of M columns. """ def _match_when_rows_are_empty(): """Performs matching when the rows of similarity matrix are empty. When the rows are empty, all detections are false positives. So we return a tensor of -1's to indicate that the columns do not match to any rows. Returns: matches: int32 tensor indicating the row each column matches to. """ similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape( similarity_matrix) return -1 * tf.ones([similarity_matrix_shape[1]], dtype=tf.int32) def _match_when_rows_are_non_empty(): """Performs matching when the rows of similarity matrix are non empty. Returns: matches: int32 tensor indicating the row each column matches to. """ # Matches for each column matches = tf.argmax(similarity_matrix, 0, output_type=tf.int32) # Deal with matched and unmatched threshold if self._matched_threshold is not None: # Get logical indices of ignored and unmatched columns as tf.int64 matched_vals = tf.reduce_max(similarity_matrix, 0) below_unmatched_threshold = tf.greater(self._unmatched_threshold, matched_vals) between_thresholds = tf.logical_and( tf.greater_equal(matched_vals, self._unmatched_threshold), tf.greater(self._matched_threshold, matched_vals)) if self._negatives_lower_than_unmatched: matches = self._set_values_using_indicator(matches, below_unmatched_threshold, -1) matches = self._set_values_using_indicator(matches, between_thresholds, -2) else: matches = self._set_values_using_indicator(matches, below_unmatched_threshold, -2) matches = self._set_values_using_indicator(matches, between_thresholds, -1) if self._force_match_for_each_row: similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape( similarity_matrix) force_match_column_ids = tf.argmax(similarity_matrix, 1, output_type=tf.int32) force_match_column_indicators = ( tf.one_hot( force_match_column_ids, depth=similarity_matrix_shape[1]) * tf.cast(tf.expand_dims(valid_rows, axis=-1), dtype=tf.float32)) force_match_row_ids = tf.argmax(force_match_column_indicators, 0, output_type=tf.int32) force_match_column_mask = tf.cast( tf.reduce_max(force_match_column_indicators, 0), tf.bool) final_matches = tf.where(force_match_column_mask, force_match_row_ids, matches) return final_matches else: return matches if similarity_matrix.shape.is_fully_defined(): if shape_utils.get_dim_as_int(similarity_matrix.shape[0]) == 0: return _match_when_rows_are_empty() else: return _match_when_rows_are_non_empty() else: return tf.cond( tf.greater(tf.shape(similarity_matrix)[0], 0), _match_when_rows_are_non_empty, _match_when_rows_are_empty) def _set_values_using_indicator(self, x, indicator, val): """Set the indicated fields of x to val. Args: x: tensor. indicator: boolean with same shape as x. val: scalar with value to set. Returns: modified tensor. """ indicator = tf.cast(indicator, x.dtype) return tf.add(tf.multiply(x, 1 - indicator), val * indicator)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/matchers/argmax_matcher.py
argmax_matcher.py
import tensorflow.compat.v1 as tf from tensorflow.contrib.image.python.ops import image_ops from object_detection.core import matcher class GreedyBipartiteMatcher(matcher.Matcher): """Wraps a Tensorflow greedy bipartite matcher.""" def __init__(self, use_matmul_gather=False): """Constructs a Matcher. Args: use_matmul_gather: Force constructed match objects to use matrix multiplication based gather instead of standard tf.gather. (Default: False). """ super(GreedyBipartiteMatcher, self).__init__( use_matmul_gather=use_matmul_gather) def _match(self, similarity_matrix, valid_rows): """Bipartite matches a collection rows and columns. A greedy bi-partite. TODO(rathodv): Add num_valid_columns options to match only that many columns with all the rows. Args: similarity_matrix: Float tensor of shape [N, M] with pairwise similarity where higher values mean more similar. valid_rows: A boolean tensor of shape [N] indicating the rows that are valid. Returns: match_results: int32 tensor of shape [M] with match_results[i]=-1 meaning that column i is not matched and otherwise that it is matched to row match_results[i]. """ valid_row_sim_matrix = tf.gather(similarity_matrix, tf.squeeze(tf.where(valid_rows), axis=-1)) invalid_row_sim_matrix = tf.gather( similarity_matrix, tf.squeeze(tf.where(tf.logical_not(valid_rows)), axis=-1)) similarity_matrix = tf.concat( [valid_row_sim_matrix, invalid_row_sim_matrix], axis=0) # Convert similarity matrix to distance matrix as tf.image.bipartite tries # to find minimum distance matches. distance_matrix = -1 * similarity_matrix num_valid_rows = tf.reduce_sum(tf.cast(valid_rows, dtype=tf.float32)) _, match_results = image_ops.bipartite_match( distance_matrix, num_valid_rows=num_valid_rows) match_results = tf.reshape(match_results, [-1]) match_results = tf.cast(match_results, tf.int32) return match_results
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/matchers/bipartite_matcher.py
bipartite_matcher.py
r"""Utilities for creating TFRecords of TF examples for the Open Images dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import tensorflow.compat.v1 as tf from object_detection.core import standard_fields from object_detection.utils import dataset_util def tf_example_from_annotations_data_frame(annotations_data_frame, label_map, encoded_image): """Populates a TF Example message with image annotations from a data frame. Args: annotations_data_frame: Data frame containing the annotations for a single image. label_map: String to integer label map. encoded_image: The encoded image string Returns: The populated TF Example, if the label of at least one object is present in label_map. Otherwise, returns None. """ filtered_data_frame = annotations_data_frame[ annotations_data_frame.LabelName.isin(label_map)] filtered_data_frame_boxes = filtered_data_frame[ ~filtered_data_frame.YMin.isnull()] filtered_data_frame_labels = filtered_data_frame[ filtered_data_frame.YMin.isnull()] image_id = annotations_data_frame.ImageID.iloc[0] feature_map = { standard_fields.TfExampleFields.object_bbox_ymin: dataset_util.float_list_feature( filtered_data_frame_boxes.YMin.to_numpy()), standard_fields.TfExampleFields.object_bbox_xmin: dataset_util.float_list_feature( filtered_data_frame_boxes.XMin.to_numpy()), standard_fields.TfExampleFields.object_bbox_ymax: dataset_util.float_list_feature( filtered_data_frame_boxes.YMax.to_numpy()), standard_fields.TfExampleFields.object_bbox_xmax: dataset_util.float_list_feature( filtered_data_frame_boxes.XMax.to_numpy()), standard_fields.TfExampleFields.object_class_text: dataset_util.bytes_list_feature([ six.ensure_binary(label_text) for label_text in filtered_data_frame_boxes.LabelName.to_numpy() ]), standard_fields.TfExampleFields.object_class_label: dataset_util.int64_list_feature( filtered_data_frame_boxes.LabelName.map( lambda x: label_map[x]).to_numpy()), standard_fields.TfExampleFields.filename: dataset_util.bytes_feature( six.ensure_binary('{}.jpg'.format(image_id))), standard_fields.TfExampleFields.source_id: dataset_util.bytes_feature(six.ensure_binary(image_id)), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(six.ensure_binary(encoded_image)), } if 'IsGroupOf' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_group_of] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsGroupOf.to_numpy().astype(int)) if 'IsOccluded' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_occluded] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsOccluded.to_numpy().astype( int)) if 'IsTruncated' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_truncated] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsTruncated.to_numpy().astype( int)) if 'IsDepiction' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_depiction] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsDepiction.to_numpy().astype( int)) if 'ConfidenceImageLabel' in filtered_data_frame_labels.columns: feature_map[standard_fields.TfExampleFields. image_class_label] = dataset_util.int64_list_feature( filtered_data_frame_labels.LabelName.map( lambda x: label_map[x]).to_numpy()) feature_map[standard_fields.TfExampleFields .image_class_text] = dataset_util.bytes_list_feature([ six.ensure_binary(label_text) for label_text in filtered_data_frame_labels.LabelName.to_numpy() ]), return tf.train.Example(features=tf.train.Features(feature=feature_map))
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/oid_tfrecord_creation.py
oid_tfrecord_creation.py
r"""Convert the Oxford pet dataset to TFRecord for object_detection. See: O. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar Cats and Dogs IEEE Conference on Computer Vision and Pattern Recognition, 2012 http://www.robots.ox.ac.uk/~vgg/data/pets/ Example usage: python object_detection/dataset_tools/create_pet_tf_record.py \ --data_dir=/home/user/pet \ --output_dir=/home/user/pet/output """ import hashlib import io import logging import os import random import re import contextlib2 from lxml import etree import numpy as np import PIL.Image import tensorflow.compat.v1 as tf from object_detection.dataset_tools import tf_record_creation_util from object_detection.utils import dataset_util from object_detection.utils import label_map_util flags = tf.app.flags flags.DEFINE_string('data_dir', '', 'Root directory to raw pet dataset.') flags.DEFINE_string('output_dir', '', 'Path to directory to output TFRecords.') flags.DEFINE_string('label_map_path', 'data/pet_label_map.pbtxt', 'Path to label map proto') flags.DEFINE_boolean('faces_only', True, 'If True, generates bounding boxes ' 'for pet faces. Otherwise generates bounding boxes (as ' 'well as segmentations for full pet bodies). Note that ' 'in the latter case, the resulting files are much larger.') flags.DEFINE_string('mask_type', 'png', 'How to represent instance ' 'segmentation masks. Options are "png" or "numerical".') flags.DEFINE_integer('num_shards', 10, 'Number of TFRecord shards') FLAGS = flags.FLAGS def get_class_name_from_filename(file_name): """Gets the class name from a file. Args: file_name: The file name to get the class name from. ie. "american_pit_bull_terrier_105.jpg" Returns: A string of the class name. """ match = re.match(r'([A-Za-z_]+)(_[0-9]+\.jpg)', file_name, re.I) return match.groups()[0] def dict_to_tf_example(data, mask_path, label_map_dict, image_subdirectory, ignore_difficult_instances=False, faces_only=True, mask_type='png'): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) mask_path: String path to PNG encoded mask. label_map_dict: A map from string label names to integers ids. image_subdirectory: String specifying subdirectory within the Pascal dataset directory holding the actual image data. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). faces_only: If True, generates bounding boxes for pet faces. Otherwise generates bounding boxes (as well as segmentations for full pet bodies). mask_type: 'numerical' or 'png'. 'png' is recommended because it leads to smaller file sizes. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ img_path = os.path.join(image_subdirectory, data['filename']) with tf.gfile.GFile(img_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() with tf.gfile.GFile(mask_path, 'rb') as fid: encoded_mask_png = fid.read() encoded_png_io = io.BytesIO(encoded_mask_png) mask = PIL.Image.open(encoded_png_io) if mask.format != 'PNG': raise ValueError('Mask format not PNG') mask_np = np.asarray(mask) nonbackground_indices_x = np.any(mask_np != 2, axis=0) nonbackground_indices_y = np.any(mask_np != 2, axis=1) nonzero_x_indices = np.where(nonbackground_indices_x) nonzero_y_indices = np.where(nonbackground_indices_y) width = int(data['size']['width']) height = int(data['size']['height']) xmins = [] ymins = [] xmaxs = [] ymaxs = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] masks = [] if 'object' in data: for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) if faces_only: xmin = float(obj['bndbox']['xmin']) xmax = float(obj['bndbox']['xmax']) ymin = float(obj['bndbox']['ymin']) ymax = float(obj['bndbox']['ymax']) else: xmin = float(np.min(nonzero_x_indices)) xmax = float(np.max(nonzero_x_indices)) ymin = float(np.min(nonzero_y_indices)) ymax = float(np.max(nonzero_y_indices)) xmins.append(xmin / width) ymins.append(ymin / height) xmaxs.append(xmax / width) ymaxs.append(ymax / height) class_name = get_class_name_from_filename(data['filename']) classes_text.append(class_name.encode('utf8')) classes.append(label_map_dict[class_name]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) if not faces_only: mask_remapped = (mask_np != 2).astype(np.uint8) masks.append(mask_remapped) feature_dict = { 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), } if not faces_only: if mask_type == 'numerical': mask_stack = np.stack(masks).astype(np.float32) masks_flattened = np.reshape(mask_stack, [-1]) feature_dict['image/object/mask'] = ( dataset_util.float_list_feature(masks_flattened.tolist())) elif mask_type == 'png': encoded_mask_png_list = [] for mask in masks: img = PIL.Image.fromarray(mask) output = io.BytesIO() img.save(output, format='PNG') encoded_mask_png_list.append(output.getvalue()) feature_dict['image/object/mask'] = ( dataset_util.bytes_list_feature(encoded_mask_png_list)) example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) return example def create_tf_record(output_filename, num_shards, label_map_dict, annotations_dir, image_dir, examples, faces_only=True, mask_type='png'): """Creates a TFRecord file from examples. Args: output_filename: Path to where output file is saved. num_shards: Number of shards for output file. label_map_dict: The label map dictionary. annotations_dir: Directory where annotation files are stored. image_dir: Directory where image files are stored. examples: Examples to parse and save to tf record. faces_only: If True, generates bounding boxes for pet faces. Otherwise generates bounding boxes (as well as segmentations for full pet bodies). mask_type: 'numerical' or 'png'. 'png' is recommended because it leads to smaller file sizes. """ with contextlib2.ExitStack() as tf_record_close_stack: output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords( tf_record_close_stack, output_filename, num_shards) for idx, example in enumerate(examples): if idx % 100 == 0: logging.info('On image %d of %d', idx, len(examples)) xml_path = os.path.join(annotations_dir, 'xmls', example + '.xml') mask_path = os.path.join(annotations_dir, 'trimaps', example + '.png') if not os.path.exists(xml_path): logging.warning('Could not find %s, ignoring example.', xml_path) continue with tf.gfile.GFile(xml_path, 'r') as fid: xml_str = fid.read() xml = etree.fromstring(xml_str) data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] try: tf_example = dict_to_tf_example( data, mask_path, label_map_dict, image_dir, faces_only=faces_only, mask_type=mask_type) if tf_example: shard_idx = idx % num_shards output_tfrecords[shard_idx].write(tf_example.SerializeToString()) except ValueError: logging.warning('Invalid example: %s, ignoring.', xml_path) # TODO(derekjchow): Add test for pet/PASCAL main files. def main(_): data_dir = FLAGS.data_dir label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path) logging.info('Reading from Pet dataset.') image_dir = os.path.join(data_dir, 'images') annotations_dir = os.path.join(data_dir, 'annotations') examples_path = os.path.join(annotations_dir, 'trainval.txt') examples_list = dataset_util.read_examples_list(examples_path) # Test images are not included in the downloaded data set, so we shall perform # our own split. random.seed(42) random.shuffle(examples_list) num_examples = len(examples_list) num_train = int(0.7 * num_examples) train_examples = examples_list[:num_train] val_examples = examples_list[num_train:] logging.info('%d training and %d validation examples.', len(train_examples), len(val_examples)) train_output_path = os.path.join(FLAGS.output_dir, 'pet_faces_train.record') val_output_path = os.path.join(FLAGS.output_dir, 'pet_faces_val.record') if not FLAGS.faces_only: train_output_path = os.path.join(FLAGS.output_dir, 'pets_fullbody_with_masks_train.record') val_output_path = os.path.join(FLAGS.output_dir, 'pets_fullbody_with_masks_val.record') create_tf_record( train_output_path, FLAGS.num_shards, label_map_dict, annotations_dir, image_dir, train_examples, faces_only=FLAGS.faces_only, mask_type=FLAGS.mask_type) create_tf_record( val_output_path, FLAGS.num_shards, label_map_dict, annotations_dir, image_dir, val_examples, faces_only=FLAGS.faces_only, mask_type=FLAGS.mask_type) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/create_pet_tf_record.py
create_pet_tf_record.py
r"""Code to download and parse the AVA Actions dataset for TensorFlow models. The [AVA Actions data set]( https://research.google.com/ava/index.html) is a dataset for human action recognition. This script downloads the annotations and prepares data from similar annotations if local video files are available. The video files can be downloaded from the following website: https://github.com/cvdfoundation/ava-dataset Prior to running this script, please run download_and_preprocess_ava.sh to download input videos. Running this code as a module generates the data set on disk. First, the required files are downloaded (_download_data) which enables constructing the label map. Then (in generate_examples), for each split in the data set, the metadata and image frames are generated from the annotations for each sequence example (_generate_examples). The data set is written to disk as a set of numbered TFRecord files. Generating the data on disk can take considerable time and disk space. (Image compression quality is the primary determiner of disk usage. If using the Tensorflow Object Detection API, set the input_type field in the input_reader to TF_SEQUENCE_EXAMPLE. If using this script to generate data for Context R-CNN scripts, the --examples_for_context flag should be set to true, so that properly-formatted tf.example objects are written to disk. This data is structured for per-clip action classification where images is the sequence of images and labels are a one-hot encoded value. See as_dataset() for more details. Note that the number of videos changes in the data set over time, so it will likely be necessary to change the expected number of examples. The argument video_path_format_string expects a value as such: '/path/to/videos/{0}' """ import collections import contextlib import csv import glob import hashlib import os import random import sys import zipfile from absl import app from absl import flags from absl import logging import cv2 from six.moves import range from six.moves import urllib import tensorflow.compat.v1 as tf from object_detection.dataset_tools import seq_example_util from object_detection.utils import dataset_util from object_detection.utils import label_map_util POSSIBLE_TIMESTAMPS = range(902, 1798) ANNOTATION_URL = 'https://research.google.com/ava/download/ava_v2.2.zip' SECONDS_TO_MILLI = 1000 FILEPATTERN = 'ava_actions_%s_1fps_rgb' SPLITS = { 'train': { 'shards': 1000, 'examples': 862663, 'csv': '', 'excluded-csv': '' }, 'val': { 'shards': 100, 'examples': 243029, 'csv': '', 'excluded-csv': '' }, # Test doesn't have ground truth, so TF Records can't be created 'test': { 'shards': 100, 'examples': 0, 'csv': '', 'excluded-csv': '' } } NUM_CLASSES = 80 def feature_list_feature(value): return tf.train.FeatureList(feature=value) class Ava(object): """Generates and loads the AVA Actions 2.2 data set.""" def __init__(self, path_to_output_dir, path_to_data_download): if not path_to_output_dir: raise ValueError('You must supply the path to the data directory.') self.path_to_data_download = path_to_data_download self.path_to_output_dir = path_to_output_dir def generate_and_write_records(self, splits_to_process='train,val,test', video_path_format_string=None, seconds_per_sequence=10, hop_between_sequences=10, examples_for_context=False): """Downloads data and generates sharded TFRecords. Downloads the data files, generates metadata, and processes the metadata with MediaPipe to produce tf.SequenceExamples for training. The resulting files can be read with as_dataset(). After running this function the original data files can be deleted. Args: splits_to_process: csv string of which splits to process. Allows providing a custom CSV with the CSV flag. The original data is still downloaded to generate the label_map. video_path_format_string: The format string for the path to local files. seconds_per_sequence: The length of each sequence, in seconds. hop_between_sequences: The gap between the centers of successive sequences. examples_for_context: Whether to generate sequence examples with context for context R-CNN. """ example_function = self._generate_sequence_examples if examples_for_context: example_function = self._generate_examples logging.info('Downloading data.') download_output = self._download_data() for key in splits_to_process.split(','): logging.info('Generating examples for split: %s', key) all_metadata = list(example_function( download_output[0][key][0], download_output[0][key][1], download_output[1], seconds_per_sequence, hop_between_sequences, video_path_format_string)) logging.info('An example of the metadata: ') logging.info(all_metadata[0]) random.seed(47) random.shuffle(all_metadata) shards = SPLITS[key]['shards'] shard_names = [os.path.join( self.path_to_output_dir, FILEPATTERN % key + '-%05d-of-%05d' % ( i, shards)) for i in range(shards)] writers = [tf.io.TFRecordWriter(shard) for shard in shard_names] with _close_on_exit(writers) as writers: for i, seq_ex in enumerate(all_metadata): writers[i % len(writers)].write(seq_ex.SerializeToString()) logging.info('Data extraction complete.') def _generate_sequence_examples(self, annotation_file, excluded_file, label_map, seconds_per_sequence, hop_between_sequences, video_path_format_string): """For each row in the annotation CSV, generates corresponding examples. When iterating through frames for a single sequence example, skips over excluded frames. When moving to the next sequence example, also skips over excluded frames as if they don't exist. Generates equal-length sequence examples, each with length seconds_per_sequence (1 fps) and gaps of hop_between_sequences frames (and seconds) between them, possible greater due to excluded frames. Args: annotation_file: path to the file of AVA CSV annotations. excluded_file: path to a CSV file of excluded timestamps for each video. label_map: an {int: string} label map. seconds_per_sequence: The number of seconds per example in each example. hop_between_sequences: The hop between sequences. If less than seconds_per_sequence, will overlap. video_path_format_string: File path format to glob video files. Yields: Each prepared tf.SequenceExample of metadata also containing video frames """ fieldnames = ['id', 'timestamp_seconds', 'xmin', 'ymin', 'xmax', 'ymax', 'action_label'] frame_excluded = {} # create a sparse, nested map of videos and frame indices. with open(excluded_file, 'r') as excluded: reader = csv.reader(excluded) for row in reader: frame_excluded[(row[0], int(float(row[1])))] = True with open(annotation_file, 'r') as annotations: reader = csv.DictReader(annotations, fieldnames) frame_annotations = collections.defaultdict(list) ids = set() # aggreggate by video and timestamp: for row in reader: ids.add(row['id']) key = (row['id'], int(float(row['timestamp_seconds']))) frame_annotations[key].append(row) # for each video, find aggregates near each sampled frame.: logging.info('Generating metadata...') media_num = 1 for media_id in ids: logging.info('%d/%d, ignore warnings.