code
stringlengths 501
5.19M
| package
stringlengths 2
81
| path
stringlengths 9
304
| filename
stringlengths 4
145
|
---|---|---|---|
r"""A Beam job to add contextual memory banks to tf.Examples.
This tool groups images containing bounding boxes and embedded context features
by a key, either `image/location` or `image/seq_id`, and time horizon,
then uses these groups to build up a contextual memory bank from the embedded
context features from each image in the group and adds that context to the
output tf.Examples for each image in the group.
Steps to generate a dataset with context from one with bounding boxes and
embedded context features:
1. Use object/detection/export_inference_graph.py to get a `saved_model` for
inference. The input node must accept a tf.Example proto.
2. Run this tool with `saved_model` from step 1 and a TFRecord of tf.Example
protos containing images, bounding boxes, and embedded context features.
The context features can be added to tf.Examples using
generate_embedding_data.py.
Example Usage:
--------------
python add_context_to_examples.py \
--input_tfrecord path/to/input_tfrecords* \
--output_tfrecord path/to/output_tfrecords \
--sequence_key image/location \
--time_horizon month
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import copy
import datetime
import io
import itertools
import json
import os
import numpy as np
import PIL.Image
import six
import tensorflow as tf
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class ReKeyDataFn(beam.DoFn):
"""Re-keys tfrecords by sequence_key.
This Beam DoFn re-keys the tfrecords by a user-defined sequence_key
"""
def __init__(self, sequence_key, time_horizon,
reduce_image_size, max_image_dimension):
"""Initialization function.
Args:
sequence_key: A feature name to use as a key for grouping sequences.
Must point to a key of type bytes_list
time_horizon: What length of time to use to partition the data when
building the memory banks. Options: `year`, `month`, `week`, `day `,
`hour`, `minute`, None
reduce_image_size: Whether to reduce the sizes of the stored images.
max_image_dimension: maximum dimension of reduced images
"""
self._sequence_key = sequence_key
if time_horizon is None or time_horizon in {'year', 'month', 'week', 'day',
'hour', 'minute'}:
self._time_horizon = time_horizon
else:
raise ValueError('Time horizon not supported.')
self._reduce_image_size = reduce_image_size
self._max_image_dimension = max_image_dimension
self._session = None
self._num_examples_processed = beam.metrics.Metrics.counter(
'data_rekey', 'num_tf_examples_processed')
self._num_images_resized = beam.metrics.Metrics.counter(
'data_rekey', 'num_images_resized')
self._num_images_read = beam.metrics.Metrics.counter(
'data_rekey', 'num_images_read')
self._num_images_found = beam.metrics.Metrics.counter(
'data_rekey', 'num_images_read')
self._num_got_shape = beam.metrics.Metrics.counter(
'data_rekey', 'num_images_got_shape')
self._num_images_found_size = beam.metrics.Metrics.counter(
'data_rekey', 'num_images_found_size')
self._num_examples_cleared = beam.metrics.Metrics.counter(
'data_rekey', 'num_examples_cleared')
self._num_examples_updated = beam.metrics.Metrics.counter(
'data_rekey', 'num_examples_updated')
def process(self, tfrecord_entry):
return self._rekey_examples(tfrecord_entry)
def _largest_size_at_most(self, height, width, largest_side):
"""Computes new shape with the largest side equal to `largest_side`.
Args:
height: an int indicating the current height.
width: an int indicating the current width.
largest_side: A python integer indicating the size of
the largest side after resize.
Returns:
new_height: an int indicating the new height.
new_width: an int indicating the new width.
"""
x_scale = float(largest_side) / float(width)
y_scale = float(largest_side) / float(height)
scale = min(x_scale, y_scale)
new_width = int(width * scale)
new_height = int(height * scale)
return new_height, new_width
def _resize_image(self, input_example):
"""Resizes the image within input_example and updates the height and width.
Args:
input_example: A tf.Example that we want to update to contain a resized
image.
Returns:
input_example: Updated tf.Example.
"""
original_image = copy.deepcopy(
input_example.features.feature['image/encoded'].bytes_list.value[0])
self._num_images_read.inc(1)
height = copy.deepcopy(
input_example.features.feature['image/height'].int64_list.value[0])
width = copy.deepcopy(
input_example.features.feature['image/width'].int64_list.value[0])
self._num_got_shape.inc(1)
new_height, new_width = self._largest_size_at_most(
height, width, self._max_image_dimension)
self._num_images_found_size.inc(1)
encoded_jpg_io = io.BytesIO(original_image)
image = PIL.Image.open(encoded_jpg_io)
resized_image = image.resize((new_width, new_height))
with io.BytesIO() as output:
resized_image.save(output, format='JPEG')
encoded_resized_image = output.getvalue()
self._num_images_resized.inc(1)
del input_example.features.feature['image/encoded'].bytes_list.value[:]
del input_example.features.feature['image/height'].int64_list.value[:]
del input_example.features.feature['image/width'].int64_list.value[:]
self._num_examples_cleared.inc(1)
input_example.features.feature['image/encoded'].bytes_list.value.extend(
[encoded_resized_image])
input_example.features.feature['image/height'].int64_list.value.extend(
[new_height])
input_example.features.feature['image/width'].int64_list.value.extend(
[new_width])
self._num_examples_updated.inc(1)
return input_example
def _rekey_examples(self, tfrecord_entry):
serialized_example = copy.deepcopy(tfrecord_entry)
input_example = tf.train.Example.FromString(serialized_example)
self._num_images_found.inc(1)
if self._reduce_image_size:
input_example = self._resize_image(input_example)
self._num_images_resized.inc(1)
new_key = input_example.features.feature[
self._sequence_key].bytes_list.value[0]
if self._time_horizon:
date_captured = datetime.datetime.strptime(
six.ensure_str(input_example.features.feature[
'image/date_captured'].bytes_list.value[0]), '%Y-%m-%d %H:%M:%S')
year = date_captured.year
month = date_captured.month
day = date_captured.day
week = np.floor(float(day) / float(7))
hour = date_captured.hour
minute = date_captured.minute
if self._time_horizon == 'year':
new_key = new_key + six.ensure_binary('/' + str(year))
elif self._time_horizon == 'month':
new_key = new_key + six.ensure_binary(
'/' + str(year) + '/' + str(month))
elif self._time_horizon == 'week':
new_key = new_key + six.ensure_binary(
'/' + str(year) + '/' + str(month) + '/' + str(week))
elif self._time_horizon == 'day':
new_key = new_key + six.ensure_binary(
'/' + str(year) + '/' + str(month) + '/' + str(day))
elif self._time_horizon == 'hour':
new_key = new_key + six.ensure_binary(
'/' + str(year) + '/' + str(month) + '/' + str(day) + '/' + (
str(hour)))
elif self._time_horizon == 'minute':
new_key = new_key + six.ensure_binary(
'/' + str(year) + '/' + str(month) + '/' + str(day) + '/' + (
str(hour) + '/' + str(minute)))
self._num_examples_processed.inc(1)
return [(new_key, input_example)]
class SortGroupedDataFn(beam.DoFn):
"""Sorts data within a keyed group.
This Beam DoFn sorts the grouped list of image examples by frame_num
"""
def __init__(self, sequence_key, sorted_image_ids,
max_num_elements_in_context_features):
"""Initialization function.
Args:
sequence_key: A feature name to use as a key for grouping sequences.
Must point to a key of type bytes_list
sorted_image_ids: Whether the image ids are sortable to use as sorting
tie-breakers
max_num_elements_in_context_features: The maximum number of elements
allowed in the memory bank
"""
self._session = None
self._num_examples_processed = beam.metrics.Metrics.counter(
'sort_group', 'num_groups_sorted')
self._too_many_elements = beam.metrics.Metrics.counter(
'sort_group', 'too_many_elements')
self._split_elements = beam.metrics.Metrics.counter(
'sort_group', 'split_elements')
self._sequence_key = six.ensure_binary(sequence_key)
self._sorted_image_ids = sorted_image_ids
self._max_num_elements_in_context_features = (
max_num_elements_in_context_features)
def process(self, grouped_entry):
return self._sort_image_examples(grouped_entry)
def _sort_image_examples(self, grouped_entry):
key, example_collection = grouped_entry
example_list = list(example_collection)
def get_frame_num(example):
return example.features.feature['image/seq_frame_num'].int64_list.value[0]
def get_date_captured(example):
return datetime.datetime.strptime(
six.ensure_str(
example.features.feature[
'image/date_captured'].bytes_list.value[0]),
'%Y-%m-%d %H:%M:%S')
def get_image_id(example):
return example.features.feature['image/source_id'].bytes_list.value[0]
if self._sequence_key == six.ensure_binary('image/seq_id'):
sorting_fn = get_frame_num
elif self._sequence_key == six.ensure_binary('image/location'):
if self._sorted_image_ids:
sorting_fn = get_image_id
else:
sorting_fn = get_date_captured
sorted_example_list = sorted(example_list, key=sorting_fn)
num_embeddings = 0
for example in sorted_example_list:
num_embeddings += example.features.feature[
'image/embedding_count'].int64_list.value[0]
self._num_examples_processed.inc(1)
# To handle cases where there are more context embeddings within
# the time horizon than the specified maximum, we split the context group
# into subsets sequentially in time, with each subset having the maximum
# number of context embeddings except the final one, which holds the
# remainder.
if num_embeddings > self._max_num_elements_in_context_features:
leftovers = sorted_example_list
output_list = []
count = 0
self._too_many_elements.inc(1)
num_embeddings = 0
max_idx = 0
for idx, example in enumerate(leftovers):
num_embeddings += example.features.feature[
'image/embedding_count'].int64_list.value[0]
if num_embeddings <= self._max_num_elements_in_context_features:
max_idx = idx
while num_embeddings > self._max_num_elements_in_context_features:
self._split_elements.inc(1)
new_key = key + six.ensure_binary('_' + str(count))
new_list = leftovers[:max_idx]
output_list.append((new_key, new_list))
leftovers = leftovers[max_idx:]
count += 1
num_embeddings = 0
max_idx = 0
for idx, example in enumerate(leftovers):
num_embeddings += example.features.feature[
'image/embedding_count'].int64_list.value[0]
if num_embeddings <= self._max_num_elements_in_context_features:
max_idx = idx
new_key = key + six.ensure_binary('_' + str(count))
output_list.append((new_key, leftovers))
else:
output_list = [(key, sorted_example_list)]
return output_list
def get_sliding_window(example_list, max_clip_length, stride_length):
"""Yields a sliding window over data from example_list.
Sliding window has width max_clip_len (n) and stride stride_len (m).
s -> (s0,s1,...s[n-1]), (s[m],s[m+1],...,s[m+n]), ...
Args:
example_list: A list of examples.
max_clip_length: The maximum length of each clip.
stride_length: The stride between each clip.
Yields:
A list of lists of examples, each with length <= max_clip_length
"""
# check if the list is too short to slide over
if len(example_list) < max_clip_length:
yield example_list
else:
starting_values = [i*stride_length for i in
range(len(example_list)) if
len(example_list) > i*stride_length]
for start in starting_values:
result = tuple(itertools.islice(example_list, start,
min(start + max_clip_length,
len(example_list))))
yield result
class GenerateContextFn(beam.DoFn):
"""Generates context data for camera trap images.
This Beam DoFn builds up contextual memory banks from groups of images and
stores them in the output tf.Example or tf.Sequence_example for each image.
"""
def __init__(self, sequence_key, add_context_features, image_ids_to_keep,
keep_context_features_image_id_list=False,
subsample_context_features_rate=0,
keep_only_positives=False,
context_features_score_threshold=0.7,
keep_only_positives_gt=False,
max_num_elements_in_context_features=5000,
pad_context_features=False,
output_type='tf_example', max_clip_length=None,
context_feature_length=2057):
"""Initialization function.
Args:
sequence_key: A feature name to use as a key for grouping sequences.
add_context_features: Whether to keep and store the contextual memory
bank.
image_ids_to_keep: A list of image ids to save, to use to build data
subsets for evaluation.
keep_context_features_image_id_list: Whether to save an ordered list of
the ids of the images in the contextual memory bank.
subsample_context_features_rate: What rate to subsample images for the
contextual memory bank.
keep_only_positives: Whether to only keep high scoring
(>context_features_score_threshold) features in the contextual memory
bank.
context_features_score_threshold: What threshold to use for keeping
features.
keep_only_positives_gt: Whether to only keep features from images that
contain objects based on the ground truth (for training).
max_num_elements_in_context_features: the maximum number of elements in
the memory bank
pad_context_features: Whether to pad the context features to a fixed size.
output_type: What type of output, tf_example of tf_sequence_example
max_clip_length: The maximum length of a sequence example, before
splitting into multiple
context_feature_length: The length of the context feature embeddings
stored in the input data.
"""
self._session = None
self._num_examples_processed = beam.metrics.Metrics.counter(
'sequence_data_generation', 'num_seq_examples_processed')
self._num_keys_processed = beam.metrics.Metrics.counter(
'sequence_data_generation', 'num_keys_processed')
self._sequence_key = sequence_key
self._add_context_features = add_context_features
self._pad_context_features = pad_context_features
self._output_type = output_type
self._max_clip_length = max_clip_length
if six.ensure_str(image_ids_to_keep) == 'All':
self._image_ids_to_keep = None
else:
with tf.io.gfile.GFile(image_ids_to_keep) as f:
self._image_ids_to_keep = json.load(f)
self._keep_context_features_image_id_list = (
keep_context_features_image_id_list)
self._subsample_context_features_rate = subsample_context_features_rate
self._keep_only_positives = keep_only_positives
self._keep_only_positives_gt = keep_only_positives_gt
self._context_features_score_threshold = context_features_score_threshold
self._max_num_elements_in_context_features = (
max_num_elements_in_context_features)
self._context_feature_length = context_feature_length
self._images_kept = beam.metrics.Metrics.counter(
'sequence_data_generation', 'images_kept')
self._images_loaded = beam.metrics.Metrics.counter(
'sequence_data_generation', 'images_loaded')
def process(self, grouped_entry):
return self._add_context_to_example(copy.deepcopy(grouped_entry))
def _build_context_features(self, example_list):
context_features = []
context_features_image_id_list = []
count = 0
example_embedding = []
for idx, example in enumerate(example_list):
if self._subsample_context_features_rate > 0:
if (idx % self._subsample_context_features_rate) != 0:
example.features.feature[
'context_features_idx'].int64_list.value.append(
self._max_num_elements_in_context_features + 1)
continue
if self._keep_only_positives:
if example.features.feature[
'image/embedding_score'
].float_list.value[0] < self._context_features_score_threshold:
example.features.feature[
'context_features_idx'].int64_list.value.append(
self._max_num_elements_in_context_features + 1)
continue
if self._keep_only_positives_gt:
if len(example.features.feature[
'image/object/bbox/xmin'
].float_list.value) < 1:
example.features.feature[
'context_features_idx'].int64_list.value.append(
self._max_num_elements_in_context_features + 1)
continue
example_embedding = list(example.features.feature[
'image/embedding'].float_list.value)
context_features.extend(example_embedding)
num_embeddings = example.features.feature[
'image/embedding_count'].int64_list.value[0]
example_image_id = example.features.feature[
'image/source_id'].bytes_list.value[0]
for _ in range(num_embeddings):
example.features.feature[
'context_features_idx'].int64_list.value.append(count)
count += 1
context_features_image_id_list.append(example_image_id)
if not example_embedding:
example_embedding.append(np.zeros(self._context_feature_length))
feature_length = self._context_feature_length
# If the example_list is not empty and image/embedding_length is in the
# featture dict, feature_length will be assigned to that. Otherwise, it will
# be kept as default.
if example_list and (
'image/embedding_length' in example_list[0].features.feature):
feature_length = example_list[0].features.feature[
'image/embedding_length'].int64_list.value[0]
if self._pad_context_features:
while len(context_features_image_id_list) < (
self._max_num_elements_in_context_features):
context_features_image_id_list.append('')
return context_features, feature_length, context_features_image_id_list
def _add_context_to_example(self, grouped_entry):
key, example_collection = grouped_entry
list_of_examples = []
example_list = list(example_collection)
if self._add_context_features:
context_features, feature_length, context_features_image_id_list = (
self._build_context_features(example_list))
if self._image_ids_to_keep is not None:
new_example_list = []
for example in example_list:
im_id = example.features.feature['image/source_id'].bytes_list.value[0]
self._images_loaded.inc(1)
if six.ensure_str(im_id) in self._image_ids_to_keep:
self._images_kept.inc(1)
new_example_list.append(example)
if new_example_list:
example_list = new_example_list
else:
return []
if self._output_type == 'tf_sequence_example':
if self._max_clip_length is not None:
# For now, no overlap
clips = get_sliding_window(
example_list, self._max_clip_length, self._max_clip_length)
else:
clips = [example_list]
for clip_num, clip_list in enumerate(clips):
# initialize sequence example
seq_example = tf.train.SequenceExample()
video_id = six.ensure_str(key)+'_'+ str(clip_num)
seq_example.context.feature['clip/media_id'].bytes_list.value.append(
video_id.encode('utf8'))
seq_example.context.feature['clip/frames'].int64_list.value.append(
len(clip_list))
seq_example.context.feature[
'clip/start/timestamp'].int64_list.value.append(0)
seq_example.context.feature[
'clip/end/timestamp'].int64_list.value.append(len(clip_list))
seq_example.context.feature['image/format'].bytes_list.value.append(
six.ensure_binary('JPG'))
seq_example.context.feature['image/channels'].int64_list.value.append(3)
context_example = clip_list[0]
seq_example.context.feature['image/height'].int64_list.value.append(
context_example.features.feature[
'image/height'].int64_list.value[0])
seq_example.context.feature['image/width'].int64_list.value.append(
context_example.features.feature['image/width'].int64_list.value[0])
seq_example.context.feature[
'image/context_feature_length'].int64_list.value.append(
feature_length)
seq_example.context.feature[
'image/context_features'].float_list.value.extend(
context_features)
if self._keep_context_features_image_id_list:
seq_example.context.feature[
'image/context_features_image_id_list'].bytes_list.value.extend(
context_features_image_id_list)
encoded_image_list = seq_example.feature_lists.feature_list[
'image/encoded']
timestamps_list = seq_example.feature_lists.feature_list[
'image/timestamp']
context_features_idx_list = seq_example.feature_lists.feature_list[
'image/context_features_idx']
date_captured_list = seq_example.feature_lists.feature_list[
'image/date_captured']
unix_time_list = seq_example.feature_lists.feature_list[
'image/unix_time']
location_list = seq_example.feature_lists.feature_list['image/location']
image_ids_list = seq_example.feature_lists.feature_list[
'image/source_id']
gt_xmin_list = seq_example.feature_lists.feature_list[
'region/bbox/xmin']
gt_xmax_list = seq_example.feature_lists.feature_list[
'region/bbox/xmax']
gt_ymin_list = seq_example.feature_lists.feature_list[
'region/bbox/ymin']
gt_ymax_list = seq_example.feature_lists.feature_list[
'region/bbox/ymax']
gt_type_list = seq_example.feature_lists.feature_list[
'region/label/index']
gt_type_string_list = seq_example.feature_lists.feature_list[
'region/label/string']
gt_is_annotated_list = seq_example.feature_lists.feature_list[
'region/is_annotated']
for idx, example in enumerate(clip_list):
encoded_image = encoded_image_list.feature.add()
encoded_image.bytes_list.value.extend(
example.features.feature['image/encoded'].bytes_list.value)
image_id = image_ids_list.feature.add()
image_id.bytes_list.value.append(
example.features.feature['image/source_id'].bytes_list.value[0])
timestamp = timestamps_list.feature.add()
# Timestamp is currently order in the list.
timestamp.int64_list.value.extend([idx])
context_features_idx = context_features_idx_list.feature.add()
context_features_idx.int64_list.value.extend(
example.features.feature['context_features_idx'].int64_list.value)
date_captured = date_captured_list.feature.add()
date_captured.bytes_list.value.extend(
example.features.feature['image/date_captured'].bytes_list.value)
unix_time = unix_time_list.feature.add()
unix_time.float_list.value.extend(
example.features.feature['image/unix_time'].float_list.value)
location = location_list.feature.add()
location.bytes_list.value.extend(
example.features.feature['image/location'].bytes_list.value)
gt_xmin = gt_xmin_list.feature.add()
gt_xmax = gt_xmax_list.feature.add()
gt_ymin = gt_ymin_list.feature.add()
gt_ymax = gt_ymax_list.feature.add()
gt_type = gt_type_list.feature.add()
gt_type_str = gt_type_string_list.feature.add()
gt_is_annotated = gt_is_annotated_list.feature.add()
gt_is_annotated.int64_list.value.append(1)
gt_xmin.float_list.value.extend(
example.features.feature[
'image/object/bbox/xmin'].float_list.value)
gt_xmax.float_list.value.extend(
example.features.feature[
'image/object/bbox/xmax'].float_list.value)
gt_ymin.float_list.value.extend(
example.features.feature[
'image/object/bbox/ymin'].float_list.value)
gt_ymax.float_list.value.extend(
example.features.feature[
'image/object/bbox/ymax'].float_list.value)
gt_type.int64_list.value.extend(
example.features.feature[
'image/object/class/label'].int64_list.value)
gt_type_str.bytes_list.value.extend(
example.features.feature[
'image/object/class/text'].bytes_list.value)
self._num_examples_processed.inc(1)
list_of_examples.append(seq_example)
elif self._output_type == 'tf_example':
for example in example_list:
im_id = example.features.feature['image/source_id'].bytes_list.value[0]
if self._add_context_features:
example.features.feature[
'image/context_features'].float_list.value.extend(
context_features)
example.features.feature[
'image/context_feature_length'].int64_list.value.append(
feature_length)
if self._keep_context_features_image_id_list:
example.features.feature[
'image/context_features_image_id_list'].bytes_list.value.extend(
context_features_image_id_list)
self._num_examples_processed.inc(1)
list_of_examples.append(example)
return list_of_examples
def construct_pipeline(pipeline,
input_tfrecord,
output_tfrecord,
sequence_key,
time_horizon=None,
subsample_context_features_rate=0,
reduce_image_size=True,
max_image_dimension=1024,
add_context_features=True,
sorted_image_ids=True,
image_ids_to_keep='All',
keep_context_features_image_id_list=False,
keep_only_positives=False,
context_features_score_threshold=0.7,
keep_only_positives_gt=False,
max_num_elements_in_context_features=5000,
num_shards=0,
output_type='tf_example',
max_clip_length=None,
context_feature_length=2057):
"""Returns a beam pipeline to run object detection inference.
Args:
pipeline: Initialized beam pipeline.
input_tfrecord: An TFRecord of tf.train.Example protos containing images.
output_tfrecord: An TFRecord of tf.train.Example protos that contain images
in the input TFRecord and the detections from the model.
sequence_key: A feature name to use as a key for grouping sequences.
time_horizon: What length of time to use to partition the data when building
the memory banks. Options: `year`, `month`, `week`, `day `, `hour`,
`minute`, None.
subsample_context_features_rate: What rate to subsample images for the
contextual memory bank.
reduce_image_size: Whether to reduce the size of the stored images.
max_image_dimension: The maximum image dimension to use for resizing.
add_context_features: Whether to keep and store the contextual memory bank.
sorted_image_ids: Whether the image ids are sortable, and can be used as
datetime tie-breakers when building memory banks.
image_ids_to_keep: A list of image ids to save, to use to build data subsets
for evaluation.
keep_context_features_image_id_list: Whether to save an ordered list of the
ids of the images in the contextual memory bank.
keep_only_positives: Whether to only keep high scoring
(>context_features_score_threshold) features in the contextual memory
bank.
context_features_score_threshold: What threshold to use for keeping
features.
keep_only_positives_gt: Whether to only keep features from images that
contain objects based on the ground truth (for training).
max_num_elements_in_context_features: the maximum number of elements in the
memory bank
num_shards: The number of output shards.
output_type: What type of output, tf_example of tf_sequence_example
max_clip_length: The maximum length of a sequence example, before
splitting into multiple
context_feature_length: The length of the context feature embeddings stored
in the input data.
"""
if output_type == 'tf_example':
coder = beam.coders.ProtoCoder(tf.train.Example)
elif output_type == 'tf_sequence_example':
coder = beam.coders.ProtoCoder(tf.train.SequenceExample)
else:
raise ValueError('Unsupported output type.')
input_collection = (
pipeline | 'ReadInputTFRecord' >> beam.io.tfrecordio.ReadFromTFRecord(
input_tfrecord,
coder=beam.coders.BytesCoder()))
rekey_collection = input_collection | 'RekeyExamples' >> beam.ParDo(
ReKeyDataFn(sequence_key, time_horizon,
reduce_image_size, max_image_dimension))
grouped_collection = (
rekey_collection | 'GroupBySequenceKey' >> beam.GroupByKey())
grouped_collection = (
grouped_collection | 'ReshuffleGroups' >> beam.Reshuffle())
ordered_collection = (
grouped_collection | 'OrderByFrameNumber' >> beam.ParDo(
SortGroupedDataFn(sequence_key, sorted_image_ids,
max_num_elements_in_context_features)))
ordered_collection = (
ordered_collection | 'ReshuffleSortedGroups' >> beam.Reshuffle())
output_collection = (
ordered_collection | 'AddContextToExamples' >> beam.ParDo(
GenerateContextFn(
sequence_key, add_context_features, image_ids_to_keep,
keep_context_features_image_id_list=(
keep_context_features_image_id_list),
subsample_context_features_rate=subsample_context_features_rate,
keep_only_positives=keep_only_positives,
keep_only_positives_gt=keep_only_positives_gt,
context_features_score_threshold=(
context_features_score_threshold),
max_num_elements_in_context_features=(
max_num_elements_in_context_features),
output_type=output_type,
max_clip_length=max_clip_length,
context_feature_length=context_feature_length)))
output_collection = (
output_collection | 'ReshuffleExamples' >> beam.Reshuffle())
_ = output_collection | 'WritetoDisk' >> beam.io.tfrecordio.WriteToTFRecord(
output_tfrecord,
num_shards=num_shards,
coder=coder)
def parse_args(argv):
"""Command-line argument parser.
Args:
argv: command line arguments
Returns:
beam_args: Arguments for the beam pipeline.
pipeline_args: Arguments for the pipeline options, such as runner type.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--input_tfrecord',
dest='input_tfrecord',
required=True,
help='TFRecord containing images in tf.Example format for object '
'detection, with bounding boxes and contextual feature embeddings.')
parser.add_argument(
'--output_tfrecord',
dest='output_tfrecord',
required=True,
help='TFRecord containing images in tf.Example format, with added '
'contextual memory banks.')
parser.add_argument(
'--sequence_key',
dest='sequence_key',
default='image/location',
help='Key to use when grouping sequences: so far supports `image/seq_id` '
'and `image/location`.')
parser.add_argument(
'--context_feature_length',
dest='context_feature_length',
default=2057,
help='The length of the context feature embeddings stored in the input '
'data.')
parser.add_argument(
'--time_horizon',
dest='time_horizon',
default=None,
help='What time horizon to use when splitting the data, if any. Options '
'are: `year`, `month`, `week`, `day `, `hour`, `minute`, `None`.')
parser.add_argument(
'--subsample_context_features_rate',
dest='subsample_context_features_rate',
default=0,
help='Whether to subsample the context_features, and if so how many to '
'sample. If the rate is set to X, it will sample context from 1 out of '
'every X images. Default is sampling from every image, which is X=0.')
parser.add_argument(
'--reduce_image_size',
dest='reduce_image_size',
default=True,
help='downsamples images to have longest side max_image_dimension, '
'maintaining aspect ratio')
parser.add_argument(
'--max_image_dimension',
dest='max_image_dimension',
default=1024,
help='Sets max image dimension for resizing.')
parser.add_argument(
'--add_context_features',
dest='add_context_features',
default=True,
help='Adds a memory bank of embeddings to each clip')
parser.add_argument(
'--sorted_image_ids',
dest='sorted_image_ids',
default=True,
help='Whether the image source_ids are sortable to deal with '
'date_captured tie-breaks.')
parser.add_argument(
'--image_ids_to_keep',
dest='image_ids_to_keep',
default='All',
help='Path to .json list of image ids to keep, used for ground truth '
'eval creation.')
parser.add_argument(
'--keep_context_features_image_id_list',
dest='keep_context_features_image_id_list',
default=False,
help='Whether or not to keep a list of the image_ids corresponding to '
'the memory bank.')
parser.add_argument(
'--keep_only_positives',
dest='keep_only_positives',
default=False,
help='Whether or not to keep only positive boxes based on score.')
parser.add_argument(
'--context_features_score_threshold',
dest='context_features_score_threshold',
default=0.7,
help='What score threshold to use for boxes in context_features, when '
'`keep_only_positives` is set to `True`.')
parser.add_argument(
'--keep_only_positives_gt',
dest='keep_only_positives_gt',
default=False,
help='Whether or not to keep only positive boxes based on gt class.')
parser.add_argument(
'--max_num_elements_in_context_features',
dest='max_num_elements_in_context_features',
default=2000,
help='Sets max number of context feature elements per memory bank. '
'If the number of images in the context group is greater than '
'`max_num_elements_in_context_features`, the context group will be split.'
)
parser.add_argument(
'--output_type',
dest='output_type',
default='tf_example',
help='Output type, one of `tf_example`, `tf_sequence_example`.')
parser.add_argument(
'--max_clip_length',
dest='max_clip_length',
default=None,
help='Max length for sequence example outputs.')
parser.add_argument(
'--num_shards',
dest='num_shards',
default=0,
help='Number of output shards.')
beam_args, pipeline_args = parser.parse_known_args(argv)
return beam_args, pipeline_args
def main(argv=None, save_main_session=True):
"""Runs the Beam pipeline that performs inference.
Args:
argv: Command line arguments.
save_main_session: Whether to save the main session.
"""
args, pipeline_args = parse_args(argv)
pipeline_options = beam.options.pipeline_options.PipelineOptions(
pipeline_args)
pipeline_options.view_as(
beam.options.pipeline_options.SetupOptions).save_main_session = (
save_main_session)
dirname = os.path.dirname(args.output_tfrecord)
tf.io.gfile.makedirs(dirname)
p = beam.Pipeline(options=pipeline_options)
construct_pipeline(
p,
args.input_tfrecord,
args.output_tfrecord,
args.sequence_key,
args.time_horizon,
args.subsample_context_features_rate,
args.reduce_image_size,
args.max_image_dimension,
args.add_context_features,
args.sorted_image_ids,
args.image_ids_to_keep,
args.keep_context_features_image_id_list,
args.keep_only_positives,
args.context_features_score_threshold,
args.keep_only_positives_gt,
args.max_num_elements_in_context_features,
args.num_shards,
args.output_type,
args.max_clip_length,
args.context_feature_length)
p.run()
if __name__ == '__main__':
main() | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/context_rcnn/add_context_to_examples.py | add_context_to_examples.py |
r"""A Beam job to generate embedding data for camera trap images.
This tool runs inference with an exported Object Detection model in
`saved_model` format and produce raw embeddings for camera trap data. These
embeddings contain an object-centric feature embedding from Faster R-CNN, the
datetime that the image was taken (normalized in a specific way), and the
position of the object of interest. By default, only the highest-scoring object
embedding is included.
Steps to generate a embedding dataset:
1. Use object_detection/export_inference_graph.py to get a Faster R-CNN
`saved_model` for inference. The input node must accept a tf.Example proto.
2. Run this tool with `saved_model` from step 1 and an TFRecord of tf.Example
protos containing images for inference.
Example Usage:
--------------
python tensorflow_models/object_detection/export_inference_graph.py \
--alsologtostderr \
--input_type tf_example \
--pipeline_config_path path/to/faster_rcnn_model.config \
--trained_checkpoint_prefix path/to/model.ckpt \
--output_directory path/to/exported_model_directory \
--additional_output_tensor_names detection_features
python generate_embedding_data.py \
--alsologtostderr \
--embedding_input_tfrecord path/to/input_tfrecords* \
--embedding_output_tfrecord path/to/output_tfrecords \
--embedding_model_dir path/to/exported_model_directory/saved_model
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import datetime
import os
import threading
import numpy as np
import six
import tensorflow as tf
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
def add_keys(serialized_example):
key = hash(serialized_example)
return key, serialized_example
def drop_keys(key_value_tuple):
return key_value_tuple[1]
def get_date_captured(example):
date_captured = datetime.datetime.strptime(
six.ensure_str(
example.features.feature['image/date_captured'].bytes_list.value[0]),
'%Y-%m-%d %H:%M:%S')
return date_captured
def embed_date_captured(date_captured):
"""Encodes the datetime of the image."""
embedded_date_captured = []
month_max = 12.0
day_max = 31.0
hour_max = 24.0
minute_max = 60.0
min_year = 1990.0
max_year = 2030.0
year = (date_captured.year - min_year) / float(max_year - min_year)
embedded_date_captured.append(year)
month = (date_captured.month - 1) / month_max
embedded_date_captured.append(month)
day = (date_captured.day - 1) / day_max
embedded_date_captured.append(day)
hour = date_captured.hour / hour_max
embedded_date_captured.append(hour)
minute = date_captured.minute / minute_max
embedded_date_captured.append(minute)
return np.asarray(embedded_date_captured)
def embed_position_and_size(box):
"""Encodes the bounding box of the object of interest."""
ymin = box[0]
xmin = box[1]
ymax = box[2]
xmax = box[3]
w = xmax - xmin
h = ymax - ymin
x = xmin + w / 2.0
y = ymin + h / 2.0
return np.asarray([x, y, w, h])
def get_bb_embedding(detection_features, detection_boxes, detection_scores,
index):
embedding = detection_features[0][index]
pooled_embedding = np.mean(np.mean(embedding, axis=1), axis=0)
box = detection_boxes[0][index]
position_embedding = embed_position_and_size(box)
score = detection_scores[0][index]
return np.concatenate((pooled_embedding, position_embedding)), score
class GenerateEmbeddingDataFn(beam.DoFn):
"""Generates embedding data for camera trap images.
This Beam DoFn performs inference with an object detection `saved_model` and
produces contextual embedding vectors.
"""
session_lock = threading.Lock()
def __init__(self, model_dir, top_k_embedding_count,
bottom_k_embedding_count, embedding_type='final_box_features'):
"""Initialization function.
Args:
model_dir: A directory containing saved model.
top_k_embedding_count: the number of high-confidence embeddings to store
bottom_k_embedding_count: the number of low-confidence embeddings to store
embedding_type: One of 'final_box_features', 'rpn_box_features'
"""
self._model_dir = model_dir
self._session = None
self._num_examples_processed = beam.metrics.Metrics.counter(
'embedding_data_generation', 'num_tf_examples_processed')
self._top_k_embedding_count = top_k_embedding_count
self._bottom_k_embedding_count = bottom_k_embedding_count
self._embedding_type = embedding_type
def setup(self):
self._load_inference_model()
def _load_inference_model(self):
# Because initialization of the tf.Session is expensive we share
# one instance across all threads in the worker. This is possible since
# tf.Session.run() is thread safe.
with self.session_lock:
self._detect_fn = tf.saved_model.load(self._model_dir)
def process(self, tfexample_key_value):
return self._run_inference_and_generate_embedding(tfexample_key_value)
def _run_inference_and_generate_embedding(self, tfexample_key_value):
key, tfexample = tfexample_key_value
input_example = tf.train.Example.FromString(tfexample)
example = tf.train.Example()
example.CopyFrom(input_example)
try:
date_captured = get_date_captured(input_example)
unix_time = ((date_captured -
datetime.datetime.fromtimestamp(0)).total_seconds())
example.features.feature['image/unix_time'].float_list.value.extend(
[unix_time])
temporal_embedding = embed_date_captured(date_captured)
except Exception: # pylint: disable=broad-except
temporal_embedding = None
detections = self._detect_fn.signatures['serving_default'](
(tf.expand_dims(tf.convert_to_tensor(tfexample), 0)))
if self._embedding_type == 'final_box_features':
detection_features = detections['detection_features']
elif self._embedding_type == 'rpn_box_features':
detection_features = detections['cropped_rpn_box_features']
else:
raise ValueError('embedding type not supported')
detection_boxes = detections['detection_boxes']
num_detections = detections['num_detections']
detection_scores = detections['detection_scores']
num_detections = int(num_detections)
embed_all = []
score_all = []
detection_features = np.asarray(detection_features)
embedding_count = 0
for index in range(min(num_detections, self._top_k_embedding_count)):
bb_embedding, score = get_bb_embedding(
detection_features, detection_boxes, detection_scores, index)
embed_all.extend(bb_embedding)
if temporal_embedding is not None: embed_all.extend(temporal_embedding)
score_all.append(score)
embedding_count += 1
for index in range(
max(0, num_detections - 1),
max(-1, num_detections - 1 - self._bottom_k_embedding_count), -1):
bb_embedding, score = get_bb_embedding(
detection_features, detection_boxes, detection_scores, index)
embed_all.extend(bb_embedding)
if temporal_embedding is not None: embed_all.extend(temporal_embedding)
score_all.append(score)
embedding_count += 1
if embedding_count == 0:
bb_embedding, score = get_bb_embedding(
detection_features, detection_boxes, detection_scores, 0)
embed_all.extend(bb_embedding)
if temporal_embedding is not None: embed_all.extend(temporal_embedding)
score_all.append(score)
# Takes max in case embedding_count is 0.
embedding_length = len(embed_all) // max(1, embedding_count)
embed_all = np.asarray(embed_all)
example.features.feature['image/embedding'].float_list.value.extend(
embed_all)
example.features.feature['image/embedding_score'].float_list.value.extend(
score_all)
example.features.feature['image/embedding_length'].int64_list.value.append(
embedding_length)
example.features.feature['image/embedding_count'].int64_list.value.append(
embedding_count)
self._num_examples_processed.inc(1)
return [(key, example)]
def construct_pipeline(pipeline, input_tfrecord, output_tfrecord, model_dir,
top_k_embedding_count, bottom_k_embedding_count,
num_shards, embedding_type):
"""Returns a beam pipeline to run object detection inference.
Args:
pipeline: Initialized beam pipeline.
input_tfrecord: An TFRecord of tf.train.Example protos containing images.
output_tfrecord: An TFRecord of tf.train.Example protos that contain images
in the input TFRecord and the detections from the model.
model_dir: Path to `saved_model` to use for inference.
top_k_embedding_count: The number of high-confidence embeddings to store.
bottom_k_embedding_count: The number of low-confidence embeddings to store.
num_shards: The number of output shards.
embedding_type: Which features to embed.
"""
input_collection = (
pipeline | 'ReadInputTFRecord' >> beam.io.tfrecordio.ReadFromTFRecord(
input_tfrecord, coder=beam.coders.BytesCoder())
| 'AddKeys' >> beam.Map(add_keys))
output_collection = input_collection | 'ExtractEmbedding' >> beam.ParDo(
GenerateEmbeddingDataFn(model_dir, top_k_embedding_count,
bottom_k_embedding_count, embedding_type))
output_collection = output_collection | 'Reshuffle' >> beam.Reshuffle()
_ = output_collection | 'DropKeys' >> beam.Map(
drop_keys) | 'WritetoDisk' >> beam.io.tfrecordio.WriteToTFRecord(
output_tfrecord,
num_shards=num_shards,
coder=beam.coders.ProtoCoder(tf.train.Example))
def parse_args(argv):
"""Command-line argument parser.
Args:
argv: command line arguments
Returns:
beam_args: Arguments for the beam pipeline.
pipeline_args: Arguments for the pipeline options, such as runner type.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--embedding_input_tfrecord',
dest='embedding_input_tfrecord',
required=True,
help='TFRecord containing images in tf.Example format for object '
'detection.')
parser.add_argument(
'--embedding_output_tfrecord',
dest='embedding_output_tfrecord',
required=True,
help='TFRecord containing embeddings in tf.Example format.')
parser.add_argument(
'--embedding_model_dir',
dest='embedding_model_dir',
required=True,
help='Path to directory containing an object detection SavedModel with'
'detection_box_classifier_features in the output.')
parser.add_argument(
'--top_k_embedding_count',
dest='top_k_embedding_count',
default=1,
help='The number of top k embeddings to add to the memory bank.')
parser.add_argument(
'--bottom_k_embedding_count',
dest='bottom_k_embedding_count',
default=0,
help='The number of bottom k embeddings to add to the memory bank.')
parser.add_argument(
'--num_shards',
dest='num_shards',
default=0,
help='Number of output shards.')
parser.add_argument(
'--embedding_type',
dest='embedding_type',
default='final_box_features',
help='What features to embed, supports `final_box_features`, '
'`rpn_box_features`.')
beam_args, pipeline_args = parser.parse_known_args(argv)
return beam_args, pipeline_args
def main(argv=None, save_main_session=True):
"""Runs the Beam pipeline that performs inference.
Args:
argv: Command line arguments.
save_main_session: Whether to save the main session.
"""
args, pipeline_args = parse_args(argv)
pipeline_options = beam.options.pipeline_options.PipelineOptions(
pipeline_args)
pipeline_options.view_as(
beam.options.pipeline_options.SetupOptions).save_main_session = (
save_main_session)
dirname = os.path.dirname(args.embedding_output_tfrecord)
tf.io.gfile.makedirs(dirname)
p = beam.Pipeline(options=pipeline_options)
construct_pipeline(
p,
args.embedding_input_tfrecord,
args.embedding_output_tfrecord,
args.embedding_model_dir,
args.top_k_embedding_count,
args.bottom_k_embedding_count,
args.num_shards,
args.embedding_type)
p.run()
if __name__ == '__main__':
main() | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/context_rcnn/generate_embedding_data.py | generate_embedding_data.py |
r"""Beam pipeline to create COCO Camera Traps Object Detection TFRecords.
Please note that this tool creates sharded output files.
This tool assumes the input annotations are in the COCO Camera Traps json
format, specified here:
https://github.com/Microsoft/CameraTraps/blob/master/data_management/README.md
Example usage:
python create_cococameratraps_tfexample_main.py \
--alsologtostderr \
--output_tfrecord_prefix="/path/to/output/tfrecord/location/prefix" \
--image_directory="/path/to/image/folder/" \
--input_annotations_file="path/to/annotations.json"
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import hashlib
import io
import json
import os
import numpy as np
import PIL.Image
import tensorflow as tf
from object_detection.utils import dataset_util
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class ParseImage(beam.DoFn):
"""A DoFn that parses a COCO-CameraTraps json and emits TFRecords."""
def __init__(self, image_directory, images, annotations, categories,
keep_bboxes):
"""Initialization function.
Args:
image_directory: Path to image directory
images: list of COCO Camera Traps style image dictionaries
annotations: list of COCO Camera Traps style annotation dictionaries
categories: list of COCO Camera Traps style category dictionaries
keep_bboxes: Whether to keep any bounding boxes that exist in the
annotations
"""
self._image_directory = image_directory
self._image_dict = {im['id']: im for im in images}
self._annotation_dict = {im['id']: [] for im in images}
self._category_dict = {int(cat['id']): cat for cat in categories}
for ann in annotations:
self._annotation_dict[ann['image_id']].append(ann)
self._images = images
self._keep_bboxes = keep_bboxes
self._num_examples_processed = beam.metrics.Metrics.counter(
'cococameratraps_data_generation', 'num_tf_examples_processed')
def process(self, image_id):
"""Builds a tf.Example given an image id.
Args:
image_id: the image id of the associated image
Returns:
List of tf.Examples.
"""
image = self._image_dict[image_id]
annotations = self._annotation_dict[image_id]
image_height = image['height']
image_width = image['width']
filename = image['file_name']
image_id = image['id']
image_location_id = image['location']
image_datetime = str(image['date_captured'])
image_sequence_id = str(image['seq_id'])
image_sequence_num_frames = int(image['seq_num_frames'])
image_sequence_frame_num = int(image['frame_num'])
full_path = os.path.join(self._image_directory, filename)
try:
# Ensure the image exists and is not corrupted
with tf.io.gfile.GFile(full_path, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = PIL.Image.open(encoded_jpg_io)
image = tf.io.decode_jpeg(encoded_jpg, channels=3)
except Exception: # pylint: disable=broad-except
# The image file is missing or corrupt
return []
key = hashlib.sha256(encoded_jpg).hexdigest()
feature_dict = {
'image/height':
dataset_util.int64_feature(image_height),
'image/width':
dataset_util.int64_feature(image_width),
'image/filename':
dataset_util.bytes_feature(filename.encode('utf8')),
'image/source_id':
dataset_util.bytes_feature(str(image_id).encode('utf8')),
'image/key/sha256':
dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded':
dataset_util.bytes_feature(encoded_jpg),
'image/format':
dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/location':
dataset_util.bytes_feature(str(image_location_id).encode('utf8')),
'image/seq_num_frames':
dataset_util.int64_feature(image_sequence_num_frames),
'image/seq_frame_num':
dataset_util.int64_feature(image_sequence_frame_num),
'image/seq_id':
dataset_util.bytes_feature(image_sequence_id.encode('utf8')),
'image/date_captured':
dataset_util.bytes_feature(image_datetime.encode('utf8'))
}
num_annotations_skipped = 0
if annotations:
xmin = []
xmax = []
ymin = []
ymax = []
category_names = []
category_ids = []
area = []
for object_annotations in annotations:
if 'bbox' in object_annotations and self._keep_bboxes:
(x, y, width, height) = tuple(object_annotations['bbox'])
if width <= 0 or height <= 0:
num_annotations_skipped += 1
continue
if x + width > image_width or y + height > image_height:
num_annotations_skipped += 1
continue
xmin.append(float(x) / image_width)
xmax.append(float(x + width) / image_width)
ymin.append(float(y) / image_height)
ymax.append(float(y + height) / image_height)
if 'area' in object_annotations:
area.append(object_annotations['area'])
else:
# approximate area using l*w/2
area.append(width*height/2.0)
category_id = int(object_annotations['category_id'])
category_ids.append(category_id)
category_names.append(
self._category_dict[category_id]['name'].encode('utf8'))
feature_dict.update({
'image/object/bbox/xmin':
dataset_util.float_list_feature(xmin),
'image/object/bbox/xmax':
dataset_util.float_list_feature(xmax),
'image/object/bbox/ymin':
dataset_util.float_list_feature(ymin),
'image/object/bbox/ymax':
dataset_util.float_list_feature(ymax),
'image/object/class/text':
dataset_util.bytes_list_feature(category_names),
'image/object/class/label':
dataset_util.int64_list_feature(category_ids),
'image/object/area':
dataset_util.float_list_feature(area),
})
# For classification, add the first category to image/class/label and
# image/class/text
if not category_ids:
feature_dict.update({
'image/class/label':
dataset_util.int64_list_feature([0]),
'image/class/text':
dataset_util.bytes_list_feature(['empty'.encode('utf8')]),
})
else:
feature_dict.update({
'image/class/label':
dataset_util.int64_list_feature([category_ids[0]]),
'image/class/text':
dataset_util.bytes_list_feature([category_names[0]]),
})
else:
# Add empty class if there are no annotations
feature_dict.update({
'image/class/label':
dataset_util.int64_list_feature([0]),
'image/class/text':
dataset_util.bytes_list_feature(['empty'.encode('utf8')]),
})
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
self._num_examples_processed.inc(1)
return [(example)]
def load_json_data(data_file):
with tf.io.gfile.GFile(data_file, 'r') as fid:
data_dict = json.load(fid)
return data_dict
def create_pipeline(pipeline,
image_directory,
input_annotations_file,
output_tfrecord_prefix=None,
num_images_per_shard=200,
keep_bboxes=True):
"""Creates a beam pipeline for producing a COCO-CameraTraps Image dataset.
Args:
pipeline: Initialized beam pipeline.
image_directory: Path to image directory
input_annotations_file: Path to a coco-cameratraps annotation file
output_tfrecord_prefix: Absolute path for tfrecord outputs. Final files will
be named {output_tfrecord_prefix}@N.
num_images_per_shard: The number of images to store in each shard
keep_bboxes: Whether to keep any bounding boxes that exist in the json file
"""
data = load_json_data(input_annotations_file)
num_shards = int(np.ceil(float(len(data['images']))/num_images_per_shard))
image_examples = (
pipeline | ('CreateCollections') >> beam.Create(
[im['id'] for im in data['images']])
| ('ParseImage') >> beam.ParDo(ParseImage(
image_directory, data['images'], data['annotations'],
data['categories'], keep_bboxes=keep_bboxes)))
_ = (image_examples
| ('Reshuffle') >> beam.Reshuffle()
| ('WriteTfImageExample') >> beam.io.tfrecordio.WriteToTFRecord(
output_tfrecord_prefix,
num_shards=num_shards,
coder=beam.coders.ProtoCoder(tf.train.Example)))
def parse_args(argv):
"""Command-line argument parser.
Args:
argv: command line arguments
Returns:
beam_args: Arguments for the beam pipeline.
pipeline_args: Arguments for the pipeline options, such as runner type.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--image_directory',
dest='image_directory',
required=True,
help='Path to the directory where the images are stored.')
parser.add_argument(
'--output_tfrecord_prefix',
dest='output_tfrecord_prefix',
required=True,
help='Path and prefix to store TFRecords containing images in tf.Example'
'format.')
parser.add_argument(
'--input_annotations_file',
dest='input_annotations_file',
required=True,
help='Path to Coco-CameraTraps style annotations file.')
parser.add_argument(
'--num_images_per_shard',
dest='num_images_per_shard',
default=200,
help='The number of images to be stored in each outputshard.')
beam_args, pipeline_args = parser.parse_known_args(argv)
return beam_args, pipeline_args
def main(argv=None, save_main_session=True):
"""Runs the Beam pipeline that performs inference.
Args:
argv: Command line arguments.
save_main_session: Whether to save the main session.
"""
args, pipeline_args = parse_args(argv)
pipeline_options = beam.options.pipeline_options.PipelineOptions(
pipeline_args)
pipeline_options.view_as(
beam.options.pipeline_options.SetupOptions).save_main_session = (
save_main_session)
dirname = os.path.dirname(args.output_tfrecord_prefix)
tf.io.gfile.makedirs(dirname)
p = beam.Pipeline(options=pipeline_options)
create_pipeline(
pipeline=p,
image_directory=args.image_directory,
input_annotations_file=args.input_annotations_file,
output_tfrecord_prefix=args.output_tfrecord_prefix,
num_images_per_shard=args.num_images_per_shard)
p.run()
if __name__ == '__main__':
main() | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/dataset_tools/context_rcnn/create_cococameratraps_tfexample_main.py | create_cococameratraps_tfexample_main.py |
r"""Training executable for detection models.
This executable is used to train DetectionModels. There are two ways of
configuring the training job:
1) A single pipeline_pb2.TrainEvalPipelineConfig configuration file
can be specified by --pipeline_config_path.
Example usage:
./train \
--logtostderr \
--train_dir=path/to/train_dir \
--pipeline_config_path=pipeline_config.pbtxt
2) Three configuration files can be provided: a model_pb2.DetectionModel
configuration file to define what type of DetectionModel is being trained, an
input_reader_pb2.InputReader file to specify what training data will be used and
a train_pb2.TrainConfig file to configure training parameters.
Example usage:
./train \
--logtostderr \
--train_dir=path/to/train_dir \
--model_config_path=model_config.pbtxt \
--train_config_path=train_config.pbtxt \
--input_config_path=train_input_config.pbtxt
"""
import functools
import json
import os
import tensorflow.compat.v1 as tf
from tensorflow.python.util.deprecation import deprecated
from object_detection.builders import dataset_builder
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.legacy import trainer
from object_detection.utils import config_util
tf.logging.set_verbosity(tf.logging.INFO)
flags = tf.app.flags
flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.')
flags.DEFINE_integer('task', 0, 'task id')
flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy per worker.')
flags.DEFINE_boolean('clone_on_cpu', False,
'Force clones to be deployed on CPU. Note that even if '
'set to False (allowing ops to run on gpu), some ops may '
'still be run on the CPU if they have no GPU kernel.')
flags.DEFINE_integer('worker_replicas', 1, 'Number of worker+trainer '
'replicas.')
flags.DEFINE_integer('ps_tasks', 0,
'Number of parameter server tasks. If None, does not use '
'a parameter server.')
flags.DEFINE_string('train_dir', '',
'Directory to save the checkpoints and training summaries.')
flags.DEFINE_string('pipeline_config_path', '',
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file. If provided, other configs are ignored')
flags.DEFINE_string('train_config_path', '',
'Path to a train_pb2.TrainConfig config file.')
flags.DEFINE_string('input_config_path', '',
'Path to an input_reader_pb2.InputReader config file.')
flags.DEFINE_string('model_config_path', '',
'Path to a model_pb2.DetectionModel config file.')
FLAGS = flags.FLAGS
@deprecated(None, 'Use object_detection/model_main.py.')
def main(_):
assert FLAGS.train_dir, '`train_dir` is missing.'
if FLAGS.task == 0: tf.gfile.MakeDirs(FLAGS.train_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
if FLAGS.task == 0:
tf.gfile.Copy(FLAGS.pipeline_config_path,
os.path.join(FLAGS.train_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
train_config_path=FLAGS.train_config_path,
train_input_config_path=FLAGS.input_config_path)
if FLAGS.task == 0:
for name, config in [('model.config', FLAGS.model_config_path),
('train.config', FLAGS.train_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config, os.path.join(FLAGS.train_dir, name),
overwrite=True)
model_config = configs['model']
train_config = configs['train_config']
input_config = configs['train_input_config']
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=True)
def get_next(config):
return dataset_builder.make_initializable_iterator(
dataset_builder.build(config)).get_next()
create_input_dict_fn = functools.partial(get_next, input_config)
env = json.loads(os.environ.get('TF_CONFIG', '{}'))
cluster_data = env.get('cluster', None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
task_data = env.get('task', None) or {'type': 'master', 'index': 0}
task_info = type('TaskSpec', (object,), task_data)
# Parameters for a single worker.
ps_tasks = 0
worker_replicas = 1
worker_job_name = 'lonely_worker'
task = 0
is_chief = True
master = ''
if cluster_data and 'worker' in cluster_data:
# Number of total worker replicas include "worker"s and the "master".
worker_replicas = len(cluster_data['worker']) + 1
if cluster_data and 'ps' in cluster_data:
ps_tasks = len(cluster_data['ps'])
if worker_replicas > 1 and ps_tasks < 1:
raise ValueError('At least 1 ps task is needed for distributed training.')
if worker_replicas >= 1 and ps_tasks > 0:
# Set up distributed training.
server = tf.train.Server(tf.train.ClusterSpec(cluster), protocol='grpc',
job_name=task_info.type,
task_index=task_info.index)
if task_info.type == 'ps':
server.join()
return
worker_job_name = '%s/task:%d' % (task_info.type, task_info.index)
task = task_info.index
is_chief = (task_info.type == 'master')
master = server.target
graph_rewriter_fn = None
if 'graph_rewriter_config' in configs:
graph_rewriter_fn = graph_rewriter_builder.build(
configs['graph_rewriter_config'], is_training=True)
trainer.train(
create_input_dict_fn,
model_fn,
train_config,
master,
task,
FLAGS.num_clones,
worker_replicas,
FLAGS.clone_on_cpu,
ps_tasks,
worker_job_name,
is_chief,
FLAGS.train_dir,
graph_hook_fn=graph_rewriter_fn)
if __name__ == '__main__':
tf.app.run() | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/legacy/train.py | train.py |
import logging
import tensorflow.compat.v1 as tf
from object_detection import eval_util
from object_detection.core import prefetcher
from object_detection.core import standard_fields as fields
from object_detection.metrics import coco_evaluation
from object_detection.utils import object_detection_evaluation
# A dictionary of metric names to classes that implement the metric. The classes
# in the dictionary must implement
# utils.object_detection_evaluation.DetectionEvaluator interface.
EVAL_METRICS_CLASS_DICT = {
'pascal_voc_detection_metrics':
object_detection_evaluation.PascalDetectionEvaluator,
'weighted_pascal_voc_detection_metrics':
object_detection_evaluation.WeightedPascalDetectionEvaluator,
'pascal_voc_instance_segmentation_metrics':
object_detection_evaluation.PascalInstanceSegmentationEvaluator,
'weighted_pascal_voc_instance_segmentation_metrics':
object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,
'oid_V2_detection_metrics':
object_detection_evaluation.OpenImagesDetectionEvaluator,
# DEPRECATED: please use oid_V2_detection_metrics instead
'open_images_V2_detection_metrics':
object_detection_evaluation.OpenImagesDetectionEvaluator,
'coco_detection_metrics':
coco_evaluation.CocoDetectionEvaluator,
'coco_mask_metrics':
coco_evaluation.CocoMaskEvaluator,
'oid_challenge_detection_metrics':
object_detection_evaluation.OpenImagesDetectionChallengeEvaluator,
# DEPRECATED: please use oid_challenge_detection_metrics instead
'oid_challenge_object_detection_metrics':
object_detection_evaluation.OpenImagesDetectionChallengeEvaluator,
'oid_challenge_segmentation_metrics':
object_detection_evaluation
.OpenImagesInstanceSegmentationChallengeEvaluator,
}
EVAL_DEFAULT_METRIC = 'pascal_voc_detection_metrics'
def _extract_predictions_and_losses(model,
create_input_dict_fn,
ignore_groundtruth=False):
"""Constructs tensorflow detection graph and returns output tensors.
Args:
model: model to perform predictions with.
create_input_dict_fn: function to create input tensor dictionaries.
ignore_groundtruth: whether groundtruth should be ignored.
Returns:
prediction_groundtruth_dict: A dictionary with postprocessed tensors (keyed
by standard_fields.DetectionResultsFields) and optional groundtruth
tensors (keyed by standard_fields.InputDataFields).
losses_dict: A dictionary containing detection losses. This is empty when
ignore_groundtruth is true.
"""
input_dict = create_input_dict_fn()
prefetch_queue = prefetcher.prefetch(input_dict, capacity=500)
input_dict = prefetch_queue.dequeue()
original_image = tf.expand_dims(input_dict[fields.InputDataFields.image], 0)
preprocessed_image, true_image_shapes = model.preprocess(
tf.cast(original_image, dtype=tf.float32))
prediction_dict = model.predict(preprocessed_image, true_image_shapes)
detections = model.postprocess(prediction_dict, true_image_shapes)
groundtruth = None
losses_dict = {}
if not ignore_groundtruth:
groundtruth = {
fields.InputDataFields.groundtruth_boxes:
input_dict[fields.InputDataFields.groundtruth_boxes],
fields.InputDataFields.groundtruth_classes:
input_dict[fields.InputDataFields.groundtruth_classes],
fields.InputDataFields.groundtruth_area:
input_dict[fields.InputDataFields.groundtruth_area],
fields.InputDataFields.groundtruth_is_crowd:
input_dict[fields.InputDataFields.groundtruth_is_crowd],
fields.InputDataFields.groundtruth_difficult:
input_dict[fields.InputDataFields.groundtruth_difficult]
}
if fields.InputDataFields.groundtruth_group_of in input_dict:
groundtruth[fields.InputDataFields.groundtruth_group_of] = (
input_dict[fields.InputDataFields.groundtruth_group_of])
groundtruth_masks_list = None
if fields.DetectionResultFields.detection_masks in detections:
groundtruth[fields.InputDataFields.groundtruth_instance_masks] = (
input_dict[fields.InputDataFields.groundtruth_instance_masks])
groundtruth_masks_list = [
input_dict[fields.InputDataFields.groundtruth_instance_masks]]
groundtruth_keypoints_list = None
if fields.DetectionResultFields.detection_keypoints in detections:
groundtruth[fields.InputDataFields.groundtruth_keypoints] = (
input_dict[fields.InputDataFields.groundtruth_keypoints])
groundtruth_keypoints_list = [
input_dict[fields.InputDataFields.groundtruth_keypoints]]
label_id_offset = 1
model.provide_groundtruth(
[input_dict[fields.InputDataFields.groundtruth_boxes]],
[tf.one_hot(input_dict[fields.InputDataFields.groundtruth_classes]
- label_id_offset, depth=model.num_classes)],
groundtruth_masks_list, groundtruth_keypoints_list)
losses_dict.update(model.loss(prediction_dict, true_image_shapes))
result_dict = eval_util.result_dict_for_single_example(
original_image,
input_dict[fields.InputDataFields.source_id],
detections,
groundtruth,
class_agnostic=(
fields.DetectionResultFields.detection_classes not in detections),
scale_to_absolute=True)
return result_dict, losses_dict
def get_evaluators(eval_config, categories):
"""Returns the evaluator class according to eval_config, valid for categories.
Args:
eval_config: evaluation configurations.
categories: a list of categories to evaluate.
Returns:
An list of instances of DetectionEvaluator.
Raises:
ValueError: if metric is not in the metric class dictionary.
"""
eval_metric_fn_keys = eval_config.metrics_set
if not eval_metric_fn_keys:
eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
evaluators_list = []
for eval_metric_fn_key in eval_metric_fn_keys:
if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
if eval_metric_fn_key == 'oid_challenge_object_detection_metrics':
logging.warning(
'oid_challenge_object_detection_metrics is deprecated; '
'use oid_challenge_detection_metrics instead'
)
if eval_metric_fn_key == 'oid_V2_detection_metrics':
logging.warning(
'open_images_V2_detection_metrics is deprecated; '
'use oid_V2_detection_metrics instead'
)
evaluators_list.append(
EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](categories=categories))
return evaluators_list
def evaluate(create_input_dict_fn, create_model_fn, eval_config, categories,
checkpoint_dir, eval_dir, graph_hook_fn=None, evaluator_list=None):
"""Evaluation function for detection models.
Args:
create_input_dict_fn: a function to create a tensor input dictionary.
create_model_fn: a function that creates a DetectionModel.
eval_config: a eval_pb2.EvalConfig protobuf.
categories: a list of category dictionaries. Each dict in the list should
have an integer 'id' field and string 'name' field.
checkpoint_dir: directory to load the checkpoints to evaluate from.
eval_dir: directory to write evaluation metrics summary to.
graph_hook_fn: Optional function that is called after the training graph is
completely built. This is helpful to perform additional changes to the
training graph such as optimizing batchnorm. The function should modify
the default graph.
evaluator_list: Optional list of instances of DetectionEvaluator. If not
given, this list of metrics is created according to the eval_config.
Returns:
metrics: A dictionary containing metric names and values from the latest
run.
"""
model = create_model_fn()
if eval_config.ignore_groundtruth and not eval_config.export_path:
logging.fatal('If ignore_groundtruth=True then an export_path is '
'required. Aborting!!!')
tensor_dict, losses_dict = _extract_predictions_and_losses(
model=model,
create_input_dict_fn=create_input_dict_fn,
ignore_groundtruth=eval_config.ignore_groundtruth)
def _process_batch(tensor_dict, sess, batch_index, counters,
losses_dict=None):
"""Evaluates tensors in tensor_dict, losses_dict and visualizes examples.
This function calls sess.run on tensor_dict, evaluating the original_image
tensor only on the first K examples and visualizing detections overlaid
on this original_image.
Args:
tensor_dict: a dictionary of tensors
sess: tensorflow session
batch_index: the index of the batch amongst all batches in the run.
counters: a dictionary holding 'success' and 'skipped' fields which can
be updated to keep track of number of successful and failed runs,
respectively. If these fields are not updated, then the success/skipped
counter values shown at the end of evaluation will be incorrect.
losses_dict: Optional dictonary of scalar loss tensors.
Returns:
result_dict: a dictionary of numpy arrays
result_losses_dict: a dictionary of scalar losses. This is empty if input
losses_dict is None.
"""
try:
if not losses_dict:
losses_dict = {}
result_dict, result_losses_dict = sess.run([tensor_dict, losses_dict])
counters['success'] += 1
except tf.errors.InvalidArgumentError:
logging.info('Skipping image')
counters['skipped'] += 1
return {}, {}
global_step = tf.train.global_step(sess, tf.train.get_global_step())
if batch_index < eval_config.num_visualizations:
tag = 'image-{}'.format(batch_index)
eval_util.visualize_detection_results(
result_dict,
tag,
global_step,
categories=categories,
summary_dir=eval_dir,
export_dir=eval_config.visualization_export_dir,
show_groundtruth=eval_config.visualize_groundtruth_boxes,
groundtruth_box_visualization_color=eval_config.
groundtruth_box_visualization_color,
min_score_thresh=eval_config.min_score_threshold,
max_num_predictions=eval_config.max_num_boxes_to_visualize,
skip_scores=eval_config.skip_scores,
skip_labels=eval_config.skip_labels,
keep_image_id_for_visualization_export=eval_config.
keep_image_id_for_visualization_export)
return result_dict, result_losses_dict
if graph_hook_fn: graph_hook_fn()
variables_to_restore = tf.global_variables()
global_step = tf.train.get_or_create_global_step()
variables_to_restore.append(global_step)
if eval_config.use_moving_averages:
variable_averages = tf.train.ExponentialMovingAverage(0.0)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
def _restore_latest_checkpoint(sess):
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
saver.restore(sess, latest_checkpoint)
if not evaluator_list:
evaluator_list = get_evaluators(eval_config, categories)
metrics = eval_util.repeated_checkpoint_run(
tensor_dict=tensor_dict,
summary_dir=eval_dir,
evaluators=evaluator_list,
batch_processor=_process_batch,
checkpoint_dirs=[checkpoint_dir],
variables_to_restore=None,
restore_fn=_restore_latest_checkpoint,
num_batches=eval_config.num_examples,
eval_interval_secs=eval_config.eval_interval_secs,
max_number_of_evaluations=(1 if eval_config.ignore_groundtruth else
eval_config.max_evals
if eval_config.max_evals else None),
master=eval_config.eval_master,
save_graph=eval_config.save_graph,
save_graph_dir=(eval_dir if eval_config.save_graph else ''),
losses_dict=losses_dict,
eval_export_path=eval_config.export_path)
return metrics | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/legacy/evaluator.py | evaluator.py |
r"""Evaluation executable for detection models.
This executable is used to evaluate DetectionModels. There are two ways of
configuring the eval job.
1) A single pipeline_pb2.TrainEvalPipelineConfig file maybe specified instead.
In this mode, the --eval_training_data flag may be given to force the pipeline
to evaluate on training data instead.
Example usage:
./eval \
--logtostderr \
--checkpoint_dir=path/to/checkpoint_dir \
--eval_dir=path/to/eval_dir \
--pipeline_config_path=pipeline_config.pbtxt
2) Three configuration files may be provided: a model_pb2.DetectionModel
configuration file to define what type of DetectionModel is being evaluated, an
input_reader_pb2.InputReader file to specify what data the model is evaluating
and an eval_pb2.EvalConfig file to configure evaluation parameters.
Example usage:
./eval \
--logtostderr \
--checkpoint_dir=path/to/checkpoint_dir \
--eval_dir=path/to/eval_dir \
--eval_config_path=eval_config.pbtxt \
--model_config_path=model_config.pbtxt \
--input_config_path=eval_input_config.pbtxt
"""
import functools
import os
import tensorflow.compat.v1 as tf
from tensorflow.python.util.deprecation import deprecated
from object_detection.builders import dataset_builder
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.legacy import evaluator
from object_detection.utils import config_util
from object_detection.utils import label_map_util
tf.logging.set_verbosity(tf.logging.INFO)
flags = tf.app.flags
flags.DEFINE_boolean('eval_training_data', False,
'If training data should be evaluated for this job.')
flags.DEFINE_string(
'checkpoint_dir', '',
'Directory containing checkpoints to evaluate, typically '
'set to `train_dir` used in the training job.')
flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.')
flags.DEFINE_string(
'pipeline_config_path', '',
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file. If provided, other configs are ignored')
flags.DEFINE_string('eval_config_path', '',
'Path to an eval_pb2.EvalConfig config file.')
flags.DEFINE_string('input_config_path', '',
'Path to an input_reader_pb2.InputReader config file.')
flags.DEFINE_string('model_config_path', '',
'Path to a model_pb2.DetectionModel config file.')
flags.DEFINE_boolean(
'run_once', False, 'Option to only run a single pass of '
'evaluation. Overrides the `max_evals` parameter in the '
'provided config.')
FLAGS = flags.FLAGS
@deprecated(None, 'Use object_detection/model_main.py.')
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
tf.gfile.MakeDirs(FLAGS.eval_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
tf.gfile.Copy(
FLAGS.pipeline_config_path,
os.path.join(FLAGS.eval_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
for name, config in [('model.config', FLAGS.model_config_path),
('eval.config', FLAGS.eval_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config, os.path.join(FLAGS.eval_dir, name), overwrite=True)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
if FLAGS.eval_training_data:
input_config = configs['train_input_config']
model_fn = functools.partial(
model_builder.build, model_config=model_config, is_training=False)
def get_next(config):
return dataset_builder.make_initializable_iterator(
dataset_builder.build(config)).get_next()
create_input_dict_fn = functools.partial(get_next, input_config)
categories = label_map_util.create_categories_from_labelmap(
input_config.label_map_path)
if FLAGS.run_once:
eval_config.max_evals = 1
graph_rewriter_fn = None
if 'graph_rewriter_config' in configs:
graph_rewriter_fn = graph_rewriter_builder.build(
configs['graph_rewriter_config'], is_training=False)
evaluator.evaluate(
create_input_dict_fn,
model_fn,
eval_config,
categories,
FLAGS.checkpoint_dir,
FLAGS.eval_dir,
graph_hook_fn=graph_rewriter_fn)
if __name__ == '__main__':
tf.app.run() | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/legacy/eval.py | eval.py |
import functools
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.builders import optimizer_builder
from object_detection.builders import preprocessor_builder
from object_detection.core import batcher
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.utils import ops as util_ops
from object_detection.utils import variables_helper
from deployment import model_deploy
def create_input_queue(batch_size_per_clone, create_tensor_dict_fn,
batch_queue_capacity, num_batch_queue_threads,
prefetch_queue_capacity, data_augmentation_options):
"""Sets up reader, prefetcher and returns input queue.
Args:
batch_size_per_clone: batch size to use per clone.
create_tensor_dict_fn: function to create tensor dictionary.
batch_queue_capacity: maximum number of elements to store within a queue.
num_batch_queue_threads: number of threads to use for batching.
prefetch_queue_capacity: maximum capacity of the queue used to prefetch
assembled batches.
data_augmentation_options: a list of tuples, where each tuple contains a
data augmentation function and a dictionary containing arguments and their
values (see preprocessor.py).
Returns:
input queue: a batcher.BatchQueue object holding enqueued tensor_dicts
(which hold images, boxes and targets). To get a batch of tensor_dicts,
call input_queue.Dequeue().
"""
tensor_dict = create_tensor_dict_fn()
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
tensor_dict[fields.InputDataFields.image], 0)
images = tensor_dict[fields.InputDataFields.image]
float_images = tf.cast(images, dtype=tf.float32)
tensor_dict[fields.InputDataFields.image] = float_images
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
in tensor_dict)
include_keypoints = (fields.InputDataFields.groundtruth_keypoints
in tensor_dict)
include_multiclass_scores = (fields.InputDataFields.multiclass_scores
in tensor_dict)
if data_augmentation_options:
tensor_dict = preprocessor.preprocess(
tensor_dict, data_augmentation_options,
func_arg_map=preprocessor.get_default_func_arg_map(
include_label_weights=True,
include_multiclass_scores=include_multiclass_scores,
include_instance_masks=include_instance_masks,
include_keypoints=include_keypoints))
input_queue = batcher.BatchQueue(
tensor_dict,
batch_size=batch_size_per_clone,
batch_queue_capacity=batch_queue_capacity,
num_batch_queue_threads=num_batch_queue_threads,
prefetch_queue_capacity=prefetch_queue_capacity)
return input_queue
def get_inputs(input_queue,
num_classes,
merge_multiple_label_boxes=False,
use_multiclass_scores=False):
"""Dequeues batch and constructs inputs to object detection model.
Args:
input_queue: BatchQueue object holding enqueued tensor_dicts.
num_classes: Number of classes.
merge_multiple_label_boxes: Whether to merge boxes with multiple labels
or not. Defaults to false. Merged boxes are represented with a single
box and a k-hot encoding of the multiple labels associated with the
boxes.
use_multiclass_scores: Whether to use multiclass scores instead of
groundtruth_classes.
Returns:
images: a list of 3-D float tensor of images.
image_keys: a list of string keys for the images.
locations_list: a list of tensors of shape [num_boxes, 4]
containing the corners of the groundtruth boxes.
classes_list: a list of padded one-hot (or K-hot) float32 tensors containing
target classes.
masks_list: a list of 3-D float tensors of shape [num_boxes, image_height,
image_width] containing instance masks for objects if present in the
input_queue. Else returns None.
keypoints_list: a list of 3-D float tensors of shape [num_boxes,
num_keypoints, 2] containing keypoints for objects if present in the
input queue. Else returns None.
weights_lists: a list of 1-D float32 tensors of shape [num_boxes]
containing groundtruth weight for each box.
"""
read_data_list = input_queue.dequeue()
label_id_offset = 1
def extract_images_and_targets(read_data):
"""Extract images and targets from the input dict."""
image = read_data[fields.InputDataFields.image]
key = ''
if fields.InputDataFields.source_id in read_data:
key = read_data[fields.InputDataFields.source_id]
location_gt = read_data[fields.InputDataFields.groundtruth_boxes]
classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes],
tf.int32)
classes_gt -= label_id_offset
if merge_multiple_label_boxes and use_multiclass_scores:
raise ValueError(
'Using both merge_multiple_label_boxes and use_multiclass_scores is'
'not supported'
)
if merge_multiple_label_boxes:
location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels(
location_gt, classes_gt, num_classes)
classes_gt = tf.cast(classes_gt, tf.float32)
elif use_multiclass_scores:
classes_gt = tf.cast(read_data[fields.InputDataFields.multiclass_scores],
tf.float32)
else:
classes_gt = util_ops.padded_one_hot_encoding(
indices=classes_gt, depth=num_classes, left_pad=0)
masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks)
keypoints_gt = read_data.get(fields.InputDataFields.groundtruth_keypoints)
if (merge_multiple_label_boxes and (
masks_gt is not None or keypoints_gt is not None)):
raise NotImplementedError('Multi-label support is only for boxes.')
weights_gt = read_data.get(
fields.InputDataFields.groundtruth_weights)
return (image, key, location_gt, classes_gt, masks_gt, keypoints_gt,
weights_gt)
return zip(*map(extract_images_and_targets, read_data_list))
def _create_losses(input_queue, create_model_fn, train_config):
"""Creates loss function for a DetectionModel.
Args:
input_queue: BatchQueue object holding enqueued tensor_dicts.
create_model_fn: A function to create the DetectionModel.
train_config: a train_pb2.TrainConfig protobuf.
"""
detection_model = create_model_fn()
(images, _, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_masks_list, groundtruth_keypoints_list,
groundtruth_weights_list) = get_inputs(
input_queue,
detection_model.num_classes,
train_config.merge_multiple_label_boxes,
train_config.use_multiclass_scores)
preprocessed_images = []
true_image_shapes = []
for image in images:
resized_image, true_image_shape = detection_model.preprocess(image)
preprocessed_images.append(resized_image)
true_image_shapes.append(true_image_shape)
images = tf.concat(preprocessed_images, 0)
true_image_shapes = tf.concat(true_image_shapes, 0)
if any(mask is None for mask in groundtruth_masks_list):
groundtruth_masks_list = None
if any(keypoints is None for keypoints in groundtruth_keypoints_list):
groundtruth_keypoints_list = None
detection_model.provide_groundtruth(
groundtruth_boxes_list,
groundtruth_classes_list,
groundtruth_masks_list,
groundtruth_keypoints_list,
groundtruth_weights_list=groundtruth_weights_list)
prediction_dict = detection_model.predict(images, true_image_shapes)
losses_dict = detection_model.loss(prediction_dict, true_image_shapes)
for loss_tensor in losses_dict.values():
tf.losses.add_loss(loss_tensor)
def train(create_tensor_dict_fn,
create_model_fn,
train_config,
master,
task,
num_clones,
worker_replicas,
clone_on_cpu,
ps_tasks,
worker_job_name,
is_chief,
train_dir,
graph_hook_fn=None):
"""Training function for detection models.
Args:
create_tensor_dict_fn: a function to create a tensor input dictionary.
create_model_fn: a function that creates a DetectionModel and generates
losses.
train_config: a train_pb2.TrainConfig protobuf.
master: BNS name of the TensorFlow master to use.
task: The task id of this training instance.
num_clones: The number of clones to run per machine.
worker_replicas: The number of work replicas to train with.
clone_on_cpu: True if clones should be forced to run on CPU.
ps_tasks: Number of parameter server tasks.
worker_job_name: Name of the worker job.
is_chief: Whether this replica is the chief replica.
train_dir: Directory to write checkpoints and training summaries to.
graph_hook_fn: Optional function that is called after the inference graph is
built (before optimization). This is helpful to perform additional changes
to the training graph such as adding FakeQuant ops. The function should
modify the default graph.
Raises:
ValueError: If both num_clones > 1 and train_config.sync_replicas is true.
"""
detection_model = create_model_fn()
data_augmentation_options = [
preprocessor_builder.build(step)
for step in train_config.data_augmentation_options]
with tf.Graph().as_default():
# Build a configuration specifying multi-GPU and multi-replicas.
deploy_config = model_deploy.DeploymentConfig(
num_clones=num_clones,
clone_on_cpu=clone_on_cpu,
replica_id=task,
num_replicas=worker_replicas,
num_ps_tasks=ps_tasks,
worker_job_name=worker_job_name)
# Place the global step on the device storing the variables.
with tf.device(deploy_config.variables_device()):
global_step = slim.create_global_step()
if num_clones != 1 and train_config.sync_replicas:
raise ValueError('In Synchronous SGD mode num_clones must ',
'be 1. Found num_clones: {}'.format(num_clones))
batch_size = train_config.batch_size // num_clones
if train_config.sync_replicas:
batch_size //= train_config.replicas_to_aggregate
with tf.device(deploy_config.inputs_device()):
input_queue = create_input_queue(
batch_size, create_tensor_dict_fn,
train_config.batch_queue_capacity,
train_config.num_batch_queue_threads,
train_config.prefetch_queue_capacity, data_augmentation_options)
# Gather initial summaries.
# TODO(rathodv): See if summaries can be added/extracted from global tf
# collections so that they don't have to be passed around.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
global_summaries = set([])
model_fn = functools.partial(_create_losses,
create_model_fn=create_model_fn,
train_config=train_config)
clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
first_clone_scope = clones[0].scope
if graph_hook_fn:
with tf.device(deploy_config.variables_device()):
graph_hook_fn()
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by model_fn.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
with tf.device(deploy_config.optimizer_device()):
training_optimizer, optimizer_summary_vars = optimizer_builder.build(
train_config.optimizer)
for var in optimizer_summary_vars:
tf.summary.scalar(var.op.name, var, family='LearningRate')
sync_optimizer = None
if train_config.sync_replicas:
training_optimizer = tf.train.SyncReplicasOptimizer(
training_optimizer,
replicas_to_aggregate=train_config.replicas_to_aggregate,
total_num_replicas=worker_replicas)
sync_optimizer = training_optimizer
with tf.device(deploy_config.optimizer_device()):
regularization_losses = (None if train_config.add_regularization_loss
else [])
total_loss, grads_and_vars = model_deploy.optimize_clones(
clones, training_optimizer,
regularization_losses=regularization_losses)
total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')
# Optionally multiply bias gradients by train_config.bias_grad_multiplier.
if train_config.bias_grad_multiplier:
biases_regex_list = ['.*/biases']
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
grads_and_vars,
biases_regex_list,
multiplier=train_config.bias_grad_multiplier)
# Optionally freeze some layers by setting their gradients to be zero.
if train_config.freeze_variables:
grads_and_vars = variables_helper.freeze_gradients_matching_regex(
grads_and_vars, train_config.freeze_variables)
# Optionally clip gradients
if train_config.gradient_clipping_by_norm > 0:
with tf.name_scope('clip_grads'):
grads_and_vars = slim.learning.clip_gradient_norms(
grads_and_vars, train_config.gradient_clipping_by_norm)
# Create gradient updates.
grad_updates = training_optimizer.apply_gradients(grads_and_vars,
global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops, name='update_barrier')
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(total_loss, name='train_op')
# Add summaries.
for model_var in slim.get_model_variables():
global_summaries.add(tf.summary.histogram('ModelVars/' +
model_var.op.name, model_var))
for loss_tensor in tf.losses.get_losses():
global_summaries.add(tf.summary.scalar('Losses/' + loss_tensor.op.name,
loss_tensor))
global_summaries.add(
tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
first_clone_scope))
summaries |= global_summaries
# Merge all summaries together.
summary_op = tf.summary.merge(list(summaries), name='summary_op')
# Soft placement allows placing on CPU ops without GPU implementation.
session_config = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)
# Save checkpoints regularly.
keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
saver = tf.train.Saver(
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
# Create ops required to initialize the model from a given checkpoint.
init_fn = None
if train_config.fine_tune_checkpoint:
if not train_config.fine_tune_checkpoint_type:
# train_config.from_detection_checkpoint field is deprecated. For
# backward compatibility, fine_tune_checkpoint_type is set based on
# from_detection_checkpoint.
if train_config.from_detection_checkpoint:
train_config.fine_tune_checkpoint_type = 'detection'
else:
train_config.fine_tune_checkpoint_type = 'classification'
var_map = detection_model.restore_map(
fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
load_all_detection_checkpoint_vars=(
train_config.load_all_detection_checkpoint_vars))
available_var_map = (variables_helper.
get_variables_available_in_checkpoint(
var_map, train_config.fine_tune_checkpoint,
include_global_step=False))
init_saver = tf.train.Saver(available_var_map)
def initializer_fn(sess):
init_saver.restore(sess, train_config.fine_tune_checkpoint)
init_fn = initializer_fn
slim.learning.train(
train_tensor,
logdir=train_dir,
master=master,
is_chief=is_chief,
session_config=session_config,
startup_delay_steps=train_config.startup_delay_steps,
init_fn=init_fn,
summary_op=summary_op,
number_of_steps=(
train_config.num_steps if train_config.num_steps else None),
save_summaries_secs=120,
sync_optimizer=sync_optimizer,
saver=saver) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/legacy/trainer.py | trainer.py |
r"""Infers detections on a TFRecord of TFExamples given an inference graph.
Example usage:
./infer_detections \
--input_tfrecord_paths=/path/to/input/tfrecord1,/path/to/input/tfrecord2 \
--output_tfrecord_path=/path/to/output/detections.tfrecord \
--inference_graph=/path/to/frozen_weights_inference_graph.pb
The output is a TFRecord of TFExamples. Each TFExample from the input is first
augmented with detections from the inference graph and then copied to the
output.
The input and output nodes of the inference graph are expected to have the same
types, shapes, and semantics, as the input and output nodes of graphs produced
by export_inference_graph.py, when run with --input_type=image_tensor.
The script can also discard the image pixels in the output. This greatly
reduces the output size and can potentially accelerate reading data in
subsequent processing steps that don't require the images (e.g. computing
metrics).
"""
import itertools
import tensorflow.compat.v1 as tf
from object_detection.inference import detection_inference
tf.flags.DEFINE_string('input_tfrecord_paths', None,
'A comma separated list of paths to input TFRecords.')
tf.flags.DEFINE_string('output_tfrecord_path', None,
'Path to the output TFRecord.')
tf.flags.DEFINE_string('inference_graph', None,
'Path to the inference graph with embedded weights.')
tf.flags.DEFINE_boolean('discard_image_pixels', False,
'Discards the images in the output TFExamples. This'
' significantly reduces the output size and is useful'
' if the subsequent tools don\'t need access to the'
' images (e.g. when computing evaluation measures).')
FLAGS = tf.flags.FLAGS
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
required_flags = ['input_tfrecord_paths', 'output_tfrecord_path',
'inference_graph']
for flag_name in required_flags:
if not getattr(FLAGS, flag_name):
raise ValueError('Flag --{} is required'.format(flag_name))
with tf.Session() as sess:
input_tfrecord_paths = [
v for v in FLAGS.input_tfrecord_paths.split(',') if v]
tf.logging.info('Reading input from %d files', len(input_tfrecord_paths))
serialized_example_tensor, image_tensor = detection_inference.build_input(
input_tfrecord_paths)
tf.logging.info('Reading graph and building model...')
(detected_boxes_tensor, detected_scores_tensor,
detected_labels_tensor) = detection_inference.build_inference_graph(
image_tensor, FLAGS.inference_graph)
tf.logging.info('Running inference and writing output to {}'.format(
FLAGS.output_tfrecord_path))
sess.run(tf.local_variables_initializer())
tf.train.start_queue_runners()
with tf.python_io.TFRecordWriter(
FLAGS.output_tfrecord_path) as tf_record_writer:
try:
for counter in itertools.count():
tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 10,
counter)
tf_example = detection_inference.infer_detections_and_add_to_example(
serialized_example_tensor, detected_boxes_tensor,
detected_scores_tensor, detected_labels_tensor,
FLAGS.discard_image_pixels)
tf_record_writer.write(tf_example.SerializeToString())
except tf.errors.OutOfRangeError:
tf.logging.info('Finished processing records')
if __name__ == '__main__':
tf.app.run() | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/inference/infer_detections.py | infer_detections.py |
"""Utility functions for detection inference."""
from __future__ import division
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields
def build_input(tfrecord_paths):
"""Builds the graph's input.
Args:
tfrecord_paths: List of paths to the input TFRecords
Returns:
serialized_example_tensor: The next serialized example. String scalar Tensor
image_tensor: The decoded image of the example. Uint8 tensor,
shape=[1, None, None,3]
"""
filename_queue = tf.train.string_input_producer(
tfrecord_paths, shuffle=False, num_epochs=1)
tf_record_reader = tf.TFRecordReader()
_, serialized_example_tensor = tf_record_reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example_tensor,
features={
standard_fields.TfExampleFields.image_encoded:
tf.FixedLenFeature([], tf.string),
})
encoded_image = features[standard_fields.TfExampleFields.image_encoded]
image_tensor = tf.image.decode_image(encoded_image, channels=3)
image_tensor.set_shape([None, None, 3])
image_tensor = tf.expand_dims(image_tensor, 0)
return serialized_example_tensor, image_tensor
def build_inference_graph(image_tensor, inference_graph_path):
"""Loads the inference graph and connects it to the input image.
Args:
image_tensor: The input image. uint8 tensor, shape=[1, None, None, 3]
inference_graph_path: Path to the inference graph with embedded weights
Returns:
detected_boxes_tensor: Detected boxes. Float tensor,
shape=[num_detections, 4]
detected_scores_tensor: Detected scores. Float tensor,
shape=[num_detections]
detected_labels_tensor: Detected labels. Int64 tensor,
shape=[num_detections]
"""
with tf.gfile.Open(inference_graph_path, 'rb') as graph_def_file:
graph_content = graph_def_file.read()
graph_def = tf.GraphDef()
graph_def.MergeFromString(graph_content)
tf.import_graph_def(
graph_def, name='', input_map={'image_tensor': image_tensor})
g = tf.get_default_graph()
num_detections_tensor = tf.squeeze(
g.get_tensor_by_name('num_detections:0'), 0)
num_detections_tensor = tf.cast(num_detections_tensor, tf.int32)
detected_boxes_tensor = tf.squeeze(
g.get_tensor_by_name('detection_boxes:0'), 0)
detected_boxes_tensor = detected_boxes_tensor[:num_detections_tensor]
detected_scores_tensor = tf.squeeze(
g.get_tensor_by_name('detection_scores:0'), 0)
detected_scores_tensor = detected_scores_tensor[:num_detections_tensor]
detected_labels_tensor = tf.squeeze(
g.get_tensor_by_name('detection_classes:0'), 0)
detected_labels_tensor = tf.cast(detected_labels_tensor, tf.int64)
detected_labels_tensor = detected_labels_tensor[:num_detections_tensor]
return detected_boxes_tensor, detected_scores_tensor, detected_labels_tensor
def infer_detections_and_add_to_example(
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor,
detected_labels_tensor, discard_image_pixels):
"""Runs the supplied tensors and adds the inferred detections to the example.
Args:
serialized_example_tensor: Serialized TF example. Scalar string tensor
detected_boxes_tensor: Detected boxes. Float tensor,
shape=[num_detections, 4]
detected_scores_tensor: Detected scores. Float tensor,
shape=[num_detections]
detected_labels_tensor: Detected labels. Int64 tensor,
shape=[num_detections]
discard_image_pixels: If true, discards the image from the result
Returns:
The de-serialized TF example augmented with the inferred detections.
"""
tf_example = tf.train.Example()
(serialized_example, detected_boxes, detected_scores,
detected_classes) = tf.get_default_session().run([
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor,
detected_labels_tensor
])
detected_boxes = detected_boxes.T
tf_example.ParseFromString(serialized_example)
feature = tf_example.features.feature
feature[standard_fields.TfExampleFields.
detection_score].float_list.value[:] = detected_scores
feature[standard_fields.TfExampleFields.
detection_bbox_ymin].float_list.value[:] = detected_boxes[0]
feature[standard_fields.TfExampleFields.
detection_bbox_xmin].float_list.value[:] = detected_boxes[1]
feature[standard_fields.TfExampleFields.
detection_bbox_ymax].float_list.value[:] = detected_boxes[2]
feature[standard_fields.TfExampleFields.
detection_bbox_xmax].float_list.value[:] = detected_boxes[3]
feature[standard_fields.TfExampleFields.
detection_class_label].int64_list.value[:] = detected_classes
if discard_image_pixels:
del feature[standard_fields.TfExampleFields.image_encoded]
return tf_example | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/inference/detection_inference.py | detection_inference.py |
"""SSD feature extractors based on Resnet v1 and PPN architectures."""
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets import resnet_v1
class _SSDResnetPpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD feature extractor based on resnet architecture and PPN."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
resnet_base_fn,
resnet_scope_name,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
base_feature_map_depth=1024,
num_layers=6,
override_base_feature_extractor_hyperparams=False,
use_bounded_activations=False):
"""Resnet based PPN Feature Extractor for SSD Models.
See go/pooling-pyramid for more details about PPN.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
resnet_base_fn: base resnet network to use.
resnet_scope_name: scope name to construct resnet
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
base_feature_map_depth: Depth of the base feature before the max pooling.
num_layers: Number of layers used to make predictions. They are pooled
from the base feature.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
use_bounded_activations: Whether or not to use bounded activations for
resnet v1 bottleneck residual unit. Bounded activations better lend
themselves to quantized inference.
"""
super(_SSDResnetPpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams)
self._resnet_base_fn = resnet_base_fn
self._resnet_scope_name = resnet_scope_name
self._base_feature_map_depth = base_feature_map_depth
self._num_layers = num_layers
self._use_bounded_activations = use_bounded_activations
def _filter_features(self, image_features):
# TODO(rathodv): Change resnet endpoint to strip scope prefixes instead
# of munging the scope here.
filtered_image_features = dict({})
for key, feature in image_features.items():
feature_name = key.split('/')[-1]
if feature_name in ['block2', 'block3', 'block4']:
filtered_image_features[feature_name] = feature
return filtered_image_features
def preprocess(self, resized_inputs):
"""SSD preprocessing.
VGG style channel mean subtraction as described here:
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-mdnge.
Note that if the number of channels is not equal to 3, the mean subtraction
will be skipped and the original resized_inputs will be returned.
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
if resized_inputs.shape.as_list()[3] == 3:
channel_means = [123.68, 116.779, 103.939]
return resized_inputs - [[channel_means]]
else:
return resized_inputs
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
with slim.arg_scope(
[resnet_v1.bottleneck],
use_bounded_activations=self._use_bounded_activations):
_, activations = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=self._base_feature_map_depth,
num_layers=self._num_layers,
image_features={
'image_features': self._filter_features(activations)['block3']
})
return list(feature_maps.values())
class SSDResnet50V1PpnFeatureExtractor(_SSDResnetPpnFeatureExtractor):
"""PPN Resnet50 v1 Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""Resnet50 v1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet50V1PpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, resnet_v1.resnet_v1_50, 'resnet_v1_50',
reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams=(
override_base_feature_extractor_hyperparams))
class SSDResnet101V1PpnFeatureExtractor(_SSDResnetPpnFeatureExtractor):
"""PPN Resnet101 v1 Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""Resnet101 v1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet101V1PpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, resnet_v1.resnet_v1_101, 'resnet_v1_101',
reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams=(
override_base_feature_extractor_hyperparams))
class SSDResnet152V1PpnFeatureExtractor(_SSDResnetPpnFeatureExtractor):
"""PPN Resnet152 v1 Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""Resnet152 v1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet152V1PpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, resnet_v1.resnet_v1_152, 'resnet_v1_152',
reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams=(
override_base_feature_extractor_hyperparams)) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_resnet_v1_ppn_feature_extractor.py | ssd_resnet_v1_ppn_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets import mobilenet_v1
class SSDMobileNetV1FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using MobilenetV1 features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False):
"""MobileNetV1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDMobileNetV1FeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
num_layers=num_layers,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '',
'', ''][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v1_feature_extractor.py | ssd_mobilenet_v1_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.models.keras_models import mobilenet_v2
from object_detection.models.keras_models import model_utils
from object_detection.utils import ops
from object_detection.utils import shape_utils
# Total number of blocks in Mobilenet_V2 base network.
NUM_LAYERS = 19
# A modified config of mobilenet v2 that makes it more detection friendly.
def _create_modified_mobilenet_config():
last_conv = model_utils.ConvDefs(conv_name='Conv_1', filters=256)
return [last_conv]
class SSDMobileNetV2FpnKerasFeatureExtractor(
ssd_meta_arch.SSDKerasFeatureExtractor):
"""SSD Feature Extractor using Keras-based MobilenetV2 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False,
name=None):
"""SSD Keras based FPN feature extractor Mobilenet v2 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to MobileNet v2 layers
{layer_4, layer_7, layer_14, layer_19}, respectively.
fpn_max_level: the smallest resolution feature map to construct or use in
FPN. FPN constructions uses features maps starting from fpn_min_level
upto the fpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of fpn
levels.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDMobileNetV2FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth
self._conv_defs = None
if self._use_depthwise:
self._conv_defs = _create_modified_mobilenet_config()
self._use_native_resize_op = use_native_resize_op
self._feature_blocks = ['layer_4', 'layer_7', 'layer_14', 'layer_19']
self.classification_backbone = None
self._fpn_features_generator = None
self._coarse_feature_layers = []
def build(self, input_shape):
full_mobilenet_v2 = mobilenet_v2.mobilenet_v2(
batchnorm_training=(self._is_training and not self._freeze_batchnorm),
conv_hyperparams=(self._conv_hyperparams
if self._override_base_feature_extractor_hyperparams
else None),
weights=None,
use_explicit_padding=self._use_explicit_padding,
alpha=self._depth_multiplier,
min_depth=self._min_depth,
include_top=False)
layer_names = [layer.name for layer in full_mobilenet_v2.layers]
outputs = []
for layer_idx in [4, 7, 14]:
add_name = 'block_{}_add'.format(layer_idx - 2)
project_name = 'block_{}_project_BN'.format(layer_idx - 2)
output_layer_name = add_name if add_name in layer_names else project_name
outputs.append(full_mobilenet_v2.get_layer(output_layer_name).output)
layer_19 = full_mobilenet_v2.get_layer(name='out_relu').output
outputs.append(layer_19)
self.classification_backbone = tf.keras.Model(
inputs=full_mobilenet_v2.inputs,
outputs=outputs)
# pylint:disable=g-long-lambda
self._depth_fn = lambda d: max(
int(d * self._depth_multiplier), self._min_depth)
self._base_fpn_max_level = min(self._fpn_max_level, 5)
self._num_levels = self._base_fpn_max_level + 1 - self._fpn_min_level
self._fpn_features_generator = (
feature_map_generators.KerasFpnTopDownFeatureMaps(
num_levels=self._num_levels,
depth=self._depth_fn(self._additional_layer_depth),
use_depthwise=self._use_depthwise,
use_explicit_padding=self._use_explicit_padding,
use_native_resize_op=self._use_native_resize_op,
is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm,
name='FeatureMaps'))
# Construct coarse feature layers
padding = 'VALID' if self._use_explicit_padding else 'SAME'
kernel_size = 3
stride = 2
for i in range(self._base_fpn_max_level + 1, self._fpn_max_level + 1):
coarse_feature_layers = []
if self._use_explicit_padding:
def fixed_padding(features, kernel_size=kernel_size):
return ops.fixed_padding(features, kernel_size)
coarse_feature_layers.append(tf.keras.layers.Lambda(
fixed_padding, name='fixed_padding'))
layer_name = 'bottom_up_Conv2d_{}'.format(
i - self._base_fpn_max_level + NUM_LAYERS)
conv_block = feature_map_generators.create_conv_block(
self._use_depthwise, kernel_size, padding, stride, layer_name,
self._conv_hyperparams, self._is_training, self._freeze_batchnorm,
self._depth_fn(self._additional_layer_depth))
coarse_feature_layers.extend(conv_block)
self._coarse_feature_layers.append(coarse_feature_layers)
self.built = True
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
image_features = self.classification_backbone(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))
feature_block_list = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_block_list.append(self._feature_blocks[level - 2])
feature_start_index = len(self._feature_blocks) - self._num_levels
fpn_input_image_features = [
(key, image_features[feature_start_index + index])
for index, key in enumerate(feature_block_list)]
fpn_features = self._fpn_features_generator(fpn_input_image_features)
feature_maps = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_maps.append(fpn_features['top_down_{}'.format(
self._feature_blocks[level - 2])])
last_feature_map = fpn_features['top_down_{}'.format(
self._feature_blocks[self._base_fpn_max_level - 2])]
for coarse_feature_layers in self._coarse_feature_layers:
for layer in coarse_feature_layers:
last_feature_map = layer(last_feature_map)
feature_maps.append(last_feature_map)
return feature_maps | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v2_fpn_keras_feature_extractor.py | ssd_mobilenet_v2_fpn_keras_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.utils import variables_helper
# pylint: disable=g-import-not-at-top
try:
from nets.nasnet import nasnet
from nets.nasnet import nasnet_utils
except: # pylint: disable=bare-except
pass
# pylint: enable=g-import-not-at-top
arg_scope = slim.arg_scope
def nasnet_large_arg_scope_for_detection(is_batch_norm_training=False):
"""Defines the default arg scope for the NASNet-A Large for object detection.
This provides a small edit to switch batch norm training on and off.
Args:
is_batch_norm_training: Boolean indicating whether to train with batch norm.
Returns:
An `arg_scope` to use for the NASNet Large Model.
"""
imagenet_scope = nasnet.nasnet_large_arg_scope()
with arg_scope(imagenet_scope):
with arg_scope([slim.batch_norm], is_training=is_batch_norm_training) as sc:
return sc
# Note: This is largely a copy of _build_nasnet_base inside nasnet.py but
# with special edits to remove instantiation of the stem and the special
# ability to receive as input a pair of hidden states.
def _build_nasnet_base(hidden_previous,
hidden,
normal_cell,
reduction_cell,
hparams,
true_cell_num,
start_cell_num):
"""Constructs a NASNet image model."""
# Find where to place the reduction cells or stride normal cells
reduction_indices = nasnet_utils.calc_reduction_layers(
hparams.num_cells, hparams.num_reduction_layers)
# Note: The None is prepended to match the behavior of _imagenet_stem()
cell_outputs = [None, hidden_previous, hidden]
net = hidden
# NOTE: In the nasnet.py code, filter_scaling starts at 1.0. We instead
# start at 2.0 because 1 reduction cell has been created which would
# update the filter_scaling to 2.0.
filter_scaling = 2.0
# Run the cells
for cell_num in range(start_cell_num, hparams.num_cells):
stride = 1
if hparams.skip_reduction_layer_input:
prev_layer = cell_outputs[-2]
if cell_num in reduction_indices:
filter_scaling *= hparams.filter_scaling_rate
net = reduction_cell(
net,
scope='reduction_cell_{}'.format(reduction_indices.index(cell_num)),
filter_scaling=filter_scaling,
stride=2,
prev_layer=cell_outputs[-2],
cell_num=true_cell_num)
true_cell_num += 1
cell_outputs.append(net)
if not hparams.skip_reduction_layer_input:
prev_layer = cell_outputs[-2]
net = normal_cell(
net,
scope='cell_{}'.format(cell_num),
filter_scaling=filter_scaling,
stride=stride,
prev_layer=prev_layer,
cell_num=true_cell_num)
true_cell_num += 1
cell_outputs.append(net)
# Final nonlinearity.
# Note that we have dropped the final pooling, dropout and softmax layers
# from the default nasnet version.
with tf.variable_scope('final_layer'):
net = tf.nn.relu(net)
return net
# TODO(shlens): Only fixed_shape_resizer is currently supported for NASNet
# featurization. The reason for this is that nasnet.py only supports
# inputs with fully known shapes. We need to update nasnet.py to handle
# shapes not known at compile time.
class FasterRCNNNASFeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor):
"""Faster R-CNN with NASNet-A feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 16.
"""
if first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 16.')
super(FasterRCNNNASFeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)
def preprocess(self, resized_inputs):
"""Faster R-CNN with NAS preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the NASNet network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
end_points: A dictionary mapping feature extractor tensor names to tensors
Raises:
ValueError: If the created network is missing the required activation.
"""
del scope
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(nasnet_large_arg_scope_for_detection(
is_batch_norm_training=self._train_batch_norm)):
with arg_scope([slim.conv2d,
slim.batch_norm,
slim.separable_conv2d],
reuse=self._reuse_weights):
_, end_points = nasnet.build_nasnet_large(
preprocessed_inputs, num_classes=None,
is_training=self._is_training,
final_endpoint='Cell_11')
# Note that both 'Cell_10' and 'Cell_11' have equal depth = 2016.
rpn_feature_map = tf.concat([end_points['Cell_10'],
end_points['Cell_11']], 3)
# nasnet.py does not maintain the batch size in the first dimension.
# This work around permits us retaining the batch for below.
batch = preprocessed_inputs.get_shape().as_list()[0]
shape_without_batch = rpn_feature_map.get_shape().as_list()[1:]
rpn_feature_map_shape = [batch] + shape_without_batch
rpn_feature_map.set_shape(rpn_feature_map_shape)
return rpn_feature_map, end_points
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
This function reconstructs the "second half" of the NASNet-A
network after the part defined in `_extract_proposal_features`.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name.
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
del scope
# Note that we always feed into 2 layers of equal depth
# where the first N channels corresponds to previous hidden layer
# and the second N channels correspond to the final hidden layer.
hidden_previous, hidden = tf.split(proposal_feature_maps, 2, axis=3)
# Note that what follows is largely a copy of build_nasnet_large() within
# nasnet.py. We are copying to minimize code pollution in slim.
# TODO(shlens,skornblith): Determine the appropriate drop path schedule.
# For now the schedule is the default (1.0->0.7 over 250,000 train steps).
hparams = nasnet.large_imagenet_config()
if not self._is_training:
hparams.set_hparam('drop_path_keep_prob', 1.0)
# Calculate the total number of cells in the network
# -- Add 2 for the reduction cells.
total_num_cells = hparams.num_cells + 2
# -- And add 2 for the stem cells for ImageNet training.
total_num_cells += 2
normal_cell = nasnet_utils.NasNetANormalCell(
hparams.num_conv_filters, hparams.drop_path_keep_prob,
total_num_cells, hparams.total_training_steps)
reduction_cell = nasnet_utils.NasNetAReductionCell(
hparams.num_conv_filters, hparams.drop_path_keep_prob,
total_num_cells, hparams.total_training_steps)
with arg_scope([slim.dropout, nasnet_utils.drop_path],
is_training=self._is_training):
with arg_scope([slim.batch_norm], is_training=self._train_batch_norm):
with arg_scope([slim.avg_pool2d,
slim.max_pool2d,
slim.conv2d,
slim.batch_norm,
slim.separable_conv2d,
nasnet_utils.factorized_reduction,
nasnet_utils.global_avg_pool,
nasnet_utils.get_channel_index,
nasnet_utils.get_channel_dim],
data_format=hparams.data_format):
# This corresponds to the cell number just past 'Cell_11' used by
# by _extract_proposal_features().
start_cell_num = 12
# Note that this number equals:
# start_cell_num + 2 stem cells + 1 reduction cell
true_cell_num = 15
with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
net = _build_nasnet_base(hidden_previous,
hidden,
normal_cell=normal_cell,
reduction_cell=reduction_cell,
hparams=hparams,
true_cell_num=true_cell_num,
start_cell_num=start_cell_num)
proposal_classifier_features = net
return proposal_classifier_features
def restore_from_classification_checkpoint_fn(
self,
first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Note that this overrides the default implementation in
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
NASNet-A checkpoints.
Args:
first_stage_feature_extractor_scope: A scope name for the first stage
feature extractor.
second_stage_feature_extractor_scope: A scope name for the second stage
feature extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
# Note that the NAS checkpoint only contains the moving average version of
# the Variables so we need to generate an appropriate dictionary mapping.
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
if variable.op.name.startswith(
first_stage_feature_extractor_scope):
var_name = variable.op.name.replace(
first_stage_feature_extractor_scope + '/', '')
var_name += '/ExponentialMovingAverage'
variables_to_restore[var_name] = variable
if variable.op.name.startswith(
second_stage_feature_extractor_scope):
var_name = variable.op.name.replace(
second_stage_feature_extractor_scope + '/', '')
var_name += '/ExponentialMovingAverage'
variables_to_restore[var_name] = variable
return variables_to_restore | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_nas_feature_extractor.py | faster_rcnn_nas_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets import resnet_v1
class SSDResnetV1FpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD FPN feature extractor based on Resnet v1 architecture."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
resnet_base_fn,
resnet_scope_name,
fpn_scope_name,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False):
"""SSD FPN feature extractor based on Resnet v1 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
resnet_base_fn: base resnet network to use.
resnet_scope_name: scope name under which to construct resnet
fpn_scope_name: scope name under which to construct the feature pyramid
network.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
fpn_max_level: the smallest resolution feature map to construct or use in
FPN. FPN constructions uses features maps starting from fpn_min_level
upto the fpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of fpn
levels.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False. UNUSED currently.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
Raises:
ValueError: On supplying invalid arguments for unused arguments.
"""
super(SSDResnetV1FpnFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
if self._use_explicit_padding is True:
raise ValueError('Explicit padding is not a valid option.')
self._resnet_base_fn = resnet_base_fn
self._resnet_scope_name = resnet_scope_name
self._fpn_scope_name = fpn_scope_name
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth
self._use_native_resize_op = use_native_resize_op
def preprocess(self, resized_inputs):
"""SSD preprocessing.
VGG style channel mean subtraction as described here:
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-mdnge.
Note that if the number of channels is not equal to 3, the mean subtraction
will be skipped and the original resized_inputs will be returned.
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
if resized_inputs.shape.as_list()[3] == 3:
channel_means = [123.68, 116.779, 103.939]
return resized_inputs - [[channel_means]]
else:
return resized_inputs
def _filter_features(self, image_features):
# TODO(rathodv): Change resnet endpoint to strip scope prefixes instead
# of munging the scope here.
filtered_image_features = dict({})
for key, feature in image_features.items():
feature_name = key.split('/')[-1]
if feature_name in ['block1', 'block2', 'block3', 'block4']:
filtered_image_features[feature_name] = feature
return filtered_image_features
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
min_base_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
image_features = self._filter_features(image_features)
depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth)
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope(self._fpn_scope_name,
reuse=self._reuse_weights):
base_fpn_max_level = min(self._fpn_max_level, 5)
feature_block_list = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_block_list.append('block{}'.format(level - 1))
fpn_features = feature_map_generators.fpn_top_down_feature_maps(
[(key, image_features[key]) for key in feature_block_list],
depth=depth_fn(self._additional_layer_depth),
use_native_resize_op=self._use_native_resize_op)
feature_maps = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_maps.append(
fpn_features['top_down_block{}'.format(level - 1)])
last_feature_map = fpn_features['top_down_block{}'.format(
base_fpn_max_level - 1)]
# Construct coarse features
for i in range(base_fpn_max_level, self._fpn_max_level):
last_feature_map = slim.conv2d(
last_feature_map,
num_outputs=depth_fn(self._additional_layer_depth),
kernel_size=[3, 3],
stride=2,
padding='SAME',
scope='bottom_up_block{}'.format(i))
feature_maps.append(last_feature_map)
return feature_maps
class SSDResnet50V1FpnFeatureExtractor(SSDResnetV1FpnFeatureExtractor):
"""SSD Resnet50 V1 FPN feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False):
"""SSD Resnet50 V1 FPN feature extractor based on Resnet v1 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
fpn_min_level: the minimum level in feature pyramid networks.
fpn_max_level: the maximum level in feature pyramid networks.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False. UNUSED currently.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet50V1FpnFeatureExtractor, self).__init__(
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
resnet_v1.resnet_v1_50,
'resnet_v1_50',
'fpn',
fpn_min_level,
fpn_max_level,
additional_layer_depth,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
use_native_resize_op=use_native_resize_op,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
class SSDResnet101V1FpnFeatureExtractor(SSDResnetV1FpnFeatureExtractor):
"""SSD Resnet101 V1 FPN feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False):
"""SSD Resnet101 V1 FPN feature extractor based on Resnet v1 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
fpn_min_level: the minimum level in feature pyramid networks.
fpn_max_level: the maximum level in feature pyramid networks.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False. UNUSED currently.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet101V1FpnFeatureExtractor, self).__init__(
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
resnet_v1.resnet_v1_101,
'resnet_v1_101',
'fpn',
fpn_min_level,
fpn_max_level,
additional_layer_depth,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
use_native_resize_op=use_native_resize_op,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
class SSDResnet152V1FpnFeatureExtractor(SSDResnetV1FpnFeatureExtractor):
"""SSD Resnet152 V1 FPN feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False):
"""SSD Resnet152 V1 FPN feature extractor based on Resnet v1 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
fpn_min_level: the minimum level in feature pyramid networks.
fpn_max_level: the maximum level in feature pyramid networks.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False. UNUSED currently.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet152V1FpnFeatureExtractor, self).__init__(
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
resnet_v1.resnet_v1_152,
'resnet_v1_152',
'fpn',
fpn_min_level,
fpn_max_level,
additional_layer_depth,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
use_native_resize_op=use_native_resize_op,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_resnet_v1_fpn_feature_extractor.py | ssd_resnet_v1_fpn_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import functools
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.utils import ops
from object_detection.utils import shape_utils
# Activation bound used for TPU v1. Activations will be clipped to
# [-ACTIVATION_BOUND, ACTIVATION_BOUND] when training with
# use_bounded_activations enabled.
ACTIVATION_BOUND = 6.0
def get_depth_fn(depth_multiplier, min_depth):
"""Builds a callable to compute depth (output channels) of conv filters.
Args:
depth_multiplier: a multiplier for the nominal depth.
min_depth: a lower bound on the depth of filters.
Returns:
A callable that takes in a nominal depth and returns the depth to use.
"""
def multiply_depth(depth):
new_depth = int(depth * depth_multiplier)
return max(new_depth, min_depth)
return multiply_depth
def create_conv_block(
use_depthwise, kernel_size, padding, stride, layer_name, conv_hyperparams,
is_training, freeze_batchnorm, depth):
"""Create Keras layers for depthwise & non-depthwise convolutions.
Args:
use_depthwise: Whether to use depthwise separable conv instead of regular
conv.
kernel_size: A list of length 2: [kernel_height, kernel_width] of the
filters. Can be an int if both values are the same.
padding: One of 'VALID' or 'SAME'.
stride: A list of length 2: [stride_height, stride_width], specifying the
convolution stride. Can be an int if both strides are the same.
layer_name: String. The name of the layer.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
is_training: Indicates whether the feature generator is in training mode.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
depth: Depth of output feature maps.
Returns:
A list of conv layers.
"""
layers = []
if use_depthwise:
kwargs = conv_hyperparams.params()
# Both the regularizer and initializer apply to the depthwise layer,
# so we remap the kernel_* to depthwise_* here.
kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['depthwise_initializer'] = kwargs['kernel_initializer']
layers.append(
tf.keras.layers.SeparableConv2D(
depth, [kernel_size, kernel_size],
depth_multiplier=1,
padding=padding,
strides=stride,
name=layer_name + '_depthwise_conv',
**kwargs))
else:
layers.append(tf.keras.layers.Conv2D(
depth,
[kernel_size, kernel_size],
padding=padding,
strides=stride,
name=layer_name + '_conv',
**conv_hyperparams.params()))
layers.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name=layer_name + '_batchnorm'))
layers.append(
conv_hyperparams.build_activation_layer(
name=layer_name))
return layers
class KerasMultiResolutionFeatureMaps(tf.keras.Model):
"""Generates multi resolution feature maps from input image features.
A Keras model that generates multi-scale feature maps for detection as in the
SSD papers by Liu et al: https://arxiv.org/pdf/1512.02325v2.pdf, See Sec 2.1.
More specifically, when called on inputs it performs the following two tasks:
1) If a layer name is provided in the configuration, returns that layer as a
feature map.
2) If a layer name is left as an empty string, constructs a new feature map
based on the spatial shape and depth configuration. Note that the current
implementation only supports generating new layers using convolution of
stride 2 resulting in a spatial resolution reduction by a factor of 2.
By default convolution kernel size is set to 3, and it can be customized
by caller.
An example of the configuration for Inception V3:
{
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128]
}
When this feature generator object is called on input image_features:
Args:
image_features: A dictionary of handles to activation tensors from the
base feature extractor.
Returns:
feature_maps: an OrderedDict mapping keys (feature map names) to
tensors where each tensor has shape [batch, height_i, width_i, depth_i].
"""
def __init__(self,
feature_map_layout,
depth_multiplier,
min_depth,
insert_1x1_conv,
is_training,
conv_hyperparams,
freeze_batchnorm,
name=None):
"""Constructor.
Args:
feature_map_layout: Dictionary of specifications for the feature map
layouts in the following format (Inception V2/V3 respectively):
{
'from_layer': ['Mixed_3c', 'Mixed_4c', 'Mixed_5c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128]
}
or
{
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128]
}
If 'from_layer' is specified, the specified feature map is directly used
as a box predictor layer, and the layer_depth is directly infered from
the feature map (instead of using the provided 'layer_depth' parameter).
In this case, our convention is to set 'layer_depth' to -1 for clarity.
Otherwise, if 'from_layer' is an empty string, then the box predictor
layer will be built from the previous layer using convolution
operations. Note that the current implementation only supports
generating new layers using convolutions of stride 2 (resulting in a
spatial resolution reduction by a factor of 2), and will be extended to
a more flexible design. Convolution kernel size is set to 3 by default,
and can be customized by 'conv_kernel_size' parameter (similarily,
'conv_kernel_size' should be set to -1 if 'from_layer' is specified).
The created convolution operation will be a normal 2D convolution by
default, and a depthwise convolution followed by 1x1 convolution if
'use_depthwise' is set to True.
depth_multiplier: Depth multiplier for convolutional layers.
min_depth: Minimum depth for convolutional layers.
insert_1x1_conv: A boolean indicating whether an additional 1x1
convolution should be inserted before shrinking the feature map.
is_training: Indicates whether the feature generator is in training mode.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
name: A string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(KerasMultiResolutionFeatureMaps, self).__init__(name=name)
self.feature_map_layout = feature_map_layout
self.convolutions = []
depth_fn = get_depth_fn(depth_multiplier, min_depth)
base_from_layer = ''
use_explicit_padding = False
if 'use_explicit_padding' in feature_map_layout:
use_explicit_padding = feature_map_layout['use_explicit_padding']
use_depthwise = False
if 'use_depthwise' in feature_map_layout:
use_depthwise = feature_map_layout['use_depthwise']
for index, from_layer in enumerate(feature_map_layout['from_layer']):
net = []
layer_depth = feature_map_layout['layer_depth'][index]
conv_kernel_size = 3
if 'conv_kernel_size' in feature_map_layout:
conv_kernel_size = feature_map_layout['conv_kernel_size'][index]
if from_layer:
base_from_layer = from_layer
else:
if insert_1x1_conv:
layer_name = '{}_1_Conv2d_{}_1x1_{}'.format(
base_from_layer, index, depth_fn(layer_depth // 2))
net.append(tf.keras.layers.Conv2D(depth_fn(layer_depth // 2),
[1, 1],
padding='SAME',
strides=1,
name=layer_name + '_conv',
**conv_hyperparams.params()))
net.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name=layer_name + '_batchnorm'))
net.append(
conv_hyperparams.build_activation_layer(
name=layer_name))
layer_name = '{}_2_Conv2d_{}_{}x{}_s2_{}'.format(
base_from_layer, index, conv_kernel_size, conv_kernel_size,
depth_fn(layer_depth))
stride = 2
padding = 'SAME'
if use_explicit_padding:
padding = 'VALID'
# We define this function here while capturing the value of
# conv_kernel_size, to avoid holding a reference to the loop variable
# conv_kernel_size inside of a lambda function
def fixed_padding(features, kernel_size=conv_kernel_size):
return ops.fixed_padding(features, kernel_size)
net.append(tf.keras.layers.Lambda(fixed_padding))
# TODO(rathodv): Add some utilities to simplify the creation of
# Depthwise & non-depthwise convolutions w/ normalization & activations
if use_depthwise:
net.append(tf.keras.layers.DepthwiseConv2D(
[conv_kernel_size, conv_kernel_size],
depth_multiplier=1,
padding=padding,
strides=stride,
name=layer_name + '_depthwise_conv',
**conv_hyperparams.params()))
net.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name=layer_name + '_depthwise_batchnorm'))
net.append(
conv_hyperparams.build_activation_layer(
name=layer_name + '_depthwise'))
net.append(tf.keras.layers.Conv2D(depth_fn(layer_depth), [1, 1],
padding='SAME',
strides=1,
name=layer_name + '_conv',
**conv_hyperparams.params()))
net.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name=layer_name + '_batchnorm'))
net.append(
conv_hyperparams.build_activation_layer(
name=layer_name))
else:
net.append(tf.keras.layers.Conv2D(
depth_fn(layer_depth),
[conv_kernel_size, conv_kernel_size],
padding=padding,
strides=stride,
name=layer_name + '_conv',
**conv_hyperparams.params()))
net.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name=layer_name + '_batchnorm'))
net.append(
conv_hyperparams.build_activation_layer(
name=layer_name))
# Until certain bugs are fixed in checkpointable lists,
# this net must be appended only once it's been filled with layers
self.convolutions.append(net)
def call(self, image_features):
"""Generate the multi-resolution feature maps.
Executed when calling the `.__call__` method on input.
Args:
image_features: A dictionary of handles to activation tensors from the
base feature extractor.
Returns:
feature_maps: an OrderedDict mapping keys (feature map names) to
tensors where each tensor has shape [batch, height_i, width_i, depth_i].
"""
feature_maps = []
feature_map_keys = []
for index, from_layer in enumerate(self.feature_map_layout['from_layer']):
if from_layer:
feature_map = image_features[from_layer]
feature_map_keys.append(from_layer)
else:
feature_map = feature_maps[-1]
for layer in self.convolutions[index]:
feature_map = layer(feature_map)
layer_name = self.convolutions[index][-1].name
feature_map_keys.append(layer_name)
feature_maps.append(feature_map)
return collections.OrderedDict(
[(x, y) for (x, y) in zip(feature_map_keys, feature_maps)])
def multi_resolution_feature_maps(feature_map_layout, depth_multiplier,
min_depth, insert_1x1_conv, image_features,
pool_residual=False):
"""Generates multi resolution feature maps from input image features.
Generates multi-scale feature maps for detection as in the SSD papers by
Liu et al: https://arxiv.org/pdf/1512.02325v2.pdf, See Sec 2.1.
More specifically, it performs the following two tasks:
1) If a layer name is provided in the configuration, returns that layer as a
feature map.
2) If a layer name is left as an empty string, constructs a new feature map
based on the spatial shape and depth configuration. Note that the current
implementation only supports generating new layers using convolution of
stride 2 resulting in a spatial resolution reduction by a factor of 2.
By default convolution kernel size is set to 3, and it can be customized
by caller.
An example of the configuration for Inception V3:
{
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128]
}
Args:
feature_map_layout: Dictionary of specifications for the feature map
layouts in the following format (Inception V2/V3 respectively):
{
'from_layer': ['Mixed_3c', 'Mixed_4c', 'Mixed_5c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128]
}
or
{
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128]
}
If 'from_layer' is specified, the specified feature map is directly used
as a box predictor layer, and the layer_depth is directly infered from the
feature map (instead of using the provided 'layer_depth' parameter). In
this case, our convention is to set 'layer_depth' to -1 for clarity.
Otherwise, if 'from_layer' is an empty string, then the box predictor
layer will be built from the previous layer using convolution operations.
Note that the current implementation only supports generating new layers
using convolutions of stride 2 (resulting in a spatial resolution
reduction by a factor of 2), and will be extended to a more flexible
design. Convolution kernel size is set to 3 by default, and can be
customized by 'conv_kernel_size' parameter (similarily, 'conv_kernel_size'
should be set to -1 if 'from_layer' is specified). The created convolution
operation will be a normal 2D convolution by default, and a depthwise
convolution followed by 1x1 convolution if 'use_depthwise' is set to True.
depth_multiplier: Depth multiplier for convolutional layers.
min_depth: Minimum depth for convolutional layers.
insert_1x1_conv: A boolean indicating whether an additional 1x1 convolution
should be inserted before shrinking the feature map.
image_features: A dictionary of handles to activation tensors from the
base feature extractor.
pool_residual: Whether to add an average pooling layer followed by a
residual connection between subsequent feature maps when the channel
depth match. For example, with option 'layer_depth': [-1, 512, 256, 256],
a pooling and residual layer is added between the third and forth feature
map. This option is better used with Weight Shared Convolution Box
Predictor when all feature maps have the same channel depth to encourage
more consistent features across multi-scale feature maps.
Returns:
feature_maps: an OrderedDict mapping keys (feature map names) to
tensors where each tensor has shape [batch, height_i, width_i, depth_i].
Raises:
ValueError: if the number entries in 'from_layer' and
'layer_depth' do not match.
ValueError: if the generated layer does not have the same resolution
as specified.
"""
depth_fn = get_depth_fn(depth_multiplier, min_depth)
feature_map_keys = []
feature_maps = []
base_from_layer = ''
use_explicit_padding = False
if 'use_explicit_padding' in feature_map_layout:
use_explicit_padding = feature_map_layout['use_explicit_padding']
use_depthwise = False
if 'use_depthwise' in feature_map_layout:
use_depthwise = feature_map_layout['use_depthwise']
for index, from_layer in enumerate(feature_map_layout['from_layer']):
layer_depth = feature_map_layout['layer_depth'][index]
conv_kernel_size = 3
if 'conv_kernel_size' in feature_map_layout:
conv_kernel_size = feature_map_layout['conv_kernel_size'][index]
if from_layer:
feature_map = image_features[from_layer]
base_from_layer = from_layer
feature_map_keys.append(from_layer)
else:
pre_layer = feature_maps[-1]
pre_layer_depth = pre_layer.get_shape().as_list()[3]
intermediate_layer = pre_layer
if insert_1x1_conv:
layer_name = '{}_1_Conv2d_{}_1x1_{}'.format(
base_from_layer, index, depth_fn(layer_depth // 2))
intermediate_layer = slim.conv2d(
pre_layer,
depth_fn(layer_depth // 2), [1, 1],
padding='SAME',
stride=1,
scope=layer_name)
layer_name = '{}_2_Conv2d_{}_{}x{}_s2_{}'.format(
base_from_layer, index, conv_kernel_size, conv_kernel_size,
depth_fn(layer_depth))
stride = 2
padding = 'SAME'
if use_explicit_padding:
padding = 'VALID'
intermediate_layer = ops.fixed_padding(
intermediate_layer, conv_kernel_size)
if use_depthwise:
feature_map = slim.separable_conv2d(
intermediate_layer,
None, [conv_kernel_size, conv_kernel_size],
depth_multiplier=1,
padding=padding,
stride=stride,
scope=layer_name + '_depthwise')
feature_map = slim.conv2d(
feature_map,
depth_fn(layer_depth), [1, 1],
padding='SAME',
stride=1,
scope=layer_name)
if pool_residual and pre_layer_depth == depth_fn(layer_depth):
if use_explicit_padding:
pre_layer = ops.fixed_padding(pre_layer, conv_kernel_size)
feature_map += slim.avg_pool2d(
pre_layer, [conv_kernel_size, conv_kernel_size],
padding=padding,
stride=2,
scope=layer_name + '_pool')
else:
feature_map = slim.conv2d(
intermediate_layer,
depth_fn(layer_depth), [conv_kernel_size, conv_kernel_size],
padding=padding,
stride=stride,
scope=layer_name)
feature_map_keys.append(layer_name)
feature_maps.append(feature_map)
return collections.OrderedDict(
[(x, y) for (x, y) in zip(feature_map_keys, feature_maps)])
class KerasFpnTopDownFeatureMaps(tf.keras.Model):
"""Generates Keras based `top-down` feature maps for Feature Pyramid Networks.
See https://arxiv.org/abs/1612.03144 for details.
"""
def __init__(self,
num_levels,
depth,
is_training,
conv_hyperparams,
freeze_batchnorm,
use_depthwise=False,
use_explicit_padding=False,
use_bounded_activations=False,
use_native_resize_op=False,
scope=None,
name=None):
"""Constructor.
Args:
num_levels: the number of image features.
depth: depth of output feature maps.
is_training: Indicates whether the feature generator is in training mode.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
use_depthwise: whether to use depthwise separable conv instead of regular
conv.
use_explicit_padding: whether to use explicit padding.
use_bounded_activations: Whether or not to clip activations to range
[-ACTIVATION_BOUND, ACTIVATION_BOUND]. Bounded activations better lend
themselves to quantized inference.
use_native_resize_op: If True, uses tf.image.resize_nearest_neighbor op
for the upsampling process instead of reshape and broadcasting
implementation.
scope: A scope name to wrap this op under.
name: A string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(KerasFpnTopDownFeatureMaps, self).__init__(name=name)
self.scope = scope if scope else 'top_down'
self.top_layers = []
self.residual_blocks = []
self.top_down_blocks = []
self.reshape_blocks = []
self.conv_layers = []
padding = 'VALID' if use_explicit_padding else 'SAME'
stride = 1
kernel_size = 3
def clip_by_value(features):
return tf.clip_by_value(features, -ACTIVATION_BOUND, ACTIVATION_BOUND)
# top layers
self.top_layers.append(tf.keras.layers.Conv2D(
depth, [1, 1], strides=stride, padding=padding,
name='projection_%d' % num_levels,
**conv_hyperparams.params(use_bias=True)))
if use_bounded_activations:
self.top_layers.append(tf.keras.layers.Lambda(
clip_by_value, name='clip_by_value'))
for level in reversed(list(range(num_levels - 1))):
# to generate residual from image features
residual_net = []
# to preprocess top_down (the image feature map from last layer)
top_down_net = []
# to reshape top_down according to residual if necessary
reshaped_residual = []
# to apply convolution layers to feature map
conv_net = []
# residual block
residual_net.append(tf.keras.layers.Conv2D(
depth, [1, 1], padding=padding, strides=1,
name='projection_%d' % (level + 1),
**conv_hyperparams.params(use_bias=True)))
if use_bounded_activations:
residual_net.append(tf.keras.layers.Lambda(
clip_by_value, name='clip_by_value'))
# top-down block
# TODO (b/128922690): clean-up of ops.nearest_neighbor_upsampling
if use_native_resize_op:
def resize_nearest_neighbor(image):
image_shape = shape_utils.combined_static_and_dynamic_shape(image)
return tf.image.resize_nearest_neighbor(
image, [image_shape[1] * 2, image_shape[2] * 2])
top_down_net.append(tf.keras.layers.Lambda(
resize_nearest_neighbor, name='nearest_neighbor_upsampling'))
else:
def nearest_neighbor_upsampling(image):
return ops.nearest_neighbor_upsampling(image, scale=2)
top_down_net.append(tf.keras.layers.Lambda(
nearest_neighbor_upsampling, name='nearest_neighbor_upsampling'))
# reshape block
if use_explicit_padding:
def reshape(inputs):
residual_shape = tf.shape(inputs[0])
return inputs[1][:, :residual_shape[1], :residual_shape[2], :]
reshaped_residual.append(
tf.keras.layers.Lambda(reshape, name='reshape'))
# down layers
if use_bounded_activations:
conv_net.append(tf.keras.layers.Lambda(
clip_by_value, name='clip_by_value'))
if use_explicit_padding:
def fixed_padding(features, kernel_size=kernel_size):
return ops.fixed_padding(features, kernel_size)
conv_net.append(tf.keras.layers.Lambda(
fixed_padding, name='fixed_padding'))
layer_name = 'smoothing_%d' % (level + 1)
conv_block = create_conv_block(
use_depthwise, kernel_size, padding, stride, layer_name,
conv_hyperparams, is_training, freeze_batchnorm, depth)
conv_net.extend(conv_block)
self.residual_blocks.append(residual_net)
self.top_down_blocks.append(top_down_net)
self.reshape_blocks.append(reshaped_residual)
self.conv_layers.append(conv_net)
def call(self, image_features):
"""Generate the multi-resolution feature maps.
Executed when calling the `.__call__` method on input.
Args:
image_features: list of tuples of (tensor_name, image_feature_tensor).
Spatial resolutions of succesive tensors must reduce exactly by a factor
of 2.
Returns:
feature_maps: an OrderedDict mapping keys (feature map names) to
tensors where each tensor has shape [batch, height_i, width_i, depth_i].
"""
output_feature_maps_list = []
output_feature_map_keys = []
with tf.name_scope(self.scope):
top_down = image_features[-1][1]
for layer in self.top_layers:
top_down = layer(top_down)
output_feature_maps_list.append(top_down)
output_feature_map_keys.append('top_down_%s' % image_features[-1][0])
num_levels = len(image_features)
for index, level in enumerate(reversed(list(range(num_levels - 1)))):
residual = image_features[level][1]
top_down = output_feature_maps_list[-1]
for layer in self.residual_blocks[index]:
residual = layer(residual)
for layer in self.top_down_blocks[index]:
top_down = layer(top_down)
for layer in self.reshape_blocks[index]:
top_down = layer([residual, top_down])
top_down += residual
for layer in self.conv_layers[index]:
top_down = layer(top_down)
output_feature_maps_list.append(top_down)
output_feature_map_keys.append('top_down_%s' % image_features[level][0])
return collections.OrderedDict(reversed(
list(zip(output_feature_map_keys, output_feature_maps_list))))
def fpn_top_down_feature_maps(image_features,
depth,
use_depthwise=False,
use_explicit_padding=False,
use_bounded_activations=False,
scope=None,
use_native_resize_op=False):
"""Generates `top-down` feature maps for Feature Pyramid Networks.
See https://arxiv.org/abs/1612.03144 for details.
Args:
image_features: list of tuples of (tensor_name, image_feature_tensor).
Spatial resolutions of succesive tensors must reduce exactly by a factor
of 2.
depth: depth of output feature maps.
use_depthwise: whether to use depthwise separable conv instead of regular
conv.
use_explicit_padding: whether to use explicit padding.
use_bounded_activations: Whether or not to clip activations to range
[-ACTIVATION_BOUND, ACTIVATION_BOUND]. Bounded activations better lend
themselves to quantized inference.
scope: A scope name to wrap this op under.
use_native_resize_op: If True, uses tf.image.resize_nearest_neighbor op for
the upsampling process instead of reshape and broadcasting implementation.
Returns:
feature_maps: an OrderedDict mapping keys (feature map names) to
tensors where each tensor has shape [batch, height_i, width_i, depth_i].
"""
with tf.name_scope(scope, 'top_down'):
num_levels = len(image_features)
output_feature_maps_list = []
output_feature_map_keys = []
padding = 'VALID' if use_explicit_padding else 'SAME'
kernel_size = 3
with slim.arg_scope(
[slim.conv2d, slim.separable_conv2d], padding=padding, stride=1):
top_down = slim.conv2d(
image_features[-1][1],
depth, [1, 1], activation_fn=None, normalizer_fn=None,
scope='projection_%d' % num_levels)
if use_bounded_activations:
top_down = tf.clip_by_value(top_down, -ACTIVATION_BOUND,
ACTIVATION_BOUND)
output_feature_maps_list.append(top_down)
output_feature_map_keys.append(
'top_down_%s' % image_features[-1][0])
for level in reversed(list(range(num_levels - 1))):
if use_native_resize_op:
with tf.name_scope('nearest_neighbor_upsampling'):
top_down_shape = shape_utils.combined_static_and_dynamic_shape(
top_down)
top_down = tf.image.resize_nearest_neighbor(
top_down, [top_down_shape[1] * 2, top_down_shape[2] * 2])
else:
top_down = ops.nearest_neighbor_upsampling(top_down, scale=2)
residual = slim.conv2d(
image_features[level][1], depth, [1, 1],
activation_fn=None, normalizer_fn=None,
scope='projection_%d' % (level + 1))
if use_bounded_activations:
residual = tf.clip_by_value(residual, -ACTIVATION_BOUND,
ACTIVATION_BOUND)
if use_explicit_padding:
# slice top_down to the same shape as residual
residual_shape = tf.shape(residual)
top_down = top_down[:, :residual_shape[1], :residual_shape[2], :]
top_down += residual
if use_bounded_activations:
top_down = tf.clip_by_value(top_down, -ACTIVATION_BOUND,
ACTIVATION_BOUND)
if use_depthwise:
conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1)
else:
conv_op = slim.conv2d
pre_output = top_down
if use_explicit_padding:
pre_output = ops.fixed_padding(pre_output, kernel_size)
output_feature_maps_list.append(conv_op(
pre_output,
depth, [kernel_size, kernel_size],
scope='smoothing_%d' % (level + 1)))
output_feature_map_keys.append('top_down_%s' % image_features[level][0])
return collections.OrderedDict(reversed(
list(zip(output_feature_map_keys, output_feature_maps_list))))
def pooling_pyramid_feature_maps(base_feature_map_depth, num_layers,
image_features, replace_pool_with_conv=False):
"""Generates pooling pyramid feature maps.
The pooling pyramid feature maps is motivated by
multi_resolution_feature_maps. The main difference are that it is simpler and
reduces the number of free parameters.
More specifically:
- Instead of using convolutions to shrink the feature map, it uses max
pooling, therefore totally gets rid of the parameters in convolution.
- By pooling feature from larger map up to a single cell, it generates
features in the same feature space.
- Instead of independently making box predictions from individual maps, it
shares the same classifier across different feature maps, therefore reduces
the "mis-calibration" across different scales.
See go/ppn-detection for more details.
Args:
base_feature_map_depth: Depth of the base feature before the max pooling.
num_layers: Number of layers used to make predictions. They are pooled
from the base feature.
image_features: A dictionary of handles to activation tensors from the
feature extractor.
replace_pool_with_conv: Whether or not to replace pooling operations with
convolutions in the PPN. Default is False.
Returns:
feature_maps: an OrderedDict mapping keys (feature map names) to
tensors where each tensor has shape [batch, height_i, width_i, depth_i].
Raises:
ValueError: image_features does not contain exactly one entry
"""
if len(image_features) != 1:
raise ValueError('image_features should be a dictionary of length 1.')
image_features = image_features[list(image_features.keys())[0]]
feature_map_keys = []
feature_maps = []
feature_map_key = 'Base_Conv2d_1x1_%d' % base_feature_map_depth
if base_feature_map_depth > 0:
image_features = slim.conv2d(
image_features,
base_feature_map_depth,
[1, 1], # kernel size
padding='SAME', stride=1, scope=feature_map_key)
# Add a 1x1 max-pooling node (a no op node) immediately after the conv2d for
# TPU v1 compatibility. Without the following dummy op, TPU runtime
# compiler will combine the convolution with one max-pooling below into a
# single cycle, so getting the conv2d feature becomes impossible.
image_features = slim.max_pool2d(
image_features, [1, 1], padding='SAME', stride=1, scope=feature_map_key)
feature_map_keys.append(feature_map_key)
feature_maps.append(image_features)
feature_map = image_features
if replace_pool_with_conv:
with slim.arg_scope([slim.conv2d], padding='SAME', stride=2):
for i in range(num_layers - 1):
feature_map_key = 'Conv2d_{}_3x3_s2_{}'.format(i,
base_feature_map_depth)
feature_map = slim.conv2d(
feature_map, base_feature_map_depth, [3, 3], scope=feature_map_key)
feature_map_keys.append(feature_map_key)
feature_maps.append(feature_map)
else:
with slim.arg_scope([slim.max_pool2d], padding='SAME', stride=2):
for i in range(num_layers - 1):
feature_map_key = 'MaxPool2d_%d_2x2' % i
feature_map = slim.max_pool2d(
feature_map, [2, 2], padding='SAME', scope=feature_map_key)
feature_map_keys.append(feature_map_key)
feature_maps.append(feature_map)
return collections.OrderedDict(
[(x, y) for (x, y) in zip(feature_map_keys, feature_maps)]) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/feature_map_generators.py | feature_map_generators.py |
"""SSDFeatureExtractor for InceptionV2 features."""
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets import inception_v2
class SSDInceptionV2FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using InceptionV2 features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False):
"""InceptionV2 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
Raises:
ValueError: If `override_base_feature_extractor_hyperparams` is False.
"""
super(SSDInceptionV2FeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
num_layers=num_layers,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
if not self._override_base_feature_extractor_hyperparams:
raise ValueError('SSD Inception V2 feature extractor always uses'
'scope returned by `conv_hyperparams_fn` for both the '
'base feature extractor and the additional layers '
'added since there is no arg_scope defined for the base '
'feature extractor.')
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('InceptionV2',
reuse=self._reuse_weights) as scope:
_, image_features = inception_v2.inception_v2_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_5c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_inception_v2_feature_extractor.py | ssd_inception_v2_feature_extractor.py |
import collections
import functools
from six.moves import range
from six.moves import zip
import tensorflow as tf
from object_detection.utils import bifpn_utils
def _create_bifpn_input_config(fpn_min_level,
fpn_max_level,
input_max_level,
level_scales=None):
"""Creates a BiFPN input config for the input levels from a backbone network.
Args:
fpn_min_level: the minimum pyramid level (highest feature map resolution) to
use in the BiFPN.
fpn_max_level: the maximum pyramid level (lowest feature map resolution) to
use in the BiFPN.
input_max_level: the maximum pyramid level that will be provided as input to
the BiFPN. Accordingly, the BiFPN will compute additional pyramid levels
from input_max_level, up to the desired fpn_max_level.
level_scales: a list of pyramid level scale factors. If 'None', each level's
scale is set to 2^level by default, which corresponds to each successive
feature map scaling by a factor of 2.
Returns:
A list of dictionaries for each feature map expected as input to the BiFPN,
where each has entries for the feature map 'name' and 'scale'.
"""
if not level_scales:
level_scales = [2**i for i in range(fpn_min_level, fpn_max_level + 1)]
bifpn_input_params = []
for i in range(fpn_min_level, min(fpn_max_level, input_max_level) + 1):
bifpn_input_params.append({
'name': '0_up_lvl_{}'.format(i),
'scale': level_scales[i - fpn_min_level]
})
return bifpn_input_params
def _get_bifpn_output_node_names(fpn_min_level, fpn_max_level, node_config):
"""Returns a list of BiFPN output node names, given a BiFPN node config.
Args:
fpn_min_level: the minimum pyramid level (highest feature map resolution)
used by the BiFPN.
fpn_max_level: the maximum pyramid level (lowest feature map resolution)
used by the BiFPN.
node_config: the BiFPN node_config, a list of dictionaries corresponding to
each node in the BiFPN computation graph, where each entry should have an
associated 'name'.
Returns:
A list of strings corresponding to the names of the output BiFPN nodes.
"""
num_output_nodes = fpn_max_level - fpn_min_level + 1
return [node['name'] for node in node_config[-num_output_nodes:]]
def _create_bifpn_node_config(bifpn_num_iterations,
bifpn_num_filters,
fpn_min_level,
fpn_max_level,
input_max_level,
bifpn_node_params=None,
level_scales=None):
"""Creates a config specifying a bidirectional feature pyramid network.
Args:
bifpn_num_iterations: the number of top-down bottom-up feature computations
to repeat in the BiFPN.
bifpn_num_filters: the number of filters (channels) for every feature map
used in the BiFPN.
fpn_min_level: the minimum pyramid level (highest feature map resolution) to
use in the BiFPN.
fpn_max_level: the maximum pyramid level (lowest feature map resolution) to
use in the BiFPN.
input_max_level: the maximum pyramid level that will be provided as input to
the BiFPN. Accordingly, the BiFPN will compute additional pyramid levels
from input_max_level, up to the desired fpn_max_level.
bifpn_node_params: If not 'None', a dictionary of additional default BiFPN
node parameters that will be applied to all BiFPN nodes.
level_scales: a list of pyramid level scale factors. If 'None', each level's
scale is set to 2^level by default, which corresponds to each successive
feature map scaling by a factor of 2.
Returns:
A list of dictionaries used to define nodes in the BiFPN computation graph,
as proposed by EfficientDet, Tan et al (https://arxiv.org/abs/1911.09070).
Each node's entry has the corresponding keys:
name: String. The name of this node in the BiFPN. The node name follows
the format '{bifpn_iteration}_{dn|up}_lvl_{pyramid_level}', where 'dn'
or 'up' refers to whether the node is in the top-down or bottom-up
portion of a single BiFPN iteration.
scale: the scale factor for this node, by default 2^level.
inputs: A list of names of nodes which are inputs to this node.
num_channels: The number of channels for this node.
combine_method: String. Name of the method used to combine input
node feature maps, 'fast_attention' by default for nodes which have more
than one input. Otherwise, 'None' for nodes with only one input node.
input_op: A (partial) function which is called to construct the layers
that will be applied to this BiFPN node's inputs. This function is
called with the arguments:
input_op(name, input_scale, input_num_channels, output_scale,
output_num_channels, conv_hyperparams, is_training,
freeze_batchnorm)
post_combine_op: A (partial) function which is called to construct the
layers that will be applied to the result of the combine operation for
this BiFPN node. This function will be called with the arguments:
post_combine_op(name, conv_hyperparams, is_training, freeze_batchnorm)
If 'None', then no layers will be applied after the combine operation
for this node.
"""
if not level_scales:
level_scales = [2**i for i in range(fpn_min_level, fpn_max_level + 1)]
default_node_params = {
'num_channels':
bifpn_num_filters,
'combine_method':
'fast_attention',
'input_op':
functools.partial(
_create_bifpn_resample_block, downsample_method='max_pooling'),
'post_combine_op':
functools.partial(
bifpn_utils.create_conv_block,
num_filters=bifpn_num_filters,
kernel_size=3,
strides=1,
padding='SAME',
use_separable=True,
apply_batchnorm=True,
apply_activation=True,
conv_bn_act_pattern=False),
}
if bifpn_node_params:
default_node_params.update(bifpn_node_params)
bifpn_node_params = []
# Create additional base pyramid levels not provided as input to the BiFPN.
# Note, combine_method and post_combine_op are set to None for additional
# base pyramid levels because they do not combine multiple input BiFPN nodes.
for i in range(input_max_level + 1, fpn_max_level + 1):
node_params = dict(default_node_params)
node_params.update({
'name': '0_up_lvl_{}'.format(i),
'scale': level_scales[i - fpn_min_level],
'inputs': ['0_up_lvl_{}'.format(i - 1)],
'combine_method': None,
'post_combine_op': None,
})
bifpn_node_params.append(node_params)
for i in range(bifpn_num_iterations):
# The first bottom-up feature pyramid (which includes the input pyramid
# levels from the backbone network and the additional base pyramid levels)
# is indexed at 0. So, the first top-down bottom-up pass of the BiFPN is
# indexed from 1, and repeated for bifpn_num_iterations iterations.
bifpn_i = i + 1
# Create top-down nodes.
for level_i in reversed(range(fpn_min_level, fpn_max_level)):
inputs = []
# BiFPN nodes in the top-down pass receive input from the corresponding
# level from the previous BiFPN iteration's bottom-up pass, except for the
# bottom-most (min) level node, which is computed once in the initial
# bottom-up pass, and is afterwards only computed in each top-down pass.
if level_i > fpn_min_level or bifpn_i == 1:
inputs.append('{}_up_lvl_{}'.format(bifpn_i - 1, level_i))
else:
inputs.append('{}_dn_lvl_{}'.format(bifpn_i - 1, level_i))
inputs.append(bifpn_node_params[-1]['name'])
node_params = dict(default_node_params)
node_params.update({
'name': '{}_dn_lvl_{}'.format(bifpn_i, level_i),
'scale': level_scales[level_i - fpn_min_level],
'inputs': inputs
})
bifpn_node_params.append(node_params)
# Create bottom-up nodes.
for level_i in range(fpn_min_level + 1, fpn_max_level + 1):
# BiFPN nodes in the bottom-up pass receive input from the corresponding
# level from the preceding top-down pass, except for the top (max) level
# which does not have a corresponding node in the top-down pass.
inputs = ['{}_up_lvl_{}'.format(bifpn_i - 1, level_i)]
if level_i < fpn_max_level:
inputs.append('{}_dn_lvl_{}'.format(bifpn_i, level_i))
inputs.append(bifpn_node_params[-1]['name'])
node_params = dict(default_node_params)
node_params.update({
'name': '{}_up_lvl_{}'.format(bifpn_i, level_i),
'scale': level_scales[level_i - fpn_min_level],
'inputs': inputs
})
bifpn_node_params.append(node_params)
return bifpn_node_params
def _create_bifpn_resample_block(name,
input_scale,
input_num_channels,
output_scale,
output_num_channels,
conv_hyperparams,
is_training,
freeze_batchnorm,
downsample_method=None,
use_native_resize_op=False,
maybe_apply_1x1_conv=True,
apply_1x1_pre_sampling=True,
apply_1x1_post_sampling=False):
"""Creates resample block layers for input feature maps to BiFPN nodes.
Args:
name: String. Name used for this block of layers.
input_scale: Scale factor of the input feature map.
input_num_channels: Number of channels in the input feature map.
output_scale: Scale factor of the output feature map.
output_num_channels: Number of channels in the output feature map.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
is_training: Indicates whether the feature generator is in training mode.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
downsample_method: String. Method to use when downsampling feature maps.
use_native_resize_op: Bool. Whether to use the native resize up when
upsampling feature maps.
maybe_apply_1x1_conv: Bool. If 'True', a 1x1 convolution will only be
applied if the input_num_channels differs from the output_num_channels.
apply_1x1_pre_sampling: Bool. Whether a 1x1 convolution will be applied to
the input feature map before the up/down-sampling operation.
apply_1x1_post_sampling: Bool. Whether a 1x1 convolution will be applied to
the input feature map after the up/down-sampling operation.
Returns:
A list of layers which may be applied to the input feature maps in order to
compute feature maps with the specified scale and number of channels.
"""
# By default, 1x1 convolutions are only applied before sampling when the
# number of input and output channels differ.
if maybe_apply_1x1_conv and output_num_channels == input_num_channels:
apply_1x1_pre_sampling = False
apply_1x1_post_sampling = False
apply_bn_for_resampling = True
layers = []
if apply_1x1_pre_sampling:
layers.extend(
bifpn_utils.create_conv_block(
name=name + '1x1_pre_sample/',
num_filters=output_num_channels,
kernel_size=1,
strides=1,
padding='SAME',
use_separable=False,
apply_batchnorm=apply_bn_for_resampling,
apply_activation=False,
conv_hyperparams=conv_hyperparams,
is_training=is_training,
freeze_batchnorm=freeze_batchnorm))
layers.extend(
bifpn_utils.create_resample_feature_map_ops(input_scale, output_scale,
downsample_method,
use_native_resize_op,
conv_hyperparams, is_training,
freeze_batchnorm, name))
if apply_1x1_post_sampling:
layers.extend(
bifpn_utils.create_conv_block(
name=name + '1x1_post_sample/',
num_filters=output_num_channels,
kernel_size=1,
strides=1,
padding='SAME',
use_separable=False,
apply_batchnorm=apply_bn_for_resampling,
apply_activation=False,
conv_hyperparams=conv_hyperparams,
is_training=is_training,
freeze_batchnorm=freeze_batchnorm))
return layers
def _create_bifpn_combine_op(num_inputs, name, combine_method):
"""Creates a BiFPN output config, a list of the output BiFPN node names.
Args:
num_inputs: The number of inputs to this combine operation.
name: String. The name of this combine operation.
combine_method: String. The method used to combine input feature maps.
Returns:
A function which may be called with a list of num_inputs feature maps
and which will return a single feature map.
"""
combine_op = None
if num_inputs < 1:
raise ValueError('Expected at least 1 input for BiFPN combine.')
elif num_inputs == 1:
combine_op = lambda x: x[0]
else:
combine_op = bifpn_utils.BiFPNCombineLayer(
combine_method=combine_method, name=name)
return combine_op
class KerasBiFpnFeatureMaps(tf.keras.Model):
"""Generates Keras based BiFPN feature maps from an input feature map pyramid.
A Keras model that generates multi-scale feature maps for detection by
iteratively computing top-down and bottom-up feature pyramids, as in the
EfficientDet paper by Tan et al, see arxiv.org/abs/1911.09070 for details.
"""
def __init__(self,
bifpn_num_iterations,
bifpn_num_filters,
fpn_min_level,
fpn_max_level,
input_max_level,
is_training,
conv_hyperparams,
freeze_batchnorm,
bifpn_node_params=None,
name=None):
"""Constructor.
Args:
bifpn_num_iterations: The number of top-down bottom-up iterations.
bifpn_num_filters: The number of filters (channels) to be used for all
feature maps in this BiFPN.
fpn_min_level: The minimum pyramid level (highest feature map resolution)
to use in the BiFPN.
fpn_max_level: The maximum pyramid level (lowest feature map resolution)
to use in the BiFPN.
input_max_level: The maximum pyramid level that will be provided as input
to the BiFPN. Accordingly, the BiFPN will compute any additional pyramid
levels from input_max_level up to the desired fpn_max_level, with each
successivel level downsampling by a scale factor of 2 by default.
is_training: Indicates whether the feature generator is in training mode.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
bifpn_node_params: An optional dictionary that may be used to specify
default parameters for BiFPN nodes, without the need to provide a custom
bifpn_node_config. For example, if '{ combine_method: 'sum' }', then all
BiFPN nodes will combine input feature maps by summation, rather than
by the default fast attention method.
name: A string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(KerasBiFpnFeatureMaps, self).__init__(name=name)
bifpn_node_config = _create_bifpn_node_config(
bifpn_num_iterations, bifpn_num_filters, fpn_min_level, fpn_max_level,
input_max_level, bifpn_node_params)
bifpn_input_config = _create_bifpn_input_config(
fpn_min_level, fpn_max_level, input_max_level)
bifpn_output_node_names = _get_bifpn_output_node_names(
fpn_min_level, fpn_max_level, bifpn_node_config)
self.bifpn_node_config = bifpn_node_config
self.bifpn_output_node_names = bifpn_output_node_names
self.node_input_blocks = []
self.node_combine_op = []
self.node_post_combine_block = []
all_node_params = bifpn_input_config
all_node_names = [node['name'] for node in all_node_params]
for node_config in bifpn_node_config:
# Maybe transform and/or resample input feature maps.
input_blocks = []
for input_name in node_config['inputs']:
if input_name not in all_node_names:
raise ValueError(
'Input feature map ({}) does not exist:'.format(input_name))
input_index = all_node_names.index(input_name)
input_params = all_node_params[input_index]
input_block = node_config['input_op'](
name='{}/input_{}/'.format(node_config['name'], input_name),
input_scale=input_params['scale'],
input_num_channels=input_params.get('num_channels', None),
output_scale=node_config['scale'],
output_num_channels=node_config['num_channels'],
conv_hyperparams=conv_hyperparams,
is_training=is_training,
freeze_batchnorm=freeze_batchnorm)
input_blocks.append((input_index, input_block))
# Combine input feature maps.
combine_op = _create_bifpn_combine_op(
num_inputs=len(input_blocks),
name=(node_config['name'] + '/combine'),
combine_method=node_config['combine_method'])
# Post-combine layers.
post_combine_block = []
if node_config['post_combine_op']:
post_combine_block.extend(node_config['post_combine_op'](
name=node_config['name'] + '/post_combine/',
conv_hyperparams=conv_hyperparams,
is_training=is_training,
freeze_batchnorm=freeze_batchnorm))
self.node_input_blocks.append(input_blocks)
self.node_combine_op.append(combine_op)
self.node_post_combine_block.append(post_combine_block)
all_node_params.append(node_config)
all_node_names.append(node_config['name'])
def call(self, feature_pyramid):
"""Compute BiFPN feature maps from input feature pyramid.
Executed when calling the `.__call__` method on input.
Args:
feature_pyramid: list of tuples of (tensor_name, image_feature_tensor).
Returns:
feature_maps: an OrderedDict mapping keys (feature map names) to
tensors where each tensor has shape [batch, height_i, width_i, depth_i].
"""
feature_maps = [el[1] for el in feature_pyramid]
output_feature_maps = [None for node in self.bifpn_output_node_names]
for index, node in enumerate(self.bifpn_node_config):
node_scope = 'node_{:02d}'.format(index)
with tf.name_scope(node_scope):
# Apply layer blocks to this node's input feature maps.
input_block_results = []
for input_index, input_block in self.node_input_blocks[index]:
block_result = feature_maps[input_index]
for layer in input_block:
block_result = layer(block_result)
input_block_results.append(block_result)
# Combine the resulting feature maps.
node_result = self.node_combine_op[index](input_block_results)
# Apply post-combine layer block if applicable.
for layer in self.node_post_combine_block[index]:
node_result = layer(node_result)
feature_maps.append(node_result)
if node['name'] in self.bifpn_output_node_names:
index = self.bifpn_output_node_names.index(node['name'])
output_feature_maps[index] = node_result
return collections.OrderedDict(
zip(self.bifpn_output_node_names, output_feature_maps)) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/bidirectional_feature_pyramid_generators.py | bidirectional_feature_pyramid_generators.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.models.keras_models import mobilenet_v2
from object_detection.utils import ops
from object_detection.utils import shape_utils
class SSDMobileNetV2KerasFeatureExtractor(
ssd_meta_arch.SSDKerasFeatureExtractor):
"""SSD Feature Extractor using MobilenetV2 features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False,
name=None):
"""MobileNetV2 Feature Extractor for SSD Models.
Mobilenet v2 (experimental), designed by sandler@. More details can be found
in //knowledge/cerebra/brain/compression/mobilenet/mobilenet_experimental.py
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor (Functions
as a width multiplier for the mobilenet_v2 network itself).
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
name: A string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDMobileNetV2KerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
num_layers=num_layers,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
self._feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
self.classification_backbone = None
self.feature_map_generator = None
def build(self, input_shape):
full_mobilenet_v2 = mobilenet_v2.mobilenet_v2(
batchnorm_training=(self._is_training and not self._freeze_batchnorm),
conv_hyperparams=(self._conv_hyperparams
if self._override_base_feature_extractor_hyperparams
else None),
weights=None,
use_explicit_padding=self._use_explicit_padding,
alpha=self._depth_multiplier,
min_depth=self._min_depth,
include_top=False)
conv2d_11_pointwise = full_mobilenet_v2.get_layer(
name='block_13_expand_relu').output
conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output
self.classification_backbone = tf.keras.Model(
inputs=full_mobilenet_v2.inputs,
outputs=[conv2d_11_pointwise, conv2d_13_pointwise])
self.feature_map_generator = (
feature_map_generators.KerasMultiResolutionFeatureMaps(
feature_map_layout=self._feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm,
name='FeatureMaps'))
self.built = True
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
image_features = self.classification_backbone(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))
feature_maps = self.feature_map_generator({
'layer_15/expansion_output': image_features[0],
'layer_19': image_features[1]})
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v2_keras_feature_extractor.py | ssd_mobilenet_v2_keras_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import faster_rcnn_meta_arch
from nets import inception_v2
def _batch_norm_arg_scope(list_ops,
use_batch_norm=True,
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001,
batch_norm_scale=False,
train_batch_norm=False):
"""Slim arg scope for InceptionV2 batch norm."""
if use_batch_norm:
batch_norm_params = {
'is_training': train_batch_norm,
'scale': batch_norm_scale,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon
}
normalizer_fn = slim.batch_norm
else:
normalizer_fn = None
batch_norm_params = None
return slim.arg_scope(list_ops,
normalizer_fn=normalizer_fn,
normalizer_params=batch_norm_params)
class FasterRCNNInceptionV2FeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor):
"""Faster R-CNN Inception V2 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0,
depth_multiplier=1.0,
min_depth=16):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 8 and first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 8 or 16.')
self._depth_multiplier = depth_multiplier
self._min_depth = min_depth
super(FasterRCNNInceptionV2FeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)
def preprocess(self, resized_inputs):
"""Faster R-CNN Inception V2 preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
activations: A dictionary mapping feature extractor tensor names to
tensors
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
preprocessed_inputs.get_shape().assert_has_rank(4)
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
['image size must at least be 33 in both height and width.'])
with tf.control_dependencies([shape_assert]):
with tf.variable_scope('InceptionV2',
reuse=self._reuse_weights) as scope:
with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d],
batch_norm_scale=True,
train_batch_norm=self._train_batch_norm):
_, activations = inception_v2.inception_v2_base(
preprocessed_inputs,
final_endpoint='Mixed_4e',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
return activations['Mixed_4e'], activations
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
net = proposal_feature_maps
depth = lambda d: max(int(d * self._depth_multiplier), self._min_depth)
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
data_format = 'NHWC'
concat_dim = 3 if data_format == 'NHWC' else 1
with tf.variable_scope('InceptionV2', reuse=self._reuse_weights):
with slim.arg_scope(
[slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1,
padding='SAME',
data_format=data_format):
with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d],
batch_norm_scale=True,
train_batch_norm=self._train_batch_norm):
with tf.variable_scope('Mixed_5a'):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(
net, depth(128), [1, 1],
weights_initializer=trunc_normal(0.09),
scope='Conv2d_0a_1x1')
branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2,
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(
net, depth(192), [1, 1],
weights_initializer=trunc_normal(0.09),
scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, depth(256), [3, 3],
scope='Conv2d_0b_3x3')
branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2,
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.max_pool2d(net, [3, 3], stride=2,
scope='MaxPool_1a_3x3')
net = tf.concat([branch_0, branch_1, branch_2], concat_dim)
with tf.variable_scope('Mixed_5b'):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, depth(352), [1, 1],
scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(
net, depth(192), [1, 1],
weights_initializer=trunc_normal(0.09),
scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(
net, depth(160), [1, 1],
weights_initializer=trunc_normal(0.09),
scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
scope='Conv2d_0b_3x3')
branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
scope='Conv2d_0c_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
branch_3 = slim.conv2d(
branch_3, depth(128), [1, 1],
weights_initializer=trunc_normal(0.1),
scope='Conv2d_0b_1x1')
net = tf.concat([branch_0, branch_1, branch_2, branch_3],
concat_dim)
with tf.variable_scope('Mixed_5c'):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, depth(352), [1, 1],
scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(
net, depth(192), [1, 1],
weights_initializer=trunc_normal(0.09),
scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(
net, depth(192), [1, 1],
weights_initializer=trunc_normal(0.09),
scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
scope='Conv2d_0b_3x3')
branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
scope='Conv2d_0c_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
branch_3 = slim.conv2d(
branch_3, depth(128), [1, 1],
weights_initializer=trunc_normal(0.1),
scope='Conv2d_0b_1x1')
proposal_classifier_features = tf.concat(
[branch_0, branch_1, branch_2, branch_3], concat_dim)
return proposal_classifier_features | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_inception_v2_feature_extractor.py | faster_rcnn_inception_v2_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.utils import variables_helper
from nets import inception_resnet_v2
class FasterRCNNInceptionResnetV2FeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor):
"""Faster R-CNN with Inception Resnet v2 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 8 and first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 8 or 16.')
super(FasterRCNNInceptionResnetV2FeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)
def preprocess(self, resized_inputs):
"""Faster R-CNN with Inception Resnet v2 preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
with tf.variable_scope('InceptionResnetV2',
reuse=self._reuse_weights) as scope:
return inception_resnet_v2.inception_resnet_v2_base(
preprocessed_inputs, final_endpoint='PreAuxLogits',
scope=scope, output_stride=self._first_stage_features_stride,
align_feature_maps=True)
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
This function reconstructs the "second half" of the Inception ResNet v2
network after the part defined in `_extract_proposal_features`.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name.
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope('InceptionResnetV2', reuse=self._reuse_weights):
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
weight_decay=self._weight_decay)):
# Forces is_training to False to disable batch norm update.
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
with tf.variable_scope('Mixed_7a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(proposal_feature_maps,
256, 1, scope='Conv2d_0a_1x1')
tower_conv_1 = slim.conv2d(
tower_conv, 384, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1 = slim.conv2d(
proposal_feature_maps, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(
tower_conv1, 288, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2 = slim.conv2d(
proposal_feature_maps, 256, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(
tower_conv2_1, 320, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.max_pool2d(
proposal_feature_maps, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat(
[tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3)
net = slim.repeat(net, 9, inception_resnet_v2.block8, scale=0.20)
net = inception_resnet_v2.block8(net, activation_fn=None)
proposal_classifier_features = slim.conv2d(
net, 1536, 1, scope='Conv2d_7b_1x1')
return proposal_classifier_features
def restore_from_classification_checkpoint_fn(
self,
first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Note that this overrides the default implementation in
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
InceptionResnetV2 checkpoints.
TODO(jonathanhuang,rathodv): revisit whether it's possible to force the
`Repeat` namescope as created in `_extract_box_classifier_features` to
start counting at 2 (e.g. `Repeat_2`) so that the default restore_fn can
be used.
Args:
first_stage_feature_extractor_scope: A scope name for the first stage
feature extractor.
second_stage_feature_extractor_scope: A scope name for the second stage
feature extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
if variable.op.name.startswith(
first_stage_feature_extractor_scope):
var_name = variable.op.name.replace(
first_stage_feature_extractor_scope + '/', '')
variables_to_restore[var_name] = variable
if variable.op.name.startswith(
second_stage_feature_extractor_scope):
var_name = variable.op.name.replace(
second_stage_feature_extractor_scope
+ '/InceptionResnetV2/Repeat', 'InceptionResnetV2/Repeat_2')
var_name = var_name.replace(
second_stage_feature_extractor_scope + '/', '')
variables_to_restore[var_name] = variable
return variables_to_restore | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_inception_resnet_v2_feature_extractor.py | faster_rcnn_inception_resnet_v2_feature_extractor.py |
# Skip pylint for this file because it times out
# pylint: skip-file
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.models.keras_models import inception_resnet_v2
from object_detection.utils import model_util
from object_detection.utils import variables_helper
class FasterRCNNInceptionResnetV2KerasFeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor):
"""Faster R-CNN with Inception Resnet v2 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 8 and first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 8 or 16.')
super(FasterRCNNInceptionResnetV2KerasFeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
weight_decay)
self._variable_dict = {}
self.classification_backbone = None
def preprocess(self, resized_inputs):
"""Faster R-CNN with Inception Resnet v2 preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def get_proposal_feature_extractor_model(self, name=None):
"""Returns a model that extracts first stage RPN features.
Extracts features using the first half of the Inception Resnet v2 network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
name: A scope name to construct all variables within.
