code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import pandas as pd import datetime def forecast_patient_data(store_id_list, type_list, reset_date, db, schema, logger=None, last_date=None): ''' FETCHING HISTORICAL PATIENT DATA''' if last_date is None: last_date = datetime.date(day=1, month=4, year=2019) print('Date range', str(last_date), str(reset_date)) # store list if type(store_id_list) is not list: store_id_list = [store_id_list] store_id_list = str(store_id_list).replace('[', '(').replace(']', ')') # drug list drug_list_query = """ select id as drug_id from "{schema}".drugs where type in {0} """.format(type_list, schema=schema) drug_list = db.get_df(drug_list_query) drug_list_tuple = tuple(drug_list['drug_id']) # getting patient data patient_data_query = """ select date(a."created-at") as "sales-date", inv."drug-id", count(distinct "patient-id") as "patient-count" from "{schema}"."bills-1" f join "{schema}"."bill-items-1" a on f.id = a."bill-id" left join "{schema}"."inventory-1" inv on a."inventory-id" = inv.id where date(a."created-at") >= '{last_date}' and date(a."created-at") <= '{reset_date}' and f."store-id" in {store_id_list} and inv."drug-id" in {drug_list} group by date(a."created-at"), inv."drug-id" union all select date(a."returned-at") as "sales-date", inv."drug-id", count(distinct "patient-id")*-1 as "patient-count" from "{schema}"."customer-return-items-1" a join "{schema}"."bills-1" b on a."bill-id" = b.id left join "{schema}"."inventory-1" inv on a."inventory-id" = inv.id where date(a."returned-at") >= '{last_date}' and date(a."returned-at") <= '{reset_date}' and b."store-id" in {store_id_list} and inv."drug-id" in {drug_list} group by date(a."returned-at"), inv."drug-id" """.format(store_id_list=store_id_list, last_date=str(last_date), reset_date=str(reset_date), drug_list=drug_list_tuple, schema=schema) patient_data = db.get_df(patient_data_query) patient_data.columns = [col.replace('-', '_') for col in patient_data.columns] '''CREATING DAY-DRUG patient_data CROSS TABLE''' calendar_query = """ select date, year, month, "week-of-year", "day-of-week" from "{schema}".calendar """.format(schema=schema) calendar = db.get_df(calendar_query) calendar.columns = [c.replace('-', '_') for c in calendar.columns] calendar['date'] = pd.to_datetime(calendar['date']) patient_data['sales_date'] = pd.to_datetime(patient_data['sales_date']) print('Distinct drug count', patient_data.drug_id.nunique()) print('No of days', patient_data.sales_date.nunique()) cal_patient_weekly = calendar.loc[ (pd.to_datetime(calendar['date']) >= patient_data.sales_date.min()) & (calendar['date'] <= patient_data.sales_date.max())] # removing the first week if it has less than 7 days min_year = cal_patient_weekly.year.min() x = cal_patient_weekly.loc[(cal_patient_weekly.year == min_year)] min_month = x.month.min() x = x.loc[(x.month == min_month)] min_week = x.week_of_year.min() if x.loc[x.week_of_year == min_week].shape[0] < 7: print('removing dates for', min_year, min_month, min_week) cal_patient_weekly = cal_patient_weekly.loc[ ~((cal_patient_weekly.week_of_year == min_week) & (cal_patient_weekly.year == min_year))] # removing the latest week if it has less than 7 days max_year = cal_patient_weekly.year.max() x = cal_patient_weekly.loc[(cal_patient_weekly.year == max_year)] max_month = x.month.max() x = x.loc[(x.month == max_month)] max_week = x.week_of_year.max() if x.loc[x.week_of_year == max_week].shape[0] < 7: print('removing dates for', max_year, max_month, max_week) cal_patient_weekly = cal_patient_weekly.loc[ ~((cal_patient_weekly.week_of_year == max_week) & (cal_patient_weekly.year == max_year))] # adding week begin date cal_patient_weekly['week_begin_dt'] = cal_patient_weekly.apply( lambda x: x['date'] - datetime.timedelta(x['day_of_week']), axis=1) drugs = patient_data[['drug_id']].drop_duplicates() drugs['key'] = 1 cal_patient_weekly['key'] = 1 cal_drug_w = drugs.merge(cal_patient_weekly, on='key', how='inner') cal_drug_w.drop('key', axis=1, inplace=True) cal_drug_patient_w = cal_drug_w.merge( patient_data, left_on=['drug_id', 'date'], right_on=['drug_id', 'sales_date'], how='left') cal_drug_patient_w.drop('sales_date', axis=1, inplace=True) cal_drug_patient_w.patient_count.fillna(0, inplace=True) # assertion test to check no of drugs * no of days equals total entries drug_count = cal_drug_patient_w.drug_id.nunique() day_count = cal_drug_patient_w.date.nunique() print('Distinct no of drugs', drug_count) print('Distinct dates', day_count) print('DF shape', cal_drug_patient_w.shape[0]) # assert drug_count*day_count == cal_drug_sales.shape[0] # checking for history available and store opening date first_bill_query = """ select min(date("created-at")) as bill_date from "{schema}"."bills-1" where "store-id" in {0} """.format(store_id_list, schema=schema) first_bill_date = db.get_df(first_bill_query).values[0][0] print(first_bill_date) cal_drug_patient_w = cal_drug_patient_w.query( 'date >= "{}"'.format(first_bill_date)) cal_drug_patient_weekly = cal_drug_patient_w.groupby( ['drug_id', 'week_begin_dt', 'week_of_year'] )['patient_count'].sum().reset_index() cal_drug_patient_weekly.rename( columns={'week_begin_dt': 'date'}, inplace=True) return cal_drug_patient_weekly
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/non_ipc/data_prep/patient_data.py
patient_data.py
import datetime from zeno_etl_libs.utils.ipc.data_prep import forecast_data_prep from zeno_etl_libs.utils.non_ipc.data_prep.patient_data import forecast_patient_data from zeno_etl_libs.utils.ipc.item_classification import abc_xyz_classification def non_ipc_data_prep(store_id_list, reset_date, type_list, db, schema, agg_week_cnt=4, logger=None): # getting demand data cal_drug_sales_weekly, _, _ = forecast_data_prep( store_id_list, type_list, reset_date, db, schema) # getting patient data cal_drug_patient_weekly = forecast_patient_data( store_id_list, type_list, reset_date, db, schema) # merging patient and demand data cal_drug_data_weekly = cal_drug_sales_weekly.merge(cal_drug_patient_weekly) '''ADDITIONAL CHECKS''' n = 12 prev_n_week_dt = ( cal_drug_data_weekly['date'].max() - datetime.timedelta(n*7)) logger.info('Previous week date for last 12 weeks' + str(prev_n_week_dt)) prev_n_week_sales = cal_drug_data_weekly[ cal_drug_data_weekly['date'] > prev_n_week_dt].\ groupby('drug_id')['net_sales_quantity'].sum().reset_index() prev_no_sales_drug_weekly = prev_n_week_sales.loc[ prev_n_week_sales['net_sales_quantity'] <= 0, 'drug_id'].values prev_sales_drug_weekly = prev_n_week_sales.loc[ prev_n_week_sales['net_sales_quantity'] > 0, 'drug_id'].values logger.info('No net sales of drugs within last 12 weeks' + str(len(prev_no_sales_drug_weekly))) logger.info('Sales of drugs within last 12 weeks' + str(len(prev_sales_drug_weekly))) # getting drug id with atleast one sale in last 12 weeks cal_drug_data_weekly = cal_drug_data_weekly[ cal_drug_data_weekly.drug_id.isin(prev_sales_drug_weekly)] '''4 WEEKS AGGREGATION''' cal_drug_data_weekly['week_number'] = cal_drug_data_weekly.\ groupby('drug_id')['date'].rank(ascending=False) - 1 cal_drug_data_weekly['agg_wk_count'] = ( cal_drug_data_weekly['week_number']/agg_week_cnt).astype(int) + 1 agg_wk_ct_lt_4 = cal_drug_data_weekly.\ groupby('agg_wk_count')['week_number'].nunique().reset_index() agg_wk_ct_lt_4 = agg_wk_ct_lt_4.query('week_number < 4')['agg_wk_count'] # removing incomplete 4-week period cal_drug_data_weekly = cal_drug_data_weekly[ ~cal_drug_data_weekly['agg_wk_count'].isin(agg_wk_ct_lt_4)] cal_drug_data_agg_weekly = cal_drug_data_weekly.\ groupby(['drug_id', 'agg_wk_count']).\ agg({'date': 'min', 'net_sales_quantity': 'sum', 'patient_count': 'sum' }).\ reset_index() cal_drug_data_agg_weekly.sort_values(['drug_id', 'date'], inplace=True) '''SKU CLASSIFICATIONS''' # Taking latest 3 4-week period for classification bucket_period = 3 agg_wk_classification = cal_drug_data_agg_weekly.loc[ cal_drug_data_agg_weekly['agg_wk_count'] <= bucket_period, 'date' ].dt.date.unique() cal_drug_data_classification = cal_drug_data_agg_weekly[ cal_drug_data_agg_weekly['date'].isin(agg_wk_classification)] cal_drug_data_classification.rename( columns={'date': 'month_begin_dt'}, inplace=True) drug_class, bucket_sales = abc_xyz_classification( cal_drug_data_classification) return cal_drug_data_agg_weekly, cal_drug_data_weekly, drug_class,\ bucket_sales
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/non_ipc/data_prep/non_ipc_data_prep.py
non_ipc_data_prep.py
import numpy as np import pandas as pd from functools import reduce from scipy.optimize import minimize, LinearConstraint from zeno_etl_libs.utils.warehouse.forecast.errors import ape_calc, ae_calc,\ train_error def optimise_ab_mae(weights, naive_fcst, ma_fcst, ets_fcst, actual): fcst = weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst return np.sum(abs((fcst - actual)))/len(naive_fcst) def optimise_ab_sse(weights, naive_fcst, ma_fcst, ets_fcst, actual): fcst = weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst return np.sum((fcst - actual)**2) def optimise_c_mae( weights, naive_fcst, ma_fcst, ets_fcst, croston_fcst, actual): fcst = ( weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst + weights[3]*croston_fcst) return np.sum(abs((fcst - actual)))/len(naive_fcst) def optimise_c_sse( weights, naive_fcst, ma_fcst, ets_fcst, croston_fcst, actual): fcst = ( weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst + weights[3]*croston_fcst) return np.sum((fcst - actual)**2) def ensemble_minimisation( train, error, predict, kind='mae', logger=None): # mergring train dfs for weighted average of mdels train = train.copy() train_cols = ['drug_id', 'month_begin_dt', 'year', 'month', 'actual', 'fcst', 'std', 'ape', 'ae'] train = [x[train_cols] for x in train] all_train = reduce( lambda left, right: pd.merge( left, right, on=['drug_id', 'month_begin_dt', 'year', 'month'], how='outer'), train) all_train.columns = [ 'drug_id', 'month_begin_dt', 'year', 'month', 'actual', 'fcst_naive', 'std_naive', 'ape_naive', 'ae_naive', 'actual_ma', 'fcst_ma', 'std_ma', 'ape_ma', 'ae_ma', 'actual_ets', 'fcst_ets', 'std_ets', 'ape_ets', 'ae_ets', 'actual_croston', 'fcst_croston', 'std_croston', 'ape_croston', 'ae_croston'] all_train.drop( ['actual_ma', 'actual_ets', 'actual_croston'], axis=1, inplace=True) # mergring predict dfs for forecast predict = predict.copy() predict_cols = ['drug_id', 'month_begin_dt', 'year', 'month', 'fcst', 'std'] predict = [x[predict_cols] for x in predict] all_predict = reduce( lambda left, right: pd.merge( left, right, on=['drug_id', 'month_begin_dt', 'year', 'month'], how='outer'), predict) all_predict.columns = [ 'drug_id', 'month_begin_dt', 'year', 'month', 'fcst_naive', 'std_naive', 'fcst_ma', 'std_ma', 'fcst_ets', 'std_ets', 'fcst_croston', 'std_croston'] '''BASE MODELS WEIGHT OPTIMISATION - A/B''' all_train_ab = all_train[all_train['ape_croston'].isna()] all_predict_ab = all_predict[all_predict['fcst_croston'].isna()] # individial forecast and actuals naive_fcst_ab = all_train_ab['fcst_naive'].values ma_fcst_ab = all_train_ab['fcst_ma'].values ets_fcst_ab = all_train_ab['fcst_ets'].values actual_ab = all_train_ab['actual'].values # initialisation weights_ab = np.array([1/3, 1/3, 1/3]) bounds_ab = ((0, 1), (0, 1), (0, 1)) # constrains on weights: sum(wi) = 1 constrain_ab = LinearConstraint([1, 1, 1], [1], [1]) # minimising errors for A/B buckets if kind == 'mae': results = minimize( optimise_ab_mae, x0=weights_ab, bounds=bounds_ab, constraints=constrain_ab, args=(naive_fcst_ab, ma_fcst_ab, ets_fcst_ab, actual_ab)) final_weights_ab = results.x elif kind == 'sse': results = minimize( optimise_ab_sse, x0=weights_ab, bounds=bounds_ab, constraints=constrain_ab, args=(naive_fcst_ab, ma_fcst_ab, ets_fcst_ab, actual_ab)) final_weights_ab = results.x else: final_weights_ab = weights_ab # creating final train, error and predict dataset all_train_ab['fcst'] = np.round( final_weights_ab[0]*naive_fcst_ab + final_weights_ab[1]*ma_fcst_ab + final_weights_ab[2]*ets_fcst_ab) all_train_ab['std'] = np.round(np.sqrt( (final_weights_ab[0]*naive_fcst_ab)**2 + (final_weights_ab[1]*ma_fcst_ab)**2 + (final_weights_ab[2]*ets_fcst_ab)**2)) all_train_ab['hyper_params'] = str(tuple(final_weights_ab)) all_train_ab['model'] = kind all_predict_ab['fcst'] = np.round( final_weights_ab[0]*all_predict_ab['fcst_naive'] + final_weights_ab[1]*all_predict_ab['fcst_ma'] + final_weights_ab[2]*all_predict_ab['fcst_ets']) all_predict_ab['std'] = np.round(np.sqrt( (final_weights_ab[0]*all_predict_ab['fcst_naive'])**2 + (final_weights_ab[1]*all_predict_ab['fcst_ma'])**2 + (final_weights_ab[2]*all_predict_ab['fcst_ets'])**2)) all_predict_ab['model'] = kind '''BASE MODELS WEIGHT OPTIMISATION - C''' all_train_c = all_train[~all_train['ape_croston'].isna()] all_predict_c = all_predict[~all_predict['fcst_croston'].isna()] # individial forecast and actuals naive_fcst_c = all_train_c['fcst_naive'].values ma_fcst_c = all_train_c['fcst_ma'].values ets_fcst_c = all_train_c['fcst_ets'].values croston_fcst_c = all_train_c['fcst_croston'].values actual_c = all_train_c['actual'].values # initialisation weights_c = np.array([1/4, 1/4, 1/4, 1/4]) bounds_c = ((0, 1), (0, 1), (0, 1), (0, 1)) # constrains on weights: sum(wi) = 1 constrain_c = LinearConstraint([1, 1, 1, 1], [1], [1]) # minimising errors for C buckets if kind == 'mae': results = minimize( optimise_c_mae, x0=weights_c, bounds=bounds_c, constraints=constrain_c, args=(naive_fcst_c, ma_fcst_c, ets_fcst_c, croston_fcst_c, actual_c)) final_weights_c = results.x elif kind == 'sse': results = minimize( optimise_c_sse, x0=weights_c, bounds=bounds_c, constraints=constrain_c, args=(naive_fcst_c, ma_fcst_c, ets_fcst_c, croston_fcst_c, actual_c)) final_weights_c = results.x else: final_weights_c = weights_c # creating final train, error and predict dataset all_train_c['fcst'] = np.round( final_weights_c[0]*naive_fcst_c + final_weights_c[1]*ma_fcst_c + final_weights_c[2]*ets_fcst_c + final_weights_c[3]*croston_fcst_c) all_train_c['std'] = np.round(np.sqrt( (final_weights_c[0]*naive_fcst_c)**2 + (final_weights_c[1]*ma_fcst_c)**2 + (final_weights_c[2]*ets_fcst_c)**2 + (final_weights_c[3]*croston_fcst_c)**2)) all_train_c['hyper_params'] = str(tuple(final_weights_c)) all_train_c['model'] = kind all_predict_c['fcst'] = np.round( final_weights_c[0]*all_predict_c['fcst_naive'] + final_weights_c[1]*all_predict_c['fcst_ma'] + final_weights_c[2]*all_predict_c['fcst_ets'] + final_weights_c[3]*all_predict_c['fcst_croston']) all_predict_c['std'] = np.round(np.sqrt( (final_weights_c[0]*all_predict_c['fcst_naive'])**2 + (final_weights_c[1]*all_predict_c['fcst_ma'])**2 + (final_weights_c[2]*all_predict_c['fcst_ets'])**2 + (final_weights_c[3]*all_predict_c['fcst_croston'])**2)) all_predict_c['model'] = kind '''COMPILING TRAINING AND FORECAST ''' # train ensemble_train = pd.concat([all_train_ab, all_train_c], axis=0) ensemble_train['ape'] = ensemble_train.apply( lambda row: ape_calc(row['actual'], row['fcst']), axis=1) ensemble_train['ae'] = ensemble_train.apply( lambda row: ae_calc(row['actual'], row['fcst']), axis=1) cols = train_cols + ['hyper_params', 'model'] ensemble_train = ensemble_train[cols] # train error ensemble_train_error = ensemble_train.groupby('drug_id').\ apply(train_error).\ reset_index(drop=True) ensemble_train_error['model'] = kind # predict ensemble_predict = pd.concat([all_predict_ab, all_predict_c], axis=0) cols = predict_cols + ['model'] ensemble_predict = ensemble_predict[cols] return ensemble_train, ensemble_train_error, ensemble_predict
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/non_ipc/forecast/ensemble_minimisation.py
ensemble_minimisation.py
import numpy as np from zeno_etl_libs.utils.warehouse.forecast.helper_functions import make_future_df from zeno_etl_libs.utils.warehouse.forecast.errors import ape_calc, ae_calc def croston_tsb(ts, horizon=1, alpha=0.5, beta=0.7): # Transform the input into a numpy array d = np.array(ts) # Historical period length cols = len(d) # Append np.nan into the demand array to cover future periods d = np.append(d, [np.nan]*horizon) # level (a), probability(p) and forecast (f) a, p, f = np.full((3, cols+horizon), np.nan) # Initialization first_occurence = np.argmax(d[:cols] > 0) a[0] = d[first_occurence] p[0] = 1/(1 + first_occurence) f[0] = p[0]*a[0] # Create all the t forecasts for t in range(0, cols): if d[t] > 0: a[t+1] = alpha*d[t] + (1-alpha)*a[t] p[t+1] = beta*(1) + (1-beta)*p[t] else: a[t+1] = a[t] p[t+1] = (1-beta)*p[t] f[t+1] = p[t+1]*a[t+1] # creating forecast for t in range(cols, cols+horizon-1): if f[t] > 1: a[t+1] = alpha*f[t] + (1-alpha)*a[t] p[t+1] = beta*(1) + (1-beta)*p[t] else: a[t+1] = a[t] p[t+1] = (1-beta)*p[t] f[t+1] = p[t+1]*a[t+1] # Future Forecast # a[cols+1:cols+horizon] = a[cols] # p[cols+1:cols+horizon] = p[cols] # f[cols+1:cols+horizon] = f[cols] # df = pd.DataFrame.from_dict( # {"Demand":d,"Forecast":f,"Period":p,"Level":a,"Error":d-f}) return np.round(f), d-f def croston_train_weekly(df, out_of_sample=4, horizon=4, params=None): if params is not None: alpha = params[0] beta = params[1] else: alpha = 0.5 beta = 0.7 train = df.copy() train.drop(train.tail(out_of_sample).index, inplace=True) # dividing the series into train and validation set input_series = train['net_sales_quantity'].values validation = df['net_sales_quantity'].tail(out_of_sample).values train_forecast, train_error = croston_tsb( input_series, horizon, alpha, beta) fcst = train_forecast[-out_of_sample:] error = train_forecast[:-out_of_sample] std = np.sqrt((np.std(input_series)**2 + sum(np.square(error))/len(error))) predict_df = make_future_df(train[:-out_of_sample+1], 1) predict_df['fcst'] = sum(fcst) predict_df['std'] = np.round(std*np.sqrt(horizon)) predict_df['actual'] = sum(validation) predict_df['ape'] = [ ape_calc(actual, forecast) for actual, forecast in zip( predict_df['actual'], predict_df['fcst'])] predict_df['ae'] = [ ae_calc(actual, forecast) for actual, forecast in zip( predict_df['actual'], predict_df['fcst'])] predict_df['hyper_params'] = str(params) return predict_df def croston_predict_weekly(df, out_of_sample=4, horizon=4, params=None): if params is not None: alpha = params[0] beta = params[1] else: alpha = 0.5 beta = 0.7 train = df.copy() # dividing the series into train and validation set input_series = train['net_sales_quantity'].values train_forecast, train_error = croston_tsb( input_series, horizon, alpha, beta) fcst = train_forecast[-out_of_sample:] error = train_forecast[:-out_of_sample] std = np.sqrt((np.std(input_series)**2 + sum(np.square(error))/len(error))) predict_df = make_future_df(train[:-out_of_sample+1], 1) predict_df['fcst'] = sum(fcst) predict_df['std'] = np.round(std*np.sqrt(horizon)) return predict_df
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/non_ipc/forecast/croston.py
croston.py
import time import pandas as pd from itertools import product from zeno_etl_libs.utils.warehouse.forecast.moving_average import ma_train_monthly,\ ma_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.ets import ets_train_monthly,\ ets_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.errors import train_error from zeno_etl_libs.utils.warehouse.forecast.helper_functions import apply_parallel_ets from zeno_etl_libs.utils.non_ipc.forecast.\ helper_functions import non_ipc_error_report, apply_parallel_croston from zeno_etl_libs.utils.non_ipc.forecast.croston import croston_train_weekly,\ croston_predict_weekly from zeno_etl_libs.utils.non_ipc.forecast.\ ensemble_champion import ensemble_champion from zeno_etl_libs.utils.non_ipc.forecast.\ ensemble_minimisation import ensemble_minimisation def non_ipc_forecast( drug_sales_monthly, drug_data_weekly, drug_class, out_of_sample, horizon, train_flag, logger=None, kind='mae'): if train_flag: '''BASE FORECASTING - NAIVE''' logger.info('STARTING NAIVE TRAINING AND FORECAST') # making copy for data naive_train_data = drug_sales_monthly.copy() naive_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) k = 1 # for naive using the ma train function # train start = time.time() naive_train = naive_train_data.groupby('drug_id').apply( ma_train_monthly, k, out_of_sample).\ reset_index(drop=True) end = time.time() logger.info('Naive Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() naive_train_error = naive_train.groupby('drug_id').apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('Naive Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() naive_predict = naive_train_data.groupby('drug_id').\ apply(ma_predict_monthly, k, out_of_sample).reset_index(drop=True) end = time.time() logger.info('Naive Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Naive error reports # _ = non_ipc_error_report(naive_train_error, naive_train, drug_class) # model informations naive_train['hyper_params'] = '' naive_train['model'] = 'naive' naive_train_error['model'] = 'naive' naive_predict['model'] = 'naive' '''BASE FORECASTING - MOVING AVERAGE''' logger.info('STARTING MOVING AVERAGE TRAINING AND FORECAST') ma_train_data = drug_sales_monthly.copy() ma_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) k = 3 # for MA3 # train start = time.time() ma_train = ma_train_data.groupby('drug_id').apply( ma_train_monthly, k, out_of_sample).\ reset_index(drop=True) end = time.time() logger.info('MA Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() ma_train_error = ma_train.groupby('drug_id').apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('MA Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() ma_predict = ma_train_data.groupby('drug_id').\ apply(ma_predict_monthly, k, out_of_sample).reset_index(drop=True) end = time.time() logger.info('MA Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Moving average error reports # _ = non_ipc_error_report(ma_train_error, ma_train, drug_class) # model informations ma_train['hyper_params'] = '' ma_train['model'] = 'ma' ma_train_error['model'] = 'ma' ma_predict['model'] = 'ma' '''BASE FORECASTING - EXPONENTIAL SMOOTHING''' logger.info('STARTING ESM TRAINING AND FORECAST') # model parameters # holts winter implementation - single, double and triple exponential trend = ['additive', None] seasonal = ['additive', None] damped = [True, False] seasonal_periods = [12] use_boxcox = [True, False] ets_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) ets_train_data = drug_sales_monthly.copy() ets_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) # train start = time.time() ets_train = apply_parallel_ets( ets_train_data.groupby('drug_id'), ets_train_monthly, ets_params, horizon, out_of_sample).reset_index(drop=True) end = time.time() logger.info('ETS Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() ets_train_error = ets_train.groupby('drug_id').apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('ETS Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() ets_predict = apply_parallel_ets( ets_train_data.groupby('drug_id'), ets_predict_monthly, ets_train, horizon, out_of_sample).reset_index(drop=True) end = time.time() logger.info('ETS Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Exponential smoothing error reports # _ = non_ipc_error_report(ets_train_error, ets_train, drug_class) # model information ets_train['model'] = 'ets' ets_train_error['model'] = 'ets' ets_predict['model'] = 'ets' '''BASE FORECASTING - CROSTON FOR C BUCKET''' logger.info('STARTING CROSTON TRAINING AND FORECAST') # getting drug list for C bucket c_bucket_drug_list = list( drug_class[drug_class['bucket_abc'] == 'C']['drug_id']) logger.info('No of drugs in Bucket C for Croston' + str(len(c_bucket_drug_list))) croston_train_data = drug_data_weekly.copy() croston_train_data = croston_train_data[ croston_train_data['drug_id'].isin(c_bucket_drug_list)] croston_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) # Runtime parameters croston_out_of_sample = 4 croston_horizon = 4 croston_params = (0.5, 0.5) # train start = time.time() croston_train = apply_parallel_croston( croston_train_data.groupby('drug_id'), croston_train_weekly, croston_horizon, croston_out_of_sample, croston_params).\ reset_index(drop=True) end = time.time() logger.info('Croston Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() croston_train_error = croston_train.groupby('drug_id').\ apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('Croston Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() croston_predict = apply_parallel_croston( croston_train_data.groupby('drug_id'), croston_predict_weekly, croston_horizon, croston_out_of_sample, croston_params).\ reset_index(drop=True) end = time.time() logger.info('Croston Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Croston error reports # _ = non_ipc_error_report(croston_train_error, croston_train, drug_class) # model information croston_train['model'] = 'croston' croston_train_error['model'] = 'croston' croston_predict['model'] = 'croston' '''BASE MODELS: COMBINING''' train = [naive_train, ma_train, ets_train, croston_train] error = [ naive_train_error, ma_train_error, ets_train_error, croston_train_error] predict = [naive_predict, ma_predict, ets_predict, croston_predict] base_train = pd.concat(train, axis=0) base_train['final_fcst'] = 'N' base_train_error = pd.concat(error, axis=0) base_train_error['final_fcst'] = 'N' base_predict = pd.concat(predict, axis=0) base_predict['final_fcst'] = 'N' '''ENSEMBLE FORECASTING - CHAMPION MODEL''' logger.info('STARTING ENSEMBLE CHAMPION MODEL SELECTION') champion_train, champion_train_error, champion_predict = ensemble_champion( train, error, predict, logger) champion_train['model'] = 'champion_' + champion_train['model'] champion_train_error['model'] = 'champion_' + champion_train_error['model'] champion_predict['model'] = 'champion_' + champion_predict['model'] champion_train['final_fcst'] = 'Y' champion_train_error['final_fcst'] = 'Y' champion_predict['final_fcst'] = 'Y' # Champion model ensmeble training errors # _ = non_ipc_error_report(champion_train_error, champion_train, drug_class) '''ENSEMBLE FORECASTING - SSE MINIMISATION''' optimised_train, optimised_train_error,\ optimised_predict = ensemble_minimisation( train, error, predict, kind, logger) optimised_train['final_fcst'] = 'N' optimised_train_error['final_fcst'] = 'N' optimised_predict['final_fcst'] = 'N' # Optimised errors model ensmeble training errors # _ = non_ipc_error_report( # optimised_train_error, optimised_train, drug_class) '''BASE MODELS: COMBINING''' ensemble_train = [champion_train, optimised_train] ensemble_error = [champion_train_error, optimised_train_error] ensemble_predict = [champion_predict, optimised_predict] ensemble_train = pd.concat(ensemble_train, axis=0) ensemble_error = pd.concat(ensemble_error, axis=0) ensemble_predict = pd.concat(ensemble_predict, axis=0) else: '''BASE FORECASTING - SIMPLE EXPONENTIAL SMOOTHING''' logger.info('STARTING SES FORECAST') # model parameters # holts winter implementation - single exponential trend = [None] seasonal = [None] damped = [False] seasonal_periods = [12] use_boxcox = [False] ses_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) ses_train_data = drug_sales_monthly.copy() ses_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) ses_train_data['hyper_params'] = str(ses_params[0]) # predict start = time.time() ses_predict = apply_parallel_ets( ses_train_data.groupby('drug_id'), ets_predict_monthly, ses_train_data, horizon, out_of_sample).reset_index(drop=True) end = time.time() logger.info('ETS Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # model information ses_predict['model'] = 'ses' # creating final return df base_train = pd.DataFrame() base_train_error = pd.DataFrame() base_predict = pd.DataFrame() ensemble_train = pd.DataFrame() ensemble_error = pd.DataFrame() ensemble_predict = ses_predict ensemble_predict['final_fcst'] = 'Y' return base_train, base_train_error,\ base_predict, ensemble_train, ensemble_error, ensemble_predict
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/non_ipc/forecast/forecast_main.py
forecast_main.py
import pandas as pd import numpy as np from functools import reduce def ensemble_champion(train, error, predict, logger=None): # mergring error dfs for best model selection all_train_error = reduce( lambda left, right: pd.merge(left, right, on='drug_id', how='outer'), error) all_train_error.columns = [ 'drug_id', 'mae_naive', 'mape_naive', 'model_naive', 'mae_ma', 'mape_ma', 'model_ma', 'mae_ets', 'mape_ets', 'model_ets', 'mae_croston', 'mape_croston', 'model_croston'] # Best model selection all_train_error['mape_best'] = all_train_error[[ 'mape_naive', 'mape_ma', 'mape_ets', 'mape_croston']].min(axis=1) all_train_error['model_best'] = np.select([ all_train_error['mape_best'] == all_train_error['mape_ets'], all_train_error['mape_best'] == all_train_error['mape_ma'], all_train_error['mape_best'] == all_train_error['mape_croston'], all_train_error['mape_best'] == all_train_error['mape_naive']], ['ets', 'ma', 'croston', 'naive'] ) # Different models concatenation naive_drug_best = all_train_error[all_train_error['model_best'] == 'naive'] ma_drug_best = all_train_error[all_train_error['model_best'] == 'ma'] ets_drug_best = all_train_error[all_train_error['model_best'] == 'ets'] croston_drug_best = all_train_error[ all_train_error['model_best'] == 'croston'] print( len(all_train_error), len(naive_drug_best), len(ma_drug_best), len(ets_drug_best), len(croston_drug_best)) logger.info('Total drugs: ' + str(len(all_train_error))) logger.info('Naive drugs: ' + str(len(naive_drug_best))) logger.info('MA drugs: ' + str(len(ma_drug_best))) logger.info('ETS drugs: ' + str(len(ets_drug_best))) logger.info('Croston drugs: ' + str(len(croston_drug_best))) # creating ensemble dfs naive_train_best = train[0][train[0]['drug_id'].isin( naive_drug_best['drug_id'])] naive_train_error_best = error[0][error[0]['drug_id'].isin( naive_drug_best['drug_id'])] naive_predict_best = predict[0][predict[0]['drug_id'].isin( naive_drug_best['drug_id'])] ma_train_best = train[1][train[1]['drug_id'].isin( ma_drug_best['drug_id'])] ma_train_error_best = error[1][error[1]['drug_id'].isin( ma_drug_best['drug_id'])] ma_predict_best = predict[1][predict[1]['drug_id'].isin( ma_drug_best['drug_id'])] ets_train_best = train[2][train[2]['drug_id'].isin( ets_drug_best['drug_id'])] ets_train_error_best = error[2][error[2]['drug_id'].isin( ets_drug_best['drug_id'])] ets_predict_best = predict[2][predict[2]['drug_id'].isin( ets_drug_best['drug_id'])] croston_train_best = train[3][train[3]['drug_id'].isin( croston_drug_best['drug_id'])] croston_train_error_best = error[3][error[3]['drug_id'].isin( croston_drug_best['drug_id'])] croston_predict_best = predict[3][predict[3]['drug_id'].isin( croston_drug_best['drug_id'])] ensemble_train = pd.concat( [naive_train_best, ma_train_best, ets_train_best, croston_train_best], axis=0) ensemble_train_error = pd.concat( [naive_train_error_best, ma_train_error_best, ets_train_error_best, croston_train_error_best], axis=0) ensemble_predict = pd.concat( [naive_predict_best, ma_predict_best, ets_predict_best, croston_predict_best], axis=0) return ensemble_train, ensemble_train_error, ensemble_predict
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/non_ipc/forecast/ensemble_champion.py
ensemble_champion.py
import numpy as np import pandas as pd from calendar import monthrange from dateutil.relativedelta import relativedelta from datetime import datetime from dateutil.tz import gettz from zeno_etl_libs.db.db import MSSql from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.utils.warehouse.data_prep.wh_data_prep import get_launch_stock_per_store def lead_time(): mssql = MSSql(connect_via_tunnel=False) cnxn = mssql.open_connection() cursor = cnxn.cursor() # Reading lead time data # Last 90 days on purchase date # excluding TEPL distributor # Diff between PO created date and gatepass date sql_bhw = ''' SELECT * FROM ( SELECT 199 as "wh_id", i.Barcode as "drug_id" , i.name as "drug_name", a.Altercode as "distributor_id", a.Name as "distributor_name", a2.vdt as "gate-pass-date", --sp.Vdt as "purchase_date", --sp.RefVdt as "po_opend_date", s.PBillDt as "po_created_date", s.UpdatedOn as "purchase_confirm_date", sp.Qty as "quantity" , DATEDIFF(day, s.PBillDt , a2.vdt) as "lead_time" FROM SalePurchase2 sp left join Item i on sp.Itemc = i.code left join Salepurchase1 s on sp.Vtype = s.Vtyp and sp.Vno = s.Vno and sp.Vdt = s.Vdt left join Acknow a2 on sp.Pbillno =a2.Pbillno left join acm a on sp.Acno = a.code Where sp.Vtype = 'PB' and sp.Vdt >= cast(DATEADD(day, -91, GETDATE()) as date) and sp.Vdt <= cast(DATEADD(day, -1, GETDATE()) as date) and i.Compname NOT IN ('GOODAID', 'PURE & C') and i.Barcode NOT LIKE '%[^0-9]%' and isnumeric(i.Barcode) = 1 and a.code NOT IN (59468, 59489)) a Where (a."lead_time">0 and a."lead_time"<7); ''' data_bhw = pd.read_sql(sql_bhw, cnxn) data_bhw[['drug_id']] \ = data_bhw[['drug_id']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') #TEPL Data mssql_tepl = MSSql(connect_via_tunnel=False, db='Esdata_TEPL') cnxn = mssql_tepl.open_connection() cursor = cnxn.cursor() sql_tepl = ''' SELECT * FROM ( SELECT 342 as "wh_id", i.Barcode as "drug_id" , i.name as "drug_name", a.Altercode as "distributor_id", a.Name as "distributor_name", a2.vdt as "gate-pass-date", --sp.Vdt as "purchase_date", --sp.RefVdt as "po_opend_date", s.PBillDt as "po_created_date", s.UpdatedOn as "purchase_confirm_date", sp.Qty as "quantity" , DATEDIFF(day, s.PBillDt , a2.vdt) as "lead_time" FROM SalePurchase2 sp left join Item i on sp.Itemc = i.code left join Salepurchase1 s on sp.Vtype = s.Vtyp and sp.Vno = s.Vno and sp.Vdt = s.Vdt left join Acknow a2 on sp.Pbillno =a2.Pbillno left join acm a on sp.Acno = a.code Where sp.Vtype = 'PB' and sp.Vdt >= cast(DATEADD(day, -91, GETDATE()) as date) and sp.Vdt <= cast(DATEADD(day, -1, GETDATE()) as date) and i.Compname NOT IN ('GOODAID', 'PURE & C') and i.Barcode NOT LIKE '%[^0-9]%' and isnumeric(i.Barcode) = 1) a Where (a."lead_time">0 and a."lead_time"<7); ''' data_tepl = pd.read_sql(sql_tepl, cnxn) data_tepl[['drug_id']] \ = data_tepl[['drug_id']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') data=pd.concat([data_bhw,data_tepl],sort=False,ignore_index=False) run_date = str(datetime.now(tz=gettz('Asia/Kolkata'))) lead_time_data = 'warehouse_lead_time/lead_time_data_dump_{}.csv'.format(run_date) s3 = S3() s3.save_df_to_s3(df=data, file_name=lead_time_data) data=data.drop(["wh_id"],axis=1) # Reading Preferred distributor from S3 s3 = S3() preferred_distributor = pd.read_csv(s3.download_file_from_s3(file_name="warehouse/preferred_distributors.csv")) df_new = pd.merge(data, preferred_distributor, how='left', on='drug_id') df_new[["lead_time", "distributor_1"]] = df_new[["lead_time", "distributor_1"]].fillna(0) df_new[["distributor_1"]] = df_new[["distributor_1"]].astype('int') # function for weighted mean def w_avg(df, values, weights): d = df[values] w = df[weights] return (d * w).sum() / w.sum() df_new_1 = df_new.groupby(["drug_id", "distributor_id"]).apply(w_avg, 'lead_time', 'quantity').rename( 'weighted_lead_time').reset_index() df_std = df_new.groupby(["drug_id", "distributor_id"])[["lead_time"]].std().reset_index() df_std.rename(columns={'lead_time': 'lead_time_std'}, inplace=True) df_drug_distributor = pd.merge(df_new_1, df_std, how='left', on=['drug_id', 'distributor_id']) df_drug_distributor = pd.merge(df_drug_distributor, preferred_distributor, how='left', on=["drug_id"]) df_drug_distributor[["distributor_1", "lead_time_std"]] = df_drug_distributor[ ["distributor_1", "lead_time_std"]].fillna(0) df_drug_distributor[["distributor_1"]] = df_drug_distributor[["distributor_1"]].astype('int') # lead time mean Capping 7 days. df_drug_distributor['weighted_lead_time'] = np.where(df_drug_distributor['weighted_lead_time'] > 7, 7, df_drug_distributor['weighted_lead_time']) # minimum lead time 2 days df_drug_distributor['weighted_lead_time'] = np.where(df_drug_distributor['weighted_lead_time'] < 2, 2, df_drug_distributor['weighted_lead_time']) # Lead time Std capping of 2 days df_drug_distributor['lead_time_std'] = np.where(df_drug_distributor['lead_time_std'] > 2, 2, df_drug_distributor['lead_time_std']) # Minimum Lead time std is 1 day df_drug_distributor['lead_time_std'] = np.where(df_drug_distributor['lead_time_std'] < 1, 1, df_drug_distributor['lead_time_std']) df_drug_distributor[["distributor_id"]] = df_drug_distributor[["distributor_id"]].astype('int') df_drug_distributor['same_distributor'] = np.where( df_drug_distributor['distributor_id'] == df_drug_distributor["distributor_1"], True, False) preferred_distributor_drug = df_drug_distributor[df_drug_distributor["same_distributor"] == True] other_distributor_drug = df_drug_distributor[df_drug_distributor["same_distributor"] == False] # Drugs not in preferred distributor drugs_not_in_preferred_distributor = df_drug_distributor[ ~df_drug_distributor['drug_id'].isin(preferred_distributor_drug['drug_id'])] drugs_not_in_preferred_distributor_mean = drugs_not_in_preferred_distributor.groupby(["drug_id"])[ ["weighted_lead_time"]].mean().reset_index() drugs_not_in_preferred_distributor_std = drugs_not_in_preferred_distributor.groupby(["drug_id"])[ ["weighted_lead_time"]].std().reset_index() drugs_not_in_preferred_distributor_1 = pd.merge(drugs_not_in_preferred_distributor_mean, drugs_not_in_preferred_distributor_std, how='left', on='drug_id') drugs_not_in_preferred_distributor_1 = drugs_not_in_preferred_distributor_1.fillna(0) # Capping drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] > 7, 7, drugs_not_in_preferred_distributor_1['weighted_lead_time_x']) drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] < 2, 2, drugs_not_in_preferred_distributor_1['weighted_lead_time_x']) drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] > 2, 2, drugs_not_in_preferred_distributor_1['weighted_lead_time_y']) drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] < 1, 1, drugs_not_in_preferred_distributor_1['weighted_lead_time_y']) drugs_not_in_preferred_distributor_1.rename( columns={'weighted_lead_time_x': 'weighted_lead_time', 'weighted_lead_time_y': 'lead_time_std'}, inplace=True) drug_in_preferred_distributor = preferred_distributor_drug.drop( ['drug_name', 'distributor_id', 'distributor_1', 'distributor_name_1', 'same_distributor'], axis=1) drug_lead_time_std = pd.concat([drug_in_preferred_distributor, drugs_not_in_preferred_distributor_1], sort=False, ignore_index=True) weighted_lead_time_mean = drug_lead_time_std[["drug_id", "weighted_lead_time"]] weighted_lead_time_std = drug_lead_time_std[["drug_id", "lead_time_std"]] #Assumption barcoding lead time 2 days and barcoding lead time std of 0.5 days barcoding_lead_time=2 barcoding_lead_time_std=0.5 weighted_lead_time_mean['barcoding_lead_time']=barcoding_lead_time weighted_lead_time_std['barcoding_lead_time_std']=barcoding_lead_time_std weighted_lead_time_mean['weighted_lead_time'] = weighted_lead_time_mean['weighted_lead_time'] + \ weighted_lead_time_mean['barcoding_lead_time'] weighted_lead_time_std['lead_time_std'] = np.sqrt( weighted_lead_time_std['lead_time_std'] * weighted_lead_time_std['lead_time_std'] + weighted_lead_time_std['barcoding_lead_time_std'] * weighted_lead_time_std['barcoding_lead_time_std']) weighted_lead_time_mean=weighted_lead_time_mean.drop(['barcoding_lead_time'],axis=1) weighted_lead_time_std=weighted_lead_time_std.drop(['barcoding_lead_time_std'],axis=1) return weighted_lead_time_mean, weighted_lead_time_std def review_time(): # Review Time for distributor s3 = S3() df_1 = pd.read_csv(s3.download_file_from_s3(file_name="warehouse/review_time_warehouse_distributor.csv")) # Preferred distributor df_2 = pd.read_csv(s3.download_file_from_s3(file_name="warehouse/preferred_distributors.csv")) # If null then take 4 days of review time df_1 = df_1.fillna(4) df_1['review_time'] = df_1['review_time'].astype('int') review_time_new = pd.merge(df_2, df_1, left_on='distributor_1', right_on='distributor_id', how='left') review_time_new = review_time_new.drop( ["drug_name", "distributor_1", "distributor_name_1", "distributor_id", "distributor_name"], axis=1) return review_time_new def wh_safety_stock_calc( ss_runtime_var, wh_drug_list, forecast, last_month_sales, demand_daily_deviation, current_month_date, forecast_date, reset_date, logger=None, expected_nso=0, nso_history_days=90, rs_db=None): """ Safety stock calculation for warehouse """ # Lead time mean & Std lead_time_mean, lead_time_std = lead_time() service_level = ss_runtime_var['service_level'] # 0.95 ordering_freq = ss_runtime_var['ordering_freq'] # 4 max_review_period = review_time() z = ss_runtime_var['z'] cap_ss_days = ss_runtime_var['cap_ss_days'] if cap_ss_days == 0: cap_ss_days = 100000 # getting latest month forecast forecast['month_begin_dt'] = pd.to_datetime( forecast['month_begin_dt']).dt.date first_month = forecast['month_begin_dt'].min() forecast_first_month = forecast[forecast['month_begin_dt'] == first_month] # creating inventory level dataframe repln = forecast_first_month.copy() repln = pd.merge(repln, lead_time_mean, how='left', on='drug_id') # merge lead time mean repln = pd.merge(repln, lead_time_std, how='left', on='drug_id') # merge lead time std repln = pd.merge(repln, max_review_period, how='left', on='drug_id') # merge review time # rename the columns repln.rename(columns={'weighted_lead_time': 'lead_time_mean', 'review_time': 'max_review_period'}, inplace=True) # Use default of 4 , 2 and 4 lead time mean , std and r.t if data is missing repln['lead_time_mean'] = repln['lead_time_mean'].fillna(4) repln['lead_time_std'] = repln['lead_time_std'].fillna(2) repln['max_review_period'] = repln['max_review_period'].fillna(4) repln['ordering_freq'] = ordering_freq repln['service_level'] = service_level repln['z_value'] = z repln = wh_drug_list.merge(repln, on='drug_id') num_days = monthrange(first_month.year, first_month.month)[1] repln['demand_daily'] = repln['fcst'] / num_days # check to see if forecast error is to be used instead of actual demand daily deviation if ss_runtime_var['use_fcst_error'] == 'Y': hist_fcst_err = get_forecast_error(rs_db, ss_runtime_var['fcst_hist_to_use'], last_month_sales, current_month_date, forecast_date, num_days) hist_fcst_err['demand_daily_deviation'] = hist_fcst_err['demand_daily_deviation'] / np.sqrt(num_days) repln = repln.merge(hist_fcst_err, on='drug_id', how='left') print("used forecast error instead of demand deviation") else: repln = repln.merge(demand_daily_deviation, on='drug_id', how='left') repln['demand_daily_deviation'].fillna(0, inplace=True) # warehouse overall safety stock repln['ss_wo_cap'] = np.round(repln['z_value'] * np.sqrt( ( repln['lead_time_mean'] * repln['demand_daily_deviation'] * repln['demand_daily_deviation'] ) + ( repln['lead_time_std'] * repln['lead_time_std'] * repln['demand_daily'] * repln['demand_daily'] ))) repln = repln.merge(last_month_sales, on='drug_id', how='left') repln['safety_stock_days'] = np.round( repln['ss_wo_cap'] * num_days / repln['fcst'], 1) # calculate capping days repln['cap_ss_days'] = np.round(repln['lead_time_mean'] + repln['z_value'] * repln['lead_time_std'] + repln['max_review_period']) repln['cap_ss_days'] = np.where(repln['cap_ss_days'] > cap_ss_days, cap_ss_days, repln['cap_ss_days']) # capping SS days based in forecasted sales repln['safety_stock'] = np.where(repln['safety_stock_days'] > repln['cap_ss_days'], np.round(repln['cap_ss_days'] * repln['fcst'] / num_days), repln['ss_wo_cap']) # setting min SS at 2 days based on forecasted sales repln['safety_stock'] = np.where(repln['safety_stock_days'] < 2, np.round(2 * repln['fcst'] / num_days), repln['safety_stock']) # capping SS days based on last month's sales repln['safety_stock'] = np.where(repln['safety_stock'] * num_days / repln['last_month_sales'] > cap_ss_days, np.round(cap_ss_days * repln['last_month_sales'] / num_days), repln['safety_stock']) repln['rop_without_nso'] = np.round(repln['safety_stock'] + repln['demand_daily'] * (repln['lead_time_mean'] + repln['max_review_period'])) #tweaking ROP to include launch stock launch_stock_per_store = get_launch_stock_per_store(rs_db, nso_history_days, reset_date) repln = repln.merge(launch_stock_per_store, on='drug_id', how='left') repln['launch_stock_per_store'].fillna(0, inplace=True) repln['expected_nso'] = expected_nso repln['reorder_point'] = repln['rop_without_nso'] + \ np.round((repln['lead_time_mean'] + repln['max_review_period']) * repln['expected_nso'] / num_days) * \ repln['launch_stock_per_store'] repln['reorder_point'] = np.round(repln['reorder_point']) repln['oup_without_nso'] = np.round( repln['rop_without_nso'] + repln['demand_daily'] * repln['ordering_freq']) repln['order_upto_point'] = np.round( repln['reorder_point'] + repln['demand_daily'] * repln['ordering_freq']) # shelf safety stock repln['shelf_min'] = np.round(repln['safety_stock'] / 2) repln['shelf_max'] = repln['safety_stock'] # days of safety stock, reorder point and order upto point calculations repln['last_month_sales'].fillna(0, inplace=True) repln['safety_stock_days'] = np.round( repln['safety_stock'] * num_days / repln['last_month_sales'], 1) repln['reorder_point_days'] = np.round( repln['reorder_point'] * num_days / repln['last_month_sales'], 1) repln['order_upto_days'] = np.round( repln['order_upto_point'] * num_days / repln['last_month_sales'], 1) return repln def get_forecast_error(rs_db, fcst_hist_to_use, last_month_sales, current_month_date, forecast_date, num_days): first_forecast_month = str(current_month_date - relativedelta(months=fcst_hist_to_use)) q = """ select wss."drug-id" as drug_id, wss."month-begin-dt" as month_forecasted, wss."fcst" as forecast, ( select wss1."last-month-sales" from "prod2-generico"."wh-safety-stock" wss1 where wss."drug-id" = wss1."drug-id" and date(add_months(wss."month-begin-dt", 1))= wss1."month-begin-dt" order by wss1."drug-id", wss1."month-begin-dt" limit 1 ) as actual from "prod2-generico"."wh-safety-stock" wss where 1 = 1 and wss.fcst notnull and wss."month-begin-dt" >= '{}' and wss."month-begin-dt" >= '2022-02-01' order by wss."drug-id", wss."month-begin-dt" """.format(first_forecast_month) hist_fcst_err = rs_db.get_df(q) last_month_date = pd.to_datetime(forecast_date) - relativedelta(months=1) last_month_sales['last_month_date'] = last_month_date.date() hist_fcst_err = hist_fcst_err.merge(last_month_sales, left_on=['drug_id', 'month_forecasted'], right_on=['drug_id', 'last_month_date'], how='left') hist_fcst_err['actual'] = np.where(np.isnan(hist_fcst_err['actual']), hist_fcst_err['last_month_sales'], hist_fcst_err['actual']) hist_fcst_err.drop(columns=['last_month_sales', 'last_month_date'], inplace=True) hist_fcst_err = hist_fcst_err[np.isnan(hist_fcst_err['actual']) == False] hist_fcst_err['squared_error'] = (hist_fcst_err['forecast'] - hist_fcst_err['actual']) ** 2 hist_fcst_err = hist_fcst_err.groupby('drug_id').apply(get_rmse).reset_index() hist_fcst_err['demand_daily_deviation'] = hist_fcst_err['rmse'] / np.sqrt(num_days) return hist_fcst_err[['drug_id', 'demand_daily_deviation']] def get_rmse(df): if len(df) >= 2: rmse = np.sqrt(df['squared_error'].sum() / len(df)) else: rmse = None return pd.Series(dict(rmse=rmse))
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/safety_stock/wh_safety_stock.py
wh_safety_stock.py
import pandas as pd def stores_ss_consolidation(safety_stock_df, db, schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point'): # getting list of SKUs to be substituted and substituted with wh_list_query = f""" select "drug-id" , "drug-id-replaced" , "same-release" from "{schema}"."wh-sku-subs-master" where "add-wh" = 'No' """ wh_list = db.get_df(wh_list_query) wh_list.columns = [c.replace('-', '_') for c in wh_list.columns] # 3 lists - to not keep, to substitute and to substitute with sku_reject_list = wh_list.loc[ wh_list['same_release'] == 'NO', 'drug_id'] sku_to_replace_list = wh_list.loc[ wh_list['same_release'] == 'YES', 'drug_id'] sku_substitute_list = wh_list.loc[ wh_list['same_release'] == 'YES', 'drug_id_replaced'] # seperating safety_stock_df where change will happen and where it wont sku_cnsld_list = list(sku_reject_list) + list(sku_to_replace_list) + list(sku_substitute_list) safety_stock_df_cnsld = safety_stock_df[ (safety_stock_df['drug_id'].isin(sku_cnsld_list)) ] print('SS to be changed due to WH ', safety_stock_df_cnsld.shape[0]) safety_stock_df_rest = safety_stock_df[ ~(safety_stock_df['drug_id'].isin(sku_cnsld_list)) ] if len(safety_stock_df_cnsld) > 0: # SKU to be changed - not to keep and substitute with sku_reject = safety_stock_df_cnsld.merge( wh_list.query('same_release == "NO"')[ ['drug_id']].drop_duplicates(), how='inner', on='drug_id') sku_to_replace = safety_stock_df_cnsld.merge( wh_list.query('same_release == "YES"')[ ['drug_id', 'drug_id_replaced']].drop_duplicates(), how='inner', on='drug_id') sku_substitute = safety_stock_df_cnsld.merge( wh_list.query('same_release == "YES"')[ ['drug_id_replaced']].drop_duplicates(), how='inner', left_on='drug_id', right_on='drug_id_replaced') sku_substitute.drop('drug_id_replaced', axis=1, inplace=True) print('SKU rejected ', sku_reject.shape[0]) print('SKU replace ', sku_to_replace.shape[0]) print('SKU substitute ', sku_substitute.shape[0]) # updated ss calculation - to reject sku_reject_new = sku_reject.copy() sku_reject_new[min_column] = 0 sku_reject_new[ss_column] = 0 sku_reject_new[max_column] = 0 # updated ss calculation - to replace with wh skus sku_substitute_new = sku_to_replace.groupby('drug_id_replaced')[ [min_column, ss_column, max_column]].sum().reset_index() sku_substitute_new.rename(columns={'drug_id_replaced': 'drug_id'}, inplace=True) sku_to_replace_new = sku_to_replace.copy() sku_to_replace_new.drop('drug_id_replaced', axis=1, inplace=True) sku_to_replace_new[min_column] = 0 sku_to_replace_new[ss_column] = 0 sku_to_replace_new[max_column] = 0 # updated ss calculation - to substitute with sku_substitute_new = sku_substitute.merge( sku_substitute_new[['drug_id', min_column, ss_column, max_column]], on='drug_id', suffixes=('', '_y'), how='left') sku_substitute_new[min_column + '_y'].fillna(0, inplace=True) sku_substitute_new[ss_column + '_y'].fillna(0, inplace=True) sku_substitute_new[max_column + '_y'].fillna(0, inplace=True) sku_substitute_new[min_column] = ( sku_substitute_new[min_column] + sku_substitute_new[min_column + '_y']) sku_substitute_new[ss_column] = ( sku_substitute_new[ss_column] + sku_substitute_new[ss_column + '_y']) sku_substitute_new[max_column] = ( sku_substitute_new[max_column] + sku_substitute_new[max_column + '_y']) sku_substitute_new.drop( [min_column + '_y', ss_column + '_y', max_column + '_y'], axis=1, inplace=True) # merging final dataframe safety_stock_df_prev = pd.concat( [sku_reject, sku_to_replace, sku_substitute], axis=0, ignore_index=True) safety_stock_df_new = pd.concat( [safety_stock_df_rest, sku_reject_new, sku_to_replace_new, sku_substitute_new], axis=0, ignore_index=True) else: safety_stock_df_new = safety_stock_df.copy() safety_stock_df_prev = pd.DataFrame() # test cases 1- pre and post count should be same pre_drug_count = safety_stock_df.shape[0] post_drug_count = safety_stock_df_new.shape[0] pre_max_qty = safety_stock_df[max_column].sum() post_max_qty = safety_stock_df_new[max_column].sum() if pre_drug_count == post_drug_count: print('WARNING: SKU count dont match after consolidation') print('Reduction in max quantity:', str(round(100*(1 - post_max_qty/pre_max_qty), 2)) + '%') return safety_stock_df_new, safety_stock_df_prev
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/wh_intervention/store_portfolio_consolidation.py
store_portfolio_consolidation.py
import pandas as pd import numpy as np from datetime import timedelta, datetime from calendar import monthrange from zeno_etl_libs.utils.ipc.data_prep import forecast_data_prep def data_checks(drug_sales_monthly, wh_drug_list, reset_date, logger, rs_db): # MONTHLY CHECKS logger.info( str(drug_sales_monthly.drug_id.nunique()) + str(drug_sales_monthly['month_begin_dt'].nunique())) logger.info(str( drug_sales_monthly.drug_id.nunique() * drug_sales_monthly['month_begin_dt'].nunique())) assert (drug_sales_monthly.drug_id.nunique() * drug_sales_monthly['month_begin_dt'].nunique() == len(drug_sales_monthly)) # CHECKING FOR DRUGS NOT IN SALES DATA MONTHLY drug_missed_fcst = wh_drug_list[ ~wh_drug_list.drug_id.isin(drug_sales_monthly['drug_id'])]['drug_id'] drug_missed_fcst = str(list(drug_missed_fcst)) drug_missed_fcst = drug_missed_fcst.replace('[', '(').replace(']', ')') if len(drug_missed_fcst) > 2: drug_missed_fcst = rs_db.get_df(''' select id as drug_id, "drug-name" as drug_name, type, date("created-at") as creation_date from "prod2-generico".drugs where id in {} '''.format(drug_missed_fcst)) drug_missed_sale_history = rs_db.get_df(''' select "drug-id" as drug_id, date(max("created-at")) as last_sale_date from "prod2-generico".sales where "created-at" < {reset_date} and quantity > 0 and "drug-id" in {drug_id_list} group by "drug-id" '''.format(drug_id_list = str( list(drug_missed_fcst['drug_id'])).replace('[', '(').replace( ']', ')'), reset_date = str(reset_date))) drug_missed_fcst = drug_missed_fcst.merge( drug_missed_sale_history, on='drug_id', how='inner') logger.info( 'Drug in SKU list but with no history' + str(drug_missed_fcst)) # DRUGS NOT -> DISCONTINUIED/BANNED OR NULL & SALE NOT ZERO IN 6 MONTH days = 152 logger.info('Total missing sales' + str(len(drug_missed_fcst))) logger.info( 'Removing unnecessary drug types' + str(drug_missed_fcst[ drug_missed_fcst.type.isin( ['discontinued-products', 'banned', '']) ].shape[0])) logger.info( 'Removing drugs with no sales in last 6 months' + str(drug_missed_fcst[ drug_missed_fcst['last_sale_date'] <= (reset_date - timedelta(days=days))].shape[0])) drug_missed_fcst_list = drug_missed_fcst[ (~drug_missed_fcst.type.isin( ['discontinued-products', 'banned', ''])) & (drug_missed_fcst['last_sale_date'] > (reset_date - timedelta(days=days))) ].sort_values('last_sale_date') logger.info('Missing drug list' + str(drug_missed_fcst_list)) return 0 def get_product_list(rs_db): '''Getting product list to be kept in warehousee''' # TODO - IN FUTURE TO BE COMIING FROM WMS DB wh_drug_list_query = ''' select wssm."drug-id" as drug_id, d."drug-name" drug_name, d."type", d.category, d.company, 'NA' as bucket from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on d.id = wssm."drug-id" where wssm."add-wh" = 'Yes' and d."type" not in ('discontinued-products') and d.company <> 'GOODAID' ''' wh_drug_list = rs_db.get_df(wh_drug_list_query) return wh_drug_list def wh_data_prep( store_id_list, current_month_date, reset_date, type_list, rs_db, logger, ss_runtime_var, schema): '''Getting data prepared for warehouse forecasting''' # CALLING STORES DATA PREP FOR ALL STORES AS LOGIC IS SAME last_date = datetime(day=1, month=4, year=2021).date() next_month_date = datetime(current_month_date.year + int(current_month_date.month / 12), ((current_month_date.month % 12) + 1), 1).date() _, drug_sales_monthly, _, demand_daily_deviation = forecast_data_prep( store_id_list, type_list, reset_date, rs_db, schema, logger, last_date=None, is_wh='Y') # GETTING PRODUCT LIST wh_drug_list = get_product_list(rs_db) logger.info('# of Drugs in WH list' + str(len(wh_drug_list))) # FILTERING OUT DRUG ID NOT CONSIDERED IN ABX-XYZ CLASSIFICATION drug_sales_monthly = drug_sales_monthly[ drug_sales_monthly.drug_id.isin(wh_drug_list['drug_id'])] # Extrapolate current month's sales but with condition if ss_runtime_var['for_next_month'] == 'Y': if ss_runtime_var['debug_mode'] == 'Y': curr_day = pd.to_datetime(reset_date).day - 1 curr_month_days = monthrange( current_month_date.year, current_month_date.month)[1] else: curr_day = datetime.now().day - 1 curr_month_days = monthrange( current_month_date.year, current_month_date.month)[1] drug_sales_monthly['net_sales_quantity'] = np.where( drug_sales_monthly['month_begin_dt'] == str(current_month_date), round(drug_sales_monthly['net_sales_quantity'] * curr_month_days / curr_day), drug_sales_monthly['net_sales_quantity']) else: drug_sales_monthly = drug_sales_monthly[ drug_sales_monthly['month_begin_dt'] != str(current_month_date)] # DATA CHECKS _ = data_checks( drug_sales_monthly, wh_drug_list, current_month_date, logger, rs_db) # FILTERING OUT LENGTH OF TIME SERIES BASED ON FIRST BILL DATE drug_list = drug_sales_monthly.drug_id.unique() bill_date_query = ''' select i."drug-id" as drug_id, min(date(bi."created-at")) as "first_bill_date" from "prod2-generico"."bill-items-1" bi join "prod2-generico"."inventory-1" i on i.id = bi."inventory-id" where i."drug-id" in {} group by i."drug-id" '''.format(tuple(drug_list) + (0, 0)) bill_date = rs_db.get_df(bill_date_query) bill_date['first_bill_date'] = pd.to_datetime(bill_date['first_bill_date']) bill_date['bill_month'] = [ datetime(b_date.year, b_date.month, 1).date() for b_date in bill_date['first_bill_date']] # TAKING HISTORY FROM THE POINT FIRST SALE IS MADE drug_sales_monthly = drug_sales_monthly.merge( bill_date, how='left', on='drug_id') assert sum(drug_sales_monthly['first_bill_date'].isna()) == 0 drug_sales_monthly = drug_sales_monthly.query( 'month_begin_dt >= bill_month') # EXPLORING HISTORY OF DRUGS drug_history = drug_sales_monthly. \ groupby('drug_id')['net_sales_quantity'].count().reset_index() drug_history.columns = ['drug_id', 'month_history'] logger.info('Total Drugs' + str(len(drug_history))) logger.info('History >= 12 months' + str( len(drug_history.query('month_history >=12')))) logger.info('History 3-11 months' + str( len(drug_history.query('month_history < 12'). query('month_history >=3')))) logger.info('History < 3 months' + str( len(drug_history.query('month_history < 3')))) return drug_sales_monthly, wh_drug_list, drug_history, demand_daily_deviation def get_launch_stock_per_store(rs_db, days, reset_date): new_stores_list_query = """ select id as store_id, date("opened-at") as opened_at from "prod2-generico".stores s where "opened-at" >= '{reset_date}' - {days} and "opened-at" <= '{reset_date}' and id not in (281, 297) and "franchisee-id" = 1 """.format(reset_date=reset_date, days=days) new_stores_list = rs_db.get_df(new_stores_list_query) store_ids_list = tuple(new_stores_list['store_id'].astype(str))+('0','0') # get shortbook launch orders sb_orders_query = ''' select distinct sb."store-id" as store_id, sb."drug-id" as drug_id, date(sb."created-at") as created_at, sb.quantity as ordered_quantity, date(s2."opened-at") as opened_at from "prod2-generico"."short-book-1" sb left join "prod2-generico".stores s2 on s2.id = sb."store-id" where "store-id" in {store_ids} and date(sb."created-at") < date(s2."opened-at") '''.format(store_ids=store_ids_list, days=days) sb_orders = rs_db.get_df(sb_orders_query) wh_drug_list = get_product_list(rs_db) df = sb_orders.copy() df = df[df['drug_id'].isin(wh_drug_list['drug_id'])] df = df[['store_id', 'drug_id', 'ordered_quantity']] df.drop_duplicates(inplace=True) new_stores_count = sb_orders['store_id'].nunique() df = df[['drug_id', 'ordered_quantity']] launch_stock = df.groupby('drug_id').sum().reset_index() launch_stock_per_store = launch_stock.copy() launch_stock_per_store['ordered_quantity'] = \ launch_stock['ordered_quantity'] / new_stores_count launch_stock_per_store.rename( columns={'ordered_quantity': 'launch_stock_per_store'}, inplace=True) return launch_stock_per_store
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/data_prep/wh_data_prep.py
wh_data_prep.py
import numpy as np from zeno_etl_libs.utils.warehouse.forecast.helper_functions import make_future_df,\ ape_calc, ae_calc from fbprophet import Prophet # prophet train def prophet_train_monthly( df, n_changepoints_factor=4, changepoint_prior_scale=0.2, growth='linear', changepoint_range=1, interval_width=0.68, mcmc_samples=0, horizon=3, out_of_sample=3): # params n_changepoints = int(np.round(len(df)/n_changepoints_factor)) # dividing the series into train and validation set df = df.copy() df['days'] = df['month_begin_dt'].dt.daysinmonth df.rename(columns={'month_begin_dt': 'ds', 'net_sales_quantity': 'y'}, inplace=True) train_df = df.drop(df.tail(out_of_sample).index) validation_df = df.tail(out_of_sample) # model building model = Prophet( growth=growth, n_changepoints=n_changepoints, changepoint_prior_scale=changepoint_prior_scale, changepoint_range=changepoint_range, interval_width=interval_width, mcmc_samples=mcmc_samples, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False) model.add_seasonality(name='yearly_e', period=365.25, fourier_order=12) model.add_regressor(name='days', mode='multiplicative') fit = model.fit(train_df) validation_fcst = fit.predict(validation_df)[[ 'yhat', 'yhat_upper', 'yhat_lower']] # calculating standard deviation of additive terms and tremd validation_std = ( validation_fcst['yhat_upper'].values - validation_fcst['yhat_lower'].values) # writing to final df predict_df = validation_df predict_df['fcst'] = np.round(validation_fcst['yhat'].values) predict_df['std'] = np.round(validation_std) # calculating errors predict_df['ape'] = [ ape_calc(actual, forecast) for actual, forecast in zip(predict_df['y'], predict_df['fcst'])] predict_df['ae'] = [ ae_calc(actual, forecast) for actual, forecast in zip(predict_df['y'], predict_df['fcst'])] predict_df.rename(columns={'ds': 'month_begin_dt', 'y': 'actual'}, inplace=True) predict_df.drop('days', axis=1, inplace=True) return predict_df # , fit # prophet train def prophet_predict_monthly( df, n_changepoints_factor=4, changepoint_prior_scale=0.2, growth='linear', changepoint_range=1, interval_width=0.68, mcmc_samples=0, horizon=3, out_of_sample=3): # params n_changepoints = int(np.round(len(df)/n_changepoints_factor)) # creating predict df df = df.copy() df['days'] = df['month_begin_dt'].dt.daysinmonth predict_df = make_future_df(df, out_of_sample) predict_df['days'] = predict_df['month_begin_dt'].dt.daysinmonth # column name change for prophet df.rename(columns={'month_begin_dt': 'ds', 'net_sales_quantity': 'y'}, inplace=True) predict_df.rename( columns={'month_begin_dt': 'ds', 'net_sales_quantity': 'y'}, inplace=True) # model building model = Prophet( growth=growth, n_changepoints=n_changepoints, changepoint_prior_scale=changepoint_prior_scale, changepoint_range=changepoint_range, interval_width=interval_width, mcmc_samples=mcmc_samples, yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False) fit = model.fit(df) forecast = fit.predict(predict_df)[[ 'yhat', 'yhat_upper', 'yhat_lower']] # calculating standard deviation of additive terms and tremd forecast_std = ( forecast['yhat_upper'].values - forecast['yhat_lower'].values) # writing to final df predict_df['fcst'] = np.round(forecast['yhat'].values) predict_df['std'] = np.round(forecast_std) predict_df.rename(columns={'ds': 'month_begin_dt', 'y': 'actual'}, inplace=True) predict_df.drop('days', axis=1, inplace=True) return predict_df # , fit
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/forecast/prophet.py
prophet.py