\n', media_num, len(ids)) media_num += 1 filepath = glob.glob( video_path_format_string.format(media_id) + '*')[0] cur_vid = cv2.VideoCapture(filepath) width = cur_vid.get(cv2.CAP_PROP_FRAME_WIDTH) height = cur_vid.get(cv2.CAP_PROP_FRAME_HEIGHT) middle_frame_time = POSSIBLE_TIMESTAMPS[0] while middle_frame_time < POSSIBLE_TIMESTAMPS[-1]: start_time = middle_frame_time - seconds_per_sequence // 2 - ( 0 if seconds_per_sequence % 2 == 0 else 1) end_time = middle_frame_time + (seconds_per_sequence // 2) total_boxes = [] total_labels = [] total_label_strings = [] total_images = [] total_source_ids = [] total_confidences = [] total_is_annotated = [] windowed_timestamp = start_time while windowed_timestamp < end_time: if (media_id, windowed_timestamp) in frame_excluded: end_time += 1 windowed_timestamp += 1 logging.info('Ignoring and skipping excluded frame.') continue cur_vid.set(cv2.CAP_PROP_POS_MSEC, (windowed_timestamp) * SECONDS_TO_MILLI) _, image = cur_vid.read() _, buffer = cv2.imencode('.jpg', image) bufstring = buffer.tostring() total_images.append(bufstring) source_id = str(windowed_timestamp) + '_' + media_id total_source_ids.append(source_id) total_is_annotated.append(1) boxes = [] labels = [] label_strings = [] confidences = [] for row in frame_annotations[(media_id, windowed_timestamp)]: if len(row) > 2 and int(row['action_label']) in label_map: boxes.append([float(row['ymin']), float(row['xmin']), float(row['ymax']), float(row['xmax'])]) labels.append(int(row['action_label'])) label_strings.append(label_map[int(row['action_label'])]) confidences.append(1) else: logging.warning('Unknown label: %s', row['action_label']) total_boxes.append(boxes) total_labels.append(labels) total_label_strings.append(label_strings) total_confidences.append(confidences) windowed_timestamp += 1 if total_boxes: yield seq_example_util.make_sequence_example( 'AVA', media_id, total_images, int(height), int(width), 'jpeg', total_source_ids, None, total_is_annotated, total_boxes, total_label_strings, use_strs_for_source_id=True) # Move middle_time_frame, skipping excluded frames frames_mv = 0 frames_excluded_count = 0 while (frames_mv < hop_between_sequences + frames_excluded_count and middle_frame_time + frames_mv < POSSIBLE_TIMESTAMPS[-1]): frames_mv += 1 if (media_id, windowed_timestamp + frames_mv) in frame_excluded: frames_excluded_count += 1 middle_frame_time += frames_mv cur_vid.release() def _generate_examples(self, annotation_file, excluded_file, label_map, seconds_per_sequence, hop_between_sequences, video_path_format_string): """For each row in the annotation CSV, generates examples. When iterating through frames for a single example, skips over excluded frames. Generates equal-length sequence examples, each with length seconds_per_sequence (1 fps) and gaps of hop_between_sequences frames (and seconds) between them, possible greater due to excluded frames. Args: annotation_file: path to the file of AVA CSV annotations. excluded_file: path to a CSV file of excluded timestamps for each video. label_map: an {int: string} label map. seconds_per_sequence: The number of seconds per example in each example. hop_between_sequences: The hop between sequences. If less than seconds_per_sequence, will overlap. video_path_format_string: File path format to glob video files. Yields: Each prepared tf.Example of metadata also containing video frames """ del seconds_per_sequence del hop_between_sequences fieldnames = ['id', 'timestamp_seconds', 'xmin', 'ymin', 'xmax', 'ymax', 'action_label'] frame_excluded = {} # create a sparse, nested map of videos and frame indices. with open(excluded_file, 'r') as excluded: reader = csv.reader(excluded) for row in reader: frame_excluded[(row[0], int(float(row[1])))] = True with open(annotation_file, 'r') as annotations: reader = csv.DictReader(annotations, fieldnames) frame_annotations = collections.defaultdict(list) ids = set() # aggreggate by video and timestamp: for row in reader: ids.add(row['id']) key = (row['id'], int(float(row['timestamp_seconds']))) frame_annotations[key].append(row) # for each video, find aggreggates near each sampled frame.: logging.info('Generating metadata...') media_num = 1 for media_id in ids: logging.info('%d/%d, ignore warnings.\n', media_num, len(ids)) media_num += 1 filepath = glob.glob( video_path_format_string.format(media_id) + '*')[0] cur_vid = cv2.VideoCapture(filepath) width = cur_vid.get(cv2.CAP_PROP_FRAME_WIDTH) height = cur_vid.get(cv2.CAP_PROP_FRAME_HEIGHT) middle_frame_time = POSSIBLE_TIMESTAMPS[0] total_non_excluded = 0 while middle_frame_time < POSSIBLE_TIMESTAMPS[-1]: if (media_id, middle_frame_time) not in frame_excluded: total_non_excluded += 1 middle_frame_time += 1 middle_frame_time = POSSIBLE_TIMESTAMPS[0] cur_frame_num = 0 while middle_frame_time < POSSIBLE_TIMESTAMPS[-1]: cur_vid.set(cv2.CAP_PROP_POS_MSEC, middle_frame_time * SECONDS_TO_MILLI) _, image = cur_vid.read() _, buffer = cv2.imencode('.jpg', image) bufstring = buffer.tostring() if (media_id, middle_frame_time) in frame_excluded: middle_frame_time += 1 logging.info('Ignoring and skipping excluded frame.') continue cur_frame_num += 1 source_id = str(middle_frame_time) + '_' + media_id xmins = [] xmaxs = [] ymins = [] ymaxs = [] areas = [] labels = [] label_strings = [] confidences = [] for row in frame_annotations[(media_id, middle_frame_time)]: if len(row) > 2 and int(row['action_label']) in label_map: xmins.append(float(row['xmin'])) xmaxs.append(float(row['xmax'])) ymins.append(float(row['ymin'])) ymaxs.append(float(row['ymax'])) areas.append(float((xmaxs[-1] - xmins[-1]) * (ymaxs[-1] - ymins[-1])) / 2) labels.append(int(row['action_label'])) label_strings.append(label_map[int(row['action_label'])]) confidences.append(1) else: logging.warning('Unknown label: %s', row['action_label']) middle_frame_time += 1/3 if abs(middle_frame_time - round(middle_frame_time) < 0.0001): middle_frame_time = round(middle_frame_time) key = hashlib.sha256(bufstring).hexdigest() date_captured_feature = ( '2020-06-17 00:%02d:%02d' % ((middle_frame_time - 900)*3 // 60, (middle_frame_time - 900)*3 % 60)) context_feature_dict = { 'image/height': dataset_util.int64_feature(int(height)), 'image/width': dataset_util.int64_feature(int(width)), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(source_id.encode('utf8')), 'image/filename': dataset_util.bytes_feature(source_id.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(bufstring), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/area': dataset_util.float_list_feature(areas), 'image/object/class/label': dataset_util.int64_list_feature(labels), 'image/object/class/text': dataset_util.bytes_list_feature(label_strings), 'image/location': dataset_util.bytes_feature(media_id.encode('utf8')), 'image/date_captured': dataset_util.bytes_feature( date_captured_feature.encode('utf8')), 'image/seq_num_frames': dataset_util.int64_feature(total_non_excluded), 'image/seq_frame_num': dataset_util.int64_feature(cur_frame_num), 'image/seq_id': dataset_util.bytes_feature(media_id.encode('utf8')), } yield tf.train.Example( features=tf.train.Features(feature=context_feature_dict)) cur_vid.release() def _download_data(self): """Downloads and extracts data if not already available.""" if sys.version_info >= (3, 0): urlretrieve = urllib.request.urlretrieve else: urlretrieve = urllib.request.urlretrieve logging.info('Creating data directory.') tf.io.gfile.makedirs(self.path_to_data_download) logging.info('Downloading annotations.') paths = {} zip_path = os.path.join(self.path_to_data_download, ANNOTATION_URL.split('/')[-1]) urlretrieve(ANNOTATION_URL, zip_path) with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(self.path_to_data_download) for split in ['train', 'test', 'val']: csv_path = os.path.join(self.path_to_data_download, 'ava_%s_v2.2.csv' % split) excl_name = 'ava_%s_excluded_timestamps_v2.2.csv' % split excluded_csv_path = os.path.join(self.path_to_data_download, excl_name) SPLITS[split]['csv'] = csv_path SPLITS[split]['excluded-csv'] = excluded_csv_path paths[split] = (csv_path, excluded_csv_path) label_map = self.get_label_map(os.path.join( self.path_to_data_download, 'ava_action_list_v2.2_for_activitynet_2019.pbtxt')) return paths, label_map def get_label_map(self, path): """Parses a label map into {integer:string} format.""" label_map_dict = label_map_util.get_label_map_dict(path) label_map_dict = {v: bytes(k, 'utf8') for k, v in label_map_dict.items()} logging.info(label_map_dict) return label_map_dict @contextlib.contextmanager def _close_on_exit(writers): """Call close on all writers on exit.""" try: yield writers finally: for writer in writers: writer.close() def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') Ava(flags.FLAGS.path_to_output_dir, flags.FLAGS.path_to_download_data).generate_and_write_records( flags.FLAGS.splits_to_process, flags.FLAGS.video_path_format_string, flags.FLAGS.seconds_per_sequence, flags.FLAGS.hop_between_sequences, flags.FLAGS.examples_for_context) if __name__ == '__main__': flags.DEFINE_string('path_to_download_data', '', 'Path to directory to download data to.') flags.DEFINE_string('path_to_output_dir', '', 'Path to directory to write data to.') flags.DEFINE_string('splits_to_process', 'train,val', 'Process these splits. Useful for custom data splits.') flags.DEFINE_string('video_path_format_string', None, 'The format string for the path to local video files. ' 'Uses the Python string.format() syntax with possible ' 'arguments of {video}, {start}, {end}, {label_name}, and ' '{split}, corresponding to columns of the data csvs.') flags.DEFINE_integer('seconds_per_sequence', 10, 'The number of seconds per example in each example.' 'Always 1 when examples_for_context is True.') flags.DEFINE_integer('hop_between_sequences', 10, 'The hop between sequences. If less than ' 'seconds_per_sequence, will overlap. Always 1 when ' 'examples_for_context is True.') flags.DEFINE_boolean('examples_for_context', False, 'Whether to generate examples instead of sequence ' 'examples. If true, will generate tf.Example objects ' 'for use in Context R-CNN.') app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/create_ava_actions_tf_record.py
create_ava_actions_tf_record.py
r"""Convert raw KITTI detection dataset to TFRecord for object_detection. Converts KITTI detection dataset to TFRecords with a standard format allowing to use this dataset to train object detectors. The raw dataset can be downloaded from: http://kitti.is.tue.mpg.de/kitti/data_object_image_2.zip. http://kitti.is.tue.mpg.de/kitti/data_object_label_2.zip Permission can be requested at the main website. KITTI detection dataset contains 7481 training images. Using this code with the default settings will set aside the first 500 images as a validation set. This can be altered using the flags, see details below. Example usage: python object_detection/dataset_tools/create_kitti_tf_record.py \ --data_dir=/home/user/kitti \ --output_path=/home/user/kitti.record """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import os import numpy as np import PIL.Image as pil import tensorflow.compat.v1 as tf from object_detection.utils import dataset_util from object_detection.utils import label_map_util from object_detection.utils.np_box_ops import iou tf.app.flags.DEFINE_string('data_dir', '', 'Location of root directory for the ' 'data. Folder structure is assumed to be:' '<data_dir>/training/label_2 (annotations) and' '<data_dir>/data_object_image_2/training/image_2' '(images).') tf.app.flags.DEFINE_string('output_path', '', 'Path to which TFRecord files' 'will be written. The TFRecord with the training set' 'will be located at: <output_path>_train.tfrecord.' 