Returns:
A Keras model that takes preprocessed_inputs:
A [batch, height, width, channels] float32 tensor
representing a batch of images.
And returns rpn_feature_map:
A tensor with shape [batch, height, width, depth]
"""
if not self.classification_backbone:
self.classification_backbone = inception_resnet_v2.inception_resnet_v2(
self._train_batch_norm,
output_stride=self._first_stage_features_stride,
align_feature_maps=True,
weight_decay=self._weight_decay,
weights=None,
include_top=False)
with tf.name_scope(name):
with tf.name_scope('InceptionResnetV2'):
proposal_features = self.classification_backbone.get_layer(
name='block17_20_ac').output
keras_model = tf.keras.Model(
inputs=self.classification_backbone.inputs,
outputs=proposal_features)
for variable in keras_model.variables:
self._variable_dict[variable.name[:-2]] = variable
return keras_model
def get_box_classifier_feature_extractor_model(self, name=None):
"""Returns a model that extracts second stage box classifier features.
This function reconstructs the "second half" of the Inception ResNet v2
network after the part defined in `get_proposal_feature_extractor_model`.
Args:
name: A scope name to construct all variables within.
Returns:
A Keras model that takes proposal_feature_maps:
A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
And returns proposal_classifier_features:
A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
if not self.classification_backbone:
self.classification_backbone = inception_resnet_v2.inception_resnet_v2(
self._train_batch_norm,
output_stride=self._first_stage_features_stride,
align_feature_maps=True,
weight_decay=self._weight_decay,
weights=None,
include_top=False)
with tf.name_scope(name):
with tf.name_scope('InceptionResnetV2'):
proposal_feature_maps = self.classification_backbone.get_layer(
name='block17_20_ac').output
proposal_classifier_features = self.classification_backbone.get_layer(
name='conv_7b_ac').output
keras_model = model_util.extract_submodel(
model=self.classification_backbone,
inputs=proposal_feature_maps,
outputs=proposal_classifier_features)
for variable in keras_model.variables:
self._variable_dict[variable.name[:-2]] = variable
return keras_model | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_inception_resnet_v2_keras_feature_extractor.py | faster_rcnn_inception_resnet_v2_keras_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from nets import mobilenet_v1
class EmbeddedSSDMobileNetV1FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""Embedded-friendly SSD Feature Extractor using MobilenetV1 features.
This feature extractor is similar to SSD MobileNetV1 feature extractor, and
it fixes input resolution to be 256x256, reduces the number of feature maps
used for box prediction and ensures convolution kernel to be no larger
than input tensor in spatial dimensions.
This feature extractor requires support of the following ops if used in
embedded devices:
- Conv
- DepthwiseConv
- Relu6
All conv/depthwiseconv use SAME padding, and no additional spatial padding is
needed.
"""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""MobileNetV1 Feature Extractor for Embedded-friendly SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to. For EmbeddedSSD it must be set to 1.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
Raises:
ValueError: upon invalid `pad_to_multiple` values.
"""
if pad_to_multiple != 1:
raise ValueError('Embedded-specific SSD only supports `pad_to_multiple` '
'of 1.')
super(EmbeddedSSDMobileNetV1FeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams)
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: if image height or width are not 256 pixels.
"""
image_shape = preprocessed_inputs.get_shape()
image_shape.assert_has_rank(4)
image_height = image_shape[1].value
image_width = image_shape[2].value
if image_height is None or image_width is None:
shape_assert = tf.Assert(
tf.logical_and(tf.equal(tf.shape(preprocessed_inputs)[1], 256),
tf.equal(tf.shape(preprocessed_inputs)[2], 256)),
['image size must be 256 in both height and width.'])
with tf.control_dependencies([shape_assert]):
preprocessed_inputs = tf.identity(preprocessed_inputs)
elif image_height != 256 or image_width != 256:
raise ValueError('image size must be = 256 in both height and width;'
' image dim = %d,%d' % (image_height, image_width))
feature_map_layout = {
'from_layer': [
'Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', ''
],
'layer_depth': [-1, -1, 512, 256, 256],
'conv_kernel_size': [-1, -1, 3, 3, 2],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor.py | embedded_ssd_mobilenet_v1_feature_extractor.py |
"""Mobilenet v1 Faster R-CNN implementation."""
import numpy as np
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.utils import shape_utils
from nets import mobilenet_v1
def _get_mobilenet_conv_no_last_stride_defs(conv_depth_ratio_in_percentage):
if conv_depth_ratio_in_percentage not in [25, 50, 75, 100]:
raise ValueError(
'Only the following ratio percentages are supported: 25, 50, 75, 100')
conv_depth_ratio_in_percentage = float(conv_depth_ratio_in_percentage) / 100.0
channels = np.array([
32, 64, 128, 128, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024
], dtype=np.float32)
channels = (channels * conv_depth_ratio_in_percentage).astype(np.int32)
return [
mobilenet_v1.Conv(kernel=[3, 3], stride=2, depth=channels[0]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[1]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=channels[2]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[3]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=channels[4]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[5]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=channels[6]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[7]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[8]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[9]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[10]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[11]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[12]),
mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[13])
]
class FasterRCNNMobilenetV1FeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor):
"""Faster R-CNN Mobilenet V1 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0,
depth_multiplier=1.0,
min_depth=16,
skip_last_stride=False,
conv_depth_ratio_in_percentage=100):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
skip_last_stride: Skip the last stride if True.
conv_depth_ratio_in_percentage: Conv depth ratio in percentage. Only
applied if skip_last_stride is True.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 8 and first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 8 or 16.')
self._depth_multiplier = depth_multiplier
self._min_depth = min_depth
self._skip_last_stride = skip_last_stride
self._conv_depth_ratio_in_percentage = conv_depth_ratio_in_percentage
super(FasterRCNNMobilenetV1FeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)
def preprocess(self, resized_inputs):
"""Faster R-CNN Mobilenet V1 preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
activations: A dictionary mapping feature extractor tensor names to
tensors
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
preprocessed_inputs.get_shape().assert_has_rank(4)
preprocessed_inputs = shape_utils.check_min_image_dim(
min_dim=33, image_tensor=preprocessed_inputs)
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=self._train_batch_norm,
weight_decay=self._weight_decay)):
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
params = {}
if self._skip_last_stride:
params['conv_defs'] = _get_mobilenet_conv_no_last_stride_defs(
conv_depth_ratio_in_percentage=self.
_conv_depth_ratio_in_percentage)
_, activations = mobilenet_v1.mobilenet_v1_base(
preprocessed_inputs,
final_endpoint='Conv2d_11_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope,
**params)
return activations['Conv2d_11_pointwise'], activations
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
net = proposal_feature_maps
conv_depth = 1024
if self._skip_last_stride:
conv_depth_ratio = float(self._conv_depth_ratio_in_percentage) / 100.0
conv_depth = int(float(conv_depth) * conv_depth_ratio)
depth = lambda d: max(int(d * 1.0), 16)
with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights):
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=self._train_batch_norm,
weight_decay=self._weight_decay)):
with slim.arg_scope(
[slim.conv2d, slim.separable_conv2d], padding='SAME'):
net = slim.separable_conv2d(
net,
depth(conv_depth), [3, 3],
depth_multiplier=1,
stride=2,
scope='Conv2d_12_pointwise')
return slim.separable_conv2d(
net,
depth(conv_depth), [3, 3],
depth_multiplier=1,
stride=1,
scope='Conv2d_13_pointwise') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_mobilenet_v1_feature_extractor.py | faster_rcnn_mobilenet_v1_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets import mobilenet_v1
class SSDMobileNetV1PpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using MobilenetV1 PPN features."""
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=0,
num_layers=6,
image_features={
'image_features': image_features['Conv2d_11_pointwise']
})
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v1_ppn_feature_extractor.py | ssd_mobilenet_v1_ppn_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import variables_helper
try:
from nets.nasnet import pnasnet # pylint: disable=g-import-not-at-top
except: # pylint: disable=bare-except
pass
def pnasnet_large_arg_scope_for_detection(is_batch_norm_training=False):
"""Defines the default arg scope for the PNASNet Large for object detection.
This provides a small edit to switch batch norm training on and off.
Args:
is_batch_norm_training: Boolean indicating whether to train with batch norm.
Default is False.
Returns:
An `arg_scope` to use for the PNASNet Large Model.
"""
imagenet_scope = pnasnet.pnasnet_large_arg_scope()
with slim.arg_scope(imagenet_scope):
with slim.arg_scope([slim.batch_norm],
is_training=is_batch_norm_training) as sc:
return sc
class SSDPNASNetFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using PNASNet features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False):
"""PNASNet Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
use_depthwise: Whether to use depthwise convolutions.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDPNASNetFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
num_layers=num_layers,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
feature_map_layout = {
'from_layer': ['Cell_7', 'Cell_11', '', '', '', ''][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(
pnasnet_large_arg_scope_for_detection(
is_batch_norm_training=self._is_training)):
with slim.arg_scope([slim.conv2d, slim.batch_norm, slim.separable_conv2d],
reuse=self._reuse_weights):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = pnasnet.build_pnasnet_large(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
num_classes=None,
is_training=self._is_training,
final_endpoint='Cell_11')
with tf.variable_scope('SSD_feature_maps', reuse=self._reuse_weights):
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values())
def restore_from_classification_checkpoint_fn(self, feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Note that this overrides the default implementation in
ssd_meta_arch.SSDFeatureExtractor which does not work for PNASNet
checkpoints.
Args:
feature_extractor_scope: A scope name for the first stage feature
extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
if variable.op.name.startswith(feature_extractor_scope):
var_name = variable.op.name.replace(feature_extractor_scope + '/', '')
var_name += '/ExponentialMovingAverage'
variables_to_restore[var_name] = variable
return variables_to_restore | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_pnasnet_feature_extractor.py | ssd_pnasnet_feature_extractor.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.models.keras_models import resnet_v1
from object_detection.utils import model_util
_RESNET_MODEL_CONV4_LAST_LAYERS = {
'resnet_v1_50': 'conv4_block6_out',
'resnet_v1_101': 'conv4_block23_out',
'resnet_v1_152': 'conv4_block36_out',
}
class FasterRCNNResnetKerasFeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor):
"""Faster R-CNN with Resnet feature extractor implementation."""
def __init__(self,
is_training,
resnet_v1_base_model,
resnet_v1_base_model_name,
first_stage_features_stride=16,
batch_norm_trainable=False,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
resnet_v1_base_model: base resnet v1 network to use. One of
the resnet_v1.resnet_v1_{50,101,152} models.
resnet_v1_base_model_name: model name under which to construct resnet v1.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 16.')
super(FasterRCNNResnetKerasFeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
weight_decay)
self.classification_backbone = None
self._variable_dict = {}
self._resnet_v1_base_model = resnet_v1_base_model
self._resnet_v1_base_model_name = resnet_v1_base_model_name
def preprocess(self, resized_inputs):
"""Faster R-CNN Resnet V1 preprocessing.
VGG style channel mean subtraction as described here:
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md
Note that if the number of channels is not equal to 3, the mean subtraction
will be skipped and the original resized_inputs will be returned.
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
"""
if resized_inputs.shape.as_list()[3] == 3:
channel_means = [123.68, 116.779, 103.939]
return resized_inputs - [[channel_means]]
else:
return resized_inputs
def get_proposal_feature_extractor_model(self, name=None):
"""Returns a model that extracts first stage RPN features.
Extracts features using the first half of the Resnet v1 network.
Args:
name: A scope name to construct all variables within.
Returns:
A Keras model that takes preprocessed_inputs:
A [batch, height, width, channels] float32 tensor
representing a batch of images.
And returns rpn_feature_map:
A tensor with shape [batch, height, width, depth]
"""
if not self.classification_backbone:
self.classification_backbone = self._resnet_v1_base_model(
batchnorm_training=self._train_batch_norm,
conv_hyperparams=None,
weight_decay=self._weight_decay,
classes=None,
weights=None,
include_top=False
)
with tf.name_scope(name):
with tf.name_scope('ResnetV1'):
conv4_last_layer = _RESNET_MODEL_CONV4_LAST_LAYERS[
self._resnet_v1_base_model_name]
proposal_features = self.classification_backbone.get_layer(
name=conv4_last_layer).output
keras_model = tf.keras.Model(
inputs=self.classification_backbone.inputs,
outputs=proposal_features)
for variable in keras_model.variables:
self._variable_dict[variable.name[:-2]] = variable
return keras_model
def get_box_classifier_feature_extractor_model(self, name=None):
"""Returns a model that extracts second stage box classifier features.
This function reconstructs the "second half" of the ResNet v1
network after the part defined in `get_proposal_feature_extractor_model`.
Args:
name: A scope name to construct all variables within.
Returns:
A Keras model that takes proposal_feature_maps:
A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
And returns proposal_classifier_features:
A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
if not self.classification_backbone:
self.classification_backbone = self._resnet_v1_base_model(
batchnorm_training=self._train_batch_norm,
conv_hyperparams=None,
weight_decay=self._weight_decay,
classes=None,
weights=None,
include_top=False
)
with tf.name_scope(name):
with tf.name_scope('ResnetV1'):
conv4_last_layer = _RESNET_MODEL_CONV4_LAST_LAYERS[
self._resnet_v1_base_model_name]
proposal_feature_maps = self.classification_backbone.get_layer(
name=conv4_last_layer).output
proposal_classifier_features = self.classification_backbone.get_layer(
name='conv5_block3_out').output
keras_model = model_util.extract_submodel(
model=self.classification_backbone,
inputs=proposal_feature_maps,
outputs=proposal_classifier_features)
for variable in keras_model.variables:
self._variable_dict[variable.name[:-2]] = variable
return keras_model
class FasterRCNNResnet50KerasFeatureExtractor(
FasterRCNNResnetKerasFeatureExtractor):
"""Faster R-CNN with Resnet50 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride=16,
batch_norm_trainable=False,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
weight_decay: See base class.
"""
super(FasterRCNNResnet50KerasFeatureExtractor, self).__init__(
is_training=is_training,
resnet_v1_base_model=resnet_v1.resnet_v1_50,
resnet_v1_base_model_name='resnet_v1_50',
first_stage_features_stride=first_stage_features_stride,
batch_norm_trainable=batch_norm_trainable,
weight_decay=weight_decay)
class FasterRCNNResnet101KerasFeatureExtractor(
FasterRCNNResnetKerasFeatureExtractor):
"""Faster R-CNN with Resnet101 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride=16,
batch_norm_trainable=False,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
weight_decay: See base class.
"""
super(FasterRCNNResnet101KerasFeatureExtractor, self).__init__(
is_training=is_training,
resnet_v1_base_model=resnet_v1.resnet_v1_101,
resnet_v1_base_model_name='resnet_v1_101',
first_stage_features_stride=first_stage_features_stride,
batch_norm_trainable=batch_norm_trainable,
weight_decay=weight_decay)
class FasterRCNNResnet152KerasFeatureExtractor(
FasterRCNNResnetKerasFeatureExtractor):
"""Faster R-CNN with Resnet152 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride=16,
batch_norm_trainable=False,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
weight_decay: See base class.
"""
super(FasterRCNNResnet152KerasFeatureExtractor, self).__init__(
is_training=is_training,
resnet_v1_base_model=resnet_v1.resnet_v1_152,
resnet_v1_base_model_name='resnet_v1_152',
first_stage_features_stride=first_stage_features_stride,
batch_norm_trainable=batch_norm_trainable,
weight_decay=weight_decay) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_resnet_keras_feature_extractor.py | faster_rcnn_resnet_keras_feature_extractor.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.models import feature_map_generators
from object_detection.models.keras_models import resnet_v1
from object_detection.utils import ops
_RESNET_MODEL_OUTPUT_LAYERS = {
'resnet_v1_50': ['conv2_block3_out', 'conv3_block4_out',
'conv4_block6_out', 'conv5_block3_out'],
'resnet_v1_101': ['conv2_block3_out', 'conv3_block4_out',
'conv4_block23_out', 'conv5_block3_out'],
'resnet_v1_152': ['conv2_block3_out', 'conv3_block8_out',
'conv4_block36_out', 'conv5_block3_out'],
}
class _ResnetFPN(tf.keras.layers.Layer):
"""Construct Resnet FPN layer."""
def __init__(self,
backbone_classifier,
fpn_features_generator,
coarse_feature_layers,
pad_to_multiple,
fpn_min_level,
resnet_block_names,
base_fpn_max_level):
"""Constructor.
Args:
backbone_classifier: Classifier backbone. Should be one of 'resnet_v1_50',
'resnet_v1_101', 'resnet_v1_152'.
fpn_features_generator: KerasFpnTopDownFeatureMaps that accepts a
dictionary of features and returns a ordered dictionary of fpn features.
coarse_feature_layers: Coarse feature layers for fpn.
pad_to_multiple: An integer multiple to pad input image.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to Resnet v1 layers.
resnet_block_names: a list of block names of resnet.
base_fpn_max_level: maximum level of fpn without coarse feature layers.
"""
super(_ResnetFPN, self).__init__()
self.classification_backbone = backbone_classifier
self.fpn_features_generator = fpn_features_generator
self.coarse_feature_layers = coarse_feature_layers
self.pad_to_multiple = pad_to_multiple
self._fpn_min_level = fpn_min_level
self._resnet_block_names = resnet_block_names
self._base_fpn_max_level = base_fpn_max_level
def call(self, inputs):
"""Create internal Resnet FPN layer.
Args:
inputs: A [batch, height_out, width_out, channels] float32 tensor
representing a batch of images.
Returns:
feature_maps: A list of tensors with shape [batch, height, width, depth]
represent extracted features.
"""
inputs = ops.pad_to_multiple(inputs, self.pad_to_multiple)
backbone_outputs = self.classification_backbone(inputs)
feature_block_list = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_block_list.append('block{}'.format(level - 1))
feature_block_map = dict(
list(zip(self._resnet_block_names, backbone_outputs)))
fpn_input_image_features = [
(feature_block, feature_block_map[feature_block])
for feature_block in feature_block_list]
fpn_features = self.fpn_features_generator(fpn_input_image_features)
feature_maps = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_maps.append(fpn_features['top_down_block{}'.format(level-1)])
last_feature_map = fpn_features['top_down_block{}'.format(
self._base_fpn_max_level - 1)]
for coarse_feature_layers in self.coarse_feature_layers:
for layer in coarse_feature_layers:
last_feature_map = layer(last_feature_map)
feature_maps.append(last_feature_map)
return feature_maps
class FasterRCNNResnetV1FpnKerasFeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor):
"""Faster RCNN Feature Extractor using Keras-based Resnet V1 FPN features."""
def __init__(self,
is_training,
resnet_v1_base_model,
resnet_v1_base_model_name,
first_stage_features_stride,
conv_hyperparams,
batch_norm_trainable=True,
pad_to_multiple=32,
weight_decay=0.0,
fpn_min_level=2,
fpn_max_level=6,
additional_layer_depth=256,
override_base_feature_extractor_hyperparams=False):
"""Constructor.
Args:
is_training: See base class.
resnet_v1_base_model: base resnet v1 network to use. One of
the resnet_v1.resnet_v1_{50,101,152} models.
resnet_v1_base_model_name: model name under which to construct resnet v1.
first_stage_features_stride: See base class.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
batch_norm_trainable: See base class.
pad_to_multiple: An integer multiple to pad input image.
weight_decay: See base class.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to Resnet v1 layers.
fpn_max_level: the smallest resolution feature map to construct or use in
FPN. FPN constructions uses features maps starting from fpn_min_level
upto the fpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of fpn
levels.
additional_layer_depth: additional feature map layer channel depth.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 8 and first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 8 or 16.')
super(FasterRCNNResnetV1FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
first_stage_features_stride=first_stage_features_stride,
batch_norm_trainable=batch_norm_trainable,
weight_decay=weight_decay)
self._resnet_v1_base_model = resnet_v1_base_model
self._resnet_v1_base_model_name = resnet_v1_base_model_name
self._conv_hyperparams = conv_hyperparams
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth
self._freeze_batchnorm = (not batch_norm_trainable)
self._pad_to_multiple = pad_to_multiple
self._override_base_feature_extractor_hyperparams = \
override_base_feature_extractor_hyperparams
self._resnet_block_names = ['block1', 'block2', 'block3', 'block4']
self.classification_backbone = None
self._fpn_features_generator = None
self._coarse_feature_layers = []
def preprocess(self, resized_inputs):
"""Faster R-CNN Resnet V1 preprocessing.
VGG style channel mean subtraction as described here:
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md
Note that if the number of channels is not equal to 3, the mean subtraction
will be skipped and the original resized_inputs will be returned.
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
"""
if resized_inputs.shape.as_list()[3] == 3:
channel_means = [123.68, 116.779, 103.939]
return resized_inputs - [[channel_means]]
else:
return resized_inputs
def get_proposal_feature_extractor_model(self, name=None):
"""Returns a model that extracts first stage RPN features.
Extracts features using the Resnet v1 FPN network.
Args:
name: A scope name to construct all variables within.
Returns:
A Keras model that takes preprocessed_inputs:
A [batch, height, width, channels] float32 tensor
representing a batch of images.
And returns rpn_feature_map:
A list of tensors with shape [batch, height, width, depth]
"""
with tf.name_scope(name):
with tf.name_scope('ResnetV1FPN'):
full_resnet_v1_model = self._resnet_v1_base_model(
batchnorm_training=self._train_batch_norm,
conv_hyperparams=(self._conv_hyperparams if
self._override_base_feature_extractor_hyperparams
else None),
classes=None,
weights=None,
include_top=False)
output_layers = _RESNET_MODEL_OUTPUT_LAYERS[
self._resnet_v1_base_model_name]
outputs = [full_resnet_v1_model.get_layer(output_layer_name).output
for output_layer_name in output_layers]
self.classification_backbone = tf.keras.Model(
inputs=full_resnet_v1_model.inputs,
outputs=outputs)
self._base_fpn_max_level = min(self._fpn_max_level, 5)
self._num_levels = self._base_fpn_max_level + 1 - self._fpn_min_level
self._fpn_features_generator = (
feature_map_generators.KerasFpnTopDownFeatureMaps(
num_levels=self._num_levels,
depth=self._additional_layer_depth,
is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm,
name='FeatureMaps'))
# Construct coarse feature layers
for i in range(self._base_fpn_max_level, self._fpn_max_level):
layers = []
layer_name = 'bottom_up_block{}'.format(i)
layers.append(
tf.keras.layers.Conv2D(
self._additional_layer_depth,
[3, 3],
padding='SAME',
strides=2,
name=layer_name + '_conv',
**self._conv_hyperparams.params()))
layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name=layer_name + '_batchnorm'))
layers.append(
self._conv_hyperparams.build_activation_layer(
name=layer_name))
self._coarse_feature_layers.append(layers)
feature_extractor_model = _ResnetFPN(self.classification_backbone,
self._fpn_features_generator,
self._coarse_feature_layers,
self._pad_to_multiple,
self._fpn_min_level,
self._resnet_block_names,
self._base_fpn_max_level)
return feature_extractor_model
def get_box_classifier_feature_extractor_model(self, name=None):
"""Returns a model that extracts second stage box classifier features.
Construct two fully connected layer to extract the box classifier features.
Args:
name: A scope name to construct all variables within.
Returns:
A Keras model that takes proposal_feature_maps:
A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
And returns proposal_classifier_features:
A 4-D float tensor with shape
[batch_size * self.max_num_proposals, 1, 1, 1024]
representing box classifier features for each proposal.
"""
with tf.name_scope(name):
with tf.name_scope('ResnetV1FPN'):
feature_extractor_model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(units=1024, activation='relu'),
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm)),
tf.keras.layers.Dense(units=1024, activation='relu'),
tf.keras.layers.Reshape((1, 1, 1024))
])
return feature_extractor_model
class FasterRCNNResnet50FpnKerasFeatureExtractor(
FasterRCNNResnetV1FpnKerasFeatureExtractor):
"""Faster RCNN with Resnet50 FPN feature extractor."""
def __init__(self,
is_training,
first_stage_features_stride=16,
batch_norm_trainable=True,
conv_hyperparams=None,
weight_decay=0.0,
fpn_min_level=2,
fpn_max_level=6,
additional_layer_depth=256,
override_base_feature_extractor_hyperparams=False):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
conv_hyperparams: See base class.
weight_decay: See base class.
fpn_min_level: See base class.
fpn_max_level: See base class.
additional_layer_depth: See base class.
override_base_feature_extractor_hyperparams: See base class.
"""
super(FasterRCNNResnet50FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
first_stage_features_stride=first_stage_features_stride,
conv_hyperparams=conv_hyperparams,
resnet_v1_base_model=resnet_v1.resnet_v1_50,
resnet_v1_base_model_name='resnet_v1_50',
batch_norm_trainable=batch_norm_trainable,
weight_decay=weight_decay,
fpn_min_level=fpn_min_level,
fpn_max_level=fpn_max_level,
additional_layer_depth=additional_layer_depth,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams
)
class FasterRCNNResnet101FpnKerasFeatureExtractor(
FasterRCNNResnetV1FpnKerasFeatureExtractor):
"""Faster RCNN with Resnet101 FPN feature extractor."""
def __init__(self,
is_training,
first_stage_features_stride=16,
batch_norm_trainable=True,
conv_hyperparams=None,
weight_decay=0.0,
fpn_min_level=2,
fpn_max_level=6,
additional_layer_depth=256,
override_base_feature_extractor_hyperparams=False):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
conv_hyperparams: See base class.
weight_decay: See base class.
fpn_min_level: See base class.
fpn_max_level: See base class.
additional_layer_depth: See base class.
override_base_feature_extractor_hyperparams: See base class.
"""
super(FasterRCNNResnet101FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
first_stage_features_stride=first_stage_features_stride,
conv_hyperparams=conv_hyperparams,
resnet_v1_base_model=resnet_v1.resnet_v1_101,
resnet_v1_base_model_name='resnet_v1_101',
batch_norm_trainable=batch_norm_trainable,
weight_decay=weight_decay,
fpn_min_level=fpn_min_level,
fpn_max_level=fpn_max_level,
additional_layer_depth=additional_layer_depth,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
class FasterRCNNResnet152FpnKerasFeatureExtractor(
FasterRCNNResnetV1FpnKerasFeatureExtractor):
"""Faster RCNN with Resnet152 FPN feature extractor."""
def __init__(self,
is_training,
first_stage_features_stride=16,
batch_norm_trainable=True,
conv_hyperparams=None,
weight_decay=0.0,
fpn_min_level=2,
fpn_max_level=6,
additional_layer_depth=256,
override_base_feature_extractor_hyperparams=False):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
conv_hyperparams: See base class.
weight_decay: See base class.
fpn_min_level: See base class.
fpn_max_level: See base class.
additional_layer_depth: See base class.
override_base_feature_extractor_hyperparams: See base class.
"""
super(FasterRCNNResnet152FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
first_stage_features_stride=first_stage_features_stride,
conv_hyperparams=conv_hyperparams,
resnet_v1_base_model=resnet_v1.resnet_v1_152,
resnet_v1_base_model_name='resnet_v1_152',
batch_norm_trainable=batch_norm_trainable,
weight_decay=weight_decay,
fpn_min_level=fpn_min_level,
fpn_max_level=fpn_max_level,
additional_layer_depth=additional_layer_depth,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_resnet_v1_fpn_keras_feature_extractor.py | faster_rcnn_resnet_v1_fpn_keras_feature_extractor.py |
"""SSDFeatureExtractor for MobileDet features."""
import functools
import numpy as np
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import ops
from object_detection.utils import shape_utils
BACKBONE_WEIGHT_DECAY = 4e-5
def _scale_filters(filters, multiplier, base=8):
"""Scale the filters accordingly to (multiplier, base)."""
round_half_up = int(int(filters) * multiplier / base + 0.5)
result = int(round_half_up * base)
return max(result, base)
def _swish6(h):
with tf.name_scope('swish6'):
return h * tf.nn.relu6(h + np.float32(3)) * np.float32(1. / 6.)
def _conv(h, filters, kernel_size, strides=1,
normalizer_fn=slim.batch_norm, activation_fn=tf.nn.relu6):
if activation_fn is None:
raise ValueError('Activation function cannot be None. Use tf.identity '
'instead to better support quantized training.')
return slim.conv2d(
h,
filters,
kernel_size,
stride=strides,
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
weights_initializer=tf.initializers.he_normal(),
weights_regularizer=slim.l2_regularizer(BACKBONE_WEIGHT_DECAY),
padding='SAME')
def _separable_conv(
h, filters, kernel_size, strides=1, activation_fn=tf.nn.relu6):
"""Separable convolution layer."""
if activation_fn is None:
raise ValueError('Activation function cannot be None. Use tf.identity '
'instead to better support quantized training.')
# Depthwise variant of He initialization derived under the principle proposed
# in the original paper. Note the original He normalization was designed for
# full convolutions and calling tf.initializers.he_normal() can over-estimate
# the fan-in of a depthwise kernel by orders of magnitude.
stddev = (2.0 / kernel_size**2)**0.5 / .87962566103423978
depthwise_initializer = tf.initializers.truncated_normal(stddev=stddev)
return slim.separable_conv2d(
h,
filters,
kernel_size,
stride=strides,
activation_fn=activation_fn,
normalizer_fn=slim.batch_norm,
weights_initializer=depthwise_initializer,
pointwise_initializer=tf.initializers.he_normal(),
weights_regularizer=slim.l2_regularizer(BACKBONE_WEIGHT_DECAY),
padding='SAME')
def _squeeze_and_excite(h, hidden_dim, activation_fn=tf.nn.relu6):
with tf.variable_scope(None, default_name='SqueezeExcite'):
height, width = h.shape[1], h.shape[2]
u = slim.avg_pool2d(h, [height, width], stride=1, padding='VALID')
u = _conv(u, hidden_dim, 1,
normalizer_fn=None, activation_fn=activation_fn)
u = _conv(u, h.shape[-1], 1,
normalizer_fn=None, activation_fn=tf.nn.sigmoid)
return u * h
def _inverted_bottleneck_no_expansion(
h, filters, activation_fn=tf.nn.relu6,
kernel_size=3, strides=1, use_se=False):
"""Inverted bottleneck layer without the first 1x1 expansion convolution."""
with tf.variable_scope(None, default_name='IBNNoExpansion'):
# Setting filters to None will make _separable_conv a depthwise conv.
h = _separable_conv(
h, None, kernel_size, strides=strides, activation_fn=activation_fn)
if use_se:
hidden_dim = _scale_filters(h.shape[-1], 0.25)
h = _squeeze_and_excite(h, hidden_dim, activation_fn=activation_fn)
h = _conv(h, filters, 1, activation_fn=tf.identity)
return h
def _inverted_bottleneck(
h, filters, activation_fn=tf.nn.relu6,
kernel_size=3, expansion=8, strides=1, use_se=False, residual=True):
"""Inverted bottleneck layer."""
with tf.variable_scope(None, default_name='IBN'):
shortcut = h
expanded_filters = int(h.shape[-1]) * expansion
if expansion <= 1:
raise ValueError('Expansion factor must be greater than 1.')
h = _conv(h, expanded_filters, 1, activation_fn=activation_fn)
# Setting filters to None will make _separable_conv a depthwise conv.
h = _separable_conv(h, None, kernel_size, strides=strides,
activation_fn=activation_fn)
if use_se:
hidden_dim = _scale_filters(expanded_filters, 0.25)
h = _squeeze_and_excite(h, hidden_dim, activation_fn=activation_fn)
h = _conv(h, filters, 1, activation_fn=tf.identity)
if residual:
h = h + shortcut
return h
def _fused_conv(
h, filters, activation_fn=tf.nn.relu6,
kernel_size=3, expansion=8, strides=1, use_se=False, residual=True):
"""Fused convolution layer."""
with tf.variable_scope(None, default_name='FusedConv'):
shortcut = h
expanded_filters = int(h.shape[-1]) * expansion
if expansion <= 1:
raise ValueError('Expansion factor must be greater than 1.')
h = _conv(h, expanded_filters, kernel_size, strides=strides,
activation_fn=activation_fn)
if use_se:
hidden_dim = _scale_filters(expanded_filters, 0.25)
h = _squeeze_and_excite(h, hidden_dim, activation_fn=activation_fn)
h = _conv(h, filters, 1, activation_fn=tf.identity)
if residual:
h = h + shortcut
return h
def _tucker_conv(
h, filters, activation_fn=tf.nn.relu6,
kernel_size=3, input_rank_ratio=0.25, output_rank_ratio=0.25,
strides=1, residual=True):
"""Tucker convolution layer (generalized bottleneck)."""
with tf.variable_scope(None, default_name='TuckerConv'):
shortcut = h
input_rank = _scale_filters(h.shape[-1], input_rank_ratio)
h = _conv(h, input_rank, 1, activation_fn=activation_fn)
output_rank = _scale_filters(filters, output_rank_ratio)
h = _conv(h, output_rank, kernel_size, strides=strides,
activation_fn=activation_fn)
h = _conv(h, filters, 1, activation_fn=tf.identity)
if residual:
h = h + shortcut
return h
def mobiledet_cpu_backbone(h, multiplier=1.0):
"""Build a MobileDet CPU backbone."""
def _scale(filters):
return _scale_filters(filters, multiplier)
ibn = functools.partial(
_inverted_bottleneck, use_se=True, activation_fn=_swish6)
endpoints = {}
h = _conv(h, _scale(16), 3, strides=2, activation_fn=_swish6)
h = _inverted_bottleneck_no_expansion(
h, _scale(8), use_se=True, activation_fn=_swish6)
endpoints['C1'] = h
h = ibn(h, _scale(16), expansion=4, strides=2, residual=False)
endpoints['C2'] = h
h = ibn(h, _scale(32), expansion=8, strides=2, residual=False)
h = ibn(h, _scale(32), expansion=4)
h = ibn(h, _scale(32), expansion=4)
h = ibn(h, _scale(32), expansion=4)
endpoints['C3'] = h
h = ibn(h, _scale(72), kernel_size=5, expansion=8, strides=2, residual=False)
h = ibn(h, _scale(72), expansion=8)
h = ibn(h, _scale(72), kernel_size=5, expansion=4)
h = ibn(h, _scale(72), expansion=4)
h = ibn(h, _scale(72), expansion=8, residual=False)
h = ibn(h, _scale(72), expansion=8)
h = ibn(h, _scale(72), expansion=8)
h = ibn(h, _scale(72), expansion=8)
endpoints['C4'] = h
h = ibn(h, _scale(104), kernel_size=5, expansion=8, strides=2, residual=False)
h = ibn(h, _scale(104), kernel_size=5, expansion=4)
h = ibn(h, _scale(104), kernel_size=5, expansion=4)
h = ibn(h, _scale(104), expansion=4)
h = ibn(h, _scale(144), expansion=8, residual=False)
endpoints['C5'] = h
return endpoints
def mobiledet_dsp_backbone(h, multiplier=1.0):
"""Build a MobileDet DSP backbone."""
def _scale(filters):
return _scale_filters(filters, multiplier)
ibn = functools.partial(_inverted_bottleneck, activation_fn=tf.nn.relu6)
fused = functools.partial(_fused_conv, activation_fn=tf.nn.relu6)
tucker = functools.partial(_tucker_conv, activation_fn=tf.nn.relu6)
endpoints = {}
h = _conv(h, _scale(32), 3, strides=2, activation_fn=tf.nn.relu6)
h = _inverted_bottleneck_no_expansion(
h, _scale(24), activation_fn=tf.nn.relu6)
endpoints['C1'] = h
h = fused(h, _scale(32), expansion=4, strides=2, residual=False)
h = fused(h, _scale(32), expansion=4)
h = ibn(h, _scale(32), expansion=4)
h = tucker(h, _scale(32), input_rank_ratio=0.25, output_rank_ratio=0.75)
endpoints['C2'] = h
h = fused(h, _scale(64), expansion=8, strides=2, residual=False)
h = ibn(h, _scale(64), expansion=4)
h = fused(h, _scale(64), expansion=4)
h = fused(h, _scale(64), expansion=4)
endpoints['C3'] = h
h = fused(h, _scale(120), expansion=8, strides=2, residual=False)
h = ibn(h, _scale(120), expansion=4)
h = ibn(h, _scale(120), expansion=8)
h = ibn(h, _scale(120), expansion=8)
h = fused(h, _scale(144), expansion=8, residual=False)
h = ibn(h, _scale(144), expansion=8)
h = ibn(h, _scale(144), expansion=8)
h = ibn(h, _scale(144), expansion=8)
endpoints['C4'] = h
h = ibn(h, _scale(160), expansion=4, strides=2, residual=False)
h = ibn(h, _scale(160), expansion=4)
h = fused(h, _scale(160), expansion=4)
h = tucker(h, _scale(160), input_rank_ratio=0.75, output_rank_ratio=0.75)
h = ibn(h, _scale(240), expansion=8, residual=False)
endpoints['C5'] = h
return endpoints
def mobiledet_edgetpu_backbone(h, multiplier=1.0):
"""Build a MobileDet EdgeTPU backbone."""
def _scale(filters):
return _scale_filters(filters, multiplier)
ibn = functools.partial(_inverted_bottleneck, activation_fn=tf.nn.relu6)
fused = functools.partial(_fused_conv, activation_fn=tf.nn.relu6)
tucker = functools.partial(_tucker_conv, activation_fn=tf.nn.relu6)
endpoints = {}
h = _conv(h, _scale(32), 3, strides=2, activation_fn=tf.nn.relu6)
h = tucker(h, _scale(16),
input_rank_ratio=0.25, output_rank_ratio=0.75, residual=False)
endpoints['C1'] = h
h = fused(h, _scale(16), expansion=8, strides=2, residual=False)
h = fused(h, _scale(16), expansion=4)
h = fused(h, _scale(16), expansion=8)
h = fused(h, _scale(16), expansion=4)
endpoints['C2'] = h
h = fused(h, _scale(40), expansion=8, kernel_size=5, strides=2,
residual=False)
h = fused(h, _scale(40), expansion=4)
h = fused(h, _scale(40), expansion=4)
h = fused(h, _scale(40), expansion=4)
endpoints['C3'] = h
h = ibn(h, _scale(72), expansion=8, strides=2, residual=False)
h = ibn(h, _scale(72), expansion=8)
h = fused(h, _scale(72), expansion=4)
h = fused(h, _scale(72), expansion=4)
h = ibn(h, _scale(96), expansion=8, kernel_size=5, residual=False)
h = ibn(h, _scale(96), expansion=8, kernel_size=5)
h = ibn(h, _scale(96), expansion=8)
h = ibn(h, _scale(96), expansion=8)
endpoints['C4'] = h
h = ibn(h, _scale(120), expansion=8, kernel_size=5, strides=2, residual=False)
h = ibn(h, _scale(120), expansion=8)
h = ibn(h, _scale(120), expansion=4, kernel_size=5)
h = ibn(h, _scale(120), expansion=8)
h = ibn(h, _scale(384), expansion=8, kernel_size=5, residual=False)
endpoints['C5'] = h
return endpoints
def mobiledet_gpu_backbone(h, multiplier=1.0):
"""Build a MobileDet GPU backbone."""
def _scale(filters):
return _scale_filters(filters, multiplier)
ibn = functools.partial(_inverted_bottleneck, activation_fn=tf.nn.relu6)
fused = functools.partial(_fused_conv, activation_fn=tf.nn.relu6)
tucker = functools.partial(_tucker_conv, activation_fn=tf.nn.relu6)
endpoints = {}
# block 0
h = _conv(h, _scale(32), 3, strides=2, activation_fn=tf.nn.relu6)
# block 1
h = tucker(
h,
_scale(16),
input_rank_ratio=0.25,
output_rank_ratio=0.25,
residual=False)
endpoints['C1'] = h
# block 2
h = fused(h, _scale(32), expansion=8, strides=2, residual=False)
h = tucker(h, _scale(32), input_rank_ratio=0.25, output_rank_ratio=0.25)
h = tucker(h, _scale(32), input_rank_ratio=0.25, output_rank_ratio=0.25)
h = tucker(h, _scale(32), input_rank_ratio=0.25, output_rank_ratio=0.25)
endpoints['C2'] = h
# block 3
h = fused(
h, _scale(64), expansion=8, kernel_size=3, strides=2, residual=False)
h = fused(h, _scale(64), expansion=8)
h = fused(h, _scale(64), expansion=8)
h = fused(h, _scale(64), expansion=4)
endpoints['C3'] = h
# block 4
h = fused(
h, _scale(128), expansion=8, kernel_size=3, strides=2, residual=False)
h = fused(h, _scale(128), expansion=4)
h = fused(h, _scale(128), expansion=4)
h = fused(h, _scale(128), expansion=4)
# block 5
h = fused(
h, _scale(128), expansion=8, kernel_size=3, strides=1, residual=False)
h = fused(h, _scale(128), expansion=8)
h = fused(h, _scale(128), expansion=8)
h = fused(h, _scale(128), expansion=8)
endpoints['C4'] = h
# block 6
h = fused(
h, _scale(128), expansion=4, kernel_size=3, strides=2, residual=False)
h = fused(h, _scale(128), expansion=4)
h = fused(h, _scale(128), expansion=4)
h = fused(h, _scale(128), expansion=4)
# block 7
h = ibn(h, _scale(384), expansion=8, kernel_size=3, strides=1, residual=False)
endpoints['C5'] = h
return endpoints
class SSDMobileDetFeatureExtractorBase(ssd_meta_arch.SSDFeatureExtractor):
"""Base class of SSD feature extractor using MobileDet features."""
def __init__(self,
backbone_fn,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobileDet'):
"""MobileDet Feature Extractor for SSD Models.
Reference:
https://arxiv.org/abs/2004.14525
Args:
backbone_fn: function to construct the MobileDet backbone.
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: Integer, minimum feature extractor depth (number of filters).
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the base
feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features.
use_depthwise: Whether to use depthwise convolutions in the SSD head.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
scope_name: scope name (string) of network variables.
"""
if use_explicit_padding:
raise NotImplementedError(
'Explicit padding is not yet supported in MobileDet backbones.')
super(SSDMobileDetFeatureExtractorBase, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams
)
self._backbone_fn = backbone_fn
self._scope_name = scope_name
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1]. The preprocessing assumes an input
value range of [0, 255].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
padded_inputs = ops.pad_to_multiple(
preprocessed_inputs, self._pad_to_multiple)
feature_map_layout = {
'from_layer': ['C4', 'C5', '', '', '', ''],
# Do not specify the layer depths (number of filters) for C4 and C5, as
# their values are determined based on the backbone.
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope(self._scope_name, reuse=self._reuse_weights):
with slim.arg_scope([slim.batch_norm],
is_training=self._is_training,
epsilon=0.01, decay=0.99, center=True, scale=True):
endpoints = self._backbone_fn(
padded_inputs,
multiplier=self._depth_multiplier)
image_features = {'C4': endpoints['C4'], 'C5': endpoints['C5']}
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values())
class SSDMobileDetCPUFeatureExtractor(SSDMobileDetFeatureExtractorBase):
"""MobileDet-CPU feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobileDetCPU'):
super(SSDMobileDetCPUFeatureExtractor, self).__init__(
backbone_fn=mobiledet_cpu_backbone,
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams,
scope_name=scope_name)
class SSDMobileDetDSPFeatureExtractor(SSDMobileDetFeatureExtractorBase):
"""MobileDet-DSP feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobileDetDSP'):
super(SSDMobileDetDSPFeatureExtractor, self).__init__(
backbone_fn=mobiledet_dsp_backbone,
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams,
scope_name=scope_name)
class SSDMobileDetEdgeTPUFeatureExtractor(SSDMobileDetFeatureExtractorBase):
"""MobileDet-EdgeTPU feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobileDetEdgeTPU'):
super(SSDMobileDetEdgeTPUFeatureExtractor, self).__init__(
backbone_fn=mobiledet_edgetpu_backbone,
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams,
scope_name=scope_name)
class SSDMobileDetGPUFeatureExtractor(SSDMobileDetFeatureExtractorBase):
"""MobileDet-GPU feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobileDetGPU'):
super(SSDMobileDetGPUFeatureExtractor, self).__init__(
backbone_fn=mobiledet_gpu_backbone,
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams,
scope_name=scope_name) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobiledet_feature_extractor.py | ssd_mobiledet_feature_extractor.py |
"""SSD MobilenetV2 NAS-FPN Feature Extractor."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import functools
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets.mobilenet import mobilenet
from nets.mobilenet import mobilenet_v2
Block = collections.namedtuple(
'Block', ['inputs', 'output_level', 'kernel_size', 'expansion_size'])
_MNASFPN_CELL_CONFIG = [
Block(inputs=(1, 2), output_level=4, kernel_size=3, expansion_size=256),
Block(inputs=(0, 4), output_level=3, kernel_size=3, expansion_size=128),
Block(inputs=(5, 4), output_level=4, kernel_size=3, expansion_size=128),
Block(inputs=(4, 3), output_level=5, kernel_size=5, expansion_size=128),
Block(inputs=(4, 3), output_level=6, kernel_size=3, expansion_size=96),
]
MNASFPN_DEF = dict(
feature_levels=[3, 4, 5, 6],
spec=[_MNASFPN_CELL_CONFIG] * 4,
)
def _maybe_pad(feature, use_explicit_padding, kernel_size=3):
return ops.fixed_padding(feature,
kernel_size) if use_explicit_padding else feature
# Wrapper around mobilenet.depth_multiplier
def _apply_multiplier(d, multiplier, min_depth):
p = {'num_outputs': d}
mobilenet.depth_multiplier(
p, multiplier=multiplier, divisible_by=8, min_depth=min_depth)
return p['num_outputs']
def _apply_size_dependent_ordering(input_feature, feature_level, block_level,
expansion_size, use_explicit_padding,
use_native_resize_op):
"""Applies Size-Dependent-Ordering when resizing feature maps.
See https://arxiv.org/abs/1912.01106
Args:
input_feature: input feature map to be resized.
feature_level: the level of the input feature.
block_level: the desired output level for the block.
expansion_size: the expansion size for the block.
use_explicit_padding: Whether to use explicit padding.
use_native_resize_op: Whether to use native resize op.
Returns:
A transformed feature at the desired resolution and expansion size.
"""
padding = 'VALID' if use_explicit_padding else 'SAME'
if feature_level >= block_level: # Perform 1x1 then upsampling.
node = slim.conv2d(
input_feature,
expansion_size, [1, 1],
activation_fn=None,
normalizer_fn=slim.batch_norm,
padding=padding,
scope='Conv1x1')
if feature_level == block_level:
return node
scale = 2**(feature_level - block_level)
if use_native_resize_op:
input_shape = shape_utils.combined_static_and_dynamic_shape(node)
node = tf.image.resize_nearest_neighbor(
node, [input_shape[1] * scale, input_shape[2] * scale])
else:
node = ops.nearest_neighbor_upsampling(node, scale=scale)
else: # Perform downsampling then 1x1.
stride = 2**(block_level - feature_level)
node = slim.max_pool2d(
_maybe_pad(input_feature, use_explicit_padding), [3, 3],
stride=[stride, stride],
padding=padding,
scope='Downsample')
node = slim.conv2d(
node,
expansion_size, [1, 1],
activation_fn=None,
normalizer_fn=slim.batch_norm,
padding=padding,
scope='Conv1x1')
return node
def _mnasfpn_cell(feature_maps,
feature_levels,
cell_spec,
output_channel=48,
use_explicit_padding=False,
use_native_resize_op=False,
multiplier_func=None):
"""Create a MnasFPN cell.
Args:
feature_maps: input feature maps.
feature_levels: levels of the feature maps.
cell_spec: A list of Block configs.
output_channel: Number of features for the input, output and intermediate
feature maps.
use_explicit_padding: Whether to use explicit padding.
use_native_resize_op: Whether to use native resize op.
multiplier_func: Depth-multiplier function. If None, use identity function.
Returns:
A transformed list of feature maps at the same resolutions as the inputs.
"""
# This is the level where multipliers are realized.
if multiplier_func is None:
multiplier_func = lambda x: x
num_outputs = len(feature_maps)
cell_features = list(feature_maps)
cell_levels = list(feature_levels)
padding = 'VALID' if use_explicit_padding else 'SAME'
for bi, block in enumerate(cell_spec):
with tf.variable_scope('block_{}'.format(bi)):
block_level = block.output_level
intermediate_feature = None
for i, inp in enumerate(block.inputs):
with tf.variable_scope('input_{}'.format(i)):
input_level = cell_levels[inp]
node = _apply_size_dependent_ordering(
cell_features[inp], input_level, block_level,
multiplier_func(block.expansion_size), use_explicit_padding,
use_native_resize_op)
# Add features incrementally to avoid producing AddN, which doesn't
# play well with TfLite.
if intermediate_feature is None:
intermediate_feature = node
else:
intermediate_feature += node
node = tf.nn.relu6(intermediate_feature)
node = slim.separable_conv2d(
_maybe_pad(node, use_explicit_padding, block.kernel_size),
multiplier_func(output_channel),
block.kernel_size,
activation_fn=None,
normalizer_fn=slim.batch_norm,
padding=padding,
scope='SepConv')
cell_features.append(node)
cell_levels.append(block_level)
# Cell-wide residuals.
out_idx = range(len(cell_features) - num_outputs, len(cell_features))
for in_i, out_i in enumerate(out_idx):
if cell_features[out_i].shape.as_list(
) == cell_features[in_i].shape.as_list():
cell_features[out_i] += cell_features[in_i]
return cell_features[-num_outputs:]
def mnasfpn(feature_maps,
head_def,
output_channel=48,
use_explicit_padding=False,
use_native_resize_op=False,
multiplier_func=None):
"""Create the MnasFPN head given head_def."""
features = feature_maps
for ci, cell_spec in enumerate(head_def['spec']):
with tf.variable_scope('cell_{}'.format(ci)):
features = _mnasfpn_cell(features, head_def['feature_levels'], cell_spec,
output_channel, use_explicit_padding,
use_native_resize_op, multiplier_func)
return features
def training_scope(l2_weight_decay=1e-4, is_training=None):
"""Arg scope for training MnasFPN."""
with slim.arg_scope(
[slim.conv2d],
weights_initializer=tf.initializers.he_normal(),
weights_regularizer=slim.l2_regularizer(l2_weight_decay)), \
slim.arg_scope(
[slim.separable_conv2d],
weights_initializer=tf.initializers.truncated_normal(
stddev=0.536), # He_normal for 3x3 depthwise kernel.
weights_regularizer=slim.l2_regularizer(l2_weight_decay)), \
slim.arg_scope([slim.batch_norm],
is_training=is_training,
epsilon=0.01,
decay=0.99,
center=True,
scale=True) as s:
return s
class SSDMobileNetV2MnasFPNFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using MobilenetV2 MnasFPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
fpn_min_level=3,
fpn_max_level=6,
additional_layer_depth=48,
head_def=None,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False,
data_format='channels_last'):
"""SSD MnasFPN feature extractor based on Mobilenet v2 architecture.
See https://arxiv.org/abs/1912.01106
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the base
feature extractor.
fpn_min_level: the highest resolution feature map to use in MnasFPN.
Currently the only valid value is 3.
fpn_max_level: the smallest resolution feature map to construct or use in
MnasFPN. Currentl the only valid value is 6.
additional_layer_depth: additional feature map layer channel depth for
NAS-FPN.
head_def: A dictionary specifying the MnasFPN head architecture. Default
uses MNASFPN_DEF.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
use_native_resize_op: Whether to use native resize op. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
data_format: The ordering of the dimensions in the inputs, The valid
values are {'channels_first', 'channels_last').
"""
super(SSDMobileNetV2MnasFPNFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=(
override_base_feature_extractor_hyperparams))
if fpn_min_level != 3 or fpn_max_level != 6:
raise ValueError('Min and max levels of MnasFPN must be 3 and 6 for now.')
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._fpn_layer_depth = additional_layer_depth
self._head_def = head_def if head_def else MNASFPN_DEF
self._data_format = data_format
self._use_native_resize_op = use_native_resize_op
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _verify_config(self, inputs):
"""Verify that MnasFPN config and its inputs."""
num_inputs = len(inputs)
assert len(self._head_def['feature_levels']) == num_inputs
base_width = inputs[0].shape.as_list(
)[1] * 2**self._head_def['feature_levels'][0]
for i in range(1, num_inputs):
width = inputs[i].shape.as_list()[1]
level = self._head_def['feature_levels'][i]
expected_width = base_width // 2**level
if width != expected_width:
raise ValueError(
'Resolution of input {} does not match its level {}.'.format(
i, level))
for cell_spec in self._head_def['spec']:
# The last K nodes in a cell are the inputs to the next cell. Assert that
# their feature maps are at the right level.
for i in range(num_inputs):
if cell_spec[-num_inputs +
i].output_level != self._head_def['feature_levels'][i]:
raise ValueError(
'Mismatch between node level {} and desired output level {}.'
.format(cell_spec[-num_inputs + i].output_level,
self._head_def['feature_levels'][i]))
# Assert that each block only uses precending blocks.
for bi, block_spec in enumerate(cell_spec):
for inp in block_spec.inputs:
if inp >= bi + num_inputs:
raise ValueError(
'Block {} is trying to access uncreated block {}.'.format(
bi, inp))
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.99)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with slim.arg_scope(
training_scope(l2_weight_decay=4e-5,
is_training=self._is_training)):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_18',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
multiplier_func = functools.partial(
_apply_multiplier,
multiplier=self._depth_multiplier,
min_depth=self._min_depth)
with tf.variable_scope('MnasFPN', reuse=self._reuse_weights):
with slim.arg_scope(
training_scope(l2_weight_decay=1e-4, is_training=self._is_training)):
# Create C6 by downsampling C5.
c6 = slim.max_pool2d(
_maybe_pad(image_features['layer_18'], self._use_explicit_padding),
[3, 3],
stride=[2, 2],
padding='VALID' if self._use_explicit_padding else 'SAME',
scope='C6_downsample')
c6 = slim.conv2d(
c6,
multiplier_func(self._fpn_layer_depth),
[1, 1],
activation_fn=tf.identity,
normalizer_fn=slim.batch_norm,
weights_regularizer=None, # this 1x1 has no kernel regularizer.
padding='VALID',
scope='C6_Conv1x1')
image_features['C6'] = tf.identity(c6) # Needed for quantization.
for k in sorted(image_features.keys()):
tf.logging.error('{}: {}'.format(k, image_features[k]))
mnasfpn_inputs = [
image_features['layer_7'], # C3
image_features['layer_14'], # C4
image_features['layer_18'], # C5
image_features['C6'] # C6
]
self._verify_config(mnasfpn_inputs)
feature_maps = mnasfpn(
mnasfpn_inputs,
head_def=self._head_def,
output_channel=self._fpn_layer_depth,
use_explicit_padding=self._use_explicit_padding,
use_native_resize_op=self._use_native_resize_op,
multiplier_func=multiplier_func)
return feature_maps | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v2_mnasfpn_feature_extractor.py | ssd_mobilenet_v2_mnasfpn_feature_extractor.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.models.keras_models import mobilenet_v2 as mobilenetv2
class CenterNetMobileNetV2FeatureExtractor(
center_net_meta_arch.CenterNetFeatureExtractor):
"""The MobileNet V2 feature extractor for CenterNet."""
def __init__(self,
mobilenet_v2_net,
channel_means=(0., 0., 0.),
channel_stds=(1., 1., 1.),
bgr_ordering=False):
"""Intializes the feature extractor.
Args:
mobilenet_v2_net: The underlying mobilenet_v2 network to use.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super(CenterNetMobileNetV2FeatureExtractor, self).__init__(
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
self._network = mobilenet_v2_net
output = self._network(self._network.input)
# MobileNet by itself transforms a 224x224x3 volume into a 7x7x1280, which
# leads to a stride of 32. We perform upsampling to get it to a target
# stride of 4.
for num_filters in [256, 128, 64]:
# 1. We use a simple convolution instead of a deformable convolution
conv = tf.keras.layers.Conv2D(
filters=num_filters, kernel_size=1, strides=1, padding='same')
output = conv(output)
output = tf.keras.layers.BatchNormalization()(output)
output = tf.keras.layers.ReLU()(output)
# 2. We use the default initialization for the convolution layers
# instead of initializing it to do bilinear upsampling.
conv_transpose = tf.keras.layers.Conv2DTranspose(
filters=num_filters, kernel_size=3, strides=2, padding='same')
output = conv_transpose(output)
output = tf.keras.layers.BatchNormalization()(output)
output = tf.keras.layers.ReLU()(output)
self._network = tf.keras.models.Model(
inputs=self._network.input, outputs=output)
def preprocess(self, resized_inputs):
resized_inputs = super(CenterNetMobileNetV2FeatureExtractor,
self).preprocess(resized_inputs)
return tf.keras.applications.mobilenet_v2.preprocess_input(resized_inputs)
def load_feature_extractor_weights(self, path):
self._network.load_weights(path)
def call(self, inputs):
return [self._network(inputs)]
@property
def out_stride(self):
"""The stride in the output image of the network."""
return 4
@property
def num_feature_outputs(self):
"""The number of feature outputs returned by the feature extractor."""
return 1
@property
def classification_backbone(self):
return self._network
def mobilenet_v2(channel_means, channel_stds, bgr_ordering,
depth_multiplier=1.0, **kwargs):
"""The MobileNetV2 backbone for CenterNet."""
del kwargs
# We set 'is_training' to True for now.
network = mobilenetv2.mobilenet_v2(
batchnorm_training=True,
alpha=depth_multiplier,
include_top=False,
weights='imagenet' if depth_multiplier == 1.0 else None)
return CenterNetMobileNetV2FeatureExtractor(
network,
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/center_net_mobilenet_v2_feature_extractor.py | center_net_mobilenet_v2_feature_extractor.py |
"""SSDFeatureExtractor for MobileNetV3 features."""
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets.mobilenet import mobilenet
from nets.mobilenet import mobilenet_v3
class SSDMobileNetV3FeatureExtractorBase(ssd_meta_arch.SSDFeatureExtractor):
"""Base class of SSD feature extractor using MobilenetV3 features."""
def __init__(self,
conv_defs,
from_layer,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobilenetV3'):
"""MobileNetV3 Feature Extractor for SSD Models.
MobileNet v3. Details found in:
https://arxiv.org/abs/1905.02244
Args:
conv_defs: MobileNetV3 conv defs for backbone.
from_layer: A cell of two layer names (string) to connect to the 1st and
2nd inputs of the SSD head.
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the base
feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
scope_name: scope name (string) of network variables.
"""
super(SSDMobileNetV3FeatureExtractorBase, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams
)
self._conv_defs = conv_defs
self._from_layer = from_layer
self._scope_name = scope_name
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError if conv_defs is not provided or from_layer does not meet the
size requirement.
"""
if not self._conv_defs:
raise ValueError('Must provide backbone conv defs.')
if len(self._from_layer) != 2:
raise ValueError('SSD input feature names are not provided.')
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': [
self._from_layer[0], self._from_layer[1], '', '', '', ''
],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope(
self._scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v3.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = mobilenet_v3.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
conv_defs=self._conv_defs,
final_endpoint=self._from_layer[1],
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values())
class SSDMobileNetV3LargeFeatureExtractor(SSDMobileNetV3FeatureExtractorBase):
"""Mobilenet V3-Large feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobilenetV3'):
super(SSDMobileNetV3LargeFeatureExtractor, self).__init__(
conv_defs=mobilenet_v3.V3_LARGE_DETECTION,
from_layer=['layer_14/expansion_output', 'layer_17'],
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams,
scope_name=scope_name
)
class SSDMobileNetV3SmallFeatureExtractor(SSDMobileNetV3FeatureExtractorBase):
"""Mobilenet V3-Small feature extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False,
scope_name='MobilenetV3'):
super(SSDMobileNetV3SmallFeatureExtractor, self).__init__(
conv_defs=mobilenet_v3.V3_SMALL_DETECTION,
from_layer=['layer_10/expansion_output', 'layer_13'],
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=override_base_feature_extractor_hyperparams,
scope_name=scope_name
) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v3_feature_extractor.py | ssd_mobilenet_v3_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets.mobilenet import mobilenet
from nets.mobilenet import mobilenet_v2
class SSDMobileNetV2FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using MobilenetV2 features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False):
"""MobileNetV2 Feature Extractor for SSD Models.
Mobilenet v2 (experimental), designed by sandler@. More details can be found
in //knowledge/cerebra/brain/compression/mobilenet/mobilenet_experimental.py
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDMobileNetV2FeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
num_layers=num_layers,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v2_feature_extractor.py | ssd_mobilenet_v2_feature_extractor.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.models.keras_models import mobilenet_v1
from object_detection.utils import ops
from object_detection.utils import shape_utils
class SSDMobileNetV1KerasFeatureExtractor(
ssd_meta_arch.SSDKerasFeatureExtractor):
"""SSD Feature Extractor using Keras MobilenetV1 features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False,
name=None):
"""Keras MobileNetV1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: A string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDMobileNetV1KerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
num_layers=num_layers,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
self._feature_map_layout = {
'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '',
'', ''][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
self.classification_backbone = None
self._feature_map_generator = None
def build(self, input_shape):
full_mobilenet_v1 = mobilenet_v1.mobilenet_v1(
batchnorm_training=(self._is_training and not self._freeze_batchnorm),
conv_hyperparams=(self._conv_hyperparams
if self._override_base_feature_extractor_hyperparams
else None),
weights=None,
use_explicit_padding=self._use_explicit_padding,
alpha=self._depth_multiplier,
min_depth=self._min_depth,
include_top=False)
conv2d_11_pointwise = full_mobilenet_v1.get_layer(
name='conv_pw_11_relu').output
conv2d_13_pointwise = full_mobilenet_v1.get_layer(
name='conv_pw_13_relu').output
self.classification_backbone = tf.keras.Model(
inputs=full_mobilenet_v1.inputs,
outputs=[conv2d_11_pointwise, conv2d_13_pointwise])
self._feature_map_generator = (
feature_map_generators.KerasMultiResolutionFeatureMaps(
feature_map_layout=self._feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm,
name='FeatureMaps'))
self.built = True
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
image_features = self.classification_backbone(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))
feature_maps = self._feature_map_generator({
'Conv2d_11_pointwise': image_features[0],
'Conv2d_13_pointwise': image_features[1]})
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v1_keras_feature_extractor.py | ssd_mobilenet_v1_keras_feature_extractor.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.models.keras_models import mobilenet_v2 as mobilenetv2
_MOBILENET_V2_FPN_SKIP_LAYERS = [
'block_2_add', 'block_5_add', 'block_9_add', 'out_relu'
]
class CenterNetMobileNetV2FPNFeatureExtractor(
center_net_meta_arch.CenterNetFeatureExtractor):
"""The MobileNet V2 with FPN skip layers feature extractor for CenterNet."""
def __init__(self,
mobilenet_v2_net,
channel_means=(0., 0., 0.),
channel_stds=(1., 1., 1.),
bgr_ordering=False,
use_separable_conv=False,
upsampling_interpolation='nearest'):
"""Intializes the feature extractor.
Args:
mobilenet_v2_net: The underlying mobilenet_v2 network to use.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
use_separable_conv: If set to True, all convolutional layers in the FPN
network will be replaced by separable convolutions.
upsampling_interpolation: A string (one of 'nearest' or 'bilinear')
indicating which interpolation method to use for the upsampling ops in
the FPN.
"""
super(CenterNetMobileNetV2FPNFeatureExtractor, self).__init__(
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
self._base_model = mobilenet_v2_net
output = self._base_model(self._base_model.input)
# Add pyramid feature network on every layer that has stride 2.
skip_outputs = [
self._base_model.get_layer(skip_layer_name).output
for skip_layer_name in _MOBILENET_V2_FPN_SKIP_LAYERS
]
self._fpn_model = tf.keras.models.Model(
inputs=self._base_model.input, outputs=skip_outputs)
fpn_outputs = self._fpn_model(self._base_model.input)
# Construct the top-down feature maps -- we start with an output of
# 7x7x1280, which we continually upsample, apply a residual on and merge.
# This results in a 56x56x24 output volume.
top_layer = fpn_outputs[-1]
# Use normal convolutional layer since the kernel_size is 1.
residual_op = tf.keras.layers.Conv2D(
filters=64, kernel_size=1, strides=1, padding='same')
top_down = residual_op(top_layer)
num_filters_list = [64, 32, 24]
for i, num_filters in enumerate(num_filters_list):
level_ind = len(num_filters_list) - 1 - i
# Upsample.
upsample_op = tf.keras.layers.UpSampling2D(
2, interpolation=upsampling_interpolation)
top_down = upsample_op(top_down)
# Residual (skip-connection) from bottom-up pathway.
# Use normal convolutional layer since the kernel_size is 1.
residual_op = tf.keras.layers.Conv2D(
filters=num_filters, kernel_size=1, strides=1, padding='same')
residual = residual_op(fpn_outputs[level_ind])
# Merge.
top_down = top_down + residual
next_num_filters = num_filters_list[i + 1] if i + 1 <= 2 else 24
if use_separable_conv:
conv = tf.keras.layers.SeparableConv2D(
filters=next_num_filters, kernel_size=3, strides=1, padding='same')
else:
conv = tf.keras.layers.Conv2D(
filters=next_num_filters, kernel_size=3, strides=1, padding='same')
top_down = conv(top_down)
top_down = tf.keras.layers.BatchNormalization()(top_down)
top_down = tf.keras.layers.ReLU()(top_down)
output = top_down
self._feature_extractor_model = tf.keras.models.Model(
inputs=self._base_model.input, outputs=output)
def preprocess(self, resized_inputs):
resized_inputs = super(CenterNetMobileNetV2FPNFeatureExtractor,
self).preprocess(resized_inputs)
return tf.keras.applications.mobilenet_v2.preprocess_input(resized_inputs)
def load_feature_extractor_weights(self, path):
self._base_model.load_weights(path)
@property
def supported_sub_model_types(self):
return ['classification']
def get_sub_model(self, sub_model_type):
if sub_model_type == 'classification':
return self._base_model
else:
ValueError('Sub model type "{}" not supported.'.format(sub_model_type))
def call(self, inputs):
return [self._feature_extractor_model(inputs)]
@property
def out_stride(self):
"""The stride in the output image of the network."""
return 4
@property
def num_feature_outputs(self):
"""The number of feature outputs returned by the feature extractor."""
return 1
def mobilenet_v2_fpn(channel_means, channel_stds, bgr_ordering,
use_separable_conv=False, depth_multiplier=1.0,
upsampling_interpolation='nearest', **kwargs):
"""The MobileNetV2+FPN backbone for CenterNet."""
del kwargs
# Set to batchnorm_training to True for now.
network = mobilenetv2.mobilenet_v2(
batchnorm_training=True,
alpha=depth_multiplier,
include_top=False,
weights='imagenet' if depth_multiplier == 1.0 else None)
return CenterNetMobileNetV2FPNFeatureExtractor(
network,
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering,
use_separable_conv=use_separable_conv,
upsampling_interpolation=upsampling_interpolation) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/center_net_mobilenet_v2_fpn_feature_extractor.py | center_net_mobilenet_v2_fpn_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.models.keras_models import mobilenet_v1
from object_detection.models.keras_models import model_utils
from object_detection.utils import ops
from object_detection.utils import shape_utils
# A modified config of mobilenet v1 that makes it more detection friendly.
def _create_modified_mobilenet_config():
conv_def_block_12 = model_utils.ConvDefs(conv_name='conv_pw_12', filters=512)
conv_def_block_13 = model_utils.ConvDefs(conv_name='conv_pw_13', filters=256)
return [conv_def_block_12, conv_def_block_13]
class SSDMobileNetV1FpnKerasFeatureExtractor(
ssd_meta_arch.SSDKerasFeatureExtractor):
"""SSD Feature Extractor using Keras-based MobilenetV1 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False,
name=None):
"""SSD Keras based FPN feature extractor Mobilenet v1 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to MobileNet v1 layers
{Conv2d_3_pointwise, Conv2d_5_pointwise, Conv2d_11_pointwise,
Conv2d_13_pointwise}, respectively.
fpn_max_level: the smallest resolution feature map to construct or use in
FPN. FPN constructions uses features maps starting from fpn_min_level
upto the fpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of fpn
levels.
additional_layer_depth: additional feature map layer channel depth.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: whether to use depthwise convolutions. Default is False.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDMobileNetV1FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth
self._conv_defs = None
if self._use_depthwise:
self._conv_defs = _create_modified_mobilenet_config()
self._use_native_resize_op = use_native_resize_op
self._feature_blocks = [
'Conv2d_3_pointwise', 'Conv2d_5_pointwise', 'Conv2d_11_pointwise',
'Conv2d_13_pointwise'
]
self.classification_backbone = None
self._fpn_features_generator = None
self._coarse_feature_layers = []
def build(self, input_shape):
full_mobilenet_v1 = mobilenet_v1.mobilenet_v1(
batchnorm_training=(self._is_training and not self._freeze_batchnorm),
conv_hyperparams=(self._conv_hyperparams
if self._override_base_feature_extractor_hyperparams
else None),
weights=None,
use_explicit_padding=self._use_explicit_padding,
alpha=self._depth_multiplier,
min_depth=self._min_depth,
conv_defs=self._conv_defs,
include_top=False)
conv2d_3_pointwise = full_mobilenet_v1.get_layer(
name='conv_pw_3_relu').output
conv2d_5_pointwise = full_mobilenet_v1.get_layer(
name='conv_pw_5_relu').output
conv2d_11_pointwise = full_mobilenet_v1.get_layer(
name='conv_pw_11_relu').output
conv2d_13_pointwise = full_mobilenet_v1.get_layer(
name='conv_pw_13_relu').output
self.classification_backbone = tf.keras.Model(
inputs=full_mobilenet_v1.inputs,
outputs=[conv2d_3_pointwise, conv2d_5_pointwise,
conv2d_11_pointwise, conv2d_13_pointwise]
)
# pylint:disable=g-long-lambda
self._depth_fn = lambda d: max(
int(d * self._depth_multiplier), self._min_depth)
self._base_fpn_max_level = min(self._fpn_max_level, 5)
self._num_levels = self._base_fpn_max_level + 1 - self._fpn_min_level
self._fpn_features_generator = (
feature_map_generators.KerasFpnTopDownFeatureMaps(
num_levels=self._num_levels,
depth=self._depth_fn(self._additional_layer_depth),
use_depthwise=self._use_depthwise,
use_explicit_padding=self._use_explicit_padding,
use_native_resize_op=self._use_native_resize_op,
is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm,
name='FeatureMaps'))
# Construct coarse feature layers
padding = 'VALID' if self._use_explicit_padding else 'SAME'
kernel_size = 3
stride = 2
for i in range(self._base_fpn_max_level + 1, self._fpn_max_level + 1):
coarse_feature_layers = []
if self._use_explicit_padding:
def fixed_padding(features, kernel_size=kernel_size):
return ops.fixed_padding(features, kernel_size)
coarse_feature_layers.append(tf.keras.layers.Lambda(
fixed_padding, name='fixed_padding'))
layer_name = 'bottom_up_Conv2d_{}'.format(
i - self._base_fpn_max_level + 13)
conv_block = feature_map_generators.create_conv_block(
self._use_depthwise, kernel_size, padding, stride, layer_name,
self._conv_hyperparams, self._is_training, self._freeze_batchnorm,
self._depth_fn(self._additional_layer_depth))
coarse_feature_layers.extend(conv_block)
self._coarse_feature_layers.append(coarse_feature_layers)
self.built = True
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
image_features = self.classification_backbone(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))
feature_block_list = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_block_list.append(self._feature_blocks[level - 2])
feature_start_index = len(self._feature_blocks) - self._num_levels
fpn_input_image_features = [
(key, image_features[feature_start_index + index])
for index, key in enumerate(feature_block_list)]
fpn_features = self._fpn_features_generator(fpn_input_image_features)
feature_maps = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_maps.append(fpn_features['top_down_{}'.format(
self._feature_blocks[level - 2])])
last_feature_map = fpn_features['top_down_{}'.format(
self._feature_blocks[self._base_fpn_max_level - 2])]
for coarse_feature_layers in self._coarse_feature_layers:
for layer in coarse_feature_layers:
last_feature_map = layer(last_feature_map)
feature_maps.append(last_feature_map)
return feature_maps
def restore_from_classification_checkpoint_fn(self, feature_extractor_scope):
"""Returns a map for restoring from an (object-based) checkpoint.
Args:
feature_extractor_scope: A scope name for the feature extractor (unused).
Returns:
A dict mapping keys to Keras models
"""
return {'feature_extractor': self.classification_backbone} | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v1_fpn_keras_feature_extractor.py | ssd_mobilenet_v1_fpn_keras_feature_extractor.py |
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.models.keras_models import hourglass_network
class CenterNetHourglassFeatureExtractor(
center_net_meta_arch.CenterNetFeatureExtractor):
"""The hourglass feature extractor for CenterNet.
This class is a thin wrapper around the HourglassFeatureExtractor class
along with some preprocessing methods inherited from the base class.
"""
def __init__(self, hourglass_net, channel_means=(0., 0., 0.),
channel_stds=(1., 1., 1.), bgr_ordering=False):
"""Intializes the feature extractor.
Args:
hourglass_net: The underlying hourglass network to use.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super(CenterNetHourglassFeatureExtractor, self).__init__(
channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
self._network = hourglass_net
def call(self, inputs):
return self._network(inputs)
@property
def out_stride(self):
"""The stride in the output image of the network."""
return 4
@property
def num_feature_outputs(self):
"""Ther number of feature outputs returned by the feature extractor."""
return self._network.num_hourglasses
def hourglass_10(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The Hourglass-10 backbone for CenterNet."""
del kwargs
network = hourglass_network.hourglass_10(num_channels=32)
return CenterNetHourglassFeatureExtractor(
network, channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
def hourglass_20(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The Hourglass-20 backbone for CenterNet."""
del kwargs
network = hourglass_network.hourglass_20(num_channels=48)
return CenterNetHourglassFeatureExtractor(
network, channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
def hourglass_32(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The Hourglass-32 backbone for CenterNet."""
del kwargs
network = hourglass_network.hourglass_32(num_channels=48)
return CenterNetHourglassFeatureExtractor(
network, channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
def hourglass_52(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The Hourglass-52 backbone for CenterNet."""
del kwargs
network = hourglass_network.hourglass_52(num_channels=64)
return CenterNetHourglassFeatureExtractor(
network, channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
def hourglass_104(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The Hourglass-104 backbone for CenterNet."""
del kwargs
# TODO(vighneshb): update hourglass_104 signature to match with other
# hourglass networks.
network = hourglass_network.hourglass_104()
return CenterNetHourglassFeatureExtractor(
network, channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/center_net_hourglass_feature_extractor.py | center_net_hourglass_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import functools
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets import mobilenet_v1
# A modified config of mobilenet v1 that makes it more detection friendly,
def _create_modified_mobilenet_config():
conv_defs = copy.deepcopy(mobilenet_v1.MOBILENETV1_CONV_DEFS)
conv_defs[-2] = mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=512)
conv_defs[-1] = mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=256)
return conv_defs
class SSDMobileNetV1FpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using MobilenetV1 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False):
"""SSD FPN feature extractor based on Mobilenet v1 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the base
feature extractor.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to MobileNet v1 layers
{Conv2d_3_pointwise, Conv2d_5_pointwise, Conv2d_11_pointwise,
Conv2d_13_pointwise}, respectively.
fpn_max_level: the smallest resolution feature map to construct or use in
FPN. FPN constructions uses features maps starting from fpn_min_level
upto the fpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of fpn
levels.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDMobileNetV1FpnFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth
self._conv_defs = None
if self._use_depthwise:
self._conv_defs = _create_modified_mobilenet_config()
self._use_native_resize_op = use_native_resize_op
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
conv_defs=self._conv_defs,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth)
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('fpn', reuse=self._reuse_weights):
feature_blocks = [
'Conv2d_3_pointwise', 'Conv2d_5_pointwise', 'Conv2d_11_pointwise',
'Conv2d_13_pointwise'
]
base_fpn_max_level = min(self._fpn_max_level, 5)
feature_block_list = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_block_list.append(feature_blocks[level - 2])
fpn_features = feature_map_generators.fpn_top_down_feature_maps(
[(key, image_features[key]) for key in feature_block_list],
depth=depth_fn(self._additional_layer_depth),
use_depthwise=self._use_depthwise,
use_explicit_padding=self._use_explicit_padding,
use_native_resize_op=self._use_native_resize_op)
feature_maps = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_maps.append(fpn_features['top_down_{}'.format(
feature_blocks[level - 2])])
last_feature_map = fpn_features['top_down_{}'.format(
feature_blocks[base_fpn_max_level - 2])]
# Construct coarse features
padding = 'VALID' if self._use_explicit_padding else 'SAME'
kernel_size = 3
for i in range(base_fpn_max_level + 1, self._fpn_max_level + 1):
if self._use_depthwise:
conv_op = functools.partial(
slim.separable_conv2d, depth_multiplier=1)
else:
conv_op = slim.conv2d
if self._use_explicit_padding:
last_feature_map = ops.fixed_padding(
last_feature_map, kernel_size)
last_feature_map = conv_op(
last_feature_map,
num_outputs=depth_fn(self._additional_layer_depth),
kernel_size=[kernel_size, kernel_size],
stride=2,
padding=padding,
scope='bottom_up_Conv2d_{}'.format(i - base_fpn_max_level + 13))
feature_maps.append(last_feature_map)
return feature_maps | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v1_fpn_feature_extractor.py | ssd_mobilenet_v1_fpn_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.models.keras_models import resnet_v1
from object_detection.utils import ops
from object_detection.utils import shape_utils
_RESNET_MODEL_OUTPUT_LAYERS = {
'resnet_v1_50': ['conv2_block3_out', 'conv3_block4_out',
'conv4_block6_out', 'conv5_block3_out'],
'resnet_v1_101': ['conv2_block3_out', 'conv3_block4_out',
'conv4_block23_out', 'conv5_block3_out'],
'resnet_v1_152': ['conv2_block3_out', 'conv3_block8_out',
'conv4_block36_out', 'conv5_block3_out'],
}
class SSDResNetV1FpnKerasFeatureExtractor(
ssd_meta_arch.SSDKerasFeatureExtractor):
"""SSD Feature Extractor using Keras-based ResnetV1 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
resnet_v1_base_model,
resnet_v1_base_model_name,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=False,
name=None):
"""SSD Keras based FPN feature extractor Resnet v1 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
resnet_v1_base_model: base resnet v1 network to use. One of
the resnet_v1.resnet_v1_{50,101,152} models.
resnet_v1_base_model_name: model name under which to construct resnet v1.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
fpn_max_level: the smallest resolution feature map to construct or use in
FPN. FPN constructions uses features maps starting from fpn_min_level
upto the fpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of fpn
levels.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: whether to use explicit padding when extracting
features. Default is None, as it's an invalid option and not implemented
in this feature extractor.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDResNetV1FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
if self._use_explicit_padding:
raise ValueError('Explicit padding is not a valid option.')
if self._use_depthwise:
raise ValueError('Depthwise is not a valid option.')
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth
self._resnet_v1_base_model = resnet_v1_base_model
self._resnet_v1_base_model_name = resnet_v1_base_model_name
self._resnet_block_names = ['block1', 'block2', 'block3', 'block4']
self.classification_backbone = None
self._fpn_features_generator = None
self._coarse_feature_layers = []
def build(self, input_shape):
full_resnet_v1_model = self._resnet_v1_base_model(
batchnorm_training=(self._is_training and not self._freeze_batchnorm),
conv_hyperparams=(self._conv_hyperparams
if self._override_base_feature_extractor_hyperparams
else None),
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
classes=None,
weights=None,
include_top=False)
output_layers = _RESNET_MODEL_OUTPUT_LAYERS[self._resnet_v1_base_model_name]
outputs = [full_resnet_v1_model.get_layer(output_layer_name).output
for output_layer_name in output_layers]
self.classification_backbone = tf.keras.Model(
inputs=full_resnet_v1_model.inputs,
outputs=outputs)
# pylint:disable=g-long-lambda
self._depth_fn = lambda d: max(
int(d * self._depth_multiplier), self._min_depth)
self._base_fpn_max_level = min(self._fpn_max_level, 5)
self._num_levels = self._base_fpn_max_level + 1 - self._fpn_min_level
self._fpn_features_generator = (
feature_map_generators.KerasFpnTopDownFeatureMaps(
num_levels=self._num_levels,
depth=self._depth_fn(self._additional_layer_depth),
is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm,
name='FeatureMaps'))
# Construct coarse feature layers
depth = self._depth_fn(self._additional_layer_depth)
for i in range(self._base_fpn_max_level, self._fpn_max_level):
layers = []
layer_name = 'bottom_up_block{}'.format(i)
layers.append(
tf.keras.layers.Conv2D(
depth,
[3, 3],
padding='SAME',
strides=2,
name=layer_name + '_conv',
**self._conv_hyperparams.params()))
layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name=layer_name + '_batchnorm'))
layers.append(
self._conv_hyperparams.build_activation_layer(
name=layer_name))
self._coarse_feature_layers.append(layers)
self.built = True
def preprocess(self, resized_inputs):
"""SSD preprocessing.
VGG style channel mean subtraction as described here:
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-mdnge.
Note that if the number of channels is not equal to 3, the mean subtraction
will be skipped and the original resized_inputs will be returned.
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
if resized_inputs.shape.as_list()[3] == 3:
channel_means = [123.68, 116.779, 103.939]
return resized_inputs - [[channel_means]]
else:
return resized_inputs
def _extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
image_features = self.classification_backbone(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))
feature_block_list = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_block_list.append('block{}'.format(level - 1))
feature_block_map = dict(
list(zip(self._resnet_block_names, image_features)))
fpn_input_image_features = [
(feature_block, feature_block_map[feature_block])
for feature_block in feature_block_list]
fpn_features = self._fpn_features_generator(fpn_input_image_features)
feature_maps = []
for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
feature_maps.append(fpn_features['top_down_block{}'.format(level-1)])
last_feature_map = fpn_features['top_down_block{}'.format(
self._base_fpn_max_level - 1)]
for coarse_feature_layers in self._coarse_feature_layers:
for layer in coarse_feature_layers:
last_feature_map = layer(last_feature_map)
feature_maps.append(last_feature_map)
return feature_maps
class SSDResNet50V1FpnKerasFeatureExtractor(
SSDResNetV1FpnKerasFeatureExtractor):
"""SSD Feature Extractor using Keras-based ResnetV1-50 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=False,
name='ResNet50V1_FPN'):
"""SSD Keras based FPN feature extractor ResnetV1-50 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
fpn_min_level: the minimum level in feature pyramid networks.
fpn_max_level: the maximum level in feature pyramid networks.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: whether to use explicit padding when extracting
features. Default is None, as it's an invalid option and not implemented
in this feature extractor.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDResNet50V1FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
resnet_v1_base_model=resnet_v1.resnet_v1_50,
resnet_v1_base_model_name='resnet_v1_50',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDResNet101V1FpnKerasFeatureExtractor(
SSDResNetV1FpnKerasFeatureExtractor):
"""SSD Feature Extractor using Keras-based ResnetV1-101 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=False,
name='ResNet101V1_FPN'):
"""SSD Keras based FPN feature extractor ResnetV1-101 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
fpn_min_level: the minimum level in feature pyramid networks.
fpn_max_level: the maximum level in feature pyramid networks.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: whether to use explicit padding when extracting
features. Default is None, as it's an invalid option and not implemented
in this feature extractor.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDResNet101V1FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
resnet_v1_base_model=resnet_v1.resnet_v1_101,
resnet_v1_base_model_name='resnet_v1_101',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDResNet152V1FpnKerasFeatureExtractor(
SSDResNetV1FpnKerasFeatureExtractor):
"""SSD Feature Extractor using Keras-based ResnetV1-152 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=None,
override_base_feature_extractor_hyperparams=False,
name='ResNet152V1_FPN'):
"""SSD Keras based FPN feature extractor ResnetV1-152 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
fpn_min_level: the minimum level in feature pyramid networks.
fpn_max_level: the maximum level in feature pyramid networks.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: whether to use explicit padding when extracting
features. Default is None, as it's an invalid option and not implemented
in this feature extractor.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDResNet152V1FpnKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
resnet_v1_base_model=resnet_v1.resnet_v1_152,
resnet_v1_base_model_name='resnet_v1_152',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_resnet_v1_fpn_keras_feature_extractor.py | ssd_resnet_v1_fpn_keras_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import functools
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import context_manager
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets.mobilenet import mobilenet
from nets.mobilenet import mobilenet_v2
# A modified config of mobilenet v2 that makes it more detection friendly.
def _create_modified_mobilenet_config():
conv_defs = copy.deepcopy(mobilenet_v2.V2_DEF)
conv_defs['spec'][-1] = mobilenet.op(
slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=256)
return conv_defs
class SSDMobileNetV2FpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using MobilenetV2 FPN features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
fpn_min_level=3,
fpn_max_level=7,
additional_layer_depth=256,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
use_native_resize_op=False,
override_base_feature_extractor_hyperparams=False):
"""SSD FPN feature extractor based on Mobilenet v2 architecture.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the base
feature extractor.
fpn_min_level: the highest resolution feature map to use in FPN. The valid
values are {2, 3, 4, 5} which map to MobileNet v2 layers
{layer_4, layer_7, layer_14, layer_19}, respectively.
fpn_max_level: the smallest resolution feature map to construct or use in
FPN. FPN constructions uses features maps starting from fpn_min_level
upto the fpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of fpn
levels.
additional_layer_depth: additional feature map layer channel depth.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
use_native_resize_op: Whether to use tf.image.nearest_neighbor_resize
to do upsampling in FPN. Default is false.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDMobileNetV2FpnFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
self._fpn_min_level = fpn_min_level
self._fpn_max_level = fpn_max_level
self._additional_layer_depth = additional_layer_depth
self._conv_defs = None
if self._use_depthwise:
self._conv_defs = _create_modified_mobilenet_config()
self._use_native_resize_op = use_native_resize_op
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
conv_defs=self._conv_defs,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth)
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('fpn', reuse=self._reuse_weights):
feature_blocks = [
'layer_4', 'layer_7', 'layer_14', 'layer_19'
]
base_fpn_max_level = min(self._fpn_max_level, 5)
feature_block_list = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_block_list.append(feature_blocks[level - 2])
fpn_features = feature_map_generators.fpn_top_down_feature_maps(
[(key, image_features[key]) for key in feature_block_list],
depth=depth_fn(self._additional_layer_depth),
use_depthwise=self._use_depthwise,
use_explicit_padding=self._use_explicit_padding,
use_native_resize_op=self._use_native_resize_op)
feature_maps = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_maps.append(fpn_features['top_down_{}'.format(
feature_blocks[level - 2])])
last_feature_map = fpn_features['top_down_{}'.format(
feature_blocks[base_fpn_max_level - 2])]
# Construct coarse features
padding = 'VALID' if self._use_explicit_padding else 'SAME'
kernel_size = 3
for i in range(base_fpn_max_level + 1, self._fpn_max_level + 1):
if self._use_depthwise:
conv_op = functools.partial(
slim.separable_conv2d, depth_multiplier=1)
else:
conv_op = slim.conv2d
if self._use_explicit_padding:
last_feature_map = ops.fixed_padding(
last_feature_map, kernel_size)
last_feature_map = conv_op(
last_feature_map,
num_outputs=depth_fn(self._additional_layer_depth),
kernel_size=[kernel_size, kernel_size],
stride=2,
padding=padding,
scope='bottom_up_Conv2d_{}'.format(i - base_fpn_max_level + 19))
feature_maps.append(last_feature_map)
return feature_maps | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_mobilenet_v2_fpn_feature_extractor.py | ssd_mobilenet_v2_fpn_feature_extractor.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures.center_net_meta_arch import CenterNetFeatureExtractor
class CenterNetResnetFeatureExtractor(CenterNetFeatureExtractor):
"""Resnet v2 base feature extractor for the CenterNet model."""
def __init__(self, resnet_type, channel_means=(0., 0., 0.),
channel_stds=(1., 1., 1.), bgr_ordering=False):
"""Initializes the feature extractor with a specific ResNet architecture.
Args:
resnet_type: A string specifying which kind of ResNet to use. Currently
only `resnet_v2_50` and `resnet_v2_101` are supported.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super(CenterNetResnetFeatureExtractor, self).__init__(
channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
if resnet_type == 'resnet_v2_101':
self._base_model = tf.keras.applications.ResNet101V2(weights=None,
include_top=False)
output_layer = 'conv5_block3_out'
elif resnet_type == 'resnet_v2_50':
self._base_model = tf.keras.applications.ResNet50V2(weights=None,
include_top=False)
output_layer = 'conv5_block3_out'
else:
raise ValueError('Unknown Resnet Model {}'.format(resnet_type))
output_layer = self._base_model.get_layer(output_layer)
self._resnet_model = tf.keras.models.Model(inputs=self._base_model.input,
outputs=output_layer.output)
resnet_output = self._resnet_model(self._base_model.input)
for num_filters in [256, 128, 64]:
# TODO(vighneshb) This section has a few differences from the paper
# Figure out how much of a performance impact they have.
# 1. We use a simple convolution instead of a deformable convolution
conv = tf.keras.layers.Conv2D(filters=num_filters, kernel_size=3,
strides=1, padding='same')
resnet_output = conv(resnet_output)
resnet_output = tf.keras.layers.BatchNormalization()(resnet_output)
resnet_output = tf.keras.layers.ReLU()(resnet_output)
# 2. We use the default initialization for the convolution layers
# instead of initializing it to do bilinear upsampling.
conv_transpose = tf.keras.layers.Conv2DTranspose(filters=num_filters,
kernel_size=3, strides=2,
padding='same')
resnet_output = conv_transpose(resnet_output)
resnet_output = tf.keras.layers.BatchNormalization()(resnet_output)
resnet_output = tf.keras.layers.ReLU()(resnet_output)
self._feature_extractor_model = tf.keras.models.Model(
inputs=self._base_model.input, outputs=resnet_output)
def preprocess(self, resized_inputs):
"""Preprocess input images for the ResNet model.
This scales images in the range [0, 255] to the range [-1, 1]
Args:
resized_inputs: a [batch, height, width, channels] float32 tensor.
Returns:
outputs: a [batch, height, width, channels] float32 tensor.
"""
resized_inputs = super(CenterNetResnetFeatureExtractor, self).preprocess(
resized_inputs)
return tf.keras.applications.resnet_v2.preprocess_input(resized_inputs)
def load_feature_extractor_weights(self, path):
self._base_model.load_weights(path)
def call(self, inputs):
"""Returns image features extracted by the backbone.
Args:
inputs: An image tensor of shape [batch_size, input_height,
input_width, 3]
Returns:
features_list: A list of length 1 containing a tensor of shape
[batch_size, input_height // 4, input_width // 4, 64] containing
the features extracted by the ResNet.
"""
return [self._feature_extractor_model(inputs)]
@property
def num_feature_outputs(self):
return 1
@property
def out_stride(self):
return 4
@property
def classification_backbone(self):
return self._base_model
def resnet_v2_101(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The ResNet v2 101 feature extractor."""
del kwargs
return CenterNetResnetFeatureExtractor(
resnet_type='resnet_v2_101',
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering
)
def resnet_v2_50(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The ResNet v2 50 feature extractor."""
del kwargs
return CenterNetResnetFeatureExtractor(
resnet_type='resnet_v2_50',
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/center_net_resnet_feature_extractor.py | center_net_resnet_feature_extractor.py |
"""SSD Keras-based EfficientNet + BiFPN (EfficientDet) Feature Extractor."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from six.moves import range
from six.moves import zip
import tensorflow.compat.v2 as tf
from tensorflow.python.keras import backend as keras_backend
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import bidirectional_feature_pyramid_generators as bifpn_generators
from object_detection.utils import ops
from object_detection.utils import shape_utils
from object_detection.utils import tf_version
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
from official.vision.image_classification.efficientnet import efficientnet_model
_EFFICIENTNET_LEVEL_ENDPOINTS = {
1: 'stack_0/block_0/project_bn',
2: 'stack_1/block_1/add',
3: 'stack_2/block_1/add',
4: 'stack_4/block_2/add',
5: 'stack_6/block_0/project_bn',
}
class SSDEfficientNetBiFPNKerasFeatureExtractor(
ssd_meta_arch.SSDKerasFeatureExtractor):
"""SSD Keras-based EfficientNetBiFPN (EfficientDet) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level,
bifpn_max_level,
bifpn_num_iterations,
bifpn_num_filters,
bifpn_combine_method,
efficientnet_version,
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name=None):
"""SSD Keras-based EfficientNetBiFPN (EfficientDet) feature extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
efficientnet_version: the EfficientNet version to use for this feature
extractor's backbone.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: Whether to override the
efficientnet backbone's default weight decay with the weight decay
defined by `conv_hyperparams`. Note, only overriding of weight decay is
currently supported.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetBiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
if depth_multiplier != 1.0:
raise ValueError('EfficientNetBiFPN does not support a non-default '
'depth_multiplier.')
if use_explicit_padding:
raise ValueError('EfficientNetBiFPN does not support explicit padding.')
if use_depthwise:
raise ValueError('EfficientNetBiFPN does not support use_depthwise.')
self._bifpn_min_level = bifpn_min_level
self._bifpn_max_level = bifpn_max_level
self._bifpn_num_iterations = bifpn_num_iterations
self._bifpn_num_filters = max(bifpn_num_filters, min_depth)
self._bifpn_node_params = {'combine_method': bifpn_combine_method}
self._efficientnet_version = efficientnet_version
logging.info('EfficientDet EfficientNet backbone version: %s',
self._efficientnet_version)
logging.info('EfficientDet BiFPN num filters: %d', self._bifpn_num_filters)
logging.info('EfficientDet BiFPN num iterations: %d',
self._bifpn_num_iterations)
self._backbone_max_level = min(
max(_EFFICIENTNET_LEVEL_ENDPOINTS.keys()), bifpn_max_level)
self._output_layer_names = [
_EFFICIENTNET_LEVEL_ENDPOINTS[i]
for i in range(bifpn_min_level, self._backbone_max_level + 1)]
self._output_layer_alias = [
'level_{}'.format(i)
for i in range(bifpn_min_level, self._backbone_max_level + 1)]
# Initialize the EfficientNet backbone.
# Note, this is currently done in the init method rather than in the build
# method, since doing so introduces an error which is not well understood.
efficientnet_overrides = {'rescale_input': False}
if override_base_feature_extractor_hyperparams:
efficientnet_overrides[
'weight_decay'] = conv_hyperparams.get_regularizer_weight()
if (conv_hyperparams.use_sync_batch_norm() and
keras_backend.is_tpu_strategy(tf.distribute.get_strategy())):
efficientnet_overrides['batch_norm'] = 'tpu'
efficientnet_base = efficientnet_model.EfficientNet.from_name(
model_name=self._efficientnet_version, overrides=efficientnet_overrides)
outputs = [efficientnet_base.get_layer(output_layer_name).output
for output_layer_name in self._output_layer_names]
self._efficientnet = tf.keras.Model(
inputs=efficientnet_base.inputs, outputs=outputs)
self.classification_backbone = efficientnet_base
self._bifpn_stage = None
def build(self, input_shape):
self._bifpn_stage = bifpn_generators.KerasBiFpnFeatureMaps(
bifpn_num_iterations=self._bifpn_num_iterations,
bifpn_num_filters=self._bifpn_num_filters,
fpn_min_level=self._bifpn_min_level,
fpn_max_level=self._bifpn_max_level,
input_max_level=self._backbone_max_level,
is_training=self._is_training,
conv_hyperparams=self._conv_hyperparams,
freeze_batchnorm=self._freeze_batchnorm,
bifpn_node_params=self._bifpn_node_params,
name='bifpn')
self.built = True
def preprocess(self, inputs):
"""SSD preprocessing.
Channel-wise mean subtraction and scaling.
Args:
inputs: a [batch, height, width, channels] float tensor representing a
batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
if inputs.shape.as_list()[3] == 3:
# Input images are expected to be in the range [0, 255].
channel_offset = [0.485, 0.456, 0.406]
channel_scale = [0.229, 0.224, 0.225]
return ((inputs / 255.0) - [[channel_offset]]) / [[channel_scale]]
else:
return inputs
def _extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
base_feature_maps = self._efficientnet(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))
output_feature_map_dict = self._bifpn_stage(
list(zip(self._output_layer_alias, base_feature_maps)))
return list(output_feature_map_dict.values())
class SSDEfficientNetB0BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b0 BiFPN (EfficientDet-d0) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=3,
bifpn_num_filters=64,
bifpn_combine_method='fast_attention',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientDet-D0'):
"""SSD Keras EfficientNet-b0 BiFPN (EfficientDet-d0) Feature Extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB0BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b0',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDEfficientNetB1BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b1 BiFPN (EfficientDet-d1) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=4,
bifpn_num_filters=88,
bifpn_combine_method='fast_attention',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientDet-D1'):
"""SSD Keras EfficientNet-b1 BiFPN (EfficientDet-d1) Feature Extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB1BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b1',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDEfficientNetB2BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b2 BiFPN (EfficientDet-d2) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=5,
bifpn_num_filters=112,
bifpn_combine_method='fast_attention',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientDet-D2'):
"""SSD Keras EfficientNet-b2 BiFPN (EfficientDet-d2) Feature Extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB2BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b2',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDEfficientNetB3BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b3 BiFPN (EfficientDet-d3) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=6,
bifpn_num_filters=160,
bifpn_combine_method='fast_attention',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientDet-D3'):
"""SSD Keras EfficientNet-b3 BiFPN (EfficientDet-d3) Feature Extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB3BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b3',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDEfficientNetB4BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b4 BiFPN (EfficientDet-d4) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=7,
bifpn_num_filters=224,
bifpn_combine_method='fast_attention',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientDet-D4'):
"""SSD Keras EfficientNet-b4 BiFPN (EfficientDet-d4) Feature Extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB4BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b4',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDEfficientNetB5BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b5 BiFPN (EfficientDet-d5) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=7,
bifpn_num_filters=288,
bifpn_combine_method='fast_attention',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientDet-D5'):
"""SSD Keras EfficientNet-b5 BiFPN (EfficientDet-d5) Feature Extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB5BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b5',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDEfficientNetB6BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b6 BiFPN (EfficientDet-d[6,7]) Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=8,
bifpn_num_filters=384,
bifpn_combine_method='sum',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientDet-D6-D7'):
"""SSD Keras EfficientNet-b6 BiFPN (EfficientDet-d[6,7]) Feature Extractor.
SSD Keras EfficientNet-b6 BiFPN Feature Extractor, a.k.a. EfficientDet-d6
and EfficientDet-d7. The EfficientDet-d[6,7] models use the same backbone
EfficientNet-b6 and the same BiFPN architecture, and therefore have the same
number of parameters. They only differ in their input resolutions.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB6BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b6',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name)
class SSDEfficientNetB7BiFPNKerasFeatureExtractor(
SSDEfficientNetBiFPNKerasFeatureExtractor):
"""SSD Keras EfficientNet-b7 BiFPN Feature Extractor."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
bifpn_min_level=3,
bifpn_max_level=7,
bifpn_num_iterations=8,
bifpn_num_filters=384,
bifpn_combine_method='sum',
use_explicit_padding=None,
use_depthwise=None,
override_base_feature_extractor_hyperparams=None,
name='EfficientNet-B7_BiFPN'):
"""SSD Keras EfficientNet-b7 BiFPN Feature Extractor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: unsupported by EfficientNetBiFPN. float, depth
multiplier for the feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: a `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: whether to freeze batch norm parameters during training
or not. When training with a small batch size (e.g. 1), it is desirable
to freeze batch norm update and use pretrained batch norm params.
inplace_batchnorm_update: whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
bifpn_min_level: the highest resolution feature map to use in BiFPN. The
valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4}
respectively.
bifpn_max_level: the smallest resolution feature map to use in the BiFPN.
BiFPN constructions uses features maps starting from bifpn_min_level
upto the bifpn_max_level. In the case that there are not enough feature
maps in the backbone network, additional feature maps are created by
applying stride 2 convolutions until we get the desired number of BiFPN
levels.
bifpn_num_iterations: number of BiFPN iterations. Overrided if
efficientdet_version is provided.
bifpn_num_filters: number of filters (channels) in all BiFPN layers.
Overrided if efficientdet_version is provided.
bifpn_combine_method: the method used to combine BiFPN nodes.
use_explicit_padding: unsupported by EfficientNetBiFPN. Whether to use
explicit padding when extracting features.
use_depthwise: unsupported by EfficientNetBiFPN, since BiFPN uses regular
convolutions when inputs to a node have a differing number of channels,
and use separable convolutions after combine operations.
override_base_feature_extractor_hyperparams: unsupported. Whether to
override hyperparameters of the base feature extractor with the one from
`conv_hyperparams`.
name: a string name scope to assign to the model. If 'None', Keras will
auto-generate one from the class name.
"""
super(SSDEfficientNetB7BiFPNKerasFeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
bifpn_min_level=bifpn_min_level,
bifpn_max_level=bifpn_max_level,
bifpn_num_iterations=bifpn_num_iterations,
bifpn_num_filters=bifpn_num_filters,
bifpn_combine_method=bifpn_combine_method,
efficientnet_version='efficientnet-b7',
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams,
name=name) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_efficientnet_bifpn_feature_extractor.py | ssd_efficientnet_bifpn_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.utils import variables_helper
from nets.nasnet import nasnet_utils
try:
from nets.nasnet import pnasnet # pylint: disable=g-import-not-at-top
except: # pylint: disable=bare-except
pass
arg_scope = slim.arg_scope
def pnasnet_large_arg_scope_for_detection(is_batch_norm_training=False):
"""Defines the default arg scope for the PNASNet Large for object detection.
This provides a small edit to switch batch norm training on and off.
Args:
is_batch_norm_training: Boolean indicating whether to train with batch norm.
Returns:
An `arg_scope` to use for the PNASNet Large Model.
"""
imagenet_scope = pnasnet.pnasnet_large_arg_scope()
with arg_scope(imagenet_scope):
with arg_scope([slim.batch_norm], is_training=is_batch_norm_training) as sc:
return sc
def _filter_scaling(reduction_indices, start_cell_num):
"""Compute the expected filter scaling at given PNASNet cell start_cell_num.
In the pnasnet.py code, filter_scaling starts at 1.0. We instead
adapt filter scaling to depend on the starting cell.
At first cells, before any reduction, filter_scalling is 1.0. With passing
any reduction cell, the filter_scaling is multiplied by 2.
Args:
reduction_indices: list of int indices.
start_cell_num: int.
Returns:
filter_scaling: float.
"""
filter_scaling = 1.0
for ind in reduction_indices:
if ind < start_cell_num:
filter_scaling *= 2.0
return filter_scaling
# Note: This is largely a copy of _build_pnasnet_base inside pnasnet.py but
# with special edits to remove instantiation of the stem and the special
# ability to receive as input a pair of hidden states. It constructs only
# a sub-network from the original PNASNet model, starting from the
# start_cell_num cell and with modified final layer.
def _build_pnasnet_base(
hidden_previous, hidden, normal_cell, hparams, true_cell_num,
start_cell_num):
"""Constructs a PNASNet image model for proposal classifier features."""
# Find where to place the reduction cells or stride normal cells
reduction_indices = nasnet_utils.calc_reduction_layers(
hparams.num_cells, hparams.num_reduction_layers)
filter_scaling = _filter_scaling(reduction_indices, start_cell_num)
# Note: The None is prepended to match the behavior of _imagenet_stem()
cell_outputs = [None, hidden_previous, hidden]
net = hidden
# Run the cells
for cell_num in range(start_cell_num, hparams.num_cells):
is_reduction = cell_num in reduction_indices
stride = 2 if is_reduction else 1
if is_reduction: filter_scaling *= hparams.filter_scaling_rate
prev_layer = cell_outputs[-2]
net = normal_cell(
net,
scope='cell_{}'.format(cell_num),
filter_scaling=filter_scaling,
stride=stride,
prev_layer=prev_layer,
cell_num=true_cell_num)
true_cell_num += 1
cell_outputs.append(net)
# Final nonlinearity.
# Note that we have dropped the final pooling, dropout and softmax layers
# from the default pnasnet version.
with tf.variable_scope('final_layer'):
net = tf.nn.relu(net)
return net
# TODO(shlens): Only fixed_shape_resizer is currently supported for PNASNet
# featurization. The reason for this is that pnasnet.py only supports
# inputs with fully known shapes. We need to update pnasnet.py to handle
# shapes not known at compile time.
class FasterRCNNPNASFeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor):
"""Faster R-CNN with PNASNet feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 16.
"""
if first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 16.')
super(FasterRCNNPNASFeatureExtractor, self).__init__(
is_training, first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)
def preprocess(self, resized_inputs):
"""Faster R-CNN with PNAS preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Extracts features using the first half of the PNASNet network.
We construct the network in `align_feature_maps=True` mode, which means
that all VALID paddings in the network are changed to SAME padding so that
the feature maps are aligned.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
end_points: A dictionary mapping feature extractor tensor names to tensors
Raises:
ValueError: If the created network is missing the required activation.
"""
del scope
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
with slim.arg_scope(pnasnet_large_arg_scope_for_detection(
is_batch_norm_training=self._train_batch_norm)):
with arg_scope([slim.conv2d,
slim.batch_norm,
slim.separable_conv2d],
reuse=self._reuse_weights):
_, end_points = pnasnet.build_pnasnet_large(
preprocessed_inputs, num_classes=None,
is_training=self._is_training,
final_endpoint='Cell_7')
# Note that both 'Cell_6' and 'Cell_7' have equal depth = 2160.
# Cell_7 is the last cell before second reduction.
rpn_feature_map = tf.concat([end_points['Cell_6'],
end_points['Cell_7']], 3)
# pnasnet.py does not maintain the batch size in the first dimension.
# This work around permits us retaining the batch for below.
batch = preprocessed_inputs.get_shape().as_list()[0]
shape_without_batch = rpn_feature_map.get_shape().as_list()[1:]
rpn_feature_map_shape = [batch] + shape_without_batch
rpn_feature_map.set_shape(rpn_feature_map_shape)
return rpn_feature_map, end_points
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
This function reconstructs the "second half" of the PNASNet
network after the part defined in `_extract_proposal_features`.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name.
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
del scope
# Number of used stem cells.
num_stem_cells = 2
# Note that we always feed into 2 layers of equal depth
# where the first N channels corresponds to previous hidden layer
# and the second N channels correspond to the final hidden layer.
hidden_previous, hidden = tf.split(proposal_feature_maps, 2, axis=3)
# Note that what follows is largely a copy of build_pnasnet_large() within
# pnasnet.py. We are copying to minimize code pollution in slim.
# TODO(shlens,skornblith): Determine the appropriate drop path schedule.
# For now the schedule is the default (1.0->0.7 over 250,000 train steps).
hparams = pnasnet.large_imagenet_config()
if not self._is_training:
hparams.set_hparam('drop_path_keep_prob', 1.0)
# Calculate the total number of cells in the network
total_num_cells = hparams.num_cells + num_stem_cells
normal_cell = pnasnet.PNasNetNormalCell(
hparams.num_conv_filters, hparams.drop_path_keep_prob,
total_num_cells, hparams.total_training_steps)
with arg_scope([slim.dropout, nasnet_utils.drop_path],
is_training=self._is_training):
with arg_scope([slim.batch_norm], is_training=self._train_batch_norm):
with arg_scope([slim.avg_pool2d,
slim.max_pool2d,
slim.conv2d,
slim.batch_norm,
slim.separable_conv2d,
nasnet_utils.factorized_reduction,
nasnet_utils.global_avg_pool,
nasnet_utils.get_channel_index,
nasnet_utils.get_channel_dim],
data_format=hparams.data_format):
# This corresponds to the cell number just past 'Cell_7' used by
# _extract_proposal_features().
start_cell_num = 8
true_cell_num = start_cell_num + num_stem_cells
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
net = _build_pnasnet_base(
hidden_previous,
hidden,
normal_cell=normal_cell,
hparams=hparams,
true_cell_num=true_cell_num,
start_cell_num=start_cell_num)
proposal_classifier_features = net
return proposal_classifier_features
def restore_from_classification_checkpoint_fn(
self,
first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Note that this overrides the default implementation in
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
PNASNet checkpoints.
Args:
first_stage_feature_extractor_scope: A scope name for the first stage
feature extractor.
second_stage_feature_extractor_scope: A scope name for the second stage
feature extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
if variable.op.name.startswith(
first_stage_feature_extractor_scope):
var_name = variable.op.name.replace(
first_stage_feature_extractor_scope + '/', '')
var_name += '/ExponentialMovingAverage'
variables_to_restore[var_name] = variable
if variable.op.name.startswith(
second_stage_feature_extractor_scope):
var_name = variable.op.name.replace(
second_stage_feature_extractor_scope + '/', '')
var_name += '/ExponentialMovingAverage'
variables_to_restore[var_name] = variable
return variables_to_restore | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_pnas_feature_extractor.py | faster_rcnn_pnas_feature_extractor.py |
import tensorflow.compat.v1 as tf
from object_detection.meta_architectures.center_net_meta_arch import CenterNetFeatureExtractor
from object_detection.models.keras_models import resnet_v1
_RESNET_MODEL_OUTPUT_LAYERS = {
'resnet_v1_18': ['conv2_block2_out', 'conv3_block2_out',
'conv4_block2_out', 'conv5_block2_out'],
'resnet_v1_34': ['conv2_block3_out', 'conv3_block4_out',
'conv4_block6_out', 'conv5_block3_out'],
'resnet_v1_50': ['conv2_block3_out', 'conv3_block4_out',
'conv4_block6_out', 'conv5_block3_out'],
'resnet_v1_101': ['conv2_block3_out', 'conv3_block4_out',
'conv4_block23_out', 'conv5_block3_out'],
}
class CenterNetResnetV1FpnFeatureExtractor(CenterNetFeatureExtractor):
"""Resnet v1 FPN base feature extractor for the CenterNet model.
This feature extractor uses residual skip connections and nearest neighbor
upsampling to produce an output feature map of stride 4, which has precise
localization information along with strong semantic information from the top
of the net. This design does not exactly follow the original FPN design,
specifically:
- Since only one output map is necessary for heatmap prediction (stride 4
output), the top-down feature maps can have different numbers of channels.
Specifically, the top down feature maps have the following sizes:
[h/4, w/4, 64], [h/8, w/8, 128], [h/16, w/16, 256], [h/32, w/32, 256].
- No additional coarse features are used after conv5_x.
"""
def __init__(self, resnet_type, channel_means=(0., 0., 0.),
channel_stds=(1., 1., 1.), bgr_ordering=False):
"""Initializes the feature extractor with a specific ResNet architecture.
Args:
resnet_type: A string specifying which kind of ResNet to use. Currently
only `resnet_v1_50` and `resnet_v1_101` are supported.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super(CenterNetResnetV1FpnFeatureExtractor, self).__init__(
channel_means=channel_means, channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
if resnet_type == 'resnet_v1_50':
self._base_model = tf.keras.applications.ResNet50(weights=None,
include_top=False)
elif resnet_type == 'resnet_v1_101':
self._base_model = tf.keras.applications.ResNet101(weights=None,
include_top=False)
elif resnet_type == 'resnet_v1_18':
self._base_model = resnet_v1.resnet_v1_18(weights=None, include_top=False)
elif resnet_type == 'resnet_v1_34':
self._base_model = resnet_v1.resnet_v1_34(weights=None, include_top=False)
else:
raise ValueError('Unknown Resnet Model {}'.format(resnet_type))
output_layers = _RESNET_MODEL_OUTPUT_LAYERS[resnet_type]
outputs = [self._base_model.get_layer(output_layer_name).output
for output_layer_name in output_layers]
self._resnet_model = tf.keras.models.Model(inputs=self._base_model.input,
outputs=outputs)
resnet_outputs = self._resnet_model(self._base_model.input)
# Construct the top-down feature maps.
top_layer = resnet_outputs[-1]
residual_op = tf.keras.layers.Conv2D(filters=256, kernel_size=1,
strides=1, padding='same')
top_down = residual_op(top_layer)
num_filters_list = [256, 128, 64]
for i, num_filters in enumerate(num_filters_list):
level_ind = 2 - i
# Upsample.
upsample_op = tf.keras.layers.UpSampling2D(2, interpolation='nearest')
top_down = upsample_op(top_down)
# Residual (skip-connection) from bottom-up pathway.
residual_op = tf.keras.layers.Conv2D(filters=num_filters, kernel_size=1,
strides=1, padding='same')
residual = residual_op(resnet_outputs[level_ind])
# Merge.
top_down = top_down + residual
next_num_filters = num_filters_list[i+1] if i + 1 <= 2 else 64
conv = tf.keras.layers.Conv2D(filters=next_num_filters,
kernel_size=3, strides=1, padding='same')
top_down = conv(top_down)
top_down = tf.keras.layers.BatchNormalization()(top_down)
top_down = tf.keras.layers.ReLU()(top_down)
self._feature_extractor_model = tf.keras.models.Model(
inputs=self._base_model.input, outputs=top_down)
def preprocess(self, resized_inputs):
"""Preprocess input images for the ResNet model.
This scales images in the range [0, 255] to the range [-1, 1]
Args:
resized_inputs: a [batch, height, width, channels] float32 tensor.
Returns:
outputs: a [batch, height, width, channels] float32 tensor.
"""
resized_inputs = super(
CenterNetResnetV1FpnFeatureExtractor, self).preprocess(resized_inputs)
return tf.keras.applications.resnet.preprocess_input(resized_inputs)
def load_feature_extractor_weights(self, path):
self._base_model.load_weights(path)
def call(self, inputs):
"""Returns image features extracted by the backbone.
Args:
inputs: An image tensor of shape [batch_size, input_height,
input_width, 3]
Returns:
features_list: A list of length 1 containing a tensor of shape
[batch_size, input_height // 4, input_width // 4, 64] containing
the features extracted by the ResNet.
"""
return [self._feature_extractor_model(inputs)]
@property
def num_feature_outputs(self):
return 1
@property
def out_stride(self):
return 4
@property
def classification_backbone(self):
return self._base_model
def resnet_v1_101_fpn(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The ResNet v1 101 FPN feature extractor."""
del kwargs
return CenterNetResnetV1FpnFeatureExtractor(
resnet_type='resnet_v1_101',
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering
)
def resnet_v1_50_fpn(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The ResNet v1 50 FPN feature extractor."""
del kwargs
return CenterNetResnetV1FpnFeatureExtractor(
resnet_type='resnet_v1_50',
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering)
def resnet_v1_34_fpn(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The ResNet v1 34 FPN feature extractor."""
del kwargs
return CenterNetResnetV1FpnFeatureExtractor(
resnet_type='resnet_v1_34',
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering
)
def resnet_v1_18_fpn(channel_means, channel_stds, bgr_ordering, **kwargs):
"""The ResNet v1 18 FPN feature extractor."""
del kwargs
return CenterNetResnetV1FpnFeatureExtractor(
resnet_type='resnet_v1_18',
channel_means=channel_means,
channel_stds=channel_stds,
bgr_ordering=bgr_ordering) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/center_net_resnet_v1_fpn_feature_extractor.py | center_net_resnet_v1_fpn_feature_extractor.py |
"""SSDFeatureExtractor for InceptionV3 features."""
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import feature_map_generators
from object_detection.utils import ops
from object_detection.utils import shape_utils
from nets import inception_v3
class SSDInceptionV3FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor):
"""SSD Feature Extractor using InceptionV3 features."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False):
"""InceptionV3 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
Raises:
ValueError: If `override_base_feature_extractor_hyperparams` is False.
"""
super(SSDInceptionV3FeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
num_layers=num_layers,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
if not self._override_base_feature_extractor_hyperparams:
raise ValueError('SSD Inception V3 feature extractor always uses'
'scope returned by `conv_hyperparams_fn` for both the '
'base feature extractor and the additional layers '
'added since there is no arg_scope defined for the base '
'feature extractor.')
def preprocess(self, resized_inputs):
"""SSD preprocessing.
Maps pixel values to the range [-1, 1].
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
"""
return (2.0 / 255.0) * resized_inputs - 1.0
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, -1, 512, 256, 128][:self._num_layers],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope:
_, image_features = inception_v3.inception_v3_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_7c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values()) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/ssd_inception_v3_feature_extractor.py | ssd_inception_v3_feature_extractor.py |
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.meta_architectures import faster_rcnn_meta_arch
from nets import resnet_utils
from nets import resnet_v1
class FasterRCNNResnetV1FeatureExtractor(
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor):
"""Faster R-CNN Resnet V1 feature extractor implementation."""
def __init__(self,
architecture,
resnet_model,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0,
activation_fn=tf.nn.relu):
"""Constructor.
Args:
architecture: Architecture name of the Resnet V1 model.
resnet_model: Definition of the Resnet V1 model.
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
activation_fn: Activaton functon to use in Resnet V1 model.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16.
"""
if first_stage_features_stride != 8 and first_stage_features_stride != 16:
raise ValueError('`first_stage_features_stride` must be 8 or 16.')
self._architecture = architecture
self._resnet_model = resnet_model
self._activation_fn = activation_fn
super(FasterRCNNResnetV1FeatureExtractor,
self).__init__(is_training, first_stage_features_stride,
batch_norm_trainable, reuse_weights, weight_decay)
def preprocess(self, resized_inputs):
"""Faster R-CNN Resnet V1 preprocessing.
VGG style channel mean subtraction as described here:
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md
Note that if the number of channels is not equal to 3, the mean subtraction
will be skipped and the original resized_inputs will be returned.
Args:
resized_inputs: A [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: A [batch, height_out, width_out, channels] float32
tensor representing a batch of images.
"""
if resized_inputs.shape.as_list()[3] == 3:
channel_means = [123.68, 116.779, 103.939]
return resized_inputs - [[channel_means]]
else:
return resized_inputs
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
activations: A dictionary mapping feature extractor tensor names to
tensors
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
if len(preprocessed_inputs.get_shape().as_list()) != 4:
raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
'tensor of shape %s' % preprocessed_inputs.get_shape())
shape_assert = tf.Assert(
tf.logical_and(
tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
['image size must at least be 33 in both height and width.'])
with tf.control_dependencies([shape_assert]):
# Disables batchnorm for fine-tuning with smaller batch sizes.
# TODO(chensun): Figure out if it is needed when image
# batch size is bigger.
with slim.arg_scope(
resnet_utils.resnet_arg_scope(
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
activation_fn=self._activation_fn,
weight_decay=self._weight_decay)):
with tf.variable_scope(
self._architecture, reuse=self._reuse_weights) as var_scope:
_, activations = self._resnet_model(
preprocessed_inputs,
num_classes=None,
is_training=self._train_batch_norm,
global_pool=False,
output_stride=self._first_stage_features_stride,
spatial_squeeze=False,
scope=var_scope)
handle = scope + '/%s/block3' % self._architecture
return activations[handle], activations
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope(self._architecture, reuse=self._reuse_weights):
with slim.arg_scope(
resnet_utils.resnet_arg_scope(
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
activation_fn=self._activation_fn,
weight_decay=self._weight_decay)):
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
blocks = [
resnet_utils.Block('block4', resnet_v1.bottleneck, [{
'depth': 2048,
'depth_bottleneck': 512,
'stride': 1
}] * 3)
]
proposal_classifier_features = resnet_utils.stack_blocks_dense(
proposal_feature_maps, blocks)
return proposal_classifier_features
class FasterRCNNResnet50FeatureExtractor(FasterRCNNResnetV1FeatureExtractor):
"""Faster R-CNN Resnet 50 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0,
activation_fn=tf.nn.relu):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
activation_fn: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16,
or if `architecture` is not supported.
"""
super(FasterRCNNResnet50FeatureExtractor,
self).__init__('resnet_v1_50', resnet_v1.resnet_v1_50, is_training,
first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay, activation_fn)
class FasterRCNNResnet101FeatureExtractor(FasterRCNNResnetV1FeatureExtractor):
"""Faster R-CNN Resnet 101 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0,
activation_fn=tf.nn.relu):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
activation_fn: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16,
or if `architecture` is not supported.
"""
super(FasterRCNNResnet101FeatureExtractor,
self).__init__('resnet_v1_101', resnet_v1.resnet_v1_101, is_training,
first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay, activation_fn)
class FasterRCNNResnet152FeatureExtractor(FasterRCNNResnetV1FeatureExtractor):
"""Faster R-CNN Resnet 152 feature extractor implementation."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0,
activation_fn=tf.nn.relu):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
activation_fn: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16,
or if `architecture` is not supported.
"""
super(FasterRCNNResnet152FeatureExtractor,
self).__init__('resnet_v1_152', resnet_v1.resnet_v1_152, is_training,
first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay, activation_fn) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/faster_rcnn_resnet_v1_feature_extractor.py | faster_rcnn_resnet_v1_feature_extractor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from object_detection.core import freezable_batch_norm
class _LayersOverride(object):
"""Alternative Keras layers interface for the Keras InceptionResNetV2."""
def __init__(self,
batchnorm_training,
output_stride=16,
align_feature_maps=False,
batchnorm_scale=False,
default_batchnorm_momentum=0.999,
default_batchnorm_epsilon=1e-3,
weight_decay=0.00004):
"""Alternative tf.keras.layers interface, for use by InceptionResNetV2.
It is used by the Keras applications kwargs injection API to
modify the Inception Resnet V2 Keras application with changes required by
the Object Detection API.
These injected interfaces make the following changes to the network:
- Supports freezing batch norm layers
- Adds support for feature map alignment (like in the Slim model)
- Adds support for changing the output stride (like in the Slim model)
- Adds support for overriding various batch norm hyperparameters
Because the Keras inception resnet v2 application does not assign explicit
names to most individual layers, the injection of output stride support
works by identifying convolution layers according to their filter counts
and pre-feature-map-alignment padding arguments.
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
output_stride: A scalar that specifies the requested ratio of input to
output spatial resolution. Only supports 8 and 16.
align_feature_maps: When true, changes all the VALID paddings in the
network to SAME padding so that the feature maps are aligned.
batchnorm_scale: If True, uses an explicit `gamma` multiplier to scale the
activations in the batch normalization layer.
default_batchnorm_momentum: Float. Batch norm layers will be constructed
using this value as the momentum.
default_batchnorm_epsilon: small float added to variance to avoid
dividing by zero.
weight_decay: the l2 regularization weight decay for weights variables.
(gets multiplied by 0.5 to map from slim l2 regularization weight to
Keras l2 regularization weight).
"""
self._use_atrous = output_stride == 8
self._align_feature_maps = align_feature_maps
self._batchnorm_training = batchnorm_training
self._batchnorm_scale = batchnorm_scale
self._default_batchnorm_momentum = default_batchnorm_momentum
self._default_batchnorm_epsilon = default_batchnorm_epsilon
self.regularizer = tf.keras.regularizers.l2(weight_decay * 0.5)
def Conv2D(self, filters, kernel_size, **kwargs):
"""Builds a Conv2D layer according to the current Object Detection config.
Overrides the Keras InceptionResnetV2 application's convolutions with ones
that follow the spec specified by the Object Detection hyperparameters.
If feature map alignment is enabled, the padding will be forced to 'same'.
If output_stride is 8, some conv2d layers will be matched according to
their name or filter counts or pre-alignment padding parameters, and will
have the correct 'dilation rate' or 'strides' set.
Args:
filters: The number of filters to use for the convolution.
kernel_size: The kernel size to specify the height and width of the 2D
convolution window.
**kwargs: Keyword args specified by the Keras application for
constructing the convolution.
Returns:
A Keras Conv2D layer specified by the Object Detection hyperparameter
configurations.
"""
kwargs['kernel_regularizer'] = self.regularizer
kwargs['bias_regularizer'] = self.regularizer
# Because the Keras application does not set explicit names for most layers,
# (instead allowing names to auto-increment), we must match individual
# layers in the model according to their filter count, name, or
# pre-alignment mapping. This means we can only align the feature maps
# after we have applied our updates in cases where output_stride=8.
if self._use_atrous and (filters == 384):
kwargs['strides'] = 1
name = kwargs.get('name')
if self._use_atrous and (
(name and 'block17' in name) or
(filters == 128 or filters == 160 or
(filters == 192 and kwargs.get('padding', '').lower() != 'valid'))):
kwargs['dilation_rate'] = 2
if self._align_feature_maps:
kwargs['padding'] = 'same'
return tf.keras.layers.Conv2D(filters, kernel_size, **kwargs)
def MaxPooling2D(self, pool_size, strides, **kwargs):
"""Builds a pooling layer according to the current Object Detection config.
Overrides the Keras InceptionResnetV2 application's MaxPooling2D layers with
ones that follow the spec specified by the Object Detection hyperparameters.
If feature map alignment is enabled, the padding will be forced to 'same'.
If output_stride is 8, some pooling layers will be matched according to
their pre-alignment padding parameters, and will have their 'strides'
argument overridden.
Args:
pool_size: The pool size specified by the Keras application.
strides: The strides specified by the unwrapped Keras application.
**kwargs: Keyword args specified by the Keras application for
constructing the max pooling layer.
Returns:
A MaxPool2D layer specified by the Object Detection hyperparameter
configurations.
"""
if self._use_atrous and kwargs.get('padding', '').lower() == 'valid':
strides = 1
if self._align_feature_maps:
kwargs['padding'] = 'same'
return tf.keras.layers.MaxPool2D(pool_size, strides=strides, **kwargs)
# We alias MaxPool2D because Keras has that alias
MaxPool2D = MaxPooling2D # pylint: disable=invalid-name
def BatchNormalization(self, **kwargs):
"""Builds a normalization layer.
Overrides the Keras application batch norm with the norm specified by the
Object Detection configuration.
Args:
**kwargs: Keyword arguments from the `layers.BatchNormalization` calls in
the Keras application.
Returns:
A normalization layer specified by the Object Detection hyperparameter
configurations.
"""
kwargs['scale'] = self._batchnorm_scale
return freezable_batch_norm.FreezableBatchNorm(
training=self._batchnorm_training,
epsilon=self._default_batchnorm_epsilon,
momentum=self._default_batchnorm_momentum,
**kwargs)
# Forward all non-overridden methods to the keras layers
def __getattr__(self, item):
return getattr(tf.keras.layers, item)
# pylint: disable=invalid-name
def inception_resnet_v2(
batchnorm_training,
output_stride=16,
align_feature_maps=False,
batchnorm_scale=False,
weight_decay=0.00004,
default_batchnorm_momentum=0.9997,
default_batchnorm_epsilon=0.001,
**kwargs):
"""Instantiates the InceptionResnetV2 architecture.
(Modified for object detection)
This wraps the InceptionResnetV2 tensorflow Keras application, but uses the
Keras application's kwargs-based monkey-patching API to override the Keras
architecture with the following changes:
- Supports freezing batch norm layers with FreezableBatchNorms
- Adds support for feature map alignment (like in the Slim model)
- Adds support for changing the output stride (like in the Slim model)
- Changes the default batchnorm momentum to 0.9997
- Adds support for overriding various batchnorm hyperparameters
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
output_stride: A scalar that specifies the requested ratio of input to
output spatial resolution. Only supports 8 and 16.
align_feature_maps: When true, changes all the VALID paddings in the
network to SAME padding so that the feature maps are aligned.
batchnorm_scale: If True, uses an explicit `gamma` multiplier to scale the
activations in the batch normalization layer.
weight_decay: the l2 regularization weight decay for weights variables.
(gets multiplied by 0.5 to map from slim l2 regularization weight to
Keras l2 regularization weight).
default_batchnorm_momentum: Float. Batch norm layers will be constructed
using this value as the momentum.
default_batchnorm_epsilon: small float added to variance to avoid
dividing by zero.
**kwargs: Keyword arguments forwarded directly to the
`tf.keras.applications.InceptionResNetV2` method that constructs the
Keras model.
Returns:
A Keras model instance.
"""
if output_stride != 8 and output_stride != 16:
raise ValueError('output_stride must be 8 or 16.')
layers_override = _LayersOverride(
batchnorm_training,
output_stride,
align_feature_maps=align_feature_maps,
batchnorm_scale=batchnorm_scale,
default_batchnorm_momentum=default_batchnorm_momentum,
default_batchnorm_epsilon=default_batchnorm_epsilon,
weight_decay=weight_decay)
return tf.keras.applications.InceptionResNetV2(
layers=layers_override, **kwargs)
# pylint: enable=invalid-name | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/keras_models/inception_resnet_v2.py | inception_resnet_v2.py |
from __future__ import print_function
import os
from absl import app
import numpy as np
import tensorflow.compat.v1 as tf
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string('model', 'resnet_v2_101',
'The model to load. The following are supported: '
'"resnet_v1_50", "resnet_v1_101", "resnet_v2_50", '
'"resnet_v2_101"')
tf.flags.DEFINE_string('output_path', None,
'The directory to output weights in.')
tf.flags.DEFINE_boolean('verify_weights', True,
('Verify the weights are loaded correctly by making '
'sure the predictions are the same before and after '
'saving.'))
def init_model(name):
"""Creates a Keras Model with the specific ResNet version."""
if name == 'resnet_v1_50':
model = tf.keras.applications.ResNet50(weights='imagenet')
elif name == 'resnet_v1_101':
model = tf.keras.applications.ResNet101(weights='imagenet')
elif name == 'resnet_v2_50':
model = tf.keras.applications.ResNet50V2(weights='imagenet')
elif name == 'resnet_v2_101':
model = tf.keras.applications.ResNet101V2(weights='imagenet')
else:
raise ValueError('Model {} not supported'.format(FLAGS.model))
return model
def main(_):
model = init_model(FLAGS.model)
path = os.path.join(FLAGS.output_path, FLAGS.model)
tf.gfile.MakeDirs(path)
weights_path = os.path.join(path, 'weights')
ckpt = tf.train.Checkpoint(feature_extractor=model)
saved_path = ckpt.save(weights_path)
if FLAGS.verify_weights:
imgs = np.random.randn(1, 224, 224, 3).astype(np.float32)
keras_preds = model(imgs)
model = init_model(FLAGS.model)
ckpt.restore(saved_path)
loaded_weights_pred = model(imgs).numpy()
if not np.all(np.isclose(keras_preds, loaded_weights_pred)):
raise RuntimeError('The model was not saved correctly.')
if __name__ == '__main__':
tf.enable_v2_behavior()
app.run(main) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/keras_models/convert_keras_models.py | convert_keras_models.py |
import tensorflow.compat.v2 as tf
BATCH_NORM_EPSILON = 1e-5
BATCH_NORM_MOMENTUM = 0.1
BATCH_NORM_FUSED = True
class IdentityLayer(tf.keras.layers.Layer):
"""A layer which passes through the input as it is."""
def call(self, inputs):
return inputs
def _get_padding_for_kernel_size(kernel_size):
if kernel_size == 7:
return (3, 3)
elif kernel_size == 3:
return (1, 1)
else:
raise ValueError('Padding for kernel size {} not known.'.format(
kernel_size))
def batchnorm():
try:
return tf.keras.layers.experimental.SyncBatchNormalization(
name='batchnorm', epsilon=1e-5, momentum=0.1)
except AttributeError:
return tf.keras.layers.BatchNormalization(
name='batchnorm', epsilon=1e-5, momentum=0.1, fused=BATCH_NORM_FUSED)
class ConvolutionalBlock(tf.keras.layers.Layer):
"""Block that aggregates Convolution + Norm layer + ReLU."""
def __init__(self, kernel_size, out_channels, stride=1, relu=True,
padding='same'):
"""Initializes the Convolutional block.
Args:
kernel_size: int, convolution kernel size.
out_channels: int, the desired number of output channels.
stride: Integer, stride used in the convolution.
relu: bool, whether to use relu at the end of the layer.
padding: str, the padding scheme to use when kernel_size <= 1
"""
super(ConvolutionalBlock, self).__init__()
if kernel_size > 1:
padding = 'valid'
padding_size = _get_padding_for_kernel_size(kernel_size)
# TODO(vighneshb) Explore if removing and using padding option in conv
# layer works.
self.pad = tf.keras.layers.ZeroPadding2D(padding_size)
else:
self.pad = IdentityLayer()
self.conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=kernel_size, use_bias=False,
strides=stride, padding=padding)
self.norm = batchnorm()
if relu:
self.relu = tf.keras.layers.ReLU()
else:
self.relu = IdentityLayer()
def call(self, inputs):
net = self.pad(inputs)
net = self.conv(net)
net = self.norm(net)
return self.relu(net)
class SkipConvolution(ConvolutionalBlock):
"""The skip connection layer for a ResNet."""
def __init__(self, out_channels, stride):
"""Initializes the skip convolution layer.
Args:
out_channels: int, the desired number of output channels.
stride: int, the stride for the layer.
"""
super(SkipConvolution, self).__init__(
out_channels=out_channels, kernel_size=1, stride=stride, relu=False)
class ResidualBlock(tf.keras.layers.Layer):
"""A Residual block."""
def __init__(self, out_channels, skip_conv=False, kernel_size=3, stride=1,
padding='same'):
"""Initializes the Residual block.
Args:
out_channels: int, the desired number of output channels.
skip_conv: bool, whether to use a conv layer for skip connections.
kernel_size: int, convolution kernel size.
stride: Integer, stride used in the convolution.
padding: str, the type of padding to use.
"""
super(ResidualBlock, self).__init__()
self.conv_block = ConvolutionalBlock(
kernel_size=kernel_size, out_channels=out_channels, stride=stride)
self.conv = tf.keras.layers.Conv2D(
filters=out_channels, kernel_size=kernel_size, use_bias=False,
strides=1, padding=padding)
self.norm = batchnorm()
if skip_conv:
self.skip = SkipConvolution(out_channels=out_channels,
stride=stride)
else:
self.skip = IdentityLayer()
self.relu = tf.keras.layers.ReLU()
def call(self, inputs):
net = self.conv_block(inputs)
net = self.conv(net)
net = self.norm(net)
net_skip = self.skip(inputs)
return self.relu(net + net_skip)
class InputDownsampleBlock(tf.keras.layers.Layer):
"""Block for the initial feature downsampling."""
def __init__(self, out_channels_initial_conv, out_channels_residual_block):
"""Initializes the downsample block.
Args:
out_channels_initial_conv: int, the desired number of output channels
in the initial conv layer.
out_channels_residual_block: int, the desired number of output channels
in the underlying residual block.
"""
super(InputDownsampleBlock, self).__init__()
self.conv_block = ConvolutionalBlock(
kernel_size=7, out_channels=out_channels_initial_conv, stride=2,
padding='valid')
self.residual_block = ResidualBlock(
out_channels=out_channels_residual_block, stride=2, skip_conv=True)
def call(self, inputs):
return self.residual_block(self.conv_block(inputs))
class InputConvBlock(tf.keras.layers.Layer):
"""Block for the initial feature convolution.
This block is used in the hourglass network when we don't want to downsample
the input.
"""
def __init__(self, out_channels_initial_conv, out_channels_residual_block):
"""Initializes the downsample block.
Args:
out_channels_initial_conv: int, the desired number of output channels
in the initial conv layer.
out_channels_residual_block: int, the desired number of output channels
in the underlying residual block.
"""
super(InputConvBlock, self).__init__()
self.conv_block = ConvolutionalBlock(
kernel_size=3, out_channels=out_channels_initial_conv, stride=1,
padding='valid')
self.residual_block = ResidualBlock(
out_channels=out_channels_residual_block, stride=1, skip_conv=True)
def call(self, inputs):
return self.residual_block(self.conv_block(inputs))
def _make_repeated_residual_blocks(out_channels, num_blocks,
initial_stride=1, residual_channels=None,
initial_skip_conv=False):
"""Stack Residual blocks one after the other.
Args:
out_channels: int, the desired number of output channels.
num_blocks: int, the number of residual blocks to be stacked.
initial_stride: int, the stride of the initial residual block.
residual_channels: int, the desired number of output channels in the
intermediate residual blocks. If not specifed, we use out_channels.
initial_skip_conv: bool, if set, the first residual block uses a skip
convolution. This is useful when the number of channels in the input
are not the same as residual_channels.
Returns:
blocks: A list of residual blocks to be applied in sequence.
"""
blocks = []
if residual_channels is None:
residual_channels = out_channels
for i in range(num_blocks - 1):
# Only use the stride at the first block so we don't repeatedly downsample
# the input
stride = initial_stride if i == 0 else 1
# If the stide is more than 1, we cannot use an identity layer for the
# skip connection and are forced to use a conv for the skip connection.
skip_conv = stride > 1
if i == 0 and initial_skip_conv:
skip_conv = True
blocks.append(
ResidualBlock(out_channels=residual_channels, stride=stride,
skip_conv=skip_conv)
)
if num_blocks == 1:
# If there is only 1 block, the for loop above is not run,
# therefore we honor the requested stride in the last residual block
stride = initial_stride
# We are forced to use a conv in the skip connection if stride > 1
skip_conv = stride > 1
else:
stride = 1
skip_conv = residual_channels != out_channels
blocks.append(ResidualBlock(out_channels=out_channels, skip_conv=skip_conv,
stride=stride))
return blocks
def _apply_blocks(inputs, blocks):
net = inputs
for block in blocks:
net = block(net)
return net
class EncoderDecoderBlock(tf.keras.layers.Layer):
"""An encoder-decoder block which recursively defines the hourglass network."""
def __init__(self, num_stages, channel_dims, blocks_per_stage,
stagewise_downsample=True, encoder_decoder_shortcut=True):
"""Initializes the encoder-decoder block.
Args:
num_stages: int, Number of stages in the network. At each stage we have 2
encoder and 1 decoder blocks. The second encoder block downsamples the
input.
channel_dims: int list, the output channels dimensions of stages in
the network. `channel_dims[0]` is used to define the number of
channels in the first encoder block and `channel_dims[1]` is used to
define the number of channels in the second encoder block. The channels
in the recursive inner layers are defined using `channel_dims[1:]`
blocks_per_stage: int list, number of residual blocks to use at each
stage. `blocks_per_stage[0]` defines the number of blocks at the
current stage and `blocks_per_stage[1:]` is used at further stages.
stagewise_downsample: bool, whether or not to downsample before passing
inputs to the next stage.
encoder_decoder_shortcut: bool, whether or not to use shortcut
connections between encoder and decoder.
"""
super(EncoderDecoderBlock, self).__init__()
out_channels = channel_dims[0]
out_channels_downsampled = channel_dims[1]
self.encoder_decoder_shortcut = encoder_decoder_shortcut
if encoder_decoder_shortcut:
self.merge_features = tf.keras.layers.Add()
self.encoder_block1 = _make_repeated_residual_blocks(
out_channels=out_channels, num_blocks=blocks_per_stage[0],
initial_stride=1)
initial_stride = 2 if stagewise_downsample else 1
self.encoder_block2 = _make_repeated_residual_blocks(
out_channels=out_channels_downsampled,
num_blocks=blocks_per_stage[0], initial_stride=initial_stride,
initial_skip_conv=out_channels != out_channels_downsampled)
if num_stages > 1:
self.inner_block = [
EncoderDecoderBlock(num_stages - 1, channel_dims[1:],
blocks_per_stage[1:],
stagewise_downsample=stagewise_downsample,
encoder_decoder_shortcut=encoder_decoder_shortcut)
]
else:
self.inner_block = _make_repeated_residual_blocks(
out_channels=out_channels_downsampled,
num_blocks=blocks_per_stage[1])
self.decoder_block = _make_repeated_residual_blocks(
residual_channels=out_channels_downsampled,
out_channels=out_channels, num_blocks=blocks_per_stage[0])
self.upsample = tf.keras.layers.UpSampling2D(initial_stride)
def call(self, inputs):
if self.encoder_decoder_shortcut:
encoded_outputs = _apply_blocks(inputs, self.encoder_block1)
encoded_downsampled_outputs = _apply_blocks(inputs, self.encoder_block2)
inner_block_outputs = _apply_blocks(
encoded_downsampled_outputs, self.inner_block)
decoded_outputs = _apply_blocks(inner_block_outputs, self.decoder_block)
upsampled_outputs = self.upsample(decoded_outputs)
if self.encoder_decoder_shortcut:
return self.merge_features([encoded_outputs, upsampled_outputs])
else:
return upsampled_outputs
class HourglassNetwork(tf.keras.Model):
"""The hourglass network."""
def __init__(self, num_stages, input_channel_dims, channel_dims_per_stage,
blocks_per_stage, num_hourglasses, initial_downsample=True,
stagewise_downsample=True, encoder_decoder_shortcut=True):
"""Intializes the feature extractor.
Args:
num_stages: int, Number of stages in the network. At each stage we have 2
encoder and 1 decoder blocks. The second encoder block downsamples the
input.
input_channel_dims: int, the number of channels in the input conv blocks.
channel_dims_per_stage: int list, the output channel dimensions of each
stage in the hourglass network.
blocks_per_stage: int list, number of residual blocks to use at each
stage in the hourglass network
num_hourglasses: int, number of hourglas networks to stack
sequentially.
initial_downsample: bool, if set, downsamples the input by a factor of 4
before applying the rest of the network. Downsampling is done with a 7x7
convolution kernel, otherwise a 3x3 kernel is used.
stagewise_downsample: bool, whether or not to downsample before passing
inputs to the next stage.
encoder_decoder_shortcut: bool, whether or not to use shortcut
connections between encoder and decoder.
"""
super(HourglassNetwork, self).__init__()
self.num_hourglasses = num_hourglasses
self.initial_downsample = initial_downsample
if initial_downsample:
self.downsample_input = InputDownsampleBlock(
out_channels_initial_conv=input_channel_dims,
out_channels_residual_block=channel_dims_per_stage[0]
)
else:
self.conv_input = InputConvBlock(
out_channels_initial_conv=input_channel_dims,
out_channels_residual_block=channel_dims_per_stage[0]
)
self.hourglass_network = []
self.output_conv = []
for _ in range(self.num_hourglasses):
self.hourglass_network.append(
EncoderDecoderBlock(
num_stages=num_stages, channel_dims=channel_dims_per_stage,
blocks_per_stage=blocks_per_stage,
stagewise_downsample=stagewise_downsample,
encoder_decoder_shortcut=encoder_decoder_shortcut)
)
self.output_conv.append(
ConvolutionalBlock(kernel_size=3,
out_channels=channel_dims_per_stage[0])
)
self.intermediate_conv1 = []
self.intermediate_conv2 = []
self.intermediate_residual = []
for _ in range(self.num_hourglasses - 1):
self.intermediate_conv1.append(
ConvolutionalBlock(
kernel_size=1, out_channels=channel_dims_per_stage[0], relu=False)
)
self.intermediate_conv2.append(
ConvolutionalBlock(
kernel_size=1, out_channels=channel_dims_per_stage[0], relu=False)
)
self.intermediate_residual.append(
ResidualBlock(out_channels=channel_dims_per_stage[0])
)
self.intermediate_relu = tf.keras.layers.ReLU()
def call(self, inputs):
if self.initial_downsample:
inputs = self.downsample_input(inputs)
else:
inputs = self.conv_input(inputs)
outputs = []
for i in range(self.num_hourglasses):
hourglass_output = self.hourglass_network[i](inputs)
output = self.output_conv[i](hourglass_output)
outputs.append(output)
if i < self.num_hourglasses - 1:
secondary_output = (self.intermediate_conv1[i](inputs) +
self.intermediate_conv2[i](output))
secondary_output = self.intermediate_relu(secondary_output)
inputs = self.intermediate_residual[i](secondary_output)
return outputs
@property
def out_stride(self):
"""The stride in the output image of the network."""
return 4
@property
def num_feature_outputs(self):
"""Ther number of feature outputs returned by the feature extractor."""
return self.num_hourglasses
def _layer_depth(layer):
"""Compute depth of Conv/Residual blocks or lists of them."""
if isinstance(layer, list):
return sum([_layer_depth(l) for l in layer])
elif isinstance(layer, ConvolutionalBlock):
return 1
elif isinstance(layer, ResidualBlock):
return 2
else:
raise ValueError('Unknown layer - {}'.format(layer))
def _encoder_decoder_depth(network):
"""Helper function to compute depth of encoder-decoder blocks."""
encoder_block2_layers = _layer_depth(network.encoder_block2)
decoder_block_layers = _layer_depth(network.decoder_block)
if isinstance(network.inner_block[0], EncoderDecoderBlock):
assert len(network.inner_block) == 1, 'Inner block is expected as length 1.'
inner_block_layers = _encoder_decoder_depth(network.inner_block[0])
return inner_block_layers + encoder_block2_layers + decoder_block_layers
elif isinstance(network.inner_block[0], ResidualBlock):
return (encoder_block2_layers + decoder_block_layers +
_layer_depth(network.inner_block))
else:
raise ValueError('Unknown inner block type.')
def hourglass_depth(network):
"""Helper function to verify depth of hourglass backbone."""
input_conv_layers = 3 # 1 ResidualBlock and 1 ConvBlock
# Only intermediate_conv2 and intermediate_residual are applied before
# sending inputs to the later stages.
intermediate_layers = (
_layer_depth(network.intermediate_conv2) +
_layer_depth(network.intermediate_residual)
)
# network.output_conv is applied before sending input to the later stages
output_layers = _layer_depth(network.output_conv)
encoder_decoder_layers = sum(_encoder_decoder_depth(net) for net in
network.hourglass_network)
return (input_conv_layers + encoder_decoder_layers + intermediate_layers
+ output_layers)
def hourglass_104():
"""The Hourglass-104 backbone.
The architecture parameters are taken from [1].
Returns:
network: An HourglassNetwork object implementing the Hourglass-104
backbone.
[1]: https://arxiv.org/abs/1904.07850
"""
return HourglassNetwork(
input_channel_dims=128,
channel_dims_per_stage=[256, 256, 384, 384, 384, 512],
num_hourglasses=2,
num_stages=5,
blocks_per_stage=[2, 2, 2, 2, 2, 4],
)
def single_stage_hourglass(input_channel_dims, channel_dims_per_stage,
blocks_per_stage, initial_downsample=True,
stagewise_downsample=True,
encoder_decoder_shortcut=True):
assert len(channel_dims_per_stage) == len(blocks_per_stage)
return HourglassNetwork(
input_channel_dims=input_channel_dims,
channel_dims_per_stage=channel_dims_per_stage,
num_hourglasses=1,
num_stages=len(channel_dims_per_stage) - 1,
blocks_per_stage=blocks_per_stage,
initial_downsample=initial_downsample,
stagewise_downsample=stagewise_downsample,
encoder_decoder_shortcut=encoder_decoder_shortcut
)
def hourglass_10(num_channels, initial_downsample=True):
nc = num_channels
return single_stage_hourglass(
input_channel_dims=nc,
initial_downsample=initial_downsample,
blocks_per_stage=[1, 1],
channel_dims_per_stage=[nc * 2, nc * 2])
def hourglass_20(num_channels, initial_downsample=True):
nc = num_channels
return single_stage_hourglass(
input_channel_dims=nc,
initial_downsample=initial_downsample,
blocks_per_stage=[1, 2, 2],
channel_dims_per_stage=[nc * 2, nc * 2, nc * 3])
def hourglass_32(num_channels, initial_downsample=True):
nc = num_channels
return single_stage_hourglass(
input_channel_dims=nc,
initial_downsample=initial_downsample,
blocks_per_stage=[2, 2, 2, 2],
channel_dims_per_stage=[nc * 2, nc * 2, nc * 3, nc * 3])
def hourglass_52(num_channels, initial_downsample=True):
nc = num_channels
return single_stage_hourglass(
input_channel_dims=nc,
initial_downsample=initial_downsample,
blocks_per_stage=[2, 2, 2, 2, 2, 4],
channel_dims_per_stage=[nc * 2, nc * 2, nc * 3, nc * 3, nc * 3, nc*4])
def hourglass_100(num_channels, initial_downsample=True):
nc = num_channels
return single_stage_hourglass(
input_channel_dims=nc,
initial_downsample=initial_downsample,
blocks_per_stage=[4, 4, 4, 4, 4, 8],
channel_dims_per_stage=[nc * 2, nc * 2, nc * 3, nc * 3, nc * 3, nc*4])
def hourglass_20_uniform_size(num_channels):
nc = num_channels
return single_stage_hourglass(
input_channel_dims=nc,
blocks_per_stage=[1, 2, 2],
channel_dims_per_stage=[nc * 2, nc * 2, nc * 3],
initial_downsample=False,
stagewise_downsample=False)
def hourglass_20_no_shortcut(num_channels):
nc = num_channels
return single_stage_hourglass(
input_channel_dims=nc,
blocks_per_stage=[1, 2, 2],
channel_dims_per_stage=[nc * 2, nc * 2, nc * 3],
initial_downsample=False,
encoder_decoder_shortcut=False) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/keras_models/hourglass_network.py | hourglass_network.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.python.keras.applications import resnet
from object_detection.core import freezable_batch_norm
from object_detection.models.keras_models import model_utils
def _fixed_padding(inputs, kernel_size, rate=1): # pylint: disable=invalid-name
"""Pads the input along the spatial dimensions independently of input size.
Pads the input such that if it was used in a convolution with 'VALID' padding,
the output would have the same dimensions as if the unpadded input was used
in a convolution with 'SAME' padding.
Args:
inputs: A tensor of size [batch, height_in, width_in, channels].
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
rate: An integer, rate for atrous convolution.
Returns:
output: A tensor of size [batch, height_out, width_out, channels] with the
input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
"""
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = tf.pad(
inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
return padded_inputs
class _LayersOverride(object):
"""Alternative Keras layers interface for the Keras Resnet V1."""
def __init__(self,
batchnorm_training,
batchnorm_scale=True,
default_batchnorm_momentum=0.997,
default_batchnorm_epsilon=1e-5,
weight_decay=0.0001,
conv_hyperparams=None,
min_depth=8,
depth_multiplier=1):
"""Alternative tf.keras.layers interface, for use by the Keras Resnet V1.
The class is used by the Keras applications kwargs injection API to
modify the Resnet V1 Keras application with changes required by
the Object Detection API.
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
batchnorm_scale: If True, uses an explicit `gamma` multiplier to scale
the activations in the batch normalization layer.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
default_batchnorm_epsilon: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the epsilon.
weight_decay: The weight decay to use for regularizing the model.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default resnet_v1 layer builders.
min_depth: Minimum number of filters in the convolutional layers.
depth_multiplier: The depth multiplier to modify the number of filters
in the convolutional layers.
"""
self._batchnorm_training = batchnorm_training
self._batchnorm_scale = batchnorm_scale
self._default_batchnorm_momentum = default_batchnorm_momentum
self._default_batchnorm_epsilon = default_batchnorm_epsilon
self._conv_hyperparams = conv_hyperparams
self._min_depth = min_depth
self._depth_multiplier = depth_multiplier
self.regularizer = tf.keras.regularizers.l2(weight_decay)
self.initializer = tf.variance_scaling_initializer()
def _FixedPaddingLayer(self, kernel_size, rate=1): # pylint: disable=invalid-name
return tf.keras.layers.Lambda(
lambda x: _fixed_padding(x, kernel_size, rate))
def Conv2D(self, filters, kernel_size, **kwargs): # pylint: disable=invalid-name
"""Builds a Conv2D layer according to the current Object Detection config.
Overrides the Keras Resnet application's convolutions with ones that
follow the spec specified by the Object Detection hyperparameters.
Args:
filters: The number of filters to use for the convolution.
kernel_size: The kernel size to specify the height and width of the 2D
convolution window.
**kwargs: Keyword args specified by the Keras application for
constructing the convolution.
Returns:
A one-arg callable that will either directly apply a Keras Conv2D layer to
the input argument, or that will first pad the input then apply a Conv2D
layer.
"""
# Apply the minimum depth to the convolution layers.
filters = max(int(filters * self._depth_multiplier), self._min_depth)
if self._conv_hyperparams:
kwargs = self._conv_hyperparams.params(**kwargs)
else:
kwargs['kernel_regularizer'] = self.regularizer
kwargs['kernel_initializer'] = self.initializer
# Set use_bias as false to keep it consistent with Slim Resnet model.
kwargs['use_bias'] = False
kwargs['padding'] = 'same'
stride = kwargs.get('strides')
if stride and kernel_size and stride > 1 and kernel_size > 1:
kwargs['padding'] = 'valid'
def padded_conv(features): # pylint: disable=invalid-name
padded_features = self._FixedPaddingLayer(kernel_size)(features)
return tf.keras.layers.Conv2D(
filters, kernel_size, **kwargs)(padded_features)
return padded_conv
else:
return tf.keras.layers.Conv2D(filters, kernel_size, **kwargs)
def Activation(self, *args, **kwargs): # pylint: disable=unused-argument,invalid-name
"""Builds an activation layer.
Overrides the Keras application Activation layer specified by the
Object Detection configuration.
Args:
*args: Ignored,
required to match the `tf.keras.layers.Activation` interface.
**kwargs: Only the name is used,
required to match `tf.keras.layers.Activation` interface.
Returns:
An activation layer specified by the Object Detection hyperparameter
configurations.
"""
name = kwargs.get('name')
if self._conv_hyperparams:
return self._conv_hyperparams.build_activation_layer(name=name)
else:
return tf.keras.layers.Lambda(tf.nn.relu, name=name)
def BatchNormalization(self, **kwargs): # pylint: disable=invalid-name
"""Builds a normalization layer.
Overrides the Keras application batch norm with the norm specified by the
Object Detection configuration.
Args:
**kwargs: Only the name is used, all other params ignored.
Required for matching `layers.BatchNormalization` calls in the Keras
application.
Returns:
A normalization layer specified by the Object Detection hyperparameter
configurations.
"""
name = kwargs.get('name')
if self._conv_hyperparams:
return self._conv_hyperparams.build_batch_norm(
training=self._batchnorm_training,
name=name)
else:
kwargs['scale'] = self._batchnorm_scale
kwargs['epsilon'] = self._default_batchnorm_epsilon
return freezable_batch_norm.FreezableBatchNorm(
training=self._batchnorm_training,
momentum=self._default_batchnorm_momentum,
**kwargs)
def Input(self, shape): # pylint: disable=invalid-name
"""Builds an Input layer.
Overrides the Keras application Input layer with one that uses a
tf.placeholder_with_default instead of a tf.placeholder. This is necessary
to ensure the application works when run on a TPU.
Args:
shape: A tuple of integers representing the shape of the input, which
includes both spatial share and channels, but not the batch size.
Elements of this tuple can be None; 'None' elements represent dimensions
where the shape is not known.
Returns:
An input layer for the specified shape that internally uses a
placeholder_with_default.
"""
default_size = 224
default_batch_size = 1
shape = list(shape)
default_shape = [default_size if dim is None else dim for dim in shape]
input_tensor = tf.constant(0.0, shape=[default_batch_size] + default_shape)
placeholder_with_default = tf.placeholder_with_default(
input=input_tensor, shape=[None] + shape)
return model_utils.input_layer(shape, placeholder_with_default)
def MaxPooling2D(self, pool_size, **kwargs): # pylint: disable=invalid-name
"""Builds a MaxPooling2D layer with default padding as 'SAME'.
This is specified by the default resnet arg_scope in slim.
Args:
pool_size: The pool size specified by the Keras application.
**kwargs: Ignored, required to match the Keras applications usage.
Returns:
A MaxPooling2D layer with default padding as 'SAME'.
"""
kwargs['padding'] = 'same'
return tf.keras.layers.MaxPooling2D(pool_size, **kwargs)
# Add alias as Keras also has it.
MaxPool2D = MaxPooling2D # pylint: disable=invalid-name
def ZeroPadding2D(self, padding, **kwargs): # pylint: disable=unused-argument,invalid-name
"""Replaces explicit padding in the Keras application with a no-op.
Args:
padding: The padding values for image height and width.
**kwargs: Ignored, required to match the Keras applications usage.
Returns:
A no-op identity lambda.
"""
return lambda x: x
# Forward all non-overridden methods to the keras layers
def __getattr__(self, item):
return getattr(tf.keras.layers, item)
# pylint: disable=invalid-name
def resnet_v1_50(batchnorm_training,
batchnorm_scale=True,
default_batchnorm_momentum=0.997,
default_batchnorm_epsilon=1e-5,
weight_decay=0.0001,
conv_hyperparams=None,
min_depth=8,
depth_multiplier=1,
**kwargs):
"""Instantiates the Resnet50 architecture, modified for object detection.
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
batchnorm_scale: If True, uses an explicit `gamma` multiplier to scale
the activations in the batch normalization layer.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
default_batchnorm_epsilon: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the epsilon.
weight_decay: The weight decay to use for regularizing the model.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default resnet_v1 layer builders.
min_depth: Minimum number of filters in the convolutional layers.
depth_multiplier: The depth multiplier to modify the number of filters
in the convolutional layers.
**kwargs: Keyword arguments forwarded directly to the
`tf.keras.applications.Mobilenet` method that constructs the Keras
model.
Returns:
A Keras ResnetV1-50 model instance.
"""
layers_override = _LayersOverride(
batchnorm_training,
batchnorm_scale=batchnorm_scale,
default_batchnorm_momentum=default_batchnorm_momentum,
default_batchnorm_epsilon=default_batchnorm_epsilon,
conv_hyperparams=conv_hyperparams,
weight_decay=weight_decay,
min_depth=min_depth,
depth_multiplier=depth_multiplier)
return tf.keras.applications.resnet.ResNet50(
layers=layers_override, **kwargs)
def resnet_v1_101(batchnorm_training,
batchnorm_scale=True,
default_batchnorm_momentum=0.997,
default_batchnorm_epsilon=1e-5,
weight_decay=0.0001,
conv_hyperparams=None,
min_depth=8,
depth_multiplier=1,
**kwargs):
"""Instantiates the Resnet50 architecture, modified for object detection.
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
batchnorm_scale: If True, uses an explicit `gamma` multiplier to scale
the activations in the batch normalization layer.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
default_batchnorm_epsilon: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the epsilon.
weight_decay: The weight decay to use for regularizing the model.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default resnet_v1 layer builders.
min_depth: Minimum number of filters in the convolutional layers.
depth_multiplier: The depth multiplier to modify the number of filters
in the convolutional layers.
**kwargs: Keyword arguments forwarded directly to the
`tf.keras.applications.Mobilenet` method that constructs the Keras
model.
Returns:
A Keras ResnetV1-101 model instance.
"""
layers_override = _LayersOverride(
batchnorm_training,
batchnorm_scale=batchnorm_scale,
default_batchnorm_momentum=default_batchnorm_momentum,
default_batchnorm_epsilon=default_batchnorm_epsilon,
conv_hyperparams=conv_hyperparams,
weight_decay=weight_decay,
min_depth=min_depth,
depth_multiplier=depth_multiplier)
return tf.keras.applications.resnet.ResNet101(
layers=layers_override, **kwargs)
def resnet_v1_152(batchnorm_training,
batchnorm_scale=True,
default_batchnorm_momentum=0.997,
default_batchnorm_epsilon=1e-5,
weight_decay=0.0001,
conv_hyperparams=None,
min_depth=8,
depth_multiplier=1,
**kwargs):
"""Instantiates the Resnet50 architecture, modified for object detection.
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
batchnorm_scale: If True, uses an explicit `gamma` multiplier to scale
the activations in the batch normalization layer.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
default_batchnorm_epsilon: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the epsilon.
weight_decay: The weight decay to use for regularizing the model.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default resnet_v1 layer builders.
min_depth: Minimum number of filters in the convolutional layers.
depth_multiplier: The depth multiplier to modify the number of filters
in the convolutional layers.
**kwargs: Keyword arguments forwarded directly to the
`tf.keras.applications.Mobilenet` method that constructs the Keras
model.
Returns:
A Keras ResnetV1-152 model instance.
"""
layers_override = _LayersOverride(
batchnorm_training,
batchnorm_scale=batchnorm_scale,
default_batchnorm_momentum=default_batchnorm_momentum,
default_batchnorm_epsilon=default_batchnorm_epsilon,
conv_hyperparams=conv_hyperparams,
weight_decay=weight_decay,
min_depth=min_depth,
depth_multiplier=depth_multiplier)
return tf.keras.applications.resnet.ResNet152(
layers=layers_override, **kwargs)
# pylint: enable=invalid-name
# The following codes are based on the existing keras ResNet model pattern:
# google3/third_party/tensorflow/python/keras/applications/resnet.py
def block_basic(x,
filters,
kernel_size=3,
stride=1,
conv_shortcut=False,
name=None):
"""A residual block for ResNet18/34.
Args:
x: input tensor.
filters: integer, filters of the bottleneck layer.
kernel_size: default 3, kernel size of the bottleneck layer.
stride: default 1, stride of the first layer.
conv_shortcut: default False, use convolution shortcut if True, otherwise
identity shortcut.
name: string, block label.
Returns:
Output tensor for the residual block.
"""
layers = tf.keras.layers
bn_axis = 3 if tf.keras.backend.image_data_format() == 'channels_last' else 1
preact = layers.BatchNormalization(
axis=bn_axis, epsilon=1.001e-5, name=name + '_preact_bn')(
x)
preact = layers.Activation('relu', name=name + '_preact_relu')(preact)
if conv_shortcut:
shortcut = layers.Conv2D(
filters, 1, strides=1, name=name + '_0_conv')(
preact)
else:
shortcut = layers.MaxPooling2D(1, strides=stride)(x) if stride > 1 else x
x = layers.ZeroPadding2D(
padding=((1, 1), (1, 1)), name=name + '_1_pad')(
preact)
x = layers.Conv2D(
filters, kernel_size, strides=1, use_bias=False, name=name + '_1_conv')(
x)
x = layers.BatchNormalization(
axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(
x)
x = layers.Activation('relu', name=name + '_1_relu')(x)
x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + '_2_pad')(x)
x = layers.Conv2D(
filters,
kernel_size,
strides=stride,
use_bias=False,
name=name + '_2_conv')(
x)
x = layers.BatchNormalization(
axis=bn_axis, epsilon=1.001e-5, name=name + '_2_bn')(
x)
x = layers.Activation('relu', name=name + '_2_relu')(x)
x = layers.Add(name=name + '_out')([shortcut, x])
return x
def stack_basic(x, filters, blocks, stride1=2, name=None):
"""A set of stacked residual blocks for ResNet18/34.
Args:
x: input tensor.
filters: integer, filters of the bottleneck layer in a block.
blocks: integer, blocks in the stacked blocks.
stride1: default 2, stride of the first layer in the first block.
name: string, stack label.
Returns:
Output tensor for the stacked blocks.
"""
x = block_basic(x, filters, conv_shortcut=True, name=name + '_block1')
for i in range(2, blocks):
x = block_basic(x, filters, name=name + '_block' + str(i))
x = block_basic(
x, filters, stride=stride1, name=name + '_block' + str(blocks))
return x
def resnet_v1_18(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet18 architecture."""
def stack_fn(x):
x = stack_basic(x, 64, 2, stride1=1, name='conv2')
x = stack_basic(x, 128, 2, name='conv3')
x = stack_basic(x, 256, 2, name='conv4')
return stack_basic(x, 512, 2, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
'resnet18',
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
classifier_activation=classifier_activation)
def resnet_v1_34(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the ResNet34 architecture."""
def stack_fn(x):
x = stack_basic(x, 64, 3, stride1=1, name='conv2')
x = stack_basic(x, 128, 4, name='conv3')
x = stack_basic(x, 256, 6, name='conv4')
return stack_basic(x, 512, 3, name='conv5')
return resnet.ResNet(
stack_fn,
True,
True,
'resnet34',
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
classifier_activation=classifier_activation) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/keras_models/resnet_v1.py | resnet_v1.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from object_detection.core import freezable_batch_norm
from object_detection.models.keras_models import model_utils
def _fixed_padding(inputs, kernel_size, rate=1): # pylint: disable=invalid-name
"""Pads the input along the spatial dimensions independently of input size.