import pandas as pd from dateutil.relativedelta import relativedelta from joblib import Parallel, delayed from multiprocessing import cpu_count # weekly vs monthly demand pattern def month_week_plt(monthly_data, weekly_data, drug_id, drug_name, bucket): week = weekly_data.loc[ weekly_data['drug_id'] == drug_id] week.rename(columns={'week_begin_dt': 'date'}, inplace=True) ax = week[['date', 'net_sales_quantity']].set_index('date').plot() ax.set_title('{} {} {}'.format(drug_id, drug_name, bucket), ) month = monthly_data.loc[ monthly_data['drug_id'] == drug_id] month.rename(columns={'month_begin_dt': 'date'}, inplace=True) ax = month[['date', 'net_sales_quantity']].set_index('date').plot() ax.set_title('{} {} {}'.format(drug_id, drug_name, bucket)) return 0 # make forward looking data frame for forecast def make_future_df(df, horizon): df = df.copy() drug_id = df['drug_id'].values[-1] # prev_month_dt = df['month_begin_dt'].dt.date.values[-1] prev_month_dt = pd.to_datetime(df['month_begin_dt'].values[-1]) if horizon == 3: predict_month_dt = [ prev_month_dt + relativedelta(months=h) for h in range(1, horizon + 1)] predict_year = [ (prev_month_dt + relativedelta(months=h)).year for h in range(1, horizon + 1)] predict_month = [ (prev_month_dt + relativedelta(months=h)).month for h in range(1, horizon + 1)] else: predict_month_dt = [ prev_month_dt + relativedelta(days=28*h) for h in range(1, horizon + 1)] predict_year = [ (prev_month_dt + relativedelta(days=28*h)).year for h in range(1, horizon + 1)] predict_month = [ (prev_month_dt + relativedelta(days=28*h)).month for h in range(1, horizon + 1)] predict_df = pd.DataFrame() predict_df['drug_id'] = pd.Series([drug_id] * horizon) predict_df['month_begin_dt'] = pd.to_datetime(pd.Series(predict_month_dt)) predict_df['year'] = pd.Series(predict_year) predict_df['month'] = pd.Series(predict_month) predict_df['fcst'] = 0 return predict_df # forecast visualisation def forecast_viz(train, forecast, drug_id, drug_name, bucket, model, k=3): train = train.copy() forecast = forecast.copy() train = train[['drug_id', 'month_begin_dt', 'net_sales_quantity']] foreacast = forecast[['drug_id', 'month_begin_dt', 'fcst']] merged = train.merge( foreacast, how='outer', on=['drug_id', 'month_begin_dt']) merged.drop('drug_id', axis=1, inplace=True) ax = merged.set_index('month_begin_dt').plot() ax.set_title('{} {} {} {}'.format(drug_id, drug_name, bucket, model)) return 0 # parallel thread execution def apply_parallel_ets( dfGrouped, func, ets_params, horizon=3, out_of_sample=3): retLst = Parallel(n_jobs=cpu_count() - 4, verbose=10)( delayed(func)( group, ets_params, horizon, out_of_sample) for name, group in dfGrouped) return pd.concat(retLst) def apply_parallel_prophet( dfGrouped, func, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample): retLst = Parallel(n_jobs=cpu_count() - 4, verbose=10)( delayed(func)( group, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample) for name, group in dfGrouped) return pd.concat(retLst)
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/forecast/helper_functions.py
helper_functions.py
import time import pandas as pd import numpy as np from itertools import product from zeno_etl_libs.utils.warehouse.forecast.errors import train_error, \ train_error_ets_h1 from zeno_etl_libs.utils.warehouse.forecast.moving_average import \ ma_train_monthly, \ ma_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.ets import ets_train_monthly, \ ets_predict_monthly # from zeno_etl_libs.utils.warehouse.forecast.prophet import prophet_train_monthly,\ # prophet_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.naive import naive_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.helper_functions import \ apply_parallel_ets # from scripts.ops.warehouse.forecast.\ # helper_functions import apply_parallel_prophet def wh_forecast(drug_sales_monthly, wh_drug_list, drug_history, logger=None): """ Bucketing based on History 1. For drugs with history < 3 months -> Naive 2. For drugs with history 3-11 month -> MA, SES (Simple exponential smoothing) 3. For drugs with history >= 12 months -> MA, ETS (Error, Trend,Seasonality) """ # BUCKET BASED ON HISTORY bucket_h3 = drug_history[drug_history['month_history'] < 3] bucket_h2minus = drug_history[ (drug_history['month_history'] >= 3) & (drug_history['month_history'] <= 5)] bucket_h2 = drug_history[ (drug_history['month_history'] >= 6) & (drug_history['month_history'] < 12)] bucket_h1 = drug_history[drug_history['month_history'] >= 12] bucket_log = ''' Bucket H1 12+ months history - {}, Bucket H2 6-11 months history - {}, Bucket H2- 3-5 months history - {}, Bucket H3 <3 months history - {}'''.format( len(bucket_h1), len(bucket_h2), len(bucket_h2minus), len(bucket_h3) ) logger.info(bucket_log) # SUBSETTING SALE HISTORY DATA FOR BUCKETS drug_sales_monthly_bucket_h1 = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h1['drug_id'])] drug_sales_monthly_bucket_h2 = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h2['drug_id'])] drug_sales_monthly_bucket_h2minus = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h2minus['drug_id'])] drug_sales_monthly_bucket_h3 = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h3['drug_id'])] ''' H1 bucket - Train and Forecast''' logger.info( 'Drugs for training' + str(drug_sales_monthly_bucket_h1.drug_id.nunique())) # FORECASTING MODULES: MOVING AVERAGES K=3 ma_train_data_h1 = drug_sales_monthly_bucket_h1.copy() ma_train_data_h1 = ma_train_data_h1[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters # k = 3 # N moving average horizon = 3 # future forecast # train start = time.time() ma_train_h1 = ma_train_data_h1.groupby('drug_id').apply(ma_train_monthly). \ reset_index(drop=True) end = time.time() logger.info('H1 MA Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ma_train_error_h1 = ma_train_h1.groupby('drug_id').apply(train_error). \ reset_index(drop=True) end = time.time() logger.info('H1 MA Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ma_predict_h1 = ma_train_data_h1.groupby('drug_id'). \ apply(ma_predict_monthly).reset_index(drop=True) end = time.time() logger.info('H1 MA Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # FORECASTING MODULES: EXPONENTIAL SMOOTHING ets_train_data_h1 = drug_sales_monthly_bucket_h1.copy() ets_train_data_h1 = ets_train_data_h1[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters horizon = 3 # future forecast out_of_sample = 3 # out of sample forecast # holts winter implementation trend = ['additive', None] seasonal = ['additive', None] damped = [True, False] seasonal_periods = [12] use_boxcox = [True, False] ets_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) # train start = time.time() ets_train_h1 = apply_parallel_ets( ets_train_data_h1.groupby('drug_id'), ets_train_monthly, ets_params).reset_index(drop=True) end = time.time() logger.info('H1 ETS Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ets_train_error_h1 = ets_train_h1.groupby('drug_id').apply( train_error_ets_h1). \ reset_index(drop=True) end = time.time() logger.info('H1 ETS Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ets_predict_h1 = apply_parallel_ets( ets_train_data_h1.groupby('drug_id'), ets_predict_monthly, ets_train_h1).reset_index(drop=True) end = time.time() logger.info('H1 ETS Fcst: Run time ' + str(round(end - start, 2)) + 'secs') ''' # TODO - PROPHET TO BE INTG. LATER # FORECASTING MODULES: PROPHET prophet_train_data_h1 = drug_sales_monthly_bucket_h1.copy() prophet_train_data_h1 = prophet_train_data_h1[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters horizon = 3 # future forecast # holts winter implementation n_changepoints_factor = 4 changepoint_prior_scale = 0.2 growth = 'linear' changepoint_range = 1 interval_width = 0.68 mcmc_samples = 0 # train start = time.time() prophet_train_h1 = apply_parallel_prophet( prophet_train_data_h1.groupby('drug_id'), prophet_train_monthly, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample ).reset_index(drop=True) end = time.time() logger.info( 'H1 Prophet Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() prophet_train_error_h1 = prophet_train_h1.groupby('drug_id').\ apply(train_error).reset_index(drop=True) end = time.time() logger.info( 'H1 Prophet Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() prophet_predict_h1 = apply_parallel_prophet( prophet_train_data_h1.groupby('drug_id'), prophet_predict_monthly, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample ).reset_index(drop=True) end = time.time() logger.info( 'H1 Prophet Fcst: Run time ' + str(round(end-start, 2)) + 'secs') ''' # FORECASTING MODULE - ENSEMBLE # identifying best model for each drug - using MA and ETS ensemble_error_h1 = ets_train_error_h1.merge( ma_train_error_h1, how='outer', on='drug_id', suffixes=('_ets', '_ma')) ensemble_error_h1['model'] = np.where( ensemble_error_h1['mape_ma'] < ensemble_error_h1['mape_ets'], 'ma', 'ets') # choosing ma where SS days for ets is crossing 1 month if ensemble_error_h1.loc[0]['model'] == 'ma': ensemble_error_h1['ss_days_ets'] = 14.84 * ensemble_error_h1['std'] / \ ensemble_error_h1['actual'] else: ensemble_error_h1['ss_days_ets'] = 14.84 * ensemble_error_h1['std'] / \ ensemble_error_h1['actual'] ensemble_error_h1['model'] = np.where(ensemble_error_h1['ss_days_ets'] > 28, 'ma', 'ets') ensemble_error_h1.loc[np.isnan(ensemble_error_h1['std']), 'model'] = 'ma' del ensemble_error_h1['actual'] del ensemble_error_h1['std'] del ensemble_error_h1['ss_days_ets'] del ets_train_error_h1['actual'] del ets_train_error_h1['std'] ensemble_error_h1['mape'] = np.where( ensemble_error_h1['model'] == 'ma', ensemble_error_h1['mape_ma'], ensemble_error_h1['mape_ets']) ensemble_error_h1['mae'] = np.where( ensemble_error_h1['model'] == 'ma', ensemble_error_h1['mae_ma'], ensemble_error_h1['mae_ets']) # creating ensemble dataframe for best model - MA + ETS ma_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ma', 'drug_id'] ets_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ets', 'drug_id'] ma_train_best_h1 = ma_train_h1[ ma_train_h1['drug_id'].isin(ma_drug_best_h1)] ma_predict_best_h1 = ma_predict_h1[ ma_predict_h1['drug_id'].isin(ma_drug_best_h1)] ma_train_best_h1['model'] = 'ma' ma_predict_best_h1['model'] = 'ma' ets_train_best_h1 = ets_train_h1[ ets_train_h1['drug_id'].isin(ets_drug_best_h1)] ets_predict_best_h1 = ets_predict_h1[ ets_predict_h1['drug_id'].isin(ets_drug_best_h1)] ets_train_best_h1['model'] = 'ets' ets_predict_best_h1['model'] = 'ets' ensemble_train_h1 = pd.concat( [ma_train_best_h1, ets_train_best_h1], axis=0) ensemble_predict_h1 = pd.concat( [ma_predict_best_h1, ets_predict_best_h1], axis=0) ''' # TODO - PROPHET TO BE INTG. LATER # identifying best model for each drug - using MA, ETS and Prophet ensemble_error_h1 = ets_train_error_h1.merge( ma_train_error_h1, how='outer', on='drug_id', suffixes=('_ets', '_ma')).merge( prophet_train_error_h1, how='outer', on='drug_id', suffixes=('', '_prophet')) ensemble_error_h1.columns = [ 'drug_id', 'mae_ets', 'mape_ets', 'mae_ma', 'mape_ma', 'mae_prophet', 'mape_prophet'] ensemble_error_h1['model'] = np.select( [(ensemble_error_h1['mape_ma'] < ensemble_error_h1['mape_ets']) & (ensemble_error_h1['mape_ma'] < ensemble_error_h1['mape_prophet']), (ensemble_error_h1['mape_ets'] < ensemble_error_h1['mape_ma']) & (ensemble_error_h1['mape_ets'] < ensemble_error_h1['mape_prophet']), (ensemble_error_h1['mape_prophet'] < ensemble_error_h1['mape_ma']) & (ensemble_error_h1['mape_prophet'] < ensemble_error_h1['mape_ets'])], ['ma', 'ets', 'prophet'], default='ets') ensemble_error_h1['mape'] = np.select( [ensemble_error_h1['model'] == 'ma', ensemble_error_h1['model'] == 'ets', ensemble_error_h1['model'] == 'prophet'], [ensemble_error_h1['mape_ma'], ensemble_error_h1['mape_ets'], ensemble_error_h1['mape_prophet']], default=ensemble_error_h1['mape_ets']) ensemble_error_h1['mae'] = np.select( [ensemble_error_h1['model'] == 'ma', ensemble_error_h1['model'] == 'ets', ensemble_error_h1['model'] == 'prophet'], [ensemble_error_h1['mae_ma'], ensemble_error_h1['mae_ets'], ensemble_error_h1['mae_prophet']], default=ensemble_error_h1['mae_ets']) # creating ensemble dataframe for best model - MA + ETS + Prophet ma_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ma', 'drug_id'] ets_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ets', 'drug_id'] prophet_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'prophet', 'drug_id'] ma_train_best_h1 = ma_train[ ma_train_h1['drug_id'].isin(ma_drug_best_h1)] ma_predict_best_h1 = ma_predict[ ma_predict['drug_id'].isin(ma_drug_best_h1)] ma_train_best_h1['model'] = 'ma' ma_predict_best_h1['model'] = 'ma' ets_train_best_h1 = ets_train_h1[ ets_train_h1['drug_id'].isin(ets_drug_best_h1)] ets_predict_best_h1 = ets_predict_h1[ ets_predict_h1['drug_id'].isin(ets_drug_best_h1)] ets_train_best_h1['model'] = 'ets' ets_predict_best_h1['model'] = 'ets' prophet_train_best_h1 = prophet_train_h1[ prophet_train_h1['drug_id'].isin(prophet_drug_best_h1)] prophet_predict_best_h1 = prophet_predict_h1[ prophet_predict_h1['drug_id'].isin(prophet_drug_best_h1)] prophet_train_best_h1['model'] = 'prophet' prophet_predict_best_h1['model'] = 'prophet' ensemble_train_h1 = pd.concat( [ma_train_best_h1, ets_train_best_h1, prophet_train_best_h1], axis=0) ensemble_predict_h1 = pd.concat( [ma_predict_best_h1, ets_predict_best_h1, prophet_predict_best_h1], axis=0) ''' # H1 BUCKET AGGREGATING ma_train_h1['model'] = 'ma' ma_train_h1['history_bucket'] = 'H1' ets_train_h1['model'] = 'ets' ets_train_h1['history_bucket'] = 'H1' ma_train_error_h1['model'] = 'ma' ma_train_error_h1['history_bucket'] = 'H1' ets_train_error_h1['model'] = 'ets' ets_train_error_h1['history_bucket'] = 'H1' ma_predict_h1['model'] = 'ma' ma_predict_h1['history_bucket'] = 'H1' ets_predict_h1['model'] = 'ets' ets_predict_h1['history_bucket'] = 'H1' train_h1 = pd.concat([ma_train_h1, ets_train_h1], axis=0) train_error_h1 = pd.concat([ma_train_error_h1, ets_train_error_h1], axis=0) predict_h1 = pd.concat([ma_predict_h1, ets_predict_h1], axis=0) train_h1['forecast_type'] = 'train' train_h1['final_fcst'] = 'N' train_error_h1['forecast_type'] = 'train' train_error_h1['final_fcst'] = 'N' predict_h1['forecast_type'] = 'forecast' predict_h1['final_fcst'] = 'N' ensemble_train_h1['forecast_type'] = 'train' ensemble_train_h1['final_fcst'] = 'Y' ensemble_train_h1['history_bucket'] = 'H1' ensemble_error_h1['forecast_type'] = 'train' ensemble_error_h1['final_fcst'] = 'Y' ensemble_error_h1['history_bucket'] = 'H1' ensemble_predict_h1['forecast_type'] = 'forecast' ensemble_predict_h1['final_fcst'] = 'Y' ensemble_predict_h1['history_bucket'] = 'H1' ''' H2/H2- bucket - Train and Forecast''' logger.info( 'Drugs for training' + str(drug_sales_monthly_bucket_h2.drug_id.nunique())) # FORECASTING MODULES: MOVING AVERAGES K=3 ma_train_data_h2 = drug_sales_monthly_bucket_h2.copy() ma_train_data_h2 = ma_train_data_h2[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters horizon = 3 # future forecast # train start = time.time() ma_train_h2 = ma_train_data_h2.groupby('drug_id').apply(ma_train_monthly). \ reset_index(drop=True) end = time.time() logger.info('H2 MA Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ma_train_error_h2 = ma_train_h2.groupby('drug_id').apply(train_error). \ reset_index(drop=True) end = time.time() logger.info('H2 MA Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ma_predict_h2 = ma_train_data_h2.groupby('drug_id'). \ apply(ma_predict_monthly).reset_index(drop=True) end = time.time() logger.info('H2 MA Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # FORECASTING MODULES: SIMPLE EXPONENTIAL SMOOTHING ses_train_data_h2 = drug_sales_monthly_bucket_h2.copy() ses_train_data_h2 = ses_train_data_h2[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # variables horizon = 3 # future forecast out_of_sample = 3 # out of sample forecast # ses implementation trend = [None] seasonal = [None] damped = [False] seasonal_periods = [12] use_boxcox = [False] ses_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) # train start = time.time() ses_train_h2 = apply_parallel_ets( ses_train_data_h2.groupby('drug_id'), ets_train_monthly, ses_params ).reset_index(drop=True) end = time.time() logger.info('H2 ETS Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ses_train_error_h2 = ses_train_h2.groupby('drug_id').apply(train_error). \ reset_index(drop=True) end = time.time() logger.info('H2 ETS Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ses_predict_h2 = apply_parallel_ets( ses_train_data_h2.groupby('drug_id'), ets_predict_monthly, ses_train_h2).reset_index(drop=True) end = time.time() logger.info('H2 ETS Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # FORECASTING MODULE - ENSEMBLE # identifying best model for each drug - using MA and SES ensemble_error_h2 = ses_train_error_h2.merge( ma_train_error_h2, how='outer', on='drug_id', suffixes=('_ses', '_ma')) ensemble_error_h2['model'] = np.where( ensemble_error_h2['mape_ma'] < ensemble_error_h2['mape_ses'], 'ma', 'ses') ensemble_error_h2['mape'] = np.where( ensemble_error_h2['model'] == 'ma', ensemble_error_h2['mape_ma'], ensemble_error_h2['mape_ses']) ensemble_error_h2['mae'] = np.where( ensemble_error_h2['model'] == 'ma', ensemble_error_h2['mae_ma'], ensemble_error_h2['mae_ses']) # creating ensemble dataframe for best_h2 model - MA + ses ma_drug_best_h2 = ensemble_error_h2.loc[ ensemble_error_h2['model'] == 'ma', 'drug_id'] ses_drug_best_h2 = ensemble_error_h2.loc[ ensemble_error_h2['model'] == 'ses', 'drug_id'] ma_train_best_h2 = ma_train_h2[ ma_train_h2['drug_id'].isin(ma_drug_best_h2)] ma_predict_best_h2 = ma_predict_h2[ ma_predict_h2['drug_id'].isin(ma_drug_best_h2)] ma_train_best_h2['model'] = 'ma' ma_predict_best_h2['model'] = 'ma' ses_train_best_h2 = ses_train_h2[ ses_train_h2['drug_id'].isin(ses_drug_best_h2)] ses_predict_best_h2 = ses_predict_h2[ ses_predict_h2['drug_id'].isin(ses_drug_best_h2)] ses_train_best_h2['model'] = 'ses' ses_predict_best_h2['model'] = 'ses' ensemble_train_h2 = pd.concat( [ma_train_best_h2, ses_train_best_h2], axis=0) # getting best model for H2- bucket ensemble_model_agg = ensemble_error_h2.groupby('model')['drug_id']. \ count().reset_index() ensemble_model_best_h2 = ensemble_model_agg.loc[ ensemble_model_agg['drug_id'] == ensemble_model_agg['drug_id'].max(), 'model'].values[0] logger.info('Best model for H2 forecast' + ensemble_model_best_h2) # H2 minus bucket predic based on the best_h2 model overall train_data_h2minus = drug_sales_monthly_bucket_h2minus.copy() predict_h2minus = pd.DataFrame() start = time.time() if ensemble_model_best_h2 == 'ses' and len(drug_sales_monthly_bucket_h2minus): start = time.time() train_data_h2minus['hyper_params'] = str(ses_params[0]) predict_h2minus = apply_parallel_ets( train_data_h2minus.groupby('drug_id'), ets_predict_monthly, train_data_h2minus). \ reset_index(drop=True) if ensemble_model_best_h2 == 'ma': start = time.time() predict_h2minus = train_data_h2minus.groupby('drug_id'). \ apply(ma_predict_monthly).reset_index(drop=True) predict_h2minus['model'] = ensemble_model_best_h2 end = time.time() logger.info( 'H2 Minus Fcst: Run time ' + str(round(end - start, 2)) + 'secs') ensemble_predict_h2 = pd.concat( [ma_predict_best_h2, ses_predict_best_h2, predict_h2minus], axis=0) # H2 BUCKET AGGREGATING ma_train_h2['model'] = 'ma' ma_train_h2['history_bucket'] = 'H2' ses_train_h2['model'] = 'ses' ses_train_h2['history_bucket'] = 'H2' ma_train_error_h2['model'] = 'ma' ma_train_error_h2['history_bucket'] = 'H2' ses_train_error_h2['model'] = 'ses' ses_train_error_h2['history_bucket'] = 'H2' ma_predict_h2['model'] = 'ma' ma_predict_h2['history_bucket'] = 'H2' ses_predict_h2['model'] = 'ses' ses_predict_h2['history_bucket'] = 'H2' train_h2 = pd.concat([ma_train_h2, ses_train_h2], axis=0) train_error_h2 = pd.concat([ma_train_error_h2, ses_train_error_h2], axis=0) predict_h2 = pd.concat([ma_predict_h2, ses_predict_h2], axis=0) train_h2['forecast_type'] = 'train' train_h2['final_fcst'] = 'N' train_error_h2['forecast_type'] = 'train' train_error_h2['final_fcst'] = 'N' predict_h2['forecast_type'] = 'forecast' predict_h2['final_fcst'] = 'N' ensemble_train_h2['forecast_type'] = 'train' ensemble_train_h2['final_fcst'] = 'Y' ensemble_train_h2['history_bucket'] = 'H2' ensemble_error_h2['forecast_type'] = 'train' ensemble_error_h2['final_fcst'] = 'Y' ensemble_error_h2['history_bucket'] = 'H2' ensemble_predict_h2['forecast_type'] = 'forecast' ensemble_predict_h2['final_fcst'] = 'Y' ensemble_predict_h2['history_bucket'] = 'H2' ''' H3- bucket - Train and Forecast''' logger.info( 'Drugs for training' + str(drug_sales_monthly_bucket_h2.drug_id.nunique())) # FORECASTING MODULES: NAIVE naive_train_data_h3 = drug_sales_monthly_bucket_h3.copy() naive_train_data_h3 = naive_train_data_h3[[ 'drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # predict start = time.time() naive_predict_h3 = naive_train_data_h3.groupby('drug_id'). \ apply(naive_predict_monthly, horizon).reset_index(drop=True) end = time.time() logger.info( 'H3 Naive Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # H3 BUCKET AGGREGATING naive_predict_h3['model'] = 'naive' naive_predict_h3['history_bucket'] = 'H3' predict_h3 = naive_predict_h3.copy() predict_h3['forecast_type'] = 'forecast' predict_h3['final_fcst'] = 'N' ensemble_predict_h3 = naive_predict_h3.copy() ensemble_predict_h3['forecast_type'] = 'forecast' ensemble_predict_h3['final_fcst'] = 'Y' ''' AGG. TRAIN/ERROR/FORECAST TABLES ''' train = pd.concat([train_h1, train_h2], axis=0) error = pd.concat([train_error_h1, train_error_h2], axis=0) predict = pd.concat([predict_h1, predict_h2, predict_h3], axis=0) ensemble_train = pd.concat([ensemble_train_h1, ensemble_train_h2], axis=0) ensemble_error = pd.concat([ensemble_error_h1, ensemble_error_h2], axis=0) ensemble_predict = pd.concat( [ensemble_predict_h1, ensemble_predict_h2, ensemble_predict_h3], axis=0) # Letting code to not fail when h3 bucket is empty if 'net_sales_quantity' in predict.columns: del predict['net_sales_quantity'] if 'net_sales_quantity' in ensemble_predict.columns: del ensemble_predict['net_sales_quantity'] # converting data to str objection train['month_begin_dt'] = train['month_begin_dt']. \ dt.date.astype(str) predict['month_begin_dt'] = predict['month_begin_dt']. \ dt.date.astype(str) ensemble_train['month_begin_dt'] = ensemble_train['month_begin_dt']. \ dt.date.astype(str) ensemble_predict['month_begin_dt'] = ensemble_predict['month_begin_dt']. \ dt.date.astype(str) return train, error, predict, ensemble_train, ensemble_error, \ ensemble_predict
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/forecast/forecast_main.py
forecast_main.py
import numpy as np from zeno_etl_libs.utils.warehouse.forecast.helper_functions import make_future_df from zeno_etl_libs.utils.warehouse.forecast.errors import ape_calc, ae_calc from statsmodels.tsa.holtwinters import ExponentialSmoothing # ets train def ets_train_monthly(df, ets_params, horizon=3, out_of_sample=3, logger=None): train = df.copy() train.drop(train.tail(out_of_sample).index, inplace=True) # dividing the series into train and validation set drug_id = train['drug_id'].values[0] input_series = train['net_sales_quantity'].values validation = df['net_sales_quantity'].tail(out_of_sample).values # creating dummy best fit param and fit values best_fit = None best_fit_params = [None, None, False, None, False] best_accuracy = np.inf best_ape = [0]*horizon best_ae = [0]*horizon # best_fittedvalues = [0]*len(train) # best_fcastvalues = [0]*horizon # running a loop for grid search for params in ets_params: trend, seasonal, damped, seasonal_periods, use_boxcox = params try: ape = [] ae = [] # model fitting model = ExponentialSmoothing( input_series, trend=trend, seasonal=seasonal, damped=damped, seasonal_periods=seasonal_periods, use_boxcox=use_boxcox) fit = model.fit(optimized=True) # accuracy parameter can be - aic, bic, sse or mape forecast = np.round(fit.forecast(horizon)) # print(forecast) ape = [ ape_calc(actual, forecast) for actual, forecast in zip(validation, forecast)] ae = [ ae_calc(actual, forecast) for actual, forecast in zip(validation, forecast)] fit_mape = np.mean(ape) # fit_mae = np.mean(ae) # fitted_values = fit.fittedvalues # identifying the best fit params if (fit_mape <= best_accuracy) & (fit_mape != -np.inf): best_fit = fit best_fit_params = params best_accuracy = fit_mape best_ape = ape best_ae = ae # best_fittedvalues = fitted_values best_forecast = forecast except Exception as error: # print(params,':', error) error_str = '''Drug {} Params {} Error: {}'''.format( drug_id, str(params), error) # logger.info(error_str) pass # creating out of output dataset predict_df = make_future_df(train, out_of_sample) # getting forecast deviation sigma = sse*(1 + alpha^2(h-1))/n holts methods alpha = best_fit.params['smoothing_level'] std = np.round( np.sqrt(best_fit.sse*(1 + alpha * alpha * (horizon-1)) / len(best_fit.fittedvalues))) predict_df['fcst'] = best_forecast predict_df['std'] = std predict_df['actual'] = validation # model variables predict_df['ape'] = best_ape predict_df['ae'] = best_ae predict_df['hyper_params'] = str(best_fit_params) return predict_df # ets predict def ets_predict_monthly(df, ets_train, horizon=3, out_of_sample=3): df = df.copy() print("running for drug_id --> " + str(df['drug_id'].unique()[0])) fit_params = ets_train[ets_train['drug_id']==df['drug_id'].unique()[0]] fit_params = tuple(eval(fit_params['hyper_params'].values[0])) series = df['net_sales_quantity'].values # getting best fit params for forecast trend, seasonal, damped, seasonal_periods, use_boxcox = fit_params # creating model instance try: model = ExponentialSmoothing( series, trend=trend, seasonal=seasonal, damped=damped, seasonal_periods=seasonal_periods, use_boxcox=use_boxcox) fit = model.fit(optimized=True) if np.isnan(fit.sse) == True or fit.forecast(horizon)[0] < 0 or \ (series[-1] > 0 and fit.forecast(horizon)[0] > 0 and (0.33 > series[-1]/fit.forecast(horizon)[0] or series[-1]/fit.forecast(horizon)[0] > 3)): raise Exception( 'ets hyperparams giving outliers for drug_id: ' \ + str(df['drug_id'].unique()[0]) + \ ' running model with default params') except Exception as error: model = ExponentialSmoothing( series, trend=None, seasonal=None, damped=False, seasonal_periods=seasonal_periods, use_boxcox=False) fit = model.fit(optimized=True) print(error) # creating out of output dataset predict_df = make_future_df(df, horizon) predict_df['fcst'] = np.round(fit.forecast(horizon)) # getting forecast deviation sigma = sse*(1 + alpha^2(h-1))/n holts methods alpha = fit.params['smoothing_level'] std = np.round( np.sqrt(fit.sse*(1 + alpha * alpha * (horizon-1)) / len(fit.fittedvalues))) predict_df['std'] = std return predict_df
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/forecast/ets.py
ets.py
import numpy as np import pandas as pd from matplotlib import pyplot as plt # absolute percentage error calculation def ape_calc(actual, forecast): if (actual == 0) & (forecast == 0): ape = 0 elif forecast == 0: ape = 1 elif actual == 0: ape = 1 else: ape = abs((forecast - actual)/actual) return ape # abs error calculation def ae_calc(actual, forecast): if (actual == 0) & (forecast == 0): ae = 0 elif forecast == 0: ae = actual elif actual == 0: ae = forecast else: ae = abs(forecast - actual) return ae # weighted mape calculation def wmape(actual, forecast): wmape = sum(abs(forecast-actual))/sum(actual) return round(100*wmape, 1) # avg mape, ape for the forecast horizon def train_error(train_df): drug_id = train_df['drug_id'].values[-1] mae = np.mean(train_df['ae']) mape = np.mean(train_df['ape']) return pd.DataFrame( [[drug_id, mae, mape]], columns=['drug_id', 'mae', 'mape']) def train_error_ets_h1(train_df): drug_id = train_df['drug_id'].values[-1] mae = np.mean(train_df['ae']) mape = np.mean(train_df['ape']) actual = np.mean(train_df['actual']) std = np.mean(train_df['std']) return pd.DataFrame( [[drug_id, mae, mape, actual, std]], columns=['drug_id', 'mae', 'mape', 'actual', 'std']) # error reporting overall def error_report(error_df, wh_drug_list, drug_history): print('MAE and MAPE error') error_df = error_df.copy() error_df['mape'] = np.round(error_df['mape'] * 100, 1) print(np.round(error_df.mae.mean()), error_df.mape.mean(), '\n') print('MAPE describe') print(error_df['mape'].describe(), '\n') print('MAPE Plots') fig, ax = plt.subplots() error_df['mape'].hist(ax=ax, bins=100, bottom=0.05) ax.set_yscale('log') ax.set_ylabel('# of SKUs') ax.set_xlabel('MAPE') print(' ', '\n') print('MAPE where error % > 100%') print(error_df.query('mape > 1').sort_values('mape')['mape'].mean(), '\n') print('MAE describe') print(error_df['mae'].describe(), '\n') print('MAE Plots') fig, ax = plt.subplots() error_df['mae'].hist(ax=ax, bins=100, bottom=0.05) ax.set_ylabel('# of SKUs') ax.set_xlabel('MAE') ax.set_yscale('log') print('ERROR MAPPING WITH BUCKETS AND HISTORY') error_bucket = error_df.merge( wh_drug_list[['drug_id', 'bucket']], on='drug_id').\ merge(drug_history, on='drug_id') fig, ax = plt.subplots() error_bucket.groupby('month_history')['mape'].mean().plot() ax.set_ylabel('MAPE') ax.set_xlabel('Available history') print(error_bucket.groupby('bucket')['mape'].mean()) return 0 def error_report_monthly(train_data, wh_drug_list, drug_history): train_data = train_data.copy() train_data['ape'] = np.round(train_data['ape'] * 100, 1) train_data['out_month'] = train_data.\ groupby('drug_id')['month_begin_dt'].rank() print('MAE and MAPE error') print( train_data.groupby('out_month')['ape'].mean(), train_data.groupby('out_month')['ae'].mean()) print('MAPE describe') print(train_data.groupby('out_month')['ape'].describe(), '\n') print('MAPE Plots') for month in train_data['out_month'].unique(): train_data_month = train_data[train_data['out_month'] == month] fig, ax = plt.subplots() train_data_month['ape'].hist(ax=ax, bins=100, bottom=0.05) plt.title('MAPE: Month out {}'.format(month)) ax.set_yscale('log') ax.set_ylabel('# of SKUs') ax.set_xlabel('APE') print(' ', '\n') print('MAPE where error % > 100%') print(train_data.query('ape > 1').groupby('out_month')['ape'].mean(), '\n') print('MAE describe') print(train_data.groupby('out_month')['ae'].describe(), '\n') print('MAE Plots') for month in train_data['out_month'].unique(): train_data_month = train_data[train_data['out_month'] == month] fig, ax = plt.subplots() train_data_month['ae'].hist(ax=ax, bins=100, bottom=0.05) plt.title('MAE: Month out {}'.format(month)) ax.set_yscale('log') ax.set_yscale('log') ax.set_ylabel('# of SKUs') ax.set_xlabel('AE') print(' ', '\n') print('ERROR MAPPING WITH BUCKETS AND HISTORY') train_bucket = train_data.merge( wh_drug_list[['drug_id', 'bucket']], on='drug_id').\ merge(drug_history, on='drug_id') fig, ax = plt.subplots() colors = {1: 'red', 2: 'green', 3: 'blue'} for month in train_bucket['out_month'].unique(): train_bucket_month = train_bucket[train_bucket['out_month'] == month] train_bucket_month.groupby('month_history')['ape'].mean().\ plot(color=colors[month], title='APE: Month out {}'.format(month), label=month) print('APE: Month out {}'.format(month)) print(train_bucket_month.groupby('bucket')['ape'].mean()) plt.title('APE: Month out vs Data history' + str(colors)) ax.set_ylabel('APE') ax.set_xlabel('Available history') return 0 # weigheted mape report def wmape_report(train_data, wh_drug_list, drug_history): train_data = train_data.copy() train_data['out_month'] = train_data.\ groupby('drug_id')['month_begin_dt'].rank() print('wMAPE', wmape(train_data['actual'], train_data['fcst'])) print('Month out wMAPE', train_data.groupby('out_month'). apply(lambda row: wmape(row['actual'], row['fcst']))) train_bucket = train_data.merge( wh_drug_list[['drug_id', 'bucket']], on='drug_id').\ merge(drug_history, on='drug_id') print('Bucket out wMAPE', train_bucket.groupby('bucket'). apply(lambda row: wmape(row['actual'], row['fcst']))) print('Bucket out 1st Month wMAPE', train_bucket.query('out_month == 1'). groupby('bucket').apply( lambda row: wmape(row['actual'], row['fcst']))) return 0
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/warehouse/forecast/errors.py
errors.py
import pandas as pd import numpy as np import datetime as dt def ranking_override_dc(features_rank, db, read_schema, logger, override_type_list=['AS/MS']): # Get distributor preference list current_date = dt.date.today().strftime('%Y-%m-%d') q_preference = """ select "dc-id", "drug-id", "distributor-preference", "distributor-id" from "{read_schema}"."distributor-ranking-preference" where "is-active" = 1 and "start-date" < '{0}' and "end-date" > '{0}' and "dc-id" is not null """.format(current_date, read_schema=read_schema) rank_override = db.get_df(q_preference) if rank_override.shape[0] != 0: # Manual rank override logic starts logger.info(f"Overriding for {override_type_list}") original_shape = features_rank.shape features_rank = features_rank.reset_index(drop=True) rank_override = rank_override.dropna() rank_override = rank_override.drop_duplicates() rank_override = rank_override.sort_values( ['dc_id', 'drug_id', 'distributor_preference', 'distributor_id'], ascending=[True, True, True, True]).reset_index(drop=True) rank_override_grp = rank_override.groupby(["dc_id", "drug_id"], as_index=False).agg( {"distributor_id": dist_order}) rank_override_grp.rename({"distributor_id": "override_dist_order"}, axis=1, inplace=True) df_merged = features_rank.merge(rank_override_grp, on=["dc_id", "drug_id"], how="left") df_rank_override = df_merged.loc[~df_merged["override_dist_order"].isna()] df_rank_override = df_rank_override.loc[ df_rank_override["request_type"].isin(override_type_list)] index_to_drop = df_rank_override.index.values.tolist() features_rank = features_rank.drop(index_to_drop) logger.info(f"Number of rows to update ranks: {original_shape[0]-features_rank.shape[0]}") df_rank_override["final_dist_1"] = df_rank_override["final_dist_1"].fillna(0) df_rank_override["final_dist_2"] = df_rank_override["final_dist_2"].fillna(0) df_rank_override["final_dist_3"] = df_rank_override["final_dist_3"].fillna(0) dist_1 = np.array(df_rank_override["final_dist_1"].astype(int)) dist_2 = np.array(df_rank_override["final_dist_2"].astype(int)) dist_3 = np.array(df_rank_override["final_dist_3"].astype(int)) stacked_dist = np.stack((dist_1, dist_2, dist_3), axis=-1) df_rank_override["prev_dist_order"] = list(stacked_dist) order_list = [] for index, row in df_rank_override.iterrows(): eval_string = str(row["override_dist_order"]) + "+" + str(list(row["prev_dist_order"])) order_list.append(str(eval(eval_string)[:3]).replace('[', '').replace(']', '').replace(' ', '')) df_rank_override["final_order"] = order_list df_final_order = df_rank_override['final_order'].str.split(pat=',', expand=True).rename( columns={0: 'final_dist_1', 1: 'final_dist_2', 2: 'final_dist_3'}) df_final_order["final_dist_1"] = df_final_order["final_dist_1"].astype(int) df_final_order["final_dist_2"] = df_final_order["final_dist_2"].astype(int) df_final_order["final_dist_3"] = df_final_order["final_dist_3"].astype(int) df_final_order = df_final_order.replace({0: np.nan}) df_rank_override["final_dist_1"] = df_final_order["final_dist_1"] df_rank_override["final_dist_2"] = df_final_order["final_dist_2"] df_rank_override["final_dist_3"] = df_final_order["final_dist_3"] df_rank_override.drop(["override_dist_order", "prev_dist_order", "final_order"], axis=1, inplace=True) features_rank = features_rank.append(df_rank_override) features_rank.sort_index(ascending=True, inplace=True) assert features_rank.shape == original_shape else: logger.info("Skipping..: no rank preferences present in table") return features_rank def ranking_override_franchisee(features_rank, db, read_schema, logger, override_type_list=['AS/MS', 'PR']): # Get distributor preference list current_date = dt.date.today().strftime('%Y-%m-%d') q_preference = """ select "dc-id", "drug-id", "distributor-preference", "distributor-id" from "{read_schema}"."distributor-ranking-preference" where "is-active" = 1 and start_date < '{0}' and end_date > '{0}' and "store-id" is not null """.format(current_date, read_schema=read_schema) rank_override = db.get_df(q_preference) if rank_override.shape[0] != 0: # Manual rank override logic starts logger.info(f"Overriding for {override_type_list}") original_shape = features_rank.shape features_rank = features_rank.reset_index(drop=True) rank_override = rank_override.dropna() rank_override = rank_override.drop_duplicates() rank_override = rank_override.sort_values( ['store_id', 'drug_id', 'distributor_preference', 'distributor_id'], ascending=[True, True, True, True]).reset_index(drop=True) rank_override_grp = rank_override.groupby(["store_id", "drug_id"], as_index=False).agg( {"distributor_id": dist_order}) rank_override_grp.rename({"distributor_id": "override_dist_order"}, axis=1, inplace=True) df_merged = features_rank.merge(rank_override_grp, on=["store_id", "drug_id"], how="left") df_rank_override = df_merged.loc[~df_merged["override_dist_order"].isna()] df_rank_override = df_rank_override.loc[ df_rank_override["request_type"].isin(override_type_list)] index_to_drop = df_rank_override.index.values.tolist() features_rank = features_rank.drop(index_to_drop) logger.info(f"Number of rows to update ranks: {original_shape[0]-features_rank.shape[0]}") df_rank_override["final_dist_1"] = df_rank_override["final_dist_1"].fillna(0) df_rank_override["final_dist_2"] = df_rank_override["final_dist_2"].fillna(0) df_rank_override["final_dist_3"] = df_rank_override["final_dist_3"].fillna(0) dist_1 = np.array(df_rank_override["final_dist_1"].astype(int)) dist_2 = np.array(df_rank_override["final_dist_2"].astype(int)) dist_3 = np.array(df_rank_override["final_dist_3"].astype(int)) stacked_dist = np.stack((dist_1, dist_2, dist_3), axis=-1) df_rank_override["prev_dist_order"] = list(stacked_dist) order_list = [] for index, row in df_rank_override.iterrows(): eval_string = str(row["override_dist_order"]) + "+" + str(list(row["prev_dist_order"])) order_list.append(str(eval(eval_string)[:3]).replace('[', '').replace(']', '').replace(' ', '')) df_rank_override["final_order"] = order_list df_final_order = df_rank_override['final_order'].str.split(pat=',', expand=True).rename( columns={0: 'final_dist_1', 1: 'final_dist_2', 2: 'final_dist_3'}) df_final_order["final_dist_1"] = df_final_order["final_dist_1"].astype(int) df_final_order["final_dist_2"] = df_final_order["final_dist_2"].astype(int) df_final_order["final_dist_3"] = df_final_order["final_dist_3"].astype(int) df_final_order = df_final_order.replace({0: np.nan}) df_rank_override["final_dist_1"] = df_final_order["final_dist_1"] df_rank_override["final_dist_2"] = df_final_order["final_dist_2"] df_rank_override["final_dist_3"] = df_final_order["final_dist_3"] df_rank_override.drop(["override_dist_order", "prev_dist_order", "final_order"], axis=1, inplace=True) features_rank = features_rank.append(df_rank_override) features_rank.sort_index(ascending=True, inplace=True) assert features_rank.shape == original_shape else: logger.info("Skipping..: no rank preferences present in table") return features_rank def dist_order(pd_arr): """To arrange in preference order and avoid duplication""" pd_arr = list(pd_arr) dist_list = [i for n, i in enumerate(pd_arr) if i not in pd_arr[:n]] return dist_list[:3]
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking/ranking_intervention.py
ranking_intervention.py
import pandas as pd import numpy as np from sklearn import preprocessing def apply_topsis(features, x_train, weights, cutoff_percentage, volume_fraction): ''' cutoff percentage is cutoff for determining whether a distributor is low volume or not''' scaler = preprocessing.MinMaxScaler() # normalize features x_normalized = pd.DataFrame( scaler.fit_transform(x_train), columns=x_train.columns) # multiply with normalized weights here. x_weighted = np.multiply(x_normalized, weights) # merge drug id, dist id and dc id for reference x_weighted = pd.merge(features[['drug_id', 'partial_distributor_id', 'partial_dc_id']], x_weighted, left_index=True, right_index=True, how='inner') # define ideal best vector here ideal_best = x_weighted.agg({'lead_time': 'min', 'margin': 'max', 'bounce_rate': 'min', 'ff': 'max', 'lost_recency': 'max', 'success_recency': 'min'}).reset_index() ideal_best = ideal_best.set_index( 'index').rename(columns={0: 'ideal_best'}) # define ideal worse vector here. ideal_worse = x_weighted.agg({'lead_time': 'max', 'margin':'min', 'bounce_rate': 'max', 'ff': 'min', 'lost_recency': 'min', 'success_recency': 'max'}).reset_index() ideal_worse = ideal_worse.set_index( 'index').rename(columns={0: 'ideal_worse'}) x_weighted_best = pd.merge(x_weighted.T, ideal_best, how='left', left_index=True, right_index=True).T x_weighted_worse = pd.merge(x_weighted.T, ideal_worse, how='left', left_index=True, right_index=True).T # euclidean distance with ideal worse is calculated here. ideal_worse_ed = x_weighted_worse[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply(lambda x: np.linalg.norm(x.values - ideal_worse['ideal_worse'].values), axis=1) ideal_worse_ed = pd.DataFrame(ideal_worse_ed, columns=['ideal_worse_ed']) # euclidean distance with ideal best is calculated here. ideal_best_ed = x_weighted_best[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply(lambda x: np.linalg.norm(x.values - ideal_best['ideal_best'].values), axis=1) ideal_best_ed = pd.DataFrame(ideal_best_ed, columns=['ideal_best_ed']) # append ideal worse euclidean distance here. x_eval = pd.merge(x_weighted, ideal_worse_ed, how='left', left_index=True, right_index=True) # append ideal best euclidean distance here. x_eval = pd.merge(x_eval, ideal_best_ed, how='left', left_index=True, right_index=True) x_eval['performance'] = (x_eval['ideal_worse_ed'] / (x_eval['ideal_worse_ed'] + x_eval['ideal_best_ed'])) * 100 x_rank = x_eval.copy() x_rank['rank'] = x_rank.groupby(['partial_dc_id', 'drug_id'])[ 'performance'].rank(method='first', ascending=False) x_rank['rank'] = x_rank['rank'].astype(int) #################heuristics ############# features_rank = pd.merge(features, x_rank[['drug_id', 'partial_distributor_id', 'partial_dc_id', 'performance', 'rank']], how='outer', validate='one_to_one') # add filter for low volume distributor exclusion for heuristic substitute volume = features_rank.groupby(['partial_dc_id', 'partial_distributor_id', 'partial_distributor_name']).agg( total_requests=('total_requests', 'sum')) small_dist = volume.copy() cutoff = max(small_dist['total_requests']) * cutoff_percentage print(max(small_dist)) print('low volumne cutoff: ', cutoff) small_dist['is_small'] = np.where(volume['total_requests'] < cutoff, 1, 0) small_dist = small_dist.reset_index() small_dist['fraction_total_requests'] = small_dist['total_requests'] / \ small_dist['total_requests'].sum() # add flag for small distributors here features_rank = pd.merge(features_rank, small_dist[['partial_dc_id', 'partial_distributor_id', 'is_small']], on=['partial_dc_id', 'partial_distributor_id'], validate='many_to_one', how='left') dc_type_performance = features_rank.groupby(['partial_dc_id', 'drug_type', 'partial_distributor_id']).agg( dc_type_performance=('performance', 'mean')).reset_index() features_rank = pd.merge(features_rank, dc_type_performance, on=['partial_dc_id', 'drug_type', 'partial_distributor_id'], how='left', validate='many_to_one') # determine dc type rank features_rank['dc_type_rank'] = \ features_rank[(features_rank['is_small'] == 0) | ((features_rank['drug_type'] != 'generic') & (features_rank['drug_type'] != 'ethical'))].groupby(['partial_dc_id', 'drug_type'])['dc_type_performance'].rank( method='dense', ascending=False).astype(int, errors='ignore') dc_type_rank_ref = pd.pivot_table(features_rank, index=['partial_dc_id', 'drug_type'], columns=['dc_type_rank'], values='partial_distributor_id').add_prefix('dc_drug_type_level_dist_').reset_index() features_rank = pd.merge(features_rank, dc_type_rank_ref[['partial_dc_id', 'drug_type', 'dc_drug_type_level_dist_1.0', 'dc_drug_type_level_dist_2.0', 'dc_drug_type_level_dist_3.0']], how='left', on=['partial_dc_id', 'drug_type'], validate='many_to_one') # append enterprise type rank enterprise_type_performance = features_rank.groupby(['drug_type', 'partial_distributor_id']).agg( enterprise_type_performance=('performance', 'mean')).reset_index() features_rank = pd.merge(features_rank, enterprise_type_performance, on=['drug_type', 'partial_distributor_id'], how='left', validate='many_to_one') features_rank['enterprise_type_rank'] = features_rank[(features_rank['is_small'] == 0) | ((features_rank['drug_type'] != 'generic') & (features_rank['drug_type'] != 'ethical'))].groupby(['drug_type'])[ 'enterprise_type_performance'].rank(method='dense', ascending=False).astype(int, errors='ignore') enterprise_type_rank_ref = pd.pivot_table(features_rank, index=['drug_type'], columns=['enterprise_type_rank'], values='partial_distributor_id').add_prefix('enterprise_drug_type_level_dist_').reset_index() features_rank = pd.merge(features_rank, enterprise_type_rank_ref[['drug_type', 'enterprise_drug_type_level_dist_1.0', 'enterprise_drug_type_level_dist_2.0', 'enterprise_drug_type_level_dist_3.0']], how='left', on=['drug_type'], validate='many_to_one') # 999 denotes that bounce rate = 1 and total requests is greater than 5 for that distributor. features_rank['rank'] = np.where( (features_rank['rank'] == 1) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 2) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 3) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) output_ranks = pd.pivot_table(features_rank, index=['partial_dc_id', 'drug_id'], columns='rank', values='partial_distributor_id')[[1, 2, 3]].add_prefix('final_dist_').add_suffix('.0').reset_index() features_rank = pd.merge(features_rank, output_ranks, on=['partial_dc_id', 'drug_id'], how='left', validate='many_to_one') # add volume fraction here features_rank['volume_fraction'] = volume_fraction ######organize output here #################### # remove .0 suffix from columns features_rank.columns = features_rank.columns.str.replace(r'.0$', '') # remove partial_ prefix from columns features_rank.columns = features_rank.columns.str.replace(r'^partial_', '') # decide columns to be included here features_rank = features_rank[['dc_id', 'dc_name', 'distributor_id', 'distributor_name', 'distributor_type', 'is_small', 'drug_id', 'drug_name', 'drug_type', 'lead_time', 'margin', 'total_lost', 'total_requests', 'bounce_rate', 'ff', 'lost_recency', 'success_recency', 'performance', 'rank', 'final_dist_1', 'final_dist_2', 'final_dist_3', 'dc_drug_type_level_dist_1', 'dc_drug_type_level_dist_2', 'dc_drug_type_level_dist_3', 'enterprise_drug_type_level_dist_1', 'enterprise_drug_type_level_dist_2', 'enterprise_drug_type_level_dist_3', 'volume_fraction']] return features_rank def apply_topsis_franchisee(features, x_train, weights, cutoff_percentage, volume_fraction): '''cutoff percentage is cutoff for determining whether a distributor is low volume or not''' scaler = preprocessing.MinMaxScaler() # normalize features x_normalized = pd.DataFrame( scaler.fit_transform(x_train), columns=x_train.columns) # multiply with normalized weights here. x_weighted = np.multiply(x_normalized, weights) # merge drug id, dist id and store id for reference x_weighted = pd.merge( features[['drug_id', 'partial_distributor_id', 'store_id']], x_weighted, left_index=True, right_index=True, how='inner') # define ideal best vector here ideal_best = x_weighted.agg( {'lead_time': 'min', 'margin': 'max', 'bounce_rate': 'min', 'ff': 'max', 'lost_recency': 'max', 'success_recency': 'min'}).reset_index() ideal_best = ideal_best.set_index( 'index').rename(columns={0: 'ideal_best'}) # define ideal worse vector here. ideal_worse = x_weighted.agg({'lead_time': 'max', 'margin': 'min', 'bounce_rate': 'max', 'ff': 'min', 'lost_recency': 'min', 'success_recency': 'max'}).reset_index() ideal_worse = ideal_worse.set_index( 'index').rename(columns={0: 'ideal_worse'}) x_weighted_best = pd.merge(x_weighted.T, ideal_best, how='left', left_index=True, right_index=True).T x_weighted_worse = pd.merge(x_weighted.T, ideal_worse, how='left', left_index=True, right_index=True).T # euclidean distance with ideal worse is calculated here. ideal_worse_ed = x_weighted_worse[ ['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply( lambda x: np.linalg.norm(x.values - ideal_worse['ideal_worse'].values), axis=1) ideal_worse_ed = pd.DataFrame(ideal_worse_ed, columns=['ideal_worse_ed']) # euclidean distance with ideal best is calculated here. ideal_best_ed = x_weighted_best[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply( lambda x: np.linalg.norm(x.values - ideal_best['ideal_best'].values), axis=1) ideal_best_ed = pd.DataFrame(ideal_best_ed, columns=['ideal_best_ed']) # append ideal worse euclidean distance here. x_eval = pd.merge(x_weighted, ideal_worse_ed, how='left', left_index=True, right_index=True) # append ideal best euclidean distance here. x_eval = pd.merge(x_eval, ideal_best_ed, how='left', left_index=True, right_index=True) x_eval['performance'] = (x_eval['ideal_worse_ed'] / (x_eval['ideal_worse_ed'] + x_eval[ 'ideal_best_ed'])) * 100 x_rank = x_eval.copy() x_rank['rank'] = x_rank.groupby(['store_id', 'drug_id'])[ 'performance'].rank(method='first', ascending=False) x_rank['rank'] = x_rank['rank'].astype(int) #################heuristics ############# features_rank = pd.merge(features, x_rank[['drug_id', 'partial_distributor_id', 'store_id', 'performance', 'rank']], how='outer', validate='one_to_one') # add filter for low volume distributor exclusion for heuristic substitute volume = features_rank.groupby(['store_id', 'partial_distributor_id', 'partial_distributor_name']).agg( total_requests=('total_requests', 'sum')) small_dist = volume.copy() cutoff = max(small_dist['total_requests']) * cutoff_percentage print(max(small_dist)) print('low volumne cutoff: ', cutoff) small_dist['is_small'] = np.where(volume['total_requests'] < cutoff, 1, 0) small_dist = small_dist.reset_index() small_dist['fraction_total_requests'] = small_dist['total_requests'] / \ small_dist['total_requests'].sum() # add flag for small distributors here features_rank = pd.merge(features_rank, small_dist[['store_id', 'partial_distributor_id', 'is_small']], on=['store_id', 'partial_distributor_id'], validate='many_to_one', how='left') store_type_performance = features_rank.groupby( ['store_id', 'drug_type', 'partial_distributor_id']).agg( store_type_performance=('performance', 'mean')).reset_index() features_rank = pd.merge(features_rank, store_type_performance, on=['store_id', 'drug_type', 'partial_distributor_id'], how='left', validate='many_to_one') # determine store type rank features_rank['store_type_rank'] = \ features_rank[(features_rank['is_small'] == 0) | ( (features_rank['drug_type'] != 'generic') & ( features_rank['drug_type'] != 'ethical'))].groupby( ['store_id', 'drug_type'])['store_type_performance'].rank( method='dense', ascending=False).astype(int, errors='ignore') store_type_rank_ref = \ pd.pivot_table(features_rank, index=['store_id', 'drug_type'], columns=['store_type_rank'], values='partial_distributor_id')[[1, 2, 3]].add_prefix( 'store_drug_type_level_dist_').reset_index() features_rank = pd.merge(features_rank, store_type_rank_ref[['store_id', 'drug_type', 'store_drug_type_level_dist_1', 'store_drug_type_level_dist_2', 'store_drug_type_level_dist_3']], how='left', on=['store_id', 'drug_type'], validate='many_to_one') # 999 denotes that bounce rate = 1 and total requests is greater than 5 for that distributor. features_rank['rank'] = np.where( (features_rank['rank'] == 1) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 2) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 3) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) output_ranks = \ pd.pivot_table(features_rank, index=['store_id', 'drug_id'], columns='rank', values='partial_distributor_id')[[1, 2, 3]].add_prefix( 'final_dist_').add_suffix('.0').reset_index() features_rank = pd.merge(features_rank, output_ranks, on=['store_id', 'drug_id'], how='left', validate='many_to_one') # add volume fraction here features_rank['volume_fraction'] = volume_fraction ######organize output here #################### # remove .0 suffix from columns features_rank.columns = features_rank.columns.str.replace(r'.0$', '') # remove partial_ prefix from columns features_rank.columns = features_rank.columns.str.replace(r'^partial_', '') # decide columns to be included here features_rank = features_rank[['store_id', 'store_name', 'franchisee_id', 'distributor_id', 'distributor_name', 'distributor_type', 'is_small', 'drug_id', 'drug_name', 'drug_type', 'lead_time', 'margin', 'total_lost', 'total_requests', 'bounce_rate', 'ff', 'lost_recency', 'success_recency', 'performance', 'rank', 'final_dist_1', 'final_dist_2', 'final_dist_3', 'store_drug_type_level_dist_1', 'store_drug_type_level_dist_2', 'store_drug_type_level_dist_3', 'volume_fraction']] return features_rank
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking/topsis.py
topsis.py
import pandas as pd from zeno_etl_libs.utils.distributor_ranking.pull_data import pull_data, pull_data_franchisee from zeno_etl_libs.utils.distributor_ranking.preprocess_features import preprocess_features_dc, preprocess_features_franchisee from zeno_etl_libs.utils.distributor_ranking.calculate_features import calculate_features from zeno_etl_libs.utils.distributor_ranking.topsis import apply_topsis, apply_topsis_franchisee def ranking_calc_dc(time_interval, weights_as, weights_pr, as_low_volume_cutoff, pr_low_volume_cutoff, volume_fraction, db, read_schema, logger): '''output distributor ranking for AS and PR separately''' logger.info('starting to import data') # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval + 7 df_features, df_distributors = pull_data(time_interval, db, read_schema) logger.info('finished importing data') ######################### preprocessing starts ######################### logger.info('started preprocessing') df_features = preprocess_features_dc(df_features, db, read_schema) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id'], how='left', validate='many_to_one') logger.info('finished preprocessing') ########################## preprocessing ends ########################## ####################### features calculation starts ####################### features = calculate_features(df_features, group_cols=['partial_dc_id','partial_distributor_id','drug_id']) ##### add neccessary columns in features ##### # add drug type column here features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist type column here features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_type']].drop_duplicates(), on=['partial_distributor_id'], how='left', validate='many_to_one') # add dc name here. features = pd.merge(features, df_features[['partial_dc_id', 'dc_name']].dropna().drop_duplicates(), on=['partial_dc_id'], validate='many_to_one', how='left') # add drug name here features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') #### apply topsis #### # weights format is [lead time, margin, bounce rate, ff, lost recency, success recency] x_train = features[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']] features_as = apply_topsis(features=features, x_train=x_train, weights=weights_as, cutoff_percentage=as_low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for as') features_pr = apply_topsis(features=features, x_train=x_train, weights=weights_pr, cutoff_percentage=pr_low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for pr') features_as.loc[:, 'request_type'] = 'AS/MS' features_pr.loc[:, 'request_type'] = 'PR' features_rank = pd.concat([features_as, features_pr]) return features_rank def ranking_calc_franchisee(time_interval, weights_as, weights_pr, low_volume_cutoff, volume_fraction, db, read_schema, logger): '''output distributor ranking for AS and PR separately''' logger.info('starting to import data') # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval + 7 df_features, df_distributors = pull_data_franchisee(time_interval, db, read_schema) logger.info('finished importing data') ######################### preprocessing starts ######################### logger.info('started preprocessing') df_features = preprocess_features_franchisee(df_features, db, read_schema) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id'], how='left', validate='many_to_one') logger.info('finished preprocessing') ########################## preprocessing ends ########################## ####################### features calculation starts ####################### features = calculate_features(df_features, group_cols=['store_id','partial_distributor_id', 'drug_id']) ##### add neccessary columns in features ##### # add drug type column here features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist type column here features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_type']].drop_duplicates(), on=['partial_distributor_id'], how='left', validate='many_to_one') # add store name and franchisee_id here. features = pd.merge(features, df_features[ ['store_id', 'store_name', 'franchisee_id']].dropna().drop_duplicates(), on=['store_id'], validate='many_to_one', how='left') # add drug name here features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') #### apply topsis #### # weights format is [lead time, margin, bounce rate, ff, lost recency, success recency] x_train = features[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']] features_rank_as = apply_topsis_franchisee(features=features, x_train=x_train, weights=weights_as, cutoff_percentage=low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for franchisee as') features_rank_pr = apply_topsis_franchisee(features=features, x_train=x_train, weights=weights_pr, cutoff_percentage=low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for franchisee pr') features_rank_as.loc[:, 'request_type'] = 'AS/MS' features_rank_pr.loc[:, 'request_type'] = 'PR' features_rank = pd.concat([features_rank_as, features_rank_pr]) return features_rank
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking/distributor_ranking_calc.py
distributor_ranking_calc.py
import pandas as pd import numpy as np def preprocess_features_dc(df_features, db, read_schema): '''df_features is the raw data variable ''' # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where selling rate is 0 otherwise margin becomes infinity df_features = df_features[df_features['selling_rate']!=0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) # if no dc information is present then remove those cases. df_features = df_features[((~df_features['partial_dc_id'].isna()) | ( ~df_features['forward_dc_id'].isna()))] # for those cases where invoice doesn't exist, take invoice dc as obtained from sdm table df_features['partial_dc_id'] = df_features['partial_dc_id'].fillna( df_features['forward_dc_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs entries print('pulling drug-distributor filter data') q_drug_distributor = """select DISTINCT "distributor-id" as "partial_distributor_id", "drug-id" as drug_id from "{read_schema}"."distributor-drugs" dd """ drug_distributor_list_filter = db.get_df(q_drug_distributor.format(read_schema=read_schema)) df_features = pd.merge(df_features, drug_distributor_list_filter, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') return df_features def preprocess_features_franchisee(df_features, db, read_schema): '''df_features is the raw data variable ''' # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where selling rate is 0 otherwise margin becomes infinity df_features = df_features[df_features['selling_rate']!=0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs entries print('pulling drug-distributor filter data') q_drug_distributor = """select DISTINCT "distributor-id" as "partial_distributor_id", "drug-id" as drug_id from "{read_schema}"."distributor-drugs" dd """ drug_distributor_list_filter = db.get_df(q_drug_distributor.format(read_schema=read_schema)) df_features = pd.merge(df_features, drug_distributor_list_filter, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') return df_features
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking/preprocess_features.py
preprocess_features.py
import pandas as pd def postprocess_ranking_dc(features_rank, volume_fraction): tech_input = features_rank.copy() # drop cases for tech input where all 3 distributor assigned are NULL. # Since they automatically need to go to dc drug type level. tech_input = tech_input[~((tech_input['final_dist_1'].isna()) & ( tech_input['final_dist_2'].isna()) & ( tech_input['final_dist_3'].isna()))] tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_2']) tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_2'], 'final_dist_2'] = float('NaN') tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') tech_input['final_dist_2'] = tech_input['final_dist_2'].fillna( tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_2'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') # append dc_drug_type entries as separate rows in tech input dc_drug_type_entries = features_rank[ ['dc_id', 'drug_type', 'request_type', 'dc_drug_type_level_dist_1', 'dc_drug_type_level_dist_2', 'dc_drug_type_level_dist_3']].drop_duplicates().rename( columns={'dc_drug_type_level_dist_1': 'final_dist_1', 'dc_drug_type_level_dist_2': 'final_dist_2', 'dc_drug_type_level_dist_3': 'final_dist_3' }) dc_drug_type_entries['drug_id'] = float('NaN') dc_drug_type_entries['volume_fraction'] = volume_fraction dc_drug_type_entries = dc_drug_type_entries[ ['dc_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = pd.concat([tech_input, dc_drug_type_entries]) # append enterprise_drug_type entries as separate rows in tech input enterprise_drug_type_entries = features_rank[ ['drug_type', 'request_type', 'enterprise_drug_type_level_dist_1', 'enterprise_drug_type_level_dist_2', 'enterprise_drug_type_level_dist_3']].drop_duplicates().rename( columns={'enterprise_drug_type_level_dist_1': 'final_dist_1', 'enterprise_drug_type_level_dist_2': 'final_dist_2', 'enterprise_drug_type_level_dist_3': 'final_dist_3'}) enterprise_drug_type_entries['dc_id'] = float('NaN') enterprise_drug_type_entries['drug_id'] = float('NaN') enterprise_drug_type_entries['volume_fraction'] = volume_fraction enterprise_drug_type_entries = enterprise_drug_type_entries[ ['dc_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = pd.concat([tech_input, enterprise_drug_type_entries]) tech_input["store_id"] = float('NaN') tech_input["franchisee_id"] = 1 # ZIPPIN PHARMA tech_input = tech_input[['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = tech_input.drop_duplicates() return tech_input def postprocess_ranking_franchisee(features_rank, volume_fraction): tech_input = features_rank.copy() # drop cases for tech input where all 3 distributor assigned are NULL. # Since they automatically need to go to store drug type level. tech_input = tech_input[~((tech_input['final_dist_1'].isna()) & ( tech_input['final_dist_2'].isna()) & (tech_input['final_dist_3'].isna()))] tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_2']) tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_2'], 'final_dist_2'] = float('NaN') tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') tech_input['final_dist_2'] = tech_input['final_dist_2'].fillna(tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_2'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') tech_input = tech_input[['store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction','final_dist_1', 'final_dist_2', 'final_dist_3']] # append store_drug_type entries as separate rows in tech input store_drug_type_entries = features_rank[ ['store_id', 'franchisee_id', 'drug_type', 'request_type', 'store_drug_type_level_dist_1', 'store_drug_type_level_dist_2', 'store_drug_type_level_dist_3']].drop_duplicates().rename( columns={'store_drug_type_level_dist_1': 'final_dist_1', 'store_drug_type_level_dist_2': 'final_dist_2', 'store_drug_type_level_dist_3': 'final_dist_3' }) store_drug_type_entries['drug_id'] = float('NaN') store_drug_type_entries['volume_fraction'] = volume_fraction store_drug_type_entries = store_drug_type_entries[ ['store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = pd.concat([tech_input, store_drug_type_entries], sort=False) tech_input['dc_id'] = float('NaN') tech_input = tech_input[['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = tech_input.drop_duplicates() return tech_input