'And the TFRecord with the validation set will be' 'located at: <output_path>_val.tfrecord') tf.app.flags.DEFINE_string('classes_to_use', 'car,pedestrian,dontcare', 'Comma separated list of class names that will be' 'used. Adding the dontcare class will remove all' 'bboxs in the dontcare regions.') tf.app.flags.DEFINE_string('label_map_path', 'data/kitti_label_map.pbtxt', 'Path to label map proto.') tf.app.flags.DEFINE_integer('validation_set_size', '500', 'Number of images to' 'be used as a validation set.') FLAGS = tf.app.flags.FLAGS def convert_kitti_to_tfrecords(data_dir, output_path, classes_to_use, label_map_path, validation_set_size): """Convert the KITTI detection dataset to TFRecords. Args: data_dir: The full path to the unzipped folder containing the unzipped data from data_object_image_2 and data_object_label_2.zip. Folder structure is assumed to be: data_dir/training/label_2 (annotations) and data_dir/data_object_image_2/training/image_2 (images). output_path: The path to which TFRecord files will be written. The TFRecord with the training set will be located at: <output_path>_train.tfrecord And the TFRecord with the validation set will be located at: <output_path>_val.tfrecord classes_to_use: List of strings naming the classes for which data should be converted. Use the same names as presented in the KIITI README file. Adding dontcare class will remove all other bounding boxes that overlap with areas marked as dontcare regions. label_map_path: Path to label map proto validation_set_size: How many images should be left as the validation set. (Ffirst `validation_set_size` examples are selected to be in the validation set). """ label_map_dict = label_map_util.get_label_map_dict(label_map_path) train_count = 0 val_count = 0 annotation_dir = os.path.join(data_dir, 'training', 'label_2') image_dir = os.path.join(data_dir, 'data_object_image_2', 'training', 'image_2') train_writer = tf.python_io.TFRecordWriter('%s_train.tfrecord'% output_path) val_writer = tf.python_io.TFRecordWriter('%s_val.tfrecord'% output_path) images = sorted(tf.gfile.ListDirectory(image_dir)) for img_name in images: img_num = int(img_name.split('.')[0]) is_validation_img = img_num < validation_set_size img_anno = read_annotation_file(os.path.join(annotation_dir, str(img_num).zfill(6)+'.txt')) image_path = os.path.join(image_dir, img_name) # Filter all bounding boxes of this frame that are of a legal class, and # don't overlap with a dontcare region. # TODO(talremez) filter out targets that are truncated or heavily occluded. annotation_for_image = filter_annotations(img_anno, classes_to_use) example = prepare_example(image_path, annotation_for_image, label_map_dict) if is_validation_img: val_writer.write(example.SerializeToString()) val_count += 1 else: train_writer.write(example.SerializeToString()) train_count += 1 train_writer.close() val_writer.close() def prepare_example(image_path, annotations, label_map_dict): """Converts a dictionary with annotations for an image to tf.Example proto. Args: image_path: The complete path to image. annotations: A dictionary representing the annotation of a single object that appears in the image. label_map_dict: A map from string label names to integer ids. Returns: example: The converted tf.Example. """ with tf.gfile.GFile(image_path, 'rb') as fid: encoded_png = fid.read() encoded_png_io = io.BytesIO(encoded_png) image = pil.open(encoded_png_io) image = np.asarray(image) key = hashlib.sha256(encoded_png).hexdigest() width = int(image.shape[1]) height = int(image.shape[0]) xmin_norm = annotations['2d_bbox_left'] / float(width) ymin_norm = annotations['2d_bbox_top'] / float(height) xmax_norm = annotations['2d_bbox_right'] / float(width) ymax_norm = annotations['2d_bbox_bottom'] / float(height) difficult_obj = [0]*len(xmin_norm) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(image_path.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(image_path.encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_png), 'image/format': dataset_util.bytes_feature('png'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin_norm), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax_norm), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin_norm), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax_norm), 'image/object/class/text': dataset_util.bytes_list_feature( [x.encode('utf8') for x in annotations['type']]), 'image/object/class/label': dataset_util.int64_list_feature( [label_map_dict[x] for x in annotations['type']]), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.float_list_feature( annotations['truncated']), 'image/object/alpha': dataset_util.float_list_feature( annotations['alpha']), 'image/object/3d_bbox/height': dataset_util.float_list_feature( annotations['3d_bbox_height']), 'image/object/3d_bbox/width': dataset_util.float_list_feature( annotations['3d_bbox_width']), 'image/object/3d_bbox/length': dataset_util.float_list_feature( annotations['3d_bbox_length']), 'image/object/3d_bbox/x': dataset_util.float_list_feature( annotations['3d_bbox_x']), 'image/object/3d_bbox/y': dataset_util.float_list_feature( annotations['3d_bbox_y']), 'image/object/3d_bbox/z': dataset_util.float_list_feature( annotations['3d_bbox_z']), 'image/object/3d_bbox/rot_y': dataset_util.float_list_feature( annotations['3d_bbox_rot_y']), })) return example def filter_annotations(img_all_annotations, used_classes): """Filters out annotations from the unused classes and dontcare regions. Filters out the annotations that belong to classes we do now wish to use and (optionally) also removes all boxes that overlap with dontcare regions. Args: img_all_annotations: A list of annotation dictionaries. See documentation of read_annotation_file for more details about the format of the annotations. used_classes: A list of strings listing the classes we want to keep, if the list contains "dontcare", all bounding boxes with overlapping with dont care regions will also be filtered out. Returns: img_filtered_annotations: A list of annotation dictionaries that have passed the filtering. """ img_filtered_annotations = {} # Filter the type of the objects. relevant_annotation_indices = [ i for i, x in enumerate(img_all_annotations['type']) if x in used_classes ] for key in img_all_annotations.keys(): img_filtered_annotations[key] = ( img_all_annotations[key][relevant_annotation_indices]) if 'dontcare' in used_classes: dont_care_indices = [i for i, x in enumerate(img_filtered_annotations['type']) if x == 'dontcare'] # bounding box format [y_min, x_min, y_max, x_max] all_boxes = np.stack([img_filtered_annotations['2d_bbox_top'], img_filtered_annotations['2d_bbox_left'], img_filtered_annotations['2d_bbox_bottom'], img_filtered_annotations['2d_bbox_right']], axis=1) ious = iou(boxes1=all_boxes, boxes2=all_boxes[dont_care_indices]) # Remove all bounding boxes that overlap with a dontcare region. if ious.size > 0: boxes_to_remove = np.amax(ious, axis=1) > 0.0 for key in img_all_annotations.keys(): img_filtered_annotations[key] = ( img_filtered_annotations[key][np.logical_not(boxes_to_remove)]) return img_filtered_annotations def read_annotation_file(filename): """Reads a KITTI annotation file. Converts a KITTI annotation file into a dictionary containing all the relevant information. Args: filename: the path to the annotataion text file. Returns: anno: A dictionary with the converted annotation information. See annotation README file for details on the different fields. """ with open(filename) as f: content = f.readlines() content = [x.strip().split(' ') for x in content] anno = {} anno['type'] = np.array([x[0].lower() for x in content]) anno['truncated'] = np.array([float(x[1]) for x in content]) anno['occluded'] = np.array([int(x[2]) for x in content]) anno['alpha'] = np.array([float(x[3]) for x in content]) anno['2d_bbox_left'] = np.array([float(x[4]) for x in content]) anno['2d_bbox_top'] = np.array([float(x[5]) for x in content]) anno['2d_bbox_right'] = np.array([float(x[6]) for x in content]) anno['2d_bbox_bottom'] = np.array([float(x[7]) for x in content]) anno['3d_bbox_height'] = np.array([float(x[8]) for x in content]) anno['3d_bbox_width'] = np.array([float(x[9]) for x in content]) anno['3d_bbox_length'] = np.array([float(x[10]) for x in content]) anno['3d_bbox_x'] = np.array([float(x[11]) for x in content]) anno['3d_bbox_y'] = np.array([float(x[12]) for x in content]) anno['3d_bbox_z'] = np.array([float(x[13]) for x in content]) anno['3d_bbox_rot_y'] = np.array([float(x[14]) for x in content]) return anno def main(_): convert_kitti_to_tfrecords( data_dir=FLAGS.data_dir, output_path=FLAGS.output_path, classes_to_use=FLAGS.classes_to_use.split(','), label_map_path=FLAGS.label_map_path, validation_set_size=FLAGS.validation_set_size) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/create_kitti_tf_record.py
create_kitti_tf_record.py
r"""Convert raw COCO dataset to TFRecord for object_detection. This tool supports data generation for object detection (boxes, masks), keypoint detection, and DensePose. Please note that this tool creates sharded output files. Example usage: python create_coco_tf_record.py --logtostderr \ --train_image_dir="${TRAIN_IMAGE_DIR}" \ --val_image_dir="${VAL_IMAGE_DIR}" \ --test_image_dir="${TEST_IMAGE_DIR}" \ --train_annotations_file="${TRAIN_ANNOTATIONS_FILE}" \ --val_annotations_file="${VAL_ANNOTATIONS_FILE}" \ --testdev_annotations_file="${TESTDEV_ANNOTATIONS_FILE}" \ --output_dir="${OUTPUT_DIR}" """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import json import logging import os import contextlib2 import numpy as np import PIL.Image from pycocotools import mask import tensorflow.compat.v1 as tf from object_detection.dataset_tools import tf_record_creation_util from object_detection.utils import dataset_util from object_detection.utils import label_map_util flags = tf.app.flags tf.flags.DEFINE_boolean( 'include_masks', False, 'Whether to include instance segmentations masks ' '(PNG encoded) in the result. default: False.') tf.flags.DEFINE_string('train_image_dir', '', 'Training image directory.') tf.flags.DEFINE_string('val_image_dir', '', 'Validation image directory.') tf.flags.DEFINE_string('test_image_dir', '', 'Test image directory.') tf.flags.DEFINE_string('train_annotations_file', '', 'Training annotations JSON file.') tf.flags.DEFINE_string('val_annotations_file', '', 'Validation annotations JSON file.') tf.flags.DEFINE_string('testdev_annotations_file', '', 'Test-dev annotations JSON file.') tf.flags.DEFINE_string('train_keypoint_annotations_file', '', 'Training annotations JSON file.') tf.flags.DEFINE_string('val_keypoint_annotations_file', '', 'Validation annotations JSON file.') # DensePose is only available for coco 2014. tf.flags.DEFINE_string('train_densepose_annotations_file', '', 'Training annotations JSON file for DensePose.') tf.flags.DEFINE_string('val_densepose_annotations_file', '', 'Validation annotations JSON file for DensePose.') tf.flags.DEFINE_string('output_dir', '/tmp/', 'Output data directory.') # Whether to only produce images/annotations on person class (for keypoint / # densepose task). tf.flags.DEFINE_boolean('remove_non_person_annotations', False, 'Whether to ' 'remove all annotations for non-person objects.') tf.flags.DEFINE_boolean('remove_non_person_images', False, 'Whether to ' 'remove all examples that do not contain a person.') FLAGS = flags.FLAGS logger = tf.get_logger() logger.setLevel(logging.INFO) _COCO_KEYPOINT_NAMES = [ b'nose', b'left_eye', b'right_eye', b'left_ear', b'right_ear', b'left_shoulder', b'right_shoulder', b'left_elbow', b'right_elbow', b'left_wrist', b'right_wrist', b'left_hip', b'right_hip', b'left_knee', b'right_knee', b'left_ankle', b'right_ankle' ] _COCO_PART_NAMES = [ b'torso_back', b'torso_front', b'right_hand', b'left_hand', b'left_foot', b'right_foot', b'right_upper_leg_back', b'left_upper_leg_back', b'right_upper_leg_front', b'left_upper_leg_front', b'right_lower_leg_back', b'left_lower_leg_back', b'right_lower_leg_front', b'left_lower_leg_front', b'left_upper_arm_back', b'right_upper_arm_back', b'left_upper_arm_front', b'right_upper_arm_front', b'left_lower_arm_back', b'right_lower_arm_back', b'left_lower_arm_front', b'right_lower_arm_front', b'right_face', b'left_face', ] _DP_PART_ID_OFFSET = 1 def clip_to_unit(x): return min(max(x, 0.0), 1.0) def