Pads the input such that if it was used in a convolution with 'VALID' padding,
the output would have the same dimensions as if the unpadded input was used
in a convolution with 'SAME' padding.
Args:
inputs: A tensor of size [batch, height_in, width_in, channels].
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
rate: An integer, rate for atrous convolution.
Returns:
output: A tensor of size [batch, height_out, width_out, channels] with the
input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
"""
kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1),
kernel_size[0] + (kernel_size[0] - 1) * (rate - 1)]
pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1]
pad_beg = [pad_total[0] // 2, pad_total[1] // 2]
pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]]
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg[0], pad_end[0]],
[pad_beg[1], pad_end[1]], [0, 0]])
return padded_inputs
class _LayersOverride(object):
"""Alternative Keras layers interface for the Keras MobileNetV1."""
def __init__(self,
batchnorm_training,
default_batchnorm_momentum=0.999,
conv_hyperparams=None,
use_explicit_padding=False,
alpha=1.0,
min_depth=None,
conv_defs=None):
"""Alternative tf.keras.layers interface, for use by the Keras MobileNetV1.
It is used by the Keras applications kwargs injection API to
modify the MobilenetV1 Keras application with changes required by
the Object Detection API.
These injected interfaces make the following changes to the network:
- Applies the Object Detection hyperparameter configuration
- Supports FreezableBatchNorms
- Adds support for a min number of filters for each layer
- Makes the `alpha` parameter affect the final convolution block even if it
is less than 1.0
- Adds support for explicit padding of convolutions
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default mobilenet_v1 layer builders.
use_explicit_padding: If True, use 'valid' padding for convolutions,
but explicitly pre-pads inputs so that the output dimensions are the
same as if 'same' padding were used. Off by default.
alpha: The width multiplier referenced in the MobileNetV1 paper. It
modifies the number of filters in each convolutional layer. It's called
depth multiplier in Keras application MobilenetV1.
min_depth: Minimum number of filters in the convolutional layers.
conv_defs: Network layout to specify the mobilenet_v1 body. Default is
`None` to use the default mobilenet_v1 network layout.
"""
self._alpha = alpha
self._batchnorm_training = batchnorm_training
self._default_batchnorm_momentum = default_batchnorm_momentum
self._conv_hyperparams = conv_hyperparams
self._use_explicit_padding = use_explicit_padding
self._min_depth = min_depth
self._conv_defs = conv_defs
self.regularizer = tf.keras.regularizers.l2(0.00004 * 0.5)
self.initializer = tf.truncated_normal_initializer(stddev=0.09)
def _FixedPaddingLayer(self, kernel_size, rate=1):
return tf.keras.layers.Lambda(
lambda x: _fixed_padding(x, kernel_size, rate))
def Conv2D(self, filters, kernel_size, **kwargs):
"""Builds a Conv2D layer according to the current Object Detection config.
Overrides the Keras MobileNetV1 application's convolutions with ones that
follow the spec specified by the Object Detection hyperparameters.
Args:
filters: The number of filters to use for the convolution.
kernel_size: The kernel size to specify the height and width of the 2D
convolution window. In this function, the kernel size is expected to
be pair of numbers and the numbers must be equal for this function.
**kwargs: Keyword args specified by the Keras application for
constructing the convolution.
Returns:
A one-arg callable that will either directly apply a Keras Conv2D layer to
the input argument, or that will first pad the input then apply a Conv2D
layer.
Raises:
ValueError: if kernel size is not a pair of equal
integers (representing a square kernel).
"""
if not isinstance(kernel_size, tuple):
raise ValueError('kernel is expected to be a tuple.')
if len(kernel_size) != 2:
raise ValueError('kernel is expected to be length two.')
if kernel_size[0] != kernel_size[1]:
raise ValueError('kernel is expected to be square.')
layer_name = kwargs['name']
if self._conv_defs:
conv_filters = model_utils.get_conv_def(self._conv_defs, layer_name)
if conv_filters:
filters = conv_filters
# Apply the width multiplier and the minimum depth to the convolution layers
filters = int(filters * self._alpha)
if self._min_depth and filters < self._min_depth:
filters = self._min_depth
if self._conv_hyperparams:
kwargs = self._conv_hyperparams.params(**kwargs)
else:
kwargs['kernel_regularizer'] = self.regularizer
kwargs['kernel_initializer'] = self.initializer
kwargs['padding'] = 'same'
if self._use_explicit_padding and kernel_size[0] > 1:
kwargs['padding'] = 'valid'
def padded_conv(features): # pylint: disable=invalid-name
padded_features = self._FixedPaddingLayer(kernel_size)(features)
return tf.keras.layers.Conv2D(
filters, kernel_size, **kwargs)(padded_features)
return padded_conv
else:
return tf.keras.layers.Conv2D(filters, kernel_size, **kwargs)
def DepthwiseConv2D(self, kernel_size, **kwargs):
"""Builds a DepthwiseConv2D according to the Object Detection config.
Overrides the Keras MobileNetV2 application's convolutions with ones that
follow the spec specified by the Object Detection hyperparameters.
Args:
kernel_size: The kernel size to specify the height and width of the 2D
convolution window.
**kwargs: Keyword args specified by the Keras application for
constructing the convolution.
Returns:
A one-arg callable that will either directly apply a Keras DepthwiseConv2D
layer to the input argument, or that will first pad the input then apply
the depthwise convolution.
"""
if self._conv_hyperparams:
kwargs = self._conv_hyperparams.params(**kwargs)
# Both regularizer and initializaer also applies to depthwise layer in
# MobilenetV1, so we remap the kernel_* to depthwise_* here.
kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['depthwise_initializer'] = kwargs['kernel_initializer']
else:
kwargs['depthwise_regularizer'] = self.regularizer
kwargs['depthwise_initializer'] = self.initializer
kwargs['padding'] = 'same'
if self._use_explicit_padding:
kwargs['padding'] = 'valid'
def padded_depthwise_conv(features): # pylint: disable=invalid-name
padded_features = self._FixedPaddingLayer(kernel_size)(features)
return tf.keras.layers.DepthwiseConv2D(
kernel_size, **kwargs)(padded_features)
return padded_depthwise_conv
else:
return tf.keras.layers.DepthwiseConv2D(kernel_size, **kwargs)
def BatchNormalization(self, **kwargs):
"""Builds a normalization layer.
Overrides the Keras application batch norm with the norm specified by the
Object Detection configuration.
Args:
**kwargs: Only the name is used, all other params ignored.
Required for matching `layers.BatchNormalization` calls in the Keras
application.
Returns:
A normalization layer specified by the Object Detection hyperparameter
configurations.
"""
name = kwargs.get('name')
if self._conv_hyperparams:
return self._conv_hyperparams.build_batch_norm(
training=self._batchnorm_training,
name=name)
else:
return freezable_batch_norm.FreezableBatchNorm(
training=self._batchnorm_training,
epsilon=1e-3,
momentum=self._default_batchnorm_momentum,
name=name)
def Input(self, shape):
"""Builds an Input layer.
Overrides the Keras application Input layer with one that uses a
tf.placeholder_with_default instead of a tf.placeholder. This is necessary
to ensure the application works when run on a TPU.
Args:
shape: The shape for the input layer to use. (Does not include a dimension
for the batch size).
Returns:
An input layer for the specified shape that internally uses a
placeholder_with_default.
"""
default_size = 224
default_batch_size = 1
shape = list(shape)
default_shape = [default_size if dim is None else dim for dim in shape]
input_tensor = tf.constant(0.0, shape=[default_batch_size] + default_shape)
placeholder_with_default = tf.placeholder_with_default(
input=input_tensor, shape=[None] + shape)
return model_utils.input_layer(shape, placeholder_with_default)
# pylint: disable=unused-argument
def ReLU(self, *args, **kwargs):
"""Builds an activation layer.
Overrides the Keras application ReLU with the activation specified by the
Object Detection configuration.
Args:
*args: Ignored, required to match the `tf.keras.ReLU` interface
**kwargs: Only the name is used,
required to match `tf.keras.ReLU` interface
Returns:
An activation layer specified by the Object Detection hyperparameter
configurations.
"""
name = kwargs.get('name')
if self._conv_hyperparams:
return self._conv_hyperparams.build_activation_layer(name=name)
else:
return tf.keras.layers.Lambda(tf.nn.relu6, name=name)
# pylint: enable=unused-argument
# pylint: disable=unused-argument
def ZeroPadding2D(self, padding, **kwargs):
"""Replaces explicit padding in the Keras application with a no-op.
Args:
padding: The padding values for image height and width.
**kwargs: Ignored, required to match the Keras applications usage.
Returns:
A no-op identity lambda.
"""
return lambda x: x
# pylint: enable=unused-argument
# Forward all non-overridden methods to the keras layers
def __getattr__(self, item):
return getattr(tf.keras.layers, item)
# pylint: disable=invalid-name
def mobilenet_v1(batchnorm_training,
default_batchnorm_momentum=0.9997,
conv_hyperparams=None,
use_explicit_padding=False,
alpha=1.0,
min_depth=None,
conv_defs=None,
**kwargs):
"""Instantiates the MobileNetV1 architecture, modified for object detection.
This wraps the MobileNetV1 tensorflow Keras application, but uses the
Keras application's kwargs-based monkey-patching API to override the Keras
architecture with the following changes:
- Changes the default batchnorm momentum to 0.9997
- Applies the Object Detection hyperparameter configuration
- Supports FreezableBatchNorms
- Adds support for a min number of filters for each layer
- Makes the `alpha` parameter affect the final convolution block even if it
is less than 1.0
- Adds support for explicit padding of convolutions
- Makes the Input layer use a tf.placeholder_with_default instead of a
tf.placeholder, to work on TPUs.
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default mobilenet_v1 layer builders.
use_explicit_padding: If True, use 'valid' padding for convolutions,
but explicitly pre-pads inputs so that the output dimensions are the
same as if 'same' padding were used. Off by default.
alpha: The width multiplier referenced in the MobileNetV1 paper. It
modifies the number of filters in each convolutional layer.
min_depth: Minimum number of filters in the convolutional layers.
conv_defs: Network layout to specify the mobilenet_v1 body. Default is
`None` to use the default mobilenet_v1 network layout.
**kwargs: Keyword arguments forwarded directly to the
`tf.keras.applications.Mobilenet` method that constructs the Keras
model.
Returns:
A Keras model instance.
"""
layers_override = _LayersOverride(
batchnorm_training,
default_batchnorm_momentum=default_batchnorm_momentum,
conv_hyperparams=conv_hyperparams,
use_explicit_padding=use_explicit_padding,
min_depth=min_depth,
alpha=alpha,
conv_defs=conv_defs)
return tf.keras.applications.MobileNet(
alpha=alpha, layers=layers_override, **kwargs)
# pylint: enable=invalid-name | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/keras_models/mobilenet_v1.py | mobilenet_v1.py |
"""A wrapper around the MobileNet v2 models for Keras, for object detection."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from object_detection.core import freezable_batch_norm
from object_detection.models.keras_models import model_utils
from object_detection.utils import ops
# pylint: disable=invalid-name
# This method copied from the slim mobilenet base network code (same license)
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class _LayersOverride(object):
"""Alternative Keras layers interface for the Keras MobileNetV2."""
def __init__(self,
batchnorm_training,
default_batchnorm_momentum=0.999,
conv_hyperparams=None,
use_explicit_padding=False,
alpha=1.0,
min_depth=None,
conv_defs=None):
"""Alternative tf.keras.layers interface, for use by the Keras MobileNetV2.
It is used by the Keras applications kwargs injection API to
modify the Mobilenet v2 Keras application with changes required by
the Object Detection API.
These injected interfaces make the following changes to the network:
- Applies the Object Detection hyperparameter configuration
- Supports FreezableBatchNorms
- Adds support for a min number of filters for each layer
- Makes the `alpha` parameter affect the final convolution block even if it
is less than 1.0
- Adds support for explicit padding of convolutions
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default mobilenet_v2 layer builders.
use_explicit_padding: If True, use 'valid' padding for convolutions,
but explicitly pre-pads inputs so that the output dimensions are the
same as if 'same' padding were used. Off by default.
alpha: The width multiplier referenced in the MobileNetV2 paper. It
modifies the number of filters in each convolutional layer.
min_depth: Minimum number of filters in the convolutional layers.
conv_defs: Network layout to specify the mobilenet_v2 body. Default is
`None` to use the default mobilenet_v2 network layout.
"""
self._alpha = alpha
self._batchnorm_training = batchnorm_training
self._default_batchnorm_momentum = default_batchnorm_momentum
self._conv_hyperparams = conv_hyperparams
self._use_explicit_padding = use_explicit_padding
self._min_depth = min_depth
self._conv_defs = conv_defs
self.regularizer = tf.keras.regularizers.l2(0.00004 * 0.5)
self.initializer = tf.truncated_normal_initializer(stddev=0.09)
def _FixedPaddingLayer(self, kernel_size):
return tf.keras.layers.Lambda(lambda x: ops.fixed_padding(x, kernel_size))
def Conv2D(self, filters, **kwargs):
"""Builds a Conv2D layer according to the current Object Detection config.
Overrides the Keras MobileNetV2 application's convolutions with ones that
follow the spec specified by the Object Detection hyperparameters.
Args:
filters: The number of filters to use for the convolution.
**kwargs: Keyword args specified by the Keras application for
constructing the convolution.
Returns:
A one-arg callable that will either directly apply a Keras Conv2D layer to
the input argument, or that will first pad the input then apply a Conv2D
layer.
"""
# Make sure 'alpha' is always applied to the last convolution block's size
# (This overrides the Keras application's functionality)
layer_name = kwargs.get('name')
if layer_name == 'Conv_1':
if self._conv_defs:
filters = model_utils.get_conv_def(self._conv_defs, 'Conv_1')
else:
filters = 1280
if self._alpha < 1.0:
filters = _make_divisible(filters * self._alpha, 8)
# Apply the minimum depth to the convolution layers
if (self._min_depth and (filters < self._min_depth)
and not kwargs.get('name').endswith('expand')):
filters = self._min_depth
if self._conv_hyperparams:
kwargs = self._conv_hyperparams.params(**kwargs)
else:
kwargs['kernel_regularizer'] = self.regularizer
kwargs['kernel_initializer'] = self.initializer
kwargs['padding'] = 'same'
kernel_size = kwargs.get('kernel_size')
if self._use_explicit_padding and kernel_size > 1:
kwargs['padding'] = 'valid'
def padded_conv(features):
padded_features = self._FixedPaddingLayer(kernel_size)(features)
return tf.keras.layers.Conv2D(filters, **kwargs)(padded_features)
return padded_conv
else:
return tf.keras.layers.Conv2D(filters, **kwargs)
def DepthwiseConv2D(self, **kwargs):
"""Builds a DepthwiseConv2D according to the Object Detection config.
Overrides the Keras MobileNetV2 application's convolutions with ones that
follow the spec specified by the Object Detection hyperparameters.
Args:
**kwargs: Keyword args specified by the Keras application for
constructing the convolution.
Returns:
A one-arg callable that will either directly apply a Keras DepthwiseConv2D
layer to the input argument, or that will first pad the input then apply
the depthwise convolution.
"""
if self._conv_hyperparams:
kwargs = self._conv_hyperparams.params(**kwargs)
# Both the regularizer and initializer apply to the depthwise layer in
# MobilenetV1, so we remap the kernel_* to depthwise_* here.
kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['depthwise_initializer'] = kwargs['kernel_initializer']
else:
kwargs['depthwise_regularizer'] = self.regularizer
kwargs['depthwise_initializer'] = self.initializer
kwargs['padding'] = 'same'
kernel_size = kwargs.get('kernel_size')
if self._use_explicit_padding and kernel_size > 1:
kwargs['padding'] = 'valid'
def padded_depthwise_conv(features):
padded_features = self._FixedPaddingLayer(kernel_size)(features)
return tf.keras.layers.DepthwiseConv2D(**kwargs)(padded_features)
return padded_depthwise_conv
else:
return tf.keras.layers.DepthwiseConv2D(**kwargs)
def BatchNormalization(self, **kwargs):
"""Builds a normalization layer.
Overrides the Keras application batch norm with the norm specified by the
Object Detection configuration.
Args:
**kwargs: Only the name is used, all other params ignored.
Required for matching `layers.BatchNormalization` calls in the Keras
application.
Returns:
A normalization layer specified by the Object Detection hyperparameter
configurations.
"""
name = kwargs.get('name')
if self._conv_hyperparams:
return self._conv_hyperparams.build_batch_norm(
training=self._batchnorm_training,
name=name)
else:
return freezable_batch_norm.FreezableBatchNorm(
training=self._batchnorm_training,
epsilon=1e-3,
momentum=self._default_batchnorm_momentum,
name=name)
def Input(self, shape):
"""Builds an Input layer.
Overrides the Keras application Input layer with one that uses a
tf.placeholder_with_default instead of a tf.placeholder. This is necessary
to ensure the application works when run on a TPU.
Args:
shape: The shape for the input layer to use. (Does not include a dimension
for the batch size).
Returns:
An input layer for the specified shape that internally uses a
placeholder_with_default.
"""
default_size = 224
default_batch_size = 1
shape = list(shape)
default_shape = [default_size if dim is None else dim for dim in shape]
input_tensor = tf.constant(0.0, shape=[default_batch_size] + default_shape)
placeholder_with_default = tf.placeholder_with_default(
input=input_tensor, shape=[None] + shape)
return model_utils.input_layer(shape, placeholder_with_default)
# pylint: disable=unused-argument
def ReLU(self, *args, **kwargs):
"""Builds an activation layer.
Overrides the Keras application ReLU with the activation specified by the
Object Detection configuration.
Args:
*args: Ignored, required to match the `tf.keras.ReLU` interface
**kwargs: Only the name is used,
required to match `tf.keras.ReLU` interface
Returns:
An activation layer specified by the Object Detection hyperparameter
configurations.
"""
name = kwargs.get('name')
if self._conv_hyperparams:
return self._conv_hyperparams.build_activation_layer(name=name)
else:
return tf.keras.layers.Lambda(tf.nn.relu6, name=name)
# pylint: enable=unused-argument
# pylint: disable=unused-argument
def ZeroPadding2D(self, **kwargs):
"""Replaces explicit padding in the Keras application with a no-op.
Args:
**kwargs: Ignored, required to match the Keras applications usage.
Returns:
A no-op identity lambda.
"""
return lambda x: x
# pylint: enable=unused-argument
# Forward all non-overridden methods to the keras layers
def __getattr__(self, item):
return getattr(tf.keras.layers, item)
def mobilenet_v2(batchnorm_training,
default_batchnorm_momentum=0.9997,
conv_hyperparams=None,
use_explicit_padding=False,
alpha=1.0,
min_depth=None,
conv_defs=None,
**kwargs):
"""Instantiates the MobileNetV2 architecture, modified for object detection.
This wraps the MobileNetV2 tensorflow Keras application, but uses the
Keras application's kwargs-based monkey-patching API to override the Keras
architecture with the following changes:
- Changes the default batchnorm momentum to 0.9997
- Applies the Object Detection hyperparameter configuration
- Supports FreezableBatchNorms
- Adds support for a min number of filters for each layer
- Makes the `alpha` parameter affect the final convolution block even if it
is less than 1.0
- Adds support for explicit padding of convolutions
- Makes the Input layer use a tf.placeholder_with_default instead of a
tf.placeholder, to work on TPUs.
Args:
batchnorm_training: Bool. Assigned to Batch norm layer `training` param
when constructing `freezable_batch_norm.FreezableBatchNorm` layers.
default_batchnorm_momentum: Float. When 'conv_hyperparams' is None,
batch norm layers will be constructed using this value as the momentum.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops. Optionally set to `None`
to use default mobilenet_v2 layer builders.
use_explicit_padding: If True, use 'valid' padding for convolutions,
but explicitly pre-pads inputs so that the output dimensions are the
same as if 'same' padding were used. Off by default.
alpha: The width multiplier referenced in the MobileNetV2 paper. It
modifies the number of filters in each convolutional layer.
min_depth: Minimum number of filters in the convolutional layers.
conv_defs: Network layout to specify the mobilenet_v2 body. Default is
`None` to use the default mobilenet_v2 network layout.
**kwargs: Keyword arguments forwarded directly to the
`tf.keras.applications.MobilenetV2` method that constructs the Keras
model.
Returns:
A Keras model instance.
"""
layers_override = _LayersOverride(
batchnorm_training,
default_batchnorm_momentum=default_batchnorm_momentum,
conv_hyperparams=conv_hyperparams,
use_explicit_padding=use_explicit_padding,
min_depth=min_depth,
alpha=alpha,
conv_defs=conv_defs)
return tf.keras.applications.MobileNetV2(alpha=alpha,
layers=layers_override,
**kwargs)
# pylint: enable=invalid-name | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/models/keras_models/mobilenet_v2.py | mobilenet_v2.py |
import tensorflow.compat.v1 as tf
from object_detection.core import box_coder
from object_detection.core import box_list
EPSILON = 1e-8
class SquareBoxCoder(box_coder.BoxCoder):
"""Encodes a 3-scalar representation of a square box."""
def __init__(self, scale_factors=None):
"""Constructor for SquareBoxCoder.
Args:
scale_factors: List of 3 positive scalars to scale ty, tx, and tl.
If set to None, does not perform scaling. For faster RCNN,
the open-source implementation recommends using [10.0, 10.0, 5.0].
Raises:
ValueError: If scale_factors is not length 3 or contains values less than
or equal to 0.
"""
if scale_factors:
if len(scale_factors) != 3:
raise ValueError('The argument scale_factors must be a list of length '
'3.')
if any(scalar <= 0 for scalar in scale_factors):
raise ValueError('The values in scale_factors must all be greater '
'than 0.')
self._scale_factors = scale_factors
@property
def code_size(self):
return 3
def _encode(self, boxes, anchors):
"""Encodes a box collection with respect to an anchor collection.
Args:
boxes: BoxList holding N boxes to be encoded.
anchors: BoxList of anchors.
Returns:
a tensor representing N anchor-encoded boxes of the format
[ty, tx, tl].
"""
# Convert anchors to the center coordinate representation.
ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
la = tf.sqrt(ha * wa)
ycenter, xcenter, h, w = boxes.get_center_coordinates_and_sizes()
l = tf.sqrt(h * w)
# Avoid NaN in division and log below.
la += EPSILON
l += EPSILON
tx = (xcenter - xcenter_a) / la
ty = (ycenter - ycenter_a) / la
tl = tf.log(l / la)
# Scales location targets for joint training.
if self._scale_factors:
ty *= self._scale_factors[0]
tx *= self._scale_factors[1]
tl *= self._scale_factors[2]
return tf.transpose(tf.stack([ty, tx, tl]))
def _decode(self, rel_codes, anchors):
"""Decodes relative codes to boxes.
Args:
rel_codes: a tensor representing N anchor-encoded boxes.
anchors: BoxList of anchors.
Returns:
boxes: BoxList holding N bounding boxes.
"""
ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
la = tf.sqrt(ha * wa)
ty, tx, tl = tf.unstack(tf.transpose(rel_codes))
if self._scale_factors:
ty /= self._scale_factors[0]
tx /= self._scale_factors[1]
tl /= self._scale_factors[2]
l = tf.exp(tl) * la
ycenter = ty * la + ycenter_a
xcenter = tx * la + xcenter_a
ymin = ycenter - l / 2.
xmin = xcenter - l / 2.
ymax = ycenter + l / 2.
xmax = xcenter + l / 2.
return box_list.BoxList(tf.transpose(tf.stack([ymin, xmin, ymax, xmax]))) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/box_coders/square_box_coder.py | square_box_coder.py |
import tensorflow.compat.v1 as tf
from object_detection.core import box_coder
from object_detection.core import box_list
EPSILON = 1e-8
class FasterRcnnBoxCoder(box_coder.BoxCoder):
"""Faster RCNN box coder."""
def __init__(self, scale_factors=None):
"""Constructor for FasterRcnnBoxCoder.
Args:
scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
If set to None, does not perform scaling. For Faster RCNN,
the open-source implementation recommends using [10.0, 10.0, 5.0, 5.0].
"""
if scale_factors:
assert len(scale_factors) == 4
for scalar in scale_factors:
assert scalar > 0
self._scale_factors = scale_factors
@property
def code_size(self):
return 4
def _encode(self, boxes, anchors):
"""Encode a box collection with respect to anchor collection.
Args:
boxes: BoxList holding N boxes to be encoded.
anchors: BoxList of anchors.
Returns:
a tensor representing N anchor-encoded boxes of the format
[ty, tx, th, tw].
"""
# Convert anchors to the center coordinate representation.
ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
ycenter, xcenter, h, w = boxes.get_center_coordinates_and_sizes()
# Avoid NaN in division and log below.
ha += EPSILON
wa += EPSILON
h += EPSILON
w += EPSILON
tx = (xcenter - xcenter_a) / wa
ty = (ycenter - ycenter_a) / ha
tw = tf.log(w / wa)
th = tf.log(h / ha)
# Scales location targets as used in paper for joint training.
if self._scale_factors:
ty *= self._scale_factors[0]
tx *= self._scale_factors[1]
th *= self._scale_factors[2]
tw *= self._scale_factors[3]
return tf.transpose(tf.stack([ty, tx, th, tw]))
def _decode(self, rel_codes, anchors):
"""Decode relative codes to boxes.
Args:
rel_codes: a tensor representing N anchor-encoded boxes.
anchors: BoxList of anchors.
Returns:
boxes: BoxList holding N bounding boxes.
"""
ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
ty, tx, th, tw = tf.unstack(tf.transpose(rel_codes))
if self._scale_factors:
ty /= self._scale_factors[0]
tx /= self._scale_factors[1]
th /= self._scale_factors[2]
tw /= self._scale_factors[3]
w = tf.exp(tw) * wa
h = tf.exp(th) * ha
ycenter = ty * ha + ycenter_a
xcenter = tx * wa + xcenter_a
ymin = ycenter - h / 2.
xmin = xcenter - w / 2.
ymax = ycenter + h / 2.
xmax = xcenter + w / 2.
return box_list.BoxList(tf.transpose(tf.stack([ymin, xmin, ymax, xmax]))) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/box_coders/faster_rcnn_box_coder.py | faster_rcnn_box_coder.py |
import tensorflow.compat.v1 as tf
from object_detection.core import box_coder
from object_detection.core import box_list
from object_detection.core import standard_fields as fields
EPSILON = 1e-8
class KeypointBoxCoder(box_coder.BoxCoder):
"""Keypoint box coder."""
def __init__(self, num_keypoints, scale_factors=None):
"""Constructor for KeypointBoxCoder.
Args:
num_keypoints: Number of keypoints to encode/decode.
scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
In addition to scaling ty and tx, the first 2 scalars are used to scale
the y and x coordinates of the keypoints as well. If set to None, does
not perform scaling.
"""
self._num_keypoints = num_keypoints
if scale_factors:
assert len(scale_factors) == 4
for scalar in scale_factors:
assert scalar > 0
self._scale_factors = scale_factors
self._keypoint_scale_factors = None
if scale_factors is not None:
self._keypoint_scale_factors = tf.expand_dims(
tf.tile([
tf.cast(scale_factors[0], dtype=tf.float32),
tf.cast(scale_factors[1], dtype=tf.float32)
], [num_keypoints]), 1)
@property
def code_size(self):
return 4 + self._num_keypoints * 2
def _encode(self, boxes, anchors):
"""Encode a box and keypoint collection with respect to anchor collection.
Args:
boxes: BoxList holding N boxes and keypoints to be encoded. Boxes are
tensors with the shape [N, 4], and keypoints are tensors with the shape
[N, num_keypoints, 2].
anchors: BoxList of anchors.
Returns:
a tensor representing N anchor-encoded boxes of the format
[ty, tx, th, tw, tky0, tkx0, tky1, tkx1, ...] where tky0 and tkx0
represent the y and x coordinates of the first keypoint, tky1 and tkx1
represent the y and x coordinates of the second keypoint, and so on.
"""
# Convert anchors to the center coordinate representation.
ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
ycenter, xcenter, h, w = boxes.get_center_coordinates_and_sizes()
keypoints = boxes.get_field(fields.BoxListFields.keypoints)
keypoints = tf.transpose(tf.reshape(keypoints,
[-1, self._num_keypoints * 2]))
num_boxes = boxes.num_boxes()
# Avoid NaN in division and log below.
ha += EPSILON
wa += EPSILON
h += EPSILON
w += EPSILON
tx = (xcenter - xcenter_a) / wa
ty = (ycenter - ycenter_a) / ha
tw = tf.log(w / wa)
th = tf.log(h / ha)
tiled_anchor_centers = tf.tile(
tf.stack([ycenter_a, xcenter_a]), [self._num_keypoints, 1])
tiled_anchor_sizes = tf.tile(
tf.stack([ha, wa]), [self._num_keypoints, 1])
tkeypoints = (keypoints - tiled_anchor_centers) / tiled_anchor_sizes
# Scales location targets as used in paper for joint training.
if self._scale_factors:
ty *= self._scale_factors[0]
tx *= self._scale_factors[1]
th *= self._scale_factors[2]
tw *= self._scale_factors[3]
tkeypoints *= tf.tile(self._keypoint_scale_factors, [1, num_boxes])
tboxes = tf.stack([ty, tx, th, tw])
return tf.transpose(tf.concat([tboxes, tkeypoints], 0))
def _decode(self, rel_codes, anchors):
"""Decode relative codes to boxes and keypoints.
Args:
rel_codes: a tensor with shape [N, 4 + 2 * num_keypoints] representing N
anchor-encoded boxes and keypoints
anchors: BoxList of anchors.
Returns:
boxes: BoxList holding N bounding boxes and keypoints.
"""
ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
num_codes = tf.shape(rel_codes)[0]
result = tf.unstack(tf.transpose(rel_codes))
ty, tx, th, tw = result[:4]
tkeypoints = result[4:]
if self._scale_factors:
ty /= self._scale_factors[0]
tx /= self._scale_factors[1]
th /= self._scale_factors[2]
tw /= self._scale_factors[3]
tkeypoints /= tf.tile(self._keypoint_scale_factors, [1, num_codes])
w = tf.exp(tw) * wa
h = tf.exp(th) * ha
ycenter = ty * ha + ycenter_a
xcenter = tx * wa + xcenter_a
ymin = ycenter - h / 2.
xmin = xcenter - w / 2.
ymax = ycenter + h / 2.
xmax = xcenter + w / 2.
decoded_boxes_keypoints = box_list.BoxList(
tf.transpose(tf.stack([ymin, xmin, ymax, xmax])))
tiled_anchor_centers = tf.tile(
tf.stack([ycenter_a, xcenter_a]), [self._num_keypoints, 1])
tiled_anchor_sizes = tf.tile(
tf.stack([ha, wa]), [self._num_keypoints, 1])
keypoints = tkeypoints * tiled_anchor_sizes + tiled_anchor_centers
keypoints = tf.reshape(tf.transpose(keypoints),
[-1, self._num_keypoints, 2])
decoded_boxes_keypoints.add_field(fields.BoxListFields.keypoints, keypoints)
return decoded_boxes_keypoints | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/box_coders/keypoint_box_coder.py | keypoint_box_coder.py |
"""Library functions for ContextRCNN."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
import tf_slim as slim
# The negative value used in padding the invalid weights.
_NEGATIVE_PADDING_VALUE = -100000
def filter_weight_value(weights, values, valid_mask):
"""Filters weights and values based on valid_mask.
_NEGATIVE_PADDING_VALUE will be added to invalid elements in the weights to
avoid their contribution in softmax. 0 will be set for the invalid elements in
the values.
Args:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
valid_mask: A boolean Tensor of shape [batch_size, context_size]. True means
valid and False means invalid.
Returns:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
Raises:
ValueError: If shape of doesn't match.
"""
w_batch_size, _, w_context_size = weights.shape
v_batch_size, v_context_size, _ = values.shape
m_batch_size, m_context_size = valid_mask.shape
if w_batch_size != v_batch_size or v_batch_size != m_batch_size:
raise ValueError("Please make sure the first dimension of the input"
" tensors are the same.")
if w_context_size != v_context_size:
raise ValueError("Please make sure the third dimension of weights matches"
" the second dimension of values.")
if w_context_size != m_context_size:
raise ValueError("Please make sure the third dimension of the weights"
" matches the second dimension of the valid_mask.")
valid_mask = valid_mask[..., tf.newaxis]
# Force the invalid weights to be very negative so it won't contribute to
# the softmax.
very_negative_mask = tf.ones(
weights.shape, dtype=weights.dtype) * _NEGATIVE_PADDING_VALUE
valid_weight_mask = tf.tile(tf.transpose(valid_mask, perm=[0, 2, 1]),
[1, weights.shape[1], 1])
weights = tf.where(valid_weight_mask,
x=weights, y=very_negative_mask)
# Force the invalid values to be 0.
values *= tf.cast(valid_mask, values.dtype)
return weights, values
def compute_valid_mask(num_valid_elements, num_elements):
"""Computes mask of valid entries within padded context feature.
Args:
num_valid_elements: A int32 Tensor of shape [batch_size].
num_elements: An int32 Tensor.
Returns:
A boolean Tensor of the shape [batch_size, num_elements]. True means
valid and False means invalid.
"""
batch_size = num_valid_elements.shape[0]
element_idxs = tf.range(num_elements, dtype=tf.int32)
batch_element_idxs = tf.tile(element_idxs[tf.newaxis, ...], [batch_size, 1])
num_valid_elements = num_valid_elements[..., tf.newaxis]
valid_mask = tf.less(batch_element_idxs, num_valid_elements)
return valid_mask
def project_features(features, projection_dimension, is_training, normalize):
"""Projects features to another feature space.
Args:
features: A float Tensor of shape [batch_size, features_size,
num_features].
projection_dimension: A int32 Tensor.
is_training: A boolean Tensor (affecting batch normalization).
normalize: A boolean Tensor. If true, the output features will be l2
normalized on the last dimension.
Returns:
A float Tensor of shape [batch, features_size, projection_dimension].
"""
# TODO(guanhangwu) Figure out a better way of specifying the batch norm
# params.
batch_norm_params = {
"is_training": is_training,
"decay": 0.97,
"epsilon": 0.001,
"center": True,
"scale": True
}
batch_size, _, num_features = features.shape
features = tf.reshape(features, [-1, num_features])
projected_features = slim.fully_connected(
features,
num_outputs=projection_dimension,
activation_fn=tf.nn.relu6,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params)
projected_features = tf.reshape(projected_features,
[batch_size, -1, projection_dimension])
if normalize:
projected_features = tf.math.l2_normalize(projected_features, axis=-1)
return projected_features
def attention_block(input_features, context_features, bottleneck_dimension,
output_dimension, attention_temperature,
keys_values_valid_mask, queries_valid_mask,
is_training, block_name="AttentionBlock"):
"""Generic attention block.
Args:
input_features: A float Tensor of shape [batch_size, input_size,
num_input_features].
context_features: A float Tensor of shape [batch_size, context_size,
num_context_features].
bottleneck_dimension: A int32 Tensor representing the bottleneck dimension
for intermediate projections.
output_dimension: A int32 Tensor representing the last dimension of the
output feature.
attention_temperature: A float Tensor. It controls the temperature of the
softmax for weights calculation. The formula for calculation as follows:
weights = exp(weights / temperature) / sum(exp(weights / temperature))
keys_values_valid_mask: A boolean Tensor of shape
[batch_size, context_size].
queries_valid_mask: A boolean Tensor of shape
[batch_size, max_num_proposals].
is_training: A boolean Tensor (affecting batch normalization).
block_name: A string to specify names for different attention blocks
Returns:
A float Tensor of shape [batch_size, input_size, output_dimension].
"""
with tf.variable_scope(block_name):
queries = project_features(
input_features, bottleneck_dimension, is_training, normalize=True)
keys = project_features(
context_features, bottleneck_dimension, is_training, normalize=True)
values = project_features(
context_features, bottleneck_dimension, is_training, normalize=True)
# masking out any keys which are padding
keys *= tf.cast(keys_values_valid_mask[..., tf.newaxis], keys.dtype)
queries *= tf.cast(queries_valid_mask[..., tf.newaxis], queries.dtype)
weights = tf.matmul(queries, keys, transpose_b=True)
weights, values = filter_weight_value(weights, values,
keys_values_valid_mask)
weights = tf.identity(tf.nn.softmax(weights / attention_temperature),
name=block_name+"AttentionWeights")
features = tf.matmul(weights, values)
output_features = project_features(
features, output_dimension, is_training, normalize=False)
return output_features
def _compute_box_context_attention(box_features, num_proposals,
context_features, valid_context_size,
bottleneck_dimension,
attention_temperature, is_training,
max_num_proposals,
use_self_attention=False,
use_long_term_attention=True,
self_attention_in_sequence=False,
num_attention_heads=1,
num_attention_layers=1):
"""Computes the attention feature from the context given a batch of box.
Args:
box_features: A float Tensor of shape [batch_size * max_num_proposals,
height, width, channels]. It is pooled features from first stage
proposals.
num_proposals: The number of valid box proposals.
context_features: A float Tensor of shape [batch_size, context_size,
num_context_features].
valid_context_size: A int32 Tensor of shape [batch_size].
bottleneck_dimension: A int32 Tensor representing the bottleneck dimension
for intermediate projections.
attention_temperature: A float Tensor. It controls the temperature of the
softmax for weights calculation. The formula for calculation as follows:
weights = exp(weights / temperature) / sum(exp(weights / temperature))
is_training: A boolean Tensor (affecting batch normalization).
max_num_proposals: The number of box proposals for each image.
use_self_attention: Whether to use an attention block across the
first stage predicted box features for the input image.
use_long_term_attention: Whether to use an attention block into the context
features.
self_attention_in_sequence: Whether self-attention and long term attention
should be in sequence or parallel.
num_attention_heads: Number of heads for multi-headed attention.
num_attention_layers: Number of heads for multi-layered attention.
Returns:
A float Tensor of shape [batch_size, max_num_proposals, 1, 1, channels].
"""
_, context_size, _ = context_features.shape
context_valid_mask = compute_valid_mask(valid_context_size, context_size)
total_proposals, height, width, channels = box_features.shape
batch_size = total_proposals // max_num_proposals
box_features = tf.reshape(
box_features,
[batch_size,
max_num_proposals,
height,
width,
channels])
# Average pools over height and width dimension so that the shape of
# box_features becomes [batch_size, max_num_proposals, channels].
box_features = tf.reduce_mean(box_features, [2, 3])
box_valid_mask = compute_valid_mask(
num_proposals,
box_features.shape[1])
if use_self_attention:
self_attention_box_features = attention_block(
box_features, box_features, bottleneck_dimension, channels.value,
attention_temperature, keys_values_valid_mask=box_valid_mask,
queries_valid_mask=box_valid_mask, is_training=is_training,
block_name="SelfAttentionBlock")
if use_long_term_attention:
if use_self_attention and self_attention_in_sequence:
input_features = tf.add(self_attention_box_features, box_features)
input_features = tf.divide(input_features, 2)
else:
input_features = box_features
original_input_features = input_features
for jdx in range(num_attention_layers):
layer_features = tf.zeros_like(input_features)
for idx in range(num_attention_heads):
block_name = "AttentionBlock" + str(idx) + "_AttentionLayer" +str(jdx)
attention_features = attention_block(
input_features,
context_features,
bottleneck_dimension,
channels.value,
attention_temperature,
keys_values_valid_mask=context_valid_mask,
queries_valid_mask=box_valid_mask,
is_training=is_training,
block_name=block_name)
layer_features = tf.add(layer_features, attention_features)
layer_features = tf.divide(layer_features, num_attention_heads)
input_features = tf.add(input_features, layer_features)
output_features = tf.add(input_features, original_input_features)
if not self_attention_in_sequence and use_self_attention:
output_features = tf.add(self_attention_box_features, output_features)
elif use_self_attention:
output_features = self_attention_box_features
else:
output_features = tf.zeros(self_attention_box_features.shape)
# Expands the dimension back to match with the original feature map.
output_features = output_features[:, :, tf.newaxis, tf.newaxis, :]
return output_features | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/context_rcnn_lib.py | context_rcnn_lib.py |
import abc
import collections
import functools
import tensorflow.compat.v1 as tf
import tensorflow.compat.v2 as tf2
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import keypoint_ops
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.core import target_assigner as cn_assigner
from object_detection.utils import shape_utils
from object_detection.utils import target_assigner_utils as ta_utils
from object_detection.utils import tf_version
# Number of channels needed to predict size and offsets.
NUM_OFFSET_CHANNELS = 2
NUM_SIZE_CHANNELS = 2
# Error range for detecting peaks.
PEAK_EPSILON = 1e-6
class CenterNetFeatureExtractor(tf.keras.Model):
"""Base class for feature extractors for the CenterNet meta architecture.
Child classes are expected to override the _output_model property which will
return 1 or more tensors predicted by the feature extractor.
"""
__metaclass__ = abc.ABCMeta
def __init__(self, name=None, channel_means=(0., 0., 0.),
channel_stds=(1., 1., 1.), bgr_ordering=False):
"""Initializes a CenterNet feature extractor.
Args:
name: str, the name used for the underlying keras model.
channel_means: A tuple of floats, denoting the mean of each channel
which will be subtracted from it. If None or empty, we use 0s.
channel_stds: A tuple of floats, denoting the standard deviation of each
channel. Each channel will be divided by its standard deviation value.
If None or empty, we use 1s.
bgr_ordering: bool, if set will change the channel ordering to be in the
[blue, red, green] order.
"""
super(CenterNetFeatureExtractor, self).__init__(name=name)
if channel_means is None or len(channel_means) == 0: # pylint:disable=g-explicit-length-test
channel_means = [0., 0., 0.]
if channel_stds is None or len(channel_stds) == 0: # pylint:disable=g-explicit-length-test
channel_stds = [1., 1., 1.]
self._channel_means = channel_means
self._channel_stds = channel_stds
self._bgr_ordering = bgr_ordering
def preprocess(self, inputs):
"""Converts a batch of unscaled images to a scale suitable for the model.
This method normalizes the image using the given `channel_means` and
`channels_stds` values at initialization time while optionally flipping
the channel order if `bgr_ordering` is set.
Args:
inputs: a [batch, height, width, channels] float32 tensor
Returns:
outputs: a [batch, height, width, channels] float32 tensor
"""
if self._bgr_ordering:
red, green, blue = tf.unstack(inputs, axis=3)
inputs = tf.stack([blue, green, red], axis=3)
channel_means = tf.reshape(tf.constant(self._channel_means),
[1, 1, 1, -1])
channel_stds = tf.reshape(tf.constant(self._channel_stds),
[1, 1, 1, -1])
return (inputs - channel_means)/channel_stds
@property
@abc.abstractmethod
def out_stride(self):
"""The stride in the output image of the network."""
pass
@property
@abc.abstractmethod
def num_feature_outputs(self):
"""Ther number of feature outputs returned by the feature extractor."""
pass
@property
def classification_backbone(self):
raise NotImplementedError(
'Classification backbone not supported for {}'.format(type(self)))
def make_prediction_net(num_out_channels, kernel_sizes=(3), num_filters=(256),
bias_fill=None, use_depthwise=False, name=None,
unit_height_conv=True):
"""Creates a network to predict the given number of output channels.
This function is intended to make the prediction heads for the CenterNet
meta architecture.
Args:
num_out_channels: Number of output channels.
kernel_sizes: A list representing the sizes of the conv kernel in the
intermediate layer. Note that the length of the list indicates the number
of intermediate conv layers and it must be the same as the length of the
num_filters.
num_filters: A list representing the number of filters in the intermediate
conv layer. Note that the length of the list indicates the number of
intermediate conv layers.
bias_fill: If not None, is used to initialize the bias in the final conv
layer.
use_depthwise: If true, use SeparableConv2D to construct the Sequential
layers instead of Conv2D.
name: Optional name for the prediction net.
unit_height_conv: If True, Conv2Ds have asymmetric kernels with height=1.
Returns:
net: A keras module which when called on an input tensor of size
[batch_size, height, width, num_in_channels] returns an output
of size [batch_size, height, width, num_out_channels]
"""
if isinstance(kernel_sizes, int) and isinstance(num_filters, int):
kernel_sizes = [kernel_sizes]
num_filters = [num_filters]
assert len(kernel_sizes) == len(num_filters)
if use_depthwise:
conv_fn = tf.keras.layers.SeparableConv2D
else:
conv_fn = tf.keras.layers.Conv2D
# We name the convolution operations explicitly because Keras, by default,
# uses different names during training and evaluation. By setting the names
# here, we avoid unexpected pipeline breakage in TF1.
out_conv = tf.keras.layers.Conv2D(
num_out_channels,
kernel_size=1,
name='conv1' if tf_version.is_tf1() else None)
if bias_fill is not None:
out_conv.bias_initializer = tf.keras.initializers.constant(bias_fill)
layers = []
for idx, (kernel_size,
num_filter) in enumerate(zip(kernel_sizes, num_filters)):
layers.append(
conv_fn(
num_filter,
kernel_size=[1, kernel_size] if unit_height_conv else kernel_size,
padding='same',
name='conv2_%d' % idx if tf_version.is_tf1() else None))
layers.append(tf.keras.layers.ReLU())
layers.append(out_conv)
net = tf.keras.Sequential(layers, name=name)
return net
def _to_float32(x):
return tf.cast(x, tf.float32)
def _get_shape(tensor, num_dims):
assert len(tensor.shape.as_list()) == num_dims
return shape_utils.combined_static_and_dynamic_shape(tensor)
def _flatten_spatial_dimensions(batch_images):
batch_size, height, width, channels = _get_shape(batch_images, 4)
return tf.reshape(batch_images, [batch_size, height * width,
channels])
def _multi_range(limit,
value_repetitions=1,
range_repetitions=1,
dtype=tf.int32):
"""Creates a sequence with optional value duplication and range repetition.
As an example (see the Args section for more details),
_multi_range(limit=2, value_repetitions=3, range_repetitions=4) returns:
[0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]
Args:
limit: A 0-D Tensor (scalar). Upper limit of sequence, exclusive.
value_repetitions: Integer. The number of times a value in the sequence is
repeated. With value_repetitions=3, the result is [0, 0, 0, 1, 1, 1, ..].
range_repetitions: Integer. The number of times the range is repeated. With
range_repetitions=3, the result is [0, 1, 2, .., 0, 1, 2, ..].
dtype: The type of the elements of the resulting tensor.
Returns:
A 1-D tensor of type `dtype` and size
[`limit` * `value_repetitions` * `range_repetitions`] that contains the
specified range with given repetitions.
"""
return tf.reshape(
tf.tile(
tf.expand_dims(tf.range(limit, dtype=dtype), axis=-1),
multiples=[range_repetitions, value_repetitions]), [-1])
def top_k_feature_map_locations(feature_map, max_pool_kernel_size=3, k=100,
per_channel=False):
"""Returns the top k scores and their locations in a feature map.
Given a feature map, the top k values (based on activation) are returned. If
`per_channel` is True, the top k values **per channel** are returned. Note
that when k equals to 1, ths function uses reduce_max and argmax instead of
top_k to make the logics more efficient.
The `max_pool_kernel_size` argument allows for selecting local peaks in a
region. This filtering is done per channel, so nothing prevents two values at
the same location to be returned.
Args:
feature_map: [batch, height, width, channels] float32 feature map.
max_pool_kernel_size: integer, the max pool kernel size to use to pull off
peak score locations in a neighborhood (independently for each channel).
For example, to make sure no two neighboring values (in the same channel)
are returned, set max_pool_kernel_size=3. If None or 1, will not apply max
pooling.
k: The number of highest scoring locations to return.
per_channel: If True, will return the top k scores and locations per
feature map channel. If False, the top k across the entire feature map
(height x width x channels) are returned.
Returns:
Tuple of
scores: A [batch, N] float32 tensor with scores from the feature map in
descending order. If per_channel is False, N = k. Otherwise,
N = k * channels, and the first k elements correspond to channel 0, the
second k correspond to channel 1, etc.
y_indices: A [batch, N] int tensor with y indices of the top k feature map
locations. If per_channel is False, N = k. Otherwise,
N = k * channels.
x_indices: A [batch, N] int tensor with x indices of the top k feature map
locations. If per_channel is False, N = k. Otherwise,
N = k * channels.
channel_indices: A [batch, N] int tensor with channel indices of the top k
feature map locations. If per_channel is False, N = k. Otherwise,
N = k * channels.
"""
if not max_pool_kernel_size or max_pool_kernel_size == 1:
feature_map_peaks = feature_map
else:
feature_map_max_pool = tf.nn.max_pool(
feature_map, ksize=max_pool_kernel_size, strides=1, padding='SAME')
feature_map_peak_mask = tf.math.abs(
feature_map - feature_map_max_pool) < PEAK_EPSILON
# Zero out everything that is not a peak.
feature_map_peaks = (
feature_map * _to_float32(feature_map_peak_mask))
batch_size, _, width, num_channels = _get_shape(feature_map, 4)
if per_channel:
if k == 1:
feature_map_flattened = tf.reshape(
feature_map_peaks, [batch_size, -1, num_channels])
scores = tf.math.reduce_max(feature_map_flattened, axis=1)
peak_flat_indices = tf.math.argmax(
feature_map_flattened, axis=1, output_type=tf.dtypes.int32)
peak_flat_indices = tf.expand_dims(peak_flat_indices, axis=-1)
else:
# Perform top k over batch and channels.
feature_map_peaks_transposed = tf.transpose(feature_map_peaks,
perm=[0, 3, 1, 2])
feature_map_peaks_transposed = tf.reshape(
feature_map_peaks_transposed, [batch_size, num_channels, -1])
scores, peak_flat_indices = tf.math.top_k(
feature_map_peaks_transposed, k=k)
# Convert the indices such that they represent the location in the full
# (flattened) feature map of size [batch, height * width * channels].
channel_idx = tf.range(num_channels)[tf.newaxis, :, tf.newaxis]
peak_flat_indices = num_channels * peak_flat_indices + channel_idx
scores = tf.reshape(scores, [batch_size, -1])
peak_flat_indices = tf.reshape(peak_flat_indices, [batch_size, -1])
else:
if k == 1:
feature_map_peaks_flat = tf.reshape(feature_map_peaks, [batch_size, -1])
scores = tf.math.reduce_max(feature_map_peaks_flat, axis=1, keepdims=True)
peak_flat_indices = tf.expand_dims(tf.math.argmax(
feature_map_peaks_flat, axis=1, output_type=tf.dtypes.int32), axis=-1)
else:
feature_map_peaks_flat = tf.reshape(feature_map_peaks, [batch_size, -1])
scores, peak_flat_indices = tf.math.top_k(feature_map_peaks_flat, k=k)
# Get x, y and channel indices corresponding to the top indices in the flat
# array.
y_indices, x_indices, channel_indices = (
row_col_channel_indices_from_flattened_indices(
peak_flat_indices, width, num_channels))
return scores, y_indices, x_indices, channel_indices
def prediction_tensors_to_boxes(y_indices, x_indices, height_width_predictions,
offset_predictions):
"""Converts CenterNet class-center, offset and size predictions to boxes.
Args:
y_indices: A [batch, num_boxes] int32 tensor with y indices corresponding to
object center locations (expressed in output coordinate frame).
x_indices: A [batch, num_boxes] int32 tensor with x indices corresponding to
object center locations (expressed in output coordinate frame).
height_width_predictions: A float tensor of shape [batch_size, height,
width, 2] representing the height and width of a box centered at each
pixel.
offset_predictions: A float tensor of shape [batch_size, height, width, 2]
representing the y and x offsets of a box centered at each pixel. This
helps reduce the error from downsampling.
Returns:
detection_boxes: A tensor of shape [batch_size, num_boxes, 4] holding the
the raw bounding box coordinates of boxes.
"""
batch_size, num_boxes = _get_shape(y_indices, 2)
_, height, width, _ = _get_shape(height_width_predictions, 4)
height, width = tf.cast(height, tf.float32), tf.cast(width, tf.float32)
# TF Lite does not support tf.gather with batch_dims > 0, so we need to use
# tf_gather_nd instead and here we prepare the indices for that.
combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_boxes),
tf.reshape(y_indices, [-1]),
tf.reshape(x_indices, [-1])
], axis=1)
new_height_width = tf.gather_nd(height_width_predictions, combined_indices)
new_height_width = tf.reshape(new_height_width, [batch_size, num_boxes, 2])
new_offsets = tf.gather_nd(offset_predictions, combined_indices)
offsets = tf.reshape(new_offsets, [batch_size, num_boxes, 2])
y_indices = _to_float32(y_indices)
x_indices = _to_float32(x_indices)
height_width = tf.maximum(new_height_width, 0)
heights, widths = tf.unstack(height_width, axis=2)
y_offsets, x_offsets = tf.unstack(offsets, axis=2)
ymin = y_indices + y_offsets - heights / 2.0
xmin = x_indices + x_offsets - widths / 2.0
ymax = y_indices + y_offsets + heights / 2.0
xmax = x_indices + x_offsets + widths / 2.0
ymin = tf.clip_by_value(ymin, 0., height)
xmin = tf.clip_by_value(xmin, 0., width)
ymax = tf.clip_by_value(ymax, 0., height)
xmax = tf.clip_by_value(xmax, 0., width)
boxes = tf.stack([ymin, xmin, ymax, xmax], axis=2)
return boxes
def prediction_tensors_to_temporal_offsets(
y_indices, x_indices, offset_predictions):
"""Converts CenterNet temporal offset map predictions to batched format.
This function is similar to the box offset conversion function, as both
temporal offsets and box offsets are size-2 vectors.
Args:
y_indices: A [batch, num_boxes] int32 tensor with y indices corresponding to
object center locations (expressed in output coordinate frame).
x_indices: A [batch, num_boxes] int32 tensor with x indices corresponding to
object center locations (expressed in output coordinate frame).
offset_predictions: A float tensor of shape [batch_size, height, width, 2]
representing the y and x offsets of a box's center across adjacent frames.
Returns:
offsets: A tensor of shape [batch_size, num_boxes, 2] holding the
the object temporal offsets of (y, x) dimensions.
"""
batch_size, num_boxes = _get_shape(y_indices, 2)
# TF Lite does not support tf.gather with batch_dims > 0, so we need to use
# tf_gather_nd instead and here we prepare the indices for that.
combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_boxes),
tf.reshape(y_indices, [-1]),
tf.reshape(x_indices, [-1])
], axis=1)
new_offsets = tf.gather_nd(offset_predictions, combined_indices)
offsets = tf.reshape(new_offsets, [batch_size, num_boxes, -1])
return offsets
def prediction_tensors_to_keypoint_candidates(keypoint_heatmap_predictions,
keypoint_heatmap_offsets,
keypoint_score_threshold=0.1,
max_pool_kernel_size=1,
max_candidates=20,
keypoint_depths=None):
"""Convert keypoint heatmap predictions and offsets to keypoint candidates.
Args:
keypoint_heatmap_predictions: A float tensor of shape [batch_size, height,
width, num_keypoints] representing the per-keypoint heatmaps.
keypoint_heatmap_offsets: A float tensor of shape [batch_size, height,
width, 2] (or [batch_size, height, width, 2 * num_keypoints] if
'per_keypoint_offset' is set True) representing the per-keypoint offsets.
keypoint_score_threshold: float, the threshold for considering a keypoint a
candidate.
max_pool_kernel_size: integer, the max pool kernel size to use to pull off
peak score locations in a neighborhood. For example, to make sure no two
neighboring values for the same keypoint are returned, set
max_pool_kernel_size=3. If None or 1, will not apply any local filtering.
max_candidates: integer, maximum number of keypoint candidates per keypoint
type.
keypoint_depths: (optional) A float tensor of shape [batch_size, height,
width, 1] (or [batch_size, height, width, num_keypoints] if
'per_keypoint_depth' is set True) representing the per-keypoint depths.
Returns:
keypoint_candidates: A tensor of shape
[batch_size, max_candidates, num_keypoints, 2] holding the
location of keypoint candidates in [y, x] format (expressed in absolute
coordinates in the output coordinate frame).
keypoint_scores: A float tensor of shape
[batch_size, max_candidates, num_keypoints] with the scores for each
keypoint candidate. The scores come directly from the heatmap predictions.
num_keypoint_candidates: An integer tensor of shape
[batch_size, num_keypoints] with the number of candidates for each
keypoint type, as it's possible to filter some candidates due to the score
threshold.
depth_candidates: A tensor of shape [batch_size, max_candidates,
num_keypoints] representing the estimated depth of each keypoint
candidate. Return None if the input keypoint_depths is None.
"""
batch_size, _, _, num_keypoints = _get_shape(keypoint_heatmap_predictions, 4)
# Get x, y and channel indices corresponding to the top indices in the
# keypoint heatmap predictions.
# Note that the top k candidates are produced for **each keypoint type**.
# Might be worth eventually trying top k in the feature map, independent of
# the keypoint type.
keypoint_scores, y_indices, x_indices, channel_indices = (
top_k_feature_map_locations(keypoint_heatmap_predictions,
max_pool_kernel_size=max_pool_kernel_size,
k=max_candidates,
per_channel=True))
# TF Lite does not support tf.gather with batch_dims > 0, so we need to use
# tf_gather_nd instead and here we prepare the indices for that.
_, num_indices = _get_shape(y_indices, 2)
combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_indices),
tf.reshape(y_indices, [-1]),
tf.reshape(x_indices, [-1])
], axis=1)
selected_offsets_flat = tf.gather_nd(keypoint_heatmap_offsets,
combined_indices)
selected_offsets = tf.reshape(selected_offsets_flat,
[batch_size, num_indices, -1])
y_indices = _to_float32(y_indices)
x_indices = _to_float32(x_indices)
_, _, num_channels = _get_shape(selected_offsets, 3)
if num_channels > 2:
# Offsets are per keypoint and the last dimension of selected_offsets
# contains all those offsets, so reshape the offsets to make sure that the
# last dimension contains (y_offset, x_offset) for a single keypoint.
reshaped_offsets = tf.reshape(selected_offsets,
[batch_size, num_indices, -1, 2])
# TF Lite does not support tf.gather with batch_dims > 0, so we need to use
# tf_gather_nd instead and here we prepare the indices for that. In this
# case, channel_indices indicates which keypoint to use the offset from.
channel_combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_indices),
_multi_range(num_indices, range_repetitions=batch_size),
tf.reshape(channel_indices, [-1])
], axis=1)
offsets = tf.gather_nd(reshaped_offsets, channel_combined_indices)
offsets = tf.reshape(offsets, [batch_size, num_indices, -1])
else:
offsets = selected_offsets
y_offsets, x_offsets = tf.unstack(offsets, axis=2)
keypoint_candidates = tf.stack([y_indices + y_offsets,
x_indices + x_offsets], axis=2)
keypoint_candidates = tf.reshape(
keypoint_candidates,
[batch_size, num_keypoints, max_candidates, 2])
keypoint_candidates = tf.transpose(keypoint_candidates, [0, 2, 1, 3])
keypoint_scores = tf.reshape(
keypoint_scores,
[batch_size, num_keypoints, max_candidates])
keypoint_scores = tf.transpose(keypoint_scores, [0, 2, 1])
num_candidates = tf.reduce_sum(
tf.to_int32(keypoint_scores >= keypoint_score_threshold), axis=1)
depth_candidates = None
if keypoint_depths is not None:
selected_depth_flat = tf.gather_nd(keypoint_depths, combined_indices)
selected_depth = tf.reshape(selected_depth_flat,
[batch_size, num_indices, -1])
_, _, num_depth_channels = _get_shape(selected_depth, 3)
if num_depth_channels > 1:
combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_indices),
_multi_range(num_indices, range_repetitions=batch_size),
tf.reshape(channel_indices, [-1])
], axis=1)
depth = tf.gather_nd(selected_depth, combined_indices)
depth = tf.reshape(depth, [batch_size, num_indices, -1])
else:
depth = selected_depth
depth_candidates = tf.reshape(depth,
[batch_size, num_keypoints, max_candidates])
depth_candidates = tf.transpose(depth_candidates, [0, 2, 1])
return keypoint_candidates, keypoint_scores, num_candidates, depth_candidates
def argmax_feature_map_locations(feature_map):
"""Returns the peak locations in the feature map."""
batch_size, _, width, num_channels = _get_shape(feature_map, 4)
feature_map_flattened = tf.reshape(
feature_map, [batch_size, -1, num_channels])
peak_flat_indices = tf.math.argmax(
feature_map_flattened, axis=1, output_type=tf.dtypes.int32)
# Get x and y indices corresponding to the top indices in the flat array.
y_indices, x_indices = (
row_col_indices_from_flattened_indices(peak_flat_indices, width))
channel_indices = tf.tile(
tf.range(num_channels)[tf.newaxis, :], [batch_size, 1])
return y_indices, x_indices, channel_indices
def prediction_tensors_to_single_instance_kpts(
keypoint_heatmap_predictions,
keypoint_heatmap_offsets,
keypoint_score_heatmap=None):
"""Convert keypoint heatmap predictions and offsets to keypoint candidates.
Args:
keypoint_heatmap_predictions: A float tensor of shape [batch_size, height,
width, num_keypoints] representing the per-keypoint heatmaps which is
used for finding the best keypoint candidate locations.
keypoint_heatmap_offsets: A float tensor of shape [batch_size, height,
width, 2] (or [batch_size, height, width, 2 * num_keypoints] if
'per_keypoint_offset' is set True) representing the per-keypoint offsets.
keypoint_score_heatmap: (optional) A float tensor of shape [batch_size,
height, width, num_keypoints] representing the heatmap which is used for
reporting the confidence scores. If not provided, then the values in the
keypoint_heatmap_predictions will be used.
Returns:
keypoint_candidates: A tensor of shape
[batch_size, max_candidates, num_keypoints, 2] holding the
location of keypoint candidates in [y, x] format (expressed in absolute
coordinates in the output coordinate frame).
keypoint_scores: A float tensor of shape
[batch_size, max_candidates, num_keypoints] with the scores for each
keypoint candidate. The scores come directly from the heatmap predictions.
num_keypoint_candidates: An integer tensor of shape
[batch_size, num_keypoints] with the number of candidates for each
keypoint type, as it's possible to filter some candidates due to the score
threshold.
"""
batch_size, height, width, num_keypoints = _get_shape(
keypoint_heatmap_predictions, 4)
# Get x, y and channel indices corresponding to the top indices in the
# keypoint heatmap predictions.
y_indices, x_indices, channel_indices = argmax_feature_map_locations(
keypoint_heatmap_predictions)
# TF Lite does not support tf.gather with batch_dims > 0, so we need to use
# tf_gather_nd instead and here we prepare the indices for that.
_, num_keypoints = _get_shape(y_indices, 2)
combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_keypoints),
tf.reshape(y_indices, [-1]),
tf.reshape(x_indices, [-1]),
tf.reshape(channel_indices, [-1])
], axis=1)
# Reshape the offsets predictions to shape:
# [batch_size, height, width, num_keypoints, 2]
keypoint_heatmap_offsets = tf.reshape(
keypoint_heatmap_offsets, [batch_size, height, width, num_keypoints, -1])
# shape: [num_keypoints, 2]
selected_offsets_flat = tf.gather_nd(keypoint_heatmap_offsets,
combined_indices)
y_offsets, x_offsets = tf.unstack(selected_offsets_flat, axis=1)
keypoint_candidates = tf.stack([
tf.cast(y_indices, dtype=tf.float32) + tf.expand_dims(y_offsets, axis=0),
tf.cast(x_indices, dtype=tf.float32) + tf.expand_dims(x_offsets, axis=0)
], axis=2)
keypoint_candidates = tf.expand_dims(keypoint_candidates, axis=0)
if keypoint_score_heatmap is None:
keypoint_scores = tf.gather_nd(
keypoint_heatmap_predictions, combined_indices)
else:
keypoint_scores = tf.gather_nd(keypoint_score_heatmap, combined_indices)
keypoint_scores = tf.expand_dims(
tf.expand_dims(keypoint_scores, axis=0), axis=0)
return keypoint_candidates, keypoint_scores
def _score_to_distance_map(y_grid, x_grid, heatmap, points_y, points_x,
score_distance_offset):
"""Rescores heatmap using the distance information.
Rescore the heatmap scores using the formula:
score / (d + score_distance_offset), where the d is the distance from each
pixel location to the target point location.
Args:
y_grid: A float tensor with shape [height, width] representing the
y-coordinate of each pixel grid.
x_grid: A float tensor with shape [height, width] representing the
x-coordinate of each pixel grid.
heatmap: A float tensor with shape [1, height, width, channel]
representing the heatmap to be rescored.
points_y: A float tensor with shape [channel] representing the y
coordinates of the target points for each channel.
points_x: A float tensor with shape [channel] representing the x
coordinates of the target points for each channel.
score_distance_offset: A constant used in the above formula.
Returns:
A float tensor with shape [1, height, width, channel] representing the
rescored heatmap.
"""
y_diff = y_grid[:, :, tf.newaxis] - points_y
x_diff = x_grid[:, :, tf.newaxis] - points_x
distance = tf.math.sqrt(y_diff**2 + x_diff**2)
return tf.math.divide(heatmap, distance + score_distance_offset)
def prediction_to_single_instance_keypoints(
object_heatmap,
keypoint_heatmap,
keypoint_offset,
keypoint_regression,
kp_params,
keypoint_depths=None):
"""Postprocess function to predict single instance keypoints.
This is a simplified postprocessing function based on the assumption that
there is only one instance in the image. If there are multiple instances in
the image, the model prefers to predict the one that is closest to the image
center. Here is a high-level description of what this function does:
1) Object heatmap re-weighted by the distance between each pixel to the
image center is used to determine the instance center.
2) Regressed keypoint locations are retrieved from the instance center. The
Gaussian kernel is applied to the regressed keypoint locations to
re-weight the keypoint heatmap. This is to select the keypoints that are
associated with the center instance without using top_k op.
3) The keypoint locations are computed by the re-weighted keypoint heatmap
and the keypoint offset.
Args:
object_heatmap: A float tensor of shape [1, height, width, 1] representing
the heapmap of the class.
keypoint_heatmap: A float tensor of shape [1, height, width, num_keypoints]
representing the per-keypoint heatmaps.
keypoint_offset: A float tensor of shape [1, height, width, 2] (or [1,
height, width, 2 * num_keypoints] if 'per_keypoint_offset' is set True)
representing the per-keypoint offsets.
keypoint_regression: A float tensor of shape [1, height, width, 2 *
num_keypoints] representing the joint regression prediction.
kp_params: A `KeypointEstimationParams` object with parameters for a single
keypoint class.
keypoint_depths: (optional) A float tensor of shape [batch_size, height,
width, 1] (or [batch_size, height, width, num_keypoints] if
'per_keypoint_depth' is set True) representing the per-keypoint depths.
Returns:
A tuple of two tensors:
keypoint_candidates: A float tensor with shape [1, 1, num_keypoints, 2]
representing the yx-coordinates of the keypoints in the output feature
map space.
keypoint_scores: A float tensor with shape [1, 1, num_keypoints]
representing the keypoint prediction scores.
Raises:
ValueError: if the input keypoint_std_dev doesn't have valid number of
elements (1 or num_keypoints).
"""
# TODO(yuhuic): add the keypoint depth prediction logics in the browser
# postprocessing back.
del keypoint_depths
num_keypoints = len(kp_params.keypoint_std_dev)
batch_size, height, width, _ = _get_shape(keypoint_heatmap, 4)
# Create the image center location.
image_center_y = tf.convert_to_tensor([0.5 * height], dtype=tf.float32)
image_center_x = tf.convert_to_tensor([0.5 * width], dtype=tf.float32)
(y_grid, x_grid) = ta_utils.image_shape_to_grids(height, width)
# Rescore the object heatmap by the distnace to the image center.
object_heatmap = _score_to_distance_map(
y_grid, x_grid, object_heatmap, image_center_y,
image_center_x, kp_params.score_distance_offset)
# Pick the highest score and location of the weighted object heatmap.
y_indices, x_indices, _ = argmax_feature_map_locations(object_heatmap)
_, num_indices = _get_shape(y_indices, 2)
combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_indices),
tf.reshape(y_indices, [-1]),
tf.reshape(x_indices, [-1])
], axis=1)
# Select the regression vectors from the object center.
selected_regression_flat = tf.gather_nd(keypoint_regression, combined_indices)
# shape: [num_keypoints, 2]
regression_offsets = tf.reshape(selected_regression_flat, [num_keypoints, -1])
(y_reg, x_reg) = tf.unstack(regression_offsets, axis=1)
y_regressed = tf.cast(y_indices, dtype=tf.float32) + y_reg
x_regressed = tf.cast(x_indices, dtype=tf.float32) + x_reg
if kp_params.candidate_ranking_mode == 'score_distance_ratio':
reweighted_keypoint_heatmap = _score_to_distance_map(
y_grid, x_grid, keypoint_heatmap, y_regressed, x_regressed,
kp_params.score_distance_offset)
else:
raise ValueError('Unsupported candidate_ranking_mode: %s' %
kp_params.candidate_ranking_mode)
# Get the keypoint locations/scores:
# keypoint_candidates: [1, 1, num_keypoints, 2]
# keypoint_scores: [1, 1, num_keypoints]
# depth_candidates: [1, 1, num_keypoints]
(keypoint_candidates, keypoint_scores
) = prediction_tensors_to_single_instance_kpts(
reweighted_keypoint_heatmap,
keypoint_offset,
keypoint_score_heatmap=keypoint_heatmap)
return keypoint_candidates, keypoint_scores, None
def regressed_keypoints_at_object_centers(regressed_keypoint_predictions,
y_indices, x_indices):
"""Returns the regressed keypoints at specified object centers.
The original keypoint predictions are regressed relative to each feature map
location. The returned keypoints are expressed in absolute coordinates in the
output frame (i.e. the center offsets are added to each individual regressed
set of keypoints).
Args:
regressed_keypoint_predictions: A float tensor of shape
[batch_size, height, width, 2 * num_keypoints] holding regressed
keypoints. The last dimension has keypoint coordinates ordered as follows:
[y0, x0, y1, x1, ..., y{J-1}, x{J-1}] where J is the number of keypoints.
y_indices: A [batch, num_instances] int tensor holding y indices for object
centers. These indices correspond to locations in the output feature map.
x_indices: A [batch, num_instances] int tensor holding x indices for object
centers. These indices correspond to locations in the output feature map.
Returns:
A float tensor of shape [batch_size, num_objects, 2 * num_keypoints] where
regressed keypoints are gathered at the provided locations, and converted
to absolute coordinates in the output coordinate frame.
"""
batch_size, num_instances = _get_shape(y_indices, 2)
# TF Lite does not support tf.gather with batch_dims > 0, so we need to use
# tf_gather_nd instead and here we prepare the indices for that.
combined_indices = tf.stack([
_multi_range(batch_size, value_repetitions=num_instances),
tf.reshape(y_indices, [-1]),
tf.reshape(x_indices, [-1])
], axis=1)
relative_regressed_keypoints = tf.gather_nd(regressed_keypoint_predictions,
combined_indices)
relative_regressed_keypoints = tf.reshape(
relative_regressed_keypoints,
[batch_size, num_instances, -1, 2])
relative_regressed_keypoints_y, relative_regressed_keypoints_x = tf.unstack(
relative_regressed_keypoints, axis=3)
y_indices = _to_float32(tf.expand_dims(y_indices, axis=-1))
x_indices = _to_float32(tf.expand_dims(x_indices, axis=-1))
absolute_regressed_keypoints = tf.stack(
[y_indices + relative_regressed_keypoints_y,
x_indices + relative_regressed_keypoints_x],
axis=3)
return tf.reshape(absolute_regressed_keypoints,
[batch_size, num_instances, -1])
def refine_keypoints(regressed_keypoints,
keypoint_candidates,
keypoint_scores,
num_keypoint_candidates,
bboxes=None,
unmatched_keypoint_score=0.1,
box_scale=1.2,
candidate_search_scale=0.3,
candidate_ranking_mode='min_distance',
score_distance_offset=1e-6,
keypoint_depth_candidates=None,
keypoint_score_threshold=0.1):
"""Refines regressed keypoints by snapping to the nearest candidate keypoints.
The initial regressed keypoints represent a full set of keypoints regressed
from the centers of the objects. The keypoint candidates are estimated
independently from heatmaps, and are not associated with any object instances.
This function refines the regressed keypoints by "snapping" to the
nearest/highest score/highest score-distance ratio (depending on the
candidate_ranking_mode) candidate of the same keypoint type (e.g. "nose").
If no candidates are nearby, the regressed keypoint remains unchanged.
In order to snap a regressed keypoint to a candidate keypoint, the following
must be satisfied:
- the candidate keypoint must be of the same type as the regressed keypoint
- the candidate keypoint must not lie outside the predicted boxes (or the
boxes which encloses the regressed keypoints for the instance if `bboxes` is
not provided). Note that the box is scaled by
`regressed_box_scale` in height and width, to provide some margin around the
keypoints
- the distance to the closest candidate keypoint cannot exceed
candidate_search_scale * max(height, width), where height and width refer to
the bounding box for the instance.
Note that the same candidate keypoint is allowed to snap to regressed
keypoints in difference instances.
Args:
regressed_keypoints: A float tensor of shape
[batch_size, num_instances, num_keypoints, 2] with the initial regressed
keypoints.
keypoint_candidates: A tensor of shape
[batch_size, max_candidates, num_keypoints, 2] holding the location of
keypoint candidates in [y, x] format (expressed in absolute coordinates in
the output coordinate frame).
keypoint_scores: A float tensor of shape
[batch_size, max_candidates, num_keypoints] indicating the scores for
keypoint candidates.
num_keypoint_candidates: An integer tensor of shape
[batch_size, num_keypoints] indicating the number of valid candidates for
each keypoint type, as there may be padding (dim 1) of
`keypoint_candidates` and `keypoint_scores`.
bboxes: A tensor of shape [batch_size, num_instances, 4] with predicted
bounding boxes for each instance, expressed in the output coordinate
frame. If not provided, boxes will be computed from regressed keypoints.
unmatched_keypoint_score: float, the default score to use for regressed
keypoints that are not successfully snapped to a nearby candidate.
box_scale: float, the multiplier to expand the bounding boxes (either the
provided boxes or those which tightly cover the regressed keypoints) for
an instance. This scale is typically larger than 1.0 when not providing
`bboxes`.
candidate_search_scale: float, the scale parameter that multiplies the
largest dimension of a bounding box. The resulting distance becomes a
search radius for candidates in the vicinity of each regressed keypoint.
candidate_ranking_mode: A string as one of ['min_distance',
'score_distance_ratio'] indicating how to select the candidate. If invalid
value is provided, an ValueError will be raised.
score_distance_offset: The distance offset to apply in the denominator when
candidate_ranking_mode is 'score_distance_ratio'. The metric to maximize
in this scenario is score / (distance + score_distance_offset). Larger
values of score_distance_offset make the keypoint score gain more relative
importance.
keypoint_depth_candidates: (optional) A float tensor of shape
[batch_size, max_candidates, num_keypoints] indicating the depths for
keypoint candidates.
keypoint_score_threshold: float, The heatmap score threshold for
a keypoint to become a valid candidate.
Returns:
A tuple with:
refined_keypoints: A float tensor of shape
[batch_size, num_instances, num_keypoints, 2] with the final, refined
keypoints.
refined_scores: A float tensor of shape
[batch_size, num_instances, num_keypoints] with scores associated with all
instances and keypoints in `refined_keypoints`.
Raises:
ValueError: if provided candidate_ranking_mode is not one of
['min_distance', 'score_distance_ratio']
"""
batch_size, num_instances, num_keypoints, _ = (
shape_utils.combined_static_and_dynamic_shape(regressed_keypoints))
max_candidates = keypoint_candidates.shape[1]
# Replace all invalid (i.e. padded) keypoint candidates with NaN.
# This will prevent them from being considered.
range_tiled = tf.tile(
tf.reshape(tf.range(max_candidates), [1, max_candidates, 1]),
[batch_size, 1, num_keypoints])
num_candidates_tiled = tf.tile(tf.expand_dims(num_keypoint_candidates, 1),
[1, max_candidates, 1])
invalid_candidates = range_tiled >= num_candidates_tiled
# Pairwise squared distances between regressed keypoints and candidate
# keypoints (for a single keypoint type).
# Shape [batch_size, num_instances, 1, num_keypoints, 2].
regressed_keypoint_expanded = tf.expand_dims(regressed_keypoints,
axis=2)
# Shape [batch_size, 1, max_candidates, num_keypoints, 2].
keypoint_candidates_expanded = tf.expand_dims(
keypoint_candidates, axis=1)
# Use explicit tensor shape broadcasting (since the tensor dimensions are
# expanded to 5D) to make it tf.lite compatible.
regressed_keypoint_expanded = tf.tile(
regressed_keypoint_expanded, multiples=[1, 1, max_candidates, 1, 1])
keypoint_candidates_expanded = tf.tile(
keypoint_candidates_expanded, multiples=[1, num_instances, 1, 1, 1])
# Replace tf.math.squared_difference by "-" operator and tf.multiply ops since
# tf.lite convert doesn't support squared_difference with undetermined
# dimension.
diff = regressed_keypoint_expanded - keypoint_candidates_expanded
sqrd_distances = tf.math.reduce_sum(tf.multiply(diff, diff), axis=-1)
distances = tf.math.sqrt(sqrd_distances)
# Replace the invalid candidated with large constant (10^5) to make sure the
# following reduce_min/argmin behaves properly.
max_dist = 1e5
distances = tf.where(
tf.tile(
tf.expand_dims(invalid_candidates, axis=1),
multiples=[1, num_instances, 1, 1]),
tf.ones_like(distances) * max_dist,
distances
)
# Determine the candidates that have the minimum distance to the regressed
# keypoints. Shape [batch_size, num_instances, num_keypoints].
min_distances = tf.math.reduce_min(distances, axis=2)
if candidate_ranking_mode == 'min_distance':
nearby_candidate_inds = tf.math.argmin(distances, axis=2)
elif candidate_ranking_mode == 'score_distance_ratio':
# tiled_keypoint_scores:
# Shape [batch_size, num_instances, max_candidates, num_keypoints].
tiled_keypoint_scores = tf.tile(
tf.expand_dims(keypoint_scores, axis=1),
multiples=[1, num_instances, 1, 1])
ranking_scores = tiled_keypoint_scores / (distances + score_distance_offset)
nearby_candidate_inds = tf.math.argmax(ranking_scores, axis=2)
else:
raise ValueError('Not recognized candidate_ranking_mode: %s' %
candidate_ranking_mode)
# Gather the coordinates and scores corresponding to the closest candidates.
# Shape of tensors are [batch_size, num_instances, num_keypoints, 2] and
# [batch_size, num_instances, num_keypoints], respectively.
(nearby_candidate_coords, nearby_candidate_scores,
nearby_candidate_depths) = (
_gather_candidates_at_indices(keypoint_candidates, keypoint_scores,
nearby_candidate_inds,
keypoint_depth_candidates))
if bboxes is None:
# Filter out the chosen candidate with score lower than unmatched
# keypoint score.
mask = tf.cast(nearby_candidate_scores <
keypoint_score_threshold, tf.int32)
else:
bboxes_flattened = tf.reshape(bboxes, [-1, 4])
# Scale the bounding boxes.
# Shape [batch_size, num_instances, 4].
boxlist = box_list.BoxList(bboxes_flattened)
boxlist_scaled = box_list_ops.scale_height_width(
boxlist, box_scale, box_scale)
bboxes_scaled = boxlist_scaled.get()
bboxes = tf.reshape(bboxes_scaled, [batch_size, num_instances, 4])
# Get ymin, xmin, ymax, xmax bounding box coordinates, tiled per keypoint.
# Shape [batch_size, num_instances, num_keypoints].
bboxes_tiled = tf.tile(tf.expand_dims(bboxes, 2), [1, 1, num_keypoints, 1])
ymin, xmin, ymax, xmax = tf.unstack(bboxes_tiled, axis=3)
# Produce a mask that indicates whether the original regressed keypoint
# should be used instead of a candidate keypoint.
# Shape [batch_size, num_instances, num_keypoints].
search_radius = (
tf.math.maximum(ymax - ymin, xmax - xmin) * candidate_search_scale)
mask = (tf.cast(nearby_candidate_coords[:, :, :, 0] < ymin, tf.int32) +
tf.cast(nearby_candidate_coords[:, :, :, 0] > ymax, tf.int32) +
tf.cast(nearby_candidate_coords[:, :, :, 1] < xmin, tf.int32) +
tf.cast(nearby_candidate_coords[:, :, :, 1] > xmax, tf.int32) +
# Filter out the chosen candidate with score lower than unmatched
# keypoint score.
tf.cast(nearby_candidate_scores <
keypoint_score_threshold, tf.int32) +
tf.cast(min_distances > search_radius, tf.int32))
mask = mask > 0
# Create refined keypoints where candidate keypoints replace original
# regressed keypoints if they are in the vicinity of the regressed keypoints.
# Shape [batch_size, num_instances, num_keypoints, 2].
refined_keypoints = tf.where(
tf.tile(tf.expand_dims(mask, -1), [1, 1, 1, 2]),
regressed_keypoints,
nearby_candidate_coords)
# Update keypoints scores. In the case where we use the original regressed
# keypoints, we use a default score of `unmatched_keypoint_score`.
# Shape [batch_size, num_instances, num_keypoints].
refined_scores = tf.where(
mask,
unmatched_keypoint_score * tf.ones_like(nearby_candidate_scores),
nearby_candidate_scores)
refined_depths = None
if nearby_candidate_depths is not None:
refined_depths = tf.where(mask, tf.zeros_like(nearby_candidate_depths),
nearby_candidate_depths)
return refined_keypoints, refined_scores, refined_depths
def _pad_to_full_keypoint_dim(keypoint_coords, keypoint_scores, keypoint_inds,
num_total_keypoints):
"""Scatter keypoint elements into tensors with full keypoints dimension.
Args:
keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32
tensor.
keypoint_scores: a [batch_size, num_instances, num_keypoints] float32
tensor.
keypoint_inds: a list of integers that indicate the keypoint indices for
this specific keypoint class. These indices are used to scatter into
tensors that have a `num_total_keypoints` dimension.
num_total_keypoints: The total number of keypoints that this model predicts.
Returns:
A tuple with
keypoint_coords_padded: a
[batch_size, num_instances, num_total_keypoints,2] float32 tensor.
keypoint_scores_padded: a [batch_size, num_instances, num_total_keypoints]
float32 tensor.
"""
batch_size, num_instances, _, _ = (
shape_utils.combined_static_and_dynamic_shape(keypoint_coords))
kpt_coords_transposed = tf.transpose(keypoint_coords, [2, 0, 1, 3])
kpt_scores_transposed = tf.transpose(keypoint_scores, [2, 0, 1])
kpt_inds_tensor = tf.expand_dims(keypoint_inds, axis=-1)
kpt_coords_scattered = tf.scatter_nd(
indices=kpt_inds_tensor,
updates=kpt_coords_transposed,
shape=[num_total_keypoints, batch_size, num_instances, 2])
kpt_scores_scattered = tf.scatter_nd(
indices=kpt_inds_tensor,
updates=kpt_scores_transposed,
shape=[num_total_keypoints, batch_size, num_instances])
keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 2, 0, 3])
keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 2, 0])
return keypoint_coords_padded, keypoint_scores_padded
def _pad_to_full_instance_dim(keypoint_coords, keypoint_scores, instance_inds,
max_instances):
"""Scatter keypoint elements into tensors with full instance dimension.
Args:
keypoint_coords: a [batch_size, num_instances, num_keypoints, 2] float32
tensor.
keypoint_scores: a [batch_size, num_instances, num_keypoints] float32
tensor.
instance_inds: a list of integers that indicate the instance indices for
these keypoints. These indices are used to scatter into tensors
that have a `max_instances` dimension.
max_instances: The maximum number of instances detected by the model.
Returns:
A tuple with
keypoint_coords_padded: a [batch_size, max_instances, num_keypoints, 2]
float32 tensor.
keypoint_scores_padded: a [batch_size, max_instances, num_keypoints]
float32 tensor.
"""
batch_size, _, num_keypoints, _ = (
shape_utils.combined_static_and_dynamic_shape(keypoint_coords))
kpt_coords_transposed = tf.transpose(keypoint_coords, [1, 0, 2, 3])
kpt_scores_transposed = tf.transpose(keypoint_scores, [1, 0, 2])
instance_inds = tf.expand_dims(instance_inds, axis=-1)
kpt_coords_scattered = tf.scatter_nd(
indices=instance_inds,
updates=kpt_coords_transposed,
shape=[max_instances, batch_size, num_keypoints, 2])
kpt_scores_scattered = tf.scatter_nd(
indices=instance_inds,
updates=kpt_scores_transposed,
shape=[max_instances, batch_size, num_keypoints])
keypoint_coords_padded = tf.transpose(kpt_coords_scattered, [1, 0, 2, 3])
keypoint_scores_padded = tf.transpose(kpt_scores_scattered, [1, 0, 2])
return keypoint_coords_padded, keypoint_scores_padded
def _gather_candidates_at_indices(keypoint_candidates,
keypoint_scores,
indices,
keypoint_depth_candidates=None):
"""Gathers keypoint candidate coordinates and scores at indices.
Args:
keypoint_candidates: a float tensor of shape [batch_size, max_candidates,
num_keypoints, 2] with candidate coordinates.
keypoint_scores: a float tensor of shape [batch_size, max_candidates,
num_keypoints] with keypoint scores.
indices: an integer tensor of shape [batch_size, num_indices, num_keypoints]
with indices.
keypoint_depth_candidates: (optional) a float tensor of shape [batch_size,
max_candidates, num_keypoints] with keypoint depths.
Returns:
A tuple with
gathered_keypoint_candidates: a float tensor of shape [batch_size,
num_indices, num_keypoints, 2] with gathered coordinates.
gathered_keypoint_scores: a float tensor of shape [batch_size,
num_indices, num_keypoints].
gathered_keypoint_depths: a float tensor of shape [batch_size,
num_indices, num_keypoints]. Return None if the input
keypoint_depth_candidates is None.
"""
batch_size, num_indices, num_keypoints = _get_shape(indices, 3)
# Transpose tensors so that all batch dimensions are up front.
keypoint_candidates_transposed = tf.transpose(keypoint_candidates,
[0, 2, 1, 3])
keypoint_scores_transposed = tf.transpose(keypoint_scores, [0, 2, 1])
nearby_candidate_inds_transposed = tf.transpose(indices, [0, 2, 1])
# TF Lite does not support tf.gather with batch_dims > 0, so we need to use
# tf_gather_nd instead and here we prepare the indices for that.
combined_indices = tf.stack([
_multi_range(
batch_size,
value_repetitions=num_keypoints * num_indices,
dtype=tf.int64),
_multi_range(
num_keypoints,
value_repetitions=num_indices,
range_repetitions=batch_size,
dtype=tf.int64),
tf.reshape(nearby_candidate_inds_transposed, [-1])
], axis=1)
nearby_candidate_coords_transposed = tf.gather_nd(
keypoint_candidates_transposed, combined_indices)
nearby_candidate_coords_transposed = tf.reshape(
nearby_candidate_coords_transposed,
[batch_size, num_keypoints, num_indices, -1])
nearby_candidate_scores_transposed = tf.gather_nd(keypoint_scores_transposed,
combined_indices)
nearby_candidate_scores_transposed = tf.reshape(
nearby_candidate_scores_transposed,
[batch_size, num_keypoints, num_indices])
gathered_keypoint_candidates = tf.transpose(
nearby_candidate_coords_transposed, [0, 2, 1, 3])
gathered_keypoint_scores = tf.transpose(nearby_candidate_scores_transposed,
[0, 2, 1])
gathered_keypoint_depths = None
if keypoint_depth_candidates is not None:
keypoint_depths_transposed = tf.transpose(keypoint_depth_candidates,
[0, 2, 1])
nearby_candidate_depths_transposed = tf.gather_nd(
keypoint_depths_transposed, combined_indices)
nearby_candidate_depths_transposed = tf.reshape(
nearby_candidate_depths_transposed,
[batch_size, num_keypoints, num_indices])
gathered_keypoint_depths = tf.transpose(nearby_candidate_depths_transposed,
[0, 2, 1])
return (gathered_keypoint_candidates, gathered_keypoint_scores,
gathered_keypoint_depths)
def flattened_indices_from_row_col_indices(row_indices, col_indices, num_cols):
"""Get the index in a flattened array given row and column indices."""
return (row_indices * num_cols) + col_indices
def row_col_channel_indices_from_flattened_indices(indices, num_cols,
num_channels):
"""Computes row, column and channel indices from flattened indices.
Args:
indices: An integer tensor of any shape holding the indices in the flattened
space.
num_cols: Number of columns in the image (width).
num_channels: Number of channels in the image.
Returns:
row_indices: The row indices corresponding to each of the input indices.
Same shape as indices.
col_indices: The column indices corresponding to each of the input indices.
Same shape as indices.
channel_indices. The channel indices corresponding to each of the input
indices.
"""
# Be careful with this function when running a model in float16 precision
# (e.g. TF.js with WebGL) because the array indices may not be represented
# accurately if they are too large, resulting in incorrect channel indices.
# See:
# https://en.wikipedia.org/wiki/Half-precision_floating-point_format#Precision_limitations_on_integer_values
#
# Avoid using mod operator to make the ops more easy to be compatible with
# different environments, e.g. WASM.
row_indices = (indices // num_channels) // num_cols
col_indices = (indices // num_channels) - row_indices * num_cols
channel_indices_temp = indices // num_channels
channel_indices = indices - channel_indices_temp * num_channels
return row_indices, col_indices, channel_indices
def row_col_indices_from_flattened_indices(indices, num_cols):
"""Computes row and column indices from flattened indices.
Args:
indices: An integer tensor of any shape holding the indices in the flattened
space.
num_cols: Number of columns in the image (width).
Returns:
row_indices: The row indices corresponding to each of the input indices.
Same shape as indices.
col_indices: The column indices corresponding to each of the input indices.
Same shape as indices.
"""
# Avoid using mod operator to make the ops more easy to be compatible with
# different environments, e.g. WASM.
row_indices = indices // num_cols
col_indices = indices - row_indices * num_cols
return row_indices, col_indices
def get_valid_anchor_weights_in_flattened_image(true_image_shapes, height,
width):
"""Computes valid anchor weights for an image assuming pixels will be flattened.
This function is useful when we only want to penalize valid areas in the
image in the case when padding is used. The function assumes that the loss
function will be applied after flattening the spatial dimensions and returns
anchor weights accordingly.
Args:
true_image_shapes: An integer tensor of shape [batch_size, 3] representing
the true image shape (without padding) for each sample in the batch.
height: height of the prediction from the network.
width: width of the prediction from the network.
Returns:
valid_anchor_weights: a float tensor of shape [batch_size, height * width]
with 1s in locations where the spatial coordinates fall within the height
and width in true_image_shapes.
"""
indices = tf.reshape(tf.range(height * width), [1, -1])
batch_size = tf.shape(true_image_shapes)[0]
batch_indices = tf.ones((batch_size, 1), dtype=tf.int32) * indices
y_coords, x_coords, _ = row_col_channel_indices_from_flattened_indices(
batch_indices, width, 1)
max_y, max_x = true_image_shapes[:, 0], true_image_shapes[:, 1]
max_x = _to_float32(tf.expand_dims(max_x, 1))
max_y = _to_float32(tf.expand_dims(max_y, 1))
x_coords = _to_float32(x_coords)
y_coords = _to_float32(y_coords)
valid_mask = tf.math.logical_and(x_coords < max_x, y_coords < max_y)
return _to_float32(valid_mask)
def convert_strided_predictions_to_normalized_boxes(boxes, stride,
true_image_shapes):
"""Converts predictions in the output space to normalized boxes.
Boxes falling outside the valid image boundary are clipped to be on the
boundary.
Args:
boxes: A tensor of shape [batch_size, num_boxes, 4] holding the raw
coordinates of boxes in the model's output space.
stride: The stride in the output space.
true_image_shapes: A tensor of shape [batch_size, 3] representing the true
shape of the input not considering padding.
Returns:
boxes: A tensor of shape [batch_size, num_boxes, 4] representing the
coordinates of the normalized boxes.
"""
# Note: We use tf ops instead of functions in box_list_ops to make this
# function compatible with dynamic batch size.
boxes = boxes * stride
true_image_shapes = tf.tile(true_image_shapes[:, tf.newaxis, :2], [1, 1, 2])
boxes = boxes / tf.cast(true_image_shapes, tf.float32)
boxes = tf.clip_by_value(boxes, 0.0, 1.0)
return boxes
def convert_strided_predictions_to_normalized_keypoints(
keypoint_coords, keypoint_scores, stride, true_image_shapes,
clip_out_of_frame_keypoints=False):
"""Converts predictions in the output space to normalized keypoints.
If clip_out_of_frame_keypoints=False, keypoint coordinates falling outside
the valid image boundary are normalized but not clipped; If
clip_out_of_frame_keypoints=True, keypoint coordinates falling outside the
valid image boundary are clipped to the closest image boundary and the scores
will be set to 0.0.
Args:
keypoint_coords: A tensor of shape
[batch_size, num_instances, num_keypoints, 2] holding the raw coordinates
of keypoints in the model's output space.
keypoint_scores: A tensor of shape
[batch_size, num_instances, num_keypoints] holding the keypoint scores.
stride: The stride in the output space.
true_image_shapes: A tensor of shape [batch_size, 3] representing the true
shape of the input not considering padding.
clip_out_of_frame_keypoints: A boolean indicating whether keypoints outside
the image boundary should be clipped. If True, keypoint coords will be
clipped to image boundary. If False, keypoints are normalized but not
filtered based on their location.
Returns:
keypoint_coords_normalized: A tensor of shape
[batch_size, num_instances, num_keypoints, 2] representing the coordinates
of the normalized keypoints.
keypoint_scores: A tensor of shape
[batch_size, num_instances, num_keypoints] representing the updated
keypoint scores.
"""
# Flatten keypoints and scores.
batch_size, _, _, _ = (
shape_utils.combined_static_and_dynamic_shape(keypoint_coords))
# Scale and normalize keypoints.
true_heights, true_widths, _ = tf.unstack(true_image_shapes, axis=1)
yscale = float(stride) / tf.cast(true_heights, tf.float32)
xscale = float(stride) / tf.cast(true_widths, tf.float32)
yx_scale = tf.stack([yscale, xscale], axis=1)
keypoint_coords_normalized = keypoint_coords * tf.reshape(
yx_scale, [batch_size, 1, 1, 2])
if clip_out_of_frame_keypoints:
# Determine the keypoints that are in the true image regions.
valid_indices = tf.logical_and(
tf.logical_and(keypoint_coords_normalized[:, :, :, 0] >= 0.0,
keypoint_coords_normalized[:, :, :, 0] <= 1.0),
tf.logical_and(keypoint_coords_normalized[:, :, :, 1] >= 0.0,
keypoint_coords_normalized[:, :, :, 1] <= 1.0))
batch_window = tf.tile(
tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32),
multiples=[batch_size, 1])
def clip_to_window(inputs):
keypoints, window = inputs
return keypoint_ops.clip_to_window(keypoints, window)
# Specify the TensorSpec explicitly in the tf.map_fn to make it tf.lite
# compatible.
kpts_dims = _get_shape(keypoint_coords_normalized, 4)
output_spec = tf.TensorSpec(
shape=[kpts_dims[1], kpts_dims[2], kpts_dims[3]], dtype=tf.float32)
keypoint_coords_normalized = tf.map_fn(
clip_to_window, (keypoint_coords_normalized, batch_window),
dtype=tf.float32, back_prop=False,
fn_output_signature=output_spec)
keypoint_scores = tf.where(valid_indices, keypoint_scores,
tf.zeros_like(keypoint_scores))
return keypoint_coords_normalized, keypoint_scores
def convert_strided_predictions_to_instance_masks(
boxes, classes, masks, true_image_shapes,
densepose_part_heatmap=None, densepose_surface_coords=None, stride=4,
mask_height=256, mask_width=256, score_threshold=0.5,
densepose_class_index=-1):
"""Converts predicted full-image masks into instance masks.
For each predicted detection box:
* Crop and resize the predicted mask (and optionally DensePose coordinates)
based on the detected bounding box coordinates and class prediction. Uses
bilinear resampling.
* Binarize the mask using the provided score threshold.
Args:
boxes: A tensor of shape [batch, max_detections, 4] holding the predicted
boxes, in normalized coordinates (relative to the true image dimensions).
classes: An integer tensor of shape [batch, max_detections] containing the
detected class for each box (0-indexed).
masks: A [batch, output_height, output_width, num_classes] float32
tensor with class probabilities.
true_image_shapes: A tensor of shape [batch, 3] representing the true
shape of the inputs not considering padding.
densepose_part_heatmap: (Optional) A [batch, output_height, output_width,
num_parts] float32 tensor with part scores (i.e. logits).
densepose_surface_coords: (Optional) A [batch, output_height, output_width,
2 * num_parts] float32 tensor with predicted part coordinates (in
vu-format).
stride: The stride in the output space.
mask_height: The desired resized height for instance masks.
mask_width: The desired resized width for instance masks.
score_threshold: The threshold at which to convert predicted mask
into foreground pixels.
densepose_class_index: The class index (0-indexed) corresponding to the
class which has DensePose labels (e.g. person class).
Returns:
A tuple of masks and surface_coords.
instance_masks: A [batch_size, max_detections, mask_height, mask_width]
uint8 tensor with predicted foreground mask for each
instance. If DensePose tensors are provided, then each pixel value in the
mask encodes the 1-indexed part.
surface_coords: A [batch_size, max_detections, mask_height, mask_width, 2]
float32 tensor with (v, u) coordinates. Note that v, u coordinates are
only defined on instance masks, and the coordinates at each location of
the foreground mask correspond to coordinates on a local part coordinate
system (the specific part can be inferred from the `instance_masks`
output. If DensePose feature maps are not passed to this function, this
output will be None.
Raises:
ValueError: If one but not both of `densepose_part_heatmap` and
`densepose_surface_coords` is provided.
"""
batch_size, output_height, output_width, _ = (
shape_utils.combined_static_and_dynamic_shape(masks))
input_height = stride * output_height
input_width = stride * output_width
true_heights, true_widths, _ = tf.unstack(true_image_shapes, axis=1)
# If necessary, create dummy DensePose tensors to simplify the map function.
densepose_present = True
if ((densepose_part_heatmap is not None) ^
(densepose_surface_coords is not None)):
raise ValueError('To use DensePose, both `densepose_part_heatmap` and '
'`densepose_surface_coords` must be provided')
if densepose_part_heatmap is None and densepose_surface_coords is None:
densepose_present = False
densepose_part_heatmap = tf.zeros(
(batch_size, output_height, output_width, 1), dtype=tf.float32)
densepose_surface_coords = tf.zeros(
(batch_size, output_height, output_width, 2), dtype=tf.float32)
crop_and_threshold_fn = functools.partial(
crop_and_threshold_masks, input_height=input_height,
input_width=input_width, mask_height=mask_height, mask_width=mask_width,
score_threshold=score_threshold,
densepose_class_index=densepose_class_index)
instance_masks, surface_coords = shape_utils.static_or_dynamic_map_fn(
crop_and_threshold_fn,
elems=[boxes, classes, masks, densepose_part_heatmap,
densepose_surface_coords, true_heights, true_widths],
dtype=[tf.uint8, tf.float32],
back_prop=False)
surface_coords = surface_coords if densepose_present else None
return instance_masks, surface_coords
def crop_and_threshold_masks(elems, input_height, input_width, mask_height=256,
mask_width=256, score_threshold=0.5,
densepose_class_index=-1):
"""Crops and thresholds masks based on detection boxes.
Args:
elems: A tuple of
boxes - float32 tensor of shape [max_detections, 4]
classes - int32 tensor of shape [max_detections] (0-indexed)
masks - float32 tensor of shape [output_height, output_width, num_classes]
part_heatmap - float32 tensor of shape [output_height, output_width,
num_parts]
surf_coords - float32 tensor of shape [output_height, output_width,
2 * num_parts]
true_height - scalar int tensor
true_width - scalar int tensor
input_height: Input height to network.
input_width: Input width to network.
mask_height: Height for resizing mask crops.
mask_width: Width for resizing mask crops.
score_threshold: The threshold at which to convert predicted mask
into foreground pixels.
densepose_class_index: scalar int tensor with the class index (0-indexed)
for DensePose.
Returns:
A tuple of
all_instances: A [max_detections, mask_height, mask_width] uint8 tensor
with a predicted foreground mask for each instance. Background is encoded
as 0, and foreground is encoded as a positive integer. Specific part
indices are encoded as 1-indexed parts (for classes that have part
information).
surface_coords: A [max_detections, mask_height, mask_width, 2]
float32 tensor with (v, u) coordinates. for each part.
"""
(boxes, classes, masks, part_heatmap, surf_coords, true_height,
true_width) = elems
# Boxes are in normalized coordinates relative to true image shapes. Convert
# coordinates to be normalized relative to input image shapes (since masks
# may still have padding).
boxlist = box_list.BoxList(boxes)
y_scale = true_height / input_height
x_scale = true_width / input_width
boxlist = box_list_ops.scale(boxlist, y_scale, x_scale)
boxes = boxlist.get()
# Convert masks from [output_height, output_width, num_classes] to
# [num_classes, output_height, output_width, 1].
num_classes = tf.shape(masks)[-1]
masks_4d = tf.transpose(masks, perm=[2, 0, 1])[:, :, :, tf.newaxis]
# Tile part and surface coordinate masks for all classes.
part_heatmap_4d = tf.tile(part_heatmap[tf.newaxis, :, :, :],
multiples=[num_classes, 1, 1, 1])
surf_coords_4d = tf.tile(surf_coords[tf.newaxis, :, :, :],
multiples=[num_classes, 1, 1, 1])
feature_maps_concat = tf.concat([masks_4d, part_heatmap_4d, surf_coords_4d],
axis=-1)
# The following tensor has shape
# [max_detections, mask_height, mask_width, 1 + 3 * num_parts].
cropped_masks = tf2.image.crop_and_resize(
feature_maps_concat,
boxes=boxes,
box_indices=classes,
crop_size=[mask_height, mask_width],
method='bilinear')
# Split the cropped masks back into instance masks, part masks, and surface
# coordinates.
num_parts = tf.shape(part_heatmap)[-1]
instance_masks, part_heatmap_cropped, surface_coords_cropped = tf.split(
cropped_masks, [1, num_parts, 2 * num_parts], axis=-1)
# Threshold the instance masks. Resulting tensor has shape
# [max_detections, mask_height, mask_width, 1].
instance_masks_int = tf.cast(
tf.math.greater_equal(instance_masks, score_threshold), dtype=tf.int32)
# Produce a binary mask that is 1.0 only:
# - in the foreground region for an instance
# - in detections corresponding to the DensePose class
det_with_parts = tf.equal(classes, densepose_class_index)
det_with_parts = tf.cast(
tf.reshape(det_with_parts, [-1, 1, 1, 1]), dtype=tf.int32)
instance_masks_with_parts = tf.math.multiply(instance_masks_int,
det_with_parts)
# Similarly, produce a binary mask that holds the foreground masks only for
# instances without parts (i.e. non-DensePose classes).
det_without_parts = 1 - det_with_parts
instance_masks_without_parts = tf.math.multiply(instance_masks_int,
det_without_parts)
# Assemble a tensor that has standard instance segmentation masks for
# non-DensePose classes (with values in [0, 1]), and part segmentation masks
# for DensePose classes (with vaues in [0, 1, ..., num_parts]).
part_mask_int_zero_indexed = tf.math.argmax(
part_heatmap_cropped, axis=-1, output_type=tf.int32)[:, :, :, tf.newaxis]
part_mask_int_one_indexed = part_mask_int_zero_indexed + 1
all_instances = (instance_masks_without_parts +
instance_masks_with_parts * part_mask_int_one_indexed)
# Gather the surface coordinates for the parts.
surface_coords_cropped = tf.reshape(
surface_coords_cropped, [-1, mask_height, mask_width, num_parts, 2])
surface_coords = gather_surface_coords_for_parts(surface_coords_cropped,
part_mask_int_zero_indexed)
surface_coords = (
surface_coords * tf.cast(instance_masks_with_parts, tf.float32))
return [tf.squeeze(all_instances, axis=3), surface_coords]
def gather_surface_coords_for_parts(surface_coords_cropped,
highest_scoring_part):
"""Gathers the (v, u) coordinates for the highest scoring DensePose parts.
Args:
surface_coords_cropped: A [max_detections, height, width, num_parts, 2]
float32 tensor with (v, u) surface coordinates.
highest_scoring_part: A [max_detections, height, width] integer tensor with
the highest scoring part (0-indexed) indices for each location.
Returns:
A [max_detections, height, width, 2] float32 tensor with the (v, u)
coordinates selected from the highest scoring parts.
"""
max_detections, height, width, num_parts, _ = (
shape_utils.combined_static_and_dynamic_shape(surface_coords_cropped))
flattened_surface_coords = tf.reshape(surface_coords_cropped, [-1, 2])
flattened_part_ids = tf.reshape(highest_scoring_part, [-1])
# Produce lookup indices that represent the locations of the highest scoring
# parts in the `flattened_surface_coords` tensor.
flattened_lookup_indices = (
num_parts * tf.range(max_detections * height * width) +
flattened_part_ids)
vu_coords_flattened = tf.gather(flattened_surface_coords,
flattened_lookup_indices, axis=0)
return tf.reshape(vu_coords_flattened, [max_detections, height, width, 2])
def predicted_embeddings_at_object_centers(embedding_predictions,
y_indices, x_indices):
"""Returns the predicted embeddings at specified object centers.
Args:
embedding_predictions: A float tensor of shape [batch_size, height, width,
reid_embed_size] holding predicted embeddings.
y_indices: A [batch, num_instances] int tensor holding y indices for object
centers. These indices correspond to locations in the output feature map.
x_indices: A [batch, num_instances] int tensor holding x indices for object
centers. These indices correspond to locations in the output feature map.
Returns:
A float tensor of shape [batch_size, num_objects, reid_embed_size] where
predicted embeddings are gathered at the provided locations.
"""
batch_size, _, width, _ = _get_shape(embedding_predictions, 4)
flattened_indices = flattened_indices_from_row_col_indices(
y_indices, x_indices, width)
_, num_instances = _get_shape(flattened_indices, 2)
embeddings_flat = _flatten_spatial_dimensions(embedding_predictions)
embeddings = tf.gather(embeddings_flat, flattened_indices, batch_dims=1)
embeddings = tf.reshape(embeddings, [batch_size, num_instances, -1])
return embeddings
class ObjectDetectionParams(
collections.namedtuple('ObjectDetectionParams', [
'localization_loss', 'scale_loss_weight', 'offset_loss_weight',
'task_loss_weight', 'scale_head_num_filters',
'scale_head_kernel_sizes', 'offset_head_num_filters',
'offset_head_kernel_sizes'
])):
"""Namedtuple to host object detection related parameters.
This is a wrapper class over the fields that are either the hyper-parameters
or the loss functions needed for the object detection task. The class is
immutable after constructed. Please see the __new__ function for detailed
information for each fields.
"""
__slots__ = ()
def __new__(cls,
localization_loss,
scale_loss_weight,
offset_loss_weight,
task_loss_weight=1.0,
scale_head_num_filters=(256),
scale_head_kernel_sizes=(3),
offset_head_num_filters=(256),
offset_head_kernel_sizes=(3)):
"""Constructor with default values for ObjectDetectionParams.
Args:
localization_loss: a object_detection.core.losses.Loss object to compute
the loss for the center offset and height/width predictions in
CenterNet.
scale_loss_weight: float, The weight for localizing box size. Note that
the scale loss is dependent on the input image size, since we penalize
the raw height and width. This constant may need to be adjusted
depending on the input size.
offset_loss_weight: float, The weight for localizing center offsets.
task_loss_weight: float, the weight of the object detection loss.
scale_head_num_filters: filter numbers of the convolutional layers used
by the object detection box scale prediction head.
scale_head_kernel_sizes: kernel size of the convolutional layers used
by the object detection box scale prediction head.
offset_head_num_filters: filter numbers of the convolutional layers used
by the object detection box offset prediction head.
offset_head_kernel_sizes: kernel size of the convolutional layers used
by the object detection box offset prediction head.
Returns:
An initialized ObjectDetectionParams namedtuple.
"""
return super(ObjectDetectionParams,
cls).__new__(cls, localization_loss, scale_loss_weight,
offset_loss_weight, task_loss_weight,
scale_head_num_filters, scale_head_kernel_sizes,
offset_head_num_filters, offset_head_kernel_sizes)
class KeypointEstimationParams(
collections.namedtuple('KeypointEstimationParams', [
'task_name', 'class_id', 'keypoint_indices', 'classification_loss',
'localization_loss', 'keypoint_labels', 'keypoint_std_dev',
'keypoint_heatmap_loss_weight', 'keypoint_offset_loss_weight',
'keypoint_regression_loss_weight', 'keypoint_candidate_score_threshold',
'heatmap_bias_init', 'num_candidates_per_keypoint', 'task_loss_weight',
'peak_max_pool_kernel_size', 'unmatched_keypoint_score', 'box_scale',
'candidate_search_scale', 'candidate_ranking_mode',
'offset_peak_radius', 'per_keypoint_offset', 'predict_depth',
'per_keypoint_depth', 'keypoint_depth_loss_weight',
'score_distance_offset', 'clip_out_of_frame_keypoints',
'rescore_instances', 'heatmap_head_num_filters',
'heatmap_head_kernel_sizes', 'offset_head_num_filters',
'offset_head_kernel_sizes', 'regress_head_num_filters',
'regress_head_kernel_sizes'
])):
"""Namedtuple to host object detection related parameters.
This is a wrapper class over the fields that are either the hyper-parameters
or the loss functions needed for the keypoint estimation task. The class is
immutable after constructed. Please see the __new__ function for detailed
information for each fields.
"""
__slots__ = ()
def __new__(cls,
task_name,
class_id,
keypoint_indices,
classification_loss,
localization_loss,
keypoint_labels=None,
keypoint_std_dev=None,
keypoint_heatmap_loss_weight=1.0,
keypoint_offset_loss_weight=1.0,
keypoint_regression_loss_weight=1.0,
keypoint_candidate_score_threshold=0.1,
heatmap_bias_init=-2.19,
num_candidates_per_keypoint=100,
task_loss_weight=1.0,
peak_max_pool_kernel_size=3,
unmatched_keypoint_score=0.1,
box_scale=1.2,
candidate_search_scale=0.3,
candidate_ranking_mode='min_distance',
offset_peak_radius=0,
per_keypoint_offset=False,
predict_depth=False,
per_keypoint_depth=False,
keypoint_depth_loss_weight=1.0,
score_distance_offset=1e-6,
clip_out_of_frame_keypoints=False,
rescore_instances=False,
heatmap_head_num_filters=(256),
heatmap_head_kernel_sizes=(3),
offset_head_num_filters=(256),
offset_head_kernel_sizes=(3),
regress_head_num_filters=(256),
regress_head_kernel_sizes=(3)):
"""Constructor with default values for KeypointEstimationParams.
Args:
task_name: string, the name of the task this namedtuple corresponds to.
Note that it should be an unique identifier of the task.
class_id: int, the ID of the class that contains the target keypoints to
considered in this task. For example, if the task is human pose
estimation, the class id should correspond to the "human" class. Note
that the ID is 0-based, meaning that class 0 corresponds to the first
non-background object class.
keypoint_indices: A list of integers representing the indicies of the
keypoints to be considered in this task. This is used to retrieve the
subset of the keypoints from gt_keypoints that should be considered in
this task.
classification_loss: an object_detection.core.losses.Loss object to
compute the loss for the class predictions in CenterNet.
localization_loss: an object_detection.core.losses.Loss object to compute
the loss for the center offset and height/width predictions in
CenterNet.
keypoint_labels: A list of strings representing the label text of each
keypoint, e.g. "nose", 'left_shoulder". Note that the length of this
list should be equal to keypoint_indices.
keypoint_std_dev: A list of float represent the standard deviation of the
Gaussian kernel used to generate the keypoint heatmap. It is to provide
the flexibility of using different sizes of Gaussian kernel for each
keypoint class.
keypoint_heatmap_loss_weight: float, The weight for the keypoint heatmap.
keypoint_offset_loss_weight: float, The weight for the keypoint offsets
loss.
keypoint_regression_loss_weight: float, The weight for keypoint regression
loss. Note that the loss is dependent on the input image size, since we
penalize the raw height and width. This constant may need to be adjusted
depending on the input size.
keypoint_candidate_score_threshold: float, The heatmap score threshold for
a keypoint to become a valid candidate.
heatmap_bias_init: float, the initial value of bias in the convolutional
kernel of the class prediction head. If set to None, the bias is
initialized with zeros.
num_candidates_per_keypoint: The maximum number of candidates to retrieve
for each keypoint.
task_loss_weight: float, the weight of the keypoint estimation loss.
peak_max_pool_kernel_size: Max pool kernel size to use to pull off peak
score locations in a neighborhood (independently for each keypoint
types).
unmatched_keypoint_score: The default score to use for regressed keypoints
that are not successfully snapped to a nearby candidate.
box_scale: The multiplier to expand the bounding boxes (either the
provided boxes or those which tightly cover the regressed keypoints).
candidate_search_scale: The scale parameter that multiplies the largest
dimension of a bounding box. The resulting distance becomes a search
radius for candidates in the vicinity of each regressed keypoint.
candidate_ranking_mode: One of ['min_distance', 'score_distance_ratio']
indicating how to select the keypoint candidate.
offset_peak_radius: The radius (in the unit of output pixel) around
groundtruth heatmap peak to assign the offset targets. If set 0, then
the offset target will only be assigned to the heatmap peak (same
behavior as the original paper).
per_keypoint_offset: A bool indicates whether to assign offsets for each
keypoint channel separately. If set False, the output offset target has
the shape [batch_size, out_height, out_width, 2] (same behavior as the
original paper). If set True, the output offset target has the shape
[batch_size, out_height, out_width, 2 * num_keypoints] (recommended when
the offset_peak_radius is not zero).
predict_depth: A bool indicates whether to predict the depth of each
keypoints.
per_keypoint_depth: A bool indicates whether the model predicts the depth
of each keypoints in independent channels. Similar to
per_keypoint_offset but for the keypoint depth.
keypoint_depth_loss_weight: The weight of the keypoint depth loss.
score_distance_offset: The distance offset to apply in the denominator
when candidate_ranking_mode is 'score_distance_ratio'. The metric to
maximize in this scenario is score / (distance + score_distance_offset).
Larger values of score_distance_offset make the keypoint score gain more
relative importance.
clip_out_of_frame_keypoints: Whether keypoints outside the image frame
should be clipped back to the image boundary. If True, the keypoints
that are clipped have scores set to 0.0.
rescore_instances: Whether to rescore instances based on a combination of
detection score and keypoint scores.
heatmap_head_num_filters: filter numbers of the convolutional layers used
by the keypoint heatmap prediction head.
heatmap_head_kernel_sizes: kernel size of the convolutional layers used
by the keypoint heatmap prediction head.
offset_head_num_filters: filter numbers of the convolutional layers used
by the keypoint offset prediction head.
offset_head_kernel_sizes: kernel size of the convolutional layers used
by the keypoint offset prediction head.
regress_head_num_filters: filter numbers of the convolutional layers used
by the keypoint regression prediction head.
regress_head_kernel_sizes: kernel size of the convolutional layers used
by the keypoint regression prediction head.
Returns:
An initialized KeypointEstimationParams namedtuple.
"""
return super(KeypointEstimationParams, cls).__new__(
cls, task_name, class_id, keypoint_indices, classification_loss,
localization_loss, keypoint_labels, keypoint_std_dev,
keypoint_heatmap_loss_weight, keypoint_offset_loss_weight,
keypoint_regression_loss_weight, keypoint_candidate_score_threshold,
heatmap_bias_init, num_candidates_per_keypoint, task_loss_weight,
peak_max_pool_kernel_size, unmatched_keypoint_score, box_scale,
candidate_search_scale, candidate_ranking_mode, offset_peak_radius,
per_keypoint_offset, predict_depth, per_keypoint_depth,
keypoint_depth_loss_weight, score_distance_offset,
clip_out_of_frame_keypoints, rescore_instances,
heatmap_head_num_filters, heatmap_head_kernel_sizes,
offset_head_num_filters, offset_head_kernel_sizes,
regress_head_num_filters, regress_head_kernel_sizes)
class ObjectCenterParams(
collections.namedtuple('ObjectCenterParams', [
'classification_loss', 'object_center_loss_weight', 'heatmap_bias_init',
'min_box_overlap_iou', 'max_box_predictions', 'use_labeled_classes',
'keypoint_weights_for_center', 'center_head_num_filters',
'center_head_kernel_sizes'
])):
"""Namedtuple to store object center prediction related parameters."""
__slots__ = ()
def __new__(cls,
classification_loss,
object_center_loss_weight,
heatmap_bias_init=-2.19,
min_box_overlap_iou=0.7,
max_box_predictions=100,
use_labeled_classes=False,
keypoint_weights_for_center=None,
center_head_num_filters=(256),
center_head_kernel_sizes=(3)):
"""Constructor with default values for ObjectCenterParams.
Args:
classification_loss: an object_detection.core.losses.Loss object to
compute the loss for the class predictions in CenterNet.
object_center_loss_weight: float, The weight for the object center loss.
heatmap_bias_init: float, the initial value of bias in the convolutional
kernel of the object center prediction head. If set to None, the bias is
initialized with zeros.
min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes
need have with groundtruth boxes to not be penalized. This is used for
computing the class specific center heatmaps.
max_box_predictions: int, the maximum number of boxes to predict.
use_labeled_classes: boolean, compute the loss only labeled classes.
keypoint_weights_for_center: (optional) The keypoint weights used for
calculating the location of object center. If provided, the number of
weights need to be the same as the number of keypoints. The object
center is calculated by the weighted mean of the keypoint locations. If
not provided, the object center is determined by the center of the
bounding box (default behavior).
center_head_num_filters: filter numbers of the convolutional layers used
by the object center prediction head.
center_head_kernel_sizes: kernel size of the convolutional layers used
by the object center prediction head.
Returns:
An initialized ObjectCenterParams namedtuple.
"""
return super(ObjectCenterParams,
cls).__new__(cls, classification_loss,
object_center_loss_weight, heatmap_bias_init,
min_box_overlap_iou, max_box_predictions,
use_labeled_classes, keypoint_weights_for_center,
center_head_num_filters, center_head_kernel_sizes)
class MaskParams(
collections.namedtuple('MaskParams', [
'classification_loss', 'task_loss_weight', 'mask_height', 'mask_width',
'score_threshold', 'heatmap_bias_init', 'mask_head_num_filters',
'mask_head_kernel_sizes'
])):
"""Namedtuple to store mask prediction related parameters."""
__slots__ = ()
def __new__(cls,
classification_loss,
task_loss_weight=1.0,
mask_height=256,
mask_width=256,
score_threshold=0.5,
heatmap_bias_init=-2.19,
mask_head_num_filters=(256),
mask_head_kernel_sizes=(3)):
"""Constructor with default values for MaskParams.
Args:
classification_loss: an object_detection.core.losses.Loss object to
compute the loss for the semantic segmentation predictions in CenterNet.
task_loss_weight: float, The loss weight for the segmentation task.
mask_height: The height of the resized instance segmentation mask.
mask_width: The width of the resized instance segmentation mask.
score_threshold: The threshold at which to convert predicted mask
probabilities (after passing through sigmoid) into foreground pixels.
heatmap_bias_init: float, the initial value of bias in the convolutional
kernel of the semantic segmentation prediction head. If set to None, the
bias is initialized with zeros.
mask_head_num_filters: filter numbers of the convolutional layers used
by the mask prediction head.
mask_head_kernel_sizes: kernel size of the convolutional layers used
by the mask prediction head.
Returns:
An initialized MaskParams namedtuple.
"""
return super(MaskParams,
cls).__new__(cls, classification_loss,
task_loss_weight, mask_height, mask_width,
score_threshold, heatmap_bias_init,
mask_head_num_filters, mask_head_kernel_sizes)
class DensePoseParams(
collections.namedtuple('DensePoseParams', [
'class_id', 'classification_loss', 'localization_loss',
'part_loss_weight', 'coordinate_loss_weight', 'num_parts',
'task_loss_weight', 'upsample_to_input_res', 'upsample_method',
'heatmap_bias_init'
])):
"""Namedtuple to store DensePose prediction related parameters."""
__slots__ = ()
def __new__(cls,
class_id,
classification_loss,
localization_loss,
part_loss_weight=1.0,
coordinate_loss_weight=1.0,
num_parts=24,
task_loss_weight=1.0,
upsample_to_input_res=True,
upsample_method='bilinear',
heatmap_bias_init=-2.19):
"""Constructor with default values for DensePoseParams.
Args:
class_id: the ID of the class that contains the DensePose groundtruth.
This should typically correspond to the "person" class. Note that the ID
is 0-based, meaning that class 0 corresponds to the first non-background
object class.
classification_loss: an object_detection.core.losses.Loss object to
compute the loss for the body part predictions in CenterNet.
localization_loss: an object_detection.core.losses.Loss object to compute
the loss for the surface coordinate regression in CenterNet.
part_loss_weight: The loss weight to apply to part prediction.
coordinate_loss_weight: The loss weight to apply to surface coordinate
prediction.
num_parts: The number of DensePose parts to predict.
task_loss_weight: float, the loss weight for the DensePose task.
upsample_to_input_res: Whether to upsample the DensePose feature maps to
the input resolution before applying loss. Note that the prediction
outputs are still at the standard CenterNet output stride.
upsample_method: Method for upsampling DensePose feature maps. Options are
either 'bilinear' or 'nearest'). This takes no effect when
`upsample_to_input_res` is False.
heatmap_bias_init: float, the initial value of bias in the convolutional
kernel of the part prediction head. If set to None, the
bias is initialized with zeros.
Returns:
An initialized DensePoseParams namedtuple.
"""
return super(DensePoseParams,
cls).__new__(cls, class_id, classification_loss,
localization_loss, part_loss_weight,
coordinate_loss_weight, num_parts,
task_loss_weight, upsample_to_input_res,
upsample_method, heatmap_bias_init)
class TrackParams(
collections.namedtuple('TrackParams', [
'num_track_ids', 'reid_embed_size', 'num_fc_layers',
'classification_loss', 'task_loss_weight'
])):
"""Namedtuple to store tracking prediction related parameters."""
__slots__ = ()
def __new__(cls,
num_track_ids,
reid_embed_size,
num_fc_layers,
classification_loss,
task_loss_weight=1.0):
"""Constructor with default values for TrackParams.
Args:
num_track_ids: int. The maximum track ID in the dataset. Used for ReID
embedding classification task.
reid_embed_size: int. The embedding size for ReID task.
num_fc_layers: int. The number of (fully-connected, batch-norm, relu)
layers for track ID classification head.
classification_loss: an object_detection.core.losses.Loss object to
compute the loss for the ReID embedding in CenterNet.
task_loss_weight: float, the loss weight for the tracking task.
Returns:
An initialized TrackParams namedtuple.
"""
return super(TrackParams,
cls).__new__(cls, num_track_ids, reid_embed_size,
num_fc_layers, classification_loss,
task_loss_weight)
class TemporalOffsetParams(
collections.namedtuple('TemporalOffsetParams', [
'localization_loss', 'task_loss_weight'
])):
"""Namedtuple to store temporal offset related parameters."""
__slots__ = ()
def __new__(cls,
localization_loss,
task_loss_weight=1.0):
"""Constructor with default values for TrackParams.
Args:
localization_loss: an object_detection.core.losses.Loss object to
compute the loss for the temporal offset in CenterNet.
task_loss_weight: float, the loss weight for the temporal offset
task.
Returns:
An initialized TemporalOffsetParams namedtuple.
"""
return super(TemporalOffsetParams,
cls).__new__(cls, localization_loss, task_loss_weight)
# The following constants are used to generate the keys of the
# (prediction, loss, target assigner,...) dictionaries used in CenterNetMetaArch
# class.
DETECTION_TASK = 'detection_task'
OBJECT_CENTER = 'object_center'
BOX_SCALE = 'box/scale'
BOX_OFFSET = 'box/offset'
KEYPOINT_REGRESSION = 'keypoint/regression'
KEYPOINT_HEATMAP = 'keypoint/heatmap'
KEYPOINT_OFFSET = 'keypoint/offset'
KEYPOINT_DEPTH = 'keypoint/depth'
SEGMENTATION_TASK = 'segmentation_task'
SEGMENTATION_HEATMAP = 'segmentation/heatmap'
DENSEPOSE_TASK = 'densepose_task'
DENSEPOSE_HEATMAP = 'densepose/heatmap'
DENSEPOSE_REGRESSION = 'densepose/regression'
LOSS_KEY_PREFIX = 'Loss'
TRACK_TASK = 'track_task'
TRACK_REID = 'track/reid'
TEMPORALOFFSET_TASK = 'temporal_offset_task'
TEMPORAL_OFFSET = 'track/offset'
def get_keypoint_name(task_name, head_name):
return '%s/%s' % (task_name, head_name)
def get_num_instances_from_weights(groundtruth_weights_list):
"""Computes the number of instances/boxes from the weights in a batch.
Args:
groundtruth_weights_list: A list of float tensors with shape
[max_num_instances] representing whether there is an actual instance in
the image (with non-zero value) or is padded to match the
max_num_instances (with value 0.0). The list represents the batch
dimension.
Returns:
A scalar integer tensor incidating how many instances/boxes are in the
images in the batch. Note that this function is usually used to normalize
the loss so the minimum return value is 1 to avoid weird behavior.
"""
num_instances = tf.reduce_sum(
[tf.math.count_nonzero(w) for w in groundtruth_weights_list])
num_instances = tf.maximum(num_instances, 1)
return num_instances
class CenterNetMetaArch(model.DetectionModel):
"""The CenterNet meta architecture [1].
[1]: https://arxiv.org/abs/1904.07850
"""
def __init__(self,
is_training,
add_summaries,
num_classes,
feature_extractor,
image_resizer_fn,
object_center_params,
object_detection_params=None,
keypoint_params_dict=None,
mask_params=None,
densepose_params=None,
track_params=None,
temporal_offset_params=None,
use_depthwise=False,
compute_heatmap_sparse=False,
non_max_suppression_fn=None,
unit_height_conv=False):
"""Initializes a CenterNet model.
Args:
is_training: Set to True if this model is being built for training.
add_summaries: Whether to add tf summaries in the model.
num_classes: int, The number of classes that the model should predict.
feature_extractor: A CenterNetFeatureExtractor to use to extract features
from an image.
image_resizer_fn: a callable for image resizing. This callable always
takes a rank-3 image tensor (corresponding to a single image) and
returns a rank-3 image tensor, possibly with new spatial dimensions and
a 1-D tensor of shape [3] indicating shape of true image within the
resized image tensor as the resized image tensor could be padded. See
builders/image_resizer_builder.py.
object_center_params: An ObjectCenterParams namedtuple. This object holds
the hyper-parameters for object center prediction. This is required by
either object detection or keypoint estimation tasks.
object_detection_params: An ObjectDetectionParams namedtuple. This object
holds the hyper-parameters necessary for object detection. Please see
the class definition for more details.
keypoint_params_dict: A dictionary that maps from task name to the
corresponding KeypointEstimationParams namedtuple. This object holds the
hyper-parameters necessary for multiple keypoint estimations. Please
see the class definition for more details.
mask_params: A MaskParams namedtuple. This object
holds the hyper-parameters for segmentation. Please see the class
definition for more details.
densepose_params: A DensePoseParams namedtuple. This object holds the
hyper-parameters for DensePose prediction. Please see the class
definition for more details. Note that if this is provided, it is
expected that `mask_params` is also provided.
track_params: A TrackParams namedtuple. This object
holds the hyper-parameters for tracking. Please see the class
definition for more details.
temporal_offset_params: A TemporalOffsetParams namedtuple. This object
holds the hyper-parameters for offset prediction based tracking.
use_depthwise: If true, all task heads will be constructed using
separable_conv. Otherwise, standard convoltuions will be used.
compute_heatmap_sparse: bool, whether or not to use the sparse version of
the Op that computes the center heatmaps. The sparse version scales
better with number of channels in the heatmap, but in some cases is
known to cause an OOM error. See b/170989061.
non_max_suppression_fn: Optional Non Max Suppression function to apply.
unit_height_conv: If True, Conv2Ds in prediction heads have asymmetric
kernels with height=1.
"""
assert object_detection_params or keypoint_params_dict
# Shorten the name for convenience and better formatting.
self._is_training = is_training
# The Objects as Points paper attaches loss functions to multiple
# (`num_feature_outputs`) feature maps in the the backbone. E.g.
# for the hourglass backbone, `num_feature_outputs` is 2.
self._num_classes = num_classes
self._feature_extractor = feature_extractor
self._num_feature_outputs = feature_extractor.num_feature_outputs
self._stride = self._feature_extractor.out_stride
self._image_resizer_fn = image_resizer_fn
self._center_params = object_center_params
self._od_params = object_detection_params
self._kp_params_dict = keypoint_params_dict
self._mask_params = mask_params
if densepose_params is not None and mask_params is None:
raise ValueError('To run DensePose prediction, `mask_params` must also '
'be supplied.')
self._densepose_params = densepose_params
self._track_params = track_params
self._temporal_offset_params = temporal_offset_params
self._use_depthwise = use_depthwise
self._compute_heatmap_sparse = compute_heatmap_sparse
# subclasses may not implement the unit_height_conv arg, so only provide it
# as a kwarg if it is True.
kwargs = {'unit_height_conv': unit_height_conv} if unit_height_conv else {}
# Construct the prediction head nets.
self._prediction_head_dict = self._construct_prediction_heads(
num_classes,
self._num_feature_outputs,
class_prediction_bias_init=self._center_params.heatmap_bias_init,
**kwargs)
# Initialize the target assigners.
self._target_assigner_dict = self._initialize_target_assigners(
stride=self._stride,
min_box_overlap_iou=self._center_params.min_box_overlap_iou)
# Will be used in VOD single_frame_meta_arch for tensor reshape.
self._batched_prediction_tensor_names = []
self._non_max_suppression_fn = non_max_suppression_fn
super(CenterNetMetaArch, self).__init__(num_classes)
@property
def batched_prediction_tensor_names(self):
if not self._batched_prediction_tensor_names:
raise RuntimeError('Must call predict() method to get batched prediction '
'tensor names.')
return self._batched_prediction_tensor_names
def _make_prediction_net_list(self, num_feature_outputs, num_out_channels,
kernel_sizes=(3), num_filters=(256),
bias_fill=None, name=None,
unit_height_conv=False):
prediction_net_list = []
for i in range(num_feature_outputs):
prediction_net_list.append(
make_prediction_net(
num_out_channels,
kernel_sizes=kernel_sizes,
num_filters=num_filters,
bias_fill=bias_fill,
use_depthwise=self._use_depthwise,
name='{}_{}'.format(name, i) if name else name,
unit_height_conv=unit_height_conv))
return prediction_net_list
def _construct_prediction_heads(self, num_classes, num_feature_outputs,
class_prediction_bias_init,
unit_height_conv=False):
"""Constructs the prediction heads based on the specific parameters.
Args:
num_classes: An integer indicating how many classes in total to predict.
num_feature_outputs: An integer indicating how many feature outputs to use
for calculating the loss. The Objects as Points paper attaches loss
functions to multiple (`num_feature_outputs`) feature maps in the the
backbone. E.g. for the hourglass backbone, `num_feature_outputs` is 2.
class_prediction_bias_init: float, the initial value of bias in the
convolutional kernel of the class prediction head. If set to None, the
bias is initialized with zeros.
unit_height_conv: If True, Conv2Ds have asymmetric kernels with height=1.
Returns:
A dictionary of keras modules generated by calling make_prediction_net
function. It will also create and set a private member of the class when
learning the tracking task.
"""
prediction_heads = {}
prediction_heads[OBJECT_CENTER] = self._make_prediction_net_list(
num_feature_outputs,
num_classes,
kernel_sizes=self._center_params.center_head_kernel_sizes,
num_filters=self._center_params.center_head_num_filters,
bias_fill=class_prediction_bias_init,
name='center',
unit_height_conv=unit_height_conv)
if self._od_params is not None:
prediction_heads[BOX_SCALE] = self._make_prediction_net_list(
num_feature_outputs,
NUM_SIZE_CHANNELS,
kernel_sizes=self._od_params.scale_head_kernel_sizes,
num_filters=self._od_params.scale_head_num_filters,
name='box_scale',
unit_height_conv=unit_height_conv)
prediction_heads[BOX_OFFSET] = self._make_prediction_net_list(
num_feature_outputs,
NUM_OFFSET_CHANNELS,
kernel_sizes=self._od_params.offset_head_kernel_sizes,
num_filters=self._od_params.offset_head_num_filters,
name='box_offset',
unit_height_conv=unit_height_conv)
if self._kp_params_dict is not None:
for task_name, kp_params in self._kp_params_dict.items():
num_keypoints = len(kp_params.keypoint_indices)
prediction_heads[get_keypoint_name(
task_name, KEYPOINT_HEATMAP)] = self._make_prediction_net_list(
num_feature_outputs,
num_keypoints,
kernel_sizes=kp_params.heatmap_head_kernel_sizes,
num_filters=kp_params.heatmap_head_num_filters,
bias_fill=kp_params.heatmap_bias_init,
name='kpt_heatmap',
unit_height_conv=unit_height_conv)
prediction_heads[get_keypoint_name(
task_name, KEYPOINT_REGRESSION)] = self._make_prediction_net_list(
num_feature_outputs,
NUM_OFFSET_CHANNELS * num_keypoints,
kernel_sizes=kp_params.regress_head_kernel_sizes,
num_filters=kp_params.regress_head_num_filters,
name='kpt_regress',
unit_height_conv=unit_height_conv)
if kp_params.per_keypoint_offset:
prediction_heads[get_keypoint_name(
task_name, KEYPOINT_OFFSET)] = self._make_prediction_net_list(
num_feature_outputs,
NUM_OFFSET_CHANNELS * num_keypoints,
kernel_sizes=kp_params.offset_head_kernel_sizes,
num_filters=kp_params.offset_head_num_filters,
name='kpt_offset',
unit_height_conv=unit_height_conv)
else:
prediction_heads[get_keypoint_name(
task_name, KEYPOINT_OFFSET)] = self._make_prediction_net_list(
num_feature_outputs,
NUM_OFFSET_CHANNELS,
kernel_sizes=kp_params.offset_head_kernel_sizes,
num_filters=kp_params.offset_head_num_filters,
name='kpt_offset',
unit_height_conv=unit_height_conv)
if kp_params.predict_depth:
num_depth_channel = (
num_keypoints if kp_params.per_keypoint_depth else 1)
prediction_heads[get_keypoint_name(
task_name, KEYPOINT_DEPTH)] = self._make_prediction_net_list(
num_feature_outputs, num_depth_channel, name='kpt_depth',
unit_height_conv=unit_height_conv)
if self._mask_params is not None:
prediction_heads[SEGMENTATION_HEATMAP] = self._make_prediction_net_list(
num_feature_outputs,
num_classes,
kernel_sizes=self._mask_params.mask_head_kernel_sizes,
num_filters=self._mask_params.mask_head_num_filters,
bias_fill=self._mask_params.heatmap_bias_init,
name='seg_heatmap',
unit_height_conv=unit_height_conv)
if self._densepose_params is not None:
prediction_heads[DENSEPOSE_HEATMAP] = self._make_prediction_net_list(
num_feature_outputs,
self._densepose_params.num_parts,
bias_fill=self._densepose_params.heatmap_bias_init,
name='dense_pose_heatmap',
unit_height_conv=unit_height_conv)
prediction_heads[DENSEPOSE_REGRESSION] = self._make_prediction_net_list(
num_feature_outputs,
2 * self._densepose_params.num_parts,
name='dense_pose_regress',
unit_height_conv=unit_height_conv)
if self._track_params is not None:
prediction_heads[TRACK_REID] = self._make_prediction_net_list(
num_feature_outputs,
self._track_params.reid_embed_size,
name='track_reid',
unit_height_conv=unit_height_conv)
# Creates a classification network to train object embeddings by learning
# a projection from embedding space to object track ID space.
self.track_reid_classification_net = tf.keras.Sequential()
for _ in range(self._track_params.num_fc_layers - 1):
self.track_reid_classification_net.add(
tf.keras.layers.Dense(self._track_params.reid_embed_size,
input_shape=(
self._track_params.reid_embed_size,)))
self.track_reid_classification_net.add(
tf.keras.layers.BatchNormalization())
self.track_reid_classification_net.add(tf.keras.layers.ReLU())
self.track_reid_classification_net.add(
tf.keras.layers.Dense(self._track_params.num_track_ids,
input_shape=(
self._track_params.reid_embed_size,)))
if self._temporal_offset_params is not None:
prediction_heads[TEMPORAL_OFFSET] = self._make_prediction_net_list(
num_feature_outputs, NUM_OFFSET_CHANNELS, name='temporal_offset',
unit_height_conv=unit_height_conv)
return prediction_heads
def _initialize_target_assigners(self, stride, min_box_overlap_iou):
"""Initializes the target assigners and puts them in a dictionary.
Args:
stride: An integer indicating the stride of the image.
min_box_overlap_iou: float, the minimum IOU overlap that predicted boxes
need have with groundtruth boxes to not be penalized. This is used for
computing the class specific center heatmaps.
Returns:
A dictionary of initialized target assigners for each task.
"""
target_assigners = {}
keypoint_weights_for_center = (
self._center_params.keypoint_weights_for_center)
if not keypoint_weights_for_center:
target_assigners[OBJECT_CENTER] = (
cn_assigner.CenterNetCenterHeatmapTargetAssigner(
stride, min_box_overlap_iou, self._compute_heatmap_sparse))
self._center_from_keypoints = False
else:
# Determining the object center location by keypoint location is only
# supported when there is exactly one keypoint prediction task and no
# object detection task is specified.
assert len(self._kp_params_dict) == 1 and self._od_params is None
kp_params = next(iter(self._kp_params_dict.values()))
# The number of keypoint_weights_for_center needs to be the same as the
# number of keypoints.
assert len(keypoint_weights_for_center) == len(kp_params.keypoint_indices)
target_assigners[OBJECT_CENTER] = (
cn_assigner.CenterNetCenterHeatmapTargetAssigner(
stride,
min_box_overlap_iou,
self._compute_heatmap_sparse,
keypoint_class_id=kp_params.class_id,
keypoint_indices=kp_params.keypoint_indices,
keypoint_weights_for_center=keypoint_weights_for_center))
self._center_from_keypoints = True
if self._od_params is not None:
target_assigners[DETECTION_TASK] = (
cn_assigner.CenterNetBoxTargetAssigner(stride))
if self._kp_params_dict is not None:
for task_name, kp_params in self._kp_params_dict.items():
target_assigners[task_name] = (
cn_assigner.CenterNetKeypointTargetAssigner(
stride=stride,
class_id=kp_params.class_id,
keypoint_indices=kp_params.keypoint_indices,
keypoint_std_dev=kp_params.keypoint_std_dev,
peak_radius=kp_params.offset_peak_radius,
per_keypoint_offset=kp_params.per_keypoint_offset,
compute_heatmap_sparse=self._compute_heatmap_sparse,
per_keypoint_depth=kp_params.per_keypoint_depth))
if self._mask_params is not None:
target_assigners[SEGMENTATION_TASK] = (
cn_assigner.CenterNetMaskTargetAssigner(stride))
if self._densepose_params is not None:
dp_stride = 1 if self._densepose_params.upsample_to_input_res else stride
target_assigners[DENSEPOSE_TASK] = (
cn_assigner.CenterNetDensePoseTargetAssigner(dp_stride))
if self._track_params is not None:
target_assigners[TRACK_TASK] = (
cn_assigner.CenterNetTrackTargetAssigner(
stride, self._track_params.num_track_ids))
if self._temporal_offset_params is not None:
target_assigners[TEMPORALOFFSET_TASK] = (
cn_assigner.CenterNetTemporalOffsetTargetAssigner(stride))
return target_assigners
def _compute_object_center_loss(self, input_height, input_width,
object_center_predictions, per_pixel_weights):
"""Computes the object center loss.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
object_center_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, num_classes] representing the object center
feature maps.
per_pixel_weights: A float tensor of shape [batch_size,
out_height * out_width, 1] with 1s in locations where the spatial
coordinates fall within the height and width in true_image_shapes.
Returns:
A float scalar tensor representing the object center loss per instance.
"""
gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
if self._center_params.use_labeled_classes:
gt_labeled_classes_list = self.groundtruth_lists(
fields.InputDataFields.groundtruth_labeled_classes)
batch_labeled_classes = tf.stack(gt_labeled_classes_list, axis=0)
batch_labeled_classes_shape = tf.shape(batch_labeled_classes)
batch_labeled_classes = tf.reshape(
batch_labeled_classes,
[batch_labeled_classes_shape[0], 1, batch_labeled_classes_shape[-1]])
per_pixel_weights = per_pixel_weights * batch_labeled_classes
# Convert the groundtruth to targets.
assigner = self._target_assigner_dict[OBJECT_CENTER]
if self._center_from_keypoints:
gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints)
heatmap_targets = assigner.assign_center_targets_from_keypoints(
height=input_height,
width=input_width,
gt_classes_list=gt_classes_list,
gt_keypoints_list=gt_keypoints_list,
gt_weights_list=gt_weights_list)
else:
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
heatmap_targets = assigner.assign_center_targets_from_boxes(
height=input_height,
width=input_width,
gt_boxes_list=gt_boxes_list,
gt_classes_list=gt_classes_list,
gt_weights_list=gt_weights_list)
flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets)
num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list))
loss = 0.0
object_center_loss = self._center_params.classification_loss
# Loop through each feature output head.
for pred in object_center_predictions:
pred = _flatten_spatial_dimensions(pred)
loss += object_center_loss(
pred, flattened_heatmap_targets, weights=per_pixel_weights)
loss_per_instance = tf.reduce_sum(loss) / (
float(len(object_center_predictions)) * num_boxes)
return loss_per_instance
def _compute_object_detection_losses(self, input_height, input_width,
prediction_dict, per_pixel_weights):
"""Computes the weighted object detection losses.
This wrapper function calls the function which computes the losses for
object detection task and applies corresponding weights to the losses.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
prediction_dict: A dictionary holding predicted tensors output by
"predict" function. See "predict" function for more detailed
description.
per_pixel_weights: A float tensor of shape [batch_size,
out_height * out_width, 1] with 1s in locations where the spatial
coordinates fall within the height and width in true_image_shapes.
Returns:
A dictionary of scalar float tensors representing the weighted losses for
object detection task:
BOX_SCALE: the weighted scale (height/width) loss.
BOX_OFFSET: the weighted object offset loss.
"""
od_scale_loss, od_offset_loss = self._compute_box_scale_and_offset_loss(
scale_predictions=prediction_dict[BOX_SCALE],
offset_predictions=prediction_dict[BOX_OFFSET],
input_height=input_height,
input_width=input_width)
loss_dict = {}
loss_dict[BOX_SCALE] = (
self._od_params.scale_loss_weight * od_scale_loss)
loss_dict[BOX_OFFSET] = (
self._od_params.offset_loss_weight * od_offset_loss)
return loss_dict
def _compute_box_scale_and_offset_loss(self, input_height, input_width,
scale_predictions, offset_predictions):
"""Computes the scale loss of the object detection task.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
scale_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, 2] representing the prediction heads of the model
for object scale (i.e height and width).
offset_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, 2] representing the prediction heads of the model
for object offset.
Returns:
A tuple of two losses:
scale_loss: A float scalar tensor representing the object height/width
loss normalized by total number of boxes.
offset_loss: A float scalar tensor representing the object offset loss
normalized by total number of boxes
"""
# TODO(vighneshb) Explore a size invariant version of scale loss.
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list))
num_predictions = float(len(scale_predictions))
assigner = self._target_assigner_dict[DETECTION_TASK]
(batch_indices, batch_height_width_targets, batch_offset_targets,
batch_weights) = assigner.assign_size_and_offset_targets(
height=input_height,
width=input_width,
gt_boxes_list=gt_boxes_list,
gt_weights_list=gt_weights_list)
batch_weights = tf.expand_dims(batch_weights, -1)
scale_loss = 0
offset_loss = 0
localization_loss_fn = self._od_params.localization_loss
for scale_pred, offset_pred in zip(scale_predictions, offset_predictions):
# Compute the scale loss.
scale_pred = cn_assigner.get_batch_predictions_from_indices(
scale_pred, batch_indices)
scale_loss += localization_loss_fn(
scale_pred, batch_height_width_targets, weights=batch_weights)
# Compute the offset loss.
offset_pred = cn_assigner.get_batch_predictions_from_indices(
offset_pred, batch_indices)
offset_loss += localization_loss_fn(
offset_pred, batch_offset_targets, weights=batch_weights)
scale_loss = tf.reduce_sum(scale_loss) / (
num_predictions * num_boxes)
offset_loss = tf.reduce_sum(offset_loss) / (
num_predictions * num_boxes)
return scale_loss, offset_loss
def _compute_keypoint_estimation_losses(self, task_name, input_height,
input_width, prediction_dict,
per_pixel_weights):
"""Computes the weighted keypoint losses."""
kp_params = self._kp_params_dict[task_name]
heatmap_key = get_keypoint_name(task_name, KEYPOINT_HEATMAP)
offset_key = get_keypoint_name(task_name, KEYPOINT_OFFSET)
regression_key = get_keypoint_name(task_name, KEYPOINT_REGRESSION)
depth_key = get_keypoint_name(task_name, KEYPOINT_DEPTH)
heatmap_loss = self._compute_kp_heatmap_loss(
input_height=input_height,
input_width=input_width,
task_name=task_name,
heatmap_predictions=prediction_dict[heatmap_key],
classification_loss_fn=kp_params.classification_loss,
per_pixel_weights=per_pixel_weights)
offset_loss = self._compute_kp_offset_loss(
input_height=input_height,
input_width=input_width,
task_name=task_name,
offset_predictions=prediction_dict[offset_key],
localization_loss_fn=kp_params.localization_loss)
reg_loss = self._compute_kp_regression_loss(
input_height=input_height,
input_width=input_width,
task_name=task_name,
regression_predictions=prediction_dict[regression_key],
localization_loss_fn=kp_params.localization_loss)
loss_dict = {}
loss_dict[heatmap_key] = (
kp_params.keypoint_heatmap_loss_weight * heatmap_loss)
loss_dict[offset_key] = (
kp_params.keypoint_offset_loss_weight * offset_loss)
loss_dict[regression_key] = (
kp_params.keypoint_regression_loss_weight * reg_loss)
if kp_params.predict_depth:
depth_loss = self._compute_kp_depth_loss(
input_height=input_height,
input_width=input_width,
task_name=task_name,
depth_predictions=prediction_dict[depth_key],
localization_loss_fn=kp_params.localization_loss)
loss_dict[depth_key] = kp_params.keypoint_depth_loss_weight * depth_loss
return loss_dict
def _compute_kp_heatmap_loss(self, input_height, input_width, task_name,
heatmap_predictions, classification_loss_fn,
per_pixel_weights):
"""Computes the heatmap loss of the keypoint estimation task.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
task_name: A string representing the name of the keypoint task.
heatmap_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, num_keypoints] representing the prediction heads
of the model for keypoint heatmap.
classification_loss_fn: An object_detection.core.losses.Loss object to
compute the loss for the class predictions in CenterNet.
per_pixel_weights: A float tensor of shape [batch_size,
out_height * out_width, 1] with 1s in locations where the spatial
coordinates fall within the height and width in true_image_shapes.
Returns:
loss: A float scalar tensor representing the object keypoint heatmap loss
normalized by number of instances.
"""
gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints)
gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
assigner = self._target_assigner_dict[task_name]
(keypoint_heatmap, num_instances_per_kp_type,
valid_mask_batch) = assigner.assign_keypoint_heatmap_targets(
height=input_height,
width=input_width,
gt_keypoints_list=gt_keypoints_list,
gt_weights_list=gt_weights_list,
gt_classes_list=gt_classes_list,
gt_boxes_list=gt_boxes_list)
flattened_valid_mask = _flatten_spatial_dimensions(valid_mask_batch)
flattened_heapmap_targets = _flatten_spatial_dimensions(keypoint_heatmap)
# Sum over the number of instances per keypoint types to get the total
# number of keypoints. Note that this is used to normalized the loss and we
# keep the minimum value to be 1 to avoid generating weird loss value when
# no keypoint is in the image batch.
num_instances = tf.maximum(
tf.cast(tf.reduce_sum(num_instances_per_kp_type), dtype=tf.float32),
1.0)
loss = 0.0
# Loop through each feature output head.
for pred in heatmap_predictions:
pred = _flatten_spatial_dimensions(pred)
unweighted_loss = classification_loss_fn(
pred,
flattened_heapmap_targets,
weights=tf.ones_like(per_pixel_weights))
# Apply the weights after the loss function to have full control over it.
loss += unweighted_loss * per_pixel_weights * flattened_valid_mask
loss = tf.reduce_sum(loss) / (
float(len(heatmap_predictions)) * num_instances)
return loss
def _compute_kp_offset_loss(self, input_height, input_width, task_name,
offset_predictions, localization_loss_fn):
"""Computes the offset loss of the keypoint estimation task.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
task_name: A string representing the name of the keypoint task.
offset_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, 2] representing the prediction heads of the model
for keypoint offset.
localization_loss_fn: An object_detection.core.losses.Loss object to
compute the loss for the keypoint offset predictions in CenterNet.
Returns:
loss: A float scalar tensor representing the keypoint offset loss
normalized by number of total keypoints.
"""
gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints)
gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
assigner = self._target_assigner_dict[task_name]
(batch_indices, batch_offsets,
batch_weights) = assigner.assign_keypoints_offset_targets(
height=input_height,
width=input_width,
gt_keypoints_list=gt_keypoints_list,
gt_weights_list=gt_weights_list,
gt_classes_list=gt_classes_list)
# Keypoint offset loss.
loss = 0.0
for prediction in offset_predictions:
batch_size, out_height, out_width, channels = _get_shape(prediction, 4)
if channels > 2:
prediction = tf.reshape(
prediction, shape=[batch_size, out_height, out_width, -1, 2])
prediction = cn_assigner.get_batch_predictions_from_indices(
prediction, batch_indices)
# The dimensions passed are not as per the doc string but the loss
# still computes the correct value.
unweighted_loss = localization_loss_fn(
prediction,
batch_offsets,
weights=tf.expand_dims(tf.ones_like(batch_weights), -1))
# Apply the weights after the loss function to have full control over it.
loss += batch_weights * tf.reduce_sum(unweighted_loss, axis=1)
loss = tf.reduce_sum(loss) / (
float(len(offset_predictions)) *
tf.maximum(tf.reduce_sum(batch_weights), 1.0))
return loss
def _compute_kp_regression_loss(self, input_height, input_width, task_name,
regression_predictions, localization_loss_fn):
"""Computes the keypoint regression loss of the keypoint estimation task.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
task_name: A string representing the name of the keypoint task.
regression_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, 2 * num_keypoints] representing the prediction
heads of the model for keypoint regression offset.
localization_loss_fn: An object_detection.core.losses.Loss object to
compute the loss for the keypoint regression offset predictions in
CenterNet.
Returns:
loss: A float scalar tensor representing the keypoint regression offset
loss normalized by number of total keypoints.
"""
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints)
gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
# keypoint regression offset loss.
assigner = self._target_assigner_dict[task_name]
(batch_indices, batch_regression_offsets,
batch_weights) = assigner.assign_joint_regression_targets(
height=input_height,
width=input_width,
gt_keypoints_list=gt_keypoints_list,
gt_classes_list=gt_classes_list,
gt_weights_list=gt_weights_list,
gt_boxes_list=gt_boxes_list)
loss = 0.0
for prediction in regression_predictions:
batch_size, out_height, out_width, _ = _get_shape(prediction, 4)
reshaped_prediction = tf.reshape(
prediction, shape=[batch_size, out_height, out_width, -1, 2])
reg_prediction = cn_assigner.get_batch_predictions_from_indices(
reshaped_prediction, batch_indices)
unweighted_loss = localization_loss_fn(
reg_prediction,
batch_regression_offsets,
weights=tf.expand_dims(tf.ones_like(batch_weights), -1))
# Apply the weights after the loss function to have full control over it.
loss += batch_weights * tf.reduce_sum(unweighted_loss, axis=1)
loss = tf.reduce_sum(loss) / (
float(len(regression_predictions)) *
tf.maximum(tf.reduce_sum(batch_weights), 1.0))
return loss
def _compute_kp_depth_loss(self, input_height, input_width, task_name,
depth_predictions, localization_loss_fn):
"""Computes the loss of the keypoint depth estimation.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
task_name: A string representing the name of the keypoint task.
depth_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, 1 (or num_keypoints)] representing the prediction
heads of the model for keypoint depth.
localization_loss_fn: An object_detection.core.losses.Loss object to
compute the loss for the keypoint offset predictions in CenterNet.
Returns:
loss: A float scalar tensor representing the keypoint depth loss
normalized by number of total keypoints.
"""
kp_params = self._kp_params_dict[task_name]
gt_keypoints_list = self.groundtruth_lists(fields.BoxListFields.keypoints)
gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
gt_keypoint_depths_list = self.groundtruth_lists(
fields.BoxListFields.keypoint_depths)
gt_keypoint_depth_weights_list = self.groundtruth_lists(
fields.BoxListFields.keypoint_depth_weights)
assigner = self._target_assigner_dict[task_name]
(batch_indices, batch_depths,
batch_weights) = assigner.assign_keypoints_depth_targets(
height=input_height,
width=input_width,
gt_keypoints_list=gt_keypoints_list,
gt_weights_list=gt_weights_list,
gt_classes_list=gt_classes_list,
gt_keypoint_depths_list=gt_keypoint_depths_list,
gt_keypoint_depth_weights_list=gt_keypoint_depth_weights_list)
# Keypoint offset loss.
loss = 0.0
for prediction in depth_predictions:
if kp_params.per_keypoint_depth:
prediction = tf.expand_dims(prediction, axis=-1)
selected_depths = cn_assigner.get_batch_predictions_from_indices(
prediction, batch_indices)
# The dimensions passed are not as per the doc string but the loss
# still computes the correct value.
unweighted_loss = localization_loss_fn(
selected_depths,
batch_depths,
weights=tf.expand_dims(tf.ones_like(batch_weights), -1))
# Apply the weights after the loss function to have full control over it.
loss += batch_weights * tf.squeeze(unweighted_loss, axis=1)
loss = tf.reduce_sum(loss) / (
float(len(depth_predictions)) *
tf.maximum(tf.reduce_sum(batch_weights), 1.0))
return loss
def _compute_segmentation_losses(self, prediction_dict, per_pixel_weights):
"""Computes all the losses associated with segmentation.
Args:
prediction_dict: The dictionary returned from the predict() method.
per_pixel_weights: A float tensor of shape [batch_size,
out_height * out_width, 1] with 1s in locations where the spatial
coordinates fall within the height and width in true_image_shapes.
Returns:
A dictionary with segmentation losses.
"""
segmentation_heatmap = prediction_dict[SEGMENTATION_HEATMAP]
mask_loss = self._compute_mask_loss(
segmentation_heatmap, per_pixel_weights)
losses = {
SEGMENTATION_HEATMAP: mask_loss
}
return losses
def _compute_mask_loss(self, segmentation_predictions,
per_pixel_weights):
"""Computes the mask loss.
Args:
segmentation_predictions: A list of float32 tensors of shape [batch_size,
out_height, out_width, num_classes].
per_pixel_weights: A float tensor of shape [batch_size,
out_height * out_width, 1] with 1s in locations where the spatial
coordinates fall within the height and width in true_image_shapes.
Returns:
A float scalar tensor representing the mask loss.
"""
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
gt_masks_list = self.groundtruth_lists(fields.BoxListFields.masks)
gt_mask_weights_list = None
if self.groundtruth_has_field(fields.BoxListFields.mask_weights):
gt_mask_weights_list = self.groundtruth_lists(
fields.BoxListFields.mask_weights)
gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes)
# Convert the groundtruth to targets.
assigner = self._target_assigner_dict[SEGMENTATION_TASK]
heatmap_targets, heatmap_weight = assigner.assign_segmentation_targets(
gt_masks_list=gt_masks_list,
gt_classes_list=gt_classes_list,
gt_boxes_list=gt_boxes_list,
gt_mask_weights_list=gt_mask_weights_list)
flattened_heatmap_targets = _flatten_spatial_dimensions(heatmap_targets)
flattened_heatmap_mask = _flatten_spatial_dimensions(
heatmap_weight[:, :, :, tf.newaxis])
per_pixel_weights *= flattened_heatmap_mask
loss = 0.0
mask_loss_fn = self._mask_params.classification_loss
total_pixels_in_loss = tf.math.maximum(
tf.reduce_sum(per_pixel_weights), 1)
# Loop through each feature output head.
for pred in segmentation_predictions:
pred = _flatten_spatial_dimensions(pred)
loss += mask_loss_fn(
pred, flattened_heatmap_targets, weights=per_pixel_weights)
# TODO(ronnyvotel): Consider other ways to normalize loss.
total_loss = tf.reduce_sum(loss) / (
float(len(segmentation_predictions)) * total_pixels_in_loss)
return total_loss
def _compute_densepose_losses(self, input_height, input_width,
prediction_dict):
"""Computes the weighted DensePose losses.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
prediction_dict: A dictionary holding predicted tensors output by the
"predict" function. See the "predict" function for more detailed
description.
Returns:
A dictionary of scalar float tensors representing the weighted losses for
the DensePose task:
DENSEPOSE_HEATMAP: the weighted part segmentation loss.
DENSEPOSE_REGRESSION: the weighted part surface coordinate loss.
"""
dp_heatmap_loss, dp_regression_loss = (
self._compute_densepose_part_and_coordinate_losses(
input_height=input_height,
input_width=input_width,
part_predictions=prediction_dict[DENSEPOSE_HEATMAP],
surface_coord_predictions=prediction_dict[DENSEPOSE_REGRESSION]))
loss_dict = {}
loss_dict[DENSEPOSE_HEATMAP] = (
self._densepose_params.part_loss_weight * dp_heatmap_loss)
loss_dict[DENSEPOSE_REGRESSION] = (
self._densepose_params.coordinate_loss_weight * dp_regression_loss)
return loss_dict
def _compute_densepose_part_and_coordinate_losses(
self, input_height, input_width, part_predictions,
surface_coord_predictions):
"""Computes the individual losses for the DensePose task.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
part_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, num_parts].
surface_coord_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, 2 * num_parts].
Returns:
A tuple with two scalar loss tensors: part_prediction_loss and
surface_coord_loss.
"""
gt_dp_num_points_list = self.groundtruth_lists(
fields.BoxListFields.densepose_num_points)
gt_dp_part_ids_list = self.groundtruth_lists(
fields.BoxListFields.densepose_part_ids)
gt_dp_surface_coords_list = self.groundtruth_lists(
fields.BoxListFields.densepose_surface_coords)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
assigner = self._target_assigner_dict[DENSEPOSE_TASK]
batch_indices, batch_part_ids, batch_surface_coords, batch_weights = (
assigner.assign_part_and_coordinate_targets(
height=input_height,
width=input_width,
gt_dp_num_points_list=gt_dp_num_points_list,
gt_dp_part_ids_list=gt_dp_part_ids_list,
gt_dp_surface_coords_list=gt_dp_surface_coords_list,
gt_weights_list=gt_weights_list))
part_prediction_loss = 0
surface_coord_loss = 0
classification_loss_fn = self._densepose_params.classification_loss
localization_loss_fn = self._densepose_params.localization_loss
num_predictions = float(len(part_predictions))
num_valid_points = tf.math.count_nonzero(batch_weights)
num_valid_points = tf.cast(tf.math.maximum(num_valid_points, 1), tf.float32)
for part_pred, surface_coord_pred in zip(part_predictions,
surface_coord_predictions):
# Potentially upsample the feature maps, so that better quality (i.e.
# higher res) groundtruth can be applied.
if self._densepose_params.upsample_to_input_res:
part_pred = tf.keras.layers.UpSampling2D(
self._stride, interpolation=self._densepose_params.upsample_method)(
part_pred)
surface_coord_pred = tf.keras.layers.UpSampling2D(
self._stride, interpolation=self._densepose_params.upsample_method)(
surface_coord_pred)
# Compute the part prediction loss.
part_pred = cn_assigner.get_batch_predictions_from_indices(
part_pred, batch_indices[:, 0:3])
part_prediction_loss += classification_loss_fn(
part_pred[:, tf.newaxis, :],
batch_part_ids[:, tf.newaxis, :],
weights=batch_weights[:, tf.newaxis, tf.newaxis])
# Compute the surface coordinate loss.
batch_size, out_height, out_width, _ = _get_shape(
surface_coord_pred, 4)
surface_coord_pred = tf.reshape(
surface_coord_pred, [batch_size, out_height, out_width, -1, 2])
surface_coord_pred = cn_assigner.get_batch_predictions_from_indices(
surface_coord_pred, batch_indices)
surface_coord_loss += localization_loss_fn(
surface_coord_pred,
batch_surface_coords,
weights=batch_weights[:, tf.newaxis])
part_prediction_loss = tf.reduce_sum(part_prediction_loss) / (
num_predictions * num_valid_points)
surface_coord_loss = tf.reduce_sum(surface_coord_loss) / (
num_predictions * num_valid_points)
return part_prediction_loss, surface_coord_loss
def _compute_track_losses(self, input_height, input_width, prediction_dict):
"""Computes all the losses associated with tracking.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
prediction_dict: The dictionary returned from the predict() method.
Returns:
A dictionary with tracking losses.
"""
object_reid_predictions = prediction_dict[TRACK_REID]
embedding_loss = self._compute_track_embedding_loss(
input_height=input_height,
input_width=input_width,
object_reid_predictions=object_reid_predictions)
losses = {
TRACK_REID: embedding_loss
}
return losses
def _compute_track_embedding_loss(self, input_height, input_width,
object_reid_predictions):
"""Computes the object ReID loss.
The embedding is trained as a classification task where the target is the
ID of each track among all tracks in the whole dataset.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
object_reid_predictions: A list of float tensors of shape [batch_size,
out_height, out_width, reid_embed_size] representing the object
embedding feature maps.
Returns:
A float scalar tensor representing the object ReID loss per instance.