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking/postprocess_ranking.py
postprocess_ranking.py
from functools import reduce import numpy as np import pandas as pd def calculate_features(df_features, group_cols): """ DC-LEVEL: group_cols=['partial_dc_id','partial_distributor_id', 'drug_id'] FRANCHISEE-LEVEL: group_cols=['store_id','partial_distributor_id', 'drug_id'] """ '''outputs the calculated features when supplied with raw data''' dfx = df_features[df_features['invoice_count'] != 0] ####################### feature calculation starts ######################## ####lead time calculations ######## df_lead_time = df_features.copy() cond_0 = (df_lead_time['invoice_count'] == 0) df_lead_time['lead_time'] = float('NaN') # for those cases where reordered does not exists and invoice count is 0 # lead time is invoiced-at - created at for invoice count 0 df_lead_time['lead_time'] = np.where((df_lead_time['original_created_at_2'].isna()) & (~cond_0), (df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at']).astype('timedelta64[h]'), df_lead_time['lead_time']) # for cases where invoiced_at - reordered_at < 8, lead time is unreliable. df_lead_time['lead_time'] = np.where( (~df_lead_time['original_created_at_2'].isna() | (((df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at_2']).astype('timedelta64[h]')) > 8)) & (~cond_0), (df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at_2']).astype('timedelta64[h]'), df_lead_time['lead_time']) df_lead_time['lead_time'] = np.where( (~df_lead_time['original_created_at_2'].isna() | (((df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at_2']).astype('timedelta64[h]')) < 8)) & (~cond_0), (df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at']).astype('timedelta64[h]'), df_lead_time['lead_time']) # invoice count 0, take lead time as max value # This is done because we are eventually scaling things between 0 to 1. df_lead_time['lead_time'] = np.where(cond_0, df_lead_time['lead_time'].max(), df_lead_time['lead_time']) # If after taking the condition for lead time less than 8, # still cases are present then those are unreliable, take lead time as mean. df_lead_time.loc[df_lead_time['lead_time'] < 8, 'lead_time'] = df_lead_time[df_lead_time['lead_time'] > 8][ 'lead_time'].mean() # lead time for a distributor per drug id is the average of lead time per order. df_lead_time = df_lead_time.groupby(group_cols).agg( lead_time=('lead_time', 'mean')).reset_index() # sanity check assert df_lead_time.shape[0] == \ df_features[group_cols].drop_duplicates().shape[0] print('finished lead time calculations') ####### margin calculation starts ####### df_margin = dfx.copy() df_margin['margin'] = (df_margin['selling_rate'] - df_margin['distributor_rate']) / df_margin['selling_rate'] df_margin = df_margin.groupby(group_cols).agg(margin=('margin', 'mean')).reset_index() # sanity check assert df_margin.shape[0] == dfx[group_cols].drop_duplicates().shape[0] print('finished margin calculations') ####### bounce rate calculation ####### df_br = df_features.groupby(group_cols).agg( total_lost=('is_lost', 'sum'), total_requests=('is_lost', 'count')).reset_index() df_br['bounce_rate'] = (df_br['total_lost']) / df_br['total_requests'] # sanity check assert df_br.shape[0] == df_features[group_cols].drop_duplicates().shape[0] print('finished bounce rate calculations') ####### ff calculation ####### df_sorted = dfx.groupby(['short_book_1_id'], as_index=False).apply( lambda x: x.sort_values(by=['partial_invoiced_at'])) # for multiple invoices, calculate cumulative fulfilled quantities df_sorted = df_sorted.groupby(['short_book_1_id']).apply( lambda x: x['partial_quantity'].cumsum()).reset_index().rename( columns={'partial_quantity': 'cum_partial_quantity'}) df_sorted = df_sorted.set_index('level_1') df_fulfillment = pd.merge(df_sorted, dfx, left_index=True, right_index=True, how='left', suffixes=('', '_y')) # assert df_fulfillment['short_book_1_id'].equals( # df_fulfillment['short_book_1_id_y']) df_fulfillment = df_fulfillment[ ['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'cum_partial_quantity']] # cum required quantity is quantity left after subtracting cum quantity from all previous invoices. df_fulfillment['cum_required_quantity'] = df_fulfillment['original_order'] - \ df_fulfillment['cum_partial_quantity'] # the real required quantity while placing an order is quantity # unfulfilled by the previours invoice. Hence shifted by 1 df_fulfillment['actual_required'] = df_fulfillment.groupby( ['short_book_1_id']).shift(1)['cum_required_quantity'] # fill single invoices with the original order df_fulfillment['actual_required'] = df_fulfillment['actual_required'].fillna( df_fulfillment['original_order']) # put actual required = 0 when ordered exceeds required. df_fulfillment.loc[df_fulfillment['actual_required'] < 0, 'actual_required'] = 0 df_fulfillment['redundant_order_flag'] = np.where( df_fulfillment['actual_required'] == 0, 1, 0) df_fulfillment = df_fulfillment[['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'actual_required', 'redundant_order_flag']] df_fulfillment['ff'] = df_fulfillment['partial_quantity'] / \ df_fulfillment['actual_required'] # for those quantities where nothing was required and still order placed, take them as 0. df_fulfillment.loc[(df_fulfillment['actual_required'] == 0) & ( df_fulfillment['partial_quantity'] > 0), 'ff'] = 1 df_fulfillment.loc[(df_fulfillment['ff'] > 1), 'ff'] = 1 # removed redundant orders here. df_ff = df_fulfillment[df_fulfillment['redundant_order_flag'] != 1].groupby(group_cols).agg(ff=('ff', 'mean')).reset_index() print('finished ff calculations') ####### recency lost calculations ####### # number of days ago it was marked lost. df_recency_lost = df_features[df_features['is_lost'] == 1].groupby(group_cols).agg( max_lost_date=('original_created_at', 'max')).reset_index() df_recency_lost['lost_recency'] = ( pd.datetime.today() - pd.to_datetime(df_recency_lost['max_lost_date'])).dt.days df_recency_lost = df_recency_lost[group_cols + ['lost_recency']] ####### recency success calculations ####### # number of days ago it was marked success df_recency_success = df_features[df_features['is_lost'] == 0].groupby(group_cols).agg( max_success_date=('original_created_at', 'max')).reset_index() df_recency_success['success_recency'] = ( pd.datetime.today() - pd.to_datetime(df_recency_success['max_success_date'])).dt.days df_recency_success = df_recency_success[group_cols + ['success_recency']] print('finished recency calculations') ######################## feature calculation ends ######################### ################## compiling all the features ############################# meg_list = [df_lead_time, df_margin, df_br, df_ff, df_recency_lost, df_recency_success] features = reduce( lambda left, right: pd.merge(left, right, on=group_cols, how='outer'), meg_list) # lead_time: Replace lead time NA (i.e. bounce rate 1) with max lead time. features['lead_time'] = features['lead_time'].fillna( features['lead_time'].max()) # margin features['margin'] = features['margin'].fillna(features['margin'].mean()) # ff features.loc[(features['ff'].isna()) & ( features['bounce_rate'] == 1), 'ff'] = 0 features['ff'] = features['ff'].fillna(features['ff'].mean()) # for bounce rate = 0. features['lost_recency'] = features['lost_recency'].fillna( features['lost_recency'].max()) # for bounce rate = 1 features['success_recency'] = features['success_recency'].fillna( features['success_recency'].max()) print('finished compiling features') return features
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking/calculate_features.py
calculate_features.py
Q_FEATURES = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."dc-id" as "partial-dc-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", d."drug-name", d.type as "drug_type", sdm."forward-dc-id", s.name as "dc-name" from "{read_schema}"."short-book-1" sb left join "{read_schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{read_schema}".invoices i on sbi."invoice-id" = i.id left join "{read_schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{read_schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{read_schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{read_schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{read_schema}".drugs d on sb."drug-id" = d.id left join "{read_schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{read_schema}"."store-dc-mapping" sdm on sb."store-id" = sdm."store-id" and dis.type = sdm."drug-type" left join "{read_schema}".stores s on i."dc-id" = s.id where DATEDIFF(day, date(sb."created-at"), current_date) <= {0} and DATEDIFF(day, date(sb."created-at"), current_date) >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' """ Q_FEATURES_FRANCHISEE = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."store-id", ss."franchisee-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", d."drug-name", d.type as "drug_type", ss."name" as "store-name" from "{read_schema}"."short-book-1" sb left join "{read_schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{read_schema}".invoices i on sbi."invoice-id" = i.id left join "{read_schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{read_schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{read_schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{read_schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{read_schema}".drugs d on sb."drug-id" = d.id left join "{read_schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{read_schema}".stores s on i."dc-id" = s.id left join "{read_schema}".stores ss on sb."store-id" = ss.id where DATEDIFF(day, date(sb."created-at"), current_date) <= {0} and DATEDIFF(day, date(sb."created-at"), current_date) >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' and ss."franchisee-id" != 1 """ Q_DISTRIBUTORS = """ select id as "partial-distributor-id", name as "partial-distributor-name", type as "partial-distributor-type" from "{read_schema}".distributors """ def pull_data(time_interval, db, read_schema): ''' time interval is the buffer cutoff after which data isn't taken. 7 days in our case''' df_features = db.get_df(Q_FEATURES.format(time_interval, read_schema=read_schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(read_schema=read_schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) return df_features, df_distributors def pull_data_franchisee(time_interval, db, read_schema): ''' time interval is the buffer cutoff after which data isn't taken. 7 days in our case''' df_features = db.get_df(Q_FEATURES_FRANCHISEE.format(time_interval, read_schema=read_schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(read_schema=read_schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) return df_features, df_distributors
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking/pull_data.py
pull_data.py
from datetime import timedelta class GetData: """To fetch required data from SQL and PostGre""" def __init__(self, store_ids, reset_date, days_to_replenish, days_delta, db, schema, logger): """ Arguments: store_ids: (list) store id list reset_date: (datetime.date) format days_to_replenish: (int) days to skip for inventory replenishment from date of reset """ self.store_ids = str(store_ids).replace('[', '(').replace(']', ')') self.reset_date = reset_date.strftime('%Y-%m-%d') self.date_before_90days = (reset_date - timedelta(90)).strftime('%Y-%m-%d') self.start_date = (reset_date + timedelta(days_to_replenish)).strftime('%Y-%m-%d') self.end_date = (reset_date + timedelta(days_to_replenish+days_delta-1)).strftime('%Y-%m-%d') # considering sales period of 28 days (start & end date included in sql) self.db = db self.schema = schema self.logger = logger def ipc_ss(self, store_id, sql_cut_off_condition): """Fetch safety stock table for current IPC store and reset date""" self.logger.info(f"Fetching ipc_ss data for store_id: {store_id}") q_ss = """ select * from "{schema}"."ipc-safety-stock" where "store-id" = {0} and "reset-date" = '{1}' {2} """.format(store_id, self.reset_date, sql_cut_off_condition, schema=self.schema) df_ss = self.db.get_df(q_ss) df_ss.columns = [c.replace('-', '_') for c in df_ss.columns] df_ss["store_type"] = "ipc" return df_ss def non_ipc_ss(self, store_id, sql_cut_off_condition): """Fetch safety stock table for current Non-IPC store and reset date""" self.logger.info(f"Fetching non_ipc_ss data for store_id: {store_id}") q_ss = """ select * from "{schema}"."non-ipc-safety-stock" where "store-id" = {0} and "reset-date" = '{1}' {2} """.format(store_id, self.reset_date, sql_cut_off_condition, schema=self.schema) df_ss = self.db.get_df(q_ss) df_ss.columns = [c.replace('-', '_') for c in df_ss.columns] df_ss["store_type"] = "non_ipc" return df_ss def ipc2_ss(self, store_id, sql_cut_off_condition): """Fetch safety stock table for IPC2.0 store and reset date""" self.logger.info(f"Fetching ipc2_ss data for store_id: {store_id}") q_ss = """ select * from "{schema}"."ipc2-safety-stock" where "store-id" = {0} and "reset-date" = '{1}' {2} """.format(store_id, self.reset_date, sql_cut_off_condition, schema=self.schema) df_ss = self.db.get_df(q_ss) df_ss.columns = [c.replace('-', '_') for c in df_ss.columns] df_ss["store_type"] = "ipc2" return df_ss def curr_inv(self): """Fetch current inventory for all stores""" self.logger.info("Fetching inventory data") q_inv = """ SELECT "drug-id" as drug_id, "store-id" as store_id, AVG(ptr) AS average_ptr, SUM("locked-quantity"+quantity+"locked-for-audit"+"locked-for-transfer" +"locked-for-check"+"locked-for-return") AS current_inventory FROM "{schema}"."inventory-1" WHERE "store-id" in {0} GROUP BY "store-id", "drug-id" """.format(self.store_ids, schema=self.schema) df_inv_comb = self.db.get_df(q_inv) return df_inv_comb def sales_3m(self): """Fetch last 3 months sales data for finding weather NPI or not.""" self.logger.info("Fetching 3 months sales data") q_3m_sales = """ select "drug-id", "store-id", sum("net-quantity") as "net-sales-3m" from "{schema}".sales where "store-id" in {0} and date("created-at") between '{1}' and '{2}' group by "store-id", "drug-id" """.format(self.store_ids, self.date_before_90days, self.reset_date, schema=self.schema) df_3m_sales_comb = self.db.get_df(q_3m_sales) df_3m_sales_comb.columns = [c.replace('-', '_') for c in df_3m_sales_comb.columns] return df_3m_sales_comb def sales_28day(self): """Fetch 28 days sales data after date of reset""" self.logger.info("Fetching 28 days sales data") q_sales = """ select "drug-id", "store-id", sum("net-quantity") as "net-sales" from "{schema}".sales where "store-id" in {0} and date("created-at") between '{1}' and '{2}' group by "store-id", "drug-id" """.format(self.store_ids, self.start_date, self.end_date, schema=self.schema) df_sales_comb = self.db.get_df(q_sales) df_sales_comb.columns = [c.replace('-', '_') for c in df_sales_comb.columns] return df_sales_comb def pr_loss_28day(self): """Fetch 28 days PR losses after date of reset""" self.logger.info("Fetching 28 days pr loss data") q_pr = """ select "drug-id", "store-id", sum("loss-quantity") as "pr-loss" from "{schema}"."cfr-patient-request" where "shortbook-date" between '{1}' and '{2}' and "store-id" in {0} group by "store-id", "drug-id" """.format(self.store_ids, self.start_date, self.end_date, schema=self.schema) df_pr_loss_comb = self.db.get_df(q_pr) df_pr_loss_comb.columns = [c.replace('-', '_') for c in df_pr_loss_comb.columns] df_pr_loss_comb["pr_loss"] = df_pr_loss_comb["pr_loss"].astype(float) return df_pr_loss_comb
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/fcst_performance/get_data.py
get_data.py
from datetime import timedelta def get_store_ids(reset_date, exclude_stores, db, schema): """ Get IPC and Non-IPC store-ids which was reset on specified reset date Parameters: reset_date: (datetime.date) format Returns: store_ids: (list) of ipc and non-ipc store ids store_type_map: (list) of ipc and non-ipc store types respectively """ reset_date = reset_date.strftime('%Y-%m-%d') if not exclude_stores: exclude_stores = "(0)" else: exclude_stores = tuple(exclude_stores) # Get list of all store_ids q_stores = f""" select "id", name, "opened-at" as opened_at from "{schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {exclude_stores} """ stores_list = list(db.get_df(q_stores)["id"]) stores_list_sql = str(stores_list).replace('[', '(').replace(']', ')') # Get list of IPC stores which was reset on specified reset date q_ipc = """ select distinct "store-id" from "{schema}"."ipc-safety-stock" where "store-id" in {0} and "reset-date" = '{1}' """.format(stores_list_sql, reset_date, schema=schema) ipc_stores = list(db.get_df(q_ipc)["store-id"]) # Get list of Non-IPC stores which was reset on specified reset date q_non_ipc = """ select distinct "store-id" from "{schema}"."non-ipc-safety-stock" where "store-id" in {0} and "reset-date" = '{1}' """.format(stores_list_sql, reset_date, schema=schema) non_ipc_stores = list(db.get_df(q_non_ipc)["store-id"]) # Get list of Non-IPC stores which was reset on specified reset date q_ipc2 = """ select distinct "store-id" from "{schema}"."ipc2-safety-stock" where "store-id" in {0} and "reset-date" = '{1}' """.format(stores_list_sql, reset_date, schema=schema) ipc2_stores = list(db.get_df(q_ipc2)["store-id"]) store_ids = ipc_stores + non_ipc_stores + ipc2_stores store_type_map = ["ipc"] * len(ipc_stores) \ + ["non_ipc"] * len(non_ipc_stores) \ + ["ipc2"] * len(ipc2_stores) return store_ids, store_type_map def handle_multiple_resets(reset_date, store_id, store_type, db, schema, logger): """ Check if multiple reset occurred on specified reset date Parameters: reset_date: (datetime.date) format store_id: (int) format store_type: (str) format IPC or Non-IPC Returns: sql_cut_off_condition: (str) sql condition to use in query for taking only the latest reset that occurred. """ sql_reset_date = reset_date.strftime('%Y-%m-%d') if store_type == "ipc": sql_store_type = "ipc" elif store_type == "non_ipc": sql_store_type = "non-ipc" else: sql_store_type = "ipc2" q_drug = """ select "drug-id" from "{schema}"."{0}-safety-stock" where "store-id" = {1} and "reset-date" = '{2}' limit 1 """.format(sql_store_type, store_id, sql_reset_date, schema=schema) rand_drug_id = db.get_df(q_drug)["drug-id"][0] q_upload_time = """ select * from "{schema}"."{0}-safety-stock" where "store-id" = {1} and "reset-date" = '{2}' and "drug-id" = {3} order by "updated-at" desc """.format(sql_store_type, store_id, sql_reset_date, rand_drug_id, schema=schema) df_upload_time = db.get_df(q_upload_time)["updated-at"] reset_count = df_upload_time.shape[0] if reset_count > 1: logger.info(f"Multiple resets detected for store_id: {store_id}") cut_off_datetime = df_upload_time[0] - timedelta(minutes=1) sql_cut_off_condition = """ and "updated-at" > '{}' """.format( str(cut_off_datetime)) else: sql_cut_off_condition = "" return sql_cut_off_condition
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/fcst_performance/helper_functions.py
helper_functions.py
from datetime import date from zeno_etl_libs.utils.fcst_performance import metric_calc import pandas as pd def cal_fields_store_drug_level(df_ss, df_inv, df_sales, df_pr_loss, df_3m_sales): """ Calculate all the fields for store-drug level forecast performance assessment Parameters: df_ss: (pd.DataFrame) safety stock data IPC or Non-IPC df_inv: (pd.DataFrame) current inventory data df_sales: (pd.DataFrame) 28 days sales data df_pr_loss: (pd.DataFrame) 28 days pr loss data df_3m_sales: (pd.DataFrame) 3 month sales before reset (for NPI) Returns: df_sdl: (pd-DataFrame) of store-drug level performance metrics """ # Merge Inventory and NPI dataframe df_inv_npi = pd.merge(df_inv, df_3m_sales, on="drug_id", how="left") df_inv_npi.net_sales_3m.fillna(0, inplace=True) df_inv_npi['is_npi'] = (df_inv_npi['net_sales_3m'] == 0) # Merge sales and PR loss dataframe df_sales_pr = pd.merge(df_sales, df_pr_loss, on="drug_id", how="left") df_sales_pr.pr_loss.fillna(0, inplace=True) # Merge inventory, NPI, sales and PR loss dataframes df_merged = pd.merge(df_inv_npi, df_sales_pr, on="drug_id", how="left") df_merged.net_sales.fillna(0, inplace=True) df_merged.pr_loss.fillna(0, inplace=True) df_merged = df_merged[["drug_id", "current_inventory", "is_npi", "net_sales", "pr_loss"]] df_merged.rename(columns={"net_sales": "net_sales_28days", "pr_loss": "pr_loss_28days"}, inplace=True) # Merge all collected data with SS table df_all_combined = pd.merge(df_ss, df_merged, on="drug_id", how="left") df_all_combined = df_all_combined[df_all_combined['drug_name'].notna()] df_all_combined.current_inventory.fillna(0, inplace=True) df_all_combined.net_sales_28days.fillna(0, inplace=True) df_all_combined.pr_loss_28days.fillna(0, inplace=True) df_all_combined.is_npi.fillna(True, inplace=True) # Creating dataframe of required format df_all_combined.rename(columns={"curr_inventory": "inventory_at_reset", "std": "fcst_std", "type": "drug_type", "current_inventory": "inventory_at_measurement", "avg_ptr": "fptr"}, inplace=True) df_all_combined["is_npi"] = df_all_combined["is_npi"].apply( lambda x: 'Y' if x == True else 'N') df_sdl = df_all_combined[["store_id", "store_type", "drug_id", "drug_name", "drug_type", "drug_grade", "reset_date", "bucket", "is_npi", "model", "percentile", "fcst", "fcst_std", "safety_stock", "reorder_point", "order_upto_point", "inventory_at_reset", "fptr", "inventory_at_measurement", "net_sales_28days", "pr_loss_28days"]].copy() df_sdl["demand_28days"] = df_sdl["net_sales_28days"] + df_sdl["pr_loss_28days"] df_sdl["fcst_error"] = df_sdl["fcst"] - df_sdl["demand_28days"] for index, row in df_sdl.iterrows(): forecast = row["fcst"] actual = row["demand_28days"] df_sdl.loc[index, "perc_error"] = metric_calc.pe(forecast, actual) df_sdl["measurement_date"] = date.today() return df_sdl
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/fcst_performance/data_operations.py
data_operations.py
import pandas as pd import numpy as np from zeno_etl_libs.utils.distributor_ranking2.pull_data1 import \ pull_data_dc, pull_data_franchisee from zeno_etl_libs.utils.distributor_ranking2.calculate_ranks1 import \ calc_ranks_dc, get_final_ranks_dc, calc_ranks_franchisee, \ get_final_ranks_franchisee from zeno_etl_libs.utils.distributor_ranking2.preprocess_features import \ preprocess_features_dc, preprocess_features_franchisee from zeno_etl_libs.utils.distributor_ranking2.calculate_features1 import \ calculate_features from zeno_etl_libs.utils.distributor_ranking2.post_process_ranking1 import \ post_process_ranking_dc, post_process_ranking_franchisee def ranking_calc_dc(reset_date, time_interval_dc, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger, db, schema): # =============================== PULL DATA =============================== logger.info("Pulling data for DC") # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval_dc + 7 df_sb, df_rates, df_store_dc_maps, df_drugs, df_distributors, \ df_dc_distributors_mapping, df_distributor_drugs = pull_data_dc( reset_date, time_interval, db, schema) # ========================== FEATURE CALCULATION ========================== logger.info("Calculating features") features = calculate_features( df_sb, df_rates, df_store_dc_maps, reset_date, time_interval_dc, logger, group_cols=['dc_id', 'distributor_id', 'drug_id']) # only keep active dc-distributors (based on dc-distributor table) features = features.merge(df_dc_distributors_mapping, on=["dc_id", "distributor_id"], how="inner") # add drug type column features = features.merge(df_drugs[["drug_id", "drug_type"]], on="drug_id", how="left") # remove discontinued and banned drugs features = features[~((features['drug_type'] == 'discontinued-products') | (features['drug_type'] == 'banned'))] # add distributor details features = features.merge( df_distributors[["distributor_id", "drug_type", "dist_type_portfolio_size", "distributor_credit_period"]], on=["drug_type", "distributor_id"], how="left") features["dist_type_portfolio_size"] = features[ "dist_type_portfolio_size"].fillna(0).astype(np.int64) features["distributor_credit_period"] = features[ "distributor_credit_period"].fillna(0).astype(np.int64) # ========================= CALCULATE RANKS AS/MS ========================= logger.info("Ranking starts AS/MS") rank_drug_lvl, rank_drug_type_lvl, disq_entries = calc_ranks_dc( features, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, logger) final_ranks = get_final_ranks_dc( rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, as_ms_weights_dc_drug_lvl, logger) # ====================== POST PROCESS RANK DFs AS/MS ====================== logger.info("Post processing rank-DFs AS/MS") final_ranks_as_ms, ranked_features_as_ms = post_process_ranking_dc( df_drugs, df_store_dc_maps, df_distributors, rank_drug_lvl, rank_drug_type_lvl, final_ranks, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl) final_ranks_as_ms["request_type"] = "AS/MS" ranked_features_as_ms["request_type"] = "AS/MS" # ========================== CALCULATE RANKS PR =========================== logger.info("Ranking starts PR") rank_drug_lvl, rank_drug_type_lvl, disq_entries = calc_ranks_dc( features, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger) final_ranks = get_final_ranks_dc( rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, pr_weights_dc_drug_lvl, logger) # ======================== POST PROCESS RANK DFs PR ======================= logger.info("Post processing rank-DFs PR") final_ranks_pr, ranked_features_pr = post_process_ranking_dc( df_drugs, df_store_dc_maps, df_distributors, rank_drug_lvl, rank_drug_type_lvl, final_ranks, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl) final_ranks_pr["request_type"] = "PR" ranked_features_pr["request_type"] = "PR" # =========================== JOIN DFs AS/MS & PR ========================= final_ranks = pd.concat([final_ranks_as_ms, final_ranks_pr], axis=0) ranked_features = pd.concat([ranked_features_as_ms, ranked_features_pr], axis=0) return ranked_features, final_ranks def ranking_calc_franchisee(reset_date, time_interval_franchisee, franchisee_stores, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger, db, schema): # =============================== PULL DATA =============================== logger.info("Pulling data for Franchisee") # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval_franchisee + 7 df_sb, df_rates, df_store_dc_maps, df_drugs, df_distributors, \ df_dc_distributors_mapping, df_distributor_drugs = pull_data_franchisee( reset_date, franchisee_stores, time_interval, db, schema) # ========================== FEATURE CALCULATION ========================== logger.info("Calculating features") features = calculate_features( df_sb, df_rates, df_store_dc_maps, reset_date, time_interval_franchisee, logger, group_cols=['store_id', 'distributor_id', 'drug_id']) # add drug type column features = features.merge(df_drugs[["drug_id", "drug_type"]], on="drug_id", how="left") # remove discontinued and banned drugs features = features[~((features['drug_type'] == 'discontinued-products') | (features['drug_type'] == 'banned'))] # add distributor details features = features.merge( df_distributors[ ["distributor_id", "drug_type", "dist_type_portfolio_size", "distributor_credit_period"]], on=["drug_type", "distributor_id"], how="left") features["dist_type_portfolio_size"] = features[ "dist_type_portfolio_size"].fillna(0).astype(np.int64) features["distributor_credit_period"] = features[ "distributor_credit_period"].fillna(0).astype(np.int64) # ============================ CALCULATE RANKS ============================ logger.info("Ranking starts") rank_drug_lvl, rank_drug_type_lvl = calc_ranks_franchisee( features, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger) final_ranks = get_final_ranks_franchisee( rank_drug_lvl, rank_drug_type_lvl, features, logger) # ========================= POST PROCESS RANK DFs ========================= logger.info("Post processing rank-DFs") final_ranks, ranked_features = post_process_ranking_franchisee( df_drugs, df_store_dc_maps, df_distributors, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_franchisee_drug_lvl, weights_franchisee_type_lvl) final_ranks["request_type"] = "ALL" ranked_features["request_type"] = "ALL" return ranked_features, final_ranks
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/distributor_ranking_calc1.py
distributor_ranking_calc1.py
import pandas as pd import numpy as np def post_process_ranking_dc(df_drugs, df_store_dc_maps, df_distributors, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_dc_drug_lvl, weights_dc_type_lvl): # add drug_id dummy column in type lvl rank_drug_type_lvl["drug_id"] = np.nan # add weights column rank_drug_type_lvl["weights"] = str(weights_dc_type_lvl) rank_drug_lvl["weights"] = str(weights_dc_drug_lvl) # adding details into drug_lvl_df rank_drug_lvl = rank_drug_lvl.merge( df_drugs[["drug_id", "drug_type", "drug_name"]], on="drug_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( df_store_dc_maps[["dc_id", "dc_name"]].drop_duplicates(), on="dc_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( df_distributors[["distributor_id", "distributor_name"]].drop_duplicates(), on="distributor_id", how="left") # adding details into drug_type_lvl_df rank_drug_type_lvl = rank_drug_type_lvl.merge( df_store_dc_maps[["dc_id", "dc_name"]].drop_duplicates(), on="dc_id", how="left") rank_drug_type_lvl = rank_drug_type_lvl.merge( df_distributors[["distributor_id", "distributor_name"]].drop_duplicates(), on="distributor_id", how="left") # combine drug_lvl and drug_type_lvl df ranked_features = pd.concat([rank_drug_lvl, rank_drug_type_lvl], axis=0) # add details into final_ranks df final_ranks = final_ranks.merge( df_store_dc_maps[["dc_id", "dc_name"]].drop_duplicates(), on="dc_id", how="left") final_ranks = final_ranks.merge( df_drugs[["drug_id", "drug_name"]], on="drug_id", how="left") # add columns for franchisee rank addition because # both dc & franchisee features/ranks needs to be written to same table. final_ranks["franchisee_id"] = 1 # zippin id final_ranks["store_id"] = np.nan final_ranks["store_name"] = "" ranked_features["franchisee_id"] = 1 # zippin id ranked_features["store_id"] = np.nan ranked_features["store_name"] = "" ranked_features["request_volume_store_dist"] = np.nan ranked_features["rank_store_dist_credit_period"] = np.nan ranked_features["rank_store_dist_volume"] = np.nan return final_ranks, ranked_features def post_process_ranking_franchisee(df_drugs, df_store_dc_maps, df_distributors, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_franchisee_drug_lvl, weights_franchisee_type_lvl): # add drug_id dummy column in type lvl rank_drug_type_lvl["drug_id"] = np.nan # add weights column rank_drug_type_lvl["weights"] = str(weights_franchisee_type_lvl) rank_drug_lvl["weights"] = str(weights_franchisee_drug_lvl) # adding details into drug_lvl_df rank_drug_lvl = rank_drug_lvl.merge( df_drugs[["drug_id", "drug_type", "drug_name"]], on="drug_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( df_store_dc_maps[["store_id", "store_name"]].drop_duplicates(), on="store_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( df_distributors[ ["distributor_id", "distributor_name"]].drop_duplicates(), on="distributor_id", how="left") # adding details into drug_type_lvl_df rank_drug_type_lvl = rank_drug_type_lvl.merge( df_store_dc_maps[["store_id", "store_name"]].drop_duplicates(), on="store_id", how="left") rank_drug_type_lvl = rank_drug_type_lvl.merge( df_distributors[["distributor_id", "distributor_name"]].drop_duplicates(), on="distributor_id", how="left") # combine drug_lvl and drug_type_lvl df ranked_features = pd.concat([rank_drug_lvl, rank_drug_type_lvl], axis=0) # add details into final_ranks df final_ranks = final_ranks.merge( df_store_dc_maps[["store_id", "store_name"]].drop_duplicates(), on="store_id", how="left") final_ranks = final_ranks.merge( df_drugs[["drug_id", "drug_name"]], on="drug_id", how="left") # add columns for dc rank addition because # both dc & franchisee features/ranks needs to be written to same table. final_ranks["dc_id"] = np.nan final_ranks["dc_name"] = "" final_ranks["correction_flags"] = "" ranked_features["dc_id"] = np.nan ranked_features["dc_name"] = "" ranked_features["request_volume_dc_dist"] = np.nan ranked_features["rank_dc_dist_credit_period"] = np.nan ranked_features["rank_dc_dist_volume"] = np.nan return final_ranks, ranked_features
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/post_process_ranking1.py
post_process_ranking1.py
import pandas as pd from zeno_etl_libs.utils.distributor_ranking2.pull_data import \ pull_data_dc, pull_data_franchisee from zeno_etl_libs.utils.distributor_ranking2.calculate_ranks import \ calc_ranks_dc, get_final_ranks_dc, calc_ranks_franchisee, \ get_final_ranks_franchisee from zeno_etl_libs.utils.distributor_ranking2.preprocess_features import \ preprocess_features_dc, preprocess_features_franchisee from zeno_etl_libs.utils.distributor_ranking2.calculate_features import \ calculate_features from zeno_etl_libs.utils.distributor_ranking2.post_process_ranking import \ post_process_ranking_dc, post_process_ranking_franchisee def ranking_calc_dc(reset_date, time_interval_dc, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger, db, schema): # =============================== PULL DATA =============================== logger.info("Pulling data for DC") # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval_dc + 7 df_features, df_distributors, df_dc_distributors_mapping, \ df_distributor_drugs = pull_data_dc( reset_date, time_interval, db, schema) # ========================== DATA PRE-PROCESSING ========================== logger.info("Preprocessing data") df_features = preprocess_features_dc(df_features, df_dc_distributors_mapping, df_distributor_drugs) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # ========================== FEATURE CALCULATION ========================== logger.info("Calculating features") features = calculate_features(df_features, reset_date, time_interval_dc, logger, group_cols=['partial_dc_id', 'partial_distributor_id', 'drug_id']) # add drug type column features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist info features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_credit_period', 'drug_type', 'dist_type_portfolio_size']].drop_duplicates(), on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # add dc name features = pd.merge(features, df_features[ ['partial_dc_id', 'dc_name']].dropna().drop_duplicates(), on=['partial_dc_id'], validate='many_to_one', how='left') # add drug name features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') # ========================= CALCULATE RANKS AS/MS ========================= logger.info("Ranking starts AS/MS") rank_drug_lvl, rank_drug_type_lvl, disq_entries = calc_ranks_dc( features, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, logger) final_ranks = get_final_ranks_dc( rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, as_ms_weights_dc_drug_lvl, logger) # ====================== POST PROCESS RANK DFs AS/MS ====================== logger.info("Post processing rank-DFs AS/MS") final_ranks_as_ms, ranked_features_as_ms = post_process_ranking_dc( features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl) final_ranks_as_ms["request_type"] = "AS/MS" ranked_features_as_ms["request_type"] = "AS/MS" # ========================== CALCULATE RANKS PR =========================== logger.info("Ranking starts PR") rank_drug_lvl, rank_drug_type_lvl, disq_entries = calc_ranks_dc( features, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger) final_ranks = get_final_ranks_dc( rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, pr_weights_dc_drug_lvl, logger) # ======================== POST PROCESS RANK DFs PR ======================= logger.info("Post processing rank-DFs PR") final_ranks_pr, ranked_features_pr = post_process_ranking_dc( features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl) final_ranks_pr["request_type"] = "PR" ranked_features_pr["request_type"] = "PR" # =========================== JOIN DFs AS/MS & PR ========================= final_ranks = pd.concat([final_ranks_as_ms, final_ranks_pr], axis=0) ranked_features = pd.concat([ranked_features_as_ms, ranked_features_pr], axis=0) return ranked_features, final_ranks def ranking_calc_franchisee(reset_date, time_interval_franchisee, franchisee_stores, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger, db, schema): # =============================== PULL DATA =============================== logger.info("Pulling data for franchisee") # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval_franchisee + 7 df_features, df_distributors, df_distributor_drugs = pull_data_franchisee( reset_date, time_interval, franchisee_stores, db, schema) # ========================== DATA PRE-PROCESSING ========================== logger.info("Preprocessing data") df_features = preprocess_features_franchisee( df_features, df_distributor_drugs, db, schema) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # ========================== FEATURE CALCULATION ========================== logger.info("Calculating features") features = calculate_features(df_features, reset_date, time_interval_franchisee, logger, group_cols=['store_id', 'partial_distributor_id', 'drug_id']) # add drug type column features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist info features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_credit_period', 'drug_type', 'dist_type_portfolio_size']].drop_duplicates(), on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # add store name and franchisee_id here. features = pd.merge( features, df_features[['store_id', 'store_name', 'franchisee_id']].dropna().drop_duplicates(), on=['store_id'], validate='many_to_one', how='left') # add drug name features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') # ============================ CALCULATE RANKS ============================ logger.info("Ranking starts") rank_drug_lvl, rank_drug_type_lvl = calc_ranks_franchisee( features, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger) final_ranks = get_final_ranks_franchisee( rank_drug_lvl, rank_drug_type_lvl, features, logger) # ========================= POST PROCESS RANK DFs ========================= logger.info("Post processing rank-DFs") final_ranks, ranked_features = post_process_ranking_franchisee( features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_franchisee_drug_lvl, weights_franchisee_type_lvl) final_ranks["request_type"] = "ALL" ranked_features["request_type"] = "ALL" return ranked_features, final_ranks
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/distributor_ranking_calc.py
distributor_ranking_calc.py
import pandas as pd import numpy as np def process_tech_df(final_ranks_dc, final_ranks_franchisee, volume_fraction): tech_input = pd.concat([final_ranks_dc, final_ranks_franchisee], axis=0) tech_input['volume_fraction'] = volume_fraction tech_input.rename( {"partial_dc_id": "dc_id", "distributor_rank_1": "final_dist_1", "distributor_rank_2": "final_dist_2", "distributor_rank_3": "final_dist_3"}, axis=1, inplace=True) # combine volume fraction split for cases where total distributors < 3 volume_fraction_split = tech_input['volume_fraction'].str.split( pat='-', expand=True).rename( columns={0: 'volume_fraction_1', 1: 'volume_fraction_2', 2: 'volume_fraction_3'}) tech_input['volume_fraction_1'] = volume_fraction_split[ 'volume_fraction_1'].astype(float) tech_input['volume_fraction_2'] = volume_fraction_split[ 'volume_fraction_2'].astype(float) tech_input['volume_fraction_3'] = volume_fraction_split[ 'volume_fraction_3'].astype(float) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_3'].isna(), tech_input['volume_fraction_2'] + tech_input['volume_fraction_3'], tech_input['volume_fraction_2']) tech_input['volume_fraction_3'] = np.where( tech_input['final_dist_3'].isna(), 0, tech_input['volume_fraction_3']) tech_input['volume_fraction_1'] = np.where( tech_input['final_dist_2'].isna(), tech_input['volume_fraction_1'] + tech_input['volume_fraction_2'], tech_input['volume_fraction_1']) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_2'].isna(), 0, tech_input['volume_fraction_2']) tech_input['volume_fraction'] = tech_input['volume_fraction_1'].astype( 'str') + '-' + tech_input['volume_fraction_2'].astype( 'str') + '-' + tech_input['volume_fraction_3'].astype('str') tech_input = tech_input[ ['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] # adhoc changes by tech, table restructure tech_input = tech_input.reset_index( drop=True).reset_index().rename(columns={'index': 'id'}) tech_input[['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']] = tech_input[ 'volume_fraction'].str.split('-', 3, expand=True) tech_input.loc[tech_input['request_type'] == 'AS/MS', 'request_type'] = 'manual-short/auto-short' tech_input.loc[tech_input['request_type'] == 'PR', 'request_type'] = 'patient-request' tech_input.loc[tech_input['request_type'] == 'ALL', 'request_type'] = 'all' volume_fraction_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']).sort_values( by='id') distributor_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['final_dist_1', 'final_dist_2', 'final_dist_3']).sort_values( by='id').rename(columns={'value': 'distributor_id'}) distributor_ranking_rule_values = pd.merge(distributor_melt, volume_fraction_melt, left_index=True, right_index=True, suffixes=('', '_y')) distributor_ranking_rule_values = distributor_ranking_rule_values[ ['id', 'distributor_id', 'value']].rename( columns={'id': 'distributor_ranking_rule_id'}).reset_index( drop=True) distributor_ranking_rule_values = distributor_ranking_rule_values.reset_index().rename( columns={'index': 'id'}) # drop null values in distributor_id(for cases where historical distributors are < 3) distributor_ranking_rule_values = distributor_ranking_rule_values[ ~distributor_ranking_rule_values['distributor_id'].isna()] # convert distributor_id in int format distributor_ranking_rule_values['distributor_id'] = \ distributor_ranking_rule_values['distributor_id'].astype(int) distributor_ranking_rules = tech_input[['id', 'drug_id', 'dc_id', 'franchisee_id', 'store_id', 'drug_type', 'request_type']] return distributor_ranking_rules, distributor_ranking_rule_values
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/tech_processing.py
tech_processing.py
import pandas as pd import numpy as np def preprocess_features_dc(df_features, df_dc_distributors_mapping, df_distributor_drugs): # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where mrp is 0 otherwise margin becomes infinity df_features = df_features[df_features['mrp'] != 0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) # if no dc information is present then remove those cases. df_features = df_features[((~df_features['partial_dc_id'].isna()) | ( ~df_features['forward_dc_id'].isna()))] # for those cases where invoice doesn't exist, take invoice dc as obtained from sdm table df_features['partial_dc_id'] = df_features['partial_dc_id'].fillna( df_features['forward_dc_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs not part of distributor portfolio df_features = pd.merge(df_features, df_distributor_drugs, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') # filter out distributors not part of active dc-distributor mapping df_features = pd.merge(df_features, df_dc_distributors_mapping, on=['partial_dc_id', 'partial_distributor_id'], how='inner', validate='many_to_one') return df_features def preprocess_features_franchisee(df_features, df_distributor_drugs, db, read_schema): # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where mrp is 0 otherwise margin becomes infinity df_features = df_features[df_features['mrp'] != 0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs not part of distributor portfolio df_features = pd.merge(df_features, df_distributor_drugs, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') return df_features
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/preprocess_features.py
preprocess_features.py
import pandas as pd import numpy as np import math from zeno_etl_libs.utils.distributor_ranking2.correction_flag import add_corr_flag def calc_ranks_dc(features, weights_dc_drug_lvl, weights_dc_type_lvl, logger): # =========================== DRUG LEVEL RANKING ========================== logger.info("DC-drug level ranking starts") # select only relevant columns required for ranking rank_drug_lvl = features[ ['partial_dc_id', 'partial_distributor_id', 'drug_id', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_dc_dist']] # set significant digits for features with decimal points rank_drug_lvl["margin"] = np.round(rank_drug_lvl["margin"], 3) rank_drug_lvl["wtd_ff"] = np.round(rank_drug_lvl["wtd_ff"], 3) rank_drug_lvl["request_volume_dc_dist"] = np.round( rank_drug_lvl["request_volume_dc_dist"], 3) # rank each features rank_drug_lvl["rank_margin"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])['margin'].rank( method='dense', ascending=False) rank_drug_lvl["rank_ff"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_lvl["rank_dc_dist_credit_period"] = \ rank_drug_lvl.groupby(['partial_dc_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_lvl['rank_dc_dist_volume'] = features.groupby(['partial_dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin & ff rank_drug_lvl["wtd_rank"] = (rank_drug_lvl["rank_margin"] * weights_dc_drug_lvl["margin"]) + \ (rank_drug_lvl["rank_ff"] * weights_dc_drug_lvl["ff"]) rank_drug_lvl["wtd_rank"] = np.round(rank_drug_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["partial_dc_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume", "rank_dist_type_portfolio_size"] sort_asc_order = group_col_sort_asc_order + [True, True, True, True] rank_drug_lvl = rank_drug_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_lvl['index'] = rank_drug_lvl.index # final ranking based on preference order rank_drug_lvl["final_rank"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])['index'].rank( method='first', ascending=True) rank_drug_lvl.drop('index', axis=1, inplace=True) # ========================== D.TYPE LEVEL RANKING ========================= logger.info("DC-drug-type level ranking starts") # select only relevant columns required for ranking rank_drug_type_lvl = features[ ['partial_dc_id', 'partial_distributor_id', 'drug_id', 'drug_type', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_dc_dist']] # group by dc-distributor-drug_type level and calculate features rank_drug_type_lvl = rank_drug_type_lvl.groupby( ["partial_dc_id", "partial_distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "dist_type_portfolio_size": "first", "partial_distributor_credit_period": "first", "request_volume_dc_dist": "first"}) # round features to 3 significant digits rank_drug_type_lvl["margin"] = np.round(rank_drug_type_lvl["margin"], 3) rank_drug_type_lvl["wtd_ff"] = np.round(rank_drug_type_lvl["wtd_ff"], 3) rank_drug_type_lvl["request_volume_dc_dist"] = np.round( rank_drug_type_lvl["request_volume_dc_dist"], 3) # rank each features rank_drug_type_lvl["rank_margin"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])['margin'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_ff"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_type_lvl["rank_dc_dist_credit_period"] = \ rank_drug_type_lvl.groupby(['partial_dc_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_type_lvl['rank_dc_dist_volume'] = \ rank_drug_type_lvl.groupby(['partial_dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin, ff & portfolio size rank_drug_type_lvl["wtd_rank"] = (rank_drug_type_lvl["rank_margin"] * weights_dc_type_lvl["margin"]) + \ (rank_drug_type_lvl["rank_ff"] * weights_dc_type_lvl["ff"]) + \ (rank_drug_type_lvl["rank_dist_type_portfolio_size"] * weights_dc_type_lvl["portfolio_size"]) rank_drug_type_lvl["wtd_rank"] = np.round(rank_drug_type_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["partial_dc_id", "drug_type"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] rank_drug_type_lvl = rank_drug_type_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_type_lvl['index'] = rank_drug_type_lvl.index # final ranking based on preference order rank_drug_type_lvl["final_rank"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])['index'].rank( method='first', ascending=True) rank_drug_type_lvl.drop('index', axis=1, inplace=True) # ================== DISQUALIFY POOR DC-DRUG-DISTRIBUTORS ================= # For cases where a poor distributor in terms of wtd.ff and ff_requests # comes in rank 3 or higher => disqualify it. As a result the rank 3 slot # becomes vacant for the slot filling logic to assign another distributor # which will get a chance to fulfill the order. If the assigned distributor # performs good it will be better ranked in subsequent resets, else it will # also get disqualified in similar way in later resets. This will keep the # cycle to constantly look for better distributors. Else it might get locked # in a cycle of ranking the same poor distributor over and over again. disq_entries = rank_drug_lvl.merge( features[["partial_dc_id", "partial_distributor_id", "drug_id", "ff_requests"]], on=["partial_dc_id", "partial_distributor_id", "drug_id"], how="left") # disqualify condition disq_entries["disqualify"] = np.where( (disq_entries["final_rank"] >= 3) & ((disq_entries["ff_requests"] == 0) | (disq_entries["wtd_ff"] < 0.4)), 1, 0) disq_entries = disq_entries.loc[(disq_entries["disqualify"] == 1)] disq_entries = disq_entries[["partial_dc_id", "partial_distributor_id", "drug_id", "disqualify"]] return rank_drug_lvl, rank_drug_type_lvl, disq_entries def get_final_ranks_dc(rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, weights_dc_drug_lvl, logger): """ get final ranking format and apply slot filling logic to rank slots which are empty. """ final_ranks = rank_drug_lvl[["partial_dc_id", "drug_id"]].drop_duplicates() final_ranks = final_ranks.merge( features[["drug_id", "drug_type"]].drop_duplicates(), on="drug_id", how="left") # remove disqualified entries rank_drug_lvl = rank_drug_lvl.merge( disq_entries, on=["partial_dc_id", "partial_distributor_id", "drug_id"], how="left") rank_drug_lvl = rank_drug_lvl.loc[rank_drug_lvl["disqualify"] != 1] logger.info("Creating final df format") # make final ranking df for rank in [1, 2, 3]: df_rank = rank_drug_lvl.loc[rank_drug_lvl["final_rank"] == rank] df_rank = df_rank[ ["partial_dc_id", "drug_id", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["partial_dc_id", "drug_id"], how="left") final_ranks[f"distributor_rank_{rank}"] = final_ranks[ f"distributor_rank_{rank}"].astype(float) # ================== FILL MISSING RANK SLOTS DC-DRUG LVL ================== # get all dc-drug with missing slots logger.info("Get allowable dc-drug-distributors to fill slots") missing_rank_dc_drugs = final_ranks.loc[ (final_ranks["distributor_rank_2"].isna()) | (final_ranks["distributor_rank_3"].isna())] missing_rank_dc_drugs = missing_rank_dc_drugs[["partial_dc_id", "drug_id", "drug_type"]] # list all missing drugs list_missing_rank_drugs = list(missing_rank_dc_drugs["drug_id"].unique()) # get all distributors with missing drugs in their portfolio select_distributor_drugs = df_distributor_drugs.loc[ df_distributor_drugs["drug_id"].isin(list_missing_rank_drugs)] # assign it to all dc available_mappings = missing_rank_dc_drugs.merge(select_distributor_drugs, on="drug_id", how="left") # merge distributor details available_mappings = available_mappings.merge( df_distributors[["partial_distributor_id", "partial_distributor_credit_period"]].drop_duplicates(), on="partial_distributor_id", how="left") # calculate features on drug_type level for dc-distributors (margin & ff) distributor_type_lvl_features = features.groupby( ["partial_dc_id", "partial_distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "request_volume_dc_dist": "first"}) available_mappings = available_mappings.merge( distributor_type_lvl_features, on=["partial_dc_id", "partial_distributor_id", "drug_type"], how="left") # fill na and set significant digits available_mappings["margin"] = available_mappings["margin"].fillna(0) available_mappings["wtd_ff"] = available_mappings["wtd_ff"].fillna(0) available_mappings["request_volume_dc_dist"] = available_mappings[ "request_volume_dc_dist"].fillna(0) available_mappings["margin"] = np.round(available_mappings["margin"], 3) available_mappings["wtd_ff"] = np.round(available_mappings["wtd_ff"], 3) available_mappings["request_volume_dc_dist"] = np.round( available_mappings["request_volume_dc_dist"], 3) # remove inactive dc-distributors available_mappings = available_mappings.merge( df_dc_distributors_mapping, on=["partial_dc_id", "partial_distributor_id"], how="inner") # remove disqualified entries available_mappings = available_mappings.merge( disq_entries, on=["partial_dc_id", "partial_distributor_id", "drug_id"], how="left") available_mappings = available_mappings.loc[available_mappings["disqualify"] != 1] # ranking distributors based on dc-drug level logic logger.info("Ranking allowable dc-drug-distributors") available_mapping_ranked = available_mappings.copy() available_mapping_ranked["rank_margin"] = \ available_mapping_ranked.groupby(['partial_dc_id', 'drug_id'])[ 'margin'].rank(method='dense', ascending=False) available_mapping_ranked["rank_ff"] = \ available_mapping_ranked.groupby(['partial_dc_id', 'drug_id'])[ 'wtd_ff'].rank(method='dense', ascending=False) available_mapping_ranked["rank_dc_dist_credit_period"] = \ available_mapping_ranked.groupby(['partial_dc_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) available_mapping_ranked['rank_dc_dist_volume'] = \ available_mapping_ranked.groupby(['partial_dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # calculate wtd.ranks available_mapping_ranked["wtd_rank"] = (available_mapping_ranked["rank_margin"] * weights_dc_drug_lvl["margin"]) + \ (available_mapping_ranked["rank_ff"] * weights_dc_drug_lvl["ff"]) available_mapping_ranked["wtd_rank"] = np.round( available_mapping_ranked["wtd_rank"], 1) # set sorting order group_cols = ["partial_dc_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] available_mapping_ranked = available_mapping_ranked.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) available_mapping_ranked['index'] = available_mapping_ranked.index # get final ranks available_mapping_ranked["final_rank"] = \ available_mapping_ranked.groupby(['partial_dc_id', 'drug_id'])[ 'index'].rank(method='first', ascending=True) available_mapping_ranked.drop('index', axis=1, inplace=True) pre_corr = final_ranks.copy() # to compare pre-post correction # adding auxiliary ranking to empty slot dc-drugs logger.info("Filling empty rank slots with ranked distributors") for rank in [1, 2, 3]: df_rank = available_mapping_ranked.loc[ available_mapping_ranked["final_rank"] == rank] df_rank = df_rank[ ["partial_dc_id", "drug_id", "partial_distributor_id"]] df_rank.rename( {"partial_distributor_id": f"aux_distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["partial_dc_id", "drug_id"], how="left") final_ranks[f"aux_distributor_rank_{rank}"] = final_ranks[ f"aux_distributor_rank_{rank}"].astype(float) for index, row in final_ranks.iterrows(): # if rank 2 empty and aux_rank present if math.isnan(row["distributor_rank_2"]) & \ (not math.isnan(row["aux_distributor_rank_1"])): if row["aux_distributor_rank_1"] != row["distributor_rank_1"]: final_ranks.loc[index, "distributor_rank_2"] = row[ "aux_distributor_rank_1"] elif not math.isnan(row["aux_distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_2"] = row[ "aux_distributor_rank_2"] for index, row in final_ranks.iterrows(): # if rank 1 & 2 filled, rank 3 empty and aux_ranks present if (not math.isnan(row["distributor_rank_1"])) & \ (not math.isnan(row["distributor_rank_2"])) & \ (math.isnan(row["distributor_rank_3"])): if (not math.isnan(row["aux_distributor_rank_1"])) & \ (row["aux_distributor_rank_1"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_1"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_1"] elif (not math.isnan(row["aux_distributor_rank_2"])) & \ (row["aux_distributor_rank_2"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_2"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_2"] elif (not math.isnan(row["aux_distributor_rank_3"])) & \ (row["aux_distributor_rank_3"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_3"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_3"] final_ranks = final_ranks.drop( ["aux_distributor_rank_1", "aux_distributor_rank_2", "aux_distributor_rank_3"], axis=1) post_corr = final_ranks.copy() # to compare pre-post correction # add correction flags where rank2 & rank3 slot filling took place logger.info("Adding correction flags for filled rank slots") final_ranks = add_corr_flag(final_ranks, pre_corr, post_corr, col_to_compare="distributor_rank_2", corr_flag="R2F", group_cols=["partial_dc_id", "drug_id"]) final_ranks = add_corr_flag(final_ranks, pre_corr, post_corr, col_to_compare="distributor_rank_3", corr_flag="R3F", group_cols=["partial_dc_id", "drug_id"]) # ================== COMBINE DC-DRUG LVL & DC-TYPE LVL =================== # add dc-drug-type level ranking logger.info("Adding dc-drug-type level ranking to final df") final_ranks_type_lvl = rank_drug_type_lvl[ ["partial_dc_id", "drug_type"]].drop_duplicates() # create dc-type level final ranking format for rank in [1, 2, 3]: df_rank = rank_drug_type_lvl.loc[ rank_drug_type_lvl["final_rank"] == rank] df_rank = df_rank[ ["partial_dc_id", "drug_type", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks_type_lvl = final_ranks_type_lvl.merge(df_rank, on=["partial_dc_id", "drug_type"], how="left") final_ranks_type_lvl[f"distributor_rank_{rank}"] = final_ranks_type_lvl[ f"distributor_rank_{rank}"].astype(float) # combine dc-drug lvl and dc-drug-type lvl final_ranks = pd.concat([final_ranks, final_ranks_type_lvl], axis=0) final_ranks["correction_flags"] = final_ranks["correction_flags"].fillna("") return final_ranks def calc_ranks_franchisee(features, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger): # =========================== DRUG LEVEL RANKING ========================== logger.info("Franchisee-store-drug level ranking starts") # select only relevant columns required for ranking rank_drug_lvl = features[ ['store_id', 'partial_distributor_id', 'drug_id', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_store_dist']] # set significant digits for features with decimal points rank_drug_lvl["margin"] = np.round(rank_drug_lvl["margin"], 3) rank_drug_lvl["wtd_ff"] = np.round(rank_drug_lvl["wtd_ff"], 3) rank_drug_lvl["request_volume_store_dist"] = np.round( rank_drug_lvl["request_volume_store_dist"], 3) # rank each features rank_drug_lvl["rank_margin"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['margin'].rank( method='dense', ascending=False) rank_drug_lvl["rank_ff"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_lvl["rank_store_dist_credit_period"] = \ rank_drug_lvl.groupby(['store_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_lvl['rank_store_dist_volume'] = features.groupby(['store_id'])[ 'request_volume_store_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin & ff rank_drug_lvl["wtd_rank"] = (rank_drug_lvl["rank_margin"] * weights_franchisee_drug_lvl["margin"]) + \ (rank_drug_lvl["rank_ff"] * weights_franchisee_drug_lvl["ff"]) rank_drug_lvl["wtd_rank"] = np.round(rank_drug_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["store_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_store_dist_credit_period", "rank_store_dist_volume", "rank_dist_type_portfolio_size"] sort_asc_order = group_col_sort_asc_order + [True, True, True, True] rank_drug_lvl = rank_drug_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_lvl['index'] = rank_drug_lvl.index # final ranking based on preference order rank_drug_lvl["final_rank"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['index'].rank( method='first', ascending=True) rank_drug_lvl.drop('index', axis=1, inplace=True) # ========================== D.TYPE LEVEL RANKING ========================= logger.info("Franchisee-drug-type level ranking starts") # select only relevant columns required for ranking rank_drug_type_lvl = features[ ['store_id', 'partial_distributor_id', 'drug_id', 'drug_type', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_store_dist']] # group by dc-distributor-drug_type level and calculate features rank_drug_type_lvl = rank_drug_type_lvl.groupby( ["store_id", "partial_distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "dist_type_portfolio_size": "first", "partial_distributor_credit_period": "first", "request_volume_store_dist": "first"}) # round features to 3 significant digits rank_drug_type_lvl["margin"] = np.round(rank_drug_type_lvl["margin"], 3) rank_drug_type_lvl["wtd_ff"] = np.round(rank_drug_type_lvl["wtd_ff"], 3) rank_drug_type_lvl["request_volume_store_dist"] = np.round( rank_drug_type_lvl["request_volume_store_dist"], 3) # rank each features rank_drug_type_lvl["rank_margin"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['margin'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_ff"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_type_lvl["rank_store_dist_credit_period"] = \ rank_drug_type_lvl.groupby(['store_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_type_lvl['rank_store_dist_volume'] = \ rank_drug_type_lvl.groupby(['store_id'])[ 'request_volume_store_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin, ff & portfolio size rank_drug_type_lvl["wtd_rank"] = (rank_drug_type_lvl["rank_margin"] * weights_franchisee_type_lvl["margin"]) + \ (rank_drug_type_lvl["rank_ff"] * weights_franchisee_type_lvl["ff"]) + \ (rank_drug_type_lvl["rank_dist_type_portfolio_size"] * weights_franchisee_type_lvl["portfolio_size"]) rank_drug_type_lvl["wtd_rank"] = np.round(rank_drug_type_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["store_id", "drug_type"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_store_dist_credit_period", "rank_store_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] rank_drug_type_lvl = rank_drug_type_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_type_lvl['index'] = rank_drug_type_lvl.index # final ranking based on preference order rank_drug_type_lvl["final_rank"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['index'].rank( method='first', ascending=True) rank_drug_type_lvl.drop('index', axis=1, inplace=True) return rank_drug_lvl, rank_drug_type_lvl def get_final_ranks_franchisee(rank_drug_lvl, rank_drug_type_lvl, features, logger): """ get final ranking format. no slot filling logic for franchisee stores. """ final_ranks = rank_drug_lvl[["store_id", "drug_id"]].drop_duplicates() final_ranks = final_ranks.merge( features[["drug_id", "drug_type"]].drop_duplicates(), on="drug_id", how="left") logger.info("Creating final df format") # make final ranking df for rank in [1, 2, 3]: df_rank = rank_drug_lvl.loc[rank_drug_lvl["final_rank"] == rank] df_rank = df_rank[ ["store_id", "drug_id", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["store_id", "drug_id"], how="left") final_ranks[f"distributor_rank_{rank}"] = final_ranks[ f"distributor_rank_{rank}"].astype(float) # add franchisee-store-drug-type level ranking logger.info("Adding franchisee-store-drug-typ level ranking to final df") final_ranks_type_lvl = rank_drug_type_lvl[ ["store_id", "drug_type"]].drop_duplicates() # create store-type level final ranking format for rank in [1, 2, 3]: df_rank = rank_drug_type_lvl.loc[ rank_drug_type_lvl["final_rank"] == rank] df_rank = df_rank[ ["store_id", "drug_type", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks_type_lvl = final_ranks_type_lvl.merge(df_rank, on=["store_id", "drug_type"], how="left") final_ranks_type_lvl[f"distributor_rank_{rank}"] = final_ranks_type_lvl[ f"distributor_rank_{rank}"].astype(float) # combine store-drug lvl and store-drug-type lvl final_ranks = pd.concat([final_ranks, final_ranks_type_lvl], axis=0) return final_ranks