create_tf_example(image, annotations_list, image_dir, category_index, include_masks=False, keypoint_annotations_dict=None, densepose_annotations_dict=None, remove_non_person_annotations=False, remove_non_person_images=False): """Converts image and annotations to a tf.Example proto. Args: image: dict with keys: [u'license', u'file_name', u'coco_url', u'height', u'width', u'date_captured', u'flickr_url', u'id'] annotations_list: list of dicts with keys: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id'] Notice that bounding box coordinates in the official COCO dataset are given as [x, y, width, height] tuples using absolute coordinates where x, y represent the top-left (0-indexed) corner. This function converts to the format expected by the Tensorflow Object Detection API (which is which is [ymin, xmin, ymax, xmax] with coordinates normalized relative to image size). image_dir: directory containing the image files. category_index: a dict containing COCO category information keyed by the 'id' field of each category. See the label_map_util.create_category_index function. include_masks: Whether to include instance segmentations masks (PNG encoded) in the result. default: False. keypoint_annotations_dict: A dictionary that maps from annotation_id to a dictionary with keys: [u'keypoints', u'num_keypoints'] represeting the keypoint information for this person object annotation. If None, then no keypoint annotations will be populated. densepose_annotations_dict: A dictionary that maps from annotation_id to a dictionary with keys: [u'dp_I', u'dp_x', u'dp_y', 'dp_U', 'dp_V'] representing part surface coordinates. For more information see http://densepose.org/. remove_non_person_annotations: Whether to remove any annotations that are not the "person" class. remove_non_person_images: Whether to remove any images that do not contain at least one "person" annotation. Returns: key: SHA256 hash of the image. example: The converted tf.Example num_annotations_skipped: Number of (invalid) annotations that were ignored. num_keypoint_annotation_skipped: Number of keypoint annotations that were skipped. num_densepose_annotation_skipped: Number of DensePose annotations that were skipped. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ image_height = image['height'] image_width = image['width'] filename = image['file_name'] image_id = image['id'] full_path = os.path.join(image_dir, filename) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) key = hashlib.sha256(encoded_jpg).hexdigest() xmin = [] xmax = [] ymin = [] ymax = [] is_crowd = [] category_names = [] category_ids = [] area = [] encoded_mask_png = [] keypoints_x = [] keypoints_y = [] keypoints_visibility = [] keypoints_name = [] num_keypoints = [] include_keypoint = keypoint_annotations_dict is not None num_annotations_skipped = 0 num_keypoint_annotation_used = 0 num_keypoint_annotation_skipped = 0 dp_part_index = [] dp_x = [] dp_y = [] dp_u = [] dp_v = [] dp_num_points = [] densepose_keys = ['dp_I', 'dp_U', 'dp_V', 'dp_x', 'dp_y', 'bbox'] include_densepose = densepose_annotations_dict is not None num_densepose_annotation_used = 0 num_densepose_annotation_skipped = 0 for object_annotations in annotations_list: (x, y, width, height) = tuple(object_annotations['bbox']) if width <= 0 or height <= 0: num_annotations_skipped += 1 continue if x + width > image_width or y + height > image_height: num_annotations_skipped += 1 continue category_id = int(object_annotations['category_id']) category_name = category_index[category_id]['name'].encode('utf8') if remove_non_person_annotations and category_name != b'person': num_annotations_skipped += 1 continue xmin.append(float(x) / image_width) xmax.append(float(x + width) / image_width) ymin.append(float(y) / image_height) ymax.append(float(y + height) / image_height) is_crowd.append(object_annotations['iscrowd']) category_ids.append(category_id) category_names.append(category_name) area.append(object_annotations['area']) if include_masks: run_len_encoding = mask.frPyObjects(object_annotations['segmentation'], image_height, image_width) binary_mask = mask.decode(run_len_encoding) if not object_annotations['iscrowd']: binary_mask = np.amax(binary_mask, axis=2) pil_image = PIL.Image.fromarray(binary_mask) output_io = io.BytesIO() pil_image.save(output_io, format='PNG') encoded_mask_png.append(output_io.getvalue()) if include_keypoint: annotation_id = object_annotations['id'] if annotation_id in keypoint_annotations_dict: num_keypoint_annotation_used += 1 keypoint_annotations = keypoint_annotations_dict[annotation_id] keypoints = keypoint_annotations['keypoints'] num_kpts = keypoint_annotations['num_keypoints'] keypoints_x_abs = keypoints[::3] keypoints_x.extend( [float(x_abs) / image_width for x_abs in keypoints_x_abs]) keypoints_y_abs = keypoints[1::3] keypoints_y.extend( [float(y_abs) / image_height for y_abs in keypoints_y_abs]) keypoints_visibility.extend(keypoints[2::3]) keypoints_name.extend(_COCO_KEYPOINT_NAMES) num_keypoints.append(num_kpts) else: keypoints_x.extend([0.0] * len(_COCO_KEYPOINT_NAMES)) keypoints_y.extend([0.0] * len(_COCO_KEYPOINT_NAMES)) keypoints_visibility.extend([0] * len(_COCO_KEYPOINT_NAMES)) keypoints_name.extend(_COCO_KEYPOINT_NAMES) num_keypoints.append(0) if include_densepose: annotation_id = object_annotations['id'] if (annotation_id in densepose_annotations_dict and all(key in densepose_annotations_dict[annotation_id] for key in densepose_keys)): dp_annotations = densepose_annotations_dict[annotation_id] num_densepose_annotation_used += 1 dp_num_points.append(len(dp_annotations['dp_I'])) dp_part_index.extend([int(i - _DP_PART_ID_OFFSET) for i in dp_annotations['dp_I']]) # DensePose surface coordinates are defined on a [256, 256] grid # relative to each instance box (i.e. absolute coordinates in range # [0., 256.]). The following converts the coordinates # so that they are expressed in normalized image coordinates. dp_x_box_rel = [ clip_to_unit(val / 256.) for val in dp_annotations['dp_x']] dp_x_norm = [(float(x) + x_box_rel * width) / image_width for x_box_rel in dp_x_box_rel] dp_y_box_rel = [ clip_to_unit(val / 256.) for val in dp_annotations['dp_y']] dp_y_norm = [(float(y) + y_box_rel * height) / image_height for y_box_rel in dp_y_box_rel] dp_x.extend(dp_x_norm) dp_y.extend(dp_y_norm) dp_u.extend(dp_annotations['dp_U']) dp_v.extend(dp_annotations['dp_V']) else: dp_num_points.append(0) if (remove_non_person_images and not any(name == b'person' for name in category_names)): return (key, None, num_annotations_skipped, num_keypoint_annotation_skipped, num_densepose_annotation_skipped) feature_dict = { 'image/height': dataset_util.int64_feature(image_height), 'image/width': dataset_util.int64_feature(image_width), 'image/filename': dataset_util.bytes_feature(filename.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(str(image_id).encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(category_names), 'image/object/is_crowd': dataset_util.int64_list_feature(is_crowd), 'image/object/area': dataset_util.float_list_feature(area), } if include_masks: feature_dict['image/object/mask'] = ( dataset_util.bytes_list_feature(encoded_mask_png)) if include_keypoint: feature_dict['image/object/keypoint/x'] = ( dataset_util.float_list_feature(keypoints_x)) feature_dict['image/object/keypoint/y'] = ( dataset_util.float_list_feature(keypoints_y)) feature_dict['image/object/keypoint/num'] = ( dataset_util.int64_list_feature(num_keypoints)) feature_dict['image/object/keypoint/visibility'] = ( dataset_util.int64_list_feature(keypoints_visibility)) feature_dict['image/object/keypoint/text'] = ( dataset_util.bytes_list_feature(keypoints_name)) num_keypoint_annotation_skipped = ( len(keypoint_annotations_dict) - num_keypoint_annotation_used) if include_densepose: feature_dict['image/object/densepose/num'] = ( dataset_util.int64_list_feature(dp_num_points)) feature_dict['image/object/densepose/part_index'] = ( dataset_util.int64_list_feature(dp_part_index)) feature_dict['image/object/densepose/x'] = ( dataset_util.float_list_feature(dp_x)) feature_dict['image/object/densepose/y'] = ( dataset_util.float_list_feature(dp_y)) feature_dict['image/object/densepose/u'] = ( dataset_util.float_list_feature(dp_u)) feature_dict['image/object/densepose/v'] = ( dataset_util.float_list_feature(dp_v)) num_densepose_annotation_skipped = ( len(densepose_annotations_dict) - num_densepose_annotation_used) example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) return (key, example, num_annotations_skipped, num_keypoint_annotation_skipped, num_densepose_annotation_skipped) def _create_tf_record_from_coco_annotations(annotations_file, image_dir, output_path, include_masks, num_shards, keypoint_annotations_file='', densepose_annotations_file='', remove_non_person_annotations=False, remove_non_person_images=False): """Loads COCO annotation json files and converts to tf.Record format. Args: annotations_file: JSON file containing bounding box annotations. image_dir: Directory containing the image files. output_path: Path to output tf.Record file. include_masks: Whether to include instance segmentations masks (PNG encoded) in the result. default: False. num_shards: number of output file shards. keypoint_annotations_file: JSON file containing the person keypoint annotations. If empty, then no person keypoint annotations will be generated. densepose_annotations_file: JSON file containing the DensePose annotations. If empty, then no DensePose annotations will be generated. remove_non_person_annotations: Whether to remove any annotations that are not the "person" class. remove_non_person_images: Whether to remove any images that do not contain at least one "person" annotation. """ with contextlib2.ExitStack() as tf_record_close_stack, \ tf.gfile.GFile(annotations_file, 'r') as fid: output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords( tf_record_close_stack, output_path, num_shards) groundtruth_data = json.load(fid) images = groundtruth_data['images'] category_index = label_map_util.create_category_index( groundtruth_data['categories']) annotations_index = {} if 'annotations' in groundtruth_data: logging.info('Found groundtruth annotations. Building annotations index.') for annotation in groundtruth_data['annotations']: image_id = annotation['image_id'] if image_id not in annotations_index: annotations_index[image_id] = [] annotations_index[image_id].append(annotation) missing_annotation_count = 0 for image in images: image_id = image['id'] if image_id not in annotations_index: missing_annotation_count += 1 annotations_index[image_id] = [] logging.info('%d images are missing annotations.', missing_annotation_count) keypoint_annotations_index = {} if keypoint_annotations_file: with tf.gfile.GFile(keypoint_annotations_file, 'r') as kid: keypoint_groundtruth_data = json.load(kid) if 'annotations' in keypoint_groundtruth_data: for annotation in keypoint_groundtruth_data['annotations']: image_id = annotation['image_id'] if image_id not in keypoint_annotations_index: keypoint_annotations_index[image_id] = {} keypoint_annotations_index[image_id][annotation['id']] = annotation densepose_annotations_index = {} if densepose_annotations_file: with tf.gfile.GFile(densepose_annotations_file, 'r') as fid: densepose_groundtruth_data = json.load(fid) if 'annotations' in densepose_groundtruth_data: for annotation in densepose_groundtruth_data['annotations']: image_id = annotation['image_id'] if image_id not in densepose_annotations_index: densepose_annotations_index[image_id] = {} densepose_annotations_index[image_id][annotation['id']] = annotation total_num_annotations_skipped = 0 total_num_keypoint_annotations_skipped = 0 total_num_densepose_annotations_skipped = 0 for idx, image in enumerate(images): if idx % 100 == 0: logging.info('On image %d of %d', idx, len(images)) annotations_list = annotations_index[image['id']] keypoint_annotations_dict = None if