"""
gt_track_ids_list = self.groundtruth_lists(fields.BoxListFields.track_ids)
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
num_boxes = _to_float32(get_num_instances_from_weights(gt_weights_list))
# Convert the groundtruth to targets.
assigner = self._target_assigner_dict[TRACK_TASK]
batch_indices, batch_weights, track_targets = assigner.assign_track_targets(
height=input_height,
width=input_width,
gt_track_ids_list=gt_track_ids_list,
gt_boxes_list=gt_boxes_list,
gt_weights_list=gt_weights_list)
batch_weights = tf.expand_dims(batch_weights, -1)
loss = 0.0
object_reid_loss = self._track_params.classification_loss
# Loop through each feature output head.
for pred in object_reid_predictions:
embedding_pred = cn_assigner.get_batch_predictions_from_indices(
pred, batch_indices)
reid_classification = self.track_reid_classification_net(embedding_pred)
loss += object_reid_loss(
reid_classification, track_targets, weights=batch_weights)
loss_per_instance = tf.reduce_sum(loss) / (
float(len(object_reid_predictions)) * num_boxes)
return loss_per_instance
def _compute_temporal_offset_loss(self, input_height,
input_width, prediction_dict):
"""Computes the temporal offset loss for tracking.
Args:
input_height: An integer scalar tensor representing input image height.
input_width: An integer scalar tensor representing input image width.
prediction_dict: The dictionary returned from the predict() method.
Returns:
A dictionary with track/temporal_offset losses.
"""
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
gt_offsets_list = self.groundtruth_lists(
fields.BoxListFields.temporal_offsets)
gt_match_list = self.groundtruth_lists(
fields.BoxListFields.track_match_flags)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
num_boxes = tf.cast(
get_num_instances_from_weights(gt_weights_list), tf.float32)
offset_predictions = prediction_dict[TEMPORAL_OFFSET]
num_predictions = float(len(offset_predictions))
assigner = self._target_assigner_dict[TEMPORALOFFSET_TASK]
(batch_indices, batch_offset_targets,
batch_weights) = assigner.assign_temporal_offset_targets(
height=input_height,
width=input_width,
gt_boxes_list=gt_boxes_list,
gt_offsets_list=gt_offsets_list,
gt_match_list=gt_match_list,
gt_weights_list=gt_weights_list)
batch_weights = tf.expand_dims(batch_weights, -1)
offset_loss_fn = self._temporal_offset_params.localization_loss
loss_dict = {}
offset_loss = 0
for offset_pred in offset_predictions:
offset_pred = cn_assigner.get_batch_predictions_from_indices(
offset_pred, batch_indices)
offset_loss += offset_loss_fn(offset_pred[:, None],
batch_offset_targets[:, None],
weights=batch_weights)
offset_loss = tf.reduce_sum(offset_loss) / (num_predictions * num_boxes)
loss_dict[TEMPORAL_OFFSET] = offset_loss
return loss_dict
def _should_clip_keypoints(self):
"""Returns a boolean indicating whether keypoint clipping should occur.
If there is only one keypoint task, clipping is controlled by the field
`clip_out_of_frame_keypoints`. If there are multiple keypoint tasks,
clipping logic is defined based on unanimous agreement of keypoint
parameters. If there is any ambiguity, clip_out_of_frame_keypoints is set
to False (default).
"""
kp_params_iterator = iter(self._kp_params_dict.values())
if len(self._kp_params_dict) == 1:
kp_params = next(kp_params_iterator)
return kp_params.clip_out_of_frame_keypoints
# Multi-task setting.
kp_params = next(kp_params_iterator)
should_clip = kp_params.clip_out_of_frame_keypoints
for kp_params in kp_params_iterator:
if kp_params.clip_out_of_frame_keypoints != should_clip:
return False
return should_clip
def _rescore_instances(self, classes, scores, keypoint_scores):
"""Rescores instances based on detection and keypoint scores.
Args:
classes: A [batch, max_detections] int32 tensor with detection classes.
scores: A [batch, max_detections] float32 tensor with detection scores.
keypoint_scores: A [batch, max_detections, total_num_keypoints] float32
tensor with keypoint scores.
Returns:
A [batch, max_detections] float32 tensor with possibly altered detection
scores.
"""
batch, max_detections, total_num_keypoints = (
shape_utils.combined_static_and_dynamic_shape(keypoint_scores))
classes_tiled = tf.tile(classes[:, :, tf.newaxis],
multiples=[1, 1, total_num_keypoints])
# TODO(yuhuic): Investigate whether this function will create subgraphs in
# tflite that will cause the model to run slower at inference.
for kp_params in self._kp_params_dict.values():
if not kp_params.rescore_instances:
continue
class_id = kp_params.class_id
keypoint_indices = kp_params.keypoint_indices
kpt_mask = tf.reduce_sum(
tf.one_hot(keypoint_indices, depth=total_num_keypoints), axis=0)
kpt_mask_tiled = tf.tile(kpt_mask[tf.newaxis, tf.newaxis, :],
multiples=[batch, max_detections, 1])
class_and_keypoint_mask = tf.math.logical_and(
classes_tiled == class_id,
kpt_mask_tiled == 1.0)
class_and_keypoint_mask_float = tf.cast(class_and_keypoint_mask,
dtype=tf.float32)
visible_keypoints = tf.math.greater(keypoint_scores, 0.0)
num_visible_keypoints = tf.reduce_sum(
class_and_keypoint_mask_float *
tf.cast(visible_keypoints, tf.float32), axis=-1)
num_visible_keypoints = tf.math.maximum(num_visible_keypoints, 1.0)
scores_for_class = (1./num_visible_keypoints) * (
tf.reduce_sum(class_and_keypoint_mask_float *
scores[:, :, tf.newaxis] *
keypoint_scores, axis=-1))
scores = tf.where(classes == class_id,
scores_for_class,
scores)
return scores
def preprocess(self, inputs):
outputs = shape_utils.resize_images_and_return_shapes(
inputs, self._image_resizer_fn)
resized_inputs, true_image_shapes = outputs
return (self._feature_extractor.preprocess(resized_inputs),
true_image_shapes)
def predict(self, preprocessed_inputs, _):
"""Predicts CenterNet prediction tensors given an input batch.
Feature extractors are free to produce predictions from multiple feature
maps and therefore we return a dictionary mapping strings to lists.
E.g. the hourglass backbone produces two feature maps.
Args:
preprocessed_inputs: a [batch, height, width, channels] float32 tensor
representing a batch of images.
Returns:
prediction_dict: a dictionary holding predicted tensors with
'preprocessed_inputs' - The input image after being resized and
preprocessed by the feature extractor.
'object_center' - A list of size num_feature_outputs containing
float tensors of size [batch_size, output_height, output_width,
num_classes] representing the predicted object center heatmap logits.
'box/scale' - [optional] A list of size num_feature_outputs holding
float tensors of size [batch_size, output_height, output_width, 2]
representing the predicted box height and width at each output
location. This field exists only when object detection task is
specified.
'box/offset' - [optional] A list of size num_feature_outputs holding
float tensors of size [batch_size, output_height, output_width, 2]
representing the predicted y and x offsets at each output location.
'$TASK_NAME/keypoint_heatmap' - [optional] A list of size
num_feature_outputs holding float tensors of size [batch_size,
output_height, output_width, num_keypoints] representing the predicted
keypoint heatmap logits.
'$TASK_NAME/keypoint_offset' - [optional] A list of size
num_feature_outputs holding float tensors of size [batch_size,
output_height, output_width, 2] representing the predicted keypoint
offsets at each output location.
'$TASK_NAME/keypoint_regression' - [optional] A list of size
num_feature_outputs holding float tensors of size [batch_size,
output_height, output_width, 2 * num_keypoints] representing the
predicted keypoint regression at each output location.
'segmentation/heatmap' - [optional] A list of size num_feature_outputs
holding float tensors of size [batch_size, output_height,
output_width, num_classes] representing the mask logits.
'densepose/heatmap' - [optional] A list of size num_feature_outputs
holding float tensors of size [batch_size, output_height,
output_width, num_parts] representing the mask logits for each part.
'densepose/regression' - [optional] A list of size num_feature_outputs
holding float tensors of size [batch_size, output_height,
output_width, 2 * num_parts] representing the DensePose surface
coordinate predictions.
Note the $TASK_NAME is provided by the KeypointEstimation namedtuple
used to differentiate between different keypoint tasks.
"""
features_list = self._feature_extractor(preprocessed_inputs)
predictions = {}
for head_name, heads in self._prediction_head_dict.items():
predictions[head_name] = [
head(feature) for (feature, head) in zip(features_list, heads)
]
predictions['preprocessed_inputs'] = preprocessed_inputs
self._batched_prediction_tensor_names = predictions.keys()
return predictions
def loss(self, prediction_dict, true_image_shapes, scope=None):
"""Computes scalar loss tensors with respect to provided groundtruth.
This function implements the various CenterNet losses.
Args:
prediction_dict: a dictionary holding predicted tensors returned by
"predict" function.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is of
the form [height, width, channels] indicating the shapes of true images
in the resized images, as resized images can be padded with zeros.
scope: Optional scope name.
Returns:
A dictionary mapping the keys [
'Loss/object_center',
'Loss/box/scale', (optional)
'Loss/box/offset', (optional)
'Loss/$TASK_NAME/keypoint/heatmap', (optional)
'Loss/$TASK_NAME/keypoint/offset', (optional)
'Loss/$TASK_NAME/keypoint/regression', (optional)
'Loss/segmentation/heatmap', (optional)
'Loss/densepose/heatmap', (optional)
'Loss/densepose/regression', (optional)
'Loss/track/reid'] (optional)
'Loss/track/offset'] (optional)
scalar tensors corresponding to the losses for different tasks. Note the
$TASK_NAME is provided by the KeypointEstimation namedtuple used to
differentiate between different keypoint tasks.
"""
_, input_height, input_width, _ = _get_shape(
prediction_dict['preprocessed_inputs'], 4)
output_height, output_width = (tf.maximum(input_height // self._stride, 1),
tf.maximum(input_width // self._stride, 1))
# TODO(vighneshb) Explore whether using floor here is safe.
output_true_image_shapes = tf.ceil(
tf.to_float(true_image_shapes) / self._stride)
valid_anchor_weights = get_valid_anchor_weights_in_flattened_image(
output_true_image_shapes, output_height, output_width)
valid_anchor_weights = tf.expand_dims(valid_anchor_weights, 2)
object_center_loss = self._compute_object_center_loss(
object_center_predictions=prediction_dict[OBJECT_CENTER],
input_height=input_height,
input_width=input_width,
per_pixel_weights=valid_anchor_weights)
losses = {
OBJECT_CENTER:
self._center_params.object_center_loss_weight * object_center_loss
}
if self._od_params is not None:
od_losses = self._compute_object_detection_losses(
input_height=input_height,
input_width=input_width,
prediction_dict=prediction_dict,
per_pixel_weights=valid_anchor_weights)
for key in od_losses:
od_losses[key] = od_losses[key] * self._od_params.task_loss_weight
losses.update(od_losses)
if self._kp_params_dict is not None:
for task_name, params in self._kp_params_dict.items():
kp_losses = self._compute_keypoint_estimation_losses(
task_name=task_name,
input_height=input_height,
input_width=input_width,
prediction_dict=prediction_dict,
per_pixel_weights=valid_anchor_weights)
for key in kp_losses:
kp_losses[key] = kp_losses[key] * params.task_loss_weight
losses.update(kp_losses)
if self._mask_params is not None:
seg_losses = self._compute_segmentation_losses(
prediction_dict=prediction_dict,
per_pixel_weights=valid_anchor_weights)
for key in seg_losses:
seg_losses[key] = seg_losses[key] * self._mask_params.task_loss_weight
losses.update(seg_losses)
if self._densepose_params is not None:
densepose_losses = self._compute_densepose_losses(
input_height=input_height,
input_width=input_width,
prediction_dict=prediction_dict)
for key in densepose_losses:
densepose_losses[key] = (
densepose_losses[key] * self._densepose_params.task_loss_weight)
losses.update(densepose_losses)
if self._track_params is not None:
track_losses = self._compute_track_losses(
input_height=input_height,
input_width=input_width,
prediction_dict=prediction_dict)
for key in track_losses:
track_losses[key] = (
track_losses[key] * self._track_params.task_loss_weight)
losses.update(track_losses)
if self._temporal_offset_params is not None:
offset_losses = self._compute_temporal_offset_loss(
input_height=input_height,
input_width=input_width,
prediction_dict=prediction_dict)
for key in offset_losses:
offset_losses[key] = (
offset_losses[key] * self._temporal_offset_params.task_loss_weight)
losses.update(offset_losses)
# Prepend the LOSS_KEY_PREFIX to the keys in the dictionary such that the
# losses will be grouped together in Tensorboard.
return dict([('%s/%s' % (LOSS_KEY_PREFIX, key), val)
for key, val in losses.items()])
def postprocess(self, prediction_dict, true_image_shapes, **params):
"""Produces boxes given a prediction dict returned by predict().
Although predict returns a list of tensors, only the last tensor in
each list is used for making box predictions.
Args:
prediction_dict: a dictionary holding predicted tensors from "predict"
function.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is of
the form [height, width, channels] indicating the shapes of true images
in the resized images, as resized images can be padded with zeros.
**params: Currently ignored.
Returns:
detections: a dictionary containing the following fields
detection_boxes - A tensor of shape [batch, max_detections, 4]
holding the predicted boxes.
detection_boxes_strided: A tensor of shape [batch_size, num_detections,
4] holding the predicted boxes in absolute coordinates of the
feature extractor's final layer output.
detection_scores: A tensor of shape [batch, max_detections] holding
the predicted score for each box.
detection_multiclass_scores: A tensor of shape [batch, max_detection,
num_classes] holding multiclass score for each box.
detection_classes: An integer tensor of shape [batch, max_detections]
containing the detected class for each box.
num_detections: An integer tensor of shape [batch] containing the
number of detected boxes for each sample in the batch.
detection_keypoints: (Optional) A float tensor of shape [batch,
max_detections, num_keypoints, 2] with normalized keypoints. Any
invalid keypoints have their coordinates and scores set to 0.0.
detection_keypoint_scores: (Optional) A float tensor of shape [batch,
max_detection, num_keypoints] with scores for each keypoint.
detection_masks: (Optional) A uint8 tensor of shape [batch,
max_detections, mask_height, mask_width] with masks for each
detection. Background is specified with 0, and foreground is specified
with positive integers (1 for standard instance segmentation mask, and
1-indexed parts for DensePose task).
detection_surface_coords: (Optional) A float32 tensor of shape [batch,
max_detection, mask_height, mask_width, 2] with DensePose surface
coordinates, in (v, u) format.
detection_embeddings: (Optional) A float tensor of shape [batch,
max_detections, reid_embed_size] containing object embeddings.
"""
object_center_prob = tf.nn.sigmoid(prediction_dict[OBJECT_CENTER][-1])
# Get x, y and channel indices corresponding to the top indices in the class
# center predictions.
detection_scores, y_indices, x_indices, channel_indices = (
top_k_feature_map_locations(
object_center_prob, max_pool_kernel_size=3,
k=self._center_params.max_box_predictions))
multiclass_scores = tf.gather_nd(
object_center_prob, tf.stack([y_indices, x_indices], -1), batch_dims=1)
num_detections = tf.reduce_sum(tf.to_int32(detection_scores > 0), axis=1)
postprocess_dict = {
fields.DetectionResultFields.detection_scores: detection_scores,
fields.DetectionResultFields.detection_multiclass_scores:
multiclass_scores,
fields.DetectionResultFields.detection_classes: channel_indices,
fields.DetectionResultFields.num_detections: num_detections,
}
boxes_strided = None
if self._od_params:
boxes_strided = (
prediction_tensors_to_boxes(y_indices, x_indices,
prediction_dict[BOX_SCALE][-1],
prediction_dict[BOX_OFFSET][-1]))
boxes = convert_strided_predictions_to_normalized_boxes(
boxes_strided, self._stride, true_image_shapes)
postprocess_dict.update({
fields.DetectionResultFields.detection_boxes: boxes,
'detection_boxes_strided': boxes_strided
})
if self._kp_params_dict:
# If the model is trained to predict only one class of object and its
# keypoint, we fall back to a simpler postprocessing function which uses
# the ops that are supported by tf.lite on GPU.
clip_keypoints = self._should_clip_keypoints()
if len(self._kp_params_dict) == 1 and self._num_classes == 1:
(keypoints, keypoint_scores,
keypoint_depths) = self._postprocess_keypoints_single_class(
prediction_dict, channel_indices, y_indices, x_indices,
boxes_strided, num_detections)
keypoints, keypoint_scores = (
convert_strided_predictions_to_normalized_keypoints(
keypoints, keypoint_scores, self._stride, true_image_shapes,
clip_out_of_frame_keypoints=clip_keypoints))
if keypoint_depths is not None:
postprocess_dict.update({
fields.DetectionResultFields.detection_keypoint_depths:
keypoint_depths
})
else:
# Multi-class keypoint estimation task does not support depth
# estimation.
assert all([
not kp_dict.predict_depth
for kp_dict in self._kp_params_dict.values()
])
keypoints, keypoint_scores = self._postprocess_keypoints_multi_class(
prediction_dict, channel_indices, y_indices, x_indices,
None, num_detections)
keypoints, keypoint_scores = (
convert_strided_predictions_to_normalized_keypoints(
keypoints, keypoint_scores, self._stride, true_image_shapes,
clip_out_of_frame_keypoints=clip_keypoints))
# Update instance scores based on keypoints.
scores = self._rescore_instances(
channel_indices, detection_scores, keypoint_scores)
postprocess_dict.update({
fields.DetectionResultFields.detection_scores: scores,
fields.DetectionResultFields.detection_keypoints: keypoints,
fields.DetectionResultFields.detection_keypoint_scores:
keypoint_scores
})
if self._od_params is None:
# Still output the box prediction by enclosing the keypoints for
# evaluation purpose.
boxes = keypoint_ops.keypoints_to_enclosing_bounding_boxes(
keypoints, keypoints_axis=2)
postprocess_dict.update({
fields.DetectionResultFields.detection_boxes: boxes,
})
if self._mask_params:
masks = tf.nn.sigmoid(prediction_dict[SEGMENTATION_HEATMAP][-1])
densepose_part_heatmap, densepose_surface_coords = None, None
densepose_class_index = 0
if self._densepose_params:
densepose_part_heatmap = prediction_dict[DENSEPOSE_HEATMAP][-1]
densepose_surface_coords = prediction_dict[DENSEPOSE_REGRESSION][-1]
densepose_class_index = self._densepose_params.class_id
instance_masks, surface_coords = (
convert_strided_predictions_to_instance_masks(
boxes, channel_indices, masks, true_image_shapes,
densepose_part_heatmap, densepose_surface_coords,
stride=self._stride, mask_height=self._mask_params.mask_height,
mask_width=self._mask_params.mask_width,
score_threshold=self._mask_params.score_threshold,
densepose_class_index=densepose_class_index))
postprocess_dict[
fields.DetectionResultFields.detection_masks] = instance_masks
if self._densepose_params:
postprocess_dict[
fields.DetectionResultFields.detection_surface_coords] = (
surface_coords)
if self._track_params:
embeddings = self._postprocess_embeddings(prediction_dict,
y_indices, x_indices)
postprocess_dict.update({
fields.DetectionResultFields.detection_embeddings: embeddings
})
if self._temporal_offset_params:
offsets = prediction_tensors_to_temporal_offsets(
y_indices, x_indices,
prediction_dict[TEMPORAL_OFFSET][-1])
postprocess_dict[fields.DetectionResultFields.detection_offsets] = offsets
if self._non_max_suppression_fn:
boxes = tf.expand_dims(
postprocess_dict.pop(fields.DetectionResultFields.detection_boxes),
axis=-2)
multiclass_scores = postprocess_dict[
fields.DetectionResultFields.detection_multiclass_scores]
num_valid_boxes = postprocess_dict.pop(
fields.DetectionResultFields.num_detections)
# Remove scores and classes as NMS will compute these form multiclass
# scores.
postprocess_dict.pop(fields.DetectionResultFields.detection_scores)
postprocess_dict.pop(fields.DetectionResultFields.detection_classes)
(nmsed_boxes, nmsed_scores, nmsed_classes, _, nmsed_additional_fields,
num_detections) = self._non_max_suppression_fn(
boxes,
multiclass_scores,
additional_fields=postprocess_dict,
num_valid_boxes=num_valid_boxes)
postprocess_dict = nmsed_additional_fields
postprocess_dict[
fields.DetectionResultFields.detection_boxes] = nmsed_boxes
postprocess_dict[
fields.DetectionResultFields.detection_scores] = nmsed_scores
postprocess_dict[
fields.DetectionResultFields.detection_classes] = nmsed_classes
postprocess_dict[
fields.DetectionResultFields.num_detections] = num_detections
postprocess_dict.update(nmsed_additional_fields)
return postprocess_dict
def postprocess_single_instance_keypoints(
self,
prediction_dict,
true_image_shapes):
"""Postprocess for predicting single instance keypoints.
This postprocess function is a special case of predicting the keypoint of
a single instance in the image (original CenterNet postprocess supports
multi-instance prediction). Due to the simplification assumption, this
postprocessing function achieves much faster inference time.
Here is a short list of the modifications made in this function:
1) Assume the model predicts only single class keypoint.
2) Assume there is only one instance in the image. If multiple instances
appear in the image, the model tends to predict the one that is closer
to the image center (the other ones are considered as background and
are rejected by the model).
3) Avoid using top_k ops in the postprocessing logics since it is slower
than using argmax.
4) The predictions other than the keypoints are ignored, e.g. boxes.
5) The input batch size is assumed to be 1.
Args:
prediction_dict: a dictionary holding predicted tensors from "predict"
function.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is of
the form [height, width, channels] indicating the shapes of true images
in the resized images, as resized images can be padded with zeros.
Returns:
detections: a dictionary containing the following fields
detection_keypoints: A float tensor of shape
[1, 1, num_keypoints, 2] with normalized keypoints. Any invalid
keypoints have their coordinates and scores set to 0.0.
detection_keypoint_scores: A float tensor of shape
[1, 1, num_keypoints] with scores for each keypoint.
"""
# The number of keypoint task is expected to be 1.
assert len(self._kp_params_dict) == 1
task_name, kp_params = next(iter(self._kp_params_dict.items()))
keypoint_heatmap = tf.nn.sigmoid(prediction_dict[get_keypoint_name(
task_name, KEYPOINT_HEATMAP)][-1])
keypoint_offset = prediction_dict[get_keypoint_name(task_name,
KEYPOINT_OFFSET)][-1]
keypoint_regression = prediction_dict[get_keypoint_name(
task_name, KEYPOINT_REGRESSION)][-1]
object_heatmap = tf.nn.sigmoid(prediction_dict[OBJECT_CENTER][-1])
keypoint_depths = None
if kp_params.predict_depth:
keypoint_depths = prediction_dict[get_keypoint_name(
task_name, KEYPOINT_DEPTH)][-1]
keypoints, keypoint_scores, keypoint_depths = (
prediction_to_single_instance_keypoints(
object_heatmap=object_heatmap,
keypoint_heatmap=keypoint_heatmap,
keypoint_offset=keypoint_offset,
keypoint_regression=keypoint_regression,
kp_params=kp_params,
keypoint_depths=keypoint_depths))
keypoints, keypoint_scores = (
convert_strided_predictions_to_normalized_keypoints(
keypoints,
keypoint_scores,
self._stride,
true_image_shapes,
clip_out_of_frame_keypoints=False))
postprocess_dict = {
fields.DetectionResultFields.detection_keypoints: keypoints,
fields.DetectionResultFields.detection_keypoint_scores: keypoint_scores
}
if kp_params.predict_depth:
postprocess_dict.update({
fields.DetectionResultFields.detection_keypoint_depths:
keypoint_depths
})
return postprocess_dict
def _postprocess_embeddings(self, prediction_dict, y_indices, x_indices):
"""Performs postprocessing on embedding predictions.
Args:
prediction_dict: a dictionary holding predicted tensors, returned from the
predict() method. This dictionary should contain embedding prediction
feature maps for tracking task.
y_indices: A [batch_size, max_detections] int tensor with y indices for
all object centers.
x_indices: A [batch_size, max_detections] int tensor with x indices for
all object centers.
Returns:
embeddings: A [batch_size, max_detection, reid_embed_size] float32
tensor with L2 normalized embeddings extracted from detection box
centers.
"""
embedding_predictions = prediction_dict[TRACK_REID][-1]
embeddings = predicted_embeddings_at_object_centers(
embedding_predictions, y_indices, x_indices)
embeddings, _ = tf.linalg.normalize(embeddings, axis=-1)
return embeddings
def _scatter_keypoints_to_batch(self, num_ind, kpt_coords_for_example,
kpt_scores_for_example,
instance_inds_for_example, max_detections,
total_num_keypoints):
"""Helper function to convert scattered keypoints into batch."""
def left_fn(kpt_coords_for_example, kpt_scores_for_example,
instance_inds_for_example):
# Scatter into tensor where instances align with original detection
# instances. New shape of keypoint coordinates and scores are
# [1, max_detections, num_total_keypoints, 2] and
# [1, max_detections, num_total_keypoints], respectively.
return _pad_to_full_instance_dim(
kpt_coords_for_example, kpt_scores_for_example,
instance_inds_for_example,
self._center_params.max_box_predictions)
def right_fn():
kpt_coords_for_example_all_det = tf.zeros(
[1, max_detections, total_num_keypoints, 2], dtype=tf.float32)
kpt_scores_for_example_all_det = tf.zeros(
[1, max_detections, total_num_keypoints], dtype=tf.float32)
return (kpt_coords_for_example_all_det,
kpt_scores_for_example_all_det)
left_fn = functools.partial(left_fn, kpt_coords_for_example,
kpt_scores_for_example,
instance_inds_for_example)
# Use dimension values instead of tf.size for tf.lite compatibility.
return tf.cond(num_ind[0] > 0, left_fn, right_fn)
def _postprocess_keypoints_multi_class(self, prediction_dict, classes,
y_indices, x_indices, boxes,
num_detections):
"""Performs postprocessing on keypoint predictions.
This is the most general keypoint postprocessing function which supports
multiple keypoint tasks (e.g. human and dog keypoints) and multiple object
detection classes. Note that it is the most expensive postprocessing logics
and is currently not tf.lite/tf.js compatible. See
_postprocess_keypoints_single_class if you plan to export the model in more
portable format.
Args:
prediction_dict: a dictionary holding predicted tensors, returned from the
predict() method. This dictionary should contain keypoint prediction
feature maps for each keypoint task.
classes: A [batch_size, max_detections] int tensor with class indices for
all detected objects.
y_indices: A [batch_size, max_detections] int tensor with y indices for
all object centers.
x_indices: A [batch_size, max_detections] int tensor with x indices for
all object centers.
boxes: A [batch_size, max_detections, 4] float32 tensor with bounding
boxes in (un-normalized) output space.
num_detections: A [batch_size] int tensor with the number of valid
detections for each image.
Returns:
A tuple of
keypoints: a [batch_size, max_detection, num_total_keypoints, 2] float32
tensor with keypoints in the output (strided) coordinate frame.
keypoint_scores: a [batch_size, max_detections, num_total_keypoints]
float32 tensor with keypoint scores.
"""
total_num_keypoints = sum(len(kp_dict.keypoint_indices) for kp_dict
in self._kp_params_dict.values())
batch_size, max_detections = _get_shape(classes, 2)
kpt_coords_for_example_list = []
kpt_scores_for_example_list = []
for ex_ind in range(batch_size):
kpt_coords_for_class_list = []
kpt_scores_for_class_list = []
instance_inds_for_class_list = []
for task_name, kp_params in self._kp_params_dict.items():
keypoint_heatmap = prediction_dict[
get_keypoint_name(task_name, KEYPOINT_HEATMAP)][-1]
keypoint_offsets = prediction_dict[
get_keypoint_name(task_name, KEYPOINT_OFFSET)][-1]
keypoint_regression = prediction_dict[
get_keypoint_name(task_name, KEYPOINT_REGRESSION)][-1]
instance_inds = self._get_instance_indices(
classes, num_detections, ex_ind, kp_params.class_id)
num_ind = _get_shape(instance_inds, 1)
def true_fn(keypoint_heatmap, keypoint_offsets, keypoint_regression,
classes, y_indices, x_indices, boxes, instance_inds, ex_ind,
kp_params):
"""Logics to execute when instance_inds is not an empty set."""
# Gather the feature map locations corresponding to the object class.
y_indices_for_kpt_class = tf.gather(y_indices, instance_inds, axis=1)
x_indices_for_kpt_class = tf.gather(x_indices, instance_inds, axis=1)
if boxes is None:
boxes_for_kpt_class = None
else:
boxes_for_kpt_class = tf.gather(boxes, instance_inds, axis=1)
# Postprocess keypoints and scores for class and single image. Shapes
# are [1, num_instances_i, num_keypoints_i, 2] and
# [1, num_instances_i, num_keypoints_i], respectively. Note that
# num_instances_i and num_keypoints_i refers to the number of
# instances and keypoints for class i, respectively.
(kpt_coords_for_class, kpt_scores_for_class, _) = (
self._postprocess_keypoints_for_class_and_image(
keypoint_heatmap, keypoint_offsets, keypoint_regression,
classes, y_indices_for_kpt_class, x_indices_for_kpt_class,
boxes_for_kpt_class, ex_ind, kp_params))
# Expand keypoint dimension (with padding) so that coordinates and
# scores have shape [1, num_instances_i, num_total_keypoints, 2] and
# [1, num_instances_i, num_total_keypoints], respectively.
kpts_coords_for_class_padded, kpt_scores_for_class_padded = (
_pad_to_full_keypoint_dim(kpt_coords_for_class,
kpt_scores_for_class,
kp_params.keypoint_indices,
total_num_keypoints))
return kpts_coords_for_class_padded, kpt_scores_for_class_padded
def false_fn():
"""Logics to execute when the instance_inds is an empty set."""
return (tf.zeros([1, 0, total_num_keypoints, 2], dtype=tf.float32),
tf.zeros([1, 0, total_num_keypoints], dtype=tf.float32))
true_fn = functools.partial(
true_fn, keypoint_heatmap, keypoint_offsets, keypoint_regression,
classes, y_indices, x_indices, boxes, instance_inds, ex_ind,
kp_params)
# Use dimension values instead of tf.size for tf.lite compatibility.
results = tf.cond(num_ind[0] > 0, true_fn, false_fn)
kpt_coords_for_class_list.append(results[0])
kpt_scores_for_class_list.append(results[1])
instance_inds_for_class_list.append(instance_inds)
# Concatenate all keypoints across all classes (single example).
kpt_coords_for_example = tf.concat(kpt_coords_for_class_list, axis=1)
kpt_scores_for_example = tf.concat(kpt_scores_for_class_list, axis=1)
instance_inds_for_example = tf.concat(instance_inds_for_class_list,
axis=0)
(kpt_coords_for_example_all_det,
kpt_scores_for_example_all_det) = self._scatter_keypoints_to_batch(
num_ind, kpt_coords_for_example, kpt_scores_for_example,
instance_inds_for_example, max_detections, total_num_keypoints)
kpt_coords_for_example_list.append(kpt_coords_for_example_all_det)
kpt_scores_for_example_list.append(kpt_scores_for_example_all_det)
# Concatenate all keypoints and scores from all examples in the batch.
# Shapes are [batch_size, max_detections, num_total_keypoints, 2] and
# [batch_size, max_detections, num_total_keypoints], respectively.
keypoints = tf.concat(kpt_coords_for_example_list, axis=0)
keypoint_scores = tf.concat(kpt_scores_for_example_list, axis=0)
return keypoints, keypoint_scores
def _postprocess_keypoints_single_class(self, prediction_dict, classes,
y_indices, x_indices, boxes,
num_detections):
"""Performs postprocessing on keypoint predictions (single class only).
This function handles the special case of keypoint task that the model
predicts only one class of the bounding box/keypoint (e.g. person). By the
assumption, the function uses only tf.lite supported ops and should run
faster.
Args:
prediction_dict: a dictionary holding predicted tensors, returned from the
predict() method. This dictionary should contain keypoint prediction
feature maps for each keypoint task.
classes: A [batch_size, max_detections] int tensor with class indices for
all detected objects.
y_indices: A [batch_size, max_detections] int tensor with y indices for
all object centers.
x_indices: A [batch_size, max_detections] int tensor with x indices for
all object centers.
boxes: A [batch_size, max_detections, 4] float32 tensor with bounding
boxes in (un-normalized) output space.
num_detections: A [batch_size] int tensor with the number of valid
detections for each image.
Returns:
A tuple of
keypoints: a [batch_size, max_detection, num_total_keypoints, 2] float32
tensor with keypoints in the output (strided) coordinate frame.
keypoint_scores: a [batch_size, max_detections, num_total_keypoints]
float32 tensor with keypoint scores.
"""
# This function only works when there is only one keypoint task and the
# number of classes equal to one. For more general use cases, please use
# _postprocess_keypoints instead.
assert len(self._kp_params_dict) == 1 and self._num_classes == 1
task_name, kp_params = next(iter(self._kp_params_dict.items()))
keypoint_heatmap = prediction_dict[
get_keypoint_name(task_name, KEYPOINT_HEATMAP)][-1]
keypoint_offsets = prediction_dict[
get_keypoint_name(task_name, KEYPOINT_OFFSET)][-1]
keypoint_regression = prediction_dict[
get_keypoint_name(task_name, KEYPOINT_REGRESSION)][-1]
keypoint_depth_predictions = None
if kp_params.predict_depth:
keypoint_depth_predictions = prediction_dict[get_keypoint_name(
task_name, KEYPOINT_DEPTH)][-1]
batch_size, _ = _get_shape(classes, 2)
kpt_coords_for_example_list = []
kpt_scores_for_example_list = []
kpt_depths_for_example_list = []
for ex_ind in range(batch_size):
# Postprocess keypoints and scores for class and single image. Shapes
# are [1, max_detections, num_keypoints, 2] and
# [1, max_detections, num_keypoints], respectively.
(kpt_coords_for_class, kpt_scores_for_class, kpt_depths_for_class) = (
self._postprocess_keypoints_for_class_and_image(
keypoint_heatmap,
keypoint_offsets,
keypoint_regression,
classes,
y_indices,
x_indices,
boxes,
ex_ind,
kp_params,
keypoint_depth_predictions=keypoint_depth_predictions))
kpt_coords_for_example_list.append(kpt_coords_for_class)
kpt_scores_for_example_list.append(kpt_scores_for_class)
kpt_depths_for_example_list.append(kpt_depths_for_class)
# Concatenate all keypoints and scores from all examples in the batch.
# Shapes are [batch_size, max_detections, num_keypoints, 2] and
# [batch_size, max_detections, num_keypoints], respectively.
keypoints = tf.concat(kpt_coords_for_example_list, axis=0)
keypoint_scores = tf.concat(kpt_scores_for_example_list, axis=0)
keypoint_depths = None
if kp_params.predict_depth:
keypoint_depths = tf.concat(kpt_depths_for_example_list, axis=0)
return keypoints, keypoint_scores, keypoint_depths
def _get_instance_indices(self, classes, num_detections, batch_index,
class_id):
"""Gets the instance indices that match the target class ID.
Args:
classes: A [batch_size, max_detections] int tensor with class indices for
all detected objects.
num_detections: A [batch_size] int tensor with the number of valid
detections for each image.
batch_index: An integer specifying the index for an example in the batch.
class_id: Class id
Returns:
instance_inds: A [num_instances] int32 tensor where each element indicates
the instance location within the `classes` tensor. This is useful to
associate the refined keypoints with the original detections (i.e.
boxes)
"""
classes = classes[batch_index:batch_index+1, ...]
_, max_detections = shape_utils.combined_static_and_dynamic_shape(
classes)
# Get the detection indices corresponding to the target class.
# Call tf.math.equal with matched tensor shape to make it tf.lite
# compatible.
valid_detections_with_kpt_class = tf.math.logical_and(
tf.range(max_detections) < num_detections[batch_index],
tf.math.equal(classes[0], tf.fill(classes[0].shape, class_id)))
instance_inds = tf.where(valid_detections_with_kpt_class)[:, 0]
# Cast the indices tensor to int32 for tf.lite compatibility.
return tf.cast(instance_inds, tf.int32)
def _postprocess_keypoints_for_class_and_image(
self,
keypoint_heatmap,
keypoint_offsets,
keypoint_regression,
classes,
y_indices,
x_indices,
boxes,
batch_index,
kp_params,
keypoint_depth_predictions=None):
"""Postprocess keypoints for a single image and class.
Args:
keypoint_heatmap: A [batch_size, height, width, num_keypoints] float32
tensor with keypoint heatmaps.
keypoint_offsets: A [batch_size, height, width, 2] float32 tensor with
local offsets to keypoint centers.
keypoint_regression: A [batch_size, height, width, 2 * num_keypoints]
float32 tensor with regressed offsets to all keypoints.
classes: A [batch_size, max_detections] int tensor with class indices for
all detected objects.
y_indices: A [batch_size, max_detections] int tensor with y indices for
all object centers.
x_indices: A [batch_size, max_detections] int tensor with x indices for
all object centers.
boxes: A [batch_size, max_detections, 4] float32 tensor with detected
boxes in the output (strided) frame.
batch_index: An integer specifying the index for an example in the batch.
kp_params: A `KeypointEstimationParams` object with parameters for a
single keypoint class.
keypoint_depth_predictions: (optional) A [batch_size, height, width, 1]
float32 tensor representing the keypoint depth prediction.
Returns:
A tuple of
refined_keypoints: A [1, num_instances, num_keypoints, 2] float32 tensor
with refined keypoints for a single class in a single image, expressed
in the output (strided) coordinate frame. Note that `num_instances` is a
dynamic dimension, and corresponds to the number of valid detections
for the specific class.
refined_scores: A [1, num_instances, num_keypoints] float32 tensor with
keypoint scores.
refined_depths: A [1, num_instances, num_keypoints] float32 tensor with
keypoint depths. Return None if the input keypoint_depth_predictions is
None.
"""
num_keypoints = len(kp_params.keypoint_indices)
keypoint_heatmap = tf.nn.sigmoid(
keypoint_heatmap[batch_index:batch_index+1, ...])
keypoint_offsets = keypoint_offsets[batch_index:batch_index+1, ...]
keypoint_regression = keypoint_regression[batch_index:batch_index+1, ...]
keypoint_depths = None
if keypoint_depth_predictions is not None:
keypoint_depths = keypoint_depth_predictions[batch_index:batch_index + 1,
...]
y_indices = y_indices[batch_index:batch_index+1, ...]
x_indices = x_indices[batch_index:batch_index+1, ...]
if boxes is None:
boxes_slice = None
else:
boxes_slice = boxes[batch_index:batch_index+1, ...]
# Gather the regressed keypoints. Final tensor has shape
# [1, num_instances, num_keypoints, 2].
regressed_keypoints_for_objects = regressed_keypoints_at_object_centers(
keypoint_regression, y_indices, x_indices)
regressed_keypoints_for_objects = tf.reshape(
regressed_keypoints_for_objects, [1, -1, num_keypoints, 2])
# Get the candidate keypoints and scores.
# The shape of keypoint_candidates and keypoint_scores is:
# [1, num_candidates_per_keypoint, num_keypoints, 2] and
# [1, num_candidates_per_keypoint, num_keypoints], respectively.
(keypoint_candidates, keypoint_scores, num_keypoint_candidates,
keypoint_depth_candidates) = (
prediction_tensors_to_keypoint_candidates(
keypoint_heatmap,
keypoint_offsets,
keypoint_score_threshold=(
kp_params.keypoint_candidate_score_threshold),
max_pool_kernel_size=kp_params.peak_max_pool_kernel_size,
max_candidates=kp_params.num_candidates_per_keypoint,
keypoint_depths=keypoint_depths))
# Get the refined keypoints and scores, of shape
# [1, num_instances, num_keypoints, 2] and
# [1, num_instances, num_keypoints], respectively.
(refined_keypoints, refined_scores, refined_depths) = refine_keypoints(
regressed_keypoints_for_objects,
keypoint_candidates,
keypoint_scores,
num_keypoint_candidates,
bboxes=boxes_slice,
unmatched_keypoint_score=kp_params.unmatched_keypoint_score,
box_scale=kp_params.box_scale,
candidate_search_scale=kp_params.candidate_search_scale,
candidate_ranking_mode=kp_params.candidate_ranking_mode,
score_distance_offset=kp_params.score_distance_offset,
keypoint_depth_candidates=keypoint_depth_candidates,
keypoint_score_threshold=(
kp_params.keypoint_candidate_score_threshold))
return refined_keypoints, refined_scores, refined_depths
def regularization_losses(self):
return []
def restore_map(self,
fine_tune_checkpoint_type='detection',
load_all_detection_checkpoint_vars=False):
raise RuntimeError('CenterNetMetaArch not supported under TF1.x.')
def restore_from_objects(self, fine_tune_checkpoint_type='detection'):
"""Returns a map of Trackable objects to load from a foreign checkpoint.
Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module
or Checkpoint). This enables the model to initialize based on weights from
another task. For example, the feature extractor variables from a
classification model can be used to bootstrap training of an object
detector. When loading from an object detection model, the checkpoint model
should have the same parameters as this detection model with exception of
the num_classes parameter.
Note that this function is intended to be used to restore Keras-based
models when running Tensorflow 2, whereas restore_map (not implemented
in CenterNet) is intended to be used to restore Slim-based models when
running Tensorflow 1.x.
TODO(jonathanhuang): Make this function consistent with other
meta-architectures.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`, `fine_tune`.
Default 'detection'.
'detection': used when loading models pre-trained on other detection
tasks. With this checkpoint type the weights of the feature extractor
are expected under the attribute 'feature_extractor'.
'classification': used when loading models pre-trained on an image
classification task. Note that only the encoder section of the network
is loaded and not the upsampling layers. With this checkpoint type,
the weights of only the encoder section are expected under the
attribute 'feature_extractor'.
'fine_tune': used when loading the entire CenterNet feature extractor
pre-trained on other tasks. The checkpoints saved during CenterNet
model training can be directly loaded using this type. With this
checkpoint type, the weights of the feature extractor are expected
under the attribute 'model._feature_extractor'.
For more details, see the tensorflow section on Loading mechanics.
https://www.tensorflow.org/guide/checkpoint#loading_mechanics
Returns:
A dict mapping keys to Trackable objects (tf.Module or Checkpoint).
"""
if fine_tune_checkpoint_type == 'detection':
feature_extractor_model = tf.train.Checkpoint(
_feature_extractor=self._feature_extractor)
return {'model': feature_extractor_model}
elif fine_tune_checkpoint_type == 'classification':
return {
'feature_extractor':
self._feature_extractor.classification_backbone
}
elif fine_tune_checkpoint_type == 'full':
return {'model': self}
elif fine_tune_checkpoint_type == 'fine_tune':
raise ValueError(('"fine_tune" is no longer supported for CenterNet. '
'Please set fine_tune_checkpoint_type to "detection"'
' which has the same functionality. If you are using'
' the ExtremeNet checkpoint, download the new version'
' from the model zoo.'))
else:
raise ValueError('Unknown fine tune checkpoint type {}'.format(
fine_tune_checkpoint_type))
def updates(self):
if tf_version.is_tf2():
raise RuntimeError('This model is intended to be used with model_lib_v2 '
'which does not support updates()')
else:
update_ops = []
slim_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# Copy the slim ops to avoid modifying the collection
if slim_update_ops:
update_ops.extend(slim_update_ops)
return update_ops | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/center_net_meta_arch.py | center_net_meta_arch.py |
from __future__ import print_function
import abc
import functools
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import box_predictor
from object_detection.core import losses
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.core import target_assigner
from object_detection.utils import ops
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
_UNINITIALIZED_FEATURE_EXTRACTOR = '__uninitialized__'
class FasterRCNNFeatureExtractor(object):
"""Faster R-CNN Feature Extractor definition."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
first_stage_features_stride: Output stride of extracted RPN feature map.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a relative large batch size
(e.g. 8), it could be desirable to enable batch norm update.
reuse_weights: Whether to reuse variables. Default is None.
weight_decay: float weight decay for feature extractor (default: 0.0).
"""
self._is_training = is_training
self._first_stage_features_stride = first_stage_features_stride
self._train_batch_norm = (batch_norm_trainable and is_training)
self._reuse_weights = tf.AUTO_REUSE if reuse_weights else None
self._weight_decay = weight_decay
@abc.abstractmethod
def preprocess(self, resized_inputs):
"""Feature-extractor specific preprocessing (minus image resizing)."""
pass
def extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
This function is responsible for extracting feature maps from preprocessed
images. These features are used by the region proposal network (RPN) to
predict proposals.
Args:
preprocessed_inputs: A [batch, height, width, channels] float tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
activations: A dictionary mapping activation tensor names to tensors.
"""
with tf.variable_scope(scope, values=[preprocessed_inputs]):
return self._extract_proposal_features(preprocessed_inputs, scope)
@abc.abstractmethod
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features, to be overridden."""
pass
def extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name.
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope(
scope, values=[proposal_feature_maps], reuse=tf.AUTO_REUSE):
return self._extract_box_classifier_features(proposal_feature_maps, scope)
@abc.abstractmethod
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features, to be overridden."""
pass
def restore_from_classification_checkpoint_fn(
self,
first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Args:
first_stage_feature_extractor_scope: A scope name for the first stage
feature extractor.
second_stage_feature_extractor_scope: A scope name for the second stage
feature extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
for scope_name in [first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope]:
if variable.op.name.startswith(scope_name):
var_name = variable.op.name.replace(scope_name + '/', '')
variables_to_restore[var_name] = variable
return variables_to_restore
class FasterRCNNKerasFeatureExtractor(object):
"""Keras-based Faster R-CNN Feature Extractor definition."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
weight_decay=0.0):
"""Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
first_stage_features_stride: Output stride of extracted RPN feature map.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a relative large batch size
(e.g. 8), it could be desirable to enable batch norm update.
weight_decay: float weight decay for feature extractor (default: 0.0).
"""
self._is_training = is_training
self._first_stage_features_stride = first_stage_features_stride
self._train_batch_norm = (batch_norm_trainable and is_training)
self._weight_decay = weight_decay
@abc.abstractmethod
def preprocess(self, resized_inputs):
"""Feature-extractor specific preprocessing (minus image resizing)."""
pass
@abc.abstractmethod
def get_proposal_feature_extractor_model(self, name):
"""Get model that extracts first stage RPN features, to be overridden."""
pass
@abc.abstractmethod
def get_box_classifier_feature_extractor_model(self, name):
"""Get model that extracts second stage box classifier features."""
pass
class FasterRCNNMetaArch(model.DetectionModel):
"""Faster R-CNN Meta-architecture definition."""
def __init__(self,
is_training,
num_classes,
image_resizer_fn,
feature_extractor,
number_of_stages,
first_stage_anchor_generator,
first_stage_target_assigner,
first_stage_atrous_rate,
first_stage_box_predictor_arg_scope_fn,
first_stage_box_predictor_kernel_size,
first_stage_box_predictor_depth,
first_stage_minibatch_size,
first_stage_sampler,
first_stage_non_max_suppression_fn,
first_stage_max_proposals,
first_stage_localization_loss_weight,
first_stage_objectness_loss_weight,
crop_and_resize_fn,
initial_crop_size,
maxpool_kernel_size,
maxpool_stride,
second_stage_target_assigner,
second_stage_mask_rcnn_box_predictor,
second_stage_batch_size,
second_stage_sampler,
second_stage_non_max_suppression_fn,
second_stage_score_conversion_fn,
second_stage_localization_loss_weight,
second_stage_classification_loss_weight,
second_stage_classification_loss,
second_stage_mask_prediction_loss_weight=1.0,
hard_example_miner=None,
parallel_iterations=16,
add_summaries=True,
clip_anchors_to_image=False,
use_static_shapes=False,
resize_masks=True,
freeze_batchnorm=False,
return_raw_detections_during_predict=False,
output_final_box_features=False,
output_final_box_rpn_features=False):
"""FasterRCNNMetaArch Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
num_classes: Number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
image_resizer_fn: A callable for image resizing. This callable
takes a rank-3 image tensor of shape [height, width, channels]
(corresponding to a single image), an optional rank-3 instance mask
tensor of shape [num_masks, height, width] and returns a resized rank-3
image tensor, a resized mask tensor if one was provided in the input. In
addition this callable must also return a 1-D tensor of the form
[height, width, channels] containing the size of the true image, as the
image resizer can perform zero padding. See protos/image_resizer.proto.
feature_extractor: A FasterRCNNFeatureExtractor object.
number_of_stages: An integer values taking values in {1, 2, 3}. If
1, the function will construct only the Region Proposal Network (RPN)
part of the model. If 2, the function will perform box refinement and
other auxiliary predictions all in the second stage. If 3, it will
extract features from refined boxes and perform the auxiliary
predictions on the non-maximum suppressed refined boxes.
If is_training is true and the value of number_of_stages is 3, it is
reduced to 2 since all the model heads are trained in parallel in second
stage during training.
first_stage_anchor_generator: An anchor_generator.AnchorGenerator object
(note that currently we only support
grid_anchor_generator.GridAnchorGenerator objects)
first_stage_target_assigner: Target assigner to use for first stage of
Faster R-CNN (RPN).
first_stage_atrous_rate: A single integer indicating the atrous rate for
the single convolution op which is applied to the `rpn_features_to_crop`
tensor to obtain a tensor to be used for box prediction. Some feature
extractors optionally allow for producing feature maps computed at
denser resolutions. The atrous rate is used to compensate for the
denser feature maps by using an effectively larger receptive field.
(This should typically be set to 1).
first_stage_box_predictor_arg_scope_fn: Either a
Keras layer hyperparams object or a function to construct tf-slim
arg_scope for conv2d, separable_conv2d and fully_connected ops. Used
for the RPN box predictor. If it is a keras hyperparams object the
RPN box predictor will be a Keras model. If it is a function to
construct an arg scope it will be a tf-slim box predictor.
first_stage_box_predictor_kernel_size: Kernel size to use for the
convolution op just prior to RPN box predictions.
first_stage_box_predictor_depth: Output depth for the convolution op
just prior to RPN box predictions.
first_stage_minibatch_size: The "batch size" to use for computing the
objectness and location loss of the region proposal network. This
"batch size" refers to the number of anchors selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
first_stage_sampler: Sampler to use for first stage loss (RPN loss).
first_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores` and optional `clip_window`(with
all other inputs already set) and returns a dictionary containing
tensors with keys: `detection_boxes`, `detection_scores`,
`detection_classes`, `num_detections`. This is used to perform non max
suppression on the boxes predicted by the Region Proposal Network
(RPN).
See `post_processing.batch_multiclass_non_max_suppression` for the type
and shape of these tensors.
first_stage_max_proposals: Maximum number of boxes to retain after
performing Non-Max Suppression (NMS) on the boxes predicted by the
Region Proposal Network (RPN).
first_stage_localization_loss_weight: A float
first_stage_objectness_loss_weight: A float
crop_and_resize_fn: A differentiable resampler to use for cropping RPN
proposal features.
initial_crop_size: A single integer indicating the output size
(width and height are set to be the same) of the initial bilinear
interpolation based cropping during ROI pooling.
maxpool_kernel_size: A single integer indicating the kernel size of the
max pool op on the cropped feature map during ROI pooling.
maxpool_stride: A single integer indicating the stride of the max pool
op on the cropped feature map during ROI pooling.
second_stage_target_assigner: Target assigner to use for second stage of
Faster R-CNN. If the model is configured with multiple prediction heads,
this target assigner is used to generate targets for all heads (with the
correct `unmatched_class_label`).
second_stage_mask_rcnn_box_predictor: Mask R-CNN box predictor to use for
the second stage.
second_stage_batch_size: The batch size used for computing the
classification and refined location loss of the box classifier. This
"batch size" refers to the number of proposals selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
second_stage_sampler: Sampler to use for second stage loss (box
classifier loss).
second_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores`, optional `clip_window` and
optional (kwarg) `mask` inputs (with all other inputs already set)
and returns a dictionary containing tensors with keys:
`detection_boxes`, `detection_scores`, `detection_classes`,
`num_detections`, and (optionally) `detection_masks`. See
`post_processing.batch_multiclass_non_max_suppression` for the type and
shape of these tensors.
second_stage_score_conversion_fn: Callable elementwise nonlinearity
(that takes tensors as inputs and returns tensors). This is usually
used to convert logits to probabilities.
second_stage_localization_loss_weight: A float indicating the scale factor
for second stage localization loss.
second_stage_classification_loss_weight: A float indicating the scale
factor for second stage classification loss.
second_stage_classification_loss: Classification loss used by the second
stage classifier. Either losses.WeightedSigmoidClassificationLoss or
losses.WeightedSoftmaxClassificationLoss.
second_stage_mask_prediction_loss_weight: A float indicating the scale
factor for second stage mask prediction loss. This is applicable only if
second stage box predictor is configured to predict masks.
hard_example_miner: A losses.HardExampleMiner object (can be None).
parallel_iterations: (Optional) The number of iterations allowed to run
in parallel for calls to tf.map_fn.
add_summaries: boolean (default: True) controlling whether summary ops
should be added to tensorflow graph.
clip_anchors_to_image: Normally, anchors generated for a given image size
are pruned during training if they lie outside the image window. This
option clips the anchors to be within the image instead of pruning.
use_static_shapes: If True, uses implementation of ops with static shape
guarantees.
resize_masks: Indicates whether the masks presend in the groundtruth
should be resized in the model with `image_resizer_fn`
freeze_batchnorm: Whether to freeze batch norm parameters in the first
stage box predictor during training or not. When training with a small
batch size (e.g. 1), it is desirable to freeze batch norm update and
use pretrained batch norm params.
return_raw_detections_during_predict: Whether to return raw detection
boxes in the predict() method. These are decoded boxes that have not
been through postprocessing (i.e. NMS). Default False.
output_final_box_features: Whether to output final box features. If true,
it crops the rpn feature map and passes it through box_classifier then
returns in the output dict as `detection_features`.
output_final_box_rpn_features: Whether to output rpn box features. If
true, it crops the rpn feature map and returns in the output dict as
`detection_features`.
Raises:
ValueError: If `second_stage_batch_size` > `first_stage_max_proposals` at
training time.
ValueError: If first_stage_anchor_generator is not of type
grid_anchor_generator.GridAnchorGenerator.
"""
# TODO(rathodv): add_summaries is currently unused. Respect that directive
# in the future.
super(FasterRCNNMetaArch, self).__init__(num_classes=num_classes)
self._is_training = is_training
self._image_resizer_fn = image_resizer_fn
self._resize_masks = resize_masks
self._feature_extractor = feature_extractor
if isinstance(feature_extractor, FasterRCNNKerasFeatureExtractor):
# We delay building the feature extractor until it is used,
# to avoid creating the variables when a model is built just for data
# preprocessing. (This prevents a subtle bug where variable names are
# mismatched across workers, causing only one worker to be able to train)
self._feature_extractor_for_proposal_features = (
_UNINITIALIZED_FEATURE_EXTRACTOR)
self._feature_extractor_for_box_classifier_features = (
_UNINITIALIZED_FEATURE_EXTRACTOR)
else:
self._feature_extractor_for_proposal_features = None
self._feature_extractor_for_box_classifier_features = None
self._number_of_stages = number_of_stages
self._proposal_target_assigner = first_stage_target_assigner
self._detector_target_assigner = second_stage_target_assigner
# Both proposal and detector target assigners use the same box coder
self._box_coder = self._proposal_target_assigner.box_coder
# (First stage) Region proposal network parameters
self._first_stage_anchor_generator = first_stage_anchor_generator
self._first_stage_atrous_rate = first_stage_atrous_rate
self._first_stage_box_predictor_depth = first_stage_box_predictor_depth
self._first_stage_box_predictor_kernel_size = (
first_stage_box_predictor_kernel_size)
self._first_stage_minibatch_size = first_stage_minibatch_size
self._first_stage_sampler = first_stage_sampler
if isinstance(first_stage_box_predictor_arg_scope_fn,
hyperparams_builder.KerasLayerHyperparams):
num_anchors_per_location = (
self._first_stage_anchor_generator.num_anchors_per_location())
conv_hyperparams = (
first_stage_box_predictor_arg_scope_fn)
self._first_stage_box_predictor_first_conv = (
tf.keras.Sequential([
tf.keras.layers.Conv2D(
self._first_stage_box_predictor_depth,
kernel_size=[self._first_stage_box_predictor_kernel_size,
self._first_stage_box_predictor_kernel_size],
dilation_rate=self._first_stage_atrous_rate,
padding='SAME',
name='RPNConv',
**conv_hyperparams.params()),
conv_hyperparams.build_batch_norm(
(self._is_training and not freeze_batchnorm),
name='RPNBatchNorm'),
tf.keras.layers.Lambda(
tf.nn.relu6,
name='RPNActivation')
], name='FirstStageRPNFeatures'))
self._first_stage_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=self._is_training,
num_classes=1,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=False,
num_predictions_per_location_list=num_anchors_per_location,
use_dropout=False,
dropout_keep_prob=1.0,
box_code_size=self._box_coder.code_size,
kernel_size=1,
num_layers_before_predictor=0,
min_depth=0,
max_depth=0,
name=self.first_stage_box_predictor_scope))
else:
self._first_stage_box_predictor_arg_scope_fn = (
first_stage_box_predictor_arg_scope_fn)
def rpn_box_predictor_feature_extractor(single_rpn_features_to_crop):
with slim.arg_scope(self._first_stage_box_predictor_arg_scope_fn()):
return slim.conv2d(
single_rpn_features_to_crop,
self._first_stage_box_predictor_depth,
kernel_size=[
self._first_stage_box_predictor_kernel_size,
self._first_stage_box_predictor_kernel_size
],
rate=self._first_stage_atrous_rate,
activation_fn=tf.nn.relu6,
scope='Conv',
reuse=tf.AUTO_REUSE)
self._first_stage_box_predictor_first_conv = (
rpn_box_predictor_feature_extractor)
self._first_stage_box_predictor = (
box_predictor_builder.build_convolutional_box_predictor(
is_training=self._is_training,
num_classes=1,
conv_hyperparams_fn=self._first_stage_box_predictor_arg_scope_fn,
use_dropout=False,
dropout_keep_prob=1.0,
box_code_size=self._box_coder.code_size,
kernel_size=1,
num_layers_before_predictor=0,
min_depth=0,
max_depth=0))
self._first_stage_nms_fn = first_stage_non_max_suppression_fn
self._first_stage_max_proposals = first_stage_max_proposals
self._use_static_shapes = use_static_shapes
self._first_stage_localization_loss = (
losses.WeightedSmoothL1LocalizationLoss())
self._first_stage_objectness_loss = (
losses.WeightedSoftmaxClassificationLoss())
self._first_stage_loc_loss_weight = first_stage_localization_loss_weight
self._first_stage_obj_loss_weight = first_stage_objectness_loss_weight
# Per-region cropping parameters
self._crop_and_resize_fn = crop_and_resize_fn
self._initial_crop_size = initial_crop_size
self._maxpool_kernel_size = maxpool_kernel_size
self._maxpool_stride = maxpool_stride
# If max pooling is to be used, build the layer
if maxpool_kernel_size:
self._maxpool_layer = tf.keras.layers.MaxPooling2D(
[self._maxpool_kernel_size, self._maxpool_kernel_size],
strides=self._maxpool_stride,
name='MaxPool2D')
self._mask_rcnn_box_predictor = second_stage_mask_rcnn_box_predictor
self._second_stage_batch_size = second_stage_batch_size
self._second_stage_sampler = second_stage_sampler
self._second_stage_nms_fn = second_stage_non_max_suppression_fn
self._second_stage_score_conversion_fn = second_stage_score_conversion_fn
self._second_stage_localization_loss = (
losses.WeightedSmoothL1LocalizationLoss())
self._second_stage_classification_loss = second_stage_classification_loss
self._second_stage_mask_loss = (
losses.WeightedSigmoidClassificationLoss())
self._second_stage_loc_loss_weight = second_stage_localization_loss_weight
self._second_stage_cls_loss_weight = second_stage_classification_loss_weight
self._second_stage_mask_loss_weight = (
second_stage_mask_prediction_loss_weight)
self._hard_example_miner = hard_example_miner
self._parallel_iterations = parallel_iterations
self.clip_anchors_to_image = clip_anchors_to_image
if self._number_of_stages <= 0 or self._number_of_stages > 3:
raise ValueError('Number of stages should be a value in {1, 2, 3}.')
self._batched_prediction_tensor_names = []
self._return_raw_detections_during_predict = (
return_raw_detections_during_predict)
self._output_final_box_features = output_final_box_features
self._output_final_box_rpn_features = output_final_box_rpn_features
@property
def first_stage_feature_extractor_scope(self):
return 'FirstStageFeatureExtractor'
@property
def second_stage_feature_extractor_scope(self):
return 'SecondStageFeatureExtractor'
@property
def first_stage_box_predictor_scope(self):
return 'FirstStageBoxPredictor'
@property
def second_stage_box_predictor_scope(self):
return 'SecondStageBoxPredictor'
@property
def max_num_proposals(self):
"""Max number of proposals (to pad to) for each image in the input batch.
At training time, this is set to be the `second_stage_batch_size` if hard
example miner is not configured, else it is set to
`first_stage_max_proposals`. At inference time, this is always set to
`first_stage_max_proposals`.
Returns:
A positive integer.
"""
if self._is_training and not self._hard_example_miner:
return self._second_stage_batch_size
return self._first_stage_max_proposals
@property
def anchors(self):
if not self._anchors:
raise RuntimeError('anchors have not been constructed yet!')
if not isinstance(self._anchors, box_list.BoxList):
raise RuntimeError('anchors should be a BoxList object, but is not.')
return self._anchors
@property
def batched_prediction_tensor_names(self):
if not self._batched_prediction_tensor_names:
raise RuntimeError('Must call predict() method to get batched prediction '
'tensor names.')
return self._batched_prediction_tensor_names
@property
def feature_extractor(self):
return self._feature_extractor
def preprocess(self, inputs):
"""Feature-extractor specific preprocessing.
See base class.
For Faster R-CNN, we perform image resizing in the base class --- each
class subclassing FasterRCNNMetaArch is responsible for any additional
preprocessing (e.g., scaling pixel values to be in [-1, 1]).
Args:
inputs: a [batch, height_in, width_in, channels] float tensor representing
a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: a [batch, height_out, width_out, channels] float
tensor representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Raises:
ValueError: if inputs tensor does not have type tf.float32
"""
with tf.name_scope('Preprocessor'):
(resized_inputs,
true_image_shapes) = shape_utils.resize_images_and_return_shapes(
inputs, self._image_resizer_fn)
return (self._feature_extractor.preprocess(resized_inputs),
true_image_shapes)
def _compute_clip_window(self, image_shapes):
"""Computes clip window for non max suppression based on image shapes.
This function assumes that the clip window's left top corner is at (0, 0).
Args:
image_shapes: A 2-D int32 tensor of shape [batch_size, 3] containing
shapes of images in the batch. Each row represents [height, width,
channels] of an image.
Returns:
A 2-D float32 tensor of shape [batch_size, 4] containing the clip window
for each image in the form [ymin, xmin, ymax, xmax].
"""
clip_heights = image_shapes[:, 0]
clip_widths = image_shapes[:, 1]
clip_window = tf.cast(
tf.stack([
tf.zeros_like(clip_heights),
tf.zeros_like(clip_heights), clip_heights, clip_widths
],
axis=1),
dtype=tf.float32)
return clip_window
def _proposal_postprocess(self, rpn_box_encodings,
rpn_objectness_predictions_with_background, anchors,
image_shape, true_image_shapes):
"""Wraps over FasterRCNNMetaArch._postprocess_rpn()."""
image_shape_2d = self._image_batch_shape_2d(image_shape)
proposal_boxes_normalized, _, _, num_proposals, _, _ = \
self._postprocess_rpn(
rpn_box_encodings, rpn_objectness_predictions_with_background,
anchors, image_shape_2d, true_image_shapes)
return proposal_boxes_normalized, num_proposals
def predict(self, preprocessed_inputs, true_image_shapes, **side_inputs):
"""Predicts unpostprocessed tensors from input tensor.
This function takes an input batch of images and runs it through the
forward pass of the network to yield "raw" un-postprocessed predictions.
If `number_of_stages` is 1, this function only returns first stage
RPN predictions (un-postprocessed). Otherwise it returns both
first stage RPN predictions as well as second stage box classifier
predictions.
Other remarks:
+ Anchor pruning vs. clipping: following the recommendation of the Faster
R-CNN paper, we prune anchors that venture outside the image window at
training time and clip anchors to the image window at inference time.
+ Proposal padding: as described at the top of the file, proposals are
padded to self._max_num_proposals and flattened so that proposals from all
images within the input batch are arranged along the same batch dimension.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**side_inputs: additional tensors that are required by the network.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) rpn_box_predictor_features: A list of 4-D float32 tensor with shape
[batch_size, height_i, width_j, depth] to be used for predicting
proposal boxes and corresponding objectness scores.
2) rpn_features_to_crop: A list of 4-D float32 tensor with shape
[batch_size, height, width, depth] representing image features to crop
using the proposal boxes predicted by the RPN.
3) image_shape: a 1-D tensor of shape [4] representing the input
image shape.
4) rpn_box_encodings: 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
5) rpn_objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
6) anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN (in absolute coordinates). Note that
`num_anchors` can differ depending on whether the model is created in
training or inference mode.
7) feature_maps: A single element list containing a 4-D float32 tensor
with shape batch_size, height, width, depth] representing the RPN
features to crop.
(and if number_of_stages > 1):
8) refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using
a shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
9) class_predictions_with_background: a 3-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
10) num_proposals: An int32 tensor of shape [batch_size] representing
the number of proposals generated by the RPN. `num_proposals` allows
us to keep track of which entries are to be treated as zero paddings
and which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
11) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
12) mask_predictions: (optional) a 4-D tensor with shape
[total_num_padded_proposals, num_classes, mask_height, mask_width]
containing instance mask predictions.
13) raw_detection_boxes: (optional) a
[batch_size, self.max_num_proposals, num_classes, 4] float32 tensor
with detections prior to NMS in normalized coordinates.
14) raw_detection_feature_map_indices: (optional) a
[batch_size, self.max_num_proposals, num_classes] int32 tensor with
indices indicating which feature map each raw detection box was
produced from. The indices correspond to the elements in the
'feature_maps' field.
Raises:
ValueError: If `predict` is called before `preprocess`.
"""
prediction_dict = self._predict_first_stage(preprocessed_inputs)
if self._number_of_stages >= 2:
prediction_dict.update(
self._predict_second_stage(
prediction_dict['rpn_box_encodings'],
prediction_dict['rpn_objectness_predictions_with_background'],
prediction_dict['rpn_features_to_crop'],
prediction_dict['anchors'], prediction_dict['image_shape'],
true_image_shapes,
**side_inputs))
if self._number_of_stages == 3:
prediction_dict = self._predict_third_stage(prediction_dict,
true_image_shapes)
self._batched_prediction_tensor_names = [
x for x in prediction_dict if x not in ('image_shape', 'anchors')
]
return prediction_dict
def _predict_first_stage(self, preprocessed_inputs):
"""First stage of prediction.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) rpn_box_predictor_features: A list of 4-D float32/bfloat16 tensor
with shape [batch_size, height_i, width_j, depth] to be used for
predicting proposal boxes and corresponding objectness scores.
2) rpn_features_to_crop: A list of 4-D float32/bfloat16 tensor with
shape [batch_size, height, width, depth] representing image features
to crop using the proposal boxes predicted by the RPN.
3) image_shape: a 1-D tensor of shape [4] representing the input
image shape.
4) rpn_box_encodings: 3-D float32 tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
5) rpn_objectness_predictions_with_background: 3-D float32 tensor of
shape [batch_size, num_anchors, 2] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions (at class index 0).
6) anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN (in absolute coordinates). Note that
`num_anchors` can differ depending on whether the model is created in
training or inference mode.
7) feature_maps: A single element list containing a 4-D float32 tensor
with shape batch_size, height, width, depth] representing the RPN
features to crop.
"""
(rpn_box_predictor_features, rpn_features_to_crop, anchors_boxlist,
image_shape) = self._extract_rpn_feature_maps(preprocessed_inputs)
(rpn_box_encodings, rpn_objectness_predictions_with_background
) = self._predict_rpn_proposals(rpn_box_predictor_features)
# The Faster R-CNN paper recommends pruning anchors that venture outside
# the image window at training time and clipping at inference time.
clip_window = tf.cast(tf.stack([0, 0, image_shape[1], image_shape[2]]),
dtype=tf.float32)
if self._is_training:
if self.clip_anchors_to_image:
anchors_boxlist = box_list_ops.clip_to_window(
anchors_boxlist, clip_window, filter_nonoverlapping=False)
else:
(rpn_box_encodings, rpn_objectness_predictions_with_background,
anchors_boxlist) = self._remove_invalid_anchors_and_predictions(
rpn_box_encodings, rpn_objectness_predictions_with_background,
anchors_boxlist, clip_window)
else:
anchors_boxlist = box_list_ops.clip_to_window(
anchors_boxlist, clip_window,
filter_nonoverlapping=not self._use_static_shapes)
self._anchors = anchors_boxlist
prediction_dict = {
'rpn_box_predictor_features':
rpn_box_predictor_features,
'rpn_features_to_crop':
rpn_features_to_crop,
'image_shape':
image_shape,
'rpn_box_encodings':
tf.cast(rpn_box_encodings, dtype=tf.float32),
'rpn_objectness_predictions_with_background':
tf.cast(rpn_objectness_predictions_with_background,
dtype=tf.float32),
'anchors':
anchors_boxlist.data['boxes'],
fields.PredictionFields.feature_maps: rpn_features_to_crop
}
return prediction_dict
def _image_batch_shape_2d(self, image_batch_shape_1d):
"""Takes a 1-D image batch shape tensor and converts it to a 2-D tensor.
Example:
If 1-D image batch shape tensor is [2, 300, 300, 3]. The corresponding 2-D
image batch tensor would be [[300, 300, 3], [300, 300, 3]]
Args:
image_batch_shape_1d: 1-D tensor of the form [batch_size, height,
width, channels].
Returns:
image_batch_shape_2d: 2-D tensor of shape [batch_size, 3] were each row is
of the form [height, width, channels].
"""
return tf.tile(tf.expand_dims(image_batch_shape_1d[1:], 0),
[image_batch_shape_1d[0], 1])
def _predict_second_stage(self, rpn_box_encodings,
rpn_objectness_predictions_with_background,
rpn_features_to_crop, anchors, image_shape,
true_image_shapes, **side_inputs):
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
rpn_box_encodings: 3-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
rpn_objectness_predictions_with_background: 2-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
rpn_features_to_crop: A list of 4-D float32 or bfloat16 tensor with shape
[batch_size, height_i, width_i, depth] representing image features to
crop using the proposal boxes predicted by the RPN.
anchors: 2-D float tensor of shape
[num_anchors, self._box_coder.code_size].
image_shape: A 1D int32 tensors of size [4] containing the image shape.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**side_inputs: additional tensors that are required by the network.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D float32 tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D float32 tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
4) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
5) proposal_boxes_normalized: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in normalized coordinates. Can be used to override the
boxes proposed by the RPN, thus enabling one to extract features and
get box classification and prediction for externally selected areas
of the image.
6) box_classifier_features: a 4-D float32/bfloat16 tensor
representing the features for each proposal.
If self._return_raw_detections_during_predict is True, the dictionary
will also contain:
7) raw_detection_boxes: a 4-D float32 tensor with shape
[batch_size, self.max_num_proposals, num_classes, 4] in normalized
coordinates.
8) raw_detection_feature_map_indices: a 3-D int32 tensor with shape
[batch_size, self.max_num_proposals, num_classes].
"""
proposal_boxes_normalized, num_proposals = self._proposal_postprocess(
rpn_box_encodings, rpn_objectness_predictions_with_background, anchors,
image_shape, true_image_shapes)
prediction_dict = self._box_prediction(rpn_features_to_crop,
proposal_boxes_normalized,
image_shape, true_image_shapes,
**side_inputs)
prediction_dict['num_proposals'] = num_proposals
return prediction_dict
def _box_prediction(self, rpn_features_to_crop, proposal_boxes_normalized,
image_shape, true_image_shapes, **side_inputs):
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
rpn_features_to_crop: A list 4-D float32 or bfloat16 tensor with shape
[batch_size, height_i, width_i, depth] representing image features to
crop using the proposal boxes predicted by the RPN.
proposal_boxes_normalized: A float tensor with shape [batch_size,
max_num_proposals, 4] representing the (potentially zero padded)
proposal boxes for all images in the batch. These boxes are represented
as normalized coordinates.
image_shape: A 1D int32 tensors of size [4] containing the image shape.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**side_inputs: additional tensors that are required by the network.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D float32 tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D float32 tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
4) proposal_boxes_normalized: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in normalized coordinates. Can be used to override the
boxes proposed by the RPN, thus enabling one to extract features and
get box classification and prediction for externally selected areas
of the image.
5) box_classifier_features: a 4-D float32/bfloat16 tensor
representing the features for each proposal.
If self._return_raw_detections_during_predict is True, the dictionary
will also contain:
6) raw_detection_boxes: a 4-D float32 tensor with shape
[batch_size, self.max_num_proposals, num_classes, 4] in normalized
coordinates.
7) raw_detection_feature_map_indices: a 3-D int32 tensor with shape
[batch_size, self.max_num_proposals, num_classes].
8) final_anchors: a 3-D float tensor of shape [batch_size,
self.max_num_proposals, 4] containing the reference anchors for raw
detection boxes in normalized coordinates.
"""
flattened_proposal_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, proposal_boxes_normalized,
image_shape, **side_inputs))
box_classifier_features = self._extract_box_classifier_features(
flattened_proposal_feature_maps, **side_inputs)
if self._mask_rcnn_box_predictor.is_keras_model:
box_predictions = self._mask_rcnn_box_predictor(
[box_classifier_features],
prediction_stage=2)
else:
box_predictions = self._mask_rcnn_box_predictor.predict(
[box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
prediction_stage=2)
refined_box_encodings = tf.squeeze(
box_predictions[box_predictor.BOX_ENCODINGS],
axis=1, name='all_refined_box_encodings')
class_predictions_with_background = tf.squeeze(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1, name='all_class_predictions_with_background')
absolute_proposal_boxes = ops.normalized_to_image_coordinates(
proposal_boxes_normalized, image_shape, self._parallel_iterations)
prediction_dict = {
'refined_box_encodings': tf.cast(refined_box_encodings,
dtype=tf.float32),
'class_predictions_with_background':
tf.cast(class_predictions_with_background, dtype=tf.float32),
'proposal_boxes': absolute_proposal_boxes,
'box_classifier_features': box_classifier_features,
'proposal_boxes_normalized': proposal_boxes_normalized,
'final_anchors': proposal_boxes_normalized
}
if self._return_raw_detections_during_predict:
prediction_dict.update(self._raw_detections_and_feature_map_inds(
refined_box_encodings, absolute_proposal_boxes, true_image_shapes))
return prediction_dict
def _raw_detections_and_feature_map_inds(
self, refined_box_encodings, absolute_proposal_boxes, true_image_shapes):
"""Returns raw detections and feat map inds from where they originated.
Args:
refined_box_encodings: [total_num_proposals, num_classes,
self._box_coder.code_size] float32 tensor.
absolute_proposal_boxes: [batch_size, self.max_num_proposals, 4] float32
tensor representing decoded proposal bounding boxes in absolute
coordinates.
true_image_shapes: [batch, 3] int32 tensor where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
A dictionary with raw detection boxes, and the feature map indices from
which they originated.
"""
box_encodings_batch = tf.reshape(
refined_box_encodings,
[-1, self.max_num_proposals, refined_box_encodings.shape[1],
self._box_coder.code_size])
raw_detection_boxes_absolute = self._batch_decode_boxes(
box_encodings_batch, absolute_proposal_boxes)
raw_detection_boxes_normalized = shape_utils.static_or_dynamic_map_fn(
self._normalize_and_clip_boxes,
elems=[raw_detection_boxes_absolute, true_image_shapes],
dtype=tf.float32)
detection_feature_map_indices = tf.zeros_like(
raw_detection_boxes_normalized[:, :, :, 0], dtype=tf.int32)
return {
fields.PredictionFields.raw_detection_boxes:
raw_detection_boxes_normalized,
fields.PredictionFields.raw_detection_feature_map_indices:
detection_feature_map_indices
}
def _extract_box_classifier_features(self, flattened_feature_maps):
if self._feature_extractor_for_box_classifier_features == (
_UNINITIALIZED_FEATURE_EXTRACTOR):
self._feature_extractor_for_box_classifier_features = (
self._feature_extractor.get_box_classifier_feature_extractor_model(
name=self.second_stage_feature_extractor_scope))
if self._feature_extractor_for_box_classifier_features:
box_classifier_features = (
self._feature_extractor_for_box_classifier_features(
flattened_feature_maps))
else:
box_classifier_features = (
self._feature_extractor.extract_box_classifier_features(
flattened_feature_maps,
scope=self.second_stage_feature_extractor_scope))
return box_classifier_features
def _predict_third_stage(self, prediction_dict, image_shapes):
"""Predicts non-box, non-class outputs using refined detections.
For training, masks as predicted directly on the box_classifier_features,
which are region-features from the initial anchor boxes.
For inference, this happens after calling the post-processing stage, such
that masks are only calculated for the top scored boxes.
Args:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
4) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
5) box_classifier_features: a 4-D float32 tensor representing the
features for each proposal.
6) image_shape: a 1-D tensor of shape [4] representing the input
image shape.
image_shapes: A 2-D int32 tensors of shape [batch_size, 3] containing
shapes of images in the batch.
Returns:
prediction_dict: a dictionary that in addition to the input predictions
does hold the following predictions as well:
1) mask_predictions: a 4-D tensor with shape
[batch_size, max_detection, mask_height, mask_width] containing
instance mask predictions.
"""
if self._is_training:
curr_box_classifier_features = prediction_dict['box_classifier_features']
detection_classes = prediction_dict['class_predictions_with_background']
if self._mask_rcnn_box_predictor.is_keras_model:
mask_predictions = self._mask_rcnn_box_predictor(
[curr_box_classifier_features],
prediction_stage=3)
else:
mask_predictions = self._mask_rcnn_box_predictor.predict(
[curr_box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
prediction_stage=3)
prediction_dict['mask_predictions'] = tf.squeeze(mask_predictions[
box_predictor.MASK_PREDICTIONS], axis=1)
else:
detections_dict = self._postprocess_box_classifier(
prediction_dict['refined_box_encodings'],
prediction_dict['class_predictions_with_background'],
prediction_dict['proposal_boxes'],
prediction_dict['num_proposals'],
image_shapes)
prediction_dict.update(detections_dict)
detection_boxes = detections_dict[
fields.DetectionResultFields.detection_boxes]
detection_classes = detections_dict[
fields.DetectionResultFields.detection_classes]
rpn_features_to_crop = prediction_dict['rpn_features_to_crop']
image_shape = prediction_dict['image_shape']
batch_size = tf.shape(detection_boxes)[0]
max_detection = tf.shape(detection_boxes)[1]
flattened_detected_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, detection_boxes, image_shape))
curr_box_classifier_features = self._extract_box_classifier_features(
flattened_detected_feature_maps)
if self._mask_rcnn_box_predictor.is_keras_model:
mask_predictions = self._mask_rcnn_box_predictor(
[curr_box_classifier_features],
prediction_stage=3)
else:
mask_predictions = self._mask_rcnn_box_predictor.predict(
[curr_box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
prediction_stage=3)
detection_masks = tf.squeeze(mask_predictions[
box_predictor.MASK_PREDICTIONS], axis=1)
_, num_classes, mask_height, mask_width = (
detection_masks.get_shape().as_list())
_, max_detection = detection_classes.get_shape().as_list()
prediction_dict['mask_predictions'] = tf.reshape(
detection_masks, [-1, num_classes, mask_height, mask_width])
if num_classes > 1:
detection_masks = self._gather_instance_masks(
detection_masks, detection_classes)
detection_masks = tf.cast(detection_masks, tf.float32)
prediction_dict[fields.DetectionResultFields.detection_masks] = (
tf.reshape(tf.sigmoid(detection_masks),
[batch_size, max_detection, mask_height, mask_width]))
return prediction_dict
def _gather_instance_masks(self, instance_masks, classes):
"""Gathers the masks that correspond to classes.
Args:
instance_masks: A 4-D float32 tensor with shape
[K, num_classes, mask_height, mask_width].
classes: A 2-D int32 tensor with shape [batch_size, max_detection].
Returns:
masks: a 3-D float32 tensor with shape [K, mask_height, mask_width].
"""
_, num_classes, height, width = instance_masks.get_shape().as_list()
k = tf.shape(instance_masks)[0]
instance_masks = tf.reshape(instance_masks, [-1, height, width])
classes = tf.cast(tf.reshape(classes, [-1]), dtype=tf.int32)
gather_idx = tf.range(k) * num_classes + classes
return tf.gather(instance_masks, gather_idx)
def _extract_rpn_feature_maps(self, preprocessed_inputs):
"""Extracts RPN features.
This function extracts two feature maps: a feature map to be directly
fed to a box predictor (to predict location and objectness scores for
proposals) and a feature map from which to crop regions which will then
be sent to the second stage box classifier.
Args:
preprocessed_inputs: a [batch, height, width, channels] image tensor.
Returns:
rpn_box_predictor_features: A list of 4-D float32 tensor with shape
[batch, height_i, width_j, depth] to be used for predicting proposal
boxes and corresponding objectness scores.
rpn_features_to_crop: A list of 4-D float32 tensor with shape
[batch, height, width, depth] representing image features to crop using
the proposals boxes.
anchors: A list of BoxList representing anchors (for the RPN) in
absolute coordinates.
image_shape: A 1-D tensor representing the input image shape.
"""
image_shape = tf.shape(preprocessed_inputs)
rpn_features_to_crop, self.endpoints = self._extract_proposal_features(
preprocessed_inputs)
# Decide if rpn_features_to_crop is a list. If not make it a list
if not isinstance(rpn_features_to_crop, list):
rpn_features_to_crop = [rpn_features_to_crop]
feature_map_shapes = []
rpn_box_predictor_features = []
for single_rpn_features_to_crop in rpn_features_to_crop:
single_shape = tf.shape(single_rpn_features_to_crop)
feature_map_shapes.append((single_shape[1], single_shape[2]))
single_rpn_box_predictor_features = (
self._first_stage_box_predictor_first_conv(
single_rpn_features_to_crop))
rpn_box_predictor_features.append(single_rpn_box_predictor_features)
anchors = box_list_ops.concatenate(
self._first_stage_anchor_generator.generate(feature_map_shapes))
return (rpn_box_predictor_features, rpn_features_to_crop,
anchors, image_shape)
def _extract_proposal_features(self, preprocessed_inputs):
if self._feature_extractor_for_proposal_features == (
_UNINITIALIZED_FEATURE_EXTRACTOR):
self._feature_extractor_for_proposal_features = (
self._feature_extractor.get_proposal_feature_extractor_model(
name=self.first_stage_feature_extractor_scope))
if self._feature_extractor_for_proposal_features:
proposal_features = (
self._feature_extractor_for_proposal_features(preprocessed_inputs),
{})
else:
proposal_features = (
self._feature_extractor.extract_proposal_features(
preprocessed_inputs,
scope=self.first_stage_feature_extractor_scope))
return proposal_features
def _predict_rpn_proposals(self, rpn_box_predictor_features):
"""Adds box predictors to RPN feature map to predict proposals.
Note resulting tensors will not have been postprocessed.
Args:
rpn_box_predictor_features: A list of 4-D float32 tensor with shape
[batch, height_i, width_j, depth] to be used for predicting proposal
boxes and corresponding objectness scores.
Returns:
box_encodings: 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
Raises:
RuntimeError: if the anchor generator generates anchors corresponding to
multiple feature maps. We currently assume that a single feature map
is generated for the RPN.
"""
num_anchors_per_location = (
self._first_stage_anchor_generator.num_anchors_per_location())
if self._first_stage_box_predictor.is_keras_model:
box_predictions = self._first_stage_box_predictor(
rpn_box_predictor_features)
else:
box_predictions = self._first_stage_box_predictor.predict(
rpn_box_predictor_features,
num_anchors_per_location,
scope=self.first_stage_box_predictor_scope)
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions_with_background = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return (tf.squeeze(box_encodings, axis=2),
objectness_predictions_with_background)
def _remove_invalid_anchors_and_predictions(
self,
box_encodings,
objectness_predictions_with_background,
anchors_boxlist,
clip_window):
"""Removes anchors that (partially) fall outside an image.
Also removes associated box encodings and objectness predictions.
Args:
box_encodings: 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
anchors_boxlist: A BoxList representing num_anchors anchors (for the RPN)
in absolute coordinates.
clip_window: a 1-D tensor representing the [ymin, xmin, ymax, xmax]
extent of the window to clip/prune to.
Returns:
box_encodings: 4-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes, where num_valid_anchors <= num_anchors
objectness_predictions_with_background: 2-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors, where
num_valid_anchors <= num_anchors. Note that this
tensor *includes* background class predictions (at class index 0).
anchors: A BoxList representing num_valid_anchors anchors (for the RPN) in
absolute coordinates.
"""
pruned_anchors_boxlist, keep_indices = box_list_ops.prune_outside_window(
anchors_boxlist, clip_window)
def _batch_gather_kept_indices(predictions_tensor):
return shape_utils.static_or_dynamic_map_fn(
functools.partial(tf.gather, indices=keep_indices),
elems=predictions_tensor,
dtype=tf.float32,
parallel_iterations=self._parallel_iterations,
back_prop=True)
return (_batch_gather_kept_indices(box_encodings),
_batch_gather_kept_indices(objectness_predictions_with_background),
pruned_anchors_boxlist)
def _flatten_first_two_dimensions(self, inputs):
"""Flattens `K-d` tensor along batch dimension to be a `(K-1)-d` tensor.
Converts `inputs` with shape [A, B, ..., depth] into a tensor of shape
[A * B, ..., depth].
Args:
inputs: A float tensor with shape [A, B, ..., depth]. Note that the first
two and last dimensions must be statically defined.
Returns:
A float tensor with shape [A * B, ..., depth] (where the first and last
dimension are statically defined.
"""
combined_shape = shape_utils.combined_static_and_dynamic_shape(inputs)
flattened_shape = tf.stack([combined_shape[0] * combined_shape[1]] +
combined_shape[2:])
return tf.reshape(inputs, flattened_shape)
def postprocess(self, prediction_dict, true_image_shapes):
"""Convert prediction tensors to final detections.
This function converts raw predictions tensors to final detection results.
See base class for output format conventions. Note also that by default,
scores are to be interpreted as logits, but if a score_converter is used,
then scores are remapped (and may thus have a different interpretation).
If number_of_stages=1, the returned results represent proposals from the
first stage RPN and are padded to have self.max_num_proposals for each
image; otherwise, the results can be interpreted as multiclass detections
from the full two-stage model and are padded to self._max_detections.
Args:
prediction_dict: a dictionary holding prediction tensors (see the
documentation for the predict method. If number_of_stages=1, we
expect prediction_dict to contain `rpn_box_encodings`,
`rpn_objectness_predictions_with_background`, `rpn_features_to_crop`,
and `anchors` fields. Otherwise we expect prediction_dict to
additionally contain `refined_box_encodings`,
`class_predictions_with_background`, `num_proposals`,
`proposal_boxes` and, optionally, `mask_predictions` fields.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
detections: a dictionary containing the following fields
detection_boxes: [batch, max_detection, 4]
detection_scores: [batch, max_detections]
detection_multiclass_scores: [batch, max_detections, 2]
detection_anchor_indices: [batch, max_detections]
detection_classes: [batch, max_detections]
(this entry is only created if rpn_mode=False)
num_detections: [batch]
raw_detection_boxes: [batch, total_detections, 4]
raw_detection_scores: [batch, total_detections, num_classes + 1]
Raises:
ValueError: If `predict` is called before `preprocess`.
ValueError: If `_output_final_box_features` is true but
rpn_features_to_crop is not in the prediction_dict.
"""
with tf.name_scope('FirstStagePostprocessor'):
if self._number_of_stages == 1:
image_shapes = self._image_batch_shape_2d(
prediction_dict['image_shape'])
(proposal_boxes, proposal_scores, proposal_multiclass_scores,
num_proposals, raw_proposal_boxes,
raw_proposal_scores) = self._postprocess_rpn(
prediction_dict['rpn_box_encodings'],
prediction_dict['rpn_objectness_predictions_with_background'],
prediction_dict['anchors'], image_shapes, true_image_shapes)
return {
fields.DetectionResultFields.detection_boxes:
proposal_boxes,
fields.DetectionResultFields.detection_scores:
proposal_scores,
fields.DetectionResultFields.detection_multiclass_scores:
proposal_multiclass_scores,
fields.DetectionResultFields.num_detections:
tf.cast(num_proposals, dtype=tf.float32),
fields.DetectionResultFields.raw_detection_boxes:
raw_proposal_boxes,
fields.DetectionResultFields.raw_detection_scores:
raw_proposal_scores
}
# TODO(jrru): Remove mask_predictions from _post_process_box_classifier.
if (self._number_of_stages == 2 or
(self._number_of_stages == 3 and self._is_training)):
with tf.name_scope('SecondStagePostprocessor'):
mask_predictions = prediction_dict.get(box_predictor.MASK_PREDICTIONS)
detections_dict = self._postprocess_box_classifier(
prediction_dict['refined_box_encodings'],
prediction_dict['class_predictions_with_background'],
prediction_dict['proposal_boxes'],
prediction_dict['num_proposals'],
true_image_shapes,
mask_predictions=mask_predictions)
if self._output_final_box_features:
if 'rpn_features_to_crop' not in prediction_dict:
raise ValueError(
'Please make sure rpn_features_to_crop is in the prediction_dict.'
)
detections_dict[
'detection_features'] = (
self._add_detection_box_boxclassifier_features_output_node(
detections_dict[
fields.DetectionResultFields.detection_boxes],
prediction_dict['rpn_features_to_crop'],
prediction_dict['image_shape']))
if self._output_final_box_rpn_features:
if 'rpn_features_to_crop' not in prediction_dict:
raise ValueError(
'Please make sure rpn_features_to_crop is in the prediction_dict.'
)
detections_dict['cropped_rpn_box_features'] = (
self._add_detection_box_rpn_features_output_node(
detections_dict[fields.DetectionResultFields.detection_boxes],
prediction_dict['rpn_features_to_crop'],
prediction_dict['image_shape']))
return detections_dict
if self._number_of_stages == 3:
# Post processing is already performed in 3rd stage. We need to transfer
# postprocessed tensors from `prediction_dict` to `detections_dict`.
# Remove any items from the prediction dictionary if they are not pure
# Tensors.
non_tensor_predictions = [
k for k, v in prediction_dict.items() if not isinstance(v, tf.Tensor)]
for k in non_tensor_predictions:
tf.logging.info('Removing {0} from prediction_dict'.format(k))
prediction_dict.pop(k)
return prediction_dict
def _add_detection_box_boxclassifier_features_output_node(
self, detection_boxes, rpn_features_to_crop, image_shape):
"""Add detection features to outputs.
This function extracts box features for each box in rpn_features_to_crop.
It returns the extracted box features, reshaped to
[batch size, max_detections, height, width, depth], and average pools
the extracted features across the spatial dimensions and adds a graph node
to the pooled features named 'pooled_detection_features'
Args:
detection_boxes: a 3-D float32 tensor of shape
[batch_size, max_detections, 4] which represents the bounding boxes.
rpn_features_to_crop: A list of 4-D float32 tensor with shape
[batch, height, width, depth] representing image features to crop using
the proposals boxes.
image_shape: a 1-D tensor of shape [4] representing the image shape.
Returns:
detection_features: a 4-D float32 tensor of shape
[batch size, max_detections, height, width, depth] representing
cropped image features
"""
with tf.name_scope('SecondStageDetectionFeaturesExtract'):
flattened_detected_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, detection_boxes, image_shape))
detection_features_unpooled = self._extract_box_classifier_features(
flattened_detected_feature_maps)
batch_size = tf.shape(detection_boxes)[0]
max_detections = tf.shape(detection_boxes)[1]
detection_features_pool = tf.reduce_mean(
detection_features_unpooled, axis=[1, 2])
reshaped_detection_features_pool = tf.reshape(
detection_features_pool,
[batch_size, max_detections, tf.shape(detection_features_pool)[-1]])
reshaped_detection_features_pool = tf.identity(
reshaped_detection_features_pool, 'pooled_detection_features')
# TODO(sbeery) add node to extract rpn features here!!
reshaped_detection_features = tf.reshape(
detection_features_unpooled,
[batch_size, max_detections,
tf.shape(detection_features_unpooled)[1],
tf.shape(detection_features_unpooled)[2],
tf.shape(detection_features_unpooled)[3]])
return reshaped_detection_features
def _add_detection_box_rpn_features_output_node(self, detection_boxes,
rpn_features_to_crop,
image_shape):
"""Add detection features to outputs.
This function extracts box features for each box in rpn_features_to_crop.
It returns the extracted box features, reshaped to
[batch size, max_detections, height, width, depth]
Args:
detection_boxes: a 3-D float32 tensor of shape
[batch_size, max_detections, 4] which represents the bounding boxes.
rpn_features_to_crop: A list of 4-D float32 tensor with shape
[batch, height, width, depth] representing image features to crop using
the proposals boxes.
image_shape: a 1-D tensor of shape [4] representing the image shape.
Returns:
detection_features: a 4-D float32 tensor of shape
[batch size, max_detections, height, width, depth] representing
cropped image features
"""
with tf.name_scope('FirstStageDetectionFeaturesExtract'):
flattened_detected_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, detection_boxes, image_shape))
batch_size = tf.shape(detection_boxes)[0]
max_detections = tf.shape(detection_boxes)[1]
reshaped_detection_features = tf.reshape(
flattened_detected_feature_maps,
[batch_size, max_detections,
tf.shape(flattened_detected_feature_maps)[1],
tf.shape(flattened_detected_feature_maps)[2],
tf.shape(flattened_detected_feature_maps)[3]])
return reshaped_detection_features
def _postprocess_rpn(self,
rpn_box_encodings_batch,
rpn_objectness_predictions_with_background_batch,
anchors,
image_shapes,
true_image_shapes):
"""Converts first stage prediction tensors from the RPN to proposals.
This function decodes the raw RPN predictions, runs non-max suppression
on the result.
Note that the behavior of this function is slightly modified during
training --- specifically, we stop the gradient from passing through the
proposal boxes and we only return a balanced sampled subset of proposals
with size `second_stage_batch_size`.
Args:
rpn_box_encodings_batch: A 3-D float32 tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted proposal box encodings.
rpn_objectness_predictions_with_background_batch: A 3-D float tensor of
shape [batch_size, num_anchors, 2] containing objectness predictions
(logits) for each of the anchors with 0 corresponding to background
and 1 corresponding to object.
anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN. Note that `num_anchors` can differ depending
on whether the model is created in training or inference mode.
image_shapes: A 2-D tensor of shape [batch, 3] containing the shapes of
images in the batch.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
proposal_boxes: A float tensor with shape
[batch_size, max_num_proposals, 4] representing the (potentially zero
padded) proposal boxes for all images in the batch. These boxes are
represented as normalized coordinates.
proposal_scores: A float tensor with shape
[batch_size, max_num_proposals] representing the (potentially zero
padded) proposal objectness scores for all images in the batch.
proposal_multiclass_scores: A float tensor with shape
[batch_size, max_num_proposals, 2] representing the (potentially zero
padded) proposal multiclass scores for all images in the batch.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
raw_detection_boxes: [batch, total_detections, 4] tensor with decoded
proposal boxes before Non-Max Suppression.
raw_detection_scores: [batch, total_detections,
num_classes_with_background] tensor of multi-class scores for raw
proposal boxes.
"""
rpn_box_encodings_batch = tf.expand_dims(rpn_box_encodings_batch, axis=2)
rpn_encodings_shape = shape_utils.combined_static_and_dynamic_shape(
rpn_box_encodings_batch)
tiled_anchor_boxes = tf.tile(
tf.expand_dims(anchors, 0), [rpn_encodings_shape[0], 1, 1])
proposal_boxes = self._batch_decode_boxes(rpn_box_encodings_batch,
tiled_anchor_boxes)
raw_proposal_boxes = tf.squeeze(proposal_boxes, axis=2)
rpn_objectness_softmax = tf.nn.softmax(
rpn_objectness_predictions_with_background_batch)
rpn_objectness_softmax_without_background = rpn_objectness_softmax[:, :, 1]
clip_window = self._compute_clip_window(true_image_shapes)
additional_fields = {'multiclass_scores': rpn_objectness_softmax}
(proposal_boxes, proposal_scores, _, _, nmsed_additional_fields,
num_proposals) = self._first_stage_nms_fn(
tf.expand_dims(raw_proposal_boxes, axis=2),
tf.expand_dims(rpn_objectness_softmax_without_background, axis=2),
additional_fields=additional_fields,
clip_window=clip_window)
if self._is_training:
proposal_boxes = tf.stop_gradient(proposal_boxes)
if not self._hard_example_miner:
(groundtruth_boxlists, groundtruth_classes_with_background_list, _,
groundtruth_weights_list
) = self._format_groundtruth_data(image_shapes)
(proposal_boxes, proposal_scores,
num_proposals) = self._sample_box_classifier_batch(
proposal_boxes, proposal_scores, num_proposals,
groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_weights_list)
# normalize proposal boxes
def normalize_boxes(args):
proposal_boxes_per_image = args[0]
image_shape = args[1]
normalized_boxes_per_image = box_list_ops.to_normalized_coordinates(
box_list.BoxList(proposal_boxes_per_image), image_shape[0],
image_shape[1], check_range=False).get()
return normalized_boxes_per_image
normalized_proposal_boxes = shape_utils.static_or_dynamic_map_fn(
normalize_boxes, elems=[proposal_boxes, image_shapes], dtype=tf.float32)
raw_normalized_proposal_boxes = shape_utils.static_or_dynamic_map_fn(
normalize_boxes,
elems=[raw_proposal_boxes, image_shapes],
dtype=tf.float32)
proposal_multiclass_scores = (
nmsed_additional_fields.get('multiclass_scores')
if nmsed_additional_fields else None)
return (normalized_proposal_boxes, proposal_scores,
proposal_multiclass_scores, num_proposals,
raw_normalized_proposal_boxes, rpn_objectness_softmax)
def _sample_box_classifier_batch(
self,
proposal_boxes,
proposal_scores,
num_proposals,
groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list):
"""Samples a minibatch for second stage.
Args:
proposal_boxes: A float tensor with shape
[batch_size, num_proposals, 4] representing the (potentially zero
padded) proposal boxes for all images in the batch. These boxes are
represented in absolute coordinates.
proposal_scores: A float tensor with shape
[batch_size, num_proposals] representing the (potentially zero
padded) proposal objectness scores for all images in the batch.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates
of the groundtruth boxes.
groundtruth_classes_with_background_list: A list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_weights_list: A list of 1-D tensors of shape [num_boxes]
indicating the weight associated with the groundtruth boxes.
Returns:
proposal_boxes: A float tensor with shape
[batch_size, second_stage_batch_size, 4] representing the (potentially
zero padded) proposal boxes for all images in the batch. These boxes
are represented in absolute coordinates.
proposal_scores: A float tensor with shape
[batch_size, second_stage_batch_size] representing the (potentially zero
padded) proposal objectness scores for all images in the batch.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
"""
single_image_proposal_box_sample = []
single_image_proposal_score_sample = []
single_image_num_proposals_sample = []
for (single_image_proposal_boxes,
single_image_proposal_scores,
single_image_num_proposals,
single_image_groundtruth_boxlist,
single_image_groundtruth_classes_with_background,
single_image_groundtruth_weights) in zip(
tf.unstack(proposal_boxes),
tf.unstack(proposal_scores),
tf.unstack(num_proposals),
groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list):
single_image_boxlist = box_list.BoxList(single_image_proposal_boxes)
single_image_boxlist.add_field(fields.BoxListFields.scores,
single_image_proposal_scores)
sampled_boxlist = self._sample_box_classifier_minibatch_single_image(
single_image_boxlist,
single_image_num_proposals,
single_image_groundtruth_boxlist,
single_image_groundtruth_classes_with_background,
single_image_groundtruth_weights)
sampled_padded_boxlist = box_list_ops.pad_or_clip_box_list(
sampled_boxlist,
num_boxes=self._second_stage_batch_size)
single_image_num_proposals_sample.append(tf.minimum(
sampled_boxlist.num_boxes(),
self._second_stage_batch_size))
bb = sampled_padded_boxlist.get()
single_image_proposal_box_sample.append(bb)
single_image_proposal_score_sample.append(
sampled_padded_boxlist.get_field(fields.BoxListFields.scores))
return (tf.stack(single_image_proposal_box_sample),
tf.stack(single_image_proposal_score_sample),
tf.stack(single_image_num_proposals_sample))
def _format_groundtruth_data(self, image_shapes):
"""Helper function for preparing groundtruth data for target assignment.
In order to be consistent with the model.DetectionModel interface,
groundtruth boxes are specified in normalized coordinates and classes are
specified as label indices with no assumed background category. To prepare
for target assignment, we:
1) convert boxes to absolute coordinates,
2) add a background class at class index 0
3) groundtruth instance masks, if available, are resized to match
image_shape.
Args:
image_shapes: a 2-D int32 tensor of shape [batch_size, 3] containing
shapes of input image in the batch.
Returns:
groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates
of the groundtruth boxes.
groundtruth_classes_with_background_list: A list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_masks_list: If present, a list of 3-D tf.float32 tensors of
shape [num_boxes, image_height, image_width] containing instance masks.
This is set to None if no masks exist in the provided groundtruth.
"""
# pylint: disable=g-complex-comprehension
groundtruth_boxlists = [
box_list_ops.to_absolute_coordinates(
box_list.BoxList(boxes), image_shapes[i, 0], image_shapes[i, 1])
for i, boxes in enumerate(
self.groundtruth_lists(fields.BoxListFields.boxes))
]
groundtruth_classes_with_background_list = []
for one_hot_encoding in self.groundtruth_lists(
fields.BoxListFields.classes):
groundtruth_classes_with_background_list.append(
tf.cast(
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT'),
dtype=tf.float32))
groundtruth_masks_list = self._groundtruth_lists.get(
fields.BoxListFields.masks)
# TODO(rathodv): Remove mask resizing once the legacy pipeline is deleted.
if groundtruth_masks_list is not None and self._resize_masks:
resized_masks_list = []
for mask in groundtruth_masks_list:
_, resized_mask, _ = self._image_resizer_fn(
# Reuse the given `image_resizer_fn` to resize groundtruth masks.
# `mask` tensor for an image is of the shape [num_masks,
# image_height, image_width]. Below we create a dummy image of the
# the shape [image_height, image_width, 1] to use with
# `image_resizer_fn`.
image=tf.zeros(tf.stack([tf.shape(mask)[1],
tf.shape(mask)[2], 1])),
masks=mask)
resized_masks_list.append(resized_mask)
groundtruth_masks_list = resized_masks_list
# Masks could be set to bfloat16 in the input pipeline for performance
# reasons. Convert masks back to floating point space here since the rest of
# this module assumes groundtruth to be of float32 type.
float_groundtruth_masks_list = []
if groundtruth_masks_list:
for mask in groundtruth_masks_list:
float_groundtruth_masks_list.append(tf.cast(mask, tf.float32))
groundtruth_masks_list = float_groundtruth_masks_list
if self.groundtruth_has_field(fields.BoxListFields.weights):
groundtruth_weights_list = self.groundtruth_lists(
fields.BoxListFields.weights)
else:
# Set weights for all batch elements equally to 1.0
groundtruth_weights_list = []
for groundtruth_classes in groundtruth_classes_with_background_list:
num_gt = tf.shape(groundtruth_classes)[0]
groundtruth_weights = tf.ones(num_gt)
groundtruth_weights_list.append(groundtruth_weights)
return (groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_masks_list, groundtruth_weights_list)
def _sample_box_classifier_minibatch_single_image(
self, proposal_boxlist, num_valid_proposals, groundtruth_boxlist,
groundtruth_classes_with_background, groundtruth_weights):
"""Samples a mini-batch of proposals to be sent to the box classifier.
Helper function for self._postprocess_rpn.
Args:
proposal_boxlist: A BoxList containing K proposal boxes in absolute
coordinates.
num_valid_proposals: Number of valid proposals in the proposal boxlist.
groundtruth_boxlist: A Boxlist containing N groundtruth object boxes in
absolute coordinates.
groundtruth_classes_with_background: A tensor with shape
`[N, self.num_classes + 1]` representing groundtruth classes. The
classes are assumed to be k-hot encoded, and include background as the
zero-th class.
groundtruth_weights: Weights attached to the groundtruth_boxes.
Returns:
a BoxList contained sampled proposals.
"""
(cls_targets, cls_weights, _, _, _) = self._detector_target_assigner.assign(
proposal_boxlist,
groundtruth_boxlist,
groundtruth_classes_with_background,
unmatched_class_label=tf.constant(
[1] + self._num_classes * [0], dtype=tf.float32),
groundtruth_weights=groundtruth_weights)
# Selects all boxes as candidates if none of them is selected according
# to cls_weights. This could happen as boxes within certain IOU ranges
# are ignored. If triggered, the selected boxes will still be ignored
# during loss computation.
cls_weights = tf.reduce_mean(cls_weights, axis=-1)
positive_indicator = tf.greater(tf.argmax(cls_targets, axis=1), 0)
valid_indicator = tf.logical_and(
tf.range(proposal_boxlist.num_boxes()) < num_valid_proposals,
cls_weights > 0
)
selected_positions = self._second_stage_sampler.subsample(
valid_indicator,
self._second_stage_batch_size,
positive_indicator)
return box_list_ops.boolean_mask(
proposal_boxlist,
selected_positions,
use_static_shapes=self._use_static_shapes,
indicator_sum=(self._second_stage_batch_size
if self._use_static_shapes else None))
def _compute_second_stage_input_feature_maps(self, features_to_crop,
proposal_boxes_normalized,
image_shape,
**side_inputs):
"""Crops to a set of proposals from the feature map for a batch of images.
Helper function for self._postprocess_rpn. This function calls
`tf.image.crop_and_resize` to create the feature map to be passed to the
second stage box classifier for each proposal.
Args:
features_to_crop: A float32 tensor with shape
[batch_size, height, width, depth]
proposal_boxes_normalized: A float32 tensor with shape [batch_size,
num_proposals, box_code_size] containing proposal boxes in
normalized coordinates.
image_shape: A 1D int32 tensors of size [4] containing the image shape.
**side_inputs: additional tensors that are required by the network.
Returns:
A float32 tensor with shape [K, new_height, new_width, depth].
"""
num_levels = len(features_to_crop)
box_levels = None
if num_levels != 1:
# If there are multiple levels to select, get the box levels
# unit_scale_index: num_levels-2 is chosen based on section 4.2 of
# https://arxiv.org/pdf/1612.03144.pdf and works best for Resnet based
# feature extractor.
box_levels = ops.fpn_feature_levels(
num_levels, num_levels - 2,
tf.sqrt(tf.cast(image_shape[1] * image_shape[2], tf.float32)) / 224.0,
proposal_boxes_normalized)
cropped_regions = self._flatten_first_two_dimensions(
self._crop_and_resize_fn(
features_to_crop, proposal_boxes_normalized, box_levels,
[self._initial_crop_size, self._initial_crop_size]))
return self._maxpool_layer(cropped_regions)
def _postprocess_box_classifier(self,
refined_box_encodings,
class_predictions_with_background,
proposal_boxes,
num_proposals,
image_shapes,
mask_predictions=None):
"""Converts predictions from the second stage box classifier to detections.
Args:
refined_box_encodings: a 3-D float tensor with shape
[total_num_padded_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings. If using a shared
box across classes the shape will instead be
[total_num_padded_proposals, 1, 4]
class_predictions_with_background: a 2-D tensor float with shape
[total_num_padded_proposals, num_classes + 1] containing class
predictions (logits) for each of the proposals. Note that this tensor
*includes* background class predictions (at class index 0).
proposal_boxes: a 3-D float tensor with shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in absolute coordinates.
num_proposals: a 1-D int32 tensor of shape [batch] representing the number
of proposals predicted for each image in the batch.
image_shapes: a 2-D int32 tensor containing shapes of input image in the
batch.
mask_predictions: (optional) a 4-D float tensor with shape
[total_num_padded_proposals, num_classes, mask_height, mask_width]
containing instance mask prediction logits.
Returns:
A dictionary containing:
`detection_boxes`: [batch, max_detection, 4] in normalized co-ordinates.
`detection_scores`: [batch, max_detections]
`detection_multiclass_scores`: [batch, max_detections,
num_classes_with_background] tensor with class score distribution for
post-processed detection boxes including background class if any.
`detection_anchor_indices`: [batch, max_detections] with anchor
indices.
`detection_classes`: [batch, max_detections]
`num_detections`: [batch]
`detection_masks`:
(optional) [batch, max_detections, mask_height, mask_width]. Note
that a pixel-wise sigmoid score converter is applied to the detection
masks.
`raw_detection_boxes`: [batch, total_detections, 4] tensor with decoded
detection boxes in normalized coordinates, before Non-Max Suppression.
The value total_detections is the number of second stage anchors
(i.e. the total number of boxes before NMS).
`raw_detection_scores`: [batch, total_detections,
num_classes_with_background] tensor of multi-class scores for
raw detection boxes. The value total_detections is the number of
second stage anchors (i.e. the total number of boxes before NMS).
"""
refined_box_encodings_batch = tf.reshape(
refined_box_encodings,
[-1,
self.max_num_proposals,
refined_box_encodings.shape[1],
self._box_coder.code_size])
class_predictions_with_background_batch = tf.reshape(
class_predictions_with_background,
[-1, self.max_num_proposals, self.num_classes + 1]
)
refined_decoded_boxes_batch = self._batch_decode_boxes(
refined_box_encodings_batch, proposal_boxes)
class_predictions_with_background_batch_normalized = (
self._second_stage_score_conversion_fn(
class_predictions_with_background_batch))
class_predictions_batch = tf.reshape(
tf.slice(class_predictions_with_background_batch_normalized,
[0, 0, 1], [-1, -1, -1]),
[-1, self.max_num_proposals, self.num_classes])
clip_window = self._compute_clip_window(image_shapes)
mask_predictions_batch = None
if mask_predictions is not None:
mask_height = shape_utils.get_dim_as_int(mask_predictions.shape[2])
mask_width = shape_utils.get_dim_as_int(mask_predictions.shape[3])
mask_predictions = tf.sigmoid(mask_predictions)
mask_predictions_batch = tf.reshape(
mask_predictions, [-1, self.max_num_proposals,
self.num_classes, mask_height, mask_width])
batch_size = shape_utils.combined_static_and_dynamic_shape(
refined_box_encodings_batch)[0]
batch_anchor_indices = tf.tile(
tf.expand_dims(tf.range(self.max_num_proposals), 0),
multiples=[batch_size, 1])
additional_fields = {
'multiclass_scores': class_predictions_with_background_batch_normalized,
'anchor_indices': tf.cast(batch_anchor_indices, tf.float32)
}
(nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_masks,
nmsed_additional_fields, num_detections) = self._second_stage_nms_fn(
refined_decoded_boxes_batch,
class_predictions_batch,
clip_window=clip_window,
change_coordinate_frame=True,
num_valid_boxes=num_proposals,
additional_fields=additional_fields,
masks=mask_predictions_batch)
if refined_decoded_boxes_batch.shape[2] > 1:
class_ids = tf.expand_dims(
tf.argmax(class_predictions_with_background_batch[:, :, 1:], axis=2,
output_type=tf.int32),
axis=-1)
raw_detection_boxes = tf.squeeze(
tf.batch_gather(refined_decoded_boxes_batch, class_ids), axis=2)
else:
raw_detection_boxes = tf.squeeze(refined_decoded_boxes_batch, axis=2)
raw_normalized_detection_boxes = shape_utils.static_or_dynamic_map_fn(
self._normalize_and_clip_boxes,
elems=[raw_detection_boxes, image_shapes],
dtype=tf.float32)
detections = {
fields.DetectionResultFields.detection_boxes:
nmsed_boxes,
fields.DetectionResultFields.detection_scores:
nmsed_scores,
fields.DetectionResultFields.detection_classes:
nmsed_classes,
fields.DetectionResultFields.detection_multiclass_scores:
nmsed_additional_fields['multiclass_scores'],
fields.DetectionResultFields.detection_anchor_indices:
tf.cast(nmsed_additional_fields['anchor_indices'], tf.int32),
fields.DetectionResultFields.num_detections:
tf.cast(num_detections, dtype=tf.float32),
fields.DetectionResultFields.raw_detection_boxes:
raw_normalized_detection_boxes,
fields.DetectionResultFields.raw_detection_scores:
class_predictions_with_background_batch_normalized
}
if nmsed_masks is not None:
detections[fields.DetectionResultFields.detection_masks] = nmsed_masks
return detections
def _batch_decode_boxes(self, box_encodings, anchor_boxes):
"""Decodes box encodings with respect to the anchor boxes.
Args:
box_encodings: a 4-D tensor with shape
[batch_size, num_anchors, num_classes, self._box_coder.code_size]
representing box encodings.
anchor_boxes: [batch_size, num_anchors, self._box_coder.code_size]
representing decoded bounding boxes. If using a shared box across
classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
Returns:
decoded_boxes: a
[batch_size, num_anchors, num_classes, self._box_coder.code_size]
float tensor representing bounding box predictions (for each image in
batch, proposal and class). If using a shared box across classes the
shape will instead be
[batch_size, num_anchors, 1, self._box_coder.code_size].
"""
combined_shape = shape_utils.combined_static_and_dynamic_shape(
box_encodings)
num_classes = combined_shape[2]
tiled_anchor_boxes = tf.tile(
tf.expand_dims(anchor_boxes, 2), [1, 1, num_classes, 1])
tiled_anchors_boxlist = box_list.BoxList(
tf.reshape(tiled_anchor_boxes, [-1, 4]))
decoded_boxes = self._box_coder.decode(
tf.reshape(box_encodings, [-1, self._box_coder.code_size]),
tiled_anchors_boxlist)
return tf.reshape(decoded_boxes.get(),
tf.stack([combined_shape[0], combined_shape[1],
num_classes, 4]))
def _normalize_and_clip_boxes(self, boxes_and_image_shape):
"""Normalize and clip boxes."""
boxes_per_image = boxes_and_image_shape[0]
image_shape = boxes_and_image_shape[1]
boxes_contains_classes_dim = boxes_per_image.shape.ndims == 3
if boxes_contains_classes_dim:
boxes_per_image = shape_utils.flatten_first_n_dimensions(
boxes_per_image, 2)
normalized_boxes_per_image = box_list_ops.to_normalized_coordinates(
box_list.BoxList(boxes_per_image),
image_shape[0],
image_shape[1],
check_range=False).get()
normalized_boxes_per_image = box_list_ops.clip_to_window(
box_list.BoxList(normalized_boxes_per_image),
tf.constant([0.0, 0.0, 1.0, 1.0], tf.float32),
filter_nonoverlapping=False).get()
if boxes_contains_classes_dim:
max_num_proposals, num_classes, _ = (
shape_utils.combined_static_and_dynamic_shape(
boxes_and_image_shape[0]))
normalized_boxes_per_image = shape_utils.expand_first_dimension(
normalized_boxes_per_image, [max_num_proposals, num_classes])
return normalized_boxes_per_image
def loss(self, prediction_dict, true_image_shapes, scope=None):
"""Compute scalar loss tensors given prediction tensors.
If number_of_stages=1, only RPN related losses are computed (i.e.,
`rpn_localization_loss` and `rpn_objectness_loss`). Otherwise all
losses are computed.
Args:
prediction_dict: a dictionary holding prediction tensors (see the
documentation for the predict method. If number_of_stages=1, we
expect prediction_dict to contain `rpn_box_encodings`,
`rpn_objectness_predictions_with_background`, `rpn_features_to_crop`,
`image_shape`, and `anchors` fields. Otherwise we expect
prediction_dict to additionally contain `refined_box_encodings`,
`class_predictions_with_background`, `num_proposals`, and
`proposal_boxes` fields.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
scope: Optional scope name.
Returns:
a dictionary mapping loss keys (`first_stage_localization_loss`,
`first_stage_objectness_loss`, 'second_stage_localization_loss',
'second_stage_classification_loss') to scalar tensors representing
corresponding loss values.
"""
with tf.name_scope(scope, 'Loss', prediction_dict.values()):
(groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_masks_list, groundtruth_weights_list
) = self._format_groundtruth_data(
self._image_batch_shape_2d(prediction_dict['image_shape']))
loss_dict = self._loss_rpn(
prediction_dict['rpn_box_encodings'],
prediction_dict['rpn_objectness_predictions_with_background'],
prediction_dict['anchors'], groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list)
if self._number_of_stages > 1:
loss_dict.update(
self._loss_box_classifier(
prediction_dict['refined_box_encodings'],
prediction_dict['class_predictions_with_background'],
prediction_dict['proposal_boxes'],
prediction_dict['num_proposals'], groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list, prediction_dict['image_shape'],
prediction_dict.get('mask_predictions'), groundtruth_masks_list,
prediction_dict.get(
fields.DetectionResultFields.detection_boxes),
prediction_dict.get(
fields.DetectionResultFields.num_detections)))
return loss_dict
def _loss_rpn(self, rpn_box_encodings,
rpn_objectness_predictions_with_background, anchors,
groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_weights_list):
"""Computes scalar RPN loss tensors.
Uses self._proposal_target_assigner to obtain regression and classification
targets for the first stage RPN, samples a "minibatch" of anchors to
participate in the loss computation, and returns the RPN losses.
Args:
rpn_box_encodings: A 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted proposal box encodings.
rpn_objectness_predictions_with_background: A 2-D float tensor of shape
[batch_size, num_anchors, 2] containing objectness predictions
(logits) for each of the anchors with 0 corresponding to background
and 1 corresponding to object.
anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN. Note that `num_anchors` can differ depending
on whether the model is created in training or inference mode.
groundtruth_boxlists: A list of BoxLists containing coordinates of the
groundtruth boxes.
groundtruth_classes_with_background_list: A list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
a dictionary mapping loss keys (`first_stage_localization_loss`,
`first_stage_objectness_loss`) to scalar tensors representing
corresponding loss values.
"""
with tf.name_scope('RPNLoss'):
(batch_cls_targets, batch_cls_weights, batch_reg_targets,
batch_reg_weights, _) = target_assigner.batch_assign_targets(
target_assigner=self._proposal_target_assigner,
anchors_batch=box_list.BoxList(anchors),
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=(len(groundtruth_boxlists) * [None]),
gt_weights_batch=groundtruth_weights_list)
batch_cls_weights = tf.reduce_mean(batch_cls_weights, axis=2)
batch_cls_targets = tf.squeeze(batch_cls_targets, axis=2)
def _minibatch_subsample_fn(inputs):
cls_targets, cls_weights = inputs
return self._first_stage_sampler.subsample(
tf.cast(cls_weights, tf.bool),
self._first_stage_minibatch_size, tf.cast(cls_targets, tf.bool))
batch_sampled_indices = tf.cast(shape_utils.static_or_dynamic_map_fn(
_minibatch_subsample_fn,
[batch_cls_targets, batch_cls_weights],
dtype=tf.bool,
parallel_iterations=self._parallel_iterations,
back_prop=True), dtype=tf.float32)
# Normalize by number of examples in sampled minibatch
normalizer = tf.maximum(
tf.reduce_sum(batch_sampled_indices, axis=1), 1.0)
batch_one_hot_targets = tf.one_hot(
tf.cast(batch_cls_targets, dtype=tf.int32), depth=2)
sampled_reg_indices = tf.multiply(batch_sampled_indices,
batch_reg_weights)
losses_mask = None
if self.groundtruth_has_field(fields.InputDataFields.is_annotated):
losses_mask = tf.stack(self.groundtruth_lists(
fields.InputDataFields.is_annotated))
localization_losses = self._first_stage_localization_loss(
rpn_box_encodings, batch_reg_targets, weights=sampled_reg_indices,
losses_mask=losses_mask)
objectness_losses = self._first_stage_objectness_loss(
rpn_objectness_predictions_with_background,
batch_one_hot_targets,
weights=tf.expand_dims(batch_sampled_indices, axis=-1),
losses_mask=losses_mask)
localization_loss = tf.reduce_mean(
tf.reduce_sum(localization_losses, axis=1) / normalizer)
objectness_loss = tf.reduce_mean(
tf.reduce_sum(objectness_losses, axis=1) / normalizer)
localization_loss = tf.multiply(self._first_stage_loc_loss_weight,
localization_loss,
name='localization_loss')
objectness_loss = tf.multiply(self._first_stage_obj_loss_weight,
objectness_loss, name='objectness_loss')
loss_dict = {'Loss/RPNLoss/localization_loss': localization_loss,
'Loss/RPNLoss/objectness_loss': objectness_loss}
return loss_dict
def _loss_box_classifier(self,
refined_box_encodings,
class_predictions_with_background,
proposal_boxes,
num_proposals,
groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list,
image_shape,
prediction_masks=None,
groundtruth_masks_list=None,
detection_boxes=None,
num_detections=None):
"""Computes scalar box classifier loss tensors.
Uses self._detector_target_assigner to obtain regression and classification
targets for the second stage box classifier, optionally performs
hard mining, and returns losses. All losses are computed independently
for each image and then averaged across the batch.
Please note that for boxes and masks with multiple labels, the box
regression and mask prediction losses are only computed for one label.
This function assumes that the proposal boxes in the "padded" regions are
actually zero (and thus should not be matched to).
Args:
refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, box_coder.code_size] representing
predicted (final) refined box encodings. If using a shared box across
classes this will instead have shape
[total_num_proposals, 1, box_coder.code_size].
class_predictions_with_background: a 2-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors. Note that this tensor
*includes* background class predictions (at class index 0).
proposal_boxes: [batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
groundtruth_boxlists: a list of BoxLists containing coordinates of the
groundtruth boxes.
groundtruth_classes_with_background_list: a list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes + 1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
image_shape: a 1-D tensor of shape [4] representing the image shape.
prediction_masks: an optional 4-D tensor with shape [total_num_proposals,
num_classes, mask_height, mask_width] containing the instance masks for
each box.
groundtruth_masks_list: an optional list of 3-D tensors of shape
[num_boxes, image_height, image_width] containing the instance masks for
each of the boxes.
detection_boxes: 3-D float tensor of shape [batch,
max_total_detections, 4] containing post-processed detection boxes in
normalized co-ordinates.
num_detections: 1-D int32 tensor of shape [batch] containing number of
valid detections in `detection_boxes`.
Returns:
a dictionary mapping loss keys ('second_stage_localization_loss',
'second_stage_classification_loss') to scalar tensors representing
corresponding loss values.
Raises:
ValueError: if `predict_instance_masks` in
second_stage_mask_rcnn_box_predictor is True and
`groundtruth_masks_list` is not provided.
"""
with tf.name_scope('BoxClassifierLoss'):
paddings_indicator = self._padded_batched_proposals_indicator(
num_proposals, proposal_boxes.shape[1])
proposal_boxlists = [
box_list.BoxList(proposal_boxes_single_image)
for proposal_boxes_single_image in tf.unstack(proposal_boxes)]
batch_size = len(proposal_boxlists)
num_proposals_or_one = tf.cast(tf.expand_dims(
tf.maximum(num_proposals, tf.ones_like(num_proposals)), 1),
dtype=tf.float32)
normalizer = tf.tile(num_proposals_or_one,
[1, self.max_num_proposals]) * batch_size
(batch_cls_targets_with_background, batch_cls_weights, batch_reg_targets,
batch_reg_weights, _) = target_assigner.batch_assign_targets(
target_assigner=self._detector_target_assigner,
anchors_batch=proposal_boxlists,
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=groundtruth_classes_with_background_list,
unmatched_class_label=tf.constant(
[1] + self._num_classes * [0], dtype=tf.float32),
gt_weights_batch=groundtruth_weights_list)
if self.groundtruth_has_field(
fields.InputDataFields.groundtruth_labeled_classes):
gt_labeled_classes = self.groundtruth_lists(
fields.InputDataFields.groundtruth_labeled_classes)
gt_labeled_classes = tf.pad(
gt_labeled_classes, [[0, 0], [1, 0]],
mode='CONSTANT',
constant_values=1)
batch_cls_weights *= tf.expand_dims(gt_labeled_classes, 1)
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, self.max_num_proposals, -1])
flat_cls_targets_with_background = tf.reshape(
batch_cls_targets_with_background,
[batch_size * self.max_num_proposals, -1])
one_hot_flat_cls_targets_with_background = tf.argmax(
flat_cls_targets_with_background, axis=1)
one_hot_flat_cls_targets_with_background = tf.one_hot(
one_hot_flat_cls_targets_with_background,
flat_cls_targets_with_background.get_shape()[1])
# If using a shared box across classes use directly
if refined_box_encodings.shape[1] == 1:
reshaped_refined_box_encodings = tf.reshape(
refined_box_encodings,
[batch_size, self.max_num_proposals, self._box_coder.code_size])
# For anchors with multiple labels, picks refined_location_encodings
# for just one class to avoid over-counting for regression loss and
# (optionally) mask loss.
else:
reshaped_refined_box_encodings = (
self._get_refined_encodings_for_postitive_class(
refined_box_encodings,
one_hot_flat_cls_targets_with_background, batch_size))
losses_mask = None
if self.groundtruth_has_field(fields.InputDataFields.is_annotated):
losses_mask = tf.stack(self.groundtruth_lists(
fields.InputDataFields.is_annotated))
second_stage_loc_losses = self._second_stage_localization_loss(
reshaped_refined_box_encodings,
batch_reg_targets,
weights=batch_reg_weights,
losses_mask=losses_mask) / normalizer
second_stage_cls_losses = ops.reduce_sum_trailing_dimensions(
self._second_stage_classification_loss(
class_predictions_with_background,
batch_cls_targets_with_background,
weights=batch_cls_weights,
losses_mask=losses_mask),
ndims=2) / normalizer
second_stage_loc_loss = tf.reduce_sum(
second_stage_loc_losses * tf.cast(paddings_indicator,
dtype=tf.float32))
second_stage_cls_loss = tf.reduce_sum(
second_stage_cls_losses * tf.cast(paddings_indicator,
dtype=tf.float32))
if self._hard_example_miner:
(second_stage_loc_loss, second_stage_cls_loss
) = self._unpad_proposals_and_apply_hard_mining(
proposal_boxlists, second_stage_loc_losses,
second_stage_cls_losses, num_proposals)
localization_loss = tf.multiply(self._second_stage_loc_loss_weight,
second_stage_loc_loss,
name='localization_loss')
classification_loss = tf.multiply(self._second_stage_cls_loss_weight,
second_stage_cls_loss,
name='classification_loss')
loss_dict = {'Loss/BoxClassifierLoss/localization_loss':
localization_loss,
'Loss/BoxClassifierLoss/classification_loss':
classification_loss}
second_stage_mask_loss = None
if prediction_masks is not None:
if groundtruth_masks_list is None:
raise ValueError('Groundtruth instance masks not provided. '
'Please configure input reader.')
if not self._is_training:
(proposal_boxes, proposal_boxlists, paddings_indicator,
one_hot_flat_cls_targets_with_background
) = self._get_mask_proposal_boxes_and_classes(
detection_boxes, num_detections, image_shape,
groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_weights_list)
unmatched_mask_label = tf.zeros(image_shape[1:3], dtype=tf.float32)
(batch_mask_targets, _, _, batch_mask_target_weights,
_) = target_assigner.batch_assign_targets(
target_assigner=self._detector_target_assigner,
anchors_batch=proposal_boxlists,
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=groundtruth_masks_list,
unmatched_class_label=unmatched_mask_label,
gt_weights_batch=groundtruth_weights_list)
# Pad the prediction_masks with to add zeros for background class to be
# consistent with class predictions.
if prediction_masks.get_shape().as_list()[1] == 1:
# Class agnostic masks or masks for one-class prediction. Logic for
# both cases is the same since background predictions are ignored
# through the batch_mask_target_weights.
prediction_masks_masked_by_class_targets = prediction_masks
else:
prediction_masks_with_background = tf.pad(
prediction_masks, [[0, 0], [1, 0], [0, 0], [0, 0]])
prediction_masks_masked_by_class_targets = tf.boolean_mask(
prediction_masks_with_background,
tf.greater(one_hot_flat_cls_targets_with_background, 0))
mask_height = shape_utils.get_dim_as_int(prediction_masks.shape[2])
mask_width = shape_utils.get_dim_as_int(prediction_masks.shape[3])
reshaped_prediction_masks = tf.reshape(
prediction_masks_masked_by_class_targets,
[batch_size, -1, mask_height * mask_width])
batch_mask_targets_shape = tf.shape(batch_mask_targets)
flat_gt_masks = tf.reshape(batch_mask_targets,
[-1, batch_mask_targets_shape[2],
batch_mask_targets_shape[3]])
# Use normalized proposals to crop mask targets from image masks.
flat_normalized_proposals = box_list_ops.to_normalized_coordinates(
box_list.BoxList(tf.reshape(proposal_boxes, [-1, 4])),
image_shape[1], image_shape[2], check_range=False).get()
flat_cropped_gt_mask = self._crop_and_resize_fn(
[tf.expand_dims(flat_gt_masks, -1)],
tf.expand_dims(flat_normalized_proposals, axis=1), None,
[mask_height, mask_width])
# Without stopping gradients into cropped groundtruth masks the
# performance with 100-padded groundtruth masks when batch size > 1 is
# about 4% worse.
# TODO(rathodv): Investigate this since we don't expect any variables
# upstream of flat_cropped_gt_mask.
flat_cropped_gt_mask = tf.stop_gradient(flat_cropped_gt_mask)
batch_cropped_gt_mask = tf.reshape(
flat_cropped_gt_mask,
[batch_size, -1, mask_height * mask_width])
mask_losses_weights = (
batch_mask_target_weights * tf.cast(paddings_indicator,
dtype=tf.float32))
mask_losses = self._second_stage_mask_loss(
reshaped_prediction_masks,
batch_cropped_gt_mask,
weights=tf.expand_dims(mask_losses_weights, axis=-1),
losses_mask=losses_mask)
total_mask_loss = tf.reduce_sum(mask_losses)
normalizer = tf.maximum(
tf.reduce_sum(mask_losses_weights * mask_height * mask_width), 1.0)
second_stage_mask_loss = total_mask_loss / normalizer
if second_stage_mask_loss is not None:
mask_loss = tf.multiply(self._second_stage_mask_loss_weight,
second_stage_mask_loss, name='mask_loss')
loss_dict['Loss/BoxClassifierLoss/mask_loss'] = mask_loss
return loss_dict
def _get_mask_proposal_boxes_and_classes(
self, detection_boxes, num_detections, image_shape, groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list):
"""Returns proposal boxes and class targets to compute evaluation mask loss.
During evaluation, detection boxes are used to extract features for mask
prediction. Therefore, to compute mask loss during evaluation detection
boxes must be used to compute correct class and mask targets. This function
returns boxes and classes in the correct format for computing mask targets
during evaluation.
Args:
detection_boxes: A 3-D float tensor of shape [batch, max_detection_boxes,
4] containing detection boxes in normalized co-ordinates.
num_detections: A 1-D float tensor of shape [batch] containing number of
valid boxes in `detection_boxes`.
image_shape: A 1-D tensor of shape [4] containing image tensor shape.
groundtruth_boxlists: A list of groundtruth boxlists.
groundtruth_classes_with_background_list: A list of groundtruth classes.
groundtruth_weights_list: A list of groundtruth weights.
Return:
mask_proposal_boxes: detection boxes to use for mask proposals in absolute
co-ordinates.
mask_proposal_boxlists: `mask_proposal_boxes` in a list of BoxLists in
absolute co-ordinates.
mask_proposal_paddings_indicator: a tensor indicating valid boxes.
mask_proposal_one_hot_flat_cls_targets_with_background: Class targets
computed using detection boxes.
"""
batch, max_num_detections, _ = detection_boxes.shape.as_list()
proposal_boxes = tf.reshape(box_list_ops.to_absolute_coordinates(
box_list.BoxList(tf.reshape(detection_boxes, [-1, 4])), image_shape[1],
image_shape[2]).get(), [batch, max_num_detections, 4])
proposal_boxlists = [
box_list.BoxList(detection_boxes_single_image)
for detection_boxes_single_image in tf.unstack(proposal_boxes)
]
paddings_indicator = self._padded_batched_proposals_indicator(
tf.cast(num_detections, dtype=tf.int32), detection_boxes.shape[1])
(batch_cls_targets_with_background, _, _, _,
_) = target_assigner.batch_assign_targets(
target_assigner=self._detector_target_assigner,
anchors_batch=proposal_boxlists,
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=groundtruth_classes_with_background_list,
unmatched_class_label=tf.constant(
[1] + self._num_classes * [0], dtype=tf.float32),
gt_weights_batch=groundtruth_weights_list)
flat_cls_targets_with_background = tf.reshape(
batch_cls_targets_with_background, [-1, self._num_classes + 1])
one_hot_flat_cls_targets_with_background = tf.argmax(
flat_cls_targets_with_background, axis=1)
one_hot_flat_cls_targets_with_background = tf.one_hot(
one_hot_flat_cls_targets_with_background,
flat_cls_targets_with_background.get_shape()[1])
return (proposal_boxes, proposal_boxlists, paddings_indicator,
one_hot_flat_cls_targets_with_background)
def _get_refined_encodings_for_postitive_class(
self, refined_box_encodings, flat_cls_targets_with_background,
batch_size):
# We only predict refined location encodings for the non background
# classes, but we now pad it to make it compatible with the class
# predictions
refined_box_encodings_with_background = tf.pad(refined_box_encodings,
[[0, 0], [1, 0], [0, 0]])
refined_box_encodings_masked_by_class_targets = (
box_list_ops.boolean_mask(
box_list.BoxList(
tf.reshape(refined_box_encodings_with_background,
[-1, self._box_coder.code_size])),
tf.reshape(tf.greater(flat_cls_targets_with_background, 0), [-1]),
use_static_shapes=self._use_static_shapes,
indicator_sum=batch_size * self.max_num_proposals
if self._use_static_shapes else None).get())
return tf.reshape(
refined_box_encodings_masked_by_class_targets, [
batch_size, self.max_num_proposals,
self._box_coder.code_size
])
def _padded_batched_proposals_indicator(self,
num_proposals,
max_num_proposals):
"""Creates indicator matrix of non-pad elements of padded batch proposals.
Args:
num_proposals: Tensor of type tf.int32 with shape [batch_size].
max_num_proposals: Maximum number of proposals per image (integer).
Returns:
A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
"""
batch_size = tf.size(num_proposals)
tiled_num_proposals = tf.tile(
tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
tiled_proposal_index = tf.tile(
tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
return tf.greater(tiled_num_proposals, tiled_proposal_index)
def _unpad_proposals_and_apply_hard_mining(self,
proposal_boxlists,
second_stage_loc_losses,
second_stage_cls_losses,
num_proposals):
"""Unpads proposals and applies hard mining.
Args:
proposal_boxlists: A list of `batch_size` BoxLists each representing
`self.max_num_proposals` representing decoded proposal bounding boxes
for each image.
second_stage_loc_losses: A Tensor of type `float32`. A tensor of shape
`[batch_size, self.max_num_proposals]` representing per-anchor
second stage localization loss values.
second_stage_cls_losses: A Tensor of type `float32`. A tensor of shape
`[batch_size, self.max_num_proposals]` representing per-anchor
second stage classification loss values.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
Returns:
second_stage_loc_loss: A scalar float32 tensor representing the second
stage localization loss.
second_stage_cls_loss: A scalar float32 tensor representing the second
stage classification loss.
"""
for (proposal_boxlist, single_image_loc_loss, single_image_cls_loss,
single_image_num_proposals) in zip(
proposal_boxlists,
tf.unstack(second_stage_loc_losses),
tf.unstack(second_stage_cls_losses),
tf.unstack(num_proposals)):
proposal_boxlist = box_list.BoxList(
tf.slice(proposal_boxlist.get(),
[0, 0], [single_image_num_proposals, -1]))
single_image_loc_loss = tf.slice(single_image_loc_loss,
[0], [single_image_num_proposals])
single_image_cls_loss = tf.slice(single_image_cls_loss,
[0], [single_image_num_proposals])
return self._hard_example_miner(
location_losses=tf.expand_dims(single_image_loc_loss, 0),
cls_losses=tf.expand_dims(single_image_cls_loss, 0),
decoded_boxlist_list=[proposal_boxlist])
def regularization_losses(self):
"""Returns a list of regularization losses for this model.
Returns a list of regularization losses for this model that the estimator
needs to use during training/optimization.
Returns:
A list of regularization loss tensors.
"""
all_losses = []
slim_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
# Copy the slim losses to avoid modifying the collection
if slim_losses:
all_losses.extend(slim_losses)
# TODO(kaftan): Possibly raise an error if the feature extractors are
# uninitialized in Keras.
if self._feature_extractor_for_proposal_features:
if (self._feature_extractor_for_proposal_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
all_losses.extend(self._feature_extractor_for_proposal_features.losses)
if isinstance(self._first_stage_box_predictor_first_conv,
tf.keras.Model):
all_losses.extend(
self._first_stage_box_predictor_first_conv.losses)
if self._first_stage_box_predictor.is_keras_model:
all_losses.extend(self._first_stage_box_predictor.losses)
if self._feature_extractor_for_box_classifier_features:
if (self._feature_extractor_for_box_classifier_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
all_losses.extend(
self._feature_extractor_for_box_classifier_features.losses)
if self._mask_rcnn_box_predictor:
if self._mask_rcnn_box_predictor.is_keras_model:
all_losses.extend(self._mask_rcnn_box_predictor.losses)
return all_losses
def restore_map(self,
fine_tune_checkpoint_type='detection',
load_all_detection_checkpoint_vars=False):
"""Returns a map of variables to load from a foreign checkpoint.
See parent class for details.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`. Default 'detection'.
load_all_detection_checkpoint_vars: whether to load all variables (when
`fine_tune_checkpoint_type` is `detection`). If False, only variables
within the feature extractor scopes are included. Default False.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
Raises:
ValueError: if fine_tune_checkpoint_type is neither `classification`
nor `detection`.
"""
if fine_tune_checkpoint_type not in ['detection', 'classification']:
raise ValueError('Not supported fine_tune_checkpoint_type: {}'.format(
fine_tune_checkpoint_type))
if fine_tune_checkpoint_type == 'classification':
return self._feature_extractor.restore_from_classification_checkpoint_fn(
self.first_stage_feature_extractor_scope,
self.second_stage_feature_extractor_scope)
variables_to_restore = variables_helper.get_global_variables_safely()
variables_to_restore.append(tf.train.get_or_create_global_step())
# Only load feature extractor variables to be consistent with loading from
# a classification checkpoint.
include_patterns = None
if not load_all_detection_checkpoint_vars:
include_patterns = [
self.first_stage_feature_extractor_scope,
self.second_stage_feature_extractor_scope
]
feature_extractor_variables = slim.filter_variables(
variables_to_restore, include_patterns=include_patterns)
return {var.op.name: var for var in feature_extractor_variables}
def restore_from_objects(self, fine_tune_checkpoint_type='detection'):
"""Returns a map of Trackable objects to load from a foreign checkpoint.
Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module
or Checkpoint). This enables the model to initialize based on weights from
another task. For example, the feature extractor variables from a
classification model can be used to bootstrap training of an object
detector. When loading from an object detection model, the checkpoint model
should have the same parameters as this detection model with exception of
the num_classes parameter.
Note that this function is intended to be used to restore Keras-based
models when running Tensorflow 2, whereas restore_map (above) is intended
to be used to restore Slim-based models when running Tensorflow 1.x.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`. Default 'detection'.
Returns:
A dict mapping keys to Trackable objects (tf.Module or Checkpoint).
"""
if fine_tune_checkpoint_type == 'classification':
return {
'feature_extractor':
self._feature_extractor.classification_backbone
}
elif fine_tune_checkpoint_type == 'detection':
fake_model = tf.train.Checkpoint(
_feature_extractor_for_box_classifier_features=
self._feature_extractor_for_box_classifier_features,
_feature_extractor_for_proposal_features=
self._feature_extractor_for_proposal_features)
return {'model': fake_model}
elif fine_tune_checkpoint_type == 'full':
return {'model': self}
else:
raise ValueError('Not supported fine_tune_checkpoint_type: {}'.format(
fine_tune_checkpoint_type))
def updates(self):
"""Returns a list of update operators for this model.
Returns a list of update operators for this model that must be executed at
each training step. The estimator's train op needs to have a control
dependency on these updates.
Returns:
A list of update operators.
"""
update_ops = []
slim_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# Copy the slim ops to avoid modifying the collection
if slim_update_ops:
update_ops.extend(slim_update_ops)
# Passing None to get_updates_for grabs updates that should always be
# executed and don't depend on any model inputs in the graph.
# (E.g. if there was some count that should be incremented every time a
# model is run).
#
# Passing inputs grabs updates that are transitively computed from the
# model inputs being passed in.
# (E.g. a batchnorm update depends on the observed inputs)
if self._feature_extractor_for_proposal_features:
if (self._feature_extractor_for_proposal_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
update_ops.extend(
self._feature_extractor_for_proposal_features.get_updates_for(None))
update_ops.extend(
self._feature_extractor_for_proposal_features.get_updates_for(
self._feature_extractor_for_proposal_features.inputs))
if isinstance(self._first_stage_box_predictor_first_conv,
tf.keras.Model):
update_ops.extend(
self._first_stage_box_predictor_first_conv.get_updates_for(
None))
update_ops.extend(
self._first_stage_box_predictor_first_conv.get_updates_for(
self._first_stage_box_predictor_first_conv.inputs))
if self._first_stage_box_predictor.is_keras_model:
update_ops.extend(
self._first_stage_box_predictor.get_updates_for(None))
update_ops.extend(
self._first_stage_box_predictor.get_updates_for(
self._first_stage_box_predictor.inputs))
if self._feature_extractor_for_box_classifier_features:
if (self._feature_extractor_for_box_classifier_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
update_ops.extend(
self._feature_extractor_for_box_classifier_features.get_updates_for(
None))
update_ops.extend(
self._feature_extractor_for_box_classifier_features.get_updates_for(
self._feature_extractor_for_box_classifier_features.inputs))
if self._mask_rcnn_box_predictor:
if self._mask_rcnn_box_predictor.is_keras_model:
update_ops.extend(
self._mask_rcnn_box_predictor.get_updates_for(None))
update_ops.extend(
self._mask_rcnn_box_predictor.get_updates_for(
self._mask_rcnn_box_predictor.inputs))
return update_ops | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/faster_rcnn_meta_arch.py | faster_rcnn_meta_arch.py |
import collections
import numpy as np
import tensorflow as tf
from object_detection.builders import losses_builder
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import losses
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.models.keras_models import hourglass_network
from object_detection.models.keras_models import resnet_v1
from object_detection.protos import losses_pb2
from object_detection.protos import preprocessor_pb2
from object_detection.utils import shape_utils
from object_detection.utils import spatial_transform_ops
INSTANCE_EMBEDDING = 'INSTANCE_EMBEDDING'
PIXEL_EMBEDDING = 'PIXEL_EMBEDDING'
DEEP_MASK_ESTIMATION = 'deep_mask_estimation'
LOSS_KEY_PREFIX = center_net_meta_arch.LOSS_KEY_PREFIX
class DeepMACParams(
collections.namedtuple('DeepMACParams', [
'classification_loss', 'dim', 'task_loss_weight', 'pixel_embedding_dim',
'allowed_masked_classes_ids', 'mask_size', 'mask_num_subsamples',
'use_xy', 'network_type', 'use_instance_embedding', 'num_init_channels',
'predict_full_resolution_masks', 'postprocess_crop_size',
'max_roi_jitter_ratio', 'roi_jitter_mode'
])):
"""Class holding the DeepMAC network configutration."""
__slots__ = ()
def __new__(cls, classification_loss, dim, task_loss_weight,
pixel_embedding_dim, allowed_masked_classes_ids, mask_size,
mask_num_subsamples, use_xy, network_type, use_instance_embedding,
num_init_channels, predict_full_resolution_masks,
postprocess_crop_size, max_roi_jitter_ratio,
roi_jitter_mode):
return super(DeepMACParams,
cls).__new__(cls, classification_loss, dim,
task_loss_weight, pixel_embedding_dim,
allowed_masked_classes_ids, mask_size,
mask_num_subsamples, use_xy, network_type,
use_instance_embedding, num_init_channels,
predict_full_resolution_masks,
postprocess_crop_size, max_roi_jitter_ratio,
roi_jitter_mode)
def subsample_instances(classes, weights, boxes, masks, num_subsamples):
"""Randomly subsamples instances to the desired number.
Args:
classes: [num_instances, num_classes] float tensor of one-hot encoded
classes.
weights: [num_instances] float tensor of weights of each instance.
boxes: [num_instances, 4] tensor of box coordinates.
masks: [num_instances, height, width] tensor of per-instance masks.
num_subsamples: int, the desired number of samples.
Returns:
classes: [num_subsamples, num_classes] float tensor of classes.
weights: [num_subsamples] float tensor of weights.
boxes: [num_subsamples, 4] float tensor of box coordinates.
masks: [num_subsamples, height, width] float tensor of per-instance masks.
"""
if num_subsamples <= -1:
return classes, weights, boxes, masks
num_instances = tf.reduce_sum(tf.cast(weights > 0.5, tf.int32))
if num_instances <= num_subsamples:
return (classes[:num_subsamples], weights[:num_subsamples],
boxes[:num_subsamples], masks[:num_subsamples])
else:
random_index = tf.random.uniform([num_subsamples], 0, num_instances,
dtype=tf.int32)
return (tf.gather(classes, random_index), tf.gather(weights, random_index),
tf.gather(boxes, random_index), tf.gather(masks, random_index))
def _get_deepmac_network_by_type(name, num_init_channels, mask_size=None):
"""Get DeepMAC network model given a string type."""
if name.startswith('hourglass'):
if name == 'hourglass10':
return hourglass_network.hourglass_10(num_init_channels,
initial_downsample=False)
elif name == 'hourglass20':
return hourglass_network.hourglass_20(num_init_channels,
initial_downsample=False)
elif name == 'hourglass32':
return hourglass_network.hourglass_32(num_init_channels,
initial_downsample=False)
elif name == 'hourglass52':
return hourglass_network.hourglass_52(num_init_channels,
initial_downsample=False)
elif name == 'hourglass100':
return hourglass_network.hourglass_100(num_init_channels,
initial_downsample=False)
elif name == 'hourglass20_uniform_size':
return hourglass_network.hourglass_20_uniform_size(num_init_channels)
elif name == 'hourglass20_no_shortcut':
return hourglass_network.hourglass_20_no_shortcut(num_init_channels)
elif name == 'fully_connected':
if not mask_size:
raise ValueError('Mask size must be set.')
return FullyConnectedMaskHead(num_init_channels, mask_size)
elif name.startswith('resnet'):
return ResNetMaskNetwork(name, num_init_channels)
raise ValueError('Unknown network type {}'.format(name))
def crop_masks_within_boxes(masks, boxes, output_size):
"""Crops masks to lie tightly within the boxes.
Args:
masks: A [num_instances, height, width] float tensor of masks.
boxes: A [num_instances, 4] sized tensor of normalized bounding boxes.
output_size: The height and width of the output masks.
Returns:
masks: A [num_instances, output_size, output_size] tensor of masks which
are cropped to be tightly within the gives boxes and resized.
"""
masks = spatial_transform_ops.matmul_crop_and_resize(
masks[:, :, :, tf.newaxis], boxes[:, tf.newaxis, :],
[output_size, output_size])
return masks[:, 0, :, :, 0]
def resize_instance_masks(masks, shape):
height, width = shape
masks_ex = masks[:, :, :, tf.newaxis]
masks_ex = tf.image.resize(masks_ex, (height, width),
method=tf.image.ResizeMethod.BILINEAR)
masks = masks_ex[:, :, :, 0]
return masks
def filter_masked_classes(masked_class_ids, classes, weights, masks):
"""Filter out masks whose class IDs are not present in masked_class_ids.
Args:
masked_class_ids: A list of class IDs allowed to have masks. These class IDs
are 1-indexed.
classes: A [num_instances, num_classes] float tensor containing the one-hot
encoded classes.
weights: A [num_instances] float tensor containing the weights of each
sample.
masks: A [num_instances, height, width] tensor containing the mask per
instance.
Returns:
classes_filtered: A [num_instances, num_classes] float tensor containing the
one-hot encoded classes with classes not in masked_class_ids zeroed out.
weights_filtered: A [num_instances] float tensor containing the weights of
each sample with instances whose classes aren't in masked_class_ids
zeroed out.
masks_filtered: A [num_instances, height, width] tensor containing the mask
per instance with masks not belonging to masked_class_ids zeroed out.
"""
if len(masked_class_ids) == 0: # pylint:disable=g-explicit-length-test
return classes, weights, masks
if tf.shape(classes)[0] == 0:
return classes, weights, masks
masked_class_ids = tf.constant(np.array(masked_class_ids, dtype=np.int32))
label_id_offset = 1
masked_class_ids -= label_id_offset
class_ids = tf.argmax(classes, axis=1, output_type=tf.int32)
matched_classes = tf.equal(
class_ids[:, tf.newaxis], masked_class_ids[tf.newaxis, :]
)
matched_classes = tf.reduce_any(matched_classes, axis=1)
matched_classes = tf.cast(matched_classes, tf.float32)
return (
classes * matched_classes[:, tf.newaxis],
weights * matched_classes,
masks * matched_classes[:, tf.newaxis, tf.newaxis]
)
class ResNetMaskNetwork(tf.keras.layers.Layer):
"""A small wrapper around ResNet blocks to predict masks."""
def __init__(self, resnet_type, num_init_channels):
"""Creates the ResNet mask network.
Args:
resnet_type: A string of the for resnetN where N where N is in
[4, 8, 12, 16, 20]
num_init_channels: Number of filters in the ResNet block.
"""
super(ResNetMaskNetwork, self).__init__()
nc = num_init_channels
if resnet_type == 'resnet4':
channel_dims = [nc * 2]
blocks = [2]
elif resnet_type == 'resnet8':
channel_dims = [nc * 2]
blocks = [4]
elif resnet_type == 'resnet12':
channel_dims = [nc * 2]
blocks = [6]
elif resnet_type == 'resnet16':
channel_dims = [nc * 2]
blocks = [8]
# Defined such that the channels are roughly similar to the hourglass20.
elif resnet_type == 'resnet20':
channel_dims = [nc * 2, nc * 3]
blocks = [8, 2]
else:
raise ValueError('Unknown resnet type "{}"'.format(resnet_type))
self.input_layer = tf.keras.layers.Conv2D(nc, 1, 1)
# Last channel has to be defined so that batch norm can initialize properly.
model_input = tf.keras.layers.Input([None, None, nc])
output = model_input
for i, (num_blocks, channels) in enumerate(zip(blocks, channel_dims)):
output = resnet_v1.stack_basic(output, filters=channels,
blocks=num_blocks, stride1=1,
name='resnet_mask_block_%d' % i)
self.model = tf.keras.Model(inputs=model_input, outputs=output)
def __call__(self, inputs):
return self.model(self.input_layer(inputs))
class FullyConnectedMaskHead(tf.keras.layers.Layer):
"""A 2 layer fully connected mask head."""
def __init__(self, num_init_channels, mask_size):
super(FullyConnectedMaskHead, self).__init__()
self.fc1 = tf.keras.layers.Dense(units=1024, activation='relu')
self.fc2 = tf.keras.layers.Dense(units=mask_size*mask_size)
self.mask_size = mask_size
self.num_input_channels = num_init_channels
self.input_layer = tf.keras.layers.Conv2D(num_init_channels, 1, 1)
model_input = tf.keras.layers.Input(
[mask_size * mask_size * num_init_channels,])
output = self.fc2(self.fc1(model_input))
self.model = tf.keras.Model(inputs=model_input, outputs=output)
def __call__(self, inputs):
inputs = self.input_layer(inputs)
inputs_shape = tf.shape(inputs)
num_instances = inputs_shape[0]
height = inputs_shape[1]
width = inputs_shape[2]
dims = inputs_shape[3]
flattened_inputs = tf.reshape(inputs,
[num_instances, height * width * dims])
flattened_masks = self.model(flattened_inputs)
return tf.reshape(flattened_masks,
[num_instances, self.mask_size, self.mask_size, 1])
class MaskHeadNetwork(tf.keras.layers.Layer):
"""Mask head class for DeepMAC."""
def __init__(self, network_type, num_init_channels=64,
use_instance_embedding=True, mask_size=None):
"""Initializes the network.
Args:
network_type: A string denoting the kind of network we want to use
internally.
num_init_channels: int, the number of channels in the first block. The
number of channels in the following blocks depend on the network type
used.
use_instance_embedding: bool, if set, we concatenate the instance
embedding to the input while predicting the mask.
mask_size: int, size of the output mask. Required only with
`fully_connected` mask type.
"""
super(MaskHeadNetwork, self).__init__()
self._net = _get_deepmac_network_by_type(
network_type, num_init_channels, mask_size)
self._use_instance_embedding = use_instance_embedding
self.project_out = tf.keras.layers.Conv2D(
filters=1, kernel_size=1, activation=None)
def __call__(self, instance_embedding, pixel_embedding, training):
"""Returns mask logits given object center and spatial embeddings.
Args:
instance_embedding: A [num_instances, embedding_size] float tensor
representing the center emedding vector of each instance.
pixel_embedding: A [num_instances, height, width, pixel_embedding_size]
float tensor representing the per-pixel spatial embedding for each
instance.
training: boolean flag indicating training or testing mode.
Returns:
mask: A [num_instances, height, width] float tensor containing the mask
logits for each instance.
"""
height = tf.shape(pixel_embedding)[1]
width = tf.shape(pixel_embedding)[2]
instance_embedding = instance_embedding[:, tf.newaxis, tf.newaxis, :]
instance_embedding = tf.tile(instance_embedding, [1, height, width, 1])
if self._use_instance_embedding:
inputs = tf.concat([pixel_embedding, instance_embedding], axis=3)
else:
inputs = pixel_embedding
out = self._net(inputs)
if isinstance(out, list):
out = out[-1]
if out.shape[-1] > 1:
out = self.project_out(out)
return tf.squeeze(out, axis=-1)
def deepmac_proto_to_params(deepmac_config):
"""Convert proto to named tuple."""
loss = losses_pb2.Loss()
# Add dummy localization loss to avoid the loss_builder throwing error.
loss.localization_loss.weighted_l2.CopyFrom(
losses_pb2.WeightedL2LocalizationLoss())
loss.classification_loss.CopyFrom(deepmac_config.classification_loss)
classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
jitter_mode = preprocessor_pb2.RandomJitterBoxes.JitterMode.Name(
deepmac_config.jitter_mode).lower()
return DeepMACParams(
dim=deepmac_config.dim,
classification_loss=classification_loss,
task_loss_weight=deepmac_config.task_loss_weight,
pixel_embedding_dim=deepmac_config.pixel_embedding_dim,
allowed_masked_classes_ids=deepmac_config.allowed_masked_classes_ids,
mask_size=deepmac_config.mask_size,
mask_num_subsamples=deepmac_config.mask_num_subsamples,
use_xy=deepmac_config.use_xy,
network_type=deepmac_config.network_type,
use_instance_embedding=deepmac_config.use_instance_embedding,
num_init_channels=deepmac_config.num_init_channels,
predict_full_resolution_masks=
deepmac_config.predict_full_resolution_masks,
postprocess_crop_size=deepmac_config.postprocess_crop_size,
max_roi_jitter_ratio=deepmac_config.max_roi_jitter_ratio,
roi_jitter_mode=jitter_mode
)
class DeepMACMetaArch(center_net_meta_arch.CenterNetMetaArch):
"""The experimental CenterNet DeepMAC[1] model.
[1]: https://arxiv.org/abs/2104.00613
"""
def __init__(self,
is_training,
add_summaries,
num_classes,
feature_extractor,
image_resizer_fn,
object_center_params,
object_detection_params,
deepmac_params,
compute_heatmap_sparse=False):
"""Constructs the super class with object center & detection params only."""
self._deepmac_params = deepmac_params
super(DeepMACMetaArch, self).__init__(
is_training=is_training, add_summaries=add_summaries,
num_classes=num_classes, feature_extractor=feature_extractor,
image_resizer_fn=image_resizer_fn,
object_center_params=object_center_params,
object_detection_params=object_detection_params,
compute_heatmap_sparse=compute_heatmap_sparse)
def _construct_prediction_heads(self, num_classes, num_feature_outputs,
class_prediction_bias_init):
super_instance = super(DeepMACMetaArch, self)
prediction_heads = super_instance._construct_prediction_heads( # pylint:disable=protected-access
num_classes, num_feature_outputs, class_prediction_bias_init)
if self._deepmac_params is not None:
prediction_heads[INSTANCE_EMBEDDING] = [
center_net_meta_arch.make_prediction_net(self._deepmac_params.dim)
for _ in range(num_feature_outputs)
]
prediction_heads[PIXEL_EMBEDDING] = [
center_net_meta_arch.make_prediction_net(
self._deepmac_params.pixel_embedding_dim)
for _ in range(num_feature_outputs)
]
self._mask_net = MaskHeadNetwork(
network_type=self._deepmac_params.network_type,
use_instance_embedding=self._deepmac_params.use_instance_embedding,
num_init_channels=self._deepmac_params.num_init_channels)
return prediction_heads
def _get_mask_head_input(self, boxes, pixel_embedding):
"""Get the input to the mask network, given bounding boxes.
Args:
boxes: A [num_instances, 4] float tensor containing bounding boxes in
normalized coordinates.
pixel_embedding: A [height, width, embedding_size] float tensor
containing spatial pixel embeddings.
Returns:
embedding: A [num_instances, mask_height, mask_width, embedding_size + 2]
float tensor containing the inputs to the mask network. For each
bounding box, we concatenate the normalized box coordinates to the
cropped pixel embeddings. If predict_full_resolution_masks is set,
mask_height and mask_width are the same as height and width of
pixel_embedding. If not, mask_height and mask_width are the same as
mask_size.
"""
num_instances = tf.shape(boxes)[0]
mask_size = self._deepmac_params.mask_size
if self._deepmac_params.predict_full_resolution_masks:
num_instances = tf.shape(boxes)[0]
pixel_embedding = pixel_embedding[tf.newaxis, :, :, :]
pixel_embeddings_processed = tf.tile(pixel_embedding,
[num_instances, 1, 1, 1])
else:
# TODO(vighneshb) Explore multilevel_roi_align and align_corners=False.
pixel_embeddings_cropped = spatial_transform_ops.matmul_crop_and_resize(
pixel_embedding[tf.newaxis], boxes[tf.newaxis],
[mask_size, mask_size])
pixel_embeddings_processed = pixel_embeddings_cropped[0]
mask_shape = tf.shape(pixel_embeddings_processed)
mask_height, mask_width = mask_shape[1], mask_shape[2]
y_grid, x_grid = tf.meshgrid(tf.linspace(-1.0, 1.0, mask_height),
tf.linspace(-1.0, 1.0, mask_width),
indexing='ij')
coords = tf.stack([y_grid, x_grid], axis=2)
coords = coords[tf.newaxis, :, :, :]
coords = tf.tile(coords, [num_instances, 1, 1, 1])
if self._deepmac_params.use_xy:
return tf.concat([coords, pixel_embeddings_processed], axis=3)
else:
return pixel_embeddings_processed
def _get_instance_embeddings(self, boxes, instance_embedding):
"""Return the instance embeddings from bounding box centers.
Args:
boxes: A [num_instances, 4] float tensor holding bounding boxes. The
coordinates are in normalized input space.
instance_embedding: A [height, width, embedding_size] float tensor
containing the instance embeddings.
Returns:
instance_embeddings: A [num_instances, embedding_size] shaped float tensor
containing the center embedding for each instance.
"""
blist = box_list.BoxList(boxes)
output_height = tf.shape(instance_embedding)[0]
output_width = tf.shape(instance_embedding)[1]
blist_output = box_list_ops.to_absolute_coordinates(
blist, output_height, output_width, check_range=False)
(y_center_output, x_center_output,
_, _) = blist_output.get_center_coordinates_and_sizes()
center_coords_output = tf.stack([y_center_output, x_center_output], axis=1)
center_coords_output_int = tf.cast(center_coords_output, tf.int32)
center_latents = tf.gather_nd(instance_embedding, center_coords_output_int)
return center_latents
def _get_groundtruth_mask_output(self, boxes, masks):
"""Get the expected mask output for each box.
Args:
boxes: A [num_instances, 4] float tensor containing bounding boxes in
normalized coordinates.
masks: A [num_instances, height, width] float tensor containing binary
ground truth masks.
Returns:
masks: If predict_full_resolution_masks is set, masks are not resized
and the size of this tensor is [num_instances, input_height, input_width].
Otherwise, returns a tensor of size [num_instances, mask_size, mask_size].
"""
mask_size = self._deepmac_params.mask_size
if self._deepmac_params.predict_full_resolution_masks:
return masks
else:
cropped_masks = spatial_transform_ops.matmul_crop_and_resize(
masks[:, :, :, tf.newaxis], boxes[:, tf.newaxis, :],
[mask_size, mask_size])
cropped_masks = tf.stop_gradient(cropped_masks)
cropped_masks = tf.squeeze(cropped_masks, axis=[1, 4])
# TODO(vighneshb) should we discretize masks?
return cropped_masks
def _resize_logits_like_gt(self, logits, gt):
height, width = tf.shape(gt)[1], tf.shape(gt)[2]
return resize_instance_masks(logits, (height, width))
def _compute_per_instance_mask_loss(
self, boxes, masks, instance_embedding, pixel_embedding):
"""Returns the mask loss per instance.
Args:
boxes: A [num_instances, 4] float tensor holding bounding boxes. The
coordinates are in normalized input space.
masks: A [num_instances, input_height, input_width] float tensor
containing the instance masks.
instance_embedding: A [output_height, output_width, embedding_size]
float tensor containing the instance embeddings.
pixel_embedding: optional [output_height, output_width,
pixel_embedding_size] float tensor containing the per-pixel embeddings.
Returns:
mask_loss: A [num_instances] shaped float tensor containing the
mask loss for each instance.
"""
num_instances = tf.shape(boxes)[0]
if tf.keras.backend.learning_phase():
boxes = preprocessor.random_jitter_boxes(
boxes, self._deepmac_params.max_roi_jitter_ratio,
jitter_mode=self._deepmac_params.roi_jitter_mode)
mask_input = self._get_mask_head_input(
boxes, pixel_embedding)
instance_embeddings = self._get_instance_embeddings(
boxes, instance_embedding)
mask_logits = self._mask_net(
instance_embeddings, mask_input,
training=tf.keras.backend.learning_phase())
mask_gt = self._get_groundtruth_mask_output(boxes, masks)
mask_logits = self._resize_logits_like_gt(mask_logits, mask_gt)
mask_logits = tf.reshape(mask_logits, [num_instances, -1, 1])
mask_gt = tf.reshape(mask_gt, [num_instances, -1, 1])
loss = self._deepmac_params.classification_loss(
prediction_tensor=mask_logits,
target_tensor=mask_gt,
weights=tf.ones_like(mask_logits))
# TODO(vighneshb) Make this configurable via config.
if isinstance(self._deepmac_params.classification_loss,
losses.WeightedDiceClassificationLoss):
return tf.reduce_sum(loss, axis=1)
else:
return tf.reduce_mean(loss, axis=[1, 2])
def _compute_instance_masks_loss(self, prediction_dict):
"""Computes the mask loss.
