code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import os import sys import hashlib import file_constants import boto import boto.s3 from boto.s3.key import Key from colorama import init from colorama import Fore init() IMAGE_FORMATS = file_constants.IMAGE_FORMATS def push_to_cloudfront(article_id): # Get the environment variable keys to connect with CloudFront. bucket_name, access_key, secret_key = get_aws_keys() # Establish connection with S3. conn = boto.connect_s3(access_key, secret_key) # Access the files in the folder for this article_id. files_in_folder = next(os.walk("posts/" + article_id))[2] for files in files_in_folder: if files.endswith(IMAGE_FORMATS): # Push each image. push(article_id, files, conn, bucket_name) def push(article_id, img_name, conn, bucket_name): img_path = article_id + "/" + img_name post_path = "posts/" + img_path if not conn.lookup(bucket_name): # Create the bucket and connect to it if it doesn't exist. bucket = conn.create_bucket(bucket_name, location=boto.s3.connection.Location.DEFAULT) else: # Connect to the bucket. bucket = conn.get_bucket(bucket_name) k = Key(bucket) # Give the key the same name as the image. k.key = img_path local_hash = hash_check(post_path) # If the image path exists, check if the image has been modified. if k.exists(): # Find local md5. local_hash = hash_check(post_path) # Access cloudfront md5. cloudfront_hash = bucket.get_key(img_path).etag[1:-1] if local_hash != cloudfront_hash: print 'Updating ' + img_path + ' in Amazon S3 bucket ' + bucket_name k.set_contents_from_filename(post_path) else: # If the image doesn't exist, add it. print 'Uploading ' + img_path + ' to Amazon S3 bucket ' + bucket_name k.set_contents_from_filename(post_path) def delete_from_cloudfront(article_id): bucket_name, access_key, secret_key = get_aws_keys() # Establish connection with S3. conn = boto.connect_s3(access_key, secret_key) if not conn.lookup(bucket_name): # If the bucket doesn't exist, there is nothing to delete. return else: # Connect to the bucket. bucket = conn.get_bucket(bucket_name) # Access the images in the S3 directory for this article_id. for image in bucket.list(prefix = article_id): if not os.path.exists("posts/" + image.name): # If the image doesn't exist locally, delete it on CloudFront. print("Deleting " + image.name + " from CloudFront") bucket.delete_key(image.name) def hash_check(post_path): # Computes the local image's md5. hasher = hashlib.md5() image = open(post_path, 'rb').read() hasher.update(image) return hasher.hexdigest() def get_aws_keys(): # Get the AWS bucket name. try: bucket = os.environ["ZENDESK_BUCKET_NAME"] except KeyError: print(Fore.RED + "Please set the environment variable ZENDESK_BUCKET_NAME" + Fore.RESET) sys.exit(1) # Get the AWS access key. try: access = os.environ["AWS_ACCESS_KEY"] except KeyError: print(Fore.RED + "Please set the environment variable AWS_ACCESS_KEY" + Fore.RESET) sys.exit(1) # Get the AWS secret key. try: secret = os.environ["AWS_SECRET_KEY"] except KeyError: print(Fore.RED + "Please set the environment variable AWS_SECRET_KEY" + Fore.RESET) sys.exit(1) return [bucket, access, secret]
zendesk-help-center-backer
/zendesk-help-center-backer-0.2.tar.gz/zendesk-help-center-backer-0.2/zendesk/scripts/cloudfront_images.py
cloudfront_images.py
import sys import click import requests @click.group() @click.pass_context @click.option( "-o", "--organization", help=( "Zendesk organization name. " "Usually the zendesk.com subdomain (obscura in obscura.zendesk.com)" ), required=True, envvar="ZREDACTOR_ORGANIZATION", ) @click.option( "-e", "--email", help=( "A Zendesk agent email address. " "Usually the email you use to login to Zendesk as an agent" ), required=True, envvar="ZREDACTOR_EMAIL", ) @click.option( "-t", "--token", help="Zendesk API token", required=True, envvar="ZREDACTOR_TOKEN", ) @click.option("-i", "--ticket-id", help="Zendesk ticket ID", required=True) @click.option( "-r", "--dry-run", help="Only show what would be done, but do not actually do anything", is_flag=True, ) def redact(ctx, organization, email, token, ticket_id, dry_run): ctx.ensure_object(dict) ctx.obj[ "base_url" ] = f"https://{organization}.zendesk.com/api/v2/tickets/{ticket_id}/comments" ctx.obj["auth"] = f"{email}/token", token ctx.obj["dry_run"] = dry_run @redact.command() @click.pass_context @click.argument("snippets", nargs=-1, required=False) @click.option("-f", "--file", type=click.File("r"), required=False) def snippets(ctx, snippets, file): if not snippets and not file: raise click.exceptions.UsageError( "Either 'SNIPPETS' argument(s) or '-f' / '--file' option must be specified" ) if snippets and file: raise click.exceptions.UsageError( "Only one of 'SNIPPETS' argument(s) or '-f' / '--file' option must be specified" ) base_url = ctx.obj["base_url"] auth = ctx.obj["auth"] dry_run = ctx.obj["dry_run"] if file: snippets = [s.strip() for s in file.readlines() if s.strip()] snippets_found = False for s in snippets: snippet_found = False for c in get_comments(base_url, auth): if s in c["body"]: snippet_found = True snippets_found = True print(f"Found snippet '{s}' in comment {c['id']}") if dry_run: print("Running dry, skipping") else: print("Redacting snippet") handle_resp( requests.put( f"{base_url}/{c['id']}/redact.json", json={"text": s}, auth=auth, ), error="Redaction failed", ) if not snippet_found: print(f"Snippet '{s}' not found in ticket") if not snippets_found: print("None of the provided text snippets were found in the ticket") @redact.command() @click.pass_context def attachments(ctx): base_url = ctx.obj["base_url"] auth = ctx.obj["auth"] dry_run = ctx.obj["dry_run"] attachments_found = False for c in get_comments(base_url, auth): for a in c["attachments"]: attachments_found = True print(f"Found attachment {a['id']} in comment {c['id']}") if dry_run: print("Running dry, skipping") else: print("Redacting attachment") handle_resp( requests.put( f"{base_url}/{c['id']}/attachments/{a['id']}/redact.json", auth=auth, ), error="Redaction failed", ) if not attachments_found: print("Ticket contains not attachments") def get_comments(base_url, auth): resp = requests.get(base_url, auth=auth) handle_resp(resp, "Failed to get ticket comments", fail=True) return resp.json().get("comments", []) def handle_resp(resp, error, fail=False): try: resp.raise_for_status() except requests.exceptions.HTTPError as e: print(f"{error}: {e}") if fail: sys.exit(1)
zendesk-redactor
/zendesk-redactor-0.0.3.tar.gz/zendesk-redactor-0.0.3/redactor.py
redactor.py
# zendesk-redactor `zendesk-redactor` is a command-line interface for the Zendesk [Ticket Redaction](https://www.zendesk.com/apps/support/ticket-redaction/) app. ## Motivation The usability of the Ticket Redaction app is not so good. The redaction form does not support submitting multi-line input, so if you have multiple text snippets that you need to redact, you'd have to input them into the field and click the `Redact` button for each of them separately, one-by-one. This is very inefficient and time-consuming. This tool tries to remedy this usability oversight by allowing you to redact multiple text snippets at once by either providing them as command-line arguments, or by writing them into a file and supplying the path to this file as a command-line option. The tool also allows you to redact attachments, although it is currently not possible to do this selectively - it's either all of them or none of them. This tool is not a silver bullet though. If you have many text snippets that you need to redact, picking them out of the ticket is still a cumbersome manual process. But this tool will at least allow you to redact all of them at once, instead of clicking `Redact` for each of them separately. ## Installation It's Python, so make sure you have Python 3 installed, and run: ``` $ pip install zendesk-redactor ``` Although not strictly necessary, you might want to either create a virtualenv or use something like [pipx](https://github.com/pipxproject/pipx). ## Usage ### Authentication In order to authenticate to Zendesk API you must provide the organization name, which usually is the subdomain part of your Zendesk URL before `zendesk.com` (e.g `obscura` for `https://obscura.zendesk.com`), your agent email address, and an API [token](https://developer.zendesk.com/rest_api/docs/support/introduction#using-a-zendesk-api-token). These can be provided in two ways. 1. As command-line options: ``` $ zredactor --organization obscura --email [email protected] --token BigSecret42 ``` 2. As environment variables: ``` export ZREDACTOR_ORGANIZATION=obscura export [email protected] export ZREDACTOR_TOKEN=BigSecret42 ``` ### Redacting text snipets The following command will redact all occurrences of the text snippets `foo`, `bar`, `baz` in the ticket with ID 1742: ``` $ zredactor --organization obscura --email [email protected] --token BigSecret42 --ticket-id 1742 snippets foo bar baz ``` Alternatively, if you use environment variables for authentication: ``` $ zredactor --ticket-id 1742 snippets foo bar baz ``` The following command will redact all occurrences of the text snippets provided in a file `/tmp/to_redact.txt` in the ticket with ID 1742: ``` $ zredactor --organization obscura --email [email protected] --token BigSecret42 --ticket-id 1742 snippets -f /tmp/to_redact.txt ``` Alternatively, with authentication environment variables set: ``` $ zredactor --ticket-id 1742 snippets -f /tmp/to_redact.txt ``` The file must contain one snippet per line. ### Redacting attachments The following command will redact all attachments in ticket with ID 1742: ``` $ zredactor --organization obscura --email [email protected] --token BigSecret42 --ticket-id 1742 attachments ``` Alternatively, with authentication environment variables set: ``` $ zredactor --ticket-id 1742 attachments ``` Note that currently it is not possible to redact attachments selectively.
zendesk-redactor
/zendesk-redactor-0.0.3.tar.gz/zendesk-redactor-0.0.3/README.md
README.md
from zendesk_ticket_viewer.ticket import ZendeskTicket from zendesk_ticket_viewer.api import ZendeskApi from zdesk import Zendesk import os ''' Module description The entry point for the application drives core functionality: Display a single zendesk ticket Display all zendesk tickets ''' BORDER = '===================================================' DISPLAY_SINGLE_TICKET = '1' DISPLAY_ALL_TICKETS = '2' EXIT = '9' CONNECTION_ERROR_MSG = '' def main(): set_up() while True: main_menu() selection = input(': ') if selection is DISPLAY_SINGLE_TICKET: display_single_ticket() elif selection is DISPLAY_ALL_TICKETS: display_all_tickets() elif selection is EXIT: print('\nGood Bye - Have a nice day ^_^') break else: print('Invalid selection\n') # Welcome user and attempts to authenticate connection with zendesk api def set_up(): print('Welcome to the Zendesk Ticket Viewer') print('...Establishing connection') ZendeskApi.attempt_connection(os, Zendesk) # Handles getting a tickets raw data from the Zendesk api and then attempts to display it def display_single_ticket(): id_number = input('Enter ticket id number: ') raw_response = ZendeskApi.single_ticket(id_number) if raw_response is False: return False display(raw_response) # Handles getting all tickets raw data from the Zendesk api and then attempts to display them def display_all_tickets(): all_tickets_raw_data = ZendeskApi.all_tickets() if all_tickets_raw_data is False: return False for rawTicketData in ZendeskApi.all_tickets(): display(rawTicketData) # Formats raw ticket data received from api, into a user friendly format def display(raw_response): try: formatted_ticket = ZendeskTicket(raw_response) print(formatted_ticket) return True except ValueError: pass return False def main_menu(): print('{}\n{}\n\n{}\n{}\n{}\n\n{}\n{}' .format(BORDER, 'Main Menu', 'Please enter one of the following options:', '1. Display a single ticket', '2. Display all tickets', '9. Quit out of program', BORDER)) if __name__ == '__main__': main()
zendesk-ticket-viewer
/zendesk_ticket_viewer-0.5.tar.gz/zendesk_ticket_viewer-0.5/zendesk_ticket_viewer/main.py
main.py
import abc from zdesk.zdesk import AuthenticationError, ZendeskError, RateLimitError from requests.exceptions import ConnectionError ''' Module description Deals with Zdesk (api wrapper) calls and prepares authentication details currently implements ticket_show ticket_list Handles custom exceptions raised by Zdesk AuthenticationError ZendeskError ConnectionError Uses os.getev to get authentication details from the local environment variables ''' # Environment variables used for authentication ZENDESK_ACCESS_TOKEN = 'ZENDESK_ACCESS_TOKEN' ZENDESK_EMAIL_ADDRESS = 'ZENDESK_EMAIL_ADDRESS' ZENDESK_SUBDOMAIN = 'ZENDESK_SUBDOMAIN' # Interface to be used for tickets class Api(metaclass=abc.ABCMeta): @abc.abstractmethod def attempt_connection(self) -> bool: pass @abc.abstractmethod def all_tickets(self) -> bool: pass @abc.abstractmethod def single_ticket(self) -> bool: pass # Handles establishing authentication with Zendesk and deals with making api requests class ZendeskApi(Api): connection = None access_token = None zendesk_email_address = None zendesk_subdomain = None # Attempts to authenticate with Zendesk and then checks if the attempt was successful. @classmethod def attempt_connection(cls, os, Zendesk): if not ZendeskApi.set_credentials(os): print('\nSystem variables have not been set or have been incorrectly named.\n' 'System variable names should be: ' '{}\n {}\n {}\n' .format(ZENDESK_ACCESS_TOKEN, ZENDESK_EMAIL_ADDRESS, ZENDESK_SUBDOMAIN)) return False # Attempt to authenticate ZendeskApi.connection = \ Zendesk(cls.zendesk_subdomain, cls.zendesk_email_address, cls.access_token, True) # Test if the authentication/connection was successful if cls.make_request(cls.connection.tickets_list, None) is not False: return True return False # Returns all existing tickets from currently authenticated account @classmethod def all_tickets(cls): response = cls.make_request(cls.connection.tickets_list, None) if response is False: return False return response['tickets'] # Returns a single ticket found by id @classmethod def single_ticket(cls, id): response = cls.make_request(cls.connection.ticket_show, id) if response is False: return False return response['ticket'] # Helpers @classmethod def set_credentials(cls, os): cls.access_token = os.getenv(ZENDESK_ACCESS_TOKEN) cls.zendesk_email_address = os.getenv(ZENDESK_EMAIL_ADDRESS) cls.zendesk_subdomain = os.getenv(ZENDESK_SUBDOMAIN) # Checking required system variables exist and are set if (cls.access_token is None or cls.zendesk_email_address is None or cls.zendesk_subdomain is None): return False return True # Attempts to process an api request and handle any errors raised by the zendesk api wrapper @staticmethod def make_request(request, params): try: if(params is None): return request() return request(params) except AuthenticationError as e: print("\nIncorrect authentication details - See raw response for more information") print("%s %s" % ('Raw response: ', e)) return False except ZendeskError as e: print("\nBad HTTP response - See raw response for more information.\n") print("%s %s" % ('Raw response: ', e)) return False except ConnectionError as e: print("\nNo internet connection - See raw response for more information.") print("%s %s" % ('Raw response: ', e)) return False except RateLimitError as e: print("\nRate limit Reached - See raw response for more information.") print("%s %s" % ('Raw response: ', e)) return False print('Unknown error encounted when making api request') return False
zendesk-ticket-viewer
/zendesk_ticket_viewer-0.5.tar.gz/zendesk_ticket_viewer-0.5/zendesk_ticket_viewer/api.py
api.py
# Hive Zendesk API # Copyright (c) 2008-2017 Hive Solutions Lda. # # This file is part of Hive Zendesk API. # # Hive Zendesk API is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by the Apache # Foundation, either version 2.0 of the License, or (at your option) any # later version. # # Hive Zendesk API is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License along with # Hive Zendesk API. If not, see <http://www.apache.org/licenses/>. __author__ = "João Magalhães <[email protected]>" """ The author(s) of the module """ __version__ = "1.0.0" """ The version of the module """ __revision__ = "$LastChangedRevision$" """ The revision number of the module """ __date__ = "$LastChangedDate$" """ The last change date of the module """ __copyright__ = "Copyright (c) 2008-2017 Hive Solutions Lda." """ The copyright for the module """ __license__ = "Apache License, Version 2.0" """ The license for the module """ import base64 import appier from . import user from . import ticket from . import ticket_field DOMAIN = "domain.zendesk.com" """ The default domain to be used when no other domain value is provided to the constructor """ class API( appier.API, user.UserAPI, ticket.TicketAPI, ticket_field.TicketFieldAPI ): def __init__(self, *args, **kwargs): appier.API.__init__(self, *args, **kwargs) self.domain = appier.conf("ZD_DOMAIN", DOMAIN) self.username = appier.conf("ZD_USERNAME", None) self.token = appier.conf("ZD_TOKEN", None) self.username = kwargs.get("username", self.username) self.token = kwargs.get("token", self.token) self.base_url = "https://%s/api/v2/" % self.domain def build( self, method, url, data = None, data_j = None, data_m = None, headers = None, params = None, mime = None, kwargs = None ): auth = kwargs.pop("auth", True) if auth: headers["Authorization"] = self.get_authorization() def get_authorization(self): if not self.username or not self.token: None payload = "%s/token:%s" % (self.username, self.token) payload = appier.legacy.bytes(payload) authorization = base64.b64encode(payload) authorization = appier.legacy.str(authorization) return "Basic %s" % authorization
zendesk_api
/zendesk_api-0.1.5.tar.gz/zendesk_api-0.1.5/src/zendesk/base.py
base.py
================================================================== zendesk: Communicator with the Zendesk API ================================================================== TODO: Modify the whole file as necessary. This is a "long description" file for the package that you are creating. If you submit your package to PyPi, this text will be presented on the `public page <http://pypi.python.org/pypi/python_package_boilerplate>`_ of your package. Note: This README has to be written using `reStructured Text <http://docutils.sourceforge.net/rst.html>`_, otherwise PyPi won't format it properly. Installation ------------ The easiest way to install most Python packages is via ``easy_install`` or ``pip``:: $ easy_install zendesk Usage ----- TODO: This is a good place to start with a couple of concrete examples of how the package should be used. The boilerplate code provides a dummy ``main`` function that prints out the word 'Hello':: >> from zendesk import main >> main() When the package is installed via ``easy_install`` or ``pip`` this function will be bound to the ``zendesk`` executable in the Python installation's ``bin`` directory (on Windows - the ``Scripts`` directory).
zendesk_integration
/zendesk_integration-0.2.4.tar.gz/zendesk_integration-0.2.4/README.rst
README.rst
import requests import json import exceptions from inflection import singularize from helper import separete_into_groups from custom_exceptions import BulkExceededLimit, RequestException class BaseZenDesk(object): def __init__(self, hostname, user, password, timeout=15): self.host = "https://{}.zendesk.com/api/v2/".format(hostname) self.auth = (user, password) self.timeout = timeout def _request(self, resource, method='get', **kwargs): ''' TODO ''' _method = getattr(requests, method.lower()) headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} url = "{host}{resource}".format(host=self.host, resource=resource) return _method(url, auth=self.auth, data=json.dumps(kwargs), timeout=self.timeout, headers=headers) class BaseRest(object): def __init__(self, base, resource, class_object): self.base = base self.resource = resource self.class_object = class_object def get(self, resource=None, page=1, per_page=10, **kwargs): resource = resource or self.resource endpoint = "{}.json?page={}&per_page={}".format( resource, page, per_page) resp = self.base._request(endpoint, **kwargs) if resp.status_code != 200: content = resp.json() if getattr(resp, 'json') else {} raise RequestException(resp.status_code, content=content) resp = resp.json() # return resp items = resp.pop(self.resource) resp.update(items=map(lambda x: self.class_object(**x), items)) return resp def get_one(self, id_object, resource=None): resource = resource or self.resource url = "{}/{}.json".format(resource, id_object) resp = self.base._request(url) if resp.status_code != 200: content = resp.json() if getattr(resp, 'json') else {} raise RequestException(resp.status_code, content=content) return self.class_object(**resp.json()) def get_one_query(self, query, resource=None): resource = resource or self.resource endpoint = "{}.json?query={}".format(resource, query) resp = self.base._request(endpoint) if resp.status_code != 200: content = resp.json() if getattr(resp, 'json') else {} raise RequestException(resp.status_code, content=content) resp_json = resp.json() if resp_json.get('count') != 1: resp_json.update({'error': 'Return multiples objects for search!'}) raise RequestException(resp.status_code, content=resp_json) item = resp_json.pop(self.resource)[0] return self.class_object(**item) def show_many(self, resource=None, name_field='ids', fields=[]): if len(fields) > 100: raise Exception('identificares the limit is 100!') resource = resource or self.resource url = "{}/show_many.json?{}={}".format( resource, name_field, fields.split(',')) resp = self.base._request(url) if resp.status_code != 200: content = resp.json() if getattr(resp, 'json') else {} raise RequestException(resp.status_code, content=content) resp = resp.json() items = resp.pop(self.resource) resp.update(items=map(lambda x: self.class_object(**x), items)) return resp def create(self, resource=None, **kwargs): resource = resource or self.resource url = "{}.json".format(resource) singular_resource = singularize(resource) data = { singular_resource: kwargs, } resp = self.base._request(url, 'POST', **data) if resp.status_code != 201: content = resp.json() if getattr(resp, 'json') else {} raise RequestException(resp.status_code, content=content) return self.class_object(**resp.json().get(singularize(resource))) def create_many(self, list_objects, resource=None): jobs = [] resource = resource or self.resource url = "{}/create_many.json".format(resource) groups = separete_into_groups(list_objects, 100) has_pendent_groups = True while has_pendent_groups: errors = [] for group in groups: try: data = {resource: group} resp = self.base._request(url, 'POST', **data) jobs.append(resp.json()) except Exception: errors.append(group) if errors: groups = map(lambda x: x, errors) else: has_pendent_groups = False return jobs def put(self, id_object, resource=None, **kwargs): resource = resource or self.resource url = "{}/{}.json".format(resource, id_object) data = {singularize(resource): kwargs} resp = self.base._request(url, 'PUT', **data) if resp.status_code != 200: content = resp.json() if getattr(resp, 'json') else {} raise RequestException(resp.status_code, content=content) return self.class_object(**resp.json()) def bulk_put_many(self, documents, resource=None, limit=100): if limit > 100: raise BulkExceededLimit resource = resource or self.resource url = "{}/update_many.json".format(resource) groups = separete_into_groups(documents, limit) has_pendent_groups = True jobs = [] while has_pendent_groups: errors = [] for group in groups: try: data = {resource: group} resp = self.base._request(url, 'PUT', **data) jobs.append(resp.json()) except Exception: errors.append(group) if errors: groups = map(lambda x: x, errors) else: has_pendent_groups = False return jobs def put_many(self): raise exceptions.NotImplemented("Method not implemented!") def delete(self, id_object, resource=None): resource = resource or self.resource url = "{}/{}.json".format(resource, id_object) resp = self.base._request(url, 'DELETE') if resp.status_code != 200: content = resp.json() if getattr(resp, 'json') else {} raise RequestException(resp.status_code, content=content) def delete_many(self, list_ids, resource=None, name_field='ids', limit=100): resource = resource or self.resource groups = separete_into_groups(list_ids, limit) has_pendent_groups = True responses = [] while has_pendent_groups: errors = [] for group in groups: try: url = "{}/destroy_many.json?{}={}.json".format( resource, name_field, ','.join(group)) resp = self.base._request(url, 'DELETE') responses.append(resp.json()) except Exception: errors.append(group) if errors: groups = map(lambda x: x, errors) else: has_pendent_groups = False return responses
zendesk_integration
/zendesk_integration-0.2.4.tar.gz/zendesk_integration-0.2.4/zendesk/base.py
base.py
<p align="center"> <img src="https://github.com/Mjvolk3/Zendron/raw/main/notes/assets/drawio/logo.drawio.png" /> </p> [![PyPI version](https://badge.fury.io/py/zendron.svg)](https://badge.fury.io/py/zendron) ## Showcase ![](https://github.com/Mjvolk3/Zendron/raw/main/notes/assets/videos/gif/zendron-test_2.gif) 1. Show how you can structure a paper using note refernces in Dendron. 2. Install Zendron and import references from the relevant library. 3. Cite while you write, and view all relevant Zotero metadata, annotations, and comment notes with hover. 4. Compile paper to `.docx`, `.pdf`, and `.html` with Pandoc. 5. Find relevant papers via VsCode search. ## Introduction - This package was developed for porting Zotero annotations and metadata to markdown. These markdown notes are then brought into a [Dendron](https://www.dendron.so/) hierarchy for integration with vault notes. We recommend using the package within [Visual Studio Code](https://code.visualstudio.com/).The end goal is to get a two way sync between notes in Zotero and notes in Dendron, but this has some difficulties and limitations that are taking some time to address. For now only a one way sync from Zotero to Dendron is supported. ## Install Instructions - It is recommended to build a [conda env](https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) for installation. - Install [Dendron CLI](https://wiki.dendron.so/notes/RjBkTbGuKCXJNuE4dyV6G/). - `npm install -g @dendronhq/dendron-cli@latest` - Install the zendron - `python -m pip install zendron` ## Zotero Local Setup - To start you need [Better BibTeX for Zotero](https://retorque.re/zotero-better-bibtex/installation/) - This allows pinning of of bibtex keys.v - Go to `Zotero > Settings... > Advanced > General > Config Editor`![](https://github.com/Mjvolk3/Zendron/raw/main/notes/assets/images/zendron.citation-key.md.zotero-config-editor.png) - Accept the risks ![](https://github.com/Mjvolk3/Zendron/raw/main/notes/assets/images/zendron.citation-key.md.zotero-config-editor-accept-risks.png) - In the Search, type `autoPinDelay` and chance the integer value from 0 (default) to 1. ![](https://github.com/Mjvolk3/Zendron/raw/main/notes/assets/images/zendron.citation-key.md.autoPinDelay-update.png) ## Zotero API key - [Zotero API key](https://www.zotero.org/settings/keys) - We recommend setting up you Zotero API key with the following settings to allow for full functionality. - Personal Library - [x] Allow library access. - [x] Allow notes access. - [x] Allow write access. - Default Gropu Permissions - [x] Read/Write ![](https://github.com/Mjvolk3/Zendron/raw/main/notes/assets/images/zotero.api-key.md.zotero-api-key.png) - This key can then be copy pasted in the configuration file. You should add your key to `.gitignore` to prevent others from accessing your Zotoero database. If the key is lost you can always generate a new one. ## Zotero and File Import Configuration All zendron configuration is handled in [config.yml](https://github.com/Mjvolk3/Zendron/raw/main/conf/config.yaml). ```yml library_id : 4932032 # Zotero library ID library_type : group # [user, group] library api_key : FoCauOvWMlNdYmpYuY5JplTw # Zotero API key collection: null # Name of Zotero Collection, null for entire library item_types: [journalArticle, book, preprint, conferencePaper, report] # List of item types according to [pyzotero](https://pyzotero.readthedocs.io/en/latest/) local_image_path: /Users/<username>/Zotero/cache # Local path for importing annotated images dendron_limb: zendron.import # Dendron import limb e.g. zendron.import.paper-title.annotations.md zotero_comment_title: zendron comment # fixed for now... needed for eventual 2-way sync. pod_path: zotero_pod # Name of dendron pod, removed after completion of import. We will later add configuration for this to remain. This will allow for non Dendron users to import markdown Zotero notes in a strucutred hierarchy. ``` - `library_id` - Integer identifier of library. This is the number that matches the name of a library. - [User ID](https://www.zotero.org/settings/keys). - For group ID visit [Zotero Groups](https://www.zotero.org/groups/), click on your desired group, and copy the id from the URL. - `library_type`: `group` for group libraries and `user` for user library. - `api_key`: Use the API Key obtained from [Zotero API KEY](README.md#zotero-api-key). - `collection`: This can be the name of any collection or subcollection in the specificed library. If there are multiple collections or sub collections with the same name, the import will arbitrarily choose one. To make sure you are importing the desired collection, make sure the name of the collection is unique in the Zotero library. - `item_types`: Zotero item types to import according to [pyzotero](https://pyzotero.readthedocs.io/en/latest/) syntax. `local_image_path`: Path to annotated images. `/Users/<username>/Zotero/cache` is the default path on MacOS. - `dendron_limb`: This is the period deliminated hierarchy prefix to all file imports for Dendron, e.g. `root.zotero.import.<paper_title>.annotations.md`. - `zotero comment title` - IGNORE FOR NOW. Eventually needed for 2-way sync. - `pod_path` - IGNORE FOR NOW. Eventually needed for markdown only import, without Dendron integration. ## Basic Usage There are only two basic commands that work as of now. - `zendron` - This command should only be run in the root directory of the workspace. - This command imports notes according to a defined [config.yml](https://github.com/Mjvolk3/Zendron/raw/main/conf/config.yaml). Once the command is run the first time the user needs to modify their configuration `./conf/config.yaml`. All required configs are marked with a comment `# STARTER CONFIG` upon initialization. - Notes are imported with a `## Time Created` heading. This allows for stable reference from other notes, within the note vault. We autogenerate a `*.comments.md` that should be used for taking any additional notes within Dendron. Additional notes taken within the meta data file (`notes/zendron.import.<paper-title>.md`), or the `*.annotations.md` will be overwritten after running `zendron` for a second time. All files downstream of import excpet `*.comments.md` should be treated as read only. We have plans to explicitly make them read only soon. - Upon import, notes and tags are left as stubs. To create these notes run `> Dendron: Doctor` then `createMissingLinkedNotes`. It is best practice to correc tag warnings before doing this. - `zendron remove=true` - This command removes imported notes and associated links. This command works by remove all notes downstream fo `dendron_limb`, excpet for `comments.md`. There is some difficult removing other files created becuase these are separate from the `dendron_limb`. These files include `user.*.md`, which comes from bibtex keys, and `tags.*.md` which come from metadata and annotation tags. For now, we don't remove tags, but we do remove bibex keys (`<user.bibtex_key>.md`). - There are more complicated removal's that could be desired so we plan to eventually change this from a `bool` to an `str`. ## Miscellaneous - The `zendron_cache` is used for remove of `<user.bibtex_key>.md`. If it is deleted and you run remove, the `<user.bibtex_key>.md` will not be removed. In this case you can run `zendron` again, then run the `zendron remove=true` again. - If there are run that fail, sometimes a `.hydra` with the given configuraiton will be generated in the root dir. This isn't an issue but it contains the API information and should therefore be added to the `.gitignore` as a safeguard. In addition these files can be used to inspect the reason for the faiure. - `__main__.log` is generated after running a `zendron`, this can also be deleted as you please. It is also useful for inspecting an failures to import. ## Troubleshooting - If you are having trouble with startup you can use this [Zendron-Test](https://github.com/Mjvolk3/Zendron-Test) template and try to reproduce your issues here. Simply click on `Use this template`, clone the repo and try to run `zendron` here. This will allow for us to catch things we overlooked for different user workspace configuration etc. Once you have tried to reproduce issues here please submit an issue on [Zendron](https://github.com/Mjvolk3/Zendron).
zendron
/zendron-1.1.13.tar.gz/zendron-1.1.13/README.md
README.md
# Zenduty Python SDK Python SDK to communicate with zenduty endpoints ## Installing Installation can be done through pip, as follows: ``` $ pip install zenduty-api ``` or you may grab the latest source code from GitHub: ``` $ git clone https://github.com/Zenduty/zenduty-python-sdk $ python3 setup.py install ``` ## Contents 1) zenduty/api : contains the functions to communicate with zenduty API endpoints 2) zenduty/ : contains the common required files 3) bin/ : contains sample script to run zenduty functions ## Getting started Before you begin making use of the SDK, make sure you have your Zenduty Access Token. You can then import the package into your python script. ``` import zenduty ``` Based on the endpoint you want to communicate with, create an object of the required class. For example, to create an incident: ``` api_obj = zenduty.IncidentsApi(zenduty.ApiClient('your-access-token')) body = {"service":"c7fff4c5-2def-41e8-9120-c63f649a825c", "escalation_policy":"a70244c8-e343-4dd0-8d87-2f767115568a", "user":null, "title":"Name of trial", "summary":"summary of trial"} response = api_obj.create_incident(body) print(response.data) print(response.status_code) ``` Refer the comments under each function for a detailed description of it's parameters. It is important to note that each function returns a urllib3.response.HTTPResponse object. ## Running tests There is a sample skeleton code in bin/. Add your access token to it and modify the object and function name for testing purposes. ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details
zenduty-api
/zenduty-api-0.2.tar.gz/zenduty-api-0.2/README.md
README.md
import six class OpenApiException(Exception): """The base exception class for all OpenAPIExceptions""" class ApiTypeError(OpenApiException, TypeError): def __init__(self, msg, path_to_item=None, valid_classes=None, key_type=None): """ Raises an exception for TypeErrors Args: msg (str): the exception message Keyword Args: path_to_item (list): a list of keys an indices to get to the current_item None if unset valid_classes (tuple): the primitive classes that current item should be an instance of None if unset key_type (bool): False if our value is a value in a dict True if it is a key in a dict False if our item is an item in a list None if unset """ self.path_to_item = path_to_item self.valid_classes = valid_classes self.key_type = key_type full_msg = msg if path_to_item: full_msg = "{0} at {1}".format(msg, render_path(path_to_item)) super(ApiTypeError, self).__init__(full_msg) class ApiValueError(OpenApiException, ValueError): def __init__(self, msg, path_to_item=None): """ Args: msg (str): the exception message Keyword Args: path_to_item (list) the path to the exception in the received_data dict. None if unset """ self.path_to_item = path_to_item full_msg = msg if path_to_item: full_msg = "{0} at {1}".format(msg, render_path(path_to_item)) super(ApiValueError, self).__init__(full_msg) class ApiKeyError(OpenApiException, KeyError): def __init__(self, msg, path_to_item=None): """ Args: msg (str): the exception message Keyword Args: path_to_item (None/list) the path to the exception in the received_data dict """ self.path_to_item = path_to_item full_msg = msg if path_to_item: full_msg = "{0} at {1}".format(msg, render_path(path_to_item)) super(ApiKeyError, self).__init__(full_msg) class ApiException(OpenApiException): def __init__(self, status=None, reason=None, http_resp=None): if http_resp: self.status = http_resp.status self.reason = http_resp.reason self.body = http_resp.data self.headers = http_resp.getheaders() else: self.status = status self.reason = reason self.body = None self.headers = None def __str__(self): """Custom error messages for exception""" error_message = "({0})\n"\ "Reason: {1}\n".format(self.status, self.reason) if self.headers: error_message += "HTTP response headers: {0}\n".format( self.headers) if self.body: error_message += "HTTP response body: {0}\n".format(self.body) return error_message def render_path(path_to_item): """Returns a string representation of a path""" result = "" for pth in path_to_item: if isinstance(pth, six.integer_types): result += "[{0}]".format(pth) else: result += "['{0}']".format(pth) return result
zenduty-api
/zenduty-api-0.2.tar.gz/zenduty-api-0.2/zenduty/exceptions.py
exceptions.py
from zenduty.api_client import ApiClient class IntegrationsApi(object): def __init__(self,api_client=None): if api_client is None: api_client=ApiClient() self.api_client = api_client def get_integrations_in_service(self,team_id,service_id): #Returns the integrations in a service #params str team_id: unique id of team #params str service_id: unique id of service return self.api_client.call_api('GET','/api/account/teams/{}/services/{}/integrations/'.format(team_id,service_id)) def create_integration(self,team_id,service_id,body): #Creates a new integration for a given service in a team #params str team_id: unique id of team #params str service_id: unique id of service #params dict body: contains the details of the new integration # Sample body: # {"name":"asdf", # "summary":"asdf", # "application":"27c9800c-2856-490d-8119-790be1308dd4"} return self.api_client.call_api('POST','/api/account/teams/{}/services/{}/integrations/'.format(team_id,service_id),body=body) def get_integrations_by_id(self,team_id,service_id,integration_id): #Returns an integration belonging to a service in a team, identified by id #params str team_id: unique id of team #params str service_id: unique id of service #params str integration_id: unique id of integration return self.api_client.call_api('GET','/api/account/teams/{}/services/{}/integrations/{}/'.format(team_id,service_id,integration_id)) def get_alerts_in_integration(self,team_id,service_id,integration_id): #Retruns alerts in a particular integration #params str team_id: unique id of team #params str service_id: unique id of service #params str integration_id: unique id of integration return self.api_client.call_api('GET','/api/account/teams/{}/services/{}/integrations/{}/alerts/'.format(team_id,service_id,integration_id))
zenduty-api
/zenduty-api-0.2.tar.gz/zenduty-api-0.2/zenduty/api/integrations_api.py
integrations_api.py
from zenduty.api_client import ApiClient class IncidentsApi(object): def __init__(self,api_client=None): if api_client is None: api_client=ApiClient() self.api_client = api_client def get_incidents(self,body): #Returns the incidents from your zenduty account #params dict body: contains all the required details of your account # Sample body: # {'page':1, # 'status':5, # 'team_id':['a2c6322b-4c1b-4884-8f7a-a7f270de98cb'], # 'service_ids':[], # 'user_ids':[]} return self.api_client.call_api('GET','/api/incidents/',body=body) def get_incidents_by_number(self,incident_number): #Returns the incidents belonging to a given incident number #params int incident_number: incident number of event return self.api_client.call_api('GET','/api/incidents/{}/'.format(incident_number)) def get_incident_alerts(self,incident_number): #Returns all alerts of a particular incident #params int incident_number: incident number of event return self.api_client.call_api('GET','/api/incidents/{}/alerts/'.format(incident_number)) def get_incident_notes(self,incident_number): #Gets the notes regarding an incident, identified by incident number #params int incident_number: incident number of event return self.api_client.call_api('GET','/api/incidents/{}/note/'.format(incident_number)) def acknowledge_or_resolve_incidents(self,incident_number,body): #Used to acknowledge or resolve incident, identified by incident number #params str incident_number: incident number of event #params dict body: contains the changed values of incident # Sample body: # {'status':3, # 'incident_number':12} return self.api_client.call_api('PATCH','/api/incidents/{}/'.format(incident_number),body=body) def create_incident(self,body): #Used to create an incident for a particular service, identified by id #params dict body: contains necessary details for creating incident # Sample body: # {"service":"c7fff4c5-2def-41e8-9120-c63f649a825c", # "escalation_policy":"a70244c8-e343-4dd0-8d87-2f767115568a", # "user":null, # "title":"Name of trial", # "summary":"summary of trial"} # escalation_policy,service, title and summary are required fields. # if escalation_policy is not set (set to None then), then assigned_to is required, as follows # {"service":"b1559a26-c51f-45a1-886d-f6caeaf0fc7e", # "escalation_policy":null, # "assigned_to":"826032d6-7ccd-4d58-b114-f", # "title":"Name of trial", # "summary":"Summary of trial"} return self.api_client.call_api('POST','/api/incidents/',body=body)
zenduty-api
/zenduty-api-0.2.tar.gz/zenduty-api-0.2/zenduty/api/incidents_api.py
incidents_api.py
from zenduty.api_client import ApiClient class EscalationPoliciesApi(object): def __init__(self,api_client=None): if api_client is None: api_client=ApiClient() self.api_client = api_client def get_escalation_policies(self,team_id): #Returns the escalation policies belonging to one team #params str team_id: unique id of team return self.api_client.call_api('GET','/api/account/teams/{}/escalation_policies/'.format(team_id)) def create_escalation_policy(self,team_id,body): #Creates an escalation policy for one team #params str team_id: unique id of team #params dict body: contains the required details for creating escalation policy #Sample body: # {'name':name, # 'summary':summary, # 'description':description, # 'rules':rules, # 'unique_id':unique_id, # 'team':team_id} return self.api_client.call_api('POST','/api/account/teams/{}/escalation_policies/'.format(team_id),body=body) def get_escalation_policy_by_id(self,team_id,ep_id): #Returns escalation_policy identified by id #params str team_id: unique id of team #params str ep_id: unique id of escalation policy return self.api_client.call_api('GET','/api/account/teams/{}/escalation_policies/{}/'.format(team_id,ep_id)) def update_escalation_policy(self,team_id,ep_id,body): #Updates escalation policy, identified by id #params str team_id: unique id of team #params str ep_id: unqiue id of escalation policy #params dict body: contains all the updated values # 'rules' is a required part of the body #Sample body: # body={'summary':'changes description', # 'rules':[{"delay":1, # "targets":[{"target_type":2, # "target_id":"826032d6-7ccd-4d58-b114-f"}], # "position":1, # "unique_id":"c0dad09b-321b-491e-9c23-f816c7bd0339"}]} return self.api_client.call_api('PATCH','/api/account/teams/{}/escalation_policies/{}/'.format(team_id,ep_id),body=body) def delete_escalation_policy(self,team_id,ep_id): #Deletes escalation policy, identified by id #params str team_id: unique id of team #params str ep_id: unique id of escalation policy return self.api_client.call_api('DELETE','/api/account/teams/{}/escalation_policies/{}/'.format(team_id,ep_id))
zenduty-api
/zenduty-api-0.2.tar.gz/zenduty-api-0.2/zenduty/api/escalationpolicies_api.py
escalationpolicies_api.py
from zenduty.api_client import ApiClient class ServicesApi(object): def __init__(self,api_client=None): if api_client is None: api_client=ApiClient() self.api_client = api_client def get_service_for_team(self,team_id): #Returns all the services in a team #params str team_id: unnique id of team return self.api_client.call_api('GET','/api/account/teams/{}/services/'.format(team_id)) def add_new_service_in_team(self,team_id,body): #Adds a new servie to a give team, identified by id #params str team_id: unique id of team #params dict body: contains the details of the new service to be added #Sample body #{"name":"Name of service", # "description":"Description of service", # "integrations":[{"application":"27c9800c-2856-490d-8119-790be1308dd4", # "name":"API", # "summary":"Edit summary for this integration"}], # "escalation_policy":"5c9b6288-c105-418d-970b-91a93d0e919a", # "acknowledgement_timeout":1, # "auto_resolve_timeout":1} return self.api_client.call_api('POST','/api/account/teams/{}/services/'.format(team_id),body=body) def get_services_by_id(self,team_id,service_id): #Returns a particular service from a team, identified by id #params str team_id: unique id of team #params str service_id: unique id of service return self.api_client.call_api('GET','/api/account/teams/{}/services/{}/'.format(team_id,service_id)) def update_service(self,team_id,service_id,body): #Updates the existing service in a team #params str team_id: unique id of team #params str service_id: unique id of service #params dict body: contains the updated details of services #Sample body: #{"unique_id":"bc808ce3-46c0-41d0-bf1f-f405fdd0c1c3", # "auto_resolve_timeout":0, # "acknowledgement_timeout":0, # "status":1, # "escalation_policy":"5c9b6288-c105-418d-970b-91a93d0e919a"} return self.api_client.call_api('PATCH','/api/account/teams/{}/services/{}/'.format(team_id,service_id),body=body) def delete_service_from_team(self,team_id,service_id): #Deletes a particular service from a team #params str team_id: unique id of team #params str service_id: unnique id of service return self.api_client.call_api('DELETE','/api/account/teams/{}/services/{}/'.format(team_id,service_id))
zenduty-api
/zenduty-api-0.2.tar.gz/zenduty-api-0.2/zenduty/api/services_api.py
services_api.py
from zenduty.api_client import ApiClient class SchedulesApi(object): def __init__(self,api_client=None): if api_client is None: api_client=ApiClient() self.api_client = api_client def get_schedules(self,team_id): #Returns the schedules in a particular team, identified by id #params str team_id: unique id of a team return self.api_client.call_api('GET','/api/account/teams/{}/schedules/'.format(team_id)) def create_schedule(self, team_id,body): #Creates a schedule for a team #params str team_id: unique id of team #params dict body: contains the details of the schedule to be created #Sample body: #{"name":"Name of schedule", # "summary":"summar of schedule", # "time_zone":"Asia/Kolkata", # "team":"d4a777db-5bce-419c-a725-420ebb505c54", # "layers":[]} return self.api_client.call_api('POST','/api/account/teams/{}/schedules/'.format(team_id),body=body) def get_schedule_by_id(self,team_id,schedule_id): #Returns a particular schedule from a team, identifed by id #params str team_id: unique id of a team #params schedule_id: unique id of schedule return self.api_client.call_api('GET','/api/account/teams/{}/schedules/{}/'.format(team_id,schedule_id)) def update_schedule(self,team_id,schedule_id,body): #Updates the schedule details for a given team, identified by id #params str team_id: unique id of a team #params str schedul_id: unique id of schedule #params dict body: contains the updated values of schedule # 'unique_id' and 'team' are required. Other fields are just those which have been changed #Sample body: #{"name":"Name of schedule", # "summary":"summar of schedule", # "time_zone":"Asia/Kamchatka", # "team":"d4a777db-5bce-419c-a725-420ebb505c54", # "unique_id":"f9b34bd3-818a-4b98-9d8a-04d8bd501cd0", # "layers":[]} return self.api_client.call_api('PATCH','/api/account/teams/{}/schedules/{}/'.format(team_id,schedule_id),body=body) def delete_schedule(self,team_id,schedule_id): #Deletes a schedule from a team #params str team_id:unique id of team #params str schedule_id: unique id of schedule return self.api_client.call_api('DELETE','/api/account/teams/{}/schedules/{}/'.format(team_id,schedule_id))
zenduty-api
/zenduty-api-0.2.tar.gz/zenduty-api-0.2/zenduty/api/schedules_api.py
schedules_api.py
import requests import logging import json logging.basicConfig(level=logging.NOTSET) class ZenefitsClient(): """ Our base client. You should generate an Access Token as described in the Zenefits API docs """ def __init__(self, access_token, sandbox=False): self.sandbox = sandbox self.access_token = access_token # Caches to prevent redundant api calls self.cache = {} ######################################################################## # Caching Functions # ######################################################################## def check_cache(self, ref_object_str): """ Check the cache if items exist Args: ref_object_str (string): zenefits ref_object of the objects (i.e. "/core/people") object_id (string): string id of the zenefits object Returns: bool: Whether the string is actually in the cache, used to determine if we've called a url """ return True if ref_object_str in list(self.cache.keys()) else False def get_from_cache(self, ref_object_str, object_id=None): """ Grab the objects (or object) from cache Args: ref_object (string): zenefits ref_object of the objects (i.e. "/core/people") object_id (string): string id of the zenefits object Returns: dict: Return the dictionary of the ids, or just the object if given id """ items = self.cache.get(ref_object_str) if items: if object_id: return items.get(object_id) return items return {} def insert_into_cache(self, ref_object_str, zenefit_objects): """ Populate our client cache with the given ref_object and a list of zenefit objects. This function will fully replace the cached ref_object { ref_object_str: { id: zenefit_object, id: zenefit_object } } Should be called after get_url_objects to prevent redundant calls Args: ref_object_str (string): The cache ref_object_str, zenefits ref_object_str of the objects (i.e. "/core/people") zenefit_objects (list): List of the zenefit objects we want to cache """ cached_items = {} for zenefit_object in zenefit_objects: obj_id = zenefit_object.get("id") cached_items[obj_id] = zenefit_object self.cache[ref_object_str] = cached_items logging.info(f"Cached updated for {ref_object_str}") def populate_cache(self, zenefits_reference_obj): """ Populate the cache with the items from the given Zenefits reference object. Will replace existing items in the cache. Args: zenefits_reference_obj (dict): Zenefits Reference Object """ # We always call all items under the assumption that querying one item # through this client will lead to additional queries # TODO implement a faster one item pull method # Fetch all my objects ref_object_str = zenefits_reference_obj.get("ref_object") data = self.get_url_objects("https://api.zenefits.com" + ref_object_str) self.insert_into_cache(ref_object_str, data) self.cache logging.info(f"Populating Cache for {ref_object_str}") ######################################################################## # Helper Functions # ######################################################################## def populate_reference_object(self, zenefits_reference_object): """ Populate the given Zenefits object (one level deep only) Args: zenefits_reference_object (dict): A single Zenefits reference object to populate example: { "object": "/meta/ref/list", "ref_object": "/core/people", "url": "https://api.zenefits.com/core/departments/1/people" } Returns: [dict]: The populated Zenefits reference object example: { "name": {}, "name2": {} } """ # First check our cache if we've called our cache before in_cache = self.check_cache(zenefits_reference_object.get("ref_object")) # If we haven't populated our cache, populate our cache if not in_cache: self.populate_cache(zenefits_reference_object) # Grab our cached objects cached_object = self.get_from_cache(zenefits_reference_object.get("ref_object")) # Determine what type of object we want to return (list or detail) object_type = zenefits_reference_object.get("object").split("/")[-1] # If we are a list type object, return the cached entry if object_type == "list": return cached_object # If I'm a detail object, return just the detailed object elif object_type == "detail": # Grab the ID from the url # Sometimes it's after a /, sometimes it's after a = if not zenefits_reference_object.get("url"): return {} object_id = zenefits_reference_object.get("url").split("/")[-1] if '=' in object_id: object_id = zenefits_reference_object.get("url").split("=")[-1] return cached_object.get(object_id) ######################################################################## # API Call Functions # ######################################################################## def get_url_objects(self, url, includes=None): """ Retrieve the base objects returned from the given url. Takes into account paginated requests and pulls all objects. Can pass in a list of parameters in includes to populate the reference items Note that Zenefits API restricts what fields can be in includes, which is why for our main client calls we don't use it. Args: url (str): URL that we want to pull from includes (list): List of parameter strings telling Zenefits to populate objects Returns: zenefit_objects (list): List of zenefit objects """ zenefit_objects = [] payload = {} headers = { 'Authorization': f"Bearer {self.access_token}", "Content-Type": "application/json; charset=utf-8" } # Populate the given fields from zenefits if includes: includes_string = includes[0] for parameter in includes[1:]: includes_string = includes_string + " " + parameter payload["includes"] = includes_string response = requests.get(url, auth=None, params=payload, headers=headers, verify=True, timeout=10.000) if response.status_code != 200: logging.ERROR("Objects not fetched") return response # Yes they return a nested object with another nested object called data data = json.loads(response.content.decode("utf-8"))['data'] # Check to see if there is a second data object called data # Perform the check if in keys to account for the case where data is # an empty list. I.e. as long as data['data'] exists, even if empty, extend it zenefit_objects.extend(data['data']) if ('data' in list(data.keys())) else zenefit_objects.extend(data) # Check our paginated url, while one exists, continue extending the list unitl I have all objects next_url = data.get('next_url') if next_url: zenefit_objects.extend(self.get_url_objects(next_url)) return zenefit_objects ######################################################################## # Core Client Call Functions # ######################################################################## def get_department(self, name=None, populate=True): """ Retrieve all departments unless name specified. Includes populated references as objects. We only populate one level deep (i.e. department: {people: { company }} will have the info for department and people, but company will be the url that Zenefits sends back. Args: name (str, optional): Name of department to return. Defaults to None. populate (bool, optional): Populate reference objects. Defaults to True. Returns: [dict]: Dictionary of department names and values """ url = "http://api.zenefits.com/core/departments" data = self.get_url_objects(url) # Data is a list of objects. For related items (i.e. People) Zenefits returns a URL. We need to populate them. self.populate_cache( { "object": "/meta/ref/list", "ref_object": "/core/departments", "url": f"{url}" } ) populated_data = {} for department in data: # Populate my references to other objects populated_department = {} for key, value in department.items(): # If my value is an object and I want to populate (include objects) if type(value) is dict and populate: populated_department[key] = self.populate_reference_object(value) # If my value isn't an object, just set to the value else: populated_department[key] = value # Add my newly populated dictionary to my populated data populated_data[department['name']] = populated_department if name: return populated_data[name] return populated_data def get_people(self, name=None, populate=True): """ Retrieve all people unless name specified. Includes populated references as objects. We only populate one level deep (i.e. department: {people: { company }} will have the info for department and people, but company will be the url that Zenefits sends back. Args: name (str, optional): FirstName_LastName of a person. Defaults to None. populate (bool, optional): Populate reference objects. Defaults to True. Returns: [dict]: Dictionary of peoples FirstName_LastName and values """ url = "http://api.zenefits.com/core/people" data = self.get_url_objects(url) # Populate our cache self.populate_cache( { "object": "/meta/ref/list", "ref_object": "/core/people", "url": f"{url}" } ) populated_data = {} for people in data: # Populate my references to other objects populated_people = {} for key, value in people.items(): # If my value is an object and I want to populate (include objects) if type(value) is dict and populate: populated_people[key] = self.populate_reference_object(value) # If my value isn't an object, just set to the value else: populated_people[key] = value # Add my newly populated dictionary to my populated data full_name = populated_people['first_name'] + '_' + populated_people['last_name'] populated_data[full_name] = populated_people if name: return populated_data[name] return populated_data
zenefits-client
/zenefits_client-0.0.2.tar.gz/zenefits_client-0.0.2/zenefits_client/client.py
client.py
ZenFeed ======= Zen feed reader − inspired by zencancan. Documentation is available at <http://fspot.github.io/zenfeed/>. Screenshots ----------- Feed list : ![feed_list](https://cdn.mediacru.sh/85fg1zEf8fQR.png) Feed view : ![feed_view](https://cdn.mediacru.sh/pX8d2iWXpHI6.png) Article view : ![article_view](https://cdn.mediacru.sh/3iiUrJfCRFql.png) Layout on smartphones : ![layout_mobile](https://cdn.mediacru.sh/2qFVC52hgB6X.png) Todo ---- - add import/export OPML feature - test zenfeed with mysql and postgresql - actually remove oldest entries when threshold is exceeded
zenfeed
/zenfeed-0.4.0.tar.gz/zenfeed-0.4.0/README.md
README.md
============================================================================== zenfilter. Filter stdin to avoid excessive output ============================================================================== :Info: This is the README file for zenfilter. :Author: Shlomi Fish <[email protected]> :Copyright: © 2016, Shlomi Fish. :Date: 2021-09-01 :Version: 0.6.5 .. index: README .. image:: https://travis-ci.org/shlomif/zenfilter.svg?branch=master :target: https://travis-ci.org/shlomif/zenfilter PURPOSE ------- This small script filters long STDIN output, performing several functions to keep track of the important parts and progresses, which will be hard to do with a shell script. It is useful for filtering the output of verbose Travis-CI ( https://travis-ci.org/ ) commands, but may be useful in other contexts where there is a limit to the amount of kept output. All arguments are optional: * `--count-step=n`: displays `COUNT <tab> <step>` every n lines. * `--last=n`: displays the last n lines prefixed with "LAST\t" * `--filter=<regex pattern>`: displays matching lines with a "FOUND\t" prefix. * `--suppress-last-on=<regex>`: suppress the last lines if their concatenated output matches the regex. Examples: :: python zenfilter.py --count-step=10 --last=200 --filter="[0-9]+" python zenfilter.py --last=20 python zenfilter.py --last=25 --count-step=15 A use case scenario: :: make 2>&1 | python zenfilter.py [args] COPYRIGHT --------- Copyright © 2016, Shlomi Fish. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the author of this software nor the names of contributors to this software may be used to endorse or promote products derived from this software without specific prior written consent. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
zenfilter
/zenfilter-0.6.5.tar.gz/zenfilter-0.6.5/README.rst
README.rst
============================================================================== zenfilter. Filter stdin to avoid excessive output ============================================================================== :Info: This is the README file for zenfilter. :Author: Shlomi Fish <[email protected]> :Copyright: © 2016, Shlomi Fish. :Date: 2021-09-01 :Version: 0.6.5 .. index: README .. image:: https://travis-ci.org/shlomif/zenfilter.svg?branch=master :target: https://travis-ci.org/shlomif/zenfilter PURPOSE ------- This small script filters long STDIN output, performing several functions to keep track of the important parts and progresses, which will be hard to do with a shell script. It is useful for filtering the output of verbose Travis-CI ( https://travis-ci.org/ ) commands, but may be useful in other contexts where there is a limit to the amount of kept output. All arguments are optional: * `--count-step=n`: displays `COUNT <tab> <step>` every n lines. * `--last=n`: displays the last n lines prefixed with "LAST\t" * `--filter=<regex pattern>`: displays matching lines with a "FOUND\t" prefix. * `--suppress-last-on=<regex>`: suppress the last lines if their concatenated output matches the regex. Examples: :: python zenfilter.py --count-step=10 --last=200 --filter="[0-9]+" python zenfilter.py --last=20 python zenfilter.py --last=25 --count-step=15 A use case scenario: :: make 2>&1 | python zenfilter.py [args] COPYRIGHT --------- Copyright © 2016, Shlomi Fish. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the author of this software nor the names of contributors to this software may be used to endorse or promote products derived from this software without specific prior written consent. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
zenfilter
/zenfilter-0.6.5.tar.gz/zenfilter-0.6.5/README
README
===================== Appendix C. Changelog ===================== :Info: This is the changelog for zenfilter. :Author: Shlomi Fish <[email protected]> :Copyright: © 2016, Shlomi Fish. :License: BSD (see /LICENSE or :doc:`Appendix B <LICENSE>`.) :Date: 2021-09-01 :Version: 0.6.5 .. index:: CHANGELOG GitHub holds releases, too ========================== More information can be found on GitHub in the `releases section <https://github.com/shlomif/zenfilter/releases>`_. Version History =============== 0.6.5 The zenfilter() function now flushes stdout before exit (just in case). 0.6.4 print(flush=True) where appropriate. 0.6.3 Fix the script by using zenfilter/__init__.py 0.6.2 Rename the script from "zenfilter.py" to simply "zenfilter" - Thanks to https://stackoverflow.com/questions/45114076/python-setuptools-using-scripts-keyword-in-setup-py 0.6.1 Reenable the tests and fix the script's shebang. 0.6.0 Converted to pydistman 0.4.0 Earlier versions based on the work of https://github.com/SpiritualForest/ Thanks!
zenfilter
/zenfilter-0.6.5.tar.gz/zenfilter-0.6.5/CHANGELOG.rst
CHANGELOG.rst
============================================================================== zenfilter. Filter stdin to avoid excessive output ============================================================================== :Info: This is the README file for zenfilter. :Author: Shlomi Fish <[email protected]> :Copyright: © 2016, Shlomi Fish. :Date: 2021-09-01 :Version: 0.6.5 .. index: README .. image:: https://travis-ci.org/shlomif/zenfilter.svg?branch=master :target: https://travis-ci.org/shlomif/zenfilter PURPOSE ------- This small script filters long STDIN output, performing several functions to keep track of the important parts and progresses, which will be hard to do with a shell script. It is useful for filtering the output of verbose Travis-CI ( https://travis-ci.org/ ) commands, but may be useful in other contexts where there is a limit to the amount of kept output. All arguments are optional: * `--count-step=n`: displays `COUNT <tab> <step>` every n lines. * `--last=n`: displays the last n lines prefixed with "LAST\t" * `--filter=<regex pattern>`: displays matching lines with a "FOUND\t" prefix. * `--suppress-last-on=<regex>`: suppress the last lines if their concatenated output matches the regex. Examples: :: python zenfilter.py --count-step=10 --last=200 --filter="[0-9]+" python zenfilter.py --last=20 python zenfilter.py --last=25 --count-step=15 A use case scenario: :: make 2>&1 | python zenfilter.py [args] COPYRIGHT --------- Copyright © 2016, Shlomi Fish. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the author of this software nor the names of contributors to this software may be used to endorse or promote products derived from this software without specific prior written consent. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
zenfilter
/zenfilter-0.6.5.tar.gz/zenfilter-0.6.5/docs/README.rst
README.rst
============================== Appendix A. Contribution rules ============================== :Info: Those are the contribution rules for zenfilter. :Copyright: © 2012-2021, Chris Warrick. :License: 3-clause BSD .. index:: contributing Do you want to contribute to this project? Great! I’d love to see some help, but you must comply with some rules. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119. --------------- Issue reporting --------------- .. index:: issues GitHub Issues are the recommended way to report an issue. If you do not have an account there, get one or mail me. When pasting console sessions, you must paste them fully, *prompt-to-prompt*, to see all the messages and your input. Trim only stuff that you are 1000% sure that is not related to the project in question. -------------------------------------------- General preparations, rules and pull process -------------------------------------------- Prepare ======= A GitHub account is recommended. Patches by mail are accepted, but I’d prefer to work via GitHub. .. _Rules: Rules ===== 1. Commits must have short, informative and logical messages. Signoffs and long messages are recommended. “Fix #xxx” is required if an issue exists. 2. The following fancy Unicode characters should be used when needed: ``— “ ” ‘ ’``. ``…`` should not appear in console output, but may appear elsewhere. 3. For Python code, use the PEP 8 coding style and PEP 257 documentation style. For other languages, K&R style applies. Braces are mandatory in all blocks (even one-line blocks). Braces are on the same lines as class names and function signatures. Use 4-space indents. Request a Pull ============== Done? Go hit the **Pull Request** button over on GitHub! And if you don’t use GitHub, ``git format-patch``. Other formats are not accepted. Your commit should be pulled up in a (longer) while. If I like it. Because some commits may be bad. So, do your best not to do those bad commits.
zenfilter
/zenfilter-0.6.5.tar.gz/zenfilter-0.6.5/docs/CONTRIBUTING.rst
CONTRIBUTING.rst
===================== Appendix C. Changelog ===================== :Info: This is the changelog for zenfilter. :Author: Shlomi Fish <[email protected]> :Copyright: © 2016, Shlomi Fish. :License: BSD (see /LICENSE or :doc:`Appendix B <LICENSE>`.) :Date: 2021-09-01 :Version: 0.6.5 .. index:: CHANGELOG GitHub holds releases, too ========================== More information can be found on GitHub in the `releases section <https://github.com/shlomif/zenfilter/releases>`_. Version History =============== 0.1.0 Initial release.