keypoint_annotations_file: keypoint_annotations_dict = {} if image['id'] in keypoint_annotations_index: keypoint_annotations_dict = keypoint_annotations_index[image['id']] densepose_annotations_dict = None if densepose_annotations_file: densepose_annotations_dict = {} if image['id'] in densepose_annotations_index: densepose_annotations_dict = densepose_annotations_index[image['id']] (_, tf_example, num_annotations_skipped, num_keypoint_annotations_skipped, num_densepose_annotations_skipped) = create_tf_example( image, annotations_list, image_dir, category_index, include_masks, keypoint_annotations_dict, densepose_annotations_dict, remove_non_person_annotations, remove_non_person_images) total_num_annotations_skipped += num_annotations_skipped total_num_keypoint_annotations_skipped += num_keypoint_annotations_skipped total_num_densepose_annotations_skipped += ( num_densepose_annotations_skipped) shard_idx = idx % num_shards if tf_example: output_tfrecords[shard_idx].write(tf_example.SerializeToString()) logging.info('Finished writing, skipped %d annotations.', total_num_annotations_skipped) if keypoint_annotations_file: logging.info('Finished writing, skipped %d keypoint annotations.', total_num_keypoint_annotations_skipped) if densepose_annotations_file: logging.info('Finished writing, skipped %d DensePose annotations.', total_num_densepose_annotations_skipped) def main(_): assert FLAGS.train_image_dir, '`train_image_dir` missing.' assert FLAGS.val_image_dir, '`val_image_dir` missing.' assert FLAGS.test_image_dir, '`test_image_dir` missing.' assert FLAGS.train_annotations_file, '`train_annotations_file` missing.' assert FLAGS.val_annotations_file, '`val_annotations_file` missing.' assert FLAGS.testdev_annotations_file, '`testdev_annotations_file` missing.' if not tf.gfile.IsDirectory(FLAGS.output_dir): tf.gfile.MakeDirs(FLAGS.output_dir) train_output_path = os.path.join(FLAGS.output_dir, 'coco_train.record') val_output_path = os.path.join(FLAGS.output_dir, 'coco_val.record') testdev_output_path = os.path.join(FLAGS.output_dir, 'coco_testdev.record') _create_tf_record_from_coco_annotations( FLAGS.train_annotations_file, FLAGS.train_image_dir, train_output_path, FLAGS.include_masks, num_shards=100, keypoint_annotations_file=FLAGS.train_keypoint_annotations_file, densepose_annotations_file=FLAGS.train_densepose_annotations_file, remove_non_person_annotations=FLAGS.remove_non_person_annotations, remove_non_person_images=FLAGS.remove_non_person_images) _create_tf_record_from_coco_annotations( FLAGS.val_annotations_file, FLAGS.val_image_dir, val_output_path, FLAGS.include_masks, num_shards=50, keypoint_annotations_file=FLAGS.val_keypoint_annotations_file, densepose_annotations_file=FLAGS.val_densepose_annotations_file, remove_non_person_annotations=FLAGS.remove_non_person_annotations, remove_non_person_images=FLAGS.remove_non_person_images) _create_tf_record_from_coco_annotations( FLAGS.testdev_annotations_file, FLAGS.test_image_dir, testdev_output_path, FLAGS.include_masks, num_shards=50) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/create_coco_tf_record.py
create_coco_tf_record.py
r"""Creates TFRecords of Open Images dataset for object detection. Example usage: python object_detection/dataset_tools/create_oid_tf_record.py \ --input_box_annotations_csv=/path/to/input/annotations-human-bbox.csv \ --input_image_label_annotations_csv=/path/to/input/annotations-label.csv \ --input_images_directory=/path/to/input/image_pixels_directory \ --input_label_map=/path/to/input/labels_bbox_545.labelmap \ --output_tf_record_path_prefix=/path/to/output/prefix.tfrecord CSVs with bounding box annotations and image metadata (including the image URLs) can be downloaded from the Open Images GitHub repository: https://github.com/openimages/dataset This script will include every image found in the input_images_directory in the output TFRecord, even if the image has no corresponding bounding box annotations in the input_annotations_csv. If input_image_label_annotations_csv is specified, it will add image-level labels as well. Note that the information of whether a label is positivelly or negativelly verified is NOT added to tfrecord. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import contextlib2 import pandas as pd import tensorflow.compat.v1 as tf from object_detection.dataset_tools import oid_tfrecord_creation from object_detection.dataset_tools import tf_record_creation_util from object_detection.utils import label_map_util tf.flags.DEFINE_string('input_box_annotations_csv', None, 'Path to CSV containing image bounding box annotations') tf.flags.DEFINE_string('input_images_directory', None, 'Directory containing the image pixels ' 'downloaded from the OpenImages GitHub repository.') tf.flags.DEFINE_string('input_image_label_annotations_csv', None, 'Path to CSV containing image-level labels annotations') tf.flags.DEFINE_string('input_label_map', None, 'Path to the label map proto') tf.flags.DEFINE_string( 'output_tf_record_path_prefix', None, 'Path to the output TFRecord. The shard index and the number of shards ' 'will be appended for each output shard.') tf.flags.DEFINE_integer('num_shards', 100, 'Number of TFRecord shards') FLAGS = tf.flags.FLAGS def main(_): tf.logging.set_verbosity(tf.logging.INFO) required_flags = [ 'input_box_annotations_csv', 'input_images_directory', 'input_label_map', 'output_tf_record_path_prefix' ] for flag_name in required_flags: if not getattr(FLAGS, flag_name): raise ValueError('Flag --{} is required'.format(flag_name)) label_map = label_map_util.get_label_map_dict(FLAGS.input_label_map) all_box_annotations = pd.read_csv(FLAGS.input_box_annotations_csv) if FLAGS.input_image_label_annotations_csv: all_label_annotations = pd.read_csv(FLAGS.input_image_label_annotations_csv) all_label_annotations.rename( columns={'Confidence': 'ConfidenceImageLabel'}, inplace=True) else: all_label_annotations = None all_images = tf.gfile.Glob( os.path.join(FLAGS.input_images_directory, '*.jpg')) all_image_ids = [os.path.splitext(os.path.basename(v))[0] for v in all_images] all_image_ids = pd.DataFrame({'ImageID': all_image_ids}) all_annotations = pd.concat( [all_box_annotations, all_image_ids, all_label_annotations]) tf.logging.log(tf.logging.INFO, 'Found %d images...', len(all_image_ids)) with contextlib2.ExitStack() as tf_record_close_stack: output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords( tf_record_close_stack, FLAGS.output_tf_record_path_prefix, FLAGS.num_shards) for counter, image_data in enumerate(all_annotations.groupby('ImageID')): tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 1000, counter) image_id, image_annotations = image_data # In OID image file names are formed by appending ".jpg" to the image ID. image_path = os.path.join(FLAGS.input_images_directory, image_id + '.jpg') with tf.gfile.Open(image_path) as image_file: encoded_image = image_file.read() tf_example = oid_tfrecord_creation.tf_example_from_annotations_data_frame( image_annotations, label_map, encoded_image) if tf_example: shard_idx = int(image_id, 16) % FLAGS.num_shards output_tfrecords[shard_idx].write(tf_example.SerializeToString()) if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/create_oid_tf_record.py
create_oid_tf_record.py
r"""Convert raw PASCAL dataset to TFRecord for object_detection. Example usage: python object_detection/dataset_tools/create_pascal_tf_record.py \ --data_dir=/home/user/VOCdevkit \ --year=VOC2012 \ --output_path=/home/user/pascal.record """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import logging import os from lxml import etree import PIL.Image import tensorflow.compat.v1 as tf from object_detection.utils import dataset_util from object_detection.utils import label_map_util flags = tf.app.flags flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC dataset.') flags.DEFINE_string('set', 'train', 'Convert training set, validation set or ' 'merged set.') flags.DEFINE_string('annotations_dir', 'Annotations', '(Relative) path to annotations directory.') flags.DEFINE_string('year', 'VOC2007', 'Desired challenge year.') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') flags.DEFINE_string('label_map_path', 'data/pascal_label_map.pbtxt', 'Path to label map proto') flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore ' 'difficult instances') FLAGS = flags.FLAGS SETS = ['train', 'val', 'trainval', 'test'] YEARS = ['VOC2007', 'VOC2012', 'merged'] def dict_to_tf_example(data, dataset_directory, label_map_dict, ignore_difficult_instances=False, image_subdirectory='JPEGImages'): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) dataset_directory: Path to root directory holding PASCAL dataset label_map_dict: A map from string label names to integers ids. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). image_subdirectory: String specifying subdirectory within the PASCAL dataset directory holding the actual image data. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ img_path = os.path.join(data['folder'], image_subdirectory, data['filename']) full_path = os.path.join(dataset_directory, img_path) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width = int(data['size']['width']) height = int(data['size']['height']) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] if 'object' in data: for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) xmin.append(float(obj['bndbox']['xmin']) / width) ymin.append(float(obj['bndbox']['ymin']) / height) xmax.append(float(obj['bndbox']['xmax']) / width) ymax.append(float(obj['bndbox']['ymax']) / height) classes_text.append(obj['name'].encode('utf8')) classes.append(label_map_dict[obj['name']]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), })) return example def main(_): if FLAGS.set not in SETS: raise ValueError('set must be in : {}'.format(SETS)) if FLAGS.year not in YEARS: raise ValueError('year must be in : {}'.format(YEARS)) data_dir = FLAGS.data_dir years = ['VOC2007', 'VOC2012'] if FLAGS.year != 'merged': years = [FLAGS.year] writer = tf.python_io.TFRecordWriter(FLAGS.output_path) label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path) for year in years: logging.info('Reading from PASCAL %s dataset.', year) examples_path = os.path.join(data_dir, year, 'ImageSets', 'Main', 'aeroplane_' + FLAGS.set + '.txt') annotations_dir = os.path.join(data_dir, year, FLAGS.annotations_dir) examples_list = dataset_util.read_examples_list(examples_path) for idx, example in enumerate(examples_list): if idx % 100 == 0: logging.info('On image %d of %d', idx, len(examples_list)) path = os.path.join(annotations_dir, example + '.xml') with tf.gfile.GFile(path, 'r') as fid: xml_str = fid.read() xml = etree.fromstring(xml_str) data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] tf_example = dict_to_tf_example(data, FLAGS.data_dir, label_map_dict, FLAGS.ignore_difficult_instances) writer.write(tf_example.SerializeToString()) writer.close() if __name__ == '__main__': tf.app.run()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/create_pascal_tf_record.py
create_pascal_tf_record.py