Args:
prediction_dict: dict from predict() method containing
INSTANCE_EMBEDDING and PIXEL_EMBEDDING prediction.
Both of these are lists of tensors, each of size
[batch_size, height, width, embedding_size].
Returns:
loss: float, the mask loss as a scalar.
"""
gt_boxes_list = self.groundtruth_lists(fields.BoxListFields.boxes)
gt_weights_list = self.groundtruth_lists(fields.BoxListFields.weights)
gt_masks_list = self.groundtruth_lists(fields.BoxListFields.masks)
gt_classes_list = self.groundtruth_lists(fields.BoxListFields.classes)
allowed_masked_classes_ids = (
self._deepmac_params.allowed_masked_classes_ids)
total_loss = 0.0
# Iterate over multiple preidctions by backbone (for hourglass length=2)
for instance_pred, pixel_pred in zip(
prediction_dict[INSTANCE_EMBEDDING],
prediction_dict[PIXEL_EMBEDDING]):
# Iterate over samples in batch
# TODO(vighneshb) find out how autograph is handling this. Converting
# to a single op may give speed improvements
for i, (boxes, weights, classes, masks) in enumerate(
zip(gt_boxes_list, gt_weights_list, gt_classes_list, gt_masks_list)):
_, weights, masks = filter_masked_classes(allowed_masked_classes_ids,
classes, weights, masks)
num_subsample = self._deepmac_params.mask_num_subsamples
_, weights, boxes, masks = subsample_instances(
classes, weights, boxes, masks, num_subsample)
per_instance_loss = self._compute_per_instance_mask_loss(
boxes, masks, instance_pred[i], pixel_pred[i])
per_instance_loss *= weights
num_instances = tf.maximum(tf.reduce_sum(weights), 1.0)
total_loss += tf.reduce_sum(per_instance_loss) / num_instances
batch_size = len(gt_boxes_list)
num_predictions = len(prediction_dict[INSTANCE_EMBEDDING])
return total_loss / float(batch_size * num_predictions)
def loss(self, prediction_dict, true_image_shapes, scope=None):
losses_dict = super(DeepMACMetaArch, self).loss(
prediction_dict, true_image_shapes, scope)
if self._deepmac_params is not None:
mask_loss = self._compute_instance_masks_loss(
prediction_dict=prediction_dict)
key = LOSS_KEY_PREFIX + '/' + DEEP_MASK_ESTIMATION
losses_dict[key] = (
self._deepmac_params.task_loss_weight * mask_loss
)
return losses_dict
def postprocess(self, prediction_dict, true_image_shapes, **params):
"""Produces boxes given a prediction dict returned by predict().
Args:
prediction_dict: a dictionary holding predicted tensors from "predict"
function.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is of
the form [height, width, channels] indicating the shapes of true images
in the resized images, as resized images can be padded with zeros.
**params: Currently ignored.
Returns:
detections: a dictionary containing the following fields
detection_masks: (Optional) A uint8 tensor of shape [batch,
max_detections, mask_height, mask_width] with masks for each
detection. Background is specified with 0, and foreground is specified
with positive integers (1 for standard instance segmentation mask, and
1-indexed parts for DensePose task).
And all other fields returned by the super class method.
"""
postprocess_dict = super(DeepMACMetaArch, self).postprocess(
prediction_dict, true_image_shapes, **params)
boxes_strided = postprocess_dict['detection_boxes_strided']
if self._deepmac_params is not None:
masks = self._postprocess_masks(
boxes_strided, prediction_dict[INSTANCE_EMBEDDING][-1],
prediction_dict[PIXEL_EMBEDDING][-1])
postprocess_dict[fields.DetectionResultFields.detection_masks] = masks
return postprocess_dict
def _postprocess_masks(self, boxes_output_stride,
instance_embedding, pixel_embedding):
"""Postprocess masks with the deep mask network.
Args:
boxes_output_stride: A [batch_size, num_instances, 4] float tensor
containing the batch of boxes in the absolute output space of the
feature extractor.
instance_embedding: A [batch_size, output_height, output_width,
embedding_size] float tensor containing instance embeddings.
pixel_embedding: A [batch_size, output_height, output_width,
pixel_embedding_size] float tensor containing the per-pixel embedding.
Returns:
masks: A float tensor of size [batch_size, num_instances, mask_size,
mask_size] containing binary per-box instance masks.
"""
def process(elems):
boxes, instance_embedding, pixel_embedding = elems
return self._postprocess_sample(boxes, instance_embedding,
pixel_embedding)
max_instances = self._center_params.max_box_predictions
return tf.map_fn(process, [boxes_output_stride, instance_embedding,
pixel_embedding],
dtype=tf.float32, parallel_iterations=max_instances)
def _postprocess_sample(self, boxes_output_stride,
instance_embedding, pixel_embedding):
"""Post process masks for a single sample.
Args:
boxes_output_stride: A [num_instances, 4] float tensor containing
bounding boxes in the absolute output space.
instance_embedding: A [output_height, output_width, embedding_size]
float tensor containing instance embeddings.
pixel_embedding: A [batch_size, output_height, output_width,
pixel_embedding_size] float tensor containing the per-pixel embedding.
Returns:
masks: A float tensor of size [num_instances, mask_height, mask_width]
containing binary per-box instance masks. If
predict_full_resolution_masks is set, the masks will be resized to
postprocess_crop_size. Otherwise, mask_height=mask_width=mask_size
"""
height, width = (tf.shape(instance_embedding)[0],
tf.shape(instance_embedding)[1])
height, width = tf.cast(height, tf.float32), tf.cast(width, tf.float32)
blist = box_list.BoxList(boxes_output_stride)
blist = box_list_ops.to_normalized_coordinates(
blist, height, width, check_range=False)
boxes = blist.get()
mask_input = self._get_mask_head_input(boxes, pixel_embedding)
instance_embeddings = self._get_instance_embeddings(
boxes, instance_embedding)
mask_logits = self._mask_net(
instance_embeddings, mask_input,
training=tf.keras.backend.learning_phase())
# TODO(vighneshb) Explore sweeping mask thresholds.
if self._deepmac_params.predict_full_resolution_masks:
height, width = tf.shape(mask_logits)[1], tf.shape(mask_logits)[2]
height *= self._stride
width *= self._stride
mask_logits = resize_instance_masks(mask_logits, (height, width))
mask_logits = crop_masks_within_boxes(
mask_logits, boxes, self._deepmac_params.postprocess_crop_size)
masks_prob = tf.nn.sigmoid(mask_logits)
return masks_prob
def _transform_boxes_to_feature_coordinates(self, provided_boxes,
true_image_shapes,
resized_image_shape,
instance_embedding):
"""Transforms normalzied boxes to feature map coordinates.
Args:
provided_boxes: A [batch, num_instances, 4] float tensor containing
normalized bounding boxes.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is of
the form [height, width, channels] indicating the shapes of true images
in the resized images, as resized images can be padded with zeros.
resized_image_shape: A 4D int32 tensor containing shapes of the
preprocessed inputs (N, H, W, C).
instance_embedding: A [batch, output_height, output_width, embedding_size]
float tensor containing instance embeddings.
Returns:
A float tensor of size [batch, num_instances, 4] containing boxes whose
coordinates have been transformed to the absolute output space of the
feature extractor.
"""
# Input boxes must be normalized.
shape_utils.assert_box_normalized(provided_boxes)
# Transform the provided boxes to the absolute output space of the feature
# extractor.
height, width = (tf.shape(instance_embedding)[1],
tf.shape(instance_embedding)[2])
resized_image_height = resized_image_shape[1]
resized_image_width = resized_image_shape[2]
def transform_boxes(elems):
boxes_per_image, true_image_shape = elems
blist = box_list.BoxList(boxes_per_image)
# First transform boxes from image space to resized image space since
# there may have paddings in the resized images.
blist = box_list_ops.scale(blist,
true_image_shape[0] / resized_image_height,
true_image_shape[1] / resized_image_width)
# Then transform boxes from resized image space (normalized) to the
# feature map space (absolute).
blist = box_list_ops.to_absolute_coordinates(
blist, height, width, check_range=False)
return blist.get()
return tf.map_fn(
transform_boxes, [provided_boxes, true_image_shapes], dtype=tf.float32)
def predict_masks_from_boxes(self, prediction_dict, true_image_shapes,
provided_boxes, **params):
"""Produces masks for the provided boxes.
Args:
prediction_dict: a dictionary holding predicted tensors from "predict"
function.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is of
the form [height, width, channels] indicating the shapes of true images
in the resized images, as resized images can be padded with zeros.
provided_boxes: float tensor of shape [batch, num_boxes, 4] containing
boxes coordinates (normalized) from which we will produce masks.
**params: Currently ignored.
Returns:
detections: a dictionary containing the following fields
detection_masks: (Optional) A uint8 tensor of shape [batch,
max_detections, mask_height, mask_width] with masks for each
detection. Background is specified with 0, and foreground is specified
with positive integers (1 for standard instance segmentation mask, and
1-indexed parts for DensePose task).
And all other fields returned by the super class method.
"""
postprocess_dict = super(DeepMACMetaArch,
self).postprocess(prediction_dict,
true_image_shapes, **params)
instance_embedding = prediction_dict[INSTANCE_EMBEDDING][-1]
resized_image_shapes = shape_utils.combined_static_and_dynamic_shape(
prediction_dict['preprocessed_inputs'])
boxes_strided = self._transform_boxes_to_feature_coordinates(
provided_boxes, true_image_shapes, resized_image_shapes,
instance_embedding)
if self._deepmac_params is not None:
masks = self._postprocess_masks(
boxes_strided, instance_embedding,
prediction_dict[PIXEL_EMBEDDING][-1])
postprocess_dict[fields.DetectionResultFields.detection_masks] = masks
return postprocess_dict | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/deepmac_meta_arch.py | deepmac_meta_arch.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow.compat.v1 as tf
from object_detection.core import box_predictor
from object_detection.core import standard_fields as fields
from object_detection.meta_architectures import context_rcnn_lib
from object_detection.meta_architectures import context_rcnn_lib_tf2
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.protos import faster_rcnn_pb2
from object_detection.utils import ops
from object_detection.utils import tf_version
_UNINITIALIZED_FEATURE_EXTRACTOR = '__uninitialized__'
class ContextRCNNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
"""Context R-CNN Meta-architecture definition."""
def __init__(self,
is_training,
num_classes,
image_resizer_fn,
feature_extractor,
number_of_stages,
first_stage_anchor_generator,
first_stage_target_assigner,
first_stage_atrous_rate,
first_stage_box_predictor_arg_scope_fn,
first_stage_box_predictor_kernel_size,
first_stage_box_predictor_depth,
first_stage_minibatch_size,
first_stage_sampler,
first_stage_non_max_suppression_fn,
first_stage_max_proposals,
first_stage_localization_loss_weight,
first_stage_objectness_loss_weight,
crop_and_resize_fn,
initial_crop_size,
maxpool_kernel_size,
maxpool_stride,
second_stage_target_assigner,
second_stage_mask_rcnn_box_predictor,
second_stage_batch_size,
second_stage_sampler,
second_stage_non_max_suppression_fn,
second_stage_score_conversion_fn,
second_stage_localization_loss_weight,
second_stage_classification_loss_weight,
second_stage_classification_loss,
second_stage_mask_prediction_loss_weight=1.0,
hard_example_miner=None,
parallel_iterations=16,
add_summaries=True,
clip_anchors_to_image=False,
use_static_shapes=False,
resize_masks=True,
freeze_batchnorm=False,
return_raw_detections_during_predict=False,
output_final_box_features=False,
output_final_box_rpn_features=False,
attention_bottleneck_dimension=None,
attention_temperature=None,
use_self_attention=False,
use_long_term_attention=True,
self_attention_in_sequence=False,
num_attention_heads=1,
num_attention_layers=1,
attention_position=(
faster_rcnn_pb2.AttentionPosition.POST_BOX_CLASSIFIER)
):
"""ContextRCNNMetaArch Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
num_classes: Number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
image_resizer_fn: A callable for image resizing. This callable
takes a rank-3 image tensor of shape [height, width, channels]
(corresponding to a single image), an optional rank-3 instance mask
tensor of shape [num_masks, height, width] and returns a resized rank-3
image tensor, a resized mask tensor if one was provided in the input. In
addition this callable must also return a 1-D tensor of the form
[height, width, channels] containing the size of the true image, as the
image resizer can perform zero padding. See protos/image_resizer.proto.
feature_extractor: A FasterRCNNFeatureExtractor object.
number_of_stages: An integer values taking values in {1, 2, 3}. If
1, the function will construct only the Region Proposal Network (RPN)
part of the model. If 2, the function will perform box refinement and
other auxiliary predictions all in the second stage. If 3, it will
extract features from refined boxes and perform the auxiliary
predictions on the non-maximum suppressed refined boxes.
If is_training is true and the value of number_of_stages is 3, it is
reduced to 2 since all the model heads are trained in parallel in second
stage during training.
first_stage_anchor_generator: An anchor_generator.AnchorGenerator object
(note that currently we only support
grid_anchor_generator.GridAnchorGenerator objects)
first_stage_target_assigner: Target assigner to use for first stage of
Faster R-CNN (RPN).
first_stage_atrous_rate: A single integer indicating the atrous rate for
the single convolution op which is applied to the `rpn_features_to_crop`
tensor to obtain a tensor to be used for box prediction. Some feature
extractors optionally allow for producing feature maps computed at
denser resolutions. The atrous rate is used to compensate for the
denser feature maps by using an effectively larger receptive field.
(This should typically be set to 1).
first_stage_box_predictor_arg_scope_fn: Either a
Keras layer hyperparams object or a function to construct tf-slim
arg_scope for conv2d, separable_conv2d and fully_connected ops. Used
for the RPN box predictor. If it is a keras hyperparams object the
RPN box predictor will be a Keras model. If it is a function to
construct an arg scope it will be a tf-slim box predictor.
first_stage_box_predictor_kernel_size: Kernel size to use for the
convolution op just prior to RPN box predictions.
first_stage_box_predictor_depth: Output depth for the convolution op
just prior to RPN box predictions.
first_stage_minibatch_size: The "batch size" to use for computing the
objectness and location loss of the region proposal network. This
"batch size" refers to the number of anchors selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
first_stage_sampler: Sampler to use for first stage loss (RPN loss).
first_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores` and optional `clip_window`(with
all other inputs already set) and returns a dictionary containing
tensors with keys: `detection_boxes`, `detection_scores`,
`detection_classes`, `num_detections`. This is used to perform non max
suppression on the boxes predicted by the Region Proposal Network
(RPN).
See `post_processing.batch_multiclass_non_max_suppression` for the type
and shape of these tensors.
first_stage_max_proposals: Maximum number of boxes to retain after
performing Non-Max Suppression (NMS) on the boxes predicted by the
Region Proposal Network (RPN).
first_stage_localization_loss_weight: A float
first_stage_objectness_loss_weight: A float
crop_and_resize_fn: A differentiable resampler to use for cropping RPN
proposal features.
initial_crop_size: A single integer indicating the output size
(width and height are set to be the same) of the initial bilinear
interpolation based cropping during ROI pooling.
maxpool_kernel_size: A single integer indicating the kernel size of the
max pool op on the cropped feature map during ROI pooling.
maxpool_stride: A single integer indicating the stride of the max pool
op on the cropped feature map during ROI pooling.
second_stage_target_assigner: Target assigner to use for second stage of
Faster R-CNN. If the model is configured with multiple prediction heads,
this target assigner is used to generate targets for all heads (with the
correct `unmatched_class_label`).
second_stage_mask_rcnn_box_predictor: Mask R-CNN box predictor to use for
the second stage.
second_stage_batch_size: The batch size used for computing the
classification and refined location loss of the box classifier. This
"batch size" refers to the number of proposals selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
second_stage_sampler: Sampler to use for second stage loss (box
classifier loss).
second_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores`, optional `clip_window` and
optional (kwarg) `mask` inputs (with all other inputs already set)
and returns a dictionary containing tensors with keys:
`detection_boxes`, `detection_scores`, `detection_classes`,
`num_detections`, and (optionally) `detection_masks`. See
`post_processing.batch_multiclass_non_max_suppression` for the type and
shape of these tensors.
second_stage_score_conversion_fn: Callable elementwise nonlinearity
(that takes tensors as inputs and returns tensors). This is usually
used to convert logits to probabilities.
second_stage_localization_loss_weight: A float indicating the scale factor
for second stage localization loss.
second_stage_classification_loss_weight: A float indicating the scale
factor for second stage classification loss.
second_stage_classification_loss: Classification loss used by the second
stage classifier. Either losses.WeightedSigmoidClassificationLoss or
losses.WeightedSoftmaxClassificationLoss.
second_stage_mask_prediction_loss_weight: A float indicating the scale
factor for second stage mask prediction loss. This is applicable only if
second stage box predictor is configured to predict masks.
hard_example_miner: A losses.HardExampleMiner object (can be None).
parallel_iterations: (Optional) The number of iterations allowed to run
in parallel for calls to tf.map_fn.
add_summaries: boolean (default: True) controlling whether summary ops
should be added to tensorflow graph.
clip_anchors_to_image: Normally, anchors generated for a given image size
are pruned during training if they lie outside the image window. This
option clips the anchors to be within the image instead of pruning.
use_static_shapes: If True, uses implementation of ops with static shape
guarantees.
resize_masks: Indicates whether the masks presend in the groundtruth
should be resized in the model with `image_resizer_fn`
freeze_batchnorm: Whether to freeze batch norm parameters in the first
stage box predictor during training or not. When training with a small
batch size (e.g. 1), it is desirable to freeze batch norm update and
use pretrained batch norm params.
return_raw_detections_during_predict: Whether to return raw detection
boxes in the predict() method. These are decoded boxes that have not
been through postprocessing (i.e. NMS). Default False.
output_final_box_features: Whether to output final box features. If true,
it crops the feature map based on the final box prediction and returns
it in the output dict as detection_features.
output_final_box_rpn_features: Whether to output rpn box features. If
true, it crops the rpn feature map based on the final box prediction and
returns it in the output dict as detection_features.
attention_bottleneck_dimension: A single integer. The bottleneck feature
dimension of the attention block.
attention_temperature: A single float. The attention temperature.
use_self_attention: Whether to use self-attention within the box features
in the current frame.
use_long_term_attention: Whether to use attention into the context
features.
self_attention_in_sequence: Whether self attention and long term attention
are in sequence or parallel.
num_attention_heads: The number of attention heads to use.
num_attention_layers: The number of attention layers to use.
attention_position: Whether attention should occur post rpn or post
box classifier. Options are specified in the faster rcnn proto,
default is post box classifier.
Raises:
ValueError: If `second_stage_batch_size` > `first_stage_max_proposals` at
training time.
ValueError: If first_stage_anchor_generator is not of type
grid_anchor_generator.GridAnchorGenerator.
"""
super(ContextRCNNMetaArch, self).__init__(
is_training,
num_classes,
image_resizer_fn,
feature_extractor,
number_of_stages,
first_stage_anchor_generator,
first_stage_target_assigner,
first_stage_atrous_rate,
first_stage_box_predictor_arg_scope_fn,
first_stage_box_predictor_kernel_size,
first_stage_box_predictor_depth,
first_stage_minibatch_size,
first_stage_sampler,
first_stage_non_max_suppression_fn,
first_stage_max_proposals,
first_stage_localization_loss_weight,
first_stage_objectness_loss_weight,
crop_and_resize_fn,
initial_crop_size,
maxpool_kernel_size,
maxpool_stride,
second_stage_target_assigner,
second_stage_mask_rcnn_box_predictor,
second_stage_batch_size,
second_stage_sampler,
second_stage_non_max_suppression_fn,
second_stage_score_conversion_fn,
second_stage_localization_loss_weight,
second_stage_classification_loss_weight,
second_stage_classification_loss,
second_stage_mask_prediction_loss_weight=(
second_stage_mask_prediction_loss_weight),
hard_example_miner=hard_example_miner,
parallel_iterations=parallel_iterations,
add_summaries=add_summaries,
clip_anchors_to_image=clip_anchors_to_image,
use_static_shapes=use_static_shapes,
resize_masks=resize_masks,
freeze_batchnorm=freeze_batchnorm,
return_raw_detections_during_predict=(
return_raw_detections_during_predict),
output_final_box_features=output_final_box_features,
output_final_box_rpn_features=output_final_box_rpn_features)
self._attention_position = attention_position
if tf_version.is_tf1():
self._context_feature_extract_fn = functools.partial(
context_rcnn_lib._compute_box_context_attention,
bottleneck_dimension=attention_bottleneck_dimension,
attention_temperature=attention_temperature,
is_training=is_training,
max_num_proposals=self.max_num_proposals,
use_self_attention=use_self_attention,
use_long_term_attention=use_long_term_attention,
self_attention_in_sequence=self_attention_in_sequence,
num_attention_heads=num_attention_heads,
num_attention_layers=num_attention_layers)
else:
if use_self_attention:
raise NotImplementedError
if self_attention_in_sequence:
raise NotImplementedError
if not use_long_term_attention:
raise NotImplementedError
if num_attention_heads > 1:
raise NotImplementedError
if num_attention_layers > 1:
raise NotImplementedError
self._context_feature_extract_fn = context_rcnn_lib_tf2.AttentionBlock(
bottleneck_dimension=attention_bottleneck_dimension,
attention_temperature=attention_temperature,
is_training=is_training,
max_num_proposals=self.max_num_proposals)
@staticmethod
def get_side_inputs(features):
"""Overrides the get_side_inputs function in the base class.
This function returns context_features and valid_context_size, which will be
used in the _compute_second_stage_input_feature_maps function.
Args:
features: A dictionary of tensors.
Returns:
A dictionary of tensors contains context_features and valid_context_size.
Raises:
ValueError: If context_features or valid_context_size is not in the
features.
"""
if (fields.InputDataFields.context_features not in features or
fields.InputDataFields.valid_context_size not in features):
raise ValueError(
'Please make sure context_features and valid_context_size are in the '
'features')
return {
fields.InputDataFields.context_features:
features[fields.InputDataFields.context_features],
fields.InputDataFields.valid_context_size:
features[fields.InputDataFields.valid_context_size]
}
def _predict_second_stage(self, rpn_box_encodings,
rpn_objectness_predictions_with_background,
rpn_features_to_crop, anchors, image_shape,
true_image_shapes, **side_inputs):
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
rpn_box_encodings: 3-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
rpn_objectness_predictions_with_background: 2-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
rpn_features_to_crop: A list of 4-D float32 or bfloat16 tensor with shape
[batch_size, height_i, width_i, depth] representing image features to
crop using the proposal boxes predicted by the RPN.
anchors: 2-D float tensor of shape
[num_anchors, self._box_coder.code_size].
image_shape: A 1D int32 tensors of size [4] containing the image shape.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**side_inputs: additional tensors that are required by the network.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D float32 tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D float32 tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
4) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
5) proposal_boxes_normalized: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in normalized coordinates. Can be used to override the
boxes proposed by the RPN, thus enabling one to extract features and
get box classification and prediction for externally selected areas
of the image.
6) box_classifier_features: a 4-D float32/bfloat16 tensor
representing the features for each proposal.
If self._return_raw_detections_during_predict is True, the dictionary
will also contain:
7) raw_detection_boxes: a 4-D float32 tensor with shape
[batch_size, self.max_num_proposals, num_classes, 4] in normalized
coordinates.
8) raw_detection_feature_map_indices: a 3-D int32 tensor with shape
[batch_size, self.max_num_proposals, num_classes].
"""
proposal_boxes_normalized, num_proposals = self._proposal_postprocess(
rpn_box_encodings, rpn_objectness_predictions_with_background, anchors,
image_shape, true_image_shapes)
prediction_dict = self._box_prediction(rpn_features_to_crop,
proposal_boxes_normalized,
image_shape, true_image_shapes,
num_proposals,
**side_inputs)
prediction_dict['num_proposals'] = num_proposals
return prediction_dict
def _box_prediction(self, rpn_features_to_crop, proposal_boxes_normalized,
image_shape, true_image_shapes, num_proposals,
**side_inputs):
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
rpn_features_to_crop: A list 4-D float32 or bfloat16 tensor with shape
[batch_size, height_i, width_i, depth] representing image features to
crop using the proposal boxes predicted by the RPN.
proposal_boxes_normalized: A float tensor with shape [batch_size,
max_num_proposals, 4] representing the (potentially zero padded)
proposal boxes for all images in the batch. These boxes are represented
as normalized coordinates.
image_shape: A 1D int32 tensors of size [4] containing the image shape.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
num_proposals: The number of valid box proposals.
**side_inputs: additional tensors that are required by the network.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D float32 tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D float32 tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
4) proposal_boxes_normalized: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in normalized coordinates. Can be used to override the
boxes proposed by the RPN, thus enabling one to extract features and
get box classification and prediction for externally selected areas
of the image.
5) box_classifier_features: a 4-D float32/bfloat16 tensor
representing the features for each proposal.
If self._return_raw_detections_during_predict is True, the dictionary
will also contain:
6) raw_detection_boxes: a 4-D float32 tensor with shape
[batch_size, self.max_num_proposals, num_classes, 4] in normalized
coordinates.
7) raw_detection_feature_map_indices: a 3-D int32 tensor with shape
[batch_size, self.max_num_proposals, num_classes].
8) final_anchors: a 3-D float tensor of shape [batch_size,
self.max_num_proposals, 4] containing the reference anchors for raw
detection boxes in normalized coordinates.
"""
flattened_proposal_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, proposal_boxes_normalized,
image_shape, num_proposals, **side_inputs))
box_classifier_features = self._extract_box_classifier_features(
flattened_proposal_feature_maps, num_proposals, **side_inputs)
if self._mask_rcnn_box_predictor.is_keras_model:
box_predictions = self._mask_rcnn_box_predictor(
[box_classifier_features],
prediction_stage=2)
else:
box_predictions = self._mask_rcnn_box_predictor.predict(
[box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
prediction_stage=2)
refined_box_encodings = tf.squeeze(
box_predictions[box_predictor.BOX_ENCODINGS],
axis=1, name='all_refined_box_encodings')
class_predictions_with_background = tf.squeeze(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1, name='all_class_predictions_with_background')
absolute_proposal_boxes = ops.normalized_to_image_coordinates(
proposal_boxes_normalized, image_shape, self._parallel_iterations)
prediction_dict = {
'refined_box_encodings': tf.cast(refined_box_encodings,
dtype=tf.float32),
'class_predictions_with_background':
tf.cast(class_predictions_with_background, dtype=tf.float32),
'proposal_boxes': absolute_proposal_boxes,
'box_classifier_features': box_classifier_features,
'proposal_boxes_normalized': proposal_boxes_normalized,
'final_anchors': proposal_boxes_normalized
}
if self._return_raw_detections_during_predict:
prediction_dict.update(self._raw_detections_and_feature_map_inds(
refined_box_encodings, absolute_proposal_boxes, true_image_shapes))
return prediction_dict
def _compute_second_stage_input_feature_maps(self, features_to_crop,
proposal_boxes_normalized,
image_shape,
num_proposals,
context_features,
valid_context_size):
"""Crops to a set of proposals from the feature map for a batch of images.
This function overrides the one in the FasterRCNNMetaArch. Aside from
cropping and resizing the feature maps, which is done in the parent class,
it adds context attention features to the box features.
Args:
features_to_crop: A float32 Tensor with shape [batch_size, height, width,
depth]
proposal_boxes_normalized: A float32 Tensor with shape [batch_size,
num_proposals, box_code_size] containing proposal boxes in normalized
coordinates.
image_shape: A 1D int32 tensors of size [4] containing the image shape.
num_proposals: The number of valid box proposals.
context_features: A float Tensor of shape [batch_size, context_size,
num_context_features].
valid_context_size: A int32 Tensor of shape [batch_size].
Returns:
A float32 Tensor with shape [K, new_height, new_width, depth].
"""
del image_shape
box_features = self._crop_and_resize_fn(
features_to_crop, proposal_boxes_normalized, None,
[self._initial_crop_size, self._initial_crop_size])
flattened_box_features = self._flatten_first_two_dimensions(box_features)
flattened_box_features = self._maxpool_layer(flattened_box_features)
if self._attention_position == (
faster_rcnn_pb2.AttentionPosition.POST_RPN):
attention_features = self._context_feature_extract_fn(
box_features=flattened_box_features,
num_proposals=num_proposals,
context_features=context_features,
valid_context_size=valid_context_size)
# Adds box features with attention features.
flattened_box_features += self._flatten_first_two_dimensions(
attention_features)
return flattened_box_features
def _extract_box_classifier_features(
self, flattened_box_features, num_proposals, context_features,
valid_context_size,
attention_position=(
faster_rcnn_pb2.AttentionPosition.POST_BOX_CLASSIFIER)):
if self._feature_extractor_for_box_classifier_features == (
_UNINITIALIZED_FEATURE_EXTRACTOR):
self._feature_extractor_for_box_classifier_features = (
self._feature_extractor.get_box_classifier_feature_extractor_model(
name=self.second_stage_feature_extractor_scope))
if self._feature_extractor_for_box_classifier_features:
box_classifier_features = (
self._feature_extractor_for_box_classifier_features(
flattened_box_features))
else:
box_classifier_features = (
self._feature_extractor.extract_box_classifier_features(
flattened_box_features,
scope=self.second_stage_feature_extractor_scope))
if self._attention_position == (
faster_rcnn_pb2.AttentionPosition.POST_BOX_CLASSIFIER):
attention_features = self._context_feature_extract_fn(
box_features=box_classifier_features,
num_proposals=num_proposals,
context_features=context_features,
valid_context_size=valid_context_size)
# Adds box features with attention features.
box_classifier_features += self._flatten_first_two_dimensions(
attention_features)
return box_classifier_features | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/context_rcnn_meta_arch.py | context_rcnn_meta_arch.py |
import tensorflow.compat.v1 as tf
from object_detection.core import box_predictor
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.utils import ops
class RFCNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
"""R-FCN Meta-architecture definition."""
def __init__(self,
is_training,
num_classes,
image_resizer_fn,
feature_extractor,
number_of_stages,
first_stage_anchor_generator,
first_stage_target_assigner,
first_stage_atrous_rate,
first_stage_box_predictor_arg_scope_fn,
first_stage_box_predictor_kernel_size,
first_stage_box_predictor_depth,
first_stage_minibatch_size,
first_stage_sampler,
first_stage_non_max_suppression_fn,
first_stage_max_proposals,
first_stage_localization_loss_weight,
first_stage_objectness_loss_weight,
crop_and_resize_fn,
second_stage_target_assigner,
second_stage_rfcn_box_predictor,
second_stage_batch_size,
second_stage_sampler,
second_stage_non_max_suppression_fn,
second_stage_score_conversion_fn,
second_stage_localization_loss_weight,
second_stage_classification_loss_weight,
second_stage_classification_loss,
hard_example_miner,
parallel_iterations=16,
add_summaries=True,
clip_anchors_to_image=False,
use_static_shapes=False,
resize_masks=False,
freeze_batchnorm=False,
return_raw_detections_during_predict=False,
output_final_box_features=False,
output_final_box_rpn_features=False):
"""RFCNMetaArch Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
num_classes: Number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
image_resizer_fn: A callable for image resizing. This callable always
takes a rank-3 image tensor (corresponding to a single image) and
returns a rank-3 image tensor, possibly with new spatial dimensions.
See builders/image_resizer_builder.py.
feature_extractor: A FasterRCNNFeatureExtractor object.
number_of_stages: Valid values are {1, 2}. If 1 will only construct the
Region Proposal Network (RPN) part of the model.
first_stage_anchor_generator: An anchor_generator.AnchorGenerator object
(note that currently we only support
grid_anchor_generator.GridAnchorGenerator objects)
first_stage_target_assigner: Target assigner to use for first stage of
R-FCN (RPN).
first_stage_atrous_rate: A single integer indicating the atrous rate for
the single convolution op which is applied to the `rpn_features_to_crop`
tensor to obtain a tensor to be used for box prediction. Some feature
extractors optionally allow for producing feature maps computed at
denser resolutions. The atrous rate is used to compensate for the
denser feature maps by using an effectively larger receptive field.
(This should typically be set to 1).
first_stage_box_predictor_arg_scope_fn: Either a
Keras layer hyperparams object or a function to construct tf-slim
arg_scope for conv2d, separable_conv2d and fully_connected ops. Used
for the RPN box predictor. If it is a keras hyperparams object the
RPN box predictor will be a Keras model. If it is a function to
construct an arg scope it will be a tf-slim box predictor.
first_stage_box_predictor_kernel_size: Kernel size to use for the
convolution op just prior to RPN box predictions.
first_stage_box_predictor_depth: Output depth for the convolution op
just prior to RPN box predictions.
first_stage_minibatch_size: The "batch size" to use for computing the
objectness and location loss of the region proposal network. This
"batch size" refers to the number of anchors selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
first_stage_sampler: The sampler for the boxes used to calculate the RPN
loss after the first stage.
first_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores` and optional `clip_window`(with
all other inputs already set) and returns a dictionary containing
tensors with keys: `detection_boxes`, `detection_scores`,
`detection_classes`, `num_detections`. This is used to perform non max
suppression on the boxes predicted by the Region Proposal Network
(RPN).
See `post_processing.batch_multiclass_non_max_suppression` for the type
and shape of these tensors.
first_stage_max_proposals: Maximum number of boxes to retain after
performing Non-Max Suppression (NMS) on the boxes predicted by the
Region Proposal Network (RPN).
first_stage_localization_loss_weight: A float
first_stage_objectness_loss_weight: A float
crop_and_resize_fn: A differentiable resampler to use for cropping RPN
proposal features.
second_stage_target_assigner: Target assigner to use for second stage of
R-FCN. If the model is configured with multiple prediction heads, this
target assigner is used to generate targets for all heads (with the
correct `unmatched_class_label`).
second_stage_rfcn_box_predictor: RFCN box predictor to use for
second stage.
second_stage_batch_size: The batch size used for computing the
classification and refined location loss of the box classifier. This
"batch size" refers to the number of proposals selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
second_stage_sampler: The sampler for the boxes used for second stage
box classifier.
second_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores`, optional `clip_window` and
optional (kwarg) `mask` inputs (with all other inputs already set)
and returns a dictionary containing tensors with keys:
`detection_boxes`, `detection_scores`, `detection_classes`,
`num_detections`, and (optionally) `detection_masks`. See
`post_processing.batch_multiclass_non_max_suppression` for the type and
shape of these tensors.
second_stage_score_conversion_fn: Callable elementwise nonlinearity
(that takes tensors as inputs and returns tensors). This is usually
used to convert logits to probabilities.
second_stage_localization_loss_weight: A float
second_stage_classification_loss_weight: A float
second_stage_classification_loss: A string indicating which loss function
to use, supports 'softmax' and 'sigmoid'.
hard_example_miner: A losses.HardExampleMiner object (can be None).
parallel_iterations: (Optional) The number of iterations allowed to run
in parallel for calls to tf.map_fn.
add_summaries: boolean (default: True) controlling whether summary ops
should be added to tensorflow graph.
clip_anchors_to_image: The anchors generated are clip to the
window size without filtering the nonoverlapping anchors. This generates
a static number of anchors. This argument is unused.
use_static_shapes: If True, uses implementation of ops with static shape
guarantees.
resize_masks: Indicates whether the masks presend in the groundtruth
should be resized in the model with `image_resizer_fn`
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
return_raw_detections_during_predict: Whether to return raw detection
boxes in the predict() method. These are decoded boxes that have not
been through postprocessing (i.e. NMS). Default False.
output_final_box_features: Whether to output final box features. If true,
it crops the feature map based on the final box prediction and returns
it in the dict as detection_features.
output_final_box_rpn_features: Whether to output rpn box features. If
true, it crops the rpn feature map based on the final box prediction and
returns it in the dict as detection_features.
Raises:
ValueError: If `second_stage_batch_size` > `first_stage_max_proposals`
ValueError: If first_stage_anchor_generator is not of type
grid_anchor_generator.GridAnchorGenerator.
"""
# TODO(rathodv): add_summaries and crop_and_resize_fn is currently
# unused. Respect that directive in the future.
super(RFCNMetaArch, self).__init__(
is_training,
num_classes,
image_resizer_fn,
feature_extractor,
number_of_stages,
first_stage_anchor_generator,
first_stage_target_assigner,
first_stage_atrous_rate,
first_stage_box_predictor_arg_scope_fn,
first_stage_box_predictor_kernel_size,
first_stage_box_predictor_depth,
first_stage_minibatch_size,
first_stage_sampler,
first_stage_non_max_suppression_fn,
first_stage_max_proposals,
first_stage_localization_loss_weight,
first_stage_objectness_loss_weight,
crop_and_resize_fn,
None, # initial_crop_size is not used in R-FCN
None, # maxpool_kernel_size is not use in R-FCN
None, # maxpool_stride is not use in R-FCN
second_stage_target_assigner,
None, # fully_connected_box_predictor is not used in R-FCN.
second_stage_batch_size,
second_stage_sampler,
second_stage_non_max_suppression_fn,
second_stage_score_conversion_fn,
second_stage_localization_loss_weight,
second_stage_classification_loss_weight,
second_stage_classification_loss,
1.0, # second stage mask prediction loss weight isn't used in R-FCN.
hard_example_miner,
parallel_iterations,
add_summaries,
clip_anchors_to_image,
use_static_shapes,
resize_masks,
freeze_batchnorm=freeze_batchnorm,
return_raw_detections_during_predict=(
return_raw_detections_during_predict),
output_final_box_features=output_final_box_features,
output_final_box_rpn_features=output_final_box_rpn_features)
self._rfcn_box_predictor = second_stage_rfcn_box_predictor
def _predict_second_stage(self, rpn_box_encodings,
rpn_objectness_predictions_with_background,
rpn_features,
anchors,
image_shape,
true_image_shapes):
"""Predicts the output tensors from 2nd stage of R-FCN.
Args:
rpn_box_encodings: 3-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
rpn_objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
rpn_features: A list of single 4-D float32 tensor with shape
[batch_size, height, width, depth] representing image features from the
RPN.
anchors: 2-D float tensor of shape
[num_anchors, self._box_coder.code_size].
image_shape: A 1D int32 tensors of size [4] containing the image shape.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, 4] representing predicted
(final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals
2) class_predictions_with_background: a 2-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
4) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes (in absolute coordinates).
5) proposal_boxes_normalized: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes (in normalized coordinates). Can be used to override
the boxes proposed by the RPN, thus enabling one to extract box
classification and prediction for externally selected areas of the
image.
6) box_classifier_features: a 4-D float32 tensor, of shape
[batch_size, feature_map_height, feature_map_width, depth],
representing the box classifier features.
"""
image_shape_2d = tf.tile(tf.expand_dims(image_shape[1:], 0),
[image_shape[0], 1])
(proposal_boxes_normalized, _, _, num_proposals, _,
_) = self._postprocess_rpn(rpn_box_encodings,
rpn_objectness_predictions_with_background,
anchors, image_shape_2d, true_image_shapes)
rpn_features = rpn_features[0]
box_classifier_features = (
self._extract_box_classifier_features(rpn_features))
if self._rfcn_box_predictor.is_keras_model:
box_predictions = self._rfcn_box_predictor(
[box_classifier_features],
proposal_boxes=proposal_boxes_normalized)
else:
box_predictions = self._rfcn_box_predictor.predict(
[box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
proposal_boxes=proposal_boxes_normalized)
refined_box_encodings = tf.squeeze(
tf.concat(box_predictions[box_predictor.BOX_ENCODINGS], axis=1), axis=1)
class_predictions_with_background = tf.squeeze(
tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1),
axis=1)
absolute_proposal_boxes = ops.normalized_to_image_coordinates(
proposal_boxes_normalized, image_shape,
parallel_iterations=self._parallel_iterations)
prediction_dict = {
'refined_box_encodings': refined_box_encodings,
'class_predictions_with_background':
class_predictions_with_background,
'num_proposals': num_proposals,
'proposal_boxes': absolute_proposal_boxes,
'box_classifier_features': box_classifier_features,
'proposal_boxes_normalized': proposal_boxes_normalized,
'final_anchors': absolute_proposal_boxes
}
if self._return_raw_detections_during_predict:
prediction_dict.update(self._raw_detections_and_feature_map_inds(
refined_box_encodings, absolute_proposal_boxes))
return prediction_dict
def regularization_losses(self):
"""Returns a list of regularization losses for this model.
Returns a list of regularization losses for this model that the estimator
needs to use during training/optimization.
Returns:
A list of regularization loss tensors.
"""
reg_losses = super(RFCNMetaArch, self).regularization_losses()
if self._rfcn_box_predictor.is_keras_model:
reg_losses.extend(self._rfcn_box_predictor.losses)
return reg_losses
def updates(self):
"""Returns a list of update operators for this model.
Returns a list of update operators for this model that must be executed at
each training step. The estimator's train op needs to have a control
dependency on these updates.
Returns:
A list of update operators.
"""
update_ops = super(RFCNMetaArch, self).updates()
if self._rfcn_box_predictor.is_keras_model:
update_ops.extend(
self._rfcn_box_predictor.get_updates_for(None))
update_ops.extend(
self._rfcn_box_predictor.get_updates_for(
self._rfcn_box_predictor.inputs))
return update_ops | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/rfcn_meta_arch.py | rfcn_meta_arch.py |
"""Library functions for Context R-CNN."""
import tensorflow as tf
from object_detection.core import freezable_batch_norm
# The negative value used in padding the invalid weights.
_NEGATIVE_PADDING_VALUE = -100000
class ContextProjection(tf.keras.layers.Layer):
"""Custom layer to do batch normalization and projection."""
def __init__(self, projection_dimension, **kwargs):
self.batch_norm = freezable_batch_norm.FreezableBatchNorm(
epsilon=0.001,
center=True,
scale=True,
momentum=0.97,
trainable=True)
self.projection = tf.keras.layers.Dense(units=projection_dimension,
use_bias=True)
self.projection_dimension = projection_dimension
super(ContextProjection, self).__init__(**kwargs)
def build(self, input_shape):
self.projection.build(input_shape)
self.batch_norm.build(input_shape[:1] + [self.projection_dimension])
def call(self, input_features, is_training=False):
return tf.nn.relu6(self.batch_norm(self.projection(input_features),
is_training))
class AttentionBlock(tf.keras.layers.Layer):
"""Custom layer to perform all attention."""
def __init__(self, bottleneck_dimension, attention_temperature,
output_dimension=None, is_training=False,
name='AttentionBlock', max_num_proposals=100,
**kwargs):
"""Constructs an attention block.
Args:
bottleneck_dimension: A int32 Tensor representing the bottleneck dimension
for intermediate projections.
attention_temperature: A float Tensor. It controls the temperature of the
softmax for weights calculation. The formula for calculation as follows:
weights = exp(weights / temperature) / sum(exp(weights / temperature))
output_dimension: A int32 Tensor representing the last dimension of the
output feature.
is_training: A boolean Tensor (affecting batch normalization).
name: A string describing what to name the variables in this block.
max_num_proposals: The number of box proposals for each image
**kwargs: Additional keyword arguments.
"""
self._key_proj = ContextProjection(bottleneck_dimension)
self._val_proj = ContextProjection(bottleneck_dimension)
self._query_proj = ContextProjection(bottleneck_dimension)
self._feature_proj = None
self._attention_temperature = attention_temperature
self._bottleneck_dimension = bottleneck_dimension
self._is_training = is_training
self._output_dimension = output_dimension
self._max_num_proposals = max_num_proposals
if self._output_dimension:
self._feature_proj = ContextProjection(self._output_dimension)
super(AttentionBlock, self).__init__(name=name, **kwargs)
def build(self, input_shapes):
"""Finishes building the attention block.
Args:
input_shapes: the shape of the primary input box features.
"""
if not self._feature_proj:
self._output_dimension = input_shapes[-1]
self._feature_proj = ContextProjection(self._output_dimension)
def call(self, box_features, context_features, valid_context_size,
num_proposals):
"""Handles a call by performing attention.
Args:
box_features: A float Tensor of shape [batch_size * input_size, height,
width, num_input_features].
context_features: A float Tensor of shape [batch_size, context_size,
num_context_features].
valid_context_size: A int32 Tensor of shape [batch_size].
num_proposals: A [batch_size] int32 Tensor specifying the number of valid
proposals per image in the batch.
Returns:
A float Tensor with shape [batch_size, input_size, num_input_features]
containing output features after attention with context features.
"""
_, context_size, _ = context_features.shape
keys_values_valid_mask = compute_valid_mask(
valid_context_size, context_size)
total_proposals, height, width, channels = box_features.shape
batch_size = total_proposals // self._max_num_proposals
box_features = tf.reshape(
box_features,
[batch_size,
self._max_num_proposals,
height,
width,
channels])
# Average pools over height and width dimension so that the shape of
# box_features becomes [batch_size, max_num_proposals, channels].
box_features = tf.reduce_mean(box_features, [2, 3])
queries_valid_mask = compute_valid_mask(num_proposals,
box_features.shape[1])
queries = project_features(
box_features, self._bottleneck_dimension, self._is_training,
self._query_proj, normalize=True)
keys = project_features(
context_features, self._bottleneck_dimension, self._is_training,
self._key_proj, normalize=True)
values = project_features(
context_features, self._bottleneck_dimension, self._is_training,
self._val_proj, normalize=True)
# masking out any keys which are padding
keys *= tf.cast(keys_values_valid_mask[..., tf.newaxis], keys.dtype)
queries *= tf.cast(queries_valid_mask[..., tf.newaxis], queries.dtype)
weights = tf.matmul(queries, keys, transpose_b=True)
weights, values = filter_weight_value(weights, values,
keys_values_valid_mask)
weights = tf.nn.softmax(weights / self._attention_temperature)
features = tf.matmul(weights, values)
output_features = project_features(
features, self._output_dimension, self._is_training,
self._feature_proj, normalize=False)
output_features = output_features[:, :, tf.newaxis, tf.newaxis, :]
return output_features
def filter_weight_value(weights, values, valid_mask):
"""Filters weights and values based on valid_mask.
_NEGATIVE_PADDING_VALUE will be added to invalid elements in the weights to
avoid their contribution in softmax. 0 will be set for the invalid elements in
the values.
Args:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
valid_mask: A boolean Tensor of shape [batch_size, context_size]. True means
valid and False means invalid.
Returns:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
Raises:
ValueError: If shape of doesn't match.
"""
w_batch_size, _, w_context_size = weights.shape
v_batch_size, v_context_size, _ = values.shape
m_batch_size, m_context_size = valid_mask.shape
if w_batch_size != v_batch_size or v_batch_size != m_batch_size:
raise ValueError('Please make sure the first dimension of the input'
' tensors are the same.')
if w_context_size != v_context_size:
raise ValueError('Please make sure the third dimension of weights matches'
' the second dimension of values.')
if w_context_size != m_context_size:
raise ValueError('Please make sure the third dimension of the weights'
' matches the second dimension of the valid_mask.')
valid_mask = valid_mask[..., tf.newaxis]
# Force the invalid weights to be very negative so it won't contribute to
# the softmax.
weights += tf.transpose(
tf.cast(tf.math.logical_not(valid_mask), weights.dtype) *
_NEGATIVE_PADDING_VALUE,
perm=[0, 2, 1])
# Force the invalid values to be 0.
values *= tf.cast(valid_mask, values.dtype)
return weights, values
def project_features(features, bottleneck_dimension, is_training,
layer, normalize=True):
"""Projects features to another feature space.
Args:
features: A float Tensor of shape [batch_size, features_size,
num_features].
bottleneck_dimension: A int32 Tensor.
is_training: A boolean Tensor (affecting batch normalization).
layer: Contains a custom layer specific to the particular operation
being performed (key, value, query, features)
normalize: A boolean Tensor. If true, the output features will be l2
normalized on the last dimension.
Returns:
A float Tensor of shape [batch, features_size, projection_dimension].
"""
shape_arr = features.shape
batch_size, _, num_features = shape_arr
features = tf.reshape(features, [-1, num_features])
projected_features = layer(features, is_training)
projected_features = tf.reshape(projected_features,
[batch_size, -1, bottleneck_dimension])
if normalize:
projected_features = tf.keras.backend.l2_normalize(projected_features,
axis=-1)
return projected_features
def compute_valid_mask(num_valid_elements, num_elements):
"""Computes mask of valid entries within padded context feature.
Args:
num_valid_elements: A int32 Tensor of shape [batch_size].
num_elements: An int32 Tensor.
Returns:
A boolean Tensor of the shape [batch_size, num_elements]. True means
valid and False means invalid.
"""
batch_size = num_valid_elements.shape[0]
element_idxs = tf.range(num_elements, dtype=tf.int32)
batch_element_idxs = tf.tile(element_idxs[tf.newaxis, ...], [batch_size, 1])
num_valid_elements = num_valid_elements[..., tf.newaxis]
valid_mask = tf.less(batch_element_idxs, num_valid_elements)
return valid_mask | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/context_rcnn_lib_tf2.py | context_rcnn_lib_tf2.py |
import abc
import tensorflow.compat.v1 as tf
from tensorflow.python.util.deprecation import deprecated_args
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import matcher
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.core import target_assigner
from object_detection.utils import ops
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils
# pylint: disable=g-import-not-at-top
try:
import tf_slim as slim
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
class SSDFeatureExtractor(object):
"""SSD Slim Feature Extractor definition."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False):
"""Constructor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
self._is_training = is_training
self._depth_multiplier = depth_multiplier
self._min_depth = min_depth
self._pad_to_multiple = pad_to_multiple
self._conv_hyperparams_fn = conv_hyperparams_fn
self._reuse_weights = reuse_weights
self._use_explicit_padding = use_explicit_padding
self._use_depthwise = use_depthwise
self._num_layers = num_layers
self._override_base_feature_extractor_hyperparams = (
override_base_feature_extractor_hyperparams)
@property
def is_keras_model(self):
return False
@abc.abstractmethod
def preprocess(self, resized_inputs):
"""Preprocesses images for feature extraction (minus image resizing).
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
"""
pass
@abc.abstractmethod
def extract_features(self, preprocessed_inputs):
"""Extracts features from preprocessed inputs.
This function is responsible for extracting feature maps from preprocessed
images.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
raise NotImplementedError
def restore_from_classification_checkpoint_fn(self, feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Args:
feature_extractor_scope: A scope name for the feature extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
var_name = variable.op.name
if var_name.startswith(feature_extractor_scope + '/'):
var_name = var_name.replace(feature_extractor_scope + '/', '')
variables_to_restore[var_name] = variable
return variables_to_restore
class SSDKerasFeatureExtractor(tf.keras.Model):
"""SSD Feature Extractor definition."""
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
use_explicit_padding=False,
use_depthwise=False,
num_layers=6,
override_base_feature_extractor_hyperparams=False,
name=None):
"""Constructor.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: `hyperparams_builder.KerasLayerHyperparams` object
containing convolution hyperparameters for the layers added on top of
the base feature extractor.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
num_layers: Number of SSD layers.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_config`.
name: A string name scope to assign to the model. If 'None', Keras
will auto-generate one from the class name.
"""
super(SSDKerasFeatureExtractor, self).__init__(name=name)
self._is_training = is_training
self._depth_multiplier = depth_multiplier
self._min_depth = min_depth
self._pad_to_multiple = pad_to_multiple
self._conv_hyperparams = conv_hyperparams
self._freeze_batchnorm = freeze_batchnorm
self._inplace_batchnorm_update = inplace_batchnorm_update
self._use_explicit_padding = use_explicit_padding
self._use_depthwise = use_depthwise
self._num_layers = num_layers
self._override_base_feature_extractor_hyperparams = (
override_base_feature_extractor_hyperparams)
@property
def is_keras_model(self):
return True
@abc.abstractmethod
def preprocess(self, resized_inputs):
"""Preprocesses images for feature extraction (minus image resizing).
Args:
resized_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
"""
raise NotImplementedError
@abc.abstractmethod
def _extract_features(self, preprocessed_inputs):
"""Extracts features from preprocessed inputs.
This function is responsible for extracting feature maps from preprocessed
images.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
raise NotImplementedError
# This overrides the keras.Model `call` method with the _extract_features
# method.
def call(self, inputs, **kwargs):
return self._extract_features(inputs)
class SSDMetaArch(model.DetectionModel):
"""SSD Meta-architecture definition."""
@deprecated_args(None,
'NMS is always placed on TPU; do not use nms_on_host '
'as it has no effect.', 'nms_on_host')
def __init__(self,
is_training,
anchor_generator,
box_predictor,
box_coder,
feature_extractor,
encode_background_as_zeros,
image_resizer_fn,
non_max_suppression_fn,
score_conversion_fn,
classification_loss,
localization_loss,
classification_loss_weight,
localization_loss_weight,
normalize_loss_by_num_matches,
hard_example_miner,
target_assigner_instance,
add_summaries=True,
normalize_loc_loss_by_codesize=False,
freeze_batchnorm=False,
inplace_batchnorm_update=False,
add_background_class=True,
explicit_background_class=False,
random_example_sampler=None,
expected_loss_weights_fn=None,
use_confidences_as_targets=False,
implicit_example_weight=0.5,
equalization_loss_config=None,
return_raw_detections_during_predict=False,
nms_on_host=True):
"""SSDMetaArch Constructor.
TODO(rathodv,jonathanhuang): group NMS parameters + score converter into
a class and loss parameters into a class and write config protos for
postprocessing and losses.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
anchor_generator: an anchor_generator.AnchorGenerator object.
box_predictor: a box_predictor.BoxPredictor object.
box_coder: a box_coder.BoxCoder object.
feature_extractor: a SSDFeatureExtractor object.
encode_background_as_zeros: boolean determining whether background
targets are to be encoded as an all zeros vector or a one-hot
vector (where background is the 0th class).
image_resizer_fn: a callable for image resizing. This callable always
takes a rank-3 image tensor (corresponding to a single image) and
returns a rank-3 image tensor, possibly with new spatial dimensions and
a 1-D tensor of shape [3] indicating shape of true image within
the resized image tensor as the resized image tensor could be padded.
See builders/image_resizer_builder.py.
non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores` and optional `clip_window`
inputs (with all other inputs already set) and returns a dictionary
hold tensors with keys: `detection_boxes`, `detection_scores`,
`detection_classes` and `num_detections`. See `post_processing.
batch_multiclass_non_max_suppression` for the type and shape of these
tensors.
score_conversion_fn: callable elementwise nonlinearity (that takes tensors
as inputs and returns tensors). This is usually used to convert logits
to probabilities.
classification_loss: an object_detection.core.losses.Loss object.
localization_loss: a object_detection.core.losses.Loss object.
classification_loss_weight: float
localization_loss_weight: float
normalize_loss_by_num_matches: boolean
hard_example_miner: a losses.HardExampleMiner object (can be None)
target_assigner_instance: target_assigner.TargetAssigner instance to use.
add_summaries: boolean (default: True) controlling whether summary ops
should be added to tensorflow graph.
normalize_loc_loss_by_codesize: whether to normalize localization loss
by code size of the box encoder.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
add_background_class: Whether to add an implicit background class to
one-hot encodings of groundtruth labels. Set to false if training a
single class model or using groundtruth labels with an explicit
background class.
explicit_background_class: Set to true if using groundtruth labels with an
explicit background class, as in multiclass scores.
random_example_sampler: a BalancedPositiveNegativeSampler object that can
perform random example sampling when computing loss. If None, random
sampling process is skipped. Note that random example sampler and hard
example miner can both be applied to the model. In that case, random
sampler will take effect first and hard example miner can only process
the random sampled examples.
expected_loss_weights_fn: If not None, use to calculate
loss by background/foreground weighting. Should take batch_cls_targets
as inputs and return foreground_weights, background_weights. See
expected_classification_loss_by_expected_sampling and
expected_classification_loss_by_reweighting_unmatched_anchors in
third_party/tensorflow_models/object_detection/utils/ops.py as examples.
use_confidences_as_targets: Whether to use groundtruth_condifences field
to assign the targets.
implicit_example_weight: a float number that specifies the weight used
for the implicit negative examples.
equalization_loss_config: a namedtuple that specifies configs for
computing equalization loss.
return_raw_detections_during_predict: Whether to return raw detection
boxes in the predict() method. These are decoded boxes that have not
been through postprocessing (i.e. NMS). Default False.
nms_on_host: boolean (default: True) controlling whether NMS should be
carried out on the host (outside of TPU).
"""
super(SSDMetaArch, self).__init__(num_classes=box_predictor.num_classes)
self._is_training = is_training
self._freeze_batchnorm = freeze_batchnorm
self._inplace_batchnorm_update = inplace_batchnorm_update
self._anchor_generator = anchor_generator
self._box_predictor = box_predictor
self._box_coder = box_coder
self._feature_extractor = feature_extractor
self._add_background_class = add_background_class
self._explicit_background_class = explicit_background_class
if add_background_class and explicit_background_class:
raise ValueError("Cannot have both 'add_background_class' and"
" 'explicit_background_class' true.")
# Needed for fine-tuning from classification checkpoints whose
# variables do not have the feature extractor scope.
if self._feature_extractor.is_keras_model:
# Keras feature extractors will have a name they implicitly use to scope.
# So, all contained variables are prefixed by this name.
# To load from classification checkpoints, need to filter out this name.
self._extract_features_scope = feature_extractor.name
else:
# Slim feature extractors get an explicit naming scope
self._extract_features_scope = 'FeatureExtractor'
if encode_background_as_zeros:
background_class = [0]
else:
background_class = [1]
if self._add_background_class:
num_foreground_classes = self.num_classes
else:
num_foreground_classes = self.num_classes - 1
self._unmatched_class_label = tf.constant(
background_class + num_foreground_classes * [0], tf.float32)
self._target_assigner = target_assigner_instance
self._classification_loss = classification_loss
self._localization_loss = localization_loss
self._classification_loss_weight = classification_loss_weight
self._localization_loss_weight = localization_loss_weight
self._normalize_loss_by_num_matches = normalize_loss_by_num_matches
self._normalize_loc_loss_by_codesize = normalize_loc_loss_by_codesize
self._hard_example_miner = hard_example_miner
self._random_example_sampler = random_example_sampler
self._parallel_iterations = 16
self._image_resizer_fn = image_resizer_fn
self._non_max_suppression_fn = non_max_suppression_fn
self._score_conversion_fn = score_conversion_fn
self._anchors = None
self._add_summaries = add_summaries
self._batched_prediction_tensor_names = []
self._expected_loss_weights_fn = expected_loss_weights_fn
self._use_confidences_as_targets = use_confidences_as_targets
self._implicit_example_weight = implicit_example_weight
self._equalization_loss_config = equalization_loss_config
self._return_raw_detections_during_predict = (
return_raw_detections_during_predict)
@property
def feature_extractor(self):
return self._feature_extractor
@property
def anchors(self):
if not self._anchors:
raise RuntimeError('anchors have not been constructed yet!')
if not isinstance(self._anchors, box_list.BoxList):
raise RuntimeError('anchors should be a BoxList object, but is not.')
return self._anchors
@property
def batched_prediction_tensor_names(self):
if not self._batched_prediction_tensor_names:
raise RuntimeError('Must call predict() method to get batched prediction '
'tensor names.')
return self._batched_prediction_tensor_names
def preprocess(self, inputs):
"""Feature-extractor specific preprocessing.
SSD meta architecture uses a default clip_window of [0, 0, 1, 1] during
post-processing. On calling `preprocess` method, clip_window gets updated
based on `true_image_shapes` returned by `image_resizer_fn`.
Args:
inputs: a [batch, height_in, width_in, channels] float tensor representing
a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: a [batch, height_out, width_out, channels] float
tensor representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Raises:
ValueError: if inputs tensor does not have type tf.float32
"""
with tf.name_scope('Preprocessor'):
normalized_inputs = self._feature_extractor.preprocess(inputs)
return shape_utils.resize_images_and_return_shapes(
normalized_inputs, self._image_resizer_fn)
def _compute_clip_window(self, preprocessed_images, true_image_shapes):
"""Computes clip window to use during post_processing.
Computes a new clip window to use during post-processing based on
`resized_image_shapes` and `true_image_shapes` only if `preprocess` method
has been called. Otherwise returns a default clip window of [0, 0, 1, 1].
Args:
preprocessed_images: the [batch, height, width, channels] image
tensor.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros. Or None if the clip window should cover the full image.
Returns:
a 2-D float32 tensor of the form [batch_size, 4] containing the clip
window for each image in the batch in normalized coordinates (relative to
the resized dimensions) where each clip window is of the form [ymin, xmin,
ymax, xmax] or a default clip window of [0, 0, 1, 1].
"""
if true_image_shapes is None:
return tf.constant([0, 0, 1, 1], dtype=tf.float32)
resized_inputs_shape = shape_utils.combined_static_and_dynamic_shape(
preprocessed_images)
true_heights, true_widths, _ = tf.unstack(
tf.cast(true_image_shapes, dtype=tf.float32), axis=1)
padded_height = tf.cast(resized_inputs_shape[1], dtype=tf.float32)
padded_width = tf.cast(resized_inputs_shape[2], dtype=tf.float32)
return tf.stack(
[
tf.zeros_like(true_heights),
tf.zeros_like(true_widths), true_heights / padded_height,
true_widths / padded_width
],
axis=1)
def predict(self, preprocessed_inputs, true_image_shapes):
"""Predicts unpostprocessed tensors from input tensor.
This function takes an input batch of images and runs it through the forward
pass of the network to yield unpostprocessesed predictions.
A side effect of calling the predict method is that self._anchors is
populated with a box_list.BoxList of anchors. These anchors must be
constructed before the postprocess or loss functions can be called.
Args:
preprocessed_inputs: a [batch, height, width, channels] image tensor.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) preprocessed_inputs: the [batch, height, width, channels] image
tensor.
2) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
3) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions (at class index 0).
4) feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i].
5) anchors: 2-D float tensor of shape [num_anchors, 4] containing
the generated anchors in normalized coordinates.
6) final_anchors: 3-D float tensor of shape [batch_size, num_anchors, 4]
containing the generated anchors in normalized coordinates.
If self._return_raw_detections_during_predict is True, the dictionary
will also contain:
7) raw_detection_boxes: a 4-D float32 tensor with shape
[batch_size, self.max_num_proposals, 4] in normalized coordinates.
8) raw_detection_feature_map_indices: a 3-D int32 tensor with shape
[batch_size, self.max_num_proposals].
"""
if self._inplace_batchnorm_update:
batchnorm_updates_collections = None
else:
batchnorm_updates_collections = tf.GraphKeys.UPDATE_OPS
if self._feature_extractor.is_keras_model:
feature_maps = self._feature_extractor(preprocessed_inputs)
else:
with slim.arg_scope([slim.batch_norm],
is_training=(self._is_training and
not self._freeze_batchnorm),
updates_collections=batchnorm_updates_collections):
with tf.variable_scope(None, self._extract_features_scope,
[preprocessed_inputs]):
feature_maps = self._feature_extractor.extract_features(
preprocessed_inputs)
feature_map_spatial_dims = self._get_feature_map_spatial_dims(
feature_maps)
image_shape = shape_utils.combined_static_and_dynamic_shape(
preprocessed_inputs)
boxlist_list = self._anchor_generator.generate(
feature_map_spatial_dims,
im_height=image_shape[1],
im_width=image_shape[2])
self._anchors = box_list_ops.concatenate(boxlist_list)
if self._box_predictor.is_keras_model:
predictor_results_dict = self._box_predictor(feature_maps)
else:
with slim.arg_scope([slim.batch_norm],
is_training=(self._is_training and
not self._freeze_batchnorm),
updates_collections=batchnorm_updates_collections):
predictor_results_dict = self._box_predictor.predict(
feature_maps, self._anchor_generator.num_anchors_per_location())
predictions_dict = {
'preprocessed_inputs':
preprocessed_inputs,
'feature_maps':
feature_maps,
'anchors':
self._anchors.get(),
'final_anchors':
tf.tile(
tf.expand_dims(self._anchors.get(), 0), [image_shape[0], 1, 1])
}
for prediction_key, prediction_list in iter(predictor_results_dict.items()):
prediction = tf.concat(prediction_list, axis=1)
if (prediction_key == 'box_encodings' and prediction.shape.ndims == 4 and
prediction.shape[2] == 1):
prediction = tf.squeeze(prediction, axis=2)
predictions_dict[prediction_key] = prediction
if self._return_raw_detections_during_predict:
predictions_dict.update(self._raw_detections_and_feature_map_inds(
predictions_dict['box_encodings'], boxlist_list))
self._batched_prediction_tensor_names = [x for x in predictions_dict
if x != 'anchors']
return predictions_dict
def _raw_detections_and_feature_map_inds(self, box_encodings, boxlist_list):
anchors = self._anchors.get()
raw_detection_boxes, _ = self._batch_decode(box_encodings, anchors)
batch_size, _, _ = shape_utils.combined_static_and_dynamic_shape(
raw_detection_boxes)
feature_map_indices = (
self._anchor_generator.anchor_index_to_feature_map_index(boxlist_list))
feature_map_indices_batched = tf.tile(
tf.expand_dims(feature_map_indices, 0),
multiples=[batch_size, 1])
return {
fields.PredictionFields.raw_detection_boxes: raw_detection_boxes,
fields.PredictionFields.raw_detection_feature_map_indices:
feature_map_indices_batched
}
def _get_feature_map_spatial_dims(self, feature_maps):
"""Return list of spatial dimensions for each feature map in a list.
Args:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i].
Returns:
a list of pairs (height, width) for each feature map in feature_maps
"""
feature_map_shapes = [
shape_utils.combined_static_and_dynamic_shape(
feature_map) for feature_map in feature_maps
]
return [(shape[1], shape[2]) for shape in feature_map_shapes]
def postprocess(self, prediction_dict, true_image_shapes):
"""Converts prediction tensors to final detections.
This function converts raw predictions tensors to final detection results by
slicing off the background class, decoding box predictions and applying
non max suppression and clipping to the image window.
See base class for output format conventions. Note also that by default,
scores are to be interpreted as logits, but if a score_conversion_fn is
used, then scores are remapped (and may thus have a different
interpretation).
Args:
prediction_dict: a dictionary holding prediction tensors with
1) preprocessed_inputs: a [batch, height, width, channels] image
tensor.
2) box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
3) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
4) mask_predictions: (optional) a 5-D float tensor of shape
[batch_size, num_anchors, q, mask_height, mask_width]. `q` can be
either number of classes or 1 depending on whether a separate mask is
predicted per class.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros. Or None, if the clip window should cover the full image.
Returns:
detections: a dictionary containing the following fields
detection_boxes: [batch, max_detections, 4] tensor with post-processed
detection boxes.
detection_scores: [batch, max_detections] tensor with scalar scores for
post-processed detection boxes.
detection_multiclass_scores: [batch, max_detections,
num_classes_with_background] tensor with class score distribution for
post-processed detection boxes including background class if any.
detection_classes: [batch, max_detections] tensor with classes for
post-processed detection classes.
detection_keypoints: [batch, max_detections, num_keypoints, 2] (if
encoded in the prediction_dict 'box_encodings')
detection_masks: [batch_size, max_detections, mask_height, mask_width]
(optional)
num_detections: [batch]
raw_detection_boxes: [batch, total_detections, 4] tensor with decoded
detection boxes before Non-Max Suppression.
raw_detection_score: [batch, total_detections,
num_classes_with_background] tensor of multi-class scores for raw
detection boxes.
Raises:
ValueError: if prediction_dict does not contain `box_encodings` or
`class_predictions_with_background` fields.
"""
if ('box_encodings' not in prediction_dict or
'class_predictions_with_background' not in prediction_dict):
raise ValueError('prediction_dict does not contain expected entries.')
if 'anchors' not in prediction_dict:
prediction_dict['anchors'] = self.anchors.get()
with tf.name_scope('Postprocessor'):
preprocessed_images = prediction_dict['preprocessed_inputs']
box_encodings = prediction_dict['box_encodings']
box_encodings = tf.identity(box_encodings, 'raw_box_encodings')
class_predictions_with_background = (
prediction_dict['class_predictions_with_background'])
detection_boxes, detection_keypoints = self._batch_decode(
box_encodings, prediction_dict['anchors'])
detection_boxes = tf.identity(detection_boxes, 'raw_box_locations')
detection_boxes = tf.expand_dims(detection_boxes, axis=2)
detection_scores_with_background = self._score_conversion_fn(
class_predictions_with_background)
detection_scores = tf.identity(detection_scores_with_background,
'raw_box_scores')
if self._add_background_class or self._explicit_background_class:
detection_scores = tf.slice(detection_scores, [0, 0, 1], [-1, -1, -1])
additional_fields = None
batch_size = (
shape_utils.combined_static_and_dynamic_shape(preprocessed_images)[0])
if 'feature_maps' in prediction_dict:
feature_map_list = []
for feature_map in prediction_dict['feature_maps']:
feature_map_list.append(tf.reshape(feature_map, [batch_size, -1]))
box_features = tf.concat(feature_map_list, 1)
box_features = tf.identity(box_features, 'raw_box_features')
additional_fields = {
'multiclass_scores': detection_scores_with_background
}
if self._anchors is not None:
num_boxes = (self._anchors.num_boxes_static() or
self._anchors.num_boxes())
anchor_indices = tf.range(num_boxes)
batch_anchor_indices = tf.tile(
tf.expand_dims(anchor_indices, 0), [batch_size, 1])
# All additional fields need to be float.
additional_fields.update({
'anchor_indices': tf.cast(batch_anchor_indices, tf.float32),
})
if detection_keypoints is not None:
detection_keypoints = tf.identity(
detection_keypoints, 'raw_keypoint_locations')
additional_fields[fields.BoxListFields.keypoints] = detection_keypoints
(nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_masks,
nmsed_additional_fields,
num_detections) = self._non_max_suppression_fn(
detection_boxes,
detection_scores,
clip_window=self._compute_clip_window(
preprocessed_images, true_image_shapes),
additional_fields=additional_fields,
masks=prediction_dict.get('mask_predictions'))
detection_dict = {
fields.DetectionResultFields.detection_boxes:
nmsed_boxes,
fields.DetectionResultFields.detection_scores:
nmsed_scores,
fields.DetectionResultFields.detection_classes:
nmsed_classes,
fields.DetectionResultFields.num_detections:
tf.cast(num_detections, dtype=tf.float32),
fields.DetectionResultFields.raw_detection_boxes:
tf.squeeze(detection_boxes, axis=2),
fields.DetectionResultFields.raw_detection_scores:
detection_scores_with_background
}
if (nmsed_additional_fields is not None and
fields.InputDataFields.multiclass_scores in nmsed_additional_fields):
detection_dict[
fields.DetectionResultFields.detection_multiclass_scores] = (
nmsed_additional_fields[
fields.InputDataFields.multiclass_scores])
if (nmsed_additional_fields is not None and
'anchor_indices' in nmsed_additional_fields):
detection_dict.update({
fields.DetectionResultFields.detection_anchor_indices:
tf.cast(nmsed_additional_fields['anchor_indices'], tf.int32),
})
if (nmsed_additional_fields is not None and
fields.BoxListFields.keypoints in nmsed_additional_fields):
detection_dict[fields.DetectionResultFields.detection_keypoints] = (
nmsed_additional_fields[fields.BoxListFields.keypoints])
if nmsed_masks is not None:
detection_dict[
fields.DetectionResultFields.detection_masks] = nmsed_masks
return detection_dict
def loss(self, prediction_dict, true_image_shapes, scope=None):
"""Compute scalar loss tensors with respect to provided groundtruth.
Calling this function requires that groundtruth tensors have been
provided via the provide_groundtruth function.
Args:
prediction_dict: a dictionary holding prediction tensors with
1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
scope: Optional scope name.
Returns:
a dictionary mapping loss keys (`localization_loss` and
`classification_loss`) to scalar tensors representing corresponding loss
values.
"""
with tf.name_scope(scope, 'Loss', prediction_dict.values()):
keypoints = None
if self.groundtruth_has_field(fields.BoxListFields.keypoints):
keypoints = self.groundtruth_lists(fields.BoxListFields.keypoints)
weights = None
if self.groundtruth_has_field(fields.BoxListFields.weights):
weights = self.groundtruth_lists(fields.BoxListFields.weights)
confidences = None
if self.groundtruth_has_field(fields.BoxListFields.confidences):
confidences = self.groundtruth_lists(fields.BoxListFields.confidences)
(batch_cls_targets, batch_cls_weights, batch_reg_targets,
batch_reg_weights, batch_match) = self._assign_targets(
self.groundtruth_lists(fields.BoxListFields.boxes),
self.groundtruth_lists(fields.BoxListFields.classes),
keypoints, weights, confidences)
match_list = [matcher.Match(match) for match in tf.unstack(batch_match)]
if self._add_summaries:
self._summarize_target_assignment(
self.groundtruth_lists(fields.BoxListFields.boxes), match_list)
if self._random_example_sampler:
batch_cls_per_anchor_weights = tf.reduce_mean(
batch_cls_weights, axis=-1)
batch_sampled_indicator = tf.cast(
shape_utils.static_or_dynamic_map_fn(
self._minibatch_subsample_fn,
[batch_cls_targets, batch_cls_per_anchor_weights],
dtype=tf.bool,
parallel_iterations=self._parallel_iterations,
back_prop=True), dtype=tf.float32)
batch_reg_weights = tf.multiply(batch_sampled_indicator,
batch_reg_weights)
batch_cls_weights = tf.multiply(
tf.expand_dims(batch_sampled_indicator, -1),
batch_cls_weights)
losses_mask = None
if self.groundtruth_has_field(fields.InputDataFields.is_annotated):
losses_mask = tf.stack(self.groundtruth_lists(
fields.InputDataFields.is_annotated))
location_losses = self._localization_loss(
prediction_dict['box_encodings'],
batch_reg_targets,
ignore_nan_targets=True,
weights=batch_reg_weights,
losses_mask=losses_mask)
cls_losses = self._classification_loss(
prediction_dict['class_predictions_with_background'],
batch_cls_targets,
weights=batch_cls_weights,
losses_mask=losses_mask)
if self._expected_loss_weights_fn:
# Need to compute losses for assigned targets against the
# unmatched_class_label as well as their assigned targets.
# simplest thing (but wasteful) is just to calculate all losses
# twice
batch_size, num_anchors, num_classes = batch_cls_targets.get_shape()
unmatched_targets = tf.ones([batch_size, num_anchors, 1
]) * self._unmatched_class_label
unmatched_cls_losses = self._classification_loss(
prediction_dict['class_predictions_with_background'],
unmatched_targets,
weights=batch_cls_weights,
losses_mask=losses_mask)
if cls_losses.get_shape().ndims == 3:
batch_size, num_anchors, num_classes = cls_losses.get_shape()
cls_losses = tf.reshape(cls_losses, [batch_size, -1])
unmatched_cls_losses = tf.reshape(unmatched_cls_losses,
[batch_size, -1])
batch_cls_targets = tf.reshape(
batch_cls_targets, [batch_size, num_anchors * num_classes, -1])
batch_cls_targets = tf.concat(
[1 - batch_cls_targets, batch_cls_targets], axis=-1)
location_losses = tf.tile(location_losses, [1, num_classes])
foreground_weights, background_weights = (
self._expected_loss_weights_fn(batch_cls_targets))
cls_losses = (
foreground_weights * cls_losses +
background_weights * unmatched_cls_losses)
location_losses *= foreground_weights
classification_loss = tf.reduce_sum(cls_losses)
localization_loss = tf.reduce_sum(location_losses)
elif self._hard_example_miner:
cls_losses = ops.reduce_sum_trailing_dimensions(cls_losses, ndims=2)
(localization_loss, classification_loss) = self._apply_hard_mining(
location_losses, cls_losses, prediction_dict, match_list)
if self._add_summaries:
self._hard_example_miner.summarize()
else:
cls_losses = ops.reduce_sum_trailing_dimensions(cls_losses, ndims=2)
localization_loss = tf.reduce_sum(location_losses)
classification_loss = tf.reduce_sum(cls_losses)
# Optionally normalize by number of positive matches
normalizer = tf.constant(1.0, dtype=tf.float32)
if self._normalize_loss_by_num_matches:
normalizer = tf.maximum(tf.cast(tf.reduce_sum(batch_reg_weights),
dtype=tf.float32),
1.0)
localization_loss_normalizer = normalizer
if self._normalize_loc_loss_by_codesize:
localization_loss_normalizer *= self._box_coder.code_size
localization_loss = tf.multiply((self._localization_loss_weight /
localization_loss_normalizer),
localization_loss,
name='localization_loss')
classification_loss = tf.multiply((self._classification_loss_weight /
normalizer), classification_loss,
name='classification_loss')
loss_dict = {
'Loss/localization_loss': localization_loss,
'Loss/classification_loss': classification_loss
}
return loss_dict
def _minibatch_subsample_fn(self, inputs):
"""Randomly samples anchors for one image.
Args:
inputs: a list of 2 inputs. First one is a tensor of shape [num_anchors,
num_classes] indicating targets assigned to each anchor. Second one
is a tensor of shape [num_anchors] indicating the class weight of each
anchor.
Returns:
batch_sampled_indicator: bool tensor of shape [num_anchors] indicating
whether the anchor should be selected for loss computation.
"""
cls_targets, cls_weights = inputs
if self._add_background_class:
# Set background_class bits to 0 so that the positives_indicator
# computation would not consider background class.
background_class = tf.zeros_like(tf.slice(cls_targets, [0, 0], [-1, 1]))
regular_class = tf.slice(cls_targets, [0, 1], [-1, -1])
cls_targets = tf.concat([background_class, regular_class], 1)
positives_indicator = tf.reduce_sum(cls_targets, axis=1)
return self._random_example_sampler.subsample(
tf.cast(cls_weights, tf.bool),
batch_size=None,
labels=tf.cast(positives_indicator, tf.bool))
def _summarize_anchor_classification_loss(self, class_ids, cls_losses):
positive_indices = tf.where(tf.greater(class_ids, 0))
positive_anchor_cls_loss = tf.squeeze(
tf.gather(cls_losses, positive_indices), axis=1)
visualization_utils.add_cdf_image_summary(positive_anchor_cls_loss,
'PositiveAnchorLossCDF')
negative_indices = tf.where(tf.equal(class_ids, 0))
negative_anchor_cls_loss = tf.squeeze(
tf.gather(cls_losses, negative_indices), axis=1)
visualization_utils.add_cdf_image_summary(negative_anchor_cls_loss,
'NegativeAnchorLossCDF')
def _assign_targets(self,
groundtruth_boxes_list,
groundtruth_classes_list,
groundtruth_keypoints_list=None,
groundtruth_weights_list=None,
groundtruth_confidences_list=None):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape
[num_boxes, num_keypoints, 2]
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
groundtruth_confidences_list: A list of 2-D tf.float32 tensors of shape
[num_boxes, num_classes] containing class confidences for
groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match: an int32 tensor of shape [batch_size, num_anchors], containing
result of anchor groundtruth matching. Each position in the tensor
indicates an anchor and holds the following meaning:
(1) if match[x, i] >= 0, anchor i is matched with groundtruth
match[x, i].
(2) if match[x, i]=-1, anchor i is marked to be background .
(3) if match[x, i]=-2, anchor i is ignored since it is not background
and does not have sufficient overlap to call it a foreground.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
train_using_confidences = (self._is_training and
self._use_confidences_as_targets)
if self._add_background_class:
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
if train_using_confidences:
groundtruth_confidences_with_background_list = [
tf.pad(groundtruth_confidences, [[0, 0], [1, 0]], mode='CONSTANT')
for groundtruth_confidences in groundtruth_confidences_list
]
else:
groundtruth_classes_with_background_list = groundtruth_classes_list
if groundtruth_keypoints_list is not None:
for boxlist, keypoints in zip(
groundtruth_boxlists, groundtruth_keypoints_list):
boxlist.add_field(fields.BoxListFields.keypoints, keypoints)
if train_using_confidences:
return target_assigner.batch_assign_confidences(
self._target_assigner,
self.anchors,
groundtruth_boxlists,
groundtruth_confidences_with_background_list,
groundtruth_weights_list,
self._unmatched_class_label,
self._add_background_class,
self._implicit_example_weight)
else:
return target_assigner.batch_assign_targets(
self._target_assigner,
self.anchors,
groundtruth_boxlists,
groundtruth_classes_with_background_list,
self._unmatched_class_label,
groundtruth_weights_list)
def _summarize_target_assignment(self, groundtruth_boxes_list, match_list):
"""Creates tensorflow summaries for the input boxes and anchors.
This function creates four summaries corresponding to the average
number (over images in a batch) of (1) groundtruth boxes, (2) anchors
marked as positive, (3) anchors marked as negative, and (4) anchors marked
as ignored.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing corners of the groundtruth boxes.
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
# TODO(rathodv): Add a test for these summaries.
try:
# TODO(kaftan): Integrate these summaries into the v2 style loops
with tf.compat.v2.init_scope():
if tf.compat.v2.executing_eagerly():
return
except AttributeError:
pass
avg_num_gt_boxes = tf.reduce_mean(
tf.cast(
tf.stack([tf.shape(x)[0] for x in groundtruth_boxes_list]),
dtype=tf.float32))
avg_num_matched_gt_boxes = tf.reduce_mean(
tf.cast(
tf.stack([match.num_matched_rows() for match in match_list]),
dtype=tf.float32))
avg_pos_anchors = tf.reduce_mean(
tf.cast(
tf.stack([match.num_matched_columns() for match in match_list]),
dtype=tf.float32))
avg_neg_anchors = tf.reduce_mean(
tf.cast(
tf.stack([match.num_unmatched_columns() for match in match_list]),
dtype=tf.float32))
avg_ignored_anchors = tf.reduce_mean(
tf.cast(
tf.stack([match.num_ignored_columns() for match in match_list]),
dtype=tf.float32))
tf.summary.scalar('AvgNumGroundtruthBoxesPerImage',
avg_num_gt_boxes,
family='TargetAssignment')
tf.summary.scalar('AvgNumGroundtruthBoxesMatchedPerImage',
avg_num_matched_gt_boxes,
family='TargetAssignment')
tf.summary.scalar('AvgNumPositiveAnchorsPerImage',
avg_pos_anchors,
family='TargetAssignment')
tf.summary.scalar('AvgNumNegativeAnchorsPerImage',
avg_neg_anchors,
family='TargetAssignment')
tf.summary.scalar('AvgNumIgnoredAnchorsPerImage',
avg_ignored_anchors,
family='TargetAssignment')
def _apply_hard_mining(self, location_losses, cls_losses, prediction_dict,
match_list):
"""Applies hard mining to anchorwise losses.
Args:
location_losses: Float tensor of shape [batch_size, num_anchors]
representing anchorwise location losses.
cls_losses: Float tensor of shape [batch_size, num_anchors]
representing anchorwise classification losses.
prediction_dict: p a dictionary holding prediction tensors with
1) box_encodings: 3-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
3) anchors: (optional) 2-D float tensor of shape [num_anchors, 4].
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
Returns:
mined_location_loss: a float scalar with sum of localization losses from
selected hard examples.
mined_cls_loss: a float scalar with sum of classification losses from
selected hard examples.
"""
class_predictions = prediction_dict['class_predictions_with_background']
if self._add_background_class:
class_predictions = tf.slice(class_predictions, [0, 0, 1], [-1, -1, -1])
if 'anchors' not in prediction_dict:
prediction_dict['anchors'] = self.anchors.get()
decoded_boxes, _ = self._batch_decode(prediction_dict['box_encodings'],
prediction_dict['anchors'])
decoded_box_tensors_list = tf.unstack(decoded_boxes)
class_prediction_list = tf.unstack(class_predictions)
decoded_boxlist_list = []
for box_location, box_score in zip(decoded_box_tensors_list,
class_prediction_list):
decoded_boxlist = box_list.BoxList(box_location)
decoded_boxlist.add_field('scores', box_score)
decoded_boxlist_list.append(decoded_boxlist)
return self._hard_example_miner(
location_losses=location_losses,
cls_losses=cls_losses,
decoded_boxlist_list=decoded_boxlist_list,
match_list=match_list)
def _batch_decode(self, box_encodings, anchors):
"""Decodes a batch of box encodings with respect to the anchors.
Args:
box_encodings: A float32 tensor of shape
[batch_size, num_anchors, box_code_size] containing box encodings.
anchors: A tensor of shape [num_anchors, 4].
Returns:
decoded_boxes: A float32 tensor of shape
[batch_size, num_anchors, 4] containing the decoded boxes.
decoded_keypoints: A float32 tensor of shape
[batch_size, num_anchors, num_keypoints, 2] containing the decoded
keypoints if present in the input `box_encodings`, None otherwise.
"""
combined_shape = shape_utils.combined_static_and_dynamic_shape(
box_encodings)
batch_size = combined_shape[0]
tiled_anchor_boxes = tf.tile(tf.expand_dims(anchors, 0), [batch_size, 1, 1])
tiled_anchors_boxlist = box_list.BoxList(
tf.reshape(tiled_anchor_boxes, [-1, 4]))
decoded_boxes = self._box_coder.decode(
tf.reshape(box_encodings, [-1, self._box_coder.code_size]),
tiled_anchors_boxlist)
decoded_keypoints = None
if decoded_boxes.has_field(fields.BoxListFields.keypoints):
decoded_keypoints = decoded_boxes.get_field(
fields.BoxListFields.keypoints)
num_keypoints = decoded_keypoints.get_shape()[1]
decoded_keypoints = tf.reshape(
decoded_keypoints,
tf.stack([combined_shape[0], combined_shape[1], num_keypoints, 2]))
decoded_boxes = tf.reshape(decoded_boxes.get(), tf.stack(
[combined_shape[0], combined_shape[1], 4]))
return decoded_boxes, decoded_keypoints
def regularization_losses(self):
"""Returns a list of regularization losses for this model.
Returns a list of regularization losses for this model that the estimator
needs to use during training/optimization.
Returns:
A list of regularization loss tensors.
"""
losses = []
slim_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
# Copy the slim losses to avoid modifying the collection
if slim_losses:
losses.extend(slim_losses)
if self._box_predictor.is_keras_model:
losses.extend(self._box_predictor.losses)
if self._feature_extractor.is_keras_model:
losses.extend(self._feature_extractor.losses)
return losses
def restore_map(self,
fine_tune_checkpoint_type='detection',
load_all_detection_checkpoint_vars=False):
"""Returns a map of variables to load from a foreign checkpoint.
See parent class for details.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`. Default 'detection'.
load_all_detection_checkpoint_vars: whether to load all variables (when
`fine_tune_checkpoint_type` is `detection`). If False, only variables
within the feature extractor scope are included. Default False.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
Raises:
ValueError: if fine_tune_checkpoint_type is neither `classification`
nor `detection`.
"""
if fine_tune_checkpoint_type == 'classification':
return self._feature_extractor.restore_from_classification_checkpoint_fn(
self._extract_features_scope)
elif fine_tune_checkpoint_type == 'detection':
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
var_name = variable.op.name
if load_all_detection_checkpoint_vars:
variables_to_restore[var_name] = variable
else:
if var_name.startswith(self._extract_features_scope):
variables_to_restore[var_name] = variable
return variables_to_restore
else:
raise ValueError('Not supported fine_tune_checkpoint_type: {}'.format(
fine_tune_checkpoint_type))
def restore_from_objects(self, fine_tune_checkpoint_type='detection'):
"""Returns a map of Trackable objects to load from a foreign checkpoint.
Returns a dictionary of Tensorflow 2 Trackable objects (e.g. tf.Module
or Checkpoint). This enables the model to initialize based on weights from
another task. For example, the feature extractor variables from a
classification model can be used to bootstrap training of an object
detector. When loading from an object detection model, the checkpoint model
should have the same parameters as this detection model with exception of
the num_classes parameter.
Note that this function is intended to be used to restore Keras-based
models when running Tensorflow 2, whereas restore_map (above) is intended
to be used to restore Slim-based models when running Tensorflow 1.x.
Args:
fine_tune_checkpoint_type: A string inidicating the subset of variables
to load. Valid values: `detection`, `classification`, `full`. Default
`detection`.
An SSD checkpoint has three parts:
1) Classification Network (like ResNet)
2) DeConv layers (for FPN)
3) Box/Class prediction parameters
The parameters will be loaded using the following strategy:
`classification` - will load #1
`detection` - will load #1, #2
`full` - will load #1, #2, #3
Returns:
A dict mapping keys to Trackable objects (tf.Module or Checkpoint).
"""
if fine_tune_checkpoint_type == 'classification':
return {
'feature_extractor':
self._feature_extractor.classification_backbone
}
elif fine_tune_checkpoint_type == 'detection':
fake_model = tf.train.Checkpoint(
_feature_extractor=self._feature_extractor)
return {'model': fake_model}
elif fine_tune_checkpoint_type == 'full':
return {'model': self}
else:
raise ValueError('Not supported fine_tune_checkpoint_type: {}'.format(
fine_tune_checkpoint_type))
def updates(self):
"""Returns a list of update operators for this model.
Returns a list of update operators for this model that must be executed at
each training step. The estimator's train op needs to have a control
dependency on these updates.
Returns:
A list of update operators.
"""
update_ops = []
slim_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# Copy the slim ops to avoid modifying the collection
if slim_update_ops:
update_ops.extend(slim_update_ops)
if self._box_predictor.is_keras_model:
update_ops.extend(self._box_predictor.get_updates_for(None))
update_ops.extend(self._box_predictor.get_updates_for(
self._box_predictor.inputs))
if self._feature_extractor.is_keras_model:
update_ops.extend(self._feature_extractor.get_updates_for(None))
update_ops.extend(self._feature_extractor.get_updates_for(
self._feature_extractor.inputs))
return update_ops | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/meta_architectures/ssd_meta_arch.py | ssd_meta_arch.py |
"""RFCN Box Predictor."""
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.core import box_predictor
from object_detection.utils import ops
BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS
class RfcnBoxPredictor(box_predictor.BoxPredictor):
"""RFCN Box Predictor.
Applies a position sensitive ROI pooling on position sensitive feature maps to
predict classes and refined locations. See https://arxiv.org/abs/1605.06409
for details.
This is used for the second stage of the RFCN meta architecture. Notice that
locations are *not* shared across classes, thus for each anchor, a separate
prediction is made for each class.
"""
def __init__(self,
is_training,
num_classes,
conv_hyperparams_fn,
num_spatial_bins,
depth,
crop_size,
box_code_size):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams_fn: A function to construct tf-slim arg_scope with
hyperparameters for convolutional layers.
num_spatial_bins: A list of two integers `[spatial_bins_y,
spatial_bins_x]`.
depth: Target depth to reduce the input feature maps to.
crop_size: A list of two integers `[crop_height, crop_width]`.
box_code_size: Size of encoding for each box.
"""
super(RfcnBoxPredictor, self).__init__(is_training, num_classes)
self._conv_hyperparams_fn = conv_hyperparams_fn
self._num_spatial_bins = num_spatial_bins
self._depth = depth
self._crop_size = crop_size
self._box_code_size = box_code_size
@property
def num_classes(self):
return self._num_classes
def _predict(self, image_features, num_predictions_per_location,
proposal_boxes):
"""Computes encoded object locations and corresponding confidences.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
num_predictions_per_location: A list of integers representing the number
of box predictions to be made per spatial location for each feature map.
Currently, this must be set to [1], or an error will be raised.
proposal_boxes: A float tensor of shape [batch_size, num_proposals,
box_code_size].
Returns:
box_encodings: A list of float tensors of shape
[batch_size, num_anchors_i, q, code_size] representing the location of
the objects, where q is 1 or the number of classes. Each entry in the
list corresponds to a feature map in the input `image_features` list.
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
Raises:
ValueError: if num_predictions_per_location is not 1 or if
len(image_features) is not 1.
"""
if (len(num_predictions_per_location) != 1 or
num_predictions_per_location[0] != 1):
raise ValueError('Currently RfcnBoxPredictor only supports '
'predicting a single box per class per location.')
if len(image_features) != 1:
raise ValueError('length of `image_features` must be 1. Found {}'.
format(len(image_features)))
image_feature = image_features[0]
num_predictions_per_location = num_predictions_per_location[0]
batch_size = tf.shape(proposal_boxes)[0]
num_boxes = tf.shape(proposal_boxes)[1]
net = image_feature
with slim.arg_scope(self._conv_hyperparams_fn()):
net = slim.conv2d(net, self._depth, [1, 1], scope='reduce_depth')
# Location predictions.
location_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
self.num_classes *
self._box_code_size)
location_feature_map = slim.conv2d(net, location_feature_map_depth,
[1, 1], activation_fn=None,
scope='refined_locations')
box_encodings = ops.batch_position_sensitive_crop_regions(
location_feature_map,
boxes=proposal_boxes,
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True)
box_encodings = tf.squeeze(box_encodings, axis=[2, 3])
box_encodings = tf.reshape(box_encodings,
[batch_size * num_boxes, 1, self.num_classes,
self._box_code_size])
# Class predictions.
total_classes = self.num_classes + 1 # Account for background class.
class_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
total_classes)
class_feature_map = slim.conv2d(net, class_feature_map_depth, [1, 1],
activation_fn=None,
scope='class_predictions')
class_predictions_with_background = (
ops.batch_position_sensitive_crop_regions(
class_feature_map,
boxes=proposal_boxes,
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True))
class_predictions_with_background = tf.squeeze(
class_predictions_with_background, axis=[2, 3])
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size * num_boxes, 1, total_classes])
return {BOX_ENCODINGS: [box_encodings],
CLASS_PREDICTIONS_WITH_BACKGROUND:
[class_predictions_with_background]} | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/rfcn_box_predictor.py | rfcn_box_predictor.py |
"""Convolutional Box Predictors with and without weight sharing."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.core import box_predictor
from object_detection.utils import shape_utils
from object_detection.utils import static_shape
BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS
class _NoopVariableScope(object):
"""A dummy class that does not push any scope."""
def __enter__(self):
return None
def __exit__(self, exc_type, exc_value, traceback):
return False
class ConvolutionalBoxPredictor(box_predictor.BoxPredictor):
"""Convolutional Box Predictor.
Optionally add an intermediate 1x1 convolutional layer after features and
predict in parallel branches box_encodings and
class_predictions_with_background.
Currently this box predictor assumes that predictions are "shared" across
classes --- that is each anchor makes box predictions which do not depend
on class.
"""
def __init__(self,
is_training,
num_classes,
box_prediction_head,
class_prediction_head,
other_heads,
conv_hyperparams_fn,
num_layers_before_predictor,
min_depth,
max_depth):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
box_prediction_head: The head that predicts the boxes.
class_prediction_head: The head that predicts the classes.
other_heads: A dictionary mapping head names to convolutional
head classes.
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
min_depth: Minimum feature depth prior to predicting box encodings
and class predictions.
max_depth: Maximum feature depth prior to predicting box encodings
and class predictions. If max_depth is set to 0, no additional
feature map will be inserted before location and class predictions.
Raises:
ValueError: if min_depth > max_depth.
"""
super(ConvolutionalBoxPredictor, self).__init__(is_training, num_classes)
self._box_prediction_head = box_prediction_head
self._class_prediction_head = class_prediction_head
self._other_heads = other_heads
self._conv_hyperparams_fn = conv_hyperparams_fn
self._min_depth = min_depth
self._max_depth = max_depth
self._num_layers_before_predictor = num_layers_before_predictor
@property
def num_classes(self):
return self._num_classes
def _predict(self, image_features, num_predictions_per_location_list):
"""Computes encoded object locations and corresponding confidences.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
num_predictions_per_location_list: A list of integers representing the
number of box predictions to be made per spatial location for each
feature map.
Returns:
A dictionary containing:
box_encodings: A list of float tensors of shape
[batch_size, num_anchors_i, q, code_size] representing the location of
the objects, where q is 1 or the number of classes. Each entry in the
list corresponds to a feature map in the input `image_features` list.
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
(optional) Predictions from other heads.
"""
predictions = {
BOX_ENCODINGS: [],
CLASS_PREDICTIONS_WITH_BACKGROUND: [],
}
for head_name in self._other_heads.keys():
predictions[head_name] = []
# TODO(rathodv): Come up with a better way to generate scope names
# in box predictor once we have time to retrain all models in the zoo.
# The following lines create scope names to be backwards compatible with the
# existing checkpoints.
box_predictor_scopes = [_NoopVariableScope()]
if len(image_features) > 1:
box_predictor_scopes = [
tf.variable_scope('BoxPredictor_{}'.format(i))
for i in range(len(image_features))
]
for (image_feature,
num_predictions_per_location, box_predictor_scope) in zip(
image_features, num_predictions_per_location_list,
box_predictor_scopes):
net = image_feature
with box_predictor_scope:
with slim.arg_scope(self._conv_hyperparams_fn()):
with slim.arg_scope([slim.dropout], is_training=self._is_training):
# Add additional conv layers before the class predictor.
features_depth = static_shape.get_depth(image_feature.get_shape())
depth = max(min(features_depth, self._max_depth), self._min_depth)
tf.logging.info('depth of additional conv before box predictor: {}'.
format(depth))
if depth > 0 and self._num_layers_before_predictor > 0:
for i in range(self._num_layers_before_predictor):
net = slim.conv2d(
net,
depth, [1, 1],
reuse=tf.AUTO_REUSE,
scope='Conv2d_%d_1x1_%d' % (i, depth))
sorted_keys = sorted(self._other_heads.keys())
sorted_keys.append(BOX_ENCODINGS)
sorted_keys.append(CLASS_PREDICTIONS_WITH_BACKGROUND)
for head_name in sorted_keys:
if head_name == BOX_ENCODINGS:
head_obj = self._box_prediction_head
elif head_name == CLASS_PREDICTIONS_WITH_BACKGROUND:
head_obj = self._class_prediction_head
else:
head_obj = self._other_heads[head_name]
prediction = head_obj.predict(
features=net,
num_predictions_per_location=num_predictions_per_location)
predictions[head_name].append(prediction)
return predictions
# TODO(rathodv): Replace with slim.arg_scope_func_key once its available
# externally.
def _arg_scope_func_key(op):
"""Returns a key that can be used to index arg_scope dictionary."""
return getattr(op, '_key_op', str(op))
# TODO(rathodv): Merge the implementation with ConvolutionalBoxPredictor above
# since they are very similar.
class WeightSharedConvolutionalBoxPredictor(box_predictor.BoxPredictor):
"""Convolutional Box Predictor with weight sharing.
Defines the box predictor as defined in
https://arxiv.org/abs/1708.02002. This class differs from
ConvolutionalBoxPredictor in that it shares weights and biases while
predicting from different feature maps. However, batch_norm parameters are not
shared because the statistics of the activations vary among the different
feature maps.
Also note that separate multi-layer towers are constructed for the box
encoding and class predictors respectively.
"""
def __init__(self,
is_training,
num_classes,
box_prediction_head,
class_prediction_head,
other_heads,
conv_hyperparams_fn,
depth,
num_layers_before_predictor,
kernel_size=3,
apply_batch_norm=False,
share_prediction_tower=False,
use_depthwise=False):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
box_prediction_head: The head that predicts the boxes.
class_prediction_head: The head that predicts the classes.
other_heads: A dictionary mapping head names to convolutional
head classes.
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
depth: depth of conv layers.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
kernel_size: Size of final convolution kernel.
apply_batch_norm: Whether to apply batch normalization to conv layers in
this predictor.
share_prediction_tower: Whether to share the multi-layer tower among box
prediction head, class prediction head and other heads.
use_depthwise: Whether to use depthwise separable conv2d instead of
regular conv2d.
"""
super(WeightSharedConvolutionalBoxPredictor, self).__init__(is_training,
num_classes)
self._box_prediction_head = box_prediction_head
self._class_prediction_head = class_prediction_head
self._other_heads = other_heads
self._conv_hyperparams_fn = conv_hyperparams_fn
self._depth = depth
self._num_layers_before_predictor = num_layers_before_predictor
self._kernel_size = kernel_size
self._apply_batch_norm = apply_batch_norm
self._share_prediction_tower = share_prediction_tower
self._use_depthwise = use_depthwise
@property
def num_classes(self):
return self._num_classes
def _insert_additional_projection_layer(self, image_feature,
inserted_layer_counter,
target_channel):
if inserted_layer_counter < 0:
return image_feature, inserted_layer_counter
image_feature = slim.conv2d(
image_feature,
target_channel, [1, 1],
stride=1,
padding='SAME',
activation_fn=None,
normalizer_fn=(tf.identity if self._apply_batch_norm else None),
scope='ProjectionLayer/conv2d_{}'.format(
inserted_layer_counter))
if self._apply_batch_norm:
image_feature = slim.batch_norm(
image_feature,
scope='ProjectionLayer/conv2d_{}/BatchNorm'.format(
inserted_layer_counter))
inserted_layer_counter += 1
return image_feature, inserted_layer_counter
def _compute_base_tower(self, tower_name_scope, image_feature, feature_index):
net = image_feature
for i in range(self._num_layers_before_predictor):
if self._use_depthwise:
conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1)
else:
conv_op = slim.conv2d
net = conv_op(
net,
self._depth, [self._kernel_size, self._kernel_size],
stride=1,
padding='SAME',
activation_fn=None,
normalizer_fn=(tf.identity if self._apply_batch_norm else None),
scope='{}/conv2d_{}'.format(tower_name_scope, i))
if self._apply_batch_norm:
net = slim.batch_norm(
net,
scope='{}/conv2d_{}/BatchNorm/feature_{}'.
format(tower_name_scope, i, feature_index))
net = tf.nn.relu6(net)
return net
def _predict_head(self, head_name, head_obj, image_feature, box_tower_feature,
feature_index, num_predictions_per_location):
if head_name == CLASS_PREDICTIONS_WITH_BACKGROUND:
tower_name_scope = 'ClassPredictionTower'
else:
tower_name_scope = head_name + 'PredictionTower'
if self._share_prediction_tower:
head_tower_feature = box_tower_feature
else:
head_tower_feature = self._compute_base_tower(
tower_name_scope=tower_name_scope,
image_feature=image_feature,
feature_index=feature_index)
return head_obj.predict(
features=head_tower_feature,
num_predictions_per_location=num_predictions_per_location)
def _predict(self, image_features, num_predictions_per_location_list):
"""Computes encoded object locations and corresponding confidences.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels] containing features for a batch of images. Note that
when not all tensors in the list have the same number of channels, an
additional projection layer will be added on top the tensor to generate
feature map with number of channels consitent with the majority.
num_predictions_per_location_list: A list of integers representing the
number of box predictions to be made per spatial location for each
feature map. Note that all values must be the same since the weights are
shared.
Returns:
A dictionary containing:
box_encodings: A list of float tensors of shape
[batch_size, num_anchors_i, code_size] representing the location of
the objects. Each entry in the list corresponds to a feature map in
the input `image_features` list.
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
(optional) Predictions from other heads.
E.g., mask_predictions: A list of float tensors of shape
[batch_size, num_anchord_i, num_classes, mask_height, mask_width].
Raises:
ValueError: If the num predictions per locations differs between the
feature maps.
"""
if len(set(num_predictions_per_location_list)) > 1:
raise ValueError('num predictions per location must be same for all'
'feature maps, found: {}'.format(
num_predictions_per_location_list))
feature_channels = [
shape_utils.get_dim_as_int(image_feature.shape[3])
for image_feature in image_features
]
has_different_feature_channels = len(set(feature_channels)) > 1
if has_different_feature_channels:
inserted_layer_counter = 0
target_channel = max(set(feature_channels), key=feature_channels.count)
tf.logging.info('Not all feature maps have the same number of '
'channels, found: {}, appending additional projection '
'layers to bring all feature maps to uniformly have {} '
'channels.'.format(feature_channels, target_channel))
else:
# Place holder variables if has_different_feature_channels is False.
target_channel = -1
inserted_layer_counter = -1
predictions = {
BOX_ENCODINGS: [],
CLASS_PREDICTIONS_WITH_BACKGROUND: [],
}
for head_name in self._other_heads.keys():
predictions[head_name] = []
for feature_index, (image_feature,
num_predictions_per_location) in enumerate(
zip(image_features,
num_predictions_per_location_list)):
with tf.variable_scope('WeightSharedConvolutionalBoxPredictor',
reuse=tf.AUTO_REUSE):
with slim.arg_scope(self._conv_hyperparams_fn()):
# TODO(wangjiang) Pass is_training to the head class directly.
with slim.arg_scope([slim.dropout], is_training=self._is_training):
(image_feature,
inserted_layer_counter) = self._insert_additional_projection_layer(
image_feature, inserted_layer_counter, target_channel)
if self._share_prediction_tower:
box_tower_scope = 'PredictionTower'
else:
box_tower_scope = 'BoxPredictionTower'
box_tower_feature = self._compute_base_tower(
tower_name_scope=box_tower_scope,
image_feature=image_feature,
feature_index=feature_index)
box_encodings = self._box_prediction_head.predict(
features=box_tower_feature,
num_predictions_per_location=num_predictions_per_location)
predictions[BOX_ENCODINGS].append(box_encodings)
sorted_keys = sorted(self._other_heads.keys())
sorted_keys.append(CLASS_PREDICTIONS_WITH_BACKGROUND)
for head_name in sorted_keys:
if head_name == CLASS_PREDICTIONS_WITH_BACKGROUND:
head_obj = self._class_prediction_head
else:
head_obj = self._other_heads[head_name]
prediction = self._predict_head(
head_name=head_name,
head_obj=head_obj,
image_feature=image_feature,
box_tower_feature=box_tower_feature,
feature_index=feature_index,
num_predictions_per_location=num_predictions_per_location)
predictions[head_name].append(prediction)
return predictions | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/convolutional_box_predictor.py | convolutional_box_predictor.py |
"""Convolutional Box Predictors with and without weight sharing."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from six.moves import range
import tensorflow.compat.v1 as tf
from object_detection.core import box_predictor
from object_detection.utils import shape_utils
from object_detection.utils import static_shape
keras = tf.keras.layers
BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS
class _NoopVariableScope(object):
"""A dummy class that does not push any scope."""
def __enter__(self):
return None
def __exit__(self, exc_type, exc_value, traceback):
return False
class ConvolutionalBoxPredictor(box_predictor.KerasBoxPredictor):
"""Convolutional Keras Box Predictor.
Optionally add an intermediate 1x1 convolutional layer after features and
predict in parallel branches box_encodings and
class_predictions_with_background.
Currently this box predictor assumes that predictions are "shared" across
classes --- that is each anchor makes box predictions which do not depend
on class.
"""
def __init__(self,
is_training,
num_classes,
box_prediction_heads,
class_prediction_heads,
other_heads,
conv_hyperparams,
num_layers_before_predictor,
min_depth,
max_depth,
freeze_batchnorm,
inplace_batchnorm_update,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
box_prediction_heads: A list of heads that predict the boxes.
class_prediction_heads: A list of heads that predict the classes.
other_heads: A dictionary mapping head names to lists of convolutional
heads.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
min_depth: Minimum feature depth prior to predicting box encodings
and class predictions.
max_depth: Maximum feature depth prior to predicting box encodings
and class predictions. If max_depth is set to 0, no additional
feature map will be inserted before location and class predictions.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
Raises:
ValueError: if min_depth > max_depth.
"""
super(ConvolutionalBoxPredictor, self).__init__(
is_training, num_classes, freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
name=name)
if min_depth > max_depth:
raise ValueError('min_depth should be less than or equal to max_depth')
if len(box_prediction_heads) != len(class_prediction_heads):
raise ValueError('All lists of heads must be the same length.')
for other_head_list in other_heads.values():
if len(box_prediction_heads) != len(other_head_list):
raise ValueError('All lists of heads must be the same length.')
self._prediction_heads = {
BOX_ENCODINGS: box_prediction_heads,
CLASS_PREDICTIONS_WITH_BACKGROUND: class_prediction_heads,
}
if other_heads:
self._prediction_heads.update(other_heads)
# We generate a consistent ordering for the prediction head names,
# So that all workers build the model in the exact same order
self._sorted_head_names = sorted(self._prediction_heads.keys())
self._conv_hyperparams = conv_hyperparams
self._min_depth = min_depth
self._max_depth = max_depth
self._num_layers_before_predictor = num_layers_before_predictor
self._shared_nets = []
def build(self, input_shapes):
"""Creates the variables of the layer."""
if len(input_shapes) != len(self._prediction_heads[BOX_ENCODINGS]):
raise ValueError('This box predictor was constructed with %d heads,'
'but there are %d inputs.' %
(len(self._prediction_heads[BOX_ENCODINGS]),
len(input_shapes)))
for stack_index, input_shape in enumerate(input_shapes):
net = []
# Add additional conv layers before the class predictor.
features_depth = static_shape.get_depth(input_shape)
depth = max(min(features_depth, self._max_depth), self._min_depth)
tf.logging.info(
'depth of additional conv before box predictor: {}'.format(depth))
if depth > 0 and self._num_layers_before_predictor > 0:
for i in range(self._num_layers_before_predictor):
net.append(keras.Conv2D(depth, [1, 1],
name='SharedConvolutions_%d/Conv2d_%d_1x1_%d'
% (stack_index, i, depth),
padding='SAME',
**self._conv_hyperparams.params()))
net.append(self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='SharedConvolutions_%d/Conv2d_%d_1x1_%d_norm'
% (stack_index, i, depth)))
net.append(self._conv_hyperparams.build_activation_layer(
name='SharedConvolutions_%d/Conv2d_%d_1x1_%d_activation'
% (stack_index, i, depth),
))
# Until certain bugs are fixed in checkpointable lists,
# this net must be appended only once it's been filled with layers
self._shared_nets.append(net)
self.built = True
def _predict(self, image_features, **kwargs):
"""Computes encoded object locations and corresponding confidences.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
**kwargs: Unused Keyword args
Returns:
box_encodings: A list of float tensors of shape
[batch_size, num_anchors_i, q, code_size] representing the location of
the objects, where q is 1 or the number of classes. Each entry in the
list corresponds to a feature map in the input `image_features` list.
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
"""
predictions = collections.defaultdict(list)
for (index, net) in enumerate(image_features):
# Apply shared conv layers before the head predictors.
for layer in self._shared_nets[index]:
net = layer(net)
for head_name in self._sorted_head_names:
head_obj = self._prediction_heads[head_name][index]
prediction = head_obj(net)
predictions[head_name].append(prediction)
return predictions
class WeightSharedConvolutionalBoxPredictor(box_predictor.KerasBoxPredictor):
"""Convolutional Box Predictor with weight sharing based on Keras.
Defines the box predictor as defined in
https://arxiv.org/abs/1708.02002. This class differs from
ConvolutionalBoxPredictor in that it shares weights and biases while
predicting from different feature maps. However, batch_norm parameters are not
shared because the statistics of the activations vary among the different
feature maps.
Also note that separate multi-layer towers are constructed for the box
encoding and class predictors respectively.
"""
def __init__(self,
is_training,
num_classes,
box_prediction_head,
class_prediction_head,
other_heads,
conv_hyperparams,
depth,
num_layers_before_predictor,
freeze_batchnorm,
inplace_batchnorm_update,
kernel_size=3,
apply_batch_norm=False,
share_prediction_tower=False,
use_depthwise=False,
apply_conv_hyperparams_pointwise=False,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
box_prediction_head: The head that predicts the boxes.
class_prediction_head: The head that predicts the classes.
other_heads: A dictionary mapping head names to convolutional
head classes.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
depth: depth of conv layers.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
kernel_size: Size of final convolution kernel.
apply_batch_norm: Whether to apply batch normalization to conv layers in
this predictor.
share_prediction_tower: Whether to share the multi-layer tower among box
prediction head, class prediction head and other heads.
use_depthwise: Whether to use depthwise separable conv2d instead of
regular conv2d.
apply_conv_hyperparams_pointwise: Whether to apply the conv_hyperparams to
the pointwise_initializer and pointwise_regularizer when using depthwise
separable convolutions. By default, conv_hyperparams are only applied to
the depthwise initializer and regularizer when use_depthwise is true.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
"""
super(WeightSharedConvolutionalBoxPredictor, self).__init__(
is_training, num_classes, freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
name=name)
self._box_prediction_head = box_prediction_head
self._prediction_heads = {
CLASS_PREDICTIONS_WITH_BACKGROUND: class_prediction_head,
}
if other_heads:
self._prediction_heads.update(other_heads)
# We generate a consistent ordering for the prediction head names,
# so that all workers build the model in the exact same order.
self._sorted_head_names = sorted(self._prediction_heads.keys())
self._conv_hyperparams = conv_hyperparams
self._depth = depth
self._num_layers_before_predictor = num_layers_before_predictor
self._kernel_size = kernel_size
self._apply_batch_norm = apply_batch_norm
self._share_prediction_tower = share_prediction_tower
self._use_depthwise = use_depthwise
self._apply_conv_hyperparams_pointwise = apply_conv_hyperparams_pointwise
# Additional projection layers to bring all feature maps to uniform
# channels.
self._additional_projection_layers = []
# The base tower layers for each head.
self._base_tower_layers_for_heads = {
BOX_ENCODINGS: [],
CLASS_PREDICTIONS_WITH_BACKGROUND: [],
}
for head_name in other_heads.keys():
self._base_tower_layers_for_heads[head_name] = []
# A dict maps the tower_name_scope of each head to the shared conv layers in
# the base tower for different feature map levels.
self._head_scope_conv_layers = {}
def _insert_additional_projection_layer(
self, inserted_layer_counter, target_channel):
projection_layers = []
if inserted_layer_counter >= 0:
use_bias = False if (self._apply_batch_norm and not
self._conv_hyperparams.force_use_bias()) else True
projection_layers.append(keras.Conv2D(
target_channel, [1, 1], strides=1, padding='SAME',
name='ProjectionLayer/conv2d_{}'.format(inserted_layer_counter),
**self._conv_hyperparams.params(use_bias=use_bias)))
if self._apply_batch_norm:
projection_layers.append(self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='ProjectionLayer/conv2d_{}/BatchNorm'.format(
inserted_layer_counter)))
inserted_layer_counter += 1
return inserted_layer_counter, projection_layers
def _compute_base_tower(self, tower_name_scope, feature_index):
conv_layers = []
batch_norm_layers = []
activation_layers = []
use_bias = False if (self._apply_batch_norm and not
self._conv_hyperparams.force_use_bias()) else True
for additional_conv_layer_idx in range(self._num_layers_before_predictor):
layer_name = '{}/conv2d_{}'.format(
tower_name_scope, additional_conv_layer_idx)
if tower_name_scope not in self._head_scope_conv_layers:
if self._use_depthwise:
kwargs = self._conv_hyperparams.params(use_bias=use_bias)
# Both the regularizer and initializer apply to the depthwise layer,
# so we remap the kernel_* to depthwise_* here.
kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['depthwise_initializer'] = kwargs['kernel_initializer']
if self._apply_conv_hyperparams_pointwise:
kwargs['pointwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['pointwise_initializer'] = kwargs['kernel_initializer']
conv_layers.append(
tf.keras.layers.SeparableConv2D(
self._depth, [self._kernel_size, self._kernel_size],
padding='SAME',
name=layer_name,
**kwargs))
else:
conv_layers.append(
tf.keras.layers.Conv2D(
self._depth,
[self._kernel_size, self._kernel_size],
padding='SAME',
name=layer_name,
**self._conv_hyperparams.params(use_bias=use_bias)))
# Each feature gets a separate batchnorm parameter even though they share
# the same convolution weights.
if self._apply_batch_norm:
batch_norm_layers.append(self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='{}/conv2d_{}/BatchNorm/feature_{}'.format(
tower_name_scope, additional_conv_layer_idx, feature_index)))
activation_layers.append(self._conv_hyperparams.build_activation_layer(
name='{}/conv2d_{}/activation_{}'.format(
tower_name_scope, additional_conv_layer_idx, feature_index)))
# Set conv layers as the shared conv layers for different feature maps with
# the same tower_name_scope.
if tower_name_scope in self._head_scope_conv_layers:
conv_layers = self._head_scope_conv_layers[tower_name_scope]
# Stack the base_tower_layers in the order of conv_layer, batch_norm_layer
# and activation_layer
base_tower_layers = []
for i in range(self._num_layers_before_predictor):
base_tower_layers.extend([conv_layers[i]])
if self._apply_batch_norm:
base_tower_layers.extend([batch_norm_layers[i]])
base_tower_layers.extend([activation_layers[i]])
return conv_layers, base_tower_layers
def build(self, input_shapes):
"""Creates the variables of the layer."""
feature_channels = [
shape_utils.get_dim_as_int(input_shape[3])
for input_shape in input_shapes
]
has_different_feature_channels = len(set(feature_channels)) > 1
if has_different_feature_channels:
inserted_layer_counter = 0
target_channel = max(set(feature_channels), key=feature_channels.count)
tf.logging.info('Not all feature maps have the same number of '
'channels, found: {}, appending additional projection '
'layers to bring all feature maps to uniformly have {} '
'channels.'.format(feature_channels, target_channel))
else:
# Place holder variables if has_different_feature_channels is False.
target_channel = -1
inserted_layer_counter = -1
def _build_layers(tower_name_scope, feature_index):
conv_layers, base_tower_layers = self._compute_base_tower(
tower_name_scope=tower_name_scope, feature_index=feature_index)
if tower_name_scope not in self._head_scope_conv_layers:
self._head_scope_conv_layers[tower_name_scope] = conv_layers
return base_tower_layers
for feature_index in range(len(input_shapes)):
# Additional projection layers should not be shared as input channels
# (and thus weight shapes) are different
inserted_layer_counter, projection_layers = (
self._insert_additional_projection_layer(
inserted_layer_counter, target_channel))
self._additional_projection_layers.append(projection_layers)
if self._share_prediction_tower:
box_tower_scope = 'PredictionTower'
else:
box_tower_scope = 'BoxPredictionTower'
# For box tower base
box_tower_layers = _build_layers(box_tower_scope, feature_index)
self._base_tower_layers_for_heads[BOX_ENCODINGS].append(box_tower_layers)
for head_name in self._sorted_head_names:
if head_name == CLASS_PREDICTIONS_WITH_BACKGROUND:
tower_name_scope = 'ClassPredictionTower'
else:
tower_name_scope = '{}PredictionTower'.format(head_name)
box_tower_layers = _build_layers(tower_name_scope, feature_index)
self._base_tower_layers_for_heads[head_name].append(box_tower_layers)
self.built = True
def _predict(self, image_features, **kwargs):
"""Computes encoded object locations and corresponding confidences.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
**kwargs: Unused Keyword args
Returns:
box_encodings: A list of float tensors of shape
[batch_size, num_anchors_i, q, code_size] representing the location of
the objects, where q is 1 or the number of classes. Each entry in the
list corresponds to a feature map in the input `image_features` list.
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
"""
predictions = collections.defaultdict(list)
def _apply_layers(base_tower_layers, image_feature):
for layer in base_tower_layers:
image_feature = layer(image_feature)
return image_feature
for (index, image_feature) in enumerate(image_features):
# Apply additional projection layers to image features
for layer in self._additional_projection_layers[index]:
image_feature = layer(image_feature)
# Apply box tower layers.
box_tower_feature = _apply_layers(
self._base_tower_layers_for_heads[BOX_ENCODINGS][index],
image_feature)
box_encodings = self._box_prediction_head(box_tower_feature)
predictions[BOX_ENCODINGS].append(box_encodings)
for head_name in self._sorted_head_names:
head_obj = self._prediction_heads[head_name]
if self._share_prediction_tower:
head_tower_feature = box_tower_feature
else:
head_tower_feature = _apply_layers(
self._base_tower_layers_for_heads[head_name][index],
image_feature)
prediction = head_obj(head_tower_feature)
predictions[head_name].append(prediction)
return predictions | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/convolutional_keras_box_predictor.py | convolutional_keras_box_predictor.py |
"""Mask R-CNN Box Predictor."""
from object_detection.core import box_predictor
BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS
class MaskRCNNBoxPredictor(box_predictor.BoxPredictor):
"""Mask R-CNN Box Predictor.
See Mask R-CNN: He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017).
Mask R-CNN. arXiv preprint arXiv:1703.06870.
This is used for the second stage of the Mask R-CNN detector where proposals
cropped from an image are arranged along the batch dimension of the input
image_features tensor. Notice that locations are *not* shared across classes,
thus for each anchor, a separate prediction is made for each class.
In addition to predicting boxes and classes, optionally this class allows
predicting masks and/or keypoints inside detection boxes.
Currently this box predictor makes per-class predictions; that is, each
anchor makes a separate box prediction for each class.
"""
def __init__(self,
is_training,
num_classes,
box_prediction_head,
class_prediction_head,
third_stage_heads):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
box_prediction_head: The head that predicts the boxes in second stage.
class_prediction_head: The head that predicts the classes in second stage.
third_stage_heads: A dictionary mapping head names to mask rcnn head
classes.
"""
super(MaskRCNNBoxPredictor, self).__init__(is_training, num_classes)
self._box_prediction_head = box_prediction_head
self._class_prediction_head = class_prediction_head
self._third_stage_heads = third_stage_heads
@property
def num_classes(self):
return self._num_classes
def get_second_stage_prediction_heads(self):
return BOX_ENCODINGS, CLASS_PREDICTIONS_WITH_BACKGROUND
def get_third_stage_prediction_heads(self):
return sorted(self._third_stage_heads.keys())
def _predict(self,
image_features,
num_predictions_per_location,
prediction_stage=2):
"""Optionally computes encoded object locations, confidences, and masks.
Predicts the heads belonging to the given prediction stage.
Args:
image_features: A list of float tensors of shape
[batch_size, height_i, width_i, channels_i] containing roi pooled
features for each image. The length of the list should be 1 otherwise
a ValueError will be raised.
num_predictions_per_location: A list of integers representing the number
of box predictions to be made per spatial location for each feature map.
Currently, this must be set to [1], or an error will be raised.
prediction_stage: Prediction stage. Acceptable values are 2 and 3.
Returns:
A dictionary containing the predicted tensors that are listed in
self._prediction_heads. A subset of the following keys will exist in the
dictionary:
BOX_ENCODINGS: A float tensor of shape
[batch_size, 1, num_classes, code_size] representing the
location of the objects.
CLASS_PREDICTIONS_WITH_BACKGROUND: A float tensor of shape
[batch_size, 1, num_classes + 1] representing the class
predictions for the proposals.
MASK_PREDICTIONS: A float tensor of shape
[batch_size, 1, num_classes, image_height, image_width]
Raises:
ValueError: If num_predictions_per_location is not 1 or if
len(image_features) is not 1.
ValueError: if prediction_stage is not 2 or 3.
"""
if (len(num_predictions_per_location) != 1 or
num_predictions_per_location[0] != 1):
raise ValueError('Currently FullyConnectedBoxPredictor only supports '
'predicting a single box per class per location.')
if len(image_features) != 1:
raise ValueError('length of `image_features` must be 1. Found {}'.format(
len(image_features)))
image_feature = image_features[0]
predictions_dict = {}
if prediction_stage == 2:
predictions_dict[BOX_ENCODINGS] = self._box_prediction_head.predict(
features=image_feature,
num_predictions_per_location=num_predictions_per_location[0])
predictions_dict[CLASS_PREDICTIONS_WITH_BACKGROUND] = (
self._class_prediction_head.predict(
features=image_feature,
num_predictions_per_location=num_predictions_per_location[0]))
elif prediction_stage == 3:
for prediction_head in self.get_third_stage_prediction_heads():
head_object = self._third_stage_heads[prediction_head]
predictions_dict[prediction_head] = head_object.predict(
features=image_feature,
num_predictions_per_location=num_predictions_per_location[0])
else:
raise ValueError('prediction_stage should be either 2 or 3.')
return predictions_dict | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/mask_rcnn_box_predictor.py | mask_rcnn_box_predictor.py |
"""Mask R-CNN Box Predictor."""
from object_detection.core import box_predictor
BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS
class MaskRCNNKerasBoxPredictor(box_predictor.KerasBoxPredictor):
"""Mask R-CNN Box Predictor.
See Mask R-CNN: He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017).
Mask R-CNN. arXiv preprint arXiv:1703.06870.
This is used for the second stage of the Mask R-CNN detector where proposals
cropped from an image are arranged along the batch dimension of the input
image_features tensor. Notice that locations are *not* shared across classes,
thus for each anchor, a separate prediction is made for each class.
In addition to predicting boxes and classes, optionally this class allows
predicting masks and/or keypoints inside detection boxes.
Currently this box predictor makes per-class predictions; that is, each
anchor makes a separate box prediction for each class.
"""
def __init__(self,
is_training,
num_classes,
freeze_batchnorm,
box_prediction_head,
class_prediction_head,
third_stage_heads,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
box_prediction_head: The head that predicts the boxes in second stage.
class_prediction_head: The head that predicts the classes in second stage.
third_stage_heads: A dictionary mapping head names to mask rcnn head
classes.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
"""
super(MaskRCNNKerasBoxPredictor, self).__init__(
is_training, num_classes, freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=False, name=name)
self._box_prediction_head = box_prediction_head
self._class_prediction_head = class_prediction_head
self._third_stage_heads = third_stage_heads
@property
def num_classes(self):
return self._num_classes
def get_second_stage_prediction_heads(self):
return BOX_ENCODINGS, CLASS_PREDICTIONS_WITH_BACKGROUND
def get_third_stage_prediction_heads(self):
return sorted(self._third_stage_heads.keys())
def _predict(self,
image_features,
prediction_stage=2,
**kwargs):
"""Optionally computes encoded object locations, confidences, and masks.
Predicts the heads belonging to the given prediction stage.
Args:
image_features: A list of float tensors of shape
[batch_size, height_i, width_i, channels_i] containing roi pooled
features for each image. The length of the list should be 1 otherwise
a ValueError will be raised.
prediction_stage: Prediction stage. Acceptable values are 2 and 3.
**kwargs: Unused Keyword args
Returns:
A dictionary containing the predicted tensors that are listed in
self._prediction_heads. A subset of the following keys will exist in the
dictionary:
BOX_ENCODINGS: A float tensor of shape
[batch_size, 1, num_classes, code_size] representing the
location of the objects.
CLASS_PREDICTIONS_WITH_BACKGROUND: A float tensor of shape
[batch_size, 1, num_classes + 1] representing the class
predictions for the proposals.
MASK_PREDICTIONS: A float tensor of shape
[batch_size, 1, num_classes, image_height, image_width]
Raises:
ValueError: If num_predictions_per_location is not 1 or if
len(image_features) is not 1.
ValueError: if prediction_stage is not 2 or 3.
"""
if len(image_features) != 1:
raise ValueError('length of `image_features` must be 1. Found {}'.format(
len(image_features)))
image_feature = image_features[0]
predictions_dict = {}
if prediction_stage == 2:
predictions_dict[BOX_ENCODINGS] = self._box_prediction_head(image_feature)
predictions_dict[CLASS_PREDICTIONS_WITH_BACKGROUND] = (
self._class_prediction_head(image_feature))
elif prediction_stage == 3:
for prediction_head in self.get_third_stage_prediction_heads():
head_object = self._third_stage_heads[prediction_head]
predictions_dict[prediction_head] = head_object(image_feature)
else:
raise ValueError('prediction_stage should be either 2 or 3.')
return predictions_dict | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/mask_rcnn_keras_box_predictor.py | mask_rcnn_keras_box_predictor.py |
"""RFCN Box Predictor."""
import tensorflow.compat.v1 as tf
from object_detection.core import box_predictor
from object_detection.utils import ops
BOX_ENCODINGS = box_predictor.BOX_ENCODINGS
CLASS_PREDICTIONS_WITH_BACKGROUND = (
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND)
MASK_PREDICTIONS = box_predictor.MASK_PREDICTIONS
class RfcnKerasBoxPredictor(box_predictor.KerasBoxPredictor):
"""RFCN Box Predictor.
Applies a position sensitive ROI pooling on position sensitive feature maps to
predict classes and refined locations. See https://arxiv.org/abs/1605.06409
for details.
This is used for the second stage of the RFCN meta architecture. Notice that
locations are *not* shared across classes, thus for each anchor, a separate
prediction is made for each class.
"""
def __init__(self,
is_training,
num_classes,
conv_hyperparams,
freeze_batchnorm,
num_spatial_bins,
depth,
crop_size,
box_code_size,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
num_spatial_bins: A list of two integers `[spatial_bins_y,
spatial_bins_x]`.
depth: Target depth to reduce the input feature maps to.
crop_size: A list of two integers `[crop_height, crop_width]`.
box_code_size: Size of encoding for each box.
name: A string name scope to assign to the box predictor. If `None`, Keras
will auto-generate one from the class name.
"""
super(RfcnKerasBoxPredictor, self).__init__(
is_training, num_classes, freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=False, name=name)
self._freeze_batchnorm = freeze_batchnorm
self._conv_hyperparams = conv_hyperparams
self._num_spatial_bins = num_spatial_bins
self._depth = depth
self._crop_size = crop_size
self._box_code_size = box_code_size
# Build the shared layers used for both heads
self._shared_conv_layers = []
self._shared_conv_layers.append(
tf.keras.layers.Conv2D(
self._depth,
[1, 1],
padding='SAME',
name='reduce_depth_conv',
**self._conv_hyperparams.params()))
self._shared_conv_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='reduce_depth_batchnorm'))
self._shared_conv_layers.append(
self._conv_hyperparams.build_activation_layer(
name='reduce_depth_activation'))
self._box_encoder_layers = []
location_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
self.num_classes *
self._box_code_size)
self._box_encoder_layers.append(
tf.keras.layers.Conv2D(
location_feature_map_depth,
[1, 1],
padding='SAME',
name='refined_locations_conv',
**self._conv_hyperparams.params()))
self._box_encoder_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='refined_locations_batchnorm'))
self._class_predictor_layers = []
self._total_classes = self.num_classes + 1 # Account for background class.
class_feature_map_depth = (self._num_spatial_bins[0] *
self._num_spatial_bins[1] *
self._total_classes)
self._class_predictor_layers.append(
tf.keras.layers.Conv2D(
class_feature_map_depth,
[1, 1],
padding='SAME',
name='class_predictions_conv',
**self._conv_hyperparams.params()))
self._class_predictor_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='class_predictions_batchnorm'))
@property
def num_classes(self):
return self._num_classes
def _predict(self, image_features, proposal_boxes, **kwargs):
"""Computes encoded object locations and corresponding confidences.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
proposal_boxes: A float tensor of shape [batch_size, num_proposals,
box_code_size].
**kwargs: Unused Keyword args
Returns:
box_encodings: A list of float tensors of shape
[batch_size, num_anchors_i, q, code_size] representing the location of
the objects, where q is 1 or the number of classes. Each entry in the
list corresponds to a feature map in the input `image_features` list.
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
Raises:
ValueError: if num_predictions_per_location is not 1 or if
len(image_features) is not 1.
"""
if len(image_features) != 1:
raise ValueError('length of `image_features` must be 1. Found {}'.
format(len(image_features)))
image_feature = image_features[0]
batch_size = tf.shape(proposal_boxes)[0]
num_boxes = tf.shape(proposal_boxes)[1]
net = image_feature
for layer in self._shared_conv_layers:
net = layer(net)
# Location predictions.
box_net = net
for layer in self._box_encoder_layers:
box_net = layer(box_net)
box_encodings = ops.batch_position_sensitive_crop_regions(
box_net,
boxes=proposal_boxes,
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True)
box_encodings = tf.squeeze(box_encodings, axis=[2, 3])
box_encodings = tf.reshape(box_encodings,
[batch_size * num_boxes, 1, self.num_classes,
self._box_code_size])
# Class predictions.
class_net = net
for layer in self._class_predictor_layers:
class_net = layer(class_net)
class_predictions_with_background = (
ops.batch_position_sensitive_crop_regions(
class_net,
boxes=proposal_boxes,
crop_size=self._crop_size,
num_spatial_bins=self._num_spatial_bins,
global_pool=True))
class_predictions_with_background = tf.squeeze(
class_predictions_with_background, axis=[2, 3])
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size * num_boxes, 1, self._total_classes])
return {BOX_ENCODINGS: [box_encodings],
CLASS_PREDICTIONS_WITH_BACKGROUND:
[class_predictions_with_background]} | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/rfcn_keras_box_predictor.py | rfcn_keras_box_predictor.py |
import tensorflow.compat.v1 as tf
from object_detection.predictors.heads import head
from object_detection.utils import shape_utils
class ConvolutionalClassHead(head.KerasHead):
"""Convolutional class prediction head."""
def __init__(self,
is_training,
num_class_slots,
use_dropout,
dropout_keep_prob,
kernel_size,
num_predictions_per_location,
conv_hyperparams,
freeze_batchnorm,
class_prediction_bias_init=0.0,
use_depthwise=False,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
num_predictions_per_location: Number of box predictions to be made per
spatial location. Int specifying number of boxes per location.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
Raises:
ValueError: if min_depth > max_depth.
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(ConvolutionalClassHead, self).__init__(name=name)
self._is_training = is_training
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._kernel_size = kernel_size
self._class_prediction_bias_init = class_prediction_bias_init
self._use_depthwise = use_depthwise
self._num_class_slots = num_class_slots
self._class_predictor_layers = []
if self._use_dropout:
self._class_predictor_layers.append(
# The Dropout layer's `training` parameter for the call method must
# be set implicitly by the Keras set_learning_phase. The object
# detection training code takes care of this.
tf.keras.layers.Dropout(rate=1.0 - self._dropout_keep_prob))
if self._use_depthwise:
self._class_predictor_layers.append(
tf.keras.layers.DepthwiseConv2D(
[self._kernel_size, self._kernel_size],
padding='SAME',
depth_multiplier=1,
strides=1,
dilation_rate=1,
name='ClassPredictor_depthwise',
**conv_hyperparams.params()))
self._class_predictor_layers.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name='ClassPredictor_depthwise_batchnorm'))
self._class_predictor_layers.append(
conv_hyperparams.build_activation_layer(
name='ClassPredictor_depthwise_activation'))
self._class_predictor_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._num_class_slots, [1, 1],
name='ClassPredictor',
**conv_hyperparams.params(use_bias=True)))
else:
self._class_predictor_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._num_class_slots,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='ClassPredictor',
bias_initializer=tf.constant_initializer(
self._class_prediction_bias_init),
**conv_hyperparams.params(use_bias=True)))
def _predict(self, features):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
Returns:
class_predictions_with_background: A float tensor of shape
[batch_size, num_anchors, num_class_slots] representing the class
predictions for the proposals.
"""
class_predictions_with_background = features
for layer in self._class_predictor_layers:
class_predictions_with_background = layer(
class_predictions_with_background)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, -1, self._num_class_slots])
return class_predictions_with_background
class MaskRCNNClassHead(head.KerasHead):
"""Mask RCNN class prediction head.
This is a piece of Mask RCNN which is responsible for predicting
just the class scores of boxes.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
is_training,
num_class_slots,
fc_hyperparams,
freeze_batchnorm,
use_dropout,
dropout_keep_prob,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
fc_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for fully connected dense ops.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
name: A string name scope to assign to the class head. If `None`, Keras
will auto-generate one from the class name.
"""
super(MaskRCNNClassHead, self).__init__(name=name)
self._is_training = is_training
self._freeze_batchnorm = freeze_batchnorm
self._num_class_slots = num_class_slots
self._fc_hyperparams = fc_hyperparams
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._class_predictor_layers = [tf.keras.layers.Flatten()]
if self._use_dropout:
self._class_predictor_layers.append(
tf.keras.layers.Dropout(rate=1.0 - self._dropout_keep_prob))
self._class_predictor_layers.append(
tf.keras.layers.Dense(self._num_class_slots,
name='ClassPredictor_dense'))
self._class_predictor_layers.append(
fc_hyperparams.build_batch_norm(training=(is_training and
not freeze_batchnorm),
name='ClassPredictor_batchnorm'))
def _predict(self, features):
"""Predicts the class scores for boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing features for a batch of images.
Returns:
class_predictions_with_background: A float tensor of shape
[batch_size, 1, num_class_slots] representing the class predictions for
the proposals.
"""
spatial_averaged_roi_pooled_features = tf.reduce_mean(
features, [1, 2], keep_dims=True, name='AvgPool')
net = spatial_averaged_roi_pooled_features
for layer in self._class_predictor_layers:
net = layer(net)
class_predictions_with_background = tf.reshape(
net,
[-1, 1, self._num_class_slots])
return class_predictions_with_background
class WeightSharedConvolutionalClassHead(head.KerasHead):
"""Weight shared convolutional class prediction head.
This head allows sharing the same set of parameters (weights) when called more
then once on different feature maps.
"""
def __init__(self,
num_class_slots,
num_predictions_per_location,
conv_hyperparams,
kernel_size=3,
class_prediction_bias_init=0.0,
use_dropout=False,
dropout_keep_prob=0.8,
use_depthwise=False,
apply_conv_hyperparams_to_heads=False,
score_converter_fn=tf.identity,
return_flat_predictions=True,
name=None):
"""Constructor.
Args:
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
num_predictions_per_location: Number of box predictions to be made per
spatial location. Int specifying number of boxes per location.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
kernel_size: Size of final convolution kernel.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_dropout: Whether to apply dropout to class prediction head.
dropout_keep_prob: Probability of keeping activiations.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
apply_conv_hyperparams_to_heads: Whether to apply conv_hyperparams to
depthwise seperable convolution layers in the box and class heads. By
default, the conv_hyperparams are only applied to layers in the
predictor tower when using depthwise separable convolutions.
score_converter_fn: Callable elementwise nonlinearity (that takes tensors
as inputs and returns tensors).
return_flat_predictions: If true, returns flattened prediction tensor
of shape [batch, height * width * num_predictions_per_location,
box_coder]. Otherwise returns the prediction tensor before reshaping,
whose shape is [batch, height, width, num_predictions_per_location *
num_class_slots].
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
Raises:
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(WeightSharedConvolutionalClassHead, self).__init__(name=name)
self._num_class_slots = num_class_slots
self._num_predictions_per_location = num_predictions_per_location
self._kernel_size = kernel_size
self._class_prediction_bias_init = class_prediction_bias_init
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._use_depthwise = use_depthwise
self._apply_conv_hyperparams_to_heads = apply_conv_hyperparams_to_heads
self._score_converter_fn = score_converter_fn
self._return_flat_predictions = return_flat_predictions
self._class_predictor_layers = []
if self._use_dropout:
self._class_predictor_layers.append(
tf.keras.layers.Dropout(rate=1.0 - self._dropout_keep_prob))
if self._use_depthwise:
kwargs = conv_hyperparams.params(use_bias=True)
if self._apply_conv_hyperparams_to_heads:
kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['depthwise_initializer'] = kwargs['kernel_initializer']
kwargs['pointwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['pointwise_initializer'] = kwargs['kernel_initializer']
self._class_predictor_layers.append(
tf.keras.layers.SeparableConv2D(
num_predictions_per_location * self._num_class_slots,
[self._kernel_size, self._kernel_size],
padding='SAME',
depth_multiplier=1,
strides=1,
name='ClassPredictor',
bias_initializer=tf.constant_initializer(
self._class_prediction_bias_init),
**kwargs))
else:
self._class_predictor_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._num_class_slots,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='ClassPredictor',
bias_initializer=tf.constant_initializer(
self._class_prediction_bias_init),
**conv_hyperparams.params(use_bias=True)))
def _predict(self, features):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
Returns:
class_predictions_with_background: A float tensor of shape
[batch_size, num_anchors, num_class_slots] representing the class
predictions for the proposals.
"""
class_predictions_with_background = features
for layer in self._class_predictor_layers:
class_predictions_with_background = layer(
class_predictions_with_background)
batch_size, height, width = shape_utils.combined_static_and_dynamic_shape(
features)[0:3]
class_predictions_with_background = tf.reshape(
class_predictions_with_background, [
batch_size, height, width, self._num_predictions_per_location,
self._num_class_slots
])
class_predictions_with_background = self._score_converter_fn(
class_predictions_with_background)
if self._return_flat_predictions:
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, -1, self._num_class_slots])
else:
class_predictions_with_background = tf.reshape(
class_predictions_with_background, [
batch_size, height, width,
self._num_predictions_per_location * self._num_class_slots
])
return class_predictions_with_background | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/heads/keras_class_head.py | keras_class_head.py |
import functools
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.predictors.heads import head
from object_detection.utils import shape_utils
class MaskRCNNClassHead(head.Head):
"""Mask RCNN class prediction head.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
is_training,
num_class_slots,
fc_hyperparams_fn,
use_dropout,
dropout_keep_prob,
scope='ClassPredictor'):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
fc_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for fully connected ops.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
scope: Scope name for the convolution operation.
"""
super(MaskRCNNClassHead, self).__init__()
self._is_training = is_training
self._num_class_slots = num_class_slots
self._fc_hyperparams_fn = fc_hyperparams_fn
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._scope = scope
def predict(self, features, num_predictions_per_location=1):
"""Predicts boxes and class scores.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing features for a batch of images.
num_predictions_per_location: Int containing number of predictions per
location.
Returns:
class_predictions_with_background: A float tensor of shape
[batch_size, 1, num_class_slots] representing the class predictions for
the proposals.
Raises:
ValueError: If num_predictions_per_location is not 1.
"""
if num_predictions_per_location != 1:
raise ValueError('Only num_predictions_per_location=1 is supported')
spatial_averaged_roi_pooled_features = tf.reduce_mean(
features, [1, 2], keep_dims=True, name='AvgPool')
flattened_roi_pooled_features = slim.flatten(
spatial_averaged_roi_pooled_features)
if self._use_dropout:
flattened_roi_pooled_features = slim.dropout(
flattened_roi_pooled_features,
keep_prob=self._dropout_keep_prob,
is_training=self._is_training)
with slim.arg_scope(self._fc_hyperparams_fn()):
class_predictions_with_background = slim.fully_connected(
flattened_roi_pooled_features,
self._num_class_slots,
reuse=tf.AUTO_REUSE,
activation_fn=None,
scope=self._scope)
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[-1, 1, self._num_class_slots])
return class_predictions_with_background
class ConvolutionalClassHead(head.Head):
"""Convolutional class prediction head."""
def __init__(self,
is_training,
num_class_slots,
use_dropout,
dropout_keep_prob,
kernel_size,
apply_sigmoid_to_scores=False,
class_prediction_bias_init=0.0,
use_depthwise=False,
scope='ClassPredictor'):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
apply_sigmoid_to_scores: if True, apply the sigmoid on the output
class_predictions.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
scope: Scope name for the convolution operation.
Raises:
ValueError: if min_depth > max_depth.
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(ConvolutionalClassHead, self).__init__()
self._is_training = is_training
self._num_class_slots = num_class_slots
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._kernel_size = kernel_size
self._apply_sigmoid_to_scores = apply_sigmoid_to_scores
self._class_prediction_bias_init = class_prediction_bias_init
self._use_depthwise = use_depthwise
self._scope = scope
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location.
Returns:
class_predictions_with_background: A float tensors of shape
[batch_size, num_anchors, num_class_slots] representing the class
predictions for the proposals.
"""
net = features
if self._use_dropout:
net = slim.dropout(net, keep_prob=self._dropout_keep_prob)
if self._use_depthwise:
depthwise_scope = self._scope + '_depthwise'
class_predictions_with_background = slim.separable_conv2d(
net, None, [self._kernel_size, self._kernel_size],
padding='SAME', depth_multiplier=1, stride=1,
rate=1, scope=depthwise_scope)
class_predictions_with_background = slim.conv2d(
class_predictions_with_background,
num_predictions_per_location * self._num_class_slots, [1, 1],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope=self._scope)
else:
class_predictions_with_background = slim.conv2d(
net,
num_predictions_per_location * self._num_class_slots,
[self._kernel_size, self._kernel_size],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope=self._scope,
biases_initializer=tf.constant_initializer(
self._class_prediction_bias_init))
if self._apply_sigmoid_to_scores:
class_predictions_with_background = tf.sigmoid(
class_predictions_with_background)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, -1, self._num_class_slots])
return class_predictions_with_background
# TODO(alirezafathi): See if possible to unify Weight Shared with regular
# convolutional class head.
class WeightSharedConvolutionalClassHead(head.Head):
"""Weight shared convolutional class prediction head.
This head allows sharing the same set of parameters (weights) when called more
then once on different feature maps.
"""
def __init__(self,
num_class_slots,
kernel_size=3,
class_prediction_bias_init=0.0,
use_dropout=False,
dropout_keep_prob=0.8,
use_depthwise=False,
score_converter_fn=tf.identity,
return_flat_predictions=True,
scope='ClassPredictor'):
"""Constructor.
Args:
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
kernel_size: Size of final convolution kernel.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_dropout: Whether to apply dropout to class prediction head.
dropout_keep_prob: Probability of keeping activiations.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
score_converter_fn: Callable elementwise nonlinearity (that takes tensors
as inputs and returns tensors).
return_flat_predictions: If true, returns flattened prediction tensor
of shape [batch, height * width * num_predictions_per_location,
box_coder]. Otherwise returns the prediction tensor before reshaping,
whose shape is [batch, height, width, num_predictions_per_location *
num_class_slots].
scope: Scope name for the convolution operation.
Raises:
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(WeightSharedConvolutionalClassHead, self).__init__()
self._num_class_slots = num_class_slots
self._kernel_size = kernel_size
self._class_prediction_bias_init = class_prediction_bias_init
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._use_depthwise = use_depthwise
self._score_converter_fn = score_converter_fn
self._return_flat_predictions = return_flat_predictions
self._scope = scope
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location.
Returns:
class_predictions_with_background: A tensor of shape
[batch_size, num_anchors, num_class_slots] representing the class
predictions for the proposals, or a tensor of shape [batch, height,
width, num_predictions_per_location * num_class_slots] representing
class predictions before reshaping if self._return_flat_predictions is
False.
"""
class_predictions_net = features
if self._use_dropout:
class_predictions_net = slim.dropout(
class_predictions_net, keep_prob=self._dropout_keep_prob)
if self._use_depthwise:
conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1)
else:
conv_op = slim.conv2d
class_predictions_with_background = conv_op(
class_predictions_net,
num_predictions_per_location * self._num_class_slots,
[self._kernel_size, self._kernel_size],
activation_fn=None, stride=1, padding='SAME',
normalizer_fn=None,
biases_initializer=tf.constant_initializer(
self._class_prediction_bias_init),
scope=self._scope)
batch_size, height, width = shape_utils.combined_static_and_dynamic_shape(
features)[0:3]
class_predictions_with_background = tf.reshape(
class_predictions_with_background, [
batch_size, height, width, num_predictions_per_location,
self._num_class_slots
])
class_predictions_with_background = self._score_converter_fn(
class_predictions_with_background)
if self._return_flat_predictions:
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, -1, self._num_class_slots])
else:
class_predictions_with_background = tf.reshape(
class_predictions_with_background, [
batch_size, height, width,
num_predictions_per_location * self._num_class_slots
])
return class_predictions_with_background | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/heads/class_head.py | class_head.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.predictors.heads import head
from object_detection.utils import ops
class MaskRCNNMaskHead(head.Head):
"""Mask RCNN mask prediction head.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
num_classes,
conv_hyperparams_fn=None,
mask_height=14,
mask_width=14,
mask_prediction_num_conv_layers=2,
mask_prediction_conv_depth=256,
masks_are_class_agnostic=False,
convolve_then_upsample=False):
"""Constructor.
Args:
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
mask_height: Desired output mask height. The default value is 14.
mask_width: Desired output mask width. The default value is 14.
mask_prediction_num_conv_layers: Number of convolution layers applied to
the image_features in mask prediction branch.
mask_prediction_conv_depth: The depth for the first conv2d_transpose op
applied to the image_features in the mask prediction branch. If set
to 0, the depth of the convolution layers will be automatically chosen
based on the number of object classes and the number of channels in the
image features.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
convolve_then_upsample: Whether to apply convolutions on mask features
before upsampling using nearest neighbor resizing. Otherwise, mask
features are resized to [`mask_height`, `mask_width`] using bilinear
resizing before applying convolutions.
Raises:
ValueError: conv_hyperparams_fn is None.
"""
super(MaskRCNNMaskHead, self).__init__()
self._num_classes = num_classes
self._conv_hyperparams_fn = conv_hyperparams_fn
self._mask_height = mask_height
self._mask_width = mask_width
self._mask_prediction_num_conv_layers = mask_prediction_num_conv_layers
self._mask_prediction_conv_depth = mask_prediction_conv_depth
self._masks_are_class_agnostic = masks_are_class_agnostic
self._convolve_then_upsample = convolve_then_upsample
if conv_hyperparams_fn is None:
raise ValueError('conv_hyperparams_fn is None.')
def _get_mask_predictor_conv_depth(self,
num_feature_channels,
num_classes,
class_weight=3.0,
feature_weight=2.0):
"""Computes the depth of the mask predictor convolutions.
Computes the depth of the mask predictor convolutions given feature channels
and number of classes by performing a weighted average of the two in
log space to compute the number of convolution channels. The weights that
are used for computing the weighted average do not need to sum to 1.
Args:
num_feature_channels: An integer containing the number of feature
channels.
num_classes: An integer containing the number of classes.
class_weight: Class weight used in computing the weighted average.
feature_weight: Feature weight used in computing the weighted average.
Returns:
An integer containing the number of convolution channels used by mask
predictor.
"""
num_feature_channels_log = math.log(float(num_feature_channels), 2.0)
num_classes_log = math.log(float(num_classes), 2.0)
weighted_num_feature_channels_log = (
num_feature_channels_log * feature_weight)
weighted_num_classes_log = num_classes_log * class_weight
total_weight = feature_weight + class_weight
num_conv_channels_log = round(
(weighted_num_feature_channels_log + weighted_num_classes_log) /
total_weight)
return int(math.pow(2.0, num_conv_channels_log))
def predict(self, features, num_predictions_per_location=1):
"""Performs mask prediction.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing features for a batch of images.
num_predictions_per_location: Int containing number of predictions per
location.
Returns:
instance_masks: A float tensor of shape
[batch_size, 1, num_classes, mask_height, mask_width].
Raises:
ValueError: If num_predictions_per_location is not 1.
"""
if num_predictions_per_location != 1:
raise ValueError('Only num_predictions_per_location=1 is supported')
num_conv_channels = self._mask_prediction_conv_depth
if num_conv_channels == 0:
num_feature_channels = features.get_shape().as_list()[3]
num_conv_channels = self._get_mask_predictor_conv_depth(
num_feature_channels, self._num_classes)
with slim.arg_scope(self._conv_hyperparams_fn()):
if not self._convolve_then_upsample:
features = tf.image.resize_bilinear(
features, [self._mask_height, self._mask_width],
align_corners=True)
for _ in range(self._mask_prediction_num_conv_layers - 1):
features = slim.conv2d(
features,
num_outputs=num_conv_channels,
kernel_size=[3, 3])
if self._convolve_then_upsample:
# Replace Transposed Convolution with a Nearest Neighbor upsampling step
# followed by 3x3 convolution.
height_scale = self._mask_height // features.shape[1].value
width_scale = self._mask_width // features.shape[2].value
features = ops.nearest_neighbor_upsampling(
features, height_scale=height_scale, width_scale=width_scale)
features = slim.conv2d(
features,
num_outputs=num_conv_channels,
kernel_size=[3, 3])
num_masks = 1 if self._masks_are_class_agnostic else self._num_classes
mask_predictions = slim.conv2d(
features,
num_outputs=num_masks,
activation_fn=None,
normalizer_fn=None,
kernel_size=[3, 3])
return tf.expand_dims(
tf.transpose(mask_predictions, perm=[0, 3, 1, 2]),
axis=1,
name='MaskPredictor')
class ConvolutionalMaskHead(head.Head):
"""Convolutional class prediction head."""
def __init__(self,
is_training,
num_classes,
use_dropout,
dropout_keep_prob,
kernel_size,
use_depthwise=False,
mask_height=7,
mask_width=7,
masks_are_class_agnostic=False):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: Number of classes.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
mask_height: Desired output mask height. The default value is 7.
mask_width: Desired output mask width. The default value is 7.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
Raises:
ValueError: if min_depth > max_depth.
"""
super(ConvolutionalMaskHead, self).__init__()
self._is_training = is_training
self._num_classes = num_classes
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._kernel_size = kernel_size
self._use_depthwise = use_depthwise
self._mask_height = mask_height
self._mask_width = mask_width
self._masks_are_class_agnostic = masks_are_class_agnostic
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location.
Returns:
mask_predictions: A float tensors of shape
[batch_size, num_anchors, num_masks, mask_height, mask_width]
representing the mask predictions for the proposals.
"""
image_feature = features
# Add a slot for the background class.
if self._masks_are_class_agnostic:
num_masks = 1
else:
num_masks = self._num_classes
num_mask_channels = num_masks * self._mask_height * self._mask_width
net = image_feature
if self._use_dropout:
net = slim.dropout(net, keep_prob=self._dropout_keep_prob)
if self._use_depthwise:
mask_predictions = slim.separable_conv2d(
net, None, [self._kernel_size, self._kernel_size],
padding='SAME', depth_multiplier=1, stride=1,
rate=1, scope='MaskPredictor_depthwise')
mask_predictions = slim.conv2d(
mask_predictions,
num_predictions_per_location * num_mask_channels,
[1, 1],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope='MaskPredictor')
else:
mask_predictions = slim.conv2d(
net,
num_predictions_per_location * num_mask_channels,
[self._kernel_size, self._kernel_size],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope='MaskPredictor')
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
mask_predictions = tf.reshape(
mask_predictions,
[batch_size, -1, num_masks, self._mask_height, self._mask_width])
return mask_predictions
# TODO(alirezafathi): See if possible to unify Weight Shared with regular
# convolutional mask head.
class WeightSharedConvolutionalMaskHead(head.Head):
"""Weight shared convolutional mask prediction head."""
def __init__(self,
num_classes,
kernel_size=3,
use_dropout=False,
dropout_keep_prob=0.8,
mask_height=7,
mask_width=7,
masks_are_class_agnostic=False):
"""Constructor.
Args:
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
kernel_size: Size of final convolution kernel.
use_dropout: Whether to apply dropout to class prediction head.
dropout_keep_prob: Probability of keeping activiations.
mask_height: Desired output mask height. The default value is 7.
mask_width: Desired output mask width. The default value is 7.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
"""
super(WeightSharedConvolutionalMaskHead, self).__init__()
self._num_classes = num_classes
self._kernel_size = kernel_size
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._mask_height = mask_height
self._mask_width = mask_width
self._masks_are_class_agnostic = masks_are_class_agnostic
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location.
Returns:
mask_predictions: A tensor of shape
[batch_size, num_anchors, num_classes, mask_height, mask_width]
representing the mask predictions for the proposals.
"""
mask_predictions_net = features
if self._masks_are_class_agnostic:
num_masks = 1
else:
num_masks = self._num_classes
num_mask_channels = num_masks * self._mask_height * self._mask_width
if self._use_dropout:
mask_predictions_net = slim.dropout(
mask_predictions_net, keep_prob=self._dropout_keep_prob)
mask_predictions = slim.conv2d(
mask_predictions_net,
num_predictions_per_location * num_mask_channels,
[self._kernel_size, self._kernel_size],
activation_fn=None, stride=1, padding='SAME',
normalizer_fn=None,
scope='MaskPredictor')
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
mask_predictions = tf.reshape(
mask_predictions,
[batch_size, -1, num_masks, self._mask_height, self._mask_width])
return mask_predictions | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/heads/mask_head.py | mask_head.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from six.moves import range
import tensorflow.compat.v1 as tf
from object_detection.predictors.heads import head
from object_detection.utils import ops
from object_detection.utils import shape_utils
class ConvolutionalMaskHead(head.KerasHead):
"""Convolutional class prediction head."""
def __init__(self,
is_training,
num_classes,
use_dropout,
dropout_keep_prob,
kernel_size,
num_predictions_per_location,
conv_hyperparams,
freeze_batchnorm,
use_depthwise=False,
mask_height=7,
mask_width=7,
masks_are_class_agnostic=False,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: Number of classes.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
num_predictions_per_location: Number of box predictions to be made per
spatial location. Int specifying number of boxes per location.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
mask_height: Desired output mask height. The default value is 7.
mask_width: Desired output mask width. The default value is 7.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
Raises:
ValueError: if min_depth > max_depth.
"""
super(ConvolutionalMaskHead, self).__init__(name=name)
self._is_training = is_training
self._num_classes = num_classes
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._kernel_size = kernel_size
self._num_predictions_per_location = num_predictions_per_location
self._use_depthwise = use_depthwise
self._mask_height = mask_height
self._mask_width = mask_width
self._masks_are_class_agnostic = masks_are_class_agnostic
self._mask_predictor_layers = []
# Add a slot for the background class.
if self._masks_are_class_agnostic:
self._num_masks = 1
else:
self._num_masks = self._num_classes
num_mask_channels = self._num_masks * self._mask_height * self._mask_width
if self._use_dropout:
self._mask_predictor_layers.append(
# The Dropout layer's `training` parameter for the call method must
# be set implicitly by the Keras set_learning_phase. The object
# detection training code takes care of this.
tf.keras.layers.Dropout(rate=1.0 - self._dropout_keep_prob))
if self._use_depthwise:
self._mask_predictor_layers.append(
tf.keras.layers.DepthwiseConv2D(
[self._kernel_size, self._kernel_size],
padding='SAME',
depth_multiplier=1,
strides=1,
dilation_rate=1,
name='MaskPredictor_depthwise',
**conv_hyperparams.params()))
self._mask_predictor_layers.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name='MaskPredictor_depthwise_batchnorm'))
self._mask_predictor_layers.append(
conv_hyperparams.build_activation_layer(
name='MaskPredictor_depthwise_activation'))
self._mask_predictor_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * num_mask_channels, [1, 1],
name='MaskPredictor',
**conv_hyperparams.params(use_bias=True)))
else:
self._mask_predictor_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * num_mask_channels,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='MaskPredictor',
**conv_hyperparams.params(use_bias=True)))
def _predict(self, features):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
Returns:
mask_predictions: A float tensors of shape
[batch_size, num_anchors, num_masks, mask_height, mask_width]
representing the mask predictions for the proposals.
"""
mask_predictions = features
for layer in self._mask_predictor_layers:
mask_predictions = layer(mask_predictions)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
mask_predictions = tf.reshape(
mask_predictions,
[batch_size, -1, self._num_masks, self._mask_height, self._mask_width])
return mask_predictions
class MaskRCNNMaskHead(head.KerasHead):
"""Mask RCNN mask prediction head.
This is a piece of Mask RCNN which is responsible for predicting
just the pixelwise foreground scores for regions within the boxes.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
is_training,
num_classes,
freeze_batchnorm,
conv_hyperparams,
mask_height=14,
mask_width=14,
mask_prediction_num_conv_layers=2,
mask_prediction_conv_depth=256,
masks_are_class_agnostic=False,
convolve_then_upsample=False,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the Mask head is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
mask_height: Desired output mask height. The default value is 14.
mask_width: Desired output mask width. The default value is 14.
mask_prediction_num_conv_layers: Number of convolution layers applied to
the image_features in mask prediction branch.
mask_prediction_conv_depth: The depth for the first conv2d_transpose op
applied to the image_features in the mask prediction branch. If set
to 0, the depth of the convolution layers will be automatically chosen
based on the number of object classes and the number of channels in the
image features.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
convolve_then_upsample: Whether to apply convolutions on mask features
before upsampling using nearest neighbor resizing. Otherwise, mask
features are resized to [`mask_height`, `mask_width`] using bilinear
resizing before applying convolutions.
name: A string name scope to assign to the mask head. If `None`, Keras
will auto-generate one from the class name.
"""
super(MaskRCNNMaskHead, self).__init__(name=name)
self._is_training = is_training
self._freeze_batchnorm = freeze_batchnorm
self._num_classes = num_classes
self._conv_hyperparams = conv_hyperparams
self._mask_height = mask_height
self._mask_width = mask_width
self._mask_prediction_num_conv_layers = mask_prediction_num_conv_layers
self._mask_prediction_conv_depth = mask_prediction_conv_depth
self._masks_are_class_agnostic = masks_are_class_agnostic
self._convolve_then_upsample = convolve_then_upsample
self._mask_predictor_layers = []
def build(self, input_shapes):
num_conv_channels = self._mask_prediction_conv_depth
if num_conv_channels == 0:
num_feature_channels = input_shapes.as_list()[3]
num_conv_channels = self._get_mask_predictor_conv_depth(
num_feature_channels, self._num_classes)
for i in range(self._mask_prediction_num_conv_layers - 1):
self._mask_predictor_layers.append(
tf.keras.layers.Conv2D(
num_conv_channels,
[3, 3],
padding='SAME',
name='MaskPredictor_conv2d_{}'.format(i),
**self._conv_hyperparams.params()))
self._mask_predictor_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='MaskPredictor_batchnorm_{}'.format(i)))
self._mask_predictor_layers.append(
self._conv_hyperparams.build_activation_layer(
name='MaskPredictor_activation_{}'.format(i)))
if self._convolve_then_upsample:
# Replace Transposed Convolution with a Nearest Neighbor upsampling step
# followed by 3x3 convolution.
height_scale = self._mask_height // shape_utils.get_dim_as_int(
input_shapes[1])
width_scale = self._mask_width // shape_utils.get_dim_as_int(
input_shapes[2])
# pylint: disable=g-long-lambda
self._mask_predictor_layers.append(tf.keras.layers.Lambda(
lambda features: ops.nearest_neighbor_upsampling(
features, height_scale=height_scale, width_scale=width_scale)
))
# pylint: enable=g-long-lambda
self._mask_predictor_layers.append(
tf.keras.layers.Conv2D(
num_conv_channels,
[3, 3],
padding='SAME',
name='MaskPredictor_upsample_conv2d',
**self._conv_hyperparams.params()))
self._mask_predictor_layers.append(
self._conv_hyperparams.build_batch_norm(
training=(self._is_training and not self._freeze_batchnorm),
name='MaskPredictor_upsample_batchnorm'))
self._mask_predictor_layers.append(
self._conv_hyperparams.build_activation_layer(
name='MaskPredictor_upsample_activation'))
num_masks = 1 if self._masks_are_class_agnostic else self._num_classes
self._mask_predictor_layers.append(
tf.keras.layers.Conv2D(
num_masks,
[3, 3],
padding='SAME',
name='MaskPredictor_last_conv2d',
**self._conv_hyperparams.params(use_bias=True)))
self.built = True
def _get_mask_predictor_conv_depth(self,
num_feature_channels,
num_classes,
class_weight=3.0,
feature_weight=2.0):
"""Computes the depth of the mask predictor convolutions.
Computes the depth of the mask predictor convolutions given feature channels
and number of classes by performing a weighted average of the two in
log space to compute the number of convolution channels. The weights that
are used for computing the weighted average do not need to sum to 1.
Args:
num_feature_channels: An integer containing the number of feature
channels.
num_classes: An integer containing the number of classes.
class_weight: Class weight used in computing the weighted average.
feature_weight: Feature weight used in computing the weighted average.
Returns:
An integer containing the number of convolution channels used by mask
predictor.