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/calculate_ranks.py
calculate_ranks.py
from tqdm import tqdm import numpy as np import pandas as pd import datetime as dt def calculate_features(df_sb, df_rates, df_store_dc_maps, reset_date, time_interval, logger, group_cols): """ DC-LEVEL: group_cols=['dc_id','distributor_id', 'drug_id'] FRANCHISEE-LEVEL: group_cols=['store_id','distributor_id', 'drug_id'] """ # ====================== WTD.FULFILLMENT CALCULATION ====================== # BASE FF logger.info("Calculating sb-level ff") sb_ids = df_sb["sb_id"].unique().tolist() df_ff_base = pd.DataFrame() pd.options.mode.chained_assignment = None for sb_id in tqdm(sb_ids): df_temp = df_sb.loc[df_sb["sb_id"] == sb_id] df_temp["required_quantity_shift"] = df_temp["required_quantity"].shift(1) df_temp["required_quantity_shift"] = np.where( df_temp["required_quantity_shift"].isna(), df_temp["sb_quantity"], df_temp["required_quantity_shift"]) try: slice_index = df_temp.loc[df_temp["required_quantity_shift"] == 0].index[0] # if completely fulfilled, ignore further fulfillment df_temp = df_temp.loc[:slice_index - 1] except IndexError: continue df_temp["ff_perc"] = 1 - (df_temp["required_quantity"] / df_temp[ "required_quantity_shift"]) df_temp = df_temp.groupby( ["sb_id", "sb_created_on", "store_id", "drug_id", "sb_quantity", "ordered_dist_id"], as_index=False).agg({"ff_perc": "max"}) df_ff_base = pd.concat([df_ff_base, df_temp], axis=0) pd.options.mode.chained_assignment = 'warn' # remove WH, LP, WORKCELL df_ff_base = df_ff_base.loc[ ~df_ff_base["ordered_dist_id"].isin([8105, 76, 5000])] df_ff_base.rename({"ordered_dist_id": "distributor_id"}, axis=1, inplace=True) # remove inconsistent FF cases df_ff_base["ff_perc"] = np.where(df_ff_base["ff_perc"] < 0, 0, df_ff_base["ff_perc"]) # add store-dc map df_ff_base = df_ff_base.merge(df_store_dc_maps[["store_id", "dc_id"]], on="store_id", how='left') # ensure data-type df_ff_base["sb_created_on"] = pd.to_datetime(df_ff_base["sb_created_on"]) # WTD FF logger.info("Calculating wtd.ff") # get length of 3 period split period_length = round(time_interval / 3) # p1 : t-1 (latest period) # p2 : t-2 period # p3 : t-3 period p1_end = pd.Timestamp(reset_date - dt.timedelta(6)) p1_start = p1_end - dt.timedelta(period_length) p2_end = p1_start p2_start = p2_end - dt.timedelta(period_length) p3_end = p2_start p3_start = p3_end - dt.timedelta(period_length + 1) df_ff_1 = ff_calc(df_ff_base, group_cols, p_start=p1_start, p_end=p1_end, period_flag="p1") df_ff_2 = ff_calc(df_ff_base, group_cols, p_start=p2_start, p_end=p2_end, period_flag="p2") df_ff_3 = ff_calc(df_ff_base, group_cols, p_start=p3_start, p_end=p3_end, period_flag="p3") df_ff_comb = pd.concat([df_ff_1, df_ff_2, df_ff_3], axis=0) # count cases where all 3 or 2 or 1 periods data present df_ff_period_cnt = df_ff_comb.groupby(group_cols, as_index=False).agg( {"period_flag": "count"}) df_ff_period_cnt.rename({"period_flag": "period_count"}, axis=1, inplace=True) # Cases with 3 periods present # weighted by 0.5, 0.3, 0.2 for p1, p2, p3 respectively df_3p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 3][ group_cols] df_ff_comb_3p = df_ff_comb.merge(df_3p, on=group_cols, how="inner") df_ff_comb_3p['period'] = np.tile(np.arange(1, 4), len(df_ff_comb_3p))[ :len(df_ff_comb_3p)] df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 1, 0.5, 0) df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 2, 0.3, df_ff_comb_3p['weights']) df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 3, 0.2, df_ff_comb_3p['weights']) df_ff_comb_3p["wtd_ff"] = df_ff_comb_3p["ff_perc"] * df_ff_comb_3p["weights"] df_ff_comb_3p = df_ff_comb_3p.groupby(group_cols, as_index=False).agg( {"wtd_ff": "sum"}) # Cases with 2 periods present # weighted by 0.6, 0.4 for latest, early respectively df_2p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 2][ group_cols] df_ff_comb_2p = df_ff_comb.merge(df_2p, on=group_cols, how="inner") df_ff_comb_2p['period'] = np.tile(np.arange(1, 3), len(df_ff_comb_2p))[ :len(df_ff_comb_2p)] df_ff_comb_2p['weights'] = np.where(df_ff_comb_2p['period'] == 1, 0.6, 0) df_ff_comb_2p['weights'] = np.where(df_ff_comb_2p['period'] == 2, 0.4, df_ff_comb_2p['weights']) df_ff_comb_2p["wtd_ff"] = df_ff_comb_2p["ff_perc"] * df_ff_comb_2p["weights"] df_ff_comb_2p = df_ff_comb_2p.groupby(group_cols, as_index=False).agg( {"wtd_ff": "sum"}) # Cases with 1 period present # weighted by 1 for whatever period present df_1p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 1][group_cols] df_ff_comb_1p = df_ff_comb.merge(df_1p, on=group_cols, how="inner") df_ff_comb_1p = df_ff_comb_1p[group_cols + ["ff_perc"]] df_ff_comb_1p.rename({"ff_perc": "wtd_ff"}, axis=1, inplace=True) # combine all df_ff_comb = pd.concat([df_ff_comb_3p, df_ff_comb_2p, df_ff_comb_1p], axis=0) # ========================== MARGIN CALCULATION ========================== logger.info("Calculating margin") df_margin = df_rates.loc[(df_rates["avg_mrp"] > 0) & (df_rates["avg_purchase_rate"] > 0)] df_margin = df_margin.loc[(df_margin["avg_mrp"] > df_margin["avg_purchase_rate"])] df_margin["margin"] = (df_margin["avg_mrp"] - df_margin["avg_purchase_rate"]) / df_margin["avg_mrp"] df_margin = df_margin[["distributor_id", "drug_id", "margin"]] # ======================== DIST VOLUME CALCULATION ======================== if group_cols[0] == "dc_id": base_lvl = 'dc' else: base_lvl = 'store' logger.info(f"Calculating {base_lvl}-distributor volume") df_ff_base["ff_requests"] = np.where(df_ff_base["ff_perc"] > 0, 1, 0) df_vol = df_ff_base.groupby(group_cols, as_index=False).agg( {"ff_requests": "sum"}) if base_lvl == 'dc': # calculate request volume dc request_volume_dc = df_vol.groupby("dc_id", as_index=False).agg( total_requests_dc=("ff_requests", "sum")) request_volume_dc_dist = df_vol.groupby( ["dc_id", "distributor_id"], as_index=False).agg( total_requests_dc_dist=("ff_requests", "sum")) df_vol = df_vol.merge(request_volume_dc_dist, on=["dc_id", "distributor_id"], how="left") df_vol = df_vol.merge(request_volume_dc, on="dc_id", how="left") df_vol["request_volume_dc_dist"] = df_vol["total_requests_dc_dist"] / \ df_vol["total_requests_dc"] df_vol.drop(["total_requests_dc_dist", "total_requests_dc"], axis=1, inplace=True) else: # calculate request volume store (franchisee) request_volume_store = df_vol.groupby("store_id", as_index=False).agg( total_requests_store=("ff_requests", "sum")) request_volume_store_dist = df_vol.groupby( ["store_id", "distributor_id"], as_index=False).agg( total_requests_store_dist=("ff_requests", "sum")) df_vol = df_vol.merge(request_volume_store_dist, on=["store_id", "distributor_id"], how="left") df_vol = df_vol.merge(request_volume_store, on="store_id", how="left") df_vol["request_volume_store_dist"] = df_vol["total_requests_store_dist"] / \ df_vol["total_requests_store"] df_vol.drop(["total_requests_store_dist", "total_requests_store"], axis=1, inplace=True) # =========================== COMPILE FEATURES =========================== logger.info("Compiling all features") features = df_ff_comb.merge(df_margin, on=["distributor_id", "drug_id"], how="left") features = features.merge(df_vol, on=group_cols, how="left") # rounding off to 3 significant digits features["wtd_ff"] = np.round(features["wtd_ff"], 3) features["margin"] = np.round(features["margin"], 3) features[f"request_volume_{base_lvl}_dist"] = np.round( features[f"request_volume_{base_lvl}_dist"], 3) # assume 0 margin for null cases features["margin"] = features["margin"].fillna(0) return features def ff_calc(df_ff_base, group_cols, p_start=None, p_end=None, period_flag="None"): # split base data by period df_ff = df_ff_base.loc[(df_ff_base["sb_created_on"] > p_start) & (df_ff_base["sb_created_on"] < p_end)] df_ff = df_ff.groupby(group_cols, as_index=False).agg({"ff_perc": np.average}) df_ff["period_flag"] = period_flag return df_ff
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/calculate_features1.py
calculate_features1.py
Q_SB = """ select sb.id as "sb-id", sb."store-id" , sb."drug-id" , sb.quantity as "sb-quantity", sbol."ordered-dist-id" , sbol."required-quantity" , sbol.status , sbol."ff-status" , date(sb."created-at") as "sb-created-on", sbol."created-at" as "sbol-created-at" from "{schema}"."short-book-1" sb left join "{schema}"."short-book-order-logs" sbol on sbol."short-book-id" = sb.id where sb."distributor-id" not in (8105, 5000, 76) and DATEDIFF(day, date(sb."created-at"), '{reset_date}') <= {time_interval} and DATEDIFF(day, date(sb."created-at"), '{reset_date}') >= 7 and sb."store-id" in (2,4,7,16,54,82,231,234,244,278,297,23,28,39,216,218,235,229,280,8,13,21,26,31,45,188,208,221,222,230,241,260,264,20,36,61,134,160,184,195,215,224,226,245,252,273,281) and sbol.status not in ('presaved', 'saved') {franchisee_stores_execute_query} order by sb.id, sbol."created-at" """ # (2,4,7,16,54,82,231,234,244,278,297,23,28,39,216,218,235,229,280,8,13,21,26,31,45,188,208,221,222,230,241,260,264,20,36,61,134,160,184,195,215,224,226,245,252,273,281) Q_RATES = """ select subQ."distributor-id", subQ."drug-id", avg(subQ.mrp) as avg_mrp, avg(subQ."purchase-rate") as avg_purchase_rate from ( select i."distributor-id" , ii."drug-id" , i."created-at" , inv.mrp , inv."purchase-rate", row_number() over (partition by i."distributor-id", ii."drug-id" order by i."created-at" desc) as recency_rank from "{schema}".invoices i left join "{schema}"."invoice-items-1" ii on ii."invoice-id" = i.id left join "{schema}"."inventory-1" inv on inv."invoice-item-id" = ii.id where DATEDIFF(day, date(i."created-at"), '{reset_date}') <= {time_interval} and DATEDIFF(day, date(i."created-at"), '{reset_date}') >= 7 and i."distributor-id" not in (8105, 76, 5000) ) as subQ where subQ.recency_rank <= 5 group by subQ."distributor-id", subQ."drug-id" """ Q_STORE_DC_MAPS = """ select subQ.*, s2."name" as "dc-name" from ( select sdm."store-id" , s."name" as "store-name", "forward-dc-id" as "dc-id" from "{schema}"."store-dc-mapping" sdm left join "{schema}".stores s on sdm."store-id" = s.id where "forward-dc-id" not in (199) group by "store-id" , s."name", "forward-dc-id" ) as subQ left join "{schema}".stores s2 on subQ."dc-id" = s2.id """ Q_DRUGS = """ select id as "drug-id", "drug-name" , "type" as "drug-type" from "{schema}".drugs d """ Q_DISTRIBUTORS = """ select db.id as "distributor-id", db.name as "distributor-name", db."credit-period" as "distributor-credit-period", d."type" as "drug-type", count(distinct dd."drug-id") as "dist-type-portfolio-size" from "{schema}".distributors db left join "{schema}"."distributor-drugs" dd on db.id = dd."distributor-id" left join "{schema}".drugs d on dd."drug-id" = d.id group by db.id, "distributor-name", "distributor-credit-period", "drug-type" """ Q_DC_DISTRIBUTOR_MAPPING = """ select "dc-id", "distributor-id" from "{schema}"."dc-distributor-mapping" ddm where "is-active" = 1 group by "dc-id" , "distributor-id" """ Q_DISTRIBUTOR_DRUGS = """ select "distributor-id", "drug-id" from "{schema}"."distributor-drugs" dd group by "distributor-id" , "drug-id" """ Q_FRANCHISEE_STORES = """ select distinct "id" from "{schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and "franchisee-id" != 1 """ def pull_data_dc(reset_date, time_interval, db, schema): df_sb = db.get_df(Q_SB.format( reset_date=reset_date, time_interval=time_interval, schema=schema, franchisee_stores_execute_query="")) df_sb.columns = [c.replace('-', '_') for c in df_sb.columns] df_rates = db.get_df(Q_RATES.format( reset_date=reset_date, time_interval=time_interval, schema=schema)) df_rates.columns = [c.replace('-', '_') for c in df_rates.columns] df_store_dc_maps = db.get_df(Q_STORE_DC_MAPS.format(schema=schema)) df_store_dc_maps.columns = [c.replace('-', '_') for c in df_store_dc_maps.columns] df_drugs = db.get_df(Q_DRUGS.format(schema=schema)) df_drugs.columns = [c.replace('-', '_') for c in df_drugs.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(schema=schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] df_distributors = df_distributors.dropna() df_distributors = df_distributors.loc[df_distributors["drug_type"] != ''] df_dc_distributors_mapping = db.get_df( Q_DC_DISTRIBUTOR_MAPPING.format(schema=schema)) df_dc_distributors_mapping.columns = [c.replace('-', '_') for c in df_dc_distributors_mapping.columns] df_distributor_drugs = db.get_df(Q_DISTRIBUTOR_DRUGS.format(schema=schema)) df_distributor_drugs.columns = [c.replace('-', '_') for c in df_distributor_drugs.columns] df_distributor_drugs.drop_duplicates(inplace=True) # ensure data types df_rates["avg_mrp"] = df_rates["avg_mrp"].astype(float) df_rates["avg_purchase_rate"] = df_rates["avg_purchase_rate"].astype(float) return df_sb, df_rates, df_store_dc_maps, df_drugs, df_distributors, \ df_dc_distributors_mapping, df_distributor_drugs def pull_data_franchisee(reset_date, franchisee_stores, time_interval, db, schema): df_franchisee_stores = db.get_df(Q_FRANCHISEE_STORES.format(schema=schema)) all_franchisee_stores = df_franchisee_stores["id"].to_list() if franchisee_stores == [0]: franchisee_stores_execute_query = f""" and sb."store-id" in {str(all_franchisee_stores).replace('[', '(').replace(']', ')')} """ else: # only take valid franchisee stores franchisee_stores = list( set(franchisee_stores).intersection(all_franchisee_stores)) franchisee_stores_execute_query = f""" and sb."store-id" in {str(franchisee_stores).replace('[', '(').replace(']', ')')} """ df_sb = db.get_df(Q_SB.format( reset_date=reset_date, time_interval=time_interval, schema=schema, franchisee_stores_execute_query=franchisee_stores_execute_query)) df_sb.columns = [c.replace('-', '_') for c in df_sb.columns] df_rates = db.get_df(Q_RATES.format( reset_date=reset_date, time_interval=time_interval, schema=schema)) df_rates.columns = [c.replace('-', '_') for c in df_rates.columns] df_store_dc_maps = db.get_df(Q_STORE_DC_MAPS.format(schema=schema)) df_store_dc_maps.columns = [c.replace('-', '_') for c in df_store_dc_maps.columns] df_drugs = db.get_df(Q_DRUGS.format(schema=schema)) df_drugs.columns = [c.replace('-', '_') for c in df_drugs.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(schema=schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] df_distributors = df_distributors.dropna() df_distributors = df_distributors.loc[df_distributors["drug_type"] != ''] df_dc_distributors_mapping = db.get_df( Q_DC_DISTRIBUTOR_MAPPING.format(schema=schema)) df_dc_distributors_mapping.columns = [c.replace('-', '_') for c in df_dc_distributors_mapping.columns] df_distributor_drugs = db.get_df(Q_DISTRIBUTOR_DRUGS.format(schema=schema)) df_distributor_drugs.columns = [c.replace('-', '_') for c in df_distributor_drugs.columns] df_distributor_drugs.drop_duplicates(inplace=True) # ensure data types df_rates["avg_mrp"] = df_rates["avg_mrp"].astype(float) df_rates["avg_purchase_rate"] = df_rates["avg_purchase_rate"].astype(float) return df_sb, df_rates, df_store_dc_maps, df_drugs, df_distributors, \ df_dc_distributors_mapping, df_distributor_drugs
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/pull_data1.py
pull_data1.py
import pandas as pd import numpy as np def post_process_ranking_dc(features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_dc_drug_lvl, weights_dc_type_lvl): # add drug_id dummy column in type lvl rank_drug_type_lvl["drug_id"] = np.nan # add weights column rank_drug_type_lvl["weights"] = str(weights_dc_type_lvl) rank_drug_lvl["weights"] = str(weights_dc_drug_lvl) # additional details to be added drugs_info = features[["drug_id", "drug_type", "drug_name"]].drop_duplicates() dc_info = features[["partial_dc_id", "dc_name"]].drop_duplicates() distributor_info = features[["partial_distributor_id", "partial_distributor_name"]].drop_duplicates() # adding details into drug_lvl_df rank_drug_lvl = rank_drug_lvl.merge(drugs_info, on="drug_id", how="left") rank_drug_lvl = rank_drug_lvl.merge(dc_info, on="partial_dc_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # adding details into drug_type_lvl_df rank_drug_type_lvl = rank_drug_type_lvl.merge(dc_info, on="partial_dc_id", how="left") rank_drug_type_lvl = rank_drug_type_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # combine drug_lvl and drug_type_lvl df ranked_features = pd.concat([rank_drug_lvl, rank_drug_type_lvl], axis=0) # add details into final_ranks df final_ranks = final_ranks.merge(dc_info, on="partial_dc_id", how="left") final_ranks = final_ranks.merge(drugs_info[["drug_id", "drug_name"]], on="drug_id", how="left") # add columns for franchisee rank addition because # both dc & franchisee features/ranks needs to be written to same table. final_ranks["franchisee_id"] = 1 # zippin id final_ranks["store_id"] = np.nan final_ranks["store_name"] = "" ranked_features["franchisee_id"] = 1 # zippin id ranked_features["store_id"] = np.nan ranked_features["store_name"] = "" ranked_features["request_volume_store_dist"] = np.nan ranked_features["rank_store_dist_credit_period"] = np.nan ranked_features["rank_store_dist_volume"] = np.nan return final_ranks, ranked_features def post_process_ranking_franchisee(features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_franchisee_drug_lvl, weights_franchisee_type_lvl): # add drug_id dummy column in type lvl rank_drug_type_lvl["drug_id"] = np.nan # add weights column rank_drug_type_lvl["weights"] = str(weights_franchisee_type_lvl) rank_drug_lvl["weights"] = str(weights_franchisee_drug_lvl) # additional details to be added drugs_info = features[["drug_id", "drug_type", "drug_name"]].drop_duplicates() store_info = features[["store_id", "store_name", "franchisee_id"]].drop_duplicates() distributor_info = features[["partial_distributor_id", "partial_distributor_name"]].drop_duplicates() # adding details into drug_lvl_df rank_drug_lvl = rank_drug_lvl.merge(drugs_info, on="drug_id", how="left") rank_drug_lvl = rank_drug_lvl.merge(store_info, on="store_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # adding details into drug_type_lvl_df rank_drug_type_lvl = rank_drug_type_lvl.merge(store_info, on="store_id", how="left") rank_drug_type_lvl = rank_drug_type_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # combine drug_lvl and drug_type_lvl df ranked_features = pd.concat([rank_drug_lvl, rank_drug_type_lvl], axis=0) # add details into final_ranks df final_ranks = final_ranks.merge(store_info, on="store_id", how="left") final_ranks = final_ranks.merge(drugs_info[["drug_id", "drug_name"]], on="drug_id", how="left") # add columns for dc rank addition because # both dc & franchisee features/ranks needs to be written to same table. final_ranks["partial_dc_id"] = np.nan final_ranks["dc_name"] = "" final_ranks["correction_flags"] = "" ranked_features["partial_dc_id"] = np.nan ranked_features["dc_name"] = "" ranked_features["request_volume_dc_dist"] = np.nan ranked_features["rank_dc_dist_credit_period"] = np.nan ranked_features["rank_dc_dist_volume"] = np.nan return final_ranks, ranked_features
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/post_process_ranking.py
post_process_ranking.py
from functools import reduce import numpy as np import pandas as pd import datetime as dt def calculate_features(df_features, reset_date, time_interval, logger, group_cols): """ DC-LEVEL: group_cols=['partial_dc_id','partial_distributor_id', 'drug_id'] FRANCHISEE-LEVEL: group_cols=['store_id','partial_distributor_id', 'drug_id'] """ dfx = df_features[df_features['invoice_count'] != 0] # ========================== MARGIN CALCULATION ========================== # (follows same logic as in distributor ranking 1.0) logger.info("Calculating margin") df_margin = dfx.copy() df_margin['margin'] = (df_margin['mrp'] - df_margin['distributor_rate']) / df_margin[ 'mrp'] df_margin = df_margin.groupby(group_cols).agg( margin=('margin', 'mean')).reset_index() # sanity check assert df_margin.shape[0] == dfx[group_cols].drop_duplicates().shape[0] # ====================== WTD.FULFILLMENT CALCULATION ====================== logger.info("Calculating wtd.ff") # get length of 3 period split period_length = round(time_interval / 3) # p1 : t-1 (latest period) # p2 : t-2 period # p3 : t-3 period p1_end = pd.Timestamp(reset_date - dt.timedelta(6)) p1_start = p1_end - dt.timedelta(period_length) p2_end = p1_start p2_start = p2_end - dt.timedelta(period_length) p3_end = p2_start p3_start = p3_end - dt.timedelta(period_length + 1) df_ff_1 = ff_calc(dfx, group_cols, p_start=p1_start, p_end=p1_end, period_flag="p1") df_ff_2 = ff_calc(dfx, group_cols, p_start=p2_start, p_end=p2_end, period_flag="p2") df_ff_3 = ff_calc(dfx, group_cols, p_start=p3_start, p_end=p3_end, period_flag="p3") df_ff_comb = pd.concat([df_ff_1, df_ff_2, df_ff_3], axis=0) # count cases where all 3 or 2 or 1 periods data present df_ff_period_cnt = df_ff_comb.groupby(group_cols, as_index=False).agg( {"period_flag": "count"}) df_ff_period_cnt.rename({"period_flag": "period_count"}, axis=1, inplace=True) # Cases with 3 periods present # weighted by 0.5, 0.3, 0.2 for p1, p2, p3 respectively df_3p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 3][ group_cols] df_ff_comb_3p = df_ff_comb.merge(df_3p, on=group_cols, how="inner") df_ff_comb_3p['period'] = np.tile(np.arange(1, 4), len(df_ff_comb_3p))[ :len(df_ff_comb_3p)] df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 1, 0.5, 0) df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 2, 0.3, df_ff_comb_3p['weights']) df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 3, 0.2, df_ff_comb_3p['weights']) df_ff_comb_3p["wtd_ff"] = df_ff_comb_3p["ff"] * df_ff_comb_3p["weights"] df_ff_comb_3p = df_ff_comb_3p.groupby(group_cols, as_index=False).agg( {"wtd_ff": "sum"}) # Cases with 2 periods present # weighted by 0.6, 0.4 for latest, early respectively df_2p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 2][ group_cols] df_ff_comb_2p = df_ff_comb.merge(df_2p, on=group_cols, how="inner") df_ff_comb_2p['period'] = np.tile(np.arange(1, 3), len(df_ff_comb_2p))[ :len(df_ff_comb_2p)] df_ff_comb_2p['weights'] = np.where(df_ff_comb_2p['period'] == 1, 0.6, 0) df_ff_comb_2p['weights'] = np.where(df_ff_comb_2p['period'] == 2, 0.4, df_ff_comb_2p['weights']) df_ff_comb_2p["wtd_ff"] = df_ff_comb_2p["ff"] * df_ff_comb_2p["weights"] df_ff_comb_2p = df_ff_comb_2p.groupby(group_cols, as_index=False).agg( {"wtd_ff": "sum"}) # Cases with 1 period present # weighted by 1 for whatever period present df_1p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 1][ group_cols] df_ff_comb_1p = df_ff_comb.merge(df_1p, on=group_cols, how="inner") df_ff_comb_1p = df_ff_comb_1p[group_cols + ["ff"]] df_ff_comb_1p.rename({"ff": "wtd_ff"}, axis=1, inplace=True) # combine all df_ff_comb = pd.concat([df_ff_comb_3p, df_ff_comb_2p, df_ff_comb_1p], axis=0) # ======================== DIST VOLUME CALCULATION ======================== if group_cols[0] == "partial_dc_id": base_lvl = 'dc' else: base_lvl = 'store' logger.info(f"Calculating {base_lvl}-distributor volume") df_vol = df_features.groupby(group_cols).agg( total_lost=('is_lost', 'sum'), total_requests=('is_lost', 'count')).reset_index() df_vol["ff_requests"] = df_vol["total_requests"] - df_vol["total_lost"] df_vol["ff_requests"] = np.where(df_vol["ff_requests"] < 0, 0, df_vol["ff_requests"]) df_vol.drop(["total_lost", "total_requests"], axis=1, inplace=True) if base_lvl == 'dc': # calculate request volume dc request_volume_dc = df_vol.groupby("partial_dc_id", as_index=False).agg( total_requests_dc=("ff_requests", "sum")) request_volume_dc_dist = df_vol.groupby( ["partial_dc_id", "partial_distributor_id"], as_index=False).agg( total_requests_dc_dist=("ff_requests", "sum")) df_vol = df_vol.merge(request_volume_dc_dist, on=["partial_dc_id", "partial_distributor_id"], how="left") df_vol = df_vol.merge(request_volume_dc, on="partial_dc_id", how="left") df_vol["request_volume_dc_dist"] = df_vol["total_requests_dc_dist"] / \ df_vol["total_requests_dc"] df_vol.drop(["total_requests_dc_dist", "total_requests_dc"], axis=1, inplace=True) else: # calculate request volume store (franchisee) request_volume_store = df_vol.groupby("store_id", as_index=False).agg( total_requests_store=("ff_requests", "sum")) request_volume_store_dist = df_vol.groupby( ["store_id", "partial_distributor_id"], as_index=False).agg( total_requests_store_dist=("ff_requests", "sum")) df_vol = df_vol.merge(request_volume_store_dist, on=["store_id", "partial_distributor_id"], how="left") df_vol = df_vol.merge(request_volume_store, on="store_id", how="left") df_vol["request_volume_store_dist"] = df_vol["total_requests_store_dist"] / \ df_vol["total_requests_store"] df_vol.drop(["total_requests_store_dist", "total_requests_store"], axis=1, inplace=True) # =========================== COMPILE FEATURES =========================== logger.info("Compiling all features") meg_list = [df_margin, df_ff_comb, df_vol] features = reduce( lambda left, right: pd.merge(left, right, on=group_cols, how='outer'), meg_list) # rounding off to 3 significant digits features["margin"] = np.round(features["margin"], 3) features["wtd_ff"] = np.round(features["wtd_ff"], 3) features[f"request_volume_{base_lvl}_dist"] = np.round( features[f"request_volume_{base_lvl}_dist"], 3) return features def ff_calc(dfx, group_cols, p_start=None, p_end=None, period_flag="None"): """ Base FF calculation same as in distributor ranking 1.0 """ # split base data by period dfx = dfx.loc[ (dfx["original_created_at"] > p_start) & (dfx["original_created_at"] < p_end)] df_sorted = dfx.groupby(['short_book_1_id'], as_index=False).apply( lambda x: x.sort_values(by=['partial_invoiced_at'])) # for multiple invoices, calculate cumulative fulfilled quantities df_sorted = df_sorted.groupby(['short_book_1_id']).apply( lambda x: x['partial_quantity'].cumsum()).reset_index().rename( columns={'partial_quantity': 'cum_partial_quantity'}) df_sorted = df_sorted.set_index('level_1') df_fulfillment = pd.merge(df_sorted, dfx, left_index=True, right_index=True, how='left', suffixes=('', '_y')) assert df_fulfillment['short_book_1_id'].equals( df_fulfillment['short_book_1_id_y']) df_fulfillment = df_fulfillment[ ['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'cum_partial_quantity']] # cum required quantity is quantity left after subtracting cum quantity from all previous invoices. df_fulfillment['cum_required_quantity'] = df_fulfillment['original_order'] - \ df_fulfillment['cum_partial_quantity'] # the real required quantity while placing an order is quantity # unfulfilled by the previours invoice. Hence shifted by 1 df_fulfillment['actual_required'] = df_fulfillment.groupby( ['short_book_1_id']).shift(1)['cum_required_quantity'] # fill single invoices with the original order df_fulfillment['actual_required'] = df_fulfillment['actual_required'].fillna( df_fulfillment['original_order']) # put actual required = 0 when ordered exceeds required. df_fulfillment.loc[df_fulfillment['actual_required'] < 0, 'actual_required'] = 0 df_fulfillment['redundant_order_flag'] = np.where( df_fulfillment['actual_required'] == 0, 1, 0) df_fulfillment = df_fulfillment[['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'actual_required', 'redundant_order_flag']] df_fulfillment['ff'] = df_fulfillment['partial_quantity'] / \ df_fulfillment['actual_required'] # for those quantities where nothing was required and still order placed, take them as 0. df_fulfillment.loc[(df_fulfillment['actual_required'] == 0) & ( df_fulfillment['partial_quantity'] > 0), 'ff'] = 1 df_fulfillment.loc[(df_fulfillment['ff'] > 1), 'ff'] = 1 # removed redundant orders here. df_ff = df_fulfillment[df_fulfillment['redundant_order_flag'] != 1].groupby( group_cols).agg(ff=('ff', 'mean')).reset_index() # add period_flag df_ff["period_flag"] = period_flag return df_ff
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/calculate_features.py
calculate_features.py
import pandas as pd import numpy as np import math from zeno_etl_libs.utils.distributor_ranking2.correction_flag import add_corr_flag def calc_ranks_dc(features, weights_dc_drug_lvl, weights_dc_type_lvl, logger): # =========================== DRUG LEVEL RANKING ========================== logger.info("DC-drug level ranking starts") # select only relevant columns required for ranking rank_drug_lvl = features[ ['dc_id', 'distributor_id', 'drug_id', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'distributor_credit_period', 'request_volume_dc_dist']] # set significant digits for features with decimal points rank_drug_lvl["margin"] = np.round(rank_drug_lvl["margin"], 3) rank_drug_lvl["wtd_ff"] = np.round(rank_drug_lvl["wtd_ff"], 3) rank_drug_lvl["request_volume_dc_dist"] = np.round( rank_drug_lvl["request_volume_dc_dist"], 3) # rank each features rank_drug_lvl["rank_margin"] = \ rank_drug_lvl.groupby(['dc_id', 'drug_id'])['margin'].rank( method='dense', ascending=False) rank_drug_lvl["rank_ff"] = \ rank_drug_lvl.groupby(['dc_id', 'drug_id'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_lvl.groupby(['dc_id', 'drug_id'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_lvl["rank_dc_dist_credit_period"] = \ rank_drug_lvl.groupby(['dc_id'])[ 'distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_lvl['rank_dc_dist_volume'] = features.groupby(['dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin & ff rank_drug_lvl["wtd_rank"] = (rank_drug_lvl["rank_margin"] * weights_dc_drug_lvl["margin"]) + \ (rank_drug_lvl["rank_ff"] * weights_dc_drug_lvl["ff"]) rank_drug_lvl["wtd_rank"] = np.round(rank_drug_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["dc_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume", "rank_dist_type_portfolio_size"] sort_asc_order = group_col_sort_asc_order + [True, True, True, True] rank_drug_lvl = rank_drug_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_lvl['index'] = rank_drug_lvl.index # final ranking based on preference order rank_drug_lvl["final_rank"] = \ rank_drug_lvl.groupby(['dc_id', 'drug_id'])['index'].rank( method='first', ascending=True) rank_drug_lvl.drop('index', axis=1, inplace=True) # ========================== D.TYPE LEVEL RANKING ========================= logger.info("DC-drug-type level ranking starts") # select only relevant columns required for ranking rank_drug_type_lvl = features[ ['dc_id', 'distributor_id', 'drug_id', 'drug_type', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'distributor_credit_period', 'request_volume_dc_dist']] # group by dc-distributor-drug_type level and calculate features rank_drug_type_lvl = rank_drug_type_lvl.groupby( ["dc_id", "distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "dist_type_portfolio_size": "first", "distributor_credit_period": "first", "request_volume_dc_dist": "first"}) # round features to 3 significant digits rank_drug_type_lvl["margin"] = np.round(rank_drug_type_lvl["margin"], 3) rank_drug_type_lvl["wtd_ff"] = np.round(rank_drug_type_lvl["wtd_ff"], 3) rank_drug_type_lvl["request_volume_dc_dist"] = np.round( rank_drug_type_lvl["request_volume_dc_dist"], 3) # rank each features rank_drug_type_lvl["rank_margin"] = \ rank_drug_type_lvl.groupby(['dc_id', 'drug_type'])['margin'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_ff"] = \ rank_drug_type_lvl.groupby(['dc_id', 'drug_type'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_type_lvl.groupby(['dc_id', 'drug_type'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_type_lvl["rank_dc_dist_credit_period"] = \ rank_drug_type_lvl.groupby(['dc_id'])[ 'distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_type_lvl['rank_dc_dist_volume'] = \ rank_drug_type_lvl.groupby(['dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin, ff & portfolio size rank_drug_type_lvl["wtd_rank"] = (rank_drug_type_lvl["rank_margin"] * weights_dc_type_lvl["margin"]) + \ (rank_drug_type_lvl["rank_ff"] * weights_dc_type_lvl["ff"]) + \ (rank_drug_type_lvl["rank_dist_type_portfolio_size"] * weights_dc_type_lvl["portfolio_size"]) rank_drug_type_lvl["wtd_rank"] = np.round(rank_drug_type_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["dc_id", "drug_type"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] rank_drug_type_lvl = rank_drug_type_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_type_lvl['index'] = rank_drug_type_lvl.index # final ranking based on preference order rank_drug_type_lvl["final_rank"] = \ rank_drug_type_lvl.groupby(['dc_id', 'drug_type'])['index'].rank( method='first', ascending=True) rank_drug_type_lvl.drop('index', axis=1, inplace=True) # ================== DISQUALIFY POOR DC-DRUG-DISTRIBUTORS ================= # For the cases where a poor distributor in terms of wtd.ff # comes in rank 3 or higher => disqualify it. As a result the rank 3 slot # becomes vacant for the slot filling logic to assign another distributor # which will get a chance to fulfill the order. If the assigned distributor # performs good it will be better ranked in subsequent resets, else it will # also get disqualified in similar way in later resets. This will keep the # cycle to constantly look for better distributors. Else it might get locked # in a cycle of ranking the same poor distributor over and over again. disq_entries = rank_drug_lvl.copy() # disqualify condition disq_entries["disqualify"] = np.where( (disq_entries["final_rank"] >= 3) & (disq_entries["wtd_ff"] < 0.4), 1, 0) disq_entries = disq_entries.loc[(disq_entries["disqualify"] == 1)] disq_entries = disq_entries[["dc_id", "distributor_id", "drug_id", "disqualify"]] return rank_drug_lvl, rank_drug_type_lvl, disq_entries def get_final_ranks_dc(rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, weights_dc_drug_lvl, logger): """ get final ranking format and apply slot filling logic to rank slots which are empty. """ final_ranks = rank_drug_lvl[["dc_id", "drug_id"]].drop_duplicates() final_ranks = final_ranks.merge( features[["drug_id", "drug_type"]].drop_duplicates(), on="drug_id", how="left") # remove disqualified entries rank_drug_lvl = rank_drug_lvl.merge( disq_entries, on=["dc_id", "distributor_id", "drug_id"], how="left") rank_drug_lvl = rank_drug_lvl.loc[rank_drug_lvl["disqualify"] != 1] logger.info("Creating final df format") # make final ranking df for rank in [1, 2, 3]: df_rank = rank_drug_lvl.loc[rank_drug_lvl["final_rank"] == rank] df_rank = df_rank[ ["dc_id", "drug_id", "distributor_id"]] df_rank.rename({"distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["dc_id", "drug_id"], how="left") final_ranks[f"distributor_rank_{rank}"] = final_ranks[ f"distributor_rank_{rank}"].astype(float) # ================== FILL MISSING RANK SLOTS DC-DRUG LVL ================== # get all dc-drug with missing slots logger.info("Get allowable dc-drug-distributors to fill slots") missing_rank_dc_drugs = final_ranks.loc[ (final_ranks["distributor_rank_2"].isna()) | (final_ranks["distributor_rank_3"].isna())] missing_rank_dc_drugs = missing_rank_dc_drugs[["dc_id", "drug_id", "drug_type"]] # list all missing drugs list_missing_rank_drugs = list(missing_rank_dc_drugs["drug_id"].unique()) # get all distributors with missing drugs in their portfolio select_distributor_drugs = df_distributor_drugs.loc[ df_distributor_drugs["drug_id"].isin(list_missing_rank_drugs)] # assign it to all dc available_mappings = missing_rank_dc_drugs.merge(select_distributor_drugs, on="drug_id", how="left") # merge distributor details available_mappings = available_mappings.merge( df_distributors[["distributor_id", "distributor_credit_period"]].drop_duplicates(), on="distributor_id", how="left") # calculate features on drug_type level for dc-distributors (margin & ff) distributor_type_lvl_features = features.groupby( ["dc_id", "distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "request_volume_dc_dist": "first"}) available_mappings = available_mappings.merge( distributor_type_lvl_features, on=["dc_id", "distributor_id", "drug_type"], how="left") # fill na and set significant digits available_mappings["margin"] = available_mappings["margin"].fillna(0) available_mappings["wtd_ff"] = available_mappings["wtd_ff"].fillna(0) available_mappings["request_volume_dc_dist"] = available_mappings[ "request_volume_dc_dist"].fillna(0) available_mappings["margin"] = np.round(available_mappings["margin"], 3) available_mappings["wtd_ff"] = np.round(available_mappings["wtd_ff"], 3) available_mappings["request_volume_dc_dist"] = np.round( available_mappings["request_volume_dc_dist"], 3) # remove inactive dc-distributors available_mappings = available_mappings.merge( df_dc_distributors_mapping, on=["dc_id", "distributor_id"], how="inner") # remove disqualified entries available_mappings = available_mappings.merge( disq_entries, on=["dc_id", "distributor_id", "drug_id"], how="left") available_mappings = available_mappings.loc[available_mappings["disqualify"] != 1] # ranking distributors based on dc-drug level logic logger.info("Ranking allowable dc-drug-distributors") available_mapping_ranked = available_mappings.copy() available_mapping_ranked["rank_margin"] = \ available_mapping_ranked.groupby(['dc_id', 'drug_id'])[ 'margin'].rank(method='dense', ascending=False) available_mapping_ranked["rank_ff"] = \ available_mapping_ranked.groupby(['dc_id', 'drug_id'])[ 'wtd_ff'].rank(method='dense', ascending=False) available_mapping_ranked["rank_dc_dist_credit_period"] = \ available_mapping_ranked.groupby(['dc_id'])[ 'distributor_credit_period'].rank(method='dense', ascending=False) available_mapping_ranked['rank_dc_dist_volume'] = \ available_mapping_ranked.groupby(['dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # calculate wtd.ranks available_mapping_ranked["wtd_rank"] = (available_mapping_ranked["rank_margin"] * weights_dc_drug_lvl["margin"]) + \ (available_mapping_ranked["rank_ff"] * weights_dc_drug_lvl["ff"]) available_mapping_ranked["wtd_rank"] = np.round( available_mapping_ranked["wtd_rank"], 1) # set sorting order group_cols = ["dc_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] available_mapping_ranked = available_mapping_ranked.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) available_mapping_ranked['index'] = available_mapping_ranked.index # get final ranks available_mapping_ranked["final_rank"] = \ available_mapping_ranked.groupby(['dc_id', 'drug_id'])[ 'index'].rank(method='first', ascending=True) available_mapping_ranked.drop('index', axis=1, inplace=True) pre_corr = final_ranks.copy() # to compare pre-post correction # adding auxiliary ranking to empty slot dc-drugs logger.info("Filling empty rank slots with ranked distributors") for rank in [1, 2, 3]: df_rank = available_mapping_ranked.loc[ available_mapping_ranked["final_rank"] == rank] df_rank = df_rank[ ["dc_id", "drug_id", "distributor_id"]] df_rank.rename( {"distributor_id": f"aux_distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["dc_id", "drug_id"], how="left") final_ranks[f"aux_distributor_rank_{rank}"] = final_ranks[ f"aux_distributor_rank_{rank}"].astype(float) for index, row in final_ranks.iterrows(): # if rank 2 empty and aux_rank present if math.isnan(row["distributor_rank_2"]) & \ (not math.isnan(row["aux_distributor_rank_1"])): if row["aux_distributor_rank_1"] != row["distributor_rank_1"]: final_ranks.loc[index, "distributor_rank_2"] = row[ "aux_distributor_rank_1"] elif not math.isnan(row["aux_distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_2"] = row[ "aux_distributor_rank_2"] for index, row in final_ranks.iterrows(): # if rank 1 & 2 filled, rank 3 empty and aux_ranks present if (not math.isnan(row["distributor_rank_1"])) & \ (not math.isnan(row["distributor_rank_2"])) & \ (math.isnan(row["distributor_rank_3"])): if (not math.isnan(row["aux_distributor_rank_1"])) & \ (row["aux_distributor_rank_1"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_1"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_1"] elif (not math.isnan(row["aux_distributor_rank_2"])) & \ (row["aux_distributor_rank_2"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_2"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_2"] elif (not math.isnan(row["aux_distributor_rank_3"])) & \ (row["aux_distributor_rank_3"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_3"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_3"] final_ranks = final_ranks.drop( ["aux_distributor_rank_1", "aux_distributor_rank_2", "aux_distributor_rank_3"], axis=1) post_corr = final_ranks.copy() # to compare pre-post correction # add correction flags where rank2 & rank3 slot filling took place logger.info("Adding correction flags for filled rank slots") final_ranks = add_corr_flag(final_ranks, pre_corr, post_corr, col_to_compare="distributor_rank_2", corr_flag="R2F", group_cols=["dc_id", "drug_id"]) final_ranks = add_corr_flag(final_ranks, pre_corr, post_corr, col_to_compare="distributor_rank_3", corr_flag="R3F", group_cols=["dc_id", "drug_id"]) # ================== COMBINE DC-DRUG LVL & DC-TYPE LVL =================== # add dc-drug-type level ranking logger.info("Adding dc-drug-type level ranking to final df") final_ranks_type_lvl = rank_drug_type_lvl[ ["dc_id", "drug_type"]].drop_duplicates() # create dc-type level final ranking format for rank in [1, 2, 3]: df_rank = rank_drug_type_lvl.loc[ rank_drug_type_lvl["final_rank"] == rank] df_rank = df_rank[ ["dc_id", "drug_type", "distributor_id"]] df_rank.rename({"distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks_type_lvl = final_ranks_type_lvl.merge(df_rank, on=["dc_id", "drug_type"], how="left") final_ranks_type_lvl[f"distributor_rank_{rank}"] = final_ranks_type_lvl[ f"distributor_rank_{rank}"].astype(float) # combine dc-drug lvl and dc-drug-type lvl final_ranks = pd.concat([final_ranks, final_ranks_type_lvl], axis=0) final_ranks["correction_flags"] = final_ranks["correction_flags"].fillna("") return final_ranks def calc_ranks_franchisee(features, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger): # =========================== DRUG LEVEL RANKING ========================== logger.info("Franchisee-store-drug level ranking starts") # select only relevant columns required for ranking rank_drug_lvl = features[ ['store_id', 'distributor_id', 'drug_id', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'distributor_credit_period', 'request_volume_store_dist']] # set significant digits for features with decimal points rank_drug_lvl["margin"] = np.round(rank_drug_lvl["margin"], 3) rank_drug_lvl["wtd_ff"] = np.round(rank_drug_lvl["wtd_ff"], 3) rank_drug_lvl["request_volume_store_dist"] = np.round( rank_drug_lvl["request_volume_store_dist"], 3) # rank each features rank_drug_lvl["rank_margin"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['margin'].rank( method='dense', ascending=False) rank_drug_lvl["rank_ff"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_lvl["rank_store_dist_credit_period"] = \ rank_drug_lvl.groupby(['store_id'])[ 'distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_lvl['rank_store_dist_volume'] = features.groupby(['store_id'])[ 'request_volume_store_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin & ff rank_drug_lvl["wtd_rank"] = (rank_drug_lvl["rank_margin"] * weights_franchisee_drug_lvl["margin"]) + \ (rank_drug_lvl["rank_ff"] * weights_franchisee_drug_lvl["ff"]) rank_drug_lvl["wtd_rank"] = np.round(rank_drug_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["store_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_store_dist_credit_period", "rank_store_dist_volume", "rank_dist_type_portfolio_size"] sort_asc_order = group_col_sort_asc_order + [True, True, True, True] rank_drug_lvl = rank_drug_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_lvl['index'] = rank_drug_lvl.index # final ranking based on preference order rank_drug_lvl["final_rank"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['index'].rank( method='first', ascending=True) rank_drug_lvl.drop('index', axis=1, inplace=True) # ========================== D.TYPE LEVEL RANKING ========================= logger.info("Franchisee-drug-type level ranking starts") # select only relevant columns required for ranking rank_drug_type_lvl = features[ ['store_id', 'distributor_id', 'drug_id', 'drug_type', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'distributor_credit_period', 'request_volume_store_dist']] # group by dc-distributor-drug_type level and calculate features rank_drug_type_lvl = rank_drug_type_lvl.groupby( ["store_id", "distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "dist_type_portfolio_size": "first", "distributor_credit_period": "first", "request_volume_store_dist": "first"}) # round features to 3 significant digits rank_drug_type_lvl["margin"] = np.round(rank_drug_type_lvl["margin"], 3) rank_drug_type_lvl["wtd_ff"] = np.round(rank_drug_type_lvl["wtd_ff"], 3) rank_drug_type_lvl["request_volume_store_dist"] = np.round( rank_drug_type_lvl["request_volume_store_dist"], 3) # rank each features rank_drug_type_lvl["rank_margin"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['margin'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_ff"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_type_lvl["rank_store_dist_credit_period"] = \ rank_drug_type_lvl.groupby(['store_id'])[ 'distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_type_lvl['rank_store_dist_volume'] = \ rank_drug_type_lvl.groupby(['store_id'])[ 'request_volume_store_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin, ff & portfolio size rank_drug_type_lvl["wtd_rank"] = (rank_drug_type_lvl["rank_margin"] * weights_franchisee_type_lvl["margin"]) + \ (rank_drug_type_lvl["rank_ff"] * weights_franchisee_type_lvl["ff"]) + \ (rank_drug_type_lvl["rank_dist_type_portfolio_size"] * weights_franchisee_type_lvl["portfolio_size"]) rank_drug_type_lvl["wtd_rank"] = np.round(rank_drug_type_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["store_id", "drug_type"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_store_dist_credit_period", "rank_store_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] rank_drug_type_lvl = rank_drug_type_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_type_lvl['index'] = rank_drug_type_lvl.index # final ranking based on preference order rank_drug_type_lvl["final_rank"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['index'].rank( method='first', ascending=True) rank_drug_type_lvl.drop('index', axis=1, inplace=True) return rank_drug_lvl, rank_drug_type_lvl def get_final_ranks_franchisee(rank_drug_lvl, rank_drug_type_lvl, features, logger): """ get final ranking format. no slot filling logic for franchisee stores. """ final_ranks = rank_drug_lvl[["store_id", "drug_id"]].drop_duplicates() final_ranks = final_ranks.merge( features[["drug_id", "drug_type"]].drop_duplicates(), on="drug_id", how="left") logger.info("Creating final df format") # make final ranking df for rank in [1, 2, 3]: df_rank = rank_drug_lvl.loc[rank_drug_lvl["final_rank"] == rank] df_rank = df_rank[ ["store_id", "drug_id", "distributor_id"]] df_rank.rename({"distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["store_id", "drug_id"], how="left") final_ranks[f"distributor_rank_{rank}"] = final_ranks[ f"distributor_rank_{rank}"].astype(float) # add franchisee-store-drug-type level ranking logger.info("Adding franchisee-store-drug-typ level ranking to final df") final_ranks_type_lvl = rank_drug_type_lvl[ ["store_id", "drug_type"]].drop_duplicates() # create store-type level final ranking format for rank in [1, 2, 3]: df_rank = rank_drug_type_lvl.loc[ rank_drug_type_lvl["final_rank"] == rank] df_rank = df_rank[ ["store_id", "drug_type", "distributor_id"]] df_rank.rename({"distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks_type_lvl = final_ranks_type_lvl.merge(df_rank, on=["store_id", "drug_type"], how="left") final_ranks_type_lvl[f"distributor_rank_{rank}"] = final_ranks_type_lvl[ f"distributor_rank_{rank}"].astype(float) # combine store-drug lvl and store-drug-type lvl final_ranks = pd.concat([final_ranks, final_ranks_type_lvl], axis=0) return final_ranks
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/calculate_ranks1.py
calculate_ranks1.py
Q_FEATURES = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."dc-id" as "partial-dc-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", inv."mrp", d."drug-name", d.type as "drug_type", sdm."forward-dc-id", s.name as "dc-name" from "{schema}"."short-book-1" sb left join "{schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{schema}".invoices i on sbi."invoice-id" = i.id left join "{schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{schema}".drugs d on sb."drug-id" = d.id left join "{schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{schema}"."store-dc-mapping" sdm on sb."store-id" = sdm."store-id" and dis.type = sdm."drug-type" left join "{schema}".stores s on i."dc-id" = s.id where DATEDIFF(day, date(sb."created-at"), '{reset_date}') <= {time_interval} and DATEDIFF(day, date(sb."created-at"), '{reset_date}') >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' and sb."store-id" in (2,4,7,16,54,82,231,234,244,278,297,23,28,39,216,218,235,229,280,8,13,21,26,31,45,188,208,221,222,230,241,260,264,20,36,61,134,160,184,195,215,224,226,245,252,273,281) """ # (2,4,7,16,54,82,231,234,244,278,297,23,28,39,216,218,235,229,280,8,13,21,26,31,45,188,208,221,222,230,241,260,264,20,36,61,134,160,184,195,215,224,226,245,252,273,281) Q_FEATURES_FRANCHISEE = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."store-id", ss."franchisee-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", inv."mrp", d."drug-name", d.type as "drug_type", ss."name" as "store-name" from "{schema}"."short-book-1" sb left join "{schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{schema}".invoices i on sbi."invoice-id" = i.id left join "{schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{schema}".drugs d on sb."drug-id" = d.id left join "{schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{schema}".stores s on i."dc-id" = s.id left join "{schema}".stores ss on sb."store-id" = ss.id where DATEDIFF(day, date(sb."created-at"), '{reset_date}') <= {time_interval} and DATEDIFF(day, date(sb."created-at"), '{reset_date}') >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' and ss."franchisee-id" != 1 {franchisee_stores_execute_query} """ Q_DISTRIBUTORS = """ select db.id as "partial-distributor-id", db.name as "partial-distributor-name", db."credit-period" as "partial-distributor-credit-period", d."type" as "drug-type", count(distinct dd."drug-id") as "dist-type-portfolio-size" from "{schema}".distributors db left join "{schema}"."distributor-drugs" dd on db.id = dd."distributor-id" left join "{schema}".drugs d on dd."drug-id" = d.id group by "partial-distributor-id", "partial-distributor-name", "partial-distributor-credit-period", "drug-type" """ Q_DC_DISTRIBUTOR_MAPPING = """ select "dc-id" as "partial-dc-id", "distributor-id" as "partial-distributor-id" from "{schema}"."dc-distributor-mapping" ddm where "is-active" = 1 group by "dc-id" , "distributor-id" """ Q_DISTRIBUTOR_DRUGS = """ select "distributor-id" as "partial-distributor-id" , "drug-id" from "{schema}"."distributor-drugs" dd group by "distributor-id" , "drug-id" """ def pull_data_dc(reset_date, time_interval, db, schema): df_features = db.get_df(Q_FEATURES.format( reset_date=reset_date, time_interval=time_interval, schema=schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(schema=schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] df_distributors = df_distributors.dropna() df_distributors = df_distributors.loc[df_distributors["drug_type"] != ''] df_dc_distributors_mapping = db.get_df(Q_DC_DISTRIBUTOR_MAPPING.format(schema=schema)) df_dc_distributors_mapping.columns = [c.replace('-', '_') for c in df_dc_distributors_mapping.columns] df_distributor_drugs = db.get_df(Q_DISTRIBUTOR_DRUGS.format(schema=schema)) df_distributor_drugs.columns = [c.replace('-', '_') for c in df_distributor_drugs.columns] df_distributor_drugs.drop_duplicates(inplace=True) # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) df_features["mrp"] = df_features["mrp"].astype(float) return df_features, df_distributors, df_dc_distributors_mapping, df_distributor_drugs def pull_data_franchisee(reset_date, time_interval, franchisee_stores, db, schema): if franchisee_stores == [0]: franchisee_stores_execute_query = "" else: franchisee_stores_execute_query = f""" and sb."store-id" in {str(franchisee_stores).replace('[', '(').replace(']',')')} """ df_features = db.get_df(Q_FEATURES_FRANCHISEE.format( reset_date=reset_date, time_interval=time_interval, franchisee_stores_execute_query=franchisee_stores_execute_query, schema=schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(schema=schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] df_distributors = df_distributors.dropna() df_distributor_drugs = db.get_df(Q_DISTRIBUTOR_DRUGS.format(schema=schema)) df_distributor_drugs.columns = [c.replace('-', '_') for c in df_distributor_drugs.columns] df_distributor_drugs.drop_duplicates(inplace=True) # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) df_features["mrp"] = df_features["mrp"].astype(float) return df_features, df_distributors, df_distributor_drugs
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/distributor_ranking2/pull_data.py
pull_data.py
from itertools import product platform_prod = 0 store_col = 'store_id' drug_col = 'drug_id' date_col = 'date' target_col = 'actual_demand' key_col = 'ts_id' eol_cutoff = 13 mature_cutoff = 52 forecast_horizon = 4 flag_weather = 0 flag_seasonality_index = { 'ctb': 0, 'lgbm': 0, 'xgb': 0 } flag_sample_weights = { 'ctb': 0, 'lgbm': 0, 'xgb': 0 } num_shift_lag = 3 lags = [1] add_lags_diff_flag = 1 lags_diff = [(1, 2)] add_monthly_lags_flag = 1 # monthly_lags = [1, 2, 3, 6, 12] monthly_lags = [1, 2, 3, 6] rolling_time_feat = { 'lags': [5, 13, 26, 53], 'agg_func_dict': {'min', 'max', 'mean', 'median', 'std'} } ewma_lags = [4, 8] # trend_lags = [13, 26, 53] trend_lags = [13, 26] perc_noise = [0.2, 0.5, 0.1] # fc_cols = ['preds_xgb_rf_target','preds_cb_target','preds_lgb','AE', 'croston_fcst'] # models = ['croston', 'prophet', 'ETS', 'MA', 'AE_ts', 'lgbm'] run_ml_flag = 0 runs_ts_flag = 1 models = ['MA','prophet','croston','ETS','EWM'] local_testing = 0 trend = ['additive', None] seasonal = ['additive', None] damped = [True, False] seasonal_periods = [52] use_boxcox = [True, False] ets_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) similar_drug_type = ['generic', 'high-value-generic'] generic_share_in_first_3_months = 0.5 ss_upper_cap = 21 ss_lower_cap = 7 ss_harcoded = 2 store_age_limit = 90 drug_age_limit = 90 percentile_bucket_dict = { 'AW': 0.5, 'AX': 0.5, 'AY': 0.5, 'AZ': 0.5, 'BW': 0.5, 'BX': 0.5, 'BY': 0.6, 'BZ': 0.6, 'CW': 0.5, 'CX': 0.5, 'CY': 0.6, 'CZ': 0.6, 'DW': 0.5, 'DX': 0.5, 'DY': 0.6, 'DZ': 0.6} # fc_cols = ['croston_fcst', 'ETS_fcst', 'ma_fcst','prophet_fcst', 'AE_ts_fcst'] # cols_rename = { # 'preds_xgb_rf_target': 'fcst_1', # 'preds_cb_target': 'fcst_2', # 'preds_lgb':'fcst_3', # 'AE':'fcst_4', # 'croston_fcst':'fcst_5' # } # cols_rename = { # 'croston_fcst': 'fcst_1', # 'ETS_fcst': 'fcst_2', # 'ma_fcst':'fcst_3', # 'prophet_fcst':'fcst_4', # 'AE_ts_fcst':'fcst_5' # }
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/config_goodaid.py
config_goodaid.py
import numpy as np np.random.seed(0) import pandas as pd # import time # import re # from datetime import date # from dateutil.relativedelta import relativedelta # from statsmodels.tsa.exponential_smoothing.ets import ETSModel from zeno_etl_libs.utils.warehouse.forecast.errors import ape_calc, ae_calc from prophet import Prophet from statsmodels.tsa.holtwinters import ExponentialSmoothing # from statsmodels.tsa.api import ExponentialSmoothing # import sktime from sktime.forecasting.ets import AutoETS from zeno_etl_libs.utils.ipc2.helpers.helper_functions import sum_std,\ applyParallel, applyParallel_croston # from boruta import BorutaPy from zeno_etl_libs.utils.goodaid_forecast.engine.config_goodaid import ( date_col, target_col, models, ets_params ) import logging logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') class Goodaid_tS_forecast: def train_test_split(self, df, train_max_date, forecast_start): df.rename(columns={date_col: 'ds', target_col: 'y'}, inplace=True) df.sort_values(by=['ds'], inplace=True) train = df[df['ds'] <= train_max_date] test = df[df['ds'] >= forecast_start] return train, test def Croston_TSB(self, ts, extra_periods=4, alpha=0.4, beta=0.4): d = np.array(ts) # Transform the input into a numpy array cols = len(d) # Historical period length d = np.append(d, [ np.nan] * extra_periods) # Append np.nan into the demand array to cover future periods # level (a), probability(p) and forecast (f) a, p, f = np.full((3, cols + extra_periods), np.nan) # Initialization first_occurence = np.argmax(d[:cols] > 0) a[0] = d[first_occurence] p[0] = 1 / (1 + first_occurence) f[0] = p[0] * a[0] # Create all the t+1 forecasts for t in range(0, cols): if d[t] > 0: a[t + 1] = alpha * d[t] + (1 - alpha) * a[t] p[t + 1] = beta * (1) + (1 - beta) * p[t] else: a[t + 1] = a[t] p[t + 1] = (1 - beta) * p[t] f[t + 1] = p[t + 1] * a[t + 1] # Future Forecast a[cols + 1:cols + extra_periods] = a[cols] p[cols + 1:cols + extra_periods] = p[cols] f[cols + 1:cols + extra_periods] = f[cols] df = pd.DataFrame.from_dict( {"Demand": d, "Forecast": f, "Period": p, "Level": a, "Error": d - f}) return np.round(df[-extra_periods:]) def ETS_forecast(self, train, test,ets_params): try: train = train.copy(deep=True) test = test.copy(deep=True) train.set_index(['ds'], inplace=True) test.set_index(['ds'], inplace=True) train.index.freq = train.index.inferred_freq test.index.freq = test.index.inferred_freq train_final = train.copy(deep=True) out_of_sample = len(test) horizon = len(test) # Train for grid search train.drop(train.tail(out_of_sample).index, inplace=True) # dividing the series into train and validation set drug_id = train['drug_id'].values[0] input_series = train['y'].values validation = train['y'].tail(out_of_sample).values # creating dummy best fit param and fit values best_fit_params = [None, None, False, None, False] best_accuracy = np.inf # running a loop for grid search for params in ets_params: trend, seasonal, damped, seasonal_periods, use_boxcox = params try: ape = [] ae = [] # model fitting model = ExponentialSmoothing( input_series, trend=trend, seasonal=seasonal, damped=damped, seasonal_periods=seasonal_periods, use_boxcox=use_boxcox) fit = model.fit(optimized=True) # accuracy parameter can be - aic, bic, sse or mape forecast = np.round(fit.forecast(horizon)) # print(forecast) ape = [ ape_calc(actual, forecast) for actual, forecast in zip(validation, forecast)] ae = [ ae_calc(actual, forecast) for actual, forecast in zip(validation, forecast)] fit_mape = np.mean(ape) # identifying the best fit params if (fit_mape <= best_accuracy) & (fit_mape != -np.inf): best_fit_params = params best_accuracy = fit_mape except Exception as error: error_str = '''Drug {} Params {} Error: {}'''.format( drug_id, str(params), error) # logger.info(error_str) pass # creating out of output dataset trend, seasonal, damped, seasonal_periods, use_boxcox = best_fit_params model = ExponentialSmoothing( train_final['y'], trend=trend, seasonal=seasonal, damped=damped, seasonal_periods=seasonal_periods, use_boxcox=use_boxcox) fit = model.fit(optimized=True) forecast = np.round(fit.forecast(horizon+1)) forecast = forecast[-horizon:] except Exception as e: logger.info("error in ETS fcst") logger.info(str(e)) forecast = 0 return forecast def SES_forecast(self, train, test): try: train = train.copy(deep=True) test = test.copy(deep=True) train.set_index(['ds'], inplace=True) test.set_index(['ds'], inplace=True) train.index.freq = train.index.inferred_freq test.index.freq = test.index.inferred_freq fit = ExponentialSmoothing(train['y']).fit(optimized=True) # preds_ses = fit.forecast(len(test) + 1) preds_ses = np.round(fit.forecast(len(test)+1)) preds_ses = preds_ses[-len(test):] except Exception as e: logger.info("error in SES fcst") logger.info(str(e)) preds_ses = 0 return preds_ses def ma_forecast(self, data): """ Purpose: Compute MA forecast for the for the forecast horizon specified Inputs: time series to create forecast Output: series with forecasted values """ sma_df = data.copy(deep=True) yhat = [] if len(data) >= 8: for i in range(5): sma_val = sma_df.rolling(7).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) else: for i in range(5): sma_val = sma_df.rolling(len(data)).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) yhat.append(sma_val) logger.info(yhat) return np.round(yhat[-4:]) def ewm_forecast(self, data): sma_df = data.copy(deep=True) yhat = [] if len(data) >= 8: for i in range(5): sma_val = sma_df.ewm(span=7,adjust=False).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) else: for i in range(5): sma_val = sma_df.ewm(span=len(data),adjust=False).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) yhat.append(sma_val) logger.info(yhat) return np.round(yhat[-4:]) def prophet_fcst(self, train, test, params=None): # reg_list = [] try: if params is None: pro = Prophet() else: pro = Prophet(n_changepoints=params) # for j in train.columns: # if j not in col_list: # pro.add_regressor(j) # reg_list.append(j) pro.fit(train[['ds', 'y']]) pred_f = pro.predict(test) test = test[["ds", "y"]] test = pd.merge(test, pred_f, on="ds", how="left") except Exception as e: logger.info("error in prophet fcst") logger.info(str(e)) test['yhat'] = 0 return np.round(test) def ts_forecast(self, df, train_max_date, forecast_start): train, test = self.train_test_split(df, train_max_date=train_max_date, forecast_start=forecast_start) test = test.sort_values(by=['ds']) if 'croston' in models: preds_croston = self.Croston_TSB(train['y']) test['preds_croston'] = preds_croston['Forecast'].values if 'ETS' in models: preds_ETS = self.ETS_forecast(train.copy(), test.copy(),ets_params) try: test['preds_ETS'] = preds_ETS.values except: test['preds_ETS'] = np.nan if 'SES' in models: preds_SES = self.SES_forecast(train.copy(), test.copy()) try: test['preds_SES'] = preds_SES.values except: test['preds_SES'] = np.nan if 'EWM' in models: preds_ewm = self.ewm_forecast(train['y']) test['preds_ewm'] = preds_ewm if 'MA' in models: preds_ma = self.ma_forecast(train['y']) test['preds_ma'] = preds_ma if 'prophet' in models: preds_prophet = self.prophet_fcst(train.copy(), test.copy()) test['preds_prophet'] = preds_prophet['yhat'].values return test def apply_ts_forecast(self, df, train_max_date, forecast_start): # global train_date # train_date = train_max_date # global forecast_start_date # forecast_start_date = forecast_start preds = applyParallel_croston( df.groupby('ts_id'), func=self.ts_forecast, train_max_date=train_max_date, forecast_start=forecast_start ) preds.rename(columns={'ds': date_col, 'y': target_col}, inplace=True) ts_fcst_cols = [i for i in preds.columns if i.startswith('preds_')] for col in ts_fcst_cols: preds[col].fillna(0, inplace=True) preds[col] = np.where(preds[col] < 0, 0, preds[col]) preds[col] = preds[col].replace(0, np.NaN) preds['preds_AE_ts'] = preds[ts_fcst_cols].mean(axis=1,skipna=True) preds['preds_ME_ts'] = preds[ts_fcst_cols].max(axis=1) ts_fcst_cols = [i for i in preds.columns if i.startswith('preds_')] for col in ts_fcst_cols: preds[col].fillna(0, inplace=True) preds[col] = np.where(preds[col] < 0, 0, preds[col]) return preds, ts_fcst_cols