r"""An executable to expand image-level labels, boxes and segments. The expansion is performed using class hierarchy, provided in JSON file. The expected file formats are the following: - for box and segment files: CSV file is expected to have LabelName field - for image-level labels: CSV file is expected to have LabelName and Confidence fields Note, that LabelName is the only field used for expansion. Example usage: python models/research/object_detection/dataset_tools/\ oid_hierarchical_labels_expansion.py \ --json_hierarchy_file=<path to JSON hierarchy> \ --input_annotations=<input csv file> \ --output_annotations=<output csv file> \ --annotation_type=<1 (for boxes and segments) or 2 (for image-level labels)> """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import json from absl import app from absl import flags import six flags.DEFINE_string( 'json_hierarchy_file', None, 'Path to the file containing label hierarchy in JSON format.') flags.DEFINE_string( 'input_annotations', None, 'Path to Open Images annotations file' '(either bounding boxes, segments or image-level labels).') flags.DEFINE_string('output_annotations', None, 'Path to the output file.') flags.DEFINE_integer( 'annotation_type', None, 'Type of the input annotations: 1 - boxes or segments,' '2 - image-level labels.' ) FLAGS = flags.FLAGS def _update_dict(initial_dict, update): """Updates dictionary with update content. Args: initial_dict: initial dictionary. update: updated dictionary. """ for key, value_list in update.items(): if key in initial_dict: initial_dict[key].update(value_list) else: initial_dict[key] = set(value_list) def _build_plain_hierarchy(hierarchy, skip_root=False): """Expands tree hierarchy representation to parent-child dictionary. Args: hierarchy: labels hierarchy as JSON file. skip_root: if true skips root from the processing (done for the case when all classes under hierarchy are collected under virtual node). Returns: keyed_parent - dictionary of parent - all its children nodes. keyed_child - dictionary of children - all its parent nodes children - all children of the current node. """ all_children = set([]) all_keyed_parent = {} all_keyed_child = {} if 'Subcategory' in hierarchy: for node in hierarchy['Subcategory']: keyed_parent, keyed_child, children = _build_plain_hierarchy(node) # Update is not done through dict.update() since some children have multi- # ple parents in the hiearchy. _update_dict(all_keyed_parent, keyed_parent) _update_dict(all_keyed_child, keyed_child) all_children.update(children) if not skip_root: all_keyed_parent[hierarchy['LabelName']] = copy.deepcopy(all_children) all_children.add(hierarchy['LabelName']) for child, _ in all_keyed_child.items(): all_keyed_child[child].add(hierarchy['LabelName']) all_keyed_child[hierarchy['LabelName']] = set([]) return all_keyed_parent, all_keyed_child, all_children class OIDHierarchicalLabelsExpansion(object): """ Main class to perform labels hierachical expansion.""" def __init__(self, hierarchy): """Constructor. Args: hierarchy: labels hierarchy as JSON object. """ self._hierarchy_keyed_parent, self._hierarchy_keyed_child, _ = ( _build_plain_hierarchy(hierarchy, skip_root=True)) def expand_boxes_or_segments_from_csv(self, csv_row, labelname_column_index=1): """Expands a row containing bounding boxes/segments from CSV file. Args: csv_row: a single row of Open Images released groundtruth file. labelname_column_index: 0-based index of LabelName column in CSV file. Returns: a list of strings (including the initial row) corresponding to the ground truth expanded to multiple annotation for evaluation with Open Images Challenge 2018/2019 metrics. """ # Row header is expected to be the following for boxes: # ImageID,LabelName,Confidence,XMin,XMax,YMin,YMax,IsGroupOf # Row header is expected to be the following for segments: # ImageID,LabelName,ImageWidth,ImageHeight,XMin,XMax,YMin,YMax, # IsGroupOf,Mask split_csv_row = six.ensure_str(csv_row).split(',') result = [csv_row] assert split_csv_row[ labelname_column_index] in self._hierarchy_keyed_child parent_nodes = self._hierarchy_keyed_child[ split_csv_row[labelname_column_index]] for parent_node in parent_nodes: split_csv_row[labelname_column_index] = parent_node result.append(','.join(split_csv_row)) return result def expand_labels_from_csv(self, csv_row, labelname_column_index=1, confidence_column_index=2): """Expands a row containing labels from CSV file. Args: csv_row: a single row of Open Images released groundtruth file. labelname_column_index: 0-based index of LabelName column in CSV file. confidence_column_index: 0-based index of Confidence column in CSV file. Returns: a list of strings (including the initial row) corresponding to the ground truth expanded to multiple annotation for evaluation with Open Images Challenge 2018/2019 metrics. """ # Row header is expected to be exactly: # ImageID,Source,LabelName,Confidence split_csv_row = six.ensure_str(csv_row).split(',') result = [csv_row] if int(split_csv_row[confidence_column_index]) == 1: assert split_csv_row[ labelname_column_index] in self._hierarchy_keyed_child parent_nodes = self._hierarchy_keyed_child[ split_csv_row[labelname_column_index]] for parent_node in parent_nodes: split_csv_row[labelname_column_index] = parent_node result.append(','.join(split_csv_row)) else: assert split_csv_row[ labelname_column_index] in self._hierarchy_keyed_parent child_nodes = self._hierarchy_keyed_parent[ split_csv_row[labelname_column_index]] for child_node in child_nodes: split_csv_row[labelname_column_index] = child_node result.append(','.join(split_csv_row)) return result def main(unused_args): del unused_args with open(FLAGS.json_hierarchy_file) as f: hierarchy = json.load(f) expansion_generator = OIDHierarchicalLabelsExpansion(hierarchy) labels_file = False if FLAGS.annotation_type == 2: labels_file = True elif FLAGS.annotation_type != 1: print('--annotation_type expected value is 1 or 2.') return -1 confidence_column_index = -1 labelname_column_index = -1 with open(FLAGS.input_annotations, 'r') as source: with open(FLAGS.output_annotations, 'w') as target: header = source.readline() target.writelines([header]) column_names = header.strip().split(',') labelname_column_index = column_names.index('LabelName') if labels_file: confidence_column_index = column_names.index('Confidence') for line in source: if labels_file: expanded_lines = expansion_generator.expand_labels_from_csv( line, labelname_column_index, confidence_column_index) else: expanded_lines = ( expansion_generator.expand_boxes_or_segments_from_csv( line, labelname_column_index)) target.writelines(expanded_lines) if __name__ == '__main__': flags.mark_flag_as_required('json_hierarchy_file') flags.mark_flag_as_required('input_annotations') flags.mark_flag_as_required('output_annotations') flags.mark_flag_as_required('annotation_type') app.run(main)
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/oid_hierarchical_labels_expansion.py
oid_hierarchical_labels_expansion.py
"""Common utility for object detection tf.train.SequenceExamples.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf def context_float_feature(ndarray): """Converts a numpy float array to a context float feature. Args: ndarray: A numpy float array. Returns: A context float feature. """ feature = tf.train.Feature() for val in ndarray: feature.float_list.value.append(val) return feature def context_int64_feature(ndarray): """Converts a numpy array to a context int64 feature. Args: ndarray: A numpy int64 array. Returns: A context int64 feature. """ feature = tf.train.Feature() for val in ndarray: feature.int64_list.value.append(val) return feature def context_bytes_feature(ndarray): """Converts a numpy bytes array to a context bytes feature. Args: ndarray: A numpy bytes array. Returns: A context bytes feature. """ feature = tf.train.Feature() for val in ndarray: if isinstance(val, np.ndarray): val = val.tolist() feature.bytes_list.value.append(tf.compat.as_bytes(val)) return feature def sequence_float_feature(ndarray): """Converts a numpy float array to a sequence float feature. Args: ndarray: A numpy float array. Returns: A sequence float feature. """ feature_list = tf.train.FeatureList() for row in ndarray: feature = feature_list.feature.add() if row.size: feature.float_list.value[:] = row return feature_list def sequence_int64_feature(ndarray): """Converts a numpy int64 array to a sequence int64 feature. Args: ndarray: A numpy int64 array. Returns: A sequence int64 feature. """ feature_list = tf.train.FeatureList() for row in ndarray: feature = feature_list.feature.add() if row.size: feature.int64_list.value[:] = row return feature_list def sequence_bytes_feature(ndarray): """Converts a bytes float array to a sequence bytes feature. Args: ndarray: A numpy bytes array. Returns: A sequence bytes feature. """ feature_list = tf.train.FeatureList() for row in ndarray: if isinstance(row, np.ndarray): row = row.tolist() feature = feature_list.feature.add() if row: row = [tf.compat.as_bytes(val) for val in row] feature.bytes_list.value[:] = row return feature_list def sequence_strings_feature(strings): new_str_arr = [] for single_str in strings: new_str_arr.append(tf.train.Feature( bytes_list=tf.train.BytesList( value=[single_str.encode('utf8')]))) return tf.train.FeatureList(feature=new_str_arr) def boxes_to_box_components(bboxes): """Converts a list of numpy arrays (boxes) to box components. Args: bboxes: A numpy array of bounding boxes. Returns: Bounding box component lists. """ ymin_list = [] xmin_list = [] ymax_list = [] xmax_list = [] for bbox in bboxes: if bbox != []: # pylint: disable=g-explicit-bool-comparison bbox = np.array(bbox).astype(np.float32) ymin, xmin, ymax, xmax = np.split(bbox, 4, axis=1) else: ymin, xmin, ymax, xmax = [], [], [], [] ymin_list.append(np.reshape(ymin, [-1])) xmin_list.append(np.reshape(xmin, [-1])) ymax_list.append(np.reshape(ymax, [-1])) xmax_list.append(np.reshape(xmax, [-1])) return ymin_list, xmin_list, ymax_list, xmax_list def make_sequence_example(dataset_name, video_id, encoded_images, image_height, image_width, image_format=None, image_source_ids=None, timestamps=None, is_annotated=None, bboxes=None, label_strings=None, detection_bboxes=None, detection_classes=None, detection_scores=None, use_strs_for_source_id=False, context_features=None, context_feature_length=None, context_features_image_id_list=None): """Constructs tf.SequenceExamples. Args: dataset_name: String with dataset name. video_id: String with video id. encoded_images: A [num_frames] list (or numpy array) of encoded image frames. image_height: Height of the images. image_width: Width of the images. image_format: Format of encoded images. image_source_ids: (Optional) A [num_frames] list of unique string ids for each image. timestamps: (Optional) A [num_frames] list (or numpy array) array with image timestamps. is_annotated: (Optional) A [num_frames] list (or numpy array) array in which each element indicates whether the frame has been annotated (1) or not (0). bboxes: (Optional) A list (with num_frames elements) of [num_boxes_i, 4] numpy float32 arrays holding boxes for each frame. label_strings: (Optional) A list (with num_frames_elements) of [num_boxes_i] numpy string arrays holding object string labels for each frame. detection_bboxes: (Optional) A list (with num_frames elements) of [num_boxes_i, 4] numpy float32 arrays holding prediction boxes for each frame. detection_classes: (Optional) A list (with num_frames_elements) of [num_boxes_i] numpy int64 arrays holding predicted classes for each frame. detection_scores: (Optional) A list (with num_frames_elements) of [num_boxes_i] numpy float32 arrays holding predicted object scores for each frame. use_strs_for_source_id: (Optional) Whether to write the source IDs as strings rather than byte lists of characters. context_features: (Optional) A list or numpy array of features to use in Context R-CNN, of length num_context_features * context_feature_length. context_feature_length: (Optional) The length of each context feature, used for reshaping. context_features_image_id_list: (Optional) A list of image ids of length num_context_features corresponding to the context features. Returns: A tf.train.SequenceExample. """ num_frames = len(encoded_images) image_encoded = np.expand_dims(encoded_images, axis=-1) if timestamps is None: timestamps = np.arange(num_frames) image_timestamps = np.expand_dims(timestamps, axis=-1) # Context fields. context_dict = { 'example/dataset_name': context_bytes_feature([dataset_name]), 'clip/start/timestamp': context_int64_feature([image_timestamps[0][0]]), 'clip/end/timestamp': context_int64_feature([image_timestamps[-1][0]]), 'clip/frames': context_int64_feature([num_frames]), 'image/channels': context_int64_feature([3]), 'image/height': context_int64_feature([image_height]), 'image/width': context_int64_feature([image_width]), 'clip/media_id': context_bytes_feature([video_id]) } # Sequence fields. feature_list = { 'image/encoded': sequence_bytes_feature(image_encoded), 'image/timestamp': sequence_int64_feature(image_timestamps), } # Add optional fields. if image_format is not None: context_dict['image/format'] = context_bytes_feature([image_format]) if image_source_ids is not None: if use_strs_for_source_id: feature_list['image/source_id'] = sequence_strings_feature( image_source_ids) else: feature_list['image/source_id'] = sequence_bytes_feature(image_source_ids) if bboxes is not None: bbox_ymin, bbox_xmin, bbox_ymax, bbox_xmax = boxes_to_box_components(bboxes) feature_list['region/bbox/xmin'] = sequence_float_feature(bbox_xmin) feature_list['region/bbox/xmax'] = sequence_float_feature(bbox_xmax) feature_list['region/bbox/ymin'] = sequence_float_feature(bbox_ymin) feature_list['region/bbox/ymax'] = sequence_float_feature(bbox_ymax) if is_annotated is None: is_annotated = np.ones(num_frames, dtype=np.int64) is_annotated = np.expand_dims(is_annotated, axis=-1) feature_list['region/is_annotated'] = sequence_int64_feature(is_annotated) if label_strings is not None: feature_list['region/label/string'] = sequence_bytes_feature( label_strings) if detection_bboxes is not None: det_bbox_ymin, det_bbox_xmin, det_bbox_ymax, det_bbox_xmax = ( boxes_to_box_components(detection_bboxes)) feature_list['predicted/region/bbox/xmin'] = sequence_float_feature( det_bbox_xmin) feature_list['predicted/region/bbox/xmax'] = sequence_float_feature( det_bbox_xmax) feature_list['predicted/region/bbox/ymin'] = sequence_float_feature( det_bbox_ymin) feature_list['predicted/region/bbox/ymax'] = sequence_float_feature( det_bbox_ymax) if detection_classes is not None: feature_list['predicted/region/label/index'] = sequence_int64_feature( detection_classes) if detection_scores is not None: feature_list['predicted/region/label/confidence'] = sequence_float_feature( detection_scores) if context_features is not None: context_dict['image/context_features'] = context_float_feature( context_features) if context_feature_length is not None: context_dict['image/context_feature_length'] = context_int64_feature( context_feature_length) if context_features_image_id_list is not None: context_dict['image/context_features_image_id_list'] = ( context_bytes_feature(context_features_image_id_list)) context = tf.train.Features(feature=context_dict) feature_lists = tf.train.FeatureLists(feature_list=feature_list) sequence_example = tf.train.SequenceExample( context=context, feature_lists=feature_lists) return sequence_example
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/seq_example_util.py
seq_example_util.py
r"""A Beam job to generate detection data for camera trap images. This tools allows to run inference with an exported Object Detection model in `saved_model` format and produce raw detection boxes on images in tf.Examples, with the assumption that the bounding box class label will match the image-level class label in the tf.Example. Steps to generate a detection dataset: 1. Use object_detection/export_inference_graph.py to get a `saved_model` for inference. The input node must accept a tf.Example proto. 2. Run this tool with `saved_model` from step 1 and an TFRecord of tf.Example protos containing images for inference. Example Usage: -------------- python tensorflow_models/object_detection/export_inference_graph.py \ --alsologtostderr \ --input_type tf_example \ --pipeline_config_path path/to/detection_model.config \ --trained_checkpoint_prefix path/to/model.ckpt \ --output_directory path/to/exported_model_directory python generate_detection_data.py \ --alsologtostderr \ --input_tfrecord path/to/input_tfrecord@X \ --output_tfrecord path/to/output_tfrecord@X \ --model_dir path/to/exported_model_directory/saved_model """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import threading import tensorflow as tf try: import apache_beam as beam # pylint:disable=g-import-not-at-top except ModuleNotFoundError: pass class GenerateDetectionDataFn(beam.DoFn): """Generates detection data for camera trap images. This Beam DoFn performs inference with an object detection `saved_model` and produces detection boxes for camera trap data, matched to the object class. """ session_lock = threading.Lock() def __init__(self, model_dir, confidence_threshold): """Initialization function. Args: model_dir: A directory containing saved model. confidence_threshold: the confidence threshold for boxes to keep """ self._model_dir = model_dir self._confidence_threshold = confidence_threshold self._session = None self._num_examples_processed = beam.metrics.Metrics.counter( 'detection_data_generation', 'num_tf_examples_processed') def setup(self): self._load_inference_model() def _load_inference_model(self): # Because initialization of the tf.Session is expensive we share # one instance across all threads in the worker. This is possible since # tf.Session.run() is thread safe. with self.session_lock: self._detect_fn = tf.saved_model.load(self._model_dir) def process(self, tfrecord_entry): return self._run_inference_and_generate_detections(tfrecord_entry) def _run_inference_and_generate_detections(self, tfrecord_entry): input_example = tf.train.Example.FromString(tfrecord_entry) if input_example.features.feature[ 'image/object/bbox/ymin'].float_list.value: # There are already ground truth boxes for this image, just keep them. return [input_example] detections = self._detect_fn.signatures['serving_default']( (tf.expand_dims(tf.convert_to_tensor(tfrecord_entry), 0))) detection_boxes = detections['detection_boxes'] num_detections = detections['num_detections'] detection_scores = detections['detection_scores'] example = tf.train.Example() num_detections = int(num_detections[0]) image_class_labels = input_example.features.feature[ 'image/object/class/label'].int64_list.value image_class_texts = input_example.features.feature[ 'image/object/class/text'].bytes_list.value # Ignore any images with multiple classes, # we can't match the class to the box. if len(image_class_labels) > 1: return [] # Don't add boxes for images already labeled empty (for now) if len(image_class_labels) == 1: # Add boxes over confidence threshold. for idx, score in enumerate(detection_scores[0]): if score >= self._confidence_threshold and idx < num_detections: example.features.feature[ 'image/object/bbox/ymin'].float_list.value.extend([ detection_boxes[0, idx, 0]]) example.features.feature[ 'image/object/bbox/xmin'].float_list.value.extend([ detection_boxes[0, idx, 1]]) example.features.feature[ 'image/object/bbox/ymax'].float_list.value.extend([ detection_boxes[0, idx, 2]]) example.features.feature[ 'image/object/bbox/xmax'].float_list.value.extend([ detection_boxes[0, idx, 3]]) # Add box scores and class texts and labels. example.features.feature[ 'image/object/class/score'].float_list.value.extend( [score]) example.features.feature[ 'image/object/class/label'].int64_list.value.extend( [image_class_labels[0]]) example.features.feature[ 'image/object/class/text'].bytes_list.value.extend( [image_class_texts[0]]) # Add other essential example attributes example.features.feature['image/encoded'].bytes_list.value.extend( input_example.features.feature['image/encoded'].bytes_list.value) example.features.feature['image/height'].int64_list.value.extend( input_example.features.feature['image/height'].int64_list.value) example.features.feature['image/width'].int64_list.value.extend( input_example.features.feature['image/width'].int64_list.value) example.features.feature['image/source_id'].bytes_list.value.extend( input_example.features.feature['image/source_id'].bytes_list.value) example.features.feature['image/location'].bytes_list.value.extend( input_example.features.feature['image/location'].bytes_list.value) example.features.feature['image/date_captured'].bytes_list.value.extend( input_example.features.feature['image/date_captured'].bytes_list.value) example.features.feature['image/class/text'].bytes_list.value.extend( input_example.features.feature['image/class/text'].bytes_list.value) example.features.feature['image/class/label'].int64_list.value.extend( input_example.features.feature['image/class/label'].int64_list.value) example.features.feature['image/seq_id'].bytes_list.value.extend( input_example.features.feature['image/seq_id'].bytes_list.value) example.features.feature['image/seq_num_frames'].int64_list.value.extend( input_example.features.feature['image/seq_num_frames'].int64_list.value) example.features.feature['image/seq_frame_num'].int64_list.value.extend( input_example.features.feature['image/seq_frame_num'].int64_list.value) self._num_examples_processed.inc(1) return [example] def construct_pipeline(pipeline, input_tfrecord, output_tfrecord, model_dir, confidence_threshold, num_shards): """Returns a Beam pipeline to run object detection inference. Args: pipeline: Initialized beam pipeline. input_tfrecord: A TFRecord of tf.train.Example protos containing images. output_tfrecord: A TFRecord of tf.train.Example protos that contain images in the input TFRecord and the detections from the model. model_dir: Path to `saved_model` to use for inference. confidence_threshold: Threshold to use when keeping detection results. num_shards: The number of output shards. """ input_collection = ( pipeline | 'ReadInputTFRecord' >> beam.io.tfrecordio.ReadFromTFRecord( input_tfrecord, coder=beam.coders.BytesCoder())) output_collection = input_collection | 'RunInference' >> beam.ParDo( GenerateDetectionDataFn(model_dir, confidence_threshold)) output_collection = output_collection | 'Reshuffle' >> beam.Reshuffle() _ = output_collection | 'WritetoDisk' >> beam.io.tfrecordio.WriteToTFRecord( output_tfrecord, num_shards=num_shards, coder=beam.coders.ProtoCoder(tf.train.Example)) def parse_args(argv): """Command-line argument parser. Args: argv: command line arguments Returns: beam_args: Arguments for the beam pipeline. pipeline_args: Arguments for the pipeline options, such as runner type. """ parser = argparse.ArgumentParser() parser.add_argument( '--detection_input_tfrecord', dest='detection_input_tfrecord', required=True, help='TFRecord containing images in tf.Example format for object ' 'detection.') parser.add_argument( '--detection_output_tfrecord', dest='detection_output_tfrecord', required=True, help='TFRecord containing detections in tf.Example format.') parser.add_argument( '--detection_model_dir', dest='detection_model_dir', required=True, help='Path to directory containing an object detection SavedModel.') parser.add_argument( '--confidence_threshold', dest='confidence_threshold', default=0.9, help='Min confidence to keep bounding boxes.') parser.add_argument( '--num_shards', dest='num_shards', default=0, help='Number of output shards.') beam_args, pipeline_args = parser.parse_known_args(argv) return beam_args, pipeline_args def main(argv=None, save_main_session=True): """Runs the Beam pipeline that performs inference. Args: argv: Command line arguments. save_main_session: Whether to save the main session. """ args, pipeline_args = parse_args(argv) pipeline_options = beam.options.pipeline_options.PipelineOptions( pipeline_args) pipeline_options.view_as( beam.options.pipeline_options.SetupOptions).save_main_session = ( save_main_session) dirname = os.path.dirname(args.detection_output_tfrecord) tf.io.gfile.makedirs(dirname) p = beam.Pipeline(options=pipeline_options) construct_pipeline( p, args.detection_input_tfrecord, args.detection_output_tfrecord, args.detection_model_dir, args.confidence_threshold, args.num_shards) p.run() if __name__ == '__main__': main()
123-object-detection
/123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/context_rcnn/generate_detection_data.py
generate_detection_data.py