"""
num_feature_channels_log = math.log(float(num_feature_channels), 2.0)
num_classes_log = math.log(float(num_classes), 2.0)
weighted_num_feature_channels_log = (
num_feature_channels_log * feature_weight)
weighted_num_classes_log = num_classes_log * class_weight
total_weight = feature_weight + class_weight
num_conv_channels_log = round(
(weighted_num_feature_channels_log + weighted_num_classes_log) /
total_weight)
return int(math.pow(2.0, num_conv_channels_log))
def _predict(self, features):
"""Predicts pixelwise foreground scores for regions within the boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing features for a batch of images.
Returns:
instance_masks: A float tensor of shape
[batch_size, 1, num_classes, mask_height, mask_width].
"""
if not self._convolve_then_upsample:
features = tf.image.resize_bilinear(
features, [self._mask_height, self._mask_width],
align_corners=True)
mask_predictions = features
for layer in self._mask_predictor_layers:
mask_predictions = layer(mask_predictions)
return tf.expand_dims(
tf.transpose(mask_predictions, perm=[0, 3, 1, 2]),
axis=1,
name='MaskPredictor')
class WeightSharedConvolutionalMaskHead(head.KerasHead):
"""Weight shared convolutional mask prediction head based on Keras."""
def __init__(self,
num_classes,
num_predictions_per_location,
conv_hyperparams,
kernel_size=3,
use_dropout=False,
dropout_keep_prob=0.8,
mask_height=7,
mask_width=7,
masks_are_class_agnostic=False,
name=None):
"""Constructor.
Args:
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
num_predictions_per_location: Number of box predictions to be made per
spatial location. Int specifying number of boxes per location.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
kernel_size: Size of final convolution kernel.
use_dropout: Whether to apply dropout to class prediction head.
dropout_keep_prob: Probability of keeping activiations.
mask_height: Desired output mask height. The default value is 7.
mask_width: Desired output mask width. The default value is 7.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
Raises:
ValueError: if min_depth > max_depth.
"""
super(WeightSharedConvolutionalMaskHead, self).__init__(name=name)
self._num_classes = num_classes
self._num_predictions_per_location = num_predictions_per_location
self._kernel_size = kernel_size
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._mask_height = mask_height
self._mask_width = mask_width
self._masks_are_class_agnostic = masks_are_class_agnostic
self._mask_predictor_layers = []
if self._masks_are_class_agnostic:
self._num_masks = 1
else:
self._num_masks = self._num_classes
num_mask_channels = self._num_masks * self._mask_height * self._mask_width
if self._use_dropout:
self._mask_predictor_layers.append(
tf.keras.layers.Dropout(rate=1.0 - self._dropout_keep_prob))
self._mask_predictor_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * num_mask_channels,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='MaskPredictor',
**conv_hyperparams.params(use_bias=True)))
def _predict(self, features):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
Returns:
mask_predictions: A tensor of shape
[batch_size, num_anchors, num_classes, mask_height, mask_width]
representing the mask predictions for the proposals.
"""
mask_predictions = features
for layer in self._mask_predictor_layers:
mask_predictions = layer(mask_predictions)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
mask_predictions = tf.reshape(
mask_predictions,
[batch_size, -1, self._num_masks, self._mask_height, self._mask_width])
return mask_predictions | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/heads/keras_mask_head.py | keras_mask_head.py |
import functools
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.predictors.heads import head
class MaskRCNNBoxHead(head.Head):
"""Box prediction head.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
is_training,
num_classes,
fc_hyperparams_fn,
use_dropout,
dropout_keep_prob,
box_code_size,
share_box_across_classes=False):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
fc_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for fully connected ops.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
box_code_size: Size of encoding for each box.
share_box_across_classes: Whether to share boxes across classes rather
than use a different box for each class.
"""
super(MaskRCNNBoxHead, self).__init__()
self._is_training = is_training
self._num_classes = num_classes
self._fc_hyperparams_fn = fc_hyperparams_fn
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._box_code_size = box_code_size
self._share_box_across_classes = share_box_across_classes
def predict(self, features, num_predictions_per_location=1):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width,
channels] containing features for a batch of images.
num_predictions_per_location: Int containing number of predictions per
location.
Returns:
box_encodings: A float tensor of shape
[batch_size, 1, num_classes, code_size] representing the location of the
objects.
Raises:
ValueError: If num_predictions_per_location is not 1.
"""
if num_predictions_per_location != 1:
raise ValueError('Only num_predictions_per_location=1 is supported')
spatial_averaged_roi_pooled_features = tf.reduce_mean(
features, [1, 2], keep_dims=True, name='AvgPool')
flattened_roi_pooled_features = slim.flatten(
spatial_averaged_roi_pooled_features)
if self._use_dropout:
flattened_roi_pooled_features = slim.dropout(
flattened_roi_pooled_features,
keep_prob=self._dropout_keep_prob,
is_training=self._is_training)
number_of_boxes = 1
if not self._share_box_across_classes:
number_of_boxes = self._num_classes
with slim.arg_scope(self._fc_hyperparams_fn()):
box_encodings = slim.fully_connected(
flattened_roi_pooled_features,
number_of_boxes * self._box_code_size,
reuse=tf.AUTO_REUSE,
activation_fn=None,
scope='BoxEncodingPredictor')
box_encodings = tf.reshape(box_encodings,
[-1, 1, number_of_boxes, self._box_code_size])
return box_encodings
class ConvolutionalBoxHead(head.Head):
"""Convolutional box prediction head."""
def __init__(self,
is_training,
box_code_size,
kernel_size,
use_depthwise=False,
box_encodings_clip_range=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
box_code_size: Size of encoding for each box.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
box_encodings_clip_range: Min and max values for clipping box_encodings.
Raises:
ValueError: if min_depth > max_depth.
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(ConvolutionalBoxHead, self).__init__()
self._is_training = is_training
self._box_code_size = box_code_size
self._kernel_size = kernel_size
self._use_depthwise = use_depthwise
self._box_encodings_clip_range = box_encodings_clip_range
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location. Int specifying number of boxes per location.
Returns:
box_encodings: A float tensors of shape
[batch_size, num_anchors, q, code_size] representing the location of
the objects, where q is 1 or the number of classes.
"""
net = features
if self._use_depthwise:
box_encodings = slim.separable_conv2d(
net, None, [self._kernel_size, self._kernel_size],
padding='SAME', depth_multiplier=1, stride=1,
rate=1, scope='BoxEncodingPredictor_depthwise')
box_encodings = slim.conv2d(
box_encodings,
num_predictions_per_location * self._box_code_size, [1, 1],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope='BoxEncodingPredictor')
else:
box_encodings = slim.conv2d(
net, num_predictions_per_location * self._box_code_size,
[self._kernel_size, self._kernel_size],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope='BoxEncodingPredictor')
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
# Clipping the box encodings to make the inference graph TPU friendly.
if self._box_encodings_clip_range is not None:
box_encodings = tf.clip_by_value(
box_encodings, self._box_encodings_clip_range.min,
self._box_encodings_clip_range.max)
box_encodings = tf.reshape(box_encodings,
[batch_size, -1, 1, self._box_code_size])
return box_encodings
# TODO(alirezafathi): See if possible to unify Weight Shared with regular
# convolutional box head.
class WeightSharedConvolutionalBoxHead(head.Head):
"""Weight shared convolutional box prediction head.
This head allows sharing the same set of parameters (weights) when called more
then once on different feature maps.
"""
def __init__(self,
box_code_size,
kernel_size=3,
use_depthwise=False,
box_encodings_clip_range=None,
return_flat_predictions=True):
"""Constructor.
Args:
box_code_size: Size of encoding for each box.
kernel_size: Size of final convolution kernel.
use_depthwise: Whether to use depthwise convolutions for prediction steps.
Default is False.
box_encodings_clip_range: Min and max values for clipping box_encodings.
return_flat_predictions: If true, returns flattened prediction tensor
of shape [batch, height * width * num_predictions_per_location,
box_coder]. Otherwise returns the prediction tensor before reshaping,
whose shape is [batch, height, width, num_predictions_per_location *
num_class_slots].
Raises:
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(WeightSharedConvolutionalBoxHead, self).__init__()
self._box_code_size = box_code_size
self._kernel_size = kernel_size
self._use_depthwise = use_depthwise
self._box_encodings_clip_range = box_encodings_clip_range
self._return_flat_predictions = return_flat_predictions
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location.
Returns:
box_encodings: A float tensor of shape
[batch_size, num_anchors, code_size] representing the location of
the objects, or a float tensor of shape [batch, height, width,
num_predictions_per_location * box_code_size] representing grid box
location predictions if self._return_flat_predictions is False.
"""
box_encodings_net = features
if self._use_depthwise:
conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1)
else:
conv_op = slim.conv2d
box_encodings = conv_op(
box_encodings_net,
num_predictions_per_location * self._box_code_size,
[self._kernel_size, self._kernel_size],
activation_fn=None, stride=1, padding='SAME',
normalizer_fn=None,
scope='BoxPredictor')
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
# Clipping the box encodings to make the inference graph TPU friendly.
if self._box_encodings_clip_range is not None:
box_encodings = tf.clip_by_value(
box_encodings, self._box_encodings_clip_range.min,
self._box_encodings_clip_range.max)
if self._return_flat_predictions:
box_encodings = tf.reshape(box_encodings,
[batch_size, -1, self._box_code_size])
return box_encodings | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/heads/box_head.py | box_head.py |
import tensorflow.compat.v1 as tf
from object_detection.predictors.heads import head
class ConvolutionalBoxHead(head.KerasHead):
"""Convolutional box prediction head."""
def __init__(self,
is_training,
box_code_size,
kernel_size,
num_predictions_per_location,
conv_hyperparams,
freeze_batchnorm,
use_depthwise=False,
box_encodings_clip_range=None,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
box_code_size: Size of encoding for each box.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
num_predictions_per_location: Number of box predictions to be made per
spatial location. Int specifying number of boxes per location.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Bool. Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
box_encodings_clip_range: Min and max values for clipping box_encodings.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
Raises:
ValueError: if min_depth > max_depth.
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(ConvolutionalBoxHead, self).__init__(name=name)
self._is_training = is_training
self._box_code_size = box_code_size
self._kernel_size = kernel_size
self._num_predictions_per_location = num_predictions_per_location
self._use_depthwise = use_depthwise
self._box_encodings_clip_range = box_encodings_clip_range
self._box_encoder_layers = []
if self._use_depthwise:
self._box_encoder_layers.append(
tf.keras.layers.DepthwiseConv2D(
[self._kernel_size, self._kernel_size],
padding='SAME',
depth_multiplier=1,
strides=1,
dilation_rate=1,
name='BoxEncodingPredictor_depthwise',
**conv_hyperparams.params()))
self._box_encoder_layers.append(
conv_hyperparams.build_batch_norm(
training=(is_training and not freeze_batchnorm),
name='BoxEncodingPredictor_depthwise_batchnorm'))
self._box_encoder_layers.append(
conv_hyperparams.build_activation_layer(
name='BoxEncodingPredictor_depthwise_activation'))
self._box_encoder_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._box_code_size, [1, 1],
name='BoxEncodingPredictor',
**conv_hyperparams.params(use_bias=True)))
else:
self._box_encoder_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._box_code_size,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='BoxEncodingPredictor',
**conv_hyperparams.params(use_bias=True)))
def _predict(self, features):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
Returns:
box_encodings: A float tensor of shape
[batch_size, num_anchors, q, code_size] representing the location of
the objects, where q is 1 or the number of classes.
"""
box_encodings = features
for layer in self._box_encoder_layers:
box_encodings = layer(box_encodings)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
# Clipping the box encodings to make the inference graph TPU friendly.
if self._box_encodings_clip_range is not None:
box_encodings = tf.clip_by_value(
box_encodings, self._box_encodings_clip_range.min,
self._box_encodings_clip_range.max)
box_encodings = tf.reshape(box_encodings,
[batch_size, -1, 1, self._box_code_size])
return box_encodings
class MaskRCNNBoxHead(head.KerasHead):
"""Box prediction head.
This is a piece of Mask RCNN which is responsible for predicting
just the box encodings.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
is_training,
num_classes,
fc_hyperparams,
freeze_batchnorm,
use_dropout,
dropout_keep_prob,
box_code_size,
share_box_across_classes=False,
name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
fc_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for fully connected dense ops.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
box_code_size: Size of encoding for each box.
share_box_across_classes: Whether to share boxes across classes rather
than use a different box for each class.
name: A string name scope to assign to the box head. If `None`, Keras
will auto-generate one from the class name.
"""
super(MaskRCNNBoxHead, self).__init__(name=name)
self._is_training = is_training
self._num_classes = num_classes
self._fc_hyperparams = fc_hyperparams
self._freeze_batchnorm = freeze_batchnorm
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._box_code_size = box_code_size
self._share_box_across_classes = share_box_across_classes
self._box_encoder_layers = [tf.keras.layers.Flatten()]
if self._use_dropout:
self._box_encoder_layers.append(
tf.keras.layers.Dropout(rate=1.0 - self._dropout_keep_prob))
self._number_of_boxes = 1
if not self._share_box_across_classes:
self._number_of_boxes = self._num_classes
self._box_encoder_layers.append(
tf.keras.layers.Dense(self._number_of_boxes * self._box_code_size,
name='BoxEncodingPredictor_dense'))
self._box_encoder_layers.append(
fc_hyperparams.build_batch_norm(training=(is_training and
not freeze_batchnorm),
name='BoxEncodingPredictor_batchnorm'))
def _predict(self, features):
"""Predicts box encodings.
Args:
features: A float tensor of shape [batch_size, height, width,
channels] containing features for a batch of images.
Returns:
box_encodings: A float tensor of shape
[batch_size, 1, num_classes, code_size] representing the location of the
objects.
"""
spatial_averaged_roi_pooled_features = tf.reduce_mean(
features, [1, 2], keep_dims=True, name='AvgPool')
net = spatial_averaged_roi_pooled_features
for layer in self._box_encoder_layers:
net = layer(net)
box_encodings = tf.reshape(net,
[-1, 1,
self._number_of_boxes,
self._box_code_size])
return box_encodings
# TODO(b/128922690): Unify the implementations of ConvolutionalBoxHead
# and WeightSharedConvolutionalBoxHead
class WeightSharedConvolutionalBoxHead(head.KerasHead):
"""Weight shared convolutional box prediction head based on Keras.
This head allows sharing the same set of parameters (weights) when called more
then once on different feature maps.
"""
def __init__(self,
box_code_size,
num_predictions_per_location,
conv_hyperparams,
kernel_size=3,
use_depthwise=False,
apply_conv_hyperparams_to_heads=False,
box_encodings_clip_range=None,
return_flat_predictions=True,
name=None):
"""Constructor.
Args:
box_code_size: Size of encoding for each box.
num_predictions_per_location: Number of box predictions to be made per
spatial location. Int specifying number of boxes per location.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
kernel_size: Size of final convolution kernel.
use_depthwise: Whether to use depthwise convolutions for prediction steps.
Default is False.
apply_conv_hyperparams_to_heads: Whether to apply conv_hyperparams to
depthwise seperable convolution layers in the box and class heads. By
default, the conv_hyperparams are only applied to layers in the
predictor tower when using depthwise separable convolutions.
box_encodings_clip_range: Min and max values for clipping box_encodings.
return_flat_predictions: If true, returns flattened prediction tensor
of shape [batch, height * width * num_predictions_per_location,
box_coder]. Otherwise returns the prediction tensor before reshaping,
whose shape is [batch, height, width, num_predictions_per_location *
num_class_slots].
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
Raises:
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(WeightSharedConvolutionalBoxHead, self).__init__(name=name)
self._box_code_size = box_code_size
self._kernel_size = kernel_size
self._num_predictions_per_location = num_predictions_per_location
self._use_depthwise = use_depthwise
self._apply_conv_hyperparams_to_heads = apply_conv_hyperparams_to_heads
self._box_encodings_clip_range = box_encodings_clip_range
self._return_flat_predictions = return_flat_predictions
self._box_encoder_layers = []
if self._use_depthwise:
kwargs = conv_hyperparams.params(use_bias=True)
if self._apply_conv_hyperparams_to_heads:
kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['depthwise_initializer'] = kwargs['kernel_initializer']
kwargs['pointwise_regularizer'] = kwargs['kernel_regularizer']
kwargs['pointwise_initializer'] = kwargs['kernel_initializer']
self._box_encoder_layers.append(
tf.keras.layers.SeparableConv2D(
num_predictions_per_location * self._box_code_size,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='BoxPredictor',
**kwargs))
else:
self._box_encoder_layers.append(
tf.keras.layers.Conv2D(
num_predictions_per_location * self._box_code_size,
[self._kernel_size, self._kernel_size],
padding='SAME',
name='BoxPredictor',
**conv_hyperparams.params(use_bias=True)))
def _predict(self, features):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
Returns:
box_encodings: A float tensor of shape
[batch_size, num_anchors, q, code_size] representing the location of
the objects, where q is 1 or the number of classes.
"""
box_encodings = features
for layer in self._box_encoder_layers:
box_encodings = layer(box_encodings)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
# Clipping the box encodings to make the inference graph TPU friendly.
if self._box_encodings_clip_range is not None:
box_encodings = tf.clip_by_value(
box_encodings, self._box_encodings_clip_range.min,
self._box_encodings_clip_range.max)
if self._return_flat_predictions:
box_encodings = tf.reshape(box_encodings,
[batch_size, -1, self._box_code_size])
return box_encodings | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/heads/keras_box_head.py | keras_box_head.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.predictors.heads import head
class MaskRCNNKeypointHead(head.Head):
"""Mask RCNN keypoint prediction head.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
num_keypoints=17,
conv_hyperparams_fn=None,
keypoint_heatmap_height=56,
keypoint_heatmap_width=56,
keypoint_prediction_num_conv_layers=8,
keypoint_prediction_conv_depth=512):
"""Constructor.
Args:
num_keypoints: (int scalar) number of keypoints.
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
keypoint_heatmap_height: Desired output mask height. The default value
is 14.
keypoint_heatmap_width: Desired output mask width. The default value
is 14.
keypoint_prediction_num_conv_layers: Number of convolution layers applied
to the image_features in mask prediction branch.
keypoint_prediction_conv_depth: The depth for the first conv2d_transpose
op applied to the image_features in the mask prediction branch. If set
to 0, the depth of the convolution layers will be automatically chosen
based on the number of object classes and the number of channels in the
image features.
"""
super(MaskRCNNKeypointHead, self).__init__()
self._num_keypoints = num_keypoints
self._conv_hyperparams_fn = conv_hyperparams_fn
self._keypoint_heatmap_height = keypoint_heatmap_height
self._keypoint_heatmap_width = keypoint_heatmap_width
self._keypoint_prediction_num_conv_layers = (
keypoint_prediction_num_conv_layers)
self._keypoint_prediction_conv_depth = keypoint_prediction_conv_depth
def predict(self, features, num_predictions_per_location=1):
"""Performs keypoint prediction.
Args:
features: A float tensor of shape [batch_size, height, width,
channels] containing features for a batch of images.
num_predictions_per_location: Int containing number of predictions per
location.
Returns:
instance_masks: A float tensor of shape
[batch_size, 1, num_keypoints, heatmap_height, heatmap_width].
Raises:
ValueError: If num_predictions_per_location is not 1.
"""
if num_predictions_per_location != 1:
raise ValueError('Only num_predictions_per_location=1 is supported')
with slim.arg_scope(self._conv_hyperparams_fn()):
net = slim.conv2d(
features,
self._keypoint_prediction_conv_depth, [3, 3],
scope='conv_1')
for i in range(1, self._keypoint_prediction_num_conv_layers):
net = slim.conv2d(
net,
self._keypoint_prediction_conv_depth, [3, 3],
scope='conv_%d' % (i + 1))
net = slim.conv2d_transpose(
net, self._num_keypoints, [2, 2], scope='deconv1')
heatmaps_mask = tf.image.resize_bilinear(
net, [self._keypoint_heatmap_height, self._keypoint_heatmap_width],
align_corners=True,
name='upsample')
return tf.expand_dims(
tf.transpose(heatmaps_mask, perm=[0, 3, 1, 2]),
axis=1,
name='KeypointPredictor') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/predictors/heads/keypoint_head.py | keypoint_head.py |
"""Python library for ssd model, tailored for TPU inference."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
# pylint: disable=g-import-not-at-top
# Checking TF version, because this module relies on TPUPartitionedCall
# in tensorflow.python.tpu, which is not available until TF r1.14.
major, minor, _ = tf.__version__.split('.') # pylint: disable=protected-access
if int(major) < 1 or (int(major == 1) and int(minor) < 14):
raise RuntimeError(
'TensorFlow version >= 1.14 is required. Found ({}).'.format(
tf.__version__)) # pylint: disable=protected-access
from tensorflow.python.framework import function
from tensorflow.python.tpu import functional as tpu_functional
from tensorflow.python.tpu import tpu
from tensorflow.python.tpu.bfloat16 import bfloat16_scope
from tensorflow.python.tpu.ops import tpu_ops
from object_detection import exporter
from object_detection.builders import model_builder
from object_detection.tpu_exporters import utils
ANCHORS = 'anchors'
BOX_ENCODINGS = 'box_encodings'
CLASS_PREDICTIONS_WITH_BACKGROUND = 'class_predictions_with_background'
def get_prediction_tensor_shapes(pipeline_config):
"""Gets static shapes of tensors by building the graph on CPU.
This function builds the graph on CPU and obtain static shapes of output
tensors from TPUPartitionedCall. Shapes information are later used for setting
shapes of tensors when TPU graphs are built. This is necessary because tensors
coming out of TPUPartitionedCall lose their shape information, which are
needed for a lot of CPU operations later.
Args:
pipeline_config: A TrainEvalPipelineConfig proto.
Returns:
A python dict of tensors' names and their shapes.
"""
detection_model = model_builder.build(
pipeline_config.model, is_training=False)
_, input_tensors = exporter.input_placeholder_fn_map['image_tensor']()
inputs = tf.cast(input_tensors, dtype=tf.float32)
preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
prediction_dict = detection_model.predict(preprocessed_inputs,
true_image_shapes)
return {
BOX_ENCODINGS:
prediction_dict[BOX_ENCODINGS].shape.as_list(),
CLASS_PREDICTIONS_WITH_BACKGROUND:
prediction_dict[CLASS_PREDICTIONS_WITH_BACKGROUND].shape.as_list(),
ANCHORS:
prediction_dict[ANCHORS].shape.as_list(),
}
def recover_shape(preprocessed_inputs, prediction_outputs, shapes_info):
"""Recovers shape from TPUPartitionedCall.
Args:
preprocessed_inputs: 4D tensor, shaped (batch, channels, height, width)
prediction_outputs: Python list of tensors, in the following order -
box_encodings - 3D tensor, shaped (code_size, batch, num_anchors);
class_predictions_with_background - 3D tensor, shaped (num_classes + 1,
batch, num_anchors); anchors - 2D tensor, shaped (4, num_anchors)
shapes_info: Python dict of tensor shapes as lists.
Returns:
preprocessed_inputs: 4D tensor, shaped (batch, height, width, channels)
box_encodings: 3D tensor, shaped (batch, num_anchors, code_size)
class_predictions_with_background: 3D tensor,
shaped (batch, num_anchors, num_classes + 1)
anchors: 2D tensor, shaped (num_anchors, 4)
"""
# Dimshuffle: (b, c, h, w) -> (b, h, w, c)
preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 2, 3, 1])
box_encodings = tf.transpose(prediction_outputs[0], perm=[1, 2, 0])
# [None, None, detection_model._box_coder.code_size]
box_encodings.set_shape(shapes_info[BOX_ENCODINGS])
class_predictions_with_background = tf.transpose(
prediction_outputs[1], perm=[1, 2, 0])
# [None, None, num_classes + 1]
class_predictions_with_background.set_shape(
shapes_info[CLASS_PREDICTIONS_WITH_BACKGROUND])
anchors = tf.transpose(prediction_outputs[2], perm=[1, 0])
# [None, 4]
anchors.set_shape(shapes_info[ANCHORS])
return (preprocessed_inputs, box_encodings, class_predictions_with_background,
anchors)
def build_graph(pipeline_config,
shapes_info,
input_type='encoded_image_string_tensor',
use_bfloat16=False):
"""Builds TPU serving graph of ssd to be exported.
Args:
pipeline_config: A TrainEvalPipelineConfig proto.
shapes_info: A python dict of tensors' names and their shapes, returned by
`get_prediction_tensor_shapes()`.
input_type: One of
'encoded_image_string_tensor': a 1d tensor with dtype=tf.string
'image_tensor': a 4d tensor with dtype=tf.uint8
'tf_example': a 1d tensor with dtype=tf.string
use_bfloat16: If true, use tf.bfloat16 on TPU.
Returns:
placeholder_tensor: A placeholder tensor, type determined by `input_type`.
result_tensor_dict: A python dict of tensors' names and tensors.
"""
detection_model = model_builder.build(
pipeline_config.model, is_training=False)
placeholder_tensor, input_tensors = \
exporter.input_placeholder_fn_map[input_type]()
inputs = tf.cast(input_tensors, dtype=tf.float32)
preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
# Dimshuffle: (b, h, w, c) -> (b, c, h, w)
# This is to avoid extra padding due to TPU memory layout:
# We swap larger dimensions in and smaller dimensions out, so that small
# dimensions don't get padded tens / hundreds times of its own size.
# This trick is applied to other similar tensors below.
preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 3, 1, 2])
if use_bfloat16:
preprocessed_inputs = tf.cast(preprocessed_inputs, dtype=tf.bfloat16)
def predict_tpu_subgraph(preprocessed_inputs, true_image_shapes):
"""Wraps over the CPU version of `predict()`.
This builds a same graph as the original `predict()`, manipulates
result tensors' dimensions to be memory efficient on TPU, and
returns them as list of tensors.
Args:
preprocessed_inputs: A 4D tensor of shape (batch, channels, height, width)
true_image_shapes: True image shapes tensor.
Returns:
A Python list of tensors:
box_encodings: 3D tensor of shape (code_size, batch_size, num_anchors)
class_predictions_with_background: 3D tensor,
shape (num_classes + 1, batch_size, num_anchors)
anchors: 2D tensor of shape (4, num_anchors)
"""
# Dimshuffle: (b, c, h, w) -> (b, h, w, c)
preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 2, 3, 1])
if use_bfloat16:
with bfloat16_scope():
prediction_dict = detection_model.predict(preprocessed_inputs,
true_image_shapes)
else:
prediction_dict = detection_model.predict(preprocessed_inputs,
true_image_shapes)
# Dimshuffle: (batch, anchors, depth) -> (depth, batch, anchors)
return [
tf.transpose(prediction_dict[BOX_ENCODINGS], perm=[2, 0, 1]),
tf.transpose(
prediction_dict[CLASS_PREDICTIONS_WITH_BACKGROUND], perm=[2, 0, 1]),
tf.transpose(prediction_dict[ANCHORS], perm=[1, 0]),
]
@function.Defun(capture_resource_var_by_value=False)
def predict_tpu():
return tpu.rewrite(predict_tpu_subgraph,
[preprocessed_inputs, true_image_shapes])
prediction_outputs = tpu_functional.TPUPartitionedCall(
args=predict_tpu.captured_inputs,
device_ordinal=tpu_ops.tpu_ordinal_selector(),
Tout=[o.type for o in predict_tpu.definition.signature.output_arg],
f=predict_tpu)
(preprocessed_inputs, box_encodings, class_predictions_with_background,
anchors) = recover_shape(preprocessed_inputs, prediction_outputs,
shapes_info)
output_tensors = {
'preprocessed_inputs': preprocessed_inputs,
BOX_ENCODINGS: box_encodings,
CLASS_PREDICTIONS_WITH_BACKGROUND: class_predictions_with_background,
ANCHORS: anchors,
}
if use_bfloat16:
output_tensors = utils.bfloat16_to_float32_nested(output_tensors)
postprocessed_tensors = detection_model.postprocess(output_tensors,
true_image_shapes)
result_tensor_dict = exporter.add_output_tensor_nodes(postprocessed_tensors,
'inference_op')
return placeholder_tensor, result_tensor_dict | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/tpu_exporters/ssd.py | ssd.py |
"""Python library for faster_rcnn model, tailored for TPU inference."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# pylint: disable=protected-access
import tensorflow.compat.v1 as tf
# pylint: disable=g-import-not-at-top
# Checking TF version, because this module relies on TPUPartitionedCall
# in tensorflow.python.tpu, which is not available until TF r1.14.
major, minor, _ = tf.__version__.split('.') # pylint: disable=protected-access
if int(major) < 1 or (int(major == 1) and int(minor) < 14):
raise RuntimeError(
'TensorFlow version >= 1.14 is required. Found ({}).'.format(
tf.__version__))
from tensorflow.python.framework import function
from tensorflow.python.tpu import functional as tpu_functional
from tensorflow.python.tpu import tpu
from tensorflow.python.tpu.bfloat16 import bfloat16_scope
from tensorflow.python.tpu.ops import tpu_ops
from object_detection import exporter
from object_detection.builders import model_builder
from object_detection.tpu_exporters import utils
ANCHORS = 'anchors'
BOX_CLASSIFIER_FEATURES = 'box_classifier_features'
BOX_ENCODINGS = 'box_encodings'
CLASS_PREDICTIONS_WITH_BACKGROUND = 'class_predictions_with_background'
IMAGE_SHAPE = 'image_shape'
NUM_PROPOSALS = 'num_proposals'
PROPOSAL_BOXES = 'proposal_boxes'
PROPOSAL_BOXES_NORMALIZED = 'proposal_boxes_normalized'
REFINED_BOX_ENCODINGS = 'refined_box_encodings'
RPN_BOX_ENCODINGS = 'rpn_box_encodings'
RPN_BOX_PREDICTOR_FEATURES = 'rpn_box_predictor_features'
RPN_FEATURES_TO_CROP = 'rpn_features_to_crop'
RPN_OBJECTNESS_PREDICTIONS_WITH_BACKGROUND = \
'rpn_objectness_predictions_with_background'
INPUT_BUILDER_UTIL_MAP = {
'model_build': model_builder.build,
}
def modify_config(pipeline_config):
"""Modifies pipeline config to build the correct graph for TPU."""
# faster_rcnn.use_static_shapes and faster_rcnn.use_static_shapes_for_eval
# are set to True in order for detection_model.use_static_shapes to be True.
# We need to set this so that clip_to_window in _predict_first_stage
# can work on TPU. However as a side-effect, the flag forces the use of
# padded version of NMS.
pipeline_config.model.faster_rcnn.use_static_shapes = True
pipeline_config.model.faster_rcnn.use_static_shapes_for_eval = True
pipeline_config.model.faster_rcnn.use_matmul_crop_and_resize = True
pipeline_config.model.faster_rcnn.clip_anchors_to_image = True
return pipeline_config
def get_prediction_tensor_shapes(pipeline_config):
"""Gets static shapes of tensors by building the graph on CPU.
This function builds the graph on CPU and obtain static shapes of output
tensors from TPUPartitionedCall. Shapes information are later used for setting
shapes of tensors when TPU graphs are built. This is necessary because tensors
coming out of TPUPartitionedCall lose their shape information, which are
needed for a lot of CPU operations later.
Args:
pipeline_config: A TrainEvalPipelineConfig proto.
Returns:
A python dict of tensors' names and their shapes.
"""
pipeline_config = modify_config(pipeline_config)
detection_model = INPUT_BUILDER_UTIL_MAP['model_build'](
pipeline_config.model, is_training=False)
_, input_tensors = exporter.input_placeholder_fn_map['image_tensor']()
inputs = tf.cast(input_tensors, dtype=tf.float32)
preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
prediction_dict = detection_model.predict(preprocessed_inputs,
true_image_shapes)
shapes_info = {}
for k, v in prediction_dict.items():
if isinstance(v, list):
shapes_info[k] = [item.shape.as_list() for item in v]
else:
shapes_info[k] = v.shape.as_list()
return shapes_info
def build_graph(pipeline_config,
shapes_info,
input_type='encoded_image_string_tensor',
use_bfloat16=True):
"""Builds serving graph of faster_rcnn to be exported.
Args:
pipeline_config: A TrainEvalPipelineConfig proto.
shapes_info: A python dict of tensors' names and their shapes, returned by
`get_prediction_tensor_shapes()`.
input_type: One of
'encoded_image_string_tensor': a 1d tensor with dtype=tf.string
'image_tensor': a 4d tensor with dtype=tf.uint8
'tf_example': a 1d tensor with dtype=tf.string
use_bfloat16: If true, use tf.bfloat16 on TPU.
Returns:
placeholder_tensor: A placeholder tensor, type determined by `input_type`.
result_tensor_dict: A python dict of tensors' names and tensors.
"""
pipeline_config = modify_config(pipeline_config)
detection_model = INPUT_BUILDER_UTIL_MAP['model_build'](
pipeline_config.model, is_training=False)
placeholder_tensor, input_tensors = \
exporter.input_placeholder_fn_map[input_type]()
# CPU pre-processing
inputs = tf.cast(input_tensors, dtype=tf.float32)
preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
# Dimshuffle: [b, h, w, c] -> [b, c, h, w]
preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 3, 1, 2])
if use_bfloat16:
preprocessed_inputs = tf.cast(preprocessed_inputs, dtype=tf.bfloat16)
# TPU feature extraction
def tpu_subgraph_predict_fn(preprocessed_inputs, true_image_shapes):
"""Defines the first part of graph on TPU."""
# [b, c, h, w] -> [b, h, w, c]
preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 2, 3, 1])
prediction_dict = detection_model.predict(preprocessed_inputs,
true_image_shapes)
return (
# [batch, anchor, depth] -> [depth, batch, anchor]
tf.transpose(prediction_dict[RPN_BOX_ENCODINGS], perm=[2, 0, 1]),
# [batch, anchor, depth] -> [depth, batch, anchor]
tf.transpose(
prediction_dict[RPN_OBJECTNESS_PREDICTIONS_WITH_BACKGROUND],
perm=[2, 0, 1]),
# [anchors, depth]
tf.transpose(prediction_dict[ANCHORS], perm=[1, 0]),
# [num_proposals, num_classes, code_size]
prediction_dict[REFINED_BOX_ENCODINGS],
prediction_dict[CLASS_PREDICTIONS_WITH_BACKGROUND],
prediction_dict[NUM_PROPOSALS],
prediction_dict[PROPOSAL_BOXES])
@function.Defun(capture_resource_var_by_value=False)
def tpu_subgraph_predict():
if use_bfloat16:
with bfloat16_scope():
return tpu.rewrite(tpu_subgraph_predict_fn,
[preprocessed_inputs, true_image_shapes])
else:
return tpu.rewrite(tpu_subgraph_predict_fn,
[preprocessed_inputs, true_image_shapes])
(rpn_box_encodings, rpn_objectness_predictions_with_background, anchors,
refined_box_encodings, class_predictions_with_background, num_proposals,
proposal_boxes) = tpu_functional.TPUPartitionedCall(
args=tpu_subgraph_predict.captured_inputs,
device_ordinal=tpu_ops.tpu_ordinal_selector(),
Tout=[
o.type for o in tpu_subgraph_predict.definition.signature.output_arg
],
f=tpu_subgraph_predict)
prediction_dict = {
RPN_BOX_ENCODINGS:
tf.transpose(rpn_box_encodings, perm=[1, 2, 0]),
RPN_OBJECTNESS_PREDICTIONS_WITH_BACKGROUND:
tf.transpose(
rpn_objectness_predictions_with_background, perm=[1, 2, 0]),
ANCHORS:
tf.transpose(anchors, perm=[1, 0]),
REFINED_BOX_ENCODINGS:
refined_box_encodings,
CLASS_PREDICTIONS_WITH_BACKGROUND:
class_predictions_with_background,
NUM_PROPOSALS:
num_proposals,
PROPOSAL_BOXES:
proposal_boxes
}
for k in prediction_dict:
if isinstance(prediction_dict[k], list):
prediction_dict[k] = [
prediction_dict[k][idx].set_shape(shapes_info[k][idx])
for idx in len(prediction_dict[k])]
else:
prediction_dict[k].set_shape(shapes_info[k])
if use_bfloat16:
prediction_dict = utils.bfloat16_to_float32_nested(prediction_dict)
# CPU post-processing (NMS)
postprocessed_tensors = detection_model.postprocess(prediction_dict,
true_image_shapes)
result_tensor_dict = exporter.add_output_tensor_nodes(postprocessed_tensors,
'inference_op')
return placeholder_tensor, result_tensor_dict | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/tpu_exporters/faster_rcnn.py | faster_rcnn.py |
"""Python library for exporting SavedModel, tailored for TPU inference."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.saved_model import loader
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.tpu import tpu
# pylint: enable=g-direct-tensorflow-import
from object_detection.protos import pipeline_pb2
from object_detection.tpu_exporters import faster_rcnn
from object_detection.tpu_exporters import ssd
model_map = {
'faster_rcnn': faster_rcnn,
'ssd': ssd,
}
def parse_pipeline_config(pipeline_config_file):
"""Returns pipeline config and meta architecture name."""
with tf.gfile.GFile(pipeline_config_file, 'r') as config_file:
config_str = config_file.read()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
text_format.Merge(config_str, pipeline_config)
meta_arch = pipeline_config.model.WhichOneof('model')
return pipeline_config, meta_arch
def export(pipeline_config_file,
ckpt_path,
export_dir,
input_placeholder_name='placeholder_tensor',
input_type='encoded_image_string_tensor',
use_bfloat16=False):
"""Exports as SavedModel.
Args:
pipeline_config_file: Pipeline config file name.
ckpt_path: Training checkpoint path.
export_dir: Directory to export SavedModel.
input_placeholder_name: input placeholder's name in SavedModel signature.
input_type: One of
'encoded_image_string_tensor': a 1d tensor with dtype=tf.string
'image_tensor': a 4d tensor with dtype=tf.uint8
'tf_example': a 1d tensor with dtype=tf.string
use_bfloat16: If true, use tf.bfloat16 on TPU.
"""
pipeline_config, meta_arch = parse_pipeline_config(pipeline_config_file)
shapes_info = model_map[meta_arch].get_prediction_tensor_shapes(
pipeline_config)
with tf.Graph().as_default(), tf.Session() as sess:
placeholder_tensor, result_tensor_dict = model_map[meta_arch].build_graph(
pipeline_config, shapes_info, input_type, use_bfloat16)
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
sess.run(init_op)
if ckpt_path is not None:
saver.restore(sess, ckpt_path)
# export saved model
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
tensor_info_inputs = {
input_placeholder_name:
tf.saved_model.utils.build_tensor_info(placeholder_tensor)
}
tensor_info_outputs = {
k: tf.saved_model.utils.build_tensor_info(v)
for k, v in result_tensor_dict.items()
}
detection_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs=tensor_info_inputs,
outputs=tensor_info_outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
tf.logging.info('Inputs:\n{}\nOutputs:{}\nPredict method name:{}'.format(
tensor_info_inputs, tensor_info_outputs,
tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
# Graph for TPU.
builder.add_meta_graph_and_variables(
sess, [
tf.saved_model.tag_constants.SERVING,
tf.saved_model.tag_constants.TPU
],
signature_def_map={
tf.saved_model.signature_constants
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
detection_signature,
},
strip_default_attrs=True)
# Graph for CPU, this is for passing infra validation.
builder.add_meta_graph(
[tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
detection_signature,
},
strip_default_attrs=True)
builder.save(as_text=False)
tf.logging.info('Model saved to {}'.format(export_dir))
def run_inference(inputs,
pipeline_config_file,
ckpt_path,
input_type='encoded_image_string_tensor',
use_bfloat16=False,
repeat=1):
"""Runs inference on TPU.
Args:
inputs: Input image with the same type as `input_type`
pipeline_config_file: Pipeline config file name.
ckpt_path: Training checkpoint path.
input_type: One of
'encoded_image_string_tensor': a 1d tensor with dtype=tf.string
'image_tensor': a 4d tensor with dtype=tf.uint8
'tf_example': a 1d tensor with dtype=tf.string
use_bfloat16: If true, use tf.bfloat16 on TPU.
repeat: Number of times to repeat running the provided input for profiling.
Returns:
A dict of resulting tensors.
"""
pipeline_config, meta_arch = parse_pipeline_config(pipeline_config_file)
shapes_info = model_map[meta_arch].get_prediction_tensor_shapes(
pipeline_config)
with tf.Graph().as_default(), tf.Session() as sess:
placeholder_tensor, result_tensor_dict = model_map[meta_arch].build_graph(
pipeline_config, shapes_info, input_type, use_bfloat16)
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
sess.run(tpu.initialize_system())
sess.run(init_op)
if ckpt_path is not None:
saver.restore(sess, ckpt_path)
for _ in range(repeat):
tensor_dict_out = sess.run(
result_tensor_dict, feed_dict={placeholder_tensor: [inputs]})
sess.run(tpu.shutdown_system())
return tensor_dict_out
def run_inference_from_saved_model(inputs,
saved_model_dir,
input_placeholder_name='placeholder_tensor',
repeat=1):
"""Loads saved model and run inference on TPU.
Args:
inputs: Input image with the same type as `input_type`
saved_model_dir: The directory SavedModel being exported to.
input_placeholder_name: input placeholder's name in SavedModel signature.
repeat: Number of times to repeat running the provided input for profiling.
Returns:
A dict of resulting tensors.
"""
with tf.Graph().as_default(), tf.Session() as sess:
meta_graph = loader.load(sess, [tag_constants.SERVING, tag_constants.TPU],
saved_model_dir)
sess.run(tpu.initialize_system())
key_prediction = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
tensor_name_input = (
meta_graph.signature_def[key_prediction].inputs[input_placeholder_name]
.name)
tensor_name_output = {
k: v.name
for k, v in (meta_graph.signature_def[key_prediction].outputs.items())
}
for _ in range(repeat):
tensor_dict_out = sess.run(
tensor_name_output, feed_dict={tensor_name_input: [inputs]})
sess.run(tpu.shutdown_system())
return tensor_dict_out | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/tpu_exporters/export_saved_model_tpu_lib.py | export_saved_model_tpu_lib.py |
import tensorflow.compat.v1 as tf
from object_detection.core import preprocessor
from object_detection.protos import preprocessor_pb2
def _get_step_config_from_proto(preprocessor_step_config, step_name):
"""Returns the value of a field named step_name from proto.
Args:
preprocessor_step_config: A preprocessor_pb2.PreprocessingStep object.
step_name: Name of the field to get value from.
Returns:
result_dict: a sub proto message from preprocessor_step_config which will be
later converted to a dictionary.
Raises:
ValueError: If field does not exist in proto.
"""
for field, value in preprocessor_step_config.ListFields():
if field.name == step_name:
return value
raise ValueError('Could not get field %s from proto!' % step_name)
def _get_dict_from_proto(config):
"""Helper function to put all proto fields into a dictionary.
For many preprocessing steps, there's an trivial 1-1 mapping from proto fields
to function arguments. This function automatically populates a dictionary with
the arguments from the proto.
Protos that CANNOT be trivially populated include:
* nested messages.
* steps that check if an optional field is set (ie. where None != 0).
* protos that don't map 1-1 to arguments (ie. list should be reshaped).
* fields requiring additional validation (ie. repeated field has n elements).
Args:
config: A protobuf object that does not violate the conditions above.
Returns:
result_dict: |config| converted into a python dictionary.
"""
result_dict = {}
for field, value in config.ListFields():
result_dict[field.name] = value
return result_dict
# A map from a PreprocessingStep proto config field name to the preprocessing
# function that should be used. The PreprocessingStep proto should be parsable
# with _get_dict_from_proto.
PREPROCESSING_FUNCTION_MAP = {
'normalize_image':
preprocessor.normalize_image,
'random_pixel_value_scale':
preprocessor.random_pixel_value_scale,
'random_image_scale':
preprocessor.random_image_scale,
'random_rgb_to_gray':
preprocessor.random_rgb_to_gray,
'random_adjust_brightness':
preprocessor.random_adjust_brightness,
'random_adjust_contrast':
preprocessor.random_adjust_contrast,
'random_adjust_hue':
preprocessor.random_adjust_hue,
'random_adjust_saturation':
preprocessor.random_adjust_saturation,
'random_distort_color':
preprocessor.random_distort_color,
'random_crop_to_aspect_ratio':
preprocessor.random_crop_to_aspect_ratio,
'random_black_patches':
preprocessor.random_black_patches,
'random_jpeg_quality':
preprocessor.random_jpeg_quality,
'random_downscale_to_target_pixels':
preprocessor.random_downscale_to_target_pixels,
'random_patch_gaussian':
preprocessor.random_patch_gaussian,
'rgb_to_gray':
preprocessor.rgb_to_gray,
'scale_boxes_to_pixel_coordinates':
(preprocessor.scale_boxes_to_pixel_coordinates),
'subtract_channel_mean':
preprocessor.subtract_channel_mean,
'convert_class_logits_to_softmax':
preprocessor.convert_class_logits_to_softmax,
'adjust_gamma':
preprocessor.adjust_gamma,
}
# A map to convert from preprocessor_pb2.ResizeImage.Method enum to
# tf.image.ResizeMethod.
RESIZE_METHOD_MAP = {
preprocessor_pb2.ResizeImage.AREA: tf.image.ResizeMethod.AREA,
preprocessor_pb2.ResizeImage.BICUBIC: tf.image.ResizeMethod.BICUBIC,
preprocessor_pb2.ResizeImage.BILINEAR: tf.image.ResizeMethod.BILINEAR,
preprocessor_pb2.ResizeImage.NEAREST_NEIGHBOR: (
tf.image.ResizeMethod.NEAREST_NEIGHBOR),
}
def get_random_jitter_kwargs(proto):
return {
'ratio':
proto.ratio,
'jitter_mode':
preprocessor_pb2.RandomJitterBoxes.JitterMode.Name(proto.jitter_mode
).lower()
}
def build(preprocessor_step_config):
"""Builds preprocessing step based on the configuration.
Args:
preprocessor_step_config: PreprocessingStep configuration proto.
Returns:
function, argmap: A callable function and an argument map to call function
with.
Raises:
ValueError: On invalid configuration.
"""
step_type = preprocessor_step_config.WhichOneof('preprocessing_step')
if step_type in PREPROCESSING_FUNCTION_MAP:
preprocessing_function = PREPROCESSING_FUNCTION_MAP[step_type]
step_config = _get_step_config_from_proto(preprocessor_step_config,
step_type)
function_args = _get_dict_from_proto(step_config)
return (preprocessing_function, function_args)
if step_type == 'random_horizontal_flip':
config = preprocessor_step_config.random_horizontal_flip
return (preprocessor.random_horizontal_flip,
{
'keypoint_flip_permutation': tuple(
config.keypoint_flip_permutation) or None,
'probability': config.probability or None,
})
if step_type == 'random_vertical_flip':
config = preprocessor_step_config.random_vertical_flip
return (preprocessor.random_vertical_flip,
{
'keypoint_flip_permutation': tuple(
config.keypoint_flip_permutation) or None,
'probability': config.probability or None,
})
if step_type == 'random_rotation90':
config = preprocessor_step_config.random_rotation90
return (preprocessor.random_rotation90,
{
'keypoint_rot_permutation': tuple(
config.keypoint_rot_permutation) or None,
'probability': config.probability or None,
})
if step_type == 'random_crop_image':
config = preprocessor_step_config.random_crop_image
return (preprocessor.random_crop_image,
{
'min_object_covered': config.min_object_covered,
'aspect_ratio_range': (config.min_aspect_ratio,
config.max_aspect_ratio),
'area_range': (config.min_area, config.max_area),
'overlap_thresh': config.overlap_thresh,
'clip_boxes': config.clip_boxes,
'random_coef': config.random_coef,
})
if step_type == 'random_pad_image':
config = preprocessor_step_config.random_pad_image
min_image_size = None
if (config.HasField('min_image_height') !=
config.HasField('min_image_width')):
raise ValueError('min_image_height and min_image_width should be either '
'both set or both unset.')
if config.HasField('min_image_height'):
min_image_size = (config.min_image_height, config.min_image_width)
max_image_size = None
if (config.HasField('max_image_height') !=
config.HasField('max_image_width')):
raise ValueError('max_image_height and max_image_width should be either '
'both set or both unset.')
if config.HasField('max_image_height'):
max_image_size = (config.max_image_height, config.max_image_width)
pad_color = config.pad_color or None
if pad_color:
if len(pad_color) != 3:
tf.logging.warn('pad_color should have 3 elements (RGB) if set!')
pad_color = tf.cast([x for x in config.pad_color], dtype=tf.float32)
return (preprocessor.random_pad_image,
{
'min_image_size': min_image_size,
'max_image_size': max_image_size,
'pad_color': pad_color,
})
if step_type == 'random_absolute_pad_image':
config = preprocessor_step_config.random_absolute_pad_image
max_height_padding = config.max_height_padding or 1
max_width_padding = config.max_width_padding or 1
pad_color = config.pad_color or None
if pad_color:
if len(pad_color) != 3:
tf.logging.warn('pad_color should have 3 elements (RGB) if set!')
pad_color = tf.cast([x for x in config.pad_color], dtype=tf.float32)
return (preprocessor.random_absolute_pad_image,
{
'max_height_padding': max_height_padding,
'max_width_padding': max_width_padding,
'pad_color': pad_color,
})
if step_type == 'random_crop_pad_image':
config = preprocessor_step_config.random_crop_pad_image
min_padded_size_ratio = config.min_padded_size_ratio
if min_padded_size_ratio and len(min_padded_size_ratio) != 2:
raise ValueError('min_padded_size_ratio should have 2 elements if set!')
max_padded_size_ratio = config.max_padded_size_ratio
if max_padded_size_ratio and len(max_padded_size_ratio) != 2:
raise ValueError('max_padded_size_ratio should have 2 elements if set!')
pad_color = config.pad_color or None
if pad_color:
if len(pad_color) != 3:
tf.logging.warn('pad_color should have 3 elements (RGB) if set!')
pad_color = tf.cast([x for x in config.pad_color], dtype=tf.float32)
kwargs = {
'min_object_covered': config.min_object_covered,
'aspect_ratio_range': (config.min_aspect_ratio,
config.max_aspect_ratio),
'area_range': (config.min_area, config.max_area),
'overlap_thresh': config.overlap_thresh,
'clip_boxes': config.clip_boxes,
'random_coef': config.random_coef,
'pad_color': pad_color,
}
if min_padded_size_ratio:
kwargs['min_padded_size_ratio'] = tuple(min_padded_size_ratio)
if max_padded_size_ratio:
kwargs['max_padded_size_ratio'] = tuple(max_padded_size_ratio)
return (preprocessor.random_crop_pad_image, kwargs)
if step_type == 'random_resize_method':
config = preprocessor_step_config.random_resize_method
return (preprocessor.random_resize_method,
{
'target_size': [config.target_height, config.target_width],
})
if step_type == 'resize_image':
config = preprocessor_step_config.resize_image
method = RESIZE_METHOD_MAP[config.method]
return (preprocessor.resize_image,
{
'new_height': config.new_height,
'new_width': config.new_width,
'method': method
})
if step_type == 'random_self_concat_image':
config = preprocessor_step_config.random_self_concat_image
return (preprocessor.random_self_concat_image, {
'concat_vertical_probability': config.concat_vertical_probability,
'concat_horizontal_probability': config.concat_horizontal_probability
})
if step_type == 'ssd_random_crop':
config = preprocessor_step_config.ssd_random_crop
if config.operations:
min_object_covered = [op.min_object_covered for op in config.operations]
aspect_ratio_range = [(op.min_aspect_ratio, op.max_aspect_ratio)
for op in config.operations]
area_range = [(op.min_area, op.max_area) for op in config.operations]
overlap_thresh = [op.overlap_thresh for op in config.operations]
clip_boxes = [op.clip_boxes for op in config.operations]
random_coef = [op.random_coef for op in config.operations]
return (preprocessor.ssd_random_crop,
{
'min_object_covered': min_object_covered,
'aspect_ratio_range': aspect_ratio_range,
'area_range': area_range,
'overlap_thresh': overlap_thresh,
'clip_boxes': clip_boxes,
'random_coef': random_coef,
})
return (preprocessor.ssd_random_crop, {})
if step_type == 'autoaugment_image':
config = preprocessor_step_config.autoaugment_image
return (preprocessor.autoaugment_image, {
'policy_name': config.policy_name,
})
if step_type == 'drop_label_probabilistically':
config = preprocessor_step_config.drop_label_probabilistically
return (preprocessor.drop_label_probabilistically, {
'dropped_label': config.label,
'drop_probability': config.drop_probability,
})
if step_type == 'remap_labels':
config = preprocessor_step_config.remap_labels
return (preprocessor.remap_labels, {
'original_labels': config.original_labels,
'new_label': config.new_label
})
if step_type == 'ssd_random_crop_pad':
config = preprocessor_step_config.ssd_random_crop_pad
if config.operations:
min_object_covered = [op.min_object_covered for op in config.operations]
aspect_ratio_range = [(op.min_aspect_ratio, op.max_aspect_ratio)
for op in config.operations]
area_range = [(op.min_area, op.max_area) for op in config.operations]
overlap_thresh = [op.overlap_thresh for op in config.operations]
clip_boxes = [op.clip_boxes for op in config.operations]
random_coef = [op.random_coef for op in config.operations]
min_padded_size_ratio = [tuple(op.min_padded_size_ratio)
for op in config.operations]
max_padded_size_ratio = [tuple(op.max_padded_size_ratio)
for op in config.operations]
pad_color = [(op.pad_color_r, op.pad_color_g, op.pad_color_b)
for op in config.operations]
return (preprocessor.ssd_random_crop_pad,
{
'min_object_covered': min_object_covered,
'aspect_ratio_range': aspect_ratio_range,
'area_range': area_range,
'overlap_thresh': overlap_thresh,
'clip_boxes': clip_boxes,
'random_coef': random_coef,
'min_padded_size_ratio': min_padded_size_ratio,
'max_padded_size_ratio': max_padded_size_ratio,
'pad_color': pad_color,
})
return (preprocessor.ssd_random_crop_pad, {})
if step_type == 'ssd_random_crop_fixed_aspect_ratio':
config = preprocessor_step_config.ssd_random_crop_fixed_aspect_ratio
if config.operations:
min_object_covered = [op.min_object_covered for op in config.operations]
area_range = [(op.min_area, op.max_area) for op in config.operations]
overlap_thresh = [op.overlap_thresh for op in config.operations]
clip_boxes = [op.clip_boxes for op in config.operations]
random_coef = [op.random_coef for op in config.operations]
return (preprocessor.ssd_random_crop_fixed_aspect_ratio,
{
'min_object_covered': min_object_covered,
'aspect_ratio': config.aspect_ratio,
'area_range': area_range,
'overlap_thresh': overlap_thresh,
'clip_boxes': clip_boxes,
'random_coef': random_coef,
})
return (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})
if step_type == 'ssd_random_crop_pad_fixed_aspect_ratio':
config = preprocessor_step_config.ssd_random_crop_pad_fixed_aspect_ratio
kwargs = {}
aspect_ratio = config.aspect_ratio
if aspect_ratio:
kwargs['aspect_ratio'] = aspect_ratio
min_padded_size_ratio = config.min_padded_size_ratio
if min_padded_size_ratio:
if len(min_padded_size_ratio) != 2:
raise ValueError('min_padded_size_ratio should have 2 elements if set!')
kwargs['min_padded_size_ratio'] = tuple(min_padded_size_ratio)
max_padded_size_ratio = config.max_padded_size_ratio
if max_padded_size_ratio:
if len(max_padded_size_ratio) != 2:
raise ValueError('max_padded_size_ratio should have 2 elements if set!')
kwargs['max_padded_size_ratio'] = tuple(max_padded_size_ratio)
if config.operations:
kwargs['min_object_covered'] = [op.min_object_covered
for op in config.operations]
kwargs['aspect_ratio_range'] = [(op.min_aspect_ratio, op.max_aspect_ratio)
for op in config.operations]
kwargs['area_range'] = [(op.min_area, op.max_area)
for op in config.operations]
kwargs['overlap_thresh'] = [op.overlap_thresh for op in config.operations]
kwargs['clip_boxes'] = [op.clip_boxes for op in config.operations]
kwargs['random_coef'] = [op.random_coef for op in config.operations]
return (preprocessor.ssd_random_crop_pad_fixed_aspect_ratio, kwargs)
if step_type == 'random_square_crop_by_scale':
config = preprocessor_step_config.random_square_crop_by_scale
return preprocessor.random_square_crop_by_scale, {
'scale_min': config.scale_min,
'scale_max': config.scale_max,
'max_border': config.max_border,
'num_scales': config.num_scales
}
if step_type == 'random_scale_crop_and_pad_to_square':
config = preprocessor_step_config.random_scale_crop_and_pad_to_square
return preprocessor.random_scale_crop_and_pad_to_square, {
'scale_min': config.scale_min,
'scale_max': config.scale_max,
'output_size': config.output_size,
}
if step_type == 'random_jitter_boxes':
config = preprocessor_step_config.random_jitter_boxes
kwargs = get_random_jitter_kwargs(config)
return preprocessor.random_jitter_boxes, kwargs
raise ValueError('Unknown preprocessing step.') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/preprocessor_builder.py | preprocessor_builder.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import zip
from object_detection.anchor_generators import flexible_grid_anchor_generator
from object_detection.anchor_generators import grid_anchor_generator
from object_detection.anchor_generators import multiple_grid_anchor_generator
from object_detection.anchor_generators import multiscale_grid_anchor_generator
from object_detection.protos import anchor_generator_pb2
def build(anchor_generator_config):
"""Builds an anchor generator based on the config.
Args:
anchor_generator_config: An anchor_generator.proto object containing the
config for the desired anchor generator.
Returns:
Anchor generator based on the config.
Raises:
ValueError: On empty anchor generator proto.
"""
if not isinstance(anchor_generator_config,
anchor_generator_pb2.AnchorGenerator):
raise ValueError('anchor_generator_config not of type '
'anchor_generator_pb2.AnchorGenerator')
if anchor_generator_config.WhichOneof(
'anchor_generator_oneof') == 'grid_anchor_generator':
grid_anchor_generator_config = anchor_generator_config.grid_anchor_generator
return grid_anchor_generator.GridAnchorGenerator(
scales=[float(scale) for scale in grid_anchor_generator_config.scales],
aspect_ratios=[float(aspect_ratio)
for aspect_ratio
in grid_anchor_generator_config.aspect_ratios],
base_anchor_size=[grid_anchor_generator_config.height,
grid_anchor_generator_config.width],
anchor_stride=[grid_anchor_generator_config.height_stride,
grid_anchor_generator_config.width_stride],
anchor_offset=[grid_anchor_generator_config.height_offset,
grid_anchor_generator_config.width_offset])
elif anchor_generator_config.WhichOneof(
'anchor_generator_oneof') == 'ssd_anchor_generator':
ssd_anchor_generator_config = anchor_generator_config.ssd_anchor_generator
anchor_strides = None
if ssd_anchor_generator_config.height_stride:
anchor_strides = list(
zip(ssd_anchor_generator_config.height_stride,
ssd_anchor_generator_config.width_stride))
anchor_offsets = None
if ssd_anchor_generator_config.height_offset:
anchor_offsets = list(
zip(ssd_anchor_generator_config.height_offset,
ssd_anchor_generator_config.width_offset))
return multiple_grid_anchor_generator.create_ssd_anchors(
num_layers=ssd_anchor_generator_config.num_layers,
min_scale=ssd_anchor_generator_config.min_scale,
max_scale=ssd_anchor_generator_config.max_scale,
scales=[float(scale) for scale in ssd_anchor_generator_config.scales],
aspect_ratios=ssd_anchor_generator_config.aspect_ratios,
interpolated_scale_aspect_ratio=(
ssd_anchor_generator_config.interpolated_scale_aspect_ratio),
base_anchor_size=[
ssd_anchor_generator_config.base_anchor_height,
ssd_anchor_generator_config.base_anchor_width
],
anchor_strides=anchor_strides,
anchor_offsets=anchor_offsets,
reduce_boxes_in_lowest_layer=(
ssd_anchor_generator_config.reduce_boxes_in_lowest_layer))
elif anchor_generator_config.WhichOneof(
'anchor_generator_oneof') == 'multiscale_anchor_generator':
cfg = anchor_generator_config.multiscale_anchor_generator
return multiscale_grid_anchor_generator.MultiscaleGridAnchorGenerator(
cfg.min_level,
cfg.max_level,
cfg.anchor_scale,
[float(aspect_ratio) for aspect_ratio in cfg.aspect_ratios],
cfg.scales_per_octave,
cfg.normalize_coordinates
)
elif anchor_generator_config.WhichOneof(
'anchor_generator_oneof') == 'flexible_grid_anchor_generator':
cfg = anchor_generator_config.flexible_grid_anchor_generator
base_sizes = []
aspect_ratios = []
strides = []
offsets = []
for anchor_grid in cfg.anchor_grid:
base_sizes.append(tuple(anchor_grid.base_sizes))
aspect_ratios.append(tuple(anchor_grid.aspect_ratios))
strides.append((anchor_grid.height_stride, anchor_grid.width_stride))
offsets.append((anchor_grid.height_offset, anchor_grid.width_offset))
return flexible_grid_anchor_generator.FlexibleGridAnchorGenerator(
base_sizes, aspect_ratios, strides, offsets, cfg.normalize_coordinates)
else:
raise ValueError('Empty anchor generator.') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/anchor_generator_builder.py | anchor_generator_builder.py |
import functools
import sys
from absl import logging
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
from object_detection.core import balanced_positive_negative_sampler as sampler
from object_detection.core import post_processing
from object_detection.core import target_assigner
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.meta_architectures import context_rcnn_meta_arch
from object_detection.meta_architectures import deepmac_meta_arch
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.predictors.heads import mask_head
from object_detection.protos import losses_pb2
from object_detection.protos import model_pb2
from object_detection.utils import label_map_util
from object_detection.utils import ops
from object_detection.utils import spatial_transform_ops as spatial_ops
from object_detection.utils import tf_version
## Feature Extractors for TF
## This section conditionally imports different feature extractors based on the
## Tensorflow version.
##
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
from object_detection.models import center_net_hourglass_feature_extractor
from object_detection.models import center_net_mobilenet_v2_feature_extractor
from object_detection.models import center_net_mobilenet_v2_fpn_feature_extractor
from object_detection.models import center_net_resnet_feature_extractor
from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
from object_detection.models import faster_rcnn_resnet_v1_fpn_keras_feature_extractor as frcnn_resnet_fpn_keras
from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
from object_detection.predictors import rfcn_keras_box_predictor
if sys.version_info[0] >= 3:
from object_detection.models import ssd_efficientnet_bifpn_feature_extractor as ssd_efficientnet_bifpn
if tf_version.is_tf1():
from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
from object_detection.predictors import rfcn_box_predictor
# pylint: enable=g-import-not-at-top
if tf_version.is_tf2():
SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
'ssd_resnet50_v1_fpn_keras':
ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
'ssd_resnet101_v1_fpn_keras':
ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
'ssd_resnet152_v1_fpn_keras':
ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
'ssd_efficientnet-b0_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB0BiFPNKerasFeatureExtractor,
'ssd_efficientnet-b1_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB1BiFPNKerasFeatureExtractor,
'ssd_efficientnet-b2_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB2BiFPNKerasFeatureExtractor,
'ssd_efficientnet-b3_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB3BiFPNKerasFeatureExtractor,
'ssd_efficientnet-b4_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB4BiFPNKerasFeatureExtractor,
'ssd_efficientnet-b5_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB5BiFPNKerasFeatureExtractor,
'ssd_efficientnet-b6_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB6BiFPNKerasFeatureExtractor,
'ssd_efficientnet-b7_bifpn_keras':
ssd_efficientnet_bifpn.SSDEfficientNetB7BiFPNKerasFeatureExtractor,
}
FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
'faster_rcnn_resnet50_keras':
frcnn_resnet_keras.FasterRCNNResnet50KerasFeatureExtractor,
'faster_rcnn_resnet101_keras':
frcnn_resnet_keras.FasterRCNNResnet101KerasFeatureExtractor,
'faster_rcnn_resnet152_keras':
frcnn_resnet_keras.FasterRCNNResnet152KerasFeatureExtractor,
'faster_rcnn_inception_resnet_v2_keras':
frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
'faster_rcnn_resnet50_fpn_keras':
frcnn_resnet_fpn_keras.FasterRCNNResnet50FpnKerasFeatureExtractor,
'faster_rcnn_resnet101_fpn_keras':
frcnn_resnet_fpn_keras.FasterRCNNResnet101FpnKerasFeatureExtractor,
'faster_rcnn_resnet152_fpn_keras':
frcnn_resnet_fpn_keras.FasterRCNNResnet152FpnKerasFeatureExtractor,
}
CENTER_NET_EXTRACTOR_FUNCTION_MAP = {
'resnet_v2_50':
center_net_resnet_feature_extractor.resnet_v2_50,
'resnet_v2_101':
center_net_resnet_feature_extractor.resnet_v2_101,
'resnet_v1_18_fpn':
center_net_resnet_v1_fpn_feature_extractor.resnet_v1_18_fpn,
'resnet_v1_34_fpn':
center_net_resnet_v1_fpn_feature_extractor.resnet_v1_34_fpn,
'resnet_v1_50_fpn':
center_net_resnet_v1_fpn_feature_extractor.resnet_v1_50_fpn,
'resnet_v1_101_fpn':
center_net_resnet_v1_fpn_feature_extractor.resnet_v1_101_fpn,
'hourglass_10':
center_net_hourglass_feature_extractor.hourglass_10,
'hourglass_20':
center_net_hourglass_feature_extractor.hourglass_20,
'hourglass_32':
center_net_hourglass_feature_extractor.hourglass_32,
'hourglass_52':
center_net_hourglass_feature_extractor.hourglass_52,
'hourglass_104':
center_net_hourglass_feature_extractor.hourglass_104,
'mobilenet_v2':
center_net_mobilenet_v2_feature_extractor.mobilenet_v2,
'mobilenet_v2_fpn':
center_net_mobilenet_v2_fpn_feature_extractor.mobilenet_v2_fpn,
'mobilenet_v2_fpn_sep_conv':
center_net_mobilenet_v2_fpn_feature_extractor.mobilenet_v2_fpn,
}
FEATURE_EXTRACTOR_MAPS = [
CENTER_NET_EXTRACTOR_FUNCTION_MAP,
FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP,
SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
]
if tf_version.is_tf1():
SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
'ssd_inception_v2':
SSDInceptionV2FeatureExtractor,
'ssd_inception_v3':
SSDInceptionV3FeatureExtractor,
'ssd_mobilenet_v1':
SSDMobileNetV1FeatureExtractor,
'ssd_mobilenet_v1_fpn':
SSDMobileNetV1FpnFeatureExtractor,
'ssd_mobilenet_v1_ppn':
SSDMobileNetV1PpnFeatureExtractor,
'ssd_mobilenet_v2':
SSDMobileNetV2FeatureExtractor,
'ssd_mobilenet_v2_fpn':
SSDMobileNetV2FpnFeatureExtractor,
'ssd_mobilenet_v2_mnasfpn':
SSDMobileNetV2MnasFPNFeatureExtractor,
'ssd_mobilenet_v3_large':
SSDMobileNetV3LargeFeatureExtractor,
'ssd_mobilenet_v3_small':
SSDMobileNetV3SmallFeatureExtractor,
'ssd_mobilenet_edgetpu':
SSDMobileNetEdgeTPUFeatureExtractor,
'ssd_resnet50_v1_fpn':
ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
'ssd_resnet101_v1_fpn':
ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
'ssd_resnet152_v1_fpn':
ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
'ssd_resnet50_v1_ppn':
ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
'ssd_resnet101_v1_ppn':
ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
'ssd_resnet152_v1_ppn':
ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
'embedded_ssd_mobilenet_v1':
EmbeddedSSDMobileNetV1FeatureExtractor,
'ssd_pnasnet':
SSDPNASNetFeatureExtractor,
'ssd_mobiledet_cpu':
SSDMobileDetCPUFeatureExtractor,
'ssd_mobiledet_dsp':
SSDMobileDetDSPFeatureExtractor,
'ssd_mobiledet_edgetpu':
SSDMobileDetEdgeTPUFeatureExtractor,
'ssd_mobiledet_gpu':
SSDMobileDetGPUFeatureExtractor,
}
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
'faster_rcnn_nas':
frcnn_nas.FasterRCNNNASFeatureExtractor,
'faster_rcnn_pnas':
frcnn_pnas.FasterRCNNPNASFeatureExtractor,
'faster_rcnn_inception_resnet_v2':
frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
'faster_rcnn_inception_v2':
frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
'faster_rcnn_resnet50':
frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
'faster_rcnn_resnet101':
frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
'faster_rcnn_resnet152':
frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
}
CENTER_NET_EXTRACTOR_FUNCTION_MAP = {}
FEATURE_EXTRACTOR_MAPS = [
SSD_FEATURE_EXTRACTOR_CLASS_MAP,
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP,
CENTER_NET_EXTRACTOR_FUNCTION_MAP
]
def _check_feature_extractor_exists(feature_extractor_type):
feature_extractors = set().union(*FEATURE_EXTRACTOR_MAPS)
if feature_extractor_type not in feature_extractors:
raise ValueError('{} is not supported. See `model_builder.py` for features '
'extractors compatible with different versions of '
'Tensorflow'.format(feature_extractor_type))
def _build_ssd_feature_extractor(feature_extractor_config,
is_training,
freeze_batchnorm,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
pad_to_multiple = feature_extractor_config.pad_to_multiple
use_explicit_padding = feature_extractor_config.use_explicit_padding
use_depthwise = feature_extractor_config.use_depthwise
is_keras = tf_version.is_tf2()
if is_keras:
conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
feature_extractor_config.conv_hyperparams)
else:
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
override_base_feature_extractor_hyperparams = (
feature_extractor_config.override_base_feature_extractor_hyperparams)
if not is_keras and feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
if is_keras:
feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
feature_type]
else:
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
kwargs = {
'is_training':
is_training,
'depth_multiplier':
depth_multiplier,
'min_depth':
min_depth,
'pad_to_multiple':
pad_to_multiple,
'use_explicit_padding':
use_explicit_padding,
'use_depthwise':
use_depthwise,
'override_base_feature_extractor_hyperparams':
override_base_feature_extractor_hyperparams
}
if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
kwargs.update({
'replace_preprocessor_with_placeholder':
feature_extractor_config.replace_preprocessor_with_placeholder
})
if feature_extractor_config.HasField('num_layers'):
kwargs.update({'num_layers': feature_extractor_config.num_layers})
if is_keras:
kwargs.update({
'conv_hyperparams': conv_hyperparams,
'inplace_batchnorm_update': False,
'freeze_batchnorm': freeze_batchnorm
})
else:
kwargs.update({
'conv_hyperparams_fn': conv_hyperparams,
'reuse_weights': reuse_weights,
})
if feature_extractor_config.HasField('fpn'):
kwargs.update({
'fpn_min_level':
feature_extractor_config.fpn.min_level,
'fpn_max_level':
feature_extractor_config.fpn.max_level,
'additional_layer_depth':
feature_extractor_config.fpn.additional_layer_depth,
})
if feature_extractor_config.HasField('bifpn'):
kwargs.update({
'bifpn_min_level': feature_extractor_config.bifpn.min_level,
'bifpn_max_level': feature_extractor_config.bifpn.max_level,
'bifpn_num_iterations': feature_extractor_config.bifpn.num_iterations,
'bifpn_num_filters': feature_extractor_config.bifpn.num_filters,
'bifpn_combine_method': feature_extractor_config.bifpn.combine_method,
})
return feature_extractor_class(**kwargs)
def _build_ssd_model(ssd_config, is_training, add_summaries):
"""Builds an SSD detection model based on the model config.
Args:
ssd_config: A ssd.proto object containing the config for the desired
SSDMetaArch.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tf summaries in the model.
Returns:
SSDMetaArch based on the config.
Raises:
ValueError: If ssd_config.type is not recognized (i.e. not registered in
model_class_map).
"""
num_classes = ssd_config.num_classes
_check_feature_extractor_exists(ssd_config.feature_extractor.type)
# Feature extractor
feature_extractor = _build_ssd_feature_extractor(
feature_extractor_config=ssd_config.feature_extractor,
freeze_batchnorm=ssd_config.freeze_batchnorm,
is_training=is_training)
box_coder = box_coder_builder.build(ssd_config.box_coder)
matcher = matcher_builder.build(ssd_config.matcher)
region_similarity_calculator = sim_calc.build(
ssd_config.similarity_calculator)
encode_background_as_zeros = ssd_config.encode_background_as_zeros
negative_class_weight = ssd_config.negative_class_weight
anchor_generator = anchor_generator_builder.build(
ssd_config.anchor_generator)
if feature_extractor.is_keras_model:
ssd_box_predictor = box_predictor_builder.build_keras(
hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
freeze_batchnorm=ssd_config.freeze_batchnorm,
inplace_batchnorm_update=False,
num_predictions_per_location_list=anchor_generator
.num_anchors_per_location(),
box_predictor_config=ssd_config.box_predictor,
is_training=is_training,
num_classes=num_classes,
add_background_class=ssd_config.add_background_class)
else:
ssd_box_predictor = box_predictor_builder.build(
hyperparams_builder.build, ssd_config.box_predictor, is_training,
num_classes, ssd_config.add_background_class)
image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
ssd_config.post_processing)
(classification_loss, localization_loss, classification_weight,
localization_weight, hard_example_miner, random_example_sampler,
expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
equalization_loss_config = ops.EqualizationLossConfig(
weight=ssd_config.loss.equalization_loss.weight,
exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
target_assigner_instance = target_assigner.TargetAssigner(
region_similarity_calculator,
matcher,
box_coder,
negative_class_weight=negative_class_weight)
ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
kwargs = {}
return ssd_meta_arch_fn(
is_training=is_training,
anchor_generator=anchor_generator,
box_predictor=ssd_box_predictor,
box_coder=box_coder,
feature_extractor=feature_extractor,
encode_background_as_zeros=encode_background_as_zeros,
image_resizer_fn=image_resizer_fn,
non_max_suppression_fn=non_max_suppression_fn,
score_conversion_fn=score_conversion_fn,
classification_loss=classification_loss,
localization_loss=localization_loss,
classification_loss_weight=classification_weight,
localization_loss_weight=localization_weight,
normalize_loss_by_num_matches=normalize_loss_by_num_matches,
hard_example_miner=hard_example_miner,
target_assigner_instance=target_assigner_instance,
add_summaries=add_summaries,
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
freeze_batchnorm=ssd_config.freeze_batchnorm,
inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
add_background_class=ssd_config.add_background_class,
explicit_background_class=ssd_config.explicit_background_class,
random_example_sampler=random_example_sampler,
expected_loss_weights_fn=expected_loss_weights_fn,
use_confidences_as_targets=ssd_config.use_confidences_as_targets,
implicit_example_weight=ssd_config.implicit_example_weight,
equalization_loss_config=equalization_loss_config,
return_raw_detections_during_predict=(
ssd_config.return_raw_detections_during_predict),
**kwargs)
def _build_faster_rcnn_feature_extractor(
feature_extractor_config, is_training, reuse_weights=True,
inplace_batchnorm_update=False):
"""Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.
Args:
feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
faster_rcnn.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
inplace_batchnorm_update: Whether to update batch_norm inplace during
training. This is required for batch norm to work correctly on TPUs. When
this is false, user must add a control dependency on
tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
norm moving average parameters.
Returns:
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
if inplace_batchnorm_update:
raise ValueError('inplace batchnorm updates not supported.')
feature_type = feature_extractor_config.type
first_stage_features_stride = (
feature_extractor_config.first_stage_features_stride)
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
feature_type))
feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
feature_type]
return feature_extractor_class(
is_training, first_stage_features_stride,
batch_norm_trainable, reuse_weights=reuse_weights)
def _build_faster_rcnn_keras_feature_extractor(
feature_extractor_config, is_training,
inplace_batchnorm_update=False):
"""Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.
Args:
feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
faster_rcnn.proto.
is_training: True if this feature extractor is being built for training.
inplace_batchnorm_update: Whether to update batch_norm inplace during
training. This is required for batch norm to work correctly on TPUs. When
this is false, user must add a control dependency on
tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
norm moving average parameters.
Returns:
faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
if inplace_batchnorm_update:
raise ValueError('inplace batchnorm updates not supported.')
feature_type = feature_extractor_config.type
first_stage_features_stride = (
feature_extractor_config.first_stage_features_stride)
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
feature_type))
feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
feature_type]
kwargs = {}
if feature_extractor_config.HasField('conv_hyperparams'):
kwargs.update({
'conv_hyperparams':
hyperparams_builder.KerasLayerHyperparams(
feature_extractor_config.conv_hyperparams),
'override_base_feature_extractor_hyperparams':
feature_extractor_config.override_base_feature_extractor_hyperparams
})
if feature_extractor_config.HasField('fpn'):
kwargs.update({
'fpn_min_level':
feature_extractor_config.fpn.min_level,
'fpn_max_level':
feature_extractor_config.fpn.max_level,
'additional_layer_depth':
feature_extractor_config.fpn.additional_layer_depth,
})
return feature_extractor_class(
is_training, first_stage_features_stride,
batch_norm_trainable, **kwargs)
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
"""Builds a Faster R-CNN or R-FCN detection model based on the model config.
Builds R-FCN model if the second_stage_box_predictor in the config is of type
`rfcn_box_predictor` else builds a Faster R-CNN model.
Args:
frcnn_config: A faster_rcnn.proto object containing the config for the
desired FasterRCNNMetaArch or RFCNMetaArch.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tf summaries in the model.
Returns:
FasterRCNNMetaArch based on the config.
Raises:
ValueError: If frcnn_config.type is not recognized (i.e. not registered in
model_class_map).
"""
num_classes = frcnn_config.num_classes
image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
_check_feature_extractor_exists(frcnn_config.feature_extractor.type)
is_keras = tf_version.is_tf2()
if is_keras:
feature_extractor = _build_faster_rcnn_keras_feature_extractor(
frcnn_config.feature_extractor, is_training,
inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
else:
feature_extractor = _build_faster_rcnn_feature_extractor(
frcnn_config.feature_extractor, is_training,
inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
number_of_stages = frcnn_config.number_of_stages
first_stage_anchor_generator = anchor_generator_builder.build(
frcnn_config.first_stage_anchor_generator)
first_stage_target_assigner = target_assigner.create_target_assigner(
'FasterRCNN',
'proposal',
use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
if is_keras:
first_stage_box_predictor_arg_scope_fn = (
hyperparams_builder.KerasLayerHyperparams(
frcnn_config.first_stage_box_predictor_conv_hyperparams))
else:
first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
first_stage_box_predictor_kernel_size = (
frcnn_config.first_stage_box_predictor_kernel_size)
first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
use_static_shapes = frcnn_config.use_static_shapes and (
frcnn_config.use_static_shapes_for_eval or is_training)
first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
is_static=(frcnn_config.use_static_balanced_label_sampler and
use_static_shapes))
first_stage_max_proposals = frcnn_config.first_stage_max_proposals
if (frcnn_config.first_stage_nms_iou_threshold < 0 or
frcnn_config.first_stage_nms_iou_threshold > 1.0):
raise ValueError('iou_threshold not in [0, 1.0].')
if (is_training and frcnn_config.second_stage_batch_size >
first_stage_max_proposals):
raise ValueError('second_stage_batch_size should be no greater than '
'first_stage_max_proposals.')
first_stage_non_max_suppression_fn = functools.partial(
post_processing.batch_multiclass_non_max_suppression,
score_thresh=frcnn_config.first_stage_nms_score_threshold,
iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
max_size_per_class=frcnn_config.first_stage_max_proposals,
max_total_size=frcnn_config.first_stage_max_proposals,
use_static_shapes=use_static_shapes,
use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
first_stage_loc_loss_weight = (
frcnn_config.first_stage_localization_loss_weight)
first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight
initial_crop_size = frcnn_config.initial_crop_size
maxpool_kernel_size = frcnn_config.maxpool_kernel_size
maxpool_stride = frcnn_config.maxpool_stride
second_stage_target_assigner = target_assigner.create_target_assigner(
'FasterRCNN',
'detection',
use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
if is_keras:
second_stage_box_predictor = box_predictor_builder.build_keras(
hyperparams_builder.KerasLayerHyperparams,
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[1],
box_predictor_config=frcnn_config.second_stage_box_predictor,
is_training=is_training,
num_classes=num_classes)
else:
second_stage_box_predictor = box_predictor_builder.build(
hyperparams_builder.build,
frcnn_config.second_stage_box_predictor,
is_training=is_training,
num_classes=num_classes)
second_stage_batch_size = frcnn_config.second_stage_batch_size
second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
positive_fraction=frcnn_config.second_stage_balance_fraction,
is_static=(frcnn_config.use_static_balanced_label_sampler and
use_static_shapes))
(second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
second_stage_localization_loss_weight = (
frcnn_config.second_stage_localization_loss_weight)
second_stage_classification_loss = (
losses_builder.build_faster_rcnn_classification_loss(
frcnn_config.second_stage_classification_loss))
second_stage_classification_loss_weight = (
frcnn_config.second_stage_classification_loss_weight)
second_stage_mask_prediction_loss_weight = (
frcnn_config.second_stage_mask_prediction_loss_weight)
hard_example_miner = None
if frcnn_config.HasField('hard_example_miner'):
hard_example_miner = losses_builder.build_hard_example_miner(
frcnn_config.hard_example_miner,
second_stage_classification_loss_weight,
second_stage_localization_loss_weight)
crop_and_resize_fn = (
spatial_ops.multilevel_matmul_crop_and_resize
if frcnn_config.use_matmul_crop_and_resize
else spatial_ops.multilevel_native_crop_and_resize)
clip_anchors_to_image = (
frcnn_config.clip_anchors_to_image)
common_kwargs = {
'is_training':
is_training,
'num_classes':
num_classes,
'image_resizer_fn':
image_resizer_fn,
'feature_extractor':
feature_extractor,
'number_of_stages':
number_of_stages,
'first_stage_anchor_generator':
first_stage_anchor_generator,
'first_stage_target_assigner':
first_stage_target_assigner,
'first_stage_atrous_rate':
first_stage_atrous_rate,
'first_stage_box_predictor_arg_scope_fn':
first_stage_box_predictor_arg_scope_fn,
'first_stage_box_predictor_kernel_size':
first_stage_box_predictor_kernel_size,
'first_stage_box_predictor_depth':
first_stage_box_predictor_depth,
'first_stage_minibatch_size':
first_stage_minibatch_size,
'first_stage_sampler':
first_stage_sampler,
'first_stage_non_max_suppression_fn':
first_stage_non_max_suppression_fn,
'first_stage_max_proposals':
first_stage_max_proposals,
'first_stage_localization_loss_weight':
first_stage_loc_loss_weight,
'first_stage_objectness_loss_weight':
first_stage_obj_loss_weight,
'second_stage_target_assigner':
second_stage_target_assigner,
'second_stage_batch_size':
second_stage_batch_size,
'second_stage_sampler':
second_stage_sampler,
'second_stage_non_max_suppression_fn':
second_stage_non_max_suppression_fn,
'second_stage_score_conversion_fn':
second_stage_score_conversion_fn,
'second_stage_localization_loss_weight':
second_stage_localization_loss_weight,
'second_stage_classification_loss':
second_stage_classification_loss,
'second_stage_classification_loss_weight':
second_stage_classification_loss_weight,
'hard_example_miner':
hard_example_miner,
'add_summaries':
add_summaries,
'crop_and_resize_fn':
crop_and_resize_fn,
'clip_anchors_to_image':
clip_anchors_to_image,
'use_static_shapes':
use_static_shapes,
'resize_masks':
frcnn_config.resize_masks,
'return_raw_detections_during_predict':
frcnn_config.return_raw_detections_during_predict,
'output_final_box_features':
frcnn_config.output_final_box_features,
'output_final_box_rpn_features':
frcnn_config.output_final_box_rpn_features,
}
if ((not is_keras and isinstance(second_stage_box_predictor,
rfcn_box_predictor.RfcnBoxPredictor)) or
(is_keras and
isinstance(second_stage_box_predictor,
rfcn_keras_box_predictor.RfcnKerasBoxPredictor))):
return rfcn_meta_arch.RFCNMetaArch(
second_stage_rfcn_box_predictor=second_stage_box_predictor,
**common_kwargs)
elif frcnn_config.HasField('context_config'):
context_config = frcnn_config.context_config
common_kwargs.update({
'attention_bottleneck_dimension':
context_config.attention_bottleneck_dimension,
'attention_temperature':
context_config.attention_temperature,
'use_self_attention':
context_config.use_self_attention,
'use_long_term_attention':
context_config.use_long_term_attention,
'self_attention_in_sequence':
context_config.self_attention_in_sequence,
'num_attention_heads':
context_config.num_attention_heads,
'num_attention_layers':
context_config.num_attention_layers,
'attention_position':
context_config.attention_position
})
return context_rcnn_meta_arch.ContextRCNNMetaArch(
initial_crop_size=initial_crop_size,
maxpool_kernel_size=maxpool_kernel_size,
maxpool_stride=maxpool_stride,
second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
second_stage_mask_prediction_loss_weight=(
second_stage_mask_prediction_loss_weight),
**common_kwargs)
else:
return faster_rcnn_meta_arch.FasterRCNNMetaArch(
initial_crop_size=initial_crop_size,
maxpool_kernel_size=maxpool_kernel_size,
maxpool_stride=maxpool_stride,
second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
second_stage_mask_prediction_loss_weight=(
second_stage_mask_prediction_loss_weight),
**common_kwargs)
EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}
def _build_experimental_model(config, is_training, add_summaries=True):
return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
is_training, add_summaries)
# The class ID in the groundtruth/model architecture is usually 0-based while
# the ID in the label map is 1-based. The offset is used to convert between the
# the two.
CLASS_ID_OFFSET = 1
KEYPOINT_STD_DEV_DEFAULT = 1.0
def keypoint_proto_to_params(kp_config, keypoint_map_dict):
"""Converts CenterNet.KeypointEstimation proto to parameter namedtuple."""
label_map_item = keypoint_map_dict[kp_config.keypoint_class_name]
classification_loss, localization_loss, _, _, _, _, _ = (
losses_builder.build(kp_config.loss))
keypoint_indices = [
keypoint.id for keypoint in label_map_item.keypoints
]
keypoint_labels = [
keypoint.label for keypoint in label_map_item.keypoints
]
keypoint_std_dev_dict = {
label: KEYPOINT_STD_DEV_DEFAULT for label in keypoint_labels
}
if kp_config.keypoint_label_to_std:
for label, value in kp_config.keypoint_label_to_std.items():
keypoint_std_dev_dict[label] = value
keypoint_std_dev = [keypoint_std_dev_dict[label] for label in keypoint_labels]
if kp_config.HasField('heatmap_head_params'):
heatmap_head_num_filters = list(kp_config.heatmap_head_params.num_filters)
heatmap_head_kernel_sizes = list(kp_config.heatmap_head_params.kernel_sizes)
else:
heatmap_head_num_filters = [256]
heatmap_head_kernel_sizes = [3]
if kp_config.HasField('offset_head_params'):
offset_head_num_filters = list(kp_config.offset_head_params.num_filters)
offset_head_kernel_sizes = list(kp_config.offset_head_params.kernel_sizes)
else:
offset_head_num_filters = [256]
offset_head_kernel_sizes = [3]
if kp_config.HasField('regress_head_params'):
regress_head_num_filters = list(kp_config.regress_head_params.num_filters)
regress_head_kernel_sizes = list(
kp_config.regress_head_params.kernel_sizes)
else:
regress_head_num_filters = [256]
regress_head_kernel_sizes = [3]
return center_net_meta_arch.KeypointEstimationParams(
task_name=kp_config.task_name,
class_id=label_map_item.id - CLASS_ID_OFFSET,
keypoint_indices=keypoint_indices,
classification_loss=classification_loss,
localization_loss=localization_loss,
keypoint_labels=keypoint_labels,
keypoint_std_dev=keypoint_std_dev,
task_loss_weight=kp_config.task_loss_weight,
keypoint_regression_loss_weight=kp_config.keypoint_regression_loss_weight,
keypoint_heatmap_loss_weight=kp_config.keypoint_heatmap_loss_weight,
keypoint_offset_loss_weight=kp_config.keypoint_offset_loss_weight,
heatmap_bias_init=kp_config.heatmap_bias_init,
keypoint_candidate_score_threshold=(
kp_config.keypoint_candidate_score_threshold),
num_candidates_per_keypoint=kp_config.num_candidates_per_keypoint,
peak_max_pool_kernel_size=kp_config.peak_max_pool_kernel_size,
unmatched_keypoint_score=kp_config.unmatched_keypoint_score,
box_scale=kp_config.box_scale,
candidate_search_scale=kp_config.candidate_search_scale,
candidate_ranking_mode=kp_config.candidate_ranking_mode,
offset_peak_radius=kp_config.offset_peak_radius,
per_keypoint_offset=kp_config.per_keypoint_offset,
predict_depth=kp_config.predict_depth,
per_keypoint_depth=kp_config.per_keypoint_depth,
keypoint_depth_loss_weight=kp_config.keypoint_depth_loss_weight,
score_distance_offset=kp_config.score_distance_offset,
clip_out_of_frame_keypoints=kp_config.clip_out_of_frame_keypoints,
rescore_instances=kp_config.rescore_instances,
heatmap_head_num_filters=heatmap_head_num_filters,
heatmap_head_kernel_sizes=heatmap_head_kernel_sizes,
offset_head_num_filters=offset_head_num_filters,
offset_head_kernel_sizes=offset_head_kernel_sizes,
regress_head_num_filters=regress_head_num_filters,
regress_head_kernel_sizes=regress_head_kernel_sizes)
def object_detection_proto_to_params(od_config):
"""Converts CenterNet.ObjectDetection proto to parameter namedtuple."""
loss = losses_pb2.Loss()
# Add dummy classification loss to avoid the loss_builder throwing error.
# TODO(yuhuic): update the loss builder to take the classification loss
# directly.
loss.classification_loss.weighted_sigmoid.CopyFrom(
losses_pb2.WeightedSigmoidClassificationLoss())
loss.localization_loss.CopyFrom(od_config.localization_loss)
_, localization_loss, _, _, _, _, _ = (losses_builder.build(loss))
if od_config.HasField('scale_head_params'):
scale_head_num_filters = list(od_config.scale_head_params.num_filters)
scale_head_kernel_sizes = list(od_config.scale_head_params.kernel_sizes)
else:
scale_head_num_filters = [256]
scale_head_kernel_sizes = [3]
if od_config.HasField('offset_head_params'):
offset_head_num_filters = list(od_config.offset_head_params.num_filters)
offset_head_kernel_sizes = list(od_config.offset_head_params.kernel_sizes)
else:
offset_head_num_filters = [256]
offset_head_kernel_sizes = [3]
return center_net_meta_arch.ObjectDetectionParams(
localization_loss=localization_loss,
scale_loss_weight=od_config.scale_loss_weight,
offset_loss_weight=od_config.offset_loss_weight,
task_loss_weight=od_config.task_loss_weight,
scale_head_num_filters=scale_head_num_filters,
scale_head_kernel_sizes=scale_head_kernel_sizes,
offset_head_num_filters=offset_head_num_filters,
offset_head_kernel_sizes=offset_head_kernel_sizes)
def object_center_proto_to_params(oc_config):
"""Converts CenterNet.ObjectCenter proto to parameter namedtuple."""
loss = losses_pb2.Loss()
# Add dummy localization loss to avoid the loss_builder throwing error.
# TODO(yuhuic): update the loss builder to take the localization loss
# directly.
loss.localization_loss.weighted_l2.CopyFrom(
losses_pb2.WeightedL2LocalizationLoss())
loss.classification_loss.CopyFrom(oc_config.classification_loss)
classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
keypoint_weights_for_center = []
if oc_config.keypoint_weights_for_center:
keypoint_weights_for_center = list(oc_config.keypoint_weights_for_center)
if oc_config.HasField('center_head_params'):
center_head_num_filters = list(oc_config.center_head_params.num_filters)
center_head_kernel_sizes = list(oc_config.center_head_params.kernel_sizes)
else:
center_head_num_filters = [256]
center_head_kernel_sizes = [3]
return center_net_meta_arch.ObjectCenterParams(
classification_loss=classification_loss,
object_center_loss_weight=oc_config.object_center_loss_weight,
heatmap_bias_init=oc_config.heatmap_bias_init,
min_box_overlap_iou=oc_config.min_box_overlap_iou,
max_box_predictions=oc_config.max_box_predictions,
use_labeled_classes=oc_config.use_labeled_classes,
keypoint_weights_for_center=keypoint_weights_for_center,
center_head_num_filters=center_head_num_filters,
center_head_kernel_sizes=center_head_kernel_sizes)
def mask_proto_to_params(mask_config):
"""Converts CenterNet.MaskEstimation proto to parameter namedtuple."""
loss = losses_pb2.Loss()
# Add dummy localization loss to avoid the loss_builder throwing error.
loss.localization_loss.weighted_l2.CopyFrom(
losses_pb2.WeightedL2LocalizationLoss())
loss.classification_loss.CopyFrom(mask_config.classification_loss)
classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
if mask_config.HasField('mask_head_params'):
mask_head_num_filters = list(mask_config.mask_head_params.num_filters)
mask_head_kernel_sizes = list(mask_config.mask_head_params.kernel_sizes)
else:
mask_head_num_filters = [256]
mask_head_kernel_sizes = [3]
return center_net_meta_arch.MaskParams(
classification_loss=classification_loss,
task_loss_weight=mask_config.task_loss_weight,
mask_height=mask_config.mask_height,
mask_width=mask_config.mask_width,
score_threshold=mask_config.score_threshold,
heatmap_bias_init=mask_config.heatmap_bias_init,
mask_head_num_filters=mask_head_num_filters,
mask_head_kernel_sizes=mask_head_kernel_sizes)
def densepose_proto_to_params(densepose_config):
"""Converts CenterNet.DensePoseEstimation proto to parameter namedtuple."""
classification_loss, localization_loss, _, _, _, _, _ = (
losses_builder.build(densepose_config.loss))
return center_net_meta_arch.DensePoseParams(
class_id=densepose_config.class_id,
classification_loss=classification_loss,
localization_loss=localization_loss,
part_loss_weight=densepose_config.part_loss_weight,
coordinate_loss_weight=densepose_config.coordinate_loss_weight,
num_parts=densepose_config.num_parts,
task_loss_weight=densepose_config.task_loss_weight,
upsample_to_input_res=densepose_config.upsample_to_input_res,
heatmap_bias_init=densepose_config.heatmap_bias_init)
def tracking_proto_to_params(tracking_config):
"""Converts CenterNet.TrackEstimation proto to parameter namedtuple."""
loss = losses_pb2.Loss()
# Add dummy localization loss to avoid the loss_builder throwing error.
# TODO(yuhuic): update the loss builder to take the localization loss
# directly.
loss.localization_loss.weighted_l2.CopyFrom(
losses_pb2.WeightedL2LocalizationLoss())
loss.classification_loss.CopyFrom(tracking_config.classification_loss)
classification_loss, _, _, _, _, _, _ = losses_builder.build(loss)
return center_net_meta_arch.TrackParams(
num_track_ids=tracking_config.num_track_ids,
reid_embed_size=tracking_config.reid_embed_size,
classification_loss=classification_loss,
num_fc_layers=tracking_config.num_fc_layers,
task_loss_weight=tracking_config.task_loss_weight)
def temporal_offset_proto_to_params(temporal_offset_config):
"""Converts CenterNet.TemporalOffsetEstimation proto to param-tuple."""
loss = losses_pb2.Loss()
# Add dummy classification loss to avoid the loss_builder throwing error.
# TODO(yuhuic): update the loss builder to take the classification loss
# directly.
loss.classification_loss.weighted_sigmoid.CopyFrom(
losses_pb2.WeightedSigmoidClassificationLoss())
loss.localization_loss.CopyFrom(temporal_offset_config.localization_loss)
_, localization_loss, _, _, _, _, _ = losses_builder.build(loss)
return center_net_meta_arch.TemporalOffsetParams(
localization_loss=localization_loss,
task_loss_weight=temporal_offset_config.task_loss_weight)
def _build_center_net_model(center_net_config, is_training, add_summaries):
"""Build a CenterNet detection model.
Args:
center_net_config: A CenterNet proto object with model configuration.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tf summaries in the model.
Returns:
CenterNetMetaArch based on the config.
"""
image_resizer_fn = image_resizer_builder.build(
center_net_config.image_resizer)
_check_feature_extractor_exists(center_net_config.feature_extractor.type)
feature_extractor = _build_center_net_feature_extractor(
center_net_config.feature_extractor, is_training)
object_center_params = object_center_proto_to_params(
center_net_config.object_center_params)
object_detection_params = None
if center_net_config.HasField('object_detection_task'):
object_detection_params = object_detection_proto_to_params(
center_net_config.object_detection_task)
if center_net_config.HasField('deepmac_mask_estimation'):
logging.warn(('Building experimental DeepMAC meta-arch.'
' Some features may be omitted.'))
deepmac_params = deepmac_meta_arch.deepmac_proto_to_params(
center_net_config.deepmac_mask_estimation)
return deepmac_meta_arch.DeepMACMetaArch(
is_training=is_training,
add_summaries=add_summaries,
num_classes=center_net_config.num_classes,
feature_extractor=feature_extractor,
image_resizer_fn=image_resizer_fn,
object_center_params=object_center_params,
object_detection_params=object_detection_params,
deepmac_params=deepmac_params)
keypoint_params_dict = None
if center_net_config.keypoint_estimation_task:
label_map_proto = label_map_util.load_labelmap(
center_net_config.keypoint_label_map_path)
keypoint_map_dict = {
item.name: item for item in label_map_proto.item if item.keypoints
}
keypoint_params_dict = {}
keypoint_class_id_set = set()
all_keypoint_indices = []
for task in center_net_config.keypoint_estimation_task:
kp_params = keypoint_proto_to_params(task, keypoint_map_dict)
keypoint_params_dict[task.task_name] = kp_params
all_keypoint_indices.extend(kp_params.keypoint_indices)
if kp_params.class_id in keypoint_class_id_set:
raise ValueError(('Multiple keypoint tasks map to the same class id is '
'not allowed: %d' % kp_params.class_id))
else:
keypoint_class_id_set.add(kp_params.class_id)
if len(all_keypoint_indices) > len(set(all_keypoint_indices)):
raise ValueError('Some keypoint indices are used more than once.')
mask_params = None
if center_net_config.HasField('mask_estimation_task'):
mask_params = mask_proto_to_params(center_net_config.mask_estimation_task)
densepose_params = None
if center_net_config.HasField('densepose_estimation_task'):
densepose_params = densepose_proto_to_params(
center_net_config.densepose_estimation_task)
track_params = None
if center_net_config.HasField('track_estimation_task'):
track_params = tracking_proto_to_params(
center_net_config.track_estimation_task)
temporal_offset_params = None
if center_net_config.HasField('temporal_offset_task'):
temporal_offset_params = temporal_offset_proto_to_params(
center_net_config.temporal_offset_task)
non_max_suppression_fn = None
if center_net_config.HasField('post_processing'):
non_max_suppression_fn, _ = post_processing_builder.build(
center_net_config.post_processing)
return center_net_meta_arch.CenterNetMetaArch(
is_training=is_training,
add_summaries=add_summaries,
num_classes=center_net_config.num_classes,
feature_extractor=feature_extractor,
image_resizer_fn=image_resizer_fn,
object_center_params=object_center_params,
object_detection_params=object_detection_params,
keypoint_params_dict=keypoint_params_dict,
mask_params=mask_params,
densepose_params=densepose_params,
track_params=track_params,
temporal_offset_params=temporal_offset_params,
use_depthwise=center_net_config.use_depthwise,
compute_heatmap_sparse=center_net_config.compute_heatmap_sparse,
non_max_suppression_fn=non_max_suppression_fn)
def _build_center_net_feature_extractor(feature_extractor_config, is_training):
"""Build a CenterNet feature extractor from the given config."""
if feature_extractor_config.type not in CENTER_NET_EXTRACTOR_FUNCTION_MAP:
raise ValueError('\'{}\' is not a known CenterNet feature extractor type'
.format(feature_extractor_config.type))
# For backwards compatibility:
use_separable_conv = (
feature_extractor_config.use_separable_conv or
feature_extractor_config.type == 'mobilenet_v2_fpn_sep_conv')
kwargs = {
'channel_means':
list(feature_extractor_config.channel_means),
'channel_stds':
list(feature_extractor_config.channel_stds),
'bgr_ordering':
feature_extractor_config.bgr_ordering,
'depth_multiplier':
feature_extractor_config.depth_multiplier,
'use_separable_conv':
use_separable_conv,
'upsampling_interpolation':
feature_extractor_config.upsampling_interpolation,
}
return CENTER_NET_EXTRACTOR_FUNCTION_MAP[feature_extractor_config.type](
**kwargs)
META_ARCH_BUILDER_MAP = {
'ssd': _build_ssd_model,
'faster_rcnn': _build_faster_rcnn_model,
'experimental_model': _build_experimental_model,
'center_net': _build_center_net_model
}
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture not in META_ARCH_BUILDER_MAP:
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
else:
build_func = META_ARCH_BUILDER_MAP[meta_architecture]
return build_func(getattr(model_config, meta_architecture), is_training,
add_summaries) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/model_builder.py | model_builder.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from object_detection.data_decoders import tf_example_decoder
from object_detection.data_decoders import tf_sequence_example_decoder
from object_detection.protos import input_reader_pb2
def build(input_reader_config):
"""Builds a DataDecoder based only on the open source config proto.
Args:
input_reader_config: An input_reader_pb2.InputReader object.
Returns:
A DataDecoder based on the input_reader_config.
Raises:
ValueError: On invalid input reader proto.
"""
if not isinstance(input_reader_config, input_reader_pb2.InputReader):
raise ValueError('input_reader_config not of type '
'input_reader_pb2.InputReader.')
if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
label_map_proto_file = None
if input_reader_config.HasField('label_map_path'):
label_map_proto_file = input_reader_config.label_map_path
input_type = input_reader_config.input_type
if input_type == input_reader_pb2.InputType.Value('TF_EXAMPLE'):
decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=input_reader_config.load_instance_masks,
load_multiclass_scores=input_reader_config.load_multiclass_scores,
load_context_features=input_reader_config.load_context_features,
instance_mask_type=input_reader_config.mask_type,
label_map_proto_file=label_map_proto_file,
use_display_name=input_reader_config.use_display_name,
num_additional_channels=input_reader_config.num_additional_channels,
num_keypoints=input_reader_config.num_keypoints,
expand_hierarchy_labels=input_reader_config.expand_labels_hierarchy,
load_dense_pose=input_reader_config.load_dense_pose,
load_track_id=input_reader_config.load_track_id,
load_keypoint_depth_features=input_reader_config
.load_keypoint_depth_features)
return decoder
elif input_type == input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE'):
decoder = tf_sequence_example_decoder.TfSequenceExampleDecoder(
label_map_proto_file=label_map_proto_file,
load_context_features=input_reader_config.load_context_features,
load_context_image_ids=input_reader_config.load_context_image_ids)
return decoder
raise ValueError('Unsupported input_type in config.')
raise ValueError('Unsupported input_reader_config.') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/decoder_builder.py | decoder_builder.py |
import functools
from object_detection.core import balanced_positive_negative_sampler as sampler
from object_detection.core import losses
from object_detection.protos import losses_pb2
from object_detection.utils import ops
def build(loss_config):
"""Build losses based on the config.
Builds classification, localization losses and optionally a hard example miner
based on the config.
Args:
loss_config: A losses_pb2.Loss object.
Returns:
classification_loss: Classification loss object.
localization_loss: Localization loss object.
classification_weight: Classification loss weight.
localization_weight: Localization loss weight.
hard_example_miner: Hard example miner object.
random_example_sampler: BalancedPositiveNegativeSampler object.
Raises:
ValueError: If hard_example_miner is used with sigmoid_focal_loss.
ValueError: If random_example_sampler is getting non-positive value as
desired positive example fraction.
"""
classification_loss = _build_classification_loss(
loss_config.classification_loss)
localization_loss = _build_localization_loss(
loss_config.localization_loss)
classification_weight = loss_config.classification_weight
localization_weight = loss_config.localization_weight
hard_example_miner = None
if loss_config.HasField('hard_example_miner'):
if (loss_config.classification_loss.WhichOneof('classification_loss') ==
'weighted_sigmoid_focal'):
raise ValueError('HardExampleMiner should not be used with sigmoid focal '
'loss')
hard_example_miner = build_hard_example_miner(
loss_config.hard_example_miner,
classification_weight,
localization_weight)
random_example_sampler = None
if loss_config.HasField('random_example_sampler'):
if loss_config.random_example_sampler.positive_sample_fraction <= 0:
raise ValueError('RandomExampleSampler should not use non-positive'
'value as positive sample fraction.')
random_example_sampler = sampler.BalancedPositiveNegativeSampler(
positive_fraction=loss_config.random_example_sampler.
positive_sample_fraction)
if loss_config.expected_loss_weights == loss_config.NONE:
expected_loss_weights_fn = None
elif loss_config.expected_loss_weights == loss_config.EXPECTED_SAMPLING:
expected_loss_weights_fn = functools.partial(
ops.expected_classification_loss_by_expected_sampling,
min_num_negative_samples=loss_config.min_num_negative_samples,
desired_negative_sampling_ratio=loss_config
.desired_negative_sampling_ratio)
elif (loss_config.expected_loss_weights == loss_config
.REWEIGHTING_UNMATCHED_ANCHORS):
expected_loss_weights_fn = functools.partial(
ops.expected_classification_loss_by_reweighting_unmatched_anchors,
min_num_negative_samples=loss_config.min_num_negative_samples,
desired_negative_sampling_ratio=loss_config
.desired_negative_sampling_ratio)
else:
raise ValueError('Not a valid value for expected_classification_loss.')
return (classification_loss, localization_loss, classification_weight,
localization_weight, hard_example_miner, random_example_sampler,
expected_loss_weights_fn)
def build_hard_example_miner(config,
classification_weight,
localization_weight):
"""Builds hard example miner based on the config.
Args:
config: A losses_pb2.HardExampleMiner object.
classification_weight: Classification loss weight.
localization_weight: Localization loss weight.
Returns:
Hard example miner.
"""
loss_type = None
if config.loss_type == losses_pb2.HardExampleMiner.BOTH:
loss_type = 'both'
if config.loss_type == losses_pb2.HardExampleMiner.CLASSIFICATION:
loss_type = 'cls'
if config.loss_type == losses_pb2.HardExampleMiner.LOCALIZATION:
loss_type = 'loc'
max_negatives_per_positive = None
num_hard_examples = None
if config.max_negatives_per_positive > 0:
max_negatives_per_positive = config.max_negatives_per_positive
if config.num_hard_examples > 0:
num_hard_examples = config.num_hard_examples
hard_example_miner = losses.HardExampleMiner(
num_hard_examples=num_hard_examples,
iou_threshold=config.iou_threshold,
loss_type=loss_type,
cls_loss_weight=classification_weight,
loc_loss_weight=localization_weight,
max_negatives_per_positive=max_negatives_per_positive,
min_negatives_per_image=config.min_negatives_per_image)
return hard_example_miner
def build_faster_rcnn_classification_loss(loss_config):
"""Builds a classification loss for Faster RCNN based on the loss config.
Args:
loss_config: A losses_pb2.ClassificationLoss object.
Returns:
Loss based on the config.
Raises:
ValueError: On invalid loss_config.
"""
if not isinstance(loss_config, losses_pb2.ClassificationLoss):
raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')
loss_type = loss_config.WhichOneof('classification_loss')
if loss_type == 'weighted_sigmoid':
return losses.WeightedSigmoidClassificationLoss()
if loss_type == 'weighted_softmax':
config = loss_config.weighted_softmax
return losses.WeightedSoftmaxClassificationLoss(
logit_scale=config.logit_scale)
if loss_type == 'weighted_logits_softmax':
config = loss_config.weighted_logits_softmax
return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
logit_scale=config.logit_scale)
if loss_type == 'weighted_sigmoid_focal':
config = loss_config.weighted_sigmoid_focal
alpha = None
if config.HasField('alpha'):
alpha = config.alpha
return losses.SigmoidFocalClassificationLoss(
gamma=config.gamma,
alpha=alpha)
# By default, Faster RCNN second stage classifier uses Softmax loss
# with anchor-wise outputs.
config = loss_config.weighted_softmax
return losses.WeightedSoftmaxClassificationLoss(
logit_scale=config.logit_scale)
def _build_localization_loss(loss_config):
"""Builds a localization loss based on the loss config.
Args:
loss_config: A losses_pb2.LocalizationLoss object.
Returns:
Loss based on the config.
Raises:
ValueError: On invalid loss_config.
"""
if not isinstance(loss_config, losses_pb2.LocalizationLoss):
raise ValueError('loss_config not of type losses_pb2.LocalizationLoss.')
loss_type = loss_config.WhichOneof('localization_loss')
if loss_type == 'weighted_l2':
return losses.WeightedL2LocalizationLoss()
if loss_type == 'weighted_smooth_l1':
return losses.WeightedSmoothL1LocalizationLoss(
loss_config.weighted_smooth_l1.delta)
if loss_type == 'weighted_iou':
return losses.WeightedIOULocalizationLoss()
if loss_type == 'l1_localization_loss':
return losses.L1LocalizationLoss()
if loss_type == 'weighted_giou':
return losses.WeightedGIOULocalizationLoss()
raise ValueError('Empty loss config.')
def _build_classification_loss(loss_config):
"""Builds a classification loss based on the loss config.
Args:
loss_config: A losses_pb2.ClassificationLoss object.
Returns:
Loss based on the config.
Raises:
ValueError: On invalid loss_config.
"""
if not isinstance(loss_config, losses_pb2.ClassificationLoss):
raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')
loss_type = loss_config.WhichOneof('classification_loss')
if loss_type == 'weighted_sigmoid':
return losses.WeightedSigmoidClassificationLoss()
elif loss_type == 'weighted_sigmoid_focal':
config = loss_config.weighted_sigmoid_focal
alpha = None
if config.HasField('alpha'):
alpha = config.alpha
return losses.SigmoidFocalClassificationLoss(
gamma=config.gamma,
alpha=alpha)
elif loss_type == 'weighted_softmax':
config = loss_config.weighted_softmax
return losses.WeightedSoftmaxClassificationLoss(
logit_scale=config.logit_scale)
elif loss_type == 'weighted_logits_softmax':
config = loss_config.weighted_logits_softmax
return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
logit_scale=config.logit_scale)
elif loss_type == 'bootstrapped_sigmoid':
config = loss_config.bootstrapped_sigmoid
return losses.BootstrappedSigmoidClassificationLoss(
alpha=config.alpha,
bootstrap_type=('hard' if config.hard_bootstrap else 'soft'))
elif loss_type == 'penalty_reduced_logistic_focal_loss':
config = loss_config.penalty_reduced_logistic_focal_loss
return losses.PenaltyReducedLogisticFocalLoss(
alpha=config.alpha, beta=config.beta)
elif loss_type == 'weighted_dice_classification_loss':
config = loss_config.weighted_dice_classification_loss
return losses.WeightedDiceClassificationLoss(
squared_normalization=config.squared_normalization)
else:
raise ValueError('Empty loss config.') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/losses_builder.py | losses_builder.py |
import collections
import tensorflow.compat.v1 as tf
from object_detection.predictors import convolutional_box_predictor
from object_detection.predictors import convolutional_keras_box_predictor
from object_detection.predictors import mask_rcnn_box_predictor
from object_detection.predictors import mask_rcnn_keras_box_predictor
from object_detection.predictors import rfcn_box_predictor
from object_detection.predictors import rfcn_keras_box_predictor
from object_detection.predictors.heads import box_head
from object_detection.predictors.heads import class_head
from object_detection.predictors.heads import keras_box_head
from object_detection.predictors.heads import keras_class_head
from object_detection.predictors.heads import keras_mask_head
from object_detection.predictors.heads import mask_head
from object_detection.protos import box_predictor_pb2
def build_convolutional_box_predictor(is_training,
num_classes,
conv_hyperparams_fn,
min_depth,
max_depth,
num_layers_before_predictor,
use_dropout,
dropout_keep_prob,
kernel_size,
box_code_size,
apply_sigmoid_to_scores=False,
add_background_class=True,
class_prediction_bias_init=0.0,
use_depthwise=False,
box_encodings_clip_range=None):
"""Builds the ConvolutionalBoxPredictor from the arguments.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
min_depth: Minimum feature depth prior to predicting box encodings
and class predictions.
max_depth: Maximum feature depth prior to predicting box encodings
and class predictions. If max_depth is set to 0, no additional
feature map will be inserted before location and class predictions.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
box_code_size: Size of encoding for each box.
apply_sigmoid_to_scores: If True, apply the sigmoid on the output
class_predictions.
add_background_class: Whether to add an implicit background class.
class_prediction_bias_init: Constant value to initialize bias of the last
conv2d layer before class prediction.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
box_encodings_clip_range: Min and max values for clipping the box_encodings.
Returns:
A ConvolutionalBoxPredictor class.
"""
box_prediction_head = box_head.ConvolutionalBoxHead(
is_training=is_training,
box_code_size=box_code_size,
kernel_size=kernel_size,
use_depthwise=use_depthwise,
box_encodings_clip_range=box_encodings_clip_range)
class_prediction_head = class_head.ConvolutionalClassHead(
is_training=is_training,
num_class_slots=num_classes + 1 if add_background_class else num_classes,
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob,
kernel_size=kernel_size,
apply_sigmoid_to_scores=apply_sigmoid_to_scores,
class_prediction_bias_init=class_prediction_bias_init,
use_depthwise=use_depthwise)
other_heads = {}
return convolutional_box_predictor.ConvolutionalBoxPredictor(
is_training=is_training,
num_classes=num_classes,
box_prediction_head=box_prediction_head,
class_prediction_head=class_prediction_head,
other_heads=other_heads,
conv_hyperparams_fn=conv_hyperparams_fn,
num_layers_before_predictor=num_layers_before_predictor,
min_depth=min_depth,
max_depth=max_depth)
def build_convolutional_keras_box_predictor(is_training,
num_classes,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
num_predictions_per_location_list,
min_depth,
max_depth,
num_layers_before_predictor,
use_dropout,
dropout_keep_prob,
kernel_size,
box_code_size,
add_background_class=True,
class_prediction_bias_init=0.0,
use_depthwise=False,
box_encodings_clip_range=None,
name='BoxPredictor'):
"""Builds the Keras ConvolutionalBoxPredictor from the arguments.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
num_predictions_per_location_list: A list of integers representing the
number of box predictions to be made per spatial location for each
feature map.
min_depth: Minimum feature depth prior to predicting box encodings
and class predictions.
max_depth: Maximum feature depth prior to predicting box encodings
and class predictions. If max_depth is set to 0, no additional
feature map will be inserted before location and class predictions.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
box_code_size: Size of encoding for each box.
add_background_class: Whether to add an implicit background class.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
box_encodings_clip_range: Min and max values for clipping the box_encodings.
name: A string name scope to assign to the box predictor. If `None`, Keras
will auto-generate one from the class name.
Returns:
A Keras ConvolutionalBoxPredictor class.
"""
box_prediction_heads = []
class_prediction_heads = []
other_heads = {}
for stack_index, num_predictions_per_location in enumerate(
num_predictions_per_location_list):
box_prediction_heads.append(
keras_box_head.ConvolutionalBoxHead(
is_training=is_training,
box_code_size=box_code_size,
kernel_size=kernel_size,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
num_predictions_per_location=num_predictions_per_location,
use_depthwise=use_depthwise,
box_encodings_clip_range=box_encodings_clip_range,
name='ConvolutionalBoxHead_%d' % stack_index))
class_prediction_heads.append(
keras_class_head.ConvolutionalClassHead(
is_training=is_training,
num_class_slots=(
num_classes + 1 if add_background_class else num_classes),
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob,
kernel_size=kernel_size,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
num_predictions_per_location=num_predictions_per_location,
class_prediction_bias_init=class_prediction_bias_init,
use_depthwise=use_depthwise,
name='ConvolutionalClassHead_%d' % stack_index))
return convolutional_keras_box_predictor.ConvolutionalBoxPredictor(
is_training=is_training,
num_classes=num_classes,
box_prediction_heads=box_prediction_heads,
class_prediction_heads=class_prediction_heads,
other_heads=other_heads,
conv_hyperparams=conv_hyperparams,
num_layers_before_predictor=num_layers_before_predictor,
min_depth=min_depth,
max_depth=max_depth,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
name=name)
def build_weight_shared_convolutional_box_predictor(
is_training,
num_classes,
conv_hyperparams_fn,
depth,
num_layers_before_predictor,
box_code_size,
kernel_size=3,
add_background_class=True,
class_prediction_bias_init=0.0,
use_dropout=False,
dropout_keep_prob=0.8,
share_prediction_tower=False,
apply_batch_norm=True,
use_depthwise=False,
score_converter_fn=tf.identity,
box_encodings_clip_range=None,
keyword_args=None):
"""Builds and returns a WeightSharedConvolutionalBoxPredictor class.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
depth: depth of conv layers.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
box_code_size: Size of encoding for each box.
kernel_size: Size of final convolution kernel.
add_background_class: Whether to add an implicit background class.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_dropout: Whether to apply dropout to class prediction head.
dropout_keep_prob: Probability of keeping activiations.
share_prediction_tower: Whether to share the multi-layer tower between box
prediction and class prediction heads.
apply_batch_norm: Whether to apply batch normalization to conv layers in
this predictor.
use_depthwise: Whether to use depthwise separable conv2d instead of conv2d.
score_converter_fn: Callable score converter to perform elementwise op on
class scores.
box_encodings_clip_range: Min and max values for clipping the box_encodings.
keyword_args: A dictionary with additional args.
Returns:
A WeightSharedConvolutionalBoxPredictor class.
"""
box_prediction_head = box_head.WeightSharedConvolutionalBoxHead(
box_code_size=box_code_size,
kernel_size=kernel_size,
use_depthwise=use_depthwise,
box_encodings_clip_range=box_encodings_clip_range)
class_prediction_head = (
class_head.WeightSharedConvolutionalClassHead(
num_class_slots=(
num_classes + 1 if add_background_class else num_classes),
kernel_size=kernel_size,
class_prediction_bias_init=class_prediction_bias_init,
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob,
use_depthwise=use_depthwise,
score_converter_fn=score_converter_fn))
other_heads = {}
return convolutional_box_predictor.WeightSharedConvolutionalBoxPredictor(
is_training=is_training,
num_classes=num_classes,
box_prediction_head=box_prediction_head,
class_prediction_head=class_prediction_head,
other_heads=other_heads,
conv_hyperparams_fn=conv_hyperparams_fn,
depth=depth,
num_layers_before_predictor=num_layers_before_predictor,
kernel_size=kernel_size,
apply_batch_norm=apply_batch_norm,
share_prediction_tower=share_prediction_tower,
use_depthwise=use_depthwise)
def build_weight_shared_convolutional_keras_box_predictor(
is_training,
num_classes,
conv_hyperparams,
freeze_batchnorm,
inplace_batchnorm_update,
num_predictions_per_location_list,
depth,
num_layers_before_predictor,
box_code_size,
kernel_size=3,
add_background_class=True,
class_prediction_bias_init=0.0,
use_dropout=False,
dropout_keep_prob=0.8,
share_prediction_tower=False,
apply_batch_norm=True,
use_depthwise=False,
apply_conv_hyperparams_to_heads=False,
apply_conv_hyperparams_pointwise=False,
score_converter_fn=tf.identity,
box_encodings_clip_range=None,
name='WeightSharedConvolutionalBoxPredictor',
keyword_args=None):
"""Builds the Keras WeightSharedConvolutionalBoxPredictor from the arguments.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
num_predictions_per_location_list: A list of integers representing the
number of box predictions to be made per spatial location for each
feature map.
depth: depth of conv layers.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
box_code_size: Size of encoding for each box.
kernel_size: Size of final convolution kernel.
add_background_class: Whether to add an implicit background class.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_dropout: Whether to apply dropout to class prediction head.
dropout_keep_prob: Probability of keeping activiations.
share_prediction_tower: Whether to share the multi-layer tower between box
prediction and class prediction heads.
apply_batch_norm: Whether to apply batch normalization to conv layers in
this predictor.
use_depthwise: Whether to use depthwise separable conv2d instead of conv2d.
apply_conv_hyperparams_to_heads: Whether to apply conv_hyperparams to
depthwise seperable convolution layers in the box and class heads. By
default, the conv_hyperparams are only applied to layers in the predictor
tower when using depthwise separable convolutions.
apply_conv_hyperparams_pointwise: Whether to apply the conv_hyperparams to
the pointwise_initializer and pointwise_regularizer when using depthwise
separable convolutions. By default, conv_hyperparams are only applied to
the depthwise initializer and regularizer when use_depthwise is true.
score_converter_fn: Callable score converter to perform elementwise op on
class scores.
box_encodings_clip_range: Min and max values for clipping the box_encodings.
name: A string name scope to assign to the box predictor. If `None`, Keras
will auto-generate one from the class name.
keyword_args: A dictionary with additional args.
Returns:
A Keras WeightSharedConvolutionalBoxPredictor class.
"""
if len(set(num_predictions_per_location_list)) > 1:
raise ValueError('num predictions per location must be same for all'
'feature maps, found: {}'.format(
num_predictions_per_location_list))
num_predictions_per_location = num_predictions_per_location_list[0]
box_prediction_head = keras_box_head.WeightSharedConvolutionalBoxHead(
box_code_size=box_code_size,
kernel_size=kernel_size,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=num_predictions_per_location,
use_depthwise=use_depthwise,
apply_conv_hyperparams_to_heads=apply_conv_hyperparams_to_heads,
box_encodings_clip_range=box_encodings_clip_range,
name='WeightSharedConvolutionalBoxHead')
class_prediction_head = keras_class_head.WeightSharedConvolutionalClassHead(
num_class_slots=(
num_classes + 1 if add_background_class else num_classes),
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob,
kernel_size=kernel_size,
conv_hyperparams=conv_hyperparams,
num_predictions_per_location=num_predictions_per_location,
class_prediction_bias_init=class_prediction_bias_init,
use_depthwise=use_depthwise,
apply_conv_hyperparams_to_heads=apply_conv_hyperparams_to_heads,
score_converter_fn=score_converter_fn,
name='WeightSharedConvolutionalClassHead')
other_heads = {}
return (
convolutional_keras_box_predictor.WeightSharedConvolutionalBoxPredictor(
is_training=is_training,
num_classes=num_classes,
box_prediction_head=box_prediction_head,
class_prediction_head=class_prediction_head,
other_heads=other_heads,
conv_hyperparams=conv_hyperparams,
depth=depth,
num_layers_before_predictor=num_layers_before_predictor,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
kernel_size=kernel_size,
apply_batch_norm=apply_batch_norm,
share_prediction_tower=share_prediction_tower,
use_depthwise=use_depthwise,
apply_conv_hyperparams_pointwise=apply_conv_hyperparams_pointwise,
name=name))
def build_mask_rcnn_keras_box_predictor(is_training,
num_classes,
fc_hyperparams,
freeze_batchnorm,
use_dropout,
dropout_keep_prob,
box_code_size,
add_background_class=True,
share_box_across_classes=False,
predict_instance_masks=False,
conv_hyperparams=None,
mask_height=14,
mask_width=14,
mask_prediction_num_conv_layers=2,
mask_prediction_conv_depth=256,
masks_are_class_agnostic=False,
convolve_then_upsample_masks=False):
"""Builds and returns a MaskRCNNKerasBoxPredictor class.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
fc_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for fully connected dense ops.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
box_code_size: Size of encoding for each box.
add_background_class: Whether to add an implicit background class.
share_box_across_classes: Whether to share boxes across classes rather
than use a different box for each class.
predict_instance_masks: If True, will add a third stage mask prediction
to the returned class.
conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object
containing hyperparameters for convolution ops.
mask_height: Desired output mask height. The default value is 14.
mask_width: Desired output mask width. The default value is 14.
mask_prediction_num_conv_layers: Number of convolution layers applied to
the image_features in mask prediction branch.
mask_prediction_conv_depth: The depth for the first conv2d_transpose op
applied to the image_features in the mask prediction branch. If set
to 0, the depth of the convolution layers will be automatically chosen
based on the number of object classes and the number of channels in the
image features.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
convolve_then_upsample_masks: Whether to apply convolutions on mask
features before upsampling using nearest neighbor resizing. Otherwise,
mask features are resized to [`mask_height`, `mask_width`] using
bilinear resizing before applying convolutions.
Returns:
A MaskRCNNKerasBoxPredictor class.
"""
box_prediction_head = keras_box_head.MaskRCNNBoxHead(
is_training=is_training,
num_classes=num_classes,
fc_hyperparams=fc_hyperparams,
freeze_batchnorm=freeze_batchnorm,
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob,
box_code_size=box_code_size,
share_box_across_classes=share_box_across_classes)
class_prediction_head = keras_class_head.MaskRCNNClassHead(
is_training=is_training,
num_class_slots=num_classes + 1 if add_background_class else num_classes,
fc_hyperparams=fc_hyperparams,
freeze_batchnorm=freeze_batchnorm,
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob)
third_stage_heads = {}
if predict_instance_masks:
third_stage_heads[
mask_rcnn_box_predictor.
MASK_PREDICTIONS] = keras_mask_head.MaskRCNNMaskHead(
is_training=is_training,
num_classes=num_classes,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
mask_height=mask_height,
mask_width=mask_width,
mask_prediction_num_conv_layers=mask_prediction_num_conv_layers,
mask_prediction_conv_depth=mask_prediction_conv_depth,
masks_are_class_agnostic=masks_are_class_agnostic,
convolve_then_upsample=convolve_then_upsample_masks)
return mask_rcnn_keras_box_predictor.MaskRCNNKerasBoxPredictor(
is_training=is_training,
num_classes=num_classes,
freeze_batchnorm=freeze_batchnorm,
box_prediction_head=box_prediction_head,
class_prediction_head=class_prediction_head,
third_stage_heads=third_stage_heads)
def build_mask_rcnn_box_predictor(is_training,
num_classes,
fc_hyperparams_fn,
use_dropout,
dropout_keep_prob,
box_code_size,
add_background_class=True,
share_box_across_classes=False,
predict_instance_masks=False,
conv_hyperparams_fn=None,
mask_height=14,
mask_width=14,
mask_prediction_num_conv_layers=2,
mask_prediction_conv_depth=256,
masks_are_class_agnostic=False,
convolve_then_upsample_masks=False):
"""Builds and returns a MaskRCNNBoxPredictor class.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
fc_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for fully connected ops.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
box_code_size: Size of encoding for each box.
add_background_class: Whether to add an implicit background class.
share_box_across_classes: Whether to share boxes across classes rather
than use a different box for each class.
predict_instance_masks: If True, will add a third stage mask prediction
to the returned class.
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
mask_height: Desired output mask height. The default value is 14.
mask_width: Desired output mask width. The default value is 14.
mask_prediction_num_conv_layers: Number of convolution layers applied to
the image_features in mask prediction branch.
mask_prediction_conv_depth: The depth for the first conv2d_transpose op
applied to the image_features in the mask prediction branch. If set
to 0, the depth of the convolution layers will be automatically chosen
based on the number of object classes and the number of channels in the
image features.
masks_are_class_agnostic: Boolean determining if the mask-head is
class-agnostic or not.
convolve_then_upsample_masks: Whether to apply convolutions on mask
features before upsampling using nearest neighbor resizing. Otherwise,
mask features are resized to [`mask_height`, `mask_width`] using
bilinear resizing before applying convolutions.
Returns:
A MaskRCNNBoxPredictor class.
"""
box_prediction_head = box_head.MaskRCNNBoxHead(
is_training=is_training,
num_classes=num_classes,
fc_hyperparams_fn=fc_hyperparams_fn,
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob,
box_code_size=box_code_size,
share_box_across_classes=share_box_across_classes)
class_prediction_head = class_head.MaskRCNNClassHead(
is_training=is_training,
num_class_slots=num_classes + 1 if add_background_class else num_classes,
fc_hyperparams_fn=fc_hyperparams_fn,
use_dropout=use_dropout,
dropout_keep_prob=dropout_keep_prob)
third_stage_heads = {}
if predict_instance_masks:
third_stage_heads[
mask_rcnn_box_predictor.
MASK_PREDICTIONS] = mask_head.MaskRCNNMaskHead(
num_classes=num_classes,
conv_hyperparams_fn=conv_hyperparams_fn,
mask_height=mask_height,
mask_width=mask_width,
mask_prediction_num_conv_layers=mask_prediction_num_conv_layers,
mask_prediction_conv_depth=mask_prediction_conv_depth,
masks_are_class_agnostic=masks_are_class_agnostic,
convolve_then_upsample=convolve_then_upsample_masks)
return mask_rcnn_box_predictor.MaskRCNNBoxPredictor(
is_training=is_training,
num_classes=num_classes,
box_prediction_head=box_prediction_head,
class_prediction_head=class_prediction_head,
third_stage_heads=third_stage_heads)
def build_score_converter(score_converter_config, is_training):
"""Builds score converter based on the config.
Builds one of [tf.identity, tf.sigmoid] score converters based on the config
and whether the BoxPredictor is for training or inference.
Args:
score_converter_config:
box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.score_converter.
is_training: Indicates whether the BoxPredictor is in training mode.
Returns:
Callable score converter op.
Raises:
ValueError: On unknown score converter.
"""
if score_converter_config == (
box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.IDENTITY):
return tf.identity
if score_converter_config == (
box_predictor_pb2.WeightSharedConvolutionalBoxPredictor.SIGMOID):
return tf.identity if is_training else tf.sigmoid
raise ValueError('Unknown score converter.')
BoxEncodingsClipRange = collections.namedtuple('BoxEncodingsClipRange',
['min', 'max'])
def build(argscope_fn, box_predictor_config, is_training, num_classes,
add_background_class=True):
"""Builds box predictor based on the configuration.
Builds box predictor based on the configuration. See box_predictor.proto for
configurable options. Also, see box_predictor.py for more details.
Args:
argscope_fn: A function that takes the following inputs:
* hyperparams_pb2.Hyperparams proto
* a boolean indicating if the model is in training mode.
and returns a tf slim argscope for Conv and FC hyperparameters.
box_predictor_config: box_predictor_pb2.BoxPredictor proto containing
configuration.
is_training: Whether the models is in training mode.
num_classes: Number of classes to predict.
add_background_class: Whether to add an implicit background class.
Returns:
box_predictor: box_predictor.BoxPredictor object.
Raises:
ValueError: On unknown box predictor.
"""
if not isinstance(box_predictor_config, box_predictor_pb2.BoxPredictor):
raise ValueError('box_predictor_config not of type '
'box_predictor_pb2.BoxPredictor.')
box_predictor_oneof = box_predictor_config.WhichOneof('box_predictor_oneof')
if box_predictor_oneof == 'convolutional_box_predictor':
config_box_predictor = box_predictor_config.convolutional_box_predictor
conv_hyperparams_fn = argscope_fn(config_box_predictor.conv_hyperparams,
is_training)
# Optionally apply clipping to box encodings, when box_encodings_clip_range
# is set.
box_encodings_clip_range = None
if config_box_predictor.HasField('box_encodings_clip_range'):
box_encodings_clip_range = BoxEncodingsClipRange(
min=config_box_predictor.box_encodings_clip_range.min,
max=config_box_predictor.box_encodings_clip_range.max)
return build_convolutional_box_predictor(
is_training=is_training,
num_classes=num_classes,
add_background_class=add_background_class,
conv_hyperparams_fn=conv_hyperparams_fn,
use_dropout=config_box_predictor.use_dropout,
dropout_keep_prob=config_box_predictor.dropout_keep_probability,
box_code_size=config_box_predictor.box_code_size,
kernel_size=config_box_predictor.kernel_size,
num_layers_before_predictor=(
config_box_predictor.num_layers_before_predictor),
min_depth=config_box_predictor.min_depth,
max_depth=config_box_predictor.max_depth,
apply_sigmoid_to_scores=config_box_predictor.apply_sigmoid_to_scores,
class_prediction_bias_init=(
config_box_predictor.class_prediction_bias_init),
use_depthwise=config_box_predictor.use_depthwise,
box_encodings_clip_range=box_encodings_clip_range)
if box_predictor_oneof == 'weight_shared_convolutional_box_predictor':
config_box_predictor = (
box_predictor_config.weight_shared_convolutional_box_predictor)
conv_hyperparams_fn = argscope_fn(config_box_predictor.conv_hyperparams,
is_training)
apply_batch_norm = config_box_predictor.conv_hyperparams.HasField(
'batch_norm')
# During training phase, logits are used to compute the loss. Only apply
# sigmoid at inference to make the inference graph TPU friendly.
score_converter_fn = build_score_converter(
config_box_predictor.score_converter, is_training)
# Optionally apply clipping to box encodings, when box_encodings_clip_range
# is set.
box_encodings_clip_range = None
if config_box_predictor.HasField('box_encodings_clip_range'):
box_encodings_clip_range = BoxEncodingsClipRange(
min=config_box_predictor.box_encodings_clip_range.min,
max=config_box_predictor.box_encodings_clip_range.max)
keyword_args = None
return build_weight_shared_convolutional_box_predictor(
is_training=is_training,
num_classes=num_classes,
add_background_class=add_background_class,
conv_hyperparams_fn=conv_hyperparams_fn,
depth=config_box_predictor.depth,
num_layers_before_predictor=(
config_box_predictor.num_layers_before_predictor),
box_code_size=config_box_predictor.box_code_size,
kernel_size=config_box_predictor.kernel_size,
class_prediction_bias_init=(
config_box_predictor.class_prediction_bias_init),
use_dropout=config_box_predictor.use_dropout,
dropout_keep_prob=config_box_predictor.dropout_keep_probability,
share_prediction_tower=config_box_predictor.share_prediction_tower,
apply_batch_norm=apply_batch_norm,
use_depthwise=config_box_predictor.use_depthwise,
score_converter_fn=score_converter_fn,
box_encodings_clip_range=box_encodings_clip_range,
keyword_args=keyword_args)
if box_predictor_oneof == 'mask_rcnn_box_predictor':
config_box_predictor = box_predictor_config.mask_rcnn_box_predictor
fc_hyperparams_fn = argscope_fn(config_box_predictor.fc_hyperparams,
is_training)
conv_hyperparams_fn = None
if config_box_predictor.HasField('conv_hyperparams'):
conv_hyperparams_fn = argscope_fn(
config_box_predictor.conv_hyperparams, is_training)
return build_mask_rcnn_box_predictor(
is_training=is_training,
num_classes=num_classes,
add_background_class=add_background_class,
fc_hyperparams_fn=fc_hyperparams_fn,
use_dropout=config_box_predictor.use_dropout,
dropout_keep_prob=config_box_predictor.dropout_keep_probability,
box_code_size=config_box_predictor.box_code_size,
share_box_across_classes=(
config_box_predictor.share_box_across_classes),
predict_instance_masks=config_box_predictor.predict_instance_masks,
conv_hyperparams_fn=conv_hyperparams_fn,
mask_height=config_box_predictor.mask_height,
mask_width=config_box_predictor.mask_width,
mask_prediction_num_conv_layers=(
config_box_predictor.mask_prediction_num_conv_layers),
mask_prediction_conv_depth=(
config_box_predictor.mask_prediction_conv_depth),
masks_are_class_agnostic=(
config_box_predictor.masks_are_class_agnostic),
convolve_then_upsample_masks=(
config_box_predictor.convolve_then_upsample_masks))
if box_predictor_oneof == 'rfcn_box_predictor':
config_box_predictor = box_predictor_config.rfcn_box_predictor
conv_hyperparams_fn = argscope_fn(config_box_predictor.conv_hyperparams,
is_training)
box_predictor_object = rfcn_box_predictor.RfcnBoxPredictor(
is_training=is_training,
num_classes=num_classes,
conv_hyperparams_fn=conv_hyperparams_fn,
crop_size=[config_box_predictor.crop_height,
config_box_predictor.crop_width],
num_spatial_bins=[config_box_predictor.num_spatial_bins_height,
config_box_predictor.num_spatial_bins_width],
depth=config_box_predictor.depth,
box_code_size=config_box_predictor.box_code_size)
return box_predictor_object
raise ValueError('Unknown box predictor: {}'.format(box_predictor_oneof))
def build_keras(hyperparams_fn, freeze_batchnorm, inplace_batchnorm_update,
num_predictions_per_location_list, box_predictor_config,
is_training, num_classes, add_background_class=True):
"""Builds a Keras-based box predictor based on the configuration.
Builds Keras-based box predictor based on the configuration.
See box_predictor.proto for configurable options. Also, see box_predictor.py
for more details.
Args:
hyperparams_fn: A function that takes a hyperparams_pb2.Hyperparams
proto and returns a `hyperparams_builder.KerasLayerHyperparams`
for Conv or FC hyperparameters.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
num_predictions_per_location_list: A list of integers representing the
number of box predictions to be made per spatial location for each
feature map.
box_predictor_config: box_predictor_pb2.BoxPredictor proto containing
configuration.
is_training: Whether the models is in training mode.
num_classes: Number of classes to predict.
add_background_class: Whether to add an implicit background class.
Returns:
box_predictor: box_predictor.KerasBoxPredictor object.
Raises:
ValueError: On unknown box predictor, or one with no Keras box predictor.
"""
if not isinstance(box_predictor_config, box_predictor_pb2.BoxPredictor):
raise ValueError('box_predictor_config not of type '
'box_predictor_pb2.BoxPredictor.')
box_predictor_oneof = box_predictor_config.WhichOneof('box_predictor_oneof')
if box_predictor_oneof == 'convolutional_box_predictor':
config_box_predictor = box_predictor_config.convolutional_box_predictor
conv_hyperparams = hyperparams_fn(
config_box_predictor.conv_hyperparams)
# Optionally apply clipping to box encodings, when box_encodings_clip_range
# is set.
box_encodings_clip_range = None
if config_box_predictor.HasField('box_encodings_clip_range'):
box_encodings_clip_range = BoxEncodingsClipRange(
min=config_box_predictor.box_encodings_clip_range.min,
max=config_box_predictor.box_encodings_clip_range.max)
return build_convolutional_keras_box_predictor(
is_training=is_training,
num_classes=num_classes,
add_background_class=add_background_class,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
num_predictions_per_location_list=num_predictions_per_location_list,
use_dropout=config_box_predictor.use_dropout,
dropout_keep_prob=config_box_predictor.dropout_keep_probability,
box_code_size=config_box_predictor.box_code_size,
kernel_size=config_box_predictor.kernel_size,
num_layers_before_predictor=(
config_box_predictor.num_layers_before_predictor),
min_depth=config_box_predictor.min_depth,
max_depth=config_box_predictor.max_depth,
class_prediction_bias_init=(
config_box_predictor.class_prediction_bias_init),
use_depthwise=config_box_predictor.use_depthwise,
box_encodings_clip_range=box_encodings_clip_range)
if box_predictor_oneof == 'weight_shared_convolutional_box_predictor':
config_box_predictor = (
box_predictor_config.weight_shared_convolutional_box_predictor)
conv_hyperparams = hyperparams_fn(config_box_predictor.conv_hyperparams)
apply_batch_norm = config_box_predictor.conv_hyperparams.HasField(
'batch_norm')
# During training phase, logits are used to compute the loss. Only apply
# sigmoid at inference to make the inference graph TPU friendly. This is
# required because during TPU inference, model.postprocess is not called.
score_converter_fn = build_score_converter(
config_box_predictor.score_converter, is_training)
# Optionally apply clipping to box encodings, when box_encodings_clip_range
# is set.
box_encodings_clip_range = None
if config_box_predictor.HasField('box_encodings_clip_range'):
box_encodings_clip_range = BoxEncodingsClipRange(
min=config_box_predictor.box_encodings_clip_range.min,
max=config_box_predictor.box_encodings_clip_range.max)
keyword_args = None
return build_weight_shared_convolutional_keras_box_predictor(
is_training=is_training,
num_classes=num_classes,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=inplace_batchnorm_update,
num_predictions_per_location_list=num_predictions_per_location_list,
depth=config_box_predictor.depth,
num_layers_before_predictor=(
config_box_predictor.num_layers_before_predictor),
box_code_size=config_box_predictor.box_code_size,
kernel_size=config_box_predictor.kernel_size,
add_background_class=add_background_class,
class_prediction_bias_init=(
config_box_predictor.class_prediction_bias_init),
use_dropout=config_box_predictor.use_dropout,
dropout_keep_prob=config_box_predictor.dropout_keep_probability,
share_prediction_tower=config_box_predictor.share_prediction_tower,
apply_batch_norm=apply_batch_norm,
use_depthwise=config_box_predictor.use_depthwise,
apply_conv_hyperparams_to_heads=(
config_box_predictor.apply_conv_hyperparams_to_heads),
apply_conv_hyperparams_pointwise=(
config_box_predictor.apply_conv_hyperparams_pointwise),
score_converter_fn=score_converter_fn,
box_encodings_clip_range=box_encodings_clip_range,
keyword_args=keyword_args)
if box_predictor_oneof == 'mask_rcnn_box_predictor':
config_box_predictor = box_predictor_config.mask_rcnn_box_predictor
fc_hyperparams = hyperparams_fn(config_box_predictor.fc_hyperparams)
conv_hyperparams = None
if config_box_predictor.HasField('conv_hyperparams'):
conv_hyperparams = hyperparams_fn(
config_box_predictor.conv_hyperparams)
return build_mask_rcnn_keras_box_predictor(
is_training=is_training,
num_classes=num_classes,
add_background_class=add_background_class,
fc_hyperparams=fc_hyperparams,
freeze_batchnorm=freeze_batchnorm,
use_dropout=config_box_predictor.use_dropout,
dropout_keep_prob=config_box_predictor.dropout_keep_probability,
box_code_size=config_box_predictor.box_code_size,
share_box_across_classes=(
config_box_predictor.share_box_across_classes),
predict_instance_masks=config_box_predictor.predict_instance_masks,
conv_hyperparams=conv_hyperparams,
mask_height=config_box_predictor.mask_height,
mask_width=config_box_predictor.mask_width,
mask_prediction_num_conv_layers=(
config_box_predictor.mask_prediction_num_conv_layers),
mask_prediction_conv_depth=(
config_box_predictor.mask_prediction_conv_depth),
masks_are_class_agnostic=(
config_box_predictor.masks_are_class_agnostic),
convolve_then_upsample_masks=(
config_box_predictor.convolve_then_upsample_masks))
if box_predictor_oneof == 'rfcn_box_predictor':
config_box_predictor = box_predictor_config.rfcn_box_predictor
conv_hyperparams = hyperparams_fn(config_box_predictor.conv_hyperparams)
box_predictor_object = rfcn_keras_box_predictor.RfcnKerasBoxPredictor(
is_training=is_training,
num_classes=num_classes,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
crop_size=[config_box_predictor.crop_height,
config_box_predictor.crop_width],
num_spatial_bins=[config_box_predictor.num_spatial_bins_height,
config_box_predictor.num_spatial_bins_width],
depth=config_box_predictor.depth,
box_code_size=config_box_predictor.box_code_size)
return box_predictor_object
raise ValueError(
'Unknown box predictor for Keras: {}'.format(box_predictor_oneof)) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/box_predictor_builder.py | box_predictor_builder.py |
"""A function to build an object detection box coder from configuration."""
from object_detection.box_coders import faster_rcnn_box_coder
from object_detection.box_coders import keypoint_box_coder
from object_detection.box_coders import mean_stddev_box_coder
from object_detection.box_coders import square_box_coder
from object_detection.protos import box_coder_pb2
def build(box_coder_config):
"""Builds a box coder object based on the box coder config.
Args:
box_coder_config: A box_coder.proto object containing the config for the
desired box coder.
Returns:
BoxCoder based on the config.
Raises:
ValueError: On empty box coder proto.
"""
if not isinstance(box_coder_config, box_coder_pb2.BoxCoder):
raise ValueError('box_coder_config not of type box_coder_pb2.BoxCoder.')
if box_coder_config.WhichOneof('box_coder_oneof') == 'faster_rcnn_box_coder':
return faster_rcnn_box_coder.FasterRcnnBoxCoder(scale_factors=[
box_coder_config.faster_rcnn_box_coder.y_scale,
box_coder_config.faster_rcnn_box_coder.x_scale,
box_coder_config.faster_rcnn_box_coder.height_scale,
box_coder_config.faster_rcnn_box_coder.width_scale
])
if box_coder_config.WhichOneof('box_coder_oneof') == 'keypoint_box_coder':
return keypoint_box_coder.KeypointBoxCoder(
box_coder_config.keypoint_box_coder.num_keypoints,
scale_factors=[
box_coder_config.keypoint_box_coder.y_scale,
box_coder_config.keypoint_box_coder.x_scale,
box_coder_config.keypoint_box_coder.height_scale,
box_coder_config.keypoint_box_coder.width_scale
])
if (box_coder_config.WhichOneof('box_coder_oneof') ==
'mean_stddev_box_coder'):
return mean_stddev_box_coder.MeanStddevBoxCoder(
stddev=box_coder_config.mean_stddev_box_coder.stddev)
if box_coder_config.WhichOneof('box_coder_oneof') == 'square_box_coder':
return square_box_coder.SquareBoxCoder(scale_factors=[
box_coder_config.square_box_coder.y_scale,
box_coder_config.square_box_coder.x_scale,
box_coder_config.square_box_coder.length_scale
])
raise ValueError('Empty box coder.') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/box_coder_builder.py | box_coder_builder.py |
import tensorflow.compat.v1 as tf
from object_detection.utils import learning_schedules
from object_detection.utils import tf_version
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
from official.modeling.optimization import ema_optimizer
# pylint: enable=g-import-not-at-top
try:
from tensorflow.contrib import opt as tf_opt # pylint: disable=g-import-not-at-top
except: # pylint: disable=bare-except
pass
def build_optimizers_tf_v1(optimizer_config, global_step=None):
"""Create a TF v1 compatible optimizer based on config.
Args:
optimizer_config: A Optimizer proto message.
global_step: A variable representing the current step.
If None, defaults to tf.train.get_or_create_global_step()
Returns:
An optimizer and a list of variables for summary.
Raises:
ValueError: when using an unsupported input data type.
"""
optimizer_type = optimizer_config.WhichOneof('optimizer')
optimizer = None
summary_vars = []
if optimizer_type == 'rms_prop_optimizer':
config = optimizer_config.rms_prop_optimizer
learning_rate = _create_learning_rate(config.learning_rate,
global_step=global_step)
summary_vars.append(learning_rate)
optimizer = tf.train.RMSPropOptimizer(
learning_rate,
decay=config.decay,
momentum=config.momentum_optimizer_value,
epsilon=config.epsilon)
if optimizer_type == 'momentum_optimizer':
config = optimizer_config.momentum_optimizer
learning_rate = _create_learning_rate(config.learning_rate,
global_step=global_step)
summary_vars.append(learning_rate)
optimizer = tf.train.MomentumOptimizer(
learning_rate,
momentum=config.momentum_optimizer_value)
if optimizer_type == 'adam_optimizer':
config = optimizer_config.adam_optimizer
learning_rate = _create_learning_rate(config.learning_rate,
global_step=global_step)
summary_vars.append(learning_rate)
optimizer = tf.train.AdamOptimizer(learning_rate, epsilon=config.epsilon)
if optimizer is None:
raise ValueError('Optimizer %s not supported.' % optimizer_type)
if optimizer_config.use_moving_average:
optimizer = tf_opt.MovingAverageOptimizer(
optimizer, average_decay=optimizer_config.moving_average_decay)
return optimizer, summary_vars
def build_optimizers_tf_v2(optimizer_config, global_step=None):
"""Create a TF v2 compatible optimizer based on config.
Args:
optimizer_config: A Optimizer proto message.
global_step: A variable representing the current step.
If None, defaults to tf.train.get_or_create_global_step()
Returns:
An optimizer and a list of variables for summary.
Raises:
ValueError: when using an unsupported input data type.
"""
optimizer_type = optimizer_config.WhichOneof('optimizer')
optimizer = None
summary_vars = []
if optimizer_type == 'rms_prop_optimizer':
config = optimizer_config.rms_prop_optimizer
learning_rate = _create_learning_rate(config.learning_rate,
global_step=global_step)
summary_vars.append(learning_rate)
optimizer = tf.keras.optimizers.RMSprop(
learning_rate,
decay=config.decay,
momentum=config.momentum_optimizer_value,
epsilon=config.epsilon)
if optimizer_type == 'momentum_optimizer':
config = optimizer_config.momentum_optimizer
learning_rate = _create_learning_rate(config.learning_rate,
global_step=global_step)
summary_vars.append(learning_rate)
optimizer = tf.keras.optimizers.SGD(
learning_rate,
momentum=config.momentum_optimizer_value)
if optimizer_type == 'adam_optimizer':
config = optimizer_config.adam_optimizer
learning_rate = _create_learning_rate(config.learning_rate,
global_step=global_step)
summary_vars.append(learning_rate)
optimizer = tf.keras.optimizers.Adam(learning_rate, epsilon=config.epsilon)
if optimizer is None:
raise ValueError('Optimizer %s not supported.' % optimizer_type)
if optimizer_config.use_moving_average:
optimizer = ema_optimizer.ExponentialMovingAverage(
optimizer=optimizer,
average_decay=optimizer_config.moving_average_decay)
return optimizer, summary_vars
def build(config, global_step=None):
if tf.executing_eagerly():
return build_optimizers_tf_v2(config, global_step)
else:
return build_optimizers_tf_v1(config, global_step)
def _create_learning_rate(learning_rate_config, global_step=None):
"""Create optimizer learning rate based on config.
Args:
learning_rate_config: A LearningRate proto message.
global_step: A variable representing the current step.
If None, defaults to tf.train.get_or_create_global_step()
Returns:
A learning rate.
Raises:
ValueError: when using an unsupported input data type.
"""
if global_step is None:
global_step = tf.train.get_or_create_global_step()
learning_rate = None
learning_rate_type = learning_rate_config.WhichOneof('learning_rate')
if learning_rate_type == 'constant_learning_rate':
config = learning_rate_config.constant_learning_rate
learning_rate = tf.constant(config.learning_rate, dtype=tf.float32,
name='learning_rate')
if learning_rate_type == 'exponential_decay_learning_rate':
config = learning_rate_config.exponential_decay_learning_rate
learning_rate = learning_schedules.exponential_decay_with_burnin(
global_step,
config.initial_learning_rate,
config.decay_steps,
config.decay_factor,
burnin_learning_rate=config.burnin_learning_rate,
burnin_steps=config.burnin_steps,
min_learning_rate=config.min_learning_rate,
staircase=config.staircase)
if learning_rate_type == 'manual_step_learning_rate':
config = learning_rate_config.manual_step_learning_rate
if not config.schedule:
raise ValueError('Empty learning rate schedule.')
learning_rate_step_boundaries = [x.step for x in config.schedule]
learning_rate_sequence = [config.initial_learning_rate]
learning_rate_sequence += [x.learning_rate for x in config.schedule]
learning_rate = learning_schedules.manual_stepping(
global_step, learning_rate_step_boundaries,
learning_rate_sequence, config.warmup)
if learning_rate_type == 'cosine_decay_learning_rate':
config = learning_rate_config.cosine_decay_learning_rate
learning_rate = learning_schedules.cosine_decay_with_warmup(
global_step,
config.learning_rate_base,
config.total_steps,
config.warmup_learning_rate,
config.warmup_steps,
config.hold_base_rate_steps)
if learning_rate is None:
raise ValueError('Learning_rate %s not supported.' % learning_rate_type)
return learning_rate | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/optimizer_builder.py | optimizer_builder.py |
"""Builder function to construct tf-slim arg_scope for convolution, fc ops."""
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.core import freezable_batch_norm
from object_detection.protos import hyperparams_pb2
from object_detection.utils import context_manager
from object_detection.utils import tf_version
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
from object_detection.core import freezable_sync_batch_norm
# pylint: enable=g-import-not-at-top
class KerasLayerHyperparams(object):
"""
A hyperparameter configuration object for Keras layers used in
Object Detection models.
"""
def __init__(self, hyperparams_config):
"""Builds keras hyperparameter config for layers based on the proto config.
It automatically converts from Slim layer hyperparameter configs to
Keras layer hyperparameters. Namely, it:
- Builds Keras initializers/regularizers instead of Slim ones
- sets weights_regularizer/initializer to kernel_regularizer/initializer
- converts batchnorm decay to momentum
- converts Slim l2 regularizer weights to the equivalent Keras l2 weights
Contains a hyperparameter configuration for ops that specifies kernel
initializer, kernel regularizer, activation. Also contains parameters for
batch norm operators based on the configuration.
Note that if the batch_norm parameters are not specified in the config
(i.e. left to default) then batch norm is excluded from the config.
Args:
hyperparams_config: hyperparams.proto object containing
hyperparameters.
Raises:
ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
"""
if not isinstance(hyperparams_config,
hyperparams_pb2.Hyperparams):
raise ValueError('hyperparams_config not of type '
'hyperparams_pb.Hyperparams.')
self._batch_norm_params = None
self._use_sync_batch_norm = False
if hyperparams_config.HasField('batch_norm'):
self._batch_norm_params = _build_keras_batch_norm_params(
hyperparams_config.batch_norm)
elif hyperparams_config.HasField('sync_batch_norm'):
self._use_sync_batch_norm = True
self._batch_norm_params = _build_keras_batch_norm_params(
hyperparams_config.sync_batch_norm)
self._force_use_bias = hyperparams_config.force_use_bias
self._activation_fn = _build_activation_fn(hyperparams_config.activation)
# TODO(kaftan): Unclear if these kwargs apply to separable & depthwise conv
# (Those might use depthwise_* instead of kernel_*)
# We should probably switch to using build_conv2d_layer and
# build_depthwise_conv2d_layer methods instead.
self._op_params = {
'kernel_regularizer': _build_keras_regularizer(
hyperparams_config.regularizer),
'kernel_initializer': _build_initializer(
hyperparams_config.initializer, build_for_keras=True),
'activation': _build_activation_fn(hyperparams_config.activation)
}
def use_batch_norm(self):
return self._batch_norm_params is not None
def use_sync_batch_norm(self):
return self._use_sync_batch_norm
def force_use_bias(self):
return self._force_use_bias
def use_bias(self):
return (self._force_use_bias or not
(self.use_batch_norm() and self.batch_norm_params()['center']))
def batch_norm_params(self, **overrides):
"""Returns a dict containing batchnorm layer construction hyperparameters.
Optionally overrides values in the batchnorm hyperparam dict. Overrides
only apply to individual calls of this method, and do not affect
future calls.
Args:
**overrides: keyword arguments to override in the hyperparams dictionary
Returns: dict containing the layer construction keyword arguments, with
values overridden by the `overrides` keyword arguments.
"""
if self._batch_norm_params is None:
new_batch_norm_params = dict()
else:
new_batch_norm_params = self._batch_norm_params.copy()
new_batch_norm_params.update(overrides)
return new_batch_norm_params
def build_batch_norm(self, training=None, **overrides):
"""Returns a Batch Normalization layer with the appropriate hyperparams.
If the hyperparams are configured to not use batch normalization,
this will return a Keras Lambda layer that only applies tf.Identity,
without doing any normalization.
Optionally overrides values in the batch_norm hyperparam dict. Overrides
only apply to individual calls of this method, and do not affect
future calls.
Args:
training: if True, the normalization layer will normalize using the batch
statistics. If False, the normalization layer will be frozen and will
act as if it is being used for inference. If None, the layer
will look up the Keras learning phase at `call` time to decide what to
do.
**overrides: batch normalization construction args to override from the
batch_norm hyperparams dictionary.
Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True),
or a Keras Lambda layer that applies the identity (if use_batch_norm()
is False)
"""
if self.use_batch_norm():
if self._use_sync_batch_norm:
return freezable_sync_batch_norm.FreezableSyncBatchNorm(
training=training, **self.batch_norm_params(**overrides))
else:
return freezable_batch_norm.FreezableBatchNorm(
training=training, **self.batch_norm_params(**overrides))
else:
return tf.keras.layers.Lambda(tf.identity)
def build_activation_layer(self, name='activation'):
"""Returns a Keras layer that applies the desired activation function.
Args:
name: The name to assign the Keras layer.
Returns: A Keras lambda layer that applies the activation function
specified in the hyperparam config, or applies the identity if the
activation function is None.
"""
if self._activation_fn:
return tf.keras.layers.Lambda(self._activation_fn, name=name)
else:
return tf.keras.layers.Lambda(tf.identity, name=name)
def get_regularizer_weight(self):
"""Returns the l1 or l2 regularizer weight.
Returns: A float value corresponding to the l1 or l2 regularization weight,
or None if neither l1 or l2 regularization is defined.
"""
regularizer = self._op_params['kernel_regularizer']
if hasattr(regularizer, 'l1'):
return float(regularizer.l1)
elif hasattr(regularizer, 'l2'):
return float(regularizer.l2)
else:
return None
def params(self, include_activation=False, **overrides):
"""Returns a dict containing the layer construction hyperparameters to use.
Optionally overrides values in the returned dict. Overrides
only apply to individual calls of this method, and do not affect
future calls.
Args:
include_activation: If False, activation in the returned dictionary will
be set to `None`, and the activation must be applied via a separate
layer created by `build_activation_layer`. If True, `activation` in the
output param dictionary will be set to the activation function
specified in the hyperparams config.
**overrides: keyword arguments to override in the hyperparams dictionary.
Returns: dict containing the layer construction keyword arguments, with
values overridden by the `overrides` keyword arguments.
"""
new_params = self._op_params.copy()
new_params['activation'] = None
if include_activation:
new_params['activation'] = self._activation_fn
new_params['use_bias'] = self.use_bias()
new_params.update(**overrides)
return new_params
def build(hyperparams_config, is_training):
"""Builds tf-slim arg_scope for convolution ops based on the config.
Returns an arg_scope to use for convolution ops containing weights
initializer, weights regularizer, activation function, batch norm function
and batch norm parameters based on the configuration.
Note that if no normalization parameters are specified in the config,
(i.e. left to default) then both batch norm and group norm are excluded
from the arg_scope.
The batch norm parameters are set for updates based on `is_training` argument
and conv_hyperparams_config.batch_norm.train parameter. During training, they
are updated only if batch_norm.train parameter is true. However, during eval,
no updates are made to the batch norm variables. In both cases, their current
values are used during forward pass.
Args:
hyperparams_config: hyperparams.proto object containing
hyperparameters.
is_training: Whether the network is in training mode.
Returns:
arg_scope_fn: A function to construct tf-slim arg_scope containing
hyperparameters for ops.
Raises:
ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
"""
if not isinstance(hyperparams_config,
hyperparams_pb2.Hyperparams):
raise ValueError('hyperparams_config not of type '
'hyperparams_pb.Hyperparams.')
if hyperparams_config.force_use_bias:
raise ValueError('Hyperparams force_use_bias only supported by '
'KerasLayerHyperparams.')
if hyperparams_config.HasField('sync_batch_norm'):
raise ValueError('Hyperparams sync_batch_norm only supported by '
'KerasLayerHyperparams.')
normalizer_fn = None
batch_norm_params = None
if hyperparams_config.HasField('batch_norm'):
normalizer_fn = slim.batch_norm
batch_norm_params = _build_batch_norm_params(
hyperparams_config.batch_norm, is_training)
if hyperparams_config.HasField('group_norm'):
normalizer_fn = slim.group_norm
affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
if hyperparams_config.HasField('op') and (
hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
affected_ops = [slim.fully_connected]
def scope_fn():
with (slim.arg_scope([slim.batch_norm], **batch_norm_params)
if batch_norm_params is not None else
context_manager.IdentityContextManager()):
with slim.arg_scope(
affected_ops,
weights_regularizer=_build_slim_regularizer(
hyperparams_config.regularizer),
weights_initializer=_build_initializer(
hyperparams_config.initializer),
activation_fn=_build_activation_fn(hyperparams_config.activation),
normalizer_fn=normalizer_fn) as sc:
return sc
return scope_fn
def _build_activation_fn(activation_fn):
"""Builds a callable activation from config.
Args:
activation_fn: hyperparams_pb2.Hyperparams.activation
Returns:
Callable activation function.
Raises:
ValueError: On unknown activation function.
"""
if activation_fn == hyperparams_pb2.Hyperparams.NONE:
return None
if activation_fn == hyperparams_pb2.Hyperparams.RELU:
return tf.nn.relu
if activation_fn == hyperparams_pb2.Hyperparams.RELU_6:
return tf.nn.relu6
if activation_fn == hyperparams_pb2.Hyperparams.SWISH:
return tf.nn.swish
raise ValueError('Unknown activation function: {}'.format(activation_fn))
def _build_slim_regularizer(regularizer):
"""Builds a tf-slim regularizer from config.
Args:
regularizer: hyperparams_pb2.Hyperparams.regularizer proto.
Returns:
tf-slim regularizer.
Raises:
ValueError: On unknown regularizer.
"""
regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
if regularizer_oneof == 'l1_regularizer':
return slim.l1_regularizer(scale=float(regularizer.l1_regularizer.weight))
if regularizer_oneof == 'l2_regularizer':
return slim.l2_regularizer(scale=float(regularizer.l2_regularizer.weight))
if regularizer_oneof is None:
return None
raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))
def _build_keras_regularizer(regularizer):
"""Builds a keras regularizer from config.
Args:
regularizer: hyperparams_pb2.Hyperparams.regularizer proto.
Returns:
Keras regularizer.
Raises:
ValueError: On unknown regularizer.
"""
regularizer_oneof = regularizer.WhichOneof('regularizer_oneof')
if regularizer_oneof == 'l1_regularizer':
return tf.keras.regularizers.l1(float(regularizer.l1_regularizer.weight))
if regularizer_oneof == 'l2_regularizer':
# The Keras L2 regularizer weight differs from the Slim L2 regularizer
# weight by a factor of 2
return tf.keras.regularizers.l2(
float(regularizer.l2_regularizer.weight * 0.5))
if regularizer_oneof is None:
return None
raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))
def _build_initializer(initializer, build_for_keras=False):
"""Build a tf initializer from config.
Args:
initializer: hyperparams_pb2.Hyperparams.regularizer proto.
build_for_keras: Whether the initializers should be built for Keras
operators. If false builds for Slim.
Returns:
tf initializer or string corresponding to the tf keras initializer name.
Raises:
ValueError: On unknown initializer.
"""
initializer_oneof = initializer.WhichOneof('initializer_oneof')
if initializer_oneof == 'truncated_normal_initializer':
return tf.truncated_normal_initializer(
mean=initializer.truncated_normal_initializer.mean,
stddev=initializer.truncated_normal_initializer.stddev)
if initializer_oneof == 'random_normal_initializer':
return tf.random_normal_initializer(
mean=initializer.random_normal_initializer.mean,
stddev=initializer.random_normal_initializer.stddev)
if initializer_oneof == 'variance_scaling_initializer':
enum_descriptor = (hyperparams_pb2.VarianceScalingInitializer.