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/goodaid_ts_forecast.py
goodaid_ts_forecast.py
import os import sys import argparse sys.path.append('../../../..') import pandas as pd import numpy as np import datetime as dt from zeno_etl_libs.utils.goodaid_forecast.engine.config_goodaid import * from zeno_etl_libs.utils.goodaid_forecast.engine.goodaid_data_load import GoodaidloadData,Goodaid_data_additional_processing,b2_goodaid_load_data from zeno_etl_libs.utils.goodaid_forecast.engine.goodaid_ts_forecast import * from zeno_etl_libs.utils.goodaid_forecast.engine.goodaid_segmentation import Segmentation from zeno_etl_libs.utils.goodaid_forecast.engine.goodaid_data_pre_process import PreprocessData from dateutil.relativedelta import relativedelta def drugs_to_comp_gp(sales, sales_pred, similar_drug_mapping): # ================== aggregate drug_id to composition_id ================== # df to change sales_pred, sales, sales_daily df_drug_comp_hash = similar_drug_mapping.copy(deep = True) df_drug_comp_hash.rename(columns = {'group':'comp_gp_hash'},inplace = True) sales_pred["drug_id"] = sales_pred["drug_id"].astype(float) sales_pred1 = sales_pred.merge(df_drug_comp_hash, on="drug_id", how="left") drug_reject = sales_pred1.loc[sales_pred1["comp_gp_hash"].isnull()][ "drug_id"].unique().tolist() drug_accept = sales_pred1.loc[~sales_pred1["comp_gp_hash"].isnull()][ "drug_id"].unique().tolist() sales_pred1 = sales_pred1.dropna() sales_pred1 = sales_pred1.groupby(["store_id", "comp_gp_hash", "date"], as_index=False).agg( {"actual_demand": "sum"}) sales_pred1.rename({"comp_gp_hash": "drug_id"}, axis=1, inplace=True) sales_pred1['ts_id'] = ( sales_pred1[store_col].astype(int).astype(str) + '_' + sales_pred1[drug_col].astype(str) ) sales1 = sales.merge(df_drug_comp_hash, on="drug_id", how="left") sales1 = sales1.groupby(["store_id", "comp_gp_hash", "date"], as_index=False).agg({"actual_demand": "sum"}) sales1.rename({"comp_gp_hash": "drug_id"}, axis=1, inplace=True) sales1['ts_id'] = ( sales1[store_col].astype(int).astype(str) + '_' + sales1[drug_col].astype(str) ) return sales1, sales_pred1 def goodaid_ipc_forecast(store_id, reset_date, type_list, schema, db, logger): store_id_list = ("({})").format(store_id) # for sql pass last_date = dt.date(day=1, month=8, year=2021) # max history #baseline # last_date = pd.to_datetime(reset_date).date() - dt.timedelta(weeks=26) # capping sales history to 6 months # last_date = pd.to_datetime(reset_date).date() - dt.timedelta(weeks=52) # capping sales history to 12 months load_max_date = pd.to_datetime(reset_date).date() - dt.timedelta(days = pd.to_datetime(reset_date).dayofweek+1) # define empty variables in case of fail weekly_fcst = pd.DataFrame() ts_fcst = pd.DataFrame() ts_fcst_cols = [] # Load Data logger.info("Data Loading Started...") data_load_obj = GoodaidloadData() ( drug_list, sales_history, cfr_pr, calendar, first_bill_date, first_store_drug_bill_date, wh_goodaid_assortment, similar_drug_mapping, sales_history_add ) = data_load_obj.load_all_input( type_list=type_list, store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, schema=schema, db=db ) # PreProcess Data logger.info("Data Pre Processing Started...") data_prep_obj = PreprocessData() ( sales, sales_pred, cal_sales, sales_daily ) = data_prep_obj.preprocess_all( sales=sales_history, drug_list=drug_list, cfr_pr=cfr_pr, calendar=calendar, first_bill_date=first_bill_date, last_date=last_date ) train_max_date = sales[date_col].max() end_date = sales_pred[date_col].max() #Extra PreProcessing logger.info("Goodaid Specific Extra processing Started...") gdad_ep_obj = Goodaid_data_additional_processing() sales,sales_pred = gdad_ep_obj.goodaid_extra_processing_all(first_store_drug_bill_date=first_store_drug_bill_date, sales_pred=sales_pred, sales = sales, reset_date=reset_date, first_bill_date=first_bill_date, wh_goodaid_assortment=wh_goodaid_assortment ) #Segmentation logger.info("Segmentation Started...") seg_obj = Segmentation() seg_df, drug_class = seg_obj.get_weekly_segmentation( df=sales.copy(deep=True), df_sales_daily=sales_daily.copy(deep=True), train_max_date=train_max_date, end_date=end_date ) seg_df['reset_date'] = str(reset_date) merged_df1 = sales_pred # Forecasting ts_fcst_obj = Goodaid_tS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast( df=merged_df1.copy(), train_max_date=train_max_date, forecast_start=train_max_date + relativedelta(weeks=2)) logger.info("Forecast Completed...") # Composition/Similar drug Level Forecasting for B2 Bucket data_load_obj_new = b2_goodaid_load_data() ( drug_list_comp, sales_history_comp, cfr_pr_comp, calendar_comp, drug_info_comp, group_info_comp ) = data_load_obj_new.load_all_input( type_list=type_list, store_id_list=store_id_list, sales_pred=sales_pred, similar_drug_mapping = similar_drug_mapping, last_date=last_date, reset_date=reset_date, schema=schema, db=db ) logger.info("date fetched...") ( sales_comp, sales_pred_comp, cal_sales_comp, sales_daily_comp ) = data_prep_obj.preprocess_all( sales=sales_history_comp, drug_list=drug_list_comp, cfr_pr=cfr_pr_comp, calendar=calendar_comp, first_bill_date=first_bill_date, last_date=last_date ) logger.info("data preprocess part 1...") sales1, sales_pred1= drugs_to_comp_gp(sales_comp, sales_pred_comp, similar_drug_mapping) logger.info("data preprocess part 2...") train_max_date = sales1[date_col].max() end_date = sales_pred1[date_col].max() merged_df2 = sales_pred1 ts_fcst_obj = Goodaid_tS_forecast() ts_fcst2, ts_fcst_cols2 = ts_fcst_obj.apply_ts_forecast( df=merged_df2.copy(), train_max_date=train_max_date, forecast_start=train_max_date + relativedelta(weeks=2)) logger.info("forecast 2 completed...") ts_fcst2 = ts_fcst2.drop_duplicates( subset = ['ts_id', 'date'], keep = 'last') ts_fcst2.drop(['store_id', 'drug_id', 'actual_demand',], axis=1, inplace=True) weekly_fcst = ts_fcst.copy(deep=True) weekly_fcst['reset_date'] = reset_date weekly_fcst.drop_duplicates(inplace=True) weekly_fcst['model'] = 'AvgTS' weekly_fcst[[store_col, drug_col]] = weekly_fcst[key_col].str.split('_', expand=True) weekly_fcst.rename(columns={'preds_AE_ts': 'fcst'}, inplace=True) weekly_fcst = pd.merge(weekly_fcst, seg_df[['ts_id', 'std', 'Mixed']], how='left', on=['ts_id']) weekly_fcst.rename(columns={'Mixed': 'bucket'}, inplace=True) weekly_fcst = weekly_fcst[ ['store_id', 'drug_id', 'model', 'date', 'fcst', 'std', 'bucket','age_bucket', 'wh_assortment']] fc_cols = [i for i in weekly_fcst.columns if i.startswith('preds_')] weekly_fcst['std'].fillna(seg_df['std'].mean(), inplace=True) agg_fcst = weekly_fcst.groupby( ['model', 'store_id', 'drug_id', 'bucket']). \ agg({'fcst': 'sum', 'std': 'mean', 'age_bucket':'first', 'wh_assortment':'first'}).reset_index() agg_fcst['drug_id'] = agg_fcst['drug_id'].astype(int) weekly_fcst2 = ts_fcst2.copy(deep=True) weekly_fcst2['reset_date'] = reset_date weekly_fcst2.drop_duplicates(inplace=True) weekly_fcst2['model'] = 'AvgTS' weekly_fcst2[[store_col, drug_col]] = weekly_fcst2[key_col].str.split('_', expand=True) weekly_fcst2.rename(columns={'preds_AE_ts': 'fcst'}, inplace=True) weekly_fcst2 = weekly_fcst2[ ['store_id', 'drug_id', 'model', 'date', 'fcst']] agg_fcst2 = weekly_fcst2.groupby( ['model', 'store_id', 'drug_id']). \ agg({'fcst': 'sum'}).reset_index() agg_fcst2.rename(columns={'drug_id':'group'},inplace=True) agg_fcst2['age_bucket'] = 'B2' agg_fcst2.drop(['model'], axis=1, inplace=True) agg_fcst = agg_fcst.merge(similar_drug_mapping[['drug_id','group']],on = 'drug_id',how='left') suffix_for_similar_drugs = '_sdlf' agg_fcst = agg_fcst.merge(agg_fcst2, on = ['store_id','group','age_bucket'],how='left',suffixes=('', suffix_for_similar_drugs)) agg_fcst.drop(['group'], axis=1, inplace=True) agg_fcst['store_id'] = agg_fcst['store_id'].astype(int) col = 'fcst' condition = [agg_fcst[col + suffix_for_similar_drugs].isna(), agg_fcst[col] >= (agg_fcst[col + suffix_for_similar_drugs]) * generic_share_in_first_3_months, agg_fcst[col] < (agg_fcst[col + suffix_for_similar_drugs]) * generic_share_in_first_3_months] choice = [agg_fcst[col], agg_fcst[col], (agg_fcst[col + suffix_for_similar_drugs]) * generic_share_in_first_3_months] choice2 = ['individual','individual','composition'] agg_fcst[col + '_ol'] = agg_fcst[col] agg_fcst[col] = np.select(condition, choice) agg_fcst['fcst_level'] = np.select(condition, choice2,default='individual') return agg_fcst, cal_sales, weekly_fcst, seg_df, drug_class
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/goodaid_forecast_main.py
goodaid_forecast_main.py
import pandas as pd import datetime import numpy as np from zeno_etl_libs.utils.ipc2.config_ipc import date_col, store_col, \ drug_col, target_col, key_col, local_testing class PreprocessData: def add_ts_id(self, df): df = df[~df[drug_col].isnull()].reset_index(drop=True) df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[drug_col].astype(int).astype(str) ) return df def preprocess_sales(self, df, drug_list): df.rename(columns={ 'net_sales_quantity': target_col }, inplace=True) df.rename(columns={ 'sales_date': date_col }, inplace=True) set_dtypes = { store_col: int, drug_col: int, date_col: str, target_col: float } df = df.astype(set_dtypes) df[target_col] = df[target_col].round() df[date_col] = pd.to_datetime(df[date_col]) df = df.groupby( [store_col, drug_col, key_col, date_col] )[target_col].sum().reset_index() df = df[df[drug_col].isin(drug_list[drug_col].unique().tolist())] return df def get_formatted_data(self, df): df_start = df.groupby([key_col])[date_col].min().reset_index().rename( columns={date_col: 'sales_start'}) df = df[[key_col, date_col, target_col]] min_date = df[date_col].dropna().min() end_date = df[date_col].dropna().max() date_range = [] date_range = pd.date_range( start=min_date, end=end_date, freq='d' ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = np.nan df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = pd.merge(df, df_start, how='left', on=key_col) df = df[df[date_col] >= df['sales_start']] df[[store_col, drug_col]] = df[key_col].str.split('_', expand=True) df[[store_col, drug_col]] = df[[store_col, drug_col]].astype(int) return df def preprocess_cfr_pr(self, df): set_dtypes = { store_col: int, drug_col: int, 'loss_quantity': int } df = df.astype(set_dtypes) df['shortbook_date'] = pd.to_datetime(df['shortbook_date']) return df def merge_cfr_pr(self, sales, cfr_pr): df = sales.merge(cfr_pr, left_on=[store_col, drug_col, date_col], right_on=[store_col, drug_col, 'shortbook_date'], how='left') df[date_col] = df[date_col].combine_first(df['shortbook_date']) df[target_col].fillna(0, inplace=True) df['loss_quantity'].fillna(0, inplace=True) df[target_col] += df['loss_quantity'] df.drop(['shortbook_date', 'loss_quantity'], axis=1, inplace=True) return df def preprocess_calendar(self, df, last_date): df.rename(columns={'date': date_col}, inplace=True) df[date_col] = pd.to_datetime(df[date_col]) cal_sales = df.copy() cal_sales['week_begin_dt'] = cal_sales.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales['month_begin_dt'] = cal_sales.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) cal_sales['key'] = 1 ld = pd.to_datetime(last_date) cal_sales = cal_sales[cal_sales[date_col] > ld] return df, cal_sales def merge_calendar(self, sales, calendar): df = sales.merge(calendar, how='left', on=date_col ) # df_week_days_count = df.groupby([key_col, 'year', 'week_of_year'])[date_col].count().reset_index().rename(columns = {date_col:'week_days_count'}) # df['week_days_count'] = 1 df['week_begin_dt'] = df.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) df_week_days_count = df.groupby(['ts_id', 'week_begin_dt'])[ date_col].count().reset_index().rename( columns={date_col: 'week_days_count'}) # df = df.groupby(['ts_id', store_col, drug_col, ]).resample('W-Mon', on =date_col )[target_col].sum().reset_index() df = df.groupby(['ts_id', store_col, drug_col, 'week_begin_dt'])[ target_col].sum().reset_index() df = pd.merge(df, df_week_days_count, how='left', on=[key_col, 'week_begin_dt']) # df = df[df['week_days_count'] == 7].reset_index(drop=True) df['actual_demand'] = round((df['actual_demand']/df['week_days_count'])*7,0) df.drop(columns=['week_days_count'], inplace=True) df.rename(columns={'week_begin_dt': date_col}, inplace=True) return df def preprocess_bill_date(self, df): df.rename(columns={'store-id': store_col}, inplace=True) df['bill_date'] = pd.to_datetime(df['bill_date']) return df def merge_first_bill_date(self, sales, first_bill_date): df = pd.merge(sales, first_bill_date, on=[store_col]) df = df[df[date_col] >= df['bill_date']].reset_index(drop=True) df.drop(columns=['bill_date'], inplace=True) return df def make_future_df(self, df): start_date_df = ( df .groupby(key_col)[date_col] .min() .reset_index() .rename(columns={date_col: 'start_date'}) ) df = df[[key_col, date_col, target_col]] end_date = df[date_col].max() + datetime.timedelta(weeks=5) min_date = df[date_col].min() date_range = pd.date_range( start=min_date, end=end_date, freq="W-MON" ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = 0 df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = df.merge(start_date_df, on=key_col, how='left') df = df[ df[date_col] >= df['start_date'] ] df.drop('start_date', axis=1, inplace=True) df[[store_col, drug_col]] = df[key_col].str.split('_', expand=True) return df def preprocess_all( self, sales=None, cfr_pr=None, drug_list=None, calendar=None, first_bill_date=None, last_date=None, ): sales = self.add_ts_id(sales) # filter ################################################# if local_testing == 1: tsid_list = \ sales.sort_values(by=['net_sales_quantity'], ascending=False)[ key_col].unique().tolist()[:10] sales = sales[sales[key_col].isin(tsid_list)] ################################################# sales = self.preprocess_sales(sales, drug_list) sales = self.get_formatted_data(sales) cfr_pr = self.preprocess_cfr_pr(cfr_pr) sales_daily = self.merge_cfr_pr(sales, cfr_pr) calendar, cal_sales = self.preprocess_calendar(calendar, last_date) sales = self.merge_calendar(sales_daily, calendar) first_bill_date = self.preprocess_bill_date(first_bill_date) sales = self.merge_first_bill_date(sales, first_bill_date) sales_pred = self.make_future_df(sales.copy()) return ( sales, sales_pred, cal_sales, sales_daily )
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/goodaid_data_pre_process.py
goodaid_data_pre_process.py
import numpy as np from zeno_etl_libs.utils.ipc.lead_time import lead_time from zeno_etl_libs.utils.ipc2.helpers.correction_flag import compare_df, \ add_correction_flag from zeno_etl_libs.utils.goodaid_forecast.engine.goodaid_calculate_ss import calculate_ss from zeno_etl_libs.utils.goodaid_forecast.engine.config_goodaid import * def safety_stock_calc(agg_fcst, cal_sales, store_id, reset_date, schema, db, logger): fcst_weeks = 4 order_freq = 4 # ========================= LEAD TIME CALCULATIONS ========================= lt_drug, lt_store_mean, lt_store_std = lead_time( store_id, cal_sales, reset_date, db, schema, logger) safety_stock_df = agg_fcst.merge( lt_drug[['drug_id', 'lead_time_mean', 'lead_time_std']], how='left', on='drug_id') safety_stock_df['lead_time_mean'].fillna(lt_store_mean, inplace=True) safety_stock_df['lead_time_mean'] = safety_stock_df['lead_time_mean'].apply(np.ceil) safety_stock_df['lead_time_std'].fillna(lt_store_std, inplace=True) # ==================== SS, ROP, OUP CALCULATION BEGINS ===================== # impute store_std for cases where store-drug std<1 safety_stock_df['lead_time_std'] = np.where( safety_stock_df['lead_time_std'] < 1, lt_store_std, safety_stock_df['lead_time_std']) # calculate SS safety_stock_df = calculate_ss(safety_stock_df, fcst_weeks, logger) safety_stock_df['safety_stock_without_correction'] = safety_stock_df['safety_stock'] safety_stock_df_before = safety_stock_df # SS-DOH CAPPING #1 logger.info(f"DOH1 (Upper Capping) Correction starts") df_pre_corr = safety_stock_df.copy() cap_doh = ss_upper_cap safety_stock_df['safety_stock_max'] = np.round((safety_stock_df['fcst'] / 28) * cap_doh) safety_stock_df['safety_stock'] = np.where( safety_stock_df['safety_stock'] > safety_stock_df['safety_stock_max'], safety_stock_df['safety_stock_max'], safety_stock_df['safety_stock']) safety_stock_df.drop('safety_stock_max', axis=1, inplace=True) df_post_corr = safety_stock_df.copy() logger.info(f"Sum SS before: {df_pre_corr['safety_stock'].sum()}") logger.info(f"Sum SS after: {df_post_corr['safety_stock'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['safety_stock']) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'UDOH') # SS-DOH CAPPING #2 logger.info(f"DOH2 (lower capping) Correction starts") df_pre_corr = safety_stock_df.copy() cap_doh = ss_lower_cap safety_stock_df['safety_stock_min'] = np.round((safety_stock_df['fcst'] / 28) * cap_doh) safety_stock_df['safety_stock'] = np.where( safety_stock_df['safety_stock'] < safety_stock_df['safety_stock_min'], safety_stock_df['safety_stock_min'], safety_stock_df['safety_stock']) safety_stock_df.drop('safety_stock_min', axis=1, inplace=True) df_post_corr = safety_stock_df.copy() logger.info(f"Sum SS before: {df_pre_corr['safety_stock'].sum()}") logger.info(f"Sum SS after: {df_post_corr['safety_stock'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['safety_stock']) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'LDOH') # SS-DOH CAPPING #2 logger.info(f"If WH assortment active then No drug should have 0 SS, entering harcoded value") df_pre_corr = safety_stock_df.copy() safety_stock_df['safety_stock'] = np.where( ((safety_stock_df['safety_stock'] < ss_harcoded)&(safety_stock_df['wh_assortment']=='Yes')), ss_harcoded, safety_stock_df['safety_stock']) df_post_corr = safety_stock_df.copy() logger.info(f"Sum SS before: {df_pre_corr['safety_stock'].sum()}") logger.info(f"Sum SS after: {df_post_corr['safety_stock'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['safety_stock']) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'HDOH') # calculate ROP - add lead time demand to SS safety_stock_df['reorder_point'] = safety_stock_df.apply( lambda row: np.round( row['lead_time_mean'] * row['fcst'] / fcst_weeks / 7), axis=1) + safety_stock_df['safety_stock'] # calculate OUP - add order_freq demand to ROP safety_stock_df['order_upto_point'] = ( safety_stock_df['reorder_point'] + np.round( np.where( # if rounding off give 0, increase it to 4-week forecast (safety_stock_df['reorder_point'] + safety_stock_df[ 'fcst'] * order_freq / fcst_weeks / 7 < 0.5) & (safety_stock_df['fcst'] > 0), safety_stock_df['fcst'], safety_stock_df['fcst'] * order_freq / fcst_weeks / 7)) ) # correction for negative forecast safety_stock_df['safety_stock'] = np.where( safety_stock_df['safety_stock'] < 0, 0, safety_stock_df['safety_stock']) safety_stock_df['reorder_point'] = np.where( safety_stock_df['reorder_point'] < 0, 0, safety_stock_df['reorder_point']) safety_stock_df['order_upto_point'] = np.where( safety_stock_df['order_upto_point'] < 0, 0, safety_stock_df['order_upto_point']) # correction for OUP atleast 1 greater than ROP condition = [safety_stock_df['order_upto_point']==0,safety_stock_df['order_upto_point']>safety_stock_df['reorder_point'],safety_stock_df['order_upto_point']<=safety_stock_df['reorder_point']] choice = [safety_stock_df['order_upto_point'],safety_stock_df['order_upto_point'],safety_stock_df['order_upto_point']+1] safety_stock_df['order_upto_point'] = np.select(condition,choice) return safety_stock_df
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/goodaid_safety_stock_calculation.py
goodaid_safety_stock_calculation.py
import pandas as pd import numpy as np import time from zeno_etl_libs.django.api import Sql from zeno_etl_libs.db.db import MySQL def goodaid_doid_update(data, type_list, db, schema, logger=None, only_gaid=True): # GA skus to be omitted ga_sku_query = f""" select "drug-id" as drug_id from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where d."company-id" = 6984 """ ga_sku = db.get_df(ga_sku_query) ga_sku_list = tuple(ga_sku['drug_id']) # import pdb; pdb.set_trace() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() data = data[['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max']] data = data.rename(columns={ 'corr_min': 'min', 'corr_ss': 'safe_stock', 'corr_max': 'max'}) data = data[data['drug_id'].isin(ga_sku_list)] mysql = MySQL() sql = Sql() for store_id in data['store_id'].unique(): current_ss_query = """ SELECT doid.id, doid.`store-id` , doid.`drug-id` , doid.min, doid.`safe-stock` , doid.max FROM `drug-order-info-data` doid left join drugs d on d.id = doid.`drug-id` where doid.`store-id` = {store_id} and d.`type` in {type_list} and d.id in {ga_sku_list} and d.`company-id` = 6984 """.format(store_id=store_id, type_list=type_list, ga_sku_list=ga_sku_list, schema=schema) mysql.open_connection() current_ss = pd.read_sql(current_ss_query, mysql.connection) mysql.close() current_ss.columns = [c.replace('-', '_') for c in current_ss.columns] data_store = data.loc[ data['store_id'] == store_id, ['store_id', 'drug_id', 'min', 'safe_stock', 'max']] # Not let the code erroneously force non-gaid drugs to zero how = 'outer' ss_joined = current_ss.merge( data_store, on=['store_id', 'drug_id'], how=how, suffixes=('_old', '')) ss_joined['min'].fillna(0, inplace=True) ss_joined['safe_stock'].fillna(0, inplace=True) ss_joined['max'].fillna(0, inplace=True) new_drug_entries = new_drug_entries.append( ss_joined[ss_joined['id'].isna()]) ss_joined = ss_joined[~ss_joined['id'].isna()] logger.info('Mysql upload for store ' + str(store_id)) logger.info('New entries ' + str( ss_joined[ss_joined['id'].isna()].shape[0])) ss_joined['flag'] = np.where( (ss_joined['min_old'] == ss_joined['min']) & (ss_joined['safe_stock_old'] == ss_joined['safe_stock']) & (ss_joined['max_old'] == ss_joined['max']), 'values same', 'values changed' ) ss_to_upload = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['id', 'min', 'safe_stock', 'max']] logger.info('SS to update only for ' + str( ss_joined[ss_joined['flag'] != 'values same'].shape[0])) data_to_be_updated_list = list(ss_to_upload.apply(dict, axis=1)) if len(data_to_be_updated_list) > 0: chunk_size = 1000 for i in range(0, len(data_to_be_updated_list), chunk_size): status, msg = sql.update( {'table': 'DrugOrderInfoData', 'data_to_be_updated': data_to_be_updated_list[i:i+chunk_size]}, logger) logger.info(f"DrugOrderInfoData update API " f"count: {min(i+chunk_size, len(data_to_be_updated_list))}, status: {status}, msg: {msg}") drug_list = str(list(ss_joined.loc[ ss_joined['flag'] == 'values changed', 'drug_id'].unique()) ).replace('[', '(').replace(']', ')') update_test_query = """ SELECT `store-id` , `drug-id` , min , `safe-stock` , max from `drug-order-info-data` doid where `store-id` = {store_id} and `drug-id` in {drug_list} """.format(store_id=store_id, drug_list=drug_list, schema=schema) time.sleep(15) mysql.open_connection() update_test = pd.read_sql(update_test_query, mysql.connection) mysql.close() update_test.columns = [c.replace('-', '_') for c in update_test.columns] update_test = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['store_id', 'drug_id', 'min', 'safe_stock', 'max']].merge( update_test, on=['store_id', 'drug_id'], suffixes=('_new', '_prod')) update_test['mismatch_flag'] = np.where( (update_test['min_new'] == update_test['min_prod']) & (update_test['safe_stock_new'] == update_test[ 'safe_stock_prod']) & (update_test['max_new'] == update_test['max_prod']), 'updated', 'not updated' ) missed_entries = missed_entries.append( update_test[update_test['mismatch_flag'] == 'not updated']) logger.info( 'Entries updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'updated'].shape[0])) logger.info( 'Entries not updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'not updated'].shape[ 0])) return new_drug_entries, missed_entries
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/goodaid_doid_update_ss.py
goodaid_doid_update_ss.py
import numpy as np import pandas as pd import datetime as dt from zeno_etl_libs.utils.goodaid_forecast.engine.config_goodaid import ( store_age_limit, drug_age_limit, store_col, drug_col, key_col, similar_drug_type ) class GoodaidloadData: def load_file(self, db, query): df = db.get_df(query) df.columns = [c.replace('-', '_') for c in df.columns] return df def load_all_input( self, type_list=None, store_id_list=None, last_date=None, reset_date=None, schema=None, db=None ): drug_list = self.load_file( query=""" select id as drug_id from "{schema}".drugs where type in {0} """.format(type_list, schema=schema), db=db ) sales_history = self.load_file( query=""" select date("created-at") as "sales-date","store-id", "drug-id" , sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" in {store_id_list} and s."company-id" = 6984 -- and s."drug-id" = 487502 and date("created-at") >= '{last_date}' and date("created-at") < '{reset_date}' group by "store-id", "drug-id", "sales-date" """.format( store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, schema=schema), db=db ) cfr_pr = self.load_file( query=f""" select cfr."store-id", cfr."drug-id",cfr."shortbook-date", sum(cfr."loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" cfr left join "{schema}".drugs d on cfr."drug-id" = d.id where cfr."shortbook-date" >= '{last_date}' and d."company-id" = 6984 -- and d."id" = 487502 and cfr."shortbook-date" < '{reset_date}' and cfr."drug-id" <> -1 and (cfr."drug-category" = 'chronic' or cfr."repeatability-index" >= 40) and cfr."loss-quantity" > 0 and cfr."drug-type" in {type_list} and cfr."store-id" in {store_id_list} group by cfr."store-id",cfr."drug-id", cfr."shortbook-date" """, db=db ) calendar = self.load_file( query=""" select date, year, month, "week-of-year", "day-of-week" from "{schema}".calendar where date < '{reset_date}' """.format(schema=schema, reset_date=reset_date), db=db ) first_bill_date = self.load_file( query=""" select "store-id" , min(date("created-at")) as bill_date from "{schema}".sales where "store-id" in {store_id_list} group by "store-id" """.format(schema=schema, store_id_list=store_id_list), db=db ) first_store_drug_bill_date = self.load_file( query=""" select s."store-id" , s."drug-id" , min(date(s."created-at")) as "first-store-drug-bill" from "{schema}".sales s where s."company-id" = 6984 and s."store-id" in {store_id_list} group by s."store-id" , s."drug-id" """.format(schema=schema, store_id_list=store_id_list), db=db ) wh_goodaid_assortment = self.load_file( query=""" select d."id" as "drug-id", case when wssm."add-wh" is not null then wssm."add-wh" else 'No-Entry' end as "wh-assortment" from "{schema}".drugs d left join "{schema}"."wh-sku-subs-master" wssm on d.id = wssm."drug-id" where d."type" not in ('discontinued-products','banned') and d.company = 'GOODAID' """.format(schema=schema), db=db ) similar_drug_mapping = self.load_file( query=""" select ducm."drug-id" , ducm."group", d."type" from "{schema}"."drug-unique-composition-mapping" ducm left join "{schema}".drugs d on ducm."drug-id" = d.id """.format(schema=schema), db=db ) # Exception handling date_to_add = (dt.datetime.strptime(reset_date, '%Y-%m-%d') - dt.timedelta(days=8)).strftime('%Y-%m-%d') date_to_add2 = (dt.datetime.strptime(reset_date, '%Y-%m-%d') - dt.timedelta(days=15)).strftime('%Y-%m-%d') sales_history_add = pd.DataFrame(columns=sales_history.columns) first_store_drug_bill_date_add = pd.DataFrame(columns=first_store_drug_bill_date.columns) for stores in store_id_list: if stores in (0,'(',')'): continue stores = int(stores) drugs_in_ga_assortment = tuple(map(int, wh_goodaid_assortment['drug_id'].unique())) drugs_in_sales_history = tuple(map(int, sales_history[sales_history['store_id']==stores]['drug_id'].unique())) drugs_in_first_store_drug_bill = tuple(map(int, first_store_drug_bill_date[first_store_drug_bill_date['store_id']==stores]['drug_id'].unique())) drugs_in_assortment_but_not_in_sales_history = tuple( set(drugs_in_ga_assortment) - set(drugs_in_sales_history)) drugs_in_sales_history_but_not_in_assortment = tuple( set(drugs_in_sales_history) - set(drugs_in_ga_assortment)) drugs_in_assortment_but_not_in_first_store_drug_bill = tuple( set(drugs_in_ga_assortment) - set(drugs_in_first_store_drug_bill)) dict = {'sales_date': [date_to_add]*len(drugs_in_assortment_but_not_in_sales_history), 'store_id': [stores]*len(drugs_in_assortment_but_not_in_sales_history), 'drug_id': list(drugs_in_assortment_but_not_in_sales_history), 'net_sales_quantity':1 } sales_history_add_store = pd.DataFrame(dict) sales_history_add = pd.concat([sales_history_add_store,sales_history_add],sort = True) dict = {'sales_date': [date_to_add2]*len(drugs_in_assortment_but_not_in_sales_history), 'store_id': [stores]*len(drugs_in_assortment_but_not_in_sales_history), 'drug_id': list(drugs_in_assortment_but_not_in_sales_history), 'net_sales_quantity':1 } sales_history_add_store = pd.DataFrame(dict) sales_history_add = pd.concat([sales_history_add_store, sales_history_add], sort=True) dict2 = {'store_id':[stores]*len(drugs_in_assortment_but_not_in_first_store_drug_bill), 'drug_id':list(drugs_in_assortment_but_not_in_first_store_drug_bill), 'first_store_drug_bill':[date_to_add2]*len(drugs_in_assortment_but_not_in_first_store_drug_bill)} first_store_drug_bill_date_add_store = pd.DataFrame(dict2) first_store_drug_bill_date_add = pd.concat([first_store_drug_bill_date_add_store,first_store_drug_bill_date_add],sort = True) sales_history_add[['store_id','drug_id','net_sales_quantity']] = sales_history_add[['store_id','drug_id','net_sales_quantity']].astype(int) sales_history = pd.concat([sales_history,sales_history_add],sort=True) first_store_drug_bill_date = pd.concat([first_store_drug_bill_date, first_store_drug_bill_date_add], sort=True) return ( drug_list, sales_history, cfr_pr, calendar, first_bill_date, first_store_drug_bill_date, wh_goodaid_assortment, similar_drug_mapping, sales_history_add ) class Goodaid_data_additional_processing: def add_ts_id(self, df): df = df[~df[drug_col].isnull()].reset_index(drop=True) df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[drug_col].astype(int).astype(str) ) return df def age_bucket_bifurcation(self, df,reset_date): df['reset_date'] = reset_date df['reset_date'] = pd.to_datetime(df['reset_date']) df['bill_date'] = pd.to_datetime(df['bill_date']) df['first_store_drug_bill'] = pd.to_datetime(df['first_store_drug_bill']) df['store_age'] = (df['reset_date'] - df['bill_date']).dt.days df['drug_store_age'] = (df['reset_date'] - df['first_store_drug_bill']).dt.days conditions = [((df['store_age'] >= store_age_limit) & (df['drug_store_age'] >= drug_age_limit)), ((df['store_age'] >= store_age_limit) & (df['drug_store_age'] < drug_age_limit)), ((df['store_age'] < store_age_limit) & (df['drug_store_age'] >= drug_age_limit)), ((df['store_age'] < store_age_limit) & (df['drug_store_age'] < drug_age_limit))] choice = ['B1', 'B2', 'B2', 'B2'] df['age_bucket'] = np.select(conditions, choice) df.drop(columns=['bill_date', 'reset_date', 'first_store_drug_bill', 'store_age'], inplace=True) # df.drop(columns=['bill_date', 'reset_date', 'first_store_drug_bill', 'store_age', 'drug_store_age'], # inplace=True) return df def merge_first_store_drug_bill_date(self,sales,first_store_drug_bill_date): sales = sales.merge(first_store_drug_bill_date, on = [key_col,store_col,drug_col],how = 'left') return sales def merge_first_bill_date(self,sales,first_bill_date): sales = sales.merge(first_bill_date, on='store_id', how='left') return sales def age_bucketing(self,first_store_drug_bill_date,sales_pred,sales,reset_date,first_bill_date): sales = self.merge_first_bill_date(sales,first_bill_date) sales_pred = self.merge_first_bill_date(sales_pred,first_bill_date) first_store_drug_bill_date = self.add_ts_id(first_store_drug_bill_date) sales = self.merge_first_store_drug_bill_date(sales,first_store_drug_bill_date) sales = self.age_bucket_bifurcation(sales,reset_date) sales_pred = self.merge_first_store_drug_bill_date(sales_pred,first_store_drug_bill_date) sales_pred = self.age_bucket_bifurcation(sales_pred,reset_date) return sales,sales_pred def merge_assortment(self,sales,wh_goodaid_assortment): sales = sales.merge(wh_goodaid_assortment,on = drug_col, how = 'left') return sales def add_wh_current_assortment(self,sales_pred,sales,wh_goodaid_assortment): sales = self.merge_assortment(sales,wh_goodaid_assortment) sales_pred = self.merge_assortment(sales_pred,wh_goodaid_assortment) return sales, sales_pred def formatting_column_type_int(self,df,col): df[col] = df[col].astype(int) return df def goodaid_extra_processing_all(self,first_store_drug_bill_date,sales_pred,sales,reset_date,first_bill_date,wh_goodaid_assortment): sales = self.formatting_column_type_int(sales,store_col) sales = self.formatting_column_type_int(sales,drug_col) sales_pred = self.formatting_column_type_int(sales_pred,store_col) sales_pred = self.formatting_column_type_int(sales_pred,drug_col) first_store_drug_bill_date = self.formatting_column_type_int(first_store_drug_bill_date,store_col) first_store_drug_bill_date = self.formatting_column_type_int(first_store_drug_bill_date,drug_col) first_bill_date = self.formatting_column_type_int(first_bill_date,store_col) sales, sales_pred = self.age_bucketing(first_store_drug_bill_date,sales_pred,sales,reset_date,first_bill_date) sales, sales_pred = self.add_wh_current_assortment(sales_pred,sales,wh_goodaid_assortment) return sales,sales_pred class b2_goodaid_load_data: def load_file(self, db, query): df = db.get_df(query) df.columns = [c.replace('-', '_') for c in df.columns] return df def load_all_input( self, type_list=None, store_id_list=None, sales_pred = None, similar_drug_mapping = None, last_date=None, reset_date=None, schema=None, db=None ): drug_list = self.load_file( query=""" select id as drug_id from "{schema}".drugs where type in {0} """.format(type_list, schema=schema), db=db ) b2_drugs = tuple(map(int, sales_pred[sales_pred['age_bucket'] == 'B2']['drug_id'].unique())) group_info = similar_drug_mapping[similar_drug_mapping["drug_id"].isin(b2_drugs)] groups = tuple(map(str,group_info["group"].unique())) drug_info = similar_drug_mapping[similar_drug_mapping["group"].isin(groups)] drug_info = drug_info[drug_info['type'].isin(similar_drug_type)] similar_drugs = tuple(map(int, drug_info['drug_id'].unique())) sales_history = self.load_file( query=""" select date(s."created-at") as "sales-date",s."store-id", d1."drug-id" as "drug-id", sum(s."net-quantity") as "net-sales-quantity" from "{schema}".sales s left join "{schema}"."drug-unique-composition-mapping" d1 on s."drug-id" = d1."drug-id" where "store-id" in {store_id_list} and s."drug-id" in {similar_drugs} and date(s."created-at") >= '{last_date}' and date(s."created-at") < '{reset_date}' group by s."store-id", d1."drug-id", "sales-date" """.format(similar_drugs=similar_drugs + (0,0),groups = groups , store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, schema=schema), db=db ) cfr_pr = self.load_file( query=f""" select cfr."store-id", d1."drug-id" as "drug-id",cfr."shortbook-date", sum(cfr."loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" cfr left join "{schema}".drugs d on cfr."drug-id" = d.id left join "{schema}"."drug-unique-composition-mapping" d1 on cfr."drug-id" = d1."drug-id" where cfr."shortbook-date" >= '{last_date}' and cfr."drug-id" in {similar_drugs} and cfr."shortbook-date" < '{reset_date}' and cfr."drug-id" <> -1 and (cfr."drug-category" = 'chronic' or cfr."repeatability-index" >= 40) and cfr."loss-quantity" > 0 and cfr."drug-type" in {type_list} and cfr."store-id" in {store_id_list} group by cfr."store-id",d1."drug-id", cfr."shortbook-date" """, db=db ) calendar = self.load_file( query=""" select date, year, month, "week-of-year", "day-of-week" from "{schema}".calendar where date < '{reset_date}' """.format(schema=schema, reset_date=reset_date), db=db ) return ( drug_list, sales_history, cfr_pr, calendar, drug_info, group_info )
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/goodaid_data_load.py
goodaid_data_load.py
import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta from tqdm import tqdm import logging import warnings warnings.filterwarnings("ignore") logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') from zeno_etl_libs.utils.ipc2.config_ipc import ( date_col, target_col, store_col, drug_col, eol_cutoff ) class Segmentation: def add_ts_id(self, df): df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[drug_col].astype(int).astype(str) ) return df def _calc_abc(self, df52): B_cutoff = 0.8 C_cutoff = 0.95 D_cutoff = 0.995 tot_sales = ( df52.groupby([ 'ts_id' ])[target_col].sum().reset_index() ) tot_sales.rename(columns={target_col: 'total_LY_sales'}, inplace=True) tot_sales.sort_values('total_LY_sales', ascending=False, inplace=True) tot_sales["perc_sales"] = ( tot_sales['total_LY_sales'] / tot_sales['total_LY_sales'].sum() ) tot_sales["cum_perc_sales"] = tot_sales.perc_sales.cumsum() tot_sales["ABC"] = "A" tot_sales.loc[tot_sales.cum_perc_sales > B_cutoff, "ABC"] = "B" tot_sales.loc[tot_sales.cum_perc_sales > C_cutoff, "ABC"] = "C" tot_sales.loc[tot_sales.cum_perc_sales > D_cutoff, "ABC"] = "D" # tot_sales = self.add_ts_id(tot_sales) return tot_sales[['ts_id', 'ABC', 'total_LY_sales']] # TODO: lower COV cutoffs def get_abc_classification(self, df52): province_abc = df52.groupby( [store_col] ).apply(self._calc_abc) province_abc = province_abc[['ts_id', "ABC"]].reset_index(drop=True) # one tot_sales = ( df52 .groupby(['ts_id'])[target_col] .agg(['sum', 'mean']) .reset_index() ) tot_sales.rename( columns={'sum': 'total_LY_sales', 'mean': 'avg_ly_sales'}, inplace=True) tot_sales = tot_sales.merge( province_abc, on=['ts_id'], how='left' ) tot_sales = tot_sales.drop_duplicates() # tot_sales = self.add_ts_id(tot_sales) tot_sales = tot_sales[['ts_id', 'ABC']] return tot_sales def get_xyzw_classification(self, df1): input_ts_id = df1['ts_id'].unique() df1 = df1[df1[target_col] > 0] cov_df = df1.groupby(['ts_id'])[target_col].agg( ["mean", "std", "count", "sum"]) cov_df.reset_index(drop=False, inplace=True) cov_df['cov'] = np.where( ((cov_df["count"] > 2) & (cov_df["sum"] > 0)), (cov_df["std"]) / (cov_df["mean"]), np.nan ) cov_df['WXYZ'] = 'Z' cov_df.loc[cov_df['cov'] <= 1.2, 'WXYZ'] = 'Y' cov_df.loc[cov_df['cov'] <= 0.8, 'WXYZ'] = 'X' cov_df.loc[cov_df['cov'] <= 0.5, 'WXYZ'] = 'W' # cov_df = self.add_ts_id(cov_df) cov_df = cov_df[['ts_id', 'cov', 'WXYZ']] non_mapped_ts_ids = list( set(input_ts_id) - set(cov_df['ts_id'].unique()) ) non_mapped_cov = pd.DataFrame({ 'ts_id': non_mapped_ts_ids, 'cov': [np.nan] * len(non_mapped_ts_ids), 'WXYZ': ['Z'] * len(non_mapped_ts_ids) }) cov_df = pd.concat([cov_df, non_mapped_cov], axis=0) cov_df = cov_df.reset_index(drop=True) return cov_df def get_std(self, df1): input_ts_id = df1['ts_id'].unique() # df1 = df1[df1[target_col]>0] std_df = df1.groupby(['ts_id'])[target_col].agg(["std"]) return std_df def calc_interval_mean(self, x, key): df = pd.DataFrame({"X": x, "ts_id": key}).reset_index( drop=True).reset_index() df = df[df.X > 0] df["index_shift"] = df["index"].shift(-1) df["interval"] = df["index_shift"] - df["index"] df = df.dropna(subset=["interval"]) df['ADI'] = np.mean(df["interval"]) return df[['ts_id', 'ADI']] def calc_adi(self, df): # df = self.add_ts_id(df) logger.info( 'Combinations entering adi: {}'.format(df['ts_id'].nunique())) dict_of = dict(iter(df.groupby(['ts_id']))) logger.info("Total tsids in df: {}".format(df.ts_id.nunique())) logger.info("Total dictionary length: {}".format(len(dict_of))) list_dict = [ self.calc_interval_mean(dict_of[x][target_col], x) for x in tqdm(dict_of.keys()) ] data = ( pd.concat(list_dict) .reset_index(drop=True) .drop_duplicates() .reset_index(drop=True) ) logger.info('Combinations exiting adi: {}'.format(data.ts_id.nunique())) return data def get_PLC_segmentation(self, df, mature_cutoff_date, eol_cutoff_date): df1 = df[df[target_col] > 0] df1 = df1.groupby(['ts_id']).agg({date_col: [min, max]}) df1.reset_index(drop=False, inplace=True) df1.columns = [' '.join(col).strip() for col in df1.columns.values] df1['PLC Status L1'] = 'Mature' df1.loc[ (df1[date_col + ' min'] > mature_cutoff_date), 'PLC Status L1' ] = 'NPI' df1.loc[ (df1[date_col + ' max'] <= eol_cutoff_date), 'PLC Status L1' ] = 'EOL' # df1 = self.add_ts_id(df1) df1 = df1[['ts_id', 'PLC Status L1']] return df1 def get_group_mapping(self, seg_df): seg_df['Mixed'] = seg_df['ABC'].astype(str) + seg_df['WXYZ'].astype(str) seg_df['Group'] = 'Group3' group1_mask = seg_df['Mixed'].isin(['AW', 'AX', 'BW', 'BX']) seg_df.loc[group1_mask, 'Group'] = 'Group1' group2_mask = seg_df['Mixed'].isin(['AY', 'AZ', 'BY', 'BZ']) seg_df.loc[group2_mask, 'Group'] = 'Group2' return seg_df def calc_dem_pat(self, cov_df, adi_df): logger.info('Combinations entering calc_dem_pat: {}'.format( cov_df.ts_id.nunique())) logger.info('Combinations entering calc_dem_pat: {}'.format( adi_df.ts_id.nunique())) df = pd.merge(cov_df, adi_df, how='left', on='ts_id') df["cov2"] = np.power(df["cov"], 2) df["classification"] = "Lumpy" df.loc[ (df.ADI >= 1.32) & (df.cov2 < 0.49), "classification" ] = "Intermittent" df.loc[ (df.ADI < 1.32) & (df.cov2 >= 0.49), "classification" ] = "Erratic" df.loc[ (df.ADI < 1.32) & (df.cov2 < 0.49), "classification" ] = "Smooth" logger.info( 'Combinations exiting calc_dem_pat: {}'.format(df.ts_id.nunique())) return df[['ts_id', 'classification']] def get_start_end_dates_df(self, df, key_col, date_col, target_col, train_max_date, end_date): start_end_date_df = ( df[df[target_col] > 0] .groupby(key_col)[date_col] .agg({'min', 'max'}) .reset_index() .rename(columns={'min': 'start_date', 'max': 'end_date'}) ) start_end_date_df.loc[ ( start_end_date_df['end_date'] > ( train_max_date - relativedelta(weeks=eol_cutoff) ) ), 'end_date' ] = end_date return start_end_date_df def get_weekly_segmentation(self, df, df_sales_daily, train_max_date, end_date): df = df[df[date_col] <= train_max_date] df1 = df[ df[date_col] > (train_max_date - relativedelta(weeks=52)) ].copy(deep=True) df_std = df_sales_daily[ df_sales_daily[date_col] > (train_max_date - relativedelta(days=90)) ].copy(deep=True) df1 = self.add_ts_id(df1) abc_df = self._calc_abc(df1) xyzw_df = self.get_xyzw_classification(df1) std_df = self.get_std(df_std) adi_df = self.calc_adi(df1) demand_pattern_df = self.calc_dem_pat(xyzw_df[['ts_id', 'cov']], adi_df) mature_cutoff_date = train_max_date - relativedelta(weeks=52) eol_cutoff_date = train_max_date - relativedelta(weeks=13) plc_df = self.get_PLC_segmentation(df, mature_cutoff_date, eol_cutoff_date) start_end_date_df = self.get_start_end_dates_df( df, key_col='ts_id', date_col=date_col, target_col=target_col, train_max_date=train_max_date, end_date=end_date ) seg_df = plc_df.merge(abc_df, on='ts_id', how='outer') seg_df = seg_df.merge(xyzw_df, on='ts_id', how='outer') seg_df = seg_df.merge(adi_df, on='ts_id', how='outer') seg_df = seg_df.merge(demand_pattern_df, on='ts_id', how='outer') seg_df = seg_df.merge(start_end_date_df, on='ts_id', how='outer') seg_df = seg_df.merge(std_df, on='ts_id', how='outer') seg_df = self.get_group_mapping(seg_df) seg_df['Mixed'] = np.where(seg_df['Mixed']=='nannan', np.nan, seg_df['Mixed']) drug_class = seg_df[ ['ts_id', 'total_LY_sales', 'std', 'cov', 'ABC', 'WXYZ']] drug_class[[store_col, drug_col]] = drug_class['ts_id'].str.split('_', expand=True) drug_class.rename( columns={'total_LY_sales': 'net_sales', 'std': 'sales_std_dev', 'cov': 'sales_cov', 'ABC': 'bucket_abc', 'WXYZ': 'bucket_xyz'}, inplace=True) drug_class.drop(columns=['ts_id'], inplace=True) # seg_df[[store_col, drug_col]] = seg_df['ts_id'].str.split('_', expand = True) # seg_df.drop(columns=['ts_id'],inplace=True) # seg_df.rename(columns={'std':'sales_std_dev', 'cov':'sales_cov', 'ABC':'bucket_abcd', 'WXYZ':'bucket_wxyz', 'Mixed':'bucket'}, inplace=True) # seg_df['PLC Status L1'] = np.where(seg_df['PLC Status L1']=='NPI', 'New_Product', seg_df['PLC Status L1']) # seg_df['start_date'] = seg_df['start_date'].astype(str) # seg_df = seg_df[[store_col, drug_col,'PLC Status L1', 'total_LY_sales', 'bucket_abcd', 'bucket_wxyz', 'bucket', 'classification', 'Group', 'sales_std_dev', 'sales_cov', 'ADI', 'start_date' ]] # seg_df = pd.merge(seg_df, drug_class[[store_col, 'store_name', drug_col, ]]) return seg_df, drug_class
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/goodaid_forecast/engine/goodaid_segmentation.py
goodaid_segmentation.py
import numpy as np # Global Queries Q_REPEATABLE = """ SELECT id AS "drug-id", "is-repeatable" FROM "{schema}".drugs WHERE "is-repeatable" = 1 """ Q_PTR = """ select "drug-id", AVG(ptr) as ptr FROM "{schema}"."inventory-1" GROUP BY "drug-id" """ Q_STORES = """ select id as "store-id", name as "store-name" FROM "{schema}".stores """ Q_DRUG_INFO = """ select id as "drug-id", "drug-name", type, category FROM "{schema}".drugs """ # Queries with parameters def prep_data_from_sql(query_pass, db): data_fetched = db.get_df(query_pass) data_fetched.columns = [c.replace('-', '_') for c in data_fetched.columns] return data_fetched def query_drug_grade(store_id, schema): query = """ SELECT "drug-id", "drug-grade" FROM "{schema}"."drug-order-info" WHERE "store-id" = {0} """.format(store_id, schema=schema) return query def query_max_zero(store_id, schema): query = """ SELECT "store-id", "drug-id" FROM "{schema}"."drug-order-info" WHERE "store-id" = {0} and max = 0 """.format(store_id, schema=schema) return query def query_inventory(store_id, schema): query = """ SELECT "store-id", "drug-id", SUM(quantity) AS "current-inventory" FROM "{schema}"."inventory-1" WHERE "store-id" = {0} GROUP BY "store-id", "drug-id" """.format(store_id, schema=schema) return query def get_drug_info(store_id, db, schema): # Inventory and PTR info for order value # Also, drug-type and drug-grade q_inv = query_inventory(store_id, schema) data_inv = prep_data_from_sql(q_inv, db) data_ptr = prep_data_from_sql(Q_PTR.format(schema=schema), db) data_ptr["ptr"] = data_ptr["ptr"].astype(float) data_drug_info = prep_data_from_sql(Q_DRUG_INFO.format(schema=schema), db) q_drug_grade = query_drug_grade(store_id, schema) data_drug_grade = prep_data_from_sql(q_drug_grade, db) data_stores = prep_data_from_sql(Q_STORES.format(schema=schema), db) return data_inv, data_ptr, data_drug_info, data_drug_grade, data_stores def order_value_report(ss_drug_sales): ss_drug_sales['to_order_quantity'] = np.where( ss_drug_sales['current_inventory'] < ss_drug_sales['safety_stock'], ss_drug_sales['max'] - ss_drug_sales['current_inventory'], 0 ) ss_drug_sales['to_order_value'] = ( ss_drug_sales['to_order_quantity'] * ss_drug_sales['ptr']) order_value = ss_drug_sales.groupby( ['type', 'store_name', 'drug_grade']). \ agg({'to_order_quantity': 'sum', 'to_order_value': 'sum'}). \ reset_index() return order_value
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/new_stores/helper_functions.py
helper_functions.py
from datetime import datetime from datetime import timedelta from zeno_etl_libs.db.db import PostGre from scipy.stats import norm from zeno_etl_libs.utils.new_stores.new_store_stock_triggers import * from zeno_etl_libs.utils.new_stores.helper_functions import * def new_stores_ss_calc(store_id, run_date, db, schema, logger): ##################################################### # Final function for new stores (1-3 months) safety stock # Combines base and triggers algorithm ##################################################### # Get demand data_demand = get_demand(store_id, db, schema) # Get lead time data_lt, lt_store_mean, lt_store_std = get_lead_time(store_id, run_date) # Service level - hardcoded service_level = 0.95 z = norm.ppf(service_level) ##################################################### # SS calculation - Base algo ##################################################### data = ss_calc(data_demand, data_lt, lt_store_mean, lt_store_std, z, db, schema) data['algo_type'] = 'base' logger.info("Length Base algo data {}".format(len(data))) # Max>0 data_forecast_pos = data[data['max'] > 0].copy() logger.info("Length Base algo forecast positive - data {}".format(len(data_forecast_pos))) ##################################################### # Triggers ##################################################### # Put max==0 logic here, and pass those drug-ids, for given store data_algo_max0 = data[data['max'] == 0][['drug_id']].drop_duplicates() data_algo_max0_list = data_algo_max0['drug_id'].to_list() logger.info("Max 0 drugs from base algo, length is {}".format(len(data_algo_max0_list))) # But this is max0 from base algo, there maybe other max0 in drug-order-info # Fetching them # Formatted SQL queries q_max0 = query_max_zero(store_id, schema) data_doi_max0 = prep_data_from_sql(q_max0, db) data_doi_max0 = data_doi_max0[['drug_id']].drop_duplicates() logger.info("Max 0 drugs from mysql drug-order-info, length is {}".format(len(data_doi_max0))) # Remove drugs for which forecast is already positive data_forecast_pos_list = data_forecast_pos['drug_id'].drop_duplicates().to_list() data_doi_max0_forecast0 = data_doi_max0[~data_doi_max0['drug_id'].isin(data_forecast_pos_list)] logger.info("Max 0 drugs from mysql drug-order-info, after removing forecast positive," "length is {}".format(len(data_doi_max0_forecast0))) # Append both and take unique data_doi_max0_forecast0_append = data_doi_max0_forecast0[~data_doi_max0_forecast0['drug_id'].isin( data_algo_max0_list)] logger.info("Max 0 drugs from mysql drug-order-info, non overlapping with forecast 0, " "length is {}".format(len(data_doi_max0_forecast0_append))) max0_drugs_df = data_algo_max0.append(data_doi_max0_forecast0_append) max0_drugs_df = max0_drugs_df.drop_duplicates(subset='drug_id') logger.info("Final Max 0 drugs, length is {}".format(len(max0_drugs_df))) triggers_data, triggers_summary, \ triggers_store_report = triggers_combined(store_id, run_date, max0_drugs_df, db, schema) triggers_data = triggers_data[['drug_id', 'min', 'safety_stock', 'max']] triggers_data['algo_type'] = 'non_sales_triggers' # Output to s3 bucket # triggers_summary.to_csv(output_dir_path + f'triggers_summary_{store_id}_{run_date}.csv', # index=False) # triggers_store_report.to_csv(output_dir_path + # f'triggers_store_report_{store_id}_{run_date}.csv', index=False) logger.info("Length Triggers algo data raw {}".format(len(triggers_data))) # Remove those that are already part of base algo and already max>0 drugs_base = data_forecast_pos['drug_id'].drop_duplicates().to_list() # Overlapping triggers_data_overlap = triggers_data[triggers_data['drug_id'].isin(drugs_base)] logger.info("Length triggers algo data overlapping {}".format(len(triggers_data_overlap))) triggers_data_append = triggers_data[~triggers_data['drug_id'].isin(drugs_base)] logger.info("Length triggers algo data non-overlapping {}".format(len(triggers_data_append))) # Append base algo, and triggers algo output data_final = data_forecast_pos.append(triggers_data_append) logger.info("Length data final {}".format(len(data_final))) # Put store id data_final['store_id'] = store_id # Final schema data_final = data_final[['store_id', 'drug_id', 'min', 'safety_stock', 'max', 'algo_type']] return data_final def get_demand(store_id, db, schema): # sales query q_sales = f""" select "store-id", "drug-id", date("created-at") as "sales-date", sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" = {store_id} group by "store-id", "drug-id", "sales-date" """ data_s = db.get_df(q_sales) data_s.columns = [c.replace('-', '_') for c in data_s.columns] data_s['sales_date'] = pd.to_datetime(data_s['sales_date']) # cfr pr loss q_cfr_pr = f""" select "store-id", "drug-id", "attributed-loss-date" as "sales-date", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" where "store-id" = {store_id} and "drug-id" > 0 and "loss-quantity" > 0 group by "store-id", "drug-id", "attributed-loss-date" """ data_cfr_pr = db.get_df(q_cfr_pr) data_cfr_pr["loss-quantity"] = data_cfr_pr["loss-quantity"].astype(float) data_cfr_pr['sales-date'] = pd.to_datetime(data_cfr_pr['sales-date']) data_cfr_pr.columns = [c.replace('-', '_') for c in data_cfr_pr.columns] # Merge merge_data = data_s.merge(data_cfr_pr, how='outer', on=['store_id', 'drug_id', 'sales_date']) for i in ['net_sales_quantity', 'loss_quantity']: merge_data[i] = merge_data[i].fillna(0) merge_data['demand_quantity'] = merge_data['net_sales_quantity'] + merge_data['loss_quantity'] data_demand = merge_data.groupby(['drug_id', 'sales_date'])['demand_quantity'].sum().reset_index() data_demand = data_demand.sort_values(by=['drug_id', 'sales_date']) return data_demand def get_lead_time(store_id, run_date): # Shortbook is normally created after some delay, of actual trigger event sb_creation_delay_ethical = 1 sb_creation_delay_other = 1 sb_creation_delay_generic = 2 # Fetch data last 'N' days end_date = str(datetime.strptime(run_date, '%Y-%m-%d') - timedelta(7)) begin_date = str(datetime.strptime(run_date, '%Y-%m-%d') - timedelta(97)) # ==== TEMP READ FROM PG ==== pg = PostGre() pg.open_connection() # =========================== lead_time_query = ''' select store_id, drug_id, drug_type, status, created_at, received_at from ops_fulfillment where request_type = 'Auto Short' and store_id = {store_id} and created_at <= '{end_date}' and created_at >= '{begin_date}' and status not in ('failed', 'deleted') '''.format( store_id=store_id, end_date=end_date, begin_date=begin_date) lead_time = pd.read_sql_query(lead_time_query, pg.connection) # Convert null received at, to true null lead_time['created_at'] = pd.to_datetime(lead_time['created_at']) lead_time['received_at'].replace({'0000-00-00 00:00:00': ''}, inplace=True) lead_time['received_at'] = pd.to_datetime(lead_time['received_at']) # Calculate lead time lead_time['lead_time'] = (lead_time['received_at'] - lead_time['created_at']).astype('timedelta64[h]') / 24 # Missing value impute lead_time['lead_time'].fillna(7, inplace=True) # Incorporate delay values lead_time['lead_time'] = np.select( [lead_time['drug_type'] == 'generic', lead_time['drug_type'] == 'ethical'], [lead_time['lead_time'] + sb_creation_delay_generic, lead_time['lead_time'] + sb_creation_delay_ethical], default=lead_time['lead_time'] + sb_creation_delay_other ) # Store averages lt_store_mean = round(lead_time.lead_time.mean(), 2) lt_store_std = round(lead_time.lead_time.std(ddof=0), 2) # Summarize at drug level lt_drug = lead_time.groupby('drug_id'). \ agg({'lead_time': [np.mean, np.std]}).reset_index() lt_drug.columns = ['drug_id', 'lead_time_mean', 'lead_time_std'] # Impute for std missing lt_drug['lead_time_std'] = np.where( lt_drug['lead_time_std'].isin([0, np.nan]), lt_store_std, lt_drug['lead_time_std'] ) # ===== CLOSE PG ===== pg.close_connection() # ==================== return lt_drug, lt_store_mean, lt_store_std def ss_calc(data_demand, data_lt, lt_store_mean, lt_store_std, z, db, schema): # Drug type restrictions if any q_drugs = f""" select id as "drug-id", type from "{schema}".drugs """ # where `type` in ('ethical','generic') data_drugs = db.get_df(q_drugs) data_drugs.columns = [c.replace('-', '_') for c in data_drugs.columns] # Avg and standard deviation demand data_demand_min_date = data_demand['sales_date'].min() data_demand_max_date = data_demand['sales_date'].max() # Create full demand list, across all calendar dates, drug_id level drugs = data_demand[['drug_id']].drop_duplicates() dates = pd.DataFrame({'sales_date': pd.date_range(data_demand_min_date, data_demand_max_date, freq='D')}) drugs['key'] = 0 dates['key'] = 0 drug_dates = drugs[['drug_id', 'key']].merge(dates, on='key', how='outer')[['drug_id', 'sales_date']] data_demand_all = drug_dates.merge(data_demand, how='left', on=['drug_id', 'sales_date']) data_demand_all['demand_quantity'] = data_demand_all['demand_quantity'].fillna(0) # Merge with drugs master data_demand_all = data_demand_all.merge(data_drugs, how='left', on='drug_id') # Treat outliers ''' data_demand_all['demand_quantity'] = np.where(data_demand_all['demand_quantity'] > 20, np.log(data_demand_all['demand_quantity']), data_demand_all['demand_quantity']) ''' # Calculate demand mean and std data_demand_all_mean_std = data_demand_all.groupby(['drug_id', 'type'])['demand_quantity'].agg( ['mean', 'std']).reset_index() data_demand_all_mean_std = data_demand_all_mean_std.rename(columns={'mean': 'demand_mean', 'std': 'demand_std'}) # Merge with lead time mean and std data = data_demand_all_mean_std.merge(data_lt, how='left', on='drug_id') data['lead_time_mean'] = data['lead_time_mean'].fillna(lt_store_mean) data['lead_time_std'] = data['lead_time_std'].fillna(lt_store_std) # Safety stock calculation data['safety_stock'] = np.round(z * np.sqrt(data['lead_time_mean'] * np.square(data['demand_std']) + np.square(data['demand_mean']) * np.square(data['lead_time_std']))) data['reorder_point'] = np.round(data['lead_time_mean'] * data['demand_mean'] + data['safety_stock']) # Keep 30days stock by default data['order_upto_point'] = np.round(data['demand_mean'] * 30) # Adjustment for ethical data['order_upto_point'] = np.round(np.where(data['type'].isin(['ethical', 'high-value-ethical']), data['order_upto_point'] * (1 / 2), data['order_upto_point'] * (2 / 3))) # Sanity check, order_upto_point (max) to be not less than reorder point data['order_upto_point'] = np.round(np.where(data['order_upto_point'] < data['reorder_point'], data['reorder_point'], data['order_upto_point'])) # Where re-order point is 1,2,3 and is same as order_upto_point (max) then do max = max+1 data['order_upto_point'] = np.round(np.where(((data['reorder_point'].isin([1, 2, 3])) & (data['order_upto_point'] == data['reorder_point'])), data['order_upto_point'] + 1, data['order_upto_point'])) # order-upto-point 1,2,3 corrections # Source - ops/ipc/safety_stock one_index = data[ data['order_upto_point'].isin([1])].index data.loc[one_index, 'safety_stock'] = 0 data.loc[one_index, 'reorder_point'] = 1 data.loc[one_index, 'order_upto_point'] = 2 two_index = data[ data['order_upto_point'].isin([2])].index data.loc[two_index, 'safety_stock'] = 0 data.loc[two_index, 'reorder_point'] = 1 data.loc[two_index, 'order_upto_point'] = 2 three_index = data[ data['order_upto_point'].isin([3])].index data.loc[three_index, 'safety_stock'] = 1 data.loc[three_index, 'reorder_point'] = 2 data.loc[three_index, 'order_upto_point'] = 3 # Where re-order point is >=4 and is same as order_upto_point (max) then do max = 1.5*max data['order_upto_point'] = np.round(np.where(((data['reorder_point'] >= 4) & (data['order_upto_point'] == data['reorder_point'])), data['order_upto_point'] * 1.5, data['order_upto_point'])) # Sanity check for max again data['order_upto_point'] = np.round(np.where(data['order_upto_point'] < data['reorder_point'], data['reorder_point'], data['order_upto_point'])) data = data.rename(columns={'safety_stock': 'min', 'reorder_point': 'safety_stock', 'order_upto_point': 'max'}) data = data[['drug_id', 'min', 'safety_stock', 'max']] return data
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/new_stores/new_stores_ipc.py
new_stores_ipc.py