zenfilter
/zenfilter-0.6.5.tar.gz/zenfilter-0.6.5/docs/CHANGELOG.rst
CHANGELOG.rst
======================================================= Appendix B. License for zenfilter ======================================================= :Info: This is the license for zenfilter. :Author: Shlomi Fish <[email protected]> :Copyright: © 2016, Shlomi Fish. :License: BSD (see /LICENSE or :doc:`Appendix B <LICENSE>`.) :Date: 2021-09-01 :Version: 0.6.5 .. index:: LICENSE Copyright © 2016, Shlomi Fish. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the author of this software nor the names of contributors to this software may be used to endorse or promote products derived from this software without specific prior written consent. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
zenfilter
/zenfilter-0.6.5.tar.gz/zenfilter-0.6.5/docs/LICENSE.rst
LICENSE.rst
============================== ZenginCode ============================== |circle| |version| The python implementation of ZenginCode. ZenginCode is datasets of bank codes and branch codes for japanese. Installation ============== .. code-block:: bash pip install zengin_code Usage ============== .. code-block:: python from zengin_code import Bank Bank.all # => OrderedDict([(u'0001', <zengin_code.bank.Bank object at 0x1044173d0>), ... Contributing =============== Bug reports and pull requests are welcome on GitHub at https://github.com/zengin-code/zengin-py License =============== The package is available as open source under the terms of the `MIT License <http://opensource.org/licenses/MIT>`_ . .. |circle| image:: https://img.shields.io/circleci/project/zengin-code/zengin-py.svg :target: https://circleci.com/gh/zengin-code/zengin-py .. |version| image:: https://img.shields.io/pypi/v/zengin_code.svg :target: http://pypi.python.org/pypi/zengin_code/ :alt: latest version
zengin-code
/zengin_code-1.1.0.20230802.tar.gz/zengin_code-1.1.0.20230802/README.rst
README.rst
ZEngine Web Service Framework ============================= Zengine BPMN workflow based framework with Tornado, Rabbit AMQP, advanced permissions, extensible scaffolding features and more. Built on top of following major components; - SpiffWorkflow_: Powerful workflow engine with BPMN 2.0 support. - Tornado_: Tornado is a Python web framework and asynchronous networking library. - Pyoko_: Django esque ORM for Riak KV store. - RabbitMQ_: Fast, ultrasharp AMQP server written with legendary Erlang lang. .. _SpiffWorkflow: https://github.com/knipknap/SpiffWorkflow .. _Tornado: http://www.tornadoweb.org/en/stable/ .. _Pyoko: https://github.com/zetaops/pyoko .. _RabbitMQ: https://www.rabbitmq.com/ API Documentation ----------------- `API Documentation`_ .. _`API Documentation`: http://zengine.readthedocs.org/en/latest/api-documentation.html Troubleshooting ------------------- `Troubleshooting for Common Problems`_ .. _`Troubleshooting for Common Problems`: http://zengine.readthedocs.org/en/latest/troubleshooting.html Support ------- Feel free to fork this and send back Pull Requests for any defects or features that you want to contribute back. Opening issues here is also recommended. If you need to get the attention of the ZetaOps team send an email to info ~at~ zetaops.io. Commercial support from ZetaOps_ requires a valid support contract. .. _ZetaOps: http://zetaops.io Authors ------- * Samuel Abels * Gökhan Boranalp * Ali Rıza Keleş * Evren Esat Özkan * Furkan Uyar * Anıl Can Aydın License ------- ZEngine is licensed under the `GPL v3.0`_ .. _GPL v3.0: http://www.gnu.org/licenses/gpl-3.0.html
zengine
/zengine-0.8.3.tar.gz/zengine-0.8.3/README.rst
README.rst
import re import struct import textwrap FORMAT = { '2u1': ('uint8x2', 2), '4u1': ('uint8x4', 4), '2i1': ('sint8x2', 2), '4i1': ('sint8x4', 4), '2nu1': ('unorm8x2', 2), '4nu1': ('unorm8x4', 4), '2ni1': ('snorm8x2', 2), '4ni1': ('snorm8x4', 4), '2u2': ('uint16x2', 4), '4u2': ('uint16x4', 8), '2i2': ('sint16x2', 4), '4i2': ('sint16x4', 8), '2nu2': ('unorm16x2', 4), '4nu2': ('unorm16x4', 8), '2ni2': ('snorm16x2', 4), '4ni2': ('snorm16x4', 8), '2h': ('float16x2', 4), '4h': ('float16x4', 8), '1f': ('float32', 4), '2f': ('float32x2', 8), '3f': ('float32x3', 12), '4f': ('float32x4', 16), '1u': ('uint32', 4), '2u': ('uint32x2', 8), '3u': ('uint32x3', 12), '4u': ('uint32x4', 16), '1i': ('sint32', 4), '2i': ('sint32x2', 8), '3i': ('sint32x3', 12), '4i': ('sint32x4', 16), } CULL_FACE = { 'front': 0x0404, 'back': 0x0405, 'front_and_back': 0x0408, 'none': 0, } MIN_FILTER = { 'nearest': 0x2600, 'linear': 0x2601, 'nearest_mipmap_nearest': 0x2700, 'linear_mipmap_nearest': 0x2701, 'nearest_mipmap_linear': 0x2702, 'linear_mipmap_linear': 0x2703, } MAG_FILTER = { 'nearest': 0x2600, 'linear': 0x2601, } TEXTURE_WRAP = { 'repeat': 0x2901, 'clamp_to_edge': 0x812F, 'mirrored_repeat': 0x8370, } COMPARE_MODE = { 'ref_to_texture': 0x884E, 'none': 0, } COMPARE_FUNC = { 'never': 0x0200, 'less': 0x0201, 'equal': 0x0202, 'lequal': 0x0203, 'greater': 0x0204, 'notequal': 0x0205, 'gequal': 0x0206, 'always': 0x0207, } BLEND_FUNC = { 'add': 0x8006, 'subtract': 0x800A, 'reverse_subtract': 0x800B, 'min': 0x8007, 'max': 0x8008, } BLEND_CONSTANT = { 'zero': 0, 'one': 1, 'src_color': 0x0300, 'one_minus_src_color': 0x0301, 'src_alpha': 0x0302, 'one_minus_src_alpha': 0x0303, 'dst_alpha': 0x0304, 'one_minus_dst_alpha': 0x0305, 'dst_color': 0x0306, 'one_minus_dst_color': 0x0307, 'src_alpha_saturate': 0x0308, 'constant_color': 0x8001, 'one_minus_constant_color': 0x8002, 'constant_alpha': 0x8003, 'one_minus_constant_alpha': 0x8004, 'src1_alpha': 0x8589, 'src1_color': 0x88F9, 'one_minus_src1_color': 0x88FA, 'one_minus_src1_alpha': 0x88FB, } STENCIL_OP = { 'zero': 0, 'keep': 0x1E00, 'replace': 0x1E01, 'incr': 0x1E02, 'decr': 0x1E03, 'invert': 0x150A, 'incr_wrap': 0x8507, 'decr_wrap': 0x8508, } STEP = { 'vertex': 0, 'instance': 1, } VERTEX_SHADER_BUILTINS = { 'gl_VertexID', 'gl_InstanceID', 'gl_DrawID', 'gl_BaseVertex', 'gl_BaseInstance', } UNIFORM_PACKER = { 0x1404: (1, 'i'), 0x8B53: (2, 'i'), 0x8B54: (3, 'i'), 0x8B55: (4, 'i'), 0x8B56: (1, 'i'), 0x8B57: (2, 'i'), 0x8B58: (3, 'i'), 0x8B59: (4, 'i'), 0x1405: (1, 'I'), 0x8DC6: (2, 'I'), 0x8DC7: (3, 'I'), 0x8DC8: (4, 'I'), 0x1406: (1, 'f'), 0x8B50: (2, 'f'), 0x8B51: (3, 'f'), 0x8B52: (4, 'f'), 0x8B5A: (4, 'f'), 0x8B65: (6, 'f'), 0x8B66: (8, 'f'), 0x8B67: (6, 'f'), 0x8B5B: (9, 'f'), 0x8B68: (12, 'f'), 0x8B69: (8, 'f'), 0x8B6A: (12, 'f'), 0x8B5C: (16, 'f'), } def loader(headless=False): import glcontext mode = 'standalone' if headless else 'detect' return glcontext.default_backend()(glversion=330, mode=mode) def calcsize(layout): nodes = layout.split(' ') if nodes[-1] == '/i': nodes.pop() stride = 0 for node in nodes: if node[-1] == 'x': stride += int(node[:-1]) continue stride += FORMAT[node][1] return stride def bind(buffer, layout, *attributes): nodes = layout.split(' ') step = 'vertex' if nodes[-1] == '/i': step = 'instance' nodes.pop() res = [] offset = 0 idx = 0 for node in nodes: if node[-1] == 'x': offset += int(node[:-1]) continue if len(attributes) == idx: raise ValueError(f'Not enough vertex attributes for format "{layout}"') location = attributes[idx] format, size = FORMAT[node] if location >= 0: res.append({ 'location': location, 'buffer': buffer, 'format': format, 'offset': offset, 'step': step, }) offset += size idx += 1 if len(attributes) != idx: raise ValueError(f'Too many vertex attributes for format "{layout}"') for x in res: x['stride'] = offset return res def vertex_array_bindings(vertex_buffers, index_buffer): res = [index_buffer] for obj in vertex_buffers: res.extend([obj['buffer'], obj['location'], obj['offset'], obj['stride'], STEP[obj['step']], obj['format']]) return tuple(res) def resource_bindings(resources): uniform_buffers = [] for obj in sorted((x for x in resources if x['type'] == 'uniform_buffer'), key=lambda x: x['binding']): binding = obj['binding'] buffer = obj['buffer'] offset = obj.get('offset', 0) size = obj.get('size', buffer.size - offset) uniform_buffers.extend([binding, buffer, offset, size]) storage_buffers = [] for obj in sorted((x for x in resources if x['type'] == 'storage_buffer'), key=lambda x: x['binding']): binding = obj['binding'] buffer = obj['buffer'] offset = obj.get('offset', 0) size = obj.get('size', buffer.size - offset) storage_buffers.extend([binding, buffer, offset, size]) samplers = [] for obj in sorted((x for x in resources if x['type'] == 'sampler'), key=lambda x: x['binding']): params = ( MIN_FILTER[obj.get('min_filter', 'linear')], MAG_FILTER[obj.get('mag_filter', 'linear')], float(obj.get('min_lod', -1000.0)), float(obj.get('max_lod', 1000.0)), float(obj.get('lod_bias', 0.0)), TEXTURE_WRAP[obj.get('wrap_x', 'repeat')], TEXTURE_WRAP[obj.get('wrap_y', 'repeat')], TEXTURE_WRAP[obj.get('wrap_z', 'repeat')], COMPARE_MODE[obj.get('compare_mode', 'none')], COMPARE_FUNC[obj.get('compare_func', 'never')], float(obj.get('max_anisotropy', 1.0)), ) samplers.extend([obj['binding'], obj['image'], params]) images = [] for obj in sorted((x for x in resources if x['type'] == 'image'), key=lambda x: x['binding']): images.extend([obj['binding'], obj['image']]) return tuple(uniform_buffers), tuple(storage_buffers), tuple(samplers), tuple(images) def framebuffer_attachments(size, attachments): if not attachments: if size is None: raise ValueError('Missing framebuffer') return size, (), None attachments = [x.face() if hasattr(x, 'face') else x for x in attachments] size = attachments[0].size samples = attachments[0].samples for attachment in attachments: if attachment.size != size: raise ValueError('Attachments must be images with the same size') if attachment.samples != samples: raise ValueError('Attachments must be images with the same number of samples') depth_stencil_attachment = None if not attachments[-1].flags & 1: depth_stencil_attachment = attachments[-1] attachments = attachments[:-1] for attachment in attachments: if not attachment.flags & 1: raise ValueError('The depth stencil attachments must be the last item in the framebuffer') return size, tuple(attachments), depth_stencil_attachment def settings(cull_face, depth, stencil, blend, attachments): res = [len(attachments[1]), CULL_FACE[cull_face]] if depth is None: depth = {} if attachments[2] is not None and attachments[2].flags & 2: res.extend([True, COMPARE_FUNC[depth.get('func', 'less')], bool(depth.get('write', True))]) else: res.append(False) if stencil is None: stencil = {} if attachments[2] is not None and attachments[2].flags & 4: front = stencil.get('front', stencil.get('both', {})) back = stencil.get('back', stencil.get('both', {})) res.extend([ True, STENCIL_OP[front.get('fail_op', 'keep')], STENCIL_OP[front.get('pass_op', 'keep')], STENCIL_OP[front.get('depth_fail_op', 'keep')], COMPARE_FUNC[front.get('compare_op', 'always')], int(front.get('compare_mask', 0xff)), int(front.get('write_mask', 0xff)), int(front.get('reference', 0)), STENCIL_OP[back.get('fail_op', 'keep')], STENCIL_OP[back.get('pass_op', 'keep')], STENCIL_OP[back.get('depth_fail_op', 'keep')], COMPARE_FUNC[back.get('compare_op', 'always')], int(back.get('compare_mask', 0xff)), int(back.get('write_mask', 0xff)), int(back.get('reference', 0)), ]) else: res.append(False) if blend is not None: res.append(True) for obj in blend: res.extend([ int(obj.get('enable', True)), BLEND_FUNC[obj.get('op_color', 'add')], BLEND_FUNC[obj.get('op_alpha', 'add')], BLEND_CONSTANT[obj.get('src_color', 'one')], BLEND_CONSTANT[obj.get('dst_color', 'zero')], BLEND_CONSTANT[obj.get('src_alpha', 'one')], BLEND_CONSTANT[obj.get('dst_alpha', 'zero')], ]) else: res.append(False) return tuple(res) def program(includes, *shaders): def include(match): name = match.group(1) content = includes.get(name) if content is None: raise KeyError(f'cannot include "{name}"') return content res = [] for shader, type in shaders: shader = textwrap.dedent(shader).strip() shader = re.sub(r'#include\s+"([^"]+)"', include, shader) shader = shader.encode().replace(b'\r', b'') res.append((shader, type)) return tuple(res) def compile_error(shader: bytes, shader_type: int, log: bytes): name = {0x8b31: 'Vertex Shader', 0x8b30: 'Fragment Shader', 0x91b9: 'Compute Shader'}[shader_type] log = log.rstrip(b'\x00').decode() raise ValueError(f'{name} Error\n\n{log}') def linker_error(vertex_shader: bytes, fragment_shader: bytes, log: bytes): log = log.rstrip(b'\x00').decode() raise ValueError(f'Linker Error\n\n{log}') def compute_linker_error(compute_shader: bytes, log: bytes): log = log.rstrip(b'\x00').decode() raise ValueError(f'Linker Error\n\n{log}') def flatten(iterable): try: for x in iterable: yield from flatten(x) except TypeError: yield iterable def clean_glsl_name(name): if name.endswith('[0]') and name['size'] > 1: return name[:-3] return name def uniforms(interface, values): data = bytearray() uniform_map = {clean_glsl_name(obj['name']): obj for obj in interface if obj['type'] == 'uniform'} for name, value in values.items(): if name not in uniform_map: raise KeyError(f'Uniform "{name}" does not exist') value = tuple(flatten(value)) location = uniform_map[name]['location'] size = uniform_map[name]['size'] gltype = uniform_map[name]['gltype'] if gltype not in UNIFORM_PACKER: raise ValueError(f'Uniform "{name}" has an unknown type') items, format = UNIFORM_PACKER[gltype] count = len(value) // items if len(value) > size * items: raise ValueError(f'Uniform "{name}" must be {size * items} long at most') if len(value) % items: raise ValueError(f'Uniform "{name}" must have a length divisible by {items}') data.extend(struct.pack('4i', len(value), location, count, gltype)) for value in flatten(value): data.extend(struct.pack(format, value)) data.extend(struct.pack('4i', 0, 0, 0, 0)) return list(values), data def validate(interface, resources, vertex_buffers, attachments, limits): errors = [] unique = set((obj['type'], obj['binding']) for obj in resources) if len(resources) != len(unique): for obj in resources: key = (obj['type'], obj['binding']) if key not in unique: binding = obj['binding'] rtype = obj['type'] errors.append(f'Duplicate resource entry for "{rtype}" with binding = {binding}') unique.discard(key) unique = set(obj['location'] for obj in vertex_buffers) if len(vertex_buffers) != len(unique): for obj in vertex_buffers: location = obj['location'] if location not in unique: errors.append(f'Duplicate vertex attribute entry with location = {location}') unique.discard(location) expected = set(obj['location'] + i for obj in interface if obj['type'] == 'input' for i in range(obj['size'])) provided = set(obj['location'] for obj in vertex_buffers) if expected ^ provided: missing = expected - provided extra = provided - expected if missing: for location in sorted(missing): obj = next(obj for obj in interface if obj['type'] == 'input' and obj['location'] == location) name = clean_glsl_name(obj['name']) errors.append(f'Missing vertex buffer binding for "{name}" with location = {location}') if extra: for location in sorted(extra): errors.append(f'Unknown vertex attribute with location = {location}') expected = set(obj['location'] + i for obj in interface if obj['type'] == 'output' for i in range(obj['size'])) provided = set(range(len(attachments))) if expected ^ provided: missing = expected - provided extra = provided - expected if missing: for location in sorted(missing): obj = next(obj for obj in interface if obj['type'] == 'output' and obj['location'] == location) name = clean_glsl_name(obj['name']) errors.append(f'Missing framebuffer attachment for "{name}" with location = {location}') if extra: for location in sorted(extra): errors.append(f'Unknown framebuffer attachment with location = {location}') expected = set(obj['binding'] for obj in interface if obj['type'] == 'uniform_buffer') provided = set(obj['binding'] for obj in resources if obj['type'] == 'uniform_buffer') if expected ^ provided: missing = expected - provided extra = provided - expected if missing: for binding in sorted(missing): obj = next(obj for obj in interface if obj['type'] == 'uniform_buffer' and obj['binding'] == binding) name = clean_glsl_name(obj['name']) errors.append(f'Missing uniform buffer binding for "{name}" with binding = {binding}') if extra: for binding in sorted(extra): errors.append(f'Unknown uniform buffer with binding = {binding}') expected = set(obj['binding'] for obj in interface if obj['type'] == 'storage_buffer') provided = set(obj['binding'] for obj in resources if obj['type'] == 'storage_buffer') if expected ^ provided: missing = expected - provided extra = provided - expected if missing: for binding in sorted(missing): obj = next(obj for obj in interface if obj['type'] == 'storage_buffer' and obj['binding'] == binding) name = clean_glsl_name(obj['name']) errors.append(f'Missing storage buffer binding for "{name}" with binding = {binding}') if extra: for binding in sorted(extra): errors.append(f'Unknown storage buffer with binding = {binding}') expected = set(obj['binding'] + i for obj in interface if obj['type'] == 'sampler' for i in range(obj['size'])) provided = set(obj['binding'] for obj in resources if obj['type'] == 'sampler') if expected ^ provided: missing = expected - provided extra = provided - expected if missing: for binding in sorted(missing): obj = next(obj for obj in interface if obj['type'] == 'sampler' and obj['binding'] == binding) name = clean_glsl_name(obj['name']) errors.append(f'Missing sampler binding for "{name}" with binding = {binding}') if extra: for binding in sorted(extra): errors.append(f'Unknown sampler with binding = {binding}') expected = set(obj['binding'] + i for obj in interface if obj['type'] == 'image' for i in range(obj['size'])) provided = set(obj['binding'] for obj in resources if obj['type'] == 'image') if expected ^ provided: missing = expected - provided extra = provided - expected if missing: for binding in sorted(missing): obj = next(obj for obj in interface if obj['type'] == 'image' and obj['binding'] == binding) name = clean_glsl_name(obj['name']) errors.append(f'Missing image binding for "{name}" with binding = {binding}') if extra: for binding in sorted(extra): errors.append(f'Unknown image with binding = {binding}') if errors: raise ValueError('Program Validation Error\n\n' + '\n'.join(errors))
zengl
/zengl-2.0.0a2-cp36-cp36m-win_amd64.whl/_zengl.py
_zengl.py
.. image:: https://badge.fury.io/py/zenipy.png :target: http://badge.fury.io/py/zenipy .. image:: https://readthedocs.org/projects/zenipy/badge/?version=latest :target: http://zenipy.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status Zenipy ****** Zenipy is a library for python wich inspired by Zenity. When you write scripts, you can use Zenipy to create simple dialogs that interact graphically with the user. Requirements ============ * Python 2 or 3 * GTK+3 * python3-gi or python-gi (for python2) Installation ============ Install using pip : .. code-block:: bash $ pip install zenipy Or clone the repo : .. code-block:: bash $ git clone https://github.com/poulp/zenipy.git $ cd ./zenipy $ python setup.py install Example ======= Simple dialog : .. code-block:: python from zenipy import calendar result = calendar(title="Awesome Calendar",text="Your birthday ?") print(result) This code show a calendar dialog : .. image:: docs/images/screen.png :align: center And display the result : .. code-block:: bash $ python test.py $ (year=2017, month=6, day=4) API === .. code-block:: python zenipy.zenipy.message(title='', text='', width=330, height=120, timeout=None) Display a simple message Parameters: * **text** (*str*) – text inside the window * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds .. code-block:: python zenipy.zenipy.error(title='', text='', width=330, height=120, timeout=None) Display a simple error Parameters: * **text** (*str*) – text inside the window * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds .. code-block:: python zenipy.zenipy.warning(title='', text='', width=330, height=120, timeout=None) Display a simple warning Parameters: * **text** (*str*) – text inside the window * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds .. code-block:: python zenipy.zenipy.question(title='', text='', width=330, height=120, timeout=None) Display a question, possible answer are yes/no. Parameters: * **text** (*str*) – text inside the window * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: The answer as a boolean Return type: bool .. code-block:: python zenipy.zenipy.entry(text='', placeholder='', title='', width=330, height=120, timeout=None) Display a text input Parameters: * **text** (*str*) – text inside the window * **placeholder** (*str*) – placeholder for the input * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: The content of the text input Return type: str .. code-block:: python zenipy.zenipy.password(text='', placeholder='', title='', width=330, height=120, timeout=None) Display a text input with hidden characters Parameters: * **text** (*str*) – text inside the window * **placeholder** (*str*) – placeholder for the input * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: The content of the text input Return type: str .. code-block:: python zenipy.zenipy.zlist(columns, items, print_columns=None, text='', title='', width=330, height=120, timeout=None) Display a list of values Parameters: * **columns** (*list of strings*) – a list of columns name * **items** (*list of strings*) – a list of values * **print_columns** (*int** (**None if all the columns**)*) – index of a column (return just the values from this column) * **text** (*str*) – text inside the window * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: A row of values from the table Return type: list .. code-block:: python zenipy.zenipy.file_selection(multiple=False, directory=False, save=False, confirm_overwrite=False, filename=None, title='', width=330, height=120, timeout=None) Open a file selection window Parameters: * **multiple** (*bool*) – allow multiple file selection * **directory** (*bool*) – only directory selection * **save** (*bool*) – save mode * **confirm_overwrite** (*bool*) – confirm when a file is overwritten * **filename** (*str*) – placeholder for the filename * **text** (*str*) – text inside the window * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: path of files selected. Return type: string or list if multiple enabled .. code-block:: python zenipy.zenipy.calendar(text='', day=None, month=None, title='', width=330, height=120, timeout=None) Display a calendar Parameters: * **text** (*str*) – text inside the window * **day** (*int*) – default day * **month** (*int*) – default month * **text** – text inside the window * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: (year, month, day) Return type: tuple .. code-block:: python zenipy.zenipy.color_selection(show_palette=False, opacity_control=False, title='', width=330, height=120, timeout=None) Display a color selection dialog Parameters: * **show_palette** (*bool*) – hide/show the palette with preselected colors * **opacity_control** (*bool*) – allow to control opacity * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: the color selected by the user Return type: str .. code-block:: python zenipy.zenipy.scale(text='', value=0, min=0, max=100, step=1, draw_value=True, title='', width=330, height=120, timeout=None) Select a number with a range widget Parameters: * **text** (*str*) – text inside window * **value** (*int*) – current value * **min** (*int*) – minimum value * **max** (*int*) – maximum value * **step** (*int*) – incrementation value * **draw_value** (*bool*) – hide/show cursor value * **title** (*str*) – title of the window * **width** (*int*) – window width * **height** (*int*) – window height * **timeout** (*int*) – close the window after n seconds Returns: The value selected by the user Return type: float
zenipy
/zenipy-0.1.5.tar.gz/zenipy-0.1.5/README.rst
README.rst
.. :changelog: History ------- 2.2.6 (2014-02-28) ++++++++++++++++++ * Use atexit to make sure gevent greenlets die. 2.2.5 (2014-02-26) ++++++++++++++++++ * Fix pubsub parser to check for proper message type. 2.2.4 (2012-06-28) ++++++++++++++++++ * added services command 2.2.3 (2012-04-17) ++++++++++++++++++ * removed extra ' in library 2.2.2 (2012-04-17) ++++++++++++++++++ * Switched to gevent instead of Thread to make killing services easier. 2.2.1 (2012-04-17) ++++++++++++++++++ * Add symlink for LICENSE so it includes properly when making the package. 2.2.0 (2012-04-17) ++++++++++++++++++ * Add MANIFEST.in * Version bump to match major/minor step with ZenIRCBot. 2.1.3 (2012-04-11) ++++++++++++++++++ * Creating history
zenircbot_api
/zenircbot_api-2.2.6.tar.gz/zenircbot_api-2.2.6/HISTORY.rst
HISTORY.rst
# These are at the top to ensure gevent can monkey patch before # threading gets imported. from gevent import monkey monkey.patch_all() import atexit import json import gevent from redis import StrictRedis def load_config(name): """ Loads a JSON file and returns an object. :param string name: The JSON file to load. :returns: An native object with the contents of the JSON file. This is a helper so you don't have to do the file IO and JSON parsing yourself. """ with open(name) as f: return json.loads(f.read()) __version__ = '2.2.6' class ZenIRCBot(object): """Instantiates a new ZenIRCBot API object. :param string host: Redis hostname (default: 'localhost') :param integer port: Redis port (default: 6379) :param integer db: Redis DB number (default: 0) :returns: ZenIRCBot instance Takes Redis server parameters to use for instantiating Redis clients. """ def __init__(self, host='localhost', port=6379, db=0): self.host = host self.port = port self.db = db self.redis = StrictRedis(host=self.host, port=self.port, db=self.db) def send_privmsg(self, to, message): """Sends a message to the specified channel(s) :param to: A list or a string, if it is a list it will send to all the people or channels listed. :param string message: The message to send. This is a helper so you don't have to handle the JSON or the envelope yourself. """ if isinstance(to, basestring): to = (to,) for channel in to: self.get_redis_client().publish('out', json.dumps({ 'version': 1, 'type': 'privmsg', 'data': { 'to': channel, 'message': message, }})) def send_action(self, to, message): """Sends an "ACTION" message to the specified channel(s) :param to: A list or a string, if it is a list it will send to all the people or channels listed. :param string message: The message to send. This is a helper so you don't have to handle the JSON or the envelope yourself. """ if isinstance(to, basestring): to = (to,) for channel in to: self.get_redis_client().publish('out', json.dumps({ 'version': 1, 'type': 'privmsg_action', 'data': { 'to': channel, 'message': message, }})) def send_admin_message(self, message): """ :param string message: The message to send. This is a helper function that sends the message to all of the channels defined in ``admin_spew_channels``. """ admin_channels = self.redis.get('zenircbot:admin_spew_channels') if admin_channels: self.send_privmsg(admin_channels, message) def non_blocking_redis_subscribe(self, func, args=[], kwargs={}): pubsub = self.get_redis_client().pubsub() pubsub.subscribe('in') for msg in pubsub.listen(): if msg['type'] == 'message': message = json.loads(msg['data']) func(message=message, *args, **kwargs) def register_commands(self, service, commands): """ :param string script: The script with extension that you are registering. :param list commands: A list of objects with name and description attributes used to reply to a commands query. This will notify all ``admin_spew_channels`` of the script coming online when the script registers itself. It will also setup a subscription to the 'out' channel that listens for 'commands' to be sent to the bot and responds with the list of script, command name, and command description for all registered scripts. """ self.send_admin_message(service + ' online!') if commands: def registration_reply(message, service, commands): if message['version'] == 1: if message['type'] == 'directed_privmsg': if message['data']['message'] == 'commands': for command in commands: self.send_privmsg(message['data']['sender'], '%s: %s - %s' % ( service, command['name'], command['description'] )) elif message['data']['message'] == 'services': self.send_privmsg(message['data']['sender'], service) greenlet = gevent.spawn(self.non_blocking_redis_subscribe, func=registration_reply, kwargs={ 'service': service, 'commands': commands }) # Ensures that the greenlet is cleaned up. atexit.register(lambda gl: gl.kill(), greenlet) def get_redis_client(self): """ Get redis client using values from instantiation time.""" return StrictRedis(host=self.host, port=self.port, db=self.db)
zenircbot_api
/zenircbot_api-2.2.6.tar.gz/zenircbot_api-2.2.6/zenircbot_api.py
zenircbot_api.py
import argparse from .filing import Filing from .settings import KNOWN_SCHEDULES, IRS_READER_ROOT from .xmlrunner import XMLRunner from .text_format_utils import * def get_parser(): parser = argparse.ArgumentParser("irsx") parser.add_argument( 'object_ids', metavar='object_ids', type=int, nargs='+', help='object ids' ) parser.add_argument( '--verbose', dest='verbose', action='store_const', const=True, default=False, help='Verbose output' ) parser.add_argument( "--schedule", choices=KNOWN_SCHEDULES, default=None, help='Get only that schedule' ) parser.add_argument( "--xpath", dest='documentation', action='store_const', const=True, default=False, help='show xpath in text format' ) parser.add_argument( "--format", choices=['json', 'csv', 'txt'], default='json', help='Output format' ) parser.add_argument( "--file", default=None, help='Write result to file' ) parser.add_argument( '--list_schedules', dest='list_schedules', action='store_const', const=True, default=False, help='Only list schedules' ) return parser def run_main(args_read): csv_format = args_read.format == 'csv' or args_read.format == 'txt' xml_runner = XMLRunner( documentation=args_read.documentation, csv_format=csv_format ) # Use the standardizer that was init'ed by XMLRunner standardizer = xml_runner.get_standardizer() for object_id in args_read.object_ids: if args_read.verbose: print("Processing filing %s" % object_id) if args_read.file: print("Printing result to file %s" % args_read.file) if args_read.list_schedules: this_filing = Filing(object_id) this_filing.process() print(this_filing.list_schedules()) return True # we're done, ignore any other commands else: if args_read.schedule: parsed_filing = xml_runner.run_sked( object_id, args_read.schedule, verbose=args_read.verbose ) else: parsed_filing = xml_runner.run_filing( object_id, verbose=args_read.verbose ) if args_read.format == 'json': to_json(parsed_filing.get_result(), outfilepath=args_read.file) elif args_read.format == 'csv': to_csv( parsed_filing, object_id=object_id, standardizer=standardizer, documentation=args_read.documentation, outfilepath=args_read.file ) elif args_read.format == 'txt': to_txt( parsed_filing, standardizer=standardizer, documentation=args_read.documentation, outfilepath=args_read.file ) def main(args=None): parser = get_parser() args_read = parser.parse_args() run_main(args_read) print("\n") if __name__ == "__main__": main()
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/irsx_cli.py
irsx_cli.py
# csvcut -c 9 index_2017.csv | head -n 1000 object_ids_2017 = ['201612439349300006', '201612439349300026', '201612439349300341', '201612439349300516', '201612439349300546', '201612439349300601', '201612439349300621', '201612439349300746', '201612439349300861', '201612449349100601', '201612449349100706', '201612449349200001', '201612449349200101', '201612449349200111', '201612449349200121', '201612449349200756', '201612449349200761', '201612449349200806', '201612449349200906', '201612449349300216', '201612449349300336', '201612449349300406', '201612449349300606', '201612449349300636', '201612449349300756', '201612449349300786', '201612449349301061', '201612449349301071', '201612449349301076', '201612459349100321', '201612459349200111', '201612459349200206', '201612459349200321', '201612459349200431', '201612459349200506', '201612459349200711', '201612459349300241', '201612459349300301', '201632519349300958', '201632469349300108', '201632519349300313', '201642509349300319', '201642509349300704', '201642509349300209', '201642469349300244', '201632529349300833', '201632519349301153', '201642519349300434', '201602379349100415', '201602379349100605', '201602379349300230', '201602379349300530', '201602389349100605', '201602389349300545', '201602389349300845', '201602399349200620', '201602399349200715', '201602399349300310', '201602399349300330', '201602399349300410', '201602399349300605', '201602399349300610', '201602399349300625', '201602399349300700', '201602399349300725', '201602399349300800', '201602399349300900', '201602399349300915', '201602409349200000', '201602409349200200', '201602409349200700', '201612459349300346', '201612459349300426', '201612459349300431', '201612459349300536', '201612459349300626', '201612459349300816', '201612459349300971', '201612459349300976', '201612459349301101', '201612459349301111', '201612469349200411', '201612469349300206', '201612469349300231', '201612469349300426', '201612469349300501', '201612469349300601', '201612509349300101', '201612509349300166', '201612509349300211', '201612509349300356', '201612509349300476', '201612509349300501', '201612509349300621', '201612519349200021', '201612519349200611', '201612519349200736', '201612519349300136', '201612519349300141', '201612519349300146', '201612519349300206', '201612519349300601', '201612519349300766', '201612519349300826', '201612519349300901', '201612519349300951', '201612529349200701', '201612529349300801', '201612529349300836', '201612529349301251', '201622449349300427', '201602429349200000', '201602429349200100', '201602429349200310', '201602429349200615', '201602429349200640', '201602439349300045', '201602439349300415', '201602439349300535', '201602449349300910', '201602449349301055', '201602449349301090', '201602449349301405', '201602459349300345', '201602459349300405', '201602459349300715', '201602459349301055', '201602509349300350', '201602529349200405', '201602529349301100', '201602529349301155', '201602589349100020', '201602599349100130', '201612539349100751', '201602589349100610', '201602589349100210', '201622569349100422', '201622579349100302', '201602599349100000', '201602589349100310', '201602589349100515', '201602599349100405', '201602589349100120', '201622569349100452', '201622579349100117', '201602589349100300', '201602589349100205', '201602599349100630', '201602599349100310', '201622569349100312', '201602579349100515', '201602589349100105', '201602579349100705', '201602569349100600', '201622579349100017', '201602149349301245', '201602159349300625', '201642089349300449', '201642049349300519', '201632099349301278', '201632049349300243', '201612099349301021', '201641979349301154', '201641599349300219', '201631619349300243', '201612109349301306', '201642029349300864', '201602149349300040', '201602049349300800', '201632089349300823', '201622109349300627', '201602079349301200', '201632099349301353', '201632079349301368', '201632039349300953', '201602159349300225', '201602599349100435', '201612539349100406', '201602599349100030', '201602599349100640', '201602599349100430', '201602599349100625', '201602599349100205', '201602579349100200', '201602579349100115', '201602579349100105', '201602569349100085', '201622539349100702', '201622569349100122', '201612549349100401', '201612539349100001', '201612539349100311', '201622599349100022', '201602589349100625', '201602579349100715', '201602579349100100', '201602579349100005', '201602539349200810', '201602549349200005', '201602539349200000', '201602539349200510', '201602539349200800', '201602539349200230', '201602539349200805', '201602549349200600', '201602539349200310', '201622579349200247', '201602539349200010', '201602539349200135', '201602539349200605', '201602539349200005', '201602549349200105', '201602539349200600', '201602549349200100', '201602539349200525', '201602539349200300', '201602539349200520', '201602539349200235', '201602539349200710', '201602539349200115', '201602539349200515', '201602599349100215', '201612569349100466', '201602589349100400', '201612599349100301', '201612599349100116', '201602589349100810', '201612569349100501', '201602589349100005', '201622539349100802', '201612569349100401', '201602599349100515', '201602599349100210', '201602589349100805', '201602589349100000', '201612589349100511', '201622549349100002', '201622539349100312', '201612599349100136', '201612579349100706', '201612589349100421', '201602579349100000', '201602579349100210', '201612589349100411', '201612589349100406', '201612589349100326', '201602549349200700', '201602539349200110', '201602539349200225', '201612599349100106', '201612539349100616', '201602599349100530', '201622579349100702', '201622539349100502', '201622579349100412', '201612549349100501', '201612539349100401', '201602589349100750', '201602599349100135', '201602589349100510', '201602599349100420', '201602589349100110', '201602599349100535', '201602589349100015', '201622539349100757', '201622549349100302', '201622599349100002', '201622579349100802', '201622569349100617', '201622539349100007', '201622569349100512', '201612599349100211', '201612569349100616', '201612569349200726', '201612579349200761', '201612599349200636', '201612569349200621', '201612599349200606', '201612599349200131', '201612589349200501', '201622589349200342', '201622589349200132', '201612569349200136', '201612599349200121', '201612569349200011', '201612569349200751', '201612569349200001', '201612579349200641', '201612599349200711', '201612599349201111', '201612569349200616', '201612599349200611', '201612599349200541', '201612589349200441', '201642239349302074', '201632249349301788', '201632199349300108', '201602289349302985', '201602259349301770', '201642239349302474', '201602319349300950', '201642249349303004', '201632249349303053', '201632249349301818', '201642229349301129', '201602259349303350', '201602289349301880', '201632229349302013', '201622249349302207', '201632229349300443', '201642219349301344', '201642229349300884', '201642229349301644', '201602289349303935', '201632239349302363', '201642249349301329', '201602599349100635', '201612539349100301', '201602539349100760', '201612589349100626', '201612569349100606', '201602599349100525', '201602599349100400', '201612569349100506', '201622539349100767', '201612569349100461', '201602549349100400', '201602579349100510', '201602579349100800', '201612539349100306', '201602589349100710', '201602599349100020', '201602599349100010', '201602589349100410', '201612599349100201', '201612599349100006', '201612589349100601', '201622589349100717', '201612579349100511', '201602189349300440', '201642169349301589', '201632289349203713', '201632289349203468', '201632289349203398', '201632289349204603', '201632289349203743', '201632289349203373', '201632289349203233', '201632289349203158', '201632289349202553', '201632289349204143', '201632289349204153', '201632289349204003', '201632289349204313', '201632289349203663', '201632289349203628', '201632289349203563', '201632289349202753', '201632289349202633', '201632319349200013', '201632289349204248', '201632289349203993', '201632179349301418', '201612229349301241', '201602239349301585', '201602189349300985', '201602189349300760', '201642169349300104', '201612179349300641', '201622159349300027', '201642159349300334', '201602239349302575', '201602189349300865', '201632169349300528', '201622169349301667', '201622159349300787', '201602229349301885', '201612149349301421', '201642179349301574', '201602169349300300', '201602179349301510', '201622119349301027', '201642149349301339', '201622159349301767', '201612189349300641', '201612249349300436', '201612229349301486', '201612219349301091', '201602249349300445', '201602229349301920', '201602219349300525', '201602239349302375', '201602249349302260', '201622229349301242', '201612229349301306', '201602199349300500', '201622219349301032', '201622189349300897', '201602219349302255', '201602189349300950', '201602249349301185', '201612229349300146', '201612249349301301', '201632289349203813', '201632289349203808', '201632289349203568', '201632289349202108', '201632289349204358', '201632289349203223', '201632289349202923', '201642259349201179', '201642259349200709', '201642259349200424', '201632319349200113', '201632319349200033', '201632299349201003', '201632299349200933', '201632289349204413', '201632289349202683', '201632289349202558', '201632289349201388', '201632289349201243', '201632289349200923', '201632269349200133', '201642259349200549', '201632309349200418', '201632289349204273', '201632289349204258', '201632289349203703', '201632289349202983', '201632289349201408', '201632289349201353', '201632289349200228', '201642289349202399', '201642289349201969', '201642289349201744', '201642319349200329', '201642289349202324', '201642289349201379', '201642289349203804', '201642289349203564', '201642289349202134', '201642289349201074', '201642319349200319', '201642289349203174', '201642289349202924', '201642289349202874', '201642289349201979', '201642289349200829', '201642319349200719', '201612229349301736', '201612189349301406', '201622229349300527', '201602239349301695', '201612569349100081', '201622569349100457', '201612579349100001', '201622539349100412', '201612579349100206', '201612599349100311', '201612599349100506', '201612599349100401', '201612589349100206', '201612589349100016', '201622579349100312', '201622579349100402', '201602579349100610', '201612569349100076', '201612569349100006', '201612569349100001', '201622569349100072', '201622559349100002', '201612589349100211', '201612589349100126', '201602599349200910', '201602569349200640', '201602599349200745', '201602539349200405', '201602569349200635', '201602579349200715', '201602569349200860', '201602559349200050', '201602569349200135', '201602569349200405', '201602569349200000', '201602569349200530', '201602569349200240', '201602569349200865', '201602589349200120', '201602589349200520', '201602589349200300', '201602589349201005', '201602589349200725', '201602589349200005', '201602559349200000', '201602569349200125', '201602549349200500', '201642289349203299', '201642289349202499', '201642289349201729', '201632299349200913', '201632279349200808', '201632319349200038', '201632289349202428', '201632289349201613', '201632269349200003', '201632309349200718', '201632299349200903', '201632289349202593', '201642259349201084', '201642259349200719', '201632319349200128', '201632309349200438', '201632289349200938', '201632289349200853', '201632269349200613', '201642259349200334', '201632289349202218', '201632289349201508', '201632289349200208', '201632309349200528', '201632289349202408', '201632289349201643', '201632289349200413', '201632289349204608', '201632289349202943', '201632289349202363', '201632289349202008', '201632289349201988', '201632289349201773', '201632289349201578', '201632289349200003', '201632289349204233', '201632289349203433', '201632289349200433', '201632289349202213', '201632289349200223', '201632289349204103', '201632289349203348', '201632289349204238', '201632289349203138', '201632289349201733', '201632289349203003', '201632289349202803', '201632289349204378', '201602599349200945', '201602599349200920', '201602599349200325', '201602309349301000', '201602299349300525', '201632259349301783', '201602289349305800', '201612259349302576', '201602289349306480', '201602289349303740', '201602079349300950', '201612089349301256', '201612109349301301', '201642039349300014', '201632079349301123', '201642019349300124', '201641619349300539', '201642089349301274', '201632099349300403', '201602289349305745', '201612259349303741', '201612259349302571', '201612259349301956', '201602259349301840', '201642229349301139', '201602289349305390', '201632259349301883', '201622569349100052', '201612599349100141', '201612549349100001', '201612589349100021', '201612579349100011', '201612599349100411', '201622569349100132', '201622589349100422', '201622589349100507', '201602599349100510', '201602599349100140', '201602599349100105', '201622569349100302', '201622569349100002', '201622569349100082', '201622569349100077', '201622569349100612', '201612599349100216', '201612599349100121', '201612579349100016', '201632289349200143', '201632269349200603', '201631609349200708', '201642179349200249', '201642179349200439', '201602289349202390', '201602259349201435', '201612049349200001', '201612149349200121', '201612169349200301', '201612219349200731', '201612249349202001', '201602239349200910', '201632289349201078', '201632289349201113', '201632279349200038', '201632289349202003', '201632289349201973', '201632289349201143', '201632289349200028', '201632279349200223', '201632279349200713', '201632269349200233', '201632239349300138', '201622249349302802', '201622249349301907', '201642229349301629', '201632249349301433', '201632229349301808', '201642229349301344', '201602289349301630', '201642249349301799', '201642239349301989', '201642249349302259', '201642249349300714', '201602259349302660', '201632219349300933', '201632229349301128', '201622249349303002', '201632229349301373', '201642219349302219', '201632249349302148', '201622229349301197', '201622249349301172', '201612569349100086', '201632289349102063', '201632289349100543', '201632289349100508', '201632289349101548', '201632289349100748', '201632319349100103', '201632289349100003', '201622239349301852', '201632289349303273', '201632289349305258', '201632289349306863', '201632289349303708', '201632289349306598', '201632289349306363', '201632289349302613', '201632289349301978', '201632319349300748', '201632289349305448', '201632299349300208', '201632289349304968', '201632289349306638', '201632289349307128', '201632289349305023', '201632289349304128', '201632289349305693', '201632289349303163', '201632289349303643', '201632289349301418', '201622579349100512', '201612539349100811', '201622589349100512', '201622569349100467', '201622569349100307', '201622589349100407', '201622589349100002', '201622579349100507', '201622569349100117', '201622589349100427', '201602579349100600', '201602579349100400', '201622559349100152', '201622539349100407', '201612539349100851', '201622569349100112', '201622569349100102', '201602599349100425', '201622579349100012', '201622589349100807', '201622569349100552', '201622589349100417', '201622589349100327', '201622589349100207', '201622579349100307', '201612329349100001', '201612329349100501', '201612329349100506', '201612329349100706', '201612329349200006', '201612329349200226', '201612329349200306', '201612329349200526', '201612329349200801', '201612329349300301', '201632289349101028', '201632289349101583', '201632289349102008', '201632289349100418', '201642259349100004', '201632299349100303', '201632309349100303', '201642259349100544', '201632299349100003', '201642259349101114', '201632289349100938', '201632289349100623', '201632289349101358', '201632289349101918', '201632289349101198', '201632289349100913', '201632289349101578', '201632289349100733', '201632269349100403', '201642289349101929', '201642289349100929', '201642289349101909', '201642289349101564', '201602329349100705', '201642289349101289', '201642269349100304', '201642289349101274', '201602329349100805', '201602339349100100', '201642299349100714', '201642299349100709', '201642289349100944', '201642289349101879', '201642289349101519', '201642289349100734', '201642289349100414', '201642289349101689', '201642289349100224', '201642289349100349', '201642289349100214', '201642229349301184', '201642249349301549', '201632249349300013', '201642229349300839', '201642229349300909', '201632249349302078', '201632249349300513', '201632249349300503', '201632249349301498', '201642249349302379', '201642249349302039', '201642249349301544', '201642249349300729', '201642249349301614', '201642229349301239', '201642229349301324', '201642229349301054', '201642229349301179', '201642219349301764', '201642219349302074', '201642219349301564', '201602579349300515', '201612579349300236', '201602569349300880', '201602569349300420', '201602579349300825', '201602569349300315', '201602579349300310', '201602579349300315', '201602579349301210', '201602569349300900', '201602569349300785', '201602559349300155', '201602569349300110', '201602559349300350', '201612539349300006', '201612589349301136', '201602579349301265', '201602579349300520', '201602579349300855', '201602579349300400', '201602579349300895', '201602579349300720', '201602579349300885', '201602579349300820', '201602569349301265', '201602569349301000', '201612329349300631', '201612329349300646', '201612329349301101', '201612329349301151', '201612329349301206', '201612339349100201', '201612339349200301', '201612339349200501', '201612349349200251', '201612359349100351', '201612359349100361', '201612359349100411', '201612359349200041', '201612359349200256', '201612359349200501', '201612359349300216', '201612359349300461', '201612359349300501', '201612359349300721', '201612359349300901', '201612359349301006', '201612369349100756', '201612369349200111', '201612369349200406', '201612369349200416', '201612369349200531', '201612369349300001', '201612369349300011', '201612369349300201', '201612369349300301', '201612369349300336', '201612369349300346', '201612369349300506', '201612369349300611', '201612369349300726', '201612369349300906', '201612369349301156', '201612379349100001', '201602539349100765', '201602539349100210', '201602539349100805', '201602569349100465', '201602539349100610', '201602539349100100', '201602549349100000', '201602539349100005', '201602539349100200', '201602539349100105', '201602539349100800', '201602539349100615', '201622569349100067', '201622569349100057', '201602539349100205', '201602539349100605', '201602539349100600', '201602539349100110', '201602539349100500', '201602539349100810', '201602539349100415', '201602539349100410', '201602549349100500', '201602539349100405', '201602539349100000', '201602569349100300', '201602569349100415', '201642259349100034', '201632289349101218', '201632289349100243', '201632289349100218', '201632269349100003', '201632289349100838', '201632289349100038', '201632289349100523', '201632289349101158', '201632289349101043', '201632289349100048', '201632289349100408', '201632289349101668', '201632289349101213', '201632289349100333', '201632269349100203', '201632289349102003', '201632289349101658', '201632289349100933', '201632289349101513', '201632289349101018', '201632279349100403', '201642259349101004', '201642259349100509', '201632319349100708', '201612379349100116', '201612379349100411', '201612379349100606', '201612379349200001', '201612379349200231', '201612379349200616', '201612379349200706', '201612379349200711', '201612379349200721', '201612379349300016', '201612379349300036', '201612379349300126', '201612379349300226', '201612379349300301', '201612379349300331', '201612379349300401', '201612379349300606', '201612379349300631', '201612379349300716', '201612379349300766', '201612389349100501', '201612389349100506', '201612389349200006', '201612389349200126', '201612389349200206', '201612389349200401', '201612389349200606', '201612389349200726', '201612389349300001', '201612389349300016', '201612389349300031', '201612389349300121', '201612389349300141', '201612389349300206', '201612389349300411', '201612389349300501', '201612389349300541', '201612389349300631', '201642459349300959', '201642459349300939', '201642459349300969', '201642439349300724', '201642449349300534', '201632509349300238', '201632509349300003', '201632509349300023', '201642449349300544', '201642459349300949', '201642459349301054', '201642449349300104', '201642519349300709', '201642509349300384', '201642519349300319', '201642509349300219', '201642469349300624', '201642469349300204', '201632529349301013', '201612389349300816', '201612399349200316', '201612399349200506', '201612399349300011', '201612399349300041', '201612399349300211', '201612399349300426', '201612399349300516', '201612399349300626', '201612399349300726', '201612399349300736', '201612409349200401', '201612419349200301', '201612419349300051', '201612429349200131', '201612429349200146', '201612429349200201', '201612429349200216', '201612429349200511', '201612429349200716', '201612429349200751', '201612429349300111', '201612429349300576', '201612429349300586', '201612429349300591', '201612429349300596', '201612429349300691', '201612429349300721', '201612429349300811', '201612429349300966', '201612429349301051', '201612429349301161', '201612439349100201', '201612439349100306', '201612439349100606', '201612439349200401', '201612439349200516', '201612439349200621', '201612439349200631', '201602519349100005', '201602509349100165', '201602509349100060', '201632529349100603', '201642519349100314', '201642459349100104', '201632519349100508', '201602509349100000', '201602509349100210', '201602469349100505', '201622519349100512', '201612519349100311', '201642459349100659', '201602509349100310', '201642509349100359', '201622519349100507', '201622519349100702', '201612509349100356', '201602519349100205', '201602519349100315', '201642459349100654', '201602469349100205', '201642449349100409', '201642469349100709', '201602469349100310', '201602469349100010'] #csvcut -c 9 index_2016.csv | head -n 1000 > returns_2016.txt object_ids_2016 = ['201543159349100344', '201543109349200219', '201513089349200226', '201513089349200236', '201523229349300327', '201543089349301829', '201533179349306298', '201533179349201108', '201533179349203783', '201533209349304768', '201533179349307343', '201533209349204083', '201533209349204123', '201533209349204128', '201533209349204148', '201533209349204153', '201533209349204178', '201533209349204198', '201533209349204208', '201533209349204223', '201533209349204228', '201533189349300608', '201523069349301367', '201533069349300963', '201523099349300542', '201533099349301033', '201533099349301043', '201523169349304367', '201533099349301803', '201523069349300142', '201533109349300348', '201503069349100380', '201513089349100601', '201523039349200407', '201543039349301204', '201523039349200632', '201523039349200637', '201523089349301462', '201533069349300788', '201533079349300238', '201543149349201279', '201543159349100504', '201543169349201334', '201543169349201349', '201543109349200229', '201533169349100748', '201533169349100808', '201513069349200601', '201523209349314227', '201523209349314257', '201523209349311332', '201533179349302173', '201533179349307048', '201523219349200632', '201533179349201623', '201533179349201643', '201543109349100104', '201533209349302633', '201533179349200538', '201533179349200618', '201533179349203683', '201533179349203728', '201533209349306188', '201533209349204843', '201533099349301103', '201533099349301113', '201523039349300127', '201523079349301652', '201533039349300813', '201533139349300148', '201533139349300208', '201533069349301413', '201533079349300003', '201523039349200827', '201523079349200027', '201523079349200237', '201523069349300957', '201523079349301387', '201533079349200823', '201523209349310937', '201523209349310947', '201543089349201054', '201533179349306528', '201533179349303278', '201543079349200609', '201543079349200529', '201533179349306278', '201523099349201102', '201523239349300002', '201533209349205278', '201533209349205353', '201533209349201488', '201533209349203893', '201533209349203908', '201533209349203913', '201533209349203923', '201533209349201753', '201533209349201808', '201533209349302303', '201533179349307818', '201533179349307828', '201523209349311892', '201533179349309453', '201533209349301728', '201533209349301738', '201533189349100703', '201533209349102838', '201533209349102858', '201533209349101368', '201533209349101373', '201533179349307538', '201533209349203328', '201533209349203503', '201533209349306423', '201533209349306438', '201533209349203508', '201533209349203518', '201533179349307838', '201533189349300223', '201533179349309083', '201533189349300233', '201543099349200889', '201503099349201105', '201513079349201106', '201513089349200936', '201513089349100726', '201523069349301172', '201533069349300408', '201543169349201379', '201523209349314732', '201523209349313972', '201533179349202718', '201533179349202668', '201533179349202733', '201533099349200108', '201523209349311802', '201533209349205593', '201533209349101563', '201533179349308913', '201533209349102818', '201533179349309088', '201533189349300443', '201533209349101958', '201533209349206523', '201533179349309208', '201533209349305433', '201533209349305438', '201533209349206623', '201533179349309223', '201533179349309268', '201533209349102023', '201533209349102028', '201533179349309348', '201533199349100413', '201533209349102278', '201543099349301839', '201503069349200845', '201513069349200231', '201503069349200970', '201503069349200980', '201513069349200316', '201513099349201151', '201513079349100106', '201513099349100201', '201523069349301047', '201523069349301057', '201523069349301112', '201523069349301117', '201523069349301127', '201523069349301132', '201523069349301157', '201503039349100615', '201523089349300312', '201523089349300317', '201523089349300322', '201533069349300508', '201533069349300708', '201533069349300718', '201533069349300778', '201533069349300803', '201543159349200314', '201543159349200319', '201543089349301374', '201523209349316527', '201533169349101073', '201543069349100569', '201533179349305958', '201523229349300237', '201533179349303308', '201533179349305888', '201533179349305893', '201533179349305903', '201533179349305923', '201533179349306913', '201543079349301154', '201523219349200727', '201523219349200747', '201543109349200224', '201543109349200234', '201543109349200304', '201533169349100833', '201533069349300443', '201533069349300868', '201533179349301803', '201523209349311197', '201523069349100357', '201533179349305948', '201523229349300307', '201523209349314597', '201523209349314607', '201523209349315117', '201523209349312647', '201523209349312657', '201523209349310667', '201523219349301067', '201523209349313657', '201533179349201693', '201543109349100329', '201523219349100207', '201533179349100403', '201533179349100418', '201533179349100508', '201533179349100513', '201523219349200132', '201533179349200718', '201533209349302068', '201533179349100823', '201533179349100938', '201533179349101128', '201533179349101688', '201533179349101693', '201533179349307523', '201533209349306058', '201543069349301474', '201543149349201919', '201543149349202034', '201543089349200014', '201543099349201214', '201543159349100614', '201543159349100629', '201543149349201549', '201513089349201211', '201503089349201250', '201513099349100036', '201513099349100041', '201523069349301752', '201543139349101009', '201523229349300507', '201543109349100009', '201533209349302098', '201533209349301008', '201533209349301023', '201533179349203653', '201533179349203853', '201533179349203858', '201533179349308653', '201533179349203888', '201533189349200133', '201533179349102213', '201533179349102453', '201523069349301392', '201533099349302063', '201533099349302068', '201533099349302103', '201523079349300547', '201523079349300607', '201523079349300707', '201523039349301092', '201533099349301028', '201523039349301227', '201533089349300648', '201513089349100511', '201503099349201100', '201543089349100729', '201523229349300122', '201523229349300142', '201533179349303898', '201533179349303908', '201533179349303913', '201523209349310247', '201533179349300928', '201523209349314977', '201533179349302118', '201523209349313352', '201523209349313387', '201523209349313392', '201533179349303713', '201533179349303723', '201533179349302818', '201523229349200117', '201533179349201233', '201523219349200142', '201523219349200147', '201523219349200207', '201523039349300942', '201523039349300977', '201523039349300982', '201533039349300948', '201543039349300044', '201543039349301154', '201533079349300213', '201533089349300538', '201533079349300328', '201533089349200978', '201523079349201057', '201533039349200308', '201533099349301313', '201523079349200447', '201523079349200627', '201533079349301248', '201533079349301328', '201533049349300403', '201543069349201204', '201543169349201579', '201543109349200424', '201523209349311052', '201523239349300612', '201523209349312367', '201543109349100014', '201543109349100124', '201533099349301538', '201523089349301817', '201523089349301927', '201533089349300633', '201523069349200307', '201533069349200328', '201533069349200338', '201533069349200428', '201533069349200433', '201523069349201167', '201523069349201202', '201523069349201257', '201523069349201302', '201533209349302198', '201523239349300107', '201533209349203173', '201523239349300202', '201533209349206183', '201533209349206208', '201533179349300543', '201533209349204003', '201533199349200413', '201533199349200648', '201533209349205633', '201533209349205643', '201533209349302503', '201523209349311932', '201533179349308283', '201533179349308293', '201533179349308308', '201533209349202273', '201533209349303908', '201533209349306913', '201533209349103568', '201543159349200914', '201543159349200919', '201543099349200334', '201543099349200624', '201523239349300307', '201533179349303018', '201533179349306963', '201533089349100613', '201533089349100623', '201533179349306108', '201533179349203403', '201533209349301973', '201533179349101908', '201533209349304733', '201533189349200148', '201533189349200213', '201533189349200223', '201533209349201793', '201523049349300007', '201523049349300107', '201533099349301308', '201503099349300215', '201503099349300225', '201533109349300523', '201533089349301458', '201523099349300347', '201543039349200339', '201523069349200962', '201523069349201002', '201543079349301354', '201533209349203958', '201533209349203963', '201533209349203978', '201533209349203983', '201533209349205873', '201533209349103663', '201533209349103678', '201533209349103238', '201533189349100513', '201503069349201110', '201503069349201115', '201503069349201150', '201503069349201165', '201503069349201215', '201503039349200340', '201513069349200956', '201513099349201116', '201523069349301482', '201543169349201394', '201543169349201369', '201543139349100604', '201523229349300047', '201523209349310187', '201523209349310192', '201523209349312807', '201523209349314007', '201533089349100528', '201523209349314152', '201523219349200627', '201523219349200712', '201523219349200732', '201523219349200802', '201523219349200907', '201533179349202178', '201533179349203378', '201533179349203398', '201533209349300603', '201533209349300608', '201533209349300618', '201533209349300623', '201523069349301327', '201523069349300707', '201523089349301977', '201533039349300038', '201513089349100326', '201523089349301827', '201533089349200923', '201523079349301177', '201533039349300823', '201533039349300828', '201543159349101159', '201543139349100014', '201543139349100024', '201543139349100029', '201513089349201101', '201513089349201106', '201513089349201116', '201513089349201156', '201513089349201161', '201513069349200331', '201503079349200795', '201503089349100030', '201543089349301464', '201533179349303958', '201533179349303998', '201523209349312622', '201533179349101313', '201533209349201068', '201523099349200307', '201523069349200337', '201523219349201152', '201533179349202388', '201533179349202413', '201533179349202453', '201523209349314792', '201543079349301174', '201543079349301194', '201543079349301214', '201543079349301309', '201533209349205268', '201533209349201613', '201533209349204028', '201533209349204038', '201533209349204053', '201533209349305963', '201533179349308908', '201533199349300033', '201533209349101623', '201533209349101633', '201533209349101643', '201543119349200204', '201543119349200304', '201543159349200519', '201543159349200529', '201543149349201779', '201543159349200609', '201543149349201799', '201543159349200614', '201543159349200704', '201543159349200734', '201543159349200749', '201543149349201439', '201543159349100804', '201543159349100809', '201543099349200234', '201543099349200339', '201503099349200960', '201513039349100006', '201523209349308842', '201523209349308857', '201533179349306558', '201543079349300119', '201533179349302383', '201533179349302388', '201533179349302413', '201533179349302423', '201533179349101993', '201533179349101998', '201533209349304753', '201533179349305163', '201533209349305143', '201533209349305178', '201533189349300433', '201523089349301007', '201523099349301812', '201533099349301168', '201533099349301173', '201523059349300002', '201523059349300007', '201523209349310582', '201523219349300902', '201523219349300927', '201523219349300932', '201533179349303218', '201543079349200724', '201533179349303963', '201533179349201488', '201533179349201513', '201523209349315257', '201533209349301013', '201523069349300737', '201523039349300142', '201523089349301962', '201523039349300912', '201523089349300147', '201523099349301322', '201533089349200928', '201523079349301522', '201523079349301562', '201533079349300603', '201533209349304958', '201533209349202433', '201533209349103903', '201533209349307203', '201533079349200308', '201503089349100620', '201533089349301298', '201543149349303884', '201513069349100376', '201543159349302009', '201543169349301754', '201543159349302049', '201533089349300118', '201543089349200419', '201543169349301814', '201543099349200014', '201543099349200239', '201543159349200949', '201543149349201409', '201543149349201429', '201543099349201109', '201543109349200404', '201543139349100044', '201543139349100104', '201543139349100109', '201523209349313967', '201523209349313982', '201523039349301162', '201533039349301308', '201523099349301372', '201533099349300408', '201533099349300433', '201533099349300513', '201533099349300623', '201523099349301587', '201533079349300708', '201533089349301623', '201533079349301718', '201533099349300003', '201533099349300008', '201533089349301943', '201533089349301953', '201523099349200332', '201523099349200402', '201533209349304158', '201533179349202848', '201533179349202858', '201533179349202873', '201533179349202903', '201533209349202243', '201533209349202258', '201533209349202298', '201533209349202313', '201533209349202343', '201513079349200921', '201523209349310107', '201523209349313822', '201533179349304353', '201533179349200728', '201523209349315237', '201533209349200208', '201533209349201173', '201533209349201178', '201533209349302323', '201523209349311942', '201533209349306063', '201533209349307733', '201533179349302083', '201533179349302108', '201533209349309743', '201533209349310963', '201533209349310968', '201533209349310998', '201533209349310378', '201533209349308923', '201533209349310413', '201533209349311033', '201533209349308968', '201533209349310418', '201533209349311133', '201533209349314503', '201543179349306014', '201533209349309328', '201533209349314523', '201533209349314548', '201533209349314553', '201533209349310808', '201533209349314683', '201533209349314693', '201533209349310838', '201533209349314718', '201533209349314723', '201503089349200640', '201513099349200901', '201513079349200321', '201503069349200425', '201503069349200430', '201503069349200515', '201503069349200530', '201503069349200755', '201503069349200900', '201503099349200145', '201503099349200210', '201513079349200541', '201513089349200131', '201513089349200206', '201513079349100601', '201523089349300307', '201523209349308707', '201523209349311307', '201523209349314277', '201523069349100212', '201523209349310987', '201543089349201069', '201523209349311582', '201523209349311657', '201523039349100802', '201523079349100007', '201543089349301989', '201533179349201188', '201533209349300923', '201533179349203573', '201533209349306638', '201523099349301782', '201523099349301787', '201523089349300032', '201503069349300805', '201503069349300815', '201523039349301212', '201523099349300047', '201523099349300112', '201533139349300103', '201533089349300748', '201543099349301914', '201503069349201300', '201543089349301469', '201533179349301748', '201533179349301758', '201523209349313117', '201523209349315172', '201523209349315217', '201523209349314172', '201533179349302358', '201533179349302363', '201523239349100202', '201523239349100307', '201523239349100402', '201533079349300148', '201533089349300513', '201543039349300509', '201543039349300519', '201523069349300892', '201533039349200338', '201533039349200343', '201533039349200418', '201543039349300624', '201523069349300217', '201523069349300247', '201523069349300432', '201523099349300237', '201533089349300048', '201533079349200303', '201533079349200403', '201523069349200972', '201533209349205148', '201533209349206148', '201533209349201633', '201533209349201643', '201533199349200318', '201533209349201398', '201533209349101543', '201533189349100603', '201533209349306018', '201533199349100708', '201533199349100718', '201533069349300238', '201533179349306763', '201523209349312602', '201523209349312607', '201533179349301013', '201533179349303838', '201543089349301684', '201543089349301719', '201543089349301724', '201543089349301814', '201543089349301909', '201543089349301924', '201543089349301949', '201523239349200117', '201533209349307668', '201533209349307673', '201533179349203813', '201533209349204963', '201533209349204988', '201533179349202458', '201533209349102443', '201533179349309068', '201533209349300428', '201533199349301023', '201533199349301028', '201533179349309583', '201533209349307183', '201533179349306873', '201533069349200213', '201533069349200233', '201543069349201104', '201543159349100639', '201543149349201534', '201543139349100004', '201543139349100034', '201523209349308717', '201543089349200729', '201523209349316562', '201523209349313147', '201533179349302053', '201533169349101053', '201533179349306148', '201543079349300814', '201523209349312297', '201523209349312322', '201523209349312327', '201523209349312337', '201533179349201983', '201523099349301962', '201533089349301428', '201523069349300127', '201523219349201107', '201533179349202373', '201533209349302993', '201533209349103268', '201533209349103288', '201533209349306393', '201533179349309508', '201533199349301408', '201533179349303488', '201533179349305663', '201533179349305693', '201533179349305708', '201533179349306808', '201533069349200343', '201543089349200229', '201543089349200244', '201543089349200249', '201543099349201204', '201543169349201574', '201543139349100419', '201523209349314662', '201523209349314712', '201523209349313887', '201533179349303978', '201523209349312442', '201533179349201388', '201533179349202838', '201523219349200307', '201523209349312307', '201523229349100702', '201533209349304743', '201533209349204813', '201523069349300797', '201523069349300812', '201523069349300827', '201503099349300235', '201533089349301583', '201533089349300433', '201533079349301213', '201533079349301223', '201533209349204298', '201533209349100828', '201533209349206463', '201533209349206818', '201533099349200443', '201533099349200518', '201523089349200247', '201523099349200437', '201523089349200507', '201523089349200512', '201523089349200547', '201523039349200832', '201533089349200738', '201533169349100923', '201533179349303518', '201543069349100369', '201543069349100379', '201543069349100414', '201543069349100524', '201543079349200629', '201533179349307778', '201533209349302523', '201533209349307303', '201533209349307333', '201533209349307363', '201523239349300862', '201533209349303283', '201533209349303298', '201533209349303303', '201533209349303773', '201523099349200432', '201523079349300612', '201503089349100510', '201533039349300213', '201513099349300511', '201543159349100124', '201543159349100134', '201543159349100139', '201543149349100034', '201543149349100049', '201543149349303704', '201543149349303804', '201543149349101224', '201543169349301619', '201533159349304133', '201543039349100624', '201543039349100629', '201533099349100038', '201533089349300043', '201543089349200044', '201543089349200104', '201543089349200119', '201543089349200139', '201543069349200314', '201523209349310152', '201523209349313832', '201533179349201673', '201533179349201678', '201533179349201723', '201543109349100404', '201523209349312222', '201523209349312232', '201533209349303123', '201533209349303163', '201533179349307363', '201533209349302293', '201533209349204648', '201533209349205588', '201533209349307383', '201533179349202793', '201533179349202843', '201533179349202853', '201533179349202863', '201533179349308278', '201533179349308328', '201533209349203058', '201533209349102923', '201533209349206783', '201533209349303308', '201533209349303358', '201533209349303388', '201533209349303708', '201533209349303418', '201503069349200810', '201503069349200830', '201503069349200990', '201513089349200511', '201513089349200526', '201543079349300739', '201543079349300834', '201523209349313357', '201523209349312217', '201523239349200227', '201523239349200312', '201533179349200708', '201533179349300308', '201533179349300323', '201533179349300333', '201533179349300338', '201533209349302678', '201533179349203833', '201523209349311832', '201533209349103233', '201533209349101553', '201533209349306053', '201503039349300600', '201543159349100039', '201543169349301719', '201523089349100002', '201523089349100017', '201523089349100022', '201523089349100207', '201533099349100613', '201533209349310883', '201533209349310893', '201533209349310923', '201533209349310928', '201543169349201529', '201543149349202024', '201543159349201019', '201543159349200724', '201543109349200209', '201543109349200314', '201543109349200504', '201543109349200434', '201543099349200224', '201543099349200429', '201543099349301959', '201513079349201066', '201513079349201101', '201513039349200211', '201503099349100735', '201533069349300143', '201533069349300618', '201523099349301612', '201543139349100749', '201543139349100754', '201543139349100764', '201523209349308752', '201523209349308762', '201523209349310132', '201523209349308852', '201523209349311232', '201523069349100322', '201523069349100327', '201543079349100204', '201523209349313587', '201533179349305998', '201543099349100009', '201523239349100407', '201523239349100502', '201533179349102208', '201523099349301772', '201533099349301158', '201503099349300130', '201523079349301702', '201523079349301712', '201543069349201114', '201543069349201304', '201543159349200134', '201523209349312642', '201533179349306993', '201533169349100218', '201533179349201218', '201533179349203553', '201523209349312382', '201533209349301128', '201533179349305138', '201523099349300012', '201543039349301004', '201533109349300648', '201533039349300848', '201543039349301109', '201523079349301527', '201523079349200032', '201533089349200743', '201543039349300544', '201533069349301108', '201533089349300023', '201533039349200213', '201533079349300818', '201533039349300923', '201523099349200737', '201533079349300903', '201523069349200342', '201533209349202168', '201533209349202178', '201533209349302238', '201533209349201453', '201533209349201548', '201523209349312842', '201533209349201278', '201533209349201418', '201533199349300638', '201533209349306133', '201533209349103323', '201533209349103328', '201543159349200419', '201523209349313022'] # csvcut -c 9 index_2015.csv | head -n 1000 > returns_2015.txt object_ids_2015 = ['201542399349300614', '201542399349300619', '201542399349300629', '201542399349300634', '201542399349300719', '201542399349300724', '201542399349300739', '201522369349300102', '201522369349300112', '201522369349300117', '201522369349300122', '201522369349300127', '201522369349300132', '201522369349300137', '201522369349300142', '201522369349300147', '201522369349300202', '201522369349300207', '201522369349300212', '201522369349300227', '201522369349300307', '201522369349300317', '201532299349304913', '201532299349304953', '201542379349300864', '201542379349300874', '201542379349300884', '201542379349301004', '201542379349301009', '201532299349302418', '201532299349302423', '201532299349302433', '201532299349302443', '201532299349302473', '201532299349302483', '201532299349302488', '201532299349302498', '201532299349302503', '201532299349302518', '201532299349302523', '201532299349302543', '201532299349302558', '201542399349200309', '201542399349200319', '201542399349200324', '201542399349200334', '201542399349200339', '201542399349200609', '201542399349200614', '201542399349200709', '201542399349200714', '201542399349200814', '201542399349200909', '201542399349201004', '201522379349200037', '201522379349200127', '201522379349200202', '201522379349200212', '201522379349200307', '201522379349200312', '201522379349200322', '201522379349200402', '201522379349200612', '201522379349200712', '201522379349200722', '201532369349200018', '201532369349200023', '201532399349201003', '201542399349200019', '201542399349200104', '201542399349200119', '201542399349200129', '201542399349200504', '201542399349200509', '201502649349200005', '201502649349200010', '201502649349200100', '201502649349200105', '201502649349200110', '201502649349200120', '201502649349200125', '201502649349200200', '201502649349200205', '201502649349200210', '201502649349200215', '201502649349200225', '201502649349200250', '201502649349200255', '201502649349200265', '201502649349200300', '201502649349200315', '201502649349200330', '201502649349200355', '201522679349200002', '201522679349200022', '201522679349200032', '201522679349200102', '201502669349301050', '201502669349301070', '201522659349300002', '201522659349300012', '201522659349300042', '201532649349300343', '201532649349300348', '201532649349300433', '201532649349300438', '201532649349300538', '201532649349300603', '201532649349300658', '201532649349300663', '201542649349300034', '201542649349300039', '201542649349300184', '201542649349300234', '201542649349300329', '201542649349300409', '201512659349200121', '201512659349200131', '201512659349200201', '201512659349200211', '201512659349200316', '201512659349200326', '201512659349200501', '201512659349200526', '201512659349200616', '201512659349200621', '201512659349200716', '201522649349200267', '201522649349200357', '201522649349200372', '201522649349200402', '201522649349200407', '201532649349200008', '201532649349200013', '201532649349200103', '201542619349200304', '201542619349200514', '201542619349200809', '201512669349301106', '201522669349300002', '201522669349300017', '201522669349300022', '201532659349300538', '201532659349300548', '201532659349300608', '201532659349300628', '201532659349300638', '201532659349300728', '201532659349300753', '201532659349300953', '201532659349301003', '201532659349301053', '201532659349301058', '201542659349300224', '201542659349300234', '201542659349300239', '201542659349300314', '201512649349300026', '201512649349300036', '201532299349302568', '201532299349304203', '201532299349304208', '201532299349304223', '201522369349300517', '201522369349300527', '201522369349300532', '201522369349300537', '201522369349300542', '201522369349300547', '201522369349300602', '201522369349300607', '201522369349300612', '201522369349300617', '201522369349300622', '201522369349300632', '201522369349300637', '201522369349300652', '201522369349300667', '201522369349300687', '201522369349300802', '201532339349300003', '201532339349300008', '201532339349300018', '201542389349300009', '201542389349300014', '201542269349301474', '201542269349301479', '201542269349301489', '201542269349301499', '201542269349301554', '201542269349301564', '201542269349301574', '201542269349301584', '201542269349301589', '201542269349301599', '201542269349301659', '201542269349301664', '201542269349301674', '201542269349301679', '201542269349301694', '201542269349301699', '201542279349300039', '201542399349200819', '201542399349200904', '201542399349200914', '201532299349100643', '201532299349100648', '201532299349100703', '201532299349100713', '201532299349100718', '201532299349100723', '201542269349100129', '201542269349100134', '201542269349100139', '201542269349100144', '201542269349100149', '201542269349100204', '201542269349100209', '201542269349100219', '201542269349100224', '201542269349100234', '201542269349100239', '201542269349100249', '201542269349100304', '201542269349100314', '201542269349100324', '201542269349100329', '201542269349100339', '201502649349300020', '201542669349300224', '201542669349300234', '201542669349300244', '201542669349300304', '201542669349300309', '201542669349300324', '201542669349300329', '201542669349300409', '201542669349300414', '201542669349300429', '201542669349300434', '201542669349300444', '201542669349300509', '201542669349300514', '201542669349300524', '201542669349300529', '201542669349300534', '201502379349200000', '201502379349200010', '201502379349200020', '201502379349200040', '201502379349200115', '201502379349200135', '201502379349200305', '201502379349200310', '201502379349200320', '201502379349200620', '201502389349200410', '201502389349200415', '201502389349200520', '201502389349200630', '201502389349200705', '201502389349200730', '201502389349200760', '201512379349200136', '201512379349200316', '201512379349200711', '201502389349200300', '201512379349200016', '201512379349200026', '201512379349200031', '201512379349200041', '201512379349200101', '201512379349200111', '201512379349200116', '201512379349200126', '201512379349200201', '201512379349200211', '201512379349200216', '201512379349200226', '201512379349200301', '201512379349200306', '201512379349200321', '201512379349200401', '201512379349200406', '201512379349200416', '201512379349200601', '201512379349200611', '201512649349300051', '201512649349300151', '201512649349300166', '201512649349300176', '201512649349300196', '201512649349300226', '201512649349300231', '201512649349300301', '201512649349300316', '201512649349300326', '201512649349300341', '201542679349300134', '201542679349300149', '201542679349300214', '201542679349300219', '201542679349300239', '201542679349300244', '201542679349300314', '201542679349300319', '201532319349200118', '201532319349200323', '201542269349201814', '201542269349201874', '201542269349201884', '201542269349201969', '201542269349201979', '201542299349200214', '201542299349200244', '201542299349200329', '201542299349200429', '201542299349200509', '201542299349200524', '201542309349200034', '201542309349200104', '201542309349200134', '201542309349200244', '201542309349200404', '201502349349300000', '201502349349300200', '201502349349300700', '201502359349300100', '201502359349300400', '201502369349300000', '201542279349300104', '201542279349300114', '201542279349300119', '201512399349300006', '201512399349300016', '201512399349300021', '201512399349300031', '201512399349300036', '201512399349300116', '201512399349300121', '201512399349300136', '201542339349300119', '201542339349300124', '201542339349300129', '201542339349300134', '201542339349300204', '201542339349300214', '201542339349300234', '201542339349300309', '201542339349300314', '201542339349300334', '201542339349300404', '201512399349300321', '201512399349300336', '201512399349300341', '201512399349300411', '201532369349300503', '201532369349300508', '201532369349300513', '201532369349300518', '201532369349300523', '201542339349300419', '201542339349300504', '201542339349300519', '201542339349300529', '201542339349300609', '201542339349300614', '201542339349300624', '201542339349300804', '201542339349300814', '201542339349300819', '201542349349300204', '201542359349300304', '201502619349300005', '201502619349300010', '201502619349300015', '201502619349300020', '201502619349300025', '201502619349300100', '201502619349300105', '201502619349300110', '201502619349300125', '201502619349300135', '201502619349300200', '201502619349300205', '201502619349300215', '201502619349300225', '201502619349300230', '201542649349300619', '201542649349300624', '201542649349300634', '201542649349300639', '201542649349300654', '201542649349300664', '201542649349300684', '201542649349300754', '201512619349300911', '201512619349301001', '201512619349301006', '201512619349301101', '201512629349300101', '201512679349300716', '201512679349300731', '201512679349300736', '201512679349300746', '201512679349300801', '201512679349300816', '201512679349300826', '201512679349300836', '201512679349300901', '201512679349300906', '201512679349300921', '201512679349301011', '201512679349301101', '201502649349300615', '201502649349300620', '201512679349100006', '201512679349100101', '201512679349100106', '201512679349100201', '201512679349100206', '201512679349100306', '201522669349100002', '201522669349100102', '201522669349100202', '201522669349100402', '201522669349100602', '201522669349100702', '201532659349100503', '201532659349100508', '201532659349100603', '201542659349100009', '201542659349100104', '201542659349100204', '201542659349100404', '201542659349100504', '201542659349100604', '201522649349300162', '201522649349300172', '201522649349300177', '201522649349300182', '201522649349300187', '201532619349300708', '201532619349300718', '201532619349300808', '201532619349300813', '201532619349300903', '201532619349300908', '201532619349300918', '201532619349301103', '201532639349300053', '201502369349300005', '201512369349300001', '201512369349300031', '201512369349300111', '201512369349300116', '201512369349300126', '201512369349300221', '201512369349300231', '201512369349300246', '201512369349300336', '201512369349300451', '201512369349300496', '201512369349300521', '201512369349300546', '201512369349300621', '201532319349200423', '201532319349200433', '201532319349200518', '201532319349200543', '201532319349200608', '201532319349200713', '201532319349200833', '201542269349202034', '201542269349202039', '201542269349202059', '201542269349202074', '201542269349202094', '201542299349200609', '201542299349200619', '201542299349200724', '201542299349200814', '201542299349200844', '201542309349200524', '201542309349200534', '201542309349200619', '201532269349200713', '201532269349200738', '201532269349201038', '201532269349201043', '201532269349201053', '201532269349201078', '201532269349201108', '201532339349300508', '201532339349300513', '201532339349300528', '201532339349300533', '201532339349300608', '201532339349300613', '201532339349300623', '201532339349300633', '201532339349300808', '201532339349300823', '201532349349300203', '201532349349300303', '201532399349300238', '201532399349300243', '201532399349300308', '201542389349300844', '201542389349300849', '201542389349300914', '201522339349300127', '201522339349300137', '201522339349300202', '201522339349300217', '201522339349300222', '201522339349300227', '201522339349300232', '201522339349300302', '201522339349300307', '201522339349300317', '201522339349300322', '201522339349300327', '201522339349300407', '201522339349300417', '201522339349300427', '201522339349300517', '201522339349300522', '201542369349300244', '201542369349300249', '201542369349300324', '201542369349300404', '201542369349300454', '201532379349300883', '201532379349300903', '201542369349300474', '201502649349300640', '201502649349300650', '201502649349300655', '201502649349300660', '201502649349300670', '201502649349300675', '201502649349300700', '201522679349300612', '201522679349300617', '201522679349300702', '201522679349300712', '201522679349300717', '201532679349300013', '201532679349300023', '201532679349300033', '201532679349300108', '201532679349300113', '201532679349300133', '201502659349300105', '201502659349300110', '201502659349300120', '201502659349300135', '201502659349300140', '201512649349300416', '201512649349300421', '201512649349300431', '201512649349300436', '201512649349300501', '201512649349300511', '201512649349300521', '201512649349300531', '201512649349300541', '201512649349300546', '201512649349300611', '201512649349300631', '201512649349300641', '201502649349300535', '201502649349300610', '201502649349300625', '201502649349300635', '201502649349300665', '201502649349300680', '201502649349300690', '201532639349300203', '201542619349300109', '201542619349300114', '201542619349300119', '201542619349300124', '201542619349300134', '201542619349300204', '201542619349300209', '201542619349300219', '201512669349300326', '201512669349300331', '201512669349300336', '201512669349300411', '201512669349300416', '201532299349201658', '201532299349201668', '201532299349201703', '201532299349201708', '201542269349202354', '201542269349202364', '201542299349200919', '201542299349201129', '201542299349201139', '201542309349200804', '201542309349200964', '201542309349200974', '201542309349201104', '201532269349201478', '201532269349201518', '201532269349201543', '201532269349201563', '201532269349201603', '201532269349201633', '201532289349200113', '201532289349200118', '201532289349200313', '201532289349200603', '201532289349200608', '201532299349201993', '201532329349200028', '201532329349200113', '201532329349200303', '201532329349200403', '201532329349200423', '201542299349201424', '201542299349201434', '201542299349201554', '201542299349201569', '201542299349201604', '201532269349201783', '201532269349201793', '201532269349201803', '201532269349201818', '201532299349202373', '201532299349202388', '201532299349202393', '201542369349300484', '201542369349300489', '201542369349300509', '201542369349300524', '201542369349300529', '201542369349300539', '201542369349300544', '201542369349300609', '201542369349300619', '201542369349300624', '201542369349300634', '201542369349300649', '201542369349300654', '201542369349300669', '201542369349300674', '201502379349300400', '201502379349300500', '201502379349300600', '201502379349300610', '201502379349300615', '201502379349300620', '201502379349300700', '201502379349300705', '201502379349300710', '201502379349300720', '201502379349300725', '201502379349300730', '201502379349300740', '201502379349300745', '201502379349300855', '201502379349300860', '201502379349300875', '201502379349300905', '201502379349300910', '201502379349301005', '201542379349300729', '201542379349300734', '201532269349302848', '201532269349302868', '201532269349302918', '201532269349302923', '201532269349302973', '201532269349302993', '201502649349300710', '201502649349300750', '201502649349300800', '201512629349300601', '201512649349300006', '201512649349300011', '201522619349300007', '201522619349300012', '201522619349300127', '201522679349300227', '201522679349300232', '201522679349300412', '201522679349300517', '201522679349300722', '201532679349300028', '201532679349300118', '201502679349200720', '201502679349200750', '201522669349200002', '201522669349200017', '201522669349200022', '201522669349200107', '201522669349200117', '201522669349200122', '201522669349200202', '201522669349200217', '201522669349200222', '201542659349200424', '201542659349200504', '201542659349200524', '201542659349200529', '201542659349200614', '201542659349200619', '201542659349200709', '201542659349200714', '201512659349200001', '201512659349200006', '201512659349200011', '201512659349200021', '201512659349200101', '201512659349200111', '201512659349200126', '201512669349300431', '201512669349300441', '201512669349300446', '201512669349300511', '201512669349300531', '201512669349300601', '201512669349300621', '201512669349300626', '201522659349300722', '201522659349300757', '201522659349300762', '201522659349300802', '201522659349300812', '201522659349300907', '201522659349301002', '201522659349301052', '201512659349300041', '201512659349300046', '201512659349300101', '201512659349300121', '201512659349300126', '201512659349300206', '201512659349300216', '201512659349300221', '201512659349300236', '201512659349300241', '201512659349300301', '201512659349300311', '201512659349300326', '201512659349300401', '201512659349300416', '201512659349300431', '201522649349300547', '201522649349300602', '201542639349300204', '201502659349300235', '201502659349300300', '201502659349300330', '201502659349300415', '201502659349300430', '201502659349300545', '201502659349300625', '201512649349300661', '201532299349202433', '201532299349202508', '201532299349202518', '201532299349202533', '201532299349202538', '201532299349202568', '201542279349200014', '201542279349200139', '201542279349200229', '201542279349200324', '201542279349200429', '201542299349201924', '201542299349201984', '201542299349202154', '201532299349202613', '201532299349202618', '201532299349202668', '201532299349202678', '201532299349202723', '201532299349202763', '201532299349202778', '201542279349200634', '201542279349200714', '201542279349200724', '201542279349200734', '201542279349200809', '201542299349202209', '201542299349202259', '201542299349202334', '201542299349202359', '201542299349202369', '201542299349202379', '201542299349202394', '201532299349100018', '201532299349100023', '201532299349100028', '201532299349100033', '201532299349100038', '201532299349100043', '201532299349100048', '201532299349100103', '201532299349100108', '201532269349303013', '201532269349303018', '201532299349302438', '201532299349302453', '201532299349302463', '201532299349302468', '201532299349302538', '201532299349302553', '201532299349304308', '201532299349304318', '201532299349304353', '201532299349304423', '201532299349304443', '201532299349304463', '201512399349300731', '201512399349300741', '201522389349300042', '201522389349300047', '201522389349300102', '201522389349300107', '201522389349300202', '201522389349300207', '201522389349300212', '201522389349300242', '201522389349300247', '201522389349300307', '201522389349300312', '201522389349300317', '201522389349300322', '201522389349300327', '201532369349300608', '201532369349300658', '201532369349300673', '201532369349300683', '201532369349300758', '201532369349300803', '201532269349303203', '201532269349303233', '201532299349300113', '201532299349300128', '201532299349302648', '201532299349302703', '201512659349200216', '201522649349200317', '201522649349200322', '201522649349200332', '201522649349200362', '201522649349200367', '201542619349200504', '201542619349200509', '201542619349200604', '201542619349200704', '201542619349200804', '201542619349200904', '201502669349300410', '201502669349300420', '201502669349300425', '201502669349300440', '201502669349300445', '201502669349300500', '201502669349300515', '201502669349300525', '201502669349300530', '201502669349300535', '201502669349300600', '201502669349300605', '201502669349300610', '201502669349300615', '201502669349300620', '201502669349300630', '201502669349300645', '201502669349300800', '201512379349300911', '201512379349301006', '201512379349301016', '201512379349301021', '201522669349300952', '201522669349301057', '201522669349301067', '201522669349301102', '201532669349300003', '201532669349300008', '201532669349300023', '201532669349300108', '201532669349300113', '201512649349300681', '201512649349300701', '201522649349300027', '201522649349300152', '201522649349300167', '201532619349300203', '201532619349300213', '201532619349300238', '201532619349300303', '201532619349300418', '201532619349300513', '201532619349300603', '201542679349300919', '201502639349200250', '201512619349200001', '201512619349200011', '201512619349200101', '201512619349200206', '201512619349200211', '201512619349200306', '201512619349200311', '201512619349200316', '201512619349200321', '201512619349200401', '201512619349200411', '201512619349200501', '201512619349200601', '201512619349200606', '201512619349200701', '201512619349200711', '201512619349200801', '201512619349200811', '201532299349100113', '201532299349100118', '201532299349100123', '201532299349100128', '201532299349100133', '201532299349100138', '201532299349100203', '201532299349100208', '201532299349100213', '201532299349100218', '201532299349100223', '201532299349100233', '201532299349100238', '201532299349100248', '201532299349100303', '201542269349100004', '201542269349100014', '201542299349101134', '201542299349101154', '201542299349101159', '201542299349101169', '201542299349101174', '201542299349101184', '201542299349101189', '201542299349101209', '201542299349101219', '201542299349101224', '201542299349101254', '201542299349101259', '201542299349101269', '201542309349100004', '201542309349100104', '201542309349100109', '201542309349100304', '201542309349100314', '201532299349300603', '201532299349300613', '201532299349300618', '201532299349300633', '201532299349300638', '201532299349300648', '201532299349300713', '201532299349302723', '201532299349302753', '201532299349304498', '201532299349304578', '201532299349304603', '201532299349304628', '201532299349304638', '201532299349304653', '201532299349304668', '201542269349301714', '201542269349301719', '201542269349301809', '201542269349301814', '201522389349300607', '201522389349300612', '201522389349300617', '201522389349300622', '201522389349300632', '201522389349300637', '201522389349300642', '201522389349300647', '201522389349300702', '201522389349300707', '201522389349300712', '201522389349300717', '201522389349300727', '201522389349300732', '201522389349300802', '201522389349300822', '201522389349300827', '201522389349300902', '201522389349300907', '201522389349300917', '201532379349300013', '201522399349300032']
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/object_ids.py
object_ids.py
import os import sys import io import xmltodict import json from collections import OrderedDict from xml.parsers.expat import ExpatError from .type_utils import dictType, orderedDictType, listType, \ unicodeType, noneType, strType from .file_utils import stream_download, validate_object_id, \ get_local_path from .settings import KNOWN_SCHEDULES, IRS_READER_ROOT class InvalidXMLException(Exception): pass class FileMissingException(Exception): pass class Filing(object): def __init__(self, object_id, filepath=None, URL=None, json=None): """ Filepath is the location of the file locally; URL is it's remote location (if not default) Ignore these and defaults will be used. If filepath is set, URL is ignored. json is a json representation of the data, so if given, no file will be downloaded. """ self.raw_irs_dict = None # The parsed xml will go here self.version_string = None # Version number here self.object_id = validate_object_id(object_id) self.result = None self.processed = False self.keyerrors = None self.csv_result = None if json: self.json = json self.input_type = 'json' else: self.json = None self.input_type = 'xml' if filepath: self.filepath = filepath else: self.filepath = get_local_path(self.object_id) if URL: self.URL = URL def _download(self, force_overwrite=False, verbose=False): """ Files are no longer downloadable. """ if os.path.isfile(self.filepath): return True else: raise FileMissingException( "Filing not available, try downloading with irsx_retrieve [ YEAR ]" ) def _denamespacify(self,entity): """ It's legal to include namespaces in the xml tags, e.g. irs:Return instead of Return This is very rare; see 201940149349301304_public.xml for an example. """ thisentitytype = type(entity) if thisentitytype == orderedDictType or thisentitytype == dictType: newOD = OrderedDict() for key in entity.keys(): newkey = key if ":" in key: newkey = key.split(":")[1] newvalue = entity[key] if type(newvalue) == listType or type(newvalue) == orderedDictType or type(newvalue) == dictType: newvalue = self._denamespacify(newvalue) newOD[newkey] = newvalue return newOD elif thisentitytype == listType: newlist = list() for item in entity: newvalue = item if type(newvalue) == listType or type(newvalue) == orderedDictType: newvalue = self._denamespacify(newvalue) newlist.append(newvalue) return newlist else: return entity def _set_dict_from_xml(self): # io works across python2 and 3, and allows an encoding arg with io.open(self.filepath, 'r', encoding='utf-8-sig') as fh: raw_file = fh.read() try: self.raw_irs_dict = self._denamespacify(xmltodict.parse(raw_file)) except ExpatError: raise InvalidXMLException( "\nXML Parse error in " + self.filepath \ + "\nFile may be damaged or incomplete.\n"\ + "Try erasing this file and downloading again." ) try: self.raw_irs_dict['Return'] except KeyError: raise InvalidXMLException( "'Return' element not located in" + self.filepath \ + "\nFile may be damaged or incomplete.\n" \ + "Try erasing this file and downloading again." ) def _set_dict_from_json(self): self.raw_irs_dict = self.json def _set_version(self): self.version_string = self.raw_irs_dict['Return']['@returnVersion'] def _set_ein(self): self.ein = self.raw_irs_dict['Return']['ReturnHeader']['Filer']['EIN'] def _set_schedules(self): """ Attach the known and unknown schedules """ self.schedules = ['ReturnHeader990x', ] self.otherforms = [] for sked in self.raw_irs_dict['Return']['ReturnData'].keys(): if not sked.startswith("@"): if sked in KNOWN_SCHEDULES: self.schedules.append(sked) else: self.otherforms.append(sked) def get_object_id(self): return self.object_id def get_schedule(self, skedname): if skedname == 'ReturnHeader990x': return self.raw_irs_dict['Return']['ReturnHeader'] elif skedname in self.schedules: return self.raw_irs_dict['Return']['ReturnData'][skedname] else: return None def get_ein(self): return self.ein def get_otherform(self, skedname): if skedname in self.otherforms: return self.raw_irs_dict['Return']['ReturnData'][skedname] else: return None def get_filepath(self): return self.filepath def get_version(self): return self.version_string def get_raw_irs_dict(self): return self.raw_irs_dict def list_schedules(self): return self.schedules def set_result(self, result): self.result = result def get_result(self): return self.result def set_csv_result(self, csv_result): self.csv_result = csv_result def get_csv_result(self): return self.csv_result def set_keyerrors(self, keyerrorlist): self.keyerrors = keyerrorlist def get_keyerrors(self): return self.keyerrors def get_unparsed_json(self): """ Json dicts are unordered """ return json.dumps(self.raw_irs_dict) def get_type(self): if 'IRS990' in self.schedules: return 'IRS990' elif 'IRS990EZ' in self.schedules: return 'IRS990EZ' elif 'IRS990PF' in self.schedules: return 'IRS990PF' else: raise Exception("Missing 990/990EZ/990PF-is this filing valid?") def get_parsed_sked(self, skedname): """ Returns an array because multiple sked K's are allowed""" if not self.processed: raise Exception("Filing must be processed to return parsed sked") if skedname in self.schedules: matching_skeds = [] for sked in self.result: if sked['schedule_name']==skedname: matching_skeds.append(sked) return matching_skeds else: return [] def process(self, verbose=False): # don't reprocess inadvertently if not self.processed: self.processed=True if self.json: self._set_dict_from_json() else: self._download(verbose=verbose) self._set_dict_from_xml() self._set_version() self._set_ein() self._set_schedules()
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/filing.py
filing.py
import sys import os from .dir_utils import mkdir_p IRS_READER_ROOT = os.path.abspath(os.path.dirname(__file__)) # This is the URL to amazon's bucket, could use another synced to it IRS_XML_HTTP_BASE = "https://s3.amazonaws.com/irs-form-990" # It can be hard to locate this. IRSX_SETTINGS_LOCATION = (os.path.join(IRS_READER_ROOT, "settings.py")) # Defaults to the same directory as this settings file, but you can override # with the `IRSX_CACHE_DIRECTORY` environment variable IRSX_CACHE_DIRECTORY = os.environ.get("IRSX_CACHE_DIRECTORY", IRS_READER_ROOT) # The directory we put files in while we're processing them WORKING_DIRECTORY = os.environ.get( "IRSX_WORKING_DIRECTORY", os.path.join(IRSX_CACHE_DIRECTORY, "XML")) # Helpful to keep these around for lookup purposes INDEX_DIRECTORY = os.environ.get( "IRSX_INDEX_DIRECTORY", os.path.join(IRSX_CACHE_DIRECTORY, "CSV")) IRS_INDEX_BASE = "https://apps.irs.gov/pub/epostcard/990/xml/%s/index_%s.csv" KNOWN_SCHEDULES = [ "IRS990", "IRS990EZ", "IRS990PF", "IRS990ScheduleA", "IRS990ScheduleB", "IRS990ScheduleC", "IRS990ScheduleD", "IRS990ScheduleE", "IRS990ScheduleF", "IRS990ScheduleG", "IRS990ScheduleH", "IRS990ScheduleI", "IRS990ScheduleJ", "IRS990ScheduleK", "IRS990ScheduleL", "IRS990ScheduleM", "IRS990ScheduleN", "IRS990ScheduleO", "IRS990ScheduleR", "ReturnHeader990x" ] # these could get pushed to metadata directory? ALLOWED_VERSIONSTRINGS = [ '2013v3.0', '2013v3.1', '2013v4.0', '2014v5.0', '2014v6.0', '2015v2.0', '2015v2.1', '2015v3.0', '2016v3.0', '2016v3.1', '2017v2.0', '2017v2.1', '2017v2.2', '2017v2.3', '2018v3.0', '2018v3.1', '2018v3.2', '2018v3.3', '2019v5.0', '2019v5.1', '2019v5.2', '2020v1.0', '2020v1.1','2020v1.2','2020v1.3', '2020v2.0', '2020v3.0', '2020v4.0','2020v4.1', '2020v4.2', '2021v4.0','2021v4.1','2021v4.2','2021v4.3', '2022v4.0','2022v4.1','2022v5.0' ] # 2020 is experimental # see https://www.irs.gov/charities-non-profits/ty2020-xml-schemas-and-business-rules-for-exempt-organizations-modernized-e-file # We can capture the group structure for these so it doesn't break # but these versions ARE NOT supported and aren't mapped to IRSx variables CSV_ALLOWED_VERSIONSTRINGS = ALLOWED_VERSIONSTRINGS + [ '2010v3.2', '2010v3.4', '2010v3.6', '2010v3.7', '2011v1.2', '2011v1.3', '2011v1.4', '2011v1.5', '2012v2.0', '2012v2.1', '2012v2.2', '2012v2.3', '2012v3.0' ] METADATA_DIRECTORY = (os.path.join(IRS_READER_ROOT, "metadata")) KEYERROR_LOG = os.path.join(IRS_READER_ROOT, "keyerrors.log") LOG_KEY = 'xml' mkdir_p([WORKING_DIRECTORY, INDEX_DIRECTORY]) try: from .local_settings import * except ImportError: pass
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/settings.py
settings.py
from .filing import Filing from .standardizer import Standardizer, Documentizer, VersionDocumentizer from .sked_dict_reader import SkedDictReader # from .log_utils import configure_logging from .type_utils import listType from .settings import WORKING_DIRECTORY, ALLOWED_VERSIONSTRINGS, CSV_ALLOWED_VERSIONSTRINGS class XMLRunner(object): """ Load a Standardizer just once while running multiple filings Return Filing objects with results, keyerrors set """ def __init__(self, documentation=False, standardizer=None, csv_format=False): self.documentation = documentation self.csv_format = csv_format if documentation: if not standardizer: self.standardizer = Documentizer() else: if standardizer: self.standardizer = standardizer else: self.standardizer = Standardizer() self.group_dicts = self.standardizer.get_groups() self.whole_filing_data = [] self.filing_keyerr_data = [] def get_standardizer(self): return self.standardizer def _run_schedule_k(self, sked, object_id, sked_dict, path_root, ein): assert sked == 'IRS990ScheduleK' if type(sked_dict) == listType: for individual_sked in sked_dict: doc_id = individual_sked['@documentId'] reader = SkedDictReader( self.standardizer, self.group_dicts, object_id, ein, documentId=doc_id, documentation=self.documentation, csv_format=self.csv_format, ) result = reader.parse(individual_sked, parent_path=path_root) self.whole_filing_data.append({ 'schedule_name': sked, 'groups': result['groups'], 'schedule_parts': result['schedule_parts'], 'csv_line_array':result['csv_line_array'] }) else: reader = SkedDictReader( self.standardizer, self.group_dicts, object_id, ein, documentation=self.documentation, csv_format=self.csv_format, ) result = reader.parse(sked_dict, parent_path=path_root) self.whole_filing_data.append({ 'schedule_name': sked, 'groups': result['groups'], 'schedule_parts': result['schedule_parts'], 'csv_line_array':result['csv_line_array'] }) def _run_schedule(self, sked, object_id, sked_dict, ein): path_root = "/" + sked # Only sked K (bonds) is allowed to repeat if sked == 'IRS990ScheduleK': self._run_schedule_k(sked, object_id, sked_dict, path_root, ein) else: reader = SkedDictReader( self.standardizer, self.group_dicts, object_id, ein, documentation=self.documentation, csv_format=self.csv_format, ) if sked == 'ReturnHeader990x': path_root = "/ReturnHeader" result = reader.parse(sked_dict, parent_path=path_root) self.whole_filing_data.append({ 'schedule_name': sked, 'groups': result['groups'], 'schedule_parts': result['schedule_parts'], 'csv_line_array':result['csv_line_array'] }) if len(result['group_keyerrors']) > 0 or len(result['keyerrors'])> 0: self.filing_keyerr_data.append({ 'schedule_name': sked, 'group_keyerrors':result['group_keyerrors'], 'keyerrors':result['keyerrors'], }) def run_filing(self, object_id, verbose=False): self.whole_filing_data = [] self.filing_keyerr_data = [] this_filing = Filing(object_id) this_filing.process(verbose=verbose) this_version = this_filing.get_version() if verbose: print("Filing %s is version %s" % (object_id, this_version)) if this_version in ALLOWED_VERSIONSTRINGS or ( self.csv_format and this_version in CSV_ALLOWED_VERSIONSTRINGS ): this_version = this_filing.get_version() schedules = this_filing.list_schedules() ein = this_filing.get_ein() self.whole_filing_data = [] for sked in schedules: sked_dict = this_filing.get_schedule(sked) self._run_schedule(sked, object_id, sked_dict, ein) this_filing.set_result(self.whole_filing_data) this_filing.set_keyerrors(self.filing_keyerr_data) if verbose and not self.csv_format: # csv format works on years with many, many keyerrors, if len(self.filing_keyerr_data)>0: print("In %s keyerrors: %s" % (object_id, self.filing_keyerr_data)) else: print("No keyerrors found") return this_filing else: print("Filing version %s isn't supported for this operation" % this_version ) return this_filing """ def run_from_filing_obj(self, this_filing, verbose=False): #Run from a pre-created filing object. self.whole_filing_data = [] self.filing_keyerr_data = [] this_filing.process(verbose=verbose) object_id = this_filing.get_object_id() this_version = this_filing.get_version() if this_version in ALLOWED_VERSIONSTRINGS: this_version = this_filing.get_version() schedules = this_filing.list_schedules() ein = this_filing.get_ein() for sked in schedules: sked_dict = this_filing.get_schedule(sked) self._run_schedule(sked, object_id, sked_dict, ein) this_filing.set_result(self.whole_filing_data) this_filing.set_keyerrors(self.filing_keyerr_data) return this_filing else: return this_filing """ def run_sked(self, object_id, sked, verbose=False): """ sked is the proper name of the schedule: IRS990, IRS990EZ, IRS990PF, IRS990ScheduleA, etc. """ self.whole_filing_data = [] self.filing_keyerr_data = [] this_filing = Filing(object_id) this_filing.process(verbose=verbose) this_version = this_filing.get_version() if this_version in ALLOWED_VERSIONSTRINGS or ( self.csv_format and this_version in CSV_ALLOWED_VERSIONSTRINGS ): this_version = this_filing.get_version() ein = this_filing.get_ein() sked_dict = this_filing.get_schedule(sked) self._run_schedule(sked, object_id, sked_dict, ein) this_filing.set_result(self.whole_filing_data) this_filing.set_keyerrors(self.filing_keyerr_data) return this_filing else: print("Filing version %s isn't supported for this operation" % this_version ) return this_filing
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/xmlrunner.py
xmlrunner.py
import sys import os import argparse from zipfile import ZipFile from .file_utils import stream_download from .settings import WORKING_DIRECTORY IRS_location = "https://apps.irs.gov/pub/epostcard/990/xml/%s/download990xml_%s" ref_url = "https://www.irs.gov/charities-non-profits/form-990-series-downloads" # How many files are available per year? # https://www.irs.gov/charities-non-profits/form-990-series-downloads number_of_files = { '2022':0, '2021':6, '2020':8, '2019':8, '2018':7, '2017':7, '2016':6, '2015':2 } def get_cli_retrieve_parser(): parser = argparse.ArgumentParser("Irsreader") parser.add_argument( "year", nargs='+', help='4-digit year to retrieve, ' ) parser.add_argument( '--verbose', dest='verbose', action='store_const', const=True, default=False, help='Verbose output' ) return parser def download_unzip_erase(remote_url, verbose=False): local_name = remote_url.split("/")[-1] local_path = os.path.join(WORKING_DIRECTORY, local_name) if verbose: print("Downloading %s to %s" % (remote_url, local_path)) stream_download(remote_url, local_path, verbose=verbose) with ZipFile(local_path, 'r') as zipObj: # Extract all the contents of zip file in different directory print('Unzipping %s to %s' % (local_path, WORKING_DIRECTORY)) zipObj.extractall(WORKING_DIRECTORY) print("Cleaning up, removing raw file.") os.remove(local_path) def unload_zipfile_by_year(year, verbose=False): print("Retrieving zipfiles for year %s" % year) if verbose: print("Running verbose") num_files = number_of_files[year] location_base = IRS_location % (year, year) file_list = [] if num_files == 0: file_list.append(location_base + ".zip") if num_files > 0: for i in range(1, num_files+1): file_list.append(location_base + "_" + str(i) + ".zip") for this_file in file_list: download_unzip_erase(this_file, verbose=verbose) def run_cli_retrieve_main(args_read): print(""" Please visit https://www.irs.gov/charities-non-profits/form-990-series-downloads To see if any additional files are available. """) for year in args_read.year: print("Processing %s files for year %s" % (year, number_of_files[year])) unload_zipfile_by_year(year, verbose=args_read.verbose) def main(args=None): parser = get_cli_retrieve_parser() args = parser.parse_args() run_cli_retrieve_main(args) if __name__ == "__main__": main()
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/irsx_retrieve_cli.py
irsx_retrieve_cli.py
import os import sys import collections #import logging from datetime import datetime from .settings import METADATA_DIRECTORY, KEYERROR_LOG from .sked_dict_reader import SkedDictReader from .type_utils import listType if sys.version_info >= (3, 0): import csv else: import unicodecsv as csv class Standardizer(object): """ This reads metadata .csv files, which it uses to standardize ordered dicts. For documentation, see Documentizer below. """ def __init__(self): #self.show_documentation = documentation self.groups = {} self.variables = {} self.schedule_parts = {} # This is overridden for Documentizer class below self.variable_columns =['db_table', 'db_name'] self._make_groups() self._make_variables() def _make_groups(self): group_filepath = os.path.join(METADATA_DIRECTORY, 'groups.csv') with open(group_filepath, 'r') as reader_fh: reader = csv.DictReader(reader_fh) for row in reader: self.groups[row['xpath']] = row return True def _make_variables(self): variable_filepath = os.path.join(METADATA_DIRECTORY, 'variables.csv') with open(variable_filepath, 'r') as variable_fh: reader = csv.DictReader(variable_fh) for row in reader: vardict = {} for col in self.variable_columns: vardict[col]=row[col] self.variables[row['xpath']] = vardict return True def get_groups(self): return self.groups def get_var(self, var_xpath, version=None): if version: raise Exception("Version checking is not implemented") return (self.variables[var_xpath]) def get_documentation_status(self): return False class Documentizer(Standardizer): """ Like Standardizer, but returns canonical documentation info from 2016 version """ def __init__(self, versions=False): self.groups = {} self.variables = {} self.schedule_parts = {} self.variable_columns =[ 'db_table', 'db_name', 'ordering', 'line_number', 'description', 'db_type', 'irs_type', 'xpath' ] if versions: self.variable_columns = self.variable_columns + ['version_start', 'version_end'] self._make_schedule_parts() self._make_groups() self._make_variables() def get_documentation_status(self): return True def _make_schedule_parts(self): part_filepath = os.path.join(METADATA_DIRECTORY, 'schedule_parts.csv') with open(part_filepath, 'r') as reader_fh: reader = csv.DictReader(reader_fh) for row in reader: self.schedule_parts[row['parent_sked_part']] = { 'name': row['part_name'], 'ordering': row['ordering'], 'parent_sked': row['parent_sked'], 'parent_sked_part': row['parent_sked_part'], 'is_shell': row['is_shell'] } return True def get_schedule_parts(self): return self.schedule_parts def part_ordering(self, partname): try: result = int(self.schedule_parts[partname]['ordering']) return result except KeyError: return None def group_ordering(self, groupname): try: return self.groups[groupname]['ordering'] except KeyError: return None def get_groups_by_sked(self, sked): groups = [] for thisgroup in self.groups.keys(): if self.groups[thisgroup]['parent_sked'] == sked: groups.append(self.groups[thisgroup]) return groups def get_parts_by_sked(self, sked): parts = [] for thispart in self.schedule_parts.keys(): #print(self.schedule_parts[thispart]) if self.schedule_parts[thispart]['parent_sked'] == sked: parts.append(self.schedule_parts[thispart]) return parts def get_variables(self): return self.variables class VersionDocumentizer(object): """ Returns version-specific line number and documentation. """ def __init__(self): self.line_numbers = {} self.descriptions = {} self._make_line_numbers() self._make_descriptions() def check_version(self, versionstring, start_year, end_year): versionyear = int(versionstring.split("v")[0]) valid_start = versionyear >= int(start_year) valid_end = not end_year or versionyear <= int(end_year) result = valid_start and valid_end return result def _make_line_numbers(self): filepath = os.path.join(METADATA_DIRECTORY, 'line_numbers.csv') with open(filepath, 'r') as reader_fh: reader = csv.DictReader(reader_fh) for row in reader: try: self.line_numbers[row['xpath']] self.line_numbers[row['xpath']].append(row) except KeyError: self.line_numbers[row['xpath']] = [row] def _make_descriptions(self): filepath = os.path.join(METADATA_DIRECTORY, 'descriptions.csv') with open(filepath, 'r') as reader_fh: reader = csv.DictReader(reader_fh) for row in reader: try: self.descriptions[row['xpath']] self.descriptions[row['xpath']].append(row) except KeyError: self.descriptions[row['xpath']] = [row] def get_line_number(self, xpath, version_string): candidate_rows = [] try: candidate_rows = self.line_numbers[xpath] except KeyError: return None for row in candidate_rows: if self.check_version(version_string, row['version_start'], row['version_end']): return row['line_number'] return None def get_description(self, xpath, version_string): candidate_rows = [] try: candidate_rows = self.descriptions[xpath] except KeyError: return None for row in candidate_rows: if self.check_version(version_string, row['version_start'], row['version_end']): return row['description'] return None
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/standardizer.py
standardizer.py
from .type_utils import dictType, orderedDictType, listType, \ unicodeType, noneType, strType from .flatten_utils import flatten from .keyerror_utils import ignorable_keyerror from .settings import LOG_KEY class SkedDictReader(object): """ We get an ordered dict back from xmltodict, but we want to "flatten" it into xpath-ed variables and repeated structures. Will also work on reading xmltodict that was previously turned into json """ def __init__( self, standardizer, groups, object_id, ein, documentId=None, documentation=False, csv_format=False ): self.standardizer = standardizer self.object_id = object_id self.ein = ein self.documentId = documentId self.schedule_parts = {} # allows one entry per filing self.repeating_groups = {} # multiple per filing self.csv_format = csv_format # Do we need to generate ordered csv self.for_csv_list = [] # keep record of elements, line by line self.groups = groups self.documentation = documentation self.variable_keyerrors = [] # record any unexpected variables self.group_keyerrors = [] # or unexpected groups if self.documentation and not self.standardizer.get_documentation_status(): # Todo: split out documenter entirely so we don't have to do this raise Exception( "Standardizer must be initialized with the \ documentation flag to load documentation" ) def _get_table_start(self): """ prefill the columns we need for all tables """ if self.documentation: standardized_table_start = { 'object_id': { 'value': self.object_id, 'ordering': -1, 'line_number': 'NA', 'description': 'IRS-assigned object id', 'db_type': 'String(18)' }, 'ein': { 'value': self.ein, 'ordering': -2, 'line_number': 'NA', 'description': 'IRS employer id number', 'db_type': 'String(9)' } } if self.documentId: standardized_table_start['documentId'] = { 'value': self.documentId, 'description': 'Document ID', 'ordering': 0 } else: standardized_table_start = { 'object_id': self.object_id, 'ein': self.ein } if self.documentId: standardized_table_start['documentId'] = self.documentId return standardized_table_start def _process_group(self, json_node, path, this_group): for node_index, node in enumerate(json_node): #print("_process_group %s " % (this_group['db_name'])) this_node_type = type(node) flattened_list_item = None if this_node_type == unicodeType: #print("_pg: unicodeType %s ") flattened_list_item = {path: node} else: #print("_pg: NOT unicodeType") flattened_list_item = flatten(node, parent_key=path, sep='/') table_name = None standardized_group_dict = self._get_table_start() for xpath in flattened_list_item.keys(): if '@' in xpath: continue else: xpath = xpath.replace("/#text", "") value = flattened_list_item[xpath] if self.csv_format: this_var = { 'xpath':xpath, 'value':value, 'in_group':True, 'group_name':this_group['db_name'], 'group_index':node_index } self.for_csv_list.append(this_var) try: this_var_data = self.standardizer.get_var(xpath) except KeyError: if not ignorable_keyerror(xpath): self.variable_keyerrors.append( {'element_path':xpath} ) continue this_var_value = flattened_list_item[xpath] this_var_name = this_var_data['db_name'] table_name = this_var_data['db_table'] if self.documentation: result = { 'value': this_var_value, 'ordering': this_var_data['ordering'], 'line_number': this_var_data['line_number'], 'description': this_var_data['description'], 'db_type': this_var_data['db_type'] } standardized_group_dict[this_var_name] = result else: standardized_group_dict[this_var_name] = this_var_value try: self.repeating_groups[table_name].append(standardized_group_dict) except KeyError: self.repeating_groups[table_name] = [standardized_group_dict] def _parse_json(self, json_node, parent_path=""): this_node_type = type(json_node) element_path = parent_path if this_node_type == listType: #print("List type %s" % element_path) this_group = None try: this_group = self.groups[element_path] except KeyError: self.group_keyerrors.append( {'element_path':element_path} ) self._process_group(json_node, parent_path, this_group) elif this_node_type == unicodeType: # but ignore it if is an @. if '@' in element_path: pass else: element_path = element_path.replace("/#text", "") try: # is it a group? this_group = self.groups[element_path] self._process_group( [{parent_path: json_node}], '', this_group ) except KeyError: # It's not a group so it should be a variable we know about if self.csv_format: this_var = { 'xpath':element_path, 'value':json_node, 'in_group':False, 'group_name':None, 'group_index':None } self.for_csv_list.append(this_var) # It's not a group so it should be a variable we know about try: var_data = self.standardizer.get_var(element_path) var_found = True except KeyError: # pass through for some common key errors # [ TODO: FIX THE KEYERRORS! ] if not ignorable_keyerror(element_path): self.variable_keyerrors.append( {'element_path':element_path} ) var_found = False if var_found: table_name = var_data['db_table'] var_name = var_data['db_name'] result = json_node if self.documentation: result = { 'value': json_node, 'ordering': var_data['ordering'], 'line_number': var_data['line_number'], 'description': var_data['description'], 'db_type': var_data['db_type'] } try: self.schedule_parts[table_name][var_name] = result except KeyError: self.schedule_parts[table_name] = self._get_table_start() self.schedule_parts[table_name][var_name] = result elif this_node_type == orderedDictType or this_node_type == dictType: try: # is it a singleton group? this_group = self.groups[element_path] self._process_group([{parent_path: json_node}], '', this_group) except KeyError: keys = json_node.keys() for key in keys: new_path = parent_path + "/" + key self._parse_json(json_node[key], parent_path=new_path) elif this_node_type == noneType: pass elif this_node_type == strType: msg = "String '%s'" % json_node #self.logging.debug(msg) else: raise Exception("Unhandled type: %s" % (type(json_node))) def parse(self, raw_ordered_dict, parent_path=""): self._parse_json(raw_ordered_dict, parent_path=parent_path) return ({ 'schedule_parts': self.schedule_parts, 'groups': self.repeating_groups, 'csv_line_array':self.for_csv_list, # This is empty if not csv 'keyerrors':self.variable_keyerrors, 'group_keyerrors':self.group_keyerrors })
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/sked_dict_reader.py
sked_dict_reader.py
import re import os import requests from datetime import datetime from .settings import IRS_XML_HTTP_BASE, WORKING_DIRECTORY, INDEX_DIRECTORY, IRS_INDEX_BASE OBJECT_ID_RE = re.compile(r'20\d{16}') # Not sure how much detail we need to go into here OBJECT_ID_MSG = """ This appears not to be an IRS object id. The ID should be 18 digits long and start with the four digit year, e.g. 201642229349300909 To find the object id, see the yearly index csv files. """ def stream_download(url, target_path, verbose=False): """ Download a large file without loading it into memory. """ response = requests.get(url, stream=True) handle = open(target_path, "wb") if verbose: print("Beginning streaming download of %s" % url) start = datetime.now() try: content_length = int(response.headers['Content-Length']) content_MB = content_length/1048576.0 print("Total file size: %.2f MB" % content_MB) except KeyError: pass # allow Content-Length to be missing for chunk in response.iter_content(chunk_size=512): if chunk: # filter out keep-alive new chunks handle.write(chunk) if verbose: print( "Download completed to %s in %s" % (target_path, datetime.now() - start)) def validate_object_id(object_id): """ It's easy to make a mistake entering these, validate the format """ result = re.match(OBJECT_ID_RE, str(object_id)) if not result: print("'%s' appears not to be a valid 990 object_id" % object_id) raise RuntimeError(OBJECT_ID_MSG) return object_id # Files are no longer available on S3 # def get_s3_URL(object_id): # return ("%s/%s_public.xml" % (IRS_XML_HTTP_BASE, object_id)) def get_local_path(object_id): file_name = "%s_public.xml" % object_id return os.path.join(WORKING_DIRECTORY, file_name) def get_index_file_URL(year): index_file = IRS_INDEX_BASE % (year, year) print("index file %s %s" % (year, index_file)) return index_file def get_local_index_path(year): csv_file_name = "index_%s.csv" % year return os.path.join(INDEX_DIRECTORY, csv_file_name)
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/file_utils.py
file_utils.py
ignorable_keyerrors = ['/ReturnHeader/BuildTS'] ## Todo: put in 2013 / 2015 series canonicals. # 2013 vars that no longer exist discontinued_2013_vars = [ '/IRS990ScheduleA/CertificationInd', '/IRS990ScheduleA/Contribution35ControlledInd', '/IRS990ScheduleA/ContributionControllerInd', '/IRS990ScheduleA/ContributionFamilyInd', '/IRS990ScheduleA/Form990ScheduleAPartIVGrp/ExplanationTxt', '/IRS990ScheduleA/SupportedOrgInformationGrp/SupportedOrgNotifiedInd', '/IRS990ScheduleA/SupportedOrgInformationGrp/USOrganizedInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/AdoptBudgetInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/AdoptImplementationStrategyInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/AllNeedsAddressedInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/AttachedToInvoiceInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/AvailableOnRequestInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/BodyAttachmentsInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/DevelopCommunityWidePlanInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/ExecCommunityWidePlanInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/ExecImplementationStrategyInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/FPGUsedDeterEligFreeCareInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/FPGUsedDetermEligDscntCareInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/IncludeOperationalPlanInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/LawsuitInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/LiensOnResidencesInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/MedicaidMedicareInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/OtherNeedsAddressedInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/PermitBodyAttachmentsInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/PermitLawsuitInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/PermitLienOnResidenceInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/PostedInAdmissionOfficeInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/PostedInEmergencyRoomInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/PrioritizeHealthNeedsInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/PrioritizeServicesInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/ProvidedOnAdmissionInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/StateRegulationInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/UninsuredDiscountInd'] # 2015 skedh vars removed discontinued_2015_vars = ['/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/AverageNegotiatedRatesInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/DocumentedEligDeterminationInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/FAPNoticeDisplayedInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/FAPNotifiedAllPatientsInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/FAPNotifiedBeforeDischargeInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/FAPNotifiedUponAdmissionInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/InformationGapsInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/LowestNegotiatedRatesInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/MedicareRatesInd', '/IRS990ScheduleH/HospitalFcltyPoliciesPrctcGrp/OtherMethodUsedInd'] ignorable = {} for key in ignorable_keyerrors + discontinued_2013_vars + discontinued_2015_vars: ignorable[key] = 1 def ignorable_keyerror(xpath): try: ignorable[xpath] return True except KeyError: return False
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/keyerror_utils.py
keyerror_utils.py
import json import sys import codecs import re import csv import unicodecsv from .standardizer import Standardizer, Documentizer, VersionDocumentizer BRACKET_RE = re.compile(r'\[.*?\]') ASTERISKS = "****************" def debracket(string): """ Eliminate the bracketed var names in doc, line strings """ result = re.sub(BRACKET_RE, ';', str(string)) result = result.lstrip(';') result = result.lstrip(' ') result = result.replace('; ;',';') return result def most_recent(semicolon_delimited_string): result = semicolon_delimited_string.split(";")[-1] return result def to_json(data, outfilepath=None): if data: if outfilepath: with open(outfilepath, 'w') as outfile: json.dump(data, outfile) else: if hasattr(sys.stdout, "buffer"): sys.stdout = codecs.getwriter("utf-8")(sys.stdout.buffer, "strict") json.dump(data, sys.stdout) else: json.dump(data, sys.stdout) def to_csv(parsed_filing, object_id=None, standardizer=None, documentation=True, vd=None, outfilepath=None): if not vd: vd = VersionDocumentizer() stdout = getattr(sys.stdout, 'buffer', sys.stdout) if outfilepath: stdout = open(outfilepath, 'wb') # or 'wb' ? fieldnames = [] fieldnames = [ 'object_id', 'form', 'line_number', 'description', 'value', 'variable_name', 'xpath', 'in_group', 'group_name', 'group_index' ] writer = unicodecsv.DictWriter( stdout, fieldnames=fieldnames, encoding='utf-8', quoting=csv.QUOTE_MINIMAL ) writer.writeheader() # this fails in python3? results = parsed_filing.get_result() if results: for result in results: for this_result in result['csv_line_array']: vardata = None try: vardata = standardizer.get_var(this_result['xpath']) except KeyError: pass if vardata: this_result['variable_name'] = vardata['db_table'] + "." + vardata['db_name'] raw_line_num = vd.get_line_number( this_result['xpath'], parsed_filing.get_version() ) this_result['line_number'] = debracket(raw_line_num) raw_description = vd.get_description( this_result['xpath'], parsed_filing.get_version() ) this_result['description'] = debracket(raw_description) this_result['form'] = this_result['xpath'].split("/")[1] this_result['object_id'] = object_id writer.writerow(this_result) def to_txt(parsed_filing, standardizer=None, documentation=True, vd=None, outfilepath=None): if not vd: vd = VersionDocumentizer() results = parsed_filing.get_result() this_sked_name = None if outfilepath: outfile = open(outfilepath, 'w') if results: for result in results: for this_result in result['csv_line_array']: #### Collect the variables we need vardata = None textoutput = "\n" # This is what we'll eventually write out this_result['form'] = this_result['xpath'].split("/")[1] try: vardata = standardizer.get_var(this_result['xpath']) except KeyError: pass if vardata: this_result['variable_name'] = vardata['db_table'] + "." + vardata['db_name'] raw_line_num = vd.get_line_number( this_result['xpath'], parsed_filing.get_version() ) this_result['line_number'] = debracket(raw_line_num) raw_description = vd.get_description( this_result['xpath'], parsed_filing.get_version() ) this_result['description'] = debracket(raw_description) #### Write the output, now that we've got the vars if this_sked_name != this_result['form']: textoutput += "\n\n\n" + ASTERISKS + "\tSchedule %s\n" % this_result['form'] this_sked_name = this_result['form'] textoutput += "\n" + ASTERISKS + "\n Value: '%s'\nForm: %s\nLine:%s\nDescription:%s" % ( this_result['value'], this_result['form'], this_result['line_number'], this_result['description'], ) if documentation: textoutput += "\nXpath:%s" % (this_result['xpath']) if this_result['in_group']: textoutput += "\nGroup: %s group_index %s" % ( this_result['group_name'], this_result['group_index'] ) else: textoutput += "\nGroup:" if outfilepath: outfile.write(textoutput) else: sys.stdout.write(textoutput) if outfilepath: outfile.close()
zenitechcyber-irsx
/zenitechcyber_irsx-0.2-py3-none-any.whl/irsx/text_format_utils.py
text_format_utils.py
import json import sys import requests class Kintone: def __init__(self,authText,domain,app): self.authText = authText self.rootURL = 'https://{}.cybozu.com/k/v1/'.format(domain) self.app = app self.headers = { 'X-Cybozu-Authorization': self.authText, 'Content-Type': 'application/json' } self.property = self.get_property() def requestKintone(self, method, url, json): if method == 'GET': try: response = requests.get(url, json=json, headers=self.headers) #ステータスコードチェック response.raise_for_status() return response.json() except requests.exceptions.RequestException: raise Exception(response.json()) if method == 'POST': try: response = requests.post(url, json=json, headers=self.headers) #ステータスコードチェック response.raise_for_status() return response.json() except requests.exceptions.RequestException: raise Exception(response.json()) if method == 'PUT': try: response = requests.put(url, json=json, headers=self.headers) #ステータスコードチェック response.raise_for_status() return response.json() except requests.exceptions.RequestException: raise Exception(response.json()) if method == 'DELETE': try: response = requests.delete(url, json=json, headers=self.headers) #ステータスコードチェック response.raise_for_status() return response.json() except requests.exceptions.RequestException: raise Exception(response.json()) def get_property(self): params = { 'app': self.app, 'lang': 'default' } url = self.rootURL + 'app/form/fields.json' response = self.requestKintone(method='GET', url=url, json=params) properties = response['properties'] return properties def selectAll(self,where=None, fields=None): """ selectAll is function to get records from Kintone.\n Get all fields if "field" is not specified.\n If you do not specify "where", get all records.\n Always get "id" and "revision". """ params = { 'app' : self.app, 'query' : '', 'totalCount': True, } if fields is not None: params['fields'] = list(set(fields + ['$id', '$revision'])) url = self.rootURL + 'records.json' lastRecID = '0' records = [] while True: if where is None: params['query'] = '($id > ' + lastRecID + ' ) order by $id asc limit 500' else: params['query'] = '($id > ' + lastRecID + ' ) and (' + where + ') order by $id asc limit 500' response = self.requestKintone(method='GET', url=url, json=params) totalCount = int(response['totalCount']) if totalCount == 0: break #レコードIDの最大値を取得 lastRecID = response['records'][-1]['$id']['value'] records.extend(response['records']) if totalCount <= 500: break result = [] for record in records: tmp_record = {} for field_code, value in record.items(): field_type = value['type' ] field_value = value['value'] if field_type == 'NUMBER' and field_value is not None and field_value != "": #intかfloatにキャスト try: field_value = int(field_value) except ValueError: field_value = float(field_value) if field_type == 'SUBTABLE': subtable = [] for sub_rec in field_value: subtable_record = {} subtable_record['id'] = sub_rec['id'] for sub_field_code, sub_value in sub_rec['value'].items(): if sub_value['type'] == 'NUMBER' and field_value is not None: #intかfloatにキャスト try: sub_value['value'] = int(sub_value['value']) except ValueError: sub_value['value'] = float(sub_value['value']) subtable_record[sub_field_code] = sub_value['value'] subtable.append(subtable_record) field_value = subtable tmp_record[field_code] = field_value result.append(tmp_record) return result def select(self,where=None, order=None , limit=None, fields=None): """ select is function to get records from Kintone.\n Get all fields if "field" is not specified.\n If you do not specify "where", get all records.\n Always get "id" and "revision". """ params = { 'app' : self.app, 'query' : '($id > 0)', 'totalCount': True, } if fields is not None: params['fields'] = list(set(fields + ['$id', '$revision'])) url = self.rootURL + 'records.json' if where is not None: params['query'] += ' and (' + where + ')' if order is not None: params['query'] += ' ' + order if limit is not None: params['query'] += ' limit ' + str(limit) response = self.requestKintone(method='GET', url=url, json=params) records = response['records'] result = [] for record in records: tmp_record = {} for field_code, value in record.items(): field_type = value['type' ] field_value = value['value'] if field_type == 'NUMBER' and field_value is not None and field_value != "": #intかfloatにキャスト try: field_value = int(field_value) except ValueError: field_value = float(field_value) if field_type == 'SUBTABLE': subtable = [] for sub_rec in field_value: subtable_record = {} subtable_record['id'] = sub_rec['id'] for sub_field_code, sub_value in sub_rec['value'].items(): if sub_value['type'] == 'NUMBER' and field_value is not None: #intかfloatにキャスト try: sub_value['value'] = int(sub_value['value']) except ValueError: sub_value['value'] = float(sub_value['value']) subtable_record[sub_field_code] = sub_value['value'] subtable.append(subtable_record) field_value = subtable tmp_record[field_code] = field_value result.append(tmp_record) return result def selectRec(self,recordID): """ selectRec is function to get 1 record of Kintone.\n recordID = Specify the record ID. """ params = { 'app': self.app, 'id' : recordID } url = self.rootURL + 'record.json' record = self.requestKintone(method='GET', url=url, json=params) result = {} for field_code, value in record['record'].items(): field_type = value['type' ] field_value = value['value'] if field_type == 'NUMBER' and field_value is not None and field_value != "": #intかfloatにキャスト try: field_value = int(field_value) except ValueError: field_value = float(field_value) if field_type == 'SUBTABLE': subtable = [] for sub_rec in field_value: subtable_record = {} subtable_record['id'] = sub_rec['id'] for sub_field_code, sub_value in sub_rec['value'].items(): if sub_value['type'] == 'NUMBER' and field_value is not None: #intかfloatにキャスト try: sub_value['value'] = int(sub_value['value']) except ValueError: sub_value['value'] = float(sub_value['value']) subtable_record[sub_field_code] = sub_value['value'] subtable.append(subtable_record) field_value = subtable result[field_code] = field_value return result def insert(self,records:list): """ insert is Function for inserting records in kintone.\n records = Specify the record information (field code and field value) in the list.\n records = [ { 'field_code': 'value' } ] """ if type(records) != list: raise Exception('Argument is not a list') params = { 'app': self.app, "records": [ ] } tmp_param = {} url = self.rootURL + 'records.json' parameter = self.property resp = [] for record in records: #100件づつKintoneに登録する if len(params['records']) == 100: resp = self.requestKintone(method='POST', url=url, json=params) params['records'] = [] for key, value in record.items(): if key not in parameter: continue if parameter[key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in value: codes.append({'code':val}) tmp_param[key] = { 'value': codes } continue elif parameter[key]['type'] == 'FILE': fileKeys = [] for val in value: fileKeys.append({'fileKey': val}) tmp_param[key] = { 'value': fileKeys } continue elif parameter[key]['type'] == 'SUBTABLE': tmp_param[key] = { 'value': [] } for sub_rec in value: sub_dict = {} for sub_key, sub_value in sub_rec.items(): if parameter[key]['fields'][sub_key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in sub_value: codes.append({'code': val}) sub_dict[sub_key] = { 'value':codes } elif parameter[key]['fields'][sub_key]['type'] == 'FILE': fileKeys = [] for val in sub_value: fileKeys.append({'fileKey': val}) sub_dict[sub_key] = { 'value': fileKeys } else: sub_dict[sub_key] = { 'value':sub_value } tmp_param[key]['value'].append({ 'value':sub_dict }) continue else: tmp_param[key] = { 'value': value } continue params['records'].append(tmp_param) tmp_param = {} #最後に残りを追加する if params['records']: resp = self.requestKintone(method='POST', url=url, json=params) return resp def insertRec(self,record:dict): """ insertRec is Function for inserting 1 record in kintone.\n record = Specify the record information (field code and field value) in the dict.\n record = { 'field_code': 'value' } """ #引数の型チェック if type(record) != dict: raise Exception('Argument is not a dict') params = { 'app': self.app, "record": { } } url = self.rootURL + 'record.json' parameter = self.property for key, value in record.items(): if key not in parameter: continue if parameter[key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in value: codes.append({'code': val}) params['record'][key] = { 'value': codes } continue elif parameter[key]['type'] == 'FILE': fileKeys = [] for val in value: fileKeys.append({'fileKey': val}) params['record'][key] = { 'value': fileKeys } continue elif parameter[key]['type'] == 'SUBTABLE': params['record'][key] = { 'value': [] } for sub_rec in value: sub_dict = {} for sub_key, sub_value in sub_rec.items(): if parameter[key]['fields'][sub_key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in sub_value: codes.append({'code': val}) sub_dict[sub_key] = { 'value': codes } elif parameter[key]['fields'][sub_key]['type'] == 'FILE': fileKeys = [] for val in sub_value: fileKeys.append({'fileKey': val}) sub_dict[sub_key] = { 'value': fileKeys } else: sub_dict[sub_key] = { 'value': sub_value } params['record'][key]['value'].append({ 'value': sub_dict }) continue else: params['record'][key] = { 'value': value } continue resp = self.requestKintone(method='POST', url=url, json=params) return resp def update(self, records:list): """ update is function for updating records in kintone.\n records = data to update in kintone.\n records = [ { '$id':'1' or 'updateKey': { 'field':'No duplication field code', 'value':'value' } 'field_code': 'value' } ] """ if type(records) != list: raise Exception('Argument is not a list') params = { 'app': self.app, "records": [ ] } tmp_param = {} url = self.rootURL + 'records.json' parameter = self.property resp = [] for record in records: #100件づつKintoneに登録する if len(params['records']) == 100: resp = self.requestKintone(method='PUT', url=url, json=params) params['records'] = [] tmp_param['record'] = {} for key, value in record.items(): if key == '$revision': continue #レコードIDを取得する if key in ('id','$id'): tmp_param['id'] = value continue elif key == 'updateKey': tmp_param['updateKey'] = { 'field':value['field'], 'value':value['value'] } continue elif parameter[key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in value: codes.append({'code': val}) tmp_param['record'][key] = { 'value': codes } continue elif parameter[key]['type'] == 'FILE': fileKeys = [] for val in value: fileKeys.append({'fileKey': val}) tmp_param['record'][key] = { 'value': fileKeys } continue elif parameter[key]['type'] == 'SUBTABLE': tmp_param['record'][key] = { 'value': [] } for sub_rec in value: sub_dict = {} sub_id = '' for sub_key, sub_value in sub_rec.items(): if sub_key == 'id': sub_id = sub_value continue elif parameter[key]['fields'][sub_key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in sub_value: codes.append({'code': val}) sub_dict[sub_key] = { 'value': codes } elif parameter[key]['fields'][sub_key]['type'] == 'FILE': fileKeys = [] for val in sub_value: fileKeys.append({'fileKey': val}) sub_dict[sub_key] = { 'value': fileKeys } else: sub_dict[sub_key] = { 'value': sub_value } if sub_id: tmp_param['record'][key]['value'].append({ 'id' : sub_id, 'value': sub_dict }) else: tmp_param['record'][key]['value'].append({ 'value': sub_dict }) continue else: tmp_param['record'][key] = { 'value': value } continue params['records'].append(tmp_param) tmp_param = {} #最後に残りを追加する if params['records']: resp = self.requestKintone(method='PUT', url=url, json=params) return resp def updateRec(self,record:dict): """ updateRec is function for updating 1 record in kintone.\n record = data to update in kintone.\n record = { '$id':'1' or 'updateKey': { 'field':'No duplication field code', 'value':'value' } 'field_code': 'value' } """ if type(record) != dict: raise Exception('Argument is not a dict') params = { 'app': self.app, "record": { } } url = self.rootURL + 'record.json' parameter = self.property for key, value in record.items(): if key == '$revision': continue #レコードIDを取得する if key in ('id', '$id'): params['id'] = value continue elif key == 'updateKey': params['updateKey'] = { 'field': value['field'], 'value': value['value'] } continue elif parameter[key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in value: codes.append({'code': val}) params['record'][key] = { 'value': codes } continue elif parameter[key]['type'] == 'FILE': fileKeys = [] for val in value: fileKeys.append({'fileKey': val}) params['record'][key] = { 'value': fileKeys } continue elif parameter[key]['type'] == 'SUBTABLE': params['record'][key] = { 'value': [] } for sub_rec in value: sub_dict = {} sub_id = '' for sub_key, sub_value in sub_rec.items(): if sub_key == 'id': sub_id = sub_value continue elif parameter[key]['fields'][sub_key]['type'] in ('USER_SELECT', 'ORGANIZATION_SELECT', 'GROUP_SELECT'): codes = [] for val in sub_value: codes.append({'code': val}) sub_dict[sub_key] = { 'value': codes } elif parameter[key]['fields'][sub_key]['type'] == 'FILE': fileKeys = [] for val in sub_value: fileKeys.append({'fileKey': val}) sub_dict[sub_key] = { 'value': fileKeys } else: sub_dict[sub_key] = { 'value': sub_value } if sub_id: params['record'][key]['value'].append({ 'id': sub_id, 'value': sub_dict }) else: params['record'][key]['value'].append({ 'value': sub_dict }) continue else: params['record'][key] = { 'value': value } continue resp = self.requestKintone(method='PUT', url=url, json=params) return resp def delete(self,ids:list,revisions=None): """ delete is function for deleting records in kintone.\n ids = Specify the record ID of the record to be deleted as a list.\n revisions = The expected revision number. The order is the same as ids (the revision number expected in the first record of ids is the first number of revisions). If it does not match the actual revision number, an error will occur (no record will be deleted). However, if the value is -1 or not specified, the revision number will not be verified. """ if type(ids) != list: raise Exception('Argument is not a list') params = { 'app': self.app, 'ids': [ ] } response = {} url = self.rootURL + 'records.json' if revisions is not None: params['revisions'] = revisions while len(ids) > 100: params['ids'] = ids[0:100] response = self.requestKintone(method='DELETE', url=url, json=params) del ids[0:100] if ids: params['ids'] = ids[0:100] response = self.requestKintone(method='DELETE', url=url, json=params) return response def postComment(self, recordID, text:str, mentions=None): """ postComment is function for posting comments to kintone. """ if type(text) != str: raise Exception('Argument is not a str') if mentions is not None and type(mentions) != list: raise Exception('Argument is not a list') params = { 'app' : self.app, 'record' : recordID, 'comment': { 'text' : text, 'mentions': mentions if mentions is not None else [] } } url = self.rootURL + 'record/comment.json' resp = self.requestKintone(method='POST', url=url, json=params) return resp def deleteComment(self, recordID, commentID): """ deleteComment is function to delete the comment of kintone. """ params = { 'app' : self.app, 'record' : recordID, 'comment':commentID } url = self.rootURL + 'record/comment.json' resp = self.requestKintone(method='DELETE', url=url, json=params) return resp def selectComment(self, recordID, order=None, offset=None, limit=None): """ selectComment function to get the comments of kintone records at once. """ params = { 'app' : self.app, 'record' : recordID } url = self.rootURL + 'record/comments.json' if order is not None: params['order'] = order if offset is not None: params['offset'] = offset if limit is not None: params['limit'] = limit resp = self.requestKintone(method='GET', url=url, json=params) return resp
zenkPytone
/zenkPytone-2.0.2-py3-none-any.whl/pytone/kintone.py
kintone.py
from ..kaku.machine import ( IO, Conn, FeatureIdxStepX, Idx, LearningMachine, State, update_io, ) from ..tansaku.assessors import XPopulationAssessor from ..tansaku.core import Individual from ..tansaku.modifiers import SlopeModifier from ..tansaku.populators import BinaryPopulator, GaussianPopulator, PopulationLimiter from ..tansaku.selectors import BestSelectorFeature class HillClimbStepX(FeatureIdxStepX): def __init__( self, learner: LearningMachine, k: int, std: float = 0.1, lr: float = 1e-2, momentum: float = 0.5, maximize: bool = False, ): """use a hill climbing algorithm to update the input values Args: learner (LearningMachine): """ super().__init__() self.learner = learner self.limiter = PopulationLimiter() self.populator = GaussianPopulator(k, std=std) self.modifier = SlopeModifier(momentum, lr, maximize=maximize) self.assessor = XPopulationAssessor(self.learner, ["x"], "loss", "mean", k) def step_x(self, conn: Conn, state: State, feature_idx: Idx = None) -> Conn: individual = Individual(x=conn.step_x.x[0]) population = self.limiter( individual, self.populator(individual), feature_idx.tolist() if feature_idx is not None else None, ) population = self.assessor(population, conn.step_x.t) selected = self.modifier(individual, population) # conn.step_x.x_(IO(selected['x'], detach=True)) update_io(IO(selected["x"], detach=True), conn.step_x.x) conn.tie_inp() return conn class HillClimbBinaryStepX(FeatureIdxStepX): def __init__(self, learner: LearningMachine, k: int = 8, keep_p: float = 0.9): """use a hill climbing algorithm to update the input values Args: learner (LearningMachine): """ super().__init__() self.learner = learner self.populator = BinaryPopulator(k, keep_p) self.selector = BestSelectorFeature() # to_sample=False) self.limiter = PopulationLimiter() # self.modifier = tansaku.BinaryGaussianModifier(k_best, "x") self.assessor = XPopulationAssessor(self.learner, ["x"], "loss", "mean", k) @property def update_populator(self, k: int, keep_p: float): self.populator = BinaryPopulator(k, keep_p) def step_x(self, conn: Conn, state: State, feature_idx: Idx = None) -> Conn: individual = Individual(x=conn.step_x.x[0]) # pass conn.limit into the populator # perhaps call this a kind of modifier? population = self.limiter( individual, self.populator(individual), feature_idx.tolist() if feature_idx is not None else None, ) population = self.assessor(population, conn.step_x.t) selected = self.selector(population) # selected = self.modifier(individual, population) # conn.step_x.x_(IO(selected['x'], detach=True)) update_io(IO(selected["x"], detach=True), conn.step_x.x) conn.tie_inp() return conn
zenkai
/kikai/hill.py
hill.py
import typing from abc import ABC, abstractmethod import numpy as np import scipy.linalg # 3rd party import torch import torch.nn as nn from ..kaku.machine import ( IO, AssessmentDict, Conn, LearningMachine, State, StepTheta, StepX, ThLoss, update_io, ) # local from ..utils import to_np, to_th_as # TODO: Move to itadaki class LeastSquaresSolver(ABC): @abstractmethod def solve(self, a: torch.Tensor, b: torch.Tensor): pass class LeastSquaresStandardSolver(LeastSquaresSolver): """Solve least squares""" def __init__(self, bias: bool = False): """initializer Args: bias (bool, optional): Whether there is a bias. Defaults to False. """ if bias: self._prepare = self._prepare_with_bias else: self._prepare = self._prepare_without_bias def _prepare_without_bias( self, a: np.ndarray, b: np.ndarray ) -> typing.Tuple[np.ndarray, np.ndarray]: return a, b def _prepare_with_bias( self, a: np.ndarray, b: np.ndarray ) -> typing.Tuple[np.ndarray, np.ndarray]: m, _ = np.shape(a) a = np.hstack([a, np.ones((m, 1))]) return a, b def solve(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """Solve least squares between a and b Args: a (torch.Tensor): input b (torch.Tensor): target Returns: torch.Tensor: the least squares solution """ new_, _, _, _ = scipy.linalg.lstsq(*self._prepare(to_np(a), to_np(b))) return to_th_as(new_, a).T class LeastSquaresRidgeSolver(LeastSquaresSolver): """Solve least squares using ridge regression""" def __init__(self, lam: float = 1e-1, bias: bool = False): self._bias = bias self._lambda = lam if self._bias: self._prepare = self._prepare_with_bias else: self._prepare = self._prepare_without_bias def _prepare_without_bias(self, a: np.ndarray, b: np.ndarray): _, n = np.shape(a) lower_half = np.zeros((n, n)) np.fill_diagonal(lower_half, np.sqrt(self._lambda)) return (np.vstack((a, lower_half)), np.vstack([b, np.zeros((n, b.shape[1]))])) def _prepare_with_bias(self, a: np.ndarray, b: np.ndarray): m, n = np.shape(a) # print('Preparing w/') upper_half = np.hstack([a, np.ones((m, 1))]) lower = np.zeros((n, n)) np.fill_diagonal(lower, np.sqrt(self._lambda)) lower_half = np.hstack([lower, np.zeros((n, 1))]) return ( np.vstack((upper_half, lower_half)), np.vstack([b, np.zeros((n, b.shape[1]))]), ) def solve(self, a: torch.Tensor, b: torch.Tensor): """Solve least squares between a and b Args: a (torch.Tensor): input b (torch.Tensor): target Returns: torch.Tensor: the least squares solution """ A, B = self._prepare(to_np(a), to_np(b)) new_, _, _, _ = scipy.linalg.lstsq(A.T @ A, A.T @ B) # print(new_.shape) return to_th_as(new_, a).T class LeastSquaresStepTheta(StepTheta): def __init__( self, linear: nn.Linear, solver: LeastSquaresSolver = LeastSquaresStandardSolver, optimize_dw: bool = False, lr: typing.Optional[float] = None, ): """initializer Args: linear (nn.Linear): _description_ solver (LeastSquaresSolver, optional): _description_. Defaults to LeastSquaresStandardSolver. optimize_dw (bool, optional): _description_. Defaults to False. lr (typing.Optional[float], optional): _description_. Defaults to None. is_fresh (bool, optional): _description_. Defaults to True. """ self.linear = linear self.solver = solver self._optimize = self._optimize_dw if optimize_dw else self._optimize_w self._lr = lr def split(self, p: torch.Tensor) -> typing.Tuple[torch.Tensor, torch.Tensor]: if self.linear.bias is None: return p, None return p[:, :-1], p[:, -1] def _optimize_dw(self, x: torch.Tensor, t: torch.Tensor): t_delta = t - self.linear.forward(x) dweight, dbias = self.split(self.solver.solve(x, t_delta)) self.linear.weight.data = self.linear.weight.data + dweight if dbias is not None: self.linear.bias.data = self.linear.bias.data + dbias def _optimize_w(self, x: torch.Tensor, t: torch.Tensor): weight, bias = self.split(self.solver.solve(x, t)) self.linear.weight.data = weight if bias is not None: self.linear.bias.data = bias def step(self, conn: Conn, state: State, from_: IO = None) -> Conn: self._optimize(conn.step.x[0], conn.step.t[0]) return conn.connect_in(from_) class LeastSquaresStepX(StepX): def __init__( self, linear: nn.Linear, solver: LeastSquaresSolver = LeastSquaresStandardSolver, optimize_dx: bool = False, lr: typing.Optional[float] = None, ): """initializer Args: linear (nn.Linear): _description_ solver (LeastSquaresSolver, optional): _description_. Defaults to LeastSquaresStandardSolver. optimize_dx (bool, optional): _description_. Defaults to False. lr (typing.Optional[float], optional): _description_. Defaults to None. is_fresh (bool, optional): _description_. Defaults to True. """ self.linear = linear self.solver = solver self._optimize = self._optimize_dx if optimize_dx else self._optimize_x self._lr = lr def _optimize_dx(self, x: torch.Tensor, t: torch.Tensor): y = self.linear(x) if self.linear.bias is not None: t = t - self.linear.bias[None] y = y - self.linear.bias[None] t_delta = t - y dx = self.solver.solve(self.linear.weight, t_delta.T) return x + dx def _optimize_x(self, x: torch.Tensor, t: torch.Tensor): if self.linear.bias is not None: t = t - self.linear.bias[None] return self.solver.solve(self.linear.weight, t.T) def step_x(self, conn: Conn, state: State) -> Conn: """Update x Args: conn (Conn): The connection to update with state (State): The current learning state Returns: Conn: The connection """ x = self._optimize(conn.step_x.x[0], conn.step_x.t[0]) update_io(IO(x), conn.step_x.x) conn.tie_inp() return conn class LeastSquaresLearner(LearningMachine): """Learner that uses least squares""" def __init__( self, in_features: int, out_features: int, bias: bool = True, optimize_dx: bool = True, x_lr: float = 1e-2, x_reduction: str = "mean", ): super().__init__() self._linear = nn.Linear(in_features, out_features, bias) self._loss = ThLoss("mse", "mean") self._step_x = LeastSquaresStepX( self._linear, LeastSquaresRidgeSolver(1e-4, False), optimize_dx ) self._step_theta = LeastSquaresStepTheta( self._linear, LeastSquaresRidgeSolver(1e-3, bias=bias), optimize_dx ) def assess_y(self, y: IO, t: IO, reduction_override: str = None) -> AssessmentDict: return self._loss.assess_dict(y[0], t[0], reduction_override=reduction_override) def step(self, conn: Conn, state: State, from_: IO = None) -> Conn: conn = self._step_theta.step(conn, state, from_) return conn def step_x(self, conn: Conn, state: State) -> Conn: conn = self._step_x.step_x(conn, state) return conn def forward(self, x: IO, state: State, detach: bool = True) -> IO: x.freshen(False) return IO(self._linear(x[0]), detach=detach)
zenkai
/kikai/least_squares.py
least_squares.py
import typing from ..kaku import IO, AssessmentDict, Conn, LearningMachine, State, ThLoss # local from ..utils import Reversible, SequenceReversible class ReversibleMachine(LearningMachine): def __init__( self, reversible: typing.Union[Reversible, typing.List[Reversible]], loss: ThLoss, maximize: bool = False, ): """initializer Args: reversible (typing.Union[Reversible, typing.List[Reversible]]): Reversible module to adapt loss (ThLoss): The loss maximize (bool, optional): _description_. Defaults to False. """ super().__init__(maximize) if isinstance(reversible, typing.List): reversible = SequenceReversible(*reversible) self.reversible = reversible self.loss = loss def assess_y(self, y: IO, t: IO, reduction_override: str = None) -> AssessmentDict: return self.loss.assess_dict(y, t, reduction_override).transfer( "loss", self.validation_name ) def step_x(self, conn: Conn, state: State) -> Conn: """Update x Args: conn (Conn): The connection to update based on state (State): The learning state Returns: Conn: The connection with an updated target for step """ conn.step_x.x_(self.reversible.reverse(conn.step_x.t[0])) conn.tie_inp(True) return conn def step(self, conn: Conn, state: State, from_: IO = None) -> Conn: """These layers do not have parameters so the internal mechanics are not updated Args: conn (Conn): The connection for the layer state (State): The learning state from_ (IO, optional): The input to the previous layer. Defaults to None. Returns: Conn: the connection for the preceding layer """ return conn.connect_in(from_) def forward(self, x: IO, state: State, detach: bool = True) -> IO: return IO(self.reversible(x[0]), detach=detach)
zenkai
/kikai/reversible.py
reversible.py
import typing import torch # 3rd Party import torch.nn as nn from ..kaku import AssessmentDict, OptimFactory, ThLoss # Local from ..kaku import ( IO, BatchIdxStepTheta, BatchIdxStepX, Conn, Idx, LearningMachine, State, StepTheta, StepX, idx_io, ) class GradStepTheta(StepTheta): """Update theta with the loss between y and t on the forward pass""" Y_NAME = "y" def __init__( self, learner: LearningMachine, optim_factory: OptimFactory, reduction: str = "mean", ): super().__init__() self.learner = learner self.optim = optim_factory(learner.parameters()) self.reduction = reduction def step(self, conn: Conn, state: State, from_: IO = None) -> Conn: x, t, y = conn.step y = state.get(self, self.Y_NAME) stepped = state.get(self, "stepped", False) if stepped or y is None: y = self.learner(x, state, detach=False) self.optim.zero_grad() assessment = self.learner.assess_y(y, t) assessment.backward("loss") state.store(self, "stepped", True) self.optim.step() return conn.connect_in(from_) class NullStepTheta(StepTheta): """Do not update theta""" def step(self, conn: Conn, state: State, from_: IO = None) -> Conn: return conn.connect_in(from_in_x=from_) class GradLoopStepTheta(BatchIdxStepTheta): """Update theta with the loss between y and t after passing forward again""" def __init__( self, learner: LearningMachine, optim_factory: OptimFactory, reduction: str = "mean", loss_name: str = "loss", ): super().__init__() self.learner = learner self.optim = optim_factory(learner.parameters()) self.reduction = reduction self.loss_name = loss_name def step( self, conn: Conn, state: State, from_: IO = None, batch_idx: Idx = None ) -> Conn: x = idx_io(conn.step.x, batch_idx, False) t = idx_io(conn.step.t, batch_idx, False) y = self.learner(x, state, False) self.optim.zero_grad() assessment = self.learner.assess_y(y, t, self.reduction) assessment[self.loss_name].backward() self.optim.step() return conn.connect_in(from_) class GradStepX(StepX): """Update x with the loss between y and t based on the grad value of step_x.x""" Y_NAME = "y" def step_x(self, conn: Conn, state: State) -> Conn: x = conn.step_x.x[0] x = x - x.grad x.grad = None # TODO: Debug. This is causing problems in backpropagation # due to the inplace operation # update_io(IO(x), conn.step_x.x) conn.step_x.x = IO(x, detach=True) conn = conn.tie_step(True) return conn class GradLoopStepX(BatchIdxStepX): """Update x with the loss between y and t after passing x forward again and getting the grad of x""" def __init__( self, learner: LearningMachine, optim_factory: OptimFactory, reduction: str = "mean", loss_name: str = "loss", ): """initializer Args: learner (LearningMachine): optim_factory (OptimFactory): OptimFactory for "optimizing" x reduction (str, optional): The loss reduction to use. Defaults to 'mean'. loss_name (str, optional): Name of the loss. Defaults to 'loss'. """ super().__init__() self.learner = learner self.optim_factory = optim_factory self.reduction = reduction self.loss_name = loss_name def step_x(self, conn: Conn, state: State, batch_idx: Idx = None) -> Conn: my_state = conn.state.mine(self) if "optim" not in my_state: my_state.optim = self.optim_factory([*conn.step_x.x]) x = idx_io(conn.step_x.x, batch_idx) t = idx_io(conn.step_x.t, batch_idx) my_state.optim.zero_grad() y = self.learner(x, detach=False) assessment = self.learner.assess_y(y, t, self.reduction) assessment.backward(self.loss_name) my_state.optim.step() # TODO: Detach return conn.tie_inp() class GradLearner(LearningMachine): """Standard gradient learner""" VALIDATION_NAME = "validation" LOSS_NAME = "loss" Y_NAME = "y" def __init__( self, sequence: typing.List[nn.Module], loss: ThLoss, optim_factory: OptimFactory, theta_reduction: str = "mean", ): super().__init__() self._sequence = nn.Sequential(*sequence) self._loss = loss self._theta_step = GradStepTheta(self, optim_factory, theta_reduction) self._x_step = GradStepX() def assess_y(self, y: IO, t: IO, reduction_override: str = None) -> AssessmentDict: assessment = self._loss.assess_dict(y[0], t[0], reduction_override) assessment[self.VALIDATION_NAME] = assessment[self.LOSS_NAME] return assessment def step(self, conn: Conn, state: State, from_: IO = None) -> Conn: return self._theta_step.step(conn, state, from_) def step_x(self, conn: Conn, state: State) -> Conn: return self._x_step.step_x(conn, state) def forward(self, x: IO, state: State, detach: bool = True) -> IO: x.freshen(False) y = state[self, self.Y_NAME] = IO(self._sequence(*x.vals), detach=False) return y.out(detach) class GradLoopLearner(LearningMachine, BatchIdxStepX, BatchIdxStepTheta): """Gradient learner designed for multiple loops""" LOSS_NAME = "loss" VALIDATION_NAME = "validation" Y_NAME = "y" def __init__( self, sequence: typing.List[nn.Module], loss: ThLoss, theta_optim_factory: OptimFactory, x_optim_factory: OptimFactory, theta_reduction: str = "mean", x_reduction: str = "mean", ): super().__init__() self._sequence = nn.Sequential(*sequence) self._loss = loss self._theta_step = GradLoopStepTheta(self, theta_optim_factory, theta_reduction) self._x_step = GradLoopStepX(self, x_optim_factory, x_reduction) def assess_y(self, y: IO, t: IO, reduction_override: str = None) -> AssessmentDict: assessment = self._loss.assess_dict(y[0], t[0], reduction_override) assessment[self.VALIDATION_NAME] = assessment[self.LOSS_NAME] return assessment def step( self, conn: Conn, state: State, from_: IO = None, batch_idx: Idx = None ) -> Conn: return self._theta_step.step(conn, state, from_, batch_idx) def step_x(self, conn: Conn, state: State, batch_idx: Idx = None) -> Conn: return self._x_step.step_x(conn, state, batch_idx) def forward(self, x: IO, state: State, detach: bool = True) -> IO: x.freshen(False) y = state[self, self.Y_NAME] = IO(self._sequence(*x.vals), detach=False) return y.out(detach) def update_x( x: IO, lr: float = 1.0, detach: bool = False, zero_grad: bool = False ) -> IO: """Updates x by subtracting the gradient from x times the learning rate Args: x (IO): the IO to update. Grad must not be 0 lr (float, optional): multipler to multiple the gradient by. Defaults to 1.0. detach (bool, optional): whether to detach the output. Defaults to False. zero_grad (bool, optional): whether the gradient should be set to none. Defaults to True. Returns: IO: updated x """ updated = [] for x_i in x: if isinstance(x_i, torch.Tensor): x_i = x_i - lr * x_i.grad if zero_grad: x_i.grad = None updated.append(x_i) return IO(*updated, detach=detach)
zenkai
/kikai/grad.py
grad.py
============================= Zenlayer Cloud SDK for Python ============================= Zenlayer Cloud Python SDK is the official software development kit, which allows Python developers to write software that makes use of Zenlayer Cloud services like BMC and VM. The SDK works on Python versions: * 2.7 and greater, including 3.x Quick Start ----------- First, install the library: .. code-block:: sh $ pip install zenlayercloud-sdk-python or download source code from github and install: .. code-block:: sh $ git clone https://github.com/zenlayer/zenlayercloud-sdk-python.git $ cd zenlayercloud-sdk-python $ python setup.py install
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/README.rst
README.rst