DESCRIPTOR.enum_types_by_name['Mode'])
mode = enum_descriptor.values_by_number[initializer.
variance_scaling_initializer.
mode].name
if build_for_keras:
if initializer.variance_scaling_initializer.uniform:
return tf.variance_scaling_initializer(
scale=initializer.variance_scaling_initializer.factor,
mode=mode.lower(),
distribution='uniform')
else:
# In TF 1.9 release and earlier, the truncated_normal distribution was
# not supported correctly. So, in these earlier versions of tensorflow,
# the ValueError will be raised, and we manually truncate the
# distribution scale.
#
# It is insufficient to just set distribution to `normal` from the
# start, because the `normal` distribution in newer Tensorflow versions
# creates a truncated distribution, whereas it created untruncated
# distributions in older versions.
try:
return tf.variance_scaling_initializer(
scale=initializer.variance_scaling_initializer.factor,
mode=mode.lower(),
distribution='truncated_normal')
except ValueError:
truncate_constant = 0.87962566103423978
truncated_scale = initializer.variance_scaling_initializer.factor / (
truncate_constant * truncate_constant
)
return tf.variance_scaling_initializer(
scale=truncated_scale,
mode=mode.lower(),
distribution='normal')
else:
return slim.variance_scaling_initializer(
factor=initializer.variance_scaling_initializer.factor,
mode=mode,
uniform=initializer.variance_scaling_initializer.uniform)
if initializer_oneof == 'keras_initializer_by_name':
if build_for_keras:
return initializer.keras_initializer_by_name
else:
raise ValueError(
'Unsupported non-Keras usage of keras_initializer_by_name: {}'.format(
initializer.keras_initializer_by_name))
if initializer_oneof is None:
return None
raise ValueError('Unknown initializer function: {}'.format(
initializer_oneof))
def _build_batch_norm_params(batch_norm, is_training):
"""Build a dictionary of batch_norm params from config.
Args:
batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto.
is_training: Whether the models is in training mode.
Returns:
A dictionary containing batch_norm parameters.
"""
batch_norm_params = {
'decay': batch_norm.decay,
'center': batch_norm.center,
'scale': batch_norm.scale,
'epsilon': batch_norm.epsilon,
# Remove is_training parameter from here and deprecate it in the proto
# once we refactor Faster RCNN models to set is_training through an outer
# arg_scope in the meta architecture.
'is_training': is_training and batch_norm.train,
}
return batch_norm_params
def _build_keras_batch_norm_params(batch_norm):
"""Build a dictionary of Keras BatchNormalization params from config.
Args:
batch_norm: hyperparams_pb2.ConvHyperparams.batch_norm proto.
Returns:
A dictionary containing Keras BatchNormalization parameters.
"""
# Note: Although decay is defined to be 1 - momentum in batch_norm,
# decay in the slim batch_norm layers was erroneously defined and is
# actually the same as momentum in the Keras batch_norm layers.
# For context, see: github.com/keras-team/keras/issues/6839
batch_norm_params = {
'momentum': batch_norm.decay,
'center': batch_norm.center,
'scale': batch_norm.scale,
'epsilon': batch_norm.epsilon,
}
return batch_norm_params | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/hyperparams_builder.py | hyperparams_builder.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import math
import tensorflow.compat.v1 as tf
from object_detection.builders import decoder_builder
from object_detection.protos import input_reader_pb2
def make_initializable_iterator(dataset):
"""Creates an iterator, and initializes tables.
This is useful in cases where make_one_shot_iterator wouldn't work because
the graph contains a hash table that needs to be initialized.
Args:
dataset: A `tf.data.Dataset` object.
Returns:
A `tf.data.Iterator`.
"""
iterator = dataset.make_initializable_iterator()
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
return iterator
def _read_dataset_internal(file_read_func,
input_files,
num_readers,
config,
filename_shard_fn=None):
"""Reads a dataset, and handles repetition and shuffling.
Args:
file_read_func: Function to use in tf_data.parallel_interleave, to read
every individual file into a tf.data.Dataset.
input_files: A list of file paths to read.
num_readers: Number of readers to use.
config: A input_reader_builder.InputReader object.
filename_shard_fn: optional, A function used to shard filenames across
replicas. This function takes as input a TF dataset of filenames and is
expected to return its sharded version. It is useful when the dataset is
being loaded on one of possibly many replicas and we want to evenly shard
the files between the replicas.
Returns:
A tf.data.Dataset of (undecoded) tf-records based on config.
Raises:
RuntimeError: If no files are found at the supplied path(s).
"""
filenames = tf.gfile.Glob(input_files)
tf.logging.info('Reading record datasets for input file: %s' % input_files)
tf.logging.info('Number of filenames to read: %s' % len(filenames))
if not filenames:
raise RuntimeError('Did not find any input files matching the glob pattern '
'{}'.format(input_files))
if num_readers > len(filenames):
num_readers = len(filenames)
tf.logging.warning('num_readers has been reduced to %d to match input file '
'shards.' % num_readers)
filename_dataset = tf.data.Dataset.from_tensor_slices(filenames)
if config.shuffle:
filename_dataset = filename_dataset.shuffle(
config.filenames_shuffle_buffer_size)
elif num_readers > 1:
tf.logging.warning('`shuffle` is false, but the input data stream is '
'still slightly shuffled since `num_readers` > 1.')
if filename_shard_fn:
filename_dataset = filename_shard_fn(filename_dataset)
filename_dataset = filename_dataset.repeat(config.num_epochs or None)
records_dataset = filename_dataset.apply(
tf.data.experimental.parallel_interleave(
file_read_func,
cycle_length=num_readers,
block_length=config.read_block_length,
sloppy=config.shuffle))
if config.shuffle:
records_dataset = records_dataset.shuffle(config.shuffle_buffer_size)
return records_dataset
def read_dataset(file_read_func, input_files, config, filename_shard_fn=None):
"""Reads multiple datasets with sampling.
Args:
file_read_func: Function to use in tf_data.parallel_interleave, to read
every individual file into a tf.data.Dataset.
input_files: A list of file paths to read.
config: A input_reader_builder.InputReader object.
filename_shard_fn: optional, A function used to shard filenames across
replicas. This function takes as input a TF dataset of filenames and is
expected to return its sharded version. It is useful when the dataset is
being loaded on one of possibly many replicas and we want to evenly shard
the files between the replicas.
Returns:
A tf.data.Dataset of (undecoded) tf-records based on config.
Raises:
RuntimeError: If no files are found at the supplied path(s).
"""
if config.sample_from_datasets_weights:
tf.logging.info('Reading weighted datasets: %s' % input_files)
if len(input_files) != len(config.sample_from_datasets_weights):
raise ValueError('Expected the number of input files to be the same as '
'the number of dataset sample weights. But got '
'[input_files, sample_from_datasets_weights]: [' +
input_files + ', ' +
str(config.sample_from_datasets_weights) + ']')
tf.logging.info('Sampling from datasets %s with weights %s' %
(input_files, config.sample_from_datasets_weights))
records_datasets = []
dataset_weights = []
for i, input_file in enumerate(input_files):
weight = config.sample_from_datasets_weights[i]
num_readers = math.ceil(config.num_readers *
weight /
sum(config.sample_from_datasets_weights))
tf.logging.info(
'Num readers for dataset [%s]: %d', input_file, num_readers)
if num_readers == 0:
tf.logging.info('Skipping dataset due to zero weights: %s', input_file)
continue
tf.logging.info(
'Num readers for dataset [%s]: %d', input_file, num_readers)
records_dataset = _read_dataset_internal(file_read_func, [input_file],
num_readers, config,
filename_shard_fn)
dataset_weights.append(weight)
records_datasets.append(records_dataset)
return tf.data.experimental.sample_from_datasets(records_datasets,
dataset_weights)
else:
tf.logging.info('Reading unweighted datasets: %s' % input_files)
return _read_dataset_internal(file_read_func, input_files,
config.num_readers, config, filename_shard_fn)
def shard_function_for_context(input_context):
"""Returns a function that shards filenames based on the input context."""
if input_context is None:
return None
def shard_fn(dataset):
return dataset.shard(
input_context.num_input_pipelines, input_context.input_pipeline_id)
return shard_fn
def build(input_reader_config, batch_size=None, transform_input_data_fn=None,
input_context=None, reduce_to_frame_fn=None):
"""Builds a tf.data.Dataset.
Builds a tf.data.Dataset by applying the `transform_input_data_fn` on all
records. Applies a padded batch to the resulting dataset.
Args:
input_reader_config: A input_reader_pb2.InputReader object.
batch_size: Batch size. If batch size is None, no batching is performed.
transform_input_data_fn: Function to apply transformation to all records,
or None if no extra decoding is required.
input_context: optional, A tf.distribute.InputContext object used to
shard filenames and compute per-replica batch_size when this function
is being called per-replica.
reduce_to_frame_fn: Function that extracts frames from tf.SequenceExample
type input data.
Returns:
A tf.data.Dataset based on the input_reader_config.
Raises:
ValueError: On invalid input reader proto.
ValueError: If no input paths are specified.
"""
if not isinstance(input_reader_config, input_reader_pb2.InputReader):
raise ValueError('input_reader_config not of type '
'input_reader_pb2.InputReader.')
decoder = decoder_builder.build(input_reader_config)
if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
config = input_reader_config.tf_record_input_reader
if not config.input_path:
raise ValueError('At least one input path must be specified in '
'`input_reader_config`.')
def dataset_map_fn(dataset, fn_to_map, batch_size=None,
input_reader_config=None):
"""Handles whether or not to use the legacy map function.
Args:
dataset: A tf.Dataset.
fn_to_map: The function to be mapped for that dataset.
batch_size: Batch size. If batch size is None, no batching is performed.
input_reader_config: A input_reader_pb2.InputReader object.
Returns:
A tf.data.Dataset mapped with fn_to_map.
"""
if hasattr(dataset, 'map_with_legacy_function'):
if batch_size:
num_parallel_calls = batch_size * (
input_reader_config.num_parallel_batches)
else:
num_parallel_calls = input_reader_config.num_parallel_map_calls
dataset = dataset.map_with_legacy_function(
fn_to_map, num_parallel_calls=num_parallel_calls)
else:
dataset = dataset.map(fn_to_map, tf.data.experimental.AUTOTUNE)
return dataset
shard_fn = shard_function_for_context(input_context)
if input_context is not None:
batch_size = input_context.get_per_replica_batch_size(batch_size)
dataset = read_dataset(
functools.partial(tf.data.TFRecordDataset, buffer_size=8 * 1000 * 1000),
config.input_path[:], input_reader_config, filename_shard_fn=shard_fn)
if input_reader_config.sample_1_of_n_examples > 1:
dataset = dataset.shard(input_reader_config.sample_1_of_n_examples, 0)
# TODO(rathodv): make batch size a required argument once the old binaries
# are deleted.
dataset = dataset_map_fn(dataset, decoder.decode, batch_size,
input_reader_config)
if reduce_to_frame_fn:
dataset = reduce_to_frame_fn(dataset, dataset_map_fn, batch_size,
input_reader_config)
if transform_input_data_fn is not None:
dataset = dataset_map_fn(dataset, transform_input_data_fn,
batch_size, input_reader_config)
if batch_size:
dataset = dataset.batch(batch_size,
drop_remainder=input_reader_config.drop_remainder)
dataset = dataset.prefetch(input_reader_config.num_prefetch_batches)
return dataset
raise ValueError('Unsupported input_reader_config.') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/dataset_builder.py | dataset_builder.py |
import tensorflow.compat.v1 as tf
from object_detection.utils import shape_utils
def _find_interval_containing_new_value(x, new_value):
"""Find the index of x (ascending-ordered) after which new_value occurs."""
new_value_shape = shape_utils.combined_static_and_dynamic_shape(new_value)[0]
x_shape = shape_utils.combined_static_and_dynamic_shape(x)[0]
compare = tf.cast(tf.reshape(new_value, shape=(new_value_shape, 1)) >=
tf.reshape(x, shape=(1, x_shape)),
dtype=tf.int32)
diff = compare[:, 1:] - compare[:, :-1]
interval_idx = tf.argmin(diff, axis=1)
return interval_idx
def _tf_linear_interp1d(x_to_interpolate, fn_x, fn_y):
"""Tensorflow implementation of 1d linear interpolation.
Args:
x_to_interpolate: tf.float32 Tensor of shape (num_examples,) over which 1d
linear interpolation is performed.
fn_x: Monotonically-increasing, non-repeating tf.float32 Tensor of shape
(length,) used as the domain to approximate a function.
fn_y: tf.float32 Tensor of shape (length,) used as the range to approximate
a function.
Returns:
tf.float32 Tensor of shape (num_examples,)
"""
x_pad = tf.concat([fn_x[:1] - 1, fn_x, fn_x[-1:] + 1], axis=0)
y_pad = tf.concat([fn_y[:1], fn_y, fn_y[-1:]], axis=0)
interval_idx = _find_interval_containing_new_value(x_pad, x_to_interpolate)
# Interpolate
alpha = (
(x_to_interpolate - tf.gather(x_pad, interval_idx)) /
(tf.gather(x_pad, interval_idx + 1) - tf.gather(x_pad, interval_idx)))
interpolation = ((1 - alpha) * tf.gather(y_pad, interval_idx) +
alpha * tf.gather(y_pad, interval_idx + 1))
return interpolation
def _function_approximation_proto_to_tf_tensors(x_y_pairs_message):
"""Extracts (x,y) pairs from a XYPairs message.
Args:
x_y_pairs_message: calibration_pb2..XYPairs proto
Returns:
tf_x: tf.float32 tensor of shape (number_xy_pairs,) for function domain.
tf_y: tf.float32 tensor of shape (number_xy_pairs,) for function range.
"""
tf_x = tf.convert_to_tensor([x_y_pair.x
for x_y_pair
in x_y_pairs_message.x_y_pair],
dtype=tf.float32)
tf_y = tf.convert_to_tensor([x_y_pair.y
for x_y_pair
in x_y_pairs_message.x_y_pair],
dtype=tf.float32)
return tf_x, tf_y
def _get_class_id_function_dict(calibration_config):
"""Create a dictionary mapping class id to function approximations.
Args:
calibration_config: calibration_pb2 proto containing
id_function_approximations.
Returns:
Dictionary mapping a class id to a tuple of TF tensors to be used for
function approximation.
"""
class_id_function_dict = {}
class_id_xy_pairs_map = (
calibration_config.class_id_function_approximations.class_id_xy_pairs_map)
for class_id in class_id_xy_pairs_map:
class_id_function_dict[class_id] = (
_function_approximation_proto_to_tf_tensors(
class_id_xy_pairs_map[class_id]))
return class_id_function_dict
def build(calibration_config):
"""Returns a function that calibrates Tensorflow model scores.
All returned functions are expected to apply positive monotonic
transformations to inputs (i.e. score ordering is strictly preserved or
adjacent scores are mapped to the same score, but an input of lower value
should never be exceed an input of higher value after transformation). For
class-agnostic calibration, positive monotonicity should hold across all
scores. In class-specific cases, positive monotonicity should hold within each
class.
Args:
calibration_config: calibration_pb2.CalibrationConfig proto.
Returns:
Function that that accepts class_predictions_with_background and calibrates
the output based on calibration_config's parameters.
Raises:
ValueError: No calibration builder defined for "Oneof" in
calibration_config.
"""
# Linear Interpolation (usually used as a result of calibration via
# isotonic regression).
if calibration_config.WhichOneof('calibrator') == 'function_approximation':
def calibration_fn(class_predictions_with_background):
"""Calibrate predictions via 1-d linear interpolation.
Predictions scores are linearly interpolated based on a class-agnostic
function approximation. Note that the 0-indexed background class is also
transformed.
Args:
class_predictions_with_background: tf.float32 tensor of shape
[batch_size, num_anchors, num_classes + 1] containing scores on the
interval [0,1]. This is usually produced by a sigmoid or softmax layer
and the result of calling the `predict` method of a detection model.
Returns:
tf.float32 tensor of the same shape as the input with values on the
interval [0, 1].
"""
# Flattening Tensors and then reshaping at the end.
flat_class_predictions_with_background = tf.reshape(
class_predictions_with_background, shape=[-1])
fn_x, fn_y = _function_approximation_proto_to_tf_tensors(
calibration_config.function_approximation.x_y_pairs)
updated_scores = _tf_linear_interp1d(
flat_class_predictions_with_background, fn_x, fn_y)
# Un-flatten the scores
original_detections_shape = shape_utils.combined_static_and_dynamic_shape(
class_predictions_with_background)
calibrated_class_predictions_with_background = tf.reshape(
updated_scores,
shape=original_detections_shape,
name='calibrate_scores')
return calibrated_class_predictions_with_background
elif (calibration_config.WhichOneof('calibrator') ==
'class_id_function_approximations'):
def calibration_fn(class_predictions_with_background):
"""Calibrate predictions per class via 1-d linear interpolation.
Prediction scores are linearly interpolated with class-specific function
approximations. Note that after calibration, an anchor's class scores will
not necessarily sum to 1, and score ordering may change, depending on each
class' calibration parameters.
Args:
class_predictions_with_background: tf.float32 tensor of shape
[batch_size, num_anchors, num_classes + 1] containing scores on the
interval [0,1]. This is usually produced by a sigmoid or softmax layer
and the result of calling the `predict` method of a detection model.
Returns:
tf.float32 tensor of the same shape as the input with values on the
interval [0, 1].
Raises:
KeyError: Calibration parameters are not present for a class.
"""
class_id_function_dict = _get_class_id_function_dict(calibration_config)
# Tensors are split by class and then recombined at the end to recover
# the input's original shape. If a class id does not have calibration
# parameters, it is left unchanged.
class_tensors = tf.unstack(class_predictions_with_background, axis=-1)
calibrated_class_tensors = []
for class_id, class_tensor in enumerate(class_tensors):
flat_class_tensor = tf.reshape(class_tensor, shape=[-1])
if class_id in class_id_function_dict:
output_tensor = _tf_linear_interp1d(
x_to_interpolate=flat_class_tensor,
fn_x=class_id_function_dict[class_id][0],
fn_y=class_id_function_dict[class_id][1])
else:
tf.logging.info(
'Calibration parameters for class id `%d` not not found',
class_id)
output_tensor = flat_class_tensor
calibrated_class_tensors.append(output_tensor)
combined_calibrated_tensor = tf.stack(calibrated_class_tensors, axis=1)
input_shape = shape_utils.combined_static_and_dynamic_shape(
class_predictions_with_background)
calibrated_class_predictions_with_background = tf.reshape(
combined_calibrated_tensor,
shape=input_shape,
name='calibrate_scores')
return calibrated_class_predictions_with_background
elif (calibration_config.WhichOneof('calibrator') ==
'temperature_scaling_calibration'):
def calibration_fn(class_predictions_with_background):
"""Calibrate predictions via temperature scaling.
Predictions logits scores are scaled by the temperature scaler. Note that
the 0-indexed background class is also transformed.
Args:
class_predictions_with_background: tf.float32 tensor of shape
[batch_size, num_anchors, num_classes + 1] containing logits scores.
This is usually produced before a sigmoid or softmax layer.
Returns:
tf.float32 tensor of the same shape as the input.
Raises:
ValueError: If temperature scaler is of incorrect value.
"""
scaler = calibration_config.temperature_scaling_calibration.scaler
if scaler <= 0:
raise ValueError('The scaler in temperature scaling must be positive.')
calibrated_class_predictions_with_background = tf.math.divide(
class_predictions_with_background,
scaler,
name='calibrate_score')
return calibrated_class_predictions_with_background
# TODO(zbeaver): Add sigmoid calibration.
else:
raise ValueError('No calibration builder defined for "Oneof" in '
'calibration_config.')
return calibration_fn | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/calibration_builder.py | calibration_builder.py |
"""Builder function for image resizing operations."""
import functools
import tensorflow.compat.v1 as tf
from object_detection.core import preprocessor
from object_detection.protos import image_resizer_pb2
def _tf_resize_method(resize_method):
"""Maps image resize method from enumeration type to TensorFlow.
Args:
resize_method: The resize_method attribute of keep_aspect_ratio_resizer or
fixed_shape_resizer.
Returns:
method: The corresponding TensorFlow ResizeMethod.
Raises:
ValueError: if `resize_method` is of unknown type.
"""
dict_method = {
image_resizer_pb2.BILINEAR:
tf.image.ResizeMethod.BILINEAR,
image_resizer_pb2.NEAREST_NEIGHBOR:
tf.image.ResizeMethod.NEAREST_NEIGHBOR,
image_resizer_pb2.BICUBIC:
tf.image.ResizeMethod.BICUBIC,
image_resizer_pb2.AREA:
tf.image.ResizeMethod.AREA
}
if resize_method in dict_method:
return dict_method[resize_method]
else:
raise ValueError('Unknown resize_method')
def build(image_resizer_config):
"""Builds callable for image resizing operations.
Args:
image_resizer_config: image_resizer.proto object containing parameters for
an image resizing operation.
Returns:
image_resizer_fn: Callable for image resizing. This callable always takes
a rank-3 image tensor (corresponding to a single image) and returns a
rank-3 image tensor, possibly with new spatial dimensions.
Raises:
ValueError: if `image_resizer_config` is of incorrect type.
ValueError: if `image_resizer_config.image_resizer_oneof` is of expected
type.
ValueError: if min_dimension > max_dimension when keep_aspect_ratio_resizer
is used.
"""
if not isinstance(image_resizer_config, image_resizer_pb2.ImageResizer):
raise ValueError('image_resizer_config not of type '
'image_resizer_pb2.ImageResizer.')
image_resizer_oneof = image_resizer_config.WhichOneof('image_resizer_oneof')
if image_resizer_oneof == 'keep_aspect_ratio_resizer':
keep_aspect_ratio_config = image_resizer_config.keep_aspect_ratio_resizer
if not (keep_aspect_ratio_config.min_dimension <=
keep_aspect_ratio_config.max_dimension):
raise ValueError('min_dimension > max_dimension')
method = _tf_resize_method(keep_aspect_ratio_config.resize_method)
per_channel_pad_value = (0, 0, 0)
if keep_aspect_ratio_config.per_channel_pad_value:
per_channel_pad_value = tuple(keep_aspect_ratio_config.
per_channel_pad_value)
image_resizer_fn = functools.partial(
preprocessor.resize_to_range,
min_dimension=keep_aspect_ratio_config.min_dimension,
max_dimension=keep_aspect_ratio_config.max_dimension,
method=method,
pad_to_max_dimension=keep_aspect_ratio_config.pad_to_max_dimension,
per_channel_pad_value=per_channel_pad_value)
if not keep_aspect_ratio_config.convert_to_grayscale:
return image_resizer_fn
elif image_resizer_oneof == 'fixed_shape_resizer':
fixed_shape_resizer_config = image_resizer_config.fixed_shape_resizer
method = _tf_resize_method(fixed_shape_resizer_config.resize_method)
image_resizer_fn = functools.partial(
preprocessor.resize_image,
new_height=fixed_shape_resizer_config.height,
new_width=fixed_shape_resizer_config.width,
method=method)
if not fixed_shape_resizer_config.convert_to_grayscale:
return image_resizer_fn
elif image_resizer_oneof == 'identity_resizer':
def image_resizer_fn(image, masks=None, **kwargs):
del kwargs
if masks is None:
return [image, tf.shape(image)]
else:
return [image, masks, tf.shape(image)]
return image_resizer_fn
elif image_resizer_oneof == 'conditional_shape_resizer':
conditional_shape_resize_config = (
image_resizer_config.conditional_shape_resizer)
method = _tf_resize_method(conditional_shape_resize_config.resize_method)
if conditional_shape_resize_config.condition == (
image_resizer_pb2.ConditionalShapeResizer.GREATER):
image_resizer_fn = functools.partial(
preprocessor.resize_to_max_dimension,
max_dimension=conditional_shape_resize_config.size_threshold,
method=method)
elif conditional_shape_resize_config.condition == (
image_resizer_pb2.ConditionalShapeResizer.SMALLER):
image_resizer_fn = functools.partial(
preprocessor.resize_to_min_dimension,
min_dimension=conditional_shape_resize_config.size_threshold,
method=method)
else:
raise ValueError(
'Invalid image resizer condition option for '
'ConditionalShapeResizer: \'%s\'.'
% conditional_shape_resize_config.condition)
if not conditional_shape_resize_config.convert_to_grayscale:
return image_resizer_fn
elif image_resizer_oneof == 'pad_to_multiple_resizer':
pad_to_multiple_resizer_config = (
image_resizer_config.pad_to_multiple_resizer)
if pad_to_multiple_resizer_config.multiple < 0:
raise ValueError('`multiple` for pad_to_multiple_resizer should be > 0.')
else:
image_resizer_fn = functools.partial(
preprocessor.resize_pad_to_multiple,
multiple=pad_to_multiple_resizer_config.multiple)
if not pad_to_multiple_resizer_config.convert_to_grayscale:
return image_resizer_fn
else:
raise ValueError(
'Invalid image resizer option: \'%s\'.' % image_resizer_oneof)
def grayscale_image_resizer(image, masks=None):
"""Convert to grayscale before applying image_resizer_fn.
Args:
image: A 3D tensor of shape [height, width, 3]
masks: (optional) rank 3 float32 tensor with shape [num_instances, height,
width] containing instance masks.
Returns:
Note that the position of the resized_image_shape changes based on whether
masks are present.
resized_image: A 3D tensor of shape [new_height, new_width, 1],
where the image has been resized (with bilinear interpolation) so that
min(new_height, new_width) == min_dimension or
max(new_height, new_width) == max_dimension.
resized_masks: If masks is not None, also outputs masks. A 3D tensor of
shape [num_instances, new_height, new_width].
resized_image_shape: A 1D tensor of shape [3] containing shape of the
resized image.
"""
# image_resizer_fn returns [resized_image, resized_image_shape] if
# mask==None, otherwise it returns
# [resized_image, resized_mask, resized_image_shape]. In either case, we
# only deal with first and last element of the returned list.
retval = image_resizer_fn(image, masks)
resized_image = retval[0]
resized_image_shape = retval[-1]
retval[0] = preprocessor.rgb_to_gray(resized_image)
retval[-1] = tf.concat([resized_image_shape[:-1], [1]], 0)
return retval
return functools.partial(grayscale_image_resizer) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/image_resizer_builder.py | image_resizer_builder.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.data_decoders import tf_example_decoder
from object_detection.data_decoders import tf_sequence_example_decoder
from object_detection.protos import input_reader_pb2
parallel_reader = slim.parallel_reader
def build(input_reader_config):
"""Builds a tensor dictionary based on the InputReader config.
Args:
input_reader_config: A input_reader_pb2.InputReader object.
Returns:
A tensor dict based on the input_reader_config.
Raises:
ValueError: On invalid input reader proto.
ValueError: If no input paths are specified.
"""
if not isinstance(input_reader_config, input_reader_pb2.InputReader):
raise ValueError('input_reader_config not of type '
'input_reader_pb2.InputReader.')
if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
config = input_reader_config.tf_record_input_reader
if not config.input_path:
raise ValueError('At least one input path must be specified in '
'`input_reader_config`.')
_, string_tensor = parallel_reader.parallel_read(
config.input_path[:], # Convert `RepeatedScalarContainer` to list.
reader_class=tf.TFRecordReader,
num_epochs=(input_reader_config.num_epochs
if input_reader_config.num_epochs else None),
num_readers=input_reader_config.num_readers,
shuffle=input_reader_config.shuffle,
dtypes=[tf.string, tf.string],
capacity=input_reader_config.queue_capacity,
min_after_dequeue=input_reader_config.min_after_dequeue)
label_map_proto_file = None
if input_reader_config.HasField('label_map_path'):
label_map_proto_file = input_reader_config.label_map_path
input_type = input_reader_config.input_type
if input_type == input_reader_pb2.InputType.Value('TF_EXAMPLE'):
decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=input_reader_config.load_instance_masks,
instance_mask_type=input_reader_config.mask_type,
label_map_proto_file=label_map_proto_file,
load_context_features=input_reader_config.load_context_features)
return decoder.decode(string_tensor)
elif input_type == input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE'):
decoder = tf_sequence_example_decoder.TfSequenceExampleDecoder(
label_map_proto_file=label_map_proto_file,
load_context_features=input_reader_config.load_context_features,
load_context_image_ids=input_reader_config.load_context_image_ids)
return decoder.decode(string_tensor)
raise ValueError('Unsupported input_type.')
raise ValueError('Unsupported input_reader_config.') | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/input_reader_builder.py | input_reader_builder.py |
"""Builder function for post processing operations."""
import functools
import tensorflow.compat.v1 as tf
from object_detection.builders import calibration_builder
from object_detection.core import post_processing
from object_detection.protos import post_processing_pb2
def build(post_processing_config):
"""Builds callables for post-processing operations.
Builds callables for non-max suppression, score conversion, and (optionally)
calibration based on the configuration.
Non-max suppression callable takes `boxes`, `scores`, and optionally
`clip_window`, `parallel_iterations` `masks, and `scope` as inputs. It returns
`nms_boxes`, `nms_scores`, `nms_classes` `nms_masks` and `num_detections`. See
post_processing.batch_multiclass_non_max_suppression for the type and shape
of these tensors.
Score converter callable should be called with `input` tensor. The callable
returns the output from one of 3 tf operations based on the configuration -
tf.identity, tf.sigmoid or tf.nn.softmax. If a calibration config is provided,
score_converter also applies calibration transformations, as defined in
calibration_builder.py. See tensorflow documentation for argument and return
value descriptions.
Args:
post_processing_config: post_processing.proto object containing the
parameters for the post-processing operations.
Returns:
non_max_suppressor_fn: Callable for non-max suppression.
score_converter_fn: Callable for score conversion.
Raises:
ValueError: if the post_processing_config is of incorrect type.
"""
if not isinstance(post_processing_config, post_processing_pb2.PostProcessing):
raise ValueError('post_processing_config not of type '
'post_processing_pb2.Postprocessing.')
non_max_suppressor_fn = _build_non_max_suppressor(
post_processing_config.batch_non_max_suppression)
score_converter_fn = _build_score_converter(
post_processing_config.score_converter,
post_processing_config.logit_scale)
if post_processing_config.HasField('calibration_config'):
score_converter_fn = _build_calibrated_score_converter(
score_converter_fn,
post_processing_config.calibration_config)
return non_max_suppressor_fn, score_converter_fn
def _build_non_max_suppressor(nms_config):
"""Builds non-max suppresson based on the nms config.
Args:
nms_config: post_processing_pb2.PostProcessing.BatchNonMaxSuppression proto.
Returns:
non_max_suppressor_fn: Callable non-max suppressor.
Raises:
ValueError: On incorrect iou_threshold or on incompatible values of
max_total_detections and max_detections_per_class or on negative
soft_nms_sigma.
"""
if nms_config.iou_threshold < 0 or nms_config.iou_threshold > 1.0:
raise ValueError('iou_threshold not in [0, 1.0].')
if nms_config.max_detections_per_class > nms_config.max_total_detections:
raise ValueError('max_detections_per_class should be no greater than '
'max_total_detections.')
if nms_config.soft_nms_sigma < 0.0:
raise ValueError('soft_nms_sigma should be non-negative.')
if nms_config.use_combined_nms and nms_config.use_class_agnostic_nms:
raise ValueError('combined_nms does not support class_agnostic_nms.')
non_max_suppressor_fn = functools.partial(
post_processing.batch_multiclass_non_max_suppression,
score_thresh=nms_config.score_threshold,
iou_thresh=nms_config.iou_threshold,
max_size_per_class=nms_config.max_detections_per_class,
max_total_size=nms_config.max_total_detections,
use_static_shapes=nms_config.use_static_shapes,
use_class_agnostic_nms=nms_config.use_class_agnostic_nms,
max_classes_per_detection=nms_config.max_classes_per_detection,
soft_nms_sigma=nms_config.soft_nms_sigma,
use_partitioned_nms=nms_config.use_partitioned_nms,
use_combined_nms=nms_config.use_combined_nms,
change_coordinate_frame=nms_config.change_coordinate_frame,
use_hard_nms=nms_config.use_hard_nms,
use_cpu_nms=nms_config.use_cpu_nms)
return non_max_suppressor_fn
def _score_converter_fn_with_logit_scale(tf_score_converter_fn, logit_scale):
"""Create a function to scale logits then apply a Tensorflow function."""
def score_converter_fn(logits):
scaled_logits = tf.multiply(logits, 1.0 / logit_scale, name='scale_logits')
return tf_score_converter_fn(scaled_logits, name='convert_scores')
score_converter_fn.__name__ = '%s_with_logit_scale' % (
tf_score_converter_fn.__name__)
return score_converter_fn
def _build_score_converter(score_converter_config, logit_scale):
"""Builds score converter based on the config.
Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on
the config.
Args:
score_converter_config: post_processing_pb2.PostProcessing.score_converter.
logit_scale: temperature to use for SOFTMAX score_converter.
Returns:
Callable score converter op.
Raises:
ValueError: On unknown score converter.
"""
if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY:
return _score_converter_fn_with_logit_scale(tf.identity, logit_scale)
if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID:
return _score_converter_fn_with_logit_scale(tf.sigmoid, logit_scale)
if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX:
return _score_converter_fn_with_logit_scale(tf.nn.softmax, logit_scale)
raise ValueError('Unknown score converter.')
def _build_calibrated_score_converter(score_converter_fn, calibration_config):
"""Wraps a score_converter_fn, adding a calibration step.
Builds a score converter function with a calibration transformation according
to calibration_builder.py. The score conversion function may be applied before
or after the calibration transformation, depending on the calibration method.
If the method is temperature scaling, the score conversion is
after the calibration transformation. Otherwise, the score conversion is
before the calibration transformation. Calibration applies positive monotonic
transformations to inputs (i.e. score ordering is strictly preserved or
adjacent scores are mapped to the same score). When calibration is
class-agnostic, the highest-scoring class remains unchanged, unless two
adjacent scores are mapped to the same value and one class arbitrarily
selected to break the tie. In per-class calibration, it's possible (though
rare in practice) that the highest-scoring class will change, since positive
monotonicity is only required to hold within each class.
Args:
score_converter_fn: callable that takes logit scores as input.
calibration_config: post_processing_pb2.PostProcessing.calibration_config.
Returns:
Callable calibrated score coverter op.
"""
calibration_fn = calibration_builder.build(calibration_config)
def calibrated_score_converter_fn(logits):
if (calibration_config.WhichOneof('calibrator') ==
'temperature_scaling_calibration'):
calibrated_logits = calibration_fn(logits)
return score_converter_fn(calibrated_logits)
else:
converted_logits = score_converter_fn(logits)
return calibration_fn(converted_logits)
calibrated_score_converter_fn.__name__ = (
'calibrate_with_%s' % calibration_config.WhichOneof('calibrator'))
return calibrated_score_converter_fn | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/builders/post_processing_builder.py | post_processing_builder.py |
from abc import abstractmethod
import tensorflow.compat.v1 as tf
BOX_ENCODINGS = 'box_encodings'
CLASS_PREDICTIONS_WITH_BACKGROUND = 'class_predictions_with_background'
MASK_PREDICTIONS = 'mask_predictions'
class BoxPredictor(object):
"""BoxPredictor."""
def __init__(self, is_training, num_classes):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
"""
self._is_training = is_training
self._num_classes = num_classes
@property
def is_keras_model(self):
return False
@property
def num_classes(self):
return self._num_classes
def predict(self, image_features, num_predictions_per_location,
scope=None, **params):
"""Computes encoded object locations and corresponding confidences.
Takes a list of high level image feature maps as input and produces a list
of box encodings and a list of class scores where each element in the output
lists correspond to the feature maps in the input list.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
num_predictions_per_location: A list of integers representing the number
of box predictions to be made per spatial location for each feature map.
scope: Variable and Op scope name.
**params: Additional keyword arguments for specific implementations of
BoxPredictor.
Returns:
A dictionary containing at least the following tensors.
box_encodings: A list of float tensors. Each entry in the list
corresponds to a feature map in the input `image_features` list. All
tensors in the list have one of the two following shapes:
a. [batch_size, num_anchors_i, q, code_size] representing the location
of the objects, where q is 1 or the number of classes.
b. [batch_size, num_anchors_i, code_size].
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
Raises:
ValueError: If length of `image_features` is not equal to length of
`num_predictions_per_location`.
"""
if len(image_features) != len(num_predictions_per_location):
raise ValueError('image_feature and num_predictions_per_location must '
'be of same length, found: {} vs {}'.
format(len(image_features),
len(num_predictions_per_location)))
if scope is not None:
with tf.variable_scope(scope):
return self._predict(image_features, num_predictions_per_location,
**params)
return self._predict(image_features, num_predictions_per_location,
**params)
# TODO(rathodv): num_predictions_per_location could be moved to constructor.
# This is currently only used by ConvolutionalBoxPredictor.
@abstractmethod
def _predict(self, image_features, num_predictions_per_location, **params):
"""Implementations must override this method.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
num_predictions_per_location: A list of integers representing the number
of box predictions to be made per spatial location for each feature map.
**params: Additional keyword arguments for specific implementations of
BoxPredictor.
Returns:
A dictionary containing at least the following tensors.
box_encodings: A list of float tensors. Each entry in the list
corresponds to a feature map in the input `image_features` list. All
tensors in the list have one of the two following shapes:
a. [batch_size, num_anchors_i, q, code_size] representing the location
of the objects, where q is 1 or the number of classes.
b. [batch_size, num_anchors_i, code_size].
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
"""
pass
class KerasBoxPredictor(tf.keras.layers.Layer):
"""Keras-based BoxPredictor."""
def __init__(self, is_training, num_classes, freeze_batchnorm,
inplace_batchnorm_update, name=None):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
inplace_batchnorm_update: Whether to update batch norm moving average
values inplace. When this is false train op must add a control
dependency on tf.graphkeys.UPDATE_OPS collection in order to update
batch norm statistics.
name: A string name scope to assign to the model. If `None`, Keras
will auto-generate one from the class name.
"""
super(KerasBoxPredictor, self).__init__(name=name)
self._is_training = is_training
self._num_classes = num_classes
self._freeze_batchnorm = freeze_batchnorm
self._inplace_batchnorm_update = inplace_batchnorm_update
@property
def is_keras_model(self):
return True
@property
def num_classes(self):
return self._num_classes
def call(self, image_features, **kwargs):
"""Computes encoded object locations and corresponding confidences.
Takes a list of high level image feature maps as input and produces a list
of box encodings and a list of class scores where each element in the output
lists correspond to the feature maps in the input list.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
**kwargs: Additional keyword arguments for specific implementations of
BoxPredictor.
Returns:
A dictionary containing at least the following tensors.
box_encodings: A list of float tensors. Each entry in the list
corresponds to a feature map in the input `image_features` list. All
tensors in the list have one of the two following shapes:
a. [batch_size, num_anchors_i, q, code_size] representing the location
of the objects, where q is 1 or the number of classes.
b. [batch_size, num_anchors_i, code_size].
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
"""
return self._predict(image_features, **kwargs)
@abstractmethod
def _predict(self, image_features, **kwargs):
"""Implementations must override this method.
Args:
image_features: A list of float tensors of shape [batch_size, height_i,
width_i, channels_i] containing features for a batch of images.
**kwargs: Additional keyword arguments for specific implementations of
BoxPredictor.
Returns:
A dictionary containing at least the following tensors.
box_encodings: A list of float tensors. Each entry in the list
corresponds to a feature map in the input `image_features` list. All
tensors in the list have one of the two following shapes:
a. [batch_size, num_anchors_i, q, code_size] representing the location
of the objects, where q is 1 or the number of classes.
b. [batch_size, num_anchors_i, code_size].
class_predictions_with_background: A list of float tensors of shape
[batch_size, num_anchors_i, num_classes + 1] representing the class
predictions for the proposals. Each entry in the list corresponds to a
feature map in the input `image_features` list.
"""
raise NotImplementedError | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/box_predictor.py | box_predictor.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import inspect
import math
import sys
import six
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
from tensorflow.python.ops import control_flow_ops
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import densepose_ops
from object_detection.core import keypoint_ops
from object_detection.core import preprocessor_cache
from object_detection.core import standard_fields as fields
from object_detection.utils import autoaugment_utils
from object_detection.utils import ops
from object_detection.utils import patch_ops
from object_detection.utils import shape_utils
def _apply_with_random_selector(x,
func,
num_cases,
preprocess_vars_cache=None,
key=''):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
If both preprocess_vars_cache AND key are the same between two calls, sel will
be the same value in both calls.
Args:
x: input Tensor.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
key: variable identifier for preprocess_vars_cache.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
generator_func = functools.partial(
tf.random_uniform, [], maxval=num_cases, dtype=tf.int32)
rand_sel = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.SELECTOR,
preprocess_vars_cache, key)
# Pass the real x only to one of the func calls.
return control_flow_ops.merge([func(
control_flow_ops.switch(x, tf.equal(rand_sel, case))[1], case)
for case in range(num_cases)])[0]
def _apply_with_random_selector_tuples(x,
func,
num_cases,
preprocess_vars_cache=None,
key=''):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
If both preprocess_vars_cache AND key are the same between two calls, sel will
be the same value in both calls.
Args:
x: A tuple of input tensors.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
key: variable identifier for preprocess_vars_cache.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
num_inputs = len(x)
generator_func = functools.partial(
tf.random_uniform, [], maxval=num_cases, dtype=tf.int32)
rand_sel = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.SELECTOR_TUPLES,
preprocess_vars_cache, key)
# Pass the real x only to one of the func calls.
tuples = [list() for t in x]
for case in range(num_cases):
new_x = [control_flow_ops.switch(t, tf.equal(rand_sel, case))[1] for t in x]
output = func(tuple(new_x), case)
for j in range(num_inputs):
tuples[j].append(output[j])
for i in range(num_inputs):
tuples[i] = control_flow_ops.merge(tuples[i])[0]
return tuple(tuples)
def _get_or_create_preprocess_rand_vars(generator_func,
function_id,
preprocess_vars_cache,
key=''):
"""Returns a tensor stored in preprocess_vars_cache or using generator_func.
If the tensor was previously generated and appears in the PreprocessorCache,
the previously generated tensor will be returned. Otherwise, a new tensor
is generated using generator_func and stored in the cache.
Args:
generator_func: A 0-argument function that generates a tensor.
function_id: identifier for the preprocessing function used.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
key: identifier for the variable stored.
Returns:
The generated tensor.
"""
if preprocess_vars_cache is not None:
var = preprocess_vars_cache.get(function_id, key)
if var is None:
var = generator_func()
preprocess_vars_cache.update(function_id, key, var)
else:
var = generator_func()
return var
def _random_integer(minval, maxval, seed):
"""Returns a random 0-D tensor between minval and maxval.
Args:
minval: minimum value of the random tensor.
maxval: maximum value of the random tensor.
seed: random seed.
Returns:
A random 0-D tensor between minval and maxval.
"""
return tf.random_uniform(
[], minval=minval, maxval=maxval, dtype=tf.int32, seed=seed)
# TODO(mttang): This method is needed because the current
# tf.image.rgb_to_grayscale method does not support quantization. Replace with
# tf.image.rgb_to_grayscale after quantization support is added.
def _rgb_to_grayscale(images, name=None):
"""Converts one or more images from RGB to Grayscale.
Outputs a tensor of the same `DType` and rank as `images`. The size of the
last dimension of the output is 1, containing the Grayscale value of the
pixels.
Args:
images: The RGB tensor to convert. Last dimension must have size 3 and
should contain RGB values.
name: A name for the operation (optional).
Returns:
The converted grayscale image(s).
"""
with tf.name_scope(name, 'rgb_to_grayscale', [images]) as name:
images = tf.convert_to_tensor(images, name='images')
# Remember original dtype to so we can convert back if needed
orig_dtype = images.dtype
flt_image = tf.image.convert_image_dtype(images, tf.float32)
# Reference for converting between RGB and grayscale.
# https://en.wikipedia.org/wiki/Luma_%28video%29
rgb_weights = [0.2989, 0.5870, 0.1140]
rank_1 = tf.expand_dims(tf.rank(images) - 1, 0)
gray_float = tf.reduce_sum(
flt_image * rgb_weights, rank_1, keep_dims=True)
gray_float.set_shape(images.get_shape()[:-1].concatenate([1]))
return tf.image.convert_image_dtype(gray_float, orig_dtype, name=name)
def normalize_image(image, original_minval, original_maxval, target_minval,
target_maxval):
"""Normalizes pixel values in the image.
Moves the pixel values from the current [original_minval, original_maxval]
range to a the [target_minval, target_maxval] range.
Args:
image: rank 3 float32 tensor containing 1
image -> [height, width, channels].
original_minval: current image minimum value.
original_maxval: current image maximum value.
target_minval: target image minimum value.
target_maxval: target image maximum value.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('NormalizeImage', values=[image]):
original_minval = float(original_minval)
original_maxval = float(original_maxval)
target_minval = float(target_minval)
target_maxval = float(target_maxval)
image = tf.cast(image, dtype=tf.float32)
image = tf.subtract(image, original_minval)
image = tf.multiply(image, (target_maxval - target_minval) /
(original_maxval - original_minval))
image = tf.add(image, target_minval)
return image
def retain_boxes_above_threshold(boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
keypoints=None,
threshold=0.0):
"""Retains boxes whose label weight is above a given threshold.
If the label weight for a box is missing (represented by NaN), the box is
retained. The boxes that don't pass the threshold will not appear in the
returned tensor.
Args:
boxes: float32 tensor of shape [num_instance, 4] representing boxes
location in normalized coordinates.
labels: rank 1 int32 tensor of shape [num_instance] containing the object
classes.
label_weights: float32 tensor of shape [num_instance] representing the
weight for each box.
label_confidences: float32 tensor of shape [num_instance] representing the
confidence for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks are of
the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x normalized
coordinates.
threshold: scalar python float.
Returns:
retained_boxes: [num_retained_instance, 4]
retianed_labels: [num_retained_instance]
retained_label_weights: [num_retained_instance]
If multiclass_scores, masks, or keypoints are not None, the function also
returns:
retained_multiclass_scores: [num_retained_instance, num_classes]
retained_masks: [num_retained_instance, height, width]
retained_keypoints: [num_retained_instance, num_keypoints, 2]
"""
with tf.name_scope('RetainBoxesAboveThreshold',
values=[boxes, labels, label_weights]):
indices = tf.where(
tf.logical_or(label_weights > threshold, tf.is_nan(label_weights)))
indices = tf.squeeze(indices, axis=1)
retained_boxes = tf.gather(boxes, indices)
retained_labels = tf.gather(labels, indices)
retained_label_weights = tf.gather(label_weights, indices)
result = [retained_boxes, retained_labels, retained_label_weights]
if label_confidences is not None:
retained_label_confidences = tf.gather(label_confidences, indices)
result.append(retained_label_confidences)
if multiclass_scores is not None:
retained_multiclass_scores = tf.gather(multiclass_scores, indices)
result.append(retained_multiclass_scores)
if masks is not None:
retained_masks = tf.gather(masks, indices)
result.append(retained_masks)
if keypoints is not None:
retained_keypoints = tf.gather(keypoints, indices)
result.append(retained_keypoints)
return result
def drop_label_probabilistically(boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
keypoints=None,
dropped_label=None,
drop_probability=0.0,
seed=None):
"""Drops boxes of a certain label with probability drop_probability.
Boxes of the label dropped_label will not appear in the returned tensor.
Args:
boxes: float32 tensor of shape [num_instance, 4] representing boxes
location in normalized coordinates.
labels: rank 1 int32 tensor of shape [num_instance] containing the object
classes.
label_weights: float32 tensor of shape [num_instance] representing the
weight for each box.
label_confidences: float32 tensor of shape [num_instance] representing the
confidence for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks are of
the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x normalized
coordinates.
dropped_label: int32 id of label to drop.
drop_probability: float32 probability of dropping a label.
seed: random seed.
Returns:
retained_boxes: [num_retained_instance, 4]
retianed_labels: [num_retained_instance]
retained_label_weights: [num_retained_instance]
If multiclass_scores, masks, or keypoints are not None, the function also
returns:
retained_multiclass_scores: [num_retained_instance, num_classes]
retained_masks: [num_retained_instance, height, width]
retained_keypoints: [num_retained_instance, num_keypoints, 2]
"""
with tf.name_scope('DropLabelProbabilistically',
values=[boxes, labels]):
indices = tf.where(
tf.logical_or(
tf.random_uniform(tf.shape(labels), seed=seed) > drop_probability,
tf.not_equal(labels, dropped_label)))
indices = tf.squeeze(indices, axis=1)
retained_boxes = tf.gather(boxes, indices)
retained_labels = tf.gather(labels, indices)
retained_label_weights = tf.gather(label_weights, indices)
result = [retained_boxes, retained_labels, retained_label_weights]
if label_confidences is not None:
retained_label_confidences = tf.gather(label_confidences, indices)
result.append(retained_label_confidences)
if multiclass_scores is not None:
retained_multiclass_scores = tf.gather(multiclass_scores, indices)
result.append(retained_multiclass_scores)
if masks is not None:
retained_masks = tf.gather(masks, indices)
result.append(retained_masks)
if keypoints is not None:
retained_keypoints = tf.gather(keypoints, indices)
result.append(retained_keypoints)
return result
def remap_labels(labels,
original_labels=None,
new_label=None):
"""Remaps labels that have an id in original_labels to new_label.
Args:
labels: rank 1 int32 tensor of shape [num_instance] containing the object
classes.
original_labels: int list of original labels that should be mapped from.
new_label: int label to map to
Returns:
Remapped labels
"""
new_labels = labels
for original_label in original_labels:
change = tf.where(
tf.equal(new_labels, original_label),
tf.add(tf.zeros_like(new_labels), new_label - original_label),
tf.zeros_like(new_labels))
new_labels = tf.add(
new_labels,
change)
new_labels = tf.reshape(new_labels, tf.shape(labels))
return new_labels
def _flip_boxes_left_right(boxes):
"""Left-right flip the boxes.
Args:
boxes: Float32 tensor containing the bounding boxes -> [..., 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each last dimension is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=-1)
flipped_xmin = tf.subtract(1.0, xmax)
flipped_xmax = tf.subtract(1.0, xmin)
flipped_boxes = tf.concat([ymin, flipped_xmin, ymax, flipped_xmax], axis=-1)
return flipped_boxes
def _flip_boxes_up_down(boxes):
"""Up-down flip the boxes.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Flipped boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
flipped_ymin = tf.subtract(1.0, ymax)
flipped_ymax = tf.subtract(1.0, ymin)
flipped_boxes = tf.concat([flipped_ymin, xmin, flipped_ymax, xmax], 1)
return flipped_boxes
def _rot90_boxes(boxes):
"""Rotate boxes counter-clockwise by 90 degrees.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
Returns:
Rotated boxes.
"""
ymin, xmin, ymax, xmax = tf.split(value=boxes, num_or_size_splits=4, axis=1)
rotated_ymin = tf.subtract(1.0, xmax)
rotated_ymax = tf.subtract(1.0, xmin)
rotated_xmin = ymin
rotated_xmax = ymax
rotated_boxes = tf.concat(
[rotated_ymin, rotated_xmin, rotated_ymax, rotated_xmax], 1)
return rotated_boxes
def _flip_masks_left_right(masks):
"""Left-right flip masks.
Args:
masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
Returns:
flipped masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
"""
return masks[:, :, ::-1]
def _flip_masks_up_down(masks):
"""Up-down flip masks.
Args:
masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
Returns:
flipped masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
"""
return masks[:, ::-1, :]
def _rot90_masks(masks):
"""Rotate masks counter-clockwise by 90 degrees.
Args:
masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
Returns:
rotated masks: rank 3 float32 tensor with shape
[num_instances, height, width] representing instance masks.
"""
masks = tf.transpose(masks, [0, 2, 1])
return masks[:, ::-1, :]
def random_horizontal_flip(image,
boxes=None,
masks=None,
keypoints=None,
keypoint_visibilities=None,
densepose_part_ids=None,
densepose_surface_coords=None,
keypoint_depths=None,
keypoint_depth_weights=None,
keypoint_flip_permutation=None,
probability=0.5,
seed=None,
preprocess_vars_cache=None):
"""Randomly flips the image and detections horizontally.
Args:
image: rank 3 float32 tensor with shape [height, width, channels].
boxes: (optional) rank 2 float32 tensor with shape [N, 4]
containing the bounding boxes.
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
keypoint_visibilities: (optional) rank 2 bool tensor with shape
[num_instances, num_keypoints].
densepose_part_ids: (optional) rank 2 int32 tensor with shape
[num_instances, num_points] holding the part id for each
sampled point. These part_ids are 0-indexed, where the
first non-background part has index 0.
densepose_surface_coords: (optional) rank 3 float32 tensor with shape
[num_instances, num_points, 4]. The DensePose
coordinates are of the form (y, x, v, u) where
(y, x) are the normalized image coordinates for a
sampled point, and (v, u) is the surface
coordinate for the part.
keypoint_depths: (optional) rank 2 float32 tensor with shape [num_instances,
num_keypoints] representing the relative depth of the
keypoints.
keypoint_depth_weights: (optional) rank 2 float32 tensor with shape
[num_instances, num_keypoints] representing the
weights of the relative depth of the keypoints.
keypoint_flip_permutation: rank 1 int32 tensor containing the keypoint flip
permutation.
probability: the probability of performing this augmentation.
seed: random seed
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
If boxes, masks, keypoints, keypoint_visibilities,
keypoint_flip_permutation, densepose_part_ids, or densepose_surface_coords
are not None,the function also returns the following tensors.
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
keypoint_visibilities: rank 2 bool tensor with shape
[num_instances, num_keypoints].
densepose_part_ids: rank 2 int32 tensor with shape
[num_instances, num_points].
densepose_surface_coords: rank 3 float32 tensor with shape
[num_instances, num_points, 4].
keypoint_depths: rank 2 float32 tensor with shape [num_instances,
num_keypoints]
keypoint_depth_weights: rank 2 float32 tensor with shape [num_instances,
num_keypoints].
Raises:
ValueError: if keypoints are provided but keypoint_flip_permutation is not.
ValueError: if either densepose_part_ids or densepose_surface_coords is
not None, but both are not None.
"""
def _flip_image(image):
# flip image
image_flipped = tf.image.flip_left_right(image)
return image_flipped
if keypoints is not None and keypoint_flip_permutation is None:
raise ValueError(
'keypoints are provided but keypoints_flip_permutation is not provided')
if ((densepose_part_ids is not None and densepose_surface_coords is None) or
(densepose_part_ids is None and densepose_surface_coords is not None)):
raise ValueError(
'Must provide both `densepose_part_ids` and `densepose_surface_coords`')
with tf.name_scope('RandomHorizontalFlip', values=[image, boxes]):
result = []
# random variable defining whether to do flip or not
generator_func = functools.partial(tf.random_uniform, [], seed=seed)
do_a_flip_random = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.HORIZONTAL_FLIP,
preprocess_vars_cache)
do_a_flip_random = tf.less(do_a_flip_random, probability)
# flip image
image = tf.cond(do_a_flip_random, lambda: _flip_image(image), lambda: image)
result.append(image)
# flip boxes
if boxes is not None:
boxes = tf.cond(do_a_flip_random, lambda: _flip_boxes_left_right(boxes),
lambda: boxes)
result.append(boxes)
# flip masks
if masks is not None:
masks = tf.cond(do_a_flip_random, lambda: _flip_masks_left_right(masks),
lambda: masks)
result.append(masks)
# flip keypoints
if keypoints is not None and keypoint_flip_permutation is not None:
permutation = keypoint_flip_permutation
keypoints = tf.cond(
do_a_flip_random,
lambda: keypoint_ops.flip_horizontal(keypoints, 0.5, permutation),
lambda: keypoints)
result.append(keypoints)
# flip keypoint visibilities
if (keypoint_visibilities is not None and
keypoint_flip_permutation is not None):
kpt_flip_perm = keypoint_flip_permutation
keypoint_visibilities = tf.cond(
do_a_flip_random,
lambda: tf.gather(keypoint_visibilities, kpt_flip_perm, axis=1),
lambda: keypoint_visibilities)
result.append(keypoint_visibilities)
# flip DensePose parts and coordinates
if densepose_part_ids is not None:
flip_densepose_fn = functools.partial(
densepose_ops.flip_horizontal, densepose_part_ids,
densepose_surface_coords)
densepose_tensors = tf.cond(
do_a_flip_random,
flip_densepose_fn,
lambda: (densepose_part_ids, densepose_surface_coords))
result.extend(densepose_tensors)
# flip keypoint depths and weights.
if (keypoint_depths is not None and
keypoint_flip_permutation is not None):
kpt_flip_perm = keypoint_flip_permutation
keypoint_depths = tf.cond(
do_a_flip_random,
lambda: tf.gather(keypoint_depths, kpt_flip_perm, axis=1),
lambda: keypoint_depths)
keypoint_depth_weights = tf.cond(
do_a_flip_random,
lambda: tf.gather(keypoint_depth_weights, kpt_flip_perm, axis=1),
lambda: keypoint_depth_weights)
result.append(keypoint_depths)
result.append(keypoint_depth_weights)
return tuple(result)
def random_vertical_flip(image,
boxes=None,
masks=None,
keypoints=None,
keypoint_flip_permutation=None,
probability=0.5,
seed=None,
preprocess_vars_cache=None):
"""Randomly flips the image and detections vertically.
The probability of flipping the image is 50%.
Args:
image: rank 3 float32 tensor with shape [height, width, channels].
boxes: (optional) rank 2 float32 tensor with shape [N, 4]
containing the bounding boxes.
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
keypoint_flip_permutation: rank 1 int32 tensor containing the keypoint flip
permutation.
probability: the probability of performing this augmentation.
seed: random seed
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
If boxes, masks, keypoints, and keypoint_flip_permutation are not None,
the function also returns the following tensors.
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
Raises:
ValueError: if keypoints are provided but keypoint_flip_permutation is not.
"""
def _flip_image(image):
# flip image
image_flipped = tf.image.flip_up_down(image)
return image_flipped
if keypoints is not None and keypoint_flip_permutation is None:
raise ValueError(
'keypoints are provided but keypoints_flip_permutation is not provided')
with tf.name_scope('RandomVerticalFlip', values=[image, boxes]):
result = []
# random variable defining whether to do flip or not
generator_func = functools.partial(tf.random_uniform, [], seed=seed)
do_a_flip_random = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.VERTICAL_FLIP,
preprocess_vars_cache)
do_a_flip_random = tf.less(do_a_flip_random, probability)
# flip image
image = tf.cond(do_a_flip_random, lambda: _flip_image(image), lambda: image)
result.append(image)
# flip boxes
if boxes is not None:
boxes = tf.cond(do_a_flip_random, lambda: _flip_boxes_up_down(boxes),
lambda: boxes)
result.append(boxes)
# flip masks
if masks is not None:
masks = tf.cond(do_a_flip_random, lambda: _flip_masks_up_down(masks),
lambda: masks)
result.append(masks)
# flip keypoints
if keypoints is not None and keypoint_flip_permutation is not None:
permutation = keypoint_flip_permutation
keypoints = tf.cond(
do_a_flip_random,
lambda: keypoint_ops.flip_vertical(keypoints, 0.5, permutation),
lambda: keypoints)
result.append(keypoints)
return tuple(result)
def random_rotation90(image,
boxes=None,
masks=None,
keypoints=None,
keypoint_rot_permutation=None,
probability=0.5,
seed=None,
preprocess_vars_cache=None):
"""Randomly rotates the image and detections 90 degrees counter-clockwise.
The probability of rotating the image is 50%. This can be combined with
random_horizontal_flip and random_vertical_flip to produce an output with a
uniform distribution of the eight possible 90 degree rotation / reflection
combinations.
Args:
image: rank 3 float32 tensor with shape [height, width, channels].
boxes: (optional) rank 2 float32 tensor with shape [N, 4]
containing the bounding boxes.
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
keypoint_rot_permutation: rank 1 int32 tensor containing the keypoint flip
permutation.
probability: the probability of performing this augmentation.
seed: random seed
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
If boxes, masks, and keypoints, are not None,
the function also returns the following tensors.
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
def _rot90_image(image):
# flip image
image_rotated = tf.image.rot90(image)
return image_rotated
with tf.name_scope('RandomRotation90', values=[image, boxes]):
result = []
# random variable defining whether to rotate by 90 degrees or not
generator_func = functools.partial(tf.random_uniform, [], seed=seed)
do_a_rot90_random = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.ROTATION90,
preprocess_vars_cache)
do_a_rot90_random = tf.less(do_a_rot90_random, probability)
# flip image
image = tf.cond(do_a_rot90_random, lambda: _rot90_image(image),
lambda: image)
result.append(image)
# flip boxes
if boxes is not None:
boxes = tf.cond(do_a_rot90_random, lambda: _rot90_boxes(boxes),
lambda: boxes)
result.append(boxes)
# flip masks
if masks is not None:
masks = tf.cond(do_a_rot90_random, lambda: _rot90_masks(masks),
lambda: masks)
result.append(masks)
# flip keypoints
if keypoints is not None:
keypoints = tf.cond(
do_a_rot90_random,
lambda: keypoint_ops.rot90(keypoints, keypoint_rot_permutation),
lambda: keypoints)
result.append(keypoints)
return tuple(result)
def random_pixel_value_scale(image,
minval=0.9,
maxval=1.1,
seed=None,
preprocess_vars_cache=None):
"""Scales each value in the pixels of the image.
This function scales each pixel independent of the other ones.
For each value in image tensor, draws a random number between
minval and maxval and multiples the values with them.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
minval: lower ratio of scaling pixel values.
maxval: upper ratio of scaling pixel values.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomPixelValueScale', values=[image]):
generator_func = functools.partial(
tf.random_uniform, tf.shape(image),
minval=minval, maxval=maxval,
dtype=tf.float32, seed=seed)
color_coef = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.PIXEL_VALUE_SCALE,
preprocess_vars_cache)
image = tf.multiply(image, color_coef)
image = tf.clip_by_value(image, 0.0, 255.0)
return image
def random_image_scale(image,
masks=None,
min_scale_ratio=0.5,
max_scale_ratio=2.0,
seed=None,
preprocess_vars_cache=None):
"""Scales the image size.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels].
masks: (optional) rank 3 float32 tensor containing masks with
size [height, width, num_masks]. The value is set to None if there are no
masks.
min_scale_ratio: minimum scaling ratio.
max_scale_ratio: maximum scaling ratio.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
masks: If masks is not none, resized masks which are the same rank as input
masks will be returned.
"""
with tf.name_scope('RandomImageScale', values=[image]):
result = []
image_shape = tf.shape(image)
image_height = image_shape[0]
image_width = image_shape[1]
generator_func = functools.partial(
tf.random_uniform, [],
minval=min_scale_ratio, maxval=max_scale_ratio,
dtype=tf.float32, seed=seed)
size_coef = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.IMAGE_SCALE,
preprocess_vars_cache)
image_newysize = tf.cast(
tf.multiply(tf.cast(image_height, dtype=tf.float32), size_coef),
dtype=tf.int32)
image_newxsize = tf.cast(
tf.multiply(tf.cast(image_width, dtype=tf.float32), size_coef),
dtype=tf.int32)
image = tf.image.resize_images(
image, [image_newysize, image_newxsize], align_corners=True)
result.append(image)
if masks is not None:
masks = tf.image.resize_images(
masks, [image_newysize, image_newxsize],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=True)
result.append(masks)
return tuple(result)
def _augment_only_rgb_channels(image, augment_function):
"""Augments only the RGB slice of an image with additional channels."""
rgb_slice = image[:, :, :3]
augmented_rgb_slice = augment_function(rgb_slice)
image = tf.concat([augmented_rgb_slice, image[:, :, 3:]], -1)
return image
def random_rgb_to_gray(image,
probability=0.1,
seed=None,
preprocess_vars_cache=None):
"""Changes the image from RGB to Grayscale with the given probability.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
probability: the probability of returning a grayscale image.
The probability should be a number between [0, 1].
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
def _image_to_gray(image):
image_gray1 = _rgb_to_grayscale(image)
image_gray3 = tf.image.grayscale_to_rgb(image_gray1)
return image_gray3
with tf.name_scope('RandomRGBtoGray', values=[image]):
# random variable defining whether to change to grayscale or not
generator_func = functools.partial(tf.random_uniform, [], seed=seed)
do_gray_random = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.RGB_TO_GRAY,
preprocess_vars_cache)
image = tf.cond(
tf.greater(do_gray_random, probability), lambda: image,
lambda: _augment_only_rgb_channels(image, _image_to_gray))
return image
def adjust_gamma(image, gamma=1.0, gain=1.0):
"""Adjusts the gamma.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
gamma: the gamma value. Must be a non-negative real number.
gain: a constant multiplier.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('AdjustGamma', values=[image]):
def _adjust_gamma(image):
image = tf.image.adjust_gamma(image / 255, gamma, gain) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
image = _augment_only_rgb_channels(image, _adjust_gamma)
return image
def random_adjust_brightness(image,
max_delta=0.2,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts brightness.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
max_delta: how much to change the brightness. A value between [0, 1).
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustBrightness', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
-max_delta, max_delta, seed=seed)
delta = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_BRIGHTNESS,
preprocess_vars_cache)
def _adjust_brightness(image):
image = tf.image.adjust_brightness(image / 255, delta) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
image = _augment_only_rgb_channels(image, _adjust_brightness)
return image
def random_adjust_contrast(image,
min_delta=0.8,
max_delta=1.25,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts contrast.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
min_delta: see max_delta.
max_delta: how much to change the contrast. Contrast will change with a
value between min_delta and max_delta. This value will be
multiplied to the current contrast of the image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustContrast', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
min_delta, max_delta, seed=seed)
contrast_factor = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_CONTRAST,
preprocess_vars_cache)
def _adjust_contrast(image):
image = tf.image.adjust_contrast(image / 255, contrast_factor) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
image = _augment_only_rgb_channels(image, _adjust_contrast)
return image
def random_adjust_hue(image,
max_delta=0.02,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts hue.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
max_delta: change hue randomly with a value between 0 and max_delta.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustHue', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
-max_delta, max_delta, seed=seed)
delta = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.ADJUST_HUE,
preprocess_vars_cache)
def _adjust_hue(image):
image = tf.image.adjust_hue(image / 255, delta) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
image = _augment_only_rgb_channels(image, _adjust_hue)
return image
def random_adjust_saturation(image,
min_delta=0.8,
max_delta=1.25,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts saturation.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
min_delta: see max_delta.
max_delta: how much to change the saturation. Saturation will change with a
value between min_delta and max_delta. This value will be
multiplied to the current saturation of the image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustSaturation', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
min_delta, max_delta, seed=seed)
saturation_factor = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_SATURATION,
preprocess_vars_cache)
def _adjust_saturation(image):
image = tf.image.adjust_saturation(image / 255, saturation_factor) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
image = _augment_only_rgb_channels(image, _adjust_saturation)
return image
def random_distort_color(image, color_ordering=0, preprocess_vars_cache=None):
"""Randomly distorts color.
Randomly distorts color using a combination of brightness, hue, contrast and
saturation changes. Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
color_ordering: Python int, a type of distortion (valid values: 0, 1).
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
Raises:
ValueError: if color_ordering is not in {0, 1}.
"""
with tf.name_scope('RandomDistortColor', values=[image]):
if color_ordering == 0:
image = random_adjust_brightness(
image, max_delta=32. / 255.,
preprocess_vars_cache=preprocess_vars_cache)
image = random_adjust_saturation(
image, min_delta=0.5, max_delta=1.5,
preprocess_vars_cache=preprocess_vars_cache)
image = random_adjust_hue(
image, max_delta=0.2,
preprocess_vars_cache=preprocess_vars_cache)
image = random_adjust_contrast(
image, min_delta=0.5, max_delta=1.5,
preprocess_vars_cache=preprocess_vars_cache)
elif color_ordering == 1:
image = random_adjust_brightness(
image, max_delta=32. / 255.,
preprocess_vars_cache=preprocess_vars_cache)
image = random_adjust_contrast(
image, min_delta=0.5, max_delta=1.5,
preprocess_vars_cache=preprocess_vars_cache)
image = random_adjust_saturation(
image, min_delta=0.5, max_delta=1.5,
preprocess_vars_cache=preprocess_vars_cache)
image = random_adjust_hue(
image, max_delta=0.2,
preprocess_vars_cache=preprocess_vars_cache)
else:
raise ValueError('color_ordering must be in {0, 1}')
return image
def random_jitter_boxes(boxes, ratio=0.05, jitter_mode='default', seed=None):
"""Randomly jitters boxes in image.
Args:
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
ratio: The ratio of the box width and height that the corners can jitter.
For example if the width is 100 pixels and ratio is 0.05,
the corners can jitter up to 5 pixels in the x direction.
jitter_mode: One of
shrink - Only shrinks boxes.
expand - Only expands boxes.
expand_symmetric - Expands the boxes symmetrically along height and width
dimensions without changing the box center. The ratios of expansion
along X, Y dimensions are independent
shrink_symmetric - Shrinks the boxes symmetrically along height and width
dimensions without changing the box center. The ratios of shrinking
along X, Y dimensions are independent
expand_symmetric_xy - Expands the boxes symetrically along height and
width dimensions and the ratio of expansion is same for both.
shrink_symmetric_xy - Shrinks the boxes symetrically along height and
width dimensions and the ratio of shrinking is same for both.
default - Randomly and independently perturbs each box boundary.
seed: random seed.
Returns:
boxes: boxes which is the same shape as input boxes.
"""
with tf.name_scope('RandomJitterBoxes'):
ymin, xmin, ymax, xmax = (boxes[:, i] for i in range(4))
blist = box_list.BoxList(boxes)
ycenter, xcenter, height, width = blist.get_center_coordinates_and_sizes()
height = tf.maximum(tf.abs(height), 1e-6)
width = tf.maximum(tf.abs(width), 1e-6)
if jitter_mode in ['shrink', 'shrink_symmetric', 'shrink_symmetric_xy']:
min_ratio, max_ratio = -ratio, 0
elif jitter_mode in ['expand', 'expand_symmetric', 'expand_symmetric_xy']:
min_ratio, max_ratio = 0, ratio
elif jitter_mode == 'default':
min_ratio, max_ratio = -ratio, ratio
else:
raise ValueError('Unknown jitter mode - %s' % jitter_mode)
num_boxes = tf.shape(boxes)[0]
if jitter_mode in ['expand_symmetric', 'shrink_symmetric',
'expand_symmetric_xy', 'shrink_symmetric_xy']:
distortion = 1.0 + tf.random.uniform(
[num_boxes, 2], minval=min_ratio, maxval=max_ratio, dtype=tf.float32,
seed=seed)
height_distortion = distortion[:, 0]
width_distortion = distortion[:, 1]
# This is to ensure that all boxes are augmented symmetrically. We clip
# each boundary to lie within the image, and when doing so, we also
# adjust its symmetric counterpart.
max_height_distortion = tf.abs(tf.minimum(
(2.0 * ycenter) / height, 2.0 * (1 - ycenter) / height))
max_width_distortion = tf.abs(tf.minimum(
(2.0 * xcenter) / width, 2.0 * (1 - xcenter) / width))
if jitter_mode in ['expand_symmetric_xy', 'shrink_symmetric_xy']:
height_distortion = width_distortion = distortion[:, 0]
max_height_distortion = max_width_distortion = (
tf.minimum(max_width_distortion, max_height_distortion))
height_distortion = tf.clip_by_value(
height_distortion, -max_height_distortion, max_height_distortion)
width_distortion = tf.clip_by_value(
width_distortion, -max_width_distortion, max_width_distortion)
ymin = ycenter - (height * height_distortion / 2.0)
ymax = ycenter + (height * height_distortion / 2.0)
xmin = xcenter - (width * width_distortion / 2.0)
xmax = xcenter + (width * width_distortion / 2.0)
elif jitter_mode in ['expand', 'shrink', 'default']:
distortion = 1.0 + tf.random.uniform(
[num_boxes, 4], minval=min_ratio, maxval=max_ratio, dtype=tf.float32,
seed=seed)
ymin_jitter = height * distortion[:, 0]
xmin_jitter = width * distortion[:, 1]
ymax_jitter = height * distortion[:, 2]
xmax_jitter = width * distortion[:, 3]
ymin, ymax = ycenter - (ymin_jitter / 2.0), ycenter + (ymax_jitter / 2.0)
xmin, xmax = xcenter - (xmin_jitter / 2.0), xcenter + (xmax_jitter / 2.0)
else:
raise ValueError('Unknown jitter mode - %s' % jitter_mode)
boxes = tf.stack([ymin, xmin, ymax, xmax], axis=1)
return tf.clip_by_value(boxes, 0.0, 1.0)
def _strict_random_crop_image(image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
mask_weights=None,
keypoints=None,
keypoint_visibilities=None,
densepose_num_points=None,
densepose_part_ids=None,
densepose_surface_coords=None,
min_object_covered=1.0,
aspect_ratio_range=(0.75, 1.33),
area_range=(0.1, 1.0),
overlap_thresh=0.3,
clip_boxes=True,
preprocess_vars_cache=None):
"""Performs random crop.
Note: Keypoint coordinates that are outside the crop will be set to NaN, which
is consistent with the original keypoint encoding for non-existing keypoints.
This function always crops the image and is supposed to be used by
`random_crop_image` function which sometimes returns the image unchanged.
Args:
image: rank 3 float32 tensor containing 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes with shape
[num_instances, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
label_confidences: (optional) float32 tensor of shape [num_instances]
representing the confidence for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
mask_weights: (optional) rank 1 float32 tensor with shape [num_instances]
with instance masks weights.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
keypoint_visibilities: (optional) rank 2 bool tensor with shape
[num_instances, num_keypoints].
densepose_num_points: (optional) rank 1 int32 tensor with shape
[num_instances] with the number of sampled points per
instance.
densepose_part_ids: (optional) rank 2 int32 tensor with shape
[num_instances, num_points] holding the part id for each
sampled point. These part_ids are 0-indexed, where the
first non-background part has index 0.
densepose_surface_coords: (optional) rank 3 float32 tensor with shape
[num_instances, num_points, 4]. The DensePose
coordinates are of the form (y, x, v, u) where
(y, x) are the normalized image coordinates for a
sampled point, and (v, u) is the surface
coordinate for the part.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If label_weights, multiclass_scores, masks, mask_weights, keypoints,
keypoint_visibilities, densepose_num_points, densepose_part_ids, or
densepose_surface_coords is not None, the function also returns:
label_weights: rank 1 float32 tensor with shape [num_instances].
multiclass_scores: rank 2 float32 tensor with shape
[num_instances, num_classes]
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
mask_weights: rank 1 float32 tensor with shape [num_instances] with mask
weights.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
keypoint_visibilities: rank 2 bool tensor with shape
[num_instances, num_keypoints]
densepose_num_points: rank 1 int32 tensor with shape [num_instances].
densepose_part_ids: rank 2 int32 tensor with shape
[num_instances, num_points].
densepose_surface_coords: rank 3 float32 tensor with shape
[num_instances, num_points, 4].
Raises:
ValueError: If some but not all of the DensePose tensors are provided.
"""
with tf.name_scope('RandomCropImage', values=[image, boxes]):
densepose_tensors = [densepose_num_points, densepose_part_ids,
densepose_surface_coords]
if (any(t is not None for t in densepose_tensors) and
not all(t is not None for t in densepose_tensors)):
raise ValueError('If cropping DensePose labels, must provide '
'`densepose_num_points`, `densepose_part_ids`, and '
'`densepose_surface_coords`')
image_shape = tf.shape(image)
# boxes are [N, 4]. Lets first make them [N, 1, 4].
boxes_expanded = tf.expand_dims(
tf.clip_by_value(
boxes, clip_value_min=0.0, clip_value_max=1.0), 1)
generator_func = functools.partial(
tf.image.sample_distorted_bounding_box,
image_shape,
bounding_boxes=boxes_expanded,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=100,
use_image_if_no_bounding_boxes=True)
# for ssd cropping, each value of min_object_covered has its own
# cached random variable
sample_distorted_bounding_box = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.STRICT_CROP_IMAGE,
preprocess_vars_cache, key=min_object_covered)
im_box_begin, im_box_size, im_box = sample_distorted_bounding_box
im_box_end = im_box_begin + im_box_size
new_image = image[im_box_begin[0]:im_box_end[0],
im_box_begin[1]:im_box_end[1], :]
new_image.set_shape([None, None, image.get_shape()[2]])
# [1, 4]
im_box_rank2 = tf.squeeze(im_box, axis=[0])
# [4]
im_box_rank1 = tf.squeeze(im_box)
boxlist = box_list.BoxList(boxes)
boxlist.add_field('labels', labels)
if label_weights is not None:
boxlist.add_field('label_weights', label_weights)
if label_confidences is not None:
boxlist.add_field('label_confidences', label_confidences)
if multiclass_scores is not None:
boxlist.add_field('multiclass_scores', multiclass_scores)
im_boxlist = box_list.BoxList(im_box_rank2)
# remove boxes that are outside cropped image
boxlist, inside_window_ids = box_list_ops.prune_completely_outside_window(
boxlist, im_box_rank1)
# remove boxes that are outside image
overlapping_boxlist, keep_ids = box_list_ops.prune_non_overlapping_boxes(
boxlist, im_boxlist, overlap_thresh)
# change the coordinate of the remaining boxes
new_labels = overlapping_boxlist.get_field('labels')
new_boxlist = box_list_ops.change_coordinate_frame(overlapping_boxlist,
im_box_rank1)
new_boxes = new_boxlist.get()
if clip_boxes:
new_boxes = tf.clip_by_value(
new_boxes, clip_value_min=0.0, clip_value_max=1.0)
result = [new_image, new_boxes, new_labels]
if label_weights is not None:
new_label_weights = overlapping_boxlist.get_field('label_weights')
result.append(new_label_weights)
if label_confidences is not None:
new_label_confidences = overlapping_boxlist.get_field('label_confidences')
result.append(new_label_confidences)
if multiclass_scores is not None:
new_multiclass_scores = overlapping_boxlist.get_field('multiclass_scores')
result.append(new_multiclass_scores)
if masks is not None:
masks_of_boxes_inside_window = tf.gather(masks, inside_window_ids)
masks_of_boxes_completely_inside_window = tf.gather(
masks_of_boxes_inside_window, keep_ids)
new_masks = masks_of_boxes_completely_inside_window[:, im_box_begin[
0]:im_box_end[0], im_box_begin[1]:im_box_end[1]]
result.append(new_masks)
if mask_weights is not None:
mask_weights_inside_window = tf.gather(mask_weights, inside_window_ids)
mask_weights_completely_inside_window = tf.gather(
mask_weights_inside_window, keep_ids)
result.append(mask_weights_completely_inside_window)
if keypoints is not None:
keypoints_of_boxes_inside_window = tf.gather(keypoints, inside_window_ids)
keypoints_of_boxes_completely_inside_window = tf.gather(
keypoints_of_boxes_inside_window, keep_ids)
new_keypoints = keypoint_ops.change_coordinate_frame(
keypoints_of_boxes_completely_inside_window, im_box_rank1)
if clip_boxes:
new_keypoints = keypoint_ops.prune_outside_window(new_keypoints,
[0.0, 0.0, 1.0, 1.0])
result.append(new_keypoints)
if keypoint_visibilities is not None:
kpt_vis_of_boxes_inside_window = tf.gather(keypoint_visibilities,
inside_window_ids)
kpt_vis_of_boxes_completely_inside_window = tf.gather(
kpt_vis_of_boxes_inside_window, keep_ids)
if clip_boxes:
# Set any keypoints with NaN coordinates to invisible.
new_kpt_visibilities = keypoint_ops.set_keypoint_visibilities(
new_keypoints, kpt_vis_of_boxes_completely_inside_window)
result.append(new_kpt_visibilities)
if densepose_num_points is not None:
filtered_dp_tensors = []
for dp_tensor in densepose_tensors:
dp_tensor_inside_window = tf.gather(dp_tensor, inside_window_ids)
dp_tensor_completely_inside_window = tf.gather(dp_tensor_inside_window,
keep_ids)
filtered_dp_tensors.append(dp_tensor_completely_inside_window)
new_dp_num_points = filtered_dp_tensors[0]
new_dp_point_ids = filtered_dp_tensors[1]
new_dp_surf_coords = densepose_ops.change_coordinate_frame(
filtered_dp_tensors[2], im_box_rank1)
if clip_boxes:
new_dp_num_points, new_dp_point_ids, new_dp_surf_coords = (
densepose_ops.prune_outside_window(
new_dp_num_points, new_dp_point_ids, new_dp_surf_coords,
window=[0.0, 0.0, 1.0, 1.0]))
result.extend([new_dp_num_points, new_dp_point_ids, new_dp_surf_coords])
return tuple(result)
def random_crop_image(image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
mask_weights=None,
keypoints=None,
keypoint_visibilities=None,
densepose_num_points=None,
densepose_part_ids=None,
densepose_surface_coords=None,
min_object_covered=1.0,
aspect_ratio_range=(0.75, 1.33),
area_range=(0.1, 1.0),
overlap_thresh=0.3,
clip_boxes=True,
random_coef=0.0,
seed=None,
preprocess_vars_cache=None):
"""Randomly crops the image.
Given the input image and its bounding boxes, this op randomly
crops a subimage. Given a user-provided set of input constraints,
the crop window is resampled until it satisfies these constraints.
If within 100 trials it is unable to find a valid crop, the original
image is returned. See the Args section for a description of the input
constraints. Both input boxes and returned Boxes are in normalized
form (e.g., lie in the unit square [0, 1]).
This function will return the original image with probability random_coef.
Note: Keypoint coordinates that are outside the crop will be set to NaN, which
is consistent with the original keypoint encoding for non-existing keypoints.
Also, the keypoint visibility will be set to False.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes with shape
[num_instances, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
label_confidences: (optional) float32 tensor of shape [num_instances].
representing the confidence for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
mask_weights: (optional) rank 1 float32 tensor with shape [num_instances]
containing weights for each instance mask.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
keypoint_visibilities: (optional) rank 2 bool tensor with shape
[num_instances, num_keypoints].
densepose_num_points: (optional) rank 1 int32 tensor with shape
[num_instances] with the number of sampled points per
instance.
densepose_part_ids: (optional) rank 2 int32 tensor with shape
[num_instances, num_points] holding the part id for each
sampled point. These part_ids are 0-indexed, where the
first non-background part has index 0.
densepose_surface_coords: (optional) rank 3 float32 tensor with shape
[num_instances, num_points, 4]. The DensePose
coordinates are of the form (y, x, v, u) where
(y, x) are the normalized image coordinates for a
sampled point, and (v, u) is the surface
coordinate for the part.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the
cropped image, and if it is 1.0, we will always get the
original image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: Image shape will be [new_height, new_width, channels].
boxes: boxes which is the same rank as input boxes. Boxes are in normalized
form.
labels: new labels.
If label_weights, multiclass_scores, masks, keypoints,
keypoint_visibilities, densepose_num_points, densepose_part_ids,
densepose_surface_coords is not None, the function also returns:
label_weights: rank 1 float32 tensor with shape [num_instances].
multiclass_scores: rank 2 float32 tensor with shape
[num_instances, num_classes]
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
mask_weights: rank 1 float32 tensor with shape [num_instances].
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
keypoint_visibilities: rank 2 bool tensor with shape
[num_instances, num_keypoints]
densepose_num_points: rank 1 int32 tensor with shape [num_instances].
densepose_part_ids: rank 2 int32 tensor with shape
[num_instances, num_points].
densepose_surface_coords: rank 3 float32 tensor with shape
[num_instances, num_points, 4].
"""
def strict_random_crop_image_fn():
return _strict_random_crop_image(
image,
boxes,
labels,
label_weights,
label_confidences=label_confidences,
multiclass_scores=multiclass_scores,
masks=masks,
mask_weights=mask_weights,
keypoints=keypoints,
keypoint_visibilities=keypoint_visibilities,
densepose_num_points=densepose_num_points,
densepose_part_ids=densepose_part_ids,
densepose_surface_coords=densepose_surface_coords,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
overlap_thresh=overlap_thresh,
clip_boxes=clip_boxes,
preprocess_vars_cache=preprocess_vars_cache)
# avoids tf.cond to make faster RCNN training on borg. See b/140057645.
if random_coef < sys.float_info.min:
result = strict_random_crop_image_fn()
else:
generator_func = functools.partial(tf.random_uniform, [], seed=seed)
do_a_crop_random = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.CROP_IMAGE,
preprocess_vars_cache)
do_a_crop_random = tf.greater(do_a_crop_random, random_coef)
outputs = [image, boxes, labels]
if label_weights is not None:
outputs.append(label_weights)
if label_confidences is not None:
outputs.append(label_confidences)
if multiclass_scores is not None:
outputs.append(multiclass_scores)
if masks is not None:
outputs.append(masks)
if mask_weights is not None:
outputs.append(mask_weights)
if keypoints is not None:
outputs.append(keypoints)
if keypoint_visibilities is not None:
outputs.append(keypoint_visibilities)
if densepose_num_points is not None:
outputs.extend([densepose_num_points, densepose_part_ids,
densepose_surface_coords])
result = tf.cond(do_a_crop_random, strict_random_crop_image_fn,
lambda: tuple(outputs))
return result
def random_pad_image(image,
boxes,
masks=None,
keypoints=None,
densepose_surface_coords=None,
min_image_size=None,
max_image_size=None,
pad_color=None,
center_pad=False,
seed=None,
preprocess_vars_cache=None):
"""Randomly pads the image.
This function randomly pads the image with zeros. The final size of the
padded image will be between min_image_size and max_image_size.
if min_image_size is smaller than the input image size, min_image_size will
be set to the input image size. The same for max_image_size. The input image
will be located at a uniformly random location inside the padded image.
The relative location of the boxes to the original image will remain the same.
Args:
image: rank 3 float32 tensor containing 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[N, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[N, num_keypoints, 2]. The keypoints are in y-x normalized
coordinates.
densepose_surface_coords: (optional) rank 3 float32 tensor with shape
[N, num_points, 4]. The DensePose coordinates are
of the form (y, x, v, u) where (y, x) are the
normalized image coordinates for a sampled point,
and (v, u) is the surface coordinate for the part.
min_image_size: a tensor of size [min_height, min_width], type tf.int32.
If passed as None, will be set to image size
[height, width].
max_image_size: a tensor of size [max_height, max_width], type tf.int32.
If passed as None, will be set to twice the
image [height * 2, width * 2].
pad_color: padding color. A rank 1 tensor of [channels] with dtype=
tf.float32. if set as None, it will be set to average color of
the input image.
center_pad: whether the original image will be padded to the center, or
randomly padded (which is default).
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: Image shape will be [new_height, new_width, channels].
boxes: boxes which is the same rank as input boxes. Boxes are in normalized
form.
if masks is not None, the function also returns:
masks: rank 3 float32 tensor with shape [N, new_height, new_width]
if keypoints is not None, the function also returns:
keypoints: rank 3 float32 tensor with shape [N, num_keypoints, 2]
if densepose_surface_coords is not None, the function also returns:
densepose_surface_coords: rank 3 float32 tensor with shape
[num_instances, num_points, 4]
"""
if pad_color is None:
pad_color = tf.reduce_mean(image, axis=[0, 1])
image_shape = tf.shape(image)
image_height = image_shape[0]
image_width = image_shape[1]
if max_image_size is None:
max_image_size = tf.stack([image_height * 2, image_width * 2])
max_image_size = tf.maximum(max_image_size,
tf.stack([image_height, image_width]))
if min_image_size is None:
min_image_size = tf.stack([image_height, image_width])
min_image_size = tf.maximum(min_image_size,
tf.stack([image_height, image_width]))
target_height = tf.cond(
max_image_size[0] > min_image_size[0],
lambda: _random_integer(min_image_size[0], max_image_size[0], seed),
lambda: max_image_size[0])
target_width = tf.cond(
max_image_size[1] > min_image_size[1],
lambda: _random_integer(min_image_size[1], max_image_size[1], seed),
lambda: max_image_size[1])
offset_height = tf.cond(
target_height > image_height,
lambda: _random_integer(0, target_height - image_height, seed),
lambda: tf.constant(0, dtype=tf.int32))
offset_width = tf.cond(
target_width > image_width,
lambda: _random_integer(0, target_width - image_width, seed),
lambda: tf.constant(0, dtype=tf.int32))
if center_pad:
offset_height = tf.cast(tf.floor((target_height - image_height) / 2),
tf.int32)
offset_width = tf.cast(tf.floor((target_width - image_width) / 2),
tf.int32)
gen_func = lambda: (target_height, target_width, offset_height, offset_width)
params = _get_or_create_preprocess_rand_vars(
gen_func, preprocessor_cache.PreprocessorCache.PAD_IMAGE,
preprocess_vars_cache)
target_height, target_width, offset_height, offset_width = params
new_image = tf.image.pad_to_bounding_box(
image,
offset_height=offset_height,
offset_width=offset_width,
target_height=target_height,
target_width=target_width)
# Setting color of the padded pixels
image_ones = tf.ones_like(image)
image_ones_padded = tf.image.pad_to_bounding_box(
image_ones,
offset_height=offset_height,
offset_width=offset_width,
target_height=target_height,
target_width=target_width)
image_color_padded = (1.0 - image_ones_padded) * pad_color
new_image += image_color_padded
# setting boxes
new_window = tf.cast(
tf.stack([
-offset_height, -offset_width, target_height - offset_height,
target_width - offset_width
]),
dtype=tf.float32)
new_window /= tf.cast(
tf.stack([image_height, image_width, image_height, image_width]),
dtype=tf.float32)
boxlist = box_list.BoxList(boxes)
new_boxlist = box_list_ops.change_coordinate_frame(boxlist, new_window)
new_boxes = new_boxlist.get()
result = [new_image, new_boxes]
if masks is not None:
new_masks = tf.image.pad_to_bounding_box(
masks[:, :, :, tf.newaxis],
offset_height=offset_height,
offset_width=offset_width,
target_height=target_height,
target_width=target_width)[:, :, :, 0]
result.append(new_masks)
if keypoints is not None:
new_keypoints = keypoint_ops.change_coordinate_frame(keypoints, new_window)
result.append(new_keypoints)
if densepose_surface_coords is not None:
new_densepose_surface_coords = densepose_ops.change_coordinate_frame(
densepose_surface_coords, new_window)
result.append(new_densepose_surface_coords)
return tuple(result)
def random_absolute_pad_image(image,
boxes,
masks=None,
keypoints=None,
densepose_surface_coords=None,
max_height_padding=None,
max_width_padding=None,
pad_color=None,
seed=None,
preprocess_vars_cache=None):
"""Randomly pads the image by small absolute amounts.
As random_pad_image above, but the padding is of size [0, max_height_padding]
or [0, max_width_padding] instead of padding to a fixed size of
max_height_padding for all images.
Args:
image: rank 3 float32 tensor containing 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[N, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[N, num_keypoints, 2]. The keypoints are in y-x normalized
coordinates.
densepose_surface_coords: (optional) rank 3 float32 tensor with shape
[N, num_points, 4]. The DensePose coordinates are
of the form (y, x, v, u) where (y, x) are the
normalized image coordinates for a sampled point,
and (v, u) is the surface coordinate for the part.
max_height_padding: a scalar tf.int32 tensor denoting the maximum amount of
height padding. The padding will be chosen uniformly at
random from [0, max_height_padding).
max_width_padding: a scalar tf.int32 tensor denoting the maximum amount of
width padding. The padding will be chosen uniformly at
random from [0, max_width_padding).
pad_color: padding color. A rank 1 tensor of [3] with dtype=tf.float32.
if set as None, it will be set to average color of the input
image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: Image shape will be [new_height, new_width, channels].
boxes: boxes which is the same rank as input boxes. Boxes are in normalized
form.
if masks is not None, the function also returns:
masks: rank 3 float32 tensor with shape [N, new_height, new_width]
if keypoints is not None, the function also returns:
keypoints: rank 3 float32 tensor with shape [N, num_keypoints, 2]
"""
min_image_size = tf.shape(image)[:2]
max_image_size = min_image_size + tf.cast(
[max_height_padding, max_width_padding], dtype=tf.int32)
return random_pad_image(
image,
boxes,
masks=masks,
keypoints=keypoints,
densepose_surface_coords=densepose_surface_coords,
min_image_size=min_image_size,
max_image_size=max_image_size,
pad_color=pad_color,
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
def random_crop_pad_image(image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
min_object_covered=1.0,
aspect_ratio_range=(0.75, 1.33),
area_range=(0.1, 1.0),
overlap_thresh=0.3,
clip_boxes=True,
random_coef=0.0,
min_padded_size_ratio=(1.0, 1.0),
max_padded_size_ratio=(2.0, 2.0),
pad_color=None,
seed=None,
preprocess_vars_cache=None):
"""Randomly crops and pads the image.
Given an input image and its bounding boxes, this op first randomly crops
the image and then randomly pads the image with background values. Parameters
min_padded_size_ratio and max_padded_size_ratio, determine the range of the
final output image size. Specifically, the final image size will have a size
in the range of min_padded_size_ratio * tf.shape(image) and
max_padded_size_ratio * tf.shape(image). Note that these ratios are with
respect to the size of the original image, so we can't capture the same
effect easily by independently applying RandomCropImage
followed by RandomPadImage.
Args:
image: rank 3 float32 tensor containing 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: rank 1 float32 containing the label weights.
label_confidences: rank 1 float32 containing the label confidences.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the
cropped image, and if it is 1.0, we will always get the
original image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width.
pad_color: padding color. A rank 1 tensor of [3] with dtype=tf.float32.
if set as None, it will be set to average color of the randomly
cropped image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
padded_image: padded image.
padded_boxes: boxes which is the same rank as input boxes. Boxes are in
normalized form.
cropped_labels: cropped labels.
if label_weights is not None also returns:
cropped_label_weights: cropped label weights.
if multiclass_scores is not None also returns:
cropped_multiclass_scores: cropped_multiclass_scores.
"""
image_size = tf.shape(image)
image_height = image_size[0]
image_width = image_size[1]
result = random_crop_image(
image=image,
boxes=boxes,
labels=labels,
label_weights=label_weights,
label_confidences=label_confidences,
multiclass_scores=multiclass_scores,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
overlap_thresh=overlap_thresh,
clip_boxes=clip_boxes,
random_coef=random_coef,
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
cropped_image, cropped_boxes, cropped_labels = result[:3]
min_image_size = tf.cast(
tf.cast(tf.stack([image_height, image_width]), dtype=tf.float32) *
min_padded_size_ratio,
dtype=tf.int32)
max_image_size = tf.cast(
tf.cast(tf.stack([image_height, image_width]), dtype=tf.float32) *
max_padded_size_ratio,
dtype=tf.int32)
padded_image, padded_boxes = random_pad_image( # pylint: disable=unbalanced-tuple-unpacking
cropped_image,
cropped_boxes,
min_image_size=min_image_size,
max_image_size=max_image_size,
pad_color=pad_color,
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
cropped_padded_output = (padded_image, padded_boxes, cropped_labels)
index = 3
if label_weights is not None:
cropped_label_weights = result[index]
cropped_padded_output += (cropped_label_weights,)
index += 1
if label_confidences is not None:
cropped_label_confidences = result[index]
cropped_padded_output += (cropped_label_confidences,)
index += 1
if multiclass_scores is not None:
cropped_multiclass_scores = result[index]
cropped_padded_output += (cropped_multiclass_scores,)
return cropped_padded_output
def random_crop_to_aspect_ratio(image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
keypoints=None,
aspect_ratio=1.0,
overlap_thresh=0.3,
clip_boxes=True,
center_crop=False,
seed=None,
preprocess_vars_cache=None):
"""Randomly crops an image to the specified aspect ratio.
Randomly crops the a portion of the image such that the crop is of the
specified aspect ratio, and the crop is as large as possible. If the specified
aspect ratio is larger than the aspect ratio of the image, this op will
randomly remove rows from the top and bottom of the image. If the specified
aspect ratio is less than the aspect ratio of the image, this op will randomly
remove cols from the left and right of the image. If the specified aspect
ratio is the same as the aspect ratio of the image, this op will return the
image.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
label_confidences: (optional) float32 tensor of shape [num_instances]
representing the confidence for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
aspect_ratio: the aspect ratio of cropped image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
center_crop: whether to take the center crop or a random crop.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If label_weights, masks, keypoints, or multiclass_scores is not None, the
function also returns:
label_weights: rank 1 float32 tensor with shape [num_instances].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
multiclass_scores: rank 2 float32 tensor with shape
[num_instances, num_classes]
Raises:
ValueError: If image is not a 3D tensor.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
with tf.name_scope('RandomCropToAspectRatio', values=[image]):
image_shape = tf.shape(image)
orig_height = image_shape[0]
orig_width = image_shape[1]
orig_aspect_ratio = tf.cast(
orig_width, dtype=tf.float32) / tf.cast(
orig_height, dtype=tf.float32)
new_aspect_ratio = tf.constant(aspect_ratio, dtype=tf.float32)
def target_height_fn():
return tf.cast(
tf.round(tf.cast(orig_width, dtype=tf.float32) / new_aspect_ratio),
dtype=tf.int32)
target_height = tf.cond(orig_aspect_ratio >= new_aspect_ratio,
lambda: orig_height, target_height_fn)
def target_width_fn():
return tf.cast(
tf.round(tf.cast(orig_height, dtype=tf.float32) * new_aspect_ratio),
dtype=tf.int32)
target_width = tf.cond(orig_aspect_ratio <= new_aspect_ratio,
lambda: orig_width, target_width_fn)
# either offset_height = 0 and offset_width is randomly chosen from
# [0, offset_width - target_width), or else offset_width = 0 and
# offset_height is randomly chosen from [0, offset_height - target_height)
if center_crop:
offset_height = tf.cast(tf.math.floor((orig_height - target_height) / 2),
tf.int32)
offset_width = tf.cast(tf.math.floor((orig_width - target_width) / 2),
tf.int32)
else:
offset_height = _random_integer(0, orig_height - target_height + 1, seed)
offset_width = _random_integer(0, orig_width - target_width + 1, seed)
generator_func = lambda: (offset_height, offset_width)
offset_height, offset_width = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.CROP_TO_ASPECT_RATIO,
preprocess_vars_cache)
new_image = tf.image.crop_to_bounding_box(
image, offset_height, offset_width, target_height, target_width)
im_box = tf.stack([
tf.cast(offset_height, dtype=tf.float32) /
tf.cast(orig_height, dtype=tf.float32),
tf.cast(offset_width, dtype=tf.float32) /
tf.cast(orig_width, dtype=tf.float32),
tf.cast(offset_height + target_height, dtype=tf.float32) /
tf.cast(orig_height, dtype=tf.float32),
tf.cast(offset_width + target_width, dtype=tf.float32) /
tf.cast(orig_width, dtype=tf.float32)
])
boxlist = box_list.BoxList(boxes)
boxlist.add_field('labels', labels)
boxlist.add_field('label_weights', label_weights)
if label_confidences is not None:
boxlist.add_field('label_confidences', label_confidences)
if multiclass_scores is not None:
boxlist.add_field('multiclass_scores', multiclass_scores)
im_boxlist = box_list.BoxList(tf.expand_dims(im_box, 0))
# remove boxes whose overlap with the image is less than overlap_thresh
overlapping_boxlist, keep_ids = box_list_ops.prune_non_overlapping_boxes(
boxlist, im_boxlist, overlap_thresh)
# change the coordinate of the remaining boxes
new_labels = overlapping_boxlist.get_field('labels')
new_boxlist = box_list_ops.change_coordinate_frame(overlapping_boxlist,
im_box)
if clip_boxes:
new_boxlist = box_list_ops.clip_to_window(
new_boxlist, tf.constant([0.0, 0.0, 1.0, 1.0], tf.float32))
new_boxes = new_boxlist.get()
result = [new_image, new_boxes, new_labels]
new_label_weights = overlapping_boxlist.get_field('label_weights')
result.append(new_label_weights)
if label_confidences is not None:
new_label_confidences = (
overlapping_boxlist.get_field('label_confidences'))
result.append(new_label_confidences)
if multiclass_scores is not None:
new_multiclass_scores = overlapping_boxlist.get_field('multiclass_scores')
result.append(new_multiclass_scores)
if masks is not None:
masks_inside_window = tf.gather(masks, keep_ids)
masks_box_begin = tf.stack([0, offset_height, offset_width])
masks_box_size = tf.stack([-1, target_height, target_width])
new_masks = tf.slice(masks_inside_window, masks_box_begin, masks_box_size)
result.append(new_masks)
if keypoints is not None:
keypoints_inside_window = tf.gather(keypoints, keep_ids)
new_keypoints = keypoint_ops.change_coordinate_frame(
keypoints_inside_window, im_box)
if clip_boxes:
new_keypoints = keypoint_ops.prune_outside_window(new_keypoints,
[0.0, 0.0, 1.0, 1.0])
result.append(new_keypoints)
return tuple(result)
def random_pad_to_aspect_ratio(image,
boxes,
masks=None,
keypoints=None,
aspect_ratio=1.0,
min_padded_size_ratio=(1.0, 1.0),
max_padded_size_ratio=(2.0, 2.0),
seed=None,
preprocess_vars_cache=None):
"""Randomly zero pads an image to the specified aspect ratio.
Pads the image so that the resulting image will have the specified aspect
ratio without scaling less than the min_padded_size_ratio or more than the
max_padded_size_ratio. If the min_padded_size_ratio or max_padded_size_ratio
is lower than what is possible to maintain the aspect ratio, then this method
will use the least padding to achieve the specified aspect ratio.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
aspect_ratio: aspect ratio of the final image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If masks, or keypoints is not None, the function also returns:
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
Raises:
ValueError: If image is not a 3D tensor.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
with tf.name_scope('RandomPadToAspectRatio', values=[image]):
image_shape = tf.shape(image)
image_height = tf.cast(image_shape[0], dtype=tf.float32)
image_width = tf.cast(image_shape[1], dtype=tf.float32)
image_aspect_ratio = image_width / image_height
new_aspect_ratio = tf.constant(aspect_ratio, dtype=tf.float32)
target_height = tf.cond(
image_aspect_ratio <= new_aspect_ratio,
lambda: image_height,
lambda: image_width / new_aspect_ratio)
target_width = tf.cond(
image_aspect_ratio >= new_aspect_ratio,
lambda: image_width,
lambda: image_height * new_aspect_ratio)
min_height = tf.maximum(
min_padded_size_ratio[0] * image_height, target_height)
min_width = tf.maximum(
min_padded_size_ratio[1] * image_width, target_width)
max_height = tf.maximum(
max_padded_size_ratio[0] * image_height, target_height)
max_width = tf.maximum(
max_padded_size_ratio[1] * image_width, target_width)
max_scale = tf.minimum(max_height / target_height, max_width / target_width)
min_scale = tf.minimum(
max_scale,
tf.maximum(min_height / target_height, min_width / target_width))
generator_func = functools.partial(tf.random_uniform, [],
min_scale, max_scale, seed=seed)
scale = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.PAD_TO_ASPECT_RATIO,
preprocess_vars_cache)
target_height = tf.round(scale * target_height)
target_width = tf.round(scale * target_width)
new_image = tf.image.pad_to_bounding_box(
image, 0, 0, tf.cast(target_height, dtype=tf.int32),
tf.cast(target_width, dtype=tf.int32))
im_box = tf.stack([
0.0,
0.0,
target_height / image_height,
target_width / image_width
])
boxlist = box_list.BoxList(boxes)
new_boxlist = box_list_ops.change_coordinate_frame(boxlist, im_box)
new_boxes = new_boxlist.get()
result = [new_image, new_boxes]
if masks is not None:
new_masks = tf.expand_dims(masks, -1)
new_masks = tf.image.pad_to_bounding_box(
new_masks, 0, 0, tf.cast(target_height, dtype=tf.int32),
tf.cast(target_width, dtype=tf.int32))
new_masks = tf.squeeze(new_masks, [-1])
result.append(new_masks)
if keypoints is not None:
new_keypoints = keypoint_ops.change_coordinate_frame(keypoints, im_box)
result.append(new_keypoints)
return tuple(result)
def random_black_patches(image,
max_black_patches=10,
probability=0.5,
size_to_image_ratio=0.1,
random_seed=None,
preprocess_vars_cache=None):
"""Randomly adds some black patches to the image.
This op adds up to max_black_patches square black patches of a fixed size
to the image where size is specified via the size_to_image_ratio parameter.
Args:
image: rank 3 float32 tensor containing 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
max_black_patches: number of times that the function tries to add a
black box to the image.
probability: at each try, what is the chance of adding a box.
size_to_image_ratio: Determines the ratio of the size of the black patches
to the size of the image.
box_size = size_to_image_ratio *
min(image_width, image_height)
random_seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image
"""
def add_black_patch_to_image(image, idx):
"""Function for adding one patch to the image.
Args:
image: image
idx: counter for number of patches that could have been added
Returns:
image with a randomly added black box
"""
image_shape = tf.shape(image)
image_height = image_shape[0]
image_width = image_shape[1]
box_size = tf.cast(
tf.multiply(
tf.minimum(
tf.cast(image_height, dtype=tf.float32),
tf.cast(image_width, dtype=tf.float32)), size_to_image_ratio),
dtype=tf.int32)
generator_func = functools.partial(tf.random_uniform, [], minval=0.0,
maxval=(1.0 - size_to_image_ratio),
seed=random_seed)
normalized_y_min = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADD_BLACK_PATCH,
preprocess_vars_cache, key=str(idx) + 'y')
normalized_x_min = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADD_BLACK_PATCH,
preprocess_vars_cache, key=str(idx) + 'x')
y_min = tf.cast(
normalized_y_min * tf.cast(image_height, dtype=tf.float32),
dtype=tf.int32)
x_min = tf.cast(
normalized_x_min * tf.cast(image_width, dtype=tf.float32),
dtype=tf.int32)
black_box = tf.ones([box_size, box_size, 3], dtype=tf.float32)
mask = 1.0 - tf.image.pad_to_bounding_box(black_box, y_min, x_min,
image_height, image_width)
image = tf.multiply(image, mask)
return image
with tf.name_scope('RandomBlackPatchInImage', values=[image]):
for idx in range(max_black_patches):
generator_func = functools.partial(tf.random_uniform, [],
minval=0.0, maxval=1.0,
dtype=tf.float32, seed=random_seed)
random_prob = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.BLACK_PATCHES,
preprocess_vars_cache, key=idx)
image = tf.cond(
tf.greater(random_prob, probability), lambda: image,
functools.partial(add_black_patch_to_image, image=image, idx=idx))
return image
def random_jpeg_quality(image,
min_jpeg_quality=0,
max_jpeg_quality=100,
random_coef=0.0,
seed=None,
preprocess_vars_cache=None):
"""Randomly encode the image to a random JPEG quality level.
Args:
image: rank 3 float32 tensor with shape [height, width, channels] and
values in the range [0, 255].
min_jpeg_quality: An int for the lower bound for selecting a random jpeg
quality level.
max_jpeg_quality: An int for the upper bound for selecting a random jpeg
quality level.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the encoded image,
and if it is 1.0, we will always get the original image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this function is called
multiple times with the same non-null cache, it will perform
deterministically.
Returns:
image: image which is the same shape as input image.
"""
def _adjust_jpeg_quality():
"""Encodes the image as jpeg with a random quality and then decodes."""
generator_func = functools.partial(
tf.random_uniform, [],
minval=min_jpeg_quality,
maxval=max_jpeg_quality,
dtype=tf.int32,
seed=seed)
quality = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.JPEG_QUALITY,
preprocess_vars_cache, key='quality')
# Need to convert to uint8 before calling adjust_jpeg_quality since it
# assumes that float features are in the range [0, 1], where herein the
# range is [0, 255].
image_uint8 = tf.cast(image, tf.uint8)
adjusted_image = tf.image.adjust_jpeg_quality(image_uint8, quality)
return tf.cast(adjusted_image, tf.float32)
with tf.name_scope('RandomJpegQuality', values=[image]):
generator_func = functools.partial(tf.random_uniform, [], seed=seed)
do_encoding_random = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.JPEG_QUALITY,
preprocess_vars_cache)
do_encoding_random = tf.greater_equal(do_encoding_random, random_coef)
image = tf.cond(do_encoding_random, _adjust_jpeg_quality,
lambda: tf.cast(image, tf.float32))
return image
def random_downscale_to_target_pixels(image,
masks=None,
min_target_pixels=300000,
max_target_pixels=800000,
random_coef=0.0,
seed=None,
preprocess_vars_cache=None):
"""Randomly downscales the image to a target number of pixels.
If the image contains less than the chosen target number of pixels, it will
not be downscaled.
Args:
image: Rank 3 float32 tensor with shape [height, width, channels] and
values in the range [0, 255].
masks: (optional) Rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks are of
the same height, width as the input `image`.
min_target_pixels: Integer. An inclusive lower bound for for the target
number of pixels.
max_target_pixels: Integer. An exclusive upper bound for for the target
number of pixels.
random_coef: Float. Random coefficient that defines the chance of getting
the original image. If random_coef is 0, we will always apply downscaling,
and if it is 1.0, we will always get the original image.
seed: (optional) Integer. Random seed.
preprocess_vars_cache: (optional) PreprocessorCache object that records
previously performed augmentations. Updated in-place. If this function is
called multiple times with the same non-null cache, it will perform
deterministically.
Returns:
Tuple with elements:
image: Resized image which is the same rank as input image.
masks: If masks is not None, resized masks which are the same rank as
the input masks.
Raises:
ValueError: If min_target_pixels or max_target_pixels are not positive.
"""
if min_target_pixels <= 0:
raise ValueError('Minimum target pixels must be positive')
if max_target_pixels <= 0:
raise ValueError('Maximum target pixels must be positive')
def _resize_image_to_target(target_height, target_width):
# pylint: disable=unbalanced-tuple-unpacking
new_image, _ = resize_image(image, None, target_height, target_width)
return (new_image,)
def _resize_image_and_masks_to_target(target_height, target_width):
# pylint: disable=unbalanced-tuple-unpacking
new_image, new_masks, _ = resize_image(image, masks, target_height,
target_width)
return new_image, new_masks
with tf.name_scope('RandomDownscaleToTargetPixels', values=[image]):
generator_fn = functools.partial(tf.random_uniform, [], seed=seed)
do_downscale_random = _get_or_create_preprocess_rand_vars(
generator_fn,
preprocessor_cache.PreprocessorCache.DOWNSCALE_TO_TARGET_PIXELS,
preprocess_vars_cache)
do_downscale_random = tf.greater_equal(do_downscale_random, random_coef)
generator_fn = functools.partial(
tf.random_uniform, [],
minval=min_target_pixels,
maxval=max_target_pixels,
dtype=tf.int32,
seed=seed)
target_pixels = _get_or_create_preprocess_rand_vars(
generator_fn,
preprocessor_cache.PreprocessorCache.DOWNSCALE_TO_TARGET_PIXELS,
preprocess_vars_cache,
key='target_pixels')
image_shape = tf.shape(image)
image_height = image_shape[0]
image_width = image_shape[1]
image_pixels = image_height * image_width
scale_factor = tf.sqrt(
tf.cast(target_pixels, dtype=tf.float32) /
tf.cast(image_pixels, dtype=tf.float32))
target_height = tf.cast(
scale_factor * tf.cast(image_height, dtype=tf.float32), dtype=tf.int32)
target_width = tf.cast(
scale_factor * tf.cast(image_width, dtype=tf.float32), dtype=tf.int32)
image_larger_than_target = tf.greater(image_pixels, target_pixels)
should_apply_resize = tf.logical_and(do_downscale_random,
image_larger_than_target)
if masks is not None:
resize_fn = functools.partial(_resize_image_and_masks_to_target,
target_height, target_width)
return tf.cond(should_apply_resize, resize_fn,
lambda: (tf.cast(image, dtype=tf.float32), masks))
else:
resize_fn = lambda: _resize_image_to_target(target_height, target_width)
return tf.cond(should_apply_resize, resize_fn,
lambda: (tf.cast(image, dtype=tf.float32),))
def random_patch_gaussian(image,
min_patch_size=1,
max_patch_size=250,
min_gaussian_stddev=0.0,
max_gaussian_stddev=1.0,
random_coef=0.0,
seed=None,
preprocess_vars_cache=None):
"""Randomly applies gaussian noise to a random patch on the image.
The gaussian noise is applied to the image with values scaled to the range
[0.0, 1.0]. The result of applying gaussian noise to the scaled image is
clipped to be within the range [0.0, 1.0], equivalent to the range
[0.0, 255.0] after rescaling the image back.
See "Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
Augmentation " by Lopes et al., 2019, for further details.
https://arxiv.org/abs/1906.02611
Args:
image: Rank 3 float32 tensor with shape [height, width, channels] and
values in the range [0.0, 255.0].
min_patch_size: Integer. An inclusive lower bound for the patch size.
max_patch_size: Integer. An exclusive upper bound for the patch size.
min_gaussian_stddev: Float. An inclusive lower bound for the standard
deviation of the gaussian noise.
max_gaussian_stddev: Float. An exclusive upper bound for the standard
deviation of the gaussian noise.
random_coef: Float. Random coefficient that defines the chance of getting
the original image. If random_coef is 0.0, we will always apply
downscaling, and if it is 1.0, we will always get the original image.
seed: (optional) Integer. Random seed.
preprocess_vars_cache: (optional) PreprocessorCache object that records
previously performed augmentations. Updated in-place. If this function is
called multiple times with the same non-null cache, it will perform
deterministically.
Returns:
Rank 3 float32 tensor with same shape as the input image and with gaussian
noise applied within a random patch.
Raises:
ValueError: If min_patch_size is < 1.
"""
if min_patch_size < 1:
raise ValueError('Minimum patch size must be >= 1.')
get_or_create_rand_vars_fn = functools.partial(
_get_or_create_preprocess_rand_vars,
function_id=preprocessor_cache.PreprocessorCache.PATCH_GAUSSIAN,
preprocess_vars_cache=preprocess_vars_cache)
def _apply_patch_gaussian(image):
"""Applies a patch gaussian with random size, location, and stddev."""
patch_size = get_or_create_rand_vars_fn(
functools.partial(
tf.random_uniform, [],
minval=min_patch_size,
maxval=max_patch_size,
dtype=tf.int32,
seed=seed),
key='patch_size')
gaussian_stddev = get_or_create_rand_vars_fn(
functools.partial(
tf.random_uniform, [],
minval=min_gaussian_stddev,
maxval=max_gaussian_stddev,
dtype=tf.float32,
seed=seed),
key='gaussian_stddev')
image_shape = tf.shape(image)
y = get_or_create_rand_vars_fn(
functools.partial(
tf.random_uniform, [],
minval=0,
maxval=image_shape[0],
dtype=tf.int32,
seed=seed),
key='y')
x = get_or_create_rand_vars_fn(
functools.partial(
tf.random_uniform, [],
minval=0,
maxval=image_shape[1],
dtype=tf.int32,
seed=seed),
key='x')
gaussian = get_or_create_rand_vars_fn(
functools.partial(
tf.random.normal,
image_shape,
stddev=gaussian_stddev,
dtype=tf.float32,
seed=seed),
key='gaussian')
scaled_image = image / 255.0
image_plus_gaussian = tf.clip_by_value(scaled_image + gaussian, 0.0, 1.0)
patch_mask = patch_ops.get_patch_mask(y, x, patch_size, image_shape)
patch_mask = tf.expand_dims(patch_mask, -1)
patch_mask = tf.tile(patch_mask, [1, 1, image_shape[2]])
patched_image = tf.where(patch_mask, image_plus_gaussian, scaled_image)
return patched_image * 255.0
with tf.name_scope('RandomPatchGaussian', values=[image]):
image = tf.cast(image, tf.float32)
patch_gaussian_random = get_or_create_rand_vars_fn(
functools.partial(tf.random_uniform, [], seed=seed))
do_patch_gaussian = tf.greater_equal(patch_gaussian_random, random_coef)
image = tf.cond(do_patch_gaussian,
lambda: _apply_patch_gaussian(image),
lambda: image)
return image
def autoaugment_image(image, boxes, policy_name='v0'):
"""Apply an autoaugment policy to the image and boxes.
See "AutoAugment: Learning Augmentation Policies from Data" by Cubuk et al.,
2018, for further details. https://arxiv.org/abs/1805.09501
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
boxes: rank 2 float32 tensor containing the bounding boxes with shape
[num_instances, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
policy_name: The name of the AutoAugment policy to use. The available
options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for
all of the results in the paper and was found to achieve the best results
on the COCO dataset. `v1`, `v2` and `v3` are additional good policies
found on the COCO dataset that have slight variation in what operations
were used during the search procedure along with how many operations are
applied in parallel to a single image (2 vs 3).
Returns:
image: the augmented image.
boxes: boxes which is the same rank as input boxes. Boxes are in normalized
form. boxes will have been augmented along with image.
"""
return autoaugment_utils.distort_image_with_autoaugment(
image, boxes, policy_name)
def image_to_float(image):
"""Used in Faster R-CNN. Casts image pixel values to float.
Args:
image: input image which might be in tf.uint8 or sth else format
Returns:
image: image in tf.float32 format.
"""
with tf.name_scope('ImageToFloat', values=[image]):
image = tf.cast(image, dtype=tf.float32)
return image
def random_resize_method(image, target_size, preprocess_vars_cache=None):
"""Uses a random resize method to resize the image to target size.
Args:
image: a rank 3 tensor.
target_size: a list of [target_height, target_width]
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
resized image.
"""
resized_image = _apply_with_random_selector(
image,
lambda x, method: tf.image.resize_images(x, target_size, method),
num_cases=4,
preprocess_vars_cache=preprocess_vars_cache,
key=preprocessor_cache.PreprocessorCache.RESIZE_METHOD)
return resized_image
def resize_to_range(image,
masks=None,
min_dimension=None,
max_dimension=None,
method=tf.image.ResizeMethod.BILINEAR,
align_corners=False,
pad_to_max_dimension=False,
per_channel_pad_value=(0, 0, 0)):
"""Resizes an image so its dimensions are within the provided value.
The output size can be described by two cases:
1. If the image can be rescaled so its minimum dimension is equal to the
provided value without the other dimension exceeding max_dimension,
then do so.
2. Otherwise, resize so the largest dimension is equal to max_dimension.
Args:
image: A 3D tensor of shape [height, width, channels]
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks.
min_dimension: (optional) (scalar) desired size of the smaller image
dimension.
max_dimension: (optional) (scalar) maximum allowed size
of the larger image dimension.
method: (optional) interpolation method used in resizing. Defaults to
BILINEAR.
align_corners: bool. If true, exactly align all 4 corners of the input
and output. Defaults to False.
pad_to_max_dimension: Whether to resize the image and pad it with zeros
so the resulting image is of the spatial size
[max_dimension, max_dimension]. If masks are included they are padded
similarly.
per_channel_pad_value: A tuple of per-channel scalar value to use for
padding. By default pads zeros.
Returns:
Note that the position of the resized_image_shape changes based on whether
masks are present.
resized_image: A 3D tensor of shape [new_height, new_width, channels],
where the image has been resized (with bilinear interpolation) so that
min(new_height, new_width) == min_dimension or
max(new_height, new_width) == max_dimension.
resized_masks: If masks is not None, also outputs masks. A 3D tensor of
shape [num_instances, new_height, new_width].
resized_image_shape: A 1D tensor of shape [3] containing shape of the
resized image.
Raises:
ValueError: if the image is not a 3D tensor.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
def _resize_landscape_image(image):
# resize a landscape image
return tf.image.resize_images(
image, tf.stack([min_dimension, max_dimension]), method=method,
align_corners=align_corners, preserve_aspect_ratio=True)
def _resize_portrait_image(image):
# resize a portrait image
return tf.image.resize_images(
image, tf.stack([max_dimension, min_dimension]), method=method,
align_corners=align_corners, preserve_aspect_ratio=True)
with tf.name_scope('ResizeToRange', values=[image, min_dimension]):
if image.get_shape().is_fully_defined():
if image.get_shape()[0] < image.get_shape()[1]:
new_image = _resize_landscape_image(image)
else:
new_image = _resize_portrait_image(image)
new_size = tf.constant(new_image.get_shape().as_list())
else:
new_image = tf.cond(
tf.less(tf.shape(image)[0], tf.shape(image)[1]),
lambda: _resize_landscape_image(image),
lambda: _resize_portrait_image(image))
new_size = tf.shape(new_image)
if pad_to_max_dimension:
channels = tf.unstack(new_image, axis=2)
if len(channels) != len(per_channel_pad_value):
raise ValueError('Number of channels must be equal to the length of '
'per-channel pad value.')
new_image = tf.stack(
[
tf.pad( # pylint: disable=g-complex-comprehension
channels[i], [[0, max_dimension - new_size[0]],
[0, max_dimension - new_size[1]]],
constant_values=per_channel_pad_value[i])
for i in range(len(channels))
],
axis=2)
new_image.set_shape([max_dimension, max_dimension, len(channels)])
result = [new_image]
if masks is not None:
new_masks = tf.expand_dims(masks, 3)
new_masks = tf.image.resize_images(
new_masks,
new_size[:-1],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=align_corners)
if pad_to_max_dimension:
new_masks = tf.image.pad_to_bounding_box(
new_masks, 0, 0, max_dimension, max_dimension)
new_masks = tf.squeeze(new_masks, 3)
result.append(new_masks)
result.append(new_size)
return result
def _get_image_info(image):
"""Returns the height, width and number of channels in the image."""
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
num_channels = tf.shape(image)[2]
return (image_height, image_width, num_channels)
# TODO(alirezafathi): Make sure the static shapes are preserved.
def resize_to_min_dimension(image, masks=None, min_dimension=600,
method=tf.image.ResizeMethod.BILINEAR):
"""Resizes image and masks given the min size maintaining the aspect ratio.
If one of the image dimensions is smaller than min_dimension, it will scale
the image such that its smallest dimension is equal to min_dimension.
Otherwise, will keep the image size as is.
Args:
image: a tensor of size [height, width, channels].
masks: (optional) a tensors of size [num_instances, height, width].
min_dimension: minimum image dimension.
method: (optional) interpolation method used in resizing. Defaults to
BILINEAR.
Returns:
An array containing resized_image, resized_masks, and resized_image_shape.
Note that the position of the resized_image_shape changes based on whether
masks are present.
resized_image: A tensor of size [new_height, new_width, channels].
resized_masks: If masks is not None, also outputs masks. A 3D tensor of
shape [num_instances, new_height, new_width]
resized_image_shape: A 1D tensor of shape [3] containing the shape of the
resized image.
Raises:
ValueError: if the image is not a 3D tensor.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
with tf.name_scope('ResizeGivenMinDimension', values=[image, min_dimension]):
(image_height, image_width, num_channels) = _get_image_info(image)
min_image_dimension = tf.minimum(image_height, image_width)
min_target_dimension = tf.maximum(min_image_dimension, min_dimension)
target_ratio = tf.cast(min_target_dimension, dtype=tf.float32) / tf.cast(
min_image_dimension, dtype=tf.float32)
target_height = tf.cast(
tf.cast(image_height, dtype=tf.float32) * target_ratio, dtype=tf.int32)
target_width = tf.cast(
tf.cast(image_width, dtype=tf.float32) * target_ratio, dtype=tf.int32)
image = tf.image.resize_images(
tf.expand_dims(image, axis=0), size=[target_height, target_width],
method=method,
align_corners=True)
result = [tf.squeeze(image, axis=0)]
if masks is not None:
masks = tf.image.resize_nearest_neighbor(
tf.expand_dims(masks, axis=3),
size=[target_height, target_width],
align_corners=True)
result.append(tf.squeeze(masks, axis=3))
result.append(tf.stack([target_height, target_width, num_channels]))
return result
def resize_to_max_dimension(image, masks=None, max_dimension=600,
method=tf.image.ResizeMethod.BILINEAR):
"""Resizes image and masks given the max size maintaining the aspect ratio.
If one of the image dimensions is greater than max_dimension, it will scale
the image such that its largest dimension is equal to max_dimension.
Otherwise, will keep the image size as is.
Args:
image: a tensor of size [height, width, channels].
masks: (optional) a tensors of size [num_instances, height, width].
max_dimension: maximum image dimension.
method: (optional) interpolation method used in resizing. Defaults to
BILINEAR.
Returns:
An array containing resized_image, resized_masks, and resized_image_shape.
Note that the position of the resized_image_shape changes based on whether
masks are present.
resized_image: A tensor of size [new_height, new_width, channels].
resized_masks: If masks is not None, also outputs masks. A 3D tensor of
shape [num_instances, new_height, new_width]
resized_image_shape: A 1D tensor of shape [3] containing the shape of the
resized image.
Raises:
ValueError: if the image is not a 3D tensor.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
with tf.name_scope('ResizeGivenMaxDimension', values=[image, max_dimension]):
(image_height, image_width, num_channels) = _get_image_info(image)
max_image_dimension = tf.maximum(image_height, image_width)
max_target_dimension = tf.minimum(max_image_dimension, max_dimension)
target_ratio = tf.cast(max_target_dimension, dtype=tf.float32) / tf.cast(
max_image_dimension, dtype=tf.float32)
target_height = tf.cast(
tf.cast(image_height, dtype=tf.float32) * target_ratio, dtype=tf.int32)
target_width = tf.cast(
tf.cast(image_width, dtype=tf.float32) * target_ratio, dtype=tf.int32)
image = tf.image.resize_images(
tf.expand_dims(image, axis=0), size=[target_height, target_width],
method=method,
align_corners=True)
result = [tf.squeeze(image, axis=0)]
if masks is not None:
masks = tf.image.resize_nearest_neighbor(
tf.expand_dims(masks, axis=3),
size=[target_height, target_width],
align_corners=True)
result.append(tf.squeeze(masks, axis=3))
result.append(tf.stack([target_height, target_width, num_channels]))
return result
def resize_pad_to_multiple(image, masks=None, multiple=1):
"""Resize an image by zero padding it to the specified multiple.
For example, with an image of size (101, 199, 3) and multiple=4,
the returned image will have shape (104, 200, 3).
Args:
image: a tensor of shape [height, width, channels]
masks: (optional) a tensor of shape [num_instances, height, width]
multiple: int, the multiple to which the height and width of the input
will be padded.
Returns:
resized_image: The image with 0 padding applied, such that output
dimensions are divisible by `multiple`
resized_masks: If masks are given, they are resized to the same
spatial dimensions as the image.
resized_image_shape: An integer tensor of shape [3] which holds
the shape of the input image.
"""
if len(image.get_shape()) != 3:
raise ValueError('Image should be 3D tensor')
with tf.name_scope('ResizePadToMultiple', values=[image, multiple]):
image_height, image_width, num_channels = _get_image_info(image)
image = image[tf.newaxis, :, :, :]
image = ops.pad_to_multiple(image, multiple)[0, :, :, :]
result = [image]
if masks is not None:
masks = tf.transpose(masks, (1, 2, 0))
masks = masks[tf.newaxis, :, :, :]
masks = ops.pad_to_multiple(masks, multiple)[0, :, :, :]
masks = tf.transpose(masks, (2, 0, 1))
result.append(masks)
result.append(tf.stack([image_height, image_width, num_channels]))
return result
def scale_boxes_to_pixel_coordinates(image, boxes, keypoints=None):
"""Scales boxes from normalized to pixel coordinates.
Args:
image: A 3D float32 tensor of shape [height, width, channels].
boxes: A 2D float32 tensor of shape [num_boxes, 4] containing the bounding
boxes in normalized coordinates. Each row is of the form
[ymin, xmin, ymax, xmax].
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x normalized
coordinates.
Returns:
image: unchanged input image.
scaled_boxes: a 2D float32 tensor of shape [num_boxes, 4] containing the
bounding boxes in pixel coordinates.
scaled_keypoints: a 3D float32 tensor with shape
[num_instances, num_keypoints, 2] containing the keypoints in pixel
coordinates.
"""
boxlist = box_list.BoxList(boxes)
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
scaled_boxes = box_list_ops.scale(boxlist, image_height, image_width).get()
result = [image, scaled_boxes]
if keypoints is not None:
scaled_keypoints = keypoint_ops.scale(keypoints, image_height, image_width)
result.append(scaled_keypoints)
return tuple(result)
# TODO(alirezafathi): Investigate if instead the function should return None if
# masks is None.
# pylint: disable=g-doc-return-or-yield
def resize_image(image,
masks=None,
new_height=600,
new_width=1024,
method=tf.image.ResizeMethod.BILINEAR,
align_corners=False):
"""Resizes images to the given height and width.
Args:
image: A 3D tensor of shape [height, width, channels]
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks.
new_height: (optional) (scalar) desired height of the image.
new_width: (optional) (scalar) desired width of the image.
method: (optional) interpolation method used in resizing. Defaults to
BILINEAR.
align_corners: bool. If true, exactly align all 4 corners of the input
and output. Defaults to False.
Returns:
Note that the position of the resized_image_shape changes based on whether
masks are present.
resized_image: A tensor of size [new_height, new_width, channels].
resized_masks: If masks is not None, also outputs masks. A 3D tensor of
shape [num_instances, new_height, new_width]
resized_image_shape: A 1D tensor of shape [3] containing the shape of the
resized image.
"""
with tf.name_scope(
'ResizeImage',
values=[image, new_height, new_width, method, align_corners]):
new_image = tf.image.resize_images(
image, tf.stack([new_height, new_width]),
method=method,
align_corners=align_corners)
image_shape = shape_utils.combined_static_and_dynamic_shape(image)
result = [new_image]
if masks is not None:
num_instances = tf.shape(masks)[0]
new_size = tf.stack([new_height, new_width])
def resize_masks_branch():
new_masks = tf.expand_dims(masks, 3)
new_masks = tf.image.resize_nearest_neighbor(
new_masks, new_size, align_corners=align_corners)
new_masks = tf.squeeze(new_masks, axis=3)
return new_masks
def reshape_masks_branch():
# The shape function will be computed for both branches of the
# condition, regardless of which branch is actually taken. Make sure
# that we don't trigger an assertion in the shape function when trying
# to reshape a non empty tensor into an empty one.
new_masks = tf.reshape(masks, [-1, new_size[0], new_size[1]])
return new_masks
masks = tf.cond(num_instances > 0, resize_masks_branch,
reshape_masks_branch)
result.append(masks)
result.append(tf.stack([new_height, new_width, image_shape[2]]))
return result
def subtract_channel_mean(image, means=None):
"""Normalizes an image by subtracting a mean from each channel.
Args:
image: A 3D tensor of shape [height, width, channels]
means: float list containing a mean for each channel
Returns:
normalized_images: a tensor of shape [height, width, channels]
Raises:
ValueError: if images is not a 4D tensor or if the number of means is not
equal to the number of channels.
"""
with tf.name_scope('SubtractChannelMean', values=[image, means]):
if len(image.get_shape()) != 3:
raise ValueError('Input must be of size [height, width, channels]')
if len(means) != image.get_shape()[-1]:
raise ValueError('len(means) must match the number of channels')
return image - [[means]]
def one_hot_encoding(labels, num_classes=None):
"""One-hot encodes the multiclass labels.
Example usage:
labels = tf.constant([1, 4], dtype=tf.int32)
one_hot = OneHotEncoding(labels, num_classes=5)
one_hot.eval() # evaluates to [0, 1, 0, 0, 1]
Args:
labels: A tensor of shape [None] corresponding to the labels.
num_classes: Number of classes in the dataset.
Returns:
onehot_labels: a tensor of shape [num_classes] corresponding to the one hot
encoding of the labels.
Raises:
ValueError: if num_classes is not specified.
"""
with tf.name_scope('OneHotEncoding', values=[labels]):
if num_classes is None:
raise ValueError('num_classes must be specified')
labels = tf.one_hot(labels, num_classes, 1, 0)
return tf.reduce_max(labels, 0)
def rgb_to_gray(image):
"""Converts a 3 channel RGB image to a 1 channel grayscale image.
Args:
image: Rank 3 float32 tensor containing 1 image -> [height, width, 3]
with pixel values varying between [0, 1].
Returns:
image: A single channel grayscale image -> [image, height, 1].
"""
return _rgb_to_grayscale(image)
def random_self_concat_image(
image, boxes, labels, label_weights, label_confidences=None,
multiclass_scores=None, concat_vertical_probability=0.1,
concat_horizontal_probability=0.1, seed=None,
preprocess_vars_cache=None):
"""Randomly concatenates the image with itself.
This function randomly concatenates the image with itself; the random
variables for vertical and horizontal concatenation are independent.
Afterwards, we adjust the old bounding boxes, and add new bounding boxes
for the new objects.
Args:
image: rank 3 float32 tensor containing 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: rank 1 float32 containing the label weights.
label_confidences: (optional) rank 1 float32 containing the label
confidences.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for
each box for each class.
concat_vertical_probability: (optional) a tf.float32 scalar denoting the
probability of a vertical concatenation.
concat_horizontal_probability: (optional) a tf.float32 scalar denoting the
probability of a horizontal concatenation.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: Image shape will be [new_height, new_width, channels].
boxes: boxes which is the same rank as input boxes. Boxes are in normalized
form.
if label_confidences is not None also returns:
maybe_concat_label_confidences: cropped label weights.
if multiclass_scores is not None also returns:
maybe_concat_multiclass_scores: cropped_multiclass_scores.
"""
concat_vertical = (tf.random_uniform([], seed=seed) <
concat_vertical_probability)
# Note the seed + 1 so we get some semblance of independence even with
# fixed seeds.
concat_horizontal = (tf.random_uniform([], seed=seed + 1 if seed else None)
< concat_horizontal_probability)
gen_func = lambda: (concat_vertical, concat_horizontal)
params = _get_or_create_preprocess_rand_vars(
gen_func, preprocessor_cache.PreprocessorCache.SELF_CONCAT_IMAGE,
preprocess_vars_cache)
concat_vertical, concat_horizontal = params
def _concat_image(image, boxes, labels, label_weights, axis):
"""Concats the image to itself on `axis`."""
output_images = tf.concat([image, image], axis=axis)
if axis == 0:
# Concat vertically, so need to reduce the y coordinates.
old_scaling = tf.constant([0.5, 1.0, 0.5, 1.0])
new_translation = tf.constant([0.5, 0.0, 0.5, 0.0])
elif axis == 1:
old_scaling = tf.constant([1.0, 0.5, 1.0, 0.5])
new_translation = tf.constant([0.0, 0.5, 0.0, 0.5])
old_boxes = old_scaling * boxes
new_boxes = old_boxes + new_translation
all_boxes = tf.concat([old_boxes, new_boxes], axis=0)
return [output_images, all_boxes, tf.tile(labels, [2]), tf.tile(
label_weights, [2])]
image, boxes, labels, label_weights = tf.cond(
concat_vertical,
lambda: _concat_image(image, boxes, labels, label_weights, axis=0),
lambda: [image, boxes, labels, label_weights],
strict=True)
outputs = tf.cond(
concat_horizontal,
lambda: _concat_image(image, boxes, labels, label_weights, axis=1),
lambda: [image, boxes, labels, label_weights],
strict=True)
if label_confidences is not None:
label_confidences = tf.cond(concat_vertical,
lambda: tf.tile(label_confidences, [2]),
lambda: label_confidences)
outputs.append(tf.cond(concat_horizontal,
lambda: tf.tile(label_confidences, [2]),
lambda: label_confidences))
if multiclass_scores is not None:
multiclass_scores = tf.cond(concat_vertical,
lambda: tf.tile(multiclass_scores, [2, 1]),
lambda: multiclass_scores)
outputs.append(tf.cond(concat_horizontal,
lambda: tf.tile(multiclass_scores, [2, 1]),
lambda: multiclass_scores))
return outputs
def ssd_random_crop(image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
keypoints=None,
min_object_covered=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
aspect_ratio_range=((0.5, 2.0),) * 7,
area_range=((0.1, 1.0),) * 7,
overlap_thresh=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
clip_boxes=(True,) * 7,
random_coef=(0.15,) * 7,
seed=None,
preprocess_vars_cache=None):
"""Random crop preprocessing with default parameters as in SSD paper.
Liu et al., SSD: Single shot multibox detector.
For further information on random crop preprocessing refer to RandomCrop
function above.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: rank 1 float32 tensor containing the weights.
label_confidences: rank 1 float32 tensor containing the confidences.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the
cropped image, and if it is 1.0, we will always get the
original image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If label_weights, multiclass_scores, masks, or keypoints is not None, the
function also returns:
label_weights: rank 1 float32 tensor with shape [num_instances].
multiclass_scores: rank 2 float32 tensor with shape
[num_instances, num_classes]
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
def random_crop_selector(selected_result, index):
"""Applies random_crop_image to selected result.
Args:
selected_result: A tuple containing image, boxes, labels, keypoints (if
not None), and masks (if not None).
index: The index that was randomly selected.
Returns: A tuple containing image, boxes, labels, keypoints (if not None),
and masks (if not None).
"""
i = 3
image, boxes, labels = selected_result[:i]
selected_label_weights = None
selected_label_confidences = None
selected_multiclass_scores = None
selected_masks = None
selected_keypoints = None
if label_weights is not None:
selected_label_weights = selected_result[i]
i += 1
if label_confidences is not None:
selected_label_confidences = selected_result[i]
i += 1
if multiclass_scores is not None:
selected_multiclass_scores = selected_result[i]
i += 1
if masks is not None:
selected_masks = selected_result[i]
i += 1
if keypoints is not None:
selected_keypoints = selected_result[i]
return random_crop_image(
image=image,
boxes=boxes,
labels=labels,
label_weights=selected_label_weights,
label_confidences=selected_label_confidences,
multiclass_scores=selected_multiclass_scores,
masks=selected_masks,
keypoints=selected_keypoints,
min_object_covered=min_object_covered[index],
aspect_ratio_range=aspect_ratio_range[index],
area_range=area_range[index],
overlap_thresh=overlap_thresh[index],
clip_boxes=clip_boxes[index],
random_coef=random_coef[index],
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
result = _apply_with_random_selector_tuples(
tuple(
t for t in (image, boxes, labels, label_weights, label_confidences,
multiclass_scores, masks, keypoints) if t is not None),
random_crop_selector,
num_cases=len(min_object_covered),
preprocess_vars_cache=preprocess_vars_cache,
key=preprocessor_cache.PreprocessorCache.SSD_CROP_SELECTOR_ID)
return result
def ssd_random_crop_pad(image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
min_object_covered=(0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
aspect_ratio_range=((0.5, 2.0),) * 6,
area_range=((0.1, 1.0),) * 6,
overlap_thresh=(0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
clip_boxes=(True,) * 6,
random_coef=(0.15,) * 6,
min_padded_size_ratio=((1.0, 1.0),) * 6,
max_padded_size_ratio=((2.0, 2.0),) * 6,
pad_color=(None,) * 6,
seed=None,
preprocess_vars_cache=None):
"""Random crop preprocessing with default parameters as in SSD paper.
Liu et al., SSD: Single shot multibox detector.
For further information on random crop preprocessing refer to RandomCrop
function above.
Args:
image: rank 3 float32 tensor containing 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
label_confidences: float32 tensor of shape [num_instances] representing the
confidences for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the
cropped image, and if it is 1.0, we will always get the
original image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width.
pad_color: padding color. A rank 1 tensor of [3] with dtype=tf.float32.
if set as None, it will be set to average color of the randomly
cropped image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: Image shape will be [new_height, new_width, channels].
boxes: boxes which is the same rank as input boxes. Boxes are in normalized
form.
new_labels: new labels.
new_label_weights: new label weights.
"""
def random_crop_pad_selector(image_boxes_labels, index):
"""Random crop preprocessing helper."""
i = 3
image, boxes, labels = image_boxes_labels[:i]
selected_label_weights = None
selected_label_confidences = None
selected_multiclass_scores = None
if label_weights is not None:
selected_label_weights = image_boxes_labels[i]
i += 1
if label_confidences is not None:
selected_label_confidences = image_boxes_labels[i]
i += 1
if multiclass_scores is not None:
selected_multiclass_scores = image_boxes_labels[i]
return random_crop_pad_image(
image,
boxes,
labels,
label_weights=selected_label_weights,
label_confidences=selected_label_confidences,
multiclass_scores=selected_multiclass_scores,
min_object_covered=min_object_covered[index],
aspect_ratio_range=aspect_ratio_range[index],
area_range=area_range[index],
overlap_thresh=overlap_thresh[index],
clip_boxes=clip_boxes[index],
random_coef=random_coef[index],
min_padded_size_ratio=min_padded_size_ratio[index],
max_padded_size_ratio=max_padded_size_ratio[index],
pad_color=pad_color[index],
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
return _apply_with_random_selector_tuples(
tuple(t for t in (image, boxes, labels, label_weights, label_confidences,
multiclass_scores) if t is not None),
random_crop_pad_selector,
num_cases=len(min_object_covered),
preprocess_vars_cache=preprocess_vars_cache,
key=preprocessor_cache.PreprocessorCache.SSD_CROP_PAD_SELECTOR_ID)
def ssd_random_crop_fixed_aspect_ratio(
image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
keypoints=None,
min_object_covered=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
aspect_ratio=1.0,
area_range=((0.1, 1.0),) * 7,
overlap_thresh=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
clip_boxes=(True,) * 7,
random_coef=(0.15,) * 7,
seed=None,
preprocess_vars_cache=None):
"""Random crop preprocessing with default parameters as in SSD paper.
Liu et al., SSD: Single shot multibox detector.
For further information on random crop preprocessing refer to RandomCrop
function above.
The only difference is that the aspect ratio of the crops are fixed.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
label_confidences: (optional) float32 tensor of shape [num_instances]
representing the confidences for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio: aspect ratio of the cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the
cropped image, and if it is 1.0, we will always get the
original image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If multiclass_scores, masks, or keypoints is not None, the function also
returns:
multiclass_scores: rank 2 float32 tensor with shape
[num_instances, num_classes]
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
aspect_ratio_range = ((aspect_ratio, aspect_ratio),) * len(area_range)
crop_result = ssd_random_crop(
image,
boxes,
labels,
label_weights=label_weights,
label_confidences=label_confidences,
multiclass_scores=multiclass_scores,
masks=masks,
keypoints=keypoints,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
overlap_thresh=overlap_thresh,
clip_boxes=clip_boxes,
random_coef=random_coef,
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
i = 3
new_image, new_boxes, new_labels = crop_result[:i]
new_label_weights = None
new_label_confidences = None
new_multiclass_scores = None
new_masks = None
new_keypoints = None
if label_weights is not None:
new_label_weights = crop_result[i]
i += 1
if label_confidences is not None:
new_label_confidences = crop_result[i]
i += 1
if multiclass_scores is not None:
new_multiclass_scores = crop_result[i]
i += 1
if masks is not None:
new_masks = crop_result[i]
i += 1
if keypoints is not None:
new_keypoints = crop_result[i]
result = random_crop_to_aspect_ratio(
new_image,
new_boxes,
new_labels,
label_weights=new_label_weights,
label_confidences=new_label_confidences,
multiclass_scores=new_multiclass_scores,
masks=new_masks,
keypoints=new_keypoints,
aspect_ratio=aspect_ratio,
clip_boxes=clip_boxes,
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
return result
def ssd_random_crop_pad_fixed_aspect_ratio(
image,
boxes,
labels,
label_weights,
label_confidences=None,
multiclass_scores=None,
masks=None,
keypoints=None,
min_object_covered=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
aspect_ratio=1.0,
aspect_ratio_range=((0.5, 2.0),) * 7,
area_range=((0.1, 1.0),) * 7,
overlap_thresh=(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0),
clip_boxes=(True,) * 7,
random_coef=(0.15,) * 7,
min_padded_size_ratio=(1.0, 1.0),
max_padded_size_ratio=(2.0, 2.0),
seed=None,
preprocess_vars_cache=None):
"""Random crop and pad preprocessing with default parameters as in SSD paper.
Liu et al., SSD: Single shot multibox detector.
For further information on random crop preprocessing refer to RandomCrop
function above.
The only difference is that after the initial crop, images are zero-padded
to a fixed aspect ratio instead of being resized to that aspect ratio.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1].
Each row is in the form of [ymin, xmin, ymax, xmax].
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
label_confidences: (optional) float32 tensor of shape [num_instances]
representing the confidence for each box.
multiclass_scores: (optional) float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x
normalized coordinates.
min_object_covered: the cropped image must cover at least this fraction of
at least one of the input bounding boxes.
aspect_ratio: the final aspect ratio to pad to.
aspect_ratio_range: allowed range for aspect ratio of cropped image.
area_range: allowed range for area ratio between cropped image and the
original image.
overlap_thresh: minimum overlap thresh with new cropped
image to keep the box.
clip_boxes: whether to clip the boxes to the cropped image.
random_coef: a random coefficient that defines the chance of getting the
original image. If random_coef is 0, we will always get the
cropped image, and if it is 1.0, we will always get the
original image.
min_padded_size_ratio: min ratio of padded image height and width to the
input image's height and width.
max_padded_size_ratio: max ratio of padded image height and width to the
input image's height and width.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
If multiclass_scores, masks, or keypoints is not None, the function also
returns:
multiclass_scores: rank 2 with shape [num_instances, num_classes]
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
keypoints: rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]
"""
crop_result = ssd_random_crop(
image,
boxes,
labels,
label_weights=label_weights,
label_confidences=label_confidences,
multiclass_scores=multiclass_scores,
masks=masks,
keypoints=keypoints,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
overlap_thresh=overlap_thresh,
clip_boxes=clip_boxes,
random_coef=random_coef,
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
i = 3
new_image, new_boxes, new_labels = crop_result[:i]
new_label_weights = None
new_label_confidences = None
new_multiclass_scores = None
new_masks = None
new_keypoints = None
if label_weights is not None:
new_label_weights = crop_result[i]
i += 1
if label_confidences is not None:
new_label_confidences = crop_result[i]
i += 1
if multiclass_scores is not None:
new_multiclass_scores = crop_result[i]
i += 1
if masks is not None:
new_masks = crop_result[i]
i += 1
if keypoints is not None:
new_keypoints = crop_result[i]
result = random_pad_to_aspect_ratio(
new_image,
new_boxes,
masks=new_masks,
keypoints=new_keypoints,
aspect_ratio=aspect_ratio,
min_padded_size_ratio=min_padded_size_ratio,
max_padded_size_ratio=max_padded_size_ratio,
seed=seed,
preprocess_vars_cache=preprocess_vars_cache)
result = list(result)
i = 3
result.insert(2, new_labels)
if new_label_weights is not None:
result.insert(i, new_label_weights)
i += 1
if new_label_confidences is not None:
result.insert(i, new_label_confidences)
i += 1
if multiclass_scores is not None:
result.insert(i, new_multiclass_scores)
result = tuple(result)
return result
def convert_class_logits_to_softmax(multiclass_scores, temperature=1.0):
"""Converts multiclass logits to softmax scores after applying temperature.
Args:
multiclass_scores: float32 tensor of shape
[num_instances, num_classes] representing the score for each box for each
class.
temperature: Scale factor to use prior to applying softmax. Larger
temperatures give more uniform distruibutions after softmax.
Returns:
multiclass_scores: float32 tensor of shape
[num_instances, num_classes] with scaling and softmax applied.
"""
# Multiclass scores must be stored as logits. Apply temp and softmax.
multiclass_scores_scaled = tf.multiply(
multiclass_scores, 1.0 / temperature, name='scale_logits')
multiclass_scores = tf.nn.softmax(multiclass_scores_scaled, name='softmax')
return multiclass_scores
def _get_crop_border(border, size):
border = tf.cast(border, tf.float32)
size = tf.cast(size, tf.float32)
i = tf.ceil(tf.log(2.0 * border / size) / tf.log(2.0))
divisor = tf.pow(2.0, i)
divisor = tf.clip_by_value(divisor, 1, border)
divisor = tf.cast(divisor, tf.int32)
return tf.cast(border, tf.int32) // divisor
def random_square_crop_by_scale(image, boxes, labels, label_weights,
label_confidences=None, masks=None,
keypoints=None, max_border=128, scale_min=0.6,
scale_max=1.3, num_scales=8, seed=None,
preprocess_vars_cache=None):
"""Randomly crop a square in proportion to scale and image size.
Extract a square sized crop from an image whose side length is sampled by
randomly scaling the maximum spatial dimension of the image. If part of
the crop falls outside the image, it is filled with zeros.
The augmentation is borrowed from [1]
[1]: https://arxiv.org/abs/1904.07850
Args:
image: rank 3 float32 tensor containing 1 image ->
[height, width, channels].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary
between [0, 1]. Each row is in the form of [ymin, xmin, ymax, xmax].
Boxes on the crop boundary are clipped to the boundary and boxes
falling outside the crop are ignored.
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
label_confidences: (optional) float32 tensor of shape [num_instances]
representing the confidence for each box.
masks: (optional) rank 3 float32 tensor with shape
[num_instances, height, width] containing instance masks. The masks
are of the same height, width as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape
[num_instances, num_keypoints, 2]. The keypoints are in y-x normalized
coordinates.
max_border: The maximum size of the border. The border defines distance in
pixels to the image boundaries that will not be considered as a center of
a crop. To make sure that the border does not go over the center of the
image, we chose the border value by computing the minimum k, such that
(max_border / (2**k)) < image_dimension/2.
scale_min: float, the minimum value for scale.
scale_max: float, the maximum value for scale.
num_scales: int, the number of discrete scale values to sample between
[scale_min, scale_max]
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
label_weights: rank 1 float32 tensor with shape [num_instances].
label_confidences: (optional) float32 tensor of shape [num_instances]
representing the confidence for each box.
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
"""
img_shape = tf.shape(image)
height, width = img_shape[0], img_shape[1]
scales = tf.linspace(scale_min, scale_max, num_scales)
scale = _get_or_create_preprocess_rand_vars(
lambda: scales[_random_integer(0, num_scales, seed)],
preprocessor_cache.PreprocessorCache.SQUARE_CROP_BY_SCALE,
preprocess_vars_cache, 'scale')
image_size = scale * tf.cast(tf.maximum(height, width), tf.float32)
image_size = tf.cast(image_size, tf.int32)
h_border = _get_crop_border(max_border, height)
w_border = _get_crop_border(max_border, width)
def y_function():
y = _random_integer(h_border,
tf.cast(height, tf.int32) - h_border + 1,
seed)
return y
def x_function():
x = _random_integer(w_border,
tf.cast(width, tf.int32) - w_border + 1,
seed)
return x
y_center = _get_or_create_preprocess_rand_vars(
y_function,
preprocessor_cache.PreprocessorCache.SQUARE_CROP_BY_SCALE,
preprocess_vars_cache, 'y_center')
x_center = _get_or_create_preprocess_rand_vars(
x_function,
preprocessor_cache.PreprocessorCache.SQUARE_CROP_BY_SCALE,
preprocess_vars_cache, 'x_center')
half_size = tf.cast(image_size / 2, tf.int32)
crop_ymin, crop_ymax = y_center - half_size, y_center + half_size
crop_xmin, crop_xmax = x_center - half_size, x_center + half_size
ymin = tf.maximum(crop_ymin, 0)
xmin = tf.maximum(crop_xmin, 0)
ymax = tf.minimum(crop_ymax, height - 1)
xmax = tf.minimum(crop_xmax, width - 1)
cropped_image = image[ymin:ymax, xmin:xmax]
offset_y = tf.maximum(0, ymin - crop_ymin)
offset_x = tf.maximum(0, xmin - crop_xmin)
oy_i = offset_y
ox_i = offset_x
output_image = tf.image.pad_to_bounding_box(
cropped_image, offset_height=oy_i, offset_width=ox_i,
target_height=image_size, target_width=image_size)
if ymin == 0:
# We might be padding the image.
box_ymin = -offset_y
else:
box_ymin = crop_ymin
if xmin == 0:
# We might be padding the image.
box_xmin = -offset_x
else:
box_xmin = crop_xmin
box_ymax = box_ymin + image_size
box_xmax = box_xmin + image_size
image_box = [box_ymin / height, box_xmin / width,
box_ymax / height, box_xmax / width]
boxlist = box_list.BoxList(boxes)
boxlist = box_list_ops.change_coordinate_frame(boxlist, image_box)
boxlist, indices = box_list_ops.prune_completely_outside_window(
boxlist, [0.0, 0.0, 1.0, 1.0])
boxlist = box_list_ops.clip_to_window(boxlist, [0.0, 0.0, 1.0, 1.0],
filter_nonoverlapping=False)
return_values = [output_image, boxlist.get(),
tf.gather(labels, indices),
tf.gather(label_weights, indices)]
if label_confidences is not None:
return_values.append(tf.gather(label_confidences, indices))
if masks is not None:
new_masks = tf.expand_dims(masks, -1)
new_masks = new_masks[:, ymin:ymax, xmin:xmax]
new_masks = tf.image.pad_to_bounding_box(
new_masks, oy_i, ox_i, image_size, image_size)
new_masks = tf.squeeze(new_masks, [-1])
return_values.append(tf.gather(new_masks, indices))
if keypoints is not None:
keypoints = tf.gather(keypoints, indices)
keypoints = keypoint_ops.change_coordinate_frame(keypoints, image_box)
keypoints = keypoint_ops.prune_outside_window(keypoints,
[0.0, 0.0, 1.0, 1.0])
return_values.append(keypoints)
return return_values
def random_scale_crop_and_pad_to_square(
image,
boxes,
labels,
label_weights,
masks=None,
keypoints=None,
label_confidences=None,
scale_min=0.1,
scale_max=2.0,
output_size=512,
resize_method=tf.image.ResizeMethod.BILINEAR,
seed=None):
"""Randomly scale, crop, and then pad an image to fixed square dimensions.
Randomly scale, crop, and then pad an image to the desired square output
dimensions. Specifically, this method first samples a random_scale factor
from a uniform distribution between scale_min and scale_max, and then resizes
the image such that it's maximum dimension is (output_size * random_scale).
Secondly, a square output_size crop is extracted from the resized image
(note, this will only occur when random_scale > 1.0). Lastly, the cropped
region is padded to the desired square output_size, by filling with zeros.
The augmentation is borrowed from [1]
[1]: https://arxiv.org/abs/1911.09070
Args:
image: rank 3 float32 tensor containing 1 image ->
[height, width, channels].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4]. Boxes
are in normalized form meaning their coordinates vary between [0, 1]. Each
row is in the form of [ymin, xmin, ymax, xmax]. Boxes on the crop boundary
are clipped to the boundary and boxes falling outside the crop are
ignored.
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
masks: (optional) rank 3 float32 tensor with shape [num_instances, height,
width] containing instance masks. The masks are of the same height, width
as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape [num_instances,
num_keypoints, 2]. The keypoints are in y-x normalized coordinates.
label_confidences: (optional) float32 tensor of shape [num_instance]
representing the confidence for each box.
scale_min: float, the minimum value for the random scale factor.
scale_max: float, the maximum value for the random scale factor.
output_size: int, the desired (square) output image size.
resize_method: tf.image.ResizeMethod, resize method to use when scaling the
input images.
seed: random seed.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
label_weights: rank 1 float32 tensor with shape [num_instances].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
label_confidences: confidences for retained boxes.
"""
img_shape = tf.shape(image)
input_height, input_width = img_shape[0], img_shape[1]
random_scale = tf.random_uniform([], scale_min, scale_max, seed=seed)
# Compute the scaled height and width from the random scale.
max_input_dim = tf.cast(tf.maximum(input_height, input_width), tf.float32)
input_ar_y = tf.cast(input_height, tf.float32) / max_input_dim
input_ar_x = tf.cast(input_width, tf.float32) / max_input_dim
scaled_height = tf.cast(random_scale * output_size * input_ar_y, tf.int32)
scaled_width = tf.cast(random_scale * output_size * input_ar_x, tf.int32)
# Compute the offsets:
offset_y = tf.cast(scaled_height - output_size, tf.float32)
offset_x = tf.cast(scaled_width - output_size, tf.float32)
offset_y = tf.maximum(0.0, offset_y) * tf.random_uniform([], 0, 1, seed=seed)
offset_x = tf.maximum(0.0, offset_x) * tf.random_uniform([], 0, 1, seed=seed)
offset_y = tf.cast(offset_y, tf.int32)
offset_x = tf.cast(offset_x, tf.int32)
# Scale, crop, and pad the input image.
scaled_image = tf.image.resize_images(
image, [scaled_height, scaled_width], method=resize_method)
scaled_image = scaled_image[offset_y:offset_y + output_size,
offset_x:offset_x + output_size, :]
output_image = tf.image.pad_to_bounding_box(scaled_image, 0, 0, output_size,
output_size)
# Update the boxes.
new_window = tf.cast(
tf.stack([offset_y, offset_x,
offset_y + output_size, offset_x + output_size]),
dtype=tf.float32)
new_window /= tf.cast(
tf.stack([scaled_height, scaled_width, scaled_height, scaled_width]),
dtype=tf.float32)
boxlist = box_list.BoxList(boxes)
boxlist = box_list_ops.change_coordinate_frame(boxlist, new_window)
boxlist, indices = box_list_ops.prune_completely_outside_window(
boxlist, [0.0, 0.0, 1.0, 1.0])
boxlist = box_list_ops.clip_to_window(
boxlist, [0.0, 0.0, 1.0, 1.0], filter_nonoverlapping=False)
return_values = [output_image, boxlist.get(),
tf.gather(labels, indices),
tf.gather(label_weights, indices)]
if masks is not None:
new_masks = tf.expand_dims(masks, -1)
new_masks = tf.image.resize_images(
new_masks, [scaled_height, scaled_width], method=resize_method)
new_masks = new_masks[:, offset_y:offset_y + output_size,
offset_x:offset_x + output_size, :]
new_masks = tf.image.pad_to_bounding_box(
new_masks, 0, 0, output_size, output_size)
new_masks = tf.squeeze(new_masks, [-1])
return_values.append(tf.gather(new_masks, indices))
if keypoints is not None:
keypoints = tf.gather(keypoints, indices)
keypoints = keypoint_ops.change_coordinate_frame(keypoints, new_window)
keypoints = keypoint_ops.prune_outside_window(
keypoints, [0.0, 0.0, 1.0, 1.0])
return_values.append(keypoints)
if label_confidences is not None:
return_values.append(tf.gather(label_confidences, indices))
return return_values
def get_default_func_arg_map(include_label_weights=True,
include_label_confidences=False,
include_multiclass_scores=False,
include_instance_masks=False,
include_instance_mask_weights=False,
include_keypoints=False,
include_keypoint_visibilities=False,
include_dense_pose=False,
include_keypoint_depths=False):
"""Returns the default mapping from a preprocessor function to its args.
Args:
include_label_weights: If True, preprocessing functions will modify the
label weights, too.
include_label_confidences: If True, preprocessing functions will modify the
label confidences, too.
include_multiclass_scores: If True, preprocessing functions will modify the
multiclass scores, too.
include_instance_masks: If True, preprocessing functions will modify the
instance masks, too.
include_instance_mask_weights: If True, preprocessing functions will modify
the instance mask weights.
include_keypoints: If True, preprocessing functions will modify the
keypoints, too.
include_keypoint_visibilities: If True, preprocessing functions will modify
the keypoint visibilities, too.
include_dense_pose: If True, preprocessing functions will modify the
DensePose labels, too.
include_keypoint_depths: If True, preprocessing functions will modify the
keypoint depth labels, too.
Returns:
A map from preprocessing functions to the arguments they receive.
"""
groundtruth_label_weights = None
if include_label_weights:
groundtruth_label_weights = (
fields.InputDataFields.groundtruth_weights)
groundtruth_label_confidences = None
if include_label_confidences:
groundtruth_label_confidences = (
fields.InputDataFields.groundtruth_confidences)
multiclass_scores = None
if include_multiclass_scores:
multiclass_scores = (fields.InputDataFields.multiclass_scores)
groundtruth_instance_masks = None
if include_instance_masks:
groundtruth_instance_masks = (
fields.InputDataFields.groundtruth_instance_masks)
groundtruth_instance_mask_weights = None
if include_instance_mask_weights:
groundtruth_instance_mask_weights = (
fields.InputDataFields.groundtruth_instance_mask_weights)
groundtruth_keypoints = None
if include_keypoints:
groundtruth_keypoints = fields.InputDataFields.groundtruth_keypoints
groundtruth_keypoint_visibilities = None
if include_keypoint_visibilities:
groundtruth_keypoint_visibilities = (
fields.InputDataFields.groundtruth_keypoint_visibilities)
groundtruth_dp_num_points = None
groundtruth_dp_part_ids = None
groundtruth_dp_surface_coords = None
if include_dense_pose:
groundtruth_dp_num_points = (
fields.InputDataFields.groundtruth_dp_num_points)
groundtruth_dp_part_ids = (
fields.InputDataFields.groundtruth_dp_part_ids)
groundtruth_dp_surface_coords = (
fields.InputDataFields.groundtruth_dp_surface_coords)
groundtruth_keypoint_depths = None
groundtruth_keypoint_depth_weights = None
if include_keypoint_depths:
groundtruth_keypoint_depths = (
fields.InputDataFields.groundtruth_keypoint_depths)
groundtruth_keypoint_depth_weights = (
fields.InputDataFields.groundtruth_keypoint_depth_weights)
prep_func_arg_map = {
normalize_image: (fields.InputDataFields.image,),
random_horizontal_flip: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,
groundtruth_keypoint_visibilities,
groundtruth_dp_part_ids,
groundtruth_dp_surface_coords,
groundtruth_keypoint_depths,
groundtruth_keypoint_depth_weights,
),
random_vertical_flip: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,
),
random_rotation90: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,
),
random_pixel_value_scale: (fields.InputDataFields.image,),
random_image_scale: (
fields.InputDataFields.image,
groundtruth_instance_masks,
),
random_rgb_to_gray: (fields.InputDataFields.image,),
random_adjust_brightness: (fields.InputDataFields.image,),
random_adjust_contrast: (fields.InputDataFields.image,),
random_adjust_hue: (fields.InputDataFields.image,),
random_adjust_saturation: (fields.InputDataFields.image,),
random_distort_color: (fields.InputDataFields.image,),
random_jitter_boxes: (fields.InputDataFields.groundtruth_boxes,),
random_crop_image:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights, groundtruth_label_confidences,
multiclass_scores, groundtruth_instance_masks,
groundtruth_instance_mask_weights, groundtruth_keypoints,
groundtruth_keypoint_visibilities, groundtruth_dp_num_points,
groundtruth_dp_part_ids, groundtruth_dp_surface_coords),
random_pad_image:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes, groundtruth_instance_masks,
groundtruth_keypoints, groundtruth_dp_surface_coords),
random_absolute_pad_image:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes, groundtruth_instance_masks,
groundtruth_keypoints, groundtruth_dp_surface_coords),
random_crop_pad_image: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights,
groundtruth_label_confidences, multiclass_scores),
random_crop_to_aspect_ratio: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights,
groundtruth_label_confidences,
multiclass_scores,
groundtruth_instance_masks,
groundtruth_keypoints,
),
random_pad_to_aspect_ratio: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_instance_masks,
groundtruth_keypoints,
),
random_black_patches: (fields.InputDataFields.image,),
random_jpeg_quality: (fields.InputDataFields.image,),
random_downscale_to_target_pixels: (
fields.InputDataFields.image,
groundtruth_instance_masks,
),
random_patch_gaussian: (fields.InputDataFields.image,),
autoaugment_image: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
),
retain_boxes_above_threshold: (
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights,
groundtruth_label_confidences,
multiclass_scores,
groundtruth_instance_masks,
groundtruth_keypoints,
),
drop_label_probabilistically: (
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights,
groundtruth_label_confidences,
multiclass_scores,
groundtruth_instance_masks,
groundtruth_keypoints,
),
remap_labels: (fields.InputDataFields.groundtruth_classes,),
image_to_float: (fields.InputDataFields.image,),
random_resize_method: (fields.InputDataFields.image,),
resize_to_range: (
fields.InputDataFields.image,
groundtruth_instance_masks,
),
resize_to_min_dimension: (
fields.InputDataFields.image,
groundtruth_instance_masks,
),
scale_boxes_to_pixel_coordinates: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
groundtruth_keypoints,
),
resize_image: (
fields.InputDataFields.image,
groundtruth_instance_masks,
),
subtract_channel_mean: (fields.InputDataFields.image,),
one_hot_encoding: (fields.InputDataFields.groundtruth_image_classes,),
rgb_to_gray: (fields.InputDataFields.image,),
random_self_concat_image:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights, groundtruth_label_confidences,
multiclass_scores),
ssd_random_crop: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights,
groundtruth_label_confidences, multiclass_scores,
groundtruth_instance_masks, groundtruth_keypoints),
ssd_random_crop_pad: (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights,
groundtruth_label_confidences, multiclass_scores),
ssd_random_crop_fixed_aspect_ratio:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights, groundtruth_label_confidences,
multiclass_scores, groundtruth_instance_masks, groundtruth_keypoints
),
ssd_random_crop_pad_fixed_aspect_ratio: (
fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights,
groundtruth_label_confidences,
multiclass_scores,
groundtruth_instance_masks,
groundtruth_keypoints,
),
convert_class_logits_to_softmax: (multiclass_scores,),
random_square_crop_by_scale:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights, groundtruth_label_confidences,
groundtruth_instance_masks, groundtruth_keypoints),
random_scale_crop_and_pad_to_square:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights, groundtruth_instance_masks,
groundtruth_keypoints, groundtruth_label_confidences),
adjust_gamma: (fields.InputDataFields.image,),
}
return prep_func_arg_map
def preprocess(tensor_dict,
preprocess_options,
func_arg_map=None,
preprocess_vars_cache=None):
"""Preprocess images and bounding boxes.
Various types of preprocessing (to be implemented) based on the
preprocess_options dictionary e.g. "crop image" (affects image and possibly
boxes), "white balance image" (affects only image), etc. If self._options
is None, no preprocessing is done.
Args:
tensor_dict: dictionary that contains images, boxes, and can contain other
things as well.
images-> rank 4 float32 tensor contains
1 image -> [1, height, width, 3].
with pixel values varying between [0, 1]
boxes-> rank 2 float32 tensor containing
the bounding boxes -> [N, 4].
Boxes are in normalized form meaning
their coordinates vary between [0, 1].
Each row is in the form
of [ymin, xmin, ymax, xmax].
preprocess_options: It is a list of tuples, where each tuple contains a
function and a dictionary that contains arguments and
their values.
func_arg_map: mapping from preprocessing functions to arguments that they
expect to receive and return.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
tensor_dict: which contains the preprocessed images, bounding boxes, etc.
Raises:
ValueError: (a) If the functions passed to Preprocess
are not in func_arg_map.
(b) If the arguments that a function needs
do not exist in tensor_dict.
(c) If image in tensor_dict is not rank 4
"""
if func_arg_map is None:
func_arg_map = get_default_func_arg_map()
# changes the images to image (rank 4 to rank 3) since the functions
# receive rank 3 tensor for image
if fields.InputDataFields.image in tensor_dict:
images = tensor_dict[fields.InputDataFields.image]
if len(images.get_shape()) != 4:
raise ValueError('images in tensor_dict should be rank 4')
image = tf.squeeze(images, axis=0)
tensor_dict[fields.InputDataFields.image] = image
# Preprocess inputs based on preprocess_options
for option in preprocess_options:
func, params = option
if func not in func_arg_map:
raise ValueError('The function %s does not exist in func_arg_map' %
(func.__name__))
arg_names = func_arg_map[func]
for a in arg_names:
if a is not None and a not in tensor_dict:
raise ValueError('The function %s requires argument %s' %
(func.__name__, a))
def get_arg(key):
return tensor_dict[key] if key is not None else None
args = [get_arg(a) for a in arg_names]
if preprocess_vars_cache is not None:
if six.PY2:
# pylint: disable=deprecated-method
arg_spec = inspect.getargspec(func)
# pylint: enable=deprecated-method
else:
arg_spec = inspect.getfullargspec(func)
if 'preprocess_vars_cache' in arg_spec.args:
params['preprocess_vars_cache'] = preprocess_vars_cache
results = func(*args, **params)
if not isinstance(results, (list, tuple)):
results = (results,)
# Removes None args since the return values will not contain those.
arg_names = [arg_name for arg_name in arg_names if arg_name is not None]
for res, arg_name in zip(results, arg_names):
tensor_dict[arg_name] = res
# changes the image to images (rank 3 to rank 4) to be compatible to what
# we received in the first place
if fields.InputDataFields.image in tensor_dict:
image = tensor_dict[fields.InputDataFields.image]
images = tf.expand_dims(image, 0)
tensor_dict[fields.InputDataFields.image] = images
return tensor_dict | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/preprocessor.py | preprocessor.py |
"""Provides functions to batch a dictionary of input tensors."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from six.moves import range
import tensorflow.compat.v1 as tf
from object_detection.core import prefetcher
rt_shape_str = '_runtime_shapes'
class BatchQueue(object):
"""BatchQueue class.
This class creates a batch queue to asynchronously enqueue tensors_dict.
It also adds a FIFO prefetcher so that the batches are readily available
for the consumers. Dequeue ops for a BatchQueue object can be created via
the Dequeue method which evaluates to a batch of tensor_dict.
Example input pipeline with batching:
------------------------------------
key, string_tensor = slim.parallel_reader.parallel_read(...)
tensor_dict = decoder.decode(string_tensor)
tensor_dict = preprocessor.preprocess(tensor_dict, ...)
batch_queue = batcher.BatchQueue(tensor_dict,
batch_size=32,
batch_queue_capacity=2000,
num_batch_queue_threads=8,
prefetch_queue_capacity=20)
tensor_dict = batch_queue.dequeue()
outputs = Model(tensor_dict)
...
-----------------------------------
Notes:
-----
This class batches tensors of unequal sizes by zero padding and unpadding
them after generating a batch. This can be computationally expensive when
batching tensors (such as images) that are of vastly different sizes. So it is
recommended that the shapes of such tensors be fully defined in tensor_dict
while other lightweight tensors such as bounding box corners and class labels
can be of varying sizes. Use either crop or resize operations to fully define
the shape of an image in tensor_dict.
It is also recommended to perform any preprocessing operations on tensors
before passing to BatchQueue and subsequently calling the Dequeue method.
Another caveat is that this class does not read the last batch if it is not
full. The current implementation makes it hard to support that use case. So,
for evaluation, when it is critical to run all the examples through your
network use the input pipeline example mentioned in core/prefetcher.py.
"""
def __init__(self, tensor_dict, batch_size, batch_queue_capacity,
num_batch_queue_threads, prefetch_queue_capacity):
"""Constructs a batch queue holding tensor_dict.
Args:
tensor_dict: dictionary of tensors to batch.
batch_size: batch size.
batch_queue_capacity: max capacity of the queue from which the tensors are
batched.
num_batch_queue_threads: number of threads to use for batching.
prefetch_queue_capacity: max capacity of the queue used to prefetch
assembled batches.
"""
# Remember static shapes to set shapes of batched tensors.
static_shapes = collections.OrderedDict(
{key: tensor.get_shape() for key, tensor in tensor_dict.items()})
# Remember runtime shapes to unpad tensors after batching.
runtime_shapes = collections.OrderedDict(
{(key + rt_shape_str): tf.shape(tensor)
for key, tensor in tensor_dict.items()})
all_tensors = tensor_dict
all_tensors.update(runtime_shapes)
batched_tensors = tf.train.batch(
all_tensors,
capacity=batch_queue_capacity,
batch_size=batch_size,
dynamic_pad=True,
num_threads=num_batch_queue_threads)
self._queue = prefetcher.prefetch(batched_tensors,
prefetch_queue_capacity)
self._static_shapes = static_shapes
self._batch_size = batch_size
def dequeue(self):
"""Dequeues a batch of tensor_dict from the BatchQueue.
TODO: use allow_smaller_final_batch to allow running over the whole eval set
Returns:
A list of tensor_dicts of the requested batch_size.
"""
batched_tensors = self._queue.dequeue()
# Separate input tensors from tensors containing their runtime shapes.
tensors = {}
shapes = {}
for key, batched_tensor in batched_tensors.items():
unbatched_tensor_list = tf.unstack(batched_tensor)
for i, unbatched_tensor in enumerate(unbatched_tensor_list):
if rt_shape_str in key:
shapes[(key[:-len(rt_shape_str)], i)] = unbatched_tensor
else:
tensors[(key, i)] = unbatched_tensor
# Undo that padding using shapes and create a list of size `batch_size` that
# contains tensor dictionaries.
tensor_dict_list = []
batch_size = self._batch_size
for batch_id in range(batch_size):
tensor_dict = {}
for key in self._static_shapes:
tensor_dict[key] = tf.slice(tensors[(key, batch_id)],
tf.zeros_like(shapes[(key, batch_id)]),
shapes[(key, batch_id)])
tensor_dict[key].set_shape(self._static_shapes[key])
tensor_dict_list.append(tensor_dict)
return tensor_dict_list | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/batcher.py | batcher.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
import tensorflow.compat.v1 as tf
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.utils import ops
from object_detection.utils import shape_utils
class Loss(six.with_metaclass(abc.ABCMeta, object)):
"""Abstract base class for loss functions."""
def __call__(self,
prediction_tensor,
target_tensor,
ignore_nan_targets=False,
losses_mask=None,
scope=None,
**params):
"""Call the loss function.
Args:
prediction_tensor: an N-d tensor of shape [batch, anchors, ...]
representing predicted quantities.
target_tensor: an N-d tensor of shape [batch, anchors, ...] representing
regression or classification targets.
ignore_nan_targets: whether to ignore nan targets in the loss computation.
E.g. can be used if the target tensor is missing groundtruth data that
shouldn't be factored into the loss.
losses_mask: A [batch] boolean tensor that indicates whether losses should
be applied to individual images in the batch. For elements that
are False, corresponding prediction, target, and weight tensors will not
contribute to loss computation. If None, no filtering will take place
prior to loss computation.
scope: Op scope name. Defaults to 'Loss' if None.
**params: Additional keyword arguments for specific implementations of
the Loss.
Returns:
loss: a tensor representing the value of the loss function.
"""
with tf.name_scope(scope, 'Loss',
[prediction_tensor, target_tensor, params]) as scope:
if ignore_nan_targets:
target_tensor = tf.where(tf.is_nan(target_tensor),
prediction_tensor,
target_tensor)
if losses_mask is not None:
tensor_multiplier = self._get_loss_multiplier_for_tensor(
prediction_tensor,
losses_mask)
prediction_tensor *= tensor_multiplier
target_tensor *= tensor_multiplier
if 'weights' in params:
params['weights'] = tf.convert_to_tensor(params['weights'])
weights_multiplier = self._get_loss_multiplier_for_tensor(
params['weights'],
losses_mask)
params['weights'] *= weights_multiplier
return self._compute_loss(prediction_tensor, target_tensor, **params)
def _get_loss_multiplier_for_tensor(self, tensor, losses_mask):
loss_multiplier_shape = tf.stack([-1] + [1] * (len(tensor.shape) - 1))
return tf.cast(tf.reshape(losses_mask, loss_multiplier_shape), tf.float32)
@abc.abstractmethod
def _compute_loss(self, prediction_tensor, target_tensor, **params):
"""Method to be overridden by implementations.
Args:
prediction_tensor: a tensor representing predicted quantities
target_tensor: a tensor representing regression or classification targets
**params: Additional keyword arguments for specific implementations of
the Loss.
Returns:
loss: an N-d tensor of shape [batch, anchors, ...] containing the loss per
anchor
"""
pass
class WeightedL2LocalizationLoss(Loss):
"""L2 localization loss function with anchorwise output support.
Loss[b,a] = .5 * ||weights[b,a] * (prediction[b,a,:] - target[b,a,:])||^2
"""
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
code_size] representing the (encoded) predicted locations of objects.
target_tensor: A float tensor of shape [batch_size, num_anchors,
code_size] representing the regression targets
weights: a float tensor of shape [batch_size, num_anchors]
Returns:
loss: a float tensor of shape [batch_size, num_anchors] tensor
representing the value of the loss function.
"""
weighted_diff = (prediction_tensor - target_tensor) * tf.expand_dims(
weights, 2)
square_diff = 0.5 * tf.square(weighted_diff)
return tf.reduce_sum(square_diff, 2)
class WeightedSmoothL1LocalizationLoss(Loss):
"""Smooth L1 localization loss function aka Huber Loss..
The smooth L1_loss is defined elementwise as .5 x^2 if |x| <= delta and
delta * (|x|- 0.5*delta) otherwise, where x is the difference between
predictions and target.
See also Equation (3) in the Fast R-CNN paper by Ross Girshick (ICCV 2015)
"""
def __init__(self, delta=1.0):
"""Constructor.
Args:
delta: delta for smooth L1 loss.
"""
super(WeightedSmoothL1LocalizationLoss, self).__init__()
self._delta = delta
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
code_size] representing the (encoded) predicted locations of objects.
target_tensor: A float tensor of shape [batch_size, num_anchors,
code_size] representing the regression targets
weights: a float tensor of shape [batch_size, num_anchors]
Returns:
loss: a float tensor of shape [batch_size, num_anchors] tensor
representing the value of the loss function.
"""
return tf.reduce_sum(tf.losses.huber_loss(
target_tensor,
prediction_tensor,
delta=self._delta,
weights=tf.expand_dims(weights, axis=2),
loss_collection=None,
reduction=tf.losses.Reduction.NONE
), axis=2)
class WeightedIOULocalizationLoss(Loss):
"""IOU localization loss function.
Sums the IOU for corresponding pairs of predicted/groundtruth boxes
and for each pair assign a loss of 1 - IOU. We then compute a weighted
sum over all pairs which is returned as the total loss.
"""
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors, 4]
representing the decoded predicted boxes
target_tensor: A float tensor of shape [batch_size, num_anchors, 4]
representing the decoded target boxes
weights: a float tensor of shape [batch_size, num_anchors]
Returns:
loss: a float tensor of shape [batch_size, num_anchors] tensor
representing the value of the loss function.
"""
predicted_boxes = box_list.BoxList(tf.reshape(prediction_tensor, [-1, 4]))
target_boxes = box_list.BoxList(tf.reshape(target_tensor, [-1, 4]))
per_anchor_iou_loss = 1.0 - box_list_ops.matched_iou(predicted_boxes,
target_boxes)
return tf.reshape(weights, [-1]) * per_anchor_iou_loss
class WeightedGIOULocalizationLoss(Loss):
"""GIOU localization loss function.
Sums the GIOU loss for corresponding pairs of predicted/groundtruth boxes
and for each pair assign a loss of 1 - GIOU. We then compute a weighted
sum over all pairs which is returned as the total loss.
"""
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors, 4]
representing the decoded predicted boxes
target_tensor: A float tensor of shape [batch_size, num_anchors, 4]
representing the decoded target boxes
weights: a float tensor of shape [batch_size, num_anchors]
Returns:
loss: a float tensor of shape [batch_size, num_anchors] tensor
representing the value of the loss function.
"""
batch_size, num_anchors, _ = shape_utils.combined_static_and_dynamic_shape(
prediction_tensor)
predicted_boxes = tf.reshape(prediction_tensor, [-1, 4])
target_boxes = tf.reshape(target_tensor, [-1, 4])
per_anchor_iou_loss = 1 - ops.giou(predicted_boxes, target_boxes)
return tf.reshape(tf.reshape(weights, [-1]) * per_anchor_iou_loss,
[batch_size, num_anchors])
class WeightedSigmoidClassificationLoss(Loss):
"""Sigmoid cross entropy classification loss function."""
def _compute_loss(self,
prediction_tensor,
target_tensor,
weights,
class_indices=None):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
class_indices: (Optional) A 1-D integer tensor of class indices.
If provided, computes loss only for the specified class indices.
Returns:
loss: a float tensor of shape [batch_size, num_anchors, num_classes]
representing the value of the loss function.
"""
if class_indices is not None:
weights *= tf.reshape(
ops.indices_to_dense_vector(class_indices,
tf.shape(prediction_tensor)[2]),
[1, 1, -1])
per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
labels=target_tensor, logits=prediction_tensor))
return per_entry_cross_ent * weights
class WeightedDiceClassificationLoss(Loss):
"""Dice loss for classification [1][2].
[1]: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
[2]: https://arxiv.org/abs/1606.04797
"""
def __init__(self, squared_normalization):
"""Initializes the loss object.
Args:
squared_normalization: boolean, if set, we square the probabilities in the
denominator term used for normalization.
"""
self._squared_normalization = squared_normalization
super(WeightedDiceClassificationLoss, self).__init__()
def _compute_loss(self,
prediction_tensor,
target_tensor,
weights,
class_indices=None):
"""Computes the loss value.
Dice loss uses the area of the ground truth and prediction tensors for
normalization. We compute area by summing along the anchors (2nd) dimension.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_pixels,
num_classes] representing the predicted logits for each class.
num_pixels denotes the total number of pixels in the spatial dimensions
of the mask after flattening.
target_tensor: A float tensor of shape [batch_size, num_pixels,
num_classes] representing one-hot encoded classification targets.
num_pixels denotes the total number of pixels in the spatial dimensions
of the mask after flattening.
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
class_indices: (Optional) A 1-D integer tensor of class indices.
If provided, computes loss only for the specified class indices.
Returns:
loss: a float tensor of shape [batch_size, num_classes]
representing the value of the loss function.
"""
if class_indices is not None:
weights *= tf.reshape(
ops.indices_to_dense_vector(class_indices,
tf.shape(prediction_tensor)[2]),
[1, 1, -1])
prob_tensor = tf.nn.sigmoid(prediction_tensor)
if self._squared_normalization:
prob_tensor = tf.pow(prob_tensor, 2)
target_tensor = tf.pow(target_tensor, 2)
prob_tensor *= weights
target_tensor *= weights
prediction_area = tf.reduce_sum(prob_tensor, axis=1)
gt_area = tf.reduce_sum(target_tensor, axis=1)
intersection = tf.reduce_sum(prob_tensor * target_tensor, axis=1)
dice_coeff = 2 * intersection / tf.maximum(gt_area + prediction_area, 1.0)
dice_loss = 1 - dice_coeff
return dice_loss
class SigmoidFocalClassificationLoss(Loss):
"""Sigmoid focal cross entropy loss.
Focal loss down-weights well classified examples and focusses on the hard
examples. See https://arxiv.org/pdf/1708.02002.pdf for the loss definition.
"""
def __init__(self, gamma=2.0, alpha=0.25):
"""Constructor.
Args:
gamma: exponent of the modulating factor (1 - p_t) ^ gamma.
alpha: optional alpha weighting factor to balance positives vs negatives.
"""
super(SigmoidFocalClassificationLoss, self).__init__()
self._alpha = alpha
self._gamma = gamma
def _compute_loss(self,
prediction_tensor,
target_tensor,
weights,
class_indices=None):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
class_indices: (Optional) A 1-D integer tensor of class indices.
If provided, computes loss only for the specified class indices.
Returns:
loss: a float tensor of shape [batch_size, num_anchors, num_classes]
representing the value of the loss function.
"""
if class_indices is not None:
weights *= tf.reshape(
ops.indices_to_dense_vector(class_indices,
tf.shape(prediction_tensor)[2]),
[1, 1, -1])
per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
labels=target_tensor, logits=prediction_tensor))
prediction_probabilities = tf.sigmoid(prediction_tensor)
p_t = ((target_tensor * prediction_probabilities) +
((1 - target_tensor) * (1 - prediction_probabilities)))
modulating_factor = 1.0
if self._gamma:
modulating_factor = tf.pow(1.0 - p_t, self._gamma)
alpha_weight_factor = 1.0
if self._alpha is not None:
alpha_weight_factor = (target_tensor * self._alpha +
(1 - target_tensor) * (1 - self._alpha))
focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor *
per_entry_cross_ent)
return focal_cross_entropy_loss * weights
class WeightedSoftmaxClassificationLoss(Loss):
"""Softmax loss function."""
def __init__(self, logit_scale=1.0):
"""Constructor.
Args:
logit_scale: When this value is high, the prediction is "diffused" and
when this value is low, the prediction is made peakier.
(default 1.0)
"""
super(WeightedSoftmaxClassificationLoss, self).__init__()
self._logit_scale = logit_scale
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
Returns:
loss: a float tensor of shape [batch_size, num_anchors]
representing the value of the loss function.
"""
weights = tf.reduce_mean(weights, axis=2)
num_classes = prediction_tensor.get_shape().as_list()[-1]
prediction_tensor = tf.divide(
prediction_tensor, self._logit_scale, name='scale_logit')
per_row_cross_ent = (tf.nn.softmax_cross_entropy_with_logits(
labels=tf.reshape(target_tensor, [-1, num_classes]),
logits=tf.reshape(prediction_tensor, [-1, num_classes])))
return tf.reshape(per_row_cross_ent, tf.shape(weights)) * weights
class WeightedSoftmaxClassificationAgainstLogitsLoss(Loss):
"""Softmax loss function against logits.
Targets are expected to be provided in logits space instead of "one hot" or
"probability distribution" space.
"""
def __init__(self, logit_scale=1.0):
"""Constructor.
Args:
logit_scale: When this value is high, the target is "diffused" and
when this value is low, the target is made peakier.
(default 1.0)
"""
super(WeightedSoftmaxClassificationAgainstLogitsLoss, self).__init__()
self._logit_scale = logit_scale
def _scale_and_softmax_logits(self, logits):
"""Scale logits then apply softmax."""
scaled_logits = tf.divide(logits, self._logit_scale, name='scale_logits')
return tf.nn.softmax(scaled_logits, name='convert_scores')
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing logit classification targets
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
Returns:
loss: a float tensor of shape [batch_size, num_anchors]
representing the value of the loss function.
"""
weights = tf.reduce_mean(weights, axis=2)
num_classes = prediction_tensor.get_shape().as_list()[-1]
target_tensor = self._scale_and_softmax_logits(target_tensor)
prediction_tensor = tf.divide(prediction_tensor, self._logit_scale,
name='scale_logits')
per_row_cross_ent = (tf.nn.softmax_cross_entropy_with_logits(
labels=tf.reshape(target_tensor, [-1, num_classes]),
logits=tf.reshape(prediction_tensor, [-1, num_classes])))
return tf.reshape(per_row_cross_ent, tf.shape(weights)) * weights
class BootstrappedSigmoidClassificationLoss(Loss):
"""Bootstrapped sigmoid cross entropy classification loss function.
This loss uses a convex combination of training labels and the current model's
predictions as training targets in the classification loss. The idea is that
as the model improves over time, its predictions can be trusted more and we
can use these predictions to mitigate the damage of noisy/incorrect labels,
because incorrect labels are likely to be eventually highly inconsistent with
other stimuli predicted to have the same label by the model.
In "soft" bootstrapping, we use all predicted class probabilities, whereas in
"hard" bootstrapping, we use the single class favored by the model.
See also Training Deep Neural Networks On Noisy Labels with Bootstrapping by
Reed et al. (ICLR 2015).
"""
def __init__(self, alpha, bootstrap_type='soft'):
"""Constructor.
Args:
alpha: a float32 scalar tensor between 0 and 1 representing interpolation
weight
bootstrap_type: set to either 'hard' or 'soft' (default)
Raises:
ValueError: if bootstrap_type is not either 'hard' or 'soft'
"""
super(BootstrappedSigmoidClassificationLoss, self).__init__()
if bootstrap_type != 'hard' and bootstrap_type != 'soft':
raise ValueError('Unrecognized bootstrap_type: must be one of '
'\'hard\' or \'soft.\'')
self._alpha = alpha
self._bootstrap_type = bootstrap_type
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
Returns:
loss: a float tensor of shape [batch_size, num_anchors, num_classes]
representing the value of the loss function.
"""
if self._bootstrap_type == 'soft':
bootstrap_target_tensor = self._alpha * target_tensor + (
1.0 - self._alpha) * tf.sigmoid(prediction_tensor)
else:
bootstrap_target_tensor = self._alpha * target_tensor + (
1.0 - self._alpha) * tf.cast(
tf.sigmoid(prediction_tensor) > 0.5, tf.float32)
per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
labels=bootstrap_target_tensor, logits=prediction_tensor))
return per_entry_cross_ent * weights
class HardExampleMiner(object):
"""Hard example mining for regions in a list of images.
Implements hard example mining to select a subset of regions to be
back-propagated. For each image, selects the regions with highest losses,
subject to the condition that a newly selected region cannot have
an IOU > iou_threshold with any of the previously selected regions.
This can be achieved by re-using a greedy non-maximum suppression algorithm.
A constraint on the number of negatives mined per positive region can also be
enforced.
Reference papers: "Training Region-based Object Detectors with Online
Hard Example Mining" (CVPR 2016) by Srivastava et al., and
"SSD: Single Shot MultiBox Detector" (ECCV 2016) by Liu et al.
"""
def __init__(self,
num_hard_examples=64,
iou_threshold=0.7,
loss_type='both',
cls_loss_weight=0.05,
loc_loss_weight=0.06,
max_negatives_per_positive=None,
min_negatives_per_image=0):
"""Constructor.
The hard example mining implemented by this class can replicate the behavior
in the two aforementioned papers (Srivastava et al., and Liu et al).
To replicate the A2 paper (Srivastava et al), num_hard_examples is set
to a fixed parameter (64 by default) and iou_threshold is set to .7 for
running non-max-suppression the predicted boxes prior to hard mining.
In order to replicate the SSD paper (Liu et al), num_hard_examples should
be set to None, max_negatives_per_positive should be 3 and iou_threshold
should be 1.0 (in order to effectively turn off NMS).
Args:
num_hard_examples: maximum number of hard examples to be
selected per image (prior to enforcing max negative to positive ratio
constraint). If set to None, all examples obtained after NMS are
considered.
iou_threshold: minimum intersection over union for an example
to be discarded during NMS.
loss_type: use only classification losses ('cls', default),
localization losses ('loc') or both losses ('both').
In the last case, cls_loss_weight and loc_loss_weight are used to
compute weighted sum of the two losses.
cls_loss_weight: weight for classification loss.
loc_loss_weight: weight for location loss.
max_negatives_per_positive: maximum number of negatives to retain for
each positive anchor. By default, num_negatives_per_positive is None,
which means that we do not enforce a prespecified negative:positive
ratio. Note also that num_negatives_per_positives can be a float
(and will be converted to be a float even if it is passed in otherwise).
min_negatives_per_image: minimum number of negative anchors to sample for
a given image. Setting this to a positive number allows sampling
negatives in an image without any positive anchors and thus not biased
towards at least one detection per image.
"""
self._num_hard_examples = num_hard_examples
self._iou_threshold = iou_threshold
self._loss_type = loss_type
self._cls_loss_weight = cls_loss_weight
self._loc_loss_weight = loc_loss_weight
self._max_negatives_per_positive = max_negatives_per_positive
self._min_negatives_per_image = min_negatives_per_image
if self._max_negatives_per_positive is not None:
self._max_negatives_per_positive = float(self._max_negatives_per_positive)
self._num_positives_list = None
self._num_negatives_list = None
def __call__(self,
location_losses,
cls_losses,
decoded_boxlist_list,
match_list=None):
"""Computes localization and classification losses after hard mining.
Args:
location_losses: a float tensor of shape [num_images, num_anchors]
representing anchorwise localization losses.
cls_losses: a float tensor of shape [num_images, num_anchors]
representing anchorwise classification losses.
decoded_boxlist_list: a list of decoded BoxList representing location
predictions for each image.
match_list: an optional list of matcher.Match objects encoding the match
between anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors. Match objects in match_list are
used to reference which anchors are positive, negative or ignored. If
self._max_negatives_per_positive exists, these are then used to enforce
a prespecified negative to positive ratio.
Returns:
mined_location_loss: a float scalar with sum of localization losses from
selected hard examples.
mined_cls_loss: a float scalar with sum of classification losses from
selected hard examples.
Raises:
ValueError: if location_losses, cls_losses and decoded_boxlist_list do
not have compatible shapes (i.e., they must correspond to the same
number of images).
ValueError: if match_list is specified but its length does not match
len(decoded_boxlist_list).
"""
mined_location_losses = []
mined_cls_losses = []
location_losses = tf.unstack(location_losses)
cls_losses = tf.unstack(cls_losses)
num_images = len(decoded_boxlist_list)
if not match_list:
match_list = num_images * [None]
if not len(location_losses) == len(decoded_boxlist_list) == len(cls_losses):
raise ValueError('location_losses, cls_losses and decoded_boxlist_list '
'do not have compatible shapes.')
if not isinstance(match_list, list):
raise ValueError('match_list must be a list.')
if len(match_list) != len(decoded_boxlist_list):
raise ValueError('match_list must either be None or have '
'length=len(decoded_boxlist_list).')
num_positives_list = []
num_negatives_list = []
for ind, detection_boxlist in enumerate(decoded_boxlist_list):
box_locations = detection_boxlist.get()
match = match_list[ind]
image_losses = cls_losses[ind]
if self._loss_type == 'loc':
image_losses = location_losses[ind]
elif self._loss_type == 'both':
image_losses *= self._cls_loss_weight
image_losses += location_losses[ind] * self._loc_loss_weight
if self._num_hard_examples is not None:
num_hard_examples = self._num_hard_examples
else:
num_hard_examples = detection_boxlist.num_boxes()
selected_indices = tf.image.non_max_suppression(
box_locations, image_losses, num_hard_examples, self._iou_threshold)
if self._max_negatives_per_positive is not None and match:
(selected_indices, num_positives,
num_negatives) = self._subsample_selection_to_desired_neg_pos_ratio(
selected_indices, match, self._max_negatives_per_positive,
self._min_negatives_per_image)
num_positives_list.append(num_positives)
num_negatives_list.append(num_negatives)
mined_location_losses.append(
tf.reduce_sum(tf.gather(location_losses[ind], selected_indices)))
mined_cls_losses.append(
tf.reduce_sum(tf.gather(cls_losses[ind], selected_indices)))
location_loss = tf.reduce_sum(tf.stack(mined_location_losses))
cls_loss = tf.reduce_sum(tf.stack(mined_cls_losses))
if match and self._max_negatives_per_positive:
self._num_positives_list = num_positives_list
self._num_negatives_list = num_negatives_list
return (location_loss, cls_loss)
def summarize(self):
"""Summarize the number of positives and negatives after mining."""
if self._num_positives_list and self._num_negatives_list:
avg_num_positives = tf.reduce_mean(
tf.cast(self._num_positives_list, dtype=tf.float32))
avg_num_negatives = tf.reduce_mean(
tf.cast(self._num_negatives_list, dtype=tf.float32))
tf.summary.scalar('HardExampleMiner/NumPositives', avg_num_positives)
tf.summary.scalar('HardExampleMiner/NumNegatives', avg_num_negatives)
def _subsample_selection_to_desired_neg_pos_ratio(self,
indices,
match,
max_negatives_per_positive,
min_negatives_per_image=0):
"""Subsample a collection of selected indices to a desired neg:pos ratio.
This function takes a subset of M indices (indexing into a large anchor
collection of N anchors where M<N) which are labeled as positive/negative
via a Match object (matched indices are positive, unmatched indices
are negative). It returns a subset of the provided indices retaining all
positives as well as up to the first K negatives, where:
K=floor(num_negative_per_positive * num_positives).
For example, if indices=[2, 4, 5, 7, 9, 10] (indexing into 12 anchors),
with positives=[2, 5] and negatives=[4, 7, 9, 10] and
num_negatives_per_positive=1, then the returned subset of indices
is [2, 4, 5, 7].
Args:
indices: An integer tensor of shape [M] representing a collection
of selected anchor indices
match: A matcher.Match object encoding the match between anchors and
groundtruth boxes for a given image, with rows of the Match objects
corresponding to groundtruth boxes and columns corresponding to anchors.
max_negatives_per_positive: (float) maximum number of negatives for
each positive anchor.
min_negatives_per_image: minimum number of negative anchors for a given
image. Allow sampling negatives in image without any positive anchors.
Returns:
selected_indices: An integer tensor of shape [M'] representing a
collection of selected anchor indices with M' <= M.
num_positives: An integer tensor representing the number of positive
examples in selected set of indices.
num_negatives: An integer tensor representing the number of negative
examples in selected set of indices.
"""
positives_indicator = tf.gather(match.matched_column_indicator(), indices)
negatives_indicator = tf.gather(match.unmatched_column_indicator(), indices)
num_positives = tf.reduce_sum(tf.cast(positives_indicator, dtype=tf.int32))
max_negatives = tf.maximum(
min_negatives_per_image,
tf.cast(max_negatives_per_positive *
tf.cast(num_positives, dtype=tf.float32), dtype=tf.int32))
topk_negatives_indicator = tf.less_equal(
tf.cumsum(tf.cast(negatives_indicator, dtype=tf.int32)), max_negatives)
subsampled_selection_indices = tf.where(
tf.logical_or(positives_indicator, topk_negatives_indicator))
num_negatives = tf.size(subsampled_selection_indices) - num_positives
return (tf.reshape(tf.gather(indices, subsampled_selection_indices), [-1]),
num_positives, num_negatives)
class PenaltyReducedLogisticFocalLoss(Loss):
"""Penalty-reduced pixelwise logistic regression with focal loss.
The loss is defined in Equation (1) of the Objects as Points[1] paper.
Although the loss is defined per-pixel in the output space, this class
assumes that each pixel is an anchor to be compatible with the base class.
[1]: https://arxiv.org/abs/1904.07850
"""
def __init__(self, alpha=2.0, beta=4.0, sigmoid_clip_value=1e-4):
"""Constructor.
Args:
alpha: Focussing parameter of the focal loss. Increasing this will
decrease the loss contribution of the well classified examples.
beta: The local penalty reduction factor. Increasing this will decrease
the contribution of loss due to negative pixels near the keypoint.
sigmoid_clip_value: The sigmoid operation used internally will be clipped
between [sigmoid_clip_value, 1 - sigmoid_clip_value)
"""
self._alpha = alpha
self._beta = beta
self._sigmoid_clip_value = sigmoid_clip_value
super(PenaltyReducedLogisticFocalLoss, self).__init__()
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
In all input tensors, `num_anchors` is the total number of pixels in the
the output space.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted unscaled logits for each class.
The function will compute sigmoid on this tensor internally.
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing a tensor with the 'splatted' keypoints,
possibly using a gaussian kernel. This function assumes that
the target is bounded between [0, 1].
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
Returns:
loss: a float tensor of shape [batch_size, num_anchors, num_classes]
representing the value of the loss function.
"""
is_present_tensor = tf.math.equal(target_tensor, 1.0)
prediction_tensor = tf.clip_by_value(tf.sigmoid(prediction_tensor),
self._sigmoid_clip_value,
1 - self._sigmoid_clip_value)
positive_loss = (tf.math.pow((1 - prediction_tensor), self._alpha)*
tf.math.log(prediction_tensor))
negative_loss = (tf.math.pow((1 - target_tensor), self._beta)*
tf.math.pow(prediction_tensor, self._alpha)*
tf.math.log(1 - prediction_tensor))
loss = -tf.where(is_present_tensor, positive_loss, negative_loss)
return loss * weights
class L1LocalizationLoss(Loss):
"""L1 loss or absolute difference.
When used in a per-pixel manner, each pixel should be given as an anchor.
"""
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors]
representing the (encoded) predicted locations of objects.
target_tensor: A float tensor of shape [batch_size, num_anchors]
representing the regression targets
weights: a float tensor of shape [batch_size, num_anchors]
Returns:
loss: a float tensor of shape [batch_size, num_anchors] tensor
representing the value of the loss function.
"""
return tf.losses.absolute_difference(
target_tensor,
prediction_tensor,
weights=weights,
loss_collection=None,
reduction=tf.losses.Reduction.NONE
) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/losses.py | losses.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
import tensorflow.compat.v1 as tf
from object_detection.utils import ops
class Match(object):
"""Class to store results from the matcher.
This class is used to store the results from the matcher. It provides
convenient methods to query the matching results.
"""
def __init__(self, match_results, use_matmul_gather=False):
"""Constructs a Match object.
Args:
match_results: Integer tensor of shape [N] with (1) match_results[i]>=0,
meaning that column i is matched with row match_results[i].
(2) match_results[i]=-1, meaning that column i is not matched.
(3) match_results[i]=-2, meaning that column i is ignored.
use_matmul_gather: Use matrix multiplication based gather instead of
standard tf.gather. (Default: False).
Raises:
ValueError: if match_results does not have rank 1 or is not an
integer int32 scalar tensor
"""
if match_results.shape.ndims != 1:
raise ValueError('match_results should have rank 1')
if match_results.dtype != tf.int32:
raise ValueError('match_results should be an int32 or int64 scalar '
'tensor')
self._match_results = match_results
self._gather_op = tf.gather
if use_matmul_gather:
self._gather_op = ops.matmul_gather_on_zeroth_axis
@property
def match_results(self):
"""The accessor for match results.
Returns:
the tensor which encodes the match results.
"""
return self._match_results
def matched_column_indices(self):
"""Returns column indices that match to some row.
The indices returned by this op are always sorted in increasing order.
Returns:
column_indices: int32 tensor of shape [K] with column indices.
"""
return self._reshape_and_cast(tf.where(tf.greater(self._match_results, -1)))
def matched_column_indicator(self):
"""Returns column indices that are matched.
Returns:
column_indices: int32 tensor of shape [K] with column indices.
"""
return tf.greater_equal(self._match_results, 0)
def num_matched_columns(self):
"""Returns number (int32 scalar tensor) of matched columns."""
return tf.size(self.matched_column_indices())
def unmatched_column_indices(self):
"""Returns column indices that do not match any row.
The indices returned by this op are always sorted in increasing order.
Returns:
column_indices: int32 tensor of shape [K] with column indices.
"""
return self._reshape_and_cast(tf.where(tf.equal(self._match_results, -1)))
def unmatched_column_indicator(self):
"""Returns column indices that are unmatched.
Returns:
column_indices: int32 tensor of shape [K] with column indices.
"""
return tf.equal(self._match_results, -1)
def num_unmatched_columns(self):
"""Returns number (int32 scalar tensor) of unmatched columns."""
return tf.size(self.unmatched_column_indices())
def ignored_column_indices(self):
"""Returns column indices that are ignored (neither Matched nor Unmatched).
The indices returned by this op are always sorted in increasing order.
Returns:
column_indices: int32 tensor of shape [K] with column indices.
"""
return self._reshape_and_cast(tf.where(self.ignored_column_indicator()))
def ignored_column_indicator(self):
"""Returns boolean column indicator where True means the colum is ignored.
Returns:
column_indicator: boolean vector which is True for all ignored column
indices.
"""
return tf.equal(self._match_results, -2)
def num_ignored_columns(self):
"""Returns number (int32 scalar tensor) of matched columns."""
return tf.size(self.ignored_column_indices())
def unmatched_or_ignored_column_indices(self):
"""Returns column indices that are unmatched or ignored.
The indices returned by this op are always sorted in increasing order.
Returns:
column_indices: int32 tensor of shape [K] with column indices.
"""
return self._reshape_and_cast(tf.where(tf.greater(0, self._match_results)))
def matched_row_indices(self):
"""Returns row indices that match some column.
The indices returned by this op are ordered so as to be in correspondence
with the output of matched_column_indicator(). For example if
self.matched_column_indicator() is [0,2], and self.matched_row_indices() is
[7, 3], then we know that column 0 was matched to row 7 and column 2 was
matched to row 3.
Returns:
row_indices: int32 tensor of shape [K] with row indices.
"""
return self._reshape_and_cast(
self._gather_op(tf.cast(self._match_results, dtype=tf.float32),
self.matched_column_indices()))
def num_matched_rows(self):
"""Returns number (int32 scalar tensor) of matched rows."""
unique_rows, _ = tf.unique(self.matched_row_indices())
return tf.size(unique_rows)
def _reshape_and_cast(self, t):
return tf.cast(tf.reshape(t, [-1]), tf.int32)
def gather_based_on_match(self, input_tensor, unmatched_value,
ignored_value):
"""Gathers elements from `input_tensor` based on match results.
For columns that are matched to a row, gathered_tensor[col] is set to
input_tensor[match_results[col]]. For columns that are unmatched,
gathered_tensor[col] is set to unmatched_value. Finally, for columns that
are ignored gathered_tensor[col] is set to ignored_value.
Note that the input_tensor.shape[1:] must match with unmatched_value.shape
and ignored_value.shape
Args:
input_tensor: Tensor to gather values from.
unmatched_value: Constant tensor value for unmatched columns.
ignored_value: Constant tensor value for ignored columns.
Returns:
gathered_tensor: A tensor containing values gathered from input_tensor.
The shape of the gathered tensor is [match_results.shape[0]] +
input_tensor.shape[1:].
"""
input_tensor = tf.concat(
[tf.stack([ignored_value, unmatched_value]),
input_tensor],
axis=0)
gather_indices = tf.maximum(self.match_results + 2, 0)
gathered_tensor = self._gather_op(input_tensor, gather_indices)
return gathered_tensor
class Matcher(six.with_metaclass(abc.ABCMeta, object)):
"""Abstract base class for matcher.
"""
def __init__(self, use_matmul_gather=False):
"""Constructs a Matcher.
Args:
use_matmul_gather: Force constructed match objects to use matrix
multiplication based gather instead of standard tf.gather.
(Default: False).
"""
self._use_matmul_gather = use_matmul_gather
def match(self, similarity_matrix, valid_rows=None, scope=None):
"""Computes matches among row and column indices and returns the result.
Computes matches among the row and column indices based on the similarity
matrix and optional arguments.
Args:
similarity_matrix: Float tensor of shape [N, M] with pairwise similarity
where higher value means more similar.
valid_rows: A boolean tensor of shape [N] indicating the rows that are
valid for matching.
scope: Op scope name. Defaults to 'Match' if None.
Returns:
A Match object with the results of matching.
"""
with tf.name_scope(scope, 'Match') as scope:
if valid_rows is None:
valid_rows = tf.ones(tf.shape(similarity_matrix)[0], dtype=tf.bool)
return Match(self._match(similarity_matrix, valid_rows),
self._use_matmul_gather)
@abc.abstractmethod
def _match(self, similarity_matrix, valid_rows):
"""Method to be overridden by implementations.
Args:
similarity_matrix: Float tensor of shape [N, M] with pairwise similarity
where higher value means more similar.
valid_rows: A boolean tensor of shape [N] indicating the rows that are
valid for matching.
Returns:
match_results: Integer tensor of shape [M]: match_results[i]>=0 means
that column i is matched to row match_results[i], match_results[i]=-1
means that the column is not matched. match_results[i]=-2 means that
the column is ignored (usually this happens when there is a very weak
match which one neither wants as positive nor negative example).
"""
pass | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/matcher.py | matcher.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
import tensorflow.compat.v2 as tf2
from object_detection.box_coders import faster_rcnn_box_coder
from object_detection.box_coders import mean_stddev_box_coder
from object_detection.core import box_coder
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import densepose_ops
from object_detection.core import keypoint_ops
from object_detection.core import matcher as mat
from object_detection.core import region_similarity_calculator as sim_calc
from object_detection.core import standard_fields as fields
from object_detection.matchers import argmax_matcher
from object_detection.matchers import hungarian_matcher
from object_detection.utils import shape_utils
from object_detection.utils import target_assigner_utils as ta_utils
from object_detection.utils import tf_version
if tf_version.is_tf1():
from object_detection.matchers import bipartite_matcher # pylint: disable=g-import-not-at-top
ResizeMethod = tf2.image.ResizeMethod
_DEFAULT_KEYPOINT_OFFSET_STD_DEV = 1.0
class TargetAssigner(object):
"""Target assigner to compute classification and regression targets."""
def __init__(self,
similarity_calc,
matcher,
box_coder_instance,
negative_class_weight=1.0):
"""Construct Object Detection Target Assigner.
Args:
similarity_calc: a RegionSimilarityCalculator
matcher: an object_detection.core.Matcher used to match groundtruth to
anchors.
box_coder_instance: an object_detection.core.BoxCoder used to encode
matching groundtruth boxes with respect to anchors.
negative_class_weight: classification weight to be associated to negative
anchors (default: 1.0). The weight must be in [0., 1.].
Raises:
ValueError: if similarity_calc is not a RegionSimilarityCalculator or
if matcher is not a Matcher or if box_coder is not a BoxCoder
"""
if not isinstance(similarity_calc, sim_calc.RegionSimilarityCalculator):
raise ValueError('similarity_calc must be a RegionSimilarityCalculator')
if not isinstance(matcher, mat.Matcher):
raise ValueError('matcher must be a Matcher')
if not isinstance(box_coder_instance, box_coder.BoxCoder):
raise ValueError('box_coder must be a BoxCoder')
self._similarity_calc = similarity_calc
self._matcher = matcher
self._box_coder = box_coder_instance
self._negative_class_weight = negative_class_weight
@property
def box_coder(self):
return self._box_coder
# TODO(rathodv): move labels, scores, and weights to groundtruth_boxes fields.
def assign(self,
anchors,
groundtruth_boxes,
groundtruth_labels=None,
unmatched_class_label=None,
groundtruth_weights=None):
"""Assign classification and regression targets to each anchor.
For a given set of anchors and groundtruth detections, match anchors
to groundtruth_boxes and assign classification and regression targets to
each anchor as well as weights based on the resulting match (specifying,
e.g., which anchors should not contribute to training loss).
Anchors that are not matched to anything are given a classification target
of self._unmatched_cls_target which can be specified via the constructor.
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth boxes
groundtruth_labels: a tensor of shape [M, d_1, ... d_k]
with labels for each of the ground_truth boxes. The subshape
[d_1, ... d_k] can be empty (corresponding to scalar inputs). When set
to None, groundtruth_labels assumes a binary problem where all
ground_truth boxes get a positive label (of 1).
unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each
anchor (and can be empty for scalar targets). This shape must thus be
compatible with the groundtruth labels that are passed to the "assign"
function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
If set to None, unmatched_cls_target is set to be [0] for each anchor.
groundtruth_weights: a float tensor of shape [M] indicating the weight to
assign to all anchors match to a particular groundtruth box. The weights
must be in [0., 1.]. If None, all weights are set to 1. Generally no
groundtruth boxes with zero weight match to any anchors as matchers are
aware of groundtruth weights. Additionally, `cls_weights` and
`reg_weights` are calculated using groundtruth weights as an added
safety.
Returns:
cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
which has shape [num_gt_boxes, d_1, d_2, ... d_k].
cls_weights: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
representing weights for each element in cls_targets.
reg_targets: a float32 tensor with shape [num_anchors, box_code_dimension]
reg_weights: a float32 tensor with shape [num_anchors]
match: an int32 tensor of shape [num_anchors] containing result of anchor
groundtruth matching. Each position in the tensor indicates an anchor
and holds the following meaning:
(1) if match[i] >= 0, anchor i is matched with groundtruth match[i].
(2) if match[i]=-1, anchor i is marked to be background .
(3) if match[i]=-2, anchor i is ignored since it is not background and
does not have sufficient overlap to call it a foreground.
Raises:
ValueError: if anchors or groundtruth_boxes are not of type
box_list.BoxList
"""
if not isinstance(anchors, box_list.BoxList):
raise ValueError('anchors must be an BoxList')
if not isinstance(groundtruth_boxes, box_list.BoxList):
raise ValueError('groundtruth_boxes must be an BoxList')
if unmatched_class_label is None:
unmatched_class_label = tf.constant([0], tf.float32)
if groundtruth_labels is None:
groundtruth_labels = tf.ones(tf.expand_dims(groundtruth_boxes.num_boxes(),
0))
groundtruth_labels = tf.expand_dims(groundtruth_labels, -1)
unmatched_shape_assert = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[1:],
shape_utils.combined_static_and_dynamic_shape(unmatched_class_label))
labels_and_box_shapes_assert = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(
groundtruth_labels)[:1],
shape_utils.combined_static_and_dynamic_shape(
groundtruth_boxes.get())[:1])
if groundtruth_weights is None:
num_gt_boxes = groundtruth_boxes.num_boxes_static()
if not num_gt_boxes:
num_gt_boxes = groundtruth_boxes.num_boxes()
groundtruth_weights = tf.ones([num_gt_boxes], dtype=tf.float32)
# set scores on the gt boxes
scores = 1 - groundtruth_labels[:, 0]
groundtruth_boxes.add_field(fields.BoxListFields.scores, scores)
with tf.control_dependencies(
[unmatched_shape_assert, labels_and_box_shapes_assert]):
match_quality_matrix = self._similarity_calc.compare(groundtruth_boxes,
anchors)
match = self._matcher.match(match_quality_matrix,
valid_rows=tf.greater(groundtruth_weights, 0))
reg_targets = self._create_regression_targets(anchors,
groundtruth_boxes,
match)
cls_targets = self._create_classification_targets(groundtruth_labels,
unmatched_class_label,
match)
reg_weights = self._create_regression_weights(match, groundtruth_weights)
cls_weights = self._create_classification_weights(match,
groundtruth_weights)
# convert cls_weights from per-anchor to per-class.
class_label_shape = tf.shape(cls_targets)[1:]
weights_shape = tf.shape(cls_weights)
weights_multiple = tf.concat(
[tf.ones_like(weights_shape), class_label_shape],
axis=0)
for _ in range(len(cls_targets.get_shape()[1:])):
cls_weights = tf.expand_dims(cls_weights, -1)
cls_weights = tf.tile(cls_weights, weights_multiple)
num_anchors = anchors.num_boxes_static()
if num_anchors is not None:
reg_targets = self._reset_target_shape(reg_targets, num_anchors)
cls_targets = self._reset_target_shape(cls_targets, num_anchors)
reg_weights = self._reset_target_shape(reg_weights, num_anchors)
cls_weights = self._reset_target_shape(cls_weights, num_anchors)
return (cls_targets, cls_weights, reg_targets, reg_weights,
match.match_results)
def _reset_target_shape(self, target, num_anchors):
"""Sets the static shape of the target.
Args:
target: the target tensor. Its first dimension will be overwritten.
num_anchors: the number of anchors, which is used to override the target's
first dimension.
Returns:
A tensor with the shape info filled in.
"""
target_shape = target.get_shape().as_list()
target_shape[0] = num_anchors
target.set_shape(target_shape)
return target
def _create_regression_targets(self, anchors, groundtruth_boxes, match):
"""Returns a regression target for each anchor.
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth_boxes
match: a matcher.Match object
Returns:
reg_targets: a float32 tensor with shape [N, box_code_dimension]
"""
matched_gt_boxes = match.gather_based_on_match(
groundtruth_boxes.get(),
unmatched_value=tf.zeros(4),
ignored_value=tf.zeros(4))
matched_gt_boxlist = box_list.BoxList(matched_gt_boxes)
if groundtruth_boxes.has_field(fields.BoxListFields.keypoints):
groundtruth_keypoints = groundtruth_boxes.get_field(
fields.BoxListFields.keypoints)
matched_keypoints = match.gather_based_on_match(
groundtruth_keypoints,
unmatched_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]),
ignored_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]))
matched_gt_boxlist.add_field(fields.BoxListFields.keypoints,
matched_keypoints)
matched_reg_targets = self._box_coder.encode(matched_gt_boxlist, anchors)
match_results_shape = shape_utils.combined_static_and_dynamic_shape(
match.match_results)
# Zero out the unmatched and ignored regression targets.
unmatched_ignored_reg_targets = tf.tile(
self._default_regression_target(), [match_results_shape[0], 1])
matched_anchors_mask = match.matched_column_indicator()
reg_targets = tf.where(matched_anchors_mask,
matched_reg_targets,
unmatched_ignored_reg_targets)
return reg_targets
def _default_regression_target(self):
"""Returns the default target for anchors to regress to.
Default regression targets are set to zero (though in
this implementation what these targets are set to should
not matter as the regression weight of any box set to
regress to the default target is zero).
Returns:
default_target: a float32 tensor with shape [1, box_code_dimension]
"""
return tf.constant([self._box_coder.code_size*[0]], tf.float32)
def _create_classification_targets(self, groundtruth_labels,
unmatched_class_label, match):
"""Create classification targets for each anchor.
Assign a classification target of for each anchor to the matching
groundtruth label that is provided by match. Anchors that are not matched
to anything are given the target self._unmatched_cls_target
Args:
groundtruth_labels: a tensor of shape [num_gt_boxes, d_1, ... d_k]
with labels for each of the ground_truth boxes. The subshape
[d_1, ... d_k] can be empty (corresponding to scalar labels).
unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each
anchor (and can be empty for scalar targets). This shape must thus be
compatible with the groundtruth labels that are passed to the "assign"
function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
match: a matcher.Match object that provides a matching between anchors
and groundtruth boxes.
Returns:
a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k], where the
subshape [d_1, ..., d_k] is compatible with groundtruth_labels which has
shape [num_gt_boxes, d_1, d_2, ... d_k].
"""
return match.gather_based_on_match(
groundtruth_labels,
unmatched_value=unmatched_class_label,
ignored_value=unmatched_class_label)
def _create_regression_weights(self, match, groundtruth_weights):
"""Set regression weight for each anchor.
Only positive anchors are set to contribute to the regression loss, so this
method returns a weight of 1 for every positive anchor and 0 for every
negative anchor.
Args:
match: a matcher.Match object that provides a matching between anchors
and groundtruth boxes.
groundtruth_weights: a float tensor of shape [M] indicating the weight to
assign to all anchors match to a particular groundtruth box.
Returns:
a float32 tensor with shape [num_anchors] representing regression weights.
"""
return match.gather_based_on_match(
groundtruth_weights, ignored_value=0., unmatched_value=0.)
def _create_classification_weights(self,
match,
groundtruth_weights):
"""Create classification weights for each anchor.
Positive (matched) anchors are associated with a weight of
positive_class_weight and negative (unmatched) anchors are associated with
a weight of negative_class_weight. When anchors are ignored, weights are set
to zero. By default, both positive/negative weights are set to 1.0,
but they can be adjusted to handle class imbalance (which is almost always
the case in object detection).
Args:
match: a matcher.Match object that provides a matching between anchors
and groundtruth boxes.
groundtruth_weights: a float tensor of shape [M] indicating the weight to
assign to all anchors match to a particular groundtruth box.
Returns:
a float32 tensor with shape [num_anchors] representing classification
weights.
"""
return match.gather_based_on_match(
groundtruth_weights,
ignored_value=0.,
unmatched_value=self._negative_class_weight)
def get_box_coder(self):
"""Get BoxCoder of this TargetAssigner.
Returns:
BoxCoder object.
"""
return self._box_coder
# TODO(rathodv): This method pulls in all the implementation dependencies into
# core. Therefore its best to have this factory method outside of core.
def create_target_assigner(reference, stage=None,
negative_class_weight=1.0, use_matmul_gather=False):
"""Factory function for creating standard target assigners.
Args:
reference: string referencing the type of TargetAssigner.
stage: string denoting stage: {proposal, detection}.
negative_class_weight: classification weight to be associated to negative
anchors (default: 1.0)
use_matmul_gather: whether to use matrix multiplication based gather which
are better suited for TPUs.
Returns:
TargetAssigner: desired target assigner.
Raises:
ValueError: if combination reference+stage is invalid.
"""
if reference == 'Multibox' and stage == 'proposal':
if tf_version.is_tf2():
raise ValueError('GreedyBipartiteMatcher is not supported in TF 2.X.')
similarity_calc = sim_calc.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder_instance = mean_stddev_box_coder.MeanStddevBoxCoder()
elif reference == 'FasterRCNN' and stage == 'proposal':
similarity_calc = sim_calc.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.7,
unmatched_threshold=0.3,
force_match_for_each_row=True,
use_matmul_gather=use_matmul_gather)
box_coder_instance = faster_rcnn_box_coder.FasterRcnnBoxCoder(
scale_factors=[10.0, 10.0, 5.0, 5.0])
elif reference == 'FasterRCNN' and stage == 'detection':
similarity_calc = sim_calc.IouSimilarity()
# Uses all proposals with IOU < 0.5 as candidate negatives.
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
negatives_lower_than_unmatched=True,
use_matmul_gather=use_matmul_gather)
box_coder_instance = faster_rcnn_box_coder.FasterRcnnBoxCoder(
scale_factors=[10.0, 10.0, 5.0, 5.0])
elif reference == 'FastRCNN':
similarity_calc = sim_calc.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.1,
force_match_for_each_row=False,
negatives_lower_than_unmatched=False,
use_matmul_gather=use_matmul_gather)
box_coder_instance = faster_rcnn_box_coder.FasterRcnnBoxCoder()
else:
raise ValueError('No valid combination of reference and stage.')
return TargetAssigner(similarity_calc, matcher, box_coder_instance,
negative_class_weight=negative_class_weight)
def batch_assign(target_assigner,
anchors_batch,
gt_box_batch,
gt_class_targets_batch,
unmatched_class_label=None,
gt_weights_batch=None):
"""Batched assignment of classification and regression targets.
Args:
target_assigner: a target assigner.
anchors_batch: BoxList representing N box anchors or list of BoxList objects
with length batch_size representing anchor sets.
gt_box_batch: a list of BoxList objects with length batch_size
representing groundtruth boxes for each image in the batch
gt_class_targets_batch: a list of tensors with length batch_size, where
each tensor has shape [num_gt_boxes_i, classification_target_size] and
num_gt_boxes_i is the number of boxes in the ith boxlist of
gt_box_batch.
unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each
anchor (and can be empty for scalar targets). This shape must thus be
compatible with the groundtruth labels that are passed to the "assign"
function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
gt_weights_batch: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match: an int32 tensor of shape [batch_size, num_anchors] containing result
of anchor groundtruth matching. Each position in the tensor indicates an
anchor and holds the following meaning:
(1) if match[x, i] >= 0, anchor i is matched with groundtruth match[x, i].
(2) if match[x, i]=-1, anchor i is marked to be background .
(3) if match[x, i]=-2, anchor i is ignored since it is not background and
does not have sufficient overlap to call it a foreground.
Raises:
ValueError: if input list lengths are inconsistent, i.e.,
batch_size == len(gt_box_batch) == len(gt_class_targets_batch)
and batch_size == len(anchors_batch) unless anchors_batch is a single
BoxList.
"""
if not isinstance(anchors_batch, list):
anchors_batch = len(gt_box_batch) * [anchors_batch]
if not all(
isinstance(anchors, box_list.BoxList) for anchors in anchors_batch):
raise ValueError('anchors_batch must be a BoxList or list of BoxLists.')
if not (len(anchors_batch)
== len(gt_box_batch)
== len(gt_class_targets_batch)):
raise ValueError('batch size incompatible with lengths of anchors_batch, '
'gt_box_batch and gt_class_targets_batch.')
cls_targets_list = []
cls_weights_list = []
reg_targets_list = []
reg_weights_list = []
match_list = []
if gt_weights_batch is None:
gt_weights_batch = [None] * len(gt_class_targets_batch)
for anchors, gt_boxes, gt_class_targets, gt_weights in zip(
anchors_batch, gt_box_batch, gt_class_targets_batch, gt_weights_batch):
(cls_targets, cls_weights,
reg_targets, reg_weights, match) = target_assigner.assign(
anchors, gt_boxes, gt_class_targets, unmatched_class_label,
gt_weights)
cls_targets_list.append(cls_targets)
cls_weights_list.append(cls_weights)
reg_targets_list.append(reg_targets)
reg_weights_list.append(reg_weights)
match_list.append(match)
batch_cls_targets = tf.stack(cls_targets_list)
batch_cls_weights = tf.stack(cls_weights_list)
batch_reg_targets = tf.stack(reg_targets_list)
batch_reg_weights = tf.stack(reg_weights_list)
batch_match = tf.stack(match_list)
return (batch_cls_targets, batch_cls_weights, batch_reg_targets,
batch_reg_weights, batch_match)
# Assign an alias to avoid large refactor of existing users.
batch_assign_targets = batch_assign
def batch_get_targets(batch_match, groundtruth_tensor_list,
groundtruth_weights_list, unmatched_value,
unmatched_weight):
"""Returns targets based on anchor-groundtruth box matching results.
Args:
batch_match: An int32 tensor of shape [batch, num_anchors] containing the
result of target assignment returned by TargetAssigner.assign(..).
groundtruth_tensor_list: A list of groundtruth tensors of shape
[num_groundtruth, d_1, d_2, ..., d_k]. The tensors can be of any type.
groundtruth_weights_list: A list of weights, one per groundtruth tensor, of
shape [num_groundtruth].
unmatched_value: A tensor of shape [d_1, d_2, ..., d_k] of the same type as
groundtruth tensor containing target value for anchors that remain
unmatched.
unmatched_weight: Scalar weight to assign to anchors that remain unmatched.
Returns:
targets: A tensor of shape [batch, num_anchors, d_1, d_2, ..., d_k]
containing targets for anchors.
weights: A float tensor of shape [batch, num_anchors] containing the weights
to assign to each target.
"""
match_list = tf.unstack(batch_match)
targets_list = []
weights_list = []
for match_tensor, groundtruth_tensor, groundtruth_weight in zip(
match_list, groundtruth_tensor_list, groundtruth_weights_list):
match_object = mat.Match(match_tensor)
targets = match_object.gather_based_on_match(
groundtruth_tensor,
unmatched_value=unmatched_value,
ignored_value=unmatched_value)
targets_list.append(targets)
weights = match_object.gather_based_on_match(
groundtruth_weight,
unmatched_value=unmatched_weight,
ignored_value=tf.zeros_like(unmatched_weight))
weights_list.append(weights)
return tf.stack(targets_list), tf.stack(weights_list)
def batch_assign_confidences(target_assigner,
anchors_batch,
gt_box_batch,
gt_class_confidences_batch,
gt_weights_batch=None,
unmatched_class_label=None,
include_background_class=True,
implicit_class_weight=1.0):
"""Batched assignment of classification and regression targets.
This differences between batch_assign_confidences and batch_assign_targets:
- 'batch_assign_targets' supports scalar (agnostic), vector (multiclass) and
tensor (high-dimensional) targets. 'batch_assign_confidences' only support
scalar (agnostic) and vector (multiclass) targets.
- 'batch_assign_targets' assumes the input class tensor using the binary
one/K-hot encoding. 'batch_assign_confidences' takes the class confidence
scores as the input, where 1 means positive classes, 0 means implicit
negative classes, and -1 means explicit negative classes.
- 'batch_assign_confidences' assigns the targets in the similar way as
'batch_assign_targets' except that it gives different weights for implicit
and explicit classes. This allows user to control the negative gradients
pushed differently for implicit and explicit examples during the training.
Args:
target_assigner: a target assigner.
anchors_batch: BoxList representing N box anchors or list of BoxList objects
with length batch_size representing anchor sets.
gt_box_batch: a list of BoxList objects with length batch_size
representing groundtruth boxes for each image in the batch
gt_class_confidences_batch: a list of tensors with length batch_size, where
each tensor has shape [num_gt_boxes_i, classification_target_size] and
num_gt_boxes_i is the number of boxes in the ith boxlist of
gt_box_batch. Note that in this tensor, 1 means explicit positive class,
-1 means explicit negative class, and 0 means implicit negative class.
gt_weights_batch: A list of 1-D tf.float32 tensors of shape
[num_gt_boxes_i] containing weights for groundtruth boxes.
unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each
anchor (and can be empty for scalar targets). This shape must thus be
compatible with the groundtruth labels that are passed to the "assign"
function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
include_background_class: whether or not gt_class_confidences_batch includes
the background class.
implicit_class_weight: the weight assigned to implicit examples.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match: an int32 tensor of shape [batch_size, num_anchors] containing result
of anchor groundtruth matching. Each position in the tensor indicates an
anchor and holds the following meaning:
(1) if match[x, i] >= 0, anchor i is matched with groundtruth match[x, i].
(2) if match[x, i]=-1, anchor i is marked to be background .
(3) if match[x, i]=-2, anchor i is ignored since it is not background and
does not have sufficient overlap to call it a foreground.
Raises:
ValueError: if input list lengths are inconsistent, i.e.,
batch_size == len(gt_box_batch) == len(gt_class_targets_batch)
and batch_size == len(anchors_batch) unless anchors_batch is a single
BoxList, or if any element in gt_class_confidences_batch has rank > 2.
"""
if not isinstance(anchors_batch, list):
anchors_batch = len(gt_box_batch) * [anchors_batch]
if not all(
isinstance(anchors, box_list.BoxList) for anchors in anchors_batch):
raise ValueError('anchors_batch must be a BoxList or list of BoxLists.')
if not (len(anchors_batch)
== len(gt_box_batch)
== len(gt_class_confidences_batch)):
raise ValueError('batch size incompatible with lengths of anchors_batch, '
'gt_box_batch and gt_class_confidences_batch.')
cls_targets_list = []
cls_weights_list = []
reg_targets_list = []
reg_weights_list = []
match_list = []
if gt_weights_batch is None:
gt_weights_batch = [None] * len(gt_class_confidences_batch)
for anchors, gt_boxes, gt_class_confidences, gt_weights in zip(
anchors_batch, gt_box_batch, gt_class_confidences_batch,
gt_weights_batch):
if (gt_class_confidences is not None and
len(gt_class_confidences.get_shape().as_list()) > 2):
raise ValueError('The shape of the class target is not supported. ',
gt_class_confidences.get_shape())
cls_targets, _, reg_targets, _, match = target_assigner.assign(
anchors, gt_boxes, gt_class_confidences, unmatched_class_label,
groundtruth_weights=gt_weights)
if include_background_class:
cls_targets_without_background = tf.slice(
cls_targets, [0, 1], [-1, -1])
else:
cls_targets_without_background = cls_targets
positive_mask = tf.greater(cls_targets_without_background, 0.0)
negative_mask = tf.less(cls_targets_without_background, 0.0)
explicit_example_mask = tf.logical_or(positive_mask, negative_mask)
positive_anchors = tf.reduce_any(positive_mask, axis=-1)
regression_weights = tf.cast(positive_anchors, dtype=tf.float32)
regression_targets = (
reg_targets * tf.expand_dims(regression_weights, axis=-1))
regression_weights_expanded = tf.expand_dims(regression_weights, axis=-1)
cls_targets_without_background = (
cls_targets_without_background *
(1 - tf.cast(negative_mask, dtype=tf.float32)))
cls_weights_without_background = ((1 - implicit_class_weight) * tf.cast(
explicit_example_mask, dtype=tf.float32) + implicit_class_weight)
if include_background_class:
cls_weights_background = (
(1 - implicit_class_weight) * regression_weights_expanded
+ implicit_class_weight)
classification_weights = tf.concat(
[cls_weights_background, cls_weights_without_background], axis=-1)
cls_targets_background = 1 - regression_weights_expanded
classification_targets = tf.concat(
[cls_targets_background, cls_targets_without_background], axis=-1)
else:
classification_targets = cls_targets_without_background
classification_weights = cls_weights_without_background
cls_targets_list.append(classification_targets)
cls_weights_list.append(classification_weights)
reg_targets_list.append(regression_targets)
reg_weights_list.append(regression_weights)
match_list.append(match)
batch_cls_targets = tf.stack(cls_targets_list)
batch_cls_weights = tf.stack(cls_weights_list)
batch_reg_targets = tf.stack(reg_targets_list)
batch_reg_weights = tf.stack(reg_weights_list)
batch_match = tf.stack(match_list)
return (batch_cls_targets, batch_cls_weights, batch_reg_targets,
batch_reg_weights, batch_match)
def _smallest_positive_root(a, b, c):
"""Returns the smallest positive root of a quadratic equation."""
discriminant = tf.sqrt(b ** 2 - 4 * a * c)
# TODO(vighneshb) We are currently using the slightly incorrect
# CenterNet implementation. The commented lines implement the fixed version
# in https://github.com/princeton-vl/CornerNet. Change the implementation
# after verifying it has no negative impact.
# root1 = (-b - discriminant) / (2 * a)
# root2 = (-b + discriminant) / (2 * a)
# return tf.where(tf.less(root1, 0), root2, root1)
return (-b + discriminant) / (2.0)
def max_distance_for_overlap(height, width, min_iou):
"""Computes how far apart bbox corners can lie while maintaining the iou.
Given a bounding box size, this function returns a lower bound on how far
apart the corners of another box can lie while still maintaining the given
IoU. The implementation is based on the `gaussian_radius` function in the
Objects as Points github repo: https://github.com/xingyizhou/CenterNet
Args:
height: A 1-D float Tensor representing height of the ground truth boxes.
width: A 1-D float Tensor representing width of the ground truth boxes.
min_iou: A float representing the minimum IoU desired.
Returns:
distance: A 1-D Tensor of distances, of the same length as the input
height and width tensors.
"""
# Given that the detected box is displaced at a distance `d`, the exact
# IoU value will depend on the angle at which each corner is displaced.
# We simplify our computation by assuming that each corner is displaced by
# a distance `d` in both x and y direction. This gives us a lower IoU than
# what is actually realizable and ensures that any box with corners less
# than `d` distance apart will always have an IoU greater than or equal
# to `min_iou`
# The following 3 cases can be worked on geometrically and come down to
# solving a quadratic inequality. In each case, to ensure `min_iou` we use
# the smallest positive root of the equation.
# Case where detected box is offset from ground truth and no box completely
# contains the other.
distance_detection_offset = _smallest_positive_root(
a=1, b=-(height + width),
c=width * height * ((1 - min_iou) / (1 + min_iou))
)
# Case where detection is smaller than ground truth and completely contained
# in it.
distance_detection_in_gt = _smallest_positive_root(
a=4, b=-2 * (height + width),
c=(1 - min_iou) * width * height
)
# Case where ground truth is smaller than detection and completely contained
# in it.
distance_gt_in_detection = _smallest_positive_root(
a=4 * min_iou, b=(2 * min_iou) * (width + height),
c=(min_iou - 1) * width * height
)
return tf.reduce_min([distance_detection_offset,
distance_gt_in_detection,
distance_detection_in_gt], axis=0)
def get_batch_predictions_from_indices(batch_predictions, indices):
"""Gets the values of predictions in a batch at the given indices.
The indices are expected to come from the offset targets generation functions
in this library. The returned value is intended to be used inside a loss
function.
Args:
batch_predictions: A tensor of shape [batch_size, height, width, channels]
or [batch_size, height, width, class, channels] for class-specific
features (e.g. keypoint joint offsets).
indices: A tensor of shape [num_instances, 3] for single class features or
[num_instances, 4] for multiple classes features.
Returns:
values: A tensor of shape [num_instances, channels] holding the predicted
values at the given indices.
"""
# Note, gather_nd (and its gradient scatter_nd) runs significantly slower (on
# TPU) than gather with flattened inputs, so reshape the tensor, flatten the
# indices, and run gather.
shape = shape_utils.combined_static_and_dynamic_shape(batch_predictions)
# [B, H, W, C] -> [H*W, W, 1] or [B, H, W, N, C] -> [H*W*N, W*N, N, 1]
rev_cum_interior_indices = tf.reverse(tf.math.cumprod(shape[-2:0:-1]), [0])
rev_cum_interior_indices = tf.concat([rev_cum_interior_indices, [1]], axis=0)
# Compute flattened indices and gather.
flattened_inds = tf.linalg.matmul(
indices, rev_cum_interior_indices[:, tf.newaxis])[:, 0]
batch_predictions_2d = tf.reshape(batch_predictions, [-1, shape[-1]])
return tf.gather(batch_predictions_2d, flattened_inds, axis=0)
def _compute_std_dev_from_box_size(boxes_height, boxes_width, min_overlap):
"""Computes the standard deviation of the Gaussian kernel from box size.
Args:
boxes_height: A 1D tensor with shape [num_instances] representing the height
of each box.
boxes_width: A 1D tensor with shape [num_instances] representing the width
of each box.
min_overlap: The minimum IOU overlap that boxes need to have to not be
penalized.
Returns:
A 1D tensor with shape [num_instances] representing the computed Gaussian
sigma for each of the box.
"""
# We are dividing by 3 so that points closer than the computed
# distance have a >99% CDF.
sigma = max_distance_for_overlap(boxes_height, boxes_width, min_overlap)
sigma = (2 * tf.math.maximum(tf.math.floor(sigma), 0.0) + 1) / 6.0
return sigma
def _preprocess_keypoints_and_weights(out_height, out_width, keypoints,
class_onehot, class_weights,
keypoint_weights, class_id,
keypoint_indices):
"""Preprocesses the keypoints and the corresponding keypoint weights.
This function performs several common steps to preprocess the keypoints and
keypoint weights features, including:
1) Select the subset of keypoints based on the keypoint indices, fill the
keypoint NaN values with zeros and convert to absolute coordinates.
2) Generate the weights of the keypoint using the following information:
a. The class of the instance.
b. The NaN value of the keypoint coordinates.
c. The provided keypoint weights.
Args:
out_height: An integer or an integer tensor indicating the output height
of the model.
out_width: An integer or an integer tensor indicating the output width of
the model.
keypoints: A float tensor of shape [num_instances, num_total_keypoints, 2]
representing the original keypoint grountruth coordinates.
class_onehot: A float tensor of shape [num_instances, num_classes]
containing the class targets with the 0th index assumed to map to the
first non-background class.
class_weights: A float tensor of shape [num_instances] containing weights
for groundtruth instances.
keypoint_weights: A float tensor of shape
[num_instances, num_total_keypoints] representing the weights of each
keypoints.
class_id: int, the ID of the class (0-indexed) that contains the target
keypoints to consider in this task.
keypoint_indices: A list of integers representing the indices of the
keypoints to be considered in this task. This is used to retrieve the
subset of the keypoints that should be considered in this task.
Returns:
A tuple of two tensors:
keypoint_absolute: A float tensor of shape
[num_instances, num_keypoints, 2] which is the selected and updated
keypoint coordinates.
keypoint_weights: A float tensor of shape [num_instances, num_keypoints]
representing the updated weight of each keypoint.
"""
# Select the targets keypoints by their type ids and generate the mask
# of valid elements.
valid_mask, keypoints = ta_utils.get_valid_keypoint_mask_for_class(
keypoint_coordinates=keypoints,
class_id=class_id,
class_onehot=class_onehot,
class_weights=class_weights,
keypoint_indices=keypoint_indices)
# Keypoint coordinates in absolute coordinate system.
# The shape of the tensors: [num_instances, num_keypoints, 2].
keypoints_absolute = keypoint_ops.to_absolute_coordinates(
keypoints, out_height, out_width)
# Assign default weights for the keypoints.
if keypoint_weights is None:
keypoint_weights = tf.ones_like(keypoints[:, :, 0])
else:
keypoint_weights = tf.gather(
keypoint_weights, indices=keypoint_indices, axis=1)
keypoint_weights = keypoint_weights * valid_mask
return keypoints_absolute, keypoint_weights
class CenterNetCenterHeatmapTargetAssigner(object):
"""Wrapper to compute the object center heatmap."""
def __init__(self,
stride,
min_overlap=0.7,
compute_heatmap_sparse=False,
keypoint_class_id=None,
keypoint_indices=None,
keypoint_weights_for_center=None):
"""Initializes the target assigner.
Args:
stride: int, the stride of the network in output pixels.
min_overlap: The minimum IOU overlap that boxes need to have to not be
penalized.
compute_heatmap_sparse: bool, indicating whether or not to use the sparse
version of the Op that computes the heatmap. The sparse version scales
better with number of classes, but in some cases is known to cause
OOM error. See (b/170989061).
keypoint_class_id: int, the ID of the class (0-indexed) that contains the
target keypoints to consider in this task.
keypoint_indices: A list of integers representing the indices of the
keypoints to be considered in this task. This is used to retrieve the
subset of the keypoints from gt_keypoints that should be considered in
this task.
keypoint_weights_for_center: The keypoint weights used for calculating the
location of object center. The number of weights need to be the same as
the number of keypoints. The object center is calculated by the weighted
mean of the keypoint locations. If not provided, the object center is
determined by the center of the bounding box (default behavior).
"""
self._stride = stride
self._min_overlap = min_overlap
self._compute_heatmap_sparse = compute_heatmap_sparse
self._keypoint_class_id = keypoint_class_id
self._keypoint_indices = keypoint_indices
self._keypoint_weights_for_center = keypoint_weights_for_center
def assign_center_targets_from_boxes(self,
height,
width,
gt_boxes_list,
gt_classes_list,
gt_weights_list=None):
"""Computes the object center heatmap target.
Args:
height: int, height of input to the model. This is used to
determine the height of the output.
width: int, width of the input to the model. This is used to
determine the width of the output.
gt_boxes_list: A list of float tensors with shape [num_boxes, 4]
representing the groundtruth detection bounding boxes for each sample in
the batch. The box coordinates are expected in normalized coordinates.
gt_classes_list: A list of float tensors with shape [num_boxes,
num_classes] representing the one-hot encoded class labels for each box
in the gt_boxes_list.
gt_weights_list: A list of float tensors with shape [num_boxes]
representing the weight of each groundtruth detection box.
Returns:
heatmap: A Tensor of size [batch_size, output_height, output_width,
num_classes] representing the per class center heatmap. output_height
and output_width are computed by dividing the input height and width by
the stride specified during initialization.
"""
out_height = tf.cast(tf.maximum(height // self._stride, 1), tf.float32)
out_width = tf.cast(tf.maximum(width // self._stride, 1), tf.float32)
# Compute the yx-grid to be used to generate the heatmap. Each returned
# tensor has shape of [out_height, out_width]
(y_grid, x_grid) = ta_utils.image_shape_to_grids(out_height, out_width)
heatmaps = []
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_boxes_list)
# TODO(vighneshb) Replace the for loop with a batch version.
for boxes, class_targets, weights in zip(gt_boxes_list, gt_classes_list,
gt_weights_list):
boxes = box_list.BoxList(boxes)
# Convert the box coordinates to absolute output image dimension space.
boxes = box_list_ops.to_absolute_coordinates(
boxes,
tf.maximum(height // self._stride, 1),
tf.maximum(width // self._stride, 1))
# Get the box center coordinates. Each returned tensors have the shape of
# [num_instances]
(y_center, x_center, boxes_height,
boxes_width) = boxes.get_center_coordinates_and_sizes()
# Compute the sigma from box size. The tensor shape: [num_instances].
sigma = _compute_std_dev_from_box_size(boxes_height, boxes_width,
self._min_overlap)
# Apply the Gaussian kernel to the center coordinates. Returned heatmap
# has shape of [out_height, out_width, num_classes]
heatmap = ta_utils.coordinates_to_heatmap(
y_grid=y_grid,
x_grid=x_grid,
y_coordinates=y_center,
x_coordinates=x_center,
sigma=sigma,
channel_onehot=class_targets,
channel_weights=weights,
sparse=self._compute_heatmap_sparse)
heatmaps.append(heatmap)
# Return the stacked heatmaps over the batch.
return tf.stack(heatmaps, axis=0)
def assign_center_targets_from_keypoints(self,
height,
width,
gt_classes_list,
gt_keypoints_list,
gt_weights_list=None,
gt_keypoints_weights_list=None):
"""Computes the object center heatmap target using keypoint locations.
Args:
height: int, height of input to the model. This is used to
determine the height of the output.
width: int, width of the input to the model. This is used to
determine the width of the output.
gt_classes_list: A list of float tensors with shape [num_boxes,
num_classes] representing the one-hot encoded class labels for each box
in the gt_boxes_list.
gt_keypoints_list: A list of float tensors with shape [num_boxes, 4]
representing the groundtruth detection bounding boxes for each sample in
the batch. The box coordinates are expected in normalized coordinates.
gt_weights_list: A list of float tensors with shape [num_boxes]
representing the weight of each groundtruth detection box.
gt_keypoints_weights_list: [Optional] a list of 3D tf.float32 tensors of
shape [num_instances, num_total_keypoints] representing the weights of
each keypoints. If not provided, then all not NaN keypoints will be
equally weighted.
Returns:
heatmap: A Tensor of size [batch_size, output_height, output_width,
num_classes] representing the per class center heatmap. output_height
and output_width are computed by dividing the input height and width by
the stride specified during initialization.
"""
assert (self._keypoint_weights_for_center is not None and
self._keypoint_class_id is not None and
self._keypoint_indices is not None)
out_height = tf.cast(tf.maximum(height // self._stride, 1), tf.float32)
out_width = tf.cast(tf.maximum(width // self._stride, 1), tf.float32)
# Compute the yx-grid to be used to generate the heatmap. Each returned
# tensor has shape of [out_height, out_width]
(y_grid, x_grid) = ta_utils.image_shape_to_grids(out_height, out_width)
heatmaps = []
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_classes_list)
if gt_keypoints_weights_list is None:
gt_keypoints_weights_list = [None] * len(gt_keypoints_list)
for keypoints, classes, kp_weights, weights in zip(
gt_keypoints_list, gt_classes_list, gt_keypoints_weights_list,
gt_weights_list):
keypoints_absolute, kp_weights = _preprocess_keypoints_and_weights(
out_height=out_height,
out_width=out_width,
keypoints=keypoints,
class_onehot=classes,
class_weights=weights,
keypoint_weights=kp_weights,
class_id=self._keypoint_class_id,
keypoint_indices=self._keypoint_indices)
# _, num_keypoints, _ = (
# shape_utils.combined_static_and_dynamic_shape(keypoints_absolute))
# Update the keypoint weights by the specified keypoints weights.
kp_loc_weights = tf.constant(
self._keypoint_weights_for_center, dtype=tf.float32)
updated_kp_weights = kp_weights * kp_loc_weights[tf.newaxis, :]
# Obtain the sum of the weights for each instance.
# instance_weight_sum has shape: [num_instance].
instance_weight_sum = tf.reduce_sum(updated_kp_weights, axis=1)
# Weight the keypoint coordinates by updated_kp_weights.
# weighted_keypoints has shape: [num_instance, num_keypoints, 2]
weighted_keypoints = keypoints_absolute * tf.expand_dims(
updated_kp_weights, axis=2)
# Compute the mean of the keypoint coordinates over the weighted
# keypoints.
# keypoint_mean has shape: [num_instance, 2]
keypoint_mean = tf.math.divide(
tf.reduce_sum(weighted_keypoints, axis=1),
tf.expand_dims(instance_weight_sum, axis=-1))
# Replace the NaN values (due to divided by zeros in the above operation)
# by 0.0 where the sum of instance weight is zero.
# keypoint_mean has shape: [num_instance, 2]
keypoint_mean = tf.where(
tf.stack([instance_weight_sum, instance_weight_sum], axis=1) > 0.0,
keypoint_mean, tf.zeros_like(keypoint_mean))
# Compute the distance from each keypoint to the mean location using
# broadcasting and weighted by updated_kp_weights.
# keypoint_dist has shape: [num_instance, num_keypoints]
keypoint_mean = tf.expand_dims(keypoint_mean, axis=1)
keypoint_dist = tf.math.sqrt(
tf.reduce_sum(
tf.math.square(keypoints_absolute - keypoint_mean), axis=2))
keypoint_dist = keypoint_dist * updated_kp_weights
# Compute the average of the distances from each keypoint to the mean
# location and update the average value by zero when the instance weight
# is zero.
# avg_radius has shape: [num_instance]
avg_radius = tf.math.divide(
tf.reduce_sum(keypoint_dist, axis=1), instance_weight_sum)
avg_radius = tf.where(
instance_weight_sum > 0.0, avg_radius, tf.zeros_like(avg_radius))
# Update the class instance weight. If the instance doesn't contain enough
# valid keypoint values (i.e. instance_weight_sum == 0.0), then set the
# instance weight to zero.
# updated_class_weights has shape: [num_instance]
updated_class_weights = tf.where(
instance_weight_sum > 0.0, weights, tf.zeros_like(weights))
# Compute the sigma from average distance. We use 2 * average distance to
# to approximate the width/height of the bounding box.
# sigma has shape: [num_instances].
sigma = _compute_std_dev_from_box_size(2 * avg_radius, 2 * avg_radius,
self._min_overlap)
# Apply the Gaussian kernel to the center coordinates. Returned heatmap
# has shape of [out_height, out_width, num_classes]
heatmap = ta_utils.coordinates_to_heatmap(
y_grid=y_grid,
x_grid=x_grid,
y_coordinates=keypoint_mean[:, 0, 0],
x_coordinates=keypoint_mean[:, 0, 1],
sigma=sigma,
channel_onehot=classes,
channel_weights=updated_class_weights,
sparse=self._compute_heatmap_sparse)
heatmaps.append(heatmap)
# Return the stacked heatmaps over the batch.
return tf.stack(heatmaps, axis=0)
class CenterNetBoxTargetAssigner(object):
"""Wrapper to compute target tensors for the object detection task.
This class has methods that take as input a batch of ground truth tensors
(in the form of a list) and return the targets required to train the object
detection task.
"""
def __init__(self, stride):
"""Initializes the target assigner.
Args:
stride: int, the stride of the network in output pixels.
"""
self._stride = stride
def assign_size_and_offset_targets(self,
height,
width,
gt_boxes_list,
gt_weights_list=None):
"""Returns the box height/width and center offset targets and their indices.
The returned values are expected to be used with predicted tensors
of size (batch_size, height//self._stride, width//self._stride, 2). The
predicted values at the relevant indices can be retrieved with the
get_batch_predictions_from_indices function.
Args:
height: int, height of input to the model. This is used to determine the
height of the output.
width: int, width of the input to the model. This is used to determine the
width of the output.
gt_boxes_list: A list of float tensors with shape [num_boxes, 4]
representing the groundtruth detection bounding boxes for each sample in
the batch. The coordinates are expected in normalized coordinates.
gt_weights_list: A list of tensors with shape [num_boxes] corresponding to
the weight of each groundtruth detection box.
Returns:
batch_indices: an integer tensor of shape [num_boxes, 3] holding the
indices inside the predicted tensor which should be penalized. The
first column indicates the index along the batch dimension and the
second and third columns indicate the index along the y and x
dimensions respectively.
batch_box_height_width: a float tensor of shape [num_boxes, 2] holding
expected height and width of each box in the output space.
batch_offsets: a float tensor of shape [num_boxes, 2] holding the
expected y and x offset of each box in the output space.
batch_weights: a float tensor of shape [num_boxes] indicating the
weight of each prediction.
"""
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_boxes_list)
batch_indices = []
batch_box_height_width = []
batch_weights = []
batch_offsets = []
for i, (boxes, weights) in enumerate(zip(gt_boxes_list, gt_weights_list)):
boxes = box_list.BoxList(boxes)
boxes = box_list_ops.to_absolute_coordinates(
boxes,
tf.maximum(height // self._stride, 1),
tf.maximum(width // self._stride, 1))
# Get the box center coordinates. Each returned tensors have the shape of
# [num_boxes]
(y_center, x_center, boxes_height,
boxes_width) = boxes.get_center_coordinates_and_sizes()
num_boxes = tf.shape(x_center)
# Compute the offsets and indices of the box centers. Shape:
# offsets: [num_boxes, 2]
# indices: [num_boxes, 2]
(offsets, indices) = ta_utils.compute_floor_offsets_with_indices(
y_source=y_center, x_source=x_center)
# Assign ones if weights are not provided.
if weights is None:
weights = tf.ones(num_boxes, dtype=tf.float32)
# Shape of [num_boxes, 1] integer tensor filled with current batch index.
batch_index = i * tf.ones_like(indices[:, 0:1], dtype=tf.int32)
batch_indices.append(tf.concat([batch_index, indices], axis=1))
batch_box_height_width.append(
tf.stack([boxes_height, boxes_width], axis=1))
batch_weights.append(weights)
batch_offsets.append(offsets)
batch_indices = tf.concat(batch_indices, axis=0)
batch_box_height_width = tf.concat(batch_box_height_width, axis=0)
batch_weights = tf.concat(batch_weights, axis=0)
batch_offsets = tf.concat(batch_offsets, axis=0)
return (batch_indices, batch_box_height_width, batch_offsets, batch_weights)
# TODO(yuhuic): Update this class to handle the instance/keypoint weights.
# Currently those weights are used as "mask" to indicate whether an
# instance/keypoint should be considered or not (expecting only either 0 or 1
# value). In reality, the weights can be any value and this class should handle
# those values properly.
class CenterNetKeypointTargetAssigner(object):
"""Wrapper to compute target tensors for the CenterNet keypoint estimation.
This class has methods that take as input a batch of groundtruth tensors
(in the form of a list) and returns the targets required to train the
CenterNet model for keypoint estimation. Specifically, the class methods
expect the groundtruth in the following formats (consistent with the
standard Object Detection API). Note that usually the groundtruth tensors are
packed with a list which represents the batch dimension:
gt_classes_list: [Required] a list of 2D tf.float32 one-hot
(or k-hot) tensors of shape [num_instances, num_classes] containing the
class targets with the 0th index assumed to map to the first non-background
class.
gt_keypoints_list: [Required] a list of 3D tf.float32 tensors of
shape [num_instances, num_total_keypoints, 2] containing keypoint
coordinates. Note that the "num_total_keypoints" should be the sum of the
num_keypoints over all possible keypoint types, e.g. human pose, face.
For example, if a dataset contains both 17 human pose keypoints and 5 face
keypoints, then num_total_keypoints = 17 + 5 = 22.
If an intance contains only a subet of keypoints (e.g. human pose keypoints
but not face keypoints), the face keypoints will be filled with zeros.
Also note that keypoints are assumed to be provided in normalized
coordinates and missing keypoints should be encoded as NaN.
gt_keypoints_weights_list: [Optional] a list 3D tf.float32 tensors of shape
[num_instances, num_total_keypoints] representing the weights of each
keypoints. If not provided, then all not NaN keypoints will be equally
weighted.
gt_boxes_list: [Optional] a list of 2D tf.float32 tensors of shape
[num_instances, 4] containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max] format and
assumed to be normalized and clipped relative to the image window with
y_min <= y_max and x_min <= x_max.
Note that the boxes are only used to compute the center targets but are not
considered as required output of the keypoint task. If the boxes were not
provided, the center targets will be inferred from the keypoints
[not implemented yet].
gt_weights_list: [Optional] A list of 1D tf.float32 tensors of shape
[num_instances] containing weights for groundtruth boxes. Only useful when
gt_boxes_list is also provided.
"""
def __init__(self,
stride,
class_id,
keypoint_indices,
keypoint_std_dev=None,
per_keypoint_offset=False,
peak_radius=0,
compute_heatmap_sparse=False,
per_keypoint_depth=False):
"""Initializes a CenterNet keypoints target assigner.
Args:
stride: int, the stride of the network in output pixels.
class_id: int, the ID of the class (0-indexed) that contains the target
keypoints to consider in this task. For example, if the task is human
pose estimation, the class id should correspond to the "human" class.
keypoint_indices: A list of integers representing the indices of the
keypoints to be considered in this task. This is used to retrieve the
subset of the keypoints from gt_keypoints that should be considered in
this task.
keypoint_std_dev: A list of floats represent the standard deviation of the
Gaussian kernel used to generate the keypoint heatmap (in the unit of
output pixels). It is to provide the flexibility of using different
sizes of Gaussian kernel for each keypoint type. If not provided, then
all standard deviation will be the same as the default value (10.0 in
the output pixel space). If provided, the length of keypoint_std_dev
needs to be the same as the length of keypoint_indices, indicating the
standard deviation of each keypoint type.
per_keypoint_offset: boolean, indicating whether to assign offset for
each keypoint channel. If set False, the output offset target will have
the shape [batch_size, out_height, out_width, 2]. If set True, the
output offset target will have the shape [batch_size, out_height,
out_width, 2 * num_keypoints].
peak_radius: int, the radius (in the unit of output pixel) around heatmap
peak to assign the offset targets.
compute_heatmap_sparse: bool, indicating whether or not to use the sparse
version of the Op that computes the heatmap. The sparse version scales
better with number of keypoint types, but in some cases is known to
cause an OOM error. See (b/170989061).
per_keypoint_depth: A bool indicates whether the model predicts the depth
of each keypoints in independent channels. Similar to
per_keypoint_offset but for the keypoint depth.
"""
self._stride = stride
self._class_id = class_id
self._keypoint_indices = keypoint_indices
self._per_keypoint_offset = per_keypoint_offset
self._per_keypoint_depth = per_keypoint_depth
self._peak_radius = peak_radius
self._compute_heatmap_sparse = compute_heatmap_sparse
if keypoint_std_dev is None:
self._keypoint_std_dev = ([_DEFAULT_KEYPOINT_OFFSET_STD_DEV] *
len(keypoint_indices))
else:
assert len(keypoint_indices) == len(keypoint_std_dev)
self._keypoint_std_dev = keypoint_std_dev
def assign_keypoint_heatmap_targets(self,
height,
width,
gt_keypoints_list,
gt_classes_list,
gt_keypoints_weights_list=None,
gt_weights_list=None,
gt_boxes_list=None):
"""Returns the keypoint heatmap targets for the CenterNet model.
Args:
height: int, height of input to the CenterNet model. This is used to
determine the height of the output.
width: int, width of the input to the CenterNet model. This is used to
determine the width of the output.
gt_keypoints_list: A list of float tensors with shape [num_instances,
num_total_keypoints, 2]. See class-level description for more detail.
gt_classes_list: A list of float tensors with shape [num_instances,
num_classes]. See class-level description for more detail.
gt_keypoints_weights_list: A list of tensors with shape [num_instances,
num_total_keypoints] corresponding to the weight of each keypoint.
gt_weights_list: A list of float tensors with shape [num_instances]. See
class-level description for more detail.
gt_boxes_list: A list of float tensors with shape [num_instances, 4]. See
class-level description for more detail. If provided, the keypoint
standard deviations will be scaled based on the box sizes.
Returns:
heatmap: A float tensor of shape [batch_size, output_height, output_width,
num_keypoints] representing the per keypoint type center heatmap.
output_height and output_width are computed by dividing the input height
and width by the stride specified during initialization. Note that the
"num_keypoints" is defined by the length of keypoint_indices, which is
not necessarily equal to "num_total_keypoints".
num_instances_batch: A 2D int tensor of shape
[batch_size, num_keypoints] representing number of instances for each
keypoint type.
valid_mask: A float tensor with shape [batch_size, output_height,
output_width, num_keypoints] where all values within the regions of the
blackout boxes are 0.0 and 1.0 else where. Note that the blackout boxes
are per keypoint type and are blacked out if the keypoint
visibility/weight (of the corresponding keypoint type) is zero.
"""
out_width = tf.cast(tf.maximum(width // self._stride, 1), tf.float32)
out_height = tf.cast(tf.maximum(height // self._stride, 1), tf.float32)
# Compute the yx-grid to be used to generate the heatmap. Each returned
# tensor has shape of [out_height, out_width]
y_grid, x_grid = ta_utils.image_shape_to_grids(out_height, out_width)
if gt_keypoints_weights_list is None:
gt_keypoints_weights_list = [None] * len(gt_keypoints_list)
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_classes_list)
if gt_boxes_list is None:
gt_boxes_list = [None] * len(gt_keypoints_list)
heatmaps = []
num_instances_list = []
valid_mask_list = []
for keypoints, classes, kp_weights, weights, boxes in zip(
gt_keypoints_list, gt_classes_list, gt_keypoints_weights_list,
gt_weights_list, gt_boxes_list):
keypoints_absolute, kp_weights = _preprocess_keypoints_and_weights(
out_height=out_height,
out_width=out_width,
keypoints=keypoints,
class_onehot=classes,
class_weights=weights,
keypoint_weights=kp_weights,
class_id=self._class_id,
keypoint_indices=self._keypoint_indices)
num_instances, num_keypoints, _ = (
shape_utils.combined_static_and_dynamic_shape(keypoints_absolute))
# A tensor of shape [num_instances, num_keypoints] with
# each element representing the type dimension for each corresponding
# keypoint:
# [[0, 1, ..., k-1],
# [0, 1, ..., k-1],
# :
# [0, 1, ..., k-1]]
keypoint_types = tf.tile(
input=tf.expand_dims(tf.range(num_keypoints), axis=0),
multiples=[num_instances, 1])
# A tensor of shape [num_instances, num_keypoints] with
# each element representing the sigma of the Gaussian kernel for each
# keypoint.
keypoint_std_dev = tf.tile(
input=tf.expand_dims(tf.constant(self._keypoint_std_dev), axis=0),
multiples=[num_instances, 1])
# If boxes is not None, then scale the standard deviation based on the
# size of the object bounding boxes similar to object center heatmap.
if boxes is not None:
boxes = box_list.BoxList(boxes)
# Convert the box coordinates to absolute output image dimension space.
boxes = box_list_ops.to_absolute_coordinates(
boxes,
tf.maximum(height // self._stride, 1),
tf.maximum(width // self._stride, 1))
# Get the box height and width. Each returned tensors have the shape
# of [num_instances]
(_, _, boxes_height,
boxes_width) = boxes.get_center_coordinates_and_sizes()
# Compute the sigma from box size. The tensor shape: [num_instances].
sigma = _compute_std_dev_from_box_size(boxes_height, boxes_width, 0.7)
keypoint_std_dev = keypoint_std_dev * tf.stack(
[sigma] * num_keypoints, axis=1)
# Generate the per-keypoint type valid region mask to ignore regions
# with keypoint weights equal to zeros (e.g. visibility is 0).
# shape of valid_mask: [out_height, out_width, num_keypoints]
kp_weight_list = tf.unstack(kp_weights, axis=1)
valid_mask_channel_list = []
for kp_weight in kp_weight_list:
blackout = kp_weight < 1e-3
valid_mask_channel_list.append(
ta_utils.blackout_pixel_weights_by_box_regions(
out_height, out_width, boxes.get(), blackout))
valid_mask = tf.stack(valid_mask_channel_list, axis=2)
valid_mask_list.append(valid_mask)
# Apply the Gaussian kernel to the keypoint coordinates. Returned heatmap
# has shape of [out_height, out_width, num_keypoints].
heatmap = ta_utils.coordinates_to_heatmap(
y_grid=y_grid,
x_grid=x_grid,
y_coordinates=tf.keras.backend.flatten(keypoints_absolute[:, :, 0]),
x_coordinates=tf.keras.backend.flatten(keypoints_absolute[:, :, 1]),
sigma=tf.keras.backend.flatten(keypoint_std_dev),
channel_onehot=tf.one_hot(
tf.keras.backend.flatten(keypoint_types), depth=num_keypoints),
channel_weights=tf.keras.backend.flatten(kp_weights))
num_instances_list.append(
tf.cast(tf.reduce_sum(kp_weights, axis=0), dtype=tf.int32))
heatmaps.append(heatmap)
return (tf.stack(heatmaps, axis=0), tf.stack(num_instances_list, axis=0),
tf.stack(valid_mask_list, axis=0))
def _get_keypoint_types(self, num_instances, num_keypoints, num_neighbors):
"""Gets keypoint type index tensor.
The function prepares the tensor of keypoint indices with shape
[num_instances, num_keypoints, num_neighbors]. Each element represents the
keypoint type index for each corresponding keypoint and tiled along the 3rd
axis:
[[0, 1, ..., num_keypoints - 1],
[0, 1, ..., num_keypoints - 1],
:
[0, 1, ..., num_keypoints - 1]]
Args:
num_instances: int, the number of instances, used to define the 1st
dimension.
num_keypoints: int, the number of keypoint types, used to define the 2nd
dimension.
num_neighbors: int, the number of neighborhood pixels to consider for each
keypoint, used to define the 3rd dimension.
Returns:
A integer tensor of shape [num_instances, num_keypoints, num_neighbors].
"""
keypoint_types = tf.range(num_keypoints)[tf.newaxis, :, tf.newaxis]
tiled_keypoint_types = tf.tile(keypoint_types,
multiples=[num_instances, 1, num_neighbors])
return tiled_keypoint_types
def assign_keypoints_offset_targets(self,
height,
width,
gt_keypoints_list,
gt_classes_list,
gt_keypoints_weights_list=None,
gt_weights_list=None):
"""Returns the offsets and indices of the keypoints for location refinement.
The returned values are used to refine the location of each keypoints in the
heatmap. The predicted values at the relevant indices can be retrieved with
the get_batch_predictions_from_indices function.
Args:
height: int, height of input to the CenterNet model. This is used to
determine the height of the output.
width: int, width of the input to the CenterNet model. This is used to
determine the width of the output.
gt_keypoints_list: A list of tensors with shape [num_instances,
num_total_keypoints]. See class-level description for more detail.
gt_classes_list: A list of tensors with shape [num_instances,
num_classes]. See class-level description for more detail.
gt_keypoints_weights_list: A list of tensors with shape [num_instances,
num_total_keypoints] corresponding to the weight of each keypoint.
gt_weights_list: A list of float tensors with shape [num_instances]. See
class-level description for more detail.
Returns:
batch_indices: an integer tensor of shape [num_total_instances, 3] (or
[num_total_instances, 4] if 'per_keypoint_offset' is set True) holding
the indices inside the predicted tensor which should be penalized. The
first column indicates the index along the batch dimension and the
second and third columns indicate the index along the y and x
dimensions respectively. The fourth column corresponds to the channel
dimension (if 'per_keypoint_offset' is set True).
batch_offsets: a float tensor of shape [num_total_instances, 2] holding
the expected y and x offset of each box in the output space.
batch_weights: a float tensor of shape [num_total_instances] indicating
the weight of each prediction.
Note that num_total_instances = batch_size * num_instances *
num_keypoints * num_neighbors
"""
batch_indices = []
batch_offsets = []
batch_weights = []
if gt_keypoints_weights_list is None:
gt_keypoints_weights_list = [None] * len(gt_keypoints_list)
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_classes_list)
for i, (keypoints, classes, kp_weights, weights) in enumerate(
zip(gt_keypoints_list, gt_classes_list, gt_keypoints_weights_list,
gt_weights_list)):
keypoints_absolute, kp_weights = _preprocess_keypoints_and_weights(
out_height=tf.maximum(height // self._stride, 1),
out_width=tf.maximum(width // self._stride, 1),
keypoints=keypoints,
class_onehot=classes,
class_weights=weights,
keypoint_weights=kp_weights,
class_id=self._class_id,
keypoint_indices=self._keypoint_indices)
num_instances, num_keypoints, _ = (
shape_utils.combined_static_and_dynamic_shape(keypoints_absolute))
# [num_instances * num_keypoints]
y_source = tf.keras.backend.flatten(keypoints_absolute[:, :, 0])
x_source = tf.keras.backend.flatten(keypoints_absolute[:, :, 1])
# All keypoint coordinates and their neighbors:
# [num_instance * num_keypoints, num_neighbors]
(y_source_neighbors, x_source_neighbors,
valid_sources) = ta_utils.get_surrounding_grids(
tf.cast(tf.maximum(height // self._stride, 1), tf.float32),
tf.cast(tf.maximum(width // self._stride, 1), tf.float32),
y_source, x_source,
self._peak_radius)
_, num_neighbors = shape_utils.combined_static_and_dynamic_shape(
y_source_neighbors)
# Update the valid keypoint weights.
# [num_instance * num_keypoints, num_neighbors]
valid_keypoints = tf.cast(
valid_sources, dtype=tf.float32) * tf.stack(
[tf.keras.backend.flatten(kp_weights)] * num_neighbors, axis=-1)
# Compute the offsets and indices of the box centers. Shape:
# offsets: [num_instances * num_keypoints, num_neighbors, 2]
# indices: [num_instances * num_keypoints, num_neighbors, 2]
offsets, indices = ta_utils.compute_floor_offsets_with_indices(
y_source=y_source_neighbors,
x_source=x_source_neighbors,
y_target=y_source,
x_target=x_source)
# Reshape to:
# offsets: [num_instances * num_keypoints * num_neighbors, 2]
# indices: [num_instances * num_keypoints * num_neighbors, 2]
offsets = tf.reshape(offsets, [-1, 2])
indices = tf.reshape(indices, [-1, 2])
# Prepare the batch indices to be prepended.
batch_index = tf.fill(
[num_instances * num_keypoints * num_neighbors, 1], i)
if self._per_keypoint_offset:
tiled_keypoint_types = self._get_keypoint_types(
num_instances, num_keypoints, num_neighbors)
batch_indices.append(
tf.concat([batch_index, indices,
tf.reshape(tiled_keypoint_types, [-1, 1])], axis=1))
else:
batch_indices.append(tf.concat([batch_index, indices], axis=1))
batch_offsets.append(offsets)
batch_weights.append(tf.keras.backend.flatten(valid_keypoints))
# Concatenate the tensors in the batch in the first dimension:
# shape: [batch_size * num_instances * num_keypoints * num_neighbors, 3] or
# [batch_size * num_instances * num_keypoints * num_neighbors, 4] if
# 'per_keypoint_offset' is set to True.
batch_indices = tf.concat(batch_indices, axis=0)
# shape: [batch_size * num_instances * num_keypoints * num_neighbors]
batch_weights = tf.concat(batch_weights, axis=0)
# shape: [batch_size * num_instances * num_keypoints * num_neighbors, 2]
batch_offsets = tf.concat(batch_offsets, axis=0)
return (batch_indices, batch_offsets, batch_weights)
def assign_keypoints_depth_targets(self,
height,
width,
gt_keypoints_list,
gt_classes_list,
gt_keypoint_depths_list,
gt_keypoint_depth_weights_list,
gt_keypoints_weights_list=None,
gt_weights_list=None):
"""Returns the target depths of the keypoints.
The returned values are the relative depth information of each keypoints.
Args:
height: int, height of input to the CenterNet model. This is used to
determine the height of the output.
width: int, width of the input to the CenterNet model. This is used to
determine the width of the output.
gt_keypoints_list: A list of tensors with shape [num_instances,
num_total_keypoints, 2]. See class-level description for more detail.
gt_classes_list: A list of tensors with shape [num_instances,
num_classes]. See class-level description for more detail.
gt_keypoint_depths_list: A list of tensors with shape [num_instances,
num_total_keypoints] corresponding to the relative depth of the
keypoints.
gt_keypoint_depth_weights_list: A list of tensors with shape
[num_instances, num_total_keypoints] corresponding to the weights of
the relative depth.
gt_keypoints_weights_list: A list of tensors with shape [num_instances,
num_total_keypoints] corresponding to the weight of each keypoint.
gt_weights_list: A list of float tensors with shape [num_instances]. See
class-level description for more detail.
Returns:
batch_indices: an integer tensor of shape [num_total_instances, 3] (or
[num_total_instances, 4] if 'per_keypoint_depth' is set True) holding
the indices inside the predicted tensor which should be penalized. The
first column indicates the index along the batch dimension and the
second and third columns indicate the index along the y and x
dimensions respectively. The fourth column corresponds to the channel
dimension (if 'per_keypoint_offset' is set True).
batch_depths: a float tensor of shape [num_total_instances, 1] (or
[num_total_instances, num_keypoints] if per_keypoint_depth is set True)
indicating the target depth of each keypoint.
batch_weights: a float tensor of shape [num_total_instances] indicating
the weight of each prediction.
Note that num_total_instances = batch_size * num_instances *
num_keypoints * num_neighbors
"""
batch_indices = []
batch_weights = []
batch_depths = []
if gt_keypoints_weights_list is None:
gt_keypoints_weights_list = [None] * len(gt_keypoints_list)
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_classes_list)
if gt_keypoint_depths_list is None:
gt_keypoint_depths_list = [None] * len(gt_classes_list)
for i, (keypoints, classes, kp_weights, weights,
keypoint_depths, keypoint_depth_weights) in enumerate(
zip(gt_keypoints_list, gt_classes_list,
gt_keypoints_weights_list, gt_weights_list,
gt_keypoint_depths_list, gt_keypoint_depth_weights_list)):
keypoints_absolute, kp_weights = _preprocess_keypoints_and_weights(
out_height=tf.maximum(height // self._stride, 1),
out_width=tf.maximum(width // self._stride, 1),
keypoints=keypoints,
class_onehot=classes,
class_weights=weights,
keypoint_weights=kp_weights,
class_id=self._class_id,
keypoint_indices=self._keypoint_indices)
num_instances, num_keypoints, _ = (
shape_utils.combined_static_and_dynamic_shape(keypoints_absolute))
# [num_instances * num_keypoints]
y_source = tf.keras.backend.flatten(keypoints_absolute[:, :, 0])
x_source = tf.keras.backend.flatten(keypoints_absolute[:, :, 1])
# All keypoint coordinates and their neighbors:
# [num_instance * num_keypoints, num_neighbors]
(y_source_neighbors, x_source_neighbors,
valid_sources) = ta_utils.get_surrounding_grids(
tf.cast(tf.maximum(height // self._stride, 1), tf.float32),
tf.cast(tf.maximum(width // self._stride, 1), tf.float32),
y_source, x_source,
self._peak_radius)
_, num_neighbors = shape_utils.combined_static_and_dynamic_shape(
y_source_neighbors)
# Update the valid keypoint weights.
# [num_instance * num_keypoints, num_neighbors]
valid_keypoints = tf.cast(
valid_sources, dtype=tf.float32) * tf.stack(
[tf.keras.backend.flatten(kp_weights)] * num_neighbors, axis=-1)
# Compute the offsets and indices of the box centers. Shape:
# indices: [num_instances * num_keypoints, num_neighbors, 2]
_, indices = ta_utils.compute_floor_offsets_with_indices(
y_source=y_source_neighbors,
x_source=x_source_neighbors,
y_target=y_source,
x_target=x_source)
# Reshape to:
# indices: [num_instances * num_keypoints * num_neighbors, 2]
indices = tf.reshape(indices, [-1, 2])
# Gather the keypoint depth from corresponding keypoint indices:
# [num_instances, num_keypoints]
keypoint_depths = tf.gather(
keypoint_depths, self._keypoint_indices, axis=1)
# Tile the depth target to surrounding pixels.
# [num_instances, num_keypoints, num_neighbors]
tiled_keypoint_depths = tf.tile(
tf.expand_dims(keypoint_depths, axis=-1),
multiples=[1, 1, num_neighbors])
# [num_instances, num_keypoints]
keypoint_depth_weights = tf.gather(
keypoint_depth_weights, self._keypoint_indices, axis=1)
# [num_instances, num_keypoints, num_neighbors]
keypoint_depth_weights = tf.tile(
tf.expand_dims(keypoint_depth_weights, axis=-1),
multiples=[1, 1, num_neighbors])
# Update the weights of keypoint depth by the weights of the keypoints.
# A keypoint depth target is valid only if its corresponding keypoint
# target is also valid.
# [num_instances, num_keypoints, num_neighbors]
tiled_depth_weights = (
tf.reshape(valid_keypoints,
[num_instances, num_keypoints, num_neighbors]) *
keypoint_depth_weights)
invalid_depths = tf.logical_or(
tf.math.is_nan(tiled_depth_weights),
tf.math.is_nan(tiled_keypoint_depths))
# Assign zero values and weights to NaN values.
final_keypoint_depths = tf.where(invalid_depths,
tf.zeros_like(tiled_keypoint_depths),
tiled_keypoint_depths)
final_keypoint_depth_weights = tf.where(
invalid_depths,
tf.zeros_like(tiled_depth_weights),
tiled_depth_weights)
# [num_instances * num_keypoints * num_neighbors, 1]
batch_depths.append(tf.reshape(final_keypoint_depths, [-1, 1]))
# Prepare the batch indices to be prepended.
batch_index = tf.fill(
[num_instances * num_keypoints * num_neighbors, 1], i)
if self._per_keypoint_depth:
tiled_keypoint_types = self._get_keypoint_types(
num_instances, num_keypoints, num_neighbors)
batch_indices.append(
tf.concat([batch_index, indices,
tf.reshape(tiled_keypoint_types, [-1, 1])], axis=1))
else:
batch_indices.append(tf.concat([batch_index, indices], axis=1))
batch_weights.append(
tf.keras.backend.flatten(final_keypoint_depth_weights))
# Concatenate the tensors in the batch in the first dimension:
# shape: [batch_size * num_instances * num_keypoints * num_neighbors, 3] or
# [batch_size * num_instances * num_keypoints * num_neighbors, 4] if
# 'per_keypoint_offset' is set to True.
batch_indices = tf.concat(batch_indices, axis=0)
# shape: [batch_size * num_instances * num_keypoints * num_neighbors]
batch_weights = tf.concat(batch_weights, axis=0)
# shape: [batch_size * num_instances * num_keypoints * num_neighbors, 1]
batch_depths = tf.concat(batch_depths, axis=0)
return (batch_indices, batch_depths, batch_weights)
def assign_joint_regression_targets(self,
height,
width,
gt_keypoints_list,
gt_classes_list,
gt_boxes_list=None,
gt_keypoints_weights_list=None,
gt_weights_list=None):
"""Returns the joint regression from center grid to keypoints.
The joint regression is used as the grouping cue from the estimated
keypoints to instance center. The offsets are the vectors from the floored
object center coordinates to the keypoint coordinates.
Args:
height: int, height of input to the CenterNet model. This is used to
determine the height of the output.
width: int, width of the input to the CenterNet model. This is used to
determine the width of the output.
gt_keypoints_list: A list of float tensors with shape [num_instances,
num_total_keypoints]. See class-level description for more detail.
gt_classes_list: A list of float tensors with shape [num_instances,
num_classes]. See class-level description for more detail.
gt_boxes_list: A list of float tensors with shape [num_instances, 4]. See
class-level description for more detail. If provided, then the center
targets will be computed based on the center of the boxes.
gt_keypoints_weights_list: A list of float tensors with shape
[num_instances, num_total_keypoints] representing to the weight of each
keypoint.
gt_weights_list: A list of float tensors with shape [num_instances]. See
class-level description for more detail.
Returns:
batch_indices: an integer tensor of shape [num_instances, 4] holding the
indices inside the predicted tensor which should be penalized. The
first column indicates the index along the batch dimension and the
second and third columns indicate the index along the y and x
dimensions respectively, the last dimension refers to the keypoint type
dimension.
batch_offsets: a float tensor of shape [num_instances, 2] holding the
expected y and x offset of each box in the output space.
batch_weights: a float tensor of shape [num_instances] indicating the
weight of each prediction.
Note that num_total_instances = batch_size * num_instances * num_keypoints
Raises:
NotImplementedError: currently the object center coordinates need to be
computed from groundtruth bounding boxes. The functionality of
generating the object center coordinates from keypoints is not
implemented yet.
"""
batch_indices = []
batch_offsets = []
batch_weights = []
batch_size = len(gt_keypoints_list)
if gt_keypoints_weights_list is None:
gt_keypoints_weights_list = [None] * batch_size
if gt_boxes_list is None:
gt_boxes_list = [None] * batch_size
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_classes_list)
for i, (keypoints, classes, boxes, kp_weights, weights) in enumerate(
zip(gt_keypoints_list, gt_classes_list,
gt_boxes_list, gt_keypoints_weights_list, gt_weights_list)):
keypoints_absolute, kp_weights = _preprocess_keypoints_and_weights(
out_height=tf.maximum(height // self._stride, 1),
out_width=tf.maximum(width // self._stride, 1),
keypoints=keypoints,
class_onehot=classes,
class_weights=weights,
keypoint_weights=kp_weights,
class_id=self._class_id,
keypoint_indices=self._keypoint_indices)
num_instances, num_keypoints, _ = (
shape_utils.combined_static_and_dynamic_shape(keypoints_absolute))
# If boxes are provided, compute the joint center from it.
if boxes is not None:
# Compute joint center from boxes.
boxes = box_list.BoxList(boxes)
boxes = box_list_ops.to_absolute_coordinates(
boxes,
tf.maximum(height // self._stride, 1),
tf.maximum(width // self._stride, 1))
y_center, x_center, _, _ = boxes.get_center_coordinates_and_sizes()
else:
# TODO(yuhuic): Add the logic to generate object centers from keypoints.
raise NotImplementedError((
'The functionality of generating object centers from keypoints is'
' not implemented yet. Please provide groundtruth bounding boxes.'
))
# Tile the yx center coordinates to be the same shape as keypoints.
y_center_tiled = tf.tile(
tf.reshape(y_center, shape=[num_instances, 1]),
multiples=[1, num_keypoints])
x_center_tiled = tf.tile(
tf.reshape(x_center, shape=[num_instances, 1]),
multiples=[1, num_keypoints])
# [num_instance * num_keypoints, num_neighbors]
(y_source_neighbors, x_source_neighbors,
valid_sources) = ta_utils.get_surrounding_grids(
tf.cast(tf.maximum(height // self._stride, 1), tf.float32),
tf.cast(tf.maximum(width // self._stride, 1), tf.float32),
tf.keras.backend.flatten(y_center_tiled),
tf.keras.backend.flatten(x_center_tiled), self._peak_radius)
_, num_neighbors = shape_utils.combined_static_and_dynamic_shape(
y_source_neighbors)
valid_keypoints = tf.cast(
valid_sources, dtype=tf.float32) * tf.stack(
[tf.keras.backend.flatten(kp_weights)] * num_neighbors, axis=-1)
# Compute the offsets and indices of the box centers. Shape:
# offsets: [num_instances * num_keypoints, 2]
# indices: [num_instances * num_keypoints, 2]
(offsets, indices) = ta_utils.compute_floor_offsets_with_indices(
y_source=y_source_neighbors,
x_source=x_source_neighbors,
y_target=tf.keras.backend.flatten(keypoints_absolute[:, :, 0]),
x_target=tf.keras.backend.flatten(keypoints_absolute[:, :, 1]))
# Reshape to:
# offsets: [num_instances * num_keypoints * num_neighbors, 2]
# indices: [num_instances * num_keypoints * num_neighbors, 2]
offsets = tf.reshape(offsets, [-1, 2])
indices = tf.reshape(indices, [-1, 2])
# keypoint type tensor: [num_instances, num_keypoints, num_neighbors].
tiled_keypoint_types = self._get_keypoint_types(
num_instances, num_keypoints, num_neighbors)
batch_index = tf.fill(
[num_instances * num_keypoints * num_neighbors, 1], i)
batch_indices.append(
tf.concat([batch_index, indices,
tf.reshape(tiled_keypoint_types, [-1, 1])], axis=1))
batch_offsets.append(offsets)
batch_weights.append(tf.keras.backend.flatten(valid_keypoints))
# Concatenate the tensors in the batch in the first dimension:
# shape: [batch_size * num_instances * num_keypoints, 4]
batch_indices = tf.concat(batch_indices, axis=0)
# shape: [batch_size * num_instances * num_keypoints]
batch_weights = tf.concat(batch_weights, axis=0)
# shape: [batch_size * num_instances * num_keypoints, 2]
batch_offsets = tf.concat(batch_offsets, axis=0)
return (batch_indices, batch_offsets, batch_weights)
def _resize_masks(masks, height, width, method):
# Resize segmentation masks to conform to output dimensions. Use TF2
# image resize because TF1's version is buggy:
# https://yaqs.corp.google.com/eng/q/4970450458378240
masks = tf2.image.resize(
masks[:, :, :, tf.newaxis],
size=(height, width),
method=method)
return masks[:, :, :, 0]
class CenterNetMaskTargetAssigner(object):
"""Wrapper to compute targets for segmentation masks."""
def __init__(self, stride):
self._stride = stride
def assign_segmentation_targets(
self, gt_masks_list, gt_classes_list, gt_boxes_list=None,
gt_mask_weights_list=None, mask_resize_method=ResizeMethod.BILINEAR):
"""Computes the segmentation targets.
This utility produces a semantic segmentation mask for each class, starting
with whole image instance segmentation masks. Effectively, each per-class
segmentation target is the union of all masks from that class.
Args:
gt_masks_list: A list of float tensors with shape [num_boxes,
input_height, input_width] with values in {0, 1} representing instance
masks for each object.
gt_classes_list: A list of float tensors with shape [num_boxes,
num_classes] representing the one-hot encoded class labels for each box
in the gt_boxes_list.
gt_boxes_list: An optional list of float tensors with shape [num_boxes, 4]
with normalized boxes corresponding to each mask. The boxes are used to
spatially allocate mask weights.
gt_mask_weights_list: An optional list of float tensors with shape
[num_boxes] with weights for each mask. If a mask has a zero weight, it
indicates that the box region associated with the mask should not
contribute to the loss. If not provided, will use a per-pixel weight of
1.
mask_resize_method: A `tf.compat.v2.image.ResizeMethod`. The method to use
when resizing masks from input resolution to output resolution.
Returns:
segmentation_targets: An int32 tensor of size [batch_size, output_height,
output_width, num_classes] representing the class of each location in
the output space.
segmentation_weight: A float32 tensor of size [batch_size, output_height,
output_width] indicating the loss weight to apply at each location.
"""
_, num_classes = shape_utils.combined_static_and_dynamic_shape(
gt_classes_list[0])
_, input_height, input_width = (
shape_utils.combined_static_and_dynamic_shape(gt_masks_list[0]))
output_height = tf.maximum(input_height // self._stride, 1)
output_width = tf.maximum(input_width // self._stride, 1)
if gt_boxes_list is None:
gt_boxes_list = [None] * len(gt_masks_list)
if gt_mask_weights_list is None:
gt_mask_weights_list = [None] * len(gt_masks_list)
segmentation_targets_list = []
segmentation_weights_list = []
for gt_boxes, gt_masks, gt_mask_weights, gt_classes in zip(
gt_boxes_list, gt_masks_list, gt_mask_weights_list, gt_classes_list):
if gt_boxes is not None and gt_mask_weights is not None:
boxes = box_list.BoxList(gt_boxes)
# Convert the box coordinates to absolute output image dimension space.
boxes_absolute = box_list_ops.to_absolute_coordinates(
boxes, output_height, output_width)
# Generate a segmentation weight that applies mask weights in object
# regions.
blackout = gt_mask_weights <= 0
segmentation_weight_for_image = (
ta_utils.blackout_pixel_weights_by_box_regions(
output_height, output_width, boxes_absolute.get(), blackout,
weights=gt_mask_weights))
segmentation_weights_list.append(segmentation_weight_for_image)
else:
segmentation_weights_list.append(tf.ones((output_height, output_width),
dtype=tf.float32))
gt_masks = _resize_masks(gt_masks, output_height, output_width,
mask_resize_method)
gt_masks = gt_masks[:, :, :, tf.newaxis]
gt_classes_reshaped = tf.reshape(gt_classes, [-1, 1, 1, num_classes])
# Shape: [h, w, num_classes].
segmentations_for_image = tf.reduce_max(
gt_masks * gt_classes_reshaped, axis=0)
# Avoid the case where max of an empty array is -inf.
segmentations_for_image = tf.maximum(segmentations_for_image, 0.0)
segmentation_targets_list.append(segmentations_for_image)
segmentation_target = tf.stack(segmentation_targets_list, axis=0)
segmentation_weight = tf.stack(segmentation_weights_list, axis=0)
return segmentation_target, segmentation_weight
class CenterNetDensePoseTargetAssigner(object):
"""Wrapper to compute targets for DensePose task."""
def __init__(self, stride, num_parts=24):
self._stride = stride
self._num_parts = num_parts
def assign_part_and_coordinate_targets(self,
height,
width,
gt_dp_num_points_list,
gt_dp_part_ids_list,
gt_dp_surface_coords_list,
gt_weights_list=None):
"""Returns the DensePose part_id and coordinate targets and their indices.
The returned values are expected to be used with predicted tensors
of size (batch_size, height//self._stride, width//self._stride, 2). The
predicted values at the relevant indices can be retrieved with the
get_batch_predictions_from_indices function.
Args:
height: int, height of input to the model. This is used to determine the
height of the output.
width: int, width of the input to the model. This is used to determine the
width of the output.
gt_dp_num_points_list: a list of 1-D tf.int32 tensors of shape [num_boxes]
containing the number of DensePose sampled points per box.
gt_dp_part_ids_list: a list of 2-D tf.int32 tensors of shape
[num_boxes, max_sampled_points] containing the DensePose part ids
(0-indexed) for each sampled point. Note that there may be padding, as
boxes may contain a different number of sampled points.
gt_dp_surface_coords_list: a list of 3-D tf.float32 tensors of shape
[num_boxes, max_sampled_points, 4] containing the DensePose surface
coordinates (normalized) for each sampled point. Note that there may be
padding.
gt_weights_list: A list of 1-D tensors with shape [num_boxes]
corresponding to the weight of each groundtruth detection box.
Returns:
batch_indices: an integer tensor of shape [num_total_points, 4] holding
the indices inside the predicted tensor which should be penalized. The
first column indicates the index along the batch dimension and the
second and third columns indicate the index along the y and x
dimensions respectively. The fourth column is the part index.
batch_part_ids: an int tensor of shape [num_total_points, num_parts]
holding 1-hot encodings of parts for each sampled point.
batch_surface_coords: a float tensor of shape [num_total_points, 2]
holding the expected (v, u) coordinates for each sampled point.
batch_weights: a float tensor of shape [num_total_points] indicating the
weight of each prediction.
Note that num_total_points = batch_size * num_boxes * max_sampled_points.
"""
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_dp_num_points_list)
batch_indices = []
batch_part_ids = []
batch_surface_coords = []
batch_weights = []
for i, (num_points, part_ids, surface_coords, weights) in enumerate(
zip(gt_dp_num_points_list, gt_dp_part_ids_list,
gt_dp_surface_coords_list, gt_weights_list)):
num_boxes, max_sampled_points = (
shape_utils.combined_static_and_dynamic_shape(part_ids))
part_ids_flattened = tf.reshape(part_ids, [-1])
part_ids_one_hot = tf.one_hot(part_ids_flattened, depth=self._num_parts)
# Get DensePose coordinates in the output space.
surface_coords_abs = densepose_ops.to_absolute_coordinates(
surface_coords,
tf.maximum(height // self._stride, 1),
tf.maximum(width // self._stride, 1))
surface_coords_abs = tf.reshape(surface_coords_abs, [-1, 4])
# Each tensor has shape [num_boxes * max_sampled_points].
yabs, xabs, v, u = tf.unstack(surface_coords_abs, axis=-1)
# Get the indices (in output space) for the DensePose coordinates. Note
# that if self._stride is larger than 1, this will have the effect of
# reducing spatial resolution of the groundtruth points.
indices_y = tf.cast(yabs, tf.int32)
indices_x = tf.cast(xabs, tf.int32)
# Assign ones if weights are not provided.
if weights is None:
weights = tf.ones(num_boxes, dtype=tf.float32)
# Create per-point weights.
weights_per_point = tf.reshape(
tf.tile(weights[:, tf.newaxis], multiples=[1, max_sampled_points]),
shape=[-1])
# Mask out invalid (i.e. padded) DensePose points.
num_points_tiled = tf.tile(num_points[:, tf.newaxis],
multiples=[1, max_sampled_points])
range_tiled = tf.tile(tf.range(max_sampled_points)[tf.newaxis, :],
multiples=[num_boxes, 1])
valid_points = tf.math.less(range_tiled, num_points_tiled)
valid_points = tf.cast(tf.reshape(valid_points, [-1]), dtype=tf.float32)
weights_per_point = weights_per_point * valid_points
# Shape of [num_boxes * max_sampled_points] integer tensor filled with
# current batch index.
batch_index = i * tf.ones_like(indices_y, dtype=tf.int32)
batch_indices.append(
tf.stack([batch_index, indices_y, indices_x, part_ids_flattened],
axis=1))
batch_part_ids.append(part_ids_one_hot)
batch_surface_coords.append(tf.stack([v, u], axis=1))
batch_weights.append(weights_per_point)
batch_indices = tf.concat(batch_indices, axis=0)
batch_part_ids = tf.concat(batch_part_ids, axis=0)
batch_surface_coords = tf.concat(batch_surface_coords, axis=0)
batch_weights = tf.concat(batch_weights, axis=0)
return batch_indices, batch_part_ids, batch_surface_coords, batch_weights
class CenterNetTrackTargetAssigner(object):
"""Wrapper to compute targets for tracking task.
Reference paper: A Simple Baseline for Multi-Object Tracking [1]
[1]: https://arxiv.org/abs/2004.01888
"""
def __init__(self, stride, num_track_ids):
self._stride = stride
self._num_track_ids = num_track_ids
def assign_track_targets(self,
height,
width,
gt_track_ids_list,
gt_boxes_list,
gt_weights_list=None):
"""Computes the track ID targets.
Args:
height: int, height of input to the model. This is used to determine the
height of the output.
width: int, width of the input to the model. This is used to determine the
width of the output.
gt_track_ids_list: A list of 1-D tensors with shape [num_boxes]
corresponding to the track ID of each groundtruth detection box.
gt_boxes_list: A list of float tensors with shape [num_boxes, 4]
representing the groundtruth detection bounding boxes for each sample in
the batch. The coordinates are expected in normalized coordinates.
gt_weights_list: A list of 1-D tensors with shape [num_boxes]
corresponding to the weight of each groundtruth detection box.
Returns:
batch_indices: an integer tensor of shape [batch_size, num_boxes, 3]
holding the indices inside the predicted tensor which should be
penalized. The first column indicates the index along the batch
dimension and the second and third columns indicate the index
along the y and x dimensions respectively.
batch_weights: a float tensor of shape [batch_size, num_boxes] indicating
the weight of each prediction.
track_id_targets: An int32 tensor of size [batch_size, num_boxes,
num_track_ids] containing the one-hot track ID vector of each
groundtruth detection box.
"""
track_id_targets = tf.one_hot(
gt_track_ids_list, depth=self._num_track_ids, axis=-1)
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_boxes_list)
batch_indices = []
batch_weights = []
for i, (boxes, weights) in enumerate(zip(gt_boxes_list, gt_weights_list)):
boxes = box_list.BoxList(boxes)
boxes = box_list_ops.to_absolute_coordinates(
boxes,
tf.maximum(height // self._stride, 1),
tf.maximum(width // self._stride, 1))
# Get the box center coordinates. Each returned tensors have the shape of
# [num_boxes]
(y_center, x_center, _, _) = boxes.get_center_coordinates_and_sizes()
num_boxes = tf.shape(x_center)
# Compute the indices of the box centers. Shape:
# indices: [num_boxes, 2]
(_, indices) = ta_utils.compute_floor_offsets_with_indices(
y_source=y_center, x_source=x_center)
# Assign ones if weights are not provided.
if weights is None:
weights = tf.ones(num_boxes, dtype=tf.float32)
# Shape of [num_boxes, 1] integer tensor filled with current batch index.
batch_index = i * tf.ones_like(indices[:, 0:1], dtype=tf.int32)
batch_indices.append(tf.concat([batch_index, indices], axis=1))
batch_weights.append(weights)
batch_indices = tf.stack(batch_indices, axis=0)
batch_weights = tf.stack(batch_weights, axis=0)
return batch_indices, batch_weights, track_id_targets
def filter_mask_overlap_min_area(masks):
"""If a pixel belongs to 2 instances, remove it from the larger instance."""
num_instances = tf.shape(masks)[0]
def _filter_min_area():
"""Helper function to filter non empty masks."""
areas = tf.reduce_sum(masks, axis=[1, 2], keepdims=True)
per_pixel_area = masks * areas
# Make sure background is ignored in argmin.
per_pixel_area = (masks * per_pixel_area +
(1 - masks) * per_pixel_area.dtype.max)
min_index = tf.cast(tf.argmin(per_pixel_area, axis=0), tf.int32)
filtered_masks = (
tf.range(num_instances)[:, tf.newaxis, tf.newaxis]
==
min_index[tf.newaxis, :, :]
)
return tf.cast(filtered_masks, tf.float32) * masks
return tf.cond(num_instances > 0, _filter_min_area,
lambda: masks)
def filter_mask_overlap(masks, method='min_area'):
if method == 'min_area':
return filter_mask_overlap_min_area(masks)
else:
raise ValueError('Unknown mask overlap filter type - {}'.format(method))
class CenterNetCornerOffsetTargetAssigner(object):
"""Wrapper to compute corner offsets for boxes using masks."""
def __init__(self, stride, overlap_resolution='min_area'):
"""Initializes the corner offset target assigner.
Args:
stride: int, the stride of the network in output pixels.
overlap_resolution: string, specifies how we handle overlapping
instance masks. Currently only 'min_area' is supported which assigns
overlapping pixels to the instance with the minimum area.
"""
self._stride = stride
self._overlap_resolution = overlap_resolution
def assign_corner_offset_targets(
self, gt_boxes_list, gt_masks_list):
"""Computes the corner offset targets and foreground map.
For each pixel that is part of any object's foreground, this function
computes the relative offsets to the top-left and bottom-right corners of
that instance's bounding box. It also returns a foreground map to indicate
which pixels contain valid corner offsets.
Args:
gt_boxes_list: A list of float tensors with shape [num_boxes, 4]
representing the groundtruth detection bounding boxes for each sample in
the batch. The coordinates are expected in normalized coordinates.
gt_masks_list: A list of float tensors with shape [num_boxes,
input_height, input_width] with values in {0, 1} representing instance
masks for each object.
Returns:
corner_offsets: A float tensor of shape [batch_size, height, width, 4]
containing, in order, the (y, x) offsets to the top left corner and
the (y, x) offsets to the bottom right corner for each foregroung pixel
foreground: A float tensor of shape [batch_size, height, width] in which
each pixel is set to 1 if it is a part of any instance's foreground
(and thus contains valid corner offsets) and 0 otherwise.
"""
_, input_height, input_width = (
shape_utils.combined_static_and_dynamic_shape(gt_masks_list[0]))
output_height = tf.maximum(input_height // self._stride, 1)
output_width = tf.maximum(input_width // self._stride, 1)
y_grid, x_grid = tf.meshgrid(
tf.range(output_height), tf.range(output_width),
indexing='ij')
y_grid, x_grid = tf.cast(y_grid, tf.float32), tf.cast(x_grid, tf.float32)
corner_targets = []
foreground_targets = []
for gt_masks, gt_boxes in zip(gt_masks_list, gt_boxes_list):
gt_masks = _resize_masks(gt_masks, output_height, output_width,
method=ResizeMethod.NEAREST_NEIGHBOR)
gt_masks = filter_mask_overlap(gt_masks, self._overlap_resolution)
output_height = tf.cast(output_height, tf.float32)
output_width = tf.cast(output_width, tf.float32)
ymin, xmin, ymax, xmax = tf.unstack(gt_boxes, axis=1)
ymin, ymax = ymin * output_height, ymax * output_height
xmin, xmax = xmin * output_width, xmax * output_width
top_y = ymin[:, tf.newaxis, tf.newaxis] - y_grid[tf.newaxis]
left_x = xmin[:, tf.newaxis, tf.newaxis] - x_grid[tf.newaxis]
bottom_y = ymax[:, tf.newaxis, tf.newaxis] - y_grid[tf.newaxis]
right_x = xmax[:, tf.newaxis, tf.newaxis] - x_grid[tf.newaxis]
foreground_target = tf.cast(tf.reduce_sum(gt_masks, axis=0) > 0.5,
tf.float32)
foreground_targets.append(foreground_target)
corner_target = tf.stack([
tf.reduce_sum(top_y * gt_masks, axis=0),
tf.reduce_sum(left_x * gt_masks, axis=0),
tf.reduce_sum(bottom_y * gt_masks, axis=0),
tf.reduce_sum(right_x * gt_masks, axis=0),
], axis=2)
corner_targets.append(corner_target)
return (tf.stack(corner_targets, axis=0),
tf.stack(foreground_targets, axis=0))
class CenterNetTemporalOffsetTargetAssigner(object):
"""Wrapper to compute target tensors for the temporal offset task.
This class has methods that take as input a batch of ground truth tensors
(in the form of a list) and returns the targets required to train the
temporal offset task.
"""
def __init__(self, stride):
"""Initializes the target assigner.
Args:
stride: int, the stride of the network in output pixels.
"""
self._stride = stride
def assign_temporal_offset_targets(self,
height,
width,
gt_boxes_list,
gt_offsets_list,
gt_match_list,
gt_weights_list=None):
"""Returns the temporal offset targets and their indices.
For each ground truth box, this function assigns it the corresponding
temporal offset to train the model.
Args:
height: int, height of input to the model. This is used to determine the
height of the output.
width: int, width of the input to the model. This is used to determine the
width of the output.
gt_boxes_list: A list of float tensors with shape [num_boxes, 4]
representing the groundtruth detection bounding boxes for each sample in
the batch. The coordinates are expected in normalized coordinates.
gt_offsets_list: A list of 2-D tf.float32 tensors of shape [num_boxes, 2]
containing the spatial offsets of objects' centers compared with the
previous frame.
gt_match_list: A list of 1-D tf.float32 tensors of shape [num_boxes]
containing flags that indicate if an object has existed in the
previous frame.
gt_weights_list: A list of tensors with shape [num_boxes] corresponding to
the weight of each groundtruth detection box.
Returns:
batch_indices: an integer tensor of shape [num_boxes, 3] holding the
indices inside the predicted tensor which should be penalized. The
first column indicates the index along the batch dimension and the
second and third columns indicate the index along the y and x
dimensions respectively.
batch_temporal_offsets: a float tensor of shape [num_boxes, 2] of the
expected y and x temporal offset of each object center in the
output space.
batch_weights: a float tensor of shape [num_boxes] indicating the
weight of each prediction.
"""
if gt_weights_list is None:
gt_weights_list = [None] * len(gt_boxes_list)
batch_indices = []
batch_weights = []
batch_temporal_offsets = []
for i, (boxes, offsets, match_flags, weights) in enumerate(zip(
gt_boxes_list, gt_offsets_list, gt_match_list, gt_weights_list)):
boxes = box_list.BoxList(boxes)
boxes = box_list_ops.to_absolute_coordinates(
boxes,
tf.maximum(height // self._stride, 1),
tf.maximum(width // self._stride, 1))
# Get the box center coordinates. Each returned tensors have the shape of
# [num_boxes]
(y_center, x_center, _, _) = boxes.get_center_coordinates_and_sizes()
num_boxes = tf.shape(x_center)
# Compute the offsets and indices of the box centers. Shape:
# offsets: [num_boxes, 2]
# indices: [num_boxes, 2]
(_, indices) = ta_utils.compute_floor_offsets_with_indices(
y_source=y_center, x_source=x_center)
# Assign ones if weights are not provided.
# if an object is not matched, its weight becomes zero.
if weights is None:
weights = tf.ones(num_boxes, dtype=tf.float32)
weights *= match_flags
# Shape of [num_boxes, 1] integer tensor filled with current batch index.
batch_index = i * tf.ones_like(indices[:, 0:1], dtype=tf.int32)
batch_indices.append(tf.concat([batch_index, indices], axis=1))
batch_weights.append(weights)
batch_temporal_offsets.append(offsets)
batch_indices = tf.concat(batch_indices, axis=0)
batch_weights = tf.concat(batch_weights, axis=0)
batch_temporal_offsets = tf.concat(batch_temporal_offsets, axis=0)
return (batch_indices, batch_temporal_offsets, batch_weights)
class DETRTargetAssigner(object):
"""Target assigner for DETR (https://arxiv.org/abs/2005.12872).
Detection Transformer (DETR) matches predicted boxes to groundtruth directly
to determine targets instead of matching anchors to groundtruth. Hence, the
new target assigner.
"""
def __init__(self):
"""Construct Object Detection Target Assigner."""
self._similarity_calc = sim_calc.DETRSimilarity()
self._matcher = hungarian_matcher.HungarianBipartiteMatcher()
def batch_assign(self,
pred_box_batch,
gt_box_batch,
pred_class_batch,
gt_class_targets_batch,
gt_weights_batch=None,
unmatched_class_label_batch=None):
"""Batched assignment of classification and regression targets.
Args:
pred_box_batch: a tensor of shape [batch_size, num_queries, 4]
representing predicted bounding boxes.
gt_box_batch: a tensor of shape [batch_size, num_queries, 4]
representing groundtruth bounding boxes.
pred_class_batch: A list of tensors with length batch_size, where each
each tensor has shape [num_queries, num_classes] to be used
by certain similarity calculators.
gt_class_targets_batch: a list of tensors with length batch_size, where
each tensor has shape [num_gt_boxes_i, num_classes] and
num_gt_boxes_i is the number of boxes in the ith boxlist of
gt_box_batch.
gt_weights_batch: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
unmatched_class_label_batch: a float32 tensor with shape
[d_1, d_2, ..., d_k] which is consistent with the classification target
for each anchor (and can be empty for scalar targets). This shape must
thus be compatible with the `gt_class_targets_batch`.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_pred_boxes,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_pred_boxes,
num_classes],
batch_reg_targets: a tensor with shape [batch_size, num_pred_boxes,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_pred_boxes].
"""
pred_box_batch = [
box_list.BoxList(pred_box)
for pred_box in tf.unstack(pred_box_batch)]
gt_box_batch = [
box_list.BoxList(gt_box)
for gt_box in tf.unstack(gt_box_batch)]
cls_targets_list = []
cls_weights_list = []
reg_targets_list = []
reg_weights_list = []
if gt_weights_batch is None:
gt_weights_batch = [None] * len(gt_class_targets_batch)
if unmatched_class_label_batch is None:
unmatched_class_label_batch = [None] * len(gt_class_targets_batch)
pred_class_batch = tf.unstack(pred_class_batch)
for (pred_boxes, gt_boxes, pred_class_batch, gt_class_targets, gt_weights,
unmatched_class_label) in zip(pred_box_batch, gt_box_batch,
pred_class_batch, gt_class_targets_batch,
gt_weights_batch,
unmatched_class_label_batch):
(cls_targets, cls_weights, reg_targets,
reg_weights) = self.assign(pred_boxes, gt_boxes, pred_class_batch,
gt_class_targets, gt_weights,
unmatched_class_label)
cls_targets_list.append(cls_targets)
cls_weights_list.append(cls_weights)
reg_targets_list.append(reg_targets)
reg_weights_list.append(reg_weights)
batch_cls_targets = tf.stack(cls_targets_list)
batch_cls_weights = tf.stack(cls_weights_list)
batch_reg_targets = tf.stack(reg_targets_list)
batch_reg_weights = tf.stack(reg_weights_list)
return (batch_cls_targets, batch_cls_weights, batch_reg_targets,
batch_reg_weights)
def assign(self,
pred_boxes,
gt_boxes,
pred_classes,
gt_labels,
gt_weights=None,
unmatched_class_label=None):
"""Assign classification and regression targets to each box_pred.
For a given set of pred_boxes and groundtruth detections, match pred_boxes
to gt_boxes and assign classification and regression targets to
each box_pred as well as weights based on the resulting match (specifying,
e.g., which pred_boxes should not contribute to training loss).
pred_boxes that are not matched to anything are given a classification
target of `unmatched_cls_target`.
Args:
pred_boxes: a BoxList representing N pred_boxes
gt_boxes: a BoxList representing M groundtruth boxes
pred_classes: A tensor with shape [max_num_boxes, num_classes]
to be used by certain similarity calculators.
gt_labels: a tensor of shape [M, num_classes]
with labels for each of the ground_truth boxes. The subshape
[num_classes] can be empty (corresponding to scalar inputs). When set
to None, gt_labels assumes a binary problem where all
ground_truth boxes get a positive label (of 1).
gt_weights: a float tensor of shape [M] indicating the weight to
assign to all pred_boxes match to a particular groundtruth box. The
weights must be in [0., 1.]. If None, all weights are set to 1.
Generally no groundtruth boxes with zero weight match to any pred_boxes
as matchers are aware of groundtruth weights. Additionally,
`cls_weights` and `reg_weights` are calculated using groundtruth
weights as an added safety.
unmatched_class_label: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each
anchor (and can be empty for scalar targets). This shape must thus be
compatible with the groundtruth labels that are passed to the "assign"
function (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]).
Returns:
cls_targets: a float32 tensor with shape [num_pred_boxes, num_classes],
where the subshape [num_classes] is compatible with gt_labels
which has shape [num_gt_boxes, num_classes].
cls_weights: a float32 tensor with shape [num_pred_boxes, num_classes],
representing weights for each element in cls_targets.
reg_targets: a float32 tensor with shape [num_pred_boxes,
box_code_dimension]
reg_weights: a float32 tensor with shape [num_pred_boxes]
"""
if not unmatched_class_label:
unmatched_class_label = tf.constant(
[1] + [0] * (gt_labels.shape[1] - 1), tf.float32)
if gt_weights is None:
num_gt_boxes = gt_boxes.num_boxes_static()
if not num_gt_boxes:
num_gt_boxes = gt_boxes.num_boxes()
gt_weights = tf.ones([num_gt_boxes], dtype=tf.float32)
gt_boxes.add_field(fields.BoxListFields.classes, gt_labels)
pred_boxes.add_field(fields.BoxListFields.classes, pred_classes)
match_quality_matrix = self._similarity_calc.compare(
gt_boxes,
pred_boxes)
match = self._matcher.match(match_quality_matrix,
valid_rows=tf.greater(gt_weights, 0))
matched_gt_boxes = match.gather_based_on_match(
gt_boxes.get(),
unmatched_value=tf.zeros(4),
ignored_value=tf.zeros(4))
matched_gt_boxlist = box_list.BoxList(matched_gt_boxes)
ty, tx, th, tw = matched_gt_boxlist.get_center_coordinates_and_sizes()
reg_targets = tf.transpose(tf.stack([ty, tx, th, tw]))
cls_targets = match.gather_based_on_match(
gt_labels,
unmatched_value=unmatched_class_label,
ignored_value=unmatched_class_label)
reg_weights = match.gather_based_on_match(
gt_weights,
ignored_value=0.,
unmatched_value=0.)
cls_weights = match.gather_based_on_match(
gt_weights,
ignored_value=0.,
unmatched_value=1)
# convert cls_weights from per-box_pred to per-class.
class_label_shape = tf.shape(cls_targets)[1:]
weights_multiple = tf.concat(
[tf.constant([1]), class_label_shape],
axis=0)
cls_weights = tf.expand_dims(cls_weights, -1)
cls_weights = tf.tile(cls_weights, weights_multiple)
return (cls_targets, cls_weights, reg_targets, reg_weights) | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/target_assigner.py | target_assigner.py |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
import six
import tensorflow.compat.v1 as tf
from object_detection.core import box_list_ops
from object_detection.core import standard_fields as fields
class RegionSimilarityCalculator(six.with_metaclass(ABCMeta, object)):
"""Abstract base class for region similarity calculator."""
def compare(self, boxlist1, boxlist2, scope=None):
"""Computes matrix of pairwise similarity between BoxLists.
This op (to be overridden) computes a measure of pairwise similarity between
the boxes in the given BoxLists. Higher values indicate more similarity.
Note that this method simply measures similarity and does not explicitly
perform a matching.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
scope: Op scope name. Defaults to 'Compare' if None.
Returns:
a (float32) tensor of shape [N, M] with pairwise similarity score.
"""
with tf.name_scope(scope, 'Compare', [boxlist1, boxlist2]) as scope:
return self._compare(boxlist1, boxlist2)
@abstractmethod
def _compare(self, boxlist1, boxlist2):
pass
class IouSimilarity(RegionSimilarityCalculator):
"""Class to compute similarity based on Intersection over Union (IOU) metric.
This class computes pairwise similarity between two BoxLists based on IOU.
"""
def _compare(self, boxlist1, boxlist2):
"""Compute pairwise IOU similarity between the two BoxLists.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
Returns:
A tensor with shape [N, M] representing pairwise iou scores.
"""
return box_list_ops.iou(boxlist1, boxlist2)
class DETRSimilarity(RegionSimilarityCalculator):
"""Class to compute similarity for the Detection Transformer model.
This class computes pairwise DETR similarity between two BoxLists using a
weighted combination of GIOU, classification scores, and the L1 loss.
"""
def __init__(self, l1_weight=5, giou_weight=2):
super().__init__()
self.l1_weight = l1_weight
self.giou_weight = giou_weight
def _compare(self, boxlist1, boxlist2):
"""Compute pairwise DETR similarity between the two BoxLists.
Args:
boxlist1: BoxList holding N groundtruth boxes.
boxlist2: BoxList holding M predicted boxes.
Returns:
A tensor with shape [N, M] representing pairwise DETR similarity scores.
"""
groundtruth_labels = boxlist1.get_field(fields.BoxListFields.classes)
predicted_labels = boxlist2.get_field(fields.BoxListFields.classes)
classification_scores = tf.matmul(groundtruth_labels,
predicted_labels,
transpose_b=True)
loss = self.l1_weight * box_list_ops.l1(
boxlist1, boxlist2) + self.giou_weight * (1 - box_list_ops.giou(
boxlist1, boxlist2)) - classification_scores
return -loss
class NegSqDistSimilarity(RegionSimilarityCalculator):
"""Class to compute similarity based on the squared distance metric.
This class computes pairwise similarity between two BoxLists based on the
negative squared distance metric.
"""
def _compare(self, boxlist1, boxlist2):
"""Compute matrix of (negated) sq distances.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
Returns:
A tensor with shape [N, M] representing negated pairwise squared distance.
"""
return -1 * box_list_ops.sq_dist(boxlist1, boxlist2)
class IoaSimilarity(RegionSimilarityCalculator):
"""Class to compute similarity based on Intersection over Area (IOA) metric.
This class computes pairwise similarity between two BoxLists based on their
pairwise intersections divided by the areas of second BoxLists.
"""
def _compare(self, boxlist1, boxlist2):
"""Compute pairwise IOA similarity between the two BoxLists.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
Returns:
A tensor with shape [N, M] representing pairwise IOA scores.
"""
return box_list_ops.ioa(boxlist1, boxlist2)
class ThresholdedIouSimilarity(RegionSimilarityCalculator):
"""Class to compute similarity based on thresholded IOU and score.
This class computes pairwise similarity between two BoxLists based on IOU and
a 'score' present in boxlist1. If IOU > threshold, then the entry in the
output pairwise tensor will contain `score`, otherwise 0.
"""
def __init__(self, iou_threshold=0):
"""Initialize the ThresholdedIouSimilarity.
Args:
iou_threshold: For a given pair of boxes, if the IOU is > iou_threshold,
then the comparison result will be the foreground probability of
the first box, otherwise it will be zero.
"""
super(ThresholdedIouSimilarity, self).__init__()
self._iou_threshold = iou_threshold
def _compare(self, boxlist1, boxlist2):
"""Compute pairwise IOU similarity between the two BoxLists and score.
Args:
boxlist1: BoxList holding N boxes. Must have a score field.
boxlist2: BoxList holding M boxes.
Returns:
A tensor with shape [N, M] representing scores threholded by pairwise
iou scores.
"""
ious = box_list_ops.iou(boxlist1, boxlist2)
scores = boxlist1.get_field(fields.BoxListFields.scores)
scores = tf.expand_dims(scores, axis=1)
row_replicated_scores = tf.tile(scores, [1, tf.shape(ious)[-1]])
thresholded_ious = tf.where(ious > self._iou_threshold,
row_replicated_scores, tf.zeros_like(ious))
return thresholded_ious | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/region_similarity_calculator.py | region_similarity_calculator.py |
import numpy as np
import tensorflow.compat.v1 as tf
def scale(keypoints, y_scale, x_scale, scope=None):
"""Scales keypoint coordinates in x and y dimensions.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
y_scale: (float) scalar tensor
x_scale: (float) scalar tensor
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
with tf.name_scope(scope, 'Scale'):
y_scale = tf.cast(y_scale, tf.float32)
x_scale = tf.cast(x_scale, tf.float32)
new_keypoints = keypoints * [[[y_scale, x_scale]]]
return new_keypoints
def clip_to_window(keypoints, window, scope=None):
"""Clips keypoints to a window.
This op clips any input keypoints to a window.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window to which the op should clip the keypoints.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
keypoints.get_shape().assert_has_rank(3)
with tf.name_scope(scope, 'ClipToWindow'):
y, x = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
y = tf.maximum(tf.minimum(y, win_y_max), win_y_min)
x = tf.maximum(tf.minimum(x, win_x_max), win_x_min)
new_keypoints = tf.concat([y, x], 2)
return new_keypoints
def prune_outside_window(keypoints, window, scope=None):
"""Prunes keypoints that fall outside a given window.
This function replaces keypoints that fall outside the given window with nan.
See also clip_to_window which clips any keypoints that fall outside the given
window.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window outside of which the op should prune the keypoints.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
keypoints.get_shape().assert_has_rank(3)
with tf.name_scope(scope, 'PruneOutsideWindow'):
y, x = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
valid_indices = tf.logical_and(
tf.logical_and(y >= win_y_min, y <= win_y_max),
tf.logical_and(x >= win_x_min, x <= win_x_max))
new_y = tf.where(valid_indices, y, np.nan * tf.ones_like(y))
new_x = tf.where(valid_indices, x, np.nan * tf.ones_like(x))
new_keypoints = tf.concat([new_y, new_x], 2)
return new_keypoints
def change_coordinate_frame(keypoints, window, scope=None):
"""Changes coordinate frame of the keypoints to be relative to window's frame.
Given a window of the form [y_min, x_min, y_max, x_max], changes keypoint
coordinates from keypoints of shape [num_instances, num_keypoints, 2]
to be relative to this window.
An example use case is data augmentation: where we are given groundtruth
keypoints and would like to randomly crop the image to some window. In this
case we need to change the coordinate frame of each groundtruth keypoint to be
relative to this new window.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max]
window we should change the coordinate frame to.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
with tf.name_scope(scope, 'ChangeCoordinateFrame'):
win_height = window[2] - window[0]
win_width = window[3] - window[1]
new_keypoints = scale(keypoints - [window[0], window[1]], 1.0 / win_height,
1.0 / win_width)
return new_keypoints
def keypoints_to_enclosing_bounding_boxes(keypoints, keypoints_axis=1):
"""Creates enclosing bounding boxes from keypoints.
Args:
keypoints: a [num_instances, num_keypoints, 2] float32 tensor with keypoints
in [y, x] format.
keypoints_axis: An integer indicating the axis that correspond to the
keypoint dimension.
Returns:
A [num_instances, 4] float32 tensor that tightly covers all the keypoints
for each instance.
"""
ymin = tf.math.reduce_min(keypoints[..., 0], axis=keypoints_axis)
xmin = tf.math.reduce_min(keypoints[..., 1], axis=keypoints_axis)
ymax = tf.math.reduce_max(keypoints[..., 0], axis=keypoints_axis)
xmax = tf.math.reduce_max(keypoints[..., 1], axis=keypoints_axis)
return tf.stack([ymin, xmin, ymax, xmax], axis=keypoints_axis)
def to_normalized_coordinates(keypoints, height, width,
check_range=True, scope=None):
"""Converts absolute keypoint coordinates to normalized coordinates in [0, 1].
Usually one uses the dynamic shape of the image or conv-layer tensor:
keypoints = keypoint_ops.to_normalized_coordinates(keypoints,
tf.shape(images)[1],
tf.shape(images)[2]),
This function raises an assertion failed error at graph execution time when
the maximum coordinate is smaller than 1.01 (which means that coordinates are
already normalized). The value 1.01 is to deal with small rounding errors.
Args:
keypoints: A tensor of shape [num_instances, num_keypoints, 2].
height: Maximum value for y coordinate of absolute keypoint coordinates.
width: Maximum value for x coordinate of absolute keypoint coordinates.
check_range: If True, checks if the coordinates are normalized.
scope: name scope.
Returns:
tensor of shape [num_instances, num_keypoints, 2] with normalized
coordinates in [0, 1].
"""
with tf.name_scope(scope, 'ToNormalizedCoordinates'):
height = tf.cast(height, tf.float32)
width = tf.cast(width, tf.float32)
if check_range:
max_val = tf.reduce_max(keypoints)
max_assert = tf.Assert(tf.greater(max_val, 1.01),
['max value is lower than 1.01: ', max_val])
with tf.control_dependencies([max_assert]):
width = tf.identity(width)
return scale(keypoints, 1.0 / height, 1.0 / width)
def to_absolute_coordinates(keypoints, height, width,
check_range=True, scope=None):
"""Converts normalized keypoint coordinates to absolute pixel coordinates.
This function raises an assertion failed error when the maximum keypoint
coordinate value is larger than 1.01 (in which case coordinates are already
absolute).
Args:
keypoints: A tensor of shape [num_instances, num_keypoints, 2]
height: Maximum value for y coordinate of absolute keypoint coordinates.
width: Maximum value for x coordinate of absolute keypoint coordinates.
check_range: If True, checks if the coordinates are normalized or not.
scope: name scope.
Returns:
tensor of shape [num_instances, num_keypoints, 2] with absolute coordinates
in terms of the image size.
"""
with tf.name_scope(scope, 'ToAbsoluteCoordinates'):
height = tf.cast(height, tf.float32)
width = tf.cast(width, tf.float32)
# Ensure range of input keypoints is correct.
if check_range:
max_val = tf.reduce_max(keypoints)
max_assert = tf.Assert(tf.greater_equal(1.01, max_val),
['maximum keypoint coordinate value is larger '
'than 1.01: ', max_val])
with tf.control_dependencies([max_assert]):
width = tf.identity(width)
return scale(keypoints, height, width)
def flip_horizontal(keypoints, flip_point, flip_permutation=None, scope=None):
"""Flips the keypoints horizontally around the flip_point.
This operation flips the x coordinate for each keypoint around the flip_point
and also permutes the keypoints in a manner specified by flip_permutation.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
flip_point: (float) scalar tensor representing the x coordinate to flip the
keypoints around.
flip_permutation: integer list or rank 1 int32 tensor containing the
keypoint flip permutation. This specifies the mapping from original
keypoint indices to the flipped keypoint indices. This is used primarily
for keypoints that are not reflection invariant. E.g. Suppose there are 3
keypoints representing ['head', 'right_eye', 'left_eye'], then a logical
choice for flip_permutation might be [0, 2, 1] since we want to swap the
'left_eye' and 'right_eye' after a horizontal flip.
Default to None or empty list to keep the original order after flip.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
keypoints.get_shape().assert_has_rank(3)
with tf.name_scope(scope, 'FlipHorizontal'):
keypoints = tf.transpose(keypoints, [1, 0, 2])
if flip_permutation:
keypoints = tf.gather(keypoints, flip_permutation)
v, u = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
u = flip_point * 2.0 - u
new_keypoints = tf.concat([v, u], 2)
new_keypoints = tf.transpose(new_keypoints, [1, 0, 2])
return new_keypoints
def flip_vertical(keypoints, flip_point, flip_permutation=None, scope=None):
"""Flips the keypoints vertically around the flip_point.
This operation flips the y coordinate for each keypoint around the flip_point
and also permutes the keypoints in a manner specified by flip_permutation.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
flip_point: (float) scalar tensor representing the y coordinate to flip the
keypoints around.
flip_permutation: integer list or rank 1 int32 tensor containing the
keypoint flip permutation. This specifies the mapping from original
keypoint indices to the flipped keypoint indices. This is used primarily
for keypoints that are not reflection invariant. E.g. Suppose there are 3
keypoints representing ['head', 'right_eye', 'left_eye'], then a logical
choice for flip_permutation might be [0, 2, 1] since we want to swap the
'left_eye' and 'right_eye' after a horizontal flip.
Default to None or empty list to keep the original order after flip.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
keypoints.get_shape().assert_has_rank(3)
with tf.name_scope(scope, 'FlipVertical'):
keypoints = tf.transpose(keypoints, [1, 0, 2])
if flip_permutation:
keypoints = tf.gather(keypoints, flip_permutation)
v, u = tf.split(value=keypoints, num_or_size_splits=2, axis=2)
v = flip_point * 2.0 - v
new_keypoints = tf.concat([v, u], 2)
new_keypoints = tf.transpose(new_keypoints, [1, 0, 2])
return new_keypoints
def rot90(keypoints, rotation_permutation=None, scope=None):
"""Rotates the keypoints counter-clockwise by 90 degrees.
Args:
keypoints: a tensor of shape [num_instances, num_keypoints, 2]
rotation_permutation: integer list or rank 1 int32 tensor containing the
keypoint flip permutation. This specifies the mapping from original
keypoint indices to the rotated keypoint indices. This is used primarily
for keypoints that are not rotation invariant.
Default to None or empty list to keep the original order after rotation.
scope: name scope.
Returns:
new_keypoints: a tensor of shape [num_instances, num_keypoints, 2]
"""
keypoints.get_shape().assert_has_rank(3)
with tf.name_scope(scope, 'Rot90'):
keypoints = tf.transpose(keypoints, [1, 0, 2])
if rotation_permutation:
keypoints = tf.gather(keypoints, rotation_permutation)
v, u = tf.split(value=keypoints[:, :, ::-1], num_or_size_splits=2, axis=2)
v = 1.0 - v
new_keypoints = tf.concat([v, u], 2)
new_keypoints = tf.transpose(new_keypoints, [1, 0, 2])
return new_keypoints
def keypoint_weights_from_visibilities(keypoint_visibilities,
per_keypoint_weights=None):
"""Returns a keypoint weights tensor.
During training, it is often beneficial to consider only those keypoints that
are labeled. This function returns a weights tensor that combines default
per-keypoint weights, as well as the visibilities of individual keypoints.
The returned tensor satisfies:
keypoint_weights[i, k] = per_keypoint_weights[k] * keypoint_visibilities[i, k]
where per_keypoint_weights[k] is set to 1 if not provided.
Args:
keypoint_visibilities: A [num_instances, num_keypoints] boolean tensor
indicating whether a keypoint is labeled (and perhaps even visible).
per_keypoint_weights: A list or 1-d tensor of length `num_keypoints` with
per-keypoint weights. If None, will use 1 for each visible keypoint
weight.
Returns:
A [num_instances, num_keypoints] float32 tensor with keypoint weights. Those
keypoints deemed visible will have the provided per-keypoint weight, and
all others will be set to zero.
"""
keypoint_visibilities.get_shape().assert_has_rank(2)
if per_keypoint_weights is None:
num_keypoints = keypoint_visibilities.shape.as_list()[1]
per_keypoint_weight_mult = tf.ones((1, num_keypoints,), dtype=tf.float32)
else:
per_keypoint_weight_mult = tf.expand_dims(per_keypoint_weights, axis=0)
return per_keypoint_weight_mult * tf.cast(keypoint_visibilities, tf.float32)
def set_keypoint_visibilities(keypoints, initial_keypoint_visibilities=None):
"""Sets keypoint visibilities based on valid/invalid keypoints.
Some keypoint operations set invisible keypoints (e.g. cropped keypoints) to
NaN, without affecting any keypoint "visibility" variables. This function is
used to update (or create) keypoint visibilities to agree with visible /
invisible keypoint coordinates.
Args:
keypoints: a float32 tensor of shape [num_instances, num_keypoints, 2].
initial_keypoint_visibilities: a boolean tensor of shape
[num_instances, num_keypoints]. If provided, will maintain the visibility
designation of a keypoint, so long as the corresponding coordinates are
not NaN. If not provided, will create keypoint visibilities directly from
the values in `keypoints` (i.e. NaN coordinates map to False, otherwise
they map to True).
Returns:
keypoint_visibilities: a bool tensor of shape [num_instances, num_keypoints]
indicating whether a keypoint is visible or not.
"""
keypoints.get_shape().assert_has_rank(3)
if initial_keypoint_visibilities is not None:
keypoint_visibilities = tf.cast(initial_keypoint_visibilities, tf.bool)
else:
keypoint_visibilities = tf.ones_like(keypoints[:, :, 0], dtype=tf.bool)
keypoints_with_nan = tf.math.reduce_any(tf.math.is_nan(keypoints), axis=2)
keypoint_visibilities = tf.where(
keypoints_with_nan,
tf.zeros_like(keypoint_visibilities, dtype=tf.bool),
keypoint_visibilities)
return keypoint_visibilities | 123-object-detection | /123_object_detection-0.1.tar.gz/123_object_detection-0.1/object_detection/core/keypoint_ops.py | keypoint_ops.py |
Subsets and Splits