from zeno_etl_libs.utils.new_stores.helper_functions import * import pandas as pd import numpy as np def query_search(store_id, schema): query = f""" SELECT id, "store-id", "drug-id", "created-at" FROM "{schema}".searches WHERE "store-id" = {store_id} """ return query def query_patient_request(store_id, schema): query = f""" SELECT id, "store-id", "drug-id", "quantity", "created-at" FROM "{schema}"."short-book-1" WHERE "auto-short" = 0 and "auto-generated" = 0 and "store-id" = {store_id} """ return query def query_manual_short(store_id, schema): query = f""" SELECT id, "store-id", "drug-id", "quantity", "created-at" FROM "{schema}"."short-book-1" WHERE "auto-short" = 1 and "home-delivery" = 0 and "patient-id" != 4480 and "store-id" = {store_id} """ return query def query_local_purchase(store_id, schema): query = f""" SELECT i."store-id", i."drug-id", i."created-at", ii."invoice-item-reference", ii."actual-quantity" as quantity, ii."net-value" as "lp-value" FROM "{schema}"."inventory-1" i LEFT JOIN "{schema}"."invoice-items-1" ii ON ii.id = i."invoice-item-id" WHERE i."store-id" = {store_id} AND ii."invoice-item-reference" IS NULL """ return query def query_stock_transfer(store_id, schema): query = f""" SELECT a."source-store", a."destination-store", b."inventory-id", c."drug-id", b.quantity, b."received-at" FROM "{schema}"."stock-transfers-1" a INNER JOIN "{schema}"."stock-transfer-items-1" b on a.id = b."transfer-id" LEFT JOIN "{schema}"."inventory-1" c on b."inventory-id" = c.id WHERE a."destination-store" = {store_id} """ return query def triggers_combined(store_id, run_date, max0_drugs_df, db, schema): ############################# # Main consolidated function, for triggers ############################# # Get formatted SQL queries q_search = query_search(store_id, schema) q_pr = query_patient_request(store_id, schema) q_ms = query_manual_short(store_id, schema) q_lp = query_local_purchase(store_id, schema) q_st = query_stock_transfer(store_id, schema) # Data prep, using SQL data_merge_c = data_prep_triggers(q_search, q_pr, q_ms, q_lp, q_st, run_date, db, schema) # Augment with max0 info, current inventory info, ptr info data_merge_c = data_augment_doi_inv(data_merge_c, store_id, max0_drugs_df, db, schema) # Rule for which drugs to set max for data_merge_c = make_keep_col(data_merge_c) # Some extra filters and final df # max_set_final is the final df at drug level max_set_final, max_set_summary, max_set_f_store_summary = final_reset_sku(data_merge_c, db, schema) return max_set_final, max_set_summary, max_set_f_store_summary def pre_trigger_data_prep_c(data_pass, run_date): data = data_pass.copy() data['created_at'] = pd.to_datetime(data['created_at']) data_merge = data.copy() data_merge['day_diff_current'] = (data_merge['created_at'] - pd.to_datetime(run_date)).dt.days # Last 84days data_merge_before = data_merge[data_merge['day_diff_current'].between(-84, -1)].copy() data_merge_before['trigger_date'] = data_merge_before['created_at'].dt.date # Group, to calculate unique days of trigger, and trigger quantity data_merge_before_grp = data_merge_before.groupby(['store_id', 'drug_id']).agg({'created_at': 'count', 'trigger_date': 'nunique', 'quantity': 'sum'}).reset_index() # Rename columns data_merge_before_grp = data_merge_before_grp.rename(columns={'created_at': 'times_trigger', 'trigger_date': 'days_trigger'}) # Change to integer for i in ['drug_id', 'quantity']: data_merge_before_grp[i] = data_merge_before_grp[i].astype(int) return data_merge_before_grp def data_prep_triggers(q_search, q_pr, q_ms, q_lp, q_st, run_date, db, schema): ######################################## # Search ######################################## data_search_c = prep_data_from_sql(q_search, db) data_search_c['quantity'] = 1 data_search_grp_c = pre_trigger_data_prep_c(data_search_c, run_date) data_search_grp_c = data_search_grp_c.rename(columns={'times_trigger': 'times_searched', 'days_trigger': 'days_searched', 'quantity': 'quantity_searched'}) ######################################## # PR ######################################## data_pr_c = prep_data_from_sql(q_pr, db) data_pr_grp_c = pre_trigger_data_prep_c(data_pr_c, run_date) data_pr_grp_c = data_pr_grp_c.rename(columns={'times_trigger': 'times_pr', 'days_trigger': 'days_pr', 'quantity': 'quantity_pr'}) ######################################## # MS ######################################## data_ms_c = prep_data_from_sql(q_ms, db) data_ms_grp_c = pre_trigger_data_prep_c(data_ms_c, run_date) data_ms_grp_c = data_ms_grp_c.rename(columns={'times_trigger': 'times_ms', 'days_trigger': 'days_ms', 'quantity': 'quantity_ms'}) ######################################## # LP ######################################## data_lp_c = prep_data_from_sql(q_lp, db) data_lp_grp_c = pre_trigger_data_prep_c(data_lp_c, run_date) data_lp_grp_c = data_lp_grp_c.rename(columns={'times_trigger': 'times_lp', 'days_trigger': 'days_lp', 'quantity': 'quantity_lp'}) ######################################## # Stock transfer ######################################## data_st_c = prep_data_from_sql(q_st, db) data_st_c['received_at'] = pd.to_datetime(data_st_c['received_at'], errors='coerce') data_st_c = data_st_c[~data_st_c['received_at'].isnull()] # Exclude central stores from source-stores data_st_c = data_st_c[~data_st_c['source_store'].isin([52, 60, 92, 111])] data_st_c['store_id'] = data_st_c['destination_store'] data_st_c['created_at'] = data_st_c['received_at'] data_st_grp_c = pre_trigger_data_prep_c(data_st_c, run_date) data_st_grp_c = data_st_grp_c.rename(columns={'times_trigger': 'times_st', 'days_trigger': 'days_st', 'quantity': 'quantity_st'}) ######################################## # Merge all ######################################## data_merge_c = data_search_grp_c.merge(data_pr_grp_c, how='outer', on=['store_id', 'drug_id']) data_merge_c = data_merge_c.merge(data_ms_grp_c, how='outer', on=['store_id', 'drug_id']) data_merge_c = data_merge_c.merge(data_lp_grp_c, how='outer', on=['store_id', 'drug_id']) data_merge_c = data_merge_c.merge(data_st_grp_c, how='outer', on=['store_id', 'drug_id']) # Fill missing values with 0 data_merge_c = data_merge_c.fillna(0).astype(int) # Binary columns, which will be used later for i in ['times_searched', 'times_pr', 'times_ms', 'times_lp', 'times_st']: data_merge_c[i + '_b'] = np.where(data_merge_c[i] > 0, 1, 0) # Aggregate data_merge_c['num_triggers'] = (data_merge_c['times_searched_b'] + data_merge_c['times_pr_b'] + data_merge_c['times_ms_b'] + data_merge_c['times_lp_b'] + data_merge_c['times_st_b']) # Repeatable info merge data_r = prep_data_from_sql(Q_REPEATABLE.format(schema=schema), db) data_merge_c = data_merge_c.merge(data_r, how='left', on='drug_id') data_merge_c['is_repeatable'] = data_merge_c['is_repeatable'].fillna(0) # Columns about repeat event flags for i in ['days_searched', 'days_pr', 'days_ms', 'days_lp', 'days_st']: data_merge_c[i + '_r'] = np.where(data_merge_c[i] > 1, 1, 0) # Number of repeat triggers sum data_merge_c['num_repeat_triggers'] = (data_merge_c['days_searched_r'] + data_merge_c['days_pr_r'] + data_merge_c['days_ms_r'] + data_merge_c['days_lp_r'] + data_merge_c['days_st_r']) # Number of non search triggers data_merge_c['num_repeat_triggers_non_search'] = (data_merge_c['days_pr_r'] + data_merge_c['days_ms_r'] + data_merge_c['days_lp_r'] + data_merge_c['days_st_r']) return data_merge_c def data_augment_doi_inv(data_pass, store_id, max0_drugs_df, db, schema): # Formatted SQL queries # q_max0 = query_max_zero(store_id) q_inv = query_inventory(store_id, schema) data_merge_c = data_pass.copy() ######################################## # Max0 drugs ######################################## # connection = current_config.mysql_conn() # data_max0 = prep_data_from_sql(q_max0, connection) # data_max0['max0'] = 1 # Take max0 from df passed data_max0 = max0_drugs_df.copy() data_max0['store_id'] = store_id data_max0['max0'] = 1 ######################################## # Current inventory ######################################## q_inv = query_inventory(store_id, schema=schema) data_inv = prep_data_from_sql(q_inv, db) data_inv['curr_inv0'] = np.where(data_inv['current_inventory'] == 0, 1, 0) ######################################## # PTR ######################################## # SQL data_ptr = prep_data_from_sql(Q_PTR.format(schema=schema), db) data_ptr["ptr"] = data_ptr["ptr"].astype(float) # Merge Max info, and impute if not present data_merge_c = data_merge_c.merge(data_max0, how='inner', on=['store_id', 'drug_id']) data_merge_c['max0'] = data_merge_c['max0'].fillna(0) # Merge inventory and impute if not present data_merge_c = data_merge_c.merge(data_inv, how='left', on=['store_id', 'drug_id']) data_merge_c['curr_inv0'] = data_merge_c['curr_inv0'].fillna(1) # Merge PTR and impute an average value if null data_merge_c = data_merge_c.merge(data_ptr, how='left', on=['drug_id']) data_merge_c['ptr'] = data_merge_c['ptr'].fillna(67) # Max0, inv0 both data_merge_c['max0_inv0'] = data_merge_c['max0'] * data_merge_c['curr_inv0'] return data_merge_c def make_keep_col(data_pass): data = data_pass.copy() # Rule is written here, for if we want to set max for a drug data['keep'] = np.where(((data['num_triggers'] >= 4) | ((data['num_triggers'] == 3) & (data['num_repeat_triggers'] >= 1)) | ((data['num_triggers'] == 3) & (data['num_repeat_triggers'] == 0) & ( data['is_repeatable'] == 1)) | ((data['num_triggers'] == 2) & (data['num_repeat_triggers'] >= 2)) | ((data['num_triggers'] == 2) & (data['num_repeat_triggers'] == 1) & ( data['is_repeatable'] == 1)) | ((data['num_triggers'] == 2) & (data['num_repeat_triggers'] == 1) & ( data['num_repeat_triggers_non_search'] == 1)) | ((data['num_triggers'] == 1) & (data['num_repeat_triggers'] == 1) & ( data['is_repeatable'] == 1)) | ((data['num_triggers'] == 1) & (data['num_repeat_triggers'] == 1) & ( data['num_repeat_triggers_non_search'] == 1)) ), 1, 0) # Rounding off to 2 decimals for i in ['max0', 'curr_inv0', 'max0_inv0']: data[i] = np.round(data[i], 2) # Columns for order information data['sku'] = 1 data['keep_sku'] = (data['sku'] * data['keep'] * data['max0']).astype(int) data['order_sku'] = (data['sku'] * data['keep'] * data['max0_inv0']).astype(int) data['max_value'] = data['keep_sku'] * data['ptr'] data['order_value'] = data['order_sku'] * data['ptr'] return data def final_reset_sku(data_pass, db, schema): data_merge_c = data_pass.copy() ######################################## # Some hardcoded decisions, to control inventory rise ######################################## # Should be revisited later max_set = data_merge_c[(data_merge_c['keep_sku'] == 1)].copy() # Summary by triggers max_set_summary = max_set.groupby(['num_triggers', 'num_repeat_triggers', 'num_repeat_triggers_non_search', 'is_repeatable']).agg({'drug_id': 'count', 'max0': 'mean', 'curr_inv0': 'mean', 'max0_inv0': 'mean'}).reset_index() max_set_summary = max_set_summary.rename(columns={'drug_id': 'drugs'}) max_set_summary['is_repeatable'] = max_set_summary['is_repeatable'].astype('int') max_set_summary = max_set_summary.sort_values(by=['num_triggers', 'num_repeat_triggers', 'is_repeatable', 'num_repeat_triggers_non_search'], ascending=(False, False, False, False)) # Some high value ethical drugs, can increase order value max_set_f1 = max_set[max_set['ptr'] <= 300].copy() # Keep only 2+ triggers for now max_set_f2 = max_set_f1[max_set_f1['num_triggers'] >= 2].copy() # Stores info merge # SQL stores = prep_data_from_sql(Q_STORES.format(schema=schema), db) max_set_f = max_set_f2.merge(stores, how='left', on='store_id') # Order summary for store max_set_f_store_summary = max_set_f.groupby(['store_id', 'store_name'])[ 'keep_sku', 'order_sku', 'max_value', 'order_value'].sum().reset_index() for i in ['max_value', 'order_value']: max_set_f_store_summary[i] = np.round(max_set_f_store_summary[i], 0).astype(int) # Min, SS, Max to be set as 0,0,1 # Can be revisited later if policy change or more confidence max_set_final = max_set_f[['store_id', 'drug_id']].drop_duplicates() max_set_final['min'] = 0 max_set_final['safety_stock'] = 0 max_set_final['max'] = 1 # 'max_set_final' is the final df, at drug level # Rest data-frames are summary data-frames return max_set_final, max_set_summary, max_set_f_store_summary
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/new_stores/new_store_stock_triggers.py
new_store_stock_triggers.py
import numpy as np import pandas as pd def get_ga_composition_sku(db, schema, substition_type=['generic'], logger=None): ''' to get good aid sku and top sku ''' # Good Aid SKU list ga_sku_query = """ select wh."drug-id" , d.composition from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where wh."add-wh" = 'Yes' and d."company-id" = 6984 and d.type in {0} """.format(str(substition_type).replace('[', '(').replace(']', ')'), schema=schema) ga_sku = db.get_df(ga_sku_query) ga_sku.columns = [c.replace('-', '_') for c in ga_sku.columns] logger.info('GoodAid SKU list ' + str(ga_sku.shape[0])) # ga_sku_query = ''' # select drug_id, composition # from good_aid_substitution_sku # where start_date <= '{}' # '''.format(current_date) # pg_connection = current_config.data_science_postgresql_conn() # ga_sku = pd.read_sql_query(ga_sku_query, pg_connection) # pg_connection.close() # logger.info('GoodAid SKU list ' + str(ga_sku.shape[0])) # Generic Top SKU ga_active_composition = tuple(ga_sku['composition'].values) top_sku_query = """ select wh."drug-id" , d.composition from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where wh."add-wh" = 'Yes' and d."company-id" != 6984 and d.type in {0} and d.composition in {1} """.format(str(substition_type).replace('[', '(').replace(']', ')'), str(ga_active_composition), schema=schema) top_sku = db.get_df(top_sku_query) top_sku.columns = [c.replace('-', '_') for c in top_sku.columns] logger.info('GoodAid comp Top SKU list ' + str(top_sku.shape[0])) # ga_active_composition = tuple(ga_sku['composition'].values) # top_sku_query = ''' # select drug_id, composition # from good_aid_generic_sku # where active_flag = 'YES' # and composition in {} # '''.format(str(ga_active_composition)) # pg_connection = current_config.data_science_postgresql_conn() # top_sku = pd.read_sql_query(top_sku_query, pg_connection) # pg_connection.close() # logger.info('GoodAid comp Top SKU list ' + str(top_sku.shape[0])) # SS substition for other drugs rest_sku_query = """ select id as drug_id, composition from "{schema}".drugs where composition in {0} and id not in {1} and type in {2} """.format(str(ga_active_composition), str(tuple(top_sku['drug_id'].values)), str(substition_type).replace('[', '(').replace(']', ')'), schema=schema) rest_sku = db.get_df(rest_sku_query) logger.info('GoodAid comp rest SKU list ' + str(rest_sku.shape[0])) return ga_sku, top_sku, rest_sku def update_ga_ss(safety_stock_df, store_id, db, schema, ga_inv_weight=0.5, rest_inv_weight=0, top_inv_weight=1, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=None): '''updating safety stock for good aid ''' # good aid ss log good_aid_ss_log = pd.DataFrame() pre_max_qty = safety_stock_df[max_column].sum() # get drug list logger.info('Getting SKU list') ga_sku, top_sku, rest_sku = get_ga_composition_sku(db, schema, substition_type, logger) # get composition level ss numbers logger.info('Aggregating composition level SS') ga_composition = pd.concat([ga_sku, top_sku, rest_sku], axis=0) columns_list = ['drug_id', 'composition', min_column, ss_column, max_column] ga_composition_ss = ga_composition.merge( safety_stock_df, on='drug_id')[columns_list] ga_composition_ss_agg = ga_composition_ss.groupby( ['composition'])[min_column, ss_column, max_column].sum(). \ reset_index() # get index for different drug lists rest_sku_index = safety_stock_df[ safety_stock_df['drug_id'].isin(rest_sku['drug_id'])].index top_sku_index = safety_stock_df[ safety_stock_df['drug_id'].isin(top_sku['drug_id'])].index ga_sku_index = safety_stock_df[ safety_stock_df['drug_id'].isin(ga_sku['drug_id'])].index logger.info('Updating safety stock') # logging rest SKU ss from algo prev_rest_sku_ss = safety_stock_df.loc[rest_sku_index]. \ merge(rest_sku)[columns_list] prev_rest_sku_ss['sku_type'] = 'rest generic' good_aid_ss_log = good_aid_ss_log.append(prev_rest_sku_ss) # setting rest SKU ss safety_stock_df.loc[rest_sku_index, min_column] = np.round( rest_inv_weight * safety_stock_df.loc[rest_sku_index, min_column]) safety_stock_df.loc[rest_sku_index, ss_column] = np.round( rest_inv_weight * safety_stock_df.loc[rest_sku_index, ss_column]) safety_stock_df.loc[rest_sku_index, max_column] = np.round( rest_inv_weight * safety_stock_df.loc[rest_sku_index, max_column]) # logging rest SKU ss from algo prev_top_sku_ss = safety_stock_df.loc[top_sku_index]. \ merge(top_sku)[columns_list] prev_top_sku_ss['sku_type'] = 'top generic' good_aid_ss_log = good_aid_ss_log.append(prev_top_sku_ss) # settng top SKU ss safety_stock_df.loc[top_sku_index, min_column] = np.round( top_inv_weight * safety_stock_df.loc[top_sku_index, min_column]) safety_stock_df.loc[top_sku_index, ss_column] = np.round( top_inv_weight * safety_stock_df.loc[top_sku_index, ss_column]) safety_stock_df.loc[top_sku_index, max_column] = np.round( top_inv_weight * safety_stock_df.loc[top_sku_index, max_column]) # logging goodaid SKU ss from algo prev_ga_sku_ss = safety_stock_df.loc[ga_sku_index]. \ merge(ga_sku)[columns_list] prev_ga_sku_ss['sku_type'] = 'good aid' good_aid_ss_log = good_aid_ss_log.append(prev_ga_sku_ss) # setting goodaid SKU ss ga_sku_ss = ga_composition_ss_agg.merge(ga_sku)[columns_list] ga_sku_ss[min_column] = np.round(ga_inv_weight * ga_sku_ss[min_column]) ga_sku_ss[ss_column] = np.round(ga_inv_weight * ga_sku_ss[ss_column]) ga_sku_ss[max_column] = np.round(ga_inv_weight * ga_sku_ss[max_column]) ss_df_columns = safety_stock_df.columns safety_stock_df = safety_stock_df.merge( ga_sku_ss, how='left', on=['drug_id']) safety_stock_df[min_column] = np.max( safety_stock_df[[min_column + '_y', min_column + '_x']], axis=1) safety_stock_df[ss_column] = np.max( safety_stock_df[[ss_column + '_y', ss_column + '_x']], axis=1) safety_stock_df[max_column] = np.max( safety_stock_df[[max_column + '_y', max_column + '_x']], axis=1) safety_stock_df = safety_stock_df[ss_df_columns] # updating new good aid skus ga_sku_new_entries = ga_sku_ss.loc[ ~ga_sku_ss['drug_id'].isin(safety_stock_df['drug_id'])] if len(ga_sku_new_entries) > 0: ga_sku_new_entries_drug_list = str( list(ga_sku_new_entries['drug_id']) ).replace('[', '(').replace(']', ')') ga_sku_drug_info_query = """ select d.id as drug_id, "drug-name" as drug_name, type, coalesce(doi."drug-grade", 'NA') as drug_grade from "{schema}".drugs d left join "{schema}"."drug-order-info" doi on d.id = doi."drug-id" where d.id in {0} and doi."store-id" = {1} """.format(ga_sku_new_entries_drug_list, store_id, schema=schema) ga_sku_drug_info = db.get_df(ga_sku_drug_info_query) ga_sku_new_entries = ga_sku_new_entries.merge(ga_sku_drug_info) # filling the relevant columns ga_sku_new_entries['model'] = 'NA' ga_sku_new_entries['bucket'] = 'NA' ga_sku_new_entries['fcst'] = 0 ga_sku_new_entries['std'] = 0 ga_sku_new_entries['lead_time_mean'] = 0 ga_sku_new_entries['lead_time_std'] = 0 ga_sku_new_entries['correction_flag'] = 'N' safety_stock_df = safety_stock_df.append( ga_sku_new_entries)[ss_df_columns] good_aid_ss_log.insert( loc=0, column='store_id', value=store_id) # renaming min/ss/max column name according to the table good_aid_ss_log.rename( columns={min_column: 'safety_stock', ss_column: 'reorder_point', max_column: 'order_upto_point'}, inplace=True) post_max_qty = safety_stock_df[max_column].sum() print('Reduction in max quantity:', str(round(100 * (1 - post_max_qty / pre_max_qty), 2)) + '%') return safety_stock_df, good_aid_ss_log
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/goodaid_substitution.py
goodaid_substitution.py
import numpy as np import math import datetime as dt """ Steps - 1. Get Auto short total time -> from creation to received at store 2. If marked as lost make it 7 days 3. Max LT capped at 7 days Recent corrections: 1. AS & MS added (earlier only AS) 2. In case of no history in past 90 days, set default store_lt = 4 days """ def lead_time(store_id, cal_sales, reset_date, db, schema, logger=None): # sb_creation_delay_ethical = 1 # sb_creation_delay_other = 1 # sb_creation_delay_generic = 2 end_date = str(( dt.datetime.strptime(reset_date, '%Y-%m-%d') - dt.timedelta(7)).date()) begin_date = str(cal_sales.date.dt.date.max() - dt.timedelta(97)) logger.info("Lead Time Calculation Starts") logger.info(f"SB Begin Date: {begin_date}, SB End Date: {end_date}") lead_time_query = f""" select "store-id" , "drug-id" , "type" , status , "created-to-delivery-hour" as "lt-hrs" from "{schema}"."as-ms" am where "as-ms" in ('AS', 'MS') and "store-id" = {store_id} and date("created-at") <= '{end_date}' and date("created-at") >= '{begin_date}' and status not in ('failed', 'deleted') """ lead_time = db.get_df(lead_time_query) lead_time.columns = [c.replace('-', '_') for c in lead_time.columns] # classify all types into generic, ethical & others lead_time["type"] = np.where( lead_time["type"].isin(['ethical', 'high-value-ethical']), 'ethical', lead_time["type"]) lead_time["type"] = np.where(lead_time["type"].isin(['ethical', 'generic']), lead_time["type"], 'others') lead_time["lt_days"] = lead_time["lt_hrs"] / 24 lead_time["lt_days"] = lead_time["lt_days"].fillna(7) lead_time["lt_days"] = np.where(lead_time["lt_days"] < 1, 1, lead_time["lt_days"]) # min cutoff lead_time["lt_days"] = np.where(lead_time["lt_days"] > 7, 7, lead_time["lt_days"]) # max cutoff # add SB creation delay # lead_time['lt_days'] = np.select( # [lead_time['type'] == 'generic', # lead_time['type'] == 'ethical'], # [lead_time['lt_days'] + sb_creation_delay_generic, # lead_time['lt_days'] + sb_creation_delay_ethical], # default=lead_time['lt_days'] + sb_creation_delay_other) lt_store_mean = round(lead_time.lt_days.mean(), 2) lt_store_std = round(lead_time.lt_days.std(ddof=0), 2) # to handle cases where no AS,MS history in past 90 days if math.isnan(lt_store_mean): lt_store_mean = 4 if math.isnan(lt_store_std): lt_store_std = 0 lt_drug = lead_time.groupby('drug_id'). \ agg({'lt_days': [np.mean, np.std]}).reset_index() lt_drug.columns = ['drug_id', 'lead_time_mean', 'lead_time_std'] lt_drug['lead_time_std'] = np.where( lt_drug['lead_time_std'].isin([0, np.nan]), lt_store_std, lt_drug['lead_time_std']) logger.info("Lead Time Calculation Completed") return lt_drug, lt_store_mean, lt_store_std
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/lead_time.py
lead_time.py
import numpy as np def generic_portfolio(safety_stock_df, db, schema, logger=None): """ To keep at least 1 drug in every active generic compositions """ comp_drugs_to_keep = get_preference_drugs(db, schema, logger) # get compositions of all generic drugs in store with OUP>0 all_drugs = tuple(safety_stock_df.loc[ safety_stock_df["order_upto_point"] > 0][ "drug_id"].unique()) q_gen_drugs = f""" select id as "drug-id", composition from "{schema}".drugs d where id in {all_drugs} and "type" = 'generic' """ df_gen_drugs = db.get_df(q_gen_drugs) df_gen_drugs.columns = [c.replace('-', '_') for c in df_gen_drugs.columns] df_gen_drugs = df_gen_drugs.loc[df_gen_drugs["composition"] != ''] compostitions_in_store = list(df_gen_drugs["composition"].unique()) # get additional composition-drugs to add compositon_not_in_store = comp_drugs_to_keep.loc[ ~comp_drugs_to_keep["composition"].isin(compostitions_in_store)] logger.info(f"To keep {compositon_not_in_store.shape[0]} additional " f"composition-drugs in store") # drugs to add in current ss table drugs_to_add = compositon_not_in_store[["drug_id", "std_qty"]] final_df = safety_stock_df.merge(drugs_to_add, on="drug_id", how="outer") # handle NaN columns for additional drugs final_df["model"] = final_df["model"].fillna('NA') final_df["bucket"] = final_df["bucket"].fillna('NA') final_df['fcst'] = final_df['fcst'].fillna(0) final_df['std'] = final_df['std'].fillna(0) final_df['lead_time_mean'] = final_df['lead_time_mean'].fillna(0) final_df['lead_time_std'] = final_df['lead_time_std'].fillna(0) final_df["safety_stock"] = final_df["safety_stock"].fillna(0) final_df["reorder_point"] = final_df["reorder_point"].fillna(0) final_df["order_upto_point"] = final_df["order_upto_point"].fillna(0) # set OUP=STD_QTY for added drugs final_df["order_upto_point"] = np.where(final_df["std_qty"].notna(), final_df["std_qty"], final_df["order_upto_point"]) final_df = final_df.drop("std_qty", axis=1) return final_df def get_preference_drugs(db, schema, logger=None): """ Get all active generic compositions in WH and the preferred drugs in that compositions, the preference order is as follows: * Choose GAID if available * Else choose highest selling drug in past 90 days at system level """ q_wh_gen_sku = f""" select wssm."drug-id" , d.composition , d."company-id" from "{schema}"."wh-sku-subs-master" wssm left join "{schema}".drugs d on wssm."drug-id" = d.id where "add-wh" = 'Yes' and d."type" = 'generic' """ df_wh_gen_sku = db.get_df(q_wh_gen_sku) df_wh_gen_sku.columns = [c.replace('-', '_') for c in df_wh_gen_sku.columns] # clear drugs with no composition present df_wh_gen_sku = df_wh_gen_sku.loc[df_wh_gen_sku["composition"] != ''] logger.info(f"Distinct generic compositions in WH: {len(df_wh_gen_sku.composition.unique())}") logger.info(f"Distinct generic drugs in WH: {df_wh_gen_sku.shape[0]}") drug_ids = tuple(df_wh_gen_sku.drug_id.unique()) # get past 90 days sales info of the preferred drugs q_sales = f""" select "drug-id" , sum("revenue-value") as "gross-sales" from "{schema}".sales s where "drug-id" in {drug_ids} and datediff('day', date("created-at"), CURRENT_DATE ) < 90 and "bill-flag" = 'gross' group by "drug-id" """ df_sales = db.get_df(q_sales) df_sales.columns = [c.replace('-', '_') for c in df_sales.columns] df_wh_gen_sku = df_wh_gen_sku.merge(df_sales, on="drug_id", how="left") df_wh_gen_sku["gross_sales"] = df_wh_gen_sku["gross_sales"].fillna(0) df_wh_gen_sku["is_gaid"] = np.where(df_wh_gen_sku["company_id"] == 6984, 1, 0) # order priority: GA, Sales df_wh_gen_sku = df_wh_gen_sku.sort_values( by=['composition', 'is_gaid', 'gross_sales'], ascending=False) # choose the first preference for every composition comp_drug_list = df_wh_gen_sku.groupby('composition', as_index=False).agg( {'drug_id': 'first'}) # get std-qty to keep q_drug_std_info = f""" select "drug-id" , "std-qty" from "{schema}"."drug-std-info" dsi """ df_drug_std_info = db.get_df(q_drug_std_info) df_drug_std_info.columns = [c.replace('-', '_') for c in df_drug_std_info.columns] comp_drug_list = comp_drug_list.merge(df_drug_std_info, on="drug_id", how="left") # fill NA values with defaults comp_drug_list["std_qty"] = comp_drug_list["std_qty"].fillna(1) return comp_drug_list
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/store_portfolio_additions.py
store_portfolio_additions.py
import pandas as pd import numpy as np import time from zeno_etl_libs.django.api import Sql from zeno_etl_libs.db.db import MySQL def doid_update(data, type_list, db, schema, logger=None, gaid_omit=True): # GA skus to be omitted ga_sku_query = f""" select "drug-id" as drug_id from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where d."company-id" = 6984 """ ga_sku = db.get_df(ga_sku_query) ga_sku_list = tuple(ga_sku['drug_id']) # import pdb; pdb.set_trace() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() data = data[['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max']] data = data.rename(columns={ 'corr_min': 'min', 'corr_ss': 'safe_stock', 'corr_max': 'max'}) # check if gaid drugs need not to be omitted if gaid_omit == False: ga_sku_list = (0, 0) data = data[~data['drug_id'].isin(ga_sku_list)] mysql = MySQL() sql = Sql() for store_id in data['store_id'].unique(): current_ss_query = """ SELECT doid.id, doid.`store-id` , doid.`drug-id` , doid.min, doid.`safe-stock` , doid.max FROM `drug-order-info-data` doid left join drugs d on d.id = doid.`drug-id` where doid.`store-id` = {store_id} and d.`type` in {type_list} and d.id not in {ga_sku_list} """.format(store_id=store_id, type_list=type_list, ga_sku_list=ga_sku_list, schema=schema) mysql.open_connection() current_ss = pd.read_sql(current_ss_query, mysql.connection) mysql.close() current_ss.columns = [c.replace('-', '_') for c in current_ss.columns] data_store = data.loc[ data['store_id'] == store_id, ['store_id', 'drug_id', 'min', 'safe_stock', 'max']] # Not let the code erroneously force non-gaid drugs to zero how = 'outer' if not gaid_omit: how = 'right' ss_joined = current_ss.merge( data_store, on=['store_id', 'drug_id'], how=how, suffixes=('_old', '')) ss_joined['min'].fillna(0, inplace=True) ss_joined['safe_stock'].fillna(0, inplace=True) ss_joined['max'].fillna(0, inplace=True) new_drug_entries = new_drug_entries.append( ss_joined[ss_joined['id'].isna()]) ss_joined = ss_joined[~ss_joined['id'].isna()] logger.info('Mysql upload for store ' + str(store_id)) logger.info('New entries ' + str( ss_joined[ss_joined['id'].isna()].shape[0])) ss_joined['flag'] = np.where( (ss_joined['min_old'] == ss_joined['min']) & (ss_joined['safe_stock_old'] == ss_joined['safe_stock']) & (ss_joined['max_old'] == ss_joined['max']), 'values same', 'values changed' ) ss_to_upload = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['id', 'min', 'safe_stock', 'max']] logger.info('SS to update only for ' + str( ss_joined[ss_joined['flag'] != 'values same'].shape[0])) data_to_be_updated_list = list(ss_to_upload.apply(dict, axis=1)) if len(data_to_be_updated_list) > 0: chunk_size = 1000 for i in range(0, len(data_to_be_updated_list), chunk_size): status, msg = sql.update( {'table': 'DrugOrderInfoData', 'data_to_be_updated': data_to_be_updated_list[i:i+chunk_size]}, logger) logger.info(f"DrugOrderInfoData update API " f"count: {min(i+chunk_size, len(data_to_be_updated_list))}, status: {status}, msg: {msg}") drug_list = str(list(ss_joined.loc[ ss_joined['flag'] == 'values changed', 'drug_id'].unique()) ).replace('[', '(').replace(']', ')') update_test_query = """ SELECT `store-id` , `drug-id` , min , `safe-stock` , max from `drug-order-info-data` doid where `store-id` = {store_id} and `drug-id` in {drug_list} """.format(store_id=store_id, drug_list=drug_list, schema=schema) time.sleep(15) mysql.open_connection() update_test = pd.read_sql(update_test_query, mysql.connection) mysql.close() update_test.columns = [c.replace('-', '_') for c in update_test.columns] update_test = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['store_id', 'drug_id', 'min', 'safe_stock', 'max']].merge( update_test, on=['store_id', 'drug_id'], suffixes=('_new', '_prod')) update_test['mismatch_flag'] = np.where( (update_test['min_new'] == update_test['min_prod']) & (update_test['safe_stock_new'] == update_test[ 'safe_stock_prod']) & (update_test['max_new'] == update_test['max_prod']), 'updated', 'not updated' ) missed_entries = missed_entries.append( update_test[update_test['mismatch_flag'] == 'not updated']) logger.info( 'Entries updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'updated'].shape[0])) logger.info( 'Entries not updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'not updated'].shape[ 0])) return new_drug_entries, missed_entries
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/doid_update_ss.py
doid_update_ss.py
import numpy as np def post_processing(store_id, drug_class, weekly_fcst, safety_stock_df, db, schema, logger): ''' getting drug name, type, grades, store name''' drug_id_list = tuple(drug_class.drug_id.unique()) drug_info_query = """ select d.id as drug_id, "drug-name" as drug_name, type, coalesce(doi."drug-grade", 'NA') as drug_grade from "{schema}".drugs d left join "{schema}"."drug-order-info" doi on d.id = doi."drug-id" where d.id in {0} and doi."store-id" = {1} """.format(str(drug_id_list), store_id, schema=schema) drug_info = db.get_df(drug_info_query) q_store_name = f""" select name from "{schema}".stores where id = {store_id} """ store_name = db.get_df(q_store_name)['name'][0] safety_stock_df['store_id'] = store_id safety_stock_df['store_name'] = store_name safety_stock_df = safety_stock_df.merge( drug_info, on='drug_id', how='left') safety_stock_df['drug_grade'].fillna('NA', inplace=True) safety_stock_df = safety_stock_df[[ 'store_id', 'store_name', 'model', 'drug_id', 'drug_name', 'type', 'drug_grade', 'bucket', 'percentile', 'fcst', 'std', 'lead_time_mean', 'lead_time_std', 'safety_stock', 'reorder_point', 'order_upto_point', 'safety_stock_days', 'reorder_days', 'order_upto_days', 'fptr', 'curr_inventory', 'max_value','correction_flag']] weekly_fcst['store_id'] = store_id weekly_fcst['store_name'] = store_name weekly_fcst = weekly_fcst[['store_id', 'store_name', 'model', 'drug_id', 'date', 'fcst', 'std']] drug_class['store_id'] = store_id drug_class['store_name'] = store_name drug_class = drug_class.merge( drug_info[['drug_id', 'drug_grade', 'type']], on='drug_id', how='left') drug_class['drug_grade'].fillna('NA', inplace=True) drug_class = drug_class[['store_id', 'store_name', 'drug_id', 'drug_grade', 'type', 'net_sales', 'sales_std_dev', 'sales_cov', 'bucket_abc', 'bucket_xyz']] '''Getting order value''' safety_stock_df['to_order_quantity'] = np.where( safety_stock_df['curr_inventory'] <= safety_stock_df['reorder_point'], safety_stock_df['order_upto_point'] - safety_stock_df['curr_inventory'], 0) safety_stock_df['to_order_value'] = ( safety_stock_df['to_order_quantity'] * safety_stock_df['fptr']) order_value = safety_stock_df.pivot_table( index=['type', 'store_name', 'drug_grade'], values=['to_order_quantity', 'to_order_value'], aggfunc='sum', margins=True, margins_name='Total').reset_index() return drug_class, weekly_fcst, safety_stock_df, order_value
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/post_processing.py
post_processing.py
import numpy as np def abc_xyz_classification(cal_drug_sales_monthly, logger=None): cut_cov = (0.3, 1.0) cut_sales = (4, 30) # taking last 12 months data only for classification n = 12 prev_n_month_dt = cal_drug_sales_monthly[ ['month_begin_dt']].drop_duplicates().\ sort_values('month_begin_dt', ascending=False)['month_begin_dt'].\ head(n) cal_drug_sales_classification = cal_drug_sales_monthly[ cal_drug_sales_monthly.month_begin_dt.isin(prev_n_month_dt)] print(len(cal_drug_sales_classification)) # monthly averages for classification drug_class = cal_drug_sales_classification.\ groupby('drug_id').agg({'net_sales_quantity': [np.mean, np.std]}).\ reset_index() drug_class.columns = ['drug_id', 'net_sales', 'sales_std_dev'] drug_class = drug_class[drug_class['net_sales'] >= 0] drug_class['sales_cov'] = ( drug_class['sales_std_dev'] / drug_class['net_sales']) # assertion error to check all sales positive assert len(drug_class[ drug_class['net_sales'] < 0]) == 0 # handling infs drug_class['sales_cov'] = np.where( drug_class['sales_cov'] == np.inf, drug_class['sales_std_dev'], drug_class['sales_cov'] ) # assigning buckets drug_class['bucket_abc'] = np.select( [(drug_class['net_sales'] <= cut_sales[0]), (drug_class['net_sales'] > cut_sales[0]) & (drug_class['net_sales'] <= cut_sales[1]), (drug_class['net_sales'] > cut_sales[1])], ['C', 'B', 'A'], default='NA') drug_class['bucket_xyz'] = np.select( [drug_class['sales_cov'] <= cut_cov[0], (drug_class['sales_cov'] > cut_cov[0]) & (drug_class['sales_cov'] <= cut_cov[1]), drug_class['sales_cov'] > cut_cov[1]], ['X', 'Y', 'Z'], default='NA') print(drug_class.drug_id.nunique()) # summary bucket_sales = drug_class.groupby( ['bucket_abc', 'bucket_xyz']).agg( {'drug_id': 'count', 'net_sales': ['sum', 'mean'], 'sales_cov': 'mean'}).reset_index() bucket_sales.columns = ['bucket_abc', 'bucket_xyz', 'drug_id', 'net_sales', 'avg_sales_per_drug', 'sales_cov'] bucket_sales['net_sales_frac'] = round( 100*bucket_sales['net_sales']/drug_class.net_sales.sum(), 2) bucket_sales['drug_frac'] = round( 100*bucket_sales['drug_id']/drug_class.drug_id.nunique(), 2) bucket_sales['avg_sales_per_drug'] = ( bucket_sales['net_sales']/bucket_sales['drug_id']) print(bucket_sales) return drug_class, bucket_sales
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/item_classification.py
item_classification.py
import datetime import numpy as np import pandas as pd def forecast_data_prep(store_id_list, type_list, reset_date, db, schema, logger=None, last_date=None, is_wh='N'): ''' FETCHING HISTORICAL SALES AND SALES LOSS DATA ''' if last_date is None: last_date = datetime.date(day=1, month=4, year=2019) print('Date range', str(last_date), str(reset_date)) # store list if type(store_id_list) is not list: store_id_list = [store_id_list] store_id_list = str(store_id_list).replace('[', '(').replace(']', ')') # drug list drug_list_query = """ select id as drug_id from "{schema}".drugs where type in {0} """.format(type_list, schema=schema) drug_list = db.get_df(drug_list_query) # sales query sales_query = """ select date("created-at") as "sales-date", "drug-id" , sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" in {store_id_list} and date("created-at") >= '{last_date}' and date("created-at") < '{reset_date}' group by "sales-date", "drug-id" """.format( store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, schema=schema) sales_history = db.get_df(sales_query) sales_history.columns = [c.replace('-', '_') for c in sales_history.columns] calendar_query = """ select date, year, month, "week-of-year", "day-of-week" from "{schema}".calendar """.format(schema=schema) calendar = db.get_df(calendar_query) calendar.columns = [c.replace('-', '_') for c in calendar.columns] sales_history = sales_history.merge(drug_list, how='inner', on='drug_id') # cfr pr loss cfr_pr_query = f""" select "attributed-loss-date", "drug-id", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" where "shortbook-date" >= '{last_date}' and "shortbook-date" < '{reset_date}' and "drug-id" <> -1 and ("drug-category" = 'chronic' or "repeatability-index" >= 40) and "loss-quantity" > 0 and "drug-type" in {type_list} and "store-id" in {store_id_list} group by "attributed-loss-date", "drug-id" """ cfr_pr = db.get_df(cfr_pr_query) cfr_pr["loss-quantity"] = cfr_pr["loss-quantity"].astype(float) cfr_pr.columns = [c.replace('-', '_') for c in cfr_pr.columns] print(sales_history.sales_date.max()) print(cfr_pr.attributed_loss_date.max()) sales_history = sales_history.groupby( ['sales_date', 'drug_id']).sum().reset_index() # imputing days with no sales with zero sales sales_history['sales_date'] = pd.to_datetime(sales_history['sales_date']) sales_history = get_formatted_data(sales_history, 'drug_id', 'sales_date', 'net_sales_quantity') cfr_pr['attributed_loss_date'] = pd.to_datetime(cfr_pr['attributed_loss_date']) # total demand merge sales = sales_history.merge( cfr_pr, left_on=['sales_date', 'drug_id'], right_on=['attributed_loss_date', 'drug_id'], how='left') sales['sales_date'] = sales['sales_date'].combine_first( sales['attributed_loss_date']) sales['net_sales_quantity'].fillna(0, inplace=True) sales['loss_quantity'].fillna(0, inplace=True) sales['net_sales_quantity'] += sales['loss_quantity'] sales.drop(['attributed_loss_date', 'loss_quantity'], axis=1, inplace=True) print(sales.drug_id.nunique()) #To get daily demand deviation drugwise demand_daily_deviation = sales[sales['sales_date'] > pd.to_datetime(reset_date) - datetime.timedelta(days = 29)] demand_daily_deviation = demand_daily_deviation.groupby('drug_id').std().reset_index() demand_daily_deviation = demand_daily_deviation.rename(columns={'net_sales_quantity': 'demand_daily_deviation'}) ''' CREATING DAY-DRUG SALES CROSS TABLE ''' calendar['date'] = pd.to_datetime(calendar['date']) sales['sales_date'] = pd.to_datetime(sales['sales_date']) print('Distinct drug count', sales.drug_id.nunique()) print('No of days', sales.sales_date.nunique()) cal_sales_weekly = calendar.loc[ (pd.to_datetime(calendar['date']) >= sales.sales_date.min()) & (calendar['date'] <= sales.sales_date.max())] cal_sales_monthly = calendar.loc[ (pd.to_datetime(calendar['date']) >= sales.sales_date.min()) & (calendar['date'] <= sales.sales_date.max())] # removing the first week if it has less than 7 days min_year = cal_sales_weekly.year.min() x = cal_sales_weekly.loc[(cal_sales_weekly.year == min_year)] min_month = x.month.min() x = x.loc[(x.month == min_month)] min_week = x.week_of_year.min() if x.loc[x.week_of_year == min_week].shape[0] < 7: print('removing dates for', min_year, min_month, min_week) cal_sales_weekly = cal_sales_weekly.loc[ ~((cal_sales_weekly.week_of_year == min_week) & (cal_sales_weekly.year == min_year))] # removing the latest week if it has less than 7 days max_year = cal_sales_weekly.year.max() x = cal_sales_weekly.loc[(cal_sales_weekly.year == max_year)] max_month = x.month.max() x = x.loc[(x.month == max_month)] max_week = x.week_of_year.max() if x.loc[x.week_of_year == max_week].shape[0] < 7: print('removing dates for', max_year, max_month, max_week) cal_sales_weekly = cal_sales_weekly.loc[ ~((cal_sales_weekly.week_of_year == max_week) & (cal_sales_weekly.year == max_year))] # adding week begin date cal_sales_weekly['week_begin_dt'] = cal_sales_weekly.apply( lambda x: x['date'] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales_weekly['month_begin_dt'] = cal_sales_weekly.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) cal_sales_monthly['week_begin_dt'] = cal_sales_monthly.apply( lambda x: x['date'] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales_monthly['month_begin_dt'] = cal_sales_monthly.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) drugs = sales[['drug_id']].drop_duplicates() drugs['key'] = 1 cal_sales_weekly['key'] = 1 cal_drug_w = drugs.merge(cal_sales_weekly, on='key', how='inner') cal_drug_w.drop('key', axis=1, inplace=True) cal_drug_sales_w = cal_drug_w.merge( sales, left_on=['drug_id', 'date'], right_on=['drug_id', 'sales_date'], how='left') del cal_drug_w cal_drug_sales_w.drop('sales_date', axis=1, inplace=True) cal_drug_sales_w.net_sales_quantity.fillna(0, inplace=True) cal_sales_monthly['key'] = 1 cal_drug_m = drugs.merge(cal_sales_monthly, on='key', how='inner') cal_drug_m.drop('key', axis=1, inplace=True) cal_drug_sales_m = cal_drug_m.merge( sales, left_on=['drug_id', 'date'], right_on=['drug_id', 'sales_date'], how='left') del cal_drug_m cal_drug_sales_m.drop('sales_date', axis=1, inplace=True) cal_drug_sales_m.net_sales_quantity.fillna(0, inplace=True) # assertion test to check no of drugs * no of days equals total entries drug_count = cal_drug_sales_w.drug_id.nunique() day_count = cal_drug_sales_w.date.nunique() print('Distinct no of drugs', drug_count) print('Distinct dates', day_count) print('DF shape', cal_drug_sales_w.shape[0]) # assert drug_count*day_count == cal_drug_sales.shape[0] # checking for history available and store opening date first_bill_query = """ select min(date("created-at")) as bill_date from "{schema}"."bills-1" where "store-id" in {store_id_list} """.format(schema=schema, store_id_list=store_id_list) first_bill_date = db.get_df(first_bill_query).values[0][0] print(first_bill_date) cal_drug_sales_w = cal_drug_sales_w.query( 'date >= "{}"'.format(first_bill_date)) cal_drug_sales_m = cal_drug_sales_m.query( 'date >= "{}"'.format(first_bill_date)) ''' AGGREGATION AT WEEKLY LEVEL ''' cal_drug_sales_weekly = cal_drug_sales_w.groupby( ['drug_id', 'week_begin_dt', 'week_of_year'] )['net_sales_quantity'].sum().reset_index() del cal_drug_sales_w print(cal_drug_sales_weekly.drug_id.nunique()) # getting drug ids that havent been sold in the last 26 weeks n = 26 prev_n_week_dt = ( cal_drug_sales_weekly.week_begin_dt.max() - datetime.timedelta(n * 7)) prev_n_week_sales = cal_drug_sales_weekly[ cal_drug_sales_weekly['week_begin_dt'] > prev_n_week_dt]. \ groupby('drug_id')['net_sales_quantity'].sum().reset_index() prev_no_sales_drug_weekly = prev_n_week_sales.loc[ prev_n_week_sales['net_sales_quantity'] <= 0, 'drug_id'].values cal_drug_sales_weekly = cal_drug_sales_weekly[ ~cal_drug_sales_weekly.drug_id.isin(prev_no_sales_drug_weekly)] print(cal_drug_sales_weekly.drug_id.nunique()) cal_drug_sales_weekly.rename( columns={'week_begin_dt': 'date'}, inplace=True) validation_week = 4 validation_weeks = cal_drug_sales_weekly['date'].drop_duplicates(). \ nlargest(validation_week) print(validation_weeks) cal_drug_sales_weekly['sample_flag'] = np.where( cal_drug_sales_weekly['date'].isin(validation_weeks), 'validation', 'insample') ''' AGGREGATION AT MONTHLY LEVEL ''' cal_drug_sales_monthly = cal_drug_sales_m.groupby( ['drug_id', 'month_begin_dt', 'year', 'month'] )['net_sales_quantity'].sum().reset_index() del cal_drug_sales_m if is_wh == 'N': # removing incomplete month's sales cal_drug_sales_monthly = cal_drug_sales_monthly[ cal_drug_sales_monthly.month_begin_dt != max( cal_drug_sales_monthly.month_begin_dt)] # getting drug ids that havent been sold in the 6 months print(cal_drug_sales_monthly.drug_id.nunique()) n = 6 prev_n_month_dt = cal_drug_sales_monthly[ ['month_begin_dt']].drop_duplicates(). \ sort_values('month_begin_dt', ascending=False )['month_begin_dt'].head(n - 1) prev_n_month_sales = cal_drug_sales_monthly[ cal_drug_sales_monthly['month_begin_dt'].isin(prev_n_month_dt)]. \ groupby('drug_id')['net_sales_quantity'].sum().reset_index() prev_no_sales_drug_monthly = prev_n_month_sales.loc[ prev_n_month_sales['net_sales_quantity'] <= 0, 'drug_id'].values # removing such drugs cal_drug_sales_monthly = cal_drug_sales_monthly[ (~cal_drug_sales_monthly.drug_id.isin(prev_no_sales_drug_monthly)) ] print(cal_drug_sales_monthly.drug_id.nunique()) if is_wh == 'Y': return cal_drug_sales_weekly, cal_drug_sales_monthly, cal_sales_weekly, demand_daily_deviation else: return cal_drug_sales_weekly, cal_drug_sales_monthly, cal_sales_weekly def get_formatted_data(df, key_col, date_col, target_col): df_start = df.groupby([key_col])[date_col].min().reset_index().rename(columns={date_col: 'sales_start'}) df = df[[key_col, date_col, target_col]] min_date = df[date_col].dropna().min() end_date = df[date_col].dropna().max() date_range = [] date_range = pd.date_range( start=min_date, end=end_date, freq='d' ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = np.nan df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = pd.merge(df, df_start, how='left', on=key_col) df = df[df[date_col] >= df['sales_start']] return df
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/data_prep.py
data_prep.py
import pandas as pd import numpy as np import time from scipy.stats import norm from zeno_etl_libs.utils.ipc.data_prep import forecast_data_prep from zeno_etl_libs.utils.ipc.item_classification import abc_xyz_classification from zeno_etl_libs.utils.ipc.forecasting_modules.helper_functions import sum_std,\ applyParallel, applyParallel_lstm from zeno_etl_libs.utils.ipc.forecasting_modules.lstm import lstm_forecast from zeno_etl_libs.utils.ipc.forecasting_modules.moving_average import moving_average from zeno_etl_libs.utils.ipc.forecasting_modules.prophet import prophet_weekly_predict from zeno_etl_libs.utils.ipc.lead_time import lead_time from zeno_etl_libs.utils.ipc.safety_stock import safety_stock_calc def ipc_forecast_reset( store_id, type_list, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, db, schema, drug_type_list_v4, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, chronic_max_flag='N', logger=None): '''DATA PREPATION''' cal_drug_sales_weekly, cal_drug_sales_monthly,\ cal_sales = forecast_data_prep(store_id, type_list, reset_date, db, schema, logger) '''ITEM CLASSIFICATION''' drug_class, bucket_sales = abc_xyz_classification( cal_drug_sales_monthly, logger) '''FORECASTING''' forecast_horizon = 4 # LSTM week_in = 8 week_out = 4 epochs = 200 n_neurons = 8 use_dropout = 0.2 error_factor = 2 lstm_drug_list = drug_class.loc[ (drug_class['bucket_abc'] == 'A') & (drug_class['bucket_xyz'] == 'X') | (drug_class['bucket_abc'] == 'A') & (drug_class['bucket_xyz'] == 'Y') | (drug_class['bucket_abc'] == 'B') & (drug_class['bucket_xyz'] == 'X'), 'drug_id'] lstm_data_weekly = cal_drug_sales_weekly.loc[ cal_drug_sales_weekly['drug_id'].isin(lstm_drug_list)] start = time.time() lstm_weekly_fcst = applyParallel_lstm( lstm_data_weekly.groupby('drug_id'), lstm_forecast, n_neurons=n_neurons, week_in=week_in, week_out=week_out, forecast_horizon=forecast_horizon, epochs=epochs, use_dropout=use_dropout, error_factor=error_factor).\ reset_index(drop=True) end = time.time() print('Run time ', end-start) # MOVING AVERAGES ma_drug_list = drug_class.loc[ (drug_class['bucket_abc'] == 'B') & (drug_class['bucket_xyz'] == 'Y') | (drug_class['bucket_abc'] == 'B') & (drug_class['bucket_xyz'] == 'Z') | (drug_class['bucket_abc'] == 'C') & (drug_class['bucket_xyz'] == 'X'), 'drug_id'] ma_data_weekly = cal_drug_sales_weekly.loc[ cal_drug_sales_weekly['drug_id'].isin(ma_drug_list)] start = time.time() ma_weekly_fcst = ma_data_weekly.groupby('drug_id').\ apply(moving_average).reset_index(drop=True) end = time.time() print('Run time ', end-start) # PROPHET prophet_drug_list = drug_class.loc[ (drug_class['bucket_abc'] == 'C') & (drug_class['bucket_xyz'] == 'Y') | (drug_class['bucket_abc'] == 'C') & (drug_class['bucket_xyz'] == 'Z') | (drug_class['bucket_abc'] == 'A') & (drug_class['bucket_xyz'] == 'Z'), 'drug_id'] prophet_data_weekly = cal_drug_sales_weekly.loc[ cal_drug_sales_weekly['drug_id'].isin(prophet_drug_list)] start = time.time() prophet_weekly_fcst = applyParallel( prophet_data_weekly.groupby('drug_id'), prophet_weekly_predict).\ reset_index(drop=True) end = time.time() print('Run time ', end-start) '''COMPILING OUTPUT AND PERCENTILE FORECAST''' columns = ['model', 'drug_id', 'date', 'fcst', 'std'] ma_weekly_fcst['model'] = 'MA' ma_weekly_fcst = ma_weekly_fcst[columns] prophet_weekly_fcst['model'] = 'Prophet' prophet_weekly_fcst = prophet_weekly_fcst[columns] lstm_weekly_fcst['model'] = 'LSTM' lstm_weekly_fcst = lstm_weekly_fcst[columns] weekly_fcst = pd.concat( [ma_weekly_fcst, prophet_weekly_fcst, lstm_weekly_fcst], axis=0) percentile_bucket_dict = { 'AX': 0.5, 'AY': 0.5, 'AZ': 0.5, 'BX': 0.5, 'BY': 0.6, 'BZ': 0.6, 'CX': 0.5, 'CY': 0.6, 'CZ': 0.6} print(weekly_fcst.drug_id.nunique()) weekly_fcst = weekly_fcst.merge( drug_class[['drug_id', 'bucket_abc', 'bucket_xyz']], on='drug_id', how='inner') weekly_fcst['bucket'] = ( weekly_fcst['bucket_abc'] + weekly_fcst['bucket_xyz']) weekly_fcst.drop(['bucket_abc', 'bucket_xyz'], axis=1, inplace=True) for key in percentile_bucket_dict.keys(): print(key, percentile_bucket_dict[key]) indexs = weekly_fcst[weekly_fcst.bucket == key].index weekly_fcst.loc[indexs, 'percentile'] = percentile_bucket_dict[key] weekly_fcst.loc[indexs, 'fcst'] = np.round( weekly_fcst.loc[indexs, 'fcst'] + norm.ppf(percentile_bucket_dict[key]) * weekly_fcst.loc[indexs, 'std']) agg_fcst = weekly_fcst.groupby( ['model', 'drug_id', 'bucket', 'percentile']).\ agg({'fcst': 'sum', 'std': sum_std}).reset_index() '''LEAD TIME CALCULATION''' lt_drug, lt_store_mean, lt_store_std = lead_time( store_id, cal_sales, reset_date, db, schema, logger) '''SAFETY STOCK CALCULATION''' safety_stock_df, df_corrections, df_corrections_111, \ drugs_max_to_lock_ipcv6, drug_rejects_ipcv6 = safety_stock_calc( agg_fcst, store_id, forecast_horizon, lt_drug, lt_store_mean, lt_store_std, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, drug_type_list_v4, db, schema, logger) return drug_class, weekly_fcst, safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, drug_rejects_ipcv6
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/forecast_reset.py
forecast_reset.py
import pandas as pd import numpy as np from scipy.stats import norm from datetime import datetime from zeno_etl_libs.utils.ipc.heuristics.base import base_heuristics from zeno_etl_libs.utils.ipc.heuristics.ipcv4_heuristics import ipcv4_heuristics from zeno_etl_libs.utils.ipc.heuristics.ipcv5_heuristics import v5_corrections # from scripts.ops.ipc.heuristics.ipcv6_heuristics import v6_corrections ''' service level - 95% safety stock = z-score * sqrt(std_lead_time^2 * avg_demand^2 + avg_lead_time^2 * std_demand^2) re-order point = avg_lead_time + avg_demand + safety stock ''' def safety_stock_calc(agg_fcst, store_id, forecast_horizon, lt_drug, lt_store_mean, lt_store_std, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, drug_type_list_v4, db, schema, logger): service_level = 0.95 fcst_weeks = 4 order_freq = 4 z = norm.ppf(service_level) print(lt_store_mean, lt_store_std) safety_stock_df = agg_fcst.merge( lt_drug[['drug_id', 'lead_time_mean', 'lead_time_std']], how='left', on='drug_id') safety_stock_df['lead_time_mean'].fillna(lt_store_mean, inplace=True) safety_stock_df['lead_time_std'].fillna(lt_store_std, inplace=True) # heuristics #1 safety_stock_df['lead_time_std'] = np.where( safety_stock_df['lead_time_std'] < 1, lt_store_std, safety_stock_df['lead_time_std']) # safeyty stock value - variation in demand & lead time safety_stock_df['safety_stock'] = safety_stock_df.apply( lambda row: np.round(z * np.sqrt( (row['lead_time_mean'] * np.square( row['std'] / np.sqrt(fcst_weeks * 7)) + np.square(row['lead_time_std'] * row['fcst'] / fcst_weeks / 7)) )), axis=1) safety_stock_df['safety_stock'] = np.where( safety_stock_df['fcst'] == 0, 0, safety_stock_df['safety_stock']) # consider avg fulfillment times safety_stock_df['reorder_point'] = safety_stock_df.apply( lambda row: np.round( row['lead_time_mean'] * row['fcst'] / fcst_weeks / 7), axis=1) + safety_stock_df['safety_stock'] # ordering frequency 7 days # heuristics #2 safety_stock_df['order_upto_point'] = ( safety_stock_df['reorder_point'] + np.round( np.where( # if rounding off give 0, increase it to 4-week forecast (safety_stock_df['reorder_point'] + safety_stock_df[ 'fcst'] * order_freq / fcst_weeks / 7 < 0.5) & (safety_stock_df['fcst'] > 0), safety_stock_df['fcst'], safety_stock_df['fcst'] * order_freq / fcst_weeks / 7)) ) # correction for negative forecast safety_stock_df['safety_stock'] = np.where( safety_stock_df['safety_stock'] < 0, 0, safety_stock_df['safety_stock']) safety_stock_df['reorder_point'] = np.where( safety_stock_df['reorder_point'] < 0, 0, safety_stock_df['reorder_point']) safety_stock_df['order_upto_point'] = np.where( safety_stock_df['order_upto_point'] < 0, 0, safety_stock_df['order_upto_point']) safety_stock_df['safety_stock_days'] = np.round( 7 * forecast_horizon * safety_stock_df['safety_stock'] / safety_stock_df['fcst']) safety_stock_df['reorder_days'] = np.round( 7 * forecast_horizon * safety_stock_df['reorder_point'] / safety_stock_df['fcst']) safety_stock_df['order_upto_days'] = np.round( 7 * forecast_horizon * safety_stock_df['order_upto_point'] / safety_stock_df['fcst']) # heuristics #3 safety_stock_df['order_upto_point'] = np.where( safety_stock_df['order_upto_days'] < 14, np.round(14 * safety_stock_df['fcst'] / fcst_weeks / 7), safety_stock_df['order_upto_point'] ) safety_stock_df['order_upto_days'] = np.round( 7 * forecast_horizon * safety_stock_df['order_upto_point'] / safety_stock_df['fcst']) # recent actuals base adjustments safety_stock_df = base_heuristics( store_id, safety_stock_df, reset_date, db, schema, logger) # getting order value drug_list = list(safety_stock_df['drug_id'].unique()) print(len(drug_list)) drug_str = str(drug_list).replace('[', '(').replace(']', ')') fptr_query = """ select "drug-id" , avg(ptr) as fptr, sum(quantity) as curr_inventory from "{schema}"."inventory-1" i where "store-id" = {store_id} and "drug-id" in {drug_str} group by "drug-id" """.format(store_id=store_id, drug_str=drug_str, schema=schema) fptr = db.get_df(fptr_query) fptr.columns = [c.replace('-', '_') for c in fptr.columns] fptr["fptr"] = fptr["fptr"].astype(float) final_pred_ss_df = safety_stock_df.merge(fptr, on='drug_id', how='left') final_pred_ss_df['fptr'].fillna(100, inplace=True) final_pred_ss_df['max_value'] = ( final_pred_ss_df['fptr'] * final_pred_ss_df['order_upto_point']) print(final_pred_ss_df.groupby('bucket')['max_value'].sum().reset_index()) print(28 * final_pred_ss_df['order_upto_point'].sum() / final_pred_ss_df['fcst'].sum()) print(final_pred_ss_df['max_value'].sum()) # correction plugin - Start if corrections_flag: final_pred_ss_df['correction_flag'] = 'N' final_pred_ss_df['store_id'] = store_id print("corrections code is running now:") q_prob = f"""select * from "{schema}"."ipc-corrections-rest-cases" """ q_prob_111 = f"""select * from "{schema}"."ipc-corrections-111-cases" """ prob_matrix = db.get_df(q_prob) df_111 = db.get_df(q_prob_111) prob_matrix.columns = [c.replace('-', '_') for c in prob_matrix.columns] df_111.columns = [c.replace('-', '_') for c in df_111.columns] # list of drugs for which corrections is required. i.e. max value 0. df_corrections_list = final_pred_ss_df[ final_pred_ss_df['order_upto_point'] == 0][['store_id', 'drug_id']] df_corrections = pd.merge( df_corrections_list, prob_matrix, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections = df_corrections.drop(columns={'corrected_max'}) df_corrections['order_upto_point'] = np.round( df_corrections['current_ma_3_months']) df_corrections_1 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_less_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_more_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 0)] df_corrections_1 = df_corrections_1[ (df_corrections_1['selling_probability'] >= corrections_selling_probability_cutoff['ma_less_than_2']) & (df_corrections_1['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections_2[ (df_corrections_2['selling_probability'] >= corrections_selling_probability_cutoff['ma_more_than_2']) & (df_corrections_2['current_flag_ma_less_than_2'] == 0)] df_corrections = pd.concat( [df_corrections_1, df_corrections_2]).reset_index(drop=True) df_corrections_final = df_corrections.copy()[ ['store_id', 'drug_id', 'current_bucket', 'selling_probability', 'cumm_prob', 'current_flag_ma_less_than_2', 'avg_ptr', 'current_ma_3_months']] # adding run time current inventory df_corrections_final = pd.merge( df_corrections_final, final_pred_ss_df[['store_id', 'drug_id', 'curr_inventory']], on=['store_id', 'drug_id'], how='left', validate='one_to_one') df_corrections = df_corrections[ ['store_id', 'drug_id', 'order_upto_point']] df_corrections['reorder_point'] = np.floor( df_corrections['order_upto_point'] / 2) df_corrections['safety_stock'] = np.floor( df_corrections['order_upto_point'] / 4) df_corrections['correction_flag'] = 'Y' df_corrections['is_ipc'] = 'Y' df_corrections = df_corrections.set_index(['store_id', 'drug_id']) final_pred_ss_df = final_pred_ss_df.set_index(['store_id', 'drug_id']) final_pred_ss_df.update(df_corrections) final_pred_ss_df = final_pred_ss_df.reset_index() df_corrections = df_corrections.reset_index() df_corrections = pd.merge( df_corrections, df_corrections_final, on=['store_id', 'drug_id'], how='left', validate='one_to_one') # update 111 cases here. df_corrections_111 = pd.merge( df_corrections_list, df_111, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections_111 = df_corrections_111.drop( columns={'current_inventory', 'original_max', 'corrected_max', 'inv_impact', 'max_impact'}, axis=1) df_corrections_111['order_upto_point'] = np.round( df_corrections_111['ma_3_months']) df_corrections_111['reorder_point'] = np.floor( df_corrections_111['order_upto_point'] / 2) df_corrections_111['safety_stock'] = np.floor( df_corrections_111['order_upto_point'] / 4) df_corrections_111['correction_flag'] = 'Y' df_corrections_111['is_ipc'] = 'Y' # adding run time current inventory df_corrections_111 = pd.merge( df_corrections_111, final_pred_ss_df[['store_id', 'drug_id', 'curr_inventory']], on=['store_id', 'drug_id'], how='left', validate='one_to_one') df_corrections_111 = df_corrections_111.set_index( ['store_id', 'drug_id']) final_pred_ss_df = final_pred_ss_df.set_index(['store_id', 'drug_id']) final_pred_ss_df.update(df_corrections_111) final_pred_ss_df = final_pred_ss_df.reset_index() df_corrections_111 = df_corrections_111.reset_index() # set reset date curr_date = str(datetime.now()) df_corrections['reset_date'] = curr_date df_corrections_111['reset_date'] = curr_date else: print('corrections block skipped :') final_pred_ss_df["store_id"] = store_id final_pred_ss_df["correction_flag"] = 'N' df_corrections = pd.DataFrame() df_corrections_111 = pd.DataFrame() # Correction plugin - End # final_pred_ss_df = final_pred_ss_df.drop(['store_id'], axis=1) # Chronic drug changes if chronic_max_flag == 'Y': # based on ME OOS feedback - keep chronic drugs drug_max_zero = tuple( final_pred_ss_df.query('order_upto_point == 0')['drug_id']) # reading chronic drug list drug_chronic_max_zero_query = ''' select id as drug_id from "{schema}".drugs where category = 'chronic' and id in {0} '''.format(str(drug_max_zero), schema=schema) drug_chronic_max_zero = db.get_df(drug_chronic_max_zero_query)['drug_id'] # setting non zero max for such drugs final_pred_ss_df.loc[ (final_pred_ss_df['drug_id'].isin(drug_chronic_max_zero)) & (final_pred_ss_df['order_upto_point'] == 0), 'order_upto_point'] = 1 final_pred_ss_df.loc[ (final_pred_ss_df['drug_id'].isin(drug_chronic_max_zero)) & (final_pred_ss_df['order_upto_point'] == 0), 'correction_flag'] = 'Y_chronic' # Min/SS/Max overlap correction final_pred_ss_df['safety_stock_days'].fillna(0, inplace=True) final_pred_ss_df['reorder_days'].fillna(0, inplace=True) final_pred_ss_df['order_upto_days'].fillna(0, inplace=True) final_pred_ss_df = ipcv4_heuristics(final_pred_ss_df, drug_type_list_v4, db, schema) if v5_active_flag == "Y": logger.info("IPC V5 Correction Starts") final_pred_ss_df = v5_corrections(store_id, final_pred_ss_df, logger) logger.info("IPC V5 Correction Successful") # if v6_active_flag == "Y": # logger.info("IPC V6 Correction Starts") # final_pred_ss_df, drugs_max_to_lock_ipcv6, drug_rejects_ipcv6 = \ # v6_corrections(store_id, final_pred_ss_df, reset_date, v6_type_list, # v6_ptr_cut_off, logger) # # # add algo name to v6 write table # drugs_max_to_lock_ipcv6["algo"] = 'ipc' # drug_rejects_ipcv6["algo"] = 'ipc' # logger.info("IPC V6 Correction Successful") # else: drugs_max_to_lock_ipcv6 = pd.DataFrame() drug_rejects_ipcv6 = pd.DataFrame() return final_pred_ss_df, df_corrections, df_corrections_111, \ drugs_max_to_lock_ipcv6, drug_rejects_ipcv6
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/safety_stock.py
safety_stock.py
import datetime import pandas as pd import numpy as np import keras.backend as K from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import LSTM import tensorflow as tf tf.__version__ def ae_weight_calc(y_true, y_pred, pos_error_weight): # dim of y_pred, y_true [n_batch, output var] error = y_true - y_pred greater = K.greater(error, 0) # 0 for y pred is more, 1 for y_pred is less greater = K.cast(greater, K.floatx()) greater = greater + pos_error_weight error = K.abs(error) error = K.mean(error*greater, axis=1) return error def custom_loss(pos_error_weight): def ae_specific_loss(y_true, y_pred): return ae_weight_calc(y_true, y_pred, pos_error_weight) # Returns the (y_true, y_pred) loss function return ae_specific_loss # create a differenced series for stationarity def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return pd.Series(diff) def series_to_supervised(df, n_in=1, n_out=1, dropnan=True): if type(df) == pd.DataFrame: data = df[['net_sales_quantity']].values else: data = df data_df = pd.DataFrame(data) n_vars = 1 cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(data_df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(data_df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg def prepare_data(df, n_test=1, n_in=1, n_out=1): np.random.seed(1234) # transform into lag and lead supervised_df = series_to_supervised(df, n_in=n_in, n_out=n_out) date_df = df[['date']].reset_index(drop=True) supervised_df = supervised_df.merge( date_df, how='inner', left_index=True, right_index=True) # marking test and train supervised_df['sample_flag'] = '' supervised_df.iloc[0:-n_test]['sample_flag'] = 'train' supervised_df.iloc[-n_test:]['sample_flag'] = 'validation' # transform data to be stationary raw_values = df[['net_sales_quantity']].values diff_series = difference(raw_values, 1) diff_values = diff_series.values diff_values = diff_values.reshape(len(diff_values), 1) # rescale values to -1, 1 scaler = MinMaxScaler(feature_range=(-1, 1)) scaled_values = scaler.fit_transform(diff_values) scaled_values = scaled_values.reshape(len(scaled_values), 1) # transform into supervised learning problem X, y supervised_scaled_df = series_to_supervised( scaled_values, n_in=n_in, n_out=n_out) supervised_scaled_df = supervised_scaled_df.merge( date_df, how='inner', left_index=True, right_index=True) # marking test and train for scaled version supervised_scaled_df['sample_flag'] = '' supervised_scaled_df.iloc[0:-n_test]['sample_flag'] = 'train' supervised_scaled_df.iloc[-n_test:]['sample_flag'] = 'validation' return supervised_df, supervised_scaled_df, scaler # fit an LSTM network to training data def fit_lstm( X, y, n_in=1, n_out=1, n_batch=1, nb_epoch=1000, n_neurons=4, use_dropout=False, error_factor=1): # reshape training into [samples, timesteps, features] X = X.reshape(X.shape[0], 1, X.shape[1]) # design network model = Sequential() model.add(LSTM( n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True)) if use_dropout is not False: model.add(Dropout(use_dropout)) model.add(Dense(y.shape[1])) loss = custom_loss(error_factor) model.compile(loss=loss, optimizer='adam') # print(model.summary()) # model.compile(loss='mean_squared_error', optimizer='adam') # fit network for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False) model.reset_states() return model # make one forecast with an LSTM, def forecast_lstm(model, X, n_batch): # reshape input pattern to [samples, timesteps, features] forecasts = [] # make forecast for i in range(X.shape[0]): X_input = X[i, :].reshape(1, n_batch, X.shape[1]) forecast = model.predict(X_input, batch_size=n_batch) # convert to array forecasts.append(list(forecast.reshape(forecast.shape[1]))) return forecasts def inverse_transform(data_df, scaler, undifferenced_df, col_names): undifferenced_df = undifferenced_df.loc[data_df.index] for col in undifferenced_df.columns: if (data_df[col].dtype == float): data_df[col] = scaler.inverse_transform(data_df[[col]]) data_df[col] += undifferenced_df[col] col_names = ['var1(t-1)'] + col_names for i in list((range(1, len(col_names)))): data_df[col_names[i]] = scaler.inverse_transform( data_df[[col_names[i]]]) data_df[col_names[i]] += data_df[col_names[i - 1]] data_df[col_names] = np.round(data_df[col_names]) return data_df def lstm_horizon_ape(df, col_names): predicted = df[col_names].sum(axis=1) actual = df[[x.replace('_hat', '') for x in col_names]].sum(axis=1) return abs(predicted - actual)/actual def lstm_forecast( df, n_neurons=1, week_in=1, week_out=1, forecast_horizon=4, epochs=90, use_dropout=False, n_batch=1, error_factor=1): drug_id = df['drug_id'].unique()[0] start_date = df.date.max() date_list = [ start_date + datetime.timedelta(days=d*7) for d in range(1, forecast_horizon+1)] fcst = [0] * forecast_horizon # setting seed for reproducibility np.random.seed(1234) tf.random.set_seed(1234) supervised_df, supervised_scaled_df, scaler = prepare_data( df, n_test=forecast_horizon, n_in=week_in, n_out=4) train = supervised_scaled_df _, test, _ = prepare_data( df, n_test=forecast_horizon, n_in=week_in, n_out=0) variable_name = list(train.columns) variable_name = variable_name[:-2] X_train, y_train = ( train[variable_name].values[:, 0:week_in], train[variable_name].values[:, week_in:]) X_test = test[variable_name[:week_in]].iloc[-1] X_test = np.reshape(np.ravel(X_test), (1, X_test.shape[0])) model = fit_lstm( X_train, y_train, n_in=week_in, n_out=week_out, n_batch=n_batch, nb_epoch=epochs, n_neurons=n_neurons, use_dropout=use_dropout, error_factor=error_factor) hat_col = variable_name[week_in:] hat_col = [x + '_hat' for x in hat_col] scaler_test_fcst = forecast_lstm(model, X_test, n_batch=n_batch) test_fcst = scaler.inverse_transform(scaler_test_fcst) test_fcst = np.ravel(test_fcst) for i in range(len(test_fcst)): fcst[i] = df.net_sales_quantity.iloc[-1] + np.sum(test_fcst[:i]) if fcst[i] < 0: fcst[i] = 0 fcst_df = pd.DataFrame({ 'drug_id': drug_id, 'date': date_list, 'fcst': np.round(fcst), 'std': np.round(df.net_sales_quantity.iloc[-8:].std())}) return fcst_df def lstm_wide_long(df, supervised_hat, hat_col): drug_id = df['drug_id'].values[0] supervised_hat = supervised_hat[supervised_hat['drug_id'] == drug_id] return_df = df.copy() fcst = ( list(supervised_hat.iloc[:-1][hat_col[0]].values) + list(supervised_hat.iloc[-1][hat_col].values)) return_df.loc[-len(fcst):, 'fcst'] = pd.Series( fcst, index=df.index[-len(fcst):]) return return_df def hinge_error(error): return sum(error < 0)