from zenlayercloud.common.abstract_model import AbstractModel class DescribeZonesRequest(AbstractModel): def __init__(self): self.zoneIds = None def _deserialize(self, params): self.zoneIds = params.get("zoneIds") class DescribeZonesResponse(AbstractModel): def __init__(self): self.requestId = None self.zoneSet = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("zoneSet") is not None: self.zoneSet = [] for item in params.get("zoneSet"): obj = ZoneInfo(item) self.zoneSet.append(obj) class ZoneInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.zoneName = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.zoneName = params.get("zoneName") class DescribeZoneInstanceConfigInfosRequest(AbstractModel): def __init__(self): self.instanceChargeType = None self.zoneId = None self.instanceType = None def _deserialize(self, params): self.instanceChargeType = params.get("instanceChargeType") self.zoneId = params.get("zoneId") self.instanceType = params.get("instanceType") class DescribeZoneInstanceConfigInfosResponse(AbstractModel): def __init__(self): self.requestId = None self.instanceTypeQuotaSet = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("instanceTypeQuotaSet") is not None: self.instanceTypeQuotaSet = [] for item in params.get("instanceTypeQuotaSet"): obj = InstanceTypeQuotaItem(item) self.instanceTypeQuotaSet.append(obj) class InstanceTypeQuotaItem(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.instanceType = None self.cpuCount = None self.memory = None self.frequency = None self.internetMaxBandwidthOutLimit = None self.instanceTypeName = None self.internetChargeTypes = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.instanceType = params.get("instanceType") self.cpuCount = params.get("cpuCount") self.memory = params.get("memory") self.frequency = params.get("frequency") self.internetMaxBandwidthOutLimit = params.get("internetMaxBandwidthOutLimit") self.instanceTypeName = params.get("instanceTypeName") self.internetChargeTypes = params.get("internetChargeTypes") class InquiryPriceCreateInstanceRequest(AbstractModel): def __init__(self): self.zoneId = None self.instanceType = None self.instanceChargeType = None self.internetChargeType = None self.instanceChargePrepaid = None self.trafficPackageSize = None self.internetMaxBandwidthOut = None self.systemDisk = None self.dataDisks = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.instanceType = params.get("instanceType") self.instanceChargeType = params.get("instanceChargeType") self.internetChargeType = params.get("internetChargeType") if params.get("instanceChargePrepaid") is not None: self.instanceChargePrepaid = ChargePrepaid(params.get("instanceChargePrepaid")) self.trafficPackageSize = params.get("trafficPackageSize") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") if params.get("systemDisk") is not None: self.systemDisk = SystemDisk(params.get("systemDisk")) if params.get("dataDisks") is not None: self.dataDisks = [] for item in params.get("dataDisks"): obj = DataDisk(item) self.dataDisks.append(obj) class InquiryPriceCreateInstanceResponse(AbstractModel): def __init__(self): self.requestId = None self.instancePrice = None self.bandwidthPrice = None self.systemDiskPrice = None self.dataDiskPrice = None def _deserialize(self, params): self.requestId = params.get("requestId") self.instancePrice = Price(params.get("instancePrice")) if params.get("bandwidthPrice") is not None: self.bandwidthPrice = [] for item in params.get("bandwidthPrice"): obj = Price(item) self.bandwidthPrice.append(obj) self.systemDiskPrice = Price(params.get("systemDiskPrice")) if params.get("dataDiskPrice") is not None: self.dataDiskPrice = Price(params.get("dataDiskPrice")) class ChargePrepaid(AbstractModel): """描述了实例的计费模式 """ def __init__(self, params=None): """ :param period: 购买实例的时长,单位:月。 :type period: int """ if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.period = None def _deserialize(self, params): self.period = params.get("period") class SystemDisk(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.diskId = None self.diskSize = None self.diskCategory = None def _deserialize(self, params): self.diskId = params.get("diskId") self.diskSize = params.get("diskSize") self.diskCategory = params.get("diskCategory") class DataDisk(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.diskId = None self.diskSize = None self.diskName = None self.diskCategory = None self.portable = None def _deserialize(self, params): self.diskId = params.get("diskId") self.diskSize = params.get("diskSize") self.diskName = params.get("diskName") self.diskCategory = params.get("diskCategory") self.portable = params.get("portable") class Price(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.originalPrice = None self.discountPrice = None self.discount = None self.unitPrice = None self.discountUnitPrice = None self.chargeUnit = None self.stepPrices = None def _deserialize(self, params): self.originalPrice = params.get("originalPrice") self.discountPrice = params.get("discountPrice") self.discount = params.get("discount") self.unitPrice = params.get("unitPrice") self.discountUnitPrice = params.get("discountUnitPrice") self.chargeUnit = params.get("chargeUnit") if params.get("stepPrices") is not None: self.stepPrices = [] for item in params.get("stepPrices"): obj = StepPrice(item) self.stepPrices.append(obj) class StepPrice(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.stepStart = None self.stepEnd = None self.unitPrice = None self.discountUnitPrice = None def _deserialize(self, params): self.stepStart = params.get("stepStart") self.stepEnd = params.get("stepEnd") self.unitPrice = params.get("unitPrice") self.discountUnitPrice = params.get("discountUnitPrice") class CreateInstancesRequest(AbstractModel): def __init__(self): self.zoneId = None self.instanceChargeType = None self.instanceChargePrepaid = None self.instanceType = None self.imageId = None self.resourceGroupId = None self.instanceName = None self.instanceCount = None self.password = None self.internetChargeType = None self.internetMaxBandwidthOut = None self.trafficPackageSize = None self.subnetId = None self.systemDisk = None self.dataDisks = None self.securityGroupId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.instanceChargeType = params.get("instanceChargeType") if params.get("instanceChargePrepaid") is not None: self.instanceChargePrepaid = ChargePrepaid(params.get("instanceChargePrepaid")) self.instanceType = params.get("instanceType") self.imageId = params.get("imageId") self.resourceGroupId = params.get("resourceGroupId") self.instanceName = params.get("instanceName") self.instanceCount = params.get("instanceCount") self.password = params.get("password") self.internetChargeType = params.get("internetChargeType") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") self.trafficPackageSize = params.get("trafficPackageSize") self.subnetId = params.get("subnetId") if params.get("systemDisk") is not None: self.systemDisk = SystemDisk(params.get("systemDisk")) if params.get("dataDisks") is not None: self.dataDisks = [] for item in params.get("dataDisks"): obj = DataDisk(item) self.dataDisks.append(obj) self.securityGroupId = params.get("securityGroupId") class CreateInstancesResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None self.instanceIdSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") self.instanceIdSet = params.get("instanceIdSet") class DescribeInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None self.zoneId = None self.resourceGroupId = None self.instanceType = None self.internetChargeType = None self.imageId = None self.subnetId = None self.instanceStatus = None self.instanceName = None self.securityGroupId = None self.publicIpAddresses = None self.privateIpAddresses = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.zoneId = params.get("zoneId") self.resourceGroupId = params.get("resourceGroupId") self.instanceType = params.get("instanceType") self.internetChargeType = params.get("internetChargeType") self.imageId = params.get("imageId") self.subnetId = params.get("subnetId") self.instanceStatus = params.get("instanceStatus") self.instanceName = params.get("instanceName") self.securityGroupId = params.get("securityGroupId") self.publicIpAddresses = params.get("publicIpAddresses") self.privateIpAddresses = params.get("privateIpAddresses") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeInstancesResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = InstanceInfo(item) self.dataSet.append(obj) class InstanceInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.instanceId = None self.zoneId = None self.instanceName = None self.instanceType = None self.cpuCount = None self.memory = None self.imageId = None self.imageName = None self.instanceChargeType = None self.internetMaxBandwidthOut = None self.internetChargeType = None self.period = None self.publicIpAddresses = None self.privateIpAddresses = None self.subnetId = None self.createTime = None self.expiredTime = None self.resourceGroupId = None self.resourceGroupName = None self.instanceStatus = None self.trafficPackageSize = None self.securityGroupIds = None self.systemDisk = None self.dataDisks = None self.autoRenew = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.zoneId = params.get("zoneId") self.instanceName = params.get("instanceName") self.instanceType = params.get("instanceType") self.cpuCount = params.get("cpuCount") self.memory = params.get("memory") self.imageId = params.get("imageId") self.imageName = params.get("imageName") self.instanceChargeType = params.get("instanceChargeType") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") self.internetChargeType = params.get("internetChargeType") self.period = params.get("period") self.publicIpAddresses = params.get("publicIpAddresses") self.privateIpAddresses = params.get("privateIpAddresses") self.subnetId = params.get("subnetId") self.createTime = params.get("createTime") self.expiredTime = params.get("expiredTime") self.resourceGroupId = params.get("resourceGroupId") self.resourceGroupName = params.get("resourceGroupName") self.instanceStatus = params.get("instanceStatus") self.trafficPackageSize = params.get("trafficPackageSize") self.securityGroupIds = params.get("securityGroupIds") if params.get("systemDisk") is not None: self.systemDisk = SystemDisk(params.get("systemDisk")) if params.get("dataDisks") is not None: self.dataDisks = [] for item in params.get("dataDisks"): obj = DataDisk(item) self.dataDisks.append(obj) self.autoRenew = params.get("autoRenew") class DescribeInstancesStatusRequest(AbstractModel): def __init__(self): self.instanceIds = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeInstancesStatusResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = InstanceStatus(item) self.dataSet.append(obj) class InstanceStatus(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.instanceId = None self.instanceStatus = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.instanceStatus = params.get("instanceStatus") class StartInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class StartInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class StopInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class StopInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class RebootInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class RebootInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ResetInstancesPasswordRequest(AbstractModel): def __init__(self): self.instanceIds = None self.password = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.password = params.get("password") class ResetInstancesPasswordResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ResetInstanceRequest(AbstractModel): def __init__(self): self.instanceId = None self.imageId = None self.password = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.imageId = params.get("imageId") self.password = params.get("password") class ResetInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class TerminateInstanceRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class TerminateInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ReleaseInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class ReleaseInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ModifyInstancesAttributeRequest(AbstractModel): def __init__(self): self.instanceIds = None self.instanceName = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.instanceName = params.get("instanceName") class ModifyInstancesAttributeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class InquiryPriceInstanceBandwidthRequest(AbstractModel): def __init__(self): self.instanceId = None self.internetMaxBandwidthOut = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") class InquiryPriceInstanceBandwidthResponse(AbstractModel): def __init__(self): self.requestId = None self.bandwidthPrice = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("bandwidthPrice") is not None: self.bandwidthPrice = [] for item in params.get("bandwidthPrice"): obj = Price(item) self.bandwidthPrice.append(obj) class ModifyInstanceBandwidthRequest(AbstractModel): def __init__(self): self.instanceId = None self.internetMaxBandwidthOut = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") class ModifyInstanceBandwidthResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") class CancelInstanceBandwidthDowngradeRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class CancelInstanceBandwidthDowngradeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class InquiryPriceInstanceTrafficPackageRequest(AbstractModel): def __init__(self): self.instanceId = None self.trafficPackageSize = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.trafficPackageSize = params.get("trafficPackageSize") class InquiryPriceInstanceTrafficPackageResponse(AbstractModel): def __init__(self): self.requestId = None self.trafficPackagePrice = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("trafficPackagePrice") is not None: self.trafficPackagePrice = [] for item in params.get("trafficPackagePrice"): obj = Price(item) self.trafficPackagePrice.append(obj) class ModifyInstanceTrafficPackageRequest(AbstractModel): def __init__(self): self.instanceId = None self.trafficPackageSize = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.trafficPackageSize = params.get("trafficPackageSize") class ModifyInstanceTrafficPackageResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") class CancelInstanceTrafficPackageDowngradeRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class CancelInstanceTrafficPackageDowngradeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeInstanceInternetStatusRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class DescribeInstanceInternetStatusResponse(AbstractModel): def __init__(self): self.requestId = None self.instanceId = None self.instanceName = None self.internetMaxBandwidthOut = None self.modifiedInternetMaxBandwidthOut = None self.modifiedBandwidthStatus = None self.trafficPackageSize = None self.modifiedTrafficPackageSize = None self.modifiedTrafficPackageStatus = None def _deserialize(self, params): self.requestId = params.get("requestId") self.instanceId = params.get("instanceId") self.instanceName = params.get("instanceName") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") self.modifiedInternetMaxBandwidthOut = params.get("modifiedInternetMaxBandwidthOut") self.modifiedBandwidthStatus = params.get("modifiedBandwidthStatus") self.trafficPackageSize = params.get("trafficPackageSize") self.modifiedTrafficPackageSize = params.get("modifiedTrafficPackageSize") self.modifiedTrafficPackageStatus = params.get("modifiedTrafficPackageStatus") class ModifyInstancesResourceGroupRequest(AbstractModel): def __init__(self): self.instanceIds = None self.resourceGroupId = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.resourceGroupId = params.get("resourceGroupId") class ModifyInstancesResourceGroupResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeInstanceTrafficRequest(AbstractModel): def __init__(self): self.instanceId = None self.startTime = None self.endTime = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.startTime = params.get("startTime") self.endTime = params.get("endTime") class DescribeInstanceTrafficResponse(AbstractModel): def __init__(self): self.requestId = None self.dataList = None self.in95 = None self.in95Time = None self.inAvg = None self.inMax = None self.inMin = None self.inTotal = None self.maxBandwidth95ValueMbps = None self.out95 = None self.out95Time = None self.outAvg = None self.outMax = None self.outMin = None self.outTotal = None self.totalUnit = None self.unit = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("dataList") is not None: self.dataList = [] for item in params.get("dataList"): obj = InstanceTrafficData(item) self.dataList.append(obj) self.in95 = params.get("in95") self.in95Time = params.get("in95Time") self.inAvg = params.get("inAvg") self.inMax = params.get("inMax") self.inMin = params.get("inMin") self.inTotal = params.get("inTotal") self.maxBandwidth95ValueMbps = params.get("maxBandwidth95ValueMbps") self.out95 = params.get("out95") self.out95Time = params.get("out95Time") self.outAvg = params.get("outAvg") self.outMax = params.get("outMax") self.outMin = params.get("outMin") self.outTotal = params.get("outTotal") self.totalUnit = params.get("totalUnit") self.unit = params.get("unit") class InstanceTrafficData(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.internetRX = None self.internetTX = None self.time = None def _deserialize(self, params): self.internetRX = params.get("internetRX") self.internetTX = params.get("internetTX") self.time = params.get("time") class DescribeInstanceCpuMonitorRequest(AbstractModel): def __init__(self): self.instanceId = None self.startTime = None self.endTime = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.startTime = params.get("startTime") self.endTime = params.get("endTime") class DescribeInstanceCpuMonitorResponse(AbstractModel): def __init__(self): self.requestId = None self.dataList = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("dataList") is not None: self.dataList = [] for item in params.get("dataList"): obj = InstanceCpuMonitorData(item) self.dataList.append(obj) class InstanceCpuMonitorData(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.cpu = None self.time = None def _deserialize(self, params): self.cpu = params.get("cpu") self.time = params.get("time") class CreateDisksRequest(AbstractModel): def __init__(self): self.chargeType = None self.chargePrepaid = None self.diskName = None self.diskSize = None self.diskCategory = None self.instanceId = None self.zoneId = None self.diskAmount = None self.resourceGroupId = None def _deserialize(self, params): self.chargeType = params.get("chargeType") if params.get("chargePrepaid") is not None: self.chargePrepaid = ChargePrepaid(params.get("chargePrepaid")) self.diskName = params.get("diskName") self.diskSize = params.get("diskSize") self.diskCategory = params.get("diskCategory") self.instanceId = params.get("instanceId") self.zoneId = params.get("zoneId") self.diskAmount = params.get("diskAmount") self.resourceGroupId = params.get("resourceGroupId") class CreateDisksResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None self.diskIds = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") self.diskIds = params.get("diskIds") class DescribeDisksRequest(AbstractModel): def __init__(self): self.diskIds = None self.diskName = None self.diskStatus = None self.diskType = None self.diskSize = None self.diskCategory = None self.portable = None self.instanceId = None self.zoneId = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class DescribeDisksResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = DiskInfo(item) self.dataSet.append(obj) class DiskInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.diskId = None self.diskName = None self.zoneId = None self.diskType = None self.portable = None self.diskCategory = None self.diskSize = None self.diskStatus = None self.instanceId = None self.instanceName = None self.chargeType = None self.createTime = None self.expiredTime = None self.period = None self.autoRenew = None def _deserialize(self, params): self.diskId = params.get("diskId") self.diskName = params.get("diskName") self.zoneId = params.get("zoneId") self.diskType = params.get("diskType") self.portable = params.get("portable") self.diskCategory = params.get("diskCategory") self.diskSize = params.get("diskSize") self.diskStatus = params.get("diskStatus") self.instanceId = params.get("instanceId") self.instanceName = params.get("instanceName") self.chargeType = params.get("chargeType") self.createTime = params.get("createTime") self.expiredTime = params.get("expiredTime") self.period = params.get("period") self.autoRenew = params.get("autoRenew") class AttachDisksRequest(AbstractModel): def __init__(self): self.diskIds = None self.instanceId = None def _deserialize(self, params): self.diskIds = params.get("diskIds") self.instanceId = params.get("instanceId") class AttachDisksResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ChangeDisksAttachRequest(AbstractModel): def __init__(self): self.diskIds = None self.instanceId = None def _deserialize(self, params): self.diskIds = params.get("diskIds") self.instanceId = params.get("instanceId") class ChangeDisksAttachResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DetachDisksRequest(AbstractModel): def __init__(self): self.diskIds = None def _deserialize(self, params): self.diskIds = params.get("diskIds") class DetachDisksResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ModifyDisksAttributesRequest(AbstractModel): def __init__(self): self.diskIds = None self.diskName = None def _deserialize(self, params): self.diskIds = params.get("diskIds") self.diskName = params.get("diskName") class ModifyDisksAttributesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class InquiryPriceCreateDisksRequest(AbstractModel): def __init__(self): self.zoneId = None self.diskSize = None self.diskAmount = None self.chargeType = None self.chargePrepaid = None self.diskCategory = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.diskSize = params.get("diskSize") self.diskAmount = params.get("diskAmount") self.chargeType = params.get("chargeType") if params.get("chargePrepaid") is not None: self.chargePrepaid = ChargePrepaid(params.get("chargePrepaid")) self.diskCategory = params.get("diskCategory") class InquiryPriceCreateDisksResponse(AbstractModel): def __init__(self): self.requestId = None self.dataDiskPrice = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("dataDiskPrice") is not None: self.dataDiskPrice = Price(params.get("dataDiskPrice")) class TerminateDiskRequest(AbstractModel): def __init__(self): self.diskId = None def _deserialize(self, params): self.diskId = params.get("diskId") class TerminateDiskResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ReleaseDiskRequest(AbstractModel): def __init__(self): self.diskId = None def _deserialize(self, params): self.diskId = params.get("diskId") class ReleaseDiskResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class RenewDiskRequest(AbstractModel): def __init__(self): self.diskId = None def _deserialize(self, params): self.diskId = params.get("diskId") class RenewDiskResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") class DescribeDiskCategoryRequest(AbstractModel): def __init__(self): self.zoneId = None self.instanceChargeType = None self.diskCategory = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.instanceChargeType = params.get("instanceChargeType") self.diskCategory = params.get("diskCategory") class DescribeDiskCategoryResponse(AbstractModel): def __init__(self): self.requestId = None self.categoryZoneSet = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("categoryZoneSet") is not None: self.categoryZoneSet = [] for item in params.get("categoryZoneSet"): obj = DiskCategory(item) self.categoryZoneSet.append(obj) class DiskCategory(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.categorySet = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.categorySet = params.get("categorySet") class ModifyDisksResourceGroupRequest(AbstractModel): def __init__(self): self.diskIds = None self.resourceGroupId = None def _deserialize(self, params): self.diskIds = params.get("diskIds") self.resourceGroupId = params.get("resourceGroupId") class ModifyDisksResourceGroupResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeImagesRequest(AbstractModel): def __init__(self): self.zoneId = None self.imageIds = None self.imageName = None self.category = None self.imageType = None self.osType = None self.imageStatus = None self.pageNum = None self.pageSize = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.imageIds = params.get("imageIds") self.imageName = params.get("imageName") self.category = params.get("category") self.imageType = params.get("imageType") self.osType = params.get("osType") self.imageStatus = params.get("imageStatus") self.pageNum = params.get("pageNum") self.pageSize = params.get("pageSize") class DescribeImagesResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = ImageInfo(item) self.dataSet.append(obj) class ImageInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.imageId = None self.imageName = None self.imageType = None self.imageSize = None self.imageDescription = None self.imageVersion = None self.imageStatus = None self.category = None self.osType = None def _deserialize(self, params): self.imageId = params.get("imageId") self.imageName = params.get("imageName") self.imageType = params.get("imageType") self.imageSize = params.get("imageSize") self.imageDescription = params.get("imageDescription") self.imageVersion = params.get("imageVersion") self.imageStatus = params.get("imageStatus") self.category = params.get("category") self.osType = params.get("osType") class ModifyImagesAttributesRequest(AbstractModel): def __init__(self): self.imageIds = None self.imageName = None self.imageDescription = None def _deserialize(self, params): self.imageIds = params.get("imageIds") self.imageName = params.get("imageName") self.imageDescription = params.get("imageDescription") class ModifyImagesAttributesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DeleteImagesRequest(AbstractModel): def __init__(self): self.imageIds = None def _deserialize(self, params): self.imageIds = params.get("imageIds") class DeleteImagesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class CreateImageRequest(AbstractModel): def __init__(self): self.instanceId = None self.imageName = None self.imageDescription = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.imageName = params.get("imageName") self.imageDescription = params.get("imageDescription") class CreateImageResponse(AbstractModel): def __init__(self): self.requestId = None self.imageId = None def _deserialize(self, params): self.requestId = params.get("requestId") self.imageId = params.get("imageId") class DescribeImageQuotaRequest(AbstractModel): def __init__(self): self.zoneIds = None def _deserialize(self, params): self.zoneIds = params.get("instanceIds") class DescribeImageQuotaResponse(AbstractModel): def __init__(self): self.requestId = None self.images = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("images") is not None: self.images = [] for item in params.get("images"): obj = ImageQuotaInfo(item) self.images.append(obj) class ImageQuotaInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.count = None self.maxCount = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.count = params.get("count") self.maxCount = params.get("maxCount") class DescribeSecurityGroupsRequest(AbstractModel): def __init__(self): self.securityGroupIds = None self.securityGroupName = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.securityGroupIds = params.get("securityGroupIds") self.securityGroupName = params.get("securityGroupName") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeSecurityGroupsResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = SecurityGroupInfo(item) self.dataSet.append(obj) class SecurityGroupInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.securityGroupId = None self.securityGroupName = None self.securityGroupStatus = None self.createTime = None self.description = None self.instanceIds = None self.ruleInfos = None self.isDefault = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") self.securityGroupName = params.get("securityGroupName") self.securityGroupStatus = params.get("securityGroupStatus") self.createTime = params.get("createTime") self.description = params.get("description") self.instanceIds = params.get("instanceIds") if params.get("ruleInfos") is not None: self.ruleInfos = [] for item in params.get("ruleInfos"): obj = RuleInfo(item) self.ruleInfos.append(obj) self.isDefault = params.get("isDefault") class RuleInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.direction = None self.policy = None self.priority = None self.ipProtocol = None self.portRange = None self.cidrIp = None def _deserialize(self, params): self.direction = params.get("direction") self.policy = params.get("policy") self.priority = params.get("priority") self.ipProtocol = params.get("ipProtocol") self.portRange = params.get("portRange") self.cidrIp = params.get("cidrIp") class ModifySecurityGroupsAttributeRequest(AbstractModel): def __init__(self): self.securityGroupIds = None self.securityGroupName = None self.description = None def _deserialize(self, params): self.securityGroupIds = params.get("securityGroupIds") self.securityGroupName = params.get("securityGroupName") self.description = params.get("description") class ModifySecurityGroupsAttributeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeInstanceAvailableSecurityGroupResourcesRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class DescribeInstanceAvailableSecurityGroupResourcesResponse(AbstractModel): def __init__(self): self.requestId = None self.instanceAvailableSecurityGroups = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("instanceAvailableSecurityGroups") is not None: self.instanceAvailableSecurityGroups = [] for item in params.get("instanceAvailableSecurityGroups"): obj = InstanceAvailableSecurityGroup(item) self.instanceAvailableSecurityGroups.append(obj) class InstanceAvailableSecurityGroup(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.securityGroupId = None self.securityGroupName = None self.isDefault = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") self.securityGroupName = params.get("securityGroupName") self.isDefault = params.get("isDefault") class CreateSecurityGroupRequest(AbstractModel): def __init__(self): self.securityGroupName = None self.ruleInfos = None self.description = None def _deserialize(self, params): self.securityGroupName = params.get("securityGroupName") if params.get("ruleInfos") is not None: self.ruleInfos = [] for item in params.get("ruleInfos"): obj = RuleInfo(item) self.ruleInfos.append(obj) self.description = params.get("description") class CreateSecurityGroupResponse(AbstractModel): def __init__(self): self.requestId = None self.securityGroupId = None def _deserialize(self, params): self.requestId = params.get("requestId") self.securityGroupId = params.get("securityGroupId") class DeleteSecurityGroupRequest(AbstractModel): def __init__(self): self.securityGroupId = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") class DeleteSecurityGroupResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class AuthorizeSecurityGroupRulesRequest(AbstractModel): def __init__(self): self.securityGroupId = None self.ruleInfos = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") if params.get("ruleInfos") is not None: self.ruleInfos = [] for item in params.get("ruleInfos"): obj = RuleInfo(item) self.ruleInfos.append(obj) class AuthorizeSecurityGroupRulesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ConfigureSecurityGroupRulesRequest(AbstractModel): def __init__(self): self.securityGroupId = None self.ruleInfos = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") if params.get("ruleInfos") is not None: self.ruleInfos = [] for item in params.get("ruleInfos"): obj = RuleInfo(item) self.ruleInfos.append(obj) class ConfigureSecurityGroupRulesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class AuthorizeSecurityGroupRuleRequest(AbstractModel): def __init__(self): self.securityGroupId = None self.direction = None self.policy = None self.priority = None self.ipProtocol = None self.portRange = None self.cidrIp = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") self.direction = params.get("direction") self.policy = params.get("policy") self.priority = params.get("priority") self.ipProtocol = params.get("ipProtocol") self.portRange = params.get("portRange") self.cidrIp = params.get("cidrIp") class AuthorizeSecurityGroupRuleResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class RevokeSecurityGroupRulesRequest(AbstractModel): def __init__(self): self.securityGroupId = None self.ruleInfos = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") if params.get("ruleInfos") is not None: self.ruleInfos = [] for item in params.get("ruleInfos"): obj = RuleInfo(item) self.ruleInfos.append(obj) class RevokeSecurityGroupRulesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class AssociateSecurityGroupInstanceRequest(AbstractModel): def __init__(self): self.securityGroupId = None self.instanceId = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") self.instanceId = params.get("instanceId") class AssociateSecurityGroupInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class UnAssociateSecurityGroupInstanceRequest(AbstractModel): def __init__(self): self.securityGroupId = None self.instanceId = None def _deserialize(self, params): self.securityGroupId = params.get("securityGroupId") self.instanceId = params.get("instanceId") class UnAssociateSecurityGroupInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class CreateSubnetRequest(AbstractModel): def __init__(self): self.cidrBlock = None self.subnetName = None self.zoneId = None self.subnetDescription = None def _deserialize(self, params): self.cidrBlock = params.get("cidrBlock") self.subnetName = params.get("subnetName") self.zoneId = params.get("zoneId") self.subnetDescription = params.get("subnetDescription") class CreateSubnetResponse(AbstractModel): def __init__(self): self.requestId = None self.subnetId = None def _deserialize(self, params): self.requestId = params.get("requestId") self.subnetId = params.get("subnetId") class DeleteSubnetRequest(AbstractModel): def __init__(self): self.subnetId = None def _deserialize(self, params): self.subnetId = params.get("subnetId") class DeleteSubnetResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ModifySubnetsAttributeRequest(AbstractModel): def __init__(self): self.subnetIds = None self.subnetName = None def _deserialize(self, params): self.subnetIds = params.get("subnetIds") self.subnetName = params.get("subnetName") class ModifySubnetsAttributeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeSubnetsRequest(AbstractModel): def __init__(self): self.subnetIds = None self.cidrBlock = None self.zoneId = None self.subnetStatus = None self.subnetName = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.subnetIds = params.get("subnetIds") self.cidrBlock = params.get("cidrBlock") self.zoneId = params.get("zoneId") self.subnetStatus = params.get("subnetStatus") self.subnetName = params.get("subnetName") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeSubnetsResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = SubnetInfo(item) self.dataSet.append(obj) class SubnetInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.subnetId = None self.zoneId = None self.subnetName = None self.subnetStatus = None self.subnetDescription = None self.cidrBlock = None self.cidrBlockList = None self.usageIpCount = None self.totalIpCount = None self.createTime = None self.instanceIdList = None def _deserialize(self, params): self.subnetId = params.get("subnetId") self.zoneId = params.get("zoneId") self.subnetName = params.get("subnetName") self.subnetStatus = params.get("subnetStatus") self.subnetDescription = params.get("subnetDescription") self.cidrBlock = params.get("cidrBlock") self.cidrBlockList = params.get("cidrBlockList") self.usageIpCount = params.get("usageIpCount") self.totalIpCount = params.get("totalIpCount") self.createTime = params.get("createTime") self.instanceIdList = params.get("instanceIdList")
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/zenlayercloud/vm/v20230313/models.py
models.py
from zenlayercloud.vm.v20230313 import models from zenlayercloud.common.abstract_client import AbstractClient class VmClient(AbstractClient): _api_version = "2023-03-13" _service = "vm" def DescribeZones(self, request): response = self._api_call("DescribeZones", request) model = models.DescribeZonesResponse() model._deserialize(response) return model def DescribeZoneInstanceConfigInfos(self, request): response = self._api_call("DescribeZoneInstanceConfigInfos", request) model = models.DescribeZoneInstanceConfigInfosResponse() model._deserialize(response) return model def InquiryPriceCreateInstance(self, request): response = self._api_call("InquiryPriceCreateInstance", request) model = models.InquiryPriceCreateInstanceResponse() model._deserialize(response) return model def CreateInstances(self, request): response = self._api_call("CreateInstances", request) model = models.CreateInstancesResponse() model._deserialize(response) return model def DescribeInstances(self, request): response = self._api_call("DescribeInstances", request) model = models.DescribeInstancesResponse() model._deserialize(response) return model def DescribeInstancesStatus(self, request): response = self._api_call("DescribeInstancesStatus", request) model = models.DescribeInstancesStatusResponse() model._deserialize(response) return model def StartInstances(self, request): response = self._api_call("StartInstances", request) model = models.StartInstancesResponse() model._deserialize(response) return model def StopInstances(self, request): response = self._api_call("StopInstances", request) model = models.StopInstancesResponse() model._deserialize(response) return model def RebootInstances(self, request): response = self._api_call("RebootInstances", request) model = models.RebootInstancesResponse() model._deserialize(response) return model def ResetInstancesPassword(self, request): response = self._api_call("ResetInstancesPassword", request) model = models.ResetInstancesPasswordResponse() model._deserialize(response) return model def ResetInstance(self, request): response = self._api_call("ResetInstance", request) model = models.ResetInstanceResponse() model._deserialize(response) return model def TerminateInstance(self, request): response = self._api_call("TerminateInstance", request) model = models.TerminateInstanceResponse() model._deserialize(response) return model def ReleaseInstances(self, request): response = self._api_call("ReleaseInstances", request) model = models.ReleaseInstancesResponse() model._deserialize(response) return model def ModifyInstancesAttribute(self, request): response = self._api_call("ModifyInstancesAttribute", request) model = models.ModifyInstancesAttributeResponse() model._deserialize(response) return model def InquiryPriceInstanceBandwidth(self, request): response = self._api_call("InquiryPriceInstanceBandwidth", request) model = models.InquiryPriceInstanceBandwidthResponse() model._deserialize(response) return model def ModifyInstanceBandwidth(self, request): response = self._api_call("ModifyInstanceBandwidth", request) model = models.ModifyInstanceBandwidthResponse() model._deserialize(response) return model def CancelInstanceBandwidthDowngrade(self, request): response = self._api_call("CancelInstanceBandwidthDowngrade", request) model = models.CancelInstanceBandwidthDowngradeResponse() model._deserialize(response) return model def InquiryPriceInstanceTrafficPackage(self, request): response = self._api_call("InquiryPriceInstanceTrafficPackage", request) model = models.InquiryPriceInstanceTrafficPackageResponse() model._deserialize(response) return model def ModifyInstanceTrafficPackage(self, request): response = self._api_call("ModifyInstanceTrafficPackage", request) model = models.ModifyInstanceTrafficPackageResponse() model._deserialize(response) return model def CancelInstanceTrafficPackageDowngrade(self, request): response = self._api_call("CancelInstanceTrafficPackageDowngrade", request) model = models.CancelInstanceTrafficPackageDowngradeResponse() model._deserialize(response) return model def DescribeInstanceInternetStatus(self, request): response = self._api_call("DescribeInstanceInternetStatus", request) model = models.DescribeInstanceInternetStatusResponse() model._deserialize(response) return model def ModifyInstancesResourceGroup(self, request): response = self._api_call("ModifyInstancesResourceGroup", request) model = models.ModifyInstancesResourceGroupResponse() model._deserialize(response) return model def DescribeInstanceTraffic(self, request): response = self._api_call("DescribeInstanceTraffic", request) model = models.DescribeInstanceTrafficResponse() model._deserialize(response) return model def DescribeInstanceCpuMonitor(self, request): response = self._api_call("DescribeInstanceCpuMonitor", request) model = models.DescribeInstanceCpuMonitorResponse() model._deserialize(response) return model def CreateDisks(self, request): response = self._api_call("CreateDisks", request) model = models.CreateDisksResponse() model._deserialize(response) return model def DescribeDisks(self, request): response = self._api_call("DescribeDisks", request) model = models.DescribeDisksResponse() model._deserialize(response) return model def AttachDisks(self, request): response = self._api_call("AttachDisks", request) model = models.AttachDisksResponse() model._deserialize(response) return model def ChangeDisksAttach(self, request): response = self._api_call("ChangeDisksAttach", request) model = models.ChangeDisksAttachResponse() model._deserialize(response) return model def DetachDisks(self, request): response = self._api_call("DetachDisks", request) model = models.DetachDisksResponse() model._deserialize(response) return model def ModifyDisksAttributes(self, request): response = self._api_call("ModifyDisksAttributes", request) model = models.ModifyDisksAttributesResponse() model._deserialize(response) return model def InquiryPriceCreateDisks(self, request): response = self._api_call("InquiryPriceCreateDisks", request) model = models.InquiryPriceCreateDisksResponse() model._deserialize(response) return model def TerminateDisk(self, request): response = self._api_call("TerminateDisk", request) model = models.TerminateDiskResponse() model._deserialize(response) return model def ReleaseDisk(self, request): response = self._api_call("ReleaseDisk", request) model = models.ReleaseDiskResponse() model._deserialize(response) return model def RenewDisk(self, request): response = self._api_call("RenewDisk", request) model = models.RenewDiskResponse() model._deserialize(response) return model def DescribeDiskCategory(self, request): response = self._api_call("DescribeDiskCategory", request) model = models.DescribeDiskCategoryResponse() model._deserialize(response) return model def ModifyDisksResourceGroup(self, request): response = self._api_call("ModifyDisksResourceGroup", request) model = models.ModifyDisksResourceGroupResponse() model._deserialize(response) return model def DescribeImages(self, request): response = self._api_call("DescribeImages", request) model = models.DescribeImagesResponse() model._deserialize(response) return model def ModifyImagesAttributes(self, request): response = self._api_call("ModifyImagesAttributes", request) model = models.ModifyImagesAttributesResponse() model._deserialize(response) return model def DeleteImages(self, request): response = self._api_call("DeleteImages", request) model = models.DeleteImagesResponse() model._deserialize(response) return model def CreateImage(self, request): response = self._api_call("CreateImage", request) model = models.CreateImageResponse() model._deserialize(response) return model def DescribeImageQuota(self, request): response = self._api_call("DescribeImageQuota", request) model = models.DescribeImageQuotaResponse() model._deserialize(response) return model def DescribeSecurityGroups(self, request): response = self._api_call("DescribeSecurityGroups", request) model = models.DescribeSecurityGroupsResponse() model._deserialize(response) return model def ModifySecurityGroupsAttribute(self, request): response = self._api_call("ModifySecurityGroupsAttribute", request) model = models.ModifySecurityGroupsAttributeResponse() model._deserialize(response) return model def DescribeInstanceAvailableSecurityGroupResources(self, request): response = self._api_call("DescribeInstanceAvailableSecurityGroupResources", request) model = models.DescribeInstanceAvailableSecurityGroupResourcesResponse() model._deserialize(response) return model def CreateSecurityGroup(self, request): response = self._api_call("CreateSecurityGroup", request) model = models.CreateSecurityGroupResponse() model._deserialize(response) return model def DeleteSecurityGroup(self, request): response = self._api_call("DeleteSecurityGroup", request) model = models.DeleteSecurityGroupResponse() model._deserialize(response) return model def AuthorizeSecurityGroupRules(self, request): response = self._api_call("AuthorizeSecurityGroupRules", request) model = models.AuthorizeSecurityGroupRulesResponse() model._deserialize(response) return model def ConfigureSecurityGroupRules(self, request): response = self._api_call("ConfigureSecurityGroupRules", request) model = models.ConfigureSecurityGroupRulesResponse() model._deserialize(response) return model def AuthorizeSecurityGroupRule(self, request): response = self._api_call("AuthorizeSecurityGroupRule", request) model = models.AuthorizeSecurityGroupRuleResponse() model._deserialize(response) return model def RevokeSecurityGroupRules(self, request): response = self._api_call("RevokeSecurityGroupRules", request) model = models.RevokeSecurityGroupRulesResponse() model._deserialize(response) return model def AssociateSecurityGroupInstance(self, request): response = self._api_call("AssociateSecurityGroupInstance", request) model = models.AssociateSecurityGroupInstanceResponse() model._deserialize(response) return model def UnAssociateSecurityGroupInstance(self, request): response = self._api_call("UnAssociateSecurityGroupInstance", request) model = models.UnAssociateSecurityGroupInstanceResponse() model._deserialize(response) return model def CreateSubnet(self, request): response = self._api_call("CreateSubnet", request) model = models.CreateSubnetResponse() model._deserialize(response) return model def DeleteSubnet(self, request): response = self._api_call("DeleteSubnet", request) model = models.DeleteSubnetResponse() model._deserialize(response) return model def ModifySubnetsAttribute(self, request): response = self._api_call("ModifySubnetsAttribute", request) model = models.ModifySubnetsAttributeResponse() model._deserialize(response) return model def DescribeSubnets(self, request): response = self._api_call("DescribeSubnets", request) model = models.DescribeSubnetsResponse() model._deserialize(response) return model
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/zenlayercloud/vm/v20230313/vm_client.py
vm_client.py
from zenlayercloud.bmc.v20221120 import models from zenlayercloud.common.abstract_client import AbstractClient class BmcClient(AbstractClient): _api_version = "2022-11-20" _service = "bmc" def DescribeZones(self, request): response = self._api_call("DescribeZones", request) model = models.DescribeZonesResponse() model._deserialize(response) return model # def DescribeImages(self, request): response = self._api_call("DescribeImages", request) model = models.DescribeImagesResponse() model._deserialize(response) return model # def DescribeInstances(self, request): response = self._api_call("DescribeInstances", request) model = models.DescribeInstancesResponse() model._deserialize(response) return model def CreateInstances(self, request): """ 本接口 (CreateInstances) 用于创建一个或多个指定配置的BMC实例。 :param request: Request instance for CreateInstances. :return: """ response = self._api_call("CreateInstances", request) model = models.CreateInstancesResponse() model._deserialize(response) return model # def StartInstances(self, request): response = self._api_call("StartInstances", request) model = models.StartInstancesResponse() model._deserialize(response) return model # def StopInstances(self, request): response = self._api_call("StopInstances", request) model = models.StopInstancesResponse() model._deserialize(response) return model # def RebootInstances(self, request): response = self._api_call("RebootInstances", request) model = models.RebootInstancesResponse() model._deserialize(response) return model # def ReinstallInstance(self, request): response = self._api_call("ReinstallInstance", request) model = models.ReinstallInstanceResponse() model._deserialize(response) return model # def TerminateInstance(self, request): response = self._api_call("TerminateInstance", request) model = models.TerminateInstanceResponse() model._deserialize(response) return model # def ReleaseInstances(self, request): response = self._api_call("ReleaseInstances", request) model = models.ReleaseInstancesResponse() model._deserialize(response) return model # def RenewInstance(self, request): response = self._api_call("RenewInstance", request) model = models.RenewInstanceResponse() model._deserialize(response) return model # def ModifyInstancesAttribute(self, request): response = self._api_call("ModifyInstancesAttribute", request) model = models.ModifyInstancesAttributeResponse() model._deserialize(response) return model # def InquiryPriceCreateInstance(self, request): response = self._api_call("InquiryPriceCreateInstance", request) model = models.InquiryPriceCreateInstanceResponse() model._deserialize(response) return model # def DescribeInstanceTypes(self, request): response = self._api_call("DescribeInstanceTypes", request) model = models.DescribeInstanceTypesResponse() model._deserialize(response) return model # def DescribeAvailableResources(self, request): response = self._api_call("DescribeAvailableResources", request) model = models.DescribeAvailableResourcesResponse() model._deserialize(response) return model # def ModifyInstanceBandwidth(self, request): response = self._api_call("ModifyInstanceBandwidth", request) model = models.ModifyInstanceBandwidthResponse() model._deserialize(response) return model # def CancelInstanceBandwidthDowngrade(self, request): response = self._api_call("CancelInstanceBandwidthDowngrade", request) model = models.CancelInstanceBandwidthDowngradeResponse() model._deserialize(response) return model # def InquiryPriceInstanceBandwidth(self, request): response = self._api_call("InquiryPriceInstanceBandwidth", request) model = models.InquiryPriceInstanceBandwidthResponse() model._deserialize(response) return model # def ModifyInstanceTrafficPackage(self, request): response = self._api_call("ModifyInstanceTrafficPackage", request) model = models.ModifyInstanceTrafficPackageResponse() model._deserialize(response) return model # def CancelInstanceTrafficPackageDowngrade(self, request): response = self._api_call("CancelInstanceTrafficPackageDowngrade", request) model = models.CancelInstanceTrafficPackageDowngradeResponse() model._deserialize(response) return model # def InquiryPriceInstanceTrafficPackage(self, request): response = self._api_call("InquiryPriceInstanceTrafficPackage", request) model = models.InquiryPriceInstanceTrafficPackageResponse() model._deserialize(response) return model # def DescribeInstanceInternetStatus(self, request): response = self._api_call("DescribeInstanceInternetStatus", request) model = models.DescribeInstanceInternetStatusResponse() model._deserialize(response) return model # def ModifyInstancesResourceGroup(self, request): response = self._api_call("ModifyInstancesResourceGroup", request) model = models.ModifyInstancesResourceGroupResponse() model._deserialize(response) return model # def DescribeInstanceTraffic(self, request): response = self._api_call("DescribeInstanceTraffic", request) model = models.DescribeInstanceTrafficResponse() model._deserialize(response) return model # eip def DescribeEipAddresses(self, request): response = self._api_call("DescribeEipAddresses", request) model = models.DescribeEipAddressesResponse() model._deserialize(response) return model def DescribeEipAvailableResources(self, request): response = self._api_call("DescribeEipAvailableResources", request) model = models.DescribeEipAvailableResourcesResponse() model._deserialize(response) return model def AllocateEipAddresses(self, request): response = self._api_call("AllocateEipAddresses", request) model = models.AllocateEipAddressesResponse() model._deserialize(response) return model def TerminateEipAddress(self, request): response = self._api_call("TerminateEipAddress", request) model = models.TerminateEipAddressResponse() model._deserialize(response) return model def ReleaseEipAddresses(self, request): response = self._api_call("ReleaseEipAddresses", request) model = models.ReleaseEipAddressesResponse() model._deserialize(response) return model def RenewEipAddress(self, request): response = self._api_call("RenewEipAddress", request) model = models.RenewEipAddressResponse() model._deserialize(response) return model def AssociateEipAddress(self, request): response = self._api_call("AssociateEipAddress", request) model = models.AssociateEipAddressResponse() model._deserialize(response) return model def UnAssociateEipAddress(self, request): response = self._api_call("UnAssociateEipAddress", request) model = models.UnAssociateEipAddressResponse() model._deserialize(response) return model def InquiryPriceCreateEipAddress(self, request): response = self._api_call("InquiryPriceCreateEipAddress", request) model = models.InquiryPriceCreateEipAddressResponse() model._deserialize(response) return model def DescribeInstanceAvailableEipResources(self, request): response = self._api_call("DescribeInstanceAvailableEipResources", request) model = models.DescribeInstanceAvailableEipResourcesResponse() model._deserialize(response) return model def ModifyEipAddressesResourceGroup(self, request): response = self._api_call("ModifyEipAddressesResourceGroup", request) model = models.ModifyEipAddressesResourceGroupResponse() model._deserialize(response) return model # cidr def DescribeCidrBlocks(self, request): response = self._api_call("DescribeCidrBlocks", request) model = models.DescribeCidrBlocksResponse() model._deserialize(response) return model def DescribeCidrBlockIps(self, request): response = self._api_call("DescribeCidrBlockIps", request) model = models.DescribeCidrBlockIpsResponse() model._deserialize(response) return model def DescribeAvailableIpv4Resources(self, request): response = self._api_call("DescribeAvailableIpv4Resources", request) model = models.DescribeAvailableIpv4ResourcesResponse() model._deserialize(response) return model def DescribeAvailableIpv6Resources(self, request): response = self._api_call("DescribeAvailableIpv6Resources", request) model = models.DescribeAvailableIpv6ResourcesResponse() model._deserialize(response) return model def DescribeInstanceAvailableCidrBlock(self, request): response = self._api_call("DescribeInstanceAvailableCidrBlock", request) model = models.DescribeInstanceAvailableCidrBlockResponse() model._deserialize(response) return model def InquiryPriceCreateIpv4Block(self, request): response = self._api_call("InquiryPriceCreateIpv4Block", request) model = models.InquiryPriceCreateIpv4BlockResponse() model._deserialize(response) return model def CreateIpv4Block(self, request): response = self._api_call("CreateIpv4Block", request) model = models.CreateIpv4BlockResponse() model._deserialize(response) return model def CreateIpv6Block(self, request): response = self._api_call("CreateIpv6Block", request) model = models.CreateIpv6BlockResponse() model._deserialize(response) return model def ModifyCidrBlocksAttribute(self, request): response = self._api_call("ModifyCidrBlocksAttribute", request) model = models.ModifyCidrBlocksAttributeResponse() model._deserialize(response) return model def RenewCidrBlock(self, request): response = self._api_call("RenewCidrBlock", request) model = models.RenewCidrBlockResponse() model._deserialize(response) return model def TerminateCidrBlock(self, request): response = self._api_call("TerminateCidrBlock", request) model = models.TerminateCidrBlockResponse() model._deserialize(response) return model def ReleaseCidrBlocks(self, request): response = self._api_call("ReleaseCidrBlocks", request) model = models.ReleaseCidrBlocksResponse() model._deserialize(response) return model def BindCidrBlockIps(self, request): response = self._api_call("BindCidrBlockIps", request) model = models.BindCidrBlockIpsResponse() model._deserialize(response) return model def UnbindCidrBlockIps(self, request): response = self._api_call("UnbindCidrBlockIps", request) model = models.UnbindCidrBlockIpsResponse() model._deserialize(response) return model # vpc、subnet def DescribeVpcAvailableRegions(self, request): response = self._api_call("DescribeVpcAvailableRegions", request) model = models.DescribeVpcAvailableRegionsResponse() model._deserialize(response) return model def ModifyVpcsAttribute(self, request): response = self._api_call("ModifyVpcsAttribute", request) model = models.ModifyVpcsAttributeResponse() model._deserialize(response) return model def DescribeVpcs(self, request): response = self._api_call("DescribeVpcs", request) model = models.DescribeVpcsResponse() model._deserialize(response) return model def CreateVpc(self, request): response = self._api_call("CreateVpc", request) model = models.CreateVpcResponse() model._deserialize(response) return model def DeleteVpc(self, request): response = self._api_call("DeleteVpc", request) model = models.DeleteVpcResponse() model._deserialize(response) return model def DescribeSubnets(self, request): response = self._api_call("DescribeSubnets", request) model = models.DescribeSubnetsResponse() model._deserialize(response) return model def ModifySubnetsAttribute(self, request): response = self._api_call("ModifySubnetsAttribute", request) model = models.ModifySubnetsAttributeResponse() model._deserialize(response) return model def CreateSubnet(self, request): response = self._api_call("CreateSubnet", request) model = models.CreateSubnetResponse() model._deserialize(response) return model def DeleteSubnet(self, request): response = self._api_call("DeleteSubnet", request) model = models.DeleteSubnetResponse() model._deserialize(response) return model def AssociateSubnetInstances(self, request): response = self._api_call("AssociateSubnetInstances", request) model = models.AssociateSubnetInstancesResponse() model._deserialize(response) return model def UnAssociateSubnetInstance(self, request): response = self._api_call("UnAssociateSubnetInstance", request) model = models.UnAssociateSubnetInstanceResponse() model._deserialize(response) return model def AssociateVpcSubnet(self, request): response = self._api_call("AssociateVpcSubnet", request) model = models.AssociateVpcSubnetResponse() model._deserialize(response) return model def DescribeSubnetAvailableResources(self, request): response = self._api_call("DescribeSubnetAvailableResources", request) model = models.DescribeSubnetAvailableResourcesResponse() model._deserialize(response) return model
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/zenlayercloud/bmc/v20221120/bmc_client.py
bmc_client.py
from zenlayercloud.common.abstract_model import AbstractModel class CreateInstancesRequest(AbstractModel): """CreateInstances请求参数结构体 """ def __init__(self): self.zoneId = None self.instanceChargeType = None self.instanceChargePrepaid = None self.instanceTypeId = None self.imageId = None self.resourceGroupId = None self.instanceName = None self.hostname = None self.amount = None self.password = None self.sshKeys = None self.internetChargeType = None self.internetMaxBandwidthOut = None self.trafficPackageSize = None self.subnetId = None self.raidConfig = None self.partitions = None self.nic = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.instanceChargeType = params.get("instanceChargeType") if params.get("instanceChargePrepaid") is not None: self.instanceChargePrepaid = ChargePrepaid(params.get("instanceChargePrepaid")) self.instanceTypeId = params.get("instanceTypeId") self.imageId = params.get("imageId") self.resourceGroupId = params.get("imageId") self.instanceName = params.get("instanceName") self.hostname = params.get("hostname") self.amount = params.get("amount") self.password = params.get("password") self.sshKeys = params.get("sshKeys") self.internetChargeType = params.get("internetChargeType") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") self.trafficPackageSize = params.get("trafficPackageSize") self.subnetId = params.get("subnetId") if params.get("raidConfig") is not None: self.raidConfig = RaidConfig(params.get("raidConfig")) if params.get("partitions") is not None: self.partitions = [] for item in params.get("partitions"): obj = Partition(item) self.partitions.append(obj) if params.get("nic") is not None: self.nic = Nic(params.get("nic")) class CreateInstancesResponse(AbstractModel): """CreateInstances返回参数结构体 """ def __init__(self): self.instanceIdSet = None self.requestId = None def _deserialize(self, params): self.instanceIdSet = params.get("instanceIdSet") self.requestId = params.get("requestId") class ChargePrepaid(AbstractModel): """描述了实例的计费模式 """ def __init__(self, params=None): """ :param period: 购买实例的时长,单位:月。 :type period: int """ if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.period = None def _deserialize(self, params): self.period = params.get("period") class Zone(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.zoneName = None self.cityName = None self.areaName = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.zoneName = params.get("zoneName") self.cityName = params.get("cityName") self.areaName = params.get("areaName") class RaidConfig(AbstractModel): """描述了Raid的配置信息 """ def __init__(self, params=None): r""" :param raidType: Raid类型。 该配置进行快捷raid配置,支持0, 1, 5, 10。 raidType和customRaids只能指定其中一个参数。 :type raidType: int :param customRaids: 自定义Raid配置。 自定义磁盘进行raid的配置。 raidType和customRaids只能指定其中一个参数。 :type customRaids: list of CustomRaid """ if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.raidType = None self.customRaids = None def _deserialize(self, params): self.raidType = params.get("raidType") if params.get("customRaids") is not None: self.customRaids = [] for item in params.get("customRaids"): obj = CustomRaid(item) self.customRaids.append(obj) class CustomRaid(AbstractModel): """进行自定义Raid配置时需要的raid级别和指定的磁盘序号。 """ def __init__(self, params=None): r""" :param raidType: Raid类型。 支持0, 1, 5, 10。 :type raidType: int :param diskSequence: 磁盘序号。 根据机型里的磁盘从1开始顺序编号。如果是多个磁盘序号,则必须连续。 :type diskSequence: list of int """ if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.raidType = None self.diskSequence = None def _deserialize(self, params): self.raidType = params.get("raidType") self.diskSequence = params.get("diskSequence") class Partition(AbstractModel): """分区配置信息。包括文件类型, 分区大小等。 """ def __init__(self, params=None): r""" :param fsType: 分区的文件类型。 linux系统:支持的值ext2,ext3, ext4, ext类型必须要有。 windows系统: 只能为NTFS。 :type fsType: int :param fsPath: 分区盘符。 linux系统:必须为/开头,且第一个为系统分区必须为/。 windows系统:支持C~H,第一个系统分区必须指定为C。 :type fsPath: str :param size: 分区大小。 单位为GB。 :type size: str """ if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.fsType = None self.fsPath = None self.size = None def _deserialize(self, params): self.fsType = params.get("fsType") self.fsPath = params.get("fsPath") self.size = params.get("size") class Nic(AbstractModel): """分区配置信息。包括文件类型, 分区大小等。 """ def __init__(self, params=None): r""" :param wanName: 公网网卡名称。 只能是数字和大小写字母,且必须以字母开头,长度限制为4-10。 非高可用机型,默认的公网网卡名称为wan0。且不能为lan开头。 高可用机型,默认的公网网卡名称为bond0。 公网名称和内网名称不能相同。 :type wanName: str :param lanName: 内网网卡名称。 只能是数字和大小写字母,且必须以字母开头,长度限制为4-10。 非高可用机型,默认的内网网卡名称为lan0。且不能为wan开头。 高可用机型,默认的内网网卡名称为bond1。 公网名称和内网名称不能相同。 :type lanName: str """ if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.wanName = None self.lanName = None def _deserialize(self, params): self.wanName = params.get("wanName") self.lanName = params.get("lanName") class DescribeZonesRequest(AbstractModel): def __init__(self): self.acceptLanguage = None def _deserialize(self, params): self.acceptLanguage = params.get("acceptLanguage") class DescribeZonesResponse(AbstractModel): def __init__(self): self.requestId = None self.zoneSet = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("zoneSet") is not None: self.zoneSet = [] for item in params.get("zoneSet"): obj = Zone(item) self.zoneSet.append(obj) class DescribeImagesRequest(AbstractModel): def __init__(self): self.imageIds = None self.imageName = None self.catalog = None self.imageType = None self.osType = None self.instanceTypeId = None def _deserialize(self, params): self.imageIds = params.get("imageIds") self.imageName = params.get("imageName") self.catalog = params.get("catalog") self.imageType = params.get("imageType") self.osType = params.get("osType") self.instanceTypeId = params.get("instanceTypeId") class DescribeImagesResponse(AbstractModel): def __init__(self): self.requestId = None self.images = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("images") is not None: self.images = [] for item in params.get("images"): obj = ImageInfo(item) self.images.append(obj) class ImageInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.imageId = None self.imageName = None self.catalog = None self.imageType = None self.osType = None def _deserialize(self, params): self.imageId = params.get("imageId") self.imageName = params.get("imageName") self.catalog = params.get("catalog") self.imageType = params.get("imageType") self.osType = params.get("osType") class DescribeInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None self.zoneId = None self.resourceGroupId = None self.instanceTypeId = None self.internetChargeType = None self.imageId = None self.subnetId = None self.instanceStatus = None self.instanceName = None self.hostname = None self.publicIpAddresses = None self.privateIpAddresses = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.zoneId = params.get("zoneId") self.resourceGroupId = params.get("resourceGroupId") self.instanceTypeId = params.get("instanceTypeId") self.internetChargeType = params.get("internetChargeType") self.imageId = params.get("imageId") self.subnetId = params.get("subnetId") self.instanceStatus = params.get("instanceStatus") self.instanceName = params.get("instanceName") self.hostname = params.get("hostname") self.publicIpAddresses = params.get("publicIpAddresses") self.privateIpAddresses = params.get("privateIpAddresses") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeInstancesResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = InstanceInfo(item) self.dataSet.append(obj) class InstanceInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.instanceId = None self.zoneId = None self.instanceName = None self.hostname = None self.instanceTypeId = None self.imageId = None self.imageName = None self.instanceChargeType = None self.bandwidthOutMbps = None self.internetChargeType = None self.period = None self.publicIpAddresses = None self.privateIpAddresses = None self.ipv6Addresses = None self.subnetIds = None self.createTime = None self.expiredTime = None self.resourceGroupId = None self.resourceGroupName = None self.instanceStatus = None self.primaryPublicIpAddress = None self.trafficPackageSize = None self.raidConfig = None self.partitions = None self.nic = None self.autoRenew = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.zoneId = params.get("zoneId") self.instanceName = params.get("instanceName") self.hostname = params.get("hostname") self.instanceTypeId = params.get("instanceTypeId") self.imageId = params.get("imageId") self.imageName = params.get("imageName") self.instanceChargeType = params.get("instanceChargeType") self.bandwidthOutMbps = params.get("bandwidthOutMbps") self.internetChargeType = params.get("internetChargeType") self.period = params.get("period") self.publicIpAddresses = params.get("publicIpAddresses") self.privateIpAddresses = params.get("privateIpAddresses") self.ipv6Addresses = params.get("ipv6Addresses") self.subnetIds = params.get("subnetIds") self.createTime = params.get("createTime") self.expiredTime = params.get("expiredTime") self.resourceGroupId = params.get("resourceGroupId") self.resourceGroupName = params.get("resourceGroupName") self.instanceStatus = params.get("instanceStatus") self.primaryPublicIpAddress = params.get("primaryPublicIpAddress") self.trafficPackageSize = params.get("trafficPackageSize") if params.get("raidConfig") is not None: self.raidConfig = RaidConfig(params.get("raidConfig")) if params.get("partitions") is not None: self.partitions = [] for item in params.get("partitions"): obj = Partition(item) self.partitions.append(obj) if params.get("nic") is not None: self.nic = Nic(params.get("nic")) self.autoRenew = params.get("autoRenew") class StartInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class StartInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class StopInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class StopInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class RebootInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class RebootInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ReinstallInstanceRequest(AbstractModel): def __init__(self): self.instanceId = None self.imageId = None self.hostname = None self.password = None self.sshKeys = None self.raidConfig = None self.partitions = None self.nic = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.imageId = params.get("imageId") self.hostname = params.get("hostname") self.password = params.get("password") self.sshKeys = params.get("sshKeys") if params.get("raidConfig") is not None: self.raidConfig = RaidConfig(params.get("raidConfig")) if params.get("partitions") is not None: self.partitions = [] for item in params.get("partitions"): obj = Partition(item) self.partitions.append(obj) if params.get("nic") is not None: self.nic = Nic(params.get("nic")) class ReinstallInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class TerminateInstanceRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class TerminateInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ReleaseInstancesRequest(AbstractModel): def __init__(self): self.instanceIds = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") class ReleaseInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class RenewInstanceRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class RenewInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ModifyInstancesAttributeRequest(AbstractModel): def __init__(self): self.instanceIds = None self.instanceName = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.instanceName = params.get("instanceName") class ModifyInstancesAttributeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class InquiryPriceCreateInstanceRequest(AbstractModel): def __init__(self): self.zoneId = None self.instanceTypeId = None self.instanceChargeType = None self.internetChargeType = None self.instanceChargePrepaid = None self.trafficPackageSize = None self.internetMaxBandwidthOut = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.instanceTypeId = params.get("instanceTypeId") self.instanceChargeType = params.get("instanceChargeType") self.internetChargeType = params.get("internetChargeType") if params.get("instanceChargePrepaid") is not None: self.instanceChargePrepaid = ChargePrepaid(params.get("instanceChargePrepaid")) self.trafficPackageSize = params.get("trafficPackageSize") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") class InquiryPriceCreateInstanceResponse(AbstractModel): def __init__(self): self.requestId = None self.instancePrice = None self.bandwidthPrice = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("instancePrice") is not None: self.instancePrice = Price(params.get("instancePrice")) if params.get("bandwidthPrice") is not None: self.bandwidthPrice = [] for item in params.get("bandwidthPrice"): obj = Price(item) self.bandwidthPrice.append(obj) class Price(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.originalPrice = None self.discountPrice = None self.discount = None self.unitPrice = None self.discountUnitPrice = None self.chargeUnit = None self.stepPrices = None def _deserialize(self, params): self.originalPrice = params.get("originalPrice") self.discountPrice = params.get("discountPrice") self.discount = params.get("discount") self.unitPrice = params.get("unitPrice") self.discountUnitPrice = params.get("discountUnitPrice") self.chargeUnit = params.get("chargeUnit") if params.get("stepPrices") is not None: self.stepPrices = [] for item in params.get("stepPrices"): obj = StepPrice(item) self.stepPrices.append(obj) class StepPrice(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.stepStart = None self.stepEnd = None self.unitPrice = None self.discountUnitPrice = None def _deserialize(self, params): self.stepStart = params.get("stepStart") self.stepEnd = params.get("stepEnd") self.unitPrice = params.get("unitPrice") self.discountUnitPrice = params.get("discountUnitPrice") class DescribeInstanceTypesRequest(AbstractModel): def __init__(self): self.instanceTypeIds = None self.minimumCpuCoreCount = None self.maximumCpuCoreCount = None self.minimumMemorySize = None self.maximumMemorySize = None self.minimumBandwidth = None self.supportRaids = None self.supportSubnet = None self.minimumDiskSize = None self.maximumDiskSize = None self.isHA = None self.imageId = None def _deserialize(self, params): self.instanceTypeIds = params.get("instanceTypeIds") self.minimumCpuCoreCount = params.get("minimumCpuCoreCount") self.maximumCpuCoreCount = params.get("maximumCpuCoreCount") self.minimumMemorySize = params.get("minimumMemorySize") self.maximumMemorySize = params.get("maximumMemorySize") self.minimumBandwidth = params.get("minimumBandwidth") self.supportRaids = params.get("supportRaids") self.supportSubnet = params.get("supportSubnet") self.minimumDiskSize = params.get("minimumDiskSize") self.maximumDiskSize = params.get("maximumDiskSize") self.isHA = params.get("isHA") self.imageId = params.get("imageId") class DescribeInstanceTypesResponse(AbstractModel): def __init__(self): self.requestId = None self.instanceTypes = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("instanceTypes") is not None: self.instanceTypes = [] for item in params.get("instanceTypes"): obj = InstanceType(item) self.instanceTypes.append(obj) class InstanceType(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.instanceTypeId = None self.description = None self.cpuCoreCount = None self.memorySize = None self.supportRaids = None self.supportSubnet = None self.maximumBandwidth = None self.diskInfo = None self.imageIds = None self.isHA = None def _deserialize(self, params): self.instanceTypeId = params.get("instanceTypeId") self.description = params.get("description") self.cpuCoreCount = params.get("cpuCoreCount") self.memorySize = params.get("memorySize") self.supportRaids = params.get("supportRaids") self.supportSubnet = params.get("supportSubnet") self.maximumBandwidth = params.get("maximumBandwidth") if params.get("diskInfo") is not None: self.diskInfo = InstanceDiskInfo(params.get("diskInfo")) self.imageIds = params.get("imageIds") self.isHA = params.get("isHA") class InstanceDiskInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.totalDiskSize = None self.diskDescription = None self.disks = None def _deserialize(self, params): self.totalDiskSize = params.get("totalDiskSize") self.diskDescription = params.get("diskDescription") if params.get("disks") is not None: self.disks = [] for item in params.get("disks"): obj = Disk(item) self.disks.append(obj) class Disk(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.diskSize = None self.diskCount = None def _deserialize(self, params): self.diskSize = params.get("diskSize") self.diskCount = params.get("diskCount") class DescribeAvailableResourcesRequest(AbstractModel): def __init__(self): self.instanceChargeType = None self.zoneId = None self.instanceTypeId = None self.sellStatus = None def _deserialize(self, params): self.instanceChargeType = params.get("instanceChargeType") self.zoneId = params.get("zoneId") self.instanceTypeId = params.get("instanceTypeId") self.sellStatus = params.get("sellStatus") class DescribeAvailableResourcesResponse(AbstractModel): def __init__(self): self.requestId = None self.availableResources = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("availableResources") is not None: self.availableResources = [] for item in params.get("availableResources"): obj = AvailableResource(item) self.availableResources.append(obj) class AvailableResource(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.sellStatus = None self.internetChargeTypes = None self.instanceTypeId = None self.maximumBandwidthOut = None self.defaultBandwidthOut = None self.defaultTrafficPackageSize = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.sellStatus = params.get("sellStatus") self.internetChargeTypes = params.get("internetChargeTypes") self.instanceTypeId = params.get("instanceTypeId") self.maximumBandwidthOut = params.get("maximumBandwidthOut") self.defaultBandwidthOut = params.get("defaultBandwidthOut") self.defaultTrafficPackageSize = params.get("defaultTrafficPackageSize") class ModifyInstanceBandwidthRequest(AbstractModel): def __init__(self): self.instanceId = None self.bandwidthOutMbps = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.bandwidthOutMbps = params.get("bandwidthOutMbps") class ModifyInstanceBandwidthResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") class CancelInstanceBandwidthDowngradeRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class CancelInstanceBandwidthDowngradeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class InquiryPriceInstanceBandwidthRequest(AbstractModel): def __init__(self): self.instanceId = None self.bandwidthOutMbps = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.bandwidthOutMbps = params.get("bandwidthOutMbps") class InquiryPriceInstanceBandwidthResponse(AbstractModel): def __init__(self): self.requestId = None self.bandwidthPrice = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("bandwidthPrice") is not None: self.bandwidthPrice = [] for item in params.get("bandwidthPrice"): obj = Price(item) self.bandwidthPrice.append(obj) class ModifyInstanceTrafficPackageRequest(AbstractModel): def __init__(self): self.instanceId = None self.trafficPackageSize = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.trafficPackageSize = params.get("trafficPackageSize") class ModifyInstanceTrafficPackageResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") class CancelInstanceTrafficPackageDowngradeRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class CancelInstanceTrafficPackageDowngradeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class InquiryPriceInstanceTrafficPackageRequest(AbstractModel): def __init__(self): self.instanceId = None self.trafficPackageSize = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.trafficPackageSize = params.get("trafficPackageSize") class InquiryPriceInstanceTrafficPackageResponse(AbstractModel): def __init__(self): self.requestId = None self.trafficPackagePrice = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("trafficPackagePrice") is not None: self.trafficPackagePrice = [] for item in params.get("trafficPackagePrice"): obj = Price(item) self.trafficPackagePrice.append(obj) class DescribeInstanceInternetStatusRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class DescribeInstanceInternetStatusResponse(AbstractModel): def __init__(self): self.requestId = None self.instanceId = None self.instanceName = None self.internetMaxBandwidthOut = None self.modifiedInternetMaxBandwidthOut = None self.modifiedBandwidthStatus = None self.trafficPackageSize = None self.modifiedTrafficPackageSize = None self.modifiedTrafficPackageStatus = None def _deserialize(self, params): self.requestId = params.get("requestId") self.instanceId = params.get("instanceId") self.instanceName = params.get("instanceName") self.internetMaxBandwidthOut = params.get("internetMaxBandwidthOut") self.modifiedInternetMaxBandwidthOut = params.get("modifiedInternetMaxBandwidthOut") self.modifiedBandwidthStatus = params.get("modifiedBandwidthStatus") self.trafficPackageSize = params.get("trafficPackageSize") self.modifiedTrafficPackageSize = params.get("modifiedTrafficPackageSize") self.modifiedTrafficPackageStatus = params.get("modifiedTrafficPackageStatus") class ModifyInstancesResourceGroupRequest(AbstractModel): def __init__(self): self.instanceIds = None self.resourceGroupId = None def _deserialize(self, params): self.instanceIds = params.get("instanceIds") self.resourceGroupId = params.get("resourceGroupId") class ModifyInstancesResourceGroupResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeInstanceTrafficRequest(AbstractModel): def __init__(self): self.instanceId = None self.startTime = None self.endTime = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.startTime = params.get("startTime") self.endTime = params.get("endTime") class DescribeInstanceTrafficResponse(AbstractModel): def __init__(self): self.requestId = None self.dataList = None self.in95 = None self.in95Time = None self.inAvg = None self.inMax = None self.inMin = None self.inTotal = None self.maxBandwidth95ValueMbps = None self.out95 = None self.out95Time = None self.outAvg = None self.outMax = None self.outMin = None self.outTotal = None self.totalUnit = None self.unit = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("dataList") is not None: self.dataList = [] for item in params.get("dataList"): obj = InstanceTrafficData(item) self.dataList.append(obj) self.in95 = params.get("in95") self.in95Time = params.get("in95Time") self.inAvg = params.get("inAvg") self.inMax = params.get("inMax") self.inMin = params.get("inMin") self.inTotal = params.get("inTotal") self.maxBandwidth95ValueMbps = params.get("maxBandwidth95ValueMbps") self.out95 = params.get("out95") self.out95Time = params.get("out95Time") self.outAvg = params.get("outAvg") self.outMax = params.get("outMax") self.outMin = params.get("outMin") self.outTotal = params.get("outTotal") self.totalUnit = params.get("totalUnit") self.unit = params.get("unit") class InstanceTrafficData(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.internetRX = None self.internetTX = None self.time = None def _deserialize(self, params): self.internetRX = params.get("internetRX") self.internetTX = params.get("internetTX") self.time = params.get("time") class DescribeEipAddressesRequest(AbstractModel): def __init__(self): self.eipChargeType = None self.eipIds = None self.eipStatus = None self.instanceId = None self.instanceName = None self.ipAddress = None self.zoneId = None self.resourceGroupId = None self.pageNum = None self.pageSize = None def _deserialize(self, params): self.eipChargeType = params.get("eipChargeType") self.eipIds = params.get("eipIds") self.eipStatus = params.get("eipStatus") self.instanceId = params.get("instanceId") self.instanceName = params.get("instanceName") self.ipAddress = params.get("ipAddress") self.zoneId = params.get("zoneId") self.resourceGroupId = params.get("resourceGroupId") self.pageNum = params.get("pageNum") self.pageSize = params.get("pageSize") class DescribeEipAddressesResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = EipAddress(item) self.dataSet.append(obj) class EipAddress(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.eipId = None self.zoneId = None self.ipAddress = None self.instanceId = None self.instanceName = None self.eipChargeType = None self.period = None self.createTime = None self.expiredTime = None self.eipStatus = None self.resourceGroupId = None self.resourceGroupName = None def _deserialize(self, params): self.eipId = params.get("eipId") self.zoneId = params.get("zoneId") self.ipAddress = params.get("ipAddress") self.instanceId = params.get("instanceId") self.instanceName = params.get("instanceName") self.eipChargeType = params.get("eipChargeType") self.period = params.get("period") self.createTime = params.get("createTime") self.expiredTime = params.get("expiredTime") self.eipStatus = params.get("eipStatus") self.resourceGroupId = params.get("resourceGroupId") self.resourceGroupName = params.get("resourceGroupName") class DescribeEipAvailableResourcesRequest(AbstractModel): def __init__(self): self.eipChargeType = None self.zoneId = None def _deserialize(self, params): self.eipChargeType = params.get("eipChargeType") self.zoneId = params.get("zoneId") class DescribeEipAvailableResourcesResponse(AbstractModel): def __init__(self): self.requestId = None self.eipResources = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("eipResources") is not None: self.eipResources = [] for item in params.get("eipResources"): obj = EipAvailable(item) self.eipResources.append(obj) class EipAvailable(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.status = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.status = params.get("status") class AllocateEipAddressesRequest(AbstractModel): def __init__(self): self.zoneId = None self.eipChargeType = None self.eipChargePrepaid = None self.amount = None self.resourceGroupId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.eipChargeType = params.get("eipChargeType") if params.get("eipChargePrepaid") is not None: self.eipChargePrepaid = ChargePrepaid(params.get("eipChargePrepaid")) self.amount = params.get("amount") self.resourceGroupId = params.get("resourceGroupId") class AllocateEipAddressesResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None self.eipIdSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") self.eipIdSet = params.get("eipIdSet") class TerminateEipAddressRequest(AbstractModel): def __init__(self): self.eipId = None def _deserialize(self, params): self.eipId = params.get("eipId") class TerminateEipAddressResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ReleaseEipAddressesRequest(AbstractModel): def __init__(self): self.eipIds = None def _deserialize(self, params): self.eipIds = params.get("eipIds") class ReleaseEipAddressesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class RenewEipAddressRequest(AbstractModel): def __init__(self): self.eipId = None def _deserialize(self, params): self.eipId = params.get("eipId") class RenewEipAddressResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class AssociateEipAddressRequest(AbstractModel): def __init__(self): self.eipId = None self.instanceId = None def _deserialize(self, params): self.eipId = params.get("eipId") self.instanceId = params.get("instanceId") class AssociateEipAddressResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class UnAssociateEipAddressRequest(AbstractModel): def __init__(self): self.eipId = None def _deserialize(self, params): self.eipId = params.get("eipId") class UnAssociateEipAddressResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class InquiryPriceCreateEipAddressRequest(AbstractModel): def __init__(self): self.zoneId = None self.eipChargeType = None self.eipChargePrepaid = None self.amount = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.eipChargeType = params.get("eipChargeType") if params.get("eipChargePrepaid") is not None: self.eipChargePrepaid = ChargePrepaid(params.get("eipChargePrepaid")) self.amount = params.get("amount") class InquiryPriceCreateEipAddressResponse(AbstractModel): def __init__(self): self.requestId = None self.eipPrice = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("eipPrice") is not None: self.eipPrice = Price(params.get("eipPrice")) class DescribeInstanceAvailableEipResourcesRequest(AbstractModel): def __init__(self): self.instanceId = None def _deserialize(self, params): self.instanceId = params.get("instanceId") class DescribeInstanceAvailableEipResourcesResponse(AbstractModel): def __init__(self): self.requestId = None self.instanceEipResources = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("instanceEipResources") is not None: self.instanceEipResources = [] for item in params.get("instanceEipResources"): obj = InstanceAvailableEip(item) self.instanceEipResources.append(obj) class InstanceAvailableEip(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.eipId = None self.ipAddress = None def _deserialize(self, params): self.eipId = params.get("eipId") self.ipAddress = params.get("ipAddress") class ModifyEipAddressesResourceGroupRequest(AbstractModel): def __init__(self): self.eipIds = None self.resourceGroupId = None def _deserialize(self, params): self.eipIds = params.get("eipIds") self.resourceGroupId = params.get("resourceGroupId") class ModifyEipAddressesResourceGroupResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeCidrBlocksRequest(AbstractModel): def __init__(self): self.cidrBlockIds = None self.cidrBlock = None self.cidrBlockName = None self.zoneId = None self.cidrBlockType = None self.gateway = None self.chargeType = None self.resourceGroupId = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.cidrBlockIds = params.get("cidrBlockIds") self.cidrBlock = params.get("cidrBlock") self.cidrBlockName = params.get("cidrBlockName") self.zoneId = params.get("zoneId") self.cidrBlockType = params.get("cidrBlockType") self.gateway = params.get("gateway") self.chargeType = params.get("chargeType") self.resourceGroupId = params.get("resourceGroupId") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeCidrBlocksResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = CidrBlockInfo(item) self.dataSet.append(obj) class CidrBlockInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.cidrBlockId = None self.cidrBlockType = None self.cidrBlockName = None self.zoneId = None self.cidrBlock = None self.gateway = None self.availableIpStart = None self.availableIpEnd = None self.availableIpCount = None self.instanceIds = None self.status = None self.chargeType = None self.createTime = None self.expireTime = None self.resourceGroupId = None self.resourceGroupName = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") self.cidrBlockType = params.get("cidrBlockType") self.cidrBlockName = params.get("cidrBlockName") self.zoneId = params.get("zoneId") self.cidrBlock = params.get("cidrBlock") self.gateway = params.get("gateway") self.availableIpStart = params.get("availableIpStart") self.availableIpEnd = params.get("availableIpEnd") self.availableIpCount = params.get("availableIpCount") self.instanceIds = params.get("instanceIds") self.status = params.get("status") self.chargeType = params.get("chargeType") self.createTime = params.get("createTime") self.expireTime = params.get("expireTime") self.resourceGroupId = params.get("resourceGroupId") self.resourceGroupName = params.get("resourceGroupName") class DescribeCidrBlockIpsRequest(AbstractModel): def __init__(self): self.cidrBlockId = None self.instanceId = None self.ip = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") self.instanceId = params.get("instanceId") self.ip = params.get("ip") class DescribeCidrBlockIpsResponse(AbstractModel): def __init__(self): self.requestId = None self.cidrBlockIps = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("cidrBlockIps") is not None: self.cidrBlockIps = [] for item in params.get("cidrBlockIps"): obj = CidrBlockIp(item) self.cidrBlockIps.append(obj) class CidrBlockIp(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.cidrBlockId = None self.cidrBlockType = None self.ip = None self.instanceId = None self.status = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") self.cidrBlockType = params.get("cidrBlockType") self.ip = params.get("ip") self.instanceId = params.get("instanceId") self.status = params.get("status") class DescribeAvailableIpv4ResourcesRequest(AbstractModel): def __init__(self): self.chargeType = None self.zoneId = None def _deserialize(self, params): self.chargeType = params.get("chargeType") self.zoneId = params.get("zoneId") class DescribeAvailableIpv4ResourcesResponse(AbstractModel): def __init__(self): self.requestId = None self.availableIpv4Resources = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("availableIpv4Resources") is not None: self.availableIpv4Resources = [] for item in params.get("availableIpv4Resources"): obj = AvailableIpv4Resource(item) self.availableIpv4Resources.append(obj) class AvailableIpv4Resource(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.netmask = None self.sellStatus = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.netmask = params.get("netmask") self.sellStatus = params.get("sellStatus") class DescribeAvailableIpv6ResourcesRequest(AbstractModel): def __init__(self): self.zoneId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") class DescribeAvailableIpv6ResourcesResponse(AbstractModel): def __init__(self): self.requestId = None self.availableIpv6Resources = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("availableIpv6Resources") is not None: self.availableIpv6Resources = [] for item in params.get("availableIpv6Resources"): obj = AvailableIpv6Resource(item) self.availableIpv6Resources.append(obj) class AvailableIpv6Resource(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.zoneId = None self.sellStatus = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.sellStatus = params.get("sellStatus") class DescribeInstanceAvailableCidrBlockRequest(AbstractModel): def __init__(self): self.instanceId = None self.cidrBlockType = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.cidrBlockType = params.get("cidrBlockType") class DescribeInstanceAvailableCidrBlockResponse(AbstractModel): def __init__(self): self.requestId = None self.instanceAvailableCidrBlocks = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("instanceAvailableCidrBlocks") is not None: self.instanceAvailableCidrBlocks = [] for item in params.get("instanceAvailableCidrBlocks"): obj = InstanceAvailableCidrBlock(item) self.instanceAvailableCidrBlocks.append(obj) class InstanceAvailableCidrBlock(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.cidrBlockId = None self.zoneId = None self.cidrBlockIpType = None self.cidrBlock = None self.availableIps = None self.availableIpCount = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") self.zoneId = params.get("zoneId") self.cidrBlockIpType = params.get("cidrBlockIpType") self.cidrBlock = params.get("cidrBlock") self.availableIps = params.get("availableIps") self.availableIpCount = params.get("availableIpCount") class InquiryPriceCreateIpv4BlockRequest(AbstractModel): def __init__(self): self.zoneId = None self.chargeType = None self.chargePrepaid = None self.netmask = None self.amount = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.chargeType = params.get("chargeType") if params.get("chargePrepaid") is not None: self.chargePrepaid = ChargePrepaid(params.get("chargePrepaid")) self.netmask = params.get("netmask") self.amount = params.get("amount") class InquiryPriceCreateIpv4BlockResponse(AbstractModel): def __init__(self): self.requestId = None self.price = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("price") is not None: self.price = Price(params.get("price")) class CreateIpv4BlockRequest(AbstractModel): def __init__(self): self.zoneId = None self.name = None self.chargeType = None self.chargePrepaid = None self.netmask = None self.amount = None self.resourceGroupId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.name = params.get("name") self.chargeType = params.get("chargeType") if params.get("chargePrepaid") is not None: self.chargePrepaid = ChargePrepaid(params.get("chargePrepaid")) self.netmask = params.get("netmask") self.amount = params.get("amount") self.resourceGroupId = params.get("resourceGroupId") class CreateIpv4BlockResponse(AbstractModel): def __init__(self): self.requestId = None self.orderNumber = None self.cidrBlockIds = None def _deserialize(self, params): self.requestId = params.get("requestId") self.orderNumber = params.get("orderNumber") self.cidrBlockIds = params.get("cidrBlockIds") class CreateIpv6BlockRequest(AbstractModel): def __init__(self): self.zoneId = None self.name = None self.amount = None self.resourceGroupId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.name = params.get("name") self.amount = params.get("amount") self.resourceGroupId = params.get("resourceGroupId") class CreateIpv6BlockResponse(AbstractModel): def __init__(self): self.requestId = None self.cidrBlockIds = None def _deserialize(self, params): self.requestId = params.get("requestId") self.cidrBlockIds = params.get("cidrBlockIds") class ModifyCidrBlocksAttributeRequest(AbstractModel): def __init__(self): self.cidrBlockIds = None self.name = None def _deserialize(self, params): self.cidrBlockIds = params.get("cidrBlockIds") self.name = params.get("name") class ModifyCidrBlocksAttributeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class RenewCidrBlockRequest(AbstractModel): def __init__(self): self.cidrBlockId = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") class RenewCidrBlockResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class TerminateCidrBlockRequest(AbstractModel): def __init__(self): self.cidrBlockId = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") class TerminateCidrBlockResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class ReleaseCidrBlocksRequest(AbstractModel): def __init__(self): self.cidrBlockIds = None def _deserialize(self, params): self.cidrBlockIds = params.get("cidrBlockIds") class ReleaseCidrBlocksResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class BindCidrBlockIpsRequest(AbstractModel): def __init__(self): self.cidrBlockId = None self.ipBindList = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") if params.get("ipBindList") is not None: self.ipBindList = [] for item in params.get("ipBindList"): obj = IpBindParam(item) self.ipBindList.append(obj) class BindCidrBlockIpsResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class IpBindParam(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.instanceId = None self.ip = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.ip = params.get("ip") class UnbindCidrBlockIpsRequest(AbstractModel): def __init__(self): self.cidrBlockId = None self.ipList = None def _deserialize(self, params): self.cidrBlockId = params.get("cidrBlockId") self.ipList = params.get("ipList") class UnbindCidrBlockIpsResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeVpcAvailableRegionsRequest(AbstractModel): def __init__(self): self.zoneId = None self.vpcRegionId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.vpcRegionId = params.get("vpcRegionId") class DescribeVpcAvailableRegionsResponse(AbstractModel): def __init__(self): self.requestId = None self.vpcRegionSet = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("vpcRegionSet") is not None: self.vpcRegionSet = [] for item in params.get("vpcRegionSet"): obj = VpcRegionInfo(item) self.vpcRegionSet.append(obj) class VpcRegionInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.vpcRegionId = None self.vpcRegionName = None self.zoneIds = None def _deserialize(self, params): self.vpcRegionId = params.get("vpcRegionId") self.vpcRegionName = params.get("vpcRegionName") self.zoneIds = params.get("zoneIds") class ModifyVpcsAttributeRequest(AbstractModel): def __init__(self): self.vpcIds = None self.vpcName = None def _deserialize(self, params): self.vpcIds = params.get("vpcIds") self.vpcName = params.get("vpcName") class ModifyVpcsAttributeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeVpcsRequest(AbstractModel): def __init__(self): self.vpcIds = None self.cidrBlock = None self.vpcStatus = None self.vpcName = None self.vpcRegionId = None self.resourceGroupId = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.vpcIds = params.get("vpcIds") self.cidrBlock = params.get("cidrBlock") self.vpcStatus = params.get("vpcStatus") self.vpcName = params.get("vpcName") self.vpcRegionId = params.get("vpcRegionId") self.resourceGroupId = params.get("resourceGroupId") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeVpcsResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = VpcInfo(item) self.dataSet.append(obj) class VpcInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.vpcId = None self.vpcRegionId = None self.vpcRegionName = None self.vpcName = None self.cidrBlock = None self.createTime = None self.resourceGroupId = None self.resourceGroupName = None self.vpcStatus = None def _deserialize(self, params): self.vpcId = params.get("vpcId") self.vpcRegionId = params.get("vpcRegionId") self.vpcRegionName = params.get("vpcRegionName") self.vpcName = params.get("vpcName") self.cidrBlock = params.get("cidrBlock") self.createTime = params.get("createTime") self.resourceGroupId = params.get("resourceGroupId") self.resourceGroupName = params.get("resourceGroupName") self.vpcStatus = params.get("vpcStatus") class CreateVpcRequest(AbstractModel): def __init__(self): self.vpcRegionId = None self.cidrBlock = None self.vpcName = None self.resourceGroupId = None def _deserialize(self, params): self.vpcRegionId = params.get("vpcRegionId") self.cidrBlock = params.get("cidrBlock") self.vpcName = params.get("vpcName") self.resourceGroupId = params.get("resourceGroupId") class CreateVpcResponse(AbstractModel): def __init__(self): self.requestId = None self.vpcId = None def _deserialize(self, params): self.requestId = params.get("requestId") self.vpcId = params.get("vpcId") class DeleteVpcRequest(AbstractModel): def __init__(self): self.vpcId = None def _deserialize(self, params): self.vpcId = params.get("vpcId") class DeleteVpcResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeSubnetsRequest(AbstractModel): def __init__(self): self.subnetIds = None self.cidrBlock = None self.zoneId = None self.subnetStatus = None self.subnetName = None self.resourceGroupId = None self.vpcId = None self.pageSize = None self.pageNum = None def _deserialize(self, params): self.subnetIds = params.get("subnetIds") self.cidrBlock = params.get("cidrBlock") self.zoneId = params.get("zoneId") self.subnetStatus = params.get("subnetStatus") self.subnetName = params.get("subnetName") self.resourceGroupId = params.get("resourceGroupId") self.vpcId = params.get("vpcId") self.pageSize = params.get("pageSize") self.pageNum = params.get("pageNum") class DescribeSubnetsResponse(AbstractModel): def __init__(self): self.requestId = None self.totalCount = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.totalCount = params.get("totalCount") if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = SubnetInfo(item) self.dataSet.append(obj) class SubnetInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.subnetId = None self.subnetName = None self.zoneId = None self.availableIpCount = None self.cidrBlock = None self.subnetStatus = None self.createTime = None self.vpcSubnetStatus = None self.vpcId = None self.vpcName = None self.resourceGroupId = None self.resourceGroupName = None self.subnetInstanceSet = None def _deserialize(self, params): self.subnetId = params.get("subnetId") self.subnetName = params.get("subnetName") self.zoneId = params.get("zoneId") self.availableIpCount = params.get("availableIpCount") self.cidrBlock = params.get("cidrBlock") self.subnetStatus = params.get("subnetStatus") self.createTime = params.get("createTime") self.vpcSubnetStatus = params.get("vpcSubnetStatus") self.vpcId = params.get("vpcId") self.vpcName = params.get("vpcName") self.resourceGroupId = params.get("resourceGroupId") self.resourceGroupName = params.get("resourceGroupName") if params.get("subnetInstanceSet") is not None: self.subnetInstanceSet = [] for item in params.get("subnetInstanceSet"): obj = SubnetInstance(item) self.subnetInstanceSet.append(obj) class SubnetInstance(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.instanceId = None self.privateIpAddress = None self.privateIpStatus = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.privateIpAddress = params.get("privateIpAddress") self.privateIpStatus = params.get("privateIpStatus") class ModifySubnetsAttributeRequest(AbstractModel): def __init__(self): self.subnetIds = None self.subnetName = None def _deserialize(self, params): self.subnetIds = params.get("subnetIds") self.subnetName = params.get("subnetName") class ModifySubnetsAttributeResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class CreateSubnetRequest(AbstractModel): def __init__(self): self.zoneId = None self.cidrBlock = None self.subnetName = None self.resourceGroupId = None self.vpcId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") self.cidrBlock = params.get("cidrBlock") self.subnetName = params.get("subnetName") self.resourceGroupId = params.get("resourceGroupId") self.vpcId = params.get("vpcId") class CreateSubnetResponse(AbstractModel): def __init__(self): self.requestId = None self.subnetId = None def _deserialize(self, params): self.requestId = params.get("requestId") self.subnetId = params.get("subnetId") class DeleteSubnetRequest(AbstractModel): def __init__(self): self.subnetId = None def _deserialize(self, params): self.subnetId = params.get("subnetId") class DeleteSubnetResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class AssociateSubnetInstancesRequest(AbstractModel): def __init__(self): self.subnetId = None self.subnetInstanceList = None def _deserialize(self, params): self.subnetId = params.get("subnetId") if params.get("subnetInstanceList") is not None: self.subnetInstanceList = [] for item in params.get("subnetInstanceList"): obj = AssociateSubnetInstance(item) self.subnetInstanceList.append(obj) class AssociateSubnetInstancesResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class AssociateSubnetInstance(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.instanceId = None self.privateIpAddress = None def _deserialize(self, params): self.instanceId = params.get("instanceId") self.privateIpAddress = params.get("privateIpAddress") class UnAssociateSubnetInstanceRequest(AbstractModel): def __init__(self): self.subnetId = None self.instanceId = None def _deserialize(self, params): self.subnetId = params.get("subnetId") self.instanceId = params.get("instanceId") class UnAssociateSubnetInstanceResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class AssociateVpcSubnetRequest(AbstractModel): def __init__(self): self.subnetId = None self.vpcId = None def _deserialize(self, params): self.subnetId = params.get("subnetId") self.vpcId = params.get("vpcId") class AssociateVpcSubnetResponse(AbstractModel): def __init__(self): self.requestId = None def _deserialize(self, params): self.requestId = params.get("requestId") class DescribeSubnetAvailableResourcesRequest(AbstractModel): def __init__(self): self.zoneId = None def _deserialize(self, params): self.zoneId = params.get("zoneId") class DescribeSubnetAvailableResourcesResponse(AbstractModel): def __init__(self): self.requestId = None self.zoneIdSet = None def _deserialize(self, params): self.requestId = params.get("requestId") self.zoneIdSet = params.get("zoneIdSet")
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/zenlayercloud/bmc/v20221120/models.py
models.py
from zenlayercloud.common.abstract_model import AbstractModel class DescribeLogsRequest(AbstractModel): def __init__(self): self.startTime = None self.endTime = None self.resUid = None self.resEvent = None self.clientIP = None self.size = None self.cursor = None def _deserialize(self, params): self.startTime = params.get("startTime") self.endTime = params.get("endTime") self.resUid = params.get("resUid") self.resEvent = params.get("resEvent") self.clientIP = params.get("clientIP") self.size = params.get("size") if params.get("cursor") is not None: self.cursor = [] for item in params.get("cursor"): obj = item self.cursor.append(obj) class DescribeLogsResponse(AbstractModel): def __init__(self): self.requestId = None self.cursor = None self.dataSet = None def _deserialize(self, params): self.requestId = params.get("requestId") if params.get("cursor") is not None: self.cursor = [] for item in params.get("cursor"): obj = item self.cursor.append(obj) if params.get("dataSet") is not None: self.dataSet = [] for item in params.get("dataSet"): obj = LogInfo(item) self.dataSet.append(obj) class LogInfo(AbstractModel): def __init__(self, params=None): if params is None: params = {} if len(params) > 0: self._deserialize(params) return self.resUid = None self.resType = None self.resEvent = None self.opsTime = None self.eventSource = None self.apiVersion = None self.opsUser = None self.clientIP = None self.request = None self.response = None def _deserialize(self, params): self.resUid = params.get("resUid") self.resType = params.get("resType") self.resEvent = params.get("resEvent") self.opsTime = params.get("opsTime") self.eventSource = params.get("eventSource") self.apiVersion = params.get("apiVersion") self.opsUser = params.get("opsUser") self.clientIP = params.get("clientIP") self.request = params.get("request") self.response = params.get("response")
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/zenlayercloud/zls/v20230804/models.py
models.py
import json import time import zenlayercloud from zenlayercloud.common.abstract_model import AbstractModel from zenlayercloud.common.config import Config from zenlayercloud.common.excpetion import error_code from zenlayercloud.common.excpetion.zenlayer_cloud_sdk_exception import ZenlayerCloudSdkException from zenlayercloud.common.request import BaseRequest, ApiProxyClient from zenlayercloud.common.response import BaseResponse from zenlayercloud.common.utils import sha256hex, hmac_sha256 _json_content_type = 'application/json' class AbstractClient(object): _api_version = '' _service = '' _sdk_version = 'SDK_PYTHON_%s' % zenlayercloud.__version__ _signature_method = "ZC2-HMAC-SHA256" def __init__(self, credential, config=None): """base client interactive with zenlayer cloud :param credential: the zenlayer cloud credential :type credential: zenlayercloud.common.credential.Credential :param config: the additional config for client :type config: zenlayercloud.common.config.Config """ self.credential = credential self.config = Config() if config is None else config is_http = True if self.config.scheme == "http" else False self.proxy = ApiProxyClient(host=self.config.domain, timeout=self.config.request_timeout, proxy=self.config.proxy, certification=self.config.certification, is_http=is_http, debug=self.config.debug, keep_alive=self.config.keep_alive) return def _api_call(self, action, request, method="POST", headers=None) -> dict: if not isinstance(request, AbstractModel): raise ZenlayerCloudSdkException( code=error_code.SDK_INVALID_REQUEST, message="Request must be AbstractModel" ) uri = "/api/v2/%s" % self._service req = BaseRequest(host=self.config.domain, method=method, uri=uri, header=headers) header = req.header timestamp = int(time.time()) header["x-zc-version"] = self._api_version header["x-zc-signature-method"] = self._signature_method header["x-zc-timestamp"] = str(timestamp) header["x-zc-service"] = self._service header["x-zc-action"] = action header["x-zc-sdk-version"] = self._sdk_version header["x-zc-sdk-lang"] = "Python" req.set_host(self._get_endpoint()) req.set_content_type(_json_content_type) req.data = json.dumps(request.serialize()) authorization = self._build_zc2_authorization(req) req.header["Authorization"] = authorization resp = self._send_request(req) return self._handle_response(resp) def _build_zc2_authorization(self, req): canonical_querystring = "" canonical_uri = "/" request_payload = req.data http_request_method = req.method canonical_headers = "content-type:%s\nhost:%s\n" % ( req.get_content_type(), req.get_host() ) signed_headers = "content-type;host" hashed_request_payload = sha256hex(request_payload) canonical_request = '%s\n%s\n%s\n%s\n%s\n%s' % (http_request_method, canonical_uri, canonical_querystring, canonical_headers, signed_headers, hashed_request_payload) hashed_canonical_request = sha256hex(canonical_request) timestamp = req.header["x-zc-timestamp"] string2sign = '%s\n%s\n%s' % (self._signature_method, timestamp, hashed_canonical_request) access_key_id = self.credential.access_key_id access_key_password = self.credential.access_key_password signature = hmac_sha256(access_key_password, string2sign) return "%s Credential=%s, SignedHeaders=%s, Signature=%s" % ( self._signature_method, access_key_id, signed_headers, signature) def _get_endpoint(self): return self.config.domain def _send_request(self, req): try: http_resp = self.proxy.request(req) headers = dict(http_resp.headers) response = BaseResponse(status=http_resp.status_code, header=headers, data=http_resp.text) return response except Exception as e: raise ZenlayerCloudSdkException("NETWORK_ERROR", str(e)) @staticmethod def _handle_response(resp): resp_data = json.loads(resp.data) if resp.status != 200: code = resp_data["code"] message = resp_data["message"] request_id = resp_data["requestId"] raise ZenlayerCloudSdkException(code, message, request_id) return resp_data['response']
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/zenlayercloud/common/abstract_client.py
abstract_client.py
import logging import os from urllib.parse import urlparse import certifi import requests logger = logging.getLogger("zenlayercloud_sdk_common") class ApiProxyClient(object): def __init__(self, host, timeout=60, proxy=None, certification=None, is_http=False, debug=False, keep_alive=False): self.host = host url = urlparse(host) if not url.hostname: if is_http: host = "http://" + host else: host = "https://" + host self.request_host = host self.certification = certification if certification is None: self.certification = certifi.where() self.timeout = timeout self.proxy = None self.debug = debug self.keep_alive = keep_alive if is_http: proxy = proxy or _get_proxy_from_env(host, varname="HTTP_PROXY") else: proxy = proxy or _get_proxy_from_env(host, varname="HTTPS_PROXY") if proxy: self.proxy = {"http": proxy, "https": proxy} def request(self, req): if self.keep_alive: req.header["Connection"] = "Keep-Alive" if self.debug: logger.debug("Send request = %s" % req) url = '%s%s' % (self.request_host, req.uri) response = requests.request(method=req.method, url=url, data=req.data, headers=req.header, timeout=self.timeout, verify=self.certification, proxies=self.proxy) if self.debug: logger.debug("Http response = %s" % response) return response def _get_proxy_from_env(host, varname="HTTPS_PROXY"): no_proxy = os.environ.get("NO_PROXY") or os.environ.get("no_proxy") if no_proxy and host in no_proxy: return None return os.environ.get(varname.lower()) or os.environ.get(varname.upper()) class BaseRequest(object): def __init__(self, host="", uri="", method="", header=None, data=""): self.header = {} if header is None else header self.method = method self.host = host self.uri = uri self.data = data def __str__(self): headers = "\n".join("%s: %s" % (k, v) for k, v in self.header.items()) return ("Host: %s\nMethod: %s\nUri: %s\nHeader: %s\nData: %s\n" % (self.host, self.method, self.uri, headers, self.data)) def get_content_type(self): return self.header["Content-Type"] def get_host(self): return self.header["host"] def set_host(self, host): self.header["host"] = host def set_content_type(self, content_type: str): self.header["Content-Type"] = content_type
zenlayercloud-sdk-python
/zenlayercloud-sdk-python-2.0.2.tar.gz/zenlayercloud-sdk-python-2.0.2/zenlayercloud/common/request.py
request.py
zenmai ======================================== .. image:: https://travis-ci.org/podhmo/zenmai.svg?branch=master :target: https://travis-ci.org/podhmo/zenmai toylang on yaml or json command line example ---------------------------------------- main.yaml .. code-block:: yaml code: $import: ./filters.py as: f definitions: $let: nums: {$load: ./nums.yaml#/definitions/nums0/enum} odds: type: integer enum: $f.odds: {$get: nums} even: type: integer enum: $f.evens: {$get: nums} nums.yaml .. code-block:: yaml definitions: nums0: type: integer enum: [1, 2, 3, 4, 5, 6] nums1: type: integer enum: [1, 2, 3, 5, 7, 11] filters.py .. code-block:: python def odds(nums): return [n for n in nums if n % 2 == 1] def evens(nums): return [n for n in nums if n % 2 == 0] run. .. code-block:: bash $ zenmai examples/readme2/main.yaml output .. code-block:: yaml zenmai main.yaml definitions: odds: type: integer enum: - 1 - 3 - 5 even: type: integer enum: - 2 - 4 - 6 config loader ---------------------------------------- using zenmai as config loader. .. code-block:: python from zenma.loader import load with open("config.yaml") as rf: d = load(rf)
zenmai
/zenmai-0.3.0.tar.gz/zenmai-0.3.0/README.rst
README.rst
ZenMake ======= |Licence| |Python| |PythonImpl| |PyPI| |Docs| |GithubCI| |coveralls| |ProjectStatus| ZenMake is a cross-platform build system for C/C++ and some other languages. Main features ------------- - Build config as python (.py) or as yaml file. - Distribution as zip application or as system package (pip). - Automatic reconfiguring: no need to run command 'configure'. - Compiler autodetection. - Building and running functional/unit tests including an ability to build and run tests only on changes. - Build configs in sub directories. - Building external dependencies. - Supported platforms: GNU/Linux, MacOS, MS Windows. Some other platforms like OpenBSD/FreeBSD should work as well but it hasn't been tested. - Supported languages: - C: gcc, clang, msvc, icc, xlc, suncc, irixcc - C++: g++, clang++, msvc, icpc, xlc++, sunc++ - D: dmd, ldc2, gdc; MS Windows is not supported yet - Fortran: gfortran, ifort (should work but not tested) - Assembler: gas (GNU Assembler) - Supported toolkits/frameworks: SDL2, GTK3, Qt5 Documentation ------------- For full documentation, including installation, tutorials and PDF documents, please see https://zenmake.readthedocs.io Project links ------------- - Primary git repository: https://github.com/pustotnik/zenmake - Secondary git repository: https://gitlab.com/pustotnik/zenmake - Issue tracker: https://github.com/pustotnik/zenmake/issues - Pypi package: https://pypi.org/project/zenmake - Documentation: https://zenmake.readthedocs.io .. |Licence| image:: https://img.shields.io/pypi/l/zenmake.svg :target: https://pypi.org/project/zenmake/ .. |Python| image:: https://img.shields.io/pypi/pyversions/zenmake.svg :target: https://pypi.org/project/zenmake/ .. |PythonImpl| image:: https://img.shields.io/pypi/implementation/zenmake.svg :target: https://pypi.org/project/zenmake/ .. |PyPI| image:: https://img.shields.io/pypi/v/zenmake.svg :target: https://pypi.org/project/zenmake/ .. |Docs| image:: https://readthedocs.org/projects/zenmake/badge/?version=latest :target: https://zenmake.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. |GithubCI| image:: https://img.shields.io/github/workflow/status/pustotnik/zenmake/CI :target: https://github.com/pustotnik/zenmake/actions :alt: GitHub Workflow CI Status .. |coveralls| image:: https://coveralls.io/repos/github/pustotnik/zenmake/badge.svg :target: https://coveralls.io/github/pustotnik/zenmake .. |ProjectStatus| image:: https://img.shields.io/pypi/status/zenmake.svg :target: https://pypi.org/project/zenmake/
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/README.rst
README.rst
import sys import os import io import re import subprocess import shutil if sys.hexversion < 0x3050000: raise ImportError('Python >= 3.5 is required') here = os.path.dirname(os.path.abspath(__file__)) os.chdir(here) import setup #sys.path.append(os.path.join(here, setup.SRC_DIR)) from zenmake.zm import pyutils version = setup.version GIT_EXE = shutil.which('git') PY_EXE = sys.executable def _runInShell(cmd): try: output = subprocess.check_output(cmd, shell = True) except subprocess.CalledProcessError as ex: print(ex) sys.exit(ex.returncode) return output.decode(sys.stdout.encoding) def _runPyScript(args, tryPy3 = True): python = shutil.which('python3') if tryPy3 else PY_EXE if not python: python = PY_EXE return _runInShell('%s %s' % (python, args)) def _runGitCmd(args): return _runInShell('git %s' % args) def _getAnswerYesNo(question): while True: answer = input(question + ' [y/n]') if not answer or answer[0] == 'n': return False if answer != 'y' and answer != 'yes': print('Invalid answer %r' % answer) continue return True def _writeVersionFile(ver): filePath = version.VERSION_FILE_PATH with io.open(filePath, 'wt') as file: file.write(pyutils.texttype(ver)) def _bumpVersion(ver): output = _runGitCmd("tag") existingVers = [x[1:] for x in output.split() if x and x[0] == 'v'] if ver in existingVers: print("Version %r already exists in git tags. Stopped." % ver) sys.exit(1) _writeVersionFile(ver) verFilePath = os.path.relpath(version.VERSION_FILE_PATH, here) _runGitCmd("add %s" % verFilePath) _runGitCmd("commit -m 'bump version'") _runGitCmd("tag -a v%s -m 'version %s'" % (ver, ver)) #_runGitCmd("push") #_runGitCmd("push --tags") _runGitCmd("push --follow-tags") def _writeNewDevVersion(baseVer): parsed = version.parseVersion(baseVer) gr = parsed.groups() nextVer = '.'.join([gr[0], gr[1], str(int(gr[2])+1)]) nextVer += '-dev' _writeVersionFile(nextVer) return nextVer def _checkChangeLog(newVer): filePath = os.path.join(here, 'CHANGELOG.rst') if not os.path.isfile(filePath): print("File %r doesn't exist" % filePath) sys.exit(1) pattern = 'Version\s+%s\s+' % newVer pattern = re.compile(pattern) with io.open(filePath, 'rt') as file: for line in file: if pattern.search(line): break else: return False return True def main(): """ do main work """ cmdArgs = sys.argv[1:] if not cmdArgs: msg = "There is no version in args. Current version: " msg += version.current() print(msg) if GIT_EXE: print("Result of 'git describe': ") print(_runGitCmd('describe')) msg = "\nUsage: " + sys.argv[0] + " x.y.z where x,y,z are numbers" print(msg) return 0 newVer = cmdArgs[0] if not version.checkFormat(newVer): print('Version %r has invalid format' % newVer) return 1 if not GIT_EXE: print("There is no 'git'. Install 'git' to use this script.") return 2 if not _checkChangeLog(newVer): print('There is no records for the version %r in changelog file' % newVer) return 3 question = 'Bump version to %s?' question += ' It will write the version to file,' question += '\nadd it to git repo, commit it and add git tag with the version.' answer = _getAnswerYesNo(question % newVer) if not answer: return 0 print("Bumping version to %r .." % newVer) _bumpVersion(newVer) print("Building distribution ..") _runPyScript('setup.py clean sdist bdist_wheel') answer = _getAnswerYesNo('Distribution was built successfully. Publish it to pypi?') if answer: print("Publishing distribution ..") _runPyScript('setup.py publish') print("Distribution was published.") answer = _getAnswerYesNo('Publish release to github?') if answer: scriptPath = os.path.join('scripts', 'publish-github-release.py') args = '%s %s' % (scriptPath, newVer) print("Publishing release to github ..") _runPyScript(args, tryPy3 = True) print("Release was published on github.") print("Writing new dev version to file %r .." % version.VERSION_FILE_PATH) nextVer = _writeNewDevVersion(newVer) print("New dev version %r was written to file." % nextVer) return 0 if __name__ == '__main__': sys.exit(main())
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/make-release.py
make-release.py
Changelog ========= Version 0.11.0 (2022-09-04) ---------------------------- Added - embed pyyaml - add value 'all' for variable 'for' in the 'byfilter' parameter - add buildconf parameter export-* for libpath, stlibpath and all \*flags - add the 'cleanall' command as replacement for the 'distclean' command - remake/improve/extend substitutions (buildconf variables inside a text) - add some syntactic sugar for buildconf - get rid of ${TARGET} and rewrite substitution of ${SRC} and ${TGT} - add ability to use 'and', 'or' and 'not' in the '\*.select' - add 'host-os' and 'distro' for the '\*.select' conditions - add 'if' for the 'byfilter' parameter - add the 'run' command - support qt5 for c++ (almost done) #31 - enable absolute paths in path patterns - add runtime lib paths for the 'run' command and for the 'run' feature - support python 3.10 Changed - update waf to 2.0.23 - fix bug with auto detection of interpreter in 'runcmd' - rename 'include' to 'incl' and 'exclude' to 'excl' for buildconf parameter 'source' - rename buildconf parameter 'matrix' to 'byfilter' - rename 'export-config-actions' to 'export-config-results' - rename buildconf parameter 'config-actions' to 'configure' - remake and improve the buildconf parameters 'export-*' - prioritize yaml buildconf format - fix bug of no automatic reconfiguration with changed env/cli args for install/uninstall - rename buildconf 'features' to 'general' - fix bug with 'enabled.select' - improve buildconf validator - extend/improve install directory vars - fix problem when not all values from buildconf.cliopts have effect - fix order of reading config values from env, cli and config file - fix terminal width detection in CLI - improve system libraries detection - fix bug when zenmake could not find toolchain from sys env vars like CC, CXX, etc - fix problem with found zero-byte executables (mostly windows problem) - fix problem with short file names (8.3 filename) on windows - fix bug when getting rid of CXX in cmd line does not induce reconfigure - make stop child procces in the 'run' command on keyboard interrupt - many other fixes Removed - drop python 2.x, 3.4 and pypy - remove task features aliases: more problems than profits - remove redundant 'default-buildtype' parameter - remove the 'platforms' parameter Version 0.10.0 (2020-09-23) ---------------------------- Added - support Fortran language - add basic D language support - add selectable parameters for buildconf task parameters - support external dependencies - add 'tryall' and 'after'/'before' for parallel configuration actions - add correct buildconf validation for nested types - add configuration action 'call-pyfunc' ('check-by-pyfunc') to parallel actions - add configuration action 'check-code' - add configuration actions 'pkgconfig' and 'toolconfig' (support pkg-config and other \*-config tools) - add configuration action 'find-file' - add 'remove-defines' for configuration action 'write-config-header' - add option to add extra files to monitor ('monitor-files') - add buildconf task parameters 'stlibs' and 'stlibpath' - add buildconf task parameters 'monitlibs' and 'monitstlibs' - add buildconf task parameter 'export-config-actions' - add buildconf task parameter 'enabled' - add buildconf task parameter 'group-dependent-tasks' - add add buildconf task parameter 'install-files' - add parameter 'build-work-dir-name' to buildconf 'features' - add simplified form of patterns using for buildconf task parameter 'source' - add custom substitution variables - add detection of msvc, gfortran, ifort and D compilers for command 'sysinfo' - add number of CPUs for command 'sysinfo' - add 'not-for' condition for config var 'matrix' - add ability to set compiler flags in buildconf parameter 'toolchains' - add ability to use 'run' in buildconf as a string or function - add cdmline options --verbose-configure (-A) and --verbose-build (-B) - add cmdline option '--force-edeps' - add c++ demo project with boost libraries - add demo project with luac - add demo project with 'strip' utility on linux - add demo project with dbus-binding-tool - add demo projects for gtk3 - add demo project for sdl2 - add codegen demo project Changed - improve support of spaces in values (paths, etc) - improve unicode support - use sha1 by default for hashes - correct some english text in documentation - detach build obj files from target files - remove locks in parallel configuration actions - small optimization of configuration actions - improve validation for parallel configuration actions - improve error handling for configuration actions with python funcs - improve buildconf errors handling - improve use of buildconf parameter 'project.version' - remake/improve handling of cache/db files (see buildconf parameter 'db-format') - reduce size of zenmake.pyz by ignoring some unused waf modules - apply solution from waf issue 2272 to fix max path limit on windows with msvc - rename '--build-tests' to '--with-tests', enable it for 'configure' and add ability to use -t and -T as flags - rename 'sys-lib-path' to 'libpath' and fix bug with incorrect value - rename 'sys-libs' to 'libs' - rename 'conftests' to 'config-actions' - rename config action 'check-programs' to 'find-program' and change behaviour - make ordered configuration actions - disable ':' in task names - refactor code to support task features in separated python modules - don't merge buildconf parameter 'project' in sub buildconfs (see 'subdirs') - fix bug with toolchain supported more than one language - fix some bugs with env vars - fix compiling problem with the same files in different tasks - fix bug with object file indexes - fix command 'clean' for case when build dir is symlink - fix Waf bug of broken 'vnum' for some toolchains - fix parsing of cmd line in 'runcmd' on windows - fix processing of destdir, prefix, bindir, libdir Removed - remove configuration action (test) 'check' Version 0.9.0 (2019-12-10) ---------------------------- Added - add config parameter 'startdir' - add config parameter 'subdirs' to support sub configs - add 'buildroot' as the command-line arg and the environment variable - print header with some project info - add parallel configuration tests Changed - fix default command-line command - fix problem of too long paths in configuration tests on Windows - fix some small bugs in configuration tests - rid of the wscript file during building - improve buildconf validator - improve checking of the task features - update Waf to version 2.0.19 Removed - remove config parameters 'project.root' and 'srcroot'
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/CHANGELOG.rst
CHANGELOG.rst
ZenMake demo projects ===================== This directory contains demo projects which are used for testing on different platforms with different toolchains, libraries, etc. Also they demonstrate use of ZenMake and can be used as examples. These projects have many dependencies due to use of many different things. Full list of actual dependencies which are used for regular testing in CI can be obtained from file 'ci.yml' in the repository directory '.github/workflows'. Different demo projects have different dependencies and you need to have all of these dependencies only if you want to run all these examples. Not every project can be run on all platforms. At the time of writing there are following dependencies: Linux: - python 3.x - pyyaml (optional) - gcc - clang - nasm - yasm - dmd - gdc - ldc - boost - lua (5.1) - dbus-glib (libdbus-glib-1-dev) - gfortran - gtk3 (libgtk-3-dev) - sdl2 (libsdl2-dev) - qt5 (qt5-default) - qt5 tools: qmake, uic, rcc, lrelease, lupdate macOS: - python 3.x - pyyaml (optional) - clang - dmd - ldc - boost - qt5 MS Windows: - python 3.x - pyyaml (optional) - msvc (Microsoft Visual C++) - boost - qt5 (msvc and mingw versions in C:\Qt)
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/demos/README.rst
README.rst
import os import sys import getpass import tempfile joinpath = os.path.join #username = getpass.getuser() # portable way to get user name #tmpdir = tempfile.gettempdir() # portable way to get temp directory iswin32 = os.sep == '\\' or sys.platform == 'win32' or os.name == 'nt' #realbuildroot = joinpath(tmpdir, username, 'projects', 'complex-unittest', 'build') project = { 'name' : 'zm-complex-unittest', } LS_CMD = 'dir /B' if iswin32 else 'ls' EXE = 'exe' def somefunc(args): print("somefunc: buildtype = %r" % args['buildtype']) tasks = { 'shlib' : { 'features' : 'cxxshlib', 'source' : 'shlib/**/*.cpp', 'includes' : '.', 'run' : "echo 'This is runcmd in task \"shlib\"'", #'configure' : [ # dict(do = 'check-headers', names = 'iostream'), #], # testing of 'configure.select' feature 'configure.select' : { 'default' : [ dict(do = 'check-headers', names = 'iostream'), ], 'linux' : [ dict(do = 'check-headers', names = 'iostream cstdio'), ] } }, 'stlib' : { 'features' : 'cxxstlib', 'source' : 'stlib/**/*.cpp', 'includes' : '.', 'configure' : [ dict(do = 'check-headers', names = 'cstdio'), ], }, 'shlibmain' : { 'features' : 'cxxshlib', 'source' : 'shlibmain/**/*.cpp', 'includes' : '.', 'use' : 'shlib stlib ls', }, 'complex' : { 'features' : 'cxxprogram runcmd', 'source' : 'prog/**/*.cpp', 'includes' : '.', 'use' : 'shlibmain', 'run' : "echo 'This is runcmd in task \"complex\"'", 'install-path' : '$(prefix)/${EXE}', }, 'echo' : { 'run' : { 'cmd' : "echo say hello", 'repeat' : 2, }, 'use' : 'shlibmain', 'target' : '', }, 'ls' : { 'run' : { 'cmd' : '${LS_CMD}', # a different way for the same result #'cmd' : iswin32 and "dir /B" or "ls", 'cwd' : '.', }, 'target' : '', }, 'test.py' : { 'run' : { 'cmd' : '${PYTHON} tests/test.py', 'cwd' : '.', 'env' : { 'JUST_ENV_VAR' : 'qwerty', }, 'shell' : False, }, 'use' : 'shlibmain', 'configure' : [ dict(do = 'find-program', names = 'python python3'), ], 'target' : '', }, 'altscript' : { 'run' : { 'cmd' : '"alt script.py"', 'cwd' : '.' }, 'target' : '', }, 'pyfunc' : { 'run': somefunc, 'target' : '', }, #### tasks for build/run tests 'stlib-test' : { 'features' : 'cxxprogram test', 'source' : 'tests/test_stlib.cpp', 'use' : 'stlib testcmn', }, 'test from script' : { 'features' : 'test', 'run' : { 'cmd' : 'tests/test.py', #'cmd' : '${PYTHON} tests/test.py', 'cwd' : '.', 'shell' : False, }, 'use' : 'complex', 'configure' : [ dict(do = 'find-program', names = 'python python3'), ] }, 'testcmn' : { 'features' : 'cxxshlib test', 'source' : 'tests/common.cpp', 'includes' : '.', }, 'shlib-test' : { 'features' : 'cxxprogram test', 'source' : 'tests/test_shlib.cpp', 'use' : 'shlib testcmn', 'run' : { 'cmd' : '$(tgt) a b c', #'cwd' : '.', # can be path relative to current project root path #'cwd' : '.1', 'env' : { 'AZ' : '111', 'BROKEN_TEST' : 'false'}, 'repeat' : 2, 'timeout' : 10, # in seconds, Python 3 only 'shell' : False, }, 'configure' : [ dict(do = 'check-headers', names = 'vector'), ] }, 'shlibmain-test' : { 'features' : 'cxxprogram test', 'source' : 'tests/test_shlibmain.cpp', 'use' : 'shlibmain testcmn', }, #### these tasks are always failed but they're disabled: it's to check the 'enabled' param 'always-failed' : { 'run': "asdfghjklzxcvb", 'enabled' : False, }, 'always-failed2' : { 'run': "asdfghjklzxcvb2", 'enabled.select' : { 'default': False } }, } buildtypes = { # -fPIC is necessary to compile static lib 'debug' : { 'toolchain.select' : { 'default': 'g++', 'macos' : 'clang++', 'windows': 'msvc', }, 'cxxflags.select' : { 'g++ or clang++' : '-fPIC -O0 -g', 'msvc' : '/Od /EHsc', }, 'linkflags.select' : { 'g++': '-Wl,--as-needed', }, }, 'release' : { 'toolchain.select' : { 'default': 'g++', 'macos' : 'clang++', 'windows': 'msvc', }, 'cxxflags.select' : { 'g++ or clang++' : '-fPIC -O2', 'msvc' : '/O2 /EHsc', }, 'linkflags.select' : { 'g++': '-Wl,--as-needed', }, }, 'default' : 'debug', } byfilter = [ #{ 'for' : 'all', 'set' : { 'rpath' : '.', } }, ]
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/demos/cpp/09-complex-unittest/buildconf.py
buildconf.py
buildtypes = { # -fPIC is necessary to compile static lib 'debug-gcc' : { 'cxxflags' : '-fPIC -O0 -g' }, 'release-gcc' : { 'cxxflags' : '-fPIC -O2' }, 'debug-clang' : { 'cxxflags' : '-fPIC -O0 -g' }, 'release-clang': { 'cxxflags' : '-fPIC -O2' }, 'debug-msvc' : { 'cxxflags' : '/Od /EHsc' }, 'release-msvc' : { 'cxxflags' : '/O2 /EHsc' }, 'default' : { 'linux': 'debug-gcc', 'darwin': 'debug-clang', 'windows': 'debug-msvc', }, } byfilter = [ { 'for' : 'all', 'set' : { 'includes' : '.', 'rpath' : '.', } }, { 'for' : { 'task' : 'shlib shlibmain', }, 'set' : { 'features' : 'cxxshlib', } }, { 'for' : { 'task' : 'shlib', }, 'set' : { 'source' : 'shlib/**/*.cpp', } }, { 'for' : { 'task' : 'stlib', }, 'set' : { 'features' : 'cxxstlib', 'source' : 'stlib/**/*.cpp', } }, { 'for' : { 'task' : 'shlibmain', }, 'set' : { 'source' : 'shlibmain/**/*.cpp', 'use' : 'shlib stlib', } }, { 'for' : { 'task' : 'test', }, 'set' : { 'features' : 'cxxprogram', 'source' : 'prog/**/*.cpp', 'use' : 'shlibmain', } }, { 'for' : { 'buildtype' : ['debug-gcc', 'release-gcc'], 'platform' : 'linux', }, 'set' : { 'toolchain' : 'g++', 'linkflags' : '-Wl,--as-needed', } }, { 'for' : { 'buildtype' : 'release-gcc', 'platform' : 'linux', }, 'set' : { 'cxxflags' : '-fPIC -O3', } }, { 'for' : { 'buildtype' : ['debug-clang', 'release-clang'], 'platform' : 'linux darwin', }, 'set' : { 'toolchain' : 'clang++', } }, { 'for' : { 'buildtype' : ['debug-msvc', 'release-msvc'], 'platform' : 'windows', }, 'set' : { 'toolchain' : 'msvc', }, }, ]
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/demos/cpp/06-complex-alt-py/buildconf.py
buildconf.py
from buildconf_tools import * cliopts = { #'color': 'no', 'jobs' : { 'build' : 4 }, #'progress' : {'any': False, 'build': True }, 'verbose-build' : 1, } general = { 'monitor-files' : 'buildconf_tools.py', 'build-work-dir-name' : 'wrk', } tasks = { 'shlib' : { 'features' : 'cxxshlib', 'source' : 'shlib/**/*.cpp', 'includes' : 'include', 'defines' : 'ABC=1 DOIT MY_LONG_STRING="some long string"', 'export' : 'includes defines', 'install-path' : False, 'configure' : [ { 'do' : 'parallel', 'actions' : [ { 'do' : 'check-headers', 'names' : 'cstdio iostream', 'id' : 'first' }, { 'do' : 'check-headers', 'names' : 'stdlib.h', 'after' : 'first' }, { 'do' : 'check-headers', 'names' : 'stdlibasd.h', 'mandatory' : False }, { 'do' : 'check-libs', 'names' : 'boost_random', 'mandatory' : not iswin32 }, ], 'tryall' : True, }, ], }, 'stlib' : { 'features' : 'cxxstlib', 'source' : 'stlib/**/*.cpp', }, 'shlibmain' : { 'features' : 'cxxshlib', 'source' : 'shlibmain/**/*.cpp', 'use' : 'shlib stlib', 'install-path' : '$(prefix)/lbr', }, 'main' : { 'features' : 'cxxprogram', 'source' : 'prog/**/*.cpp', 'use' : 'shlibmain', 'target' : '@bld', # to check 'build-work-dir-name' }, } buildtypes = { 'debug-gcc' : { 'toolchain' : 'g++', 'cxxflags' : '-O0 -g', }, 'release-gcc' : { 'toolchain' : 'g++', 'cxxflags' : '-O2', }, 'debug-clang' : { 'toolchain' : 'clang++', 'cxxflags' : '-O0 -g', }, 'release-clang' : { 'toolchain' : 'clang++', 'cxxflags' : '-O2', }, 'debug-msvc' : { 'toolchain' : 'msvc', 'cxxflags' : '/Od', }, 'release-msvc' : { 'toolchain' : 'msvc', 'cxxflags' : '/O2', }, 'default' : { 'linux': 'debug-gcc', 'darwin': 'debug-clang', 'windows': 'debug-msvc', }, } toolchains = { 'g++': { 'LINKFLAGS' : '-Wl,--as-needed', 'CXXFLAGS' : '-fPIC -Wall', }, 'clang++': { 'CXXFLAGS' : '-fPIC', }, 'msvc': { 'CXXFLAGS' : '/EHsc', }, }
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/demos/cpp/04-complex/buildconf.py
buildconf.py
general = { 'db-format' : 'py', 'provide-edep-targets' : True, } foolibdir = '../foo-lib' def triggerConfigure(**kwargs): #print(kwargs) return False edeps = { 'foo-lib-d' : { 'rootdir': foolibdir, 'export-includes' : foolibdir, 'targets': { 'shared-lib' : { 'dir' : foolibdir + '/_build_/debug', 'type': 'shlib', 'name': 'fooutil', }, 'static-lib' : { 'dir' : foolibdir + '/_build_/debug', 'type': 'stlib', 'name': 'fooutil', }, }, 'rules' : { 'configure': { # just for testing 'cmd' : './configure', 'shell' : True, 'trigger' : { 'paths-dont-exist' : dict( startdir = foolibdir, incl = '**/*.label', ), 'func' : triggerConfigure, }, }, 'build' : 'make debug', #'build' : { # 'cmd' : 'make debug', # 'shell' : False, #}, #'clean' : 'make cleandebug', 'clean' : { # clean 'foo-lib' with command 'clean', it's just demo 'cmd' : 'make cleandebug', 'shell' : False, 'zm-commands' : 'clean', }, }, }, 'foo-lib-r' : { 'rootdir': foolibdir, 'export-includes' : foolibdir, 'targets': { 'shared-lib' : { 'dir' : foolibdir + '/_build_/release', 'type': 'shlib', 'name': 'fooutil', }, 'static-lib' : { 'dir' : foolibdir + '/_build_/release', 'type': 'stlib', 'name': 'fooutil', }, }, 'rules' : { 'configure': '', 'build' : 'make release', 'clean' : 'make cleanrelease', }, }, } tasks = { 'util' : { 'features' : 'cxxshlib', 'source' : 'shlib/**/*.cpp', 'use.select' : { 'debug' : 'foo-lib-d:static-lib', 'release' : 'foo-lib-r:static-lib', }, 'configure' : [ { 'do' : 'check-headers', 'names' : 'cstdio iostream' }, ], }, 'program' : { 'features' : 'cxxprogram', 'source' : 'prog/**/*.cpp', 'use.select' : { 'debug' : 'util foo-lib-d:shared-lib', 'release' : 'util foo-lib-r:shared-lib', }, }, } buildtypes = { 'debug' : { 'cxxflags' : '-O0 -g', }, 'release' : { 'cxxflags' : '-O2', }, 'default' : 'debug', }
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/demos/external-deps/1-makefile/project/buildconf.py
buildconf.py
def check(): # some checking return True def check2(**kwargs): task = kwargs['taskname'] buildtype = kwargs['buildtype'] # some checking #return True return False tasks = { 'extra' : { 'features' : 'cxxshlib', 'source' : 'src/extra.cpp', 'includes' : 'src', 'use' : 'corelib', 'ver-num' : '0.3.0', 'configure' : [ dict(do = 'check-headers', names = 'cstdio iostream'), check, dict(do = 'check-headers', names = 'iostream'), # for test only dict(do = 'write-config-header'), ], }, 'engine' : { 'features' : 'cxxshlib', 'source' : dict( incl = 'src/**/*.cpp', excl = 'src/extra*' ), 'includes' : 'src', 'use' : 'extra', 'ver-num' : '0.3.1', 'configure' : [ dict( do = 'check-headers', names = 'stdio.h iostream' ), dict( do = 'parallel', actions = [ dict(do = 'check-headers', names = 'cstdio iostream', id = 'first'), dict(do = 'check-headers', names = 'stdlib.h', after = 'first'), dict(do = 'check-headers', names = 'stdlibasd.h', mandatory = False), # for test only dict(do = 'check-headers', names = 'iostream'), dict(do = 'check-headers', names = 'iostream'), dict(do = 'check-headers', names = 'iostream'), check, dict(do = 'call-pyfunc', func = check2, mandatory = False), ], #tryall = True, tryall = False, #mandatory = False, ), dict( do = 'write-config-header'), dict( do = 'check-headers', names = 'string vector' ), ], 'export' : 'includes config-results', 'defines' : '$${VAR_A_NAME}="test" $${VAR_B_NAME}="check"', # for test only }, 'extra-test' : { 'features' : 'cxxprogram test', 'source' : 'tests/test_extra.cpp', 'includes' : 'src ../../tests/src', 'use' : 'extra testcmn', }, } buildtypes = { 'debug' : { 'cxxflags.select': { 'default' : '-O1 -g', #'msvc' : '/Od /EHsc', }, }, }
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/demos/subdirs/2-complex/libs/engine/buildconf.py
buildconf.py
.. include:: global.rst.inc .. highlight:: python .. _buildconf-edep-params: Build config: edeps ============================= The config parameter ``edeps`` is a :ref:`dict<buildconf-dict-def>` with configurations of external non-system dependencies. General description of external dependencies is :ref:`here<dependencies-external>`. Each such a dependency can have own unique name and parameters: .. _buildconf-edep-params-rootdir: rootdir """"""""""""""""""""" A path to the root of the dependency project. It should be path to directory with the build script of the dependency project. This path can be relative to the :ref:`startdir<buildconf-startdir>` or absolute. targets """"""""""""""""""""" A :ref:`dict<buildconf-dict-def>` with descriptions of targets of the dependency project. Each target has a reference name which can be in :ref:`use<buildconf-taskparams-use>` in format ``dependency-name:target-reference-name`` and parameters: :dir: A path with the current target file. Usually it's some build directory. This path can be relative to the :ref:`startdir<buildconf-startdir>` or absolute. :type: It's type of the target file. This type has effects to the link of the build tasks and some other things. Supported types: :stlib: The target file is a static library. :shlib: The target file is a shared library. :program: The target file is an executable file. :file: The target file is any file. :name: It is a base name of the target file which is used for detecting of resulting target file name depending on destination operating system, selected toolchain, value of ``type``, etc. If it's not set the target reference name is used. :ver-num: It's a version number for the target file if it is a shared library. It can have effect on resulting target file name. :fname: It's a real file name of the target. Usually it's detected by ZenMake from other parameters but you can set it manually but it's not recommended until you really need it. If parameter ``type`` is equal to ``file`` the value of this parameter is always equal to value of parameter ``name`` by default. Example in YAML format for non-ZenMake dependency: .. code-block:: yaml targets: # 'shared-lib' and 'static-lib' are target reference names shared-lib: dir : ../foo-lib/_build_/debug type: shlib name: fooutil static-lib: dir : ../foo-lib/_build_/debug type: stlib name: fooutil Example in Python format for non-ZenMake dependency: .. code-block:: python 'targets': { # 'shared-lib' and 'static-lib' are target reference names 'shared-lib' : { 'dir' : '../foo-lib/_build_/debug', 'type': 'shlib', 'name': 'fooutil', }, 'static-lib' : { 'dir' : '../foo-lib/_build_/debug', 'type': 'stlib', 'name': 'fooutil', }, }, .. _buildconf-edep-params-export-includes: export-includes """"""""""""""""""""" A list of paths with 'includes' for C/C++/D/Fortran compilers to export from the dependency project for all build tasks which depend on the current dependency. Paths should be relative to the :ref:`startdir<buildconf-startdir>` or absolute but last variant is not recommended. If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes. rules """"""""""""""""""""" A :ref:`dict<buildconf-dict-def>` with descriptions of rules to produce targets files of dependency. Each rule has own reserved name and parameters to run. The rule names that allowed to use are: ``configure``, ``build``, ``test``, ``clean``, ``install``, ``uninstall``. The parameters for each rule can be a string with a command line to run or a dict with attributes: :cmd: A command line to run. It can be any suitable command line. :cwd: A working directory where to run ``cmd``. By default it's the :ref:`rootdir<buildconf-edep-params-rootdir>`. This path can be relative to the :ref:`startdir<buildconf-startdir>` or absolute. :env: Environment variables for ``cmd``. It's a ``dict`` where each key is a name of variable and value is a value of env variable. :timeout: A timeout for ``cmd`` in seconds. By default there is no timeout. :shell: If shell is True, the specified command will be executed through the shell. By default it is False. In some cases it can be set to True by ZenMake even though you set it to False. :trigger: A dict that describes conditions to run the rule. If any configured trigger returns True then the rule will be run. You can configure one or more triggers for each rule. ZenMake supports the following types of trigger: :always: If it's True then the rule will be run always. If it's False and no other triggers then the rule will not be run automatically. :paths-exist: This trigger returns True only if configured paths exist on a file system. You can set paths as a string, list of strings or as a dict like for config task parameter :ref:`source<buildconf-taskparams-source>`. Examples in YAML format: .. code-block:: yaml trigger: paths-exist: /etc/fstab trigger: paths-exist: [ /etc/fstab, /tmp/somefile ] trigger: paths-exist: startdir: '../foo-lib' incl: '**/*.label' Examples in Python format: .. code-block:: python 'trigger': { 'paths-exist' : '/etc/fstab', } 'trigger': { 'paths-exist' : ['/etc/fstab', '/tmp/somefile'], } 'trigger': { 'paths-exist' : dict( startdir = ../foo-lib, incl = '**/*.label', ), } :paths-dont-exist: This trigger is the same as ``paths-exist`` but returns True if configured paths don't exist. :env: This trigger returns True only if all configured environment variables exist and equal to configured values. Format is simple: it's a ``dict`` where each key is a name of variable and value is a value of environment variable. :no-targets: If it is True this trigger returns True only if any of target files for current dependency doesn't exist. It can be useful to detect the need to run 'build' rule. This trigger cannot be used in ZenMake command 'configure'. :func: This trigger is a custom python function that must return True or False. This function gets the following parameters as arguments: :zmcmd: It's a name of the current ZenMake command that has been used to run the rule. :targets: A list of configured/detected targets. It's can be None if rule has been run from command 'configure'. It's better to use `**kwargs` in this function because some new parameters can be added in the future. This trigger cannot be used in YAML buildconf file. .. note:: For any non-ZenMake dependency there are following default triggers for rules: configure: { always: true } build: { no-targets: true } Any other rule: { always: false } .. note:: You can use command line option ``-E``/``--force-edeps`` to run rules for external dependencies without checking triggers. :zm-commands: A list with names of ZenMake commands in which selected rule will be run. By default each rule can be run in the ZenMake command with the same name only. For example, rule 'configure' by default can be run with the command 'configure' and rule 'build' with the command 'build', etc. But here you can set up a different behavior. .. _buildconf-edep-params-buildtypes-map: buildtypes-map """"""""""""""""""""" This parameter is used only for external dependencies which are other ZenMake projects. By default ZenMake uses value of current ``buildtype`` for all such dependencies to run rules but in some cases names of buildtype can be not matched. For example, current project can have buildtypes ``debug`` and ``release`` but project from dependency can have buildtypes ``dbg`` and ``rls``. In this case you can use this parameter to set up the map of these buildtype names. Example in YAML format: .. code-block:: yaml buildtypes-map: debug : dbg release : rls Example in Python format: .. code-block:: python buildtypes-map: { 'debug' : 'dbg', 'release' : 'rls', } Some examples can be found in the directory 'external-deps' in the repository `here <repo_demo_projects_>`_.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/buildconf-edeps.rst
buildconf-edeps.rst
.. include:: global.rst.inc .. highlight:: console .. _dependencies: Dependencies ============ ZenMake supports several types of dependencies for build projects: .. contents:: :local: System libraries ------------------------------ System libraries can be specified by using the config parameter :ref:`libs<buildconf-taskparams-libs>`. Usually you don't need to set paths to system libraries but you can set them using the config parameter :ref:`libpath<buildconf-taskparams-libpath>`. Local libraries ------------------------------ Local libraries are libraries from your project. Use the config parameter :ref:`use<buildconf-taskparams-use>` to specify such dependencies. .. _dependencies-subdirs: Sub buildconfs ------------------------------ You can organize building of your project by using more than one :ref:`buildconf<buildconf>` file in some sub directories of your project. In this case ZenMake merges parameters from all such buildconf files. But you must specify these sub directories by using the config parameter :ref:`subdirs<buildconf-subdirs>`. Parameters in the sub buildconf can always overwrite matching parameters from the parent :ref:`buildconf<buildconf>`. But some parameters are not changed. These parameters can be set only in the the top-level buildconf: ``buildroot``, ``realbuildroot``, ``project``, ``general``, ``cliopts`` Also default build type can be set only in the top-level buildconf. These parameters are always used without merging with parent buildconfs: ``startdir``, ``subdirs``, ``tasks`` ZenMake doesn't merge your own variables in your buildconf files if you use some of them. Other variables are merged including ``byfilter``. But build tasks in the ``byfilter`` which are not from the current buildconf are ignored excepting explicit specified ones. Some examples can be found in the directory 'subdirs' in the repository `here <repo_demo_projects_>`_. .. _dependencies-external: External dependencies ------------------------------ A few basic types of external dependencies can be used: - :ref:`Depending on other ZenMake projects<dependencies-external-zenmake>` - :ref:`Depending on non-ZenMake projects<dependencies-external-non-zenmake>` See full description of buildconf parameters for external dependencies :ref:`here<buildconf-edep-params>`. .. _dependencies-external-zenmake: ZenMake projects """""""""""""""""""" Configuration for this type of dependency is simple in most cases: you set up the config variable :ref:`edeps<buildconf-edeps>` with the :ref:`rootdir<buildconf-edep-params-rootdir>` and the :ref:`export-includes<buildconf-edep-params-export-includes>` (if it's necessary) and then specify this dependency in :ref:`use<buildconf-taskparams-use>`, using existing task names from dependency buildconf. Example in YAML format: .. code-block:: yaml edeps: zmdep: rootdir: ../zmdep export-includes: ../zmdep tasks: myutil: features : cxxshlib source : 'shlib/**/*.cpp' # Names 'calclib' and 'printlib' are existing tasks in 'zmdep' project use: zmdep:calclib zmdep:printlib Example in Python format: .. code-block:: python edeps = { 'zmdep' : { 'rootdir': '../zmdep', 'export-includes' : '../zmdep', }, } tasks = { 'myutil' : { 'features' : 'cxxshlib', 'source' : 'shlib/**/*.cpp', # Names 'calclib' and 'printlib' are existing tasks in 'zmdep' project 'use' : 'zmdep:calclib zmdep:printlib', }, } Additionally, in some cases, the parameter :ref:`buildtypes-map<buildconf-edep-params-buildtypes-map>` can be useful. Also it's recommended to use always the same version of ZenMake for all such projects. Otherwise there are some compatible problems can be occured. .. note:: Command line options ``--force-edeps`` and ``--buildtype`` for current project will affect rules for its external dependencies while all other command line options will be ignored. You can use :ref:`environment variables<envvars>` to have effect on all external dependencies. And, of course, you can set up each buildconf in the dependencies to have desirable behavior. .. _dependencies-external-non-zenmake: Non-ZenMake projects """"""""""""""""""""" You can use external dependencies from some other build systems but in this case you need to set up more parameters in the config variable :ref:`edeps<buildconf-edeps>`. Full description of these parameters can be found :ref:`here<buildconf-edep-params>`. Only one parameter ``buildtypes-map`` is not used for such dependencies. If it's necessary to set up different targets for different buildtypes you can use :ref:`selectable parameters<buildconf-select>` in build tasks of your ZenMake project. Example in Python format: .. code-block:: python foolibdir = '../foo-lib' edeps = { 'foo-lib-d' : { 'rootdir': foolibdir, 'export-includes' : foolibdir, 'targets': { 'shared-lib' : { 'dir' : foolibdir + '/_build_/debug', 'type': 'shlib', 'name': 'fooutil', }, }, 'rules' : { 'build' : 'make debug', }, }, 'foo-lib-r' : { 'rootdir': foolibdir, 'export-includes' : foolibdir, 'targets': { 'shared-lib' : { 'dir' : foolibdir + '/_build_/release', 'type': 'shlib', 'name': 'fooutil', }, }, 'rules' : { 'build' : 'make release', }, }, } tasks = { 'util' : { 'features' : 'cxxshlib', 'source' : 'shlib/**/*.cpp', }, 'program' : { 'features' : 'cxxprogram', 'source' : 'prog/**/*.cpp', 'use.select' : { 'debug' : 'util foo-lib-d:shared-lib', 'release' : 'util foo-lib-r:shared-lib', }, }, } Common notes """"""""""""""""""""" You can use command line option ``-E``/``--force-edeps`` to run rules for external dependencies without checking triggers. Some examples can be found in the directory 'external-deps' in the repository `here <repo_demo_projects_>`_.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/dependencies.rst
dependencies.rst
.. include:: global.rst.inc .. highlight:: console .. _faq: FAQ ================================ **Why is python used?** It's mostly because Waf_ is implemented in python. **Can I use buildconf.py as usual python script?** Yes, you can. Such a behavior is supported while you don't try to use reserved config variable names for inappropriate reasons. **I want to install my project via zenmake without 'bin' and 'lib64' in one directory** Example on Linux:: DESTDIR=your_install_path PREFIX=/ BINDIR=/ LIBDIR=/ zenmake install or:: PREFIX=your_install_path BINDIR=your_install_path LIBDIR=your_install_path zenmake install
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/faq.rst
faq.rst
.. include:: global.rst.inc .. highlight:: console .. _envvars: Environment variables ===================== ZenMake supports some environment variables that can be used. Most of examples are for POSIX platforms (Linux/MacOS) with ``gcc`` and ``clang`` installed. Also see :ref:`bash-like substitutions<buildconf-substitutions-vars>`. AR Set archive-maintaining program. CC Set C compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides values from :ref:`build config<buildconf>` if present. Example:: CC=clang zenmake build -B CXX Set C++ compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides values from :ref:`build config<buildconf>` if present. Example:: CXX=clang++ zenmake build -B DC Set D compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides values from :ref:`build config<buildconf>` if present. Example:: DC=ldc2 zenmake build -B FC Set Fortran compiler. It can be name of installed a system compiler or any path to existing compiler. It overrides values from :ref:`build config<buildconf>` if present. Example:: FC=gfortran zenmake build -B AS Set Assembler. It can be name of installed a system compiler or any path to existing compiler. It overrides values from :ref:`build config<buildconf>` if present. Example:: AS=gcc zenmake build -B ARFLAGS Flags to give the archive-maintaining program. CFLAGS Extra flags to give to the C compiler. Example:: CFLAGS='-O3 -fPIC' zenmake build -B CXXFLAGS Extra flags to give to the C++ compiler. Example:: CXXFLAGS='-O3 -fPIC' zenmake build -B CPPFLAGS Extra flags added at the end of compilation commands for C/C++. DFLAGS Extra flags to give to the D compiler. Example:: DFLAGS='-O' zenmake build -B FCFLAGS Extra flags to give to the Fortran compiler. Example:: FCFLAGS='-O0' zenmake build -B ASFLAGS Extra flags to give to the Assembler. Example:: ASFLAGS='-Os' zenmake build -B LINKFLAGS Extra list of linker flags for C/C++/D/Fortran. Example:: LINKFLAGS='-Wl,--as-needed' zenmake build -B LDFLAGS Extra list of linker flags at the end of the link command for C/C++/D/Fortran. Example:: LDFLAGS='-Wl,--as-needed' zenmake build -B ASLINKFLAGS Extra list of linker flags for Assembler files. Example:: ASLINKFLAGS='-s' zenmake build -B JOBS Default value for the amount of parallel jobs. Has no effect when ``-j`` is provided on the command line. Example:: JOBS=2 zenmake build NUMBER_OF_PROCESSORS Default value for the amount of parallel jobs when the JOBS environment variable is not provided; it is usually set on windows systems. Has no effect when ``-j`` is provided on the command line. NOCOLOR When set to a non-empty value, colors in console outputs are disabled. Has no effect when ``--color`` is provided on the command line. Example:: NOCOLOR=1 zenmake build NOSYNC When set to a non-empty value, console outputs are displayed in an asynchronous manner; console text outputs may appear faster on some platforms. Example:: NOSYNC=1 zenmake build BUILDROOT A path to the root of a project build directory. The path can be absolute or relative to the current directory. See also :ref:`buildroot<buildconf-buildroot>`. Example:: BUILDROOT=bld zenmake build DESTDIR Default installation base directory when ``--destdir`` is not provided on the command line. It's mostly for installing to a temporary directory. For example it can be used to create deb/rpm/etc packages. Example:: DESTDIR=dest zenmake install .. _envvars-prefix: PREFIX Set value of built-in variable :ref:`prefix<buildconf-builtin-vars-prefix>` as the installation prefix. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. Example:: PREFIX=/usr zenmake install .. _envvars-execprefix: EXEC_PREFIX Set value of built-in variable :ref:`execprefix<buildconf-builtin-vars-execprefix>` as the installation prefix for machine-specific files. .. _envvars-bindir: BINDIR Set value of built-in variable :ref:`bindir<buildconf-builtin-vars-bindir>` as the directory for installing executable programs that users can run. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. Example:: BINDIR=/usr/bin zenmake install .. _envvars-sbindir: SBINDIR Set value of built-in variable :ref:`sbindir<buildconf-builtin-vars-sbindir>` as the directory for installing executable programs that can be run, but are only generally useful to system administrators. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-libexecdir: LIBEXECDIR Set value of built-in variable :ref:`libexecdir<buildconf-builtin-vars-libexecdir>` as the directory for installing executable programs to be run by other programs rather than by users. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-libdir: LIBDIR Set value of built-in variable :ref:`libdir<buildconf-builtin-vars-libdir>` as the installation directory for object files and libraries of object code. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-sysconfdir: SYSCONFDIR Set value of built-in variable :ref:`sysconfdir<buildconf-builtin-vars-sysconfdir>` as the installation directory for read-only single-machine data. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-sharedstatedir: SHAREDSTATEDIR Set value of built-in variable :ref:`sharedstatedir<buildconf-builtin-vars-sharedstatedir>` as the installation directory for modifiable architecture-independent data. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-localstatedir: LOCALSTATEDIR Set value of built-in variable :ref:`localstatedir<buildconf-builtin-vars-localstatedir>` as the installation directory for modifiable single-machine data. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-includedir: INCLUDEDIR Set value of built-in variable :ref:`includedir<buildconf-builtin-vars-includedir>` as the installation directory for C header files. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-datarootdir: DATAROOTDIR Set value of built-in variable :ref:`datarootdir<buildconf-builtin-vars-datarootdir>` as the installation root directory for read-only architecture-independent data. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-datadir: DATADIR Set value of built-in variable :ref:`datadir<buildconf-builtin-vars-datadir>` as the installation directory for read-only architecture-independent data. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-appdatadir: APPDATADIR Set value of built-in variable :ref:`appdatadir<buildconf-builtin-vars-appdatadir>` as the installation directory for read-only architecture-independent application data. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-docdir: DOCDIR Set value of built-in variable :ref:`docdir<buildconf-builtin-vars-docdir>` as the installation directory for documentation. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-mandir: MANDIR Set value of built-in variable :ref:`mandir<buildconf-builtin-vars-mandir>` as the installation directory for man documentation. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-infodir: INFODIR Set value of built-in variable :ref:`infodir<buildconf-builtin-vars-infodir>` as the installation directory for info documentation. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-localedir: LOCALEDIR Set value of built-in variable :ref:`localedir<buildconf-builtin-vars-localedir>` as the installation directory for locale-dependent data. This path is always considered as an absolute path or as a relative path to ``DESTDIR``. .. _envvars-qt5bindir: QT5_BINDIR Set the bin directory of the installed Qt5 toolkit. This directory must contain such tools like qmake, moc, uic, etc. This path must be absolute native path or path relative to the current working directory but last variant is not recommended. This variable can be especially useful for standalone installation of Qt5, for example on Windows. The ``PATH`` and ``QT5_SEARCH_ROOT`` environment variables are ignored if ``QT5_BINDIR`` is not empty. .. _envvars-qt5libdir: QT5_LIBDIR Set the library directory of the installed Qt5 toolkit. This path must be absolute native path or path relative to the current working directory but last variant is not recommended. Usually you don't need to use this variable if you set the ``QT5_BINDIR`` variable. .. _envvars-qt5includes: QT5_INCLUDES Set the directory with 'includes' of the installed Qt5 toolkit. This path must be absolute native path or path relative to the current working directory but last variant is not recommended. Usually you don't need to use this variable if you set the ``QT5_BINDIR`` variable. This variable has no effect on systems with pkg-config/pkgconf installed (while you don't turn on the :ref:`QT5_NO_PKGCONF<envvars-qt5nopkgconf>`). .. _envvars-qt5searchroot: QT5_SEARCH_ROOT Set the root directory to search for installed Qt5 toolkit(s). ZenMake will try to find the bin directories of all Qt5 toolkits in this directory recursively. Dot not set this variable to path like ``/`` or ``C:\`` because it will slow down the detection very much. Qt5 toolkits found in this directory have priority over values from the ``PATH`` environment variable. You can set more than one directories using path separator (``;`` on Windows and ``:`` on other OS) like this:: QT5_SEARCH_ROOT=/usr/local/qt:/usr/local/opt/qt zenmake It defaults to ``C:\Qt`` on Windows. Usually you don't need to use this variable on Linux. .. _envvars-qt5minver: QT5_MIN_VER Set minimum version of Qt5. For example it can be ``5.1`` or ``5.1.2``. .. _envvars-qt5maxver: QT5_MAX_VER Set maximum version of Qt5. For example it can be ``5.12`` or ``5.12.2``. .. _envvars-qt5usehighestver: QT5_USE_HIGHEST_VER By default ZenMake will use first useful version of Qt5. When this variable set to a 'True', 'true', 'yes' or non-zero number then ZenMake will try to use the highest version of Qt5 among found versions. .. _envvars-qt5nopkgconf: QT5_NO_PKGCONF When set to a 'True', 'true', 'yes' or non-zero number, ZenMake will not use pkg-config/pkgconf to configure building with Qt5. Usually you don't need to use this variable. .. _envvars-qt5tools: QT5_{MOC,UIC,RCC,LRELEASE,LUPDATE} These variables can be used to specify full file paths to Qt5 tools ``moc``, ``uic``, ``rcc``, ``lrelease`` and ``lupdate``. Usually you don't need to use these variables. ZM_CACHE_CFGACTIONS When set to a 'True', 'true', 'yes' or non-zero number, ZenMake tries to use a cache for some :ref:`configuration actions<config-actions>`. Has no effect when ``--cache-cfg-actions`` is provided on the command line. It can speed up next runs of some configuration actions but also it can ignore changes in toolchains, system paths, etc. In general, it is safe to use it if there were no changes in the current system. Example:: ZM_CACHE_CFGACTIONS=1 zenmake configure
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/envvars.rst
envvars.rst
.. include:: global.rst.inc .. highlight:: python .. _buildconf-extended-syntax: Build config: extended syntax =================================== For convenience, ZenMake supports some syntax extensions in buildconf files. .. _buildconf-syntactic-sugar: Syntactic sugar ----------------------------------- There are some syntactic sugar constructions that can be used to make a buildconf a little shorter. configure """""""""" It can be used as a replacement for :ref:`configure<buildconf-taskparams-configure>` task param. For example you have (in YAML format): .. code-block:: yaml tasks: util: features : cshlib source : shlib/**/*.c configure: - do: check-headers names : stdio.h test: features : cprogram source : prog/**/*.c use : util configure: - do: check-headers names : stdio.h So it can be converting into this: .. code-block:: yaml tasks: util: features : cshlib source : shlib/**/*.c test: features : cprogram source : prog/**/*.c use : util configure: - do: check-headers names : stdio.h The ``configure`` above is the same as following construction: .. code-block:: yaml byfilter: - for: all set: configure: - do: check-headers names : stdio.h In addition to regular arguments for :ref:`configure<buildconf-taskparams-configure>` task param you can use ``for``/``not-for``/``if`` in the same way as in the :ref:`byfilter<buildconf-byfilter>`. Example: .. code-block:: yaml tasks: # .. skipped configure: - do: check-headers names : stdio.h not-for: { task: mytask } install """""""""" Like as previous ``configure`` this can be used as a replacement for :ref:`install-files<buildconf-taskparams-install-files>` task param. Example: .. code-block:: yaml tasks: # .. skipped install: - for: { task: gui } src: 'some/src/path/ui.res' dst: '$(prefix)/share/$(prjname)' .. _buildconf-substitutions: Substitutions ----------------------------------- There are two types of substitutions in ZenMake: bash-like variables with ability to use system environment variables and built-in variables. .. _buildconf-substitutions-vars: Bash-like variables """"""""""""""""""""""" ZenMake supports substitution variables with syntax similar to syntax of bash variables. Both $VAR and ${VAR} syntax are supported. These variables can be used in any buildconf parameter value of string/text type. in YAML format: .. code-block:: yaml param: '${VAR}/some-string' in Python format: .. code-block:: python 'param' : '${VAR}/some-string' ZenMake looks such variables in environment variables at first and then in the buildconf file. You can use a $$ (double-dollar sign) to prevent use of environment variables. Example in YAML format: .. code-block:: yaml # set 'fragment' variable fragment: | program end program # set 'GCC_BASE_FLAGS' variable GCC_BASE_FLAGS: -std=f2018 -Wall tasks: # ... skipped values test: features : fcprogram source : src/calculator.f90 src/main.f90 includes : src/inc use : staticlib sharedlib configure: - do: check-code text: $$fragment # <-- substitution without env label: fragment buildtypes: # GCC_BASE_FLAGS can be overwritten by environment variable with the same name debug : { fcflags: $GCC_BASE_FLAGS -O0 } release: { fcflags: $GCC_BASE_FLAGS -O2 } default: debug .. note:: These substitution variables inherit values from parent buildconf in :ref:`subdirs<dependencies-subdirs>`. Also values for such variables can be set by some :ref:`configuration actions<config-actions>`. For example see ``var`` in configuration action ``find-program``. But in this case these values are not visible everywhere. For YAML format there are some constraints with ${VAR} form due to YAML specification: .. code-block:: yaml debug : { fcflags: $GCC_BASE_FLAGS -O0 } # works debug : { fcflags: "$GCC_BASE_FLAGS -O0" } # works debug : { fcflags: ${GCC_BASE_FLAGS} -O0 } # doesn't work debug : { fcflags: "${GCC_BASE_FLAGS} -O0" } # works debug : fcflags: ${GCC_BASE_FLAGS} -O0 # works .. _buildconf-builtin-vars: Built-in variables """"""""""""""""""""""" ZenMake has some built-in variables that can be used as substitutions. To avoid possible conflicts with environment and bash-like variables the syntax of substitutions is a little bit different in this case: in YAML format: .. code-block:: yaml param: '$(var)/some-string' in Python format: .. code-block:: python 'param' : '$(var)/some-string' List of built-in variables: .. _buildconf-builtin-vars-prjname: prjname Name of the current project. It can be changed via ``name`` from :ref:`here<buildconf-project>`. .. _buildconf-builtin-vars-topdir: topdir Absolute path of :ref:`startdir<buildconf-startdir>` of the top-level buildconf file. Usually it is root directory of the current project. .. _buildconf-builtin-vars-buildrootdir: buildrootdir Absolute path of :ref:`buildroot<buildconf-buildroot>`. .. _buildconf-builtin-vars-buildtypedir: buildtypedir Absolute path of current buildtype directory. It is current value of :ref:`buildroot<buildconf-buildroot>` plus current buildtype. .. _buildconf-builtin-vars-prefix: prefix The installation prefix. It is a directory that is prepended onto all install directories and it defaults to ``/usr/local`` on UNIX and ``C:/Program Files/$(prjname)`` on Windows. It can be changed via environment variable :ref:`PREFIX<envvars-prefix>` or via ``--prefix`` on the command line. .. _buildconf-builtin-vars-execprefix: execprefix The installation prefix for machine-specific files. In most cases it is the same as the ``$(prefix)`` variable. It was introduced mostly for compatibility with GNU standard: https://www.gnu.org/prep/standards/html_node/Directory-Variables.html. It can be changed via environment variable :ref:`EXEC_PREFIX<envvars-execprefix>` or via ``--execprefix`` on the command line. .. _buildconf-builtin-vars-bindir: bindir The directory for installing executable programs that users can run. It defaults to ``$(exeprefix)/bin`` on UNIX and ``$(exeprefix)`` on Windows. It can be changed via environment variable :ref:`BINDIR<envvars-bindir>` or via ``--bindir`` on the command line. .. _buildconf-builtin-vars-sbindir: sbindir The directory for installing executable programs that can be run, but are only generally useful to system administrators. It defaults to ``$(exeprefix)/sbin`` on UNIX and ``$(exeprefix)`` on Windows. It can be changed via environment variable :ref:`SBINDIR<envvars-sbindir>` or via ``--sbindir`` on the command line. .. _buildconf-builtin-vars-libexecdir: libexecdir The directory for installing executable programs to be run by other programs rather than by users. It defaults to ``$(exeprefix)/libexec`` on UNIX and ``$(exeprefix)`` on Windows. It can be changed via environment variable :ref:`LIBEXECDIR<envvars-libexecdir>` or via ``--libexecdir`` on the command line. .. _buildconf-builtin-vars-libdir: libdir The installation directory for object files and libraries of object code. It defaults to ``$(exeprefix)/lib`` or ``$(exeprefix)/lib64`` on UNIX and ``$(exeprefix)`` on Windows. On Debian/Ubuntu, it may be ``$(exeprefix)/lib/<multiarch-tuple>``. It can be changed via environment variable :ref:`LIBDIR<envvars-libdir>` or via ``--libdir`` on the command line. .. _buildconf-builtin-vars-sysconfdir: sysconfdir The installation directory for read-only single-machine data. It defaults to ``$(prefix)/etc`` on UNIX and ``$(prefix)`` on Windows. It can be changed via environment variable :ref:`SYSCONFDIR<envvars-sysconfdir>` or via ``--sysconfdir`` on the command line. .. _buildconf-builtin-vars-sharedstatedir: sharedstatedir The installation directory for modifiable architecture-independent data. It defaults to ``/var/lib`` on UNIX and ``$(prefix)`` on Windows. It can be changed via environment variable :ref:`SHAREDSTATEDIR<envvars-sharedstatedir>` or via ``--sharedstatedir`` on the command line. .. _buildconf-builtin-vars-localstatedir: localstatedir The installation directory for modifiable single-machine data. It defaults to ``$(prefix)/var``. It can be changed via environment variable :ref:`LOCALSTATEDIR<envvars-localstatedir>` or via ``--localstatedir`` on the command line. .. _buildconf-builtin-vars-includedir: includedir The installation directory for C header files. It defaults to ``$(prefix)/include``. It can be changed via environment variable :ref:`INCLUDEDIR<envvars-includedir>` or via ``--includedir`` on the command line. .. _buildconf-builtin-vars-datarootdir: datarootdir The installation root directory for read-only architecture-independent data. It defaults to ``$(prefix)/share`` on UNIX and ``$(prefix)`` on Windows. It can be changed via environment variable :ref:`DATAROOTDIR<envvars-datarootdir>` or via ``--datarootdir`` on the command line. .. _buildconf-builtin-vars-datadir: datadir The installation directory for read-only architecture-independent data. It defaults to ``$(datarootdir)``. It can be changed via environment variable :ref:`DATADIR<envvars-datadir>` or via ``--datadir`` on the command line. .. _buildconf-builtin-vars-appdatadir: appdatadir The installation directory for read-only architecture-independent application data. It defaults to ``$(datarootdir)/$(prjname)`` on UNIX and ``$(datarootdir)`` on Windows. It can be changed via environment variable :ref:`APPDATADIR<envvars-appdatadir>` or via ``--appdatadir`` on the command line. .. _buildconf-builtin-vars-docdir: docdir The installation directory for documentation. It defaults to ``$(datarootdir)/doc/$(prjname)`` on UNIX and ``$(datarootdir)/doc`` on Windows. It can be changed via environment variable :ref:`DOCDIR<envvars-docdir>` or via ``--docdir`` on the command line. .. _buildconf-builtin-vars-mandir: mandir The installation directory for man documentation. It defaults to ``$(datarootdir)/man``. It can be changed via environment variable :ref:`MANDIR<envvars-mandir>` or via ``--mandir`` on the command line. .. _buildconf-builtin-vars-infodir: infodir The installation directory for info documentation. It defaults to ``$(datarootdir)/info``. It can be changed via environment variable :ref:`INFODIR<envvars-infodir>` or via ``--infodir`` on the command line. .. _buildconf-builtin-vars-localedir: localedir The installation directory for locale-dependent data. It defaults to ``$(datarootdir)/locale``. It can be changed via environment variable :ref:`LOCALEDIR<envvars-localedir>` or via ``--localedir`` on the command line. In some cases some extra variables are provided. For example, variables ``src`` and ``tgt`` are provided for the ``cmd`` in the task parameter :ref:`run<buildconf-taskparams-run>`. Built-in variables cannot be used in buildconf parameters which are used to determine values of that built-in variables. These parameters are: - :ref:`startdir<buildconf-startdir>`, :ref:`buildroot<buildconf-buildroot>`, :ref:`realbuildroot<buildconf-realbuildroot>` - **buildtypedir** only: the ``default`` in the :ref:`buildtypes<buildconf-buildtypes>` - **buildtypedir** only: the ``buildtypes``, ``platform`` and ``task`` in the :ref:`byfilter<buildconf-byfilter>`
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/buildconf-ext-syntax.rst
buildconf-ext-syntax.rst
.. include:: global.rst.inc .. highlight:: python .. _buildconf-taskparams: Build config: task parameters ============================= It's a :ref:`dict<buildconf-dict-def>` as a collection of build task parameters for a build task. This collection is used in :ref:`tasks<buildconf-tasks>`, :ref:`buildtypes<buildconf-buildtypes>` and :ref:`byfilter<buildconf-byfilter>`. And it's core buildconf element. Also see :ref:`substitutions<buildconf-substitutions>` for string/text values. .. _buildconf-taskparams-features: features """"""""""""""""""""" It describes type of a build task. Can be one value or list of values. Supported values: :c: Means that the task has a C code. Optional in most cases. Also it's 'lang' feature for C language. :cxx: Means that the task has a C++ code. Optional in most cases. Also it's 'lang' feature for C++ language. :d: Means that the task has a D code. Optional in most cases. Also it's 'lang' feature for D language. :fc: Means that the task has a Fortran code. Optional in most cases. Also it's 'lang' feature for Fortran language. :asm: Means that the task has an Assembler code. Optional in most cases. Also it's 'lang' feature for Assembler language. :<lang>stlib: Means that result of the task is a static library for the <lang> code. For example: ``cstlib``, ``cxxstlib``, etc. :<lang>shlib: Means that result of the task is a shared library for the <lang> code. For example: ``cshlib``, ``cxxshlib``, etc. :<lang>program: Means that result of the task is an executable file for the <lang> code. For example: ``cprogram``, ``cxxprogram``, etc. :runcmd: Means that the task has the ``run`` parameter and should run some command. It's optional because ZenMake detects this feature automatically by presence of the ``run`` in task parameters. You need to set it explicitly only if you want to try to run <lang>program task without parameter ``run``. :test: Means that the task is a test. More details about tests are :ref:`here<buildtests>`. It is not needed to add ``runcmd`` to this feature because ZenMake adds ``runcmd`` itself if necessary. :qt5: Means that the task has Qt5 code. More details are :ref:`here<toolkits_qt5>`. Some features can be mixed. For example ``cxxprogram`` can be mixed with ``cxx`` for C++ build tasks but it's not necessary because ZenMake adds ``cxx`` for ``cxxprogram`` itself. The ``cxxshlib`` feature cannot be mixed for example with the ``cxxprogram`` in one build task because they are different types of build task targets. Using of such features as ``c`` or ``cxx`` doesn't make sense without \*stlib/\*shlib/\*program features in most cases. The ``runcmd`` and ``test`` features can be mixed with any feature. Examples in YAML format: .. code-block:: yaml features : cprogram features : cxxshlib features : cxxprogram runcmd features : cxxprogram test Examples in Python format: .. code-block:: python 'features' : 'cprogram' 'features' : 'cxxshlib' 'features' : 'cxxprogram runcmd' 'features' : 'cxxprogram test' .. _buildconf-taskparams-target: target """"""""""""""""""""" Name of resulting file. The target will have different extension and name depending on the platform but you don't need to declare this difference explicitly. It will be generated automatically. For example the ``sample`` for \*shlib task will be converted into ``sample.dll`` on Windows and into ``libsample.so`` on Linux. By default it's equal to the name of the build task. So in most cases it is not needed to be set explicitly. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-source: source """"""""""""""""""""" One or more source files for compiler/toolchain/toolkit. It can be: - a string with one or more paths separated by space - a :ref:`dict<buildconf-dict-def>`, description see below - a list of items where each item is a string with one or more paths or a dict The ``dict`` type is used for ``ant_glob`` Waf_ function. Format of patterns for ``ant_glob`` can be found here https://waf.io/book/. Most significant details from there: - Patterns may contain wildcards such as \* or \?, but they are `Ant patterns <https://ant.apache.org/manual/dirtasks.html>`_, not regular expressions. - The symbol ``**`` enable recursion. Complex folder hierarchies may take a lot of time, so use with care. - The '..' sequence does not represent the parent directory. So such a ``dict`` can contain fields: :incl: Ant pattern or list of patterns to include, required field. :excl: Ant pattern or list of patterns to exclude, optional field. :ignorecase: Ignore case while matching (False by default), optional field. :startdir: Start directory for patterns, optional field. It must be relative to the :ref:`startdir<buildconf-startdir>` or an absolute path. By default it's '.', that is, it's equal to :ref:`startdir<buildconf-startdir>`. ZenMake always adds several patterns to exclude files for any ant pattern. These patterns include `Default Excludes` from `Ant patterns <https://ant.apache.org/manual/dirtasks.html>`_ and some additional patterns like ``**/*.swp``. There is simplified form of ant patterns using: if string value contains '*' or '?' it will be converted into ``dict`` form to use patterns. See examples below. Any path or pattern should be relative to the :ref:`startdir<buildconf-startdir>`. But for pattern (in dict) can be used custom ``startdir`` parameter. .. note:: If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes. *YAML*: You can write a string without quotes (as a plain scalar) in many cases but there are some special symbols which cannot be used at the beginning without quotes, for example ``*`` and ``?<space>``. So a value like ``**/*.cpp`` must be always in qoutes (``'`` or ``"``). See details here: https://www.yaml.info/learn/quote.html. Examples in YAML format: .. code-block:: yaml # just one file source : test.cpp # list of two files source : main.c about.c # or source : [main.c, about.c] # get all *.cpp files in the 'startdir' recursively source : { incl: '**/*.cpp' } # or source : incl: '**/*.cpp' # or (shortest record with the same result) source : '**/*.cpp' # get all *.c and *.cpp files in the 'startdir' recursively source : { incl: '**/*.c **/*.cpp' } # or (shorter record with the same result) source : '**/*.c **/*.cpp' # get all *.cpp files in the 'startdir'/mylib recursively source : mylib/**/*.cpp # get all *.cpp files in the 'startdir'/src recursively # but don't include files according pattern 'src/extra*' source : incl: src/**/*.cpp excl: src/extra* # get all *.c files in the 'src' and in '../others' recursively source : - src/**/*.c - incl: '**/*.c' startdir: ../others # pattern with space, it's necessary to use both types of quotes here: source : '"my prog/**/*.c"' # two file paths with spaces source : '"my shlib/my util.c" "my shlib/my util2.c"' Examples in python format: .. code-block:: python # just one file 'source' : 'test.cpp' # list of two files 'source' : 'main.c about.c' 'source' : ['main.c', 'about.c'] # the same result # get all *.cpp files in the 'startdir' recursively 'source' : dict( incl = '**/*.cpp' ) # or 'source' : { 'incl': '**/*.cpp' } # or (shortest record with the same result) 'source' : '**/*.cpp' # get all *.c and *.cpp files in the 'startdir' recursively 'source' : { 'incl': ['**/*.c', '**/*.cpp'] } # or (shorter record with the same result) 'source' : ['**/*.c', '**/*.cpp'] # get all *.cpp files in the 'startdir'/mylib recursively 'source' : 'mylib/**/*.cpp' # get all *.cpp files in the 'startdir'/src recursively # but don't include files according pattern 'src/extra*' 'source' : dict( incl = 'src/**/*.cpp', excl = 'src/extra*' ) # get all *.c files in the 'src' and in '../others' recursively 'source' : [ 'src/**/*.c', { 'incl': '**/*.c', 'startdir' : '../others' }, ] # pattern with space: 'source' : '"my prog/**/*.c"' # two file paths with spaces 'source' : '"my shlib/my util.c" "my shlib/my util2.c"' It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-includes: includes """"""""""""""""""""" Include paths are used by the C/C++/D/Fortran compilers for finding headers/files. Paths should be relative to :ref:`startdir<buildconf-startdir>` or absolute. But last variant is not recommended. If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes. Examples in YAML format: .. code-block:: yaml includes : myinclude includes : include myinclude includes : [ include, myinclude ] It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. This parameter can be :ref:`exported<buildconf-taskparams-export>`. .. _buildconf-taskparams-toolchain: toolchain """"""""""""""""""""" Name of toolchain/compiler to use in the task. It can be any system compiler that is supported by ZenMake or a toolchain from custom :ref:`toolchains<buildconf-toolchains>`. There are also the special names for autodetecting in format ``auto-*`` where ``*`` is a 'lang' feature for programming language, for example ``auto-c``, ``auto-c++``, etc. | Known names for C: ``auto-c``, ``gcc``, ``clang``, ``msvc``, ``icc``, ``xlc``, ``suncc``, ``irixcc``. | Known names for C++: ``auto-c++``, ``g++``, ``clang++``, ``msvc``, ``icpc``, ``xlc++``, ``sunc++``. | Known names for D: ``auto-d``, ``ldc2``, ``gdc``, ``dmd``. | Known names for Fortran: ``auto-fc``, ``gfortran``, ``ifort``. | Known names for Assembler: ``auto-asm``, ``gas``, ``nasm``. .. note:: If you don't set ``toolchain`` then ZenMake will try to set ``auto-*`` itself according values in `features <buildconf-taskparams-features_>`_. In some rare cases this parameter can contain more than one value as a string with values separated by space or as list. For example, for case when C and Assembler files are used in one task, it can be ``"gcc gas"``. If toolchain from custom :ref:`toolchains<buildconf-toolchains>` or some system toolchain contain spaces in their names and all these toolchains are listed in one string then each such a toolchain must be in quotes. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. cflags """"""""""""""""""""" One or more compiler flags for C. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. cxxflags """"""""""""""""""""" One or more compiler flags for C++. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. dflags """"""""""""""""""""" One or more compiler flags for D. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. fcflags """"""""""""""""""""" One or more compiler flags for Fortran. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. asflags """"""""""""""""""""" One or more compiler flags for Assembler. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. cppflags """"""""""""""""""""" One or more compiler flags added at the end of compilation commands for C/C++. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. linkflags """"""""""""""""""""" One or more linker flags for C/C++/D/Fortran. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. ldflags """"""""""""""""""""" One or more linker flags for C/C++/D/Fortran at the end of the link command. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. aslinkflags """"""""""""""""""""" One or more linker flags for Assembler. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. arflags """"""""""""""""""""" Flags to give the archive-maintaining program. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. .. _buildconf-taskparams-defines: defines """"""""""""""""""""" One or more defines for C/C++/Assembler/Fortran. Examples in YAML format: .. code-block:: yaml defines : MYDEFINE defines : [ ABC=1, DOIT ] defines : - ABC=1 - DOIT defines : 'ABC=1 DOIT AAA="some long string"' Examples in Python format: .. code-block:: python 'defines' : 'MYDEFINE' 'defines' : ['ABC=1', 'DOIT'] 'defines' : 'ABC=1 DOIT AAA="some long string"' It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. .. _buildconf-taskparams-use: use """"""""""""""""""""" This attribute enables the link against libraries (static or shared). It can be used for local libraries from other tasks or to declare dependencies between build tasks. Also it can be used to declare using of :ref:`external dependencies<dependencies-external>`. For external dependencies the format of any dependency in ``use`` must be: ``dependency-name:target-reference-name``. It can contain one or more the other task names. If a task name contain spaces and all these names are listed in one string then each such a name must be in quotes. Examples in YAML format: .. code-block:: yaml use : util use : util mylib use : [util, mylib] use : 'util "my lib"' use : ['util', 'my lib'] use : util mylib someproject:somelib Examples in Python format: .. code-block:: python 'use' : 'util' 'use' : 'util mylib' 'use' : ['util', 'mylib'] 'use' : 'util "my lib"' 'use' : ['util', 'my lib'] 'use' : 'util mylib someproject:somelib' It can be used to specify libraries of qt5 as well. More details are :ref:`here<toolkits_qt5>`. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-libs: libs """"""""""""""""""""" One or more names of existing shared libraries as dependencies, without prefix or extension. Usually it's used to set system libraries. If you use this parameter to specify non-system shared libraries for some task you may need to specify the same libraries for all other tasks which depend on the current task. For example, you set library 'mylib' to the task A but the task B has parameter ``use`` with 'A', then it's recommended to add 'mylib' to the parameter ``libs`` for the task B. Otherwise you can get link error ``... undefined reference to ...`` or something like that. Some other ways to solve this problem include using environment variable ``LD_LIBRARY_PATH`` or changing of /etc/ld.so.conf file. But usually last method is not recommended. Example in YAML format: .. code-block:: yaml libs : m rt Example in Python format: .. code-block:: python 'libs' : 'm rt' It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-libpath: libpath """"""""""""""""""""" One or more additional paths to find libraries. Usually you don't need to set it. If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes. Paths should be absolute or relative to :ref:`startdir<buildconf-startdir>`. Examples in YAML format: .. code-block:: yaml libpath : /local/lib libpath : '/local/lib "my path"' # in case of spaces in a path Examples in Python format: .. code-block:: python 'libpath' : '/local/lib' 'libpath' : '/local/lib "my path"' # in case of spaces in a path It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. monitlibs """"""""""""""""""""" One or more names from ``libs`` to monitor changes. For example, a project has used some system library 'superlib' and once this library was upgraded by a system package manager. After that the building of the project will not make a relink with the new version of 'superlib' if no changes in the project which can trigger such a relink. Usually it is not a problem because a project is changed much more frequently than upgrading of system libraries during development. Any names not from ``libs`` are ignored. It can be True or False as well. If it is True then value of ``libs`` is used. If it is False then it means an empty list. By default it's False. Using of this parameter can slow down a building of some projects with a lot of values in this parameter. ZenMake uses sha1/md5 hashes to check changes of every library file. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. stlibs """"""""""""""""""""" The same as ``libs`` but for static libraries. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. stlibpath """"""""""""""""""""" The same as ``libpath`` but for static libraries. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Also this parameter can be :ref:`exported<buildconf-taskparams-export>`. monitstlibs """"""""""""""""""""" The same as ``monitlibs`` but for static libraries. It means it's affected by parameter ``stlibs``. It's possible to use :ref:`selectable parameters<buildconf-select>` variables to set this parameter. .. _buildconf-taskparams-moc: moc """"""""""""""""""""" One or more header files (.h) with C++ class declarations with Q_OBJECT. These files are handled with Qt Meta-Object Compiler, moc. Format for this parameter is the same as for the :ref:`source<buildconf-taskparams-source>` parameter. You can specify header files without Q_OBJECT here because ZenMake filters such files by itself. So you can specify just all .h files of your directory with header files if you wish. It can be used only for tasks with ``qt5`` in :ref:`features<buildconf-taskparams-features>`. .. _buildconf-taskparams-rclangprefix: rclangprefix """"""""""""""""""""" Value of ``qresource prefix`` in generated .qrc file for a qt5 task. When .ts files are specified in the :ref:`source<buildconf-taskparams-source>` parameter ZenMake compiles these files into .qm files. If you set the ``rclangprefix`` parameter ZenMake will insert all compiled .qm files in .qrc file to embed .qm files as internal binary resourses inside compiled task target file. And the value of this parameter can be used in the QTranslator::load method in the 'directory' argument in your Qt5 code. The :ref:`bld-langprefix<buildconf-taskparams-bld-langprefix>`, :ref:`unique-qmpaths<buildconf-taskparams-unique-qmpaths>` and :ref:`install-langdir<buildconf-taskparams-install-langdir>` parameters are ignored if the ``rclangprefix`` is set. It can be used only for tasks with ``qt5`` in :ref:`features<buildconf-taskparams-features>`. .. _buildconf-taskparams-langdir-defname: langdir-defname """"""""""""""""""""" Name of a define to set for your Qt5 code to detect current directory with compiled .qm files to use in the QTranslator::load method. When .ts files are specified in the :ref:`source<buildconf-taskparams-source>` parameter ZenMake compiles these files into .qm files. But when you use the ``install`` command ZenMake copies these files from build directory into install directory. So during regular building and for installed application the directory with .qm files are different. Value of the define with the name from the ``langdir-defname`` is the install directory of .qm files for the ``install`` command and the build directory of .qm files in other cases. This parameter is ignored if :ref:`rclangprefix<buildconf-taskparams-rclangprefix>` is set. It can be used only for tasks with ``qt5`` in :ref:`features<buildconf-taskparams-features>`. .. _buildconf-taskparams-bld-langprefix: bld-langprefix """"""""""""""""""""" Set build directory path prefix for compiled .qm files. It is relative to :ref:`buildtypedir<buildconf-builtin-vars-buildtypedir>` and defaults to ``@translations``. Usually you don't need to use this parameter. This parameter is ignored if :ref:`rclangprefix<buildconf-taskparams-rclangprefix>` is set. It can be used only for tasks with ``qt5`` in :ref:`features<buildconf-taskparams-features>`. .. _buildconf-taskparams-unique-qmpaths: unique-qmpaths """"""""""""""""""""" Make unique file paths for compiled .qm files by adding name of current buld task by the pattern: ``$(buildtypedir)/<bld-langprefix>/<task name>_<original .qm file name>`` where :ref:`buildtypedir<buildconf-builtin-vars-buildtypedir>` is the built-in variable. Usually you don't need to use this parameter. This parameter is ignored if :ref:`rclangprefix<buildconf-taskparams-rclangprefix>` is set. It can be used only for tasks with ``qt5`` in :ref:`features<buildconf-taskparams-features>`. rpath """"""""""""""""""""" One or more paths to hard-code into the binary during linking time. It's ignored on platforms that do not support it. If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-ver-num: ver-num """"""""""""""""""""" Enforce version numbering on shared libraries. It can be used with \*shlib ``features`` for example. It can be ignored on platforms that do not support it. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-run: run """"""""""""""""""""" A :ref:`dict<buildconf-dict-def>` with parameters to run something in the task. It' used with task features ``runcmd`` and ``test``. It can be also just a string or a python function (for buildconf.py only). In this case it's the same as using dict with one parameter ``cmd``. :cmd: Command line to run. It can be any suitable command line. For convenience special :ref:`built-in substitution<buildconf-builtin-vars>` variables ``src`` and ``tgt`` can be used here. The ``tgt`` variable contains string with the absolute path to resulting target file of the current task. And the ``src`` contains string with all source files of the task. Environment variables also can be used here but see :ref:`bash-like substitutions<buildconf-substitutions-vars>`. For python variant of buildconf it can be python function as well. In this case such a function gets one argument as a python dict with parameters: :taskname: Name of current build task :startdir: Current :ref:`startdir<buildconf-startdir>` :buildroot: Root directory for building :buildtype: Current buildtype :target: Absolute path to resulting target. It may not be existing. :waftask: Object of Waf class Task. It's for advanced use. :cwd: Working directory where to run ``cmd``. By default it's build directory for current buildtype. Path can be absolute or relative to the :ref:`startdir<buildconf-startdir>`. :env: Environment variables for ``cmd``. It's a ``dict`` where each key is a name of variable and value is a value of env variable. :timeout: Timeout for ``cmd`` in seconds. It works only when ZenMake is run with python 3. By default there is no timeout. :shell: If shell is True, the specified command will be executed through the shell. By default to avoid some common problems it is True. But in many cases it's safe to set False. In this case it avoids some overhead of using shell. In some cases it can be set to True by ZenMake/Waf even though you set it to False. :repeat: Just amount of running of ``cmd``. It's mostly for tests. By default it's 1. If current task has parameter ``run`` with empty ``features`` or with only ``runcmd`` in the ``features`` then it is standalone runcmd task. If current task is not standalone runcmd task then command from parameter ``run`` will be run after compilation and linking. If you want to have a command that will be called before compilation and linking you can make another standalone runcmd task and specify this new task in the parameter ``use`` of the current task. By default ZenMake expects that any build task produces a target file and if it doesn't find this file when the task is finished it will throw an error. And it is true for standalone runcmd tasks also. If you want to create standalone runcmd task which doesn't produce target file you can set task parameter :ref:`target<buildconf-taskparams-target>` to an empty string. Examples in YAML format: .. code-block:: yaml echo: run: "echo 'say hello'" target: '' test.py: run: cmd : python tests/test.py cwd : . env : { JUST_ENV_VAR: qwerty } shell : false target: '' configure : - do: find-program names: python shlib-test: features : cxxprogram test # ... run: cmd : '$(tgt) a b c' env : { ENV_VAR1: '111', ENV_VAR2: 'false' } repeat : 2 timeout : 10 # in seconds shell : false foo.luac: source : foo.lua configure : [ { do: find-program, names: luac } ] run: '${LUAC} -s -o $(tgt) $(src)' Examples in Python format: .. code-block:: python 'echo' : { 'run' : "echo 'say hello'", 'target': '', }, 'test.py' : { 'run' : { 'cmd' : 'python tests/test.py', 'cwd' : '.', 'env' : { 'JUST_ENV_VAR' : 'qwerty', }, 'shell' : False, }, 'target': '', 'configure' : [ dict(do = 'find-program', names = 'python'), ] }, 'shlib-test' : { 'features' : 'cxxprogram test', # ... 'run' : { 'cmd' : '$(tgt) a b c', 'env' : { 'ENV_VAR1' : '111', 'ENV_VAR2' : 'false'}, 'repeat' : 2, 'timeout' : 10, # in seconds, Python 3 only 'shell' : False, }, }, 'foo.luac' : { 'source' : 'foo.lua', 'configure' : [ dict(do = 'find-program', names = 'luac'), ], 'run': '${LUAC} -s -o $(tgt) $(src)', }, It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-configure: configure """"""""""""""""""""" A list of configuration actions (configuration checks and others). Details are :ref:`here<config-actions>`. These actions are called on **configure** step (in command **configure**). It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. Results of these configuration actions can be :ref:`exported<buildconf-taskparams-export>` with the name `config-results`. .. _buildconf-taskparams-export: export-<param> / export """""""""""""""""""""""" Some task parameters can be exported to all dependent build tasks. There two forms: ``export-<param>`` and ``export``. In first form ``<param>`` is the name of the exported task parameter. The boolean True/False value or specific valid value to the ``<param>`` can be used to export. If value is True then ZenMake exports the value of the parameter from current task to all dependent build tasks. If value is False then ZenMake exports nothing. Supported names: ``includes``, ``defines``, ``config-results``, ``libpath``, ``stlibpath``, ``moc`` and all ``*flags``. But the parameter ``export-config-results`` accepts boolean True/False only value. In second form it must be string or list with the names of parameters to export. Second form is simplified form of the first form when all values are True. And this form cannot be used to set specific value to export. .. note:: By default ZenMake exports nothing (all values are False). Exporting values are inserted in the beginning of the current parameter values in dependent tasks. It was made to have ability to overwrite parent values. For example, task A has ``defines`` with value ``AAA=q`` and task B depends on task A and has ``defines`` with value ``BBB=v``. So if task A has ``export-defines`` with True, then actual value of ``defines`` in task B will be ``AAA=q BBB=v``. Examples in YAML format: .. code-block:: yaml # export all includes from current task export-includes: true # the same result: export: includes # export all includes and defines from current task export-includes: true export-defines: true # the same result: export: includes defines # export specific includes, value of parameter 'includes' from current # task is not used export-includes: incl1 incl2 # export specific defines, value of parameter 'defines' from current # task is not used export-defines : 'ABC=1 DOIT AAA="some long string"' # export results of all configuration actions from current task export-config-results: true # export all includes, defines and results of configuration actions export: includes defines config-results Specific remarks: :includes: If specified paths contain spaces and all these paths are listed in one string then each such a path must be in quotes. :defines: Defines from :ref:`configuration actions<config-actions>` are not exported. Use ``export-config-results`` or ``export`` with ``config-results`` for that. It's possible to use :ref:`selectable parameters<buildconf-select>` (in strings) to set this parameter. .. _buildconf-taskparams-install-path: install-path """"""""""""""""""""" String representing the installation directory for the task :ref:`target<buildconf-taskparams-target>` file. It is used in the ``install`` and ``uninstall`` commands. This path must be absolute. To disable installation, set it to False or to empty string. If it's absent then built-in ``prefix``, ``bindir`` and ``libdir`` variables will be used to detect path. You can use any :ref:`built-in substitution<buildconf-builtin-vars>` variable including ``prefix``, ``bindir`` and ``libdir`` here like this: Example in YAML format: .. code-block:: yaml install-path : '$(prefix)/bin' This parameter is false for standalone runcmd tasks by default. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-install-files: install-files """"""""""""""""""""" A list of additional files to install. Each item in this list must be a :ref:`dict<buildconf-dict-def>` with following parameters: :do: It is what to do and it can be ``copy``, ``copy-as`` or ``symlink``. The ``copy`` value means copying specified files to a directory from the ``dst``. The ``copy-as`` value means copying one specified file to a path from the ``dst`` so you can use a difference file name. The ``symlink`` value means creation of symlink. It's for POSIX platforms only and does nothing on MS Windows. You may not set this parameter in some cases. If this parameter is absent: - It's ``symlink`` if parameter ``symlink`` exists in current dict. - It's ``copy`` in other cases. :src: If ``do`` is ``copy`` then rules for this parameter are the same as for `source <buildconf-taskparams-source_>`_ but with one addition: you can specify one or more paths to directory if you don't use any ant pattern. In this case all files from specified directory will be copied recursively with directories hierarchy. If ``do`` is ``copy-as``, it must be one path to a file. And it must be relative to the :ref:`startdir<buildconf-startdir>` or an absolute path. If ``do`` is ``symlink``, it must be one path to a file. Created symbolic link will point to this path. Also it must be relative to the :ref:`startdir<buildconf-startdir>` or an absolute path. :dst: If ``do`` is ``copy`` then it must be a path to a directory. If ``do`` is ``copy-as``, it must be one path to a file. If ``do`` is ``symlink``, this parameter cannot be used. See parameter ``symlink``. It must be relative to the :ref:`startdir<buildconf-startdir>` or an absolute path. Any path here will have value of ``destdir`` at the beginning if this ``destdir`` is set to non-empty value. This ``destdir`` can be set from command line argument ``--destdir`` or from environment variable ``DESTDIR`` and it is not set by default. :symlink: It is like ``dst`` for ``copy-as`` but for creating a symlink. This parameter can be used only if ``do`` is ``symlink``. It must be relative to the :ref:`startdir<buildconf-startdir>` or an absolute path. :chmod: Change file mode bits. It's for POSIX platforms only and does nothing on MS Windows. And it cannot be used for ``do`` = ``symlink``. It must be integer or string. If it is an integer it must be correct value for python function os.chmod. For example: 0o755. If it is a string then value will be converted to integer as octal representation of an integer. For example, '755' will be converted to 493 (it's 755 in octal representation). By default it is 0o644. :user: Change file owner. It's for POSIX platforms only and does nothing on MS Windows. It must be a name of existing user. It is not set by default and the value from original file will be used. :group: Change file user's group. It's for POSIX platforms only and does nothing on MS Windows. It must be a name of existing user's group. It is not set by default and the value from original file will be used. :follow-symlinks: Follow symlinks from ``src`` if ``do`` is ``copy`` or ``copy-as``. If it is false, symbolic links in the paths from ``src`` are represented as symbolic links in the ``dst``, but the metadata of the original links is NOT copied; if true or omitted, the contents and metadata of the linked files are copied to the new destination. It's true by default. :relative: This parameter can be used only if ``do`` is ``symlink``. If it is true, relative symlink will created. It's false by default. Some examples can be found in the directory 'mixed/01-cshlib-cxxprogram' in the repository `here <repo_demo_projects_>`_. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. _buildconf-taskparams-install-langdir: install-langdir """"""""""""""""""""" Installation directory for .qm files. It defaults to ``$(appdatadir)/translations`` where :ref:`appdatadir<buildconf-builtin-vars-appdatadir>` is the built-in variable. This parameter is ignored if :ref:`rclangprefix<buildconf-taskparams-rclangprefix>` is set. It can be used only for tasks with ``qt5`` in :ref:`features<buildconf-taskparams-features>`. normalize-target-name """"""""""""""""""""" Convert ``target`` name to ensure the name is suitable for file name and has not any potential problems. It replaces all space symbols for example. Experimental. By default it is False. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. enabled """"""""""""""""""""" If it's False then current task will not be used at all. By default it is True. It makes sense mostly to use with :ref:`selectable parameters<buildconf-select>` or with :ref:`byfilter<buildconf-byfilter>`. With this parameter you can make a build task which can be used, for example, on Linux only or for specific toolchain or with another condition. group-dependent-tasks """"""""""""""""""""" Although runtime jobs for the tasks may be executed in parallel, some preparation is made before this in one thread. It includes, for example, analyzing of the task dependencies and file paths in :ref:`source<buildconf-taskparams-source>`. Such list of tasks is called `build group` and, by default, it's only one build group for each project which uses ZenMake. If this parameter is true, ZenMake creates a new build group for all other dependent tasks and preparation for these dependent tasks will be run only when all jobs for current task, including all dependencies, are done. For example, if some task produces source files (\*.c, \*.cpp, etc) that don't exist at the time of such a preparation, you can get a problem because ZenMake cannot find not existing files. It is not a problem if such a file is declared in :ref:`target<buildconf-taskparams-target>` and then this file is specified without use of ant pattern in ``source`` of dependent tasks. In other cases you can solve the problem by setting this parameter to True for a task which produces these source files. By default it is False. Don't set it to True without reasons because it can slow building down. objfile-index """"""""""""""""""""" Counter for the object file extension. By default it's calculated automatically as unique index number for each build task. If you set this for one task but not for others in the same project and your index number is matched with one of automatic generated indexes then it can cause compilation errors if different tasks use the same files in parameter ``source``. Also you can set the same value for the all build tasks and often it's not a problem while different tasks use the different files in parameter ``source``. Set this parameter only if you know what you do. It's possible to use :ref:`selectable parameters<buildconf-select>` to set this parameter. .. note:: More examples of buildconf files can be found in repository `here <repo_demo_projects_>`_.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/buildconf-taskparams.rst
buildconf-taskparams.rst
.. include:: global.rst.inc .. highlight:: python .. _buildconf-select: Build config: selectable parameters =================================== ZenMake provides ability to select values for parameters in :ref:`task params<buildconf-taskparams>` depending on some conditions. This feature of ZenMake is similar to `Configurable attributes` from Bazel build system and main idea was borrowed from that system. But implementation is different. It can be used for selecting different source files, includes, compiler flags and others on different platforms, different toolchains, etc. Example in YAML format: .. code-block:: yaml tasks: # ... conditions: windows-msvc: platform: windows toolchain: msvc buildtypes: debug: {} release: cxxflags.select: windows-msvc: /O2 default: -O2 Example in Python format: .. code-block:: python tasks = { # ... } conditions = { 'windows-msvc' : { 'platform' : 'windows', 'toolchain' : 'msvc', }, } buildtypes = { 'debug' : { }, 'release' : { 'cxxflags.select' : { 'windows-msvc': '/O2', 'default': '-O2', }, }, } In this example for build type 'release' we set value '/O2' to 'cxxflags' if toolchain 'msvc' is used on MS Windows and set '-02' for all other cases. This method can be used for any parameter in :ref:`task params<buildconf-taskparams>` excluding :ref:`features<buildconf-taskparams-features>` in the form: YAML format: .. code-block:: yaml <parameter name>.select: <condition name1>: <value> <condition name2>: <value> ... default: <value> Python format: .. code-block:: python '<parameter name>.select' : { '<condition name1>' : <value>, '<condition name2>' : <value>, ... 'default' : <value>, } A <parameter name> here is a parameter from :ref:`task params<buildconf-taskparams>`. Examples: 'toolchain.select', 'source.select', 'use.select', etc. Each condition name must refer to a key in :ref:`conditions<buildconf-conditions>` or to one of built-in conditions (see below). There is also special optional key ``default`` wich means default value if none of the conditions has been selected. If the key ``default`` doen't exist then ZenMake tries to use the value of <parameter name> if it exists. If none of the conditions has been selected and no default value for the parameter then this parameter will not be used. Keys in :ref:`conditions<buildconf-conditions>` are just strings which consist of latin characters, digits and symbols '+', '-', '_' . A value for each condition is a dict with one or more such parameters: :platform: Selected platform like 'linux', 'windows', 'darwin', etc. Valid values are the same as for ``default`` in the :ref:`buildtypes<buildconf-buildtypes>`. It can be one value or list of values or string with more than one value separated by spaces like this: 'linux windows'. :host-os: Selected basic name of a host operating system. It is almost the same as the ``platform`` parameter but for the MSYS2 and cygwin platforms it is always 'windows' and for the darwin platform it is 'macos'. :distro: Name of a Linux distribution like 'debian', 'fedora', etc. This name is empty string for other operating systems. :cpu-arch: Selected current CPU architecture. Actual it's a result of the python function platform.machine() See https://docs.python.org/library/platform.html. Some possible values are: arm, i386, i686, x86_64, AMD64. Real value depends on a platform. For example, on Windows you can get AMD64 while on Linux you gets x86_64 on the same host. Current value can be obtained also with the command ``zenmake sysinfo``. It can be one value or list of values or string with more than one value separated by spaces like this: 'i686 x86_64'. :toolchain: Selected/detected toolchain. It can be one value or list of values or string with more than one value separated by spaces like this: 'gcc clang'. :task: Selected build task name. It can be one value or list of values or string with more than one value separated by spaces like this: 'mylib myprogram'. :buildtype: Selected buildtype. It can be one value or list of values or string with more than one value separated by spaces like this: 'debug release'. :env: Check system environment variables. It's a dict of pairs <variable> : <value>. Example in YAML format: .. code-block:: yaml conditions: my-env: env: TEST: 'true' # use 'true' as a string CXX: gcc Example in Python format: .. code-block:: python conditions = { 'my-env' : { 'env' : { 'TEST' : 'true', 'CXX' : 'gcc', } }, } If a parameter in a condition contains more than one value then any of these values will fulfill selected condition. It means if some condition, for example, has ``platform`` which contains ``'linux windows'`` without other parameters then this condition will be selected on any of these platforms (on GNU/Linux and on MS Windows). But with parameter ``env`` the situation is different. This parameter can contain more than one environment variable and a condition will be selected only when all of these variables are equal to existing variables from the system environment. If you want to have condition to select by any of such variables you can do it by making different conditions in :ref:`conditions<buildconf-conditions>`. .. note:: There is a constraint for ``toolchain.select`` - it's not possible to use a condition with the 'toolchain' parameter inside ``toolchain.select``. Only one record from ``*.select`` for each parameter can be selected for each task during configuring but a condition name in ``*.select`` can be string with more than one name from ``conditions``. Such names can be used with 'and', 'or', 'not' and '()' to form different conditions in ``*.select``. Example in YAML format: .. code-block:: yaml conditions: linux: platform: linux g++: toolchain: g++ buildtypes: debug: {} release: cxxflags.select: # will be selected only on linux with selected/detected toolchain g++ linux and g++: -Ofast # will be selected in all other cases default: -O2 Example in Python format: .. code-block:: python conditions = { 'linux' : { 'platform' : 'linux', }, 'g++' : { 'toolchain' : 'g++', }, } buildtypes = { 'debug' : { }, 'release' : { 'cxxflags.select' : { # will be selected only on linux with selected/detected toolchain g++ 'linux and g++': '-Ofast', # will be selected in all other cases 'default': '-O2', }, }, } For convenience there are ready to use built-in conditions for known platforms and supported toolchains. So in example above the ``conditions`` variable is not needed at all because conditions with names ``linux`` and ``g++`` already exist: in YAML format: .. code-block:: yaml # no declaration of conditions buildtypes: debug: {} release: cxxflags.select: # will be selected only on linux with selected/detected toolchain g++ linux and g++: -Ofast # will be selected in all other cases default: -O2 in Python format: .. code-block:: python # no declaration of conditions buildtypes = { 'debug' : { }, 'release' : { 'cxxflags.select' : { # will be selected only on linux with selected/detected toolchain g++ 'linux and g++': '-Ofast', # will be selected in all other cases 'default': '-O2', }, }, } Also you can use built-in conditions for supported buildtypes. But if any name of supported buildtype is the same as one of known platforms or supported toolchains then such a buildtype cannot be used as a built-in condition. For example, you may want to make/use the buildtype 'linux' and it will be possible but you have to declare a different name to use it in conditions in this case because the 'linux' value is one of known platforms. There is one detail about built-in conditions for toolchains - only toolchains supported for current build tasks can be used. ZenMake detects them from all ``features`` of all existing build tasks in current project during configuring. For example, if tasks exist for C language only then supported toolchains for all other languages cannot be used as a built-in condition. If you declare condition in :ref:`conditions<buildconf-conditions>` with the same name of a built-in condition then your condition will be used instead of that built-in condition.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/buildconf-select.rst
buildconf-select.rst
.. ZenMake documentation master file, created by sphinx-quickstart on Thu Sep 26 14:16:40 2019. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. .. include:: global.rst.inc ZenMake documentation =================================== ZenMake - build system based on the meta build system Waf_. .. toctree:: :maxdepth: 2 :glob: introduction why quickstart installation buildconf buildconf-taskparams buildconf-select buildconf-edeps buildconf-ext-syntax commands envvars langs toolkits config-actions dependencies tests perftips faq changelog license
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/index.rst
index.rst
.. include:: global.rst.inc .. highlight:: console .. _commands: Commands ===================== Here are some descriptions of general commands. You can get the list of the all commands with a short description by ``zenmake help`` or ``zenmake --help``. To get help on selected command you can use ``zenmake help <selected command>`` or ``zenmake <selected command> --help``. Some commands have short aliases. For example you can use ``bld`` instead of ``build`` and ``dc`` instead of ``distclean``. configure Configure the project. In most cases you don't need to call this command directly. The ``build`` command calls this command by itself if necessary. This command processes most of values from :ref:`buildconf<buildconf>` of a project. Any change in :ref:`buildconf<buildconf>` leads to call of this command. You can change this behaviour with parameter ``autoconfig`` in buildconf :ref:`general features<buildconf-general>`. build Build the project in the current directory. It's the main command. To see all possible parameters use ``zenmake help build`` or ``zenmake build --help``. For example you can use ``-v`` to see more info about building process or ``-p`` to use progress bar instead of text logging. By default it calls the ``configure`` command by itself if necessary. test Build (if necessery) and run tests in the current directory. If the project has no tests it's almost the same as running the ``build`` command. The ``test`` command builds and runs tests by default while the ``build`` command doesn't. run Build the project (if necessery) and run one executable target from the build directory. You can specify build task/target to run if the project has more than one executable targets or omit it if the project has only one executable target. To provide command line args directly to your program you can put them after '--' in command line after all args for ZenMake. This command is for fast checking of the built project. clean Remove build files for selected ``buildtype`` of the project. It doesn't touch other build files. cleanall Remove the build directory of the project with everything in it. install Install the build targets in some destination directory using installation prefix. It builds targets by itself if necessary. You can control paths with :ref:`environment variables<envvars>` or command line parameters (see ``zenmake help install``). It looks like classic ``make install`` in common. uninstall Remove the build targets installed with the ``install`` command.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/commands.rst
commands.rst
.. include:: global.rst.inc .. highlight:: console .. _installation: Installation ============ **Dependencies** * Python_ >=3.5. Python must have threading support. Python has threading in most cases while nobody uses ``--without-threads`` for Python building. Python >= 3.7 always has threading. * `PyYAML <https://pyyaml.org/>`_ It's optional and needed only if you use yaml :ref:`buildconf<buildconf>`. ZenMake can be used with yaml buildconf file even with PyYAML not installed in an operating system because ZenMake has an internal copy of PyYAML python library. This copy is used only if there is no PyYAML installed in an operating system. There are different ways to install/use ZenMake: .. contents:: :local: Via python package (pip) ------------------------ ZenMake has its `own python package <pypipkg_>`_. You can install it by:: pip install zenmake In this way pip will install PyYAML if it's not installed already. .. note:: ``POSIX``: It requires root and will install it system-wide. Alternatively, you can use:: pip install --user zenmake which will install it for your user and does not require any special privileges. This will install the package in ~/.local/, so you will have to add ~/.local/bin to your PATH. ``Windows``: It doesn't always require administrator rights. .. note:: You need to have ``pip`` installed. Most of the modern Linux distributions have pip in their packages. On Windows you can use, for example, `chocolatey <https://chocolatey.org/>`_ to install pip. Common instructions to install pip can be found `here <https://pip.pypa.io/en/stable/installing/>`_. .. note:: You can install ZenMake with pip and virtualenv_. In this case you don't touch system packages and it doesn't require root privileges. After installing you can run ZenMake just by typing:: zenmake .. _installation-via-git: Via git ---------- You can use ZenMake from Git repository. But branch ``master`` can be broken. Also, you can just to switch to the required version using git tag. Each version of ZenMake has a git tag. The body of ZenMake application is located in ``src/zenmake`` path in the repository. You don't need other directories and files in repository and you can remove them if you want. Then you can make symlink to ``src/zenmake/zmrun.py``, shell alias or make executable .sh script (for Linux/MacOS/..) or .bat (for Windows) to run ZenMake. Example for Linux (``zmrepo`` is custom directory):: $ mkdir zmrepo $ cd zmrepo $ git clone https://github.com/pustotnik/zenmake.git . Next step is optional. Switch to existing version, for example to 0.7.0:: $ git checkout v0.7.0 Here you can make symlink/alias/script to run zenmake. Other options to run ZenMake:: $ <path-to-zenmake-repo>/src/zenmake/zmrun.py or:: $ python <path-to-zenmake-repo>/src/zenmake As a zip application ------------------------ Zenmake can be run as an executable python zip application. And ZenMake can make such zipapp with the command ``zipapp``. Using steps from `Via Git <installation-via-git_>`_ you can run:: $ python src/zenmake zipapp $ ls *.pyz zenmake.pyz $ ./zenmake.pyz ... Resulting file ``zenmake.pyz`` can be run standalone without the repository and pip. You can copy ``zenmake.pyz`` to the root of your project and distribute this file with your project. It can be used on any supported platform and doesn't require any additional access and changes in your system. .. note:: Since ZenMake 0.10.0 you can download ready to use ``zenmake.pyz`` from GitHub `releases <github_releases_>`_. .. _virtualenv: https://pypi.python.org/pypi/virtualenv/
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/installation.rst
installation.rst
.. include:: global.rst.inc .. _introduction: Introduction ============ What is it? ----------- ZenMake is a cross-platform build system for C/C++ and some other languages. It uses meta build system Waf_ as a framework. Some reasons to create this project can be found :ref:`here<why>`. Main features ------------- - Build config as python (.py) or as yaml file. Details are :ref:`here<buildconf>`. - Distribution as zip application or as system package (pip). See :ref:`Installation<installation>`. - Automatic reconfiguring: no need to run command 'configure'. - Compiler autodetection. - Building and running functional/unit tests including an ability to build and run tests only on changes. Details are :ref:`here<buildtests>`. - Build configs in sub directories. - Building external dependencies. - Supported platforms: GNU/Linux, MacOS, MS Windows. Some other platforms like OpenBSD/FreeBSD should work as well but it hasn't been tested. - Supported languages: - C: gcc, clang, msvc, icc, xlc, suncc, irixcc - C++: g++, clang++, msvc, icpc, xlc++, sunc++ - D: dmd, ldc2, gdc; MS Windows is not supported yet - Fortran: gfortran, ifort (should work but not tested) - Assembler: gas (GNU Assembler) - Supported toolkits/frameworks: - SDL v2 (Linux only) - GTK v3 (Linux only) - Qt v5 Plans to do ------------ There is no clear roadmap for this project. I add features that I think are needed to include. Project links ------------- .. include:: projectlinks.rst
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/introduction.rst
introduction.rst
.. include:: global.rst.inc .. highlight:: python .. _config-actions: Configuration actions ===================== ZenMake supports some configuration actions. They can be used to check system libraries, headers, etc. To set configuration actions use the ``configure`` parameter in :ref:`task params<buildconf-taskparams>`. The value of the ``configure`` parameter must be a list of such actions. An item in the list can be a ``dict`` where ``do`` specifies what to do, in other words it is some type of configuration action. It's like a function where ``do`` describes the name of a function and others parameters are parameters for the function. There is another possible value for such an item in python format of buildconf file and it is a python function which must return True/False on Success/Failure. If such a function raises some exception then ZenMake interprets it as if the function returns False. This function can be without arguments or with named arguments: ``taskname``, ``buildtype``. It's better to use `**kwargs` to have universal way to work with any input arguments. These actions can be run sequentially or in parallel (see ``do`` = ``parallel``). And they all are called on the **configure** step (in command **configure**). Results of the same configuration actions are cached when it's possible but not between runnings of ZenMake. These configuration actions in ``dict`` format: ``do`` = ``check-headers`` *Parameters*: ``names``, ``defname`` = '', ``defines`` = [], ``mandatory`` = True. *Supported languages*: C, C++. Check existence of C/C++ headers from the ``names`` list. The ``defname`` parameter is a name of a define to set for your code when the action is over. By default the name for each header is generated in the form 'HAVE_<HEADER NAME>=1'. For example, if you set 'cstdio' in the ``names`` then the define 'HAVE_CSTDIO=1' will be generated. If you set 'stdio.h' in the ``names`` then the define 'HAVE_STDIO_H=1' will be generated. The ``defines`` parameter can be used to set additional C/C++ defines to use in compiling of the action. These defines will not be set for your code, only for the action. The :ref:`toolchain<buildconf-taskparams-toolchain>`, :ref:`includes<buildconf-taskparams-includes>` and :ref:`libpath<buildconf-taskparams-libpath>` task parameters affect this type of action. ``do`` = ``check-libs`` *Parameters*: ``names`` = [], ``fromtask`` = True, ``defines`` = [], ``autodefine`` = False, ``mandatory`` = True. *Supported languages*: C, C++. Check existence of the shared libraries from the ``libs`` task parameter or/and from the ``names`` list. If ``fromtask`` is set to False then names of libraries from the ``libs`` task parameter will not be used for checking. If ``autodefine`` is set to True it generates C/C++ define name like ``HAVE_LIB_LIBNAME=1``. The ``defines`` parameter can be used to set additional C/C++ defines to use in compiling of the action. These defines will not be set for your code, only for the action. The :ref:`toolchain<buildconf-taskparams-toolchain>`, :ref:`includes<buildconf-taskparams-includes>` and :ref:`libpath<buildconf-taskparams-libpath>` task parameters affect this type of action. ``do`` = ``check-code`` *Parameters*: ``text`` = '', ``file`` = '', ``label`` = '', ``defines`` = [], ``defname`` = '', ``execute`` = False, ``mandatory`` = True. *Supported languages*: C, C++, D, Fortran. Provide piece of code for the test. Code can be provided with the ``text`` parameter as a plane text or with the ``file`` parameter as a path to the file with a code. This path can be absolute or relative to the :ref:`startdir<buildconf-startdir>`. At least one of the ``text`` or ``file`` parameters must be set. The ``label`` parameter can be used to mark message of the test. If the ``execute`` parameter is True it means that the resulting binary will be executed and the result will have effect on the current configuration action. The ``defname`` parameter is a name of C/C++/D/Fortran define to set for your code when the test is over. There is no such a name by default. The ``defines`` parameter can be used to set additional C/C++/D/Fortran defines to use in compiling of the test. These defines will not be set for your code, only for the test. The :ref:`toolchain<buildconf-taskparams-toolchain>`, :ref:`includes<buildconf-taskparams-includes>` and :ref:`libpath<buildconf-taskparams-libpath>` task parameters affect this type of action. ``do`` = ``find-program`` *Parameters*: ``names``, ``paths``, ``var`` = '', ``mandatory`` = True. *Supported languages*: all languages supported by ZenMake. Find a program. The ``names`` parameter must be used to specify one or more possible file names for the program. Do not add an extension for portability. This action does nothing if ``names`` is empty. The ``paths`` parameter can be used to set paths to find the program, but usually you don't need to use it because by default the ``PATH`` system environment variable is used. Also the Windows Registry is used on MS Windows if the program was not found. The ``var`` parameter can be used to set :ref:`substitution<buildconf-substitutions-vars>` variable name. By default it's a first name from the ``names`` in upper case and without symbols '-' and '.'. If this name is found in environment variables, ZenMake will use it instead of trying to find the program. Also this name can be used in parameter :ref:`run <buildconf-taskparams-run>` like this: in YAML format: .. code-block:: yaml foo.luac: source : foo.lua configure : [ { do: find-program, names: luac } ] # var 'LUAC' will be set in 'find-program' if 'luac' is found. run: '${LUAC} -s -o $(tgt) $(src)' in Python format: .. code-block:: python 'foo.luac' : { 'source' : 'foo.lua', 'configure' : [ dict(do = 'find-program', names = 'luac'), ], # var 'LUAC' will be set in 'find-program' if 'luac' is found. 'run': '${LUAC} -s -o $(tgt) $(src)', }, ``do`` = ``find-file`` *Parameters*: ``names``, ``paths``, ``var`` = '', ``mandatory`` = True. *Supported languages*: all languages supported by ZenMake. Find a file on file system. The ``names`` parameter must be used to specify one or more possible file names. This action does nothing if ``names`` is empty. The ``paths`` parameter must be used to set paths to find the file. Each path can be absolute or relative to the :ref:`startdir<buildconf-startdir>`. By default it's '.' which means :ref:`startdir<buildconf-startdir>`. The ``var`` parameter can be used to set :ref:`substitution<buildconf-substitutions-vars>` variable name. By default it's a first name from the ``names`` in upper case and without symbols '-' and '.'. ``do`` = ``call-pyfunc`` *Parameters*: ``func``, ``mandatory`` = True. *Supported languages*: any but only in python format of buildconf file. Call a python function. It'a another way to use python function as an action. In this way you can use the ``mandatory`` parameter. ``do`` = ``pkgconfig`` *Parameters*: ``toolname`` = 'pkg-config', ``toolpaths``, ``packages``, ``cflags`` = True, ``libs`` = True, ``static`` = False, ``defnames`` = True, ``def-pkg-vars``, ``tool-atleast-version``, ``pkg-version`` = False, ``mandatory`` = True. *Supported languages*: C, C++. Execute ``pkg-config`` or compatible tool (for example ``pkgconf``) and use results. The ``toolname`` parameter can be used to set name of the tool and it is 'pkg-config' by default. The ``toolpaths`` parameter can be used to set paths to find the tool, but usually you don't need to use it. The ``packages`` parameter is required parameter to set one or more names of packages in database of pkg-config. Each such a package name can be used with '>', '<', '=', '<=' or '>=' to check version of a package. The parameters named ``cflags`` (default: True), ``libs`` = (default: True), ``static`` (default: False) are used to set corresponding command line parameters ``--cflags``, ``--libs``, ``--static`` for 'pkg-config' to get compiler/linker options. If ``cflags`` or ``libs`` is True then obtained compiler/linker options are used by ZenMake in a build task. Parameter ``static`` means forcing of static libraries and it is ignored if ``cflags`` and ``libs`` are False. The ``defnames`` parameter is used to set C/C++ defines. It can be True/False or ``dict``. If it's True then default names for defines will be used. If it's False then no defines will be used. If it's ``dict`` then keys must be names of used packages and values must be dicts with keys ``have`` and ``version`` and values as names for defines. By default it's True. Each package can have 'HAVE_PKGNAME' and 'PKGNAME_VERSION' define where PKGNAME is a package name in upper case. And it's default patterns. But you can set custom defines. Name of 'PKGNAME_VERSION' is used only if ``pkg-version`` is True. The ``pkg-version`` parameter can be used to get 'define' with version of a package. It can be True of False. If it's True then 'define' will be set. If it's False then corresponding 'define' will not be set. It's False by default. This parameter will not set 'define' if ``defnames`` is False. The ``def-pkg-vars`` parameter can be used to set custom values of variables for 'pkg-config'. It must be ``dict`` where keys and values are names and values of these variables. ZenMake uses the command line option ``--define-variable`` for this parameter. It's empty by default. The ``tool-atleast-version`` parameter can be used to check minimum version of selected tool (pkg-config). Examples in YAML format: .. code-block:: yaml # Elements like 'tasks' and other task params are skipped # ZenMake will check package 'gtk+-3.0' and set define 'HAVE_GTK_3_0=1' configure: - do: pkgconfig packages: gtk+-3.0 # ZenMake will check packages 'gtk+-3.0' and 'pango' and # will check 'gtk+-3.0' version > 1 and <= 100. # Before checking of packages ZenMake will check that 'pkg-config' version # is greater than 0.1. # Also it will set defines 'WE_HAVE_GTK3=1', 'HAVE_PANGO=1', # GTK3_VER="gtk3-ver" and LIBPANGO_VER="pango-ver" where 'gtk3-ver' # and 'pango-ver' are values of current versions of # 'gtk+-3.0' and 'pango'. configure: - do: pkgconfig packages: 'gtk+-3.0 > 1 pango gtk+-3.0 <= 100' tool-atleast-version: '0.1' pkg-version: true defnames: gtk+-3.0: { have: WE_HAVE_GTK3, version: GTK3_VER } pango: { version: LIBPANGO_VER } Examples in Python format: .. code-block:: python # Elements like 'tasks' and other task params are skipped # ZenMake will check package 'gtk+-3.0' and set define 'HAVE_GTK_3_0=1' 'configure' : [ { 'do' : 'pkgconfig', 'packages' : 'gtk+-3.0' }, ] # ZenMake will check packages 'gtk+-3.0' and 'pango' and # will check 'gtk+-3.0' version > 1 and <= 100. # Before checking of packages ZenMake will check that 'pkg-config' version # is greater than 0.1. # Also it will set defines 'WE_HAVE_GTK3=1', 'HAVE_PANGO=1', # GTK3_VER="gtk3-ver" and LIBPANGO_VER="pango-ver" where 'gtk3-ver' # and 'pango-ver' are values of current versions of # 'gtk+-3.0' and 'pango'. 'configure' : [ { 'do' : 'pkgconfig', 'packages' : 'gtk+-3.0 > 1 pango gtk+-3.0 <= 100 ', 'tool-atleast-version' : '0.1', 'pkg-version' : True, 'defnames' : { 'gtk+-3.0' : { 'have' : 'WE_HAVE_GTK3', 'version': 'GTK3_VER' }, 'pango' : { 'version': 'LIBPANGO_VER' }, }, }, ], ``do`` = ``toolconfig`` *Parameters*: ``toolname`` = 'pkg-config', ``toolpaths``, ``args`` = '\-\-cflags \-\-libs', ``static`` = False, ``parse-as`` = 'flags-libs', ``defname``, ``var``, ``msg``, ``mandatory`` = True. *Supported languages*: any. Execute any ``*-config`` tool. It can be pkg-config, sdl-config, sdl2-config, mpicc, etc. ZenMake doesn't know which tool will be used and therefore this action can be used in any task including standalone runcmd task. The ``toolname`` parameter must be used to set name of such a tool. The ``toolpaths`` parameter can be used to set paths to find the tool, but usually you don't need to use it. The ``args`` parameter can be used to set command line arguments. By default it is '\-\-cflags \-\-libs'. The ``static`` parameter means forcing of static libraries and it is ignored if ``parse-as`` is not set to 'flags-libs'. The ``parse-as`` parameter describes how to parse output. If it is 'none' then output will not be parsed. If it is 'flags-libs' then ZenMake will try to parse the output for compiler/linker options but ZenMake knows how to parse C/C++ compiler/linker options only, other languages are not supported for this value. And if it is 'entire' then output will not be parsed but value of output will be set to define name from the ``defname`` and/or ``var`` if they are defined. By default ``parse-as`` is set to 'flags-libs'. The ``defname`` parameter can be used to set C/C++ define. If ``parse-as`` is set to 'flags-libs' then ZenMake will try to set define name by using value of the ``toolname`` discarding '-config' part if it exists. For example if the ``toolname`` is 'sdl2-config' then 'HAVE_SDL2=1' will be used. For other values of ``parse-as`` there is no default value for ``defname`` but you can set some custom define name. The ``var`` parameter can be used to set :ref:`substitution<buildconf-substitutions-vars>` variable name. This parameter is ignored if value of ``parse-as`` is not 'entire'. By default it is not defined. The ``msg`` parameter can be used to set custom message for this action. Examples in YAML format: .. code-block:: yaml tasks: myapp: # other task params are skipped configure: # ZenMake will get compiler/linker options for SDL2 and # set define to 'HAVE_SDL2=1' - do: toolconfig toolname: sdl2-config # ZenMake will get SDL2 version and put it in the define 'SDL2_VERSION' - do: toolconfig toolname: sdl2-config msg: Getting SDL2 version args: --version parse-as: entire defname: SDL2_VERSION Examples in Python format: .. code-block:: python tasks = { 'myapp' : { # other task params are skipped 'configure' : [ # ZenMake will get compiler/linker options for SDL2 and # set define to 'HAVE_SDL2=1' { 'do' : 'toolconfig', 'toolname' : 'sdl2-config' }, # ZenMake will get SDL2 version and put it in the define 'SDL2_VERSION' { 'do' : 'toolconfig', 'toolname' : 'sdl2-config', 'msg' : 'Getting SDL2 version', 'args' : '--version', 'parse-as' : 'entire', 'defname' : 'SDL2_VERSION', }, ] }, } ``do`` = ``write-config-header`` *Parameters*: ``file`` = '', ``guard`` = '', ``remove-defines`` = True, ``mandatory`` = True. *Supported languages*: C, C++. Write a configuration header in the build directory after some configuration actions. By default file name is ``<task name>_config.h``. The ``guard`` parameter can be used to change C/C++ header guard. The ``remove-defines`` parameter means removing the defines after they are added into configuration header file and it is True by default. In your C/C++ code you can just include this file like that: .. code-block:: c++ #include "yourconfig.h" You can override file name by using the ``file`` parameter. ``do`` = ``parallel`` *Parameters*: ``actions``, ``tryall`` = False, ``mandatory`` = True. *Supported languages*: all languages supported by ZenMake. Run configuration actions from the ``actions`` parameter in parallel. Not all types of actions are supported. Allowed actions are ``check-headers``, ``check-libs``, ``check-code`` and ``call-pyfunc``. If you use ``call-pyfunc`` in ``actions`` you should understand that python function must be thread safe. If you don't use any shared data in such a function you don't need to worry about concurrency. If the ``tryall`` parameter is True then all configuration actions from the ``actions`` parameter will be executed despite of errors. By default the ``tryall`` is False. You can control order of the actions by using the parameters ``before`` and ``after`` with the parameter ``id``. For example, one action can have ``id = 'base'`` and then another action can have ``after = 'base'``. Any configuration action has the ``mandatory`` parameter which is True by default. It also has effect for any action inside ``actions`` for parallel actions and for the whole bundle of parallel actions as well. All results (defines and some other values) of configuration actions (excluding ``call-pyfunc``) in one build task can be exported to all dependent build tasks. Use :ref:`export<buildconf-taskparams-export>` with the name `config-results` for this ability. It allows you to avoid writing the same config actions in tasks and reduce configuration actions time run. Example in python format: .. code-block:: python def check(**kwargs): buildtype = kwargs['buildtype'] # some checking return True tasks = { 'myapp' : { 'features' : 'cxxshlib', 'libs' : ['m', 'rt'], # ... 'configure' : [ # do checking in function 'check' check, # Check libs from param 'libs' # { 'do' : 'check-libs' }, { 'do' : 'check-headers', 'names' : 'cstdio', 'mandatory' : True }, { 'do' : 'check-headers', 'names' : 'cstddef stdint.h', 'mandatory' : False }, # Each lib will have define 'HAVE_LIB_<LIBNAME>' if autodefine = True { 'do' : 'check-libs', 'names' : 'pthread', 'autodefine' : True, 'mandatory' : False }, { 'do' : 'find-program', 'names' = 'python' }, { 'do' : 'parallel', 'actions' : [ { 'do' : 'check-libs', 'id' : 'syslibs' }, { 'do' : 'check-headers', 'names' : 'stdlib.h iostream' }, { 'do' : 'check-headers', 'names' : 'stdlibasd.h', 'mandatory' : False }, { 'do' : 'check-headers', 'names' : 'string', 'after' : 'syslibs' }, ], 'mandatory' : False, #'tryall' : True, }, #{ 'do' : 'write-config-header', 'file' : 'myapp_config.h' } { 'do' : 'write-config-header' }, ], }, }
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/config-actions.rst
config-actions.rst
.. include:: global.rst.inc .. _languages: Supported languages =================== C/C++ ----------- C an C++ are main languages that ZenMake supports. And the most of ZenMake features were made for these languages. Supported compilers: - C: - GCC C (gcc): regularly tested - CLANG C from LLVM (clang): regularly tested - Microsoft Visual C/C++ (msvc): regularly tested - Intel C/C++ (icc): should work but not tested - IBM XL C/C++ (xlc): should work but not tested - Oracle/Sun C (suncc): should work but not tested - IRIX/MIPSpro C (irixcc): may be works, not tested - C++: - GCC C++ (g++): regularly tested - CLANG C++ from LLVM (clang++): regularly tested - Microsoft Visual C/C++ (msvc): regularly tested - Intel C/C++ (icpc): should work but not tested - IBM XL C/C++ (xlc++): should work but not tested - Oracle/Sun C++ (sunc++): should work but not tested Examples of projects can be found in the directory ``c`` and ``cpp`` in the repository `here <repo_demo_projects_>`_. Assembler ----------- ZenMake supports gas (GNU Assembler) and has experimental support for nasm/yasm. Examples of projects can be found in the directory ``asm`` in the repository `here <repo_demo_projects_>`_. D ----------- ZenMake supports compiling for D language. You can configure and build D code like C/C++ code but there are some limits: - There is no support for MS Windows yet. - There is no support for D package manager DUB. While nobody uses ZenMake for D, there are no plans to resolve these issues. Supported compilers: - DMD Compiler - official D compiler (dmd): regularly tested - GCC D Compiler (gdc): regularly tested - LLVM D compiler (ldc2): regularly tested Examples of projects can be found in the directory ``d`` in the repository `here <repo_demo_projects_>`_. FORTRAN ----------- ZenMake supports compiling for Fortran language. Supported compilers: - GCC Fortran Compiler (gfortran): regularly tested - Intel Fortran Compiler (ifort): should work but not tested Examples of projects can be found in the directory ``fortran`` in the repository `here <repo_demo_projects_>`_.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/langs.rst
langs.rst
.. include:: global.rst.inc .. highlight:: python .. _buildconf: Build config ============ ZenMake uses build configuration file with name ``buildconf.py`` or ``buildconf.yaml``/``buildconf.yml``. First variant is a regular python file and second one is an YAML file. ZenMake doesn't use both files in one directory at the same time. If both files exist in one directory then only ``buildconf.py`` will be used. Common name ``buildconf`` is used in this manual. The format for both config files is the same. YAML variant is a little more readable but in python variant you can add a custom python code if you wish. Simplified scheme of buildconf is: .. parsed-literal:: startdir_ = path buildroot_ = path realbuildroot_ = path project_ = { ... } :ref:`buildconf-general` = { ... } cliopts_ = { ... } conditions_ = { ... } tasks_ = { name: :ref:`task parameters<buildconf-taskparams>` } buildtypes_ = { name: :ref:`task parameters<buildconf-taskparams>` } toolchains_ = { name: parameters } byfilter_ = [ { for: {...}, set: :ref:`task parameters<buildconf-taskparams>` }, ... ] :ref:`buildconf-subdirs` = [] edeps_ = { ... } Also see :ref:`syntactic sugar<buildconf-syntactic-sugar>`. .. _buildconf-dict-def: Where symbols '{}' mean an associative array/dictionary and symbols '[]' mean a list. In python notation '{}' is known as dictionary. In some other languages it's called an associative array including YAML (Of course YAML is not programming language but it's markup language). For shortness it's called a ``dict`` here. Not all variables are required in the scheme above but buildconf cannot be empty. All variables have reserved names and they all are described here. Other names in buildconf are just ignored by ZenMake (excluding :ref:`substitution variables<buildconf-substitutions>`) if present and it means they can be used for some custom purposes. .. note:: **About paths in general.** You can use native paths but it's recommended to use wherever possible POSIX paths (Symbol ``/`` is used as a separator in a path). With POSIX paths you will ensure the same paths on different platforms/operating systems. POSIX paths will be converted into native paths automatically, but not vice versa. For example, path 'my/path' will be converted into 'my\\path' on Windows. Also it's recommended to use relative paths wherever possible. .. warning:: ``Windows only``: do NOT use short filename notation (8.3 filename) for paths in buildconf files. It can cause unexpected errors. Below is the detailed description of each buildconf variable. .. _buildconf-startdir: startdir """""""" A start path for all paths in a buildconf. It is ``.`` by default. The path can be absolute or relative to directory where current buildconf file is located. It means that by default all other relative paths in the current buildconf file are considered as the paths relative to directory with the current buildconf file. But you can change this by setting a different value to this variable. .. _buildconf-buildroot: buildroot """"""""" A path to the root of a project build directory. By default it is directory 'build' in the directory with the top-level buildconf file of the project. Path can be absolute or relative to the startdir_. It is important to be able to remove the build directory safely, so it should never be given as ``.`` or ``..``. .. note:: If you change value of ``buildroot`` with already using/existing build directory then ZenMake will not touch previous build directory. You can remove previous build directory manually or run command ``distclean`` before changing of ``buildroot``. ZenMake cannot do it because it stores all meta information in current build directory and if you change this directory it will lose all such an information. This can be changed in the future by storing extra information in some other place like user home directory but now it is. .. _buildconf-realbuildroot: realbuildroot """"""""""""" A path to the real root of a project build directory and by default it is equal to value of ``buildroot``. It is optional parameter and if ``realbuildroot`` has different value from ``buildroot`` then ``buildroot`` will be symlink to ``realbuildroot``. Using ``realbuildroot`` makes sense mostly on linux where '/tmp' is usually on tmpfs filesystem nowadays and it can used to make building in memory. Such a way can improve speed of building. Note that on Windows OS the process of ZenMake needs to be started with enabled "Create symbolic links" privilege and usual user doesn't have a such privilege. Path can be absolute or relative to the startdir_. It is important to be able to remove the build directory safely, so it should never be given as ``.`` or ``..``. .. _buildconf-project: project """"""" A `dict <buildconf-dict-def_>`_ with some parameters for the project. Supported values: :name: The name of the project. It's name of the top-level startdir_ directory by default. :version: The version of the project. It's empty by default. It's used as default value for :ref:`ver-num<buildconf-taskparams-ver-num>` field if not empty. .. _buildconf-general: general """""""" A `dict <buildconf-dict-def_>`_ array with some general features. Supported values: :autoconfig: Execute the command ``configure`` automatically in the command ``build`` if it's necessary. It's ``True`` by default. Usually you don't need to change this value. :monitor-files: Set extra file paths to check changes in them. You can use additional files with your buildconf file(s). For example it can be extra python module with some tools. But in this case ZenMake doesn't know about such files when it checks buildconf file(s) for changes to detect if it must call command ``configure`` for feature ``autoconfig``. You can add such files to this variable and ZenMake will check them for changes as it does so for regular buildconf file(s). If paths contain spaces and all these paths are listed in one string then each such a path must be in quotes. :hash-algo: Set hash algorithm to use in ZenMake. It can be ``sha1`` or ``md5``. By default ZenMake uses sha1 algorithm to control changes of config/built files and for some other things. Sha1 has much less collisions than md5 and that's why it's used by default. Modern CPUs often has support for this algorithm and sha1 show better or almost the same performance than md5 in this cases. But in some cases md5 can be faster and you can set here this variant. However, don't expect big difference in performance of ZenMake. Also, if a rare "FIPS compliant" build of Python is used it's always sha1 anyway. :db-format: Set format for internal ZenMake db/cache files. Use one of possible values: ``py``, ``pickle``, ``msgpack``. The value ``py`` means text file with python syntax. It is not fastest format but it is human readable one. The value ``pickle`` means python pickle binary format. It has good performance and python always supports this format. The value ``msgpack`` means msgpack binary format by using python module ``msgpack``. Using of this format can decrease ZenMake overhead in building of some big projects because it has the best performance among all supported formats. If the package ``msgpack`` doesn't exist in the current system then the ``pickle`` value will be used. Note: ZenMake doesn't try to install package ``msgpack``. This package must be installed in some other way. The default value is ``pickle``. :provide-edep-targets: Provide target files of :ref:`external dependencies<dependencies-external>` in the :ref:`buildroot<buildconf-buildroot>` directory. It is useful to run built files from the build directory without the need to use such a thing as LD_LIBRARY_PATH for each dependency. Only existing and used target files are provided. Static libraries are also ignored because they are not needed to run built files. On Windows ZenMake copies these files while on other OS (Linux, MacOS, etc) it makes symlinks. It's ``False`` by default. :build-work-dir-name: Set a name of work directory which is used mostly for object files during compilation. This directory seperates resulting target files from other files in a buildtype directory to avoid file/directory conflicts. Usually you don't need to set this parameter until some target name has conflict with default value of this parameter. The default value is ``@bld``. .. _buildconf-cliopts: cliopts """""""" A `dict <buildconf-dict-def_>`_ array with default values for command line options. It can be any existing command line option that ZenMake has. If you want to set an option for selected commands then you can set it in the format of a `dict <buildconf-dict-def_>`_ where key is a name of specific command or special value 'any' which means any command. If some command doesn't have selected option then it will be ignored. Example in YAML format: .. code-block:: yaml cliopts: verbose: 1 jobs : { build : 4 } progress : any: false build: true .. note:: Selected command here is a command that is used on command line. It means if you set an option for the ``build`` command and zenmake calls the ``configure`` command before this command by itself then this option will be applied for both ``configure`` and ``build`` commands. In other words it is like you are running this command with this option on command line. .. _buildconf-conditions: conditions """"""""""" A `dict <buildconf-dict-def_>`_ with conditions for :ref:`selectable parameters<buildconf-select>`. .. _buildconf-tasks: tasks """"" A `dict <buildconf-dict-def_>`_ with build tasks. Each task has own unique name and :ref:`parameters<buildconf-taskparams>`. Name of task can be used as dependency id for other build tasks. Also this name is used as a base for resulting target file name if parameter ``target`` is not set in :ref:`task parameters<buildconf-taskparams>`. In this variable you can set up build parameters particularly for each build task. Example in YAML format: .. code-block:: yaml tasks: mylib : # some task parameters myexe : # some task parameters use : mylib .. note:: Parameters in this variable can be overridden by parameters in buildtypes_ and/or byfilter_. .. note:: Name of a task cannot contain symbol ``:``. You can use parameter ``target`` if you want to have this symbol in resulting target file names. .. _buildconf-buildtypes: buildtypes """""""""" A `dict <buildconf-dict-def_>`_ with build types like ``debug``, ``release``, ``debug-gcc`` and so on. Here is also a special value with name ``default`` that is used to set default build type if nothing is specified. Names of these build types are just names, they can be any name but not ``default``. Also you should remember that these names are used as directory names. So don't use incorrect symbols if you don't want a problem with it. This variable can be empty or absent. In this case current buildtype is always just an empty string. Possible parameters for each build type are described in :ref:`task parameters<buildconf-taskparams>`. Special value ``default`` must be a string with the name of one of the build types or a `dict <buildconf-dict-def_>`_ where keys are supported name of the host operating system and values are strings with the names of one of the build types. Special key '_' or 'no-match' can be used in the ``default`` to define a value that will be used if the name of the current host operating system is not found among the keys in the ``default``. Valid host operating system names: ``linux``, ``windows``, ``darwin``, ``freebsd``, ``openbsd``, ``sunos``, ``cygwin``, ``msys``, ``riscos``, ``atheos``, ``os2``, ``os2emx``, ``hp-ux``, ``hpux``, ``aix``, ``irix``. .. note:: Only ``linux``, ``windows`` and ``darwin`` are tested. Examples in YAML format: .. code-block:: yaml buildtypes: debug : { toolchain: auto-c++ } debug-gcc : { toolchain: g++, cxxflags: -fPIC -O0 -g } release-gcc : { toolchain: g++, cxxflags: -fPIC -O2 } debug-clang : { toolchain: clang++, cxxflags: -fPIC -O0 -g } release-clang: { toolchain: clang++, cxxflags: -fPIC -O2 } debug-msvc : { toolchain: msvc, cxxflags: /Od /EHsc } release-msvc : { toolchain: msvc, cxxflags: /O2 /EHsc } default: debug buildtypes: debug: toolchain.select: default: g++ darwin: clang++ windows: msvc cxxflags.select: default : -O0 -g msvc : /Od /EHsc release: toolchain.select: default: g++ darwin: clang++ windows: msvc cxxflags.select: default : -O2 msvc : /O2 /EHsc default: debug buildtypes: debug-gcc : { cxxflags: -O0 -g } release-gcc : { cxxflags: -O2 } debug-clang : { cxxflags: -O0 -g } release-clang: { cxxflags: -O2 } debug-msvc : { cxxflags: /Od /EHsc } release-msvc : { cxxflags: /O2 /EHsc } default: _: debug-gcc linux: debug-gcc darwin: debug-clang windows: debug-msvc .. note:: Parameters in this variable override corresponding parameters in tasks_ and can be overridden by parameters in byfilter_. .. _buildconf-toolchains: toolchains """""""""" A `dict <buildconf-dict-def_>`_ with custom toolchain setups. It's useful for simple cross builds for example, or for custom settings for existing toolchains. Each value has unique name and parameters. Parameters are also dict with names of environment variables and special name ``kind`` that is used to specify the type of toolchain/compiler. Environment variables are usually such variables as ``CC``, ``CXX``, ``AR``, etc that are used to specify name or path to existing toolchain/compiler. Path can be absolute or relative to the startdir_. Also such variables as ``CFLAGS``, ``CXXFLAGS``, etc can be set here. Names of toolchains from this parameter can be used as a value for the ``toolchain`` in :ref:`task parameters<buildconf-taskparams>`. Example in YAML format: .. code-block:: yaml toolchains: custom-g++: kind : auto-c++ CXX : custom-toolchain/gccemu/g++ AR : custom-toolchain/gccemu/ar custom-clang++: kind : clang++ CXX : custom-toolchain/clangemu/clang++ AR : custom-toolchain/clangemu/llvm-ar g++: LINKFLAGS : -Wl,--as-needed .. _buildconf-byfilter: byfilter """""""" This variable describes extra/alternative way to set up build tasks. It's a list of `dicts <buildconf-dict-def_>`_ with attributes ``set`` and ``for``, ``not-for`` and/or ``if``. Attributes ``for``/``not-for``/``if`` describe conditions for parameters in attribute ``set``, that is, a filter to set some build task parameters. The attribute ``for`` is like a ``if a`` and the attribute ``not-for`` is like a ``if not b`` where ``a`` and ``b`` are some conditions. And they are like a ``if a and if not b`` when both of them exist in the same item. The attribute ``not-for`` has higher priority in the case of the same condition in the both of them. Since v0.11 ZenMake supports ``if`` attribute where you can set a string with python like expression. The ``for``/``not-for`` are dicts and ``if`` is an expression. In ``for``/``not-for``/``if`` you can use such variables as dict keys in ``for``/``not-for`` and as keywords within an expression: :task: Build task name or list of build task names. It can be existing task(s) from tasks_ or new (only in ``for``). :buildtype: Build type or list of build types. It can be existing build type(s) from buildtypes_ or new (only in ``for``). :platform: Name of a host platform/operating system or list of them. Valid values are the same as for ``default`` in buildtypes_. The ``if`` is a real python expression with some builtin functions. You can use standard python operators as '(', ')', 'and', 'or', 'not', '==', '!=' and 'in'. ZenMake supports a little set of extensions as well: =========================== ========================================================== Name Description =========================== ========================================================== true The same as python 'True'. false The same as python 'False'. startswith(str, prefix) Returns true if 'str' starts with the specified 'prefix'. endswith(str, prefix) Returns true if 'str' ends with the specified 'suffix'. =========================== ========================================================== The attribute ``set`` has value of the :ref:`task parameters<buildconf-taskparams>`. Other features: - If some key parameter is not specified in ``for``/``not-for``/``if`` it means that this is for all possible values of this kind of condition. For example if it has no ``task`` it means 'for all existing tasks'. Special word ``all`` (without any other parameters) can be used to indicate that current item must be applied to all build tasks. Empty dict (i.e. ``{}``) in ``for``/``not-for`` can be used for the same reason as well. - Variable 'byfilter' overrides all matched values defined in tasks_ and buildtypes_. - Items in ``set`` with the same names and the same conditions in ``for``/``not-for``/``if`` override items defined before. - If ``for``/``not-for`` and ``if`` are used for the same ``set`` then result will be the intersection of resulting sets from ``for``/``not-for`` and ``if``. - When ``set`` is empty or not defined it does nothing. .. note:: ZenMake applies every item in the ``byfilter`` in the order as they were written. It's possible to use ``byfilter`` without tasks_ and buildtypes_. Example in YAML format: .. code-block:: yaml GCC_BASE_CXXFLAGS: -std=c++11 -fPIC buildtypes: debug-gcc : { cxxflags: $GCC_BASE_CXXFLAGS -O0 -g } release-gcc : { cxxflags: $GCC_BASE_CXXFLAGS -O2 } debug-clang : { cxxflags: $GCC_BASE_CXXFLAGS -O0 -g } release-clang: { cxxflags: $GCC_BASE_CXXFLAGS -O2 } debug-msvc : { cxxflags: /Od /EHsc } release-msvc : { cxxflags: /O2 /EHsc } default: _: debug-gcc linux: debug-gcc darwin: debug-clang windows: debug-msvc byfilter: - for: all set: { includes: '.', rpath : '.', } - for: { task: shlib shlibmain } set: { features: cxxshlib } - for: { buildtype: debug-gcc release-gcc, platform: linux } set: toolchain: g++ linkflags: -Wl,--as-needed - for: { buildtype: release-gcc } not-for : { platform : windows } set: { cxxflags: -fPIC -O3 } - for: { buildtype: [debug-clang, release-clang], platform: linux darwin } set: { toolchain: clang++ } - if: endswith(buildtype, '-gcc') and platform == 'linux' set: toolchain: g++ linkflags: -Wl,--as-needed - if: buildtype == 'release-gcc' and platform == 'linux' set: cxxflags: $GCC_BASE_CXXFLAGS -O3 - if: endswith(buildtype, '-clang') and platform in ('linux', 'darwin') set: toolchain: clang++ - if: endswith(buildtype, '-msvc') and platform == 'windows' set: toolchain: msvc .. note:: Parameters in this variable override corresponding parameters in tasks_ and in buildtypes_. .. _buildconf-subdirs: subdirs """"""" This variable controls including buildconf files from other sub directories of the project. - If it is list of paths then ZenMake will try to use this list as paths to sub directories with the buildconf files and will use all found ones. Paths can be absolute or relative to the :ref:`startdir<buildconf-startdir>`. - If it is an empty list or just absent at all then ZenMake will not try to use any sub directories of the project to find buildconf files. Example in Python format: .. code-block:: python subdirs = [ 'libs/core', 'libs/engine', 'main', ] Example in YAML format: .. code-block:: yaml subdirs: - libs/core - libs/engine - main See some details :ref:`here<dependencies-subdirs>`. .. _buildconf-edeps: edeps """""""""""" A `dict <buildconf-dict-def_>`_ with configurations of external non-system dependencies. Each such a dependency has own unique name which can be used in task parameter :ref:`use<buildconf-taskparams-use>`. See full description of parameters :ref:`here<buildconf-edep-params>`. Description of external dependencies is :ref:`here<dependencies-external>`. .. note:: More examples of buildconf files can be found in repository `here <repo_demo_projects_>`_.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/buildconf.rst
buildconf.rst
.. include:: global.rst.inc .. highlight:: console .. _perftips: Performance tips ================ Here are some tips which can help to improve performance of ZenMake in some cases. Hash algorithm """"""""""""""""""""" By default ZenMake uses sha1 algorithm to control changes of config/built files and for some other things. Modern CPUs often have support for this algorithm and sha1 shows better or almost the same performance as md5 in this cases. But in some other cases md5 can be faster and you can switch to use this hash algorithm. However, don't expect a big difference in performance of ZenMake. It's recommended to check if it really has positive effect before using of md5. To change hash algorithm you can use parameter ``hash-algo`` in buildconf :ref:`general features<buildconf-general>`.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/perftips.rst
perftips.rst
.. include:: global.rst.inc .. highlight:: bash .. _quickstart: Quickstart guide ================ To use ZenMake you need :ref:`ZenMake<installation>` and :ref:`buildconf<buildconf>` file in the root of your project. Let's consider an example with this structure: .. code-block:: shell testproject ├── buildconf.yml ├── prog │   └── test.cpp └── shlib ├── util.cpp └── util.h For this project ``buildconf.yml`` can be like that: .. code-block:: yaml :linenos: tasks: util : features : cxxshlib source : 'shlib/**/*.cpp' includes : '.' program : features : cxxprogram source : 'prog/**/*.cpp' includes : '.' use : util buildtypes: debug : toolchain : clang++ cxxflags : -O0 -g release : toolchain : g++ cxxflags : -O2 default : debug ===== ======================================================================= Lines Description ===== ======================================================================= 1 Section with build tasks 2,6 Names of build tasks. By default they are used as target names. Resulting target names will be adjusted depending on a platform. For example, on Windows 'program' will result to 'program.exe'. 3 Mark build task as a C++ shared library. 4 Specify all \*.cpp files in the directory 'shlib' recursively. 5,9 Specify the path for C/C++ headers relative to the project root directory. In this example, this parameter is optional as ZenMake adds the project root directory itself. But it's an example. 7 Mark build task as a C++ executable. 8 Specify all \*.cpp files in the directory 'prog' recursively. 10 Specify task 'util' as dependency to task 'program'. 12 Section with build types. 13,16 Names of build types. They can be almost any. 14 Specify Clang C++ compiler for debug. 15 Specify C++ compiler flags for debug. 17 Specify g++ compiler (from GCC) for release. 18 Specify C++ compiler flags for release. 19 Special case: specify default build type that is used when no build type was specified for ZenMake command. ===== ======================================================================= In case of using python config the file ``buildconf.py`` with the same values as above would look like this: .. code-block:: python tasks = { 'util' : { 'features' : 'cxxshlib', 'source' : 'shlib/**/*.cpp', 'includes' : '.', }, 'program' : { 'features' : 'cxxprogram', 'source' : 'prog/**/*.cpp', 'includes' : '.', 'use' : 'util', }, } buildtypes = { 'debug' : { 'toolchain' : 'clang++', 'cxxflags' : '-O0 -g', }, 'release' : { 'toolchain' : 'g++', 'cxxflags' : '-O2', }, 'default' : 'debug', } Once you have the config, run ``zenmake`` in the root of the project and ZenMake does the build: .. code-block:: console $ zenmake * Project name: 'testproject' * Build type: 'debug' Setting top to : /tmp/testproject Setting out to : /tmp/testproject/build Checking for 'clang++' : /usr/lib/llvm/11/bin/clang++ [1/4] Compiling shlib/util.cpp [2/4] Compiling prog/test.cpp [3/4] Linking build/debug/libutil.so [4/4] Linking build/debug/program 'build' finished successfully (0.531s) Running ZenMake without any parameters in a directory with ``buildconf.py`` or ``buildconf.yml`` is the same as running ``zenmake build``. Otherwise it's the same as ``zenmake help``. Get the list of all commands with a short description using ``zenmake help`` or ``zenmake --help``. To get help on selected command you can use ``zenmake help <selected command>`` or ``zenmake <selected command> --help`` For example to build ``release`` of the project above such a command can be used: .. code-block:: console $ zenmake build -b release * Project name: 'testproject' * Build type: 'release' Setting top to : /tmp/testproject Setting out to : /tmp/testproject/build Checking for 'g++' : /usr/bin/g++ [1/4] Compiling shlib/util.cpp [2/4] Compiling prog/test.cpp [3/4] Linking build/release/libutil.so [4/4] Linking build/release/program 'build' finished successfully (0.498s) Here is some possible variant of extended version of the config from above: .. code-block:: yaml :emphasize-lines: 6,22-25 tasks: util : features : cxxshlib source : 'shlib/**/*.cpp' includes : '.' libs : boost_timer # <-- Add the boost timer library as dependency program : features : cxxprogram source : 'prog/**/*.cpp' includes : '.' use : util buildtypes: debug : toolchain : clang++ cxxflags : -O0 -g release : toolchain : g++ cxxflags : -O2 default : debug configure: - do: check-headers names : cstdio iostream # <-- Check C++ 'cstdio' and 'iostream' headers - do: check-libs # <-- Check all libraries from the 'libs' parameter One of the effective and simple ways to learn something is to use real examples. So it is recommended to look at examples in ``demos`` directory which can be found in the repository `here <repo_demo_projects_>`_.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/quickstart.rst
quickstart.rst
.. include:: global.rst.inc .. highlight:: none .. _why: Why? ============ Short answer: because I could and wanted. Long answer is below. https://news.ycombinator.com/item?id=18789162 :: Cool. One more "new" build system... Yes, I know, we already have a lot of them. I decided to create this project because I couldn’t find a build tool for Linux which is quick and easy to use, flexible, ready to use, with declarative configuration, without the need to learn one more special language and suitable for my needs. I know about lots of build systems and I have tried some of them. Well, a little story of the project. In 2010 year I developed a build system in a company where I was working that time. It was a build system based on Waf and it was used successfully for linux projects several years. But that system had a lot of internal problems and I wanted to remake it from scratch. And in `2013 <https://bitbucket.org/pustotnik/zenmake.old/src/master/>`_ year I tried to begin a new project. But I had no time to develop it at that time. Then, in 2019 year I decided to make some own opensorce project and was selecting a build system for my project. I was considering only opensource cross-platform build systems that can build C/C++ projects on GNU/Linux. Firstly I tried CMake, then Meson and Waf. Also I was looking at some other build systems like Bazel. Eventually, I concluded that I had to try to make my own build tool. I would do it mostly for myself, but I would be glad if my tool was useful for others. .. All text below was hiding and TAB was added Below there is very small comparison of ZenMake with some of existing popular build systems. Remember, it's not complete technical comparison. **CMake** - ZenMake uses YAML and/or python language for build config files. CMake uses own language. - ZenMake uses mostly declarative syntax. CMake uses imperative syntax. - ZenMake can be used as embedded build system or as installed in an OS build system. CMake must be installed in an OS. - ZenMake supports gathering of source files with wildcards. CMake doesn't recommend to use wildcards due to a problem:: We do not recommend using GLOB to collect a list of source files from your source tree. If no CMakeLists.txt file changes when a source is added or removed then the generated build system cannot know when to ask CMake to regenerate. **Meson** - ZenMake uses YAML and/or python language for build config files. Meson uses some dialect of python language. - ZenMake can be used as embedded build system or as installed in an OS build system. Meson must be installed in an OS. - ZenMake supports gathering of source files with wildcards. Meson doesn't support wildcards for performance reasons: https://mesonbuild.com/FAQ.html#why-cant-i-specify-target-files-with-a-wildcard **Bazel** - ZenMake uses YAML and/or python language for build config files. Bazel uses some dialect of python language with name 'Starlark'. - ZenMake can be used as embedded build system or as installed in an OS build system. Bazel must be installed in an OS. - Bazel is large build system and therefore it almost is not used for opensorce projects. ZenMake is small and has minimum dependencies. **Waf** - ZenMake uses Waf as internal framework. - ZenMake uses YAML and/or python language for build config files. Waf uses python language. - Waf is very flexible but build scripts for Waf are often not easy to create/use if you don't know Waf. Build configs for ZenMake are easier to create/use. - ZenMake can be used as embedded build system or as installed in an OS build system. Waf is not considered for installing in an OS by the author of Waf. There are many other build systems like Make, Autotools, SCons, xmake, etc. But I was lazy to make comparison for all existing build systems. Anyway ZenMake is very young project and has no large number of features.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/why.rst
why.rst
.. include:: global.rst.inc .. _toolkits: Supported toolkits =================== .. _toolkits_qt5: Qt5 ----------- To build C++ project with Qt5 you can put ``qt5`` in :ref:`features<buildconf-taskparams-features>`. In such tasks in the :ref:`source<buildconf-taskparams-source>` parameter not only .cpp files but .qrc, .ui and .ts files can be specified as well. There are additional task parameters for Qt5 tasks: :ref:`moc<buildconf-taskparams-moc>`, :ref:`rclangprefix<buildconf-taskparams-rclangprefix>`, :ref:`langdir-defname<buildconf-taskparams-langdir-defname>`, :ref:`bld-langprefix<buildconf-taskparams-bld-langprefix>`, :ref:`unique-qmpaths<buildconf-taskparams-unique-qmpaths>`, :ref:`install-langdir<buildconf-taskparams-install-langdir>`. There are also several additional environment variables for Qt5 toolkit such as: :ref:`QT5_BINDIR<envvars-qt5bindir>`, :ref:`QT5_SEARCH_ROOT<envvars-qt5searchroot>`, :ref:`QT5_LIBDIR<envvars-qt5libdir>` and some others. ZenMake tries to find Qt5 with ``qmake`` and searches for it in ``QT5_SEARCH_ROOT`` and in the system ``PATH`` environment variables. You can use ``QT5_BINDIR`` to set directory path with ``qmake`` in it. The ``PATH`` and ``QT5_SEARCH_ROOT`` environment variables are ignored in this case. You can specify minimum/maximum version of Qt5 with the :ref:`QT5_MIN_VER<envvars-qt5minver>` and :ref:`QT5_MAX_VER<envvars-qt5maxver>` environment variables. To specify needed Qt5 modules you should use the :ref:`use<buildconf-taskparams-use>` parameter like this: .. code-block:: yaml use : QtWidgets QtDBus # original title case of Qt5 modules must be used ZenMake always adds ``QtCore`` module to the ``use`` for tasks with ``qt5`` in :ref:`features<buildconf-taskparams-features>` because every other Qt5 module depends on ``QtCore`` module. So you don't need to specify ``QtCore`` to the ``use`` parameter. Simple Qt5 task can be like that: .. code-block:: yaml tasks: myqt5app: features : cxxprogram qt5 source : prog/**/*.cpp prog/**/*.qrc prog/**/*.ui prog/**/*.ts moc : prog/**/*.h use : QtWidgets Also it is recommended to look at examples in the ``qt5`` directory in the repository `here <repo_demo_projects_>`_.
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/docs/toolkits.rst
toolkits.rst
# pylint: disable = invalid-name, missing-function-docstring """ Copyright (c) 2020, Alexander Magola All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import sys import os import subprocess import tempfile import shutil import atexit import mimetypes import requests import keyring ZMDIR = os.path.dirname(os.path.abspath(__file__)) ZMDIR = os.path.abspath(os.path.join(ZMDIR, os.path.pardir)) os.chdir(ZMDIR) REPO_OWNER = 'pustotnik' REPO_NAME = 'zenmake' REPO_RELEASES_URL = 'https://api.github.com/repos/{0}/{1}/releases'.format(REPO_OWNER, REPO_NAME) ZENMAKE_BIN_DIR = os.path.join(ZMDIR, 'src', 'zenmake') PYTHON_EXE = sys.executable TMP_DIR = tempfile.mkdtemp() sys.path.append(ZENMAKE_BIN_DIR) @atexit.register def _removeTmpDir(): shutil.rmtree(TMP_DIR) def prepareAssets(): files = [] cmd = [PYTHON_EXE, ZENMAKE_BIN_DIR, 'zipapp', '--destdir', TMP_DIR] devnull = open(os.devnull, 'w') subprocess.call(cmd, stdout = devnull) from zm.zipapp import ZIPAPP_NAME files.append(os.path.join(TMP_DIR, ZIPAPP_NAME)) return files def makeAuthHeader(token): return { 'Authorization': 'token {0}'.format(token) } def makeRelease(tag, token): ver = tag[1:] if tag[0] == 'v' else tag response = requests.post( REPO_RELEASES_URL, json = { 'tag_name': tag, #'target_commitish': 'master', 'name': tag, 'body': 'version {0}'.format(ver), 'prerelease': False, 'draft': False, }, headers = makeAuthHeader(token) ) return response def getRelease(tag, token): url = '{0}/tags/{1}'.format(REPO_RELEASES_URL, tag) response = requests.get(url, headers = makeAuthHeader(token)) return response def getReleaseAssets(releaseId, token): url = '{0}/{1}/assets'.format(REPO_RELEASES_URL, releaseId) response = requests.get(url, headers = makeAuthHeader(token)) response.raise_for_status() return response def deleteReleaseAsset(assetId, token): url = '{0}/assets/{1}'.format(REPO_RELEASES_URL, assetId) response = requests.delete(url, headers = makeAuthHeader(token)) return response def uploadReleaseAsset(path, uploadUrl, token): contentType, _ = mimetypes.guess_type(path) if contentType is None: contentType = 'application/octet-stream' headers = makeAuthHeader(token) headers['Content-Type'] = contentType params = { 'name': os.path.basename(path) } with open(path, "rb") as file: response = requests.post( uploadUrl, data = file, params = params, headers = headers ) response.raise_for_status() return response def obtainRelease(tag, token): response = makeRelease(tag, token) responseJson = response.json() errors = responseJson.get('errors', []) created = not any(err.get('code') == 'already_exists' for err in errors) if created: response.raise_for_status() else: response = getRelease(tag, token) response.raise_for_status() responseJson = response.json() return responseJson def uploadAssets(releaseJson, files, token): releaseId = releaseJson['id'] assets = getReleaseAssets(releaseId, token).json() for asset in assets: deleteReleaseAsset(asset['id'], token) uploadUrl = releaseJson['upload_url'] uploadUrl = uploadUrl[0:uploadUrl.index('{')] for file in files: path = os.path.join(ZMDIR, file) uploadReleaseAsset(path, uploadUrl, token) def main(): """ do main work """ cmdArgs = sys.argv[1:] if not cmdArgs: print("There is no tag version in args") return 1 tagVer = cmdArgs[0] if tagVer[0] != 'v': tagVer = 'v' + tagVer #print("Publishing release {0} to github ...".format(tagVer)) files = prepareAssets() #keyring.set_password("github-zenmake", "deploy-token", "token value") token = keyring.get_password("github-zenmake", "deploy-token") releaseJson = obtainRelease(tagVer, token) uploadAssets(releaseJson, files, token) return 0 if __name__ == '__main__': sys.exit(main())
zenmake
/zenmake-0.11.0.tar.gz/zenmake-0.11.0/scripts/publish-github-release.py
publish-github-release.py
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [[email protected]](mailto:[email protected]). All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0, available at [https://www.contributor-covenant.org/version/2/0/code_of_conduct.html][v2.0]. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder][Mozilla CoC]. For answers to common questions about this code of conduct, see the FAQ at [https://www.contributor-covenant.org/faq][FAQ]. Translations are available at [https://www.contributor-covenant.org/translations][translations]. [homepage]: https://www.contributor-covenant.org [v2.0]: https://www.contributor-covenant.org/version/2/0/code_of_conduct.html [Mozilla CoC]: https://github.com/mozilla/inclusion [FAQ]: https://www.contributor-covenant.org/faq [translations]: https://www.contributor-covenant.org/translations
zenml
/zenml-0.44.1.tar.gz/zenml-0.44.1/CODE-OF-CONDUCT.md
CODE-OF-CONDUCT.md
<!-- PROJECT SHIELDS --> <!-- *** I'm using markdown "reference style" links for readability. *** Reference links are enclosed in brackets [ ] instead of parentheses ( ). *** See the bottom of this document for the declaration of the reference variables *** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use. *** https://www.markdownguide.org/basic-syntax/#reference-style-links --> [![PyPi][pypi-shield]][pypi-url] [![PyPi][pypiversion-shield]][pypi-url] [![PyPi][downloads-shield]][downloads-url] [![Contributors][contributors-shield]][contributors-url] [![License][license-shield]][license-url] <!-- [![Build][build-shield]][build-url] --> <!-- [![CodeCov][codecov-shield]][codecov-url] --> <!-- MARKDOWN LINKS & IMAGES --> <!-- https://www.markdownguide.org/basic-syntax/#reference-style-links --> [pypi-shield]: https://img.shields.io/pypi/pyversions/zenml?style=for-the-badge [pypi-url]: https://pypi.org/project/zenml/ [pypiversion-shield]: https://img.shields.io/pypi/v/zenml?style=for-the-badge [downloads-shield]: https://img.shields.io/pypi/dm/zenml?style=for-the-badge [downloads-url]: https://pypi.org/project/zenml/ [codecov-shield]: https://img.shields.io/codecov/c/gh/zenml-io/zenml?style=for-the-badge [codecov-url]: https://codecov.io/gh/zenml-io/zenml [contributors-shield]: https://img.shields.io/github/contributors/zenml-io/zenml?style=for-the-badge [contributors-url]: https://github.com/othneildrew/Best-README-Template/graphs/contributors [license-shield]: https://img.shields.io/github/license/zenml-io/zenml?style=for-the-badge [license-url]: https://github.com/zenml-io/zenml/blob/main/LICENSE [linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-url]: https://www.linkedin.com/company/zenml/ [twitter-shield]: https://img.shields.io/twitter/follow/zenml_io?style=for-the-badge [twitter-url]: https://twitter.com/zenml_io [slack-shield]: https://img.shields.io/badge/-Slack-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [slack-url]: https://zenml.io/slack-invite [build-shield]: https://img.shields.io/github/workflow/status/zenml-io/zenml/Build,%20Lint,%20Unit%20&%20Integration%20Test/develop?logo=github&style=for-the-badge [build-url]: https://github.com/zenml-io/zenml/actions/workflows/ci.yml <!-- PROJECT LOGO --> <br /> <div align="center"> <a href="https://zenml.io"> <img alt="ZenML Logo" src="https://user-images.githubusercontent.com/3348134/223112746-345126ff-a0e8-479f-8ac0-670d78f71712.png" alt="Logo" width="400"> </a> <h3 align="center">Build portable, production-ready MLOps pipelines.</h3> <p align="center"> A simple yet powerful open-source framework that integrates all your ML tools. <br /> <a href="https://docs.zenml.io/"><strong>Explore the docs »</strong></a> <br /> <div align="center"> Join our <a href="https://zenml.io/slack-invite" target="_blank"> <img width="25" src="https://cdn3.iconfinder.com/data/icons/logos-and-brands-adobe/512/306_Slack-512.png" alt="Slack"/> <b>Slack Community</b> </a> and be part of the ZenML family. </div> <br /> <a href="https://zenml.io/features">Features</a> · <a href="https://zenml.io/roadmap">Roadmap</a> · <a href="https://github.com/zenml-io/zenml/issues">Report Bug</a> · <a href="https://zenml.io/discussion">Vote New Features</a> · <a href="https://blog.zenml.io/">Read Blog</a> · <a href="#-meet-the-team">Meet the Team</a> <br /> <b>ZenML Cloud</b> is now available in beta. <a href="https://cloud.zenml.io">Sign up</a> to see it in action. <br /> 🎉 Version 0.44.1 is out. Check out the release notes <a href="https://github.com/zenml-io/zenml/releases">here</a>. <br /> <a href="https://www.linkedin.com/company/zenml/"> <img src="https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555" alt="Logo"> </a> <a href="https://twitter.com/zenml_io"> <img src="https://img.shields.io/badge/-Twitter-black.svg?style=for-the-badge&logo=twitter&colorB=555" alt="Logo"> </a> <a href="https://www.youtube.com/c/ZenML"> <img src="https://img.shields.io/badge/-YouTube-black.svg?style=for-the-badge&logo=youtube&colorB=555" alt="Logo"> </a> </p> </div> <!-- TABLE OF CONTENTS --> <details> <summary>🏁 Table of Contents</summary> <ol> <li><a href="#-introduction">Introduction</a></li> <li><a href="#-quickstart">Quickstart</a></li> <li> <a href="#-create-your-own-mlops-platform">Create your own MLOps Platform</a> <ul> <li><a href="##-1-deploy-zenml">Deploy ZenML</a></li> <li><a href="#-2-deploy-stack-components">Deploy Stack Components</a></li> <li><a href="#-3-create-a-pipeline">Create a Pipeline</a></li> <li><a href="#-4-start-the-dashboard">Start the Dashboard</a></li> </ul> </li> <li><a href="#-roadmap">Roadmap</a></li> <li><a href="#-contributing-and-community">Contributing and Community</a></li> <li><a href="#-getting-help">Getting Help</a></li> <li><a href="#-license">License</a></li> </ol> </details> <br /> # 🤖 Introduction 🤹 ZenML is an extensible, open-source MLOps framework for creating portable, production-ready machine learning pipelines. By decoupling infrastructure from code, ZenML enables developers across your organization to collaborate more effectively as they develop to production. - 💼 ZenML gives data scientists the freedom to fully focus on modeling and experimentation while writing code that is production-ready from the get-go. - 👨‍💻 ZenML empowers ML engineers to take ownership of the entire ML lifecycle end-to-end. Adopting ZenML means fewer handover points and more visibility on what is happening in your organization. - 🛫 ZenML enables MLOps infrastructure experts to define, deploy, and manage sophisticated production environments that are easy to use for colleagues. ![The long journey from experimentation to production.](/docs/book/.gitbook/assets/intro-zenml-overview.png) ZenML provides a user-friendly syntax designed for ML workflows, compatible with any cloud or tool. It enables centralized pipeline management, enabling developers to write code once and effortlessly deploy it to various infrastructures. <div align="center"> <img src="docs/book/.gitbook/assets/stack.gif"> </div> # 🤸 Quickstart [Install ZenML](https://docs.zenml.io/getting-started/installation) via [PyPI](https://pypi.org/project/zenml/). Python 3.8 - 3.11 is required: ```bash pip install "zenml[server]" ``` Take a tour with the guided quickstart by running: ```bash zenml go ``` # 🖼️ Create your own MLOps Platform ZenML allows you to create and manage your own MLOps platform using best-in-class open-source and cloud-based technologies. Here is an example of how you could set this up for your team: ## 🔋 1. Deploy ZenML For full functionality ZenML should be deployed on the cloud to enable collaborative features as the central MLOps interface for teams. ![ZenML Architecture Diagram.](docs/book/.gitbook/assets/Scenario3.png) Currently, there are two main options to deploy ZenML: - **ZenML Cloud**: With [ZenML Cloud](https://docs.zenml.io/deploying-zenml/zenml-cloud), you can utilize a control plane to create ZenML servers, also known as tenants. These tenants are managed and maintained by ZenML's dedicated team, alleviating the burden of server management from your end. - **Self-hosted deployment**: Alternatively, you have the flexibility to [deploy ZenML on your own self-hosted environment](https://docs.zenml.io/deploying-zenml/zenml-self-hosted). This can be achieved through various methods, including using our CLI, Docker, Helm, or HuggingFace Spaces. ## 👨‍🍳 2. Deploy Stack Components ZenML boasts a ton of [integrations](https://zenml.io/integrations) into popular MLOps tools. The [ZenML Stack](https://docs.zenml.io/user-guide/starter-guide/understand-stacks) concept ensures that these tools work nicely together, therefore bringing structure and standardization into the MLOps workflow. Deploying and configuring this is super easy with ZenML. For **AWS**, this might look a bit like this ```bash # Deploy and register an orchestrator and an artifact store zenml orchestrator deploy kubernetes_orchestrator --flavor kubernetes --cloud aws zenml artifact-store deploy s3_artifact_store --flavor s3 # Register this combination of components as a stack zenml stack register production_stack --orchestrator kubernetes_orchestrator --artifact-store s3_artifact_store --set # Register your production environment ``` When you run a pipeline with this stack set, it will be running on your deployed Kubernetes cluster. You can also [deploy your own tooling manually](https://docs.zenml.io/stacks-and-components/stack-deployment). ## 🏇 3. Create a Pipeline Here's an example of a hello world ZenML pipeline in code: ```python # run.py from zenml import pipeline, step @step def step_1() -> str: """Returns the `world` substring.""" return "world" @step def step_2(input_one: str, input_two: str) -> None: """Combines the two strings at its input and prints them.""" combined_str = input_one + ' ' + input_two print(combined_str) @pipeline def my_pipeline(): output_step_one = step_1() step_2(input_one="hello", input_two=output_step_one) if __name__ == "__main__": my_pipeline() ``` ```bash python run.py ``` ## 👭 4. Start the Dashboard Open up the ZenML dashboard using this command. ```bash zenml show ``` ![ZenML Dashboard](docs/book/.gitbook/assets/landingpage.png) # 🗺 Roadmap ZenML is being built in public. The [roadmap](https://zenml.io/roadmap) is a regularly updated source of truth for the ZenML community to understand where the product is going in the short, medium, and long term. ZenML is managed by a [core team](https://zenml.io/company#CompanyTeam) of developers that are responsible for making key decisions and incorporating feedback from the community. The team oversees feedback via various channels, and you can directly influence the roadmap as follows: - Vote on your most wanted feature on our [Discussion board](https://zenml.io/discussion). - Start a thread in our [Slack channel](https://zenml.io/slack-invite). - [Create an issue](https://github.com/zenml-io/zenml/issues/new/choose) on our GitHub repo. # 🙌 Contributing and Community We would love to develop ZenML together with our community! Best way to get started is to select any issue from the [`good-first-issue` label](https://github.com/zenml-io/zenml/labels/good%20first%20issue). If you would like to contribute, please review our [Contributing Guide](CONTRIBUTING.md) for all relevant details. # 🆘 Getting Help The first point of call should be [our Slack group](https://zenml.io/slack-invite/). Ask your questions about bugs or specific use cases, and someone from the [core team](https://zenml.io/company#CompanyTeam) will respond. Or, if you prefer, [open an issue](https://github.com/zenml-io/zenml/issues/new/choose) on our GitHub repo. # 📜 License ZenML is distributed under the terms of the Apache License Version 2.0. A complete version of the license is available in the [LICENSE](LICENSE) file in this repository. Any contribution made to this project will be licensed under the Apache License Version 2.0.
zenml
/zenml-0.44.1.tar.gz/zenml-0.44.1/README.md
README.md
# 🧑‍💻 Contributing to ZenML A big welcome and thank you for considering contributing to ZenML! It’s people like you that make it a reality for users in our community. Reading and following these guidelines will help us make the contribution process easy and effective for everyone involved. It also communicates that you agree to respect the developers' time management and develop these open-source projects. In return, we will reciprocate that respect by reading your issue, assessing changes, and helping you finalize your pull requests. ## ⚡️ Quicklinks - [🧑‍💻 Contributing to ZenML](#-contributing-to-zenml) - [⚡️ Quicklinks](#-quicklinks) - [🧑‍⚖️ Code of Conduct](#-code-of-conduct) - [🛫 Getting Started](#-getting-started) - [⁉️ Issues](#-issues) - [🏷 Pull Requests: When to make one](#-pull-requests-when-to-make-one) - [💯 Pull Requests: Workflow to Contribute](#-pull-requests-workflow-to-contribute) - [🧐 Linting, formatting, and tests](#-linting-formatting-and-tests) - [🚨 Reporting a Vulnerability](#-reporting-a-vulnerability) - [Coding Conventions](#coding-conventions) - [👷 Creating a new Integration](#-creating-a-new-integration) - [🆘 Getting Help](#-getting-help) ## 🧑‍⚖️ Code of Conduct We take our open-source community seriously and hold ourselves and other contributors to high standards of communication. By participating and contributing to this project, you agree to uphold our [Code of Conduct](https://github.com/zenml-io/zenml/blob/master/CODE-OF-CONDUCT.md) . ## 🛫 Getting Started Contributions are made to this repo via Issues and Pull Requests (PRs). A few general guidelines that cover both: - To report security vulnerabilities, please get in touch at [[email protected]](mailto:[email protected]), monitored by our security team. - Search for existing Issues and PRs before creating your own. - We work hard to make sure issues are handled on time, but it could take a while to investigate the root cause depending on the impact. A friendly ping in the comment thread to the submitter or a contributor can help draw attention if your issue is blocking. The best way to start is to check the [`good-first-issue`](https://github.com/zenml-io/zenml/labels/good%20first%20issue) label on the issue board. The core team creates these issues as necessary smaller tasks that you can work on to get deeper into ZenML internals. These should generally require relatively simple changes, probably affecting just one or two files which we think are ideal for people new to ZenML. The next step after that would be to look at the [`good-second-issue`](https://github.com/zenml-io/zenml/labels/good%20second%20issue) label on the issue board. These are a bit more complex, might involve more files, but should still be well-defined and achievable to people relatively new to ZenML. ### ⁉️ Issues Issues should be used to report problems with the library, request a new feature, or to discuss potential changes before a PR is created. When you create a new Issue, a template will be loaded that will guide you through collecting and providing the information we need to investigate. If you find an Issue that addresses your problem, please add your own reproduction information to the existing issue rather than creating a new one. Adding a [reaction](https://github.blog/2016-03-10-add-reactions-to-pull-requests-issues-and-comments/) can also help by indicating to our maintainers that a particular issue is affecting more than just the reporter. ### 🏷 Pull Requests: When to make one Pull Requests (PRs) to ZenML are always welcome and can be a quick way to get your fix or improvement slated for the next release. In general, PRs should: - Only fix/add the functionality in question **OR** address widespread whitespace/style issues, not both. - Add unit or integration tests for fixed or changed functionality (if a test suite already exists). - Address a single concern in the least number of changed lines as possible. - Include documentation in the repo or in your Pull Request. - Be accompanied by a filled-out Pull Request template (loaded automatically when a PR is created). For changes that address core functionality or would require breaking changes (e.g. a major release), it's best to open an Issue to discuss your proposal first. This is not required but can save time creating and reviewing changes. ### 💯 Pull Requests: Workflow to Contribute <p class="callout warning">Please note that development in ZenML happens off of the <b>develop</b> branch, <b>not main</b>, which is the default branch on GitHub. Therefore, please pay particular attention to step 5 and step 9 below. </p> In general, we follow the ["fork-and-pull" Git workflow](https://github.com/susam/gitpr) 1. Review and sign the [Contributor License Agreement](https://cla-assistant.io/zenml-io/zenml) ( CLA). 2. Fork the repository to your own Github account. 3. Clone the project to your machine. 4. Checkout the **develop** branch <- `git checkout develop`. 5. Create a branch (again, off of the develop branch) locally with a succinct but descriptive name. 6. Commit changes to the branch 7. Follow the `Linting, formatting, and tests` guide to make sure your code adheres to the ZenML coding style (see below). 8. Push changes to your fork. 9. Open a PR in our repository (to the `develop` branch, **NOT** `main`) and follow the PR template so that we can efficiently review the changes. ### 🧐 Linting, formatting, and tests To install ZenML from your local checked out files including all core dev-dependencies, run: ``` pip install -e ".[server,dev]" ``` Optionally, you might want to run the following commands to ensure you have all integrations for `mypy` checks: ``` zenml integration install -y -i feast pip install click~=8.0.3 mypy --install-types ``` Warning: This might take a while for both (~ 15 minutes each, depending on your machine), however if you have time, please run it as it will make the next commands error-free. You can now run the following scripts to automatically format your code and to check whether the code formatting, linting, docstrings, and spelling is in order: ``` bash scripts/format.sh bash scripts/run-ci-checks.sh ``` Tests can be run as follows: ``` bash scripts/test-coverage-xml.sh ``` Please note that it is good practice to run the above commands before submitting any Pull Request: The CI GitHub Action will run it anyway, so you might as well catch the errors locally! ### 🚨 Reporting a Vulnerability If you think you have found a vulnerability, and even if you are not sure about it, please report it right away by sending an email to: [email protected]. Please try to be as explicit as possible, describing all the steps and example code to reproduce the security issue. We will review it thoroughly and get back to you. Please refrain from publicly discussing a potential security vulnerability as this could potentially put our users at risk! It's better to discuss privately and give us a chance to find a solution first, to limit the potential impact as much as possible. ## Coding Conventions The code within the repository is structured in the following way - the most relevant places for contributors are highlighted with a `<-` arrow: ``` ├── .github -- Definition of the GH action workflows ├── docker -- Dockerfiles used to build ZenML docker images ├── docs <- The ZenML docs, CLI docs and API docs live here │ ├── book <- In case you make user facing changes, update docs here │ └── mkdocs -- Some configurations for the API/CLI docs ├── examples <- When adding an integration, add an example here ├── scripts -- Scripts used by Github Actions or for local linting/testing ├── src/zenml <- The heart of ZenML │ ├── <stack_component> <- Each stack component has its own directory │ ├── cli <- Change and improve the CLI here │ ├── config -- The ZenML config methods live here │ ├── integrations <- Add new integrations here │ ├── io -- File operation implementations │ ├── materializers <- Materializers responsible for reading/writing artifacts │ ├── pipelines <- The base pipeline and its decorator │ ├── services -- Code responsible for managing services │ ├── stack <- Stack, Stack Components and the flavor registry │ ├── steps <- Steps and their decorators are defined here │ ├── utils <- Collection on useful utils │ ├── zen_server -- Code for running the Zen Server │ └── zen_stores -- Code for storing stacks in multiple settings └── test <- Don't forget to write unit tests for your code ``` ## 👷 Creating a new Integration In case you want to create an entirely new integration that you would like to see supported by ZenML there are a few steps that you should follow: 1. Create the actual integration. Check out the [Integrations README](src/zenml/integrations/README.md) for detailed step-by-step instructions. 2. Create an example of how to use the integration. Check out the [Examples README](examples/README.md) to find out what to do. 3. All integrations deserve to be documented. Make sure to pay a visit to the [Component Guide](https://docs.zenml.io/stacks-and-components/component-guide) in the docs and add your implementations. ## 🆘 Getting Help Join us in the [ZenML Slack Community](https://zenml.io/slack-invite/) to interact directly with the core team and community at large. This is a good place to ideate, discuss concepts or ask for help.
zenml
/zenml-0.44.1.tar.gz/zenml-0.44.1/CONTRIBUTING.md
CONTRIBUTING.md
# Fiduciary License Agreement 2.0 based on the ## Individual Contributor Exclusive License Agreement (including the Traditional Patent License OPTION) Thank you for your interest in contributing to ZenML by ZenML GmbH ("We" or "Us"). The purpose of this contributor agreement ("Agreement") is to clarify and document the rights granted by contributors to Us. To make this document effective, please follow the instructions at https://zenml.io/cla/. ### 0. Preamble Software is deeply embedded in all aspects of our lives and it is important that it empower, rather than restrict us. Free Software gives everybody the rights to use, understand, adapt and share software. These rights help support other fundamental freedoms like freedom of speech, press and privacy. Development of Free Software can follow many patterns. In some cases whole development is handled by a sole programmer or a small group of people. But usually, the creation and maintenance of software is a complex process that requires the contribution of many individuals. This also affects who owns the rights to the software. In the latter case, rights in software are owned jointly by a great number of individuals. To tackle this issue some projects require a full copyright assignment to be signed by all contributors. The problem with such assignments is that they often lack checks and balances that would protect the contributors from potential abuse of power from the new copyright holder. FSFE’s Fiduciary License Agreement (FLA) was created by the Free Software Foundation Europe e.V. with just that in mind – to concentrate all deciding power within one entity and prevent fragmentation of rights on one hand, while on the other preventing that single entity from abusing its power. The main aim is to ensure that the software covered under the FLA will forever remain Free Software. This process only serves for the transfer of economic rights. So-called moral rights (e.g. authors right to be identified as author) remain with the original author(s) and are inalienable. How to use this FLA If You are an employee and have created the Contribution as part of your employment, You need to have Your employer approve this Agreement or sign the Entity version of this document. If You do not own the Copyright in the entire work of authorship, any other author of the Contribution should also sign this – in any event, please contact Us at [email protected] ### 1. Definitions "You" means the individual Copyright owner who Submits a Contribution to Us. "Contribution" means any original work of authorship, including any original modifications or additions to an existing work of authorship, Submitted by You to Us, in which You own the Copyright. "Copyright" means all rights protecting works of authorship, including copyright, moral and neighboring rights, as appropriate, for the full term of their existence. "Material" means the software or documentation made available by Us to third parties. When this Agreement covers more than one software project, the Material means the software or documentation to which the Contribution was Submitted. After You Submit the Contribution, it may be included in the Material. "Submit" means any act by which a Contribution is transferred to Us by You by means of tangible or intangible media, including but not limited to electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, Us, but excluding any transfer that is conspicuously marked or otherwise designated in writing by You as "Not a Contribution." "Documentation" means any non-software portion of a Contribution. ### 2. License grant #### 2.1 Copyright license to Us Subject to the terms and conditions of this Agreement, You hereby grant to Us a worldwide, royalty-free, exclusive, perpetual and irrevocable (except as stated in Section 8.2) license, with the right to transfer an unlimited number of non-exclusive licenses or to grant sublicenses to third parties, under the Copyright covering the Contribution to use the Contribution by all means, including, but not limited to: publish the Contribution, modify the Contribution, prepare derivative works based upon or containing the Contribution and/or to combine the Contribution with other Materials, reproduce the Contribution in original or modified form, distribute, to make the Contribution available to the public, display and publicly perform the Contribution in original or modified form. #### 2.2 Moral rights Moral Rights remain unaffected to the extent they are recognized and not waivable by applicable law. Notwithstanding, You may add your name to the attribution mechanism customary used in the Materials you Contribute to, such as the header of the source code files of Your Contribution, and We will respect this attribution when using Your Contribution. #### 2.3 Copyright license back to You Upon such grant of rights to Us, We immediately grant to You a worldwide, royalty-free, non-exclusive, perpetual and irrevocable license, with the right to transfer an unlimited number of non-exclusive licenses or to grant sublicenses to third parties, under the Copyright covering the Contribution to use the Contribution by all means, including, but not limited to: publish the Contribution, modify the Contribution, prepare derivative works based upon or containing the Contribution and/or to combine the Contribution with other Materials, reproduce the Contribution in original or modified form, distribute, to make the Contribution available to the public, display and publicly perform the Contribution in original or modified form. This license back is limited to the Contribution and does not provide any rights to the Material. ### 3. Patents #### 3.1 Patent license Subject to the terms and conditions of this Agreement You hereby grant to Us and to recipients of Materials distributed by Us a worldwide, royalty-free, non-exclusive, perpetual and irrevocable (except as stated in Section 3.2) patent license, with the right to transfer an unlimited number of non-exclusive licenses or to grant sublicenses to third parties, to make, have made, use, sell, offer for sale, import and otherwise transfer the Contribution and the Contribution in combination with any Material (and portions of such combination). This license applies to all patents owned or controlled by You, whether already acquired or hereafter acquired, that would be infringed by making, having made, using, selling, offering for sale, importing or otherwise transferring of Your Contribution(s) alone or by combination of Your Contribution(s) with any Material. #### 3.2 Revocation of patent license You reserve the right to revoke the patent license stated in section 3.1 if We make any infringement claim that is targeted at your Contribution and not asserted for a Defensive Purpose. An assertion of claims of the Patents shall be considered for a "Defensive Purpose" if the claims are asserted against an entity that has filed, maintained, threatened, or voluntarily participated in a patent infringement lawsuit against Us or any of Our licensees. ### 4. License obligations by Us We agree to (sub)license the Contribution or any Materials containing, based on or derived from your Contribution under the terms of any licenses the Free Software Foundation classifies as Free Software License and which are approved by the Open Source Initiative as Open Source licenses. More specifically and in strict accordance with the above paragraph, we agree to (sub)license the Contribution or any Materials containing, based on or derived from the Contribution only under the terms of the following license(s) Apache-2.0 (including any right to adopt any future version of a license if permitted). We agree to license patents owned or controlled by You only to the extent necessary to (sub)license Your Contribution(s) and the combination of Your Contribution(s) with the Material under the terms of any licenses the Free Software Foundation classifies as Free Software licenses and which are approved by the Open Source Initiative as Open Source licenses.. ### 5. Disclaimer THE CONTRIBUTION IS PROVIDED "AS IS". MORE PARTICULARLY, ALL EXPRESS OR IMPLIED WARRANTIES INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED BY YOU TO US AND BY US TO YOU. TO THE EXTENT THAT ANY SUCH WARRANTIES CANNOT BE DISCLAIMED, SUCH WARRANTY IS LIMITED IN DURATION AND EXTENT TO THE MINIMUM PERIOD AND EXTENT PERMITTED BY LAW. ### 6. Consequential damage waiver TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL YOU OR WE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF ANTICIPATED SAVINGS, LOSS OF DATA, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL AND EXEMPLARY DAMAGES ARISING OUT OF THIS AGREEMENT REGARDLESS OF THE LEGAL OR EQUITABLE THEORY (CONTRACT, TORT OR OTHERWISE) UPON WHICH THE CLAIM IS BASED. ### 7. Approximation of disclaimer and damage waiver IF THE DISCLAIMER AND DAMAGE WAIVER MENTIONED IN SECTION 5. AND SECTION 6. CANNOT BE GIVEN LEGAL EFFECT UNDER APPLICABLE LOCAL LAW, REVIEWING COURTS SHALL APPLY LOCAL LAW THAT MOST CLOSELY APPROXIMATES AN ABSOLUTE WAIVER OF ALL CIVIL OR CONTRACTUAL LIABILITY IN CONNECTION WITH THE CONTRIBUTION. ### 8. Term #### 8.1 This Agreement shall come into effect upon Your acceptance of the terms and conditions. #### 8.2 This Agreement shall apply for the term of the copyright and patents licensed here. However, You shall have the right to terminate the Agreement if We do not fulfill the obligations as set forth in Section 4. Such termination must be made in writing. #### 8.3 In the event of a termination of this Agreement Sections 5., 6., 7., 8., and 9. shall survive such termination and shall remain in full force thereafter. For the avoidance of doubt, Free and Open Source Software (sub)licenses that have already been granted for Contributions at the date of the termination shall remain in full force after the termination of this Agreement. ### 9. Miscellaneous #### 9.1 This Agreement and all disputes, claims, actions, suits or other proceedings arising out of this agreement or relating in any way to it shall be governed by the laws of Germany excluding its private international law provisions. #### 9.2 This Agreement sets out the entire agreement between You and Us for Your Contributions to Us and overrides all other agreements or understandings. #### 9.3 In case of Your death, this agreement shall continue with Your heirs. In case of more than one heir, all heirs must exercise their rights through a commonly authorized person. #### 9.4 If any provision of this Agreement is found void and unenforceable, such provision will be replaced to the extent possible with a provision that comes closest to the meaning of the original provision and that is enforceable. The terms and conditions set forth in this Agreement shall apply notwithstanding any failure of essential purpose of this Agreement or any limited remedy to the maximum extent possible under law. #### 9.5 You agree to notify Us of any facts or circumstances of which you become aware that would make this Agreement inaccurate in any respect. **You** Date:_______________________________ Name:_______________________________ Title:______________________________ Address:____________________________ **Us** Date:_______________________________ Name:_______________________________ Title:_______________________________ Address:_______________________________
zenml
/zenml-0.44.1.tar.gz/zenml-0.44.1/CLA.md
CLA.md
# 📜 ZenNews: Generate summarized news on a schedule In today's information age, we are bombarded with a constant stream of news and media from a variety of sources. Summarizing tasks, particularly when it comes to news sources, can be a powerful tool for the efficient consumption of information. They distill complex or lengthy content into easily digestible chunks that can be scanned and absorbed quickly, allowing us to keep up with the news without being overwhelmed. They can also help us separate the signal from the noise, highlighting the most important details and helping us identify what's worth further investigation. This is where **ZenNews** come into play. It offers a tool that can automate the summarization process and save users time and effort while providing them with the information they need. This can be particularly valuable for busy professionals or anyone who wants to keep up with the news but doesn't have the time to read every article in full. # 🎯 The goal of the project The definition of the concrete use case aside, this project aims to showcase some of the advantages that ZenML brings to the table. Some major points we would like to highlight include: - **The ease of use**: ZenML features [a simple and clean Python SDK](https://docs.zenml.io/starter-guide/pipelines). As you can observe in this example, it is not only used to define your steps and pipelines but also to access/manage the resources and artifacts that you interact with along the way. This makes it significantly easier for you to build their applications around ZenML. - **The extensibility**: ZenML is an extensible framework. ML projects often require custom-tailored solutions and what you get out of the box may not be what you need. This is why ZenML is using base abstractions to allow you to create your own solutions without reinventing the whole wheel. You can find great examples of this feature by taking a look at the custom materializer ([ArticleMaterializer](src/zennews/materializers/article_materializer.py)) and the custom stack component ([DiscordAlerter](src/zennews/alerter/discord_alerter.py)) implemented within the context of this project. - **Stack vs Code**: One of the main features of ZenML is rooted within the concept of our stacks. As you follow this example, you will see that there is a complete separation between the code and the infrastructure that the pipeline is running on. In fact, by utilizing just one flag, it is possible to switch from a local default stack to a remote deployment with scheduled pipelines. - **The scalability**: This is a small PoC-like example that aims to prove that ZenML can help you streamline your workflows and accelerate your development process. However, it barely scratches the surface of how you can improve it even further. For more information, check [this section](#-limitations-future-improvements-and-upcoming-changes). # 🐍 Base installation The **ZenNews** project is designed as a [PyPI package](https://pypi.org/project/zennews/) that you can install through `pip`: ```bash pip install zennews ``` The package comes equipped with the following set of **key** pieces: - **The pipeline**: The [`zen_news_pipeline`](src/zennews/pipelines/zen_news_pipeline.py) is the main pipeline in this workflow. In total, it features three steps, namely `collect`, `summarize` and `report`. The first step is responsible for collecting articles, the second step summarizes them, and the last step creates a report and posts it. - **The steps**: There is a concrete implementation for each step defined above. - For the `collect` step, we have the [`bbc_news_source`](src/zennews/steps/sources/bbc.py) which (by default) collects the top stories from the BBC news feed and prepares [`Article`](src/zennews/models/article.py) objects. - For the `summarize` step, we have implemented [`bart_large_cnn_samsum`](src/zennews/steps/summarize/bart_large_cnn_samsum.py) step. As the name suggests, it uses the BART model to generate summaries. - Ultimately, for the `report` step, we have implemented the [`post_summaries`](src/zennews/steps/report/report.py) step. It showcases how a generalized step can function within a ZenML pipeline and uses an alerter to share the results. - **The materializer**: As mentioned above, the steps within our pipeline are using the concept of `Article`s to define their input and output space. Using the [`ArticleMaterializer`](src/zennews/materializers/article_materializer.py), we can show how to handle the materialization of these artifacts when it comes to a data type that is not built-in. - **The custom stack component**: The ultimate goal of `ZenNews` is to serve the use the direct outcomes of the pipeline. That is why we have used it as a chance to show the extensibility of ZenML in terms of the stack components and implemented a [`DiscordAlerter`](src/zennews/alerter/discord_alerter.py). - **The CLI application**: The example also includes a [Click](https://click.palletsprojects.com/en/8.1.x/) CLI application. It utilizes how easily you can use our Python SDK to build your application around your ZenML workflows. In order to see it in action simply execute: ```bash zennews --help ``` # 🕹 Test it locally right away After installing the `zennews` package, you are ready to test it out locally right away. The following command will get the top five articles from the BBC news feed, summarize them and present the results to you. > Warning: This will temporarily switch your active ZenML stack to the > **default** stack and when the pipeline runs, you will download the model > to your local machine. ```bash zennews bbc ``` You can also parameterize this process. In order to see the possible parameters, please use: ```bash zennews bbc --help ``` # 🚀 Switching to scheduled pipelines with Vertex The potential of an application like `zennews` can be only unlocked by scheduling summarization pipelines instead of manually triggering them yourself. In order to showcase it, we will set up a fully remote GCP stack and use the `VertexOrchestrator` to schedule the pipeline. ## Deploy ZenML on GCP Before you start building the stack, you need to deploy ZenML on GCP. For more information on how you can achieve do that, please check [the corresponding docs page](https://docs.zenml.io/getting-started/deploying-zenml). ## ZenNews Stack Once the ZenML is deployed, we can start to build up our stack. Our stack will consist of the following components: - [GCP Secrets Manager](https://docs.zenml.io/component-gallery/secrets-managers/gcp) - [GCP Container Registry](https://docs.zenml.io/component-gallery/container-registries/gcloud) - [GCS Artifact Store](https://docs.zenml.io/component-gallery/artifact-stores/gcloud-gcs) - [Vertex Orchestrator](https://docs.zenml.io/component-gallery/orchestrators/gcloud-vertexai) - [Discord Alerter (part of the `zennews` package)](src/zennews/alerter/discord_alerter.py) Let's start by installing the `gcp` integration: ```bash zenml integration install gcp ``` ### Secrets Manager The first component to register is a [GCP secrets manager](https://docs.zenml.io/component-gallery/secrets-managers/gcp). The command is quite straightforward. You just have to give it a name and provide the ID of your project on GCP. ```bash zenml secrets-manager register <SECRETS_MANAGER_NAME> \ --flavor=gcp \ --project_id=<PROJECT_ID> ``` ### Container Registry The second component is a [GCP container registry](https://docs.zenml.io/component-gallery/container-registries/gcloud). Similar to the previous component, you just need to provide a name and the URI to your container registry on GCP. ```bash zenml container-registry register <CONTAINER_REGISTERY_NAME> \ --flavor=gcp \ --uri=<REGISTRY_URI> ``` ### Artifact Store The next component on the list is a [GCS artifact store](https://docs.zenml.io/component-gallery/artifact-stores/gcloud-gcs). In order to register it, all you have to do is to provide the path to your GCS bucket: ```bash zenml artifact-store register <ARTIFACT_STORE_NAME> \ --flavor=gcp \ --path=<PATH_TO_BUCKET> ``` ### Orchestrator Following the artifact store, we will register a [Vertex AI orchestrator.](https://docs.zenml.io/component-gallery/orchestrators/gcloud-vertexai) ```bash zenml orchestrator register <ORCHESTRATOR_NAME> \ --flavor=vertex \ --project=<PROJECT_ID> \ --location=<GCP_LOCATION> \ --workload_service_account=<EMAIL_OF_YOUR_SERVICE_ACCOUNT> \ --service_account_path=<PATH_TO_YOUR_SERVICE_ACCOUNT_KEY> ``` You need to simply provide the id of your project, the name of your GCP region and the service account you would like to use. > Warning: In this version, you have to provide both the email of the service > account and the path to a key.json file. This interaction will be improved > in the upcoming releases. Make sure that the service account has the proper roles for the following services: Cloud Functions, Cloud Scheduler, Secret Manager, Service Account, Storage, and Vertex AI. ### GCP Stack With these four components, we are ready to establish and activate the base version of our GCP stack. ```bash zenml stack register <STACK_NAME> \ -x <SECRETS_MANAGER_NAME> \ -c <CONTAINER_REGISTERY_NAME> \ -a <ARTIFACT_STORE_NAME> \ -o <ORCHESTRATOR_NAME> \ --set ``` ### Alerter The last component in our stack is a special case. As mentioned before the `zennews` package already comes equipped with a custom stack component implementation, namely the `DiscordAlerter`. In a nutshell, it uses the [**discord.py**](https://discordpy.readthedocs.io/en/stable/index.html) package to send messages via a webhook to a discord text channel. You can find the implementation right [here](src/zennews/alerter/discord_alerter.py). The following sections show how we can register `DiscordAlerter` as a custom flavor, create an instance of it, and update our stack. #### Registering the custom flavor All you have to do to register such a custom flavor is to provide the corresponding source path to the flavor class. ```bash zenml alerter flavor register zennews.alerter.discord_alerter_flavor.DiscordAlerterFlavor ``` ZenML will import and add that to the list of available alerter flavors. ```bash zenml alerter flavor list ``` #### Registering the alerter Now that the flavor is registered, you can create an alerter with the flavor `discord-webhook`. Through this example, you will also see how you can use secret references to handle sensitive information during the registration of stack components. Let's start by registering the secret: ```bash zenml secrets-manager secret register <SECRET_NAME> \ --webhook_url=<ACTUAL_URL_OF_THE_WEBHOOK> ``` This will use the secrets manager in our active GCP stack. Once the secret registration is complete, you can register your alerter as follows: ```bash zenml alerter register <ALERTER_NAME> \ --flavor discord-webhook \ --webhook_url=<SECRET_REFERENCE> # formatted as {{SECRET_NAME:WEBHOOK_URL}} ``` #### Updating the stack The last step is to update our stack with our new alerter: ```bash zenml stack update <STACK_NAME> -al <ALERTER_NAME> ``` ## Scheduling pipelines through the `zennews` CLI Now the stack is set up, you can use the `--schedule` option when you run your `zennews` pipeline. There are three possible values that you can use for the `schedule` option: `hourly`, `daily` (every day at 9 AM), or `weekly` (every Monday at 9 AM). ```bash zennews bbc --schedule daily ``` This will use your active stack (the GCP stack) and schedule your ZenNews pipeline. # 📙 Limitations, future improvements and upcoming changes Before we end this project, it is also important to talk about the limitations we faced, the possible future improvements, and changes that are already in motion: - The first limitation of ZenNews is the number of supported news sources. As this project was initially designed as a PoC, the only supported news source is BBC. However, thanks to our design, it is really easy to expand this list by adding additional steps, which consume data and create `Article` objects. - The ability to schedule pipelines through ZenML played a critical role within the context of this project. However, this feature has its own limitations. While you can create scheduled pipelines, once the pipeline and its schedule is created, you can not cancel or modify the behavior of this scheduled pipeline. This means that if you want to cancel it, you have to do it via the orchestrator UI or interface yourself and not from within ZenML. - The other limitation regarding the schedules is the format. As of now, the CLI application takes the user input and converts it into a cron expression. Any orchestrator which does not support these expressions is not supported. - As the ZenML team, we have been looking for ways to improve the interface of our base alerters. You might see some changes in upcoming releases. - Similar to the alerters, we are working on improving the management of our secrets. Tune in to [our slack](https://zenml.io/slack-invite/) to stay updated about the upcoming changes and ask any questions you might have.
zennews
/zennews-0.1.8.tar.gz/zennews-0.1.8/README.md
README.md
<h3 align="center"> <img src="images/crp_logo.png" width="400"/> An open-source library for neural network interpretability built on [zennit](https://github.com/chr5tphr/zennit) with Relevance and Activation Maximization. </h3> [![PyPI version](https://badge.fury.io/py/zennit-crp.svg)](https://badge.fury.io/py/zennit-crp) ![Tests status](https://img.shields.io/badge/tests-passing-brightgreen) ## **Concept Relevance Propagation (CRP)** computes conditional attributions for in latent space defined concepts that allow to - localize concepts in input space - compute their relative importance to the final classification output - and hierarchically decompose higher-level concepts into low-level concepts In addition, this repository ships with ## **Relevance Maximization** an explaining-by-example strategy for concepts that illustrates the most <em>useful</em> pattern for prediction, unlike _Activation Maximization_, which reveals patterns that lead to _strong activation_. ## **Activation Maximization** as reference sampling approach and class-wide statistics are also supplied for comparision. Curious? Then take a look at our [preprint](https://arxiv.org/abs/2206.03208): ``` @article{achtibat2022from, title = {From "Where" to "What": Towards Human-Understandable Explanations through Concept Relevance Propagation}, author = {Achtibat, Reduan and Dreyer, Maximilian and Eisenbraun, Ilona and Bosse, Sebastian and Wiegand, Thomas and Samek, Wojciech and Lapuschkin, Sebastian}, journal={arXiv}, year = {2022}, volume={abs/2206.03208}, doi = {10.48550/ARXIV.2206.03208}, url = {https://arxiv.org/abs/2206.03208}, } ``` ## Why Concept Relevance Propagation? For a detailed discussion, feel free to check out the paper, but here we will give a summary of the most exciting features: <details> <summary>Overview</summary> CRP applied on three age range predictions given different input samples from the Adience dataset for age and gender estimation. ![text](images/overview.png "Title") **(Left):** Traditional heatmaps are rather uninformative despite being class-specific. Here, heatmaps only hint at the locations of relevant body parts, but what feature(s) in particular the model has recognized in those regions remains open for interpretation by the stakeholder, which, depending on the domain, may prove to be highly ambiguous. In this case, they indicate that the model seems to focus on the eye region during inference in all cases. **(Rightmost):** Intermediate features encoded by the model in general can be investigated using global XAI (Activation or Relevance Maximization). Choosing a particular layer, individual channels can be assigned concepts. However, during inference, global XAI alone does not inform which features are recognized, used and combined by the model in per-sample inference. **(Center):** By combining local and global XAI, _glocal_ XAI is able to assign (relevance) attribution scores to individual neuron(-group)s. This tells, which concepts have been involved in a particular prediction. Further, concept-conditional heatmaps can be computed, indicating where a recognized concept identified as relevant has its origin in a sample’s input space. Vice versa, choosing a specific region in input space, the local relevance attribution, responsible concepts can be traced back. Lastly, peripheral information can be masked out of the shown reference examples using conditionally computed heatmap attributions for further focusing the feature visualization on the concept’s defining parts, which increases interpretability and clarity: Concentrating on the eye region, we immediately recognize that the topmost sample has been predicted into age group (3-7) due to the sample’s large irides and round eyes, while the middle sample is predicted as (25-32), as more of the sclera is visible and eyebrows are more ostensible. For the bottom sample the model has predicted class (60+) based on its recognition of heavy wrinkles around the eyes and on the eyelids, and pronounced tear sacs next to a large knobby nose. </details> <details> <summary>Disentangling Explanations</summary> <img src="images/disentangling.png"/> Target concept “dog” is described by a combination of lower-level concepts such as “snout”, “eye” and “fur”. CRP heatmaps regarding individual concepts, and their contribution to the prediction of “dog”, can be generated by applying masks to filter-channels in the backward pass. Global (in the context of an input sample) relevance of a concept wrt. to the explained prediction can thus not only be measured in latent space, but also precisely visualized, localized and measured in input space. The concept-conditional computation reveals the relatively high importance of the spatially distributed “fur” feature for the prediction of “dog”, compared to the feature “eye”. </details> <details> <summary>Localization of Concepts</summary> <img src="images/local.png" width=300/> CRP applied in combination with local aggregation of relevance scores over regions $I_1$ and $I_2$ in order to locally assess conceptual importance and localize concepts involved in inference. </details> <details> <summary>Relevance vs. Activation Maximization</summary> Activation- and relevance-based sample selection. ![text](images/relevance_maximization.png "Title") **a)** Activation scores only measure the stimulation of a latent filter without considering its role and impact during inference. Relevance scores are contextual to distinct model outputs and describe how features are utilized in a DNN’s prediction of a specific class. **b)** As a result, samples selected based on Activation Maximization only represent maximized latent neuron activation, while samples based on Relevance Maximization represent features which are actually useful and representative for solving a prediction task. _(A) ActMax identifies a concept that encodes for white strokes. RelMax, however, shows that this concept is not simply used to find white strokes, but white characters!_ **c)** Assume we wish to find representative examples for features $x_1$ and $x_2$. Even though a sample leads to a high activation score in a given layer and neuron (group) — here $x_1$ and $x_2$ — it does not necessarily result in high relevance or contribution to inference: The feature transformation $w$ of a linear layer with inputs $x_1$ and $x_2$, which is followed by a ReLU non-linearity, is shown. Here, samples from the blue cluster of feature activations lead to high activation values for both features $x_1$ and $x_2$, and would be selected by ActMax, but receive zero relevance, as they lead to an inactive neuron output after the ReLU, and are thus of no value to following layers. That is, even though the given samples activate features $x_1$ and $x_2$ maximally strong, they can not contribute meaningfully to the prediction process through the context determined by $w$. Thus, samples selected as representative via activation might not be representative to the overall decision process of the model. Representative examples selected based on relevance, however, are guaranteed to play an important role in the model’s decision process. **d):** Correlation analyses are shown for an intermediate ResNet layer’s channel and neuron. Neurons that are on average highly activated are not, in general, also highly relevant, as a correlation coefficient of $c = 0.111$ shows, since a specific combination of activation magnitudes is important for neurons to be representative in a larger model context. </details> <details> <summary>Hierarchical Concept Decomposition through Attribution Graphs</summary> Decomposing a high-level concept into its lower-level concepts. <img src="images/hierarchical.png" width=400/> Given an interesting concept encoded by channel j in layer l, relevance quantities computed during a CRP backward pass can then be utilized to identify how its relevance distributes across lower layer channels (here shown side-by-side in an exploded view). </details> ## Project status Project is under active development but should be stable. Please expect interfaces to change in future releases. ## Installation To install directly from PyPI using pip, write: ```shell $ pip install zennit-crp[fast_img] ``` Alternatively, install from a manually cloned repository to try out the tutorials: ```shell $ git clone https://github.com/rachtibat/zennit-crp $ pip install ./zennit-crp ``` ## Documentation Still under development, but you can refer to the tutorials below. Docstrings are also missing in some places. ## Tutorials Check out the [jupyter notebook tutorials.](https://github.com/rachtibat/zennit-crp/tree/master/tutorials) Please start with attribution and then feature_visualization. ## Quickstart ### Conditional Attributions ```python from crp.attribution import CondAttribution from crp.concepts import ChannelConcept from crp.helper import get_layer_names from zennit.composites import EpsilonPlusFlat from zennit.canonizers import SequentialMergeBatchNorm # define LRP rules and canonizers in zennit composite = EpsilonPlusFlat([SequentialMergeBatchNorm()]) # load CRP toolbox attribution = CondAttribution(model) # here, each channel is defined as a concept # or define your own notion! cc = ChannelConcept() # get layer names of Conv2D and MLP layers layer_names = get_layer_names(model, [nn.Conv2d, nn.Linear]) # get a conditional attribution for channel 50 in layer features.27 wrt. output 1 conditions = [{'features.27': [50], 'y': [1]}] attr = attribution(data, conditions, composite, record_layer=layer_names) # heatmap and prediction attr.heatmap, attr.prediction # activations and relevances for each layer name attr.activations, attr.relevances # relative importance of each concept for final prediction rel_c = cc.attribute(attr.relevances['features.40']) # most relevant channels in features.40 concept_ids = torch.argsort(rel_c, descending=True) ``` ### Feature Visualization ```python from crp.visualization import FeatureVisualization from crp.image import plot_grid # define which concept is used in each layer layer_map = {(name, cc) for name in layer_names} # compute visualization (it takes for VGG16 and ImageNet testset on Titan RTX 30 min) fv = FeatureVisualization(attribution, dataset, layer_map) fv.run(composite, 0, len(dataset)) # visualize MaxRelevance reference images for top-5 concepts ref_c = fv.get_max_reference(concept_ids[:5], 'features.40', 'relevance', composite=composite) plot_grid(ref_c) ``` ## Roadmap Coming soon... - [ ] Distributed HPC-Cluster support - [ ] Complete MaskHook Tutorial - [ ] Visualization for the Attribution Graph - [ ] Documentation ## Contributing ### Code Style We use [PEP8](https://www.python.org/dev/peps/pep-0008) with a line-width of 120 characters. For docstrings we use [numpydoc](https://numpydoc.readthedocs.io/en/latest/format.html). We use [`pylint`](https://pypi.org/project/pylint/) for style checks. Basic tests are implemented with [`pytest`](https://docs.pytest.org/). We are open to any improvements (: ## License BSD 3-Clause Clear License
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/README.md
README.md
import torch import numpy as np from typing import List, Dict class Concept: """ Abstract class that imlplements the core functionality for the attribution computation of concepts. """ def mask(self, batch_id, concept_ids, layer_name): raise NotImplementedError("'Concept'class must be implemented!") def mask_rf(self, neuron_ids, layer_name): raise NotImplementedError("'Concept'class must be implemented!") def reference_sampling(self, relevance, layer_name: str = None, max_target: str = "sum", abs_norm=True): raise NotImplementedError("'Concept'class must be implemented!") def get_rf_indices(self, output_shape, layer_name): raise NotImplementedError("'Concept'class must be implemented!") def attribute(self, relevance, mask=None, layer_name: str = None, abs_norm=True): raise NotImplementedError("'Concept'class must be implemented!") class ChannelConcept(Concept): """ Concept Class for torch.nn.Conv2D and torch.nn.Linear layers """ @staticmethod def mask(batch_id: int, concept_ids: List, layer_name=None): """ Wrapper that generates a function thath modifies the gradient (replaced by zennit by attributions). Parameters: ---------- batch_id: int Specifies the batch dimension in the torch.Tensor. concept_ids: list of integer values integer lists corresponding to channel indices. Returns: -------- callable function that modifies the gradient """ def mask_fct(grad): mask = torch.zeros_like(grad[batch_id]) mask[concept_ids] = 1 grad[batch_id] = grad[batch_id] * mask return grad return mask_fct @staticmethod def mask_rf(batch_id: int, c_n_map: Dict[int, List], layer_name=None): """ Wrapper that generates a function that modifies the gradient (replaced by zennit by attributions) for a single neuron. Parameters: ---------- batch_id: int Specifies the batch dimension in the torch.Tensor. c_n_map: dist with int keys and list values Keys correspond to channel indices and values correspond to neuron indices. Neuron Indices are counted as if the 2D Channel has 1D dimension i.e. channel dimension [3, 20, 20] -> [3, 400], so that neuron indices range between 0 and 399. Returns: -------- callable function that modifies the gradient """ def mask_fct(grad): grad_shape = grad.shape grad = grad.view(*grad_shape[:2], -1) mask = torch.zeros_like(grad[batch_id]) for channel in c_n_map: mask[channel, c_n_map[channel]] = 1 grad[batch_id] = grad[batch_id] * mask return grad.view(grad_shape) return mask_fct def get_rf_indices(self, output_shape, layer_name=None): if len(output_shape) == 1: return [0] else: end = np.prod(output_shape[1:]) return np.arange(0, end) def attribute(self, relevance, mask=None, layer_name: str = None, abs_norm=True): if isinstance(mask, torch.Tensor): relevance = relevance * mask rel_l = torch.sum(relevance.view(*relevance.shape[:2], -1), dim=-1) if abs_norm: rel_l = rel_l / (torch.abs(rel_l).sum(-1).view(-1, 1) + 1e-10) return rel_l def reference_sampling(self, relevance, layer_name: str = None, max_target: str = "sum", abs_norm=True): """ Parameters: max_target: str. Either 'sum' or 'max'. """ # position of receptive field neuron rel_l = relevance.view(*relevance.shape[:2], -1) rf_neuron = torch.argmax(rel_l, dim=-1) # channel maximization target if max_target == "sum": rel_l = torch.sum(relevance.view(*relevance.shape[:2], -1), dim=-1) elif max_target == "max": rel_l = torch.gather(rel_l, -1, rf_neuron.unsqueeze(-1)).squeeze(-1) else: raise ValueError("'max_target' supports only 'max' or 'sum'.") if abs_norm: rel_l = rel_l / (torch.abs(rel_l).sum(-1).view(-1, 1) + 1e-10) d_ch_sorted = torch.argsort(rel_l, dim=0, descending=True) rel_ch_sorted = torch.gather(rel_l, 0, d_ch_sorted) rf_ch_sorted = torch.gather(rf_neuron, 0, d_ch_sorted) return d_ch_sorted, rel_ch_sorted, rf_ch_sorted
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/concepts.py
concepts.py
import torch import numpy as np from typing import List import os from pathlib import Path def get_layer_names(model: torch.nn.Module, types: List): """ Retrieves the layer names of all layers that belong to a torch.nn.Module type defined in 'types'. Parameters ---------- model: torch.nn.Module types: list of torch.nn.Module Layer types i.e. torch.nn.Conv2D Returns ------- layer_names: list of strings """ layer_names = [] for name, layer in model.named_modules(): for layer_definition in types: if isinstance(layer, layer_definition) or issubclass(layer.__class__, layer_definition): if name not in layer_names: layer_names.append(name) return layer_names def abs_norm(rel: torch.Tensor, stabilize=1e-10): """ Parameter: rel: 1-D array """ abs_sum = torch.sum(torch.abs(rel)) return rel / (abs_sum + stabilize) def max_norm(rel, stabilize=1e-10): return rel / (rel.max() + stabilize) def get_output_shapes(model, single_sample: torch.tensor, record_layers: List[str]): """ calculates the output shape of each layer using a forward pass. """ output_shapes = {} def generate_hook(name): def shape_hook(module, input, output): output_shapes[name] = output.shape[1:] return shape_hook hooks = [] for name, layer in model.named_modules(): if name in record_layers: shape_hook = generate_hook(name) hooks.append(layer.register_forward_hook(shape_hook)) _ = model(single_sample) [h.remove() for h in hooks] return output_shapes def load_maximization(path_folder, layer_name): filename = f"{layer_name}_" d_c_sorted = np.load(Path(path_folder) / Path(filename + "data.npy"), mmap_mode="r") rel_c_sorted = np.load(Path(path_folder) / Path(filename + "rel.npy"), mmap_mode="r") rf_c_sorted = np.load(Path(path_folder) / Path(filename + "rf.npy"), mmap_mode="r") return d_c_sorted, rel_c_sorted, rf_c_sorted def load_stat_targets(path_folder): targets = np.load(Path(path_folder) / Path("targets.npy")).astype(np.int) return targets def load_statistics(path_folder, layer_name, target): filename = f"{target}_" d_c_sorted = np.load(Path(path_folder) / Path(layer_name) / Path(filename + "data.npy"), mmap_mode="r") rel_c_sorted = np.load(Path(path_folder) / Path(layer_name) / Path(filename + "rel.npy"), mmap_mode="r") rf_c_sorted = np.load(Path(path_folder) / Path(layer_name) / Path(filename + "rf.npy"), mmap_mode="r") return d_c_sorted, rel_c_sorted, rf_c_sorted def load_receptive_field(path_folder, layer_name): filename = f"{layer_name}.npy" rf_array = np.load(Path(path_folder) / Path(filename), mmap_mode="r") return rf_array def find_files(path=None): """ Parameters: path: path analysis results """ if path is None: path = os.getcwd() folders = os.listdir(path) r_max, a_max, r_stats, a_stats, rf = [], [], [], [], [] for name in folders: found_path = str(Path(path) / Path(name)) if "RelMax" in name: r_max.append(found_path) elif "ActMax" in name: a_max.append(found_path) elif "RelStats" in name: r_stats.append(found_path) elif "ActStats" in name: a_stats.append(found_path) elif "ReField" in name: rf.append(found_path) return r_max, a_max, r_stats, a_stats, rf
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/helper.py
helper.py
from pathlib import Path from PIL import Image from typing import Any, Tuple, Dict, List, Union class Cache: """ Abstract class that imlplements the core functionality for caching reference images. """ def __init__(self, path="cache"): self.path = Path(path) def save(self, ref_c, layer_name, mode, r_range, composite, rf, f_name, plot_name, **kwargs) -> None: raise NotImplementedError("'Cache' class must be implemented!") def load(self, concept_ids, layer_name, mode, r_range, composite, rf, f_name, plot_name, **kwargs) -> Tuple[Dict[int, Any], Dict[int, Tuple[int, int]]]: raise NotImplementedError("'Cache' class must be implemented!") def extend_dict(self, ref_original, rf_addition): raise NotImplementedError("'Cache' class must be implemented!") class ImageCache(Cache): """ Cache that saves lists or tuple of lists of PIL.Image files that are values of a dictionary. Parameters: ---------- path: str or pathlib.Path folder where to solve the images """ def _create_path(self, layer_name, mode, composite, rf, func_name, plot_name): folder_name = mode + "_" + composite.__class__.__name__ if rf: folder_name += "_rf" path = self.path / Path(func_name, plot_name, folder_name, layer_name) path.mkdir(parents=True, exist_ok=True) return path def _save_img_list(self, img_list, id, tuple_index, r_range, path): for img, r in zip(img_list, range(*r_range)): if not isinstance(img, Image.Image): raise TypeError(f"'ImageCache' can only save PIL.Image objects. \ But you tried to save a {type(img)} object.") img.save(path / Path(f"{id}_{tuple_index}_{r}.png"), optimize=True) def save(self, ref_dict: Dict[Any, Union[Image.Image, List]], layer_name, mode, r_range: Tuple[int, int], composite, rf, func_name, plot_name) -> None: """ Saves PIL.Images inside 'ref_dict' in the path defined by the remaining arguments. Parameters: ---------- red_dict: dict of PIL.Image objects layer_name: str mode: str, 'relevance' or 'activation' r_range: tuple (int, int) composite: zennit.composites object rf: boolean func_name: str, 'get_max_reference' or 'get_stats_reference' plot_name: str name of plot_fn """ path = self._create_path(layer_name, mode, composite, rf, func_name, plot_name) for id in ref_dict: value = ref_dict[id] if isinstance(value, Tuple): self._save_img_list(value[0], id, 0, r_range, path) self._save_img_list(value[1], id, 1, r_range, path) elif isinstance(value[0], Image.Image): self._save_img_list(value, id, 0, r_range, path) def _load_img_list(self, id, tuple_index, r_range, path): imgs, not_found = [], None for r in range(*r_range): try: img = Image.open(path / Path(f"{id}_{tuple_index}_{r}.png")) imgs.append(img) except FileNotFoundError: not_found = (r, r_range[-1]) break return imgs, not_found def load(self, indices: List, layer_name, mode, r_range, composite, rf, func_name, plot_name) -> Tuple[Dict[Any, Any], Dict[int, Tuple[int, int]]]: """ Loads PIL.Images with concept index 'indices' and layer 'layer_name' from the path defined by the remaining arguments. Parameters: ---------- indices: list of int or str layer_name: str mode: str, 'relevance' or 'activation' r_range: tuple (int, int) composite: zennit.composites object rf: boolean func_name: str, 'get_max_reference' or 'get_stats_reference' """ path = self._create_path(layer_name, mode, composite, rf, func_name, plot_name) ref_c, not_found = {}, {} for id in indices: imgs_0, not_found_0 = self._load_img_list(id, 0, r_range, path) imgs_1, _ = self._load_img_list(id, 1, r_range, path) if imgs_0: if imgs_1: # tuple per sample exists ref_c[id] = (imgs_0, imgs_1) else: ref_c[id] = imgs_0 if not_found_0: not_found[id] = not_found_0 return ref_c, not_found def extend_dict(self, ref_original, rf_addition): for key, value in rf_addition.items(): if key in ref_original: if isinstance(value, Tuple): ref_original[key][0].extend(value[0]) ref_original[key][1].extend(value[1]) elif isinstance(value, List): ref_original[key].extend(value) else: raise TypeError("'ref_original' must contain tuples or a list") else: ref_original[key] = value return ref_original
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/cache.py
cache.py
from typing import List, Union, Dict, Tuple, Callable import warnings import torch import numpy as np import math from collections.abc import Iterable import concurrent.futures import functools import inspect from tqdm import tqdm from zennit.composites import NameMapComposite, Composite from crp.attribution import CondAttribution from crp.maximization import Maximization from crp.concepts import ChannelConcept, Concept from crp.statistics import Statistics from crp.hooks import FeatVisHook from crp.helper import load_maximization, load_statistics, load_stat_targets from crp.image import vis_img_heatmap, vis_opaque_img from crp.cache import Cache class FeatureVisualization: def __init__( self, attribution: CondAttribution, dataset, layer_map: Dict[str, Concept], preprocess_fn: Callable=None, max_target="sum", abs_norm=True, path="FeatureVisualization", device=None, cache: Cache=None): self.dataset = dataset self.layer_map = layer_map self.preprocess_fn = preprocess_fn self.attribution = attribution self.device = attribution.device if device is None else device self.RelMax = Maximization("relevance", max_target, abs_norm, path) self.ActMax = Maximization("activation", max_target, abs_norm, path) self.RelStats = Statistics("relevance", max_target, abs_norm, path) self.ActStats = Statistics("activation", max_target, abs_norm, path) self.Cache = cache def preprocess_data(self, data): if callable(self.preprocess_fn): return self.preprocess_fn(data) else: return data def get_data_sample(self, index, preprocessing=True) -> Tuple[torch.Tensor, int]: """ returns a data sample from dataset at index. Parameter: index: integer preprocessing: boolean. If True, return the sample after preprocessing. If False, return the sample for plotting. """ data, target = self.dataset[index] data = data.to(self.device).unsqueeze(0) if preprocessing: data = self.preprocess_data(data) data.requires_grad = True return data, target def multitarget_to_single(self, multi_target): raise NotImplementedError def run(self, composite: Composite, data_start, data_end, batch_size=32, checkpoint=500, on_device=None): print("Running Analysis...") saved_checkpoints = self.run_distributed(composite, data_start, data_end, batch_size, checkpoint, on_device) print("Collecting results...") saved_files = self.collect_results(saved_checkpoints) return saved_files def run_distributed(self, composite: Composite, data_start, data_end, batch_size=16, checkpoint=500, on_device=None): """ max batch_size = max(multi_targets) * data_batch data_end: exclusively counted """ self.saved_checkpoints = {"r_max": [], "a_max": [], "r_stats": [], "a_stats": []} last_checkpoint = 0 n_samples = data_end - data_start samples = np.arange(start=data_start, stop=data_end) if n_samples > batch_size: batches = math.ceil(n_samples / batch_size) else: batches = 1 batch_size = n_samples # feature visualization is performed inside forward and backward hook of layers name_map, dict_inputs = [], {} for l_name, concept in self.layer_map.items(): hook = FeatVisHook(self, concept, l_name, dict_inputs, on_device) name_map.append(([l_name], hook)) fv_composite = NameMapComposite(name_map) if composite: composite.register(self.attribution.model) fv_composite.register(self.attribution.model) pbar = tqdm(total=batches, dynamic_ncols=True) for b in range(batches): pbar.update(1) samples_batch = samples[b * batch_size: (b + 1) * batch_size] data_batch, targets_samples = self.get_data_concurrently(samples_batch, preprocessing=True) targets_samples = np.array(targets_samples) # numpy operation needed # convert multi target to single target if user defined the method data_broadcast, targets, sample_indices = [], [], [] try: for i_t, target in enumerate(targets_samples): single_targets = self.multitarget_to_single(target) for st in single_targets: targets.append(st) data_broadcast.append(data_batch[i_t]) sample_indices.append(samples_batch[i_t]) if len(data_broadcast) == 0: continue # TODO: test stack data_broadcast = torch.stack(data_broadcast, dim=0) sample_indices = np.array(sample_indices) targets = np.array(targets) except NotImplementedError: data_broadcast, targets, sample_indices = data_batch, targets_samples, samples_batch conditions = [{self.attribution.MODEL_OUTPUT_NAME: [t]} for t in targets] # dict_inputs is linked to FeatHooks dict_inputs["sample_indices"] = sample_indices dict_inputs["targets"] = targets # composites are already registered before self.attribution(data_broadcast, conditions, None, exclude_parallel=False) if b % checkpoint == checkpoint - 1: self._save_results((last_checkpoint, sample_indices[-1] + 1)) last_checkpoint = sample_indices[-1] + 1 # TODO: what happens if result arrays are empty? self._save_results((last_checkpoint, sample_indices[-1] + 1)) if composite: composite.remove() fv_composite.remove() pbar.close() return self.saved_checkpoints @torch.no_grad() def analyze_relevance(self, rel, layer_name, concept, data_indices, targets): """ Finds input samples that maximally activate each neuron in a layer and most relevant samples """ d_c_sorted, rel_c_sorted, rf_c_sorted, t_c_sorted = self.RelMax.analyze_layer( rel, concept, layer_name, data_indices, targets) self.RelStats.analyze_layer(d_c_sorted, rel_c_sorted, rf_c_sorted, t_c_sorted, layer_name) @torch.no_grad() def analyze_activation(self, act, layer_name, concept, data_indices, targets): """ Finds input samples that maximally activate each neuron in a layer and most relevant samples """ # activation analysis once per sample if multi target dataset unique_indices = np.unique(data_indices, return_index=True)[1] data_indices = data_indices[unique_indices] act = act[unique_indices] targets = targets[unique_indices] d_c_sorted, act_c_sorted, rf_c_sorted, t_c_sorted = self.ActMax.analyze_layer( act, concept, layer_name, data_indices, targets) self.ActStats.analyze_layer(d_c_sorted, act_c_sorted, rf_c_sorted, t_c_sorted, layer_name) def _save_results(self, d_index=None): self.saved_checkpoints["r_max"].extend(self.RelMax._save_results(d_index)) self.saved_checkpoints["a_max"].extend(self.ActMax._save_results(d_index)) self.saved_checkpoints["r_stats"].extend(self.RelStats._save_results(d_index)) self.saved_checkpoints["a_stats"].extend(self.ActStats._save_results(d_index)) def collect_results(self, checkpoints: Dict[str, List[str]], d_index: Tuple[int, int] = None): saved_files = {} saved_files["r_max"] = self.RelMax.collect_results(checkpoints["r_max"], d_index) saved_files["a_max"] = self.ActMax.collect_results(checkpoints["a_max"], d_index) saved_files["r_stats"] = self.RelStats.collect_results(checkpoints["r_stats"], d_index) saved_files["a_stats"] = self.ActStats.collect_results(checkpoints["a_stats"], d_index) return saved_files def get_data_concurrently(self, indices: Union[List, np.ndarray, torch.tensor], preprocessing=False): if len(indices) == 1: data, label = self.get_data_sample(indices[0], preprocessing) return data, label threads = [] data_returned = [] labels_returned = [] with concurrent.futures.ThreadPoolExecutor() as executor: for index in indices: future = executor.submit(self.get_data_sample, index, preprocessing) threads.append(future) for t in threads: single_data = t.result()[0] single_label = t.result()[1] data_returned.append(single_data) labels_returned.append(single_label) data_returned = torch.cat(data_returned, dim=0) return data_returned, labels_returned def cache_reference(func): """ Decorator for get_max_reference and get_stats_reference. If a crp.cache object is supplied to the FeatureVisualization object, reference samples are cached i.e. saved after computing a visualization with a 'plot_fn' (argument of get_max_reference) or loaded from the disk if available. """ @functools.wraps(func) def wrapper(self, *args, **kwargs): """ Parameters: ----------- overwrite: boolean If set to True, already computed reference samples are computed again (overwritten). """ overwrite = kwargs.pop("overwrite", False) args_f = inspect.getcallargs(func, self, *args, **kwargs) plot_fn = args_f["plot_fn"] if self.Cache is None or plot_fn is None: return func(**args_f) r_range, mode, l_name, rf, composite = args_f["r_range"], args_f["mode"], args_f["layer_name"], args_f["rf"], args_f["composite"] f_name, plot_name = func.__name__, plot_fn.__name__ if f_name == "get_max_reference": indices = args_f["concept_ids"] else: indices = [f'{args_f["concept_id"]}:{i}' for i in args_f["targets"]] if overwrite: not_found = {id: r_range for id in indices} ref_c = {} else: ref_c, not_found = self.Cache.load(indices, l_name, mode, r_range, composite, rf, f_name, plot_name) if len(not_found): for id in not_found: args_f["r_range"] = not_found[id] if f_name == "get_max_reference": args_f["concept_ids"] = id ref_c_left = func(**args_f) elif f_name == "get_stats_reference": args_f["targets"] = int(id.split(":")[-1]) ref_c_left = func(**args_f) else: raise ValueError("Only the methods 'get_max_reference' and 'get_stats_reference' can be decorated.") self.Cache.save(ref_c_left, l_name, mode, not_found[id], composite, rf, f_name, plot_name) ref_c = self.Cache.extend_dict(ref_c, ref_c_left) return ref_c return wrapper @cache_reference def get_max_reference( self, concept_ids: Union[int,list], layer_name: str, mode="relevance", r_range: Tuple[int, int] = (0, 8), composite: Composite=None, rf=False, plot_fn=vis_img_heatmap, batch_size=32)-> Dict: """ Retreive reference samples for a list of concepts in a layer. Relevance and Activation Maximization are availble if FeatureVisualization was computed for the mode. In addition, conditional heatmaps can be computed on reference samples. If the crp.concept class (supplied to the FeatureVisualization layer_map) implements masking for a single neuron in the 'mask_rf' method, the reference samples and heatmaps can be cropped using the receptive field of the most relevant or active neuron. Parameters: ---------- concept_ids: int or list layer_name: str mode: "relevance" or "activation" Relevance or Activation Maximization r_range: Tuple(int, int) Range of N-top reference samples. For example, (3, 7) corresponds to the Top-3 to -6 samples. Argument must be a closed set i.e. second element of tuple > first element. composite: zennit.composites or None If set, compute conditional heatmaps on reference samples. `composite` is used for the CondAttribution object. rf: boolean If True, compute the CRP heatmap for the most relevant/most activating neuron only to restrict the conditonal heatmap on the receptive field. plot_fn: callable function with signature (samples: torch.Tensor, heatmaps: torch.Tensor, rf: boolean) or None Draws reference images. The function receives as input the samples used for computing heatmaps before preprocessing with self.preprocess_data and the final heatmaps after computation. In addition, the boolean flag 'rf' is passed to it. The return value of the function should correspond to the Cache supplied to the FeatureVisualization object (if available). If None, the raw tensors are returned. batch_size: int If heatmap is True, describes maximal batch size of samples to compute for conditional heatmaps. Returns: ------- ref_c: dictionary. Key values correspond to channel index and values are reference samples. The values depend on the implementation of the 'plot_fn'. """ ref_c = {} if not isinstance(concept_ids, Iterable): concept_ids = [concept_ids] if mode == "relevance": d_c_sorted, _, rf_c_sorted = load_maximization(self.RelMax.PATH, layer_name) elif mode == "activation": d_c_sorted, _, rf_c_sorted = load_maximization(self.ActMax.PATH, layer_name) else: raise ValueError("`mode` must be `relevance` or `activation`") if rf and not composite: warnings.warn("The receptive field is only computed, if you fill the 'composite' argument with a zennit Composite.") for c_id in concept_ids: d_indices = d_c_sorted[r_range[0]:r_range[1], c_id] n_indices = rf_c_sorted[r_range[0]:r_range[1], c_id] ref_c[c_id] = self._load_ref_and_attribution(d_indices, c_id, n_indices, layer_name, composite, rf, plot_fn, batch_size) return ref_c @cache_reference def get_stats_reference(self, concept_id: int, layer_name: str, targets: Union[int, list], mode="relevance", r_range: Tuple[int, int] = (0, 8), composite=None, rf=False, plot_fn=vis_img_heatmap, batch_size=32): """ Retreive reference samples for a single concept in a layer wrt. different explanation targets i.e. returns the reference samples that are computed by self.compute_stats. Relevance and Activation are availble if FeatureVisualization was computed for the statitics mode. In addition, conditional heatmaps can be computed on reference samples. If the crp.concept class (supplied to the FeatureVisualization layer_map) implements masking for a single neuron in the 'mask_rf' method, the reference samples and heatmaps can be cropped using the receptive field of the most relevant or active neuron. Parameters: ---------- concept_ids: int or list layer_name: str mode: "relevance" or "activation" Relevance or Activation Maximization r_range: Tuple(int, int) Range of N-top reference samples. For example, (3, 7) corresponds to the Top-3 to -6 samples. Argument must be a closed set i.e. second element of tuple > first element. composite: zennit.composites or None If set, compute conditional heatmaps on reference samples. `composite` is used for the CondAttribution object. rf: boolean If True, compute the CRP heatmap for the most relevant/most activating neuron only to restrict the conditonal heatmap on the receptive field. plot_fn: callable function with signature (samples: torch.Tensor, heatmaps: torch.Tensor, rf: boolean) Draws reference images. The function receives as input the samples used for computing heatmaps before preprocessing with self.preprocess and the final heatmaps after computation. In addition, the boolean flag 'rf' is passed to it. The return value of the function should correspond to the Cache supplied to the FeatureVisualization object (if available). If None, the raw tensors are returned. batch_size: int If heatmap is True, describes maximal batch size of samples to compute for conditional heatmaps. Returns: ------- ref_t: dictionary. Key values correspond to target indices and values are reference samples. The values depend on the implementation of the 'plot_fn'. """ ref_t = {} if not isinstance(targets, Iterable): targets = [targets] if mode == "relevance": path = self.RelStats.PATH elif mode == "activation": path = self.ActStats.PATH else: raise ValueError("`mode` must be `relevance` or `activation`") if rf and not composite: warnings.warn("The receptive field is only computed, if you fill the 'composite' argument with a zennit Composite.") for t in targets: d_c_sorted, _, rf_c_sorted = load_statistics(path, layer_name, t) d_indices = d_c_sorted[r_range[0]:r_range[1], concept_id] n_indices = rf_c_sorted[r_range[0]:r_range[1], concept_id] ref_t[f"{concept_id}:{t}"] = self._load_ref_and_attribution(d_indices, concept_id, n_indices, layer_name, composite, rf, plot_fn, batch_size) return ref_t def _load_ref_and_attribution(self, d_indices, c_id, n_indices, layer_name, composite, rf, plot_fn, batch_size): data_batch, _ = self.get_data_concurrently(d_indices, preprocessing=False) if composite: data_p = self.preprocess_data(data_batch) heatmaps = self._attribution_on_reference(data_p, c_id, layer_name, composite, rf, n_indices, batch_size) if callable(plot_fn): return plot_fn(data_batch.detach(), heatmaps.detach(), rf) else: return data_batch.detach().cpu(), heatmaps.detach().cpu() else: return data_batch.detach().cpu() def _attribution_on_reference(self, data, concept_id: int, layer_name: str, composite, rf=False, neuron_ids: list=[], batch_size=32): n_samples = len(data) if n_samples > batch_size: batches = math.ceil(n_samples / batch_size) else: batches = 1 batch_size = n_samples if rf and (len(neuron_ids) != n_samples): raise ValueError("length of 'neuron_ids' must be equal to the length of 'data'") heatmaps = [] for b in range(batches): data_batch = data[b * batch_size: (b + 1) * batch_size].detach().requires_grad_() if rf: neuron_ids = neuron_ids[b * batch_size: (b + 1) * batch_size] conditions = [{layer_name: {concept_id: n_index}} for n_index in neuron_ids] attr = self.attribution(data_batch, conditions, composite, mask_map=ChannelConcept.mask_rf, start_layer=layer_name, on_device=self.device, exclude_parallel=False) else: conditions = [{layer_name: [concept_id]}] # initialize relevance with activation before non-linearity (could be changed in a future release) attr = self.attribution(data_batch, conditions, composite, start_layer=layer_name, on_device=self.device, exclude_parallel=False) heatmaps.append(attr.heatmap) return torch.cat(heatmaps, dim=0) def compute_stats(self, concept_id, layer_name: str, mode="relevance", top_N=5, mean_N=10, norm=False) -> Tuple[list, list]: """ Computes statistics about the targets i.e. classes that are most relevant or most activating for the concept with index 'concept_id' in layer 'layer_name'. Statistics must be computed before utilizing this method. Parameters: ----------- concept_id: int Index of concept layer_name: str mode: str, 'relevance' or 'activation' top_N: int Returns the 'top_N' classes that most activate or are most relevant for the concept. mean_N: int Computes the importance of each target using the 'mean_N' top reference images for each target. norm: boolean If True, returns the mean relevance for each target normed. Returns: -------- sorted_t, sorted_val as tuple sorted_t: list of most relevant targets sorted_val: list of respective mean relevance/activation values for each target """ if mode == "relevance": path = self.RelStats.PATH elif mode == "activation": path = self.ActStats.PATH else: raise ValueError("`mode` must be `relevance` or `activation`") targets = load_stat_targets(path) rel_target = torch.zeros(len(targets)) for i, t in enumerate(targets): _, rel_c_sorted, _ = load_statistics(path, layer_name, t) rel_target[i] = float(rel_c_sorted[:mean_N, concept_id].mean()) args = torch.argsort(rel_target, descending=True)[:top_N] sorted_t = targets[args] sorted_val = rel_target[args] if norm: sorted_val = sorted_val / sorted_val[0] return sorted_t, sorted_val def _save_precomputed(self, s_tensor, h_tensor, index, plot_list, layer_name, mode, r_range, composite, rf, f_name): for plot_fn in plot_list: ref = {index: plot_fn(s_tensor, h_tensor, rf)} self.Cache.save(ref, layer_name, mode, r_range, composite, rf, f_name, plot_fn.__name__) def precompute_ref(self, layer_c_ind:Dict[str, List], composite: Composite, rf=True, stats=False, top_N=4, mean_N=10, mode="relevance", r_range: Tuple[int, int] = (0, 8), plot_list=[vis_opaque_img], batch_size=32): """ Precomputes and saves all reference samples resulting from 'self.get_ref_samples' and 'self.get_stats_reference' for concepts supplied in 'layer_c_ind'. Parameters: ----------- layer_c_ind: dict with str keys and list values Keys correspond to layer names and values to a list of all concept indices stats: boolean If True, precomputes reference samples of 'self.get_stats_reference'. Otherwise, only samples of 'self.get_ref_samples' are computed. plot_list: list of callable functions Functions to plot and save the images. The signature should correspond to the 'plot_fn' of 'get_max_reference'. REMAINING PARAMETERS: correspond to 'self.get_ref_samples' and 'self.get_stats_reference' """ if self.Cache is None: raise ValueError("You must supply a crp.Cache object to the 'FeatureVisualization' class to precompute reference images!") if composite is None: raise ValueError("You must supply a zennit.Composite object to precompute reference images!") for l_name in layer_c_ind: c_indices = layer_c_ind[l_name] print("Layer:", l_name) pbar = tqdm(total=len(c_indices), dynamic_ncols=True) for c_id in c_indices: s_tensor, h_tensor = self.get_max_reference(c_id, l_name, mode, r_range, composite, rf, None, batch_size)[c_id] self._save_precomputed(s_tensor, h_tensor, c_id, plot_list, l_name, mode, r_range, composite, rf, "get_max_reference") if stats: targets, _ = self.compute_stats(c_id, l_name, mode, top_N, mean_N) for t in targets: stat_index = f"{c_id}:{t}" s_tensor, h_tensor = self.get_stats_reference(c_id, l_name, t, mode, r_range, composite, rf, None, batch_size)[stat_index] self._save_precomputed(s_tensor, h_tensor, stat_index, plot_list, l_name, mode, r_range, composite, rf, "get_stats_reference") pbar.update(1) pbar.close()
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/visualization.py
visualization.py
from zennit.composites import NameMapComposite from zennit.core import Composite from crp.hooks import MaskHook from crp.concepts import Concept, ChannelConcept from crp.graph import ModelGraph from typing import Callable, List, Dict, Union, Tuple import torch import warnings import numpy as np import math from tqdm import tqdm from collections import namedtuple attrResult = namedtuple("AttributionResults", "heatmap, activations, relevances, prediction") attrGraphResult = namedtuple("AttributionGraphResults", "nodes, connections") class CondAttribution: def __init__(self, model: torch.nn.Module, device: torch.device = None, overwrite_data_grad=True, no_param_grad=True) -> None: """ This class contains the functionality to compute conditional attributions. Parameters: ---------- model: torch.nn.Module device: torch.device specifies where the model and subsequent computation takes place. overwrite_data_grad: boolean If True, the .grad attribute of the 'data' argument is set to None before each __call__. no_param_grad: boolean If True, sets the requires_grad attribute of all model parameters to zero, to reduce the GPU memory footprint. """ self.MODEL_OUTPUT_NAME = "y" self.device = next(model.parameters()).device if device is None else device self.model = model self.overwrite_data_grad = overwrite_data_grad if no_param_grad: self.model.requires_grad_(False) def backward(self, pred, grad_mask, partial_backward, layer_names, layer_out, generate=False): if partial_backward and len(layer_names) > 0: wrt_tensor, grad_tensors = pred, grad_mask.to(pred) for l_name in layer_names: inputs = layer_out[l_name] try: grad = torch.autograd.grad(wrt_tensor, inputs=inputs, grad_outputs=grad_tensors, retain_graph=True) except RuntimeError as e: if "allow_unused=True" not in str(e): raise e else: raise RuntimeError( "The layer names must be ordered according to their succession in the model if 'exclude_parallel'=True." " Please make sure to start with the last and end with the first layer in each condition dict. In addition," " parallel layers can not be used in one condition.") # TODO: necessary? if grad is None: raise RuntimeError( "The layer names must be ordered according to their succession in the model if 'exclude_parallel'=True." " Please make sure to start with the last and end with the first layer in each condition dict. In addition," " parallel layers can not be used in one condition.") wrt_tensor, grad_tensors = layer_out[l_name], grad torch.autograd.backward(wrt_tensor, grad_tensors, retain_graph=generate) else: torch.autograd.backward(pred, grad_mask.to(pred), retain_graph=generate) def relevance_init(self, prediction, target_list, init_rel): """ Parameters: ----------- prediction: torch.Tensor output of model forward pass target_list: list/numpy.ndarray or None list of all 'y' values of condition dictionaries. Indices are used to set the initial relevance to prediction values. If target_list is None and init_rel is None, relevance is initialized at all indices with prediction values. If start_layer is used, target_list is set to None. init_rel: torch.Tensor or None used to initialize relevance instead of prediction. If None, target_list is used. Please make sure to choose the right shape. """ if callable(init_rel): output_selection = init_rel(prediction) elif isinstance(init_rel, torch.Tensor): output_selection = init_rel elif isinstance(init_rel, (int, np.integer)): output_selection = torch.full(prediction.shape, init_rel) else: output_selection = prediction if target_list: mask = torch.zeros_like(output_selection) for i, targets in enumerate(target_list): mask[i, targets] = output_selection[i, targets] output_selection = mask return output_selection def heatmap_modifier(self, data, on_device=None): heatmap = data.grad.detach() heatmap = heatmap.to(on_device) if on_device else heatmap return torch.sum(heatmap, dim=1) def broadcast(self, data, conditions) -> Tuple[torch.Tensor, Dict]: len_data, len_cond = len(data), len(conditions) if len_data == len_cond: data.retain_grad() return data, conditions if len_cond > 1: data = torch.repeat_interleave(data, len_cond, dim=0) if len_data > 1: conditions = conditions * len_data data.retain_grad() return data, conditions def _check_arguments(self, data, conditions, start_layer, exclude_parallel, init_rel): if not data.requires_grad: raise ValueError( "requires_grad attribute of 'data' must be True.") if self.overwrite_data_grad: data.grad = None elif data.grad is not None: warnings.warn("'data' already has a filled .grad attribute. Set to None if not intended or set 'overwrite_grad' to True.") distinct_cond = set() for cond in conditions: if self.MODEL_OUTPUT_NAME not in cond and start_layer is None and init_rel is None: raise ValueError( f"Either {self.MODEL_OUTPUT_NAME} in 'conditions' or 'start_layer' or 'init_rel' must be defined.") if self.MODEL_OUTPUT_NAME in cond and start_layer is not None: warnings.warn( f"You defined a condition for {self.MODEL_OUTPUT_NAME} that has no effect, since the 'start_layer' {start_layer}" " is provided where the backward pass begins. If this behavior is not wished, remove 'start_layer'.") if exclude_parallel: if len(distinct_cond) == 0: distinct_cond.update(cond.keys()) elif distinct_cond ^ set(cond.keys()): raise ValueError("If the 'exclude_parallel' flag is set to True, each condition dict must contain the" " same layer names. (This limitation does not apply to the __call__ method)") def _register_mask_fn(self, hook, mask_map, b_index, c_indices, l_name): if callable(mask_map): mask_fn = mask_map(b_index, c_indices, l_name) elif isinstance(mask_map, Dict): mask_fn = mask_map[l_name](b_index, c_indices, l_name) else: raise ValueError("<mask_map> must be a dictionary or callable function.") hook.fn_list.append(mask_fn) def __call__( self, data: torch.tensor, conditions: List[Dict[str, List]], composite: Composite = None, record_layer: List[str] = [], mask_map: Union[Callable, Dict[str, Callable]] = ChannelConcept.mask, start_layer: str = None, init_rel=None, on_device: str = None, exclude_parallel=True) -> attrResult: """ Computes conditional attributions by masking the gradient flow of PyTorch (that is replaced by zennit with relevance values). The relevance distribution rules (as for LRP e.g.) are described in the zennit 'composite'. Relevance can be initialized at the model output or 'start_layer' with the 'init_rel' argument. How the relevances are masked is determined by the 'conditions' as well as the 'mask_map'. In addition, 'exclude_parallel'=True, restricts the PyTorch gradient flow so that it does not enter into parallel layers (shortcut connections) of the layers mentioned in the 'conditions' dictionary. The name of the model output is designated with self.MODEL_OUTPUT_NAME ('y' per default) and can be used inside 'conditions'. Parameters: ----------- data: torch.Tensor Input sample for which a conditional heatmap is computed conditions: list of dict The key of a dict are string layer names and their value is a list of integers describing the concept (channel, neuron) index. In general, the values are passed to the 'mask_map' function as 'concept_ids' argument. composite: zennit Composite Object that describes how relevance is distributed. Should contain a suitable zennit Canonizer. mask_map: dict of callable or callable The keys of the dict are string layer names and the values functions that implement gradient masking. If no dict is used, all layers are masked according to the same function. The 'conditions' values are passed into the function as 'concept_ids' argument. start_layer: (optional) str Layer name where to start the backward pass instead of starting at the model output. If set, 'init_rel' modifies the tensor at 'start_layer' instead and a condition containing self.MODEL_OUTPUT_NAME is ignored. init_rel: (optional) torch.Tensor, int or callable Initializes the relevance distribution process as described in the LRP algorithm e.g. The callable must have the signature callable(activations). Per default, relevance is initialized with the logit activation before a non-linearity. on_device: (optional) str On which device (cpu, cuda) to save the heatmap, intermediate activations and relevances. Per default, everything is kept on the same device as the model parameters. exclude_parallel: boolean If set, the PyTorch gradient flow is restricted so that it does not enter into parallel layers (shortcut connections) of the layers mentioned in the 'conditions' dictionary. Useful to get the sole contribution of a specific concept. Returns: -------- attrResult: namedtuple object Contains the attributes 'heatmap', 'activations', 'relevances' and 'prediction'. 'heatmap': torch.Tensor Output of the self.attribution_modifier method that defines how 'data'.grad is processed. 'activations': dict of str and torch.Tensor The keys are the layer names and values are the activations 'relevances': dict of str and torch.Tensor The keys are the layer names and values are the relevances 'prediction': torch.Tensor The model prediction output. If 'start_layer' is set, 'prediction' is the layer activation. """ if exclude_parallel: return self._conditions_wrapper(data, conditions, composite, record_layer, mask_map, start_layer, init_rel, on_device, True) else: return self._attribute(data, conditions, composite, record_layer, mask_map, start_layer, init_rel, on_device, False) def _conditions_wrapper(self, *args): """ Since 'exclude_parallel'=True requires that the condition set contains only the same layer names, the list is divided into distinct lists that all contain the same layer name. """ data, conditions = args[:2] relevances, activations = {}, {} heatmap, prediction = None, None dist_conds = self._separate_conditions(conditions) for dist_layer in dist_conds: attr = self._attribute(data, dist_conds[dist_layer], *args[2:]) for l_name in attr.relevances: if l_name not in relevances: relevances[l_name] = attr.relevances[l_name] activations[l_name] = attr.activations[l_name] else: relevances[l_name] = torch.cat([relevances[l_name], attr.relevances[l_name]], dim=0) activations[l_name] = torch.cat([activations[l_name], attr.activations[l_name]], dim=0) if heatmap is None: heatmap = attr.heatmap prediction = attr.prediction else: heatmap = torch.cat([heatmap, attr.heatmap], dim=0) prediction = torch.cat([prediction, attr.prediction], dim=0) return attrResult(heatmap, activations, relevances, prediction) def _separate_conditions(self, conditions): """ Finds identical subsets of layer names inside 'conditions' """ distinct_cond = dict() for cond in conditions: cond_set = frozenset(cond.keys()) if cond_set in distinct_cond: distinct_cond[cond_set].append(cond) else: distinct_cond[cond_set] = [cond] return distinct_cond def _attribute( self, data: torch.tensor, conditions: List[Dict[str, List]], composite: Composite = None, record_layer: List[str] = [], mask_map: Union[Callable, Dict[str, Callable]] = ChannelConcept.mask, start_layer: str = None, init_rel=None, on_device: str = None, exclude_parallel=True) -> attrResult: """ Computes the actual attributions as described in __call__ method docstring. exclude_parallel: boolean If set, all layer names in 'conditions' must be identical. This limitation does not apply to the __call__ method. """ data, conditions = self.broadcast(data, conditions) self._check_arguments(data, conditions, start_layer, exclude_parallel, init_rel) hook_map, y_targets, cond_l_names = {}, [], [] for i, cond in enumerate(conditions): for l_name, indices in cond.items(): if l_name == self.MODEL_OUTPUT_NAME: y_targets.append(indices) else: if l_name not in hook_map: hook_map[l_name] = MaskHook([]) self._register_mask_fn(hook_map[l_name], mask_map, i, indices, l_name) if l_name not in cond_l_names: cond_l_names.append(l_name) handles, layer_out = self._append_recording_layer_hooks(record_layer, start_layer, cond_l_names) name_map = [([name], hook) for name, hook in hook_map.items()] mask_composite = NameMapComposite(name_map) if composite is None: composite = Composite() with mask_composite.context(self.model), composite.context(self.model) as modified: if start_layer: _ = modified(data) pred = layer_out[start_layer] grad_mask = self.relevance_init(pred.detach().clone(), None, init_rel) if start_layer in cond_l_names: cond_l_names.remove(start_layer) self.backward(pred, grad_mask, exclude_parallel, cond_l_names, layer_out) else: pred = modified(data) grad_mask = self.relevance_init(pred.detach().clone(), y_targets, init_rel) self.backward(pred, grad_mask, exclude_parallel, cond_l_names, layer_out) attribution = self.heatmap_modifier(data, on_device) activations, relevances = {}, {} if len(layer_out) > 0: activations, relevances = self._collect_hook_activation_relevance(layer_out, on_device) [h.remove() for h in handles] return attrResult(attribution, activations, relevances, pred) def generate( self, data: torch.tensor, conditions: List[Dict[str, List]], composite: Composite = None, record_layer: List[str] = [], mask_map: Union[Callable, Dict[str, Callable]] = ChannelConcept.mask, start_layer: str = None, init_rel=None, batch_size=10, on_device=None, exclude_parallel=True, verbose=True) -> attrResult: """ Computes several conditional attributions for single data point by broadcasting 'data' to length 'batch_size' and iterating through the 'conditions' list with stepsize 'batch_size'. The model forward pass is performed only once and the backward graph kept in memory in order to double the performance. Please refer to the docstring of the __call__ method. batch_size: int batch size of each forward and backward pass exclude_parallel: boolean If set, all layer names in 'conditions' must be identical. This limitation does not apply to the __call__ method. verbose: boolean If set, a progressbar is displayed. """ self._check_arguments(data, conditions, start_layer, exclude_parallel, init_rel) # register on all layers in layer_map an empty hook hook_map, cond_l_names = {}, [] for cond in conditions: for l_name in cond.keys(): if l_name not in hook_map: hook_map[l_name] = MaskHook([]) if l_name != self.MODEL_OUTPUT_NAME and l_name not in cond_l_names: cond_l_names.append(l_name) handles, layer_out = self._append_recording_layer_hooks(record_layer, start_layer, cond_l_names) name_map = [([name], hook) for name, hook in hook_map.items()] mask_composite = NameMapComposite(name_map) if composite is None: composite = Composite() cond_length = len(conditions) if cond_length > batch_size: batches = math.ceil(cond_length / batch_size) else: batches = 1 batch_size = cond_length data_batch = torch.repeat_interleave(data, batch_size, dim=0) data_batch.grad = None data_batch.retain_grad() retain_graph = True with mask_composite.context(self.model), composite.context(self.model) as modified: if start_layer: _ = modified(data_batch) pred = layer_out[start_layer] if start_layer in cond_l_names: cond_l_names.remove(start_layer) else: pred = modified(data_batch) if verbose: pbar = tqdm(total=batches, dynamic_ncols=True) for b in range(batches): if verbose: pbar.update(1) cond_batch = conditions[b * batch_size: (b + 1) * batch_size] y_targets = [] for i, cond in enumerate(cond_batch): for l_name, indices in cond.items(): if l_name == self.MODEL_OUTPUT_NAME: y_targets.append(indices) else: self._register_mask_fn(hook_map[l_name], mask_map, i, indices, l_name) if b == batches-1: # last batch may have len(y_targets) != batch_size. Padded part is ignored later. # and backward graph is freed with retain_graph=False if not start_layer: y_targets.extend([y_targets[0] for i in range(batch_size-len(y_targets))]) batch_size = len(cond_batch) retain_graph = False grad_mask = self.relevance_init(pred.detach().clone(), y_targets, init_rel) self.backward(pred, grad_mask, exclude_parallel, cond_l_names, layer_out, retain_graph) heatmap = self.heatmap_modifier(data_batch) activations, relevances = {}, {} if len(layer_out) > 0: activations, relevances = self._collect_hook_activation_relevance( layer_out, on_device, batch_size) yield attrResult(heatmap[:batch_size], activations, relevances, pred[:batch_size]) self._reset_gradients(data_batch) [hook.fn_list.clear() for hook in hook_map.values()] [h.remove() for h in handles] if verbose: pbar.close() @staticmethod def _generate_hook(layer_name, layer_out): def get_tensor_hook(module, input, output): layer_out[layer_name] = output output.retain_grad() return get_tensor_hook def _append_recording_layer_hooks(self, record_l_names: list, start_layer, cond_l_names): """ applies a forward hook to all layers in record_l_names, start_layer and cond_l_names to record the activations and relevances """ handles = [] layer_out = {} record_l_names = record_l_names.copy() for l_name in cond_l_names: if l_name not in record_l_names: record_l_names.append(l_name) if start_layer is not None and start_layer not in record_l_names: record_l_names.append(start_layer) for name, layer in self.model.named_modules(): if name == self.MODEL_OUTPUT_NAME: raise ValueError( "No layer name should match the constant for the identifier of the model output." "Please change the layer name or the OUTPUT_NAME constant of the object." "Note, that the condition set then references to the output with OUTPUT_NAME and no longer 'y'.") if name in record_l_names: h = layer.register_forward_hook(self._generate_hook(name, layer_out)) handles.append(h) record_l_names.remove(name) if start_layer in record_l_names: raise KeyError(f"<start_layer> {start_layer} not found in model.") if len(record_l_names) > 0: warnings.warn( f"Some layer names not found in model: {record_l_names}.") return handles, layer_out def _collect_hook_activation_relevance(self, layer_out, on_device=None, length=None): """ Parameters: ---------- layer_out: dict contains the intermediate layer outputs on_device: str copy layer_out on cpu or cuda device length: int copy only first length elements of layer_out. Used for uneven batch sizes. """ relevances = {} activations = {} for name in layer_out: act = layer_out[name].detach()[:length] activations[name] = act.to(on_device) if on_device else act activations[name].requires_grad = False if layer_out[name].grad is None: rel = torch.zeros_like(activations[name], requires_grad=False)[:length] relevances[name] = rel.to(on_device) if on_device else rel else: rel = layer_out[name].grad.detach()[:length] relevances[name] = rel.to(on_device) if on_device else rel relevances[name].requires_grad = False layer_out[name].grad = None return activations, relevances def _reset_gradients(self, data): """ custom zero_grad() function """ for p in self.model.parameters(): p.grad = None data.grad = None class AttributionGraph: def __init__(self, attribution: CondAttribution, graph: ModelGraph, layer_map: Dict[str, Concept]): self.attribution = attribution self.graph = graph self.set_layer_map(layer_map) def set_layer_map(self, layer_map): """ set layer map of attribution graph """ self.layer_map = layer_map self.mask_map = {l_name: c.mask for l_name, c in layer_map.items()} def __call__( self, sample, composite, concept_id: int, layer_name, target=None, width: List[int] = [4, 2], parent_c_id: int = None, parent_layer: str = None, abs_norm=True, batch_size=16, verbose=True): """ Decomposes a higher-level concept into its lower-level concepts taking advantage of the relevance flow of a specific prediction. Parameters: ----------- sample: torch.Tensor composite: zennit.composites.Composite concept_id: int index of higher-level concept that is decomposed layer_name: str name of layer where the higher-level concept is located target: None or int if defined, decomposes the higher-level concept w.r.t. target prediction width: list of integers describes how many lower-level concepts per layer are returned. The length of the list specifies the number of lower-level layers that are successively decomposed following the higher level layer `layer_name`. parent_c_id: int if the higher-level concept `concept_id` is decomposed in context of another higher concept, then this parameter denotes the original higher-level concept. parent_layer: str layer name of concept with index `parent_c_id` abs_norm: boolean if True, normalizes the relevance by dividing with the sum of absolute value batch_size: int maximal batch size Returns: -------- nodes: list of tuples All concept indices with their layer names present in the attribution graph. The first element is the layer name and the second the index. connections: dict, keys are str and values are tuples with a length of three Describes the connection between two nodes in the graph. The key is the source and the value the target. The first element is the layer name, the second the index and the third the relevance value. """ nodes = [(layer_name, concept_id)] connections = {} if target is not None: start_layer = None elif parent_layer: start_layer = parent_layer else: start_layer = layer_name parent_cond = {} if parent_c_id is not None and parent_layer: parent_cond[parent_layer] = [parent_c_id] else: parent_cond[layer_name] = [concept_id] if target is not None: parent_cond[self.attribution.MODEL_OUTPUT_NAME] = [target] cond_tuples = [(layer_name, concept_id)] for w in width: conditions, input_layers = [], [] for l_name, c_id in cond_tuples: cond = {l_name: [c_id]} cond.update(parent_cond) conditions.append(cond) in_layers = self.graph.find_input_layers(l_name) for name in in_layers: if name not in input_layers: input_layers.append(name) b, next_cond_tuples = 0, [] for attr in self.attribution.generate( sample, conditions, composite, record_layer=input_layers, mask_map=self.mask_map, start_layer=start_layer, batch_size=batch_size, verbose=verbose, exclude_parallel=False): self._attribute_lower_level( cond_tuples[b * batch_size: (b + 1) * batch_size], attr.relevances, w, nodes, connections, next_cond_tuples, abs_norm) b += 1 cond_tuples = next_cond_tuples return attrGraphResult(nodes, connections) def _attribute_lower_level(self, cond_tuples, relevances, w, nodes, connections, next_cond_tuples, abs_norm): for i, (l_name, c_id) in enumerate(cond_tuples): input_layers = self.graph.find_input_layers(l_name) for inp_l in input_layers: rel = relevances[inp_l][[i]] rel_c = self.layer_map[inp_l].attribute(rel, abs_norm=abs_norm)[0] c_ids = torch.argsort(rel_c, descending=True)[:w].tolist() nodes.extend([(inp_l, id) for id in c_ids]) next_cond_tuples.extend([(inp_l, id) for id in c_ids]) if (l_name, c_id) not in connections: connections[(l_name, c_id)] = [] connections[(l_name, c_id)].extend([(inp_l, id, rel_c[id].item()) for id in c_ids]) return None
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/attribution.py
attribution.py
import weakref import functools import torch from zennit.core import RemovableHandle, RemovableHandleList class MaskHook: '''Mask hooks for adaptive gradient masking or simple modification.''' def __init__(self, fn_list): self.fn_list = fn_list def post_forward(self, module, input, output): '''Register a backward-hook to the resulting tensor right after the forward.''' hook_ref = weakref.ref(self) @functools.wraps(self.backward) def wrapper(grad): return hook_ref().backward(module, grad) if not isinstance(output, tuple): output = (output,) if output[0].grad_fn is not None: # only if gradient required output[0].register_hook(wrapper) return output[0] if len(output) == 1 else output def backward(self, module, grad): '''Hook applied during backward-pass''' for mask_fn in self.fn_list: grad = mask_fn(grad) return grad def copy(self): '''Return a copy of this hook. This is used to describe hooks of different modules by a single hook instance. Copies retain the same fn_list list. ''' return self.__class__(fn_list=self.fn_list) def remove(self): '''When removing hooks, remove all stored mask_fn.''' self.fn_list.clear() def register(self, module): '''Register this instance by registering the neccessary forward hook to the supplied module.''' return RemovableHandleList([ RemovableHandle(self), module.register_forward_hook(self.post_forward), ]) class FeatVisHook: '''Feature Visualization hooks for reference sampling inside forward and backward passes.''' def __init__(self, FV, concept, layer_name, dict_inputs, on_device): """ Parameters: dict_inputs: contains sample_indices and targets inputs to FV.analyze_activation and FV.analyze_relevance """ self.FV = FV self.concept = concept self.layer_name = layer_name self.dict_inputs = dict_inputs self.on_device = on_device def post_forward(self, module, input, output): '''Register a backward-hook to the resulting tensor right after the forward.''' s_indices, targets = self.dict_inputs["sample_indices"], self.dict_inputs["targets"] activation = output.detach().to(self.on_device) if self.on_device else output.detach() self.FV.analyze_activation(activation, self.layer_name, self.concept, s_indices, targets) hook_ref = weakref.ref(self) @functools.wraps(self.backward) def wrapper(grad): return hook_ref().backward(module, grad) if not isinstance(output, tuple): output = (output,) if output[0].grad_fn is not None: # only if gradient required output[0].register_hook(wrapper) return output[0] if len(output) == 1 else output def backward(self, module, grad): '''Hook applied during backward-pass''' s_indices, targets = self.dict_inputs["sample_indices"], self.dict_inputs["targets"] relevance = grad.detach().to(self.on_device) if self.on_device else grad.detach() self.FV.analyze_relevance(relevance, self.layer_name, self.concept, s_indices, targets) return grad def copy(self): '''Return a copy of this hook. This is used to describe hooks of different modules by a single hook instance. Copies retain the same stored_grads list. ''' return self.__class__(self.FV, self.concept, self.layer_name, self.dict_inputs, self.on_device) def remove(self): pass def register(self, module): '''Register this instance by registering the neccessary forward hook to the supplied module.''' return RemovableHandleList([ RemovableHandle(self), module.register_forward_hook(self.post_forward), ])
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/hooks.py
hooks.py
import torch from typing import List class GraphNode: """ Contains meta information about a node in a PyTorch jit graph """ def __init__(self, node): self.id = node.__repr__() self.scopeName = node.scopeName() if len(self.scopeName) == 0: self.scopeName = node.kind() self.output_nodes = [] self.input_nodes = [] self.is_layer = False self.input_layers = [] if "aten" in node.kind(): self.layer_name = self.scopeName.split("__module.")[-1] self.is_layer = True class ModelGraph: """ This class contains meta information about layer connections inside the PyTorch model. Use `find_input_layers` method to get the input layers of a specific nn.Module """ def __init__(self, input_nodes): self.id_node_map = {} self.layer_node_map = {} for node in input_nodes: self._add_node(node) def _add_node(self, node): """ Add node to intern dictionaries """ node_id = node.__repr__() if node_id not in self.id_node_map: node_obj = GraphNode(node) self.id_node_map[node_id] = node_obj if node_obj.is_layer: self.layer_node_map[node_obj.layer_name] = node_obj return self.id_node_map[node_id] def _add_connection(self, in_node, out_node): """ Add an entry for the connection between input_node and end_node """ layer_node_in = self._add_node(in_node) layer_node_out = self._add_node(out_node) new_connection = False if layer_node_in not in layer_node_out.input_nodes: layer_node_out.input_nodes.append(layer_node_in) new_connection = True if layer_node_out not in layer_node_in.output_nodes: layer_node_in.output_nodes.append(layer_node_out) new_connection = True return new_connection def set_layer_names(self, layer_names: list): self.layer_names = layer_names for name in layer_names: # cache results self.find_input_layers(name) def find_input_layers(self, layer_name: str) -> List: """ Returns all layer names that are connected to the input of `layer_name`. The method returns only layers, that were supplied as `layer_names` argument to the `trace_model_graph` function. If you wish to change available layers, please modify the self.layer_names attribute. Parameters: ---------- layer_name: str name of torch.nn.Module """ if layer_name not in self.layer_node_map: raise KeyError(f"{layer_name} does not exist") root_node = self.layer_node_map[layer_name] if len(root_node.input_layers) == 0: # cache results layers = self._recursive_search(root_node) root_node.input_layers = layers return layers else: return root_node.input_layers def _recursive_search(self, node_obj): found_layers = [] for g_node in node_obj.input_nodes: if g_node.is_layer and g_node.layer_name in self.layer_names: found_layers.append(g_node.layer_name) else: found_layers.extend(self._recursive_search(g_node)) return found_layers def __str__(self): model_string = "" for layer in self.id_node_map.values(): model_string += layer.scopeName + " -> " for next_l in layer.output_nodes: model_string += next_l.scopeName + ", " if len(layer.output_nodes) == 0: model_string += " end" else: model_string += "\n" return model_string def trace_model_graph(model, sample: torch.Tensor, layer_names: List[str], debug=False) -> ModelGraph: """" As pytorch does not trace the model structure like tensorflow, we need to do it ourselves. Thus, this function generates a model graph - a summary - how all nn.Module are connected with each other. Parameters: ---------- model: torch.nn.Module sample: torch.Tensor An examplary input. Used to trace the model with torch.jit.trace layer_names: list of strings List of all layer names that should be accessible in the model graph summary debug: boolean If True, returns the tarced inlined_graph of torch.jit Returns: ------- ModelGraph: obj Object that contains meta information about the connection of modules. Use the `find_input_layers` method to get the input layers of a specific nn.Module. """ # we use torch.jit to record the connections of all tensors traced = torch.jit.trace(model, (sample,), check_trace=False) # inlined_graph returns a suitable presentation of the traced model graph = traced.inlined_graph if debug is True: dump_pytorch_graph(graph) """ We search for all input nodes where we could start a recursive travers through the network graph. First, we concatenate all input and output tensor ids for each node as they are spread out in the original torch.jit representation. Then, we search for a node with input tensors that have no connection to the output of another node. This node is an input node per definition. """ node_inputs, node_outputs = _collect_node_inputs_and_outputs(graph) input_nodes = _get_input_nodes(graph, node_inputs, node_outputs) # initialize a model representation where we save the results MG = ModelGraph(input_nodes) # start recursive decoding of torch.jit graph for node in input_nodes: _build_graph_recursive(MG, graph, node) MG.set_layer_names(layer_names) # explicitly free gpu ram del traced, graph return MG def _build_graph_recursive(MG: ModelGraph, graph, in_node): """ Recursive function traverses the graph constructed by torch.jit.trace and records the graph structure inside our ModelGraph class """ node_outputs = [i.unique() for i in in_node.outputs()] next_nodes = _find_next_nodes(graph, node_outputs) if len(next_nodes) == 0: return for node in next_nodes: new_connection = MG._add_connection(in_node, node) if new_connection: _build_graph_recursive(MG, graph, node) else: return def _find_next_nodes(graph, node_outputs): """ Helper function for build_graph_recursive. """ next_nodes = [] for node in graph.nodes(): node_inputs = [i.unique() for i in node.inputs()] if set(node_inputs) & set(node_outputs): next_nodes.append(node) return next_nodes def _collect_node_inputs_and_outputs(graph): """ Helper function to get all tensor ids of the input and output of each node. Used to retrieve the input layers of the model. """ layer_inputs = {} layer_outputs = {} for node in graph.nodes(): # "aten" nodes are torch.nn.Modules if "aten" in node.kind(): name = node.scopeName() if name not in layer_inputs: layer_inputs[name] = [] layer_outputs[name] = [] [layer_inputs[name].append(i.unique()) for i in node.inputs()] [layer_outputs[name].append(i.unique()) for i in node.outputs()] return layer_inputs, layer_outputs def _get_input_nodes(graph, layer_inputs: dict, layer_outputs: dict): """ Returns input nodes of jit graph. Used to retrieve the input layers of the model. """ input_nodes = [] for node in graph.nodes(): # "aten" describes all real layers if "aten" in node.kind(): name = node.scopeName() node_inputs = layer_inputs[name] # if its inputs are not ourputs of other modules -> an input node if not _find_overlap_with_output(node_inputs, layer_outputs): input_nodes.append(node) return input_nodes def _find_overlap_with_output(node_inputs: list, layer_outputs: dict): """ More efficient version of _find_next_nodes. """ for name in layer_outputs: node_outputs = layer_outputs[name] if set(node_inputs) & set(node_outputs): # if overlap, no input node return True return False def dump_pytorch_graph(graph): """ List all the nodes in a PyTorch jit graph. Source: https://github.com/waleedka/hiddenlayer/blob/master/hiddenlayer/pytorch_builder.py """ f = "{:25} {:40} {} -> {}" print(f.format("kind", "scopeName", "inputs", "outputs")) for node in graph.nodes(): print(f.format(node.kind(), node.scopeName(), [i.unique() for i in node.inputs()], [i.unique() for i in node.outputs()] ))
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/graph.py
graph.py
from typing import Dict, List, Union, Any, Tuple, Iterable from PIL import Image import torch from torchvision.transforms.functional import gaussian_blur import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import zennit.image as zimage from crp.helper import max_norm def get_crop_range(heatmap, crop_th): """ Returns indices in order to crop the supplied heatmap where relevance is greater than heatmap > crop_th. Parameters: ---------- heatmaps: torch.Tensor ouput heatmap tensor of the CondAttribution call crop_th: between [0 and 1) Cropping Threshold: Crops the image in regions where relevance is smaller than max(relevance)*crop_th. Cropping is only applied, if receptive field 'rf' is set to True. """ crop_mask = heatmap > crop_th rows, columns = torch.where(crop_mask) if len(rows) == 0 or len(columns) == 0: # rf is empty return 0, -1, 0, -1 row1, row2 = rows.min(), rows.max() col1, col2 = columns.min(), columns.max() if (row1 >= row2) and (col1 >= col2): # rf is empty return 0, -1, 0, -1 return row1, row2, col1, col2 @torch.no_grad() def vis_opaque_img(data_batch, heatmaps, rf=False, alpha=0.3, vis_th=0.2, crop_th=0.1, kernel_size=19) -> Image.Image: """ Draws reference images. The function lowers the opacity in regions with relevance lower than max(relevance)*vis_th. In addition, the reference image can be cropped where relevance is less than max(relevance)*crop_th by setting 'rf' to True. Parameters: ---------- data_batch: torch.Tensor original images from dataset without FeatureVisualization.preprocess() applied to it heatmaps: torch.Tensor ouput heatmap tensor of the CondAttribution call rf: boolean Computes the CRP heatmap for a single neuron and hence restricts the heatmap to the receptive field. The amount of cropping is further specified by the 'crop_th' argument. alpha: between [0 and 1] Regulates the transparency in low relevance regions. vis_th: between [0 and 1) Visualization Threshold: Increases transparency in regions where relevance is smaller than max(relevance)*vis_th. crop_th: between [0 and 1) Cropping Threshold: Crops the image in regions where relevance is smaller than max(relevance)*crop_th. Cropping is only applied, if receptive field 'rf' is set to True. kernel_size: scalar Parameter of the torchvision.transforms.functional.gaussian_blur function used to smooth the CRP heatmap. Returns: -------- image: list of PIL.Image objects If 'rf' is True, reference images have different shapes. """ if alpha > 1 or alpha < 0: raise ValueError("'alpha' must be between [0, 1]") if vis_th >= 1 or vis_th < 0: raise ValueError("'vis_th' must be between [0, 1)") if crop_th >= 1 or crop_th < 0: raise ValueError("'crop_th' must be between [0, 1)") imgs = [] for i in range(len(data_batch)): img = data_batch[i] filtered_heat = max_norm(gaussian_blur(heatmaps[i].unsqueeze(0), kernel_size=kernel_size)[0]) vis_mask = filtered_heat > vis_th if rf: row1, row2, col1, col2 = get_crop_range(filtered_heat, crop_th) img_t = img[..., row1:row2, col1:col2] vis_mask_t = vis_mask[row1:row2, col1:col2] if img_t.sum() != 0 and vis_mask_t.sum() != 0: # check whether img_t or vis_mask_t is not empty img = img_t vis_mask = vis_mask_t inv_mask = ~vis_mask img = img * vis_mask + img * inv_mask * alpha img = zimage.imgify(img.detach().cpu()) imgs.append(img) return imgs @torch.no_grad() def vis_img_heatmap(data_batch, heatmaps, rf=False, crop_th=0.1, kernel_size=19, cmap="bwr", vmin=None, vmax=None, symmetric=True) -> Tuple[Image.Image, Image.Image]: """ Draws reference images and their conditional heatmaps. The function illustrates images using zennit.imgify and applies the supplied 'cmap' to heatmaps. In addition, the reference images and heatmaps can be cropped where relevance is less than max(relevance)*crop_th by setting 'rf' to True. Parameters: ---------- data_batch: torch.Tensor original images from dataset without FeatureVisualization.preprocess() applied to it heatmaps: torch.Tensor ouput heatmap tensor of the CondAttribution call rf: boolean Computes the CRP heatmap for a single neuron and hence restricts the heatmap to the receptive field. The amount of cropping is further specified by the 'crop_th' argument. crop_th: between [0 and 1) Cropping Threshold: Crops the image in regions where relevance is smaller than max(relevance)*crop_th. Cropping is only applied, if receptive field 'rf' is set to True. kernel_size: scalar Parameter of the torchvision.transforms.functional.gaussian_blur function used to smooth the CRP heatmap. REMAINING PARAMETERS: correspond to zennit.image.imgify Returns: -------- image: list of PIL.Image objects If 'rf' is True, reference images have different shapes. """ img_list, heat_list = [], [] for i in range(len(data_batch)): img = data_batch[i] heat = heatmaps[i] if rf: filtered_heat = max_norm(gaussian_blur(heat.unsqueeze(0), kernel_size=kernel_size)[0]) row1, row2, col1, col2 = get_crop_range(filtered_heat, crop_th) img_t = img[..., row1:row2, col1:col2] heat_t = heat[row1:row2, col1:col2] if img_t.sum() != 0 and heat_t.sum() != 0: # check whether img or vis_mask is not empty img = img_t heat = heat_t heat = imgify(heat, cmap=cmap, vmin=vmin, vmax=vmax, symmetric=symmetric) img = imgify(img) img_list.append(img) heat_list.append(heat) return img_list, heat_list def imgify(image: Union[Image.Image, torch.Tensor, np.ndarray], cmap: str = "bwr", vmin=None, vmax=None, symmetric=False, level=1.0, grid=False, gridfill=None, resize:int=None, padding=False) -> Image.Image: """ Convenient wrapper around zennit.image.imgify supporting tensors, numpy arrays and PIL Images. Allows resizing while keeping the aspect ratio intact and padding to a square shape. Parameters: ---------- image: torch.Tensor, np.ndarray or PIL Image With 2 dimensions greyscale, or 3 dimensions with 1 or 3 values in the first or last dimension (color). resize: None or int If None, no resizing is applied. If int, sets the maximal aspect ratio of the image. padding: boolean If True, pads the image into a square shape by setting the alpha channel to zero outside the image. vmin: float or obj:numpy.ndarray Manual minimum value of the array. Overrides the used norm's minimum value. vmax: float or obj:numpy.ndarray Manual maximum value of the array. Overrides the used norm's maximum value. cmap: str or ColorMap String to specify a built-in color map, code used to create a new color map, or a ColorMap instance, which will be used to create a palette. The color map will only be applied for arrays with only a single color channel. The color will be specified as a palette in the PIL Image. Returns: -------- image: PIL.Image object """ if isinstance(image, torch.Tensor): img = zimage.imgify(image.detach().cpu(), cmap=cmap, vmin=vmin, vmax=vmax, symmetric=symmetric, level=level, grid=grid, gridfill=gridfill) elif isinstance(image, np.ndarray): img = zimage.imgify(image, cmap=cmap, vmin=vmin, vmax=vmax, symmetric=symmetric, level=level, grid=grid, gridfill=gridfill) elif isinstance(image, Image.Image): img = image else: raise TypeError("Only PIL.Image, torch.Tensor or np.ndarray types are supported!") if resize: ratio = resize/max(img.size) new_size = tuple([int(x*ratio) for x in img.size]) img = img.resize(new_size, Image.NEAREST) if padding: max_size = resize if resize else max(img.size) new_im = Image.new("RGBA", (max_size, max_size)) new_im.putalpha(0) new_im.paste(img, ((max_size-img.size[0])//2, (max_size-img.size[1])//2)) img = new_im return img def plot_grid(ref_c: Dict[int, Any], cmap_dim=1, cmap="bwr", vmin=None, vmax=None, symmetric=True, resize=None, padding=True, figsize=(6, 6)): """ Plots dictionary of reference images as they are returned of the 'get_max_reference' method. To every element in the list crp.imgify is applied with its respective argument values. Parameters: ---------- ref_c: dict with keys: integer and value: several lists filled with torch.Tensor, np.ndarray or PIL Image To every element in the list crp.imgify is applied. resize: None or int If None, no resizing is applied. If int, sets the maximal aspect ratio of the image. padding: boolean If True, pads the image into a square shape by setting the alpha channel to zero outside the image. figsize: tuple or None Size of plt.figure cmap_dim: int, 0 or 1 Applies the remaining parameters to the first or second element of the tuple list, i.e. plot as heatmap REMAINING PARAMETERS: correspond to zennit.imgify Returns: -------- shows matplotlib.pyplot plot """ keys = list(ref_c.keys()) nrows = len(keys) value = next(iter(ref_c.values())) if cmap_dim > 2 or cmap_dim < 1 or cmap_dim == None: raise ValueError("'cmap_dim' must be 0 or 1 or None.") if isinstance(value, Tuple) and isinstance(value[0], Iterable): nsubrows = len(value) ncols = len(value[0]) elif isinstance(value, Iterable): nsubrows = 1 ncols = len(value) else: raise ValueError("'ref_c' dictionary must contain an iterable of torch.Tensor, np.ndarray or PIL Image or a tuple of thereof.") fig = plt.figure(figsize=figsize) outer = gridspec.GridSpec(nrows, 1, wspace=0, hspace=0.2) for i in range(nrows): inner = gridspec.GridSpecFromSubplotSpec(nsubrows, ncols, subplot_spec=outer[i], wspace=0, hspace=0.1) for sr in range(nsubrows): if nsubrows > 1: img_list = ref_c[keys[i]][sr] else: img_list = ref_c[keys[i]] for c in range(ncols): ax = plt.Subplot(fig, inner[sr, c]) if sr == cmap_dim: img = imgify(img_list[c], cmap=cmap, vmin=vmin, vmax=vmax, symmetric=symmetric, resize=resize, padding=padding) else: img = imgify(img_list[c], resize=resize, padding=padding) ax.imshow(img) ax.set_xticks([]) ax.set_yticks([]) if sr == 0 and c == 0: ax.set_ylabel(keys[i]) fig.add_subplot(ax) outer.tight_layout(fig) fig.show()
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/image.py
image.py
import torch import numpy as np import gc import os from pathlib import Path from typing import List, Tuple from tqdm import tqdm class Statistics: def __init__(self, mode="relevance", max_target="sum", abs_norm=False, path=None): self.d_c_sorted, self.rel_c_sorted, self.rf_c_sorted = {}, {}, {} self.SAMPLE_SIZE = 40 # generate path string for filenames if abs_norm: norm_str = "normed" else: norm_str = "unnormed" if mode == "relevance": self.sub_folder = Path(f"RelStats_{max_target}_{norm_str}/") elif mode == "activation": self.sub_folder = Path(f"ActStats_{max_target}_{norm_str}/") else: raise ValueError("<mode> must be 'relevance' or 'activation'.") self.PATH = Path(path) / self.sub_folder if path else self.sub_folder self.PATH.mkdir(parents=True, exist_ok=True) # TODO: what happens if rf_c_sorted is empty? In sort and save method # TODO: activation in save path instead of relevance! def analyze_layer(self, d_c_sorted, rel_c_sorted, rf_c_sorted, t_c_sorted, layer_name): t_unique = torch.unique(t_c_sorted) for t in t_unique: # gather d_c, rel_c and rf_c for each target separately t_indices = t_c_sorted.t() == t # - each column of t_c_sorted contains the same number of same value targets # - C-style arrays start indexing row-wise # - we transpose, so that reshaping the flattened array, that results of [t_indices] operation, # maintains the order of elements n_concepts = t_c_sorted.shape[1] d_c_t = d_c_sorted.t()[t_indices].view(n_concepts, -1).t() rel_c_t = rel_c_sorted.t()[t_indices].view(n_concepts, -1).t() rf_c_t = rf_c_sorted.t()[t_indices].view(n_concepts, -1).t() self.concatenate_with_results(layer_name, t.item(), d_c_t, rel_c_t, rf_c_t) self.sort_result_array(layer_name, t.item()) def delete_result_arrays(self): self.d_c_sorted, self.rel_c_sorted, self.rf_c_sorted = {}, {}, {} gc.collect() def concatenate_with_results(self, layer_name, target, d_c_sorted, rel_c_sorted, rf_c_sorted): if target not in self.d_c_sorted: self.d_c_sorted[target] = {} self.rel_c_sorted[target] = {} self.rf_c_sorted[target] = {} if layer_name not in self.d_c_sorted[target]: self.d_c_sorted[target][layer_name] = d_c_sorted self.rel_c_sorted[target][layer_name] = rel_c_sorted self.rf_c_sorted[target][layer_name] = rf_c_sorted else: self.d_c_sorted[target][layer_name] = torch.cat([d_c_sorted, self.d_c_sorted[target][layer_name]]) self.rel_c_sorted[target][layer_name] = torch.cat([rel_c_sorted, self.rel_c_sorted[target][layer_name]]) self.rf_c_sorted[target][layer_name] = torch.cat([rf_c_sorted, self.rf_c_sorted[target][layer_name]]) def sort_result_array(self, layer_name, target): d_c_args = torch.argsort(self.rel_c_sorted[target][layer_name], dim=0, descending=True) d_c_args = d_c_args[:self.SAMPLE_SIZE, :] self.rel_c_sorted[target][layer_name] = torch.gather(self.rel_c_sorted[target][layer_name], 0, d_c_args) self.rf_c_sorted[target][layer_name] = torch.gather(self.rf_c_sorted[target][layer_name], 0, d_c_args) self.d_c_sorted[target][layer_name] = torch.gather(self.d_c_sorted[target][layer_name], 0, d_c_args) def _save_results(self, d_index: Tuple[int, int] = None): saved_files = [] for target in self.d_c_sorted: for layer_name in self.d_c_sorted[target]: if d_index: filename = f"{target}_{d_index[0]}_{d_index[1]}_" else: filename = f"{target}_" p_path = self.PATH / Path(layer_name) p_path.mkdir(parents=True, exist_ok=True) np.save(p_path / Path(filename + "data.npy"), self.d_c_sorted[target][layer_name].cpu().numpy()) np.save(p_path / Path(filename + "rf.npy"), self.rf_c_sorted[target][layer_name].cpu().numpy()) np.save(p_path / Path(filename + "rel.npy"), self.rel_c_sorted[target][layer_name].cpu().numpy()) saved_files.append(str(p_path / Path(filename))) if d_index is None: # if final collection, then save targets np.save(self.PATH / Path("targets.npy"), np.array(list(self.d_c_sorted.keys()))) self.delete_result_arrays() return saved_files def collect_results(self, path_list: List[str], d_index: Tuple[int, int] = None): self.delete_result_arrays() pbar = tqdm(total=len(path_list), dynamic_ncols=True) for path in path_list: l_name, filename = path.split("/")[-2:] target = filename.split("_")[0] d_c_sorted = np.load(path + "data.npy") rf_c_sorted = np.load(path + "rf.npy") rel_c_sorted = np.load(path + "rel.npy") d_c_sorted, rf_c_sorted, rel_c_sorted = map(torch.from_numpy, [d_c_sorted, rf_c_sorted, rel_c_sorted]) self.concatenate_with_results(l_name, target, d_c_sorted, rel_c_sorted, rf_c_sorted) self.sort_result_array(l_name, target) pbar.update(1) for path in path_list: for suffix in ["data.npy", "rf.npy", "rel.npy"]: os.remove(path + suffix) pbar.close() return self._save_results(d_index)
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/statistics.py
statistics.py
import torch import numpy as np import gc import os from pathlib import Path from typing import List, Tuple from tqdm import tqdm import re from crp.concepts import Concept class Maximization: def __init__(self, mode="relevance", max_target="sum", abs_norm=False, path=None): self.d_c_sorted, self.rel_c_sorted, self.rf_c_sorted = {}, {}, {} self.SAMPLE_SIZE = 40 self.max_target = max_target self.abs_norm = abs_norm # generate path string for filenames if abs_norm: norm_str = "normed" else: norm_str = "unnormed" if mode == "relevance": self.sub_folder = Path(f"RelMax_{max_target}_{norm_str}/") elif mode == "activation": self.sub_folder = Path(f"ActMax_{max_target}_{norm_str}/") else: raise ValueError("<mode> must be 'relevance' or 'activation'.") self.PATH = Path(path) / self.sub_folder if path else self.sub_folder self.PATH.mkdir(parents=True, exist_ok=True) # TODO: what happens if rf_c_sorted is empty? In sort and save # TODO: activation in save path instead of relevance! # TODO: for statistics in other class: make dummy variable for extra datset instead of SDS def analyze_layer(self, rel, concept: Concept, layer_name: str, data_indices, targets): b_c_sorted, rel_c_sorted, rf_c_sorted = concept.reference_sampling( rel, layer_name, self.max_target, self.abs_norm) # convert batch index to dataset wide index data_indices = torch.from_numpy(data_indices).to(b_c_sorted) d_c_sorted = torch.take(data_indices, b_c_sorted) # sort targets targets = torch.Tensor(targets).to(b_c_sorted) t_c_sorted = torch.take(targets, b_c_sorted) SZ = self.SAMPLE_SIZE self.concatenate_with_results(layer_name, d_c_sorted[:SZ], rel_c_sorted[:SZ], rf_c_sorted[:SZ]) self.sort_result_array(layer_name) return d_c_sorted, rel_c_sorted, rf_c_sorted, t_c_sorted def delete_result_arrays(self): self.d_c_sorted, self.rel_c_sorted, self.rf_c_sorted = {}, {}, {} gc.collect() def concatenate_with_results(self, layer_name, d_c_sorted, rel_c_sorted, rf_c_sorted): if layer_name not in self.d_c_sorted: self.d_c_sorted[layer_name] = d_c_sorted self.rel_c_sorted[layer_name] = rel_c_sorted self.rf_c_sorted[layer_name] = rf_c_sorted else: self.d_c_sorted[layer_name] = torch.cat([d_c_sorted, self.d_c_sorted[layer_name]]) self.rel_c_sorted[layer_name] = torch.cat([rel_c_sorted, self.rel_c_sorted[layer_name]]) self.rf_c_sorted[layer_name] = torch.cat([rf_c_sorted, self.rf_c_sorted[layer_name]]) def sort_result_array(self, layer_name): d_c_args = torch.flip(torch.argsort(self.rel_c_sorted[layer_name], dim=0), dims=(0,)) d_c_args = d_c_args[:self.SAMPLE_SIZE, :] self.rel_c_sorted[layer_name] = torch.gather(self.rel_c_sorted[layer_name], 0, d_c_args) self.rf_c_sorted[layer_name] = torch.gather(self.rf_c_sorted[layer_name], 0, d_c_args) self.d_c_sorted[layer_name] = torch.gather(self.d_c_sorted[layer_name], 0, d_c_args) def _save_results(self, d_index: Tuple[int, int] = None): saved_files = [] for layer_name in self.d_c_sorted: if d_index: filename = f"{layer_name}_{d_index[0]}_{d_index[1]}_" else: filename = f"{layer_name}_" np.save(self.PATH / Path(filename + "data.npy"), self.d_c_sorted[layer_name].cpu().numpy()) np.save(self.PATH / Path(filename + "rf.npy"), self.rf_c_sorted[layer_name].cpu().numpy()) np.save(self.PATH / Path(filename + "rel.npy"), self.rel_c_sorted[layer_name].cpu().numpy()) saved_files.append(str(self.PATH / Path(filename))) self.delete_result_arrays() return saved_files def collect_results(self, path_list: List[str], d_index: Tuple[int, int] = None): self.delete_result_arrays() pbar = tqdm(total=len(path_list), dynamic_ncols=True) for path in path_list: filename = path.split("/")[-1] l_name = re.split(r"_[0-9]+_[0-9]+_\b", filename)[0] d_c_sorted = np.load(path + "data.npy") rf_c_sorted = np.load(path + "rf.npy") rel_c_sorted = np.load(path + "rel.npy") d_c_sorted, rf_c_sorted, rel_c_sorted = map(torch.from_numpy, [d_c_sorted, rf_c_sorted, rel_c_sorted]) self.concatenate_with_results(l_name, d_c_sorted, rel_c_sorted, rf_c_sorted) self.sort_result_array(l_name) pbar.update(1) for path in path_list: for suffix in ["data.npy", "rf.npy", "rel.npy"]: os.remove(path + suffix) pbar.close() return self._save_results(d_index)
zennit-crp
/zennit-crp-0.6.0.tar.gz/zennit-crp-0.6.0/crp/maximization.py
maximization.py