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/forecasting_modules/lstm.py
lstm.py
from ast import literal_eval import pandas as pd import numpy as np def ipcv4_heuristics(final_pred_ss_df, drug_type_list_v4, db, schema): ''' drug_tupe_list_v4 variable has format as drug_type_list_v4 = {'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}', 'ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}', 'others':'{0:[0,0,0], 1:[0,0,2], 2:[0,1,2],3:[1,2,3]}'} final_pred_ss_df has the following format Index(['drug_id', 'model', 'bucket', 'percentile', 'fcst', 'std', 'lead_time_mean', 'lead_time_std', 'safety_stock', 'reorder_point', 'order_upto_point', 'safety_stock_days', 'reorder_days', 'order_upto_days', 'fptr', 'curr_inventory', 'max_value', 'correction_flag'], dtype='object') ''' q_drug_type_info = f""" select id as drug_id, "type" as drug_type from "{schema}".drugs """ drug_type_info = db.get_df(q_drug_type_info) #convert drug types which are not generic or ethical as 'others' drug_type_info['drug_type'] = np.where( (drug_type_info['drug_type'] == 'ethical') | (drug_type_info['drug_type'] == 'generic'), drug_type_info['drug_type'],'others') final_pred_ss_df_v4 = pd.merge(final_pred_ss_df, drug_type_info, on=['drug_id'], how='left') for drug_type in drug_type_list_v4.keys(): for max_value, ops_value in literal_eval(drug_type_list_v4[drug_type]).items(): safety_stock = ops_value[0] # min value reorder_point = ops_value[1] # ss value order_upto_point = ops_value[2] # max value index_list = final_pred_ss_df_v4[ (final_pred_ss_df_v4['order_upto_point'].isin([max_value])) & ( final_pred_ss_df_v4['drug_type'] == drug_type)].index final_pred_ss_df_v4.loc[index_list, 'safety_stock'] = safety_stock final_pred_ss_df_v4.loc[index_list, 'reorder_point'] = reorder_point final_pred_ss_df_v4.loc[index_list, 'order_upto_point'] = order_upto_point print('Cases with {0} max: {1} for drug_type:{2} '.format(max_value, len(index_list), drug_type)) #remove the drug type column that was previously added final_pred_ss_df_v4 = final_pred_ss_df_v4.drop(['drug_type'], axis = 1) return final_pred_ss_df_v4
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/heuristics/ipcv4_heuristics.py
ipcv4_heuristics.py
import numpy as np from datetime import datetime, timedelta def get_demand_heuristics(start_date, end_date, drug_list, store_id, db, schema, logger): # sales query print('getting data for store', store_id) sales_query = f""" select date("created-at") as "sales-date", "drug-id" , sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" = {store_id} and date("created-at") >= '{start_date}' and date("created-at") < '{end_date}' and "drug-id" in {drug_list} group by "sales-date", "drug-id" """ sales_history = db.get_df(sales_query) sales_history.columns = [c.replace('-', '_') for c in sales_history.columns] # cfr pr loss cfr_pr_query = f""" select "attributed-loss-date", "drug-id", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" where "shortbook-date" >= '{start_date}' and "shortbook-date" < '{end_date}' and "drug-id" <> -1 and ("drug-category" = 'chronic' or "repeatability-index" >= 40) and "loss-quantity" > 0 and "drug-id" in {drug_list} and "store-id" = {store_id} group by "attributed-loss-date", "drug-id" """ cfr_pr = db.get_df(cfr_pr_query) cfr_pr["loss-quantity"] = cfr_pr["loss-quantity"].astype(float) cfr_pr.columns = [c.replace('-', '_') for c in cfr_pr.columns] # total demand merge demand = sales_history.merge( cfr_pr, left_on=['sales_date', 'drug_id'], right_on=['attributed_loss_date', 'drug_id'], how='left') demand['sales_date'] = demand['sales_date'].combine_first( demand['attributed_loss_date']) demand['net_sales_quantity'].fillna(0, inplace=True) demand['loss_quantity'].fillna(0, inplace=True) demand['net_sales_quantity'] += demand['loss_quantity'] demand.drop( ['attributed_loss_date', 'loss_quantity'], axis=1, inplace=True) # aggregating demand at level demand_agg = demand.groupby( ['drug_id'])['net_sales_quantity'].sum().reset_index() demand_agg.columns = ['drug_id', 'historical_demand'] # getting drug type drug_type_query = """ select id as drug_id, type as drug_type from "{schema}".drugs where id in {0} """.format(drug_list, schema=schema) drug_type = db.get_df(drug_type_query) demand_agg = demand_agg.merge(drug_type, on=['drug_id'], how='left') return demand_agg def base_heuristics( store_id, safety_stock_df, reset_date, db, schema, logger=None, raf_range=(0.25, 0.75), corr_raf=0.5): # getting time period for last 4 weeks date = datetime.strptime(reset_date, '%Y-%m-%d') end_date = (date - timedelta(days=date.weekday())).date() start_date = end_date - timedelta(days=28) end_date = str(end_date) start_date = str(start_date) logger.info( 'Getting last 4 week data for base heuristic from' + start_date + 'to' + end_date) # getting demand for heuristics - A/B class only bucket_class_list = ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ'] drug_list = tuple(list(safety_stock_df.loc[ safety_stock_df.bucket.isin(bucket_class_list), 'drug_id'])) demand = get_demand_heuristics( start_date, end_date, drug_list, store_id, db, schema, logger) safety_stock_adj = safety_stock_df.merge( demand, how='left', on=['drug_id']) safety_stock_adj['historical_demand'].fillna(0, inplace=True) # RAF factor calculation safety_stock_adj['raf'] = np.select( [safety_stock_adj['historical_demand'] == 0], [0.5], default=safety_stock_adj['order_upto_point'] / safety_stock_adj['historical_demand']) # adjustment using RAF: for low low_raf_index = safety_stock_adj[ (safety_stock_adj['bucket'].isin(bucket_class_list)) & (safety_stock_adj['raf'] < raf_range[0]) ].index safety_stock_adj.loc[low_raf_index, 'order_upto_point'] = np.round( np.where( safety_stock_adj.loc[low_raf_index, 'order_upto_point'] == 0, safety_stock_adj.loc[low_raf_index, 'historical_demand']*corr_raf, (safety_stock_adj.loc[low_raf_index, 'order_upto_point']*corr_raf / safety_stock_adj.loc[low_raf_index, 'raf']) )) safety_stock_adj.loc[low_raf_index, 'reorder_point'] = np.round( safety_stock_adj.loc[low_raf_index, 'order_upto_point']/2) safety_stock_adj.loc[low_raf_index, 'safety_stock'] = np.round( safety_stock_adj.loc[low_raf_index, 'reorder_point']/2) # print(safety_stock_adj.head()) # adjustment using RAF: for high high_raf_index = safety_stock_adj[ (safety_stock_adj['bucket'].isin(bucket_class_list)) & (safety_stock_adj['raf'] > raf_range[1]) ].index safety_stock_adj.loc[high_raf_index, 'order_upto_point'] = np.round( safety_stock_adj.loc[high_raf_index, 'order_upto_point'] * corr_raf / safety_stock_adj['raf']) safety_stock_adj.loc[high_raf_index, 'reorder_point'] = np.round( safety_stock_adj.loc[high_raf_index, 'order_upto_point']/2) safety_stock_adj.loc[high_raf_index, 'safety_stock'] = np.round( safety_stock_adj.loc[high_raf_index, 'reorder_point']/2) logger.info( 'Out of total line items ' + str(len(safety_stock_adj)) + '\n' + 'Decreased: Total ' + str(len(high_raf_index)) + '\n' + 'Decreased: Generic ' + str(len(safety_stock_adj.iloc[high_raf_index]. query('drug_type == "generic"'))) + '\n' + 'Decreased: Ethical ' + str(len(safety_stock_adj.iloc[high_raf_index]. query('drug_type == "ethical"'))) + '\n' + 'Increased: Total ' + str(len(low_raf_index)) + '\n' + 'Increased: Generic ' + str(len(safety_stock_adj.iloc[low_raf_index]. query('drug_type == "generic"'))) + '\n' + 'Increased: Ethical ' + str(len(safety_stock_adj.iloc[low_raf_index]. query('drug_type == "ethical"'))) ) return safety_stock_adj[safety_stock_df.columns]
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/heuristics/base.py
base.py
import pandas as pd import numpy as np import datetime as dt def v5_corrections(store_id, safety_stock_df, db, schema, logger): """ Main function to perform V5 corrections """ # Get Drug STD Qty and list of repeatable drug_ids df_3m_drugs, unique_drugs_3m = get_3m_drug_std_qty(store_id, db, schema, logger) # Locate drugs to perform correction check df_std_check = safety_stock_df.loc[safety_stock_df["drug_id"].isin( unique_drugs_3m)][["drug_id", "fcst", "safety_stock", "reorder_point", "order_upto_point"]] # Drugs not forecasted by IPC drugs_3m_not_set = list(set(unique_drugs_3m) ^ set(df_std_check["drug_id"].unique())) logger.info(f"Number of drugs not forecasted: {len(drugs_3m_not_set)}") # Merge STD Qty with SS table and find drugs correction areas df_std_check = df_3m_drugs.merge(df_std_check, on="drug_id", how="left") df_std_check = df_std_check.dropna() df_std_check["rop>=std_qty"] = np.where( df_std_check["reorder_point"] >= df_std_check["std_qty"], "Y", "N") tot_rep_drugs = df_std_check.shape[0] corr_req = df_std_check.loc[df_std_check['rop>=std_qty'] == 'N'].shape[0] corr_not_req = df_std_check.loc[df_std_check['rop>=std_qty'] == 'Y'].shape[0] logger.info(f"Number of repeatable drugs: {tot_rep_drugs}") logger.info(f"Number of repeatable drugs corrections required: {corr_req}") logger.info(f"Number of repeatable drugs corrections not required: {corr_not_req}") # CORRECTION STARTS order_freq = 4 column_order = list(df_std_check.columns) column_order += ["corr_ss", "corr_rop", "corr_oup"] # CASE1: No changes required df_no_change = df_std_check.loc[df_std_check["rop>=std_qty"] == "Y"].copy() df_no_change["corr_ss"] = df_no_change["safety_stock"].astype(int) df_no_change["corr_rop"] = df_no_change["reorder_point"].astype(int) df_no_change["corr_oup"] = df_no_change["order_upto_point"].astype(int) # CASE2: SS & ROP & OUP is Non Zero df_change1 = df_std_check.loc[(df_std_check["rop>=std_qty"] == "N") & (df_std_check["safety_stock"] != 0) & (df_std_check["reorder_point"] != 0) & (df_std_check["order_upto_point"] != 0)].copy() df_change1["mul_1"] = df_change1["reorder_point"] / df_change1["safety_stock"] df_change1["mul_2"] = df_change1["order_upto_point"] / df_change1["reorder_point"] df_change1["corr_rop"] = df_change1["std_qty"] df_change1["corr_ss"] = np.ceil(df_change1["corr_rop"] / df_change1["mul_1"]).astype(int) # If ROP >= OUP, then in those cases, increase OUP. df_change11 = df_change1.loc[ df_change1["corr_rop"] >= df_change1["order_upto_point"]].copy() df_change12 = df_change1.loc[ df_change1["corr_rop"] < df_change1["order_upto_point"]].copy() df_change11["corr_oup"] = np.ceil(df_change11["corr_rop"] + ( df_change11["fcst"] * order_freq / 28)).astype(int) df_change12["corr_oup"] = np.ceil(df_change12["corr_rop"] + ( df_change12["fcst"] * order_freq / 28)).astype(int) df_change1 = df_change11.append(df_change12) df_change1 = df_change1[column_order] # CASE3: Any of SS & ROP & OUP is Zero df_change2 = df_std_check.loc[(df_std_check["rop>=std_qty"] == "N")].copy() df_change2 = df_change2.loc[~((df_change2["safety_stock"] != 0) & (df_change2["reorder_point"] != 0) & (df_change2["order_upto_point"] != 0))].copy() df_change2["corr_rop"] = df_change2["std_qty"].astype(int) df_change2["corr_ss"] = np.floor(df_change2["corr_rop"] / 2).astype(int) # If ROP >= OUP, then in those cases, increase OUP. df_change21 = df_change2.loc[ df_change2["corr_rop"] >= df_change2["order_upto_point"]].copy() df_change22 = df_change2.loc[ df_change2["corr_rop"] < df_change2["order_upto_point"]].copy() df_change21["corr_oup"] = np.ceil(df_change21["corr_rop"] + ( df_change21["fcst"] * order_freq / 28)).astype(int) df_change22["corr_oup"] = np.ceil(df_change22["corr_rop"] + ( df_change22["fcst"] * order_freq / 28)).astype(int) df_change2 = df_change21.append(df_change22) df_change2 = df_change2[column_order] # Combine all 3 cases df_corrected = df_no_change.append(df_change1) df_corrected = df_corrected.append(df_change2) df_corrected = df_corrected.sort_index(ascending=True) # Get DF of corrected drugs and merge with input DF df_corrected_to_merge = df_corrected.loc[df_corrected["rop>=std_qty"] == "N"][ ["drug_id", "corr_ss", "corr_rop", "corr_oup"]] corr_safety_stock_df = safety_stock_df.merge(df_corrected_to_merge, on="drug_id", how="left") # Make corrections for required drugs corr_safety_stock_df["safety_stock"] = np.where( corr_safety_stock_df["corr_ss"] >= 0, corr_safety_stock_df["corr_ss"], corr_safety_stock_df["safety_stock"]) corr_safety_stock_df["reorder_point"] = np.where( corr_safety_stock_df["corr_rop"] >= 0, corr_safety_stock_df["corr_rop"], corr_safety_stock_df["reorder_point"]) corr_safety_stock_df["order_upto_point"] = np.where( corr_safety_stock_df["corr_oup"] >= 0, corr_safety_stock_df["corr_oup"], corr_safety_stock_df["order_upto_point"]) corr_safety_stock_df.drop(["corr_ss", "corr_rop", "corr_oup"], axis=1, inplace=True) corr_safety_stock_df["max_value"] = corr_safety_stock_df["order_upto_point"] * \ corr_safety_stock_df["fptr"] assert safety_stock_df.shape == corr_safety_stock_df.shape # Evaluate PRE and POST correction pre_post_metrics = { "metric": ["pre_corr", "post_corr"], "ss_qty": [safety_stock_df["safety_stock"].sum(), corr_safety_stock_df["safety_stock"].sum()], "ss_val": [round((safety_stock_df["safety_stock"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["safety_stock"] * corr_safety_stock_df["fptr"]).sum(), 2)], "rop_qty": [safety_stock_df["reorder_point"].sum(), corr_safety_stock_df["reorder_point"].sum()], "rop_val": [round((safety_stock_df["reorder_point"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["reorder_point"] * corr_safety_stock_df["fptr"]).sum(), 2)], "oup_qty": [safety_stock_df["order_upto_point"].sum(), corr_safety_stock_df["order_upto_point"].sum()], "oup_val": [round((safety_stock_df["order_upto_point"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["order_upto_point"] * corr_safety_stock_df["fptr"]).sum(), 2)] } pre_post_metics_df = pd.DataFrame.from_dict(pre_post_metrics).set_index('metric').T pre_post_metics_df["delta"] = pre_post_metics_df["post_corr"] - pre_post_metics_df["pre_corr"] pre_post_metics_df["change%"] = round((pre_post_metics_df["delta"] / pre_post_metics_df["pre_corr"]) * 100, 2) logger.info(f"\n{str(pre_post_metics_df)}") return corr_safety_stock_df def max_mode(pd_series): return int(max(pd_series.mode())) def get_3m_drug_std_qty(store_id, db, schema, logger): """ To fetch repeatable patient-drug qty from past 90days and calculate standard drug qty. """ start_date = (dt.date.today() - dt.timedelta(days=90)).strftime("%Y-%m-%d") end_date = dt.date.today().strftime("%Y-%m-%d") q_3m = """ select "patient-id" , "old-new" , "drug-id" , date("created-at") as "on-date", quantity as "tot-qty" from "{schema}".sales where "store-id" = {0} and "is-repeatable" = 1 and "bill-flag" = 'gross' and "created-at" > '{1} 00:00:00' and "created-at" < '{2} 00:00:00' """.format(store_id, start_date, end_date, schema=schema) df_3m = db.get_df(q_3m) df_3m.columns = [c.replace('-', '_') for c in df_3m.columns] # Get patient-drug-level STD Qty df_3m["3m_bills"] = 1 df_3m["std_qty"] = df_3m["tot_qty"] df_3m_patient = df_3m.groupby(["patient_id", "drug_id"], as_index=False).agg( {"3m_bills": "sum", "tot_qty": "sum", "std_qty": max_mode}) logger.info(f"Total repeatable patients: {len(df_3m_patient.patient_id.unique())}") # Get drug-level STD Qty df_3m_drugs = df_3m_patient.groupby("drug_id", as_index=False).agg( {"std_qty": "max"}) # STD Qty > 10 is considered outliers, to drop. drug_count_before = df_3m_drugs.shape[0] df_3m_drugs = df_3m_drugs.loc[df_3m_drugs["std_qty"] <= 10] drug_count_after = df_3m_drugs.shape[0] logger.info(f"Number of outlier drugs STD Qty: {drug_count_before-drug_count_after}") # Repeatable drugs STD Qty to check against IPC set ROP unique_drugs_3m = list(df_3m_drugs["drug_id"].unique()) return df_3m_drugs, unique_drugs_3m
zeno-etl-libs-v3
/zeno_etl_libs_v3-1.0.17-py3-none-any.whl/zeno_etl_libs/utils/ipc/heuristics/ipcv5_heuristics.py
ipcv5_heuristics.py
# ETL Project Extract, Transform, Load (ETL). All the scripts (glue and sagemaker) and custom libs. ## 1. Setup: * clone the git project ``` git clone https://<your-git-user-name>@bitbucket.org/ashishgenerico/etl.git ``` * go inside the `./etl/` directory ```commandline cd etl ``` * Request the `zeno_secrets.py` file from your fellow team members and paste that file inside `secret` directory ## 2. Glue * Create `python3.6` virtual env and activate ```commandline python3 -m venv etl_env ``` * Activate the virtual env ```commandline source etl_env/bin/activate ``` * Install the `requirements.txt` inside the virtual env ```commandline pip install -r requirements.txt ``` * Write your ETL script inside the `glue-jobs/src/scripts/<your_script_name>/` folder ## 3. Sagemaker * Create `python3.7` (or **greater**) virtual env and activate ```commandline python3 -m venv etl_env ``` * Activate the virtual env ```commandline source etl_env/bin/activate ``` * Install the `requirements-ml.txt` inside the virtual env ```commandline pip install -r requirements-ml.txt ``` * Write your ETL jupyter lab notebooks inside the `sagemaker-jobs/src/scripts/<your_script_name>/` folder * Refer the demo notebooks inside the `sagemaker-jobs/src/scripts/experiments/` ## 4. Deployment ### 4.1 Glue * Add your script details in `.\templates\templetes.json` file * Push your code to bitbucket and raise PR * Don't forget to enjoy. 🍺🍺 ### 4.2 Sagemaker * If there are changes in `zeno_etl_libs` custom library then we need to publish it on PyPI * Increase the version in `setup.py` present in `etl` folder * Run the below command to build the package ```commandline python setup.py sdist bdist_wheel ``` * Run the below command to publish the new version on PyPI ```commandline twine upload dist/* --verbose -u kuldeepsingh -p bEmham-6sonke-forcex ``` * Add the below command at the start of jupyter notebook ```commandline !pip install zeno_etl_libs==new.version.number ``` ## 5. Troubleshooting 1. Don't forget to include the custom library folder(`./zeno_etl_libs`) to the python search path before `import zeno_etl_libs` it for local development ```python import sys sys.path.append('../../../..') ``` 2. Use **conda**, if there are any issue while installing the python package or virtual environment creation ## 6. Rules * Follow the proper git flow, given here: [here](https://docs.google.com/document/d/1SnT_UKCj1Da07S-FFgvTxk30WbRbb-MFX89kEnMIKbk/edit) ## 7. Container image update (for DevOps) * Set these options in case of **UnicodeEncodeError: 'ascii' codec can't encode characters** error ```commandline export LC_ALL=en_US.utf-8 && export LANG=en_US.utf-8 && export PYTHONIOENCODING=utf8 ``` * Delete the code build project container ```commandline aws codebuild delete-project --name create-sagemaker-container-env_name-notebook-runner ``` * Copy the modified Docker file present at `./extra_dependency/Dockerfile` to virtual environment's site package at `./site-packages/sagemaker_run_notebook/container/Dockerfile`, basically add these extra command in the file. ```commandline RUN apt-get update RUN pip3 install --upgrade pip RUN apt-get install -y gcc g++ build-essential python3-dev ``` * Update the ```commandline run-notebook create-container env_name-notebook-runner --requirements requirements-ml.txt ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/README.md
README.md
# Zeno Etl Libs custom library Custom library holds all the helper functions that are commonly utilized across the entire project. ## config: - Holds a common.py file, which is being utilized to get the secrets from AWS secrets manager. ## db: - Holds a db.py, which holds up the connections and various related functions for various databases such as MySQL, - Redshift, MSSQL and PostgreSQL, MongoDB. - Various functions in db.py include starting of connections, executing of certain user queries and ultimately close of - the connections. ## django - This particular folder holds an api.py file, which in turn helps in Django integration via APIs. ## helper - This folder holds multiple.py files to help with the execution of main job scripts ### 1. aws - This sub folder contains a s3.py files, which basically lets user do s3 operations from a glue or sagemaker job, - such as save a file to s3, download a specific file from s3 etc. ### 2. clevertap - This folder contains a .py file with name clevertap.py, the basic functions within this .py file helps one to - effectively run clevertap job by using clevertap API. ### 3. disprz - This folder holds disprz.py, which just like the clevertap, helps jobs related to lnd-ma-disprz via API. ### 4. email - this folder holds email.py, which basically allows user to send out a specific file from s3 as a mail attachment, - this .py file can be used to send out error logs as well as output files as email attachment. ### 5. fresh_service - This folder contains a .py file which helps in the execution of freshservice job, this .py file contains the API. ### 6. google - This folder holds 2 folders, related to google API, the use case is as follows -- #### i. playstore - This folder holds a .py file named playstore.py, this .py helps with connecting with google playstore and getting the - reviews from playstore. #### ii. sheet - This folder contains a sheet.py file, which helps user to download or upload data to a Google sheet. ### 7. Parameter - This folder houses a job-parameter.py, which basically helps user in connecting to redshift table and getting the - input parameters based on job_id. ### 8. run_notebook - This folder houses a .py file which helps user to execute certain functions related to Sagemaker jobs, such as - executing a sagemaker job.
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/README.md
README.md
import base64 import json import os import boto3 from botocore.exceptions import ClientError def get_secret_from_file(secrets_name, key=None): """ :param key: a specific key from secrets :param secrets_name: secrets file name where secrets are stored """ try: from secret.zeno_secrets import all_secrets secrets = all_secrets[secrets_name] try: if key: return secrets[key] else: return secrets except KeyError: error_message = "Set the {0} environment variable".format(key) raise EnvironmentError(error_message) except FileNotFoundError: error_message = "secrets.json not found in config folder" raise EnvironmentError(error_message) class Config: __shared_instance = 'getsecrets' @staticmethod def get_instance(): """Static Access Method""" if Config.__shared_instance == 'getsecrets': Config() return Config.__shared_instance def __init__(self): """virtual private constructor""" if Config.__shared_instance != 'getsecrets': raise Exception("This class is a config class !") else: Config.__shared_instance = self self.secrets = None def download_secret(self, secrets_name=None): if self.secrets: return self.secrets secret_name = f"arn:aws:secretsmanager:ap-south-1:921939243643:secret:{secrets_name}" region_name = "ap-south-1" # Create a Secrets Manager client session = boto3.session.Session( aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"), aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"), region_name=os.environ.get("REGION_NAME") ) client = session.client( service_name='secretsmanager', region_name=region_name ) try: print("connecting with secrets manager for getting secrets") get_secret_value_response = client.get_secret_value( SecretId=secret_name ) except ClientError as e: if e.response['Error']['Code'] == 'DecryptionFailureException': raise e elif e.response['Error']['Code'] == 'InternalServiceErrorException': raise e elif e.response['Error']['Code'] == 'InvalidParameterException': raise e elif e.response['Error']['Code'] == 'InvalidRequestException': raise e elif e.response['Error']['Code'] == 'ResourceNotFoundException': raise e else: if 'SecretString' in get_secret_value_response: secret = get_secret_value_response['SecretString'] return json.loads(secret) else: decoded_binary_secret = base64.b64decode(get_secret_value_response['SecretBinary']) return json.loads(decoded_binary_secret) def get_secrets(self): if os.environ.get('env') == 'stage': self.secrets = self.download_secret(secrets_name='staging/etl') elif os.environ.get('env') == 'preprod': self.secrets = self.download_secret(secrets_name='preproduction/etl') elif os.environ.get('env') == 'prod': self.secrets = self.download_secret(secrets_name='production/etl') else: self.secrets = get_secret_from_file(secrets_name='development/etl') return self.secrets
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/config/common.py
common.py
from zeno_etl_libs.helper.email.email import Email, any_email_in_string def create_temp_table(db, table): """ creates table_temp table and truncates the data if table already exists """ temp_table = table.replace("-", "_") + "_temp" query = """ create temporary table if not exists "%s" (LIKE "prod2-generico"."%s"); """ % (temp_table, table) db.execute(query=query) query = """truncate "%s";""" % (temp_table) db.execute(query=query) return temp_table def month_diff(date_a, date_b): """ This function returns month difference between calendar dates 'date_a' and 'date_b' """ return 12 * (date_a.dt.year - date_b.dt.year) + (date_a.dt.month - date_b.dt.month) def drop_table(db, table_name, is_temp=True): try: if is_temp: db.execute(query="""drop table "%s";""" % table_name) else: db.execute(query="""drop table "prod2-generico"."%s";""" % table_name) print(f"table dropped: {table_name}") except Exception as e: print(f"Error in table drop: {str(e)}") def get_table_info(db, table_name, schema=None): """ :param db: db class object :param table_name: table name :param schema: is schema is None --> temp table without schema :return: table info data frame """ if schema: schema_filter = f"and table_schema = '{schema}'" else: schema_filter = '' query = f""" select ordinal_position as position, column_name, data_type, case when character_maximum_length is not null then character_maximum_length else numeric_precision end as max_length, is_nullable, column_default as default_value from information_schema.columns where table_name = '{table_name}' -- enter table name here {schema_filter} order by ordinal_position; """ db.execute(query=query) return db.cursor.fetch_dataframe() def batch(iterable, n=1): """ splits any iterable in batches Example: data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # list of data for x in batch(data, 3): print(x) # Output [0, 1, 2] [3, 4, 5] [6, 7, 8] [9, 10] :param iterable: list, tuple, df :param n: batch size """ l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] def log_or_email_error(logger, exception: Exception, email_to, subject='132-supply-chain JOB FAILURE'): """ if email_to string has any email id in it, email will be sent and code will be terminated. else exception will be raised. :param logger: logger object :param exception: Exception object :param email_to: csv list of emails eg: [email protected],[email protected] """ email = Email() if any_email_in_string(email_to): logger.exception(exception) email.send_email_file(subject=subject, mail_body='The subject job has failed due to: {}'.format(exception), to_emails=email_to) exit(0) else: raise exception
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/helper.py
helper.py
import io class Reviews: def __init__(self): pass # credentials = ServiceAccountCredentials.from_json_keyfile_name( # '/Users/kuldeep/Downloads/playconsole-345511-8f3ba450d69b.json', # scopes=['https://www.googleapis.com/auth/androidpublisher']) self.keyfile_dict = { "type": "service_account", "project_id": "playconsole-345511", "private_key_id": "8f3ba450d69bbe9694ae00f49f740912052694b8", "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQC0dsBllub9kOcE\nHoYA1uwFOxDQnNeuh52nPIogA+cwIWH4WfAALh2aVVf30Gf6rsjecUrCZz+8gCnd\nbHGOTbIIm+4F3XOXDRyyUIndEFTvr2/TxF2K+qW6PNSywzMHcWWKmxdJxyBrzqUi\ncTsXyH2S9WDOVelmhPMdjEvuPsU6h39zFUbITNw8YjhH1SrAZm0toOYZ/+D7RZJp\nwQApy8rxmi/6kiUNS/R9GNn0tuNE4PPT1xzpFn4stbqf2XWYtYVCb325jWmbAlj6\nfxYiWmGVlgeNlm8XiU0IVvOiCyj9WqPcG0ohOZ5OZxpf6lzkAfO+cYoBpOp7PCzN\nAKvcAB5TAgMBAAECggEASG/KNnzl5y38rLibzUZ3onnc+/+Yy2OAMpqoTsWCTN15\nd7iSD2BzXXmYP86VjhgOZMtQ2Muc18sSAuD+i8JADhiY6B3FwgHvXNvbGrLthPAE\nkRom+hw13ZWBQuf7Wad4vLQYGvMk3mEqA7Mzpw5A6XY5D1mIwC/pbhjceZsUi7Md\nS0YgX+d3WdMi6yCOT4ulOr5SBvtTt8KdQ2y3gMzRApP73PzdoygbQ/PhehTncf3I\nhSgZPnjU2612KFukWONSipuHzgWkaq20HmQEgVYyzohpntJFD6KQrtOL038yUEGm\n8sBhRkc1p9AQB21kjD/XNlH0koSBHwEVJM5KTWiP4QKBgQD5dEqBDKYuQC0HcKm9\nWuVyJPFzMGmbailTGEZb19HCsXh5jSSnH/BxeZ1HPW25d16vuH98x6pbbr1e85F5\nSJXYgU2hlWF34MVZTsTzf+uZ5aZa86fpSmoWcUVEu5L4Ygy7NxdjI0YJqZqWXNB5\npFQR6PeIRhdn5tAahxlwLXkYywKBgQC5MwSA+BYEQM+a2q2aWwh06LExbOlpckv7\nD3DD1f4kDMcqUlPpP0zaEnVPvknySO7JwHFkFLZRD0PWkM0RgNfrXkwXVVdXzx8E\nfyyl9ZKmPgaFx5L3/jY8M5IdYggaWJWtbvjsvyiKb2ACeEGI2HFCaK9nvCBOK4hj\nknUq8kBHmQKBgGuwLEmxsDvfMJE5rc005EB2elWD3NNe7SAWJqmXbdJi0uOGbwBG\n5YHXQnJyrl+WjKXHPCIeAAkgsVfARljZYPbqOx06Y61gt1Fqk9OasZbqcPpqnV40\n5b9yfrjBUR0xFtXrXolJvP6G3Vl0D/uzWSeyLsoBmDEej1AkanLm7pQpAoGBAIf7\n3u23u6rJz+Y7dUcmWpJFHX5WIxjq9MFWuA0DvsTHoSIBK13TveFNtlekOHWvea4o\nINpEnw3r8HrG/dxBR8mqBqMHZcey7GqH2sfNBi4M0ws93Ds9rKMNltb+WUbHDrg3\nCI4FWoYze0K0/CG4E4mYhlrb9riPHGlIa8Hp+KrZAoGBAI/m6ygHRllcJtl4BlJn\no4Py06mgQO2PT4lP2CEIVStF8mu4PY/oO7HHzDQe6EnvHRW0e8cKAepmSqa8kW4R\ndedaVm8SjGeU74mwGheWzQy7vsaDLafy3FDRAtFTvmE4kyyydVExWr2vAUi84TXM\nAuV9FqvKzQc5zcrT4xIEtRGu\n-----END PRIVATE KEY-----\n", "client_email": "[email protected]", "client_id": "103055631091973407668", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/playconsoleserviceacc%40playconsole-345511.iam.gserviceaccount.com" } self.package_name = "com.zenohealth.android" self.bucket_name = "pubsite_prod_rev_08705363625182098208" def get(self): from apiclient.discovery import build from httplib2 import Http from oauth2client.service_account import ServiceAccountCredentials credentials = ServiceAccountCredentials.from_json_keyfile_dict( keyfile_dict=self.keyfile_dict, scopes=['https://www.googleapis.com/auth/androidpublisher'] ) service = build('androidpublisher', 'v3', http=credentials.authorize(Http())) reviews_resource = service.reviews() reviews_page = reviews_resource.list(packageName=self.package_name, maxResults=100).execute() reviews_list = reviews_page["reviews"] infinite_loop_canary = 100 while "tokenPagination" in reviews_page: reviews_page = reviews_resource.list( packageName=self.package_name, token=reviews_page["tokenPagination"]["nextPageToken"], maxResults=100).execute() reviews_list.extend(reviews_page["reviews"]) infinite_loop_canary -= 1 if infinite_loop_canary < 0: break for i in reviews_list: print((i['comments'][0]['userComment']['text'].encode("utf-8"))) return reviews_list def download_blob_to_stream(self, source_blob_name): from google.cloud import storage from oauth2client.service_account import ServiceAccountCredentials """Downloads a blob to a stream or other file-like object.""" # The ID of your GCS bucket # bucket_name = "your-bucket-name" # The ID of your GCS object (blob) # source_blob_name = "storage-object-name" # The stream or file (file-like object) to which the blob will be written file_obj = io.BytesIO() # credentials = service_account.Credentials.from_service_account_info(self.keyfile_dict) credentials = ServiceAccountCredentials.from_json_keyfile_dict( keyfile_dict=self.keyfile_dict, ) storage_client = storage.Client(credentials=credentials) # storage_client = storage.Client.from_service_account_json('/Users/kuldeep/Downloads/playconsole-345511-8f3ba450d69b.json') # buckets = storage_client.list_buckets() # print(f"OK: ") # for bucket in buckets: # print(bucket.name) # # blobs = storage_client.list_blobs(self.bucket_name) # # print("Blobs:") # for blob in blobs: # print(blob.name) # print(f"buckets: {buckets}") bucket = storage_client.bucket(self.bucket_name) # Construct a client-side representation of a blob. # Note `Bucket.blob` differs from `Bucket.get_blob` in that it doesn't # retrieve metadata from Google Cloud Storage. As we don't use metadata in # this example, using `Bucket.blob` is preferred here. blob = bucket.blob(source_blob_name) blob.download_to_file(file_obj) # print(f"Downloaded blob {source_blob_name} to file-like object.") # return file_obj # Before reading from file_obj, remember to rewind with file_obj.seek(0). def get_all_review(self, count=100): """ returns: latest reviews by count """ from google_play_scraper import Sort, reviews result, continuation_token = reviews( self.package_name, lang='en', # defaults to 'en' country='us', # defaults to 'us' sort=Sort.NEWEST, # defaults to Sort.NEWEST count=50 # batch size ) # If you pass `continuation_token` as an argument to the reviews function at this point, # it will crawl the items after count review items. all_results = result while len(all_results) < count and result: print(f"continuation_token: {continuation_token}") result, continuation_token = reviews( self.package_name, continuation_token=continuation_token # defaults to None(load from the beginning) ) all_results += result return all_results
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/google/playstore/playstore.py
playstore.py
import json import requests from zeno_etl_libs.config.common import Config class GoogleSheet: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.url = secrets['NODE_NOTIFICATION_BASE_URL'] self.auth_token = secrets['NOTIFICATION_AUTH_TOKEN'] def download(self, data): """ sample data { "spreadsheet_id":"1fhQPO7qkbly1q-iDoMN6jmc9VNhzmYBwIFpSsh76m0M", "sheet_name":"Sheet1", "listedFields": ["posting_date","id","store_id"] } """ payload = { 'spreadsheet_id': data['spreadsheet_id'], 'sheet_name': data['sheet_name'], 'listedFields': data['listedFields'] } response = requests.post( url=self.url + "api/v1/googlesheet-access/read", headers={'Authorization': self.auth_token, 'Content-Type': 'application/json'}, data=json.dumps(payload), timeout=(1, 60)) if 200 >= response.status_code <= 299: response_data = response.json() if not response_data.get('is_error'): return response.json().get('data', []) else: raise ValueError(f"Error: {str(response.text)}") else: raise Exception(f"API call failed, error: {response.text}") def upload(self, data): data = { 'spreadsheet_id': data['spreadsheet_id'], 'sheet_name': data['sheet_name'], 'headers': data['headers'], 'data': data['data'], } response = requests.post( url=self.url + "api/v1/googlesheet-access/write", headers={'Authorization': self.auth_token, 'Content-Type': 'application/json'}, data=json.dumps(data), timeout=(1, 60)) if 200 >= response.status_code <= 299: print(f"Data uploaded successfully. spreadsheet_id: {data['spreadsheet_id']}, name: {data['sheet_name']}") else: raise Exception(f"API call failed, error: {response.text}")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/google/sheet/sheet.py
sheet.py
import datetime import time import pandas as pd import requests from zeno_etl_libs.config.common import Config class Dizprz: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.api_token = secrets["LEARNTRON_API_TOKEN"] def __send_payload(self, offset, fetch_count, from_date, to_date): fromTimePeriod = from_date.strftime("%Y-%m-%d") toTimePeriod = to_date.strftime("%Y-%m-%d") url = f"https://disprzexternalapi.disprz.com/api/analytics/getLearnerAnalytics?offset={offset}" \ f"&fetchCount={fetch_count}&fetchCompletionDetails=true&fetchUdfDetails=true" \ f"&fromTimePeriod={fromTimePeriod}&toTimePeriod={toTimePeriod}&fetchJourneySpecificDetails=true" \ f"&journeyId=0&fetchModuleSpecificDetails=true" """ this to get the total count when offset is zero (first call) """ if offset == 0: url = url + "&fetchTotalCount=true" headers = { 'Learntron-Api-Token': self.api_token, } response = requests.get(url, headers=headers) return response.json() def get_disprz_dataframe(self): total_count = 20000 # some value > offset to start with fetch_count = 1000 # batch size offset = 0 disprz_data = list() # entire data list print("Start fetching the disprz data") start_time = time.time() to_date = datetime.datetime.today() from_date = to_date - datetime.timedelta(days=400) # last 365 days while offset < total_count: data = self.__send_payload(offset=offset, fetch_count=fetch_count, from_date=from_date, to_date=to_date) if offset == 0 and data: total_count = data[0]['totalCount'] print(f"total data at disprz is: {total_count}") offset += fetch_count disprz_data += data print(f"total: {total_count}, offset: {offset}, length: {len(data)}") try: df = pd.DataFrame(disprz_data) except Exception as error: raise Exception("Error while fetching data: {}". format(error)) print(f"total count: {total_count}, df len: {len(df)}") print(f"total time taken was: {time.time() - start_time} sec") if total_count == len(df): print(f"fetched all data from disprz successfully") return df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/disprz/disprz.py
disprz.py
import re import requests from zeno_etl_libs.config.common import Config from zeno_etl_libs.helper.aws.s3 import S3 FILE_TYPES_MIME_MAPPING = { 'csv': 'application/csv', 'txt': 'text/plain', 'log': 'text/plain', 'xls': 'application/vnd.ms-excel', 'xlsx': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'zip': 'application/zip' } def determine_file_mime_type(file_name): if file_name.endswith(".csv"): return FILE_TYPES_MIME_MAPPING['csv'] elif file_name.endswith(".txt"): return FILE_TYPES_MIME_MAPPING['txt'] elif file_name.endswith(".log"): return FILE_TYPES_MIME_MAPPING['log'] elif file_name.endswith(".xls"): return FILE_TYPES_MIME_MAPPING['xls'] elif file_name.endswith(".xlsx"): return FILE_TYPES_MIME_MAPPING['xlsx'] elif file_name.endswith(".zip"): return FILE_TYPES_MIME_MAPPING['zip'] raise ValueError("No MIME type available") class Email: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.url = secrets['NODE_NOTIFICATION_BASE_URL'] self.NOTIFICATION_EMAIL_FILE_POSTFIX_URL = "api/v1/queueing-notification/send-mail" self.auth_token = secrets['NOTIFICATION_AUTH_TOKEN'] self.s3 = S3() def send_email_file(self, subject, mail_body, to_emails, file_uris=None, file_paths=None, from_email='[email protected]'): file_paths = file_paths if file_paths else [] multiple_files = list() url = self.url + self.NOTIFICATION_EMAIL_FILE_POSTFIX_URL headers = {'Authorization': self.auth_token} if isinstance(to_emails, list): to_emails = ','.join(email_id for email_id in to_emails) data = { 'subject': subject, 'body': mail_body, 'to_emails': to_emails, 'from_email': from_email, 'is_html': 'false', } if file_uris is not None: for file_uri in file_uris: file_name = file_uri.split('/')[-1] mime_type = determine_file_mime_type(file_name) file_bytes = self.s3.get_file_object(uri=file_uri) multiple_files.append(('file', (file_name, file_bytes, mime_type))) for file_path in file_paths: file_name = file_path.split('/')[::-1][0] mime_type = determine_file_mime_type(file_name) multiple_files.append(('file', (file_name, open(file_path, 'rb'), mime_type))) response = requests.post(url, data=data, files=multiple_files, headers=headers) if response.status_code != 200: raise Exception(f"Email sending failed: {response.text}") else: print(f"Email sending successful: {response.text}") def is_string_an_email(email: str): """ Checks if a given string is proper email or some fake string. Eg: email = "[email protected]" is_string_an_email(email) --> True :param email: email id string :return: True | False """ email_regx = "^[a-zA-Z0-9+_.-]+@[a-zA-Z0-9.-]+$" if re.match(email_regx, email): return True return False def any_email_in_string(csv_emails): """ In a given comma separated string, if any email id is present then returns True :param csv_emails: comma separated email id strings :returns: True | False """ for string in csv_emails.split(","): if is_string_an_email(email=string): return True return False
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/email/email.py
email.py
import errno import json import os import re import time from subprocess import Popen from shlex import split from zeno_etl_libs.config.common import Config import boto3 def ensure_session(session=None): """If session is None, create a default session and return it. Otherwise return the session passed in""" if session is None: session = boto3.session.Session() return session def get_execution_role(session): """Return the role ARN whose credentials are used to call the API. Throws an exception if the current AWS identity is not a role. Returns: (str): The role ARN """ assumed_role = session.client("sts").get_caller_identity()["Arn"] if ":user/" in assumed_role: user_name = assumed_role[assumed_role.rfind("/") + 1:] raise ValueError( f"You are running as the IAM user '{user_name}'. You must supply an IAM role to run SageMaker jobs." ) if "AmazonSageMaker-ExecutionRole" in assumed_role: role = re.sub( r"^(.+)sts::(\d+):assumed-role/(.+?)/.*$", r"\1iam::\2:role/service-role/\3", assumed_role, ) return role role = re.sub( r"^(.+)sts::(\d+):assumed-role/(.+?)/.*$", r"\1iam::\2:role/\3", assumed_role ) # Call IAM to get the role's path role_name = role[role.rfind("/") + 1:] arn = session.client("iam").get_role(RoleName=role_name)["Role"]["Arn"] if ":role/" in arn: return arn message = "The current AWS identity is not a role: {}, therefore it cannot be used as a SageMaker execution role" raise ValueError(message.format(arn)) def execute_notebook( *, image="notebook-runner", input_path, output_prefix, notebook, parameters, role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", instance_type="ml.m5.large", session, in_vpc=True, env="stage", timeout_in_sec=7200 ): session = ensure_session(session) configobj = Config.get_instance() secrets = configobj.get_secrets() if not role: role = get_execution_role(session) elif "/" not in role: account = session.client("sts").get_caller_identity()["Account"] role = "arn:aws:iam::{}:role/{}".format(account, role) if "/" not in image: # account = session.client("sts").get_caller_identity()["Account"] # region = session.region_name account = secrets['AWS_ACCOUNT_ID'] region = secrets['AWS_REGION'] image = "{}.dkr.ecr.{}.amazonaws.com/{}:latest".format(account, region, image) if notebook == None: notebook = input_path base = os.path.basename(notebook) nb_name, nb_ext = os.path.splitext(base) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) job_name = ( (env + "-" + re.sub(r"[^-a-zA-Z0-9]", "-", nb_name))[: 62 - len(timestamp)] + "-" + timestamp ) input_directory = "/opt/ml/processing/input/" local_input = input_directory + os.path.basename(input_path) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) local_output = "/opt/ml/processing/output/" api_args = { "ProcessingInputs": [ { "InputName": "notebook", "S3Input": { "S3Uri": input_path, "LocalPath": input_directory, "S3DataType": "S3Prefix", "S3InputMode": "File", "S3DataDistributionType": "FullyReplicated", }, }, ], "ProcessingOutputConfig": { "Outputs": [ { "OutputName": "result", "S3Output": { "S3Uri": output_prefix, "LocalPath": local_output, "S3UploadMode": "EndOfJob", }, }, ], }, "ProcessingJobName": job_name, "ProcessingResources": { "ClusterConfig": { "InstanceCount": 1, "InstanceType": instance_type, "VolumeSizeInGB": 40, } }, "StoppingCondition": {"MaxRuntimeInSeconds": timeout_in_sec}, "AppSpecification": { "ImageUri": image, "ContainerArguments": [ "run_notebook", ], }, "RoleArn": role, "Environment": {}, } if in_vpc: if env == "stage": api_args["NetworkConfig"] = { 'EnableInterContainerTrafficEncryption': False, 'EnableNetworkIsolation': False, 'VpcConfig': { 'SecurityGroupIds': [ "sg-0101c938006dab959" ], 'Subnets': [ 'subnet-0446eb5f39df5ceca' ] } } elif env == "prod": api_args["NetworkConfig"] = { 'EnableInterContainerTrafficEncryption': False, 'EnableNetworkIsolation': False, 'VpcConfig': { 'SecurityGroupIds': [ "sg-08f218fe121e66d6e" ], 'Subnets': [ 'subnet-0e5470f4100505343' ] } } else: raise Exception(f"env(ie. stage, prod) input is must if is_vpc = True") api_args["Environment"]["PAPERMILL_INPUT"] = local_input api_args["Environment"]["PAPERMILL_OUTPUT"] = local_output + result if os.environ.get("AWS_DEFAULT_REGION") is not None: api_args["Environment"]["AWS_DEFAULT_REGION"] = os.environ["AWS_DEFAULT_REGION"] api_args["Environment"]["PAPERMILL_PARAMS"] = json.dumps(parameters) api_args["Environment"]["PAPERMILL_NOTEBOOK_NAME"] = notebook api_args["Environment"]["AWS_ACCESS_KEY_ID"] = secrets["AWS_ACCESS_KEY_ID"] api_args["Environment"]["AWS_SECRET_ACCESS_KEY"] = secrets["AWS_SECRET_ACCESS_KEY_ID"] api_args["Environment"]["REGION_NAME"] = "ap-south-1" client = boto3.client("sagemaker") result = client.create_processing_job(**api_args) job_arn = result["ProcessingJobArn"] job = re.sub("^.*/", "", job_arn) return job def default_bucket(): return "sagemaker-ap-south-1-921939243643" def upload_notebook(notebook, session=None): """Uploads a notebook to S3 in the default SageMaker Python SDK bucket for this user. The resulting S3 object will be named "s3://<bucket>/papermill-input/notebook-YYYY-MM-DD-hh-mm-ss.ipynb". Args: notebook (str): The filename of the notebook you want to upload. (Required) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The resulting object name in S3 in URI format. """ with open(notebook, "rb") as f: return upload_fileobj(f, session) def upload_fileobj(notebook_fileobj, session=None): """Uploads a file object to S3 in the default SageMaker Python SDK bucket for this user. The resulting S3 object will be named "s3://<bucket>/papermill-input/notebook-YYYY-MM-DD-hh-mm-ss.ipynb". Args: notebook_fileobj (fileobj): A file object (as returned from open) that is reading from the notebook you want to upload. (Required) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The resulting object name in S3 in URI format. """ session = ensure_session(session) snotebook = "notebook-{}.ipynb".format( time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) ) s3 = session.client("s3") key = "papermill_input/" + snotebook bucket = default_bucket() s3path = "s3://{}/{}".format(bucket, key) s3.upload_fileobj(notebook_fileobj, bucket, key) return s3path def get_output_prefix(): """Returns an S3 prefix in the Python SDK default bucket.""" return "s3://{}/papermill_output".format(default_bucket()) def wait_for_complete(job_name, progress=True, sleep_time=10, session=None): """Wait for a notebook execution job to complete. Args: job_name (str): The name of the SageMaker Processing Job executing the notebook. (Required) progress (boolean): If True, print a period after every poll attempt. (Default: True) sleep_time (int): The number of seconds between polls. (Default: 10) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: A tuple with the job status and the failure message if any. """ session = ensure_session(session) client = session.client("sagemaker") done = False while not done: if progress: print(".", end="") desc = client.describe_processing_job(ProcessingJobName=job_name) status = desc["ProcessingJobStatus"] if status != "InProgress": done = True else: time.sleep(sleep_time) if progress: print() return status, desc.get("FailureReason") def download_notebook(job_name, output=".", session=None): """Download the output notebook from a previously completed job. Args: job_name (str): The name of the SageMaker Processing Job that executed the notebook. (Required) output (str): The directory to copy the output file to. (Default: the current working directory) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The filename of the downloaded notebook. """ session = ensure_session(session) client = session.client("sagemaker") desc = client.describe_processing_job(ProcessingJobName=job_name) prefix = desc["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"] notebook = os.path.basename(desc["Environment"]["PAPERMILL_OUTPUT"]) s3path = "{}/{}".format(prefix, notebook) if not os.path.exists(output): try: os.makedirs(output) except OSError as e: if e.errno != errno.EEXIST: raise p1 = Popen(split("aws s3 cp --no-progress {} {}/".format(s3path, output))) p1.wait() return "{}/{}".format(output.rstrip("/"), notebook) def run_notebook( image, notebook, parameters={}, role=None, instance_type="ml.m5.large", output_prefix=None, output=".", session=None, in_vpc=False, env="stage", timeout_in_sec=7200, check_completion_status=True ): """Run a notebook in SageMaker Processing producing a new output notebook. Args: image (str): The ECR image that defines the environment to run the job (required). notebook (str): The local notebook to upload and run (required). parameters (dict): The dictionary of parameters to pass to the notebook (default: {}). role (str): The name of a role to use to run the notebook (default: calls get_execution_role()). instance_type (str): The SageMaker instance to use for executing the job (default: ml.m5.large). output_prefix (str): The prefix path in S3 for where to store the output notebook (default: determined based on SageMaker Python SDK) output (str): The directory to copy the output file to (default: the current working directory). session (boto3.Session): The boto3 session to use. Will create a default session if not supplied (default: None). Returns: A tuple with the processing job name, the job status, the failure reason (or None) and the the path to the result notebook. The output notebook name is formed by adding a timestamp to the original notebook name. """ session = ensure_session(session) if output_prefix is None: output_prefix = get_output_prefix() s3path = upload_notebook(notebook, session) job_name = execute_notebook( image=image, input_path=s3path, output_prefix=output_prefix, notebook=notebook, parameters=parameters, role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", instance_type=instance_type, session=session, in_vpc=in_vpc, env=env, timeout_in_sec=timeout_in_sec ) print("Job {} started".format(job_name)) if check_completion_status: status, failure_reason = wait_for_complete(job_name) else: status = 'Completed' failure_reason = None if status == "Completed": local = download_notebook(job_name, output=output) else: local = None return (job_name, status, local, failure_reason) if __name__ == '__main__': # run_notebook( # image="notebook-runner", # notebook="send-glue-job-logs.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # parameters={"job_name": "prod-8-sales"}, # in_vpc=False # ) run_notebook( notebook="redshift-write-demo.ipynb", parameters={"env": "stage"}, in_vpc=True, env="stage" ) # run_notebook( # image="notebook-runner", # notebook="s3_read_write.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # in_vpc=False # ) # run_notebook( # image="notebook-runner", # notebook="ml-demo.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # in_vpc=True # )
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/run_notebook/run_notebook.py
run_notebook.py
# Copyright 2015 CleverTap # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['CleverTap'] import json import urllib.request, urllib.parse, urllib.error import time class CleverTap(object): api_hostname = 'api.clevertap.com' api_version = 1 class TargetActions(object): CREATE = "create" ESTIMATE = "estimate" LIST = "list" RESULT = "result" STOP = "stop" @classmethod def valid_actions(cls): return [cls.CREATE, cls.ESTIMATE, cls.LIST, cls.RESULT, cls.STOP] def __init__(self, account_id, account_passcode, region=None): self.account_id = account_id self.account_passcode = account_passcode self.account_region = region self.cursor = None self.url = None self.records = [] if self.account_region is not None: self.__class__.api_hostname = "%s.%s" % (self.account_region, self.__class__.api_hostname) def __repr__(self): return "%s(account_id=%s, passcode=%s, region=%s, endpoint=%s)" % (self.__class__.__name__, self.account_id, self.account_passcode, self.account_region, self.api_endpoint) @property def api_endpoint(self): return 'https://%s/%s' % (self.__class__.api_hostname, self.__class__.api_version) def upload(self, data, dryRun=False): """upload an array of profile and/or event dicts""" # validate data validation_error = self._validate("upload", data) if validation_error: raise Exception(validation_error) return # construct the base request url self.url = '/'.join([self.api_endpoint, "upload"]) if dryRun: self.url += "?dryRun=1" # the request body is the json encoded data body = json.dumps({"d":data}) # request headers headers_params = {'Content-Type':'application/json;charset=utf-8'} # make the request return self._call(body=body, headers_params=headers_params) def targets(self, action, payload): # validate validation_error = self._validate(action, payload) if validation_error: raise Exception(validation_error) return url_action = None if action in self.TargetActions.valid_actions(): url_action = action if not url_action: print(("unknown targets action %s" % action)) return if url_action == self.TargetActions.ESTIMATE: payload['estimate_only'] = True url_action = self.TargetActions.CREATE # construct the request url self.url = '/'.join([self.api_endpoint, "targets", "%s.json"%url_action]) # the request body is the json encoded payload body = json.dumps(payload) if payload else None # request headers headers_params = {'Content-Type':'application/json'} # make the request return self._call(body=body, headers_params=headers_params) def profile(self, email=None, identity=None, objectId=None): """fetch an individual user profile by ID, one of email, identity or CleverTap objectID""" if email is None and identity is None and objectId is None: raise Exception("profile requires one of email, identity or objectId") return # construct the request url self.url = '/'.join([self.api_endpoint, "profile.json"]) if email is not None: self.url += "?email=%s" % email elif identity is not None: self.url += "?identity=%s" % identity elif objectId is not None: self.url += "?objectId=%s" % objectId # request headers headers_params = {'Content-Type':'application/json'} # make the request return self._call(headers_params=headers_params) def profiles(self, query, batch_size=10): """download profiles defined by query""" return self._fetch_records("profiles", query, batch_size=batch_size) def events(self, query, batch_size=10): """download events defined by query""" return self._fetch_records("events", query, batch_size=batch_size) def _fetch_records(self, type, query, batch_size=10): # reset our records cache self.records = [] # validate query validation_error = self._validate(type, query) if validation_error: raise Exception(validation_error) return # construct the base request url self.baseurl = '/'.join([self.api_endpoint, "%s.json"%type]) _args = urllib.parse.urlencode({"query":json.dumps(query), 'batch_size':batch_size}) # add query and batch_size as query args self.url = "%s?%s"%(self.baseurl, _args) headers_params = {'Content-Type':'application/json;charset=utf-8'} # fetch initial cursor while True: print('fetching initial cursor') res = self._call(headers_params=headers_params) or {} if 'error' in res: print(res) if res.get('code', -1) == 1: print("request throttled, retrying in 30") time.sleep(30) else: # some other error abort return self.records else: break self.cursor = res.get("cursor", None) # if we have a cursor then make a second request with the cursor if self.cursor: # construct the request url # add the cursor self.url = "%s?cursor=%s"%(self.baseurl, self.cursor) # convenience inner function to handle cursor requests def call_records(): print(("calling %s records" % batch_size)) # make the request res = self._call() or {} # make sure the cursor is ready with data cursor_ready = not 'error' in res if not cursor_ready: print(res) if res.get('code', -1) == 2: wait_interval = 5 print(("cursor not ready, retrying again in %s" % wait_interval)) time.sleep(wait_interval) return # parse response self.cursor = res.get("next_cursor", None) new_records = res.get("records", []) # add the new records array to our records array self.records += new_records print(("Received %s records; have %s total records" % (len(new_records), len(self.records)))) # if the request returns a new cursor, update the api url with the new cursor if self.cursor: self.url = "%s?cursor=%s"%(self.baseurl, self.cursor) else: self.url = None # keep making requests with the new cursor as long as we have a cursor while True: if self.cursor is None: print("no cursor, finished fetching records") break else: print(("have cursor %s" % self.cursor)) call_records() return self.records def _call(self, **kwargs): if self.url == None: print("api url is None") return None headers_params = kwargs.get('headers_params', {}) # add account_id, and passcode to request headers headers_params['X-CleverTap-Account-Id'] = self.account_id headers_params['X-CleverTap-Passcode'] = self.account_passcode args = kwargs.get("args", None) if args: args = urllib.parse.urlencode(args) body = kwargs.get("body", None) # Create the request req = urllib.request.Request(self.url, args, headers_params) if body: req.data = bytes(json.dumps(body), 'utf-8') try: # Open the request f = urllib.request.urlopen(req) # Get the response response = f.read() # Close the opened request f.close() except Exception as e: print(e) try: return e.read() except Exception as e: pass return None # Parse and return the response try: res = self._parse_response(response) except Exception as e: print(e) res = None return res def _parse_response(self, response): """Parse a response from the API""" try: res = json.loads(response) except Exception as e: e.args += ('API response was: %s' % response) raise e return res def _validate(self, type, data): """Simple data validation""" validation_error = None if not self.account_id: validation_error = "clevertap account id missing" return validation_error if not self.account_passcode: validation_error = "clevertap account passcode missing" return validation_error if type in [self.TargetActions.CREATE, self.TargetActions.ESTIMATE]: if data is None: return "Push targets action %s requires a payload"%type if (data.get("name", None) is None): return "Push targets action %s requires a name"%type if (data.get("where", None) is None) and (data.get("segment", None) is None): return "Push targets action %s requires a where or segment value"%type if (data.get("where", None) is not None) and (data.get("segment", None) is not None): return "Push targets action %s does not support both a where value and a segment value, specify one or the other"%type if (data.get("segment", None) is not None): if data.get("segment") != "all": return "Push targets action %s segment value must be 'all'"%type if (data.get("content", None) is None): return "Push targets action %s requires a content dict"%type if (data.get("content", None) is not None): if (data.get("content", {}).get("title", None) is None) or (data.get("content", {}).get("body", None) is None): return "Push targets action %s content dict requires a title and a body"%type if (data.get("devices", None) is None): return "Push targets action %s requires a devices array"%type return validation_error if type == self.TargetActions.LIST: # no-op return validation_error if type in [self.TargetActions.RESULT, self.TargetActions.STOP]: if (data is None) or (data.get("id", None) is None): validation_error = "Push targets %s action requires a target id"%type return validation_error if type == "upload": for record in data or []: identity = record.get("identity", None) or record.get("FBID", None) or record.get("GPID", None) or record.get("objectId", None) if identity is None: validation_error = "record must contain an identity, FBID, GPID or objectId field: %s"%record return validation_error break record_type = record.get("type", None) if record_type not in ['profile', 'event']: validation_error = "record type must be profile or event: %s"%record return validation_error break if record_type == "profile": profileData = record.get("profileData", None) if profileData is None or not isinstance(profileData, dict): validation_error = "record with type profile must contain a profileData dict: %s"%record return validation_error break Phone = profileData.get("Phone", None) if Phone and (not isinstance(Phone, str) or not Phone.startswith("+")): validation_error = "profile Phone must be a string and start with +<country code>: %s"%record return validation_error break if record_type == "event": evtData = record.get("evtData", None) if evtData is None or not isinstance(evtData, dict): validation_error = "record with type event must contain an evtData dict: %s"%record return validation_error break return validation_error
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/clervertap/clevertap_2.py
clevertap_2.py
import json import requests from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger class CleverTap: """ class: is used to fetch the data from CleverTap using API calls """ def __init__(self, api_name=None, event_name=None, batch_size=None, from_date=None, to_date=None, query=None): """ :params account_id: CleverTap Account ID :params passcode: CleverTap passcode :params api_name: CleverTap api name to fetch the different type of data eg: "profiles.json" :params batch_size: no of records to be fetched per batch :params from_date: start date filter, YYYYMMDD :params to_date: end date filter, YYYYMMDD :params query: """ self.logger = get_logger() configobj = Config.get_instance() secrets = configobj.get_secrets() account_id = secrets['CLEVERTAP_ACCOUNT_ID'] passcode = secrets['CLEVERTAP_PASSCODE'] self.uri = "api.clevertap.com" self.account_id = account_id if account_id else "TEST-K5Z-K95-RZ6Z" self.passcode = passcode if passcode else 'd1d2cc1f8624434dbb3038b77d3fcf9d' self.api_name = api_name if api_name else "profiles.json" self.event_name = event_name if event_name else "App Launched" self.batch_size = batch_size if batch_size else 5 self.from_date = from_date if from_date else 20220101 self.to_date = to_date if to_date else 20220101 self.cursor = None self.all_records = list() self.query = query or { "event_name": self.event_name, "from": self.from_date, "to": self.to_date } self.headers = { 'X-CleverTap-Account-Id': self.account_id, 'X-CleverTap-Passcode': self.passcode, 'Content-Type': 'application/json' } self.logger.info(f"account_id: {account_id}, api_name: {api_name}, event_name:{event_name}") def set_cursor(self): url = f"https://{self.uri}/1/{self.api_name}?batch_size={self.batch_size}" response = requests.request("POST", url, headers=self.headers, data=json.dumps(self.query)) if response.status_code == 200: self.cursor = response.json()['cursor'] self.logger.info("Cursor set successfully!") return self.cursor else: raise Exception(f"CleverTap cursor getting failed: {str(response.text)}") def get_profile_data_batch(self): url = f"https://{self.uri}/1/{self.api_name}?cursor={self.cursor}" response = requests.request("GET", url, headers=self.headers, data="") if response.status_code == 200: data = response.json() """ it will be set to None if all records fetched """ self.cursor = data.get("next_cursor") """ adding batch records to all records list """ self.all_records += data['records'] self.logger.info(f"Batch records fetched successfully, count: {len(data['records'])}") # self.logger.info(f"Batch records: {data['records']}") return data['records'] else: raise Exception(f"CleverTap profile_data getting failed: {str(response.text)}") def get_profile_data_all_records(self): self.set_cursor() while self.cursor: self.get_profile_data_batch() def create_target(self): """ eg. query: {"name": "My Sms API campaign", "estimate_only": True, "target_mode": "sms", "where": {"event_name": "Charged", "from": 20171001, "to": 20171220, "common_profile_properties": { "profile_fields": [{"name": "Customer Type", "operator": "equals", "value": "Platinum"}]}}, "respect_frequency_caps": True, "content": {"body": "Sms body"}, "when": "now"} """ response = requests.post(f'https://in1.{self.uri}/1/targets/{self.api_name}', headers=self.headers, data=json.dumps(self.query)) if 200 <= response.status_code <= 299: res = response.text self.logger.info(f"create target successful, status code:{response.status_code} text: {res}") return res else: raise Exception(f"create target failed, status code:{response.status_code} text: {response.text}")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/clervertap/clevertap.py
clevertap.py
import boto3 import datetime from dateutil.tz import tzutc from zeno_etl_libs.config.common import Config class Redshift: def __init__(self): configobj = Config.get_instance() self.secrets = configobj.get_secrets() self.client = boto3.client('redshift') self.cluster_identifier = self.secrets["CLUSTER_IDENTIFIER"] self.database_name = self.secrets["REDSHIFT_WRITE_DB"] def get_snapshot_identifier(self, snapshot_type='automated', utc_date: str = None) -> str: """ :param snapshot_type: 'automated' | 'manual' :param utc_date: format "%Y-%m-%d" Returns: Automated snapshot identifier of given utc_date, if utc_date is not given then latest snapshot """ end_time = datetime.datetime.strptime(utc_date, "%Y-%m-%d") if utc_date else datetime.datetime.now(tz=tzutc()) end_time = end_time.replace(hour=23, minute=59, second=59) # utc_date = str(end_time.date()) """ last 1 year """ start_time = end_time - datetime.timedelta(days=365) response = self.client.describe_cluster_snapshots( ClusterIdentifier=self.cluster_identifier, SnapshotType=snapshot_type, StartTime=start_time, EndTime=end_time, MaxRecords=100, ClusterExists=True, SortingEntities=[ { 'Attribute': 'CREATE_TIME', 'SortOrder': 'DESC' }, ] ) for snap in response['Snapshots']: print(snap['SnapshotIdentifier']) if not utc_date: return snap['SnapshotIdentifier'] else: if utc_date in snap['SnapshotIdentifier']: return snap['SnapshotIdentifier'] return "" def create_manual_snapshot(self): """ resource to read: 1. https://n2ws.com/blog/aws-automation/3-reasons-to-automate-your-manual-redshift-snapshots 2. https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/redshift.html#Redshift.Client.create_cluster_snapshot 3. https://aws.amazon.com/redshift/pricing/ """ # Keeping the minutes and seconds constant time_now = datetime.datetime.now(tz=tzutc()).strftime('%Y-%m-%d-%H-00-00') snapshot_identifier = f"{self.cluster_identifier}-{time_now}" print(f"snapshot_identifier: {snapshot_identifier}") print("MANUAL_SNAPSHOT_RETENTION_PERIOD type: ", type(int(self.secrets["MANUAL_SNAPSHOT_RETENTION_PERIOD"]))) # TODO: take MANUAL_SNAPSHOT_RETENTION_PERIOD period from secrets(type int needed str was coming, so fix it) response = self.client.create_cluster_snapshot( SnapshotIdentifier=snapshot_identifier, ClusterIdentifier=self.cluster_identifier, ManualSnapshotRetentionPeriod=int(self.secrets["MANUAL_SNAPSHOT_RETENTION_PERIOD"]), Tags=[ { 'Key': 'backup_type', 'Value': 'monthly' }, ] ) return response
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/aws/redshift.py
redshift.py
import os import time from io import StringIO, BytesIO # python3; python2: BytesIO import boto3 from pandas import ExcelWriter from zeno_etl_libs.config.common import Config class S3: def __init__(self, bucket_name=None, region=None): configobj = Config.get_instance() secrets = configobj.get_secrets() self.secrets = secrets self.bucket_name = bucket_name or 'aws-glue-temporary-921939243643-ap-south-1' self.region = region if region else 'ap-south-1' self.aws_access_key_id = secrets['AWS_ACCESS_KEY_ID'] self.aws_secret_access_key = secrets['AWS_SECRET_ACCESS_KEY_ID'] self.s3_resource = boto3.resource('s3', self.region, aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key) self.s3_client = boto3.client('s3', self.region, aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key) def save_df_to_s3(self, df, file_name=None, index_label=False, index=False, header=True): file_name = file_name or f"temp_{int(time.time() * 1000)}.csv" csv_buffer = StringIO() df.to_csv(csv_buffer, index_label=index_label, index=index, header=header) self.s3_resource.Object(self.bucket_name, file_name).put(Body=csv_buffer.getvalue()) s3_uri = f"s3://{self.bucket_name}/{file_name}" return s3_uri def get_file_object(self, uri, encoding="utf-8"): names = uri.split("//")[-1].split("/") self.bucket_name = names[0] key = "/".join(names[1:]) obj = self.s3_resource.Object(self.bucket_name, key).get() big_str = obj["Body"].read().decode(encoding) return big_str def unload_redshift_s3(self, table_name, file_s3_uri, db, schema=None): if schema: table_location = f"""{schema}"."{table_name}""" else: """ temp tables have session specific schema which has no name """ table_location = table_name query = f""" UNLOAD ('select * from "{table_location}"') TO '{file_s3_uri}' CREDENTIALS 'aws_access_key_id={self.aws_access_key_id};aws_secret_access_key={self.aws_secret_access_key}' FORMAT CSV --HEADER --ADDQUOTES; """ db.execute(query=query) def write_to_db_from_s3_csv(self, table_name, file_s3_uri, db, schema=None, delete_folder=False): if schema: table_location = f"""{schema}"."{table_name}""" else: """ temp tables have session specific schema which has no name """ table_location = table_name query = f""" COPY "{table_location}" FROM '{file_s3_uri}' CREDENTIALS 'aws_access_key_id={self.aws_access_key_id};aws_secret_access_key={self.aws_secret_access_key}' -- for better copy performance COMPUPDATE OFF STATUPDATE OFF REGION 'ap-south-1' IGNOREHEADER 1 FORMAT AS csv MAXERROR 1 ; """ db.execute(query=query) if delete_folder: self.delete_s3_obj(uri=file_s3_uri, delete_folder=True) else: self.delete_s3_obj(uri=file_s3_uri) def write_df_to_db(self, df, table_name, db, schema=None): file_name = f"temp_{int(time.time() * 1000)}.csv" file_s3_uri = self.save_df_to_s3(df=df, file_name=file_name) # eg. "s3://{self.bucket_name}/df.csv" self.write_to_db_from_s3_csv(table_name=table_name, file_s3_uri=file_s3_uri, db=db, schema=schema) self.delete_s3_obj(uri=file_s3_uri) def write_to_text_file_on_s3(self, file_name): file_name = f"temp_{int(time.time() * 1000)}.txt" or file_name csv_buffer = StringIO() self.s3_resource.Object(self.bucket_name, file_name).put(Body=csv_buffer.getvalue()) s3_uri = f"s3://{self.bucket_name}/{file_name}" return s3_uri def write_df_to_excel(self, data, file_name): """ df: data frame file_name: with reference to /tmp folder sheet_name: """ path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" if not os.path.exists(path): os.mkdir(path, 0o777) local_file_full_path = path + file_name with ExcelWriter(local_file_full_path) as writer: for sheet_name, df in data.items(): df.to_excel(writer, sheet_name=sheet_name) return local_file_full_path def write_text_to_file(self, text, file_name): path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" if not os.path.exists(path): os.mkdir(path, 0o777) local_file_full_path = path + file_name file_p = open(local_file_full_path, "w") file_p.writelines(text) return local_file_full_path def upload_file_to_s3(self, file_name): local_file_full_path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" + file_name s3_file_full_path = file_name self.s3_client.upload_file( Filename=local_file_full_path, Bucket=self.bucket_name, Key=s3_file_full_path, ) s3_uri = f"s3://{self.bucket_name}/{s3_file_full_path}" return s3_uri def download_file_from_s3(self, file_name): path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" print(f"path: {path}") if not os.path.exists(path): os.mkdir(path, 0o777) head, tail = os.path.split(file_name) local_file_full_path = path + tail s3_file_full_path = file_name self.s3_client.download_file( Bucket=self.bucket_name, Key=s3_file_full_path, Filename=local_file_full_path ) return local_file_full_path def delete_s3_obj(self, uri, delete_folder=False): if delete_folder: response = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix="unload/" + uri.split('/')[-2] + "/") files_in_folder = response["Contents"] files_to_delete = [] for f in files_in_folder: files_to_delete.append({"Key": f["Key"]}) response = self.s3_client.delete_objects( Bucket=self.bucket_name, Delete={"Objects": files_to_delete} ) print(response) else: names = uri.split("//")[-1].split("/") self.bucket_name = names[0] key = "/".join(names[1:]) response = self.s3_resource.Object(self.bucket_name, key).delete() print(f"S3 object(uri: {uri}) delete response: {response}") def move_s3_obj(self, source, target_key): try: self.s3_client.copy_object( Bucket=self.bucket_name, CopySource=source, Key=target_key ) except self.s3_client.exceptions.ObjectNotInActiveTierError as e: print(f"Copying s3 obj failed: {e}") raise e self.delete_s3_obj(uri=f"s3:/{source}") def read_df_from_s3_csv(self, bucket_name, object_key): try: import pandas as pd client = boto3.client('s3') csv_obj = client.get_object(Bucket=bucket_name, Key=object_key) body = csv_obj['Body'] csv_string = body.read().decode('utf-8') df = pd.read_csv(StringIO(csv_string)) return df except Exception as error: print(f"Read from S3 failed: {error}") raise error
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/helper/aws/s3.py
s3.py
import datetime import json import os import requests from zeno_etl_libs.config.common import Config class Sql: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.url = secrets['DJANGO_ACCOUNTS_BASE_URL'] self.node_url = secrets['NODE_NOTIFICATION_BASE_URL'] self.auth_token = secrets['DJANGO_OAUTH_TOKEN'] self.node_auth_token = secrets['NOTIFICATION_AUTH_TOKEN'] self.env = os.environ.get('env', 'dev') def create_big_query_log_for_mysql_db_update(self, request_body, event_name): url = self.node_url + "api/v1/bigQuery-access/event-logs-write" headers = {'Content-Type': 'application/json', 'Authorization': self.node_auth_token} __BIG_QUERY_PLATFORM = 'data-science-server' __BIG_QUERY_PLATFORM_ID = 2 __BIG_QUERY_PLATFORM_CODE = 'DSS' request_dict = { "__environment": self.env, "logs": [{ "__platform": __BIG_QUERY_PLATFORM, "__platform_properties": { "__id": __BIG_QUERY_PLATFORM_ID, "__code": __BIG_QUERY_PLATFORM_CODE }, "__user_email": "[email protected]", "user_properties": { "_id": 5 }, "__event": event_name, "event_properties": { "_entity_details": { "_entity_name": request_body['database_table_name'] }, "updated_fields": request_body['data'] }, "__trigger_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") }] } requests.post(url, json=request_dict, headers=headers, timeout=(1, 10)) def update(self, script_data, logger=None) -> tuple: """ Used to hit the django-accounts dynamic-update-api that will make changes to the Mysql Table. If you pass the logger_obj as a parameter to this function it will log to the file in case of errors. """ # construct request_body from data request_body = {'database_table_name': script_data['table']} request_body_data = list() for entry in script_data['data_to_be_updated']: update_data_dict = dict() update_data_dict['id'] = entry.pop('id') update_data_dict['update_data'] = entry request_body_data.append(update_data_dict) request_body['data'] = request_body_data url = self.url + 'api/web/v1/dynamic-update-api/' authorization_token = 'Bearer {}'.format(self.auth_token) headers = {"Content-Type": "application/json", 'Authorization': authorization_token} try: response = requests.post(url, data=json.dumps(request_body), headers=headers, timeout=(1, 60)) if response.status_code == 200: self.create_big_query_log_for_mysql_db_update(request_body, "DSS_MYSQL_UPDATE") return True, response.json() raise Exception(f"api/web/v1/dynamic-update-api failed: {response.text}") except Exception as exc: raise Exception(exc) class Django: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.url = secrets['DJANGO_ACCOUNTS_BASE_URL'] self.node_url = secrets['NODE_NOTIFICATION_BASE_URL'] self.auth_token = secrets['DJANGO_OAUTH_TOKEN'] self.node_auth_token = secrets['NOTIFICATION_AUTH_TOKEN'] self.env = os.environ.get('env', 'dev') def django_model_execution_log_create_api(self, request_body, logger=None) -> tuple: """ Used to hit django-accounts model-execution-log-admin api that will create entries in model_execution_log table. If you pass the logger_obj as a parameter to this function it will log to the file in case of errors. e.g. request_body = { "object_id": 1, # PK (line-item) "content_type": 74 # PK of django tables } """ url = self.url + 'api/web/v1/model-execution-log-admin/' headers = {"Content-Type": "application/json", 'Authorization': f"Bearer {self.auth_token}"} response = requests.post(url, data=json.dumps(request_body), headers=headers) if response.status_code in [200, 201]: return True, response.json() return False, response.text
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/django/api.py
api.py
sales = """ select z."store-id", z."drug-id", avg(z."mean-fptr") as "mean-fptr", sum(z.quantity) as quantity from ( select f."patient-id", f."store-id", f."id" as "bill-id", c."id" as "drug-id", a."quantity" as "sold-quantity", coalesce(g."returned-quantity", 0) as "returned-quantity", (a."quantity" - coalesce(g."returned-quantity", 0)) as "quantity", a."rate", case when coalesce( ii."actual-quantity", 1) = 0 then coalesce(ii."net-value" , b."final-ptr") else coalesce(ii."net-value" / coalesce( ii."actual-quantity", 1), b."final-ptr") end as "mean-fptr", ((a."quantity" - coalesce(g."returned-quantity", 0)) * a."rate") as "value" from "prod2-generico"."bills-1" f join "prod2-generico"."bill-items-1" a on f."id" = a."bill-id" left join "prod2-generico"."inventory-1" b on a."inventory-id" = b."id" left join "prod2-generico"."invoice-items-1" ii on b."invoice-item-id" = ii."id" left join "prod2-generico"."drugs" c on c."id" = b."drug-id" left join "prod2-generico"."customer-return-items-1" g on g."inventory-id" = a."inventory-id" and g."bill-id" = a."bill-id" where DATEDIFF(d,date(a."created-at"),current_date) <= {days} and (a."quantity" - coalesce(g."returned-quantity", 0)) > 0 and f."store-id" = {store_id} )z group by z."store-id", z."drug-id" """ expiry = """ -- short book select case when date(inv.expiry) > current_date then 'Near Expiry' else 'Expired' end as "inventory-type", date(i."invoice-date") as "invoice-date", case when "auto-short" = 1 and "home-delivery" = 0 and "patient-id" = 4480 then 'Auto Short' when "auto-short" = 1 and "home-delivery" = 0 and "patient-id" != 4480 then 'Manual Short' when "auto-short" = 0 and "auto-generated" = 0 and "home-delivery" = 0 then 'Patient Request' when "auto-short" = 0 and "auto-generated" = 0 and "home-delivery" = 1 then 'Patient Request with HD' when sb.id is null then 'Source not found' else 'Unclassified' end as "request-type", inv.id as "inventory-id", inv."store-id", inv."drug-id", d."drug-name", date(inv."created-at") as created_date, date(inv.expiry) as expiry, inv.barcode, inv."invoice-item-id", inv.quantity, i."id" as "invoice-id", i."invoice-number", e."name" as "store-name", i."distributor-id", f.name as "distributor-name", d."type" as "drug-type", d."category", df."drug-grade", d."cold-chain", df.min, df."safe-stock", df.max, inv."ptr" as fptr, inv."ptr" * inv.quantity as value, sb.id as "short-book-id", e."franchisee-id" , case when (i."invoice-date") < (e."opened-at") then 'launch-stock' else 'normal' end as "launch-flag", inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" as "locked-quantity", (inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer") * inv."ptr" as "locked-value" from "prod2-generico"."inventory-1" inv left join "prod2-generico".invoices i on inv."invoice-id" = i.id left join "prod2-generico"."invoice-items-1" ii on inv."invoice-item-id" = ii."id" left join "prod2-generico"."short-book-invoice-items" sbii on ii."invoice-item-reference" = sbii."invoice-item-id" left join "prod2-generico"."short-book-1" sb on sbii."short-book-id" = sb.id join "prod2-generico"."drugs" d on d."id" = inv."drug-id" join "prod2-generico"."stores" e on e."id" = inv."store-id" left join "prod2-generico"."distributors" f on f."id" = i."distributor-id" left join "prod2-generico"."drug-order-info" df on df."drug-id" = inv."drug-id" and df."store-id" = inv."store-id" left join "prod2-generico"."invoices-1" i2 on inv."franchisee-invoice-id" = i2.id where ((e."franchisee-id" = 1 and DATEDIFF(d,current_date,date(inv.expiry))< {expiry_days}) or( e."franchisee-id" != 1 and DATEDIFF(d,current_date,date(inv.expiry))< {fofo_expiry_days})) -- and extract(yrs from (inv.expiry)) <= extract(yrs from (current_date)) + 1 and extract(yrs from (inv.expiry)) >= 2017 and ( (inv.quantity != 0) or (inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" > 0) ) and (e."franchisee-id" = 1 or (e."franchisee-id" != 1 and i2."franchisee-invoice" = 0)) """ return_and_rotation = """ select date(i."invoice-date") as "invoice-date", '{inventory_type}' as "inventory-type", case when "auto-short" = 1 and "home-delivery" = 0 and "patient-id" = 4480 then 'Auto Short' when "auto-short" = 1 and "home-delivery" = 0 and "patient-id" != 4480 then 'Manual Short' when "auto-short" = 0 and "auto-generated" = 0 and "home-delivery" = 0 then 'Patient Request' when "auto-short" = 0 and "auto-generated" = 0 and "home-delivery" = 1 then 'Patient Request with HD' when sb.id is null then 'Source not found' else 'Unclassified' end as "request-type", inv.id as "inventory-id", inv."store-id", inv."drug-id", d."drug-name", date(inv."created-at") as created_date, date(inv.expiry) as expiry, inv.barcode, inv."invoice-item-id", inv.quantity, i."id" as "invoice-id", i."invoice-number", e."name" as "store-name", i."distributor-id", f.name as "distributor-name", d."type" as "drug-type", d."category", df."drug-grade", d."cold-chain", df.min, df."safe-stock", df.max, inv."ptr" as fptr, inv."ptr" * inv.quantity as value, e."franchisee-id" , case when (i."invoice-date") < (e."opened-at") then 'launch-stock' else 'normal' end as "launch-flag", sb.id as "short-book-id", inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" as "locked-quantity", (inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer") * inv."ptr" as "locked-value" from "prod2-generico"."inventory-1" inv left join "prod2-generico".invoices i on inv."invoice-id" = i.id left join "prod2-generico"."invoice-items-1" ii on inv."invoice-item-id" = ii."id" left join "prod2-generico"."short-book-invoice-items" sbii on ii."invoice-item-reference" = sbii."invoice-item-id" left join "prod2-generico"."short-book-1" sb on sbii."short-book-id" = sb.id join "prod2-generico"."drugs" d on d."id" = inv."drug-id" join "prod2-generico"."stores" e on e."id" = inv."store-id" left join "prod2-generico"."distributors" f on f."id" = i."distributor-id" left join "prod2-generico"."drug-order-info" df on df."drug-id" = inv."drug-id" and df."store-id" = inv."store-id" left join "prod2-generico"."invoices-1" i2 on inv."franchisee-invoice-id" = i2.id where concat(inv."store-id", CONCAT('-', inv."drug-id")) in {store_drug_list} and DATEDIFF(d,date(inv."created-at"),current_date)>= {days} and ((e."franchisee-id" = 1 and DATEDIFF(d,current_date,date(inv.expiry))>={expiry_days}) or( e."franchisee-id" != 1 and DATEDIFF(d,current_date,date(inv.expiry))>={fofo_expiry_days}) or( e."franchisee-id" != 1 and (sb."created-at") < (e."opened-at") and {FIFO_boolean_negative})) and ( (inv.quantity != 0) or (inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" > 0) ) and DATEDIFF(d, date(d."created-at"),current_date)>= 270 and (e."franchisee-id" = 1 or (e."franchisee-id" != 1 and i2."franchisee-invoice" = 0)) """ dead_liquidation = """ select transfer."origin-store", transfer."origin-store-name", transfer."destination-store", transfer."destination-store-name", transfer."transferred-quantity", transfer."inventory-id", transfer."drug-id", d."drug-name", d.type as "drug-type", d.category, doi."drug-grade", transfer."received-at", n."created-at" as "bill-timestamp", m."rate", transfer."final-ptr", case when n."created-at" is null then 0 else coalesce(m."quantity", 0) end as "sold-quantity", case when n."created-at" is null then 0 else coalesce(m."returned-quantity", 0) end as "returned-quantity", case when n."created-at" is null then 0 else coalesce((m."quantity" - m."returned-quantity") * m."rate", 0) end as "net-value" from ( select c."origin-store", a."destination-store", sum(b.quantity) as "transferred-quantity", e."name" as "origin-store-name", f."name" as "destination-store-name", b."inventory-id", c."drug-id", avg(c."final-ptr") as "final-ptr", min(b."received-at") as "received-at" from "prod2-generico"."stock-transfers-1" a join "prod2-generico"."stock-transfer-items-1" b on a."id" = b."transfer-id" join "prod2-generico"."inventory-1" c on b."inventory-id" = c."id" left join "prod2-generico"."drugs" d on c."drug-id" = d."id" left join "prod2-generico"."stores" e on c."origin-store" = e."id" left join "prod2-generico"."stores" f on a."destination-store" = f."id" where "source-store" = 111 and d."type" != 'category-4' and date(b."transferred-at") <= current_date and d."id" != 406872 and d."id" != 424692 and d."id" != 401179 and d."id" != 444213 and cast(b."received-at" as varchar) <> '0000-00-00 00:00:00' group by c."origin-store", a."destination-store", e."name", f."name", b."inventory-id", c."drug-id" )transfer left join "prod2-generico"."bill-items-1" m on transfer."inventory-id" = m."inventory-id" left join "prod2-generico"."bills-1" n on n."id" = m."bill-id" and transfer."destination-store" = n."store-id" left join "prod2-generico".drugs d on transfer."drug-id" = d.id left join "prod2-generico"."drug-order-info" doi on doi."drug-id" = transfer."drug-id" and doi."store-id" = transfer."destination-store" """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/dead_stock/dead_stock_queries.py
dead_stock_queries.py
import pandas as pd import datetime import numpy as np import argparse import os from zeno_etl_libs.queries.dead_stock import dead_stock_queries def dead_data_prep(store_id=None, days=270, logger=None, connection = None): # from zeno_etl_libs.db.db import DB # parser = argparse.ArgumentParser(description="This is ETL script.") # parser.add_argument('-e', '--env', default="dev", type=str, required=False) # args, unknown = parser.parse_known_args() # env = args.env # os.environ['env'] = env # rs_db = DB() # rs_db.open_connection() rs_db = connection '''Getting sales data''' sales_query = dead_stock_queries.sales.format(days=days, store_id=str(store_id)) sales = rs_db.get_df(sales_query) # removing DC inventory sales_store = sales[~sales['store-id'].isin([92, 111, 156, 160, 169, 172])] logger.info('Sales: Distinct # of drugs' + str(sales['drug-id'].nunique())) logger.info('Sales: Stores' + str(sales['store-id'].nunique())) '''Getting inventory data''' inventory_query = ''' select inv."store-id", inv."drug-id", avg(coalesce(ii."net-value" / ii."actual-quantity", inv."final-ptr")) as "mean-fptr", sum(inv."quantity") as "inventory-oh" from "prod2-generico"."inventory-1" inv left join "prod2-generico"."invoice-items" ii on inv."invoice-item-id" = ii."franchisee-invoice-item-id" left join "prod2-generico"."stores" s on s.id = inv."store-id" left join "prod2-generico"."invoices-1" i on i.id = inv."franchisee-invoice-id" where inv.quantity > 0 and inv."store-id" = {store_id} and (s."franchisee-id" = 1 or (s."franchisee-id" != 1 and i."franchisee-invoice" = 0)) group by inv."store-id", inv."drug-id" '''.format(store_id=store_id) inventory = rs_db.get_df(inventory_query) # removing DC inventory inventory_store = inventory[~inventory['store-id'].isin([92, 111, 156, 160, 169, 172])] logger.info('Inv: Distinct # of drugs ' + str(inventory_store['drug-id'].nunique())) logger.info('Inv: Stores ' + str(inventory_store['store-id'].nunique())) store_inventory_sales = inventory_store.merge( sales_store, on=['store-id', 'drug-id'], how='outer', suffixes=('', '-y')) # print(store_inventory_sales.columns) store_inventory_sales['mean-fptr'] = store_inventory_sales['mean-fptr'].combine_first( store_inventory_sales['mean-fptr-y']) store_inventory_sales.drop('mean-fptr-y', axis=1, inplace=True) store_inventory_sales['quantity'].fillna(0, inplace=True) store_inventory_sales['inventory-oh'].fillna(0, inplace=True) # print('# of line items', store_inventory_sales.shape[0]) logger.info('Distinct # of drugs '+ str(store_inventory_sales['drug-id'].nunique())) logger.info('Store - '+ str(store_id)) logger.info('Total inventory count '+ str(store_inventory_sales['inventory-oh'].sum())) logger.info('Total sales count ' + str(store_inventory_sales.quantity.sum())) '''Getting drug and store info ''' drug_store_info_query = ''' select store.id, store.name, d.id, d."drug-name", d.type, d.category, coalesce(doi."drug-grade", 'NA') as "drug-grade" from "prod2-generico".stores store cross join "prod2-generico".drugs d left join "prod2-generico"."drug-order-info" doi on d.id = doi."drug-id" and store.id = doi."store-id" where store.id = {store_id} '''.format(store_id=store_id) drug_store_info = rs_db.get_df(drug_store_info_query) drug_store_info.columns = ['store-id', 'store-name', 'drug-id', 'drug-name', 'type', 'category', 'drug-grade'] store_inventory_sales = store_inventory_sales.merge( drug_store_info, on=['store-id', 'drug-id'], how='left') #rs_db.close_connection() # store_inventory_sales = store_inventory_sales.merge(ptr, how='left', on='drug_id') return sales, inventory, store_inventory_sales def dead_stock_categorization( sales, inventory, store_inventory_sales, stores_list, logger=None, days=270, expiry_days=120,fofo_expiry_days=210, connection = None): # from zeno_etl_libs.db.db import DB # parser = argparse.ArgumentParser(description="This is ETL script.") # parser.add_argument('-e', '--env', default="dev", type=str, required=False) # args, unknown = parser.parse_known_args() # env = args.env # os.environ['env'] = env # rs_db = DB() # rs_db.open_connection() rs_db = connection '''Dead Stock Categorization 1. Expiry - within 4 months or already expired: Return 2. No sales at enterprise level (in 9 months): Return 3. No sales at Store "A", but at other stores (in 9 months): Rotate 4. FIFO dead: sold in stores but inventory created more than 9 months ago: Rotate ''' # 1. '''Getting expired inventory data''' expiry_query = dead_stock_queries.expiry.format(expiry_days=expiry_days,fofo_expiry_days=fofo_expiry_days) expiry_barcodes = rs_db.get_df(expiry_query) expiry_agg = expiry_barcodes.groupby(['store-id', 'drug-id'])['quantity'].sum().reset_index() expiry_agg.columns = ['store-id', 'drug-id', 'expired-quantity'] store_inventory_sales_with_exp = store_inventory_sales.merge(expiry_agg, on=['store-id', 'drug-id'], how='left') store_inventory_sales_with_exp['expired-quantity'].fillna(0, inplace=True) store_inventory_sales_with_exp['quantity-rem-after-expiry'] = ( store_inventory_sales_with_exp['inventory-oh'] - store_inventory_sales_with_exp['expired-quantity'] ) logger.info('Expired to be returned: units to be returned' + str(store_inventory_sales_with_exp['expired-quantity'].sum())) logger.info('Expired to be returned: value' + str(round( (expiry_barcodes['value']).sum()/10000000,2)) + 'Crs') logger.info('Post expiry drugs inventory') logger.info('# of line items' + str(store_inventory_sales_with_exp.shape[0])) logger.info('Distinct # of drugs' + str(store_inventory_sales_with_exp['drug-id'].nunique())) logger.info('Stores' + str(store_inventory_sales_with_exp['store-id'].nunique())) # 2. drug_wise_sales = store_inventory_sales_with_exp[ store_inventory_sales_with_exp['store-id'].isin(stores_list) ].groupby(['drug-id'])['quantity'].sum().reset_index() drugs_no_enterprise_sales = drug_wise_sales.loc[drug_wise_sales['quantity'] == 0, 'drug-id'] drug_returns = store_inventory_sales_with_exp[ (store_inventory_sales_with_exp['drug-id'].isin(drugs_no_enterprise_sales.values)) & (store_inventory_sales_with_exp['store-id'].isin(stores_list)) ] store_inventory_sales_with_exp_post_returns = store_inventory_sales_with_exp[ (~store_inventory_sales_with_exp['drug-id'].isin(drugs_no_enterprise_sales.values)) ] logger.info('Drug with no enterprise sales: units to be returned ' + str(drug_returns['quantity-rem-after-expiry'].sum())) logger.info('Drug with no enterprise sales: value ' + str(round((drug_returns['mean-fptr'].astype(float)*drug_returns['quantity-rem-after-expiry'].astype(float)).sum()/10000000, 2)) + 'Crs') logger.info('Post returns, drugs inventory') logger.info('# of line items ' + str(store_inventory_sales_with_exp_post_returns.shape[0])) logger.info('Distinct # of drugs ' + str(store_inventory_sales_with_exp_post_returns['drug-id'].nunique())) logger.info('Stores ' + str(store_inventory_sales_with_exp_post_returns['store-id'].nunique())) # getting barcode level info for drugs to return return_store_drug_comb = drug_returns['store-id'].astype(int).astype(str) + '-' + drug_returns['drug-id'].astype(int).astype(str) return_store_drug_list = str(list( return_store_drug_comb.values)).replace('[', '(').replace(']', ')') return_query = dead_stock_queries.return_and_rotation.format( store_drug_list=return_store_drug_list, inventory_type='Return', days=0, expiry_days=expiry_days, fofo_expiry_days=fofo_expiry_days, FIFO_boolean_negative = True) return_barcodes = rs_db.get_df(return_query) separate_old_inv_query = ''' select concat("store-id", CONCAT('-', "drug-id")) as "store-drug-id" from "prod2-generico"."inventory-1" inv left join "prod2-generico"."stores" s on inv."store-id" = s.id where "store-id" in {stores} and "drug-id" in {drugs} and (quantity > 0 or ((inv.quantity != 0) or (inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" > 0))) and (((s."franchisee-id" = 1) and(inv."created-at" <DATEADD(d,-{days},CURRENT_DATE))) or ((s."franchisee-id" != 1) and(inv."created-at" <DATEADD(d,-10,CURRENT_DATE)))) group by "store-id", "drug-id" '''.format(days=days, stores=tuple(drug_returns['store-id'].unique()) + (0,0), drugs=tuple(drug_returns['drug-id'].unique()) + (0,0)) separate_old_inv = rs_db.get_df(separate_old_inv_query) return_barcodes['store-drug-id'] = return_barcodes['store-id'].astype(str) + '-' + return_barcodes['drug-id'].astype(str) return_barcodes = return_barcodes[return_barcodes['store-drug-id'].isin(tuple(separate_old_inv['store-drug-id']))] return_barcodes = return_barcodes.drop(columns=['store-drug-id']) # FOFO - No Baby food in return/rotate except launch stock, No PR conditions = [((return_barcodes['franchisee-id'].astype(int) != 1) & (return_barcodes['launch-flag'].astype(str) != 'launch-stock') & (return_barcodes['drug-type'].astype(str) == 'baby-food')), ((return_barcodes['franchisee-id'].astype(int) != 1) & (return_barcodes['request-type'].isin(['Patient Request', 'Patient Request with HD'])))] choices = [1, 1] return_barcodes['delete'] = np.select(conditions, choices) return_barcodes = return_barcodes[return_barcodes['delete']!=1] return_barcodes = return_barcodes.drop(columns=['delete']) # 3. # store drug combination (store active for than 6 months) store_inventory_sales_active = store_inventory_sales_with_exp_post_returns[ store_inventory_sales_with_exp_post_returns['store-id'].isin(stores_list)] store_drug_no_sale = store_inventory_sales_active.loc[ (store_inventory_sales_active['quantity'] == 0)] store_drug_with_sale = store_inventory_sales_with_exp_post_returns.loc[ (store_inventory_sales_with_exp_post_returns['quantity'] != 0) ] zippin_inventory = store_drug_no_sale.groupby( ['type', 'category', 'drug-id'])['quantity-rem-after-expiry'].\ sum().reset_index() logger.info('Rotating inventory stats') logger.info('# of drugs to rotate ' + str(zippin_inventory.shape[0])) logger.info('Quantity to be rotated ' + str(zippin_inventory['quantity-rem-after-expiry'].sum())) logger.info('Rotation Drugs value ' + str(round((store_drug_no_sale['mean-fptr'].astype(float) *store_drug_no_sale['quantity-rem-after-expiry'].astype(float)).sum()/10000000,2)) + 'Crs') # getting barcode level info for drugs to rotate rotate_store_drug_comb = store_drug_no_sale['store-id'].astype(int).astype(str) + '-' + store_drug_no_sale['drug-id'].astype(int).astype(str) #logger.info(list(rotate_store_drug_comb.values)) #logger.info(len(list(rotate_store_drug_comb.values))) rotation_drug_list = str(list( rotate_store_drug_comb.values)).replace('[', '(').replace(']', ')') if len(list(rotate_store_drug_comb.values))==0: rotation_drug_list = [0] rotation_drug_list = str(list(rotation_drug_list)).replace('[', '(').replace(']', ')') rotation_query = dead_stock_queries.return_and_rotation.format( store_drug_list=rotation_drug_list, inventory_type='Rotate', days=0, expiry_days=expiry_days, fofo_expiry_days=fofo_expiry_days, FIFO_boolean_negative = True) rotation_barcodes = rs_db.get_df(rotation_query) separate_old_inv_query = ''' select concat("store-id", CONCAT('-', "drug-id")) as "store-drug-id" from "prod2-generico"."inventory-1" inv left join "prod2-generico"."stores" s on inv."store-id" = s.id where "store-id" in {stores} and "drug-id" in {drugs} and (quantity > 0 or ((inv.quantity != 0) or (inv."locked-quantity" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" > 0))) and (((s."franchisee-id" = 1) and(inv."created-at" <DATEADD(d,-{days},CURRENT_DATE))) or ((s."franchisee-id" != 1) and(inv."created-at" <DATEADD(d,-10,CURRENT_DATE)))) group by "store-id", "drug-id" '''.format(days=days,stores=tuple(store_drug_no_sale['store-id'].unique()) + (0,0), drugs=tuple(store_drug_no_sale['drug-id'].unique()) + (0,0)) separate_old_inv = rs_db.get_df(separate_old_inv_query) rotation_barcodes['store-drug-id'] = rotation_barcodes['store-id'].astype(str) + '-' + rotation_barcodes['drug-id'].astype(str) rotation_barcodes = rotation_barcodes[rotation_barcodes['store-drug-id'].isin(tuple(separate_old_inv['store-drug-id']))] rotation_barcodes = rotation_barcodes.drop(columns=['store-drug-id']) # FOFO - No Baby food in return/rotate except launch stock, No PR conditions = [((rotation_barcodes['franchisee-id'].astype(int) != 1) & (rotation_barcodes['launch-flag'].astype(str) != 'launch-stock') & (rotation_barcodes['drug-type'].astype(str) == 'baby-food')), ((rotation_barcodes['franchisee-id'].astype(int) != 1) & (rotation_barcodes['request-type'].isin(['Patient Request', 'Patient Request with HD'])))] choices = [1, 1] rotation_barcodes['delete'] = np.select(conditions, choices) rotation_barcodes = rotation_barcodes[rotation_barcodes['delete'] != 1] rotation_barcodes = rotation_barcodes.drop(columns=['delete']) # 4. fifo_drug = store_drug_with_sale.loc[store_drug_with_sale['inventory-oh'] != 0, ['store-id', 'drug-id']].drop_duplicates() fifo_drug_list = fifo_drug['store-id'].astype(str) + '-' + fifo_drug['drug-id'].astype(str) fifo_drug_list = str(list(fifo_drug_list)).replace('[','(').replace(']',')') #print('fifo drug list - {}'.format(fifo_drug_list)) fifo_query = dead_stock_queries.return_and_rotation.format( store_drug_list=fifo_drug_list, inventory_type='FIFO Dead', days=days, expiry_days=expiry_days, fofo_expiry_days=fofo_expiry_days, FIFO_boolean_negative=False) # logger.info(fifo_query) fifo_barcodes = rs_db.get_df(fifo_query) logger.info('FIFO dead stock stats') logger.info('Quantity to be rotated' + str(fifo_barcodes['quantity'].sum())) logger.info('FIFO Drugs value' + str(round((fifo_barcodes['fptr'].astype(float) *fifo_barcodes['quantity'].astype(float)).sum()/10000000,2)) + 'Crs') # rs_db.close_connection() return zippin_inventory, store_drug_no_sale, store_drug_with_sale, expiry_barcodes, return_barcodes, rotation_barcodes, fifo_barcodes def dead_value_bucket(dead_rotate): dead_rotate = dead_rotate.groupby('inventory-id')['value']. sum().reset_index() dead_rotate = dead_rotate.sort_values('value', ascending=False) dead_rotate['cumsum-percentage'] = ( dead_rotate['value'].cumsum()/dead_rotate['value'].sum()) dead_rotate['bucket'] = np.select( [dead_rotate['cumsum-percentage'] <= 0.01, (dead_rotate['cumsum-percentage'] > 0.01) & (dead_rotate['cumsum-percentage'] <= 0.02), (dead_rotate['cumsum-percentage'] > 0.02) & (dead_rotate['cumsum-percentage'] <= 0.05), (dead_rotate['cumsum-percentage'] > 0.05) & (dead_rotate['cumsum-percentage'] <= 0.10), (dead_rotate['cumsum-percentage'] > 0.10) & (dead_rotate['cumsum-percentage'] <= 0.20), (dead_rotate['cumsum-percentage'] > 0.20) & (dead_rotate['cumsum-percentage'] <= 0.40), (dead_rotate['cumsum-percentage'] > 0.40) & (dead_rotate['cumsum-percentage'] <= 0.60), (dead_rotate['cumsum-percentage'] > 0.60) & (dead_rotate['cumsum-percentage'] <= 0.80), dead_rotate['cumsum-percentage'] > 0.80 ], ['under 1%', '1-2%', '2-5%', '5-10%', '10-20%', '20-40%', '40-60%', '60-80%', 'more than 80%']) return dead_rotate
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/dead_stock/dead_stock_categorisation.py
dead_stock_categorisation.py
max_bill_id = """ select max("bill-id") as "bill-id-max" from "prod2-generico"."{}" """ max_return_id = """ select max("return-item-id") as "return-item-id-max" from "prod2-generico"."{}" """ insert_sales_record = """ insert into "prod2-generico"."{}" ( "updated-by", "updated-at", "bill-id", "patient-id", "store-id", "inventory-id", "drug-id", "drug-name", "type", "category", "composition", "company", "company-id", "composition-master-id", "quantity", "created-at", "year-created-at", "month-created-at", "rate", "net-rate", "net-quantity", "revenue-value", "purchase-rate", "ptr", "mrp", "substitution-status", "created-by", "bill-flag", "old-new", "first-bill-date", "p-reference", "patient-category", "lp-flag", "min", "max", "safe-stock", "promo-code-id", "payment-method", "doctor-id", "code-type", "pc-type", "promo-code", "campaign", "pr-flag", "hd-flag", "ecom-flag", "substitution-status-g", "substitution-status-trend", "goodaid-availablity-flag", "cgst-rate", "cgst-amt", "cgst", "sgst-rate", "sgst-amt", "sgst", "tax-rate", "igst-rate", "igst-amt", "utgst-rate", "utgst-amt", "serial", "hsncode", "is-repeatable", "store-name", "store-manager", "line-manager", "abo", "city", "store-b2b", "store-month-diff", "store-opened-at", "franchisee-id", "franchisee-name", "cluster-id", "cluster-name", "return-item-id", "bill-item-id", "promo-discount", "type-at-selling", "category-at-selling", "created-date", "invoice-item-reference", "distributor-id", "distributor-name", "billed-at-return-ref", "return-reason", "drug-grade", "acquired" , "old-new-static", "crm-flag", "invoice-id", "franchisee-invoice", "group" ) select 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", f."id" as "bill-id", f."patient-id" as "patient-id", f."store-id" as "store-id", b."id" as "inventory-id" , b."drug-id" as "drug-id", c."drug-name" as "drug-name", c."type", c."category", c."composition", c."company", c."company-id" as "company-id", c."composition-master-id" as "composition-master-id", a."quantity", f."created-at" as "created-at" , extract(year from f."created-at") as "year-created-at", extract(month from f."created-at") as "month-created-at", a."rate", a."rate" as "net-rate", a."quantity" as "net-quantity", (a."rate" * a."quantity") as "revenue-value", b."purchase-rate" as "purchase-rate", b."ptr", b."mrp", s."substitution-status" as "substitution-status", f."created-by" as "created-by", 'gross' as "bill-flag", case when (12 * (extract (year from f."created-at") - extract (year from pm."first-bill-date")) + (extract (month from f."created-at") - extract (month from pm."first-bill-date")))>= 1 then 'old' else 'new' end as "old-new", pm."first-bill-date" as "first-bill-date", p."reference" as "p-reference", p."patient-category" as "patient-category", b."franchisee-inventory" as "lp-flag", doi."min", doi."max" , doi."safe-stock" as "safe-stock", f."promo-code-id" as "promo-code-id", f."payment-method" as "payment-method", f."doctor-id" as "doctor-id", pc."code-type" as "code-type" , pc."type" as "pc-type", pc."promo-code" as "promo-code", ca."campaign", NVL(pso2."pr-flag", false), NVL(pso2."hd-flag", false), NVL(pso2."ecom-flag", false), case when (s."substitution-status" = 'substituted' and c."company-id" = 6984 and f."created-at" >= mca."store-first-inv-date") then 'ga-substituted' when (s."substitution-status" = 'substituted' and mca."store-first-inv-date" is null ) then 'ga-not-available' else s."substitution-status" end as "substitution-status-g", case when (s."substitution-status" = 'substituted' and c."company-id" = 6984 and f."created-at" >= mca."store-first-inv-date") then 'substituted' else s."substitution-status" end as "substitution-status-trend", case when (f."created-at" >= casl."system-first-inv-date") then 'available' else 'not-available' end as "goodaid-availablity-flag", a."cgst-rate" as "cgst-rate" , a."cgst-amt" as "cgst-amt" , a."cgst" , a."sgst-rate" as "sgst-rate" , a."sgst-amt" as "sgst-amt" , a."sgst" , (a."cgst-rate" + a."sgst-rate") as "tax-rate", a."igst-rate" as "igst-rate" , a."igst-amt" as "igst-amt" , a."utgst-rate" as "utgst-rate" , a."utgst-amt" as "utgst-amt" , f."serial" , c."hsncode", c."is-repeatable" as "is-repeatable", msm.store as "store-name", msm."store-manager" , msm."line-manager", msm.abo, msm.city, (case when (f."gst-number" is not null and f."gst-number"!='') then 'B2B' else msm."store-b2b" end) as "store-b2b", msm."month-diff" as "store-month-diff", msm."opened-at" as "store-opened-at", msm."franchisee-id", msm."franchisee-name", msm."cluster-id", msm."cluster-name", NULL as "return-item-id", a.id as "bill-item-id", a."promo-discount" as "promo-discount", c."type" as "type-at-selling", c."category" as "category-at-selling", date(f."created-at") as "created-date", ii1."invoice-item-reference", i2."distributor-id", ds."name" as "distributor-name", f."created-at" as "billed-at-return-ref", NULL as "return-reason", doi."drug-grade", msm."acquired" , msm."old-new-static", NVL(pso2."crm-flag", false), i2.id as "invoice-id", i2."franchisee-invoice", d1."group" from "prod2-generico"."bills-1" f left join "prod2-generico"."bill-items-1" a on f."id" = a."bill-id" left join "prod2-generico"."inventory-1" b on a."inventory-id" = b."id" left join "prod2-generico"."invoice-items-1" ii1 on b."invoice-item-id" = ii1.id left join "prod2-generico".invoices i2 on ii1."invoice-id" = i2.id left join "prod2-generico".distributors ds ON i2."distributor-id" = ds.id left join "prod2-generico"."drugs" c on c."id" = b."drug-id" left join "prod2-generico"."drug-unique-composition-mapping" d1 on b."drug-id" = d1."drug-id" left join "prod2-generico"."bill-items-substitutes" s on a."id" = s."bill-item-id" left join "prod2-generico"."patients-metadata-2" pm on f."patient-id" = pm."id" left join "prod2-generico"."patients" p on f."patient-id" = p."id" left join "prod2-generico"."drug-order-info" doi on (doi."store-id" = f."store-id" and doi."drug-id" = b."drug-id") left join "prod2-generico"."promo-codes" pc on NVL(f."promo-code-id", 0) = pc."id" left join "prod2-generico"."campaigns" ca on NVL(pc."campaign-id", 0) = ca."id" left join "prod2-generico"."{}" as pso2 on a."bill-id" = pso2."id" left join "prod2-generico"."group-activation" mca on f."store-id" = mca."store-id" and d1."group" = mca."group" left join "prod2-generico"."group-activation-system-level" casl on d1."group" = casl."group" inner join "prod2-generico"."{}" as msm on f."store-id" = msm."id" where f."id" > {} union all select 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", a."bill-id" as "bill-id", f."patient-id" as "patient-id", f."store-id" as "store-id", b."id" as "inventory-id" , b."drug-id" as "drug-id", c."drug-name" as "drug-name", c."type", c."category", c."composition", c."company", c."company-id" as "company-id", c."composition-master-id" as "composition-master-id", (a."returned-quantity") as "quantity", f."returned-at" as "created-at", extract(year from f."returned-at") as "year-created-at", extract(month from f."returned-at") as "month-created-at", (a."rate") as "rate", (a."rate" *-1) as "net-rate", (a."returned-quantity" *-1) as "net-quantity", (a."rate" * a."returned-quantity" *-1) as "revenue-value", b."purchase-rate" as "purchase-rate", b."ptr", b."mrp", 'return' as "substitution-status", f."processed-by" as "created-by", 'return' as "bill-flag", case when (12 * (extract (year from f."returned-at") - extract (year from pm."first-bill-date")) + (extract (month from f."returned-at") - extract (month from pm."first-bill-date")))>= 1 then 'old' else 'new' end as "old-new", pm."first-bill-date" as "first-bill-date", p."reference" as "p-reference", p."patient-category" as "patient-category", b."franchisee-inventory" as "lp-flag", doi."min", doi."max" , doi."safe-stock" as "safe-stock", b2."promo-code-id" as "promo-code-id", b2."payment-method" as "payment-method", b2."doctor-id" as "doctor-id", pc."code-type" as "code-type" , pc."type" as "pc-type", pc."promo-code" as "promo-code", ca."campaign", NVL(pso2."pr-flag", false), NVL(pso2."hd-flag", false), NVL(pso2."ecom-flag", false), 'return' as "substitution-status-g", 'return' as "substitution-status-trend", case when (f."returned-at" >= casl."system-first-inv-date") then 'available' else 'not-available' end as "goodaid-availablity-flag", a."cgst-rate" as "cgst-rate" , 0 as "cgst-amt" , 0 as "cgst" , a."sgst-rate" as "sgst-rate" , 0 as "sgst-amt" , 0 as "sgst" , (a."cgst-rate" + a."sgst-rate") as "tax-rate", a."igst-rate" as "igst-rate" , 0 as "igst-amt" , a."utgst-rate" as "utgst-rate" , 0 as "utgst-amt" , f1."serial" , c."hsncode", c."is-repeatable" as "is-repeatable", msm.store as "store-name", msm."store-manager" , msm."line-manager", msm.abo, msm.city, (case when (f1."gst-number" is not null and f1."gst-number"!='') then 'B2B' else msm."store-b2b" end) as "store-b2b", msm."month-diff" as "store-month-diff", msm."opened-at" as "store-opened-at", msm."franchisee-id", msm."franchisee-name", msm."cluster-id", msm."cluster-name", a."id" as "return-item-id", NULL as "bill-item-id", cast(NULL as numeric) as "promo-discount", c."type" as "type-at-selling", c."category" as "category-at-selling", date(f."returned-at") as "created-date", ii1."invoice-item-reference", i2."distributor-id", ds."name" as "distributor-name", b2."created-at" as "billed-at-return-ref", a."return-reason" as "return-reason", doi."drug-grade", msm."acquired" , msm."old-new-static", NVL(pso2."crm-flag", false), i2.id as "invoice-id", i2."franchisee-invoice", d1."group" from "prod2-generico"."customer-returns-1" f left join "prod2-generico"."customer-return-items-1" a on f."id" = a."return-id" left join "prod2-generico"."bills-1" f1 on a."bill-id" = f1."id" left join "prod2-generico"."inventory-1" b on a."inventory-id" = b."id" left join "prod2-generico"."invoice-items-1" ii1 ON b."invoice-item-id" = ii1.id left join "prod2-generico".invoices i2 on ii1."invoice-id" = i2.id left join "prod2-generico".distributors ds ON i2."distributor-id" = ds.id inner join "prod2-generico"."drugs" c on c."id" = b."drug-id" left join "prod2-generico"."drug-unique-composition-mapping" d1 on b."drug-id" = d1."drug-id" left join "prod2-generico"."patients-metadata-2" pm on f."patient-id" = pm."id" left join "prod2-generico"."patients" p on f."patient-id" = p."id" left join "prod2-generico"."drug-order-info" doi on (doi."store-id" = f."store-id" and doi."drug-id" = b."drug-id") inner join "prod2-generico"."bills-1" b2 on a."bill-id" = b2."id" left join "prod2-generico"."promo-codes" pc on NVL(b2."promo-code-id", 0) = pc."id" left join "prod2-generico"."campaigns" ca on NVL(pc."campaign-id", 0) = ca."id" left join "prod2-generico"."group-activation" mca on f."store-id" = mca."store-id" and d1."group" = mca."group" left join "prod2-generico"."group-activation-system-level" casl on d1."group" = casl."group" left join "prod2-generico"."{}" as pso2 on a."bill-id" = pso2."id" inner join "prod2-generico"."{}" as msm on f."store-id" = msm."id" where a."id" > {} """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/sales/sales_config.py
sales_config.py
max_short_book_id = """ select max("id") as "short-book-id-max" from "prod2-generico"."{}" """ insert_as_ms_query = """ insert into "prod2-generico"."{}" ( "id", "created-by", "updated-by", "updated-at", "patient-id", "store-name", "drug-name", "as-ms", "created-to-invoice-days", "created-to-invoice-hour", "created-to-dispatch-days", "created-to-dispatch-hour", "created-to-delivery-days", "created-to-delivery-hour", "created-to-re-order-days", "created-to-re-order-hour", "created-to-order-days", "created-to-order-hour", "status", "requested-quantity", "quantity", "required-quantity", "inventory-at-creation", "inventory-at-ordering", "created-at", "year-created-at", "month-created-at", "ordered-time", "invoiced-at", "dispatched-at", "delivered-at", "completed-at", "re-ordered-at", "store-delivered-at", "decline-reason", "type", "store-id", "drug-id", "company", "company-id", "composition", "composition-master-id", "category", "schedule", "sub-type", "preferred-distributor-id", "preferred-distributor-name", "drug-grade", "purchase-rate", "ptr", "distributor-type", "recieved-distributor-id", "received-distributor-name", "forward-dc-id", "dc-name", "abo", "line-manager", "store-manager", "city", "store-b2b", "franchisee-short-book" ) select a.id, 'etl-automation' as "created-by", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", a."patient-id" as "patient-id", b."name" as "store-name", a."drug-name" as "drug-name", case when a."auto-short" = 1 and a."home-delivery" = 0 and a."created-by" = 'Auto Short' and a."patient-id" = 4480 then 'AS' when a."auto-short" = 1 and a."home-delivery" = 0 and a."patient-id" != 4480 then 'MS' else 'NA' end as "as-ms", --Fulfillment on Invoice (case when (a."invoiced-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."invoiced-at") end) as "created-to-invoice-days", (case when (a."invoiced-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."invoiced-at") end) as "created-to-invoice-hour", --Fulfillment on dispatch (case when (a."dispatched-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."dispatched-at") end) as "created-to-dispatch-days", (case when (a."dispatched-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."dispatched-at") end) as "created-to-dispatch-hour", --Fulfillment on delivery (case when (msda."store-delivered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", msda."store-delivered-at") end) as "created-to-delivery-days", (case when (msda."store-delivered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", msda."store-delivered-at") end) as "created-to-delivery-hour", -- Re-order Timing -- (case when (a."re-ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."re-ordered-at") end) as "created-to-re-order-days", (case when (a."re-ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."re-ordered-at") end) as "created-to-re-order-hour", --order Timing-- (case when (a."ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."ordered-at") end) as "created-to-order-days", (case when (a."ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."ordered-at") end) as "created-to-order-hour", a."status" as "status", a."requested-quantity" as "requested-quantity", a."quantity" as "quantity", a."required-quantity" as "required-quantity", a."inventory-at-creation" as "inventory-at-creation" , a."inventory-at-ordering" as "inventory-at-ordering", case when a."created-at" = '0101-01-01' then null else a."created-at" end as "created-at", extract(year from a."created-at") as "year-created-at", extract(month from a."created-at") as "month-created-at", case when a."ordered-at" = '0101-01-01' then null else a."ordered-at" end as "ordered-time", case when a."invoiced-at" = '0101-01-01' then null else a."invoiced-at" end as "invoiced-at", case when a."dispatched-at" = '0101-01-01' then null else a."dispatched-at" end as "dispatched-at", case when a."delivered-at" = '0101-01-01' then null else a."delivered-at" end as "delivered-at", case when a."completed-at" = '0101-01-01' then null else a."completed-at" end as "completed-at", case when a."re-ordered-at" = '0101-01-01' then null else a."re-ordered-at" end as "re-ordered-at", case when msda."store-delivered-at" = '0101-01-01' then null else msda."store-delivered-at" end as "store-delivered-at", a."decline-reason" as "decline-reason", c."type", a."store-id" as "store-id", a."drug-id" as "drug-id", c."company", c."company-id" as "company-id" , c."composition" , c."composition-master-id" as "composition-master-id" , c."category" , c."schedule" , c."sub-type" as "sub-type" , f."id" as "preferred-distributor-id", f."name" as "preferred-distributor-name", e."drug-grade" as "drug-grade", dp."purchase-rate" as "purchase-rate", dp."ptr", d."type" as "distributor-type", d."id" as "recieved-distributor-id", d."name" as "received-distributor-name", j."forward-dc-id" as "forward-dc-id", ss."name" as "dc-name", msm."abo" , msm."line-manager" , msm."store-manager" , msm."city", msm."store-b2b", a."franchisee-short-book" as "franchisee-short-book" from "prod2-generico"."short-book-1" a left join "prod2-generico"."stores" b on b."id" = a."store-id" left join "prod2-generico"."drugs" c on c."id" = a."drug-id" left join ( select "drug-id", AVG("purchase-rate") as "purchase-rate", AVG(ptr) as "ptr" from "prod2-generico"."inventory-1" i where "created-at" >= dateadd(day, -360, CURRENT_DATE) group by "drug-id") as dp on a."drug-id" = dp."drug-id" left join "prod2-generico"."distributors" d on d."id" = a."distributor-id" left join "prod2-generico"."drug-order-info" e on e."store-id" = a."store-id" and e."drug-id" = a."drug-id" left join "prod2-generico"."distributors" f on a."preferred-distributor" = f."id" left join ( select "store-id", "forward-dc-id" from "prod2-generico"."store-dc-mapping" where "drug-type" = 'ethical') j on j."store-id" = a."store-id" left join "prod2-generico"."stores" ss on ss."id" = j."forward-dc-id" left join "prod2-generico"."store-delivered" msda on a."id" = msda."id" left join "prod2-generico"."stores-master" msm on a."store-id" = msm.id where a.id > {} and a."auto-short" = 1 and a."home-delivery" = 0 and a."status" not in ('deleted'); """ update_as_ms_query = """ update "prod2-generico"."{}" as s set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "created-to-invoice-days" = b."created-to-invoice-days", "created-to-invoice-hour" = b."created-to-invoice-hour", "created-to-dispatch-days" = b."created-to-dispatch-days", "created-to-dispatch-hour" = b."created-to-dispatch-hour", "created-to-delivery-days" = b."created-to-delivery-days", "created-to-delivery-hour" = b."created-to-delivery-hour", "created-to-re-order-days" = b."created-to-re-order-days", "created-to-re-order-hour" = b."created-to-re-order-hour", "created-to-order-days" = b."created-to-order-days", "created-to-order-hour" = b."created-to-order-hour", "status" = b."status", "quantity" = b."quantity", "required-quantity" = b."required-quantity", "inventory-at-ordering" = b."inventory-at-ordering", "ordered-time" = b."ordered-time", "invoiced-at" = b."invoiced-at", "dispatched-at" = b."dispatched-at", "delivered-at" = b."delivered-at", "completed-at" = b."completed-at", "re-ordered-at" = b."re-ordered-at", "store-delivered-at" = b."store-delivered-at", "decline-reason" = b."decline-reason", "type" = b."type", "category" = b."category", "schedule" = b."schedule", "sub-type" = b."sub-type", "preferred-distributor-id" = b."preferred-distributor-id", "preferred-distributor-name" = b."preferred-distributor-name", "drug-grade" = b."drug-grade", "distributor-type" = b."distributor-type", "recieved-distributor-id" = b."recieved-distributor-id", "received-distributor-name" = b."received-distributor-name", "abo" = b."abo", "line-manager" = b."line-manager", "store-manager" = b."store-manager", "franchisee-short-book" = b."franchisee-short-book" from ( select a.id, (case when (a."invoiced-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."invoiced-at") end) as "created-to-invoice-days", (case when (a."invoiced-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."invoiced-at") end) as "created-to-invoice-hour", --Fulfillment on dispatch (case when (a."dispatched-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."dispatched-at") end) as "created-to-dispatch-days", (case when (a."dispatched-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."dispatched-at") end) as "created-to-dispatch-hour", --Fulfillment on delivery (case when (msda."store-delivered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", msda."store-delivered-at") end) as "created-to-delivery-days", (case when (msda."store-delivered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", msda."store-delivered-at") end) as "created-to-delivery-hour", -- Re-order Timing -- (case when (a."re-ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."re-ordered-at") end) as "created-to-re-order-days", (case when (a."re-ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."re-ordered-at") end) as "created-to-re-order-hour", --order Timing-- (case when (a."ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."ordered-at") end) as "created-to-order-days", (case when (a."ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."ordered-at") end) as "created-to-order-hour", a."status" as "status", a."quantity" as "quantity", a."required-quantity" as "required-quantity", a."inventory-at-ordering" as "inventory-at-ordering", case when a."ordered-at" = '0101-01-01' then null else a."ordered-at" end as "ordered-time", case when a."invoiced-at" = '0101-01-01' then null else a."invoiced-at" end as "invoiced-at", case when a."dispatched-at" = '0101-01-01' then null else a."dispatched-at" end as "dispatched-at", case when a."delivered-at" = '0101-01-01' then null else a."delivered-at" end as "delivered-at", case when a."completed-at" = '0101-01-01' then null else a."completed-at" end as "completed-at", case when a."re-ordered-at" = '0101-01-01' then null else a."re-ordered-at" end as "re-ordered-at", case when msda."store-delivered-at" = '0101-01-01' then null else msda."store-delivered-at" end as "store-delivered-at", a."decline-reason" as "decline-reason", c."type", c."category" , c."schedule" , c."sub-type" as "sub-type" , f."id" as "preferred-distributor-id", f."name" as "preferred-distributor-name", e."drug-grade" as "drug-grade", d."type" as "distributor-type", d."id" as "recieved-distributor-id", d."name" as "received-distributor-name", msm."abo" , msm."line-manager" , msm."store-manager" , a."franchisee-short-book" as "franchisee-short-book" from "prod2-generico"."{}" s inner join "prod2-generico"."short-book-1" a on s.id = a.id left join "prod2-generico"."drugs" c on c."id" = a."drug-id" left join "prod2-generico"."distributors" d on d."id" = a."distributor-id" left join "prod2-generico"."drug-order-info" e on e."store-id" = a."store-id" and e."drug-id" = a."drug-id" left join "prod2-generico"."distributors" f on a."preferred-distributor" = f."id" left join "prod2-generico"."store-delivered" msda on a."id" = msda."id" left join "prod2-generico"."stores-master" msm on a."store-id" = msm.id where s."updated-at" < a."updated-at" or s."updated-at" < c."updated-at" or s."updated-at" < d."updated-at" or s."updated-at" < e."updated-at" or s."updated-at" < f."updated-at" or s."updated-at" < msda."updated-at" or s."updated-at" < msm."updated-at" ) as b where s.id = b.id; """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/as_ms/as_ms.py
as_ms.py
max_bill_id = """ select max("id") as "bill-id-max" from "prod2-generico"."{}" """ insert_bill_flags_query = """ insert into "prod2-generico"."{}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "pr-flag", "hd-flag", "ecom-flag", "crm-flag" ) select pso."bill-id" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", bool_or(case when pso."patient-request-id" is null then false else true end) as "pr-flag", bool_or(case when pso."order-type" = 'delivery' then true else false end) as "hd-flag", bool_or(case when pso."order-source" = 'zeno' then true else false end) as "ecom-flag", bool_or(case when pso."order-source" = 'crm' then true else false end) as "crm-flag" from "prod2-generico"."patients-store-orders" pso left join "prod2-generico"."bill-flags" bf on NVL(pso."bill-id",0)= bf."id" where bf."id" is null group by pso."bill-id"; """ update_bill_flags_query = """ update "prod2-generico"."{}" as bf set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "pr-flag" = b."pr-flag", "hd-flag" = b."hd-flag", "ecom-flag" = b."ecom-flag", "crm-flag" = b."crm-flag" from ( select "bill-id" as "id", bool_or(case when pso."patient-request-id" is null then false else true end) as "pr-flag", bool_or(case when pso."order-type" = 'delivery' then true else false end) as "hd-flag", bool_or(case when pso."order-source" = 'zeno' then true else false end) as "ecom-flag", bool_or(case when pso."order-source" = 'crm' then true else false end) as "crm-flag" from "prod2-generico"."{}" bf inner join "prod2-generico"."patients-store-orders" pso on bf.id = pso."bill-id" where pso."updated-at" > bf."updated-at" group by pso."bill-id" ) as b where bf.id = b.id; """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/bill_flags/bill_flags_config.py
bill_flags_config.py
max_pso_id = """ select max("id") as "pso-id-max" from "prod2-generico"."{}" """ insert_query = """ insert into "prod2-generico"."{}" ( "id" , "created-at", "created-by", "updated-by", "updated-at", "year-created-at", "month-created-at", "patient-id", "doctor-id", "store-id", "bill-id", "drug-id", "zeno-order-id", "drug-name", "pso-requested-quantity", "pso-inventory-quantity", "order-number", "order-source", "order-type", "patient-request-id", "payment-type", "promo-id", "pso-status", "fulfilled-to-consumer", "type", "category", "company", "company-id", "composition", "composition-master-id", "lp-fulfilled-qty", "sb-id" , "ff-distributor", "ordered-distributor-id", "quantity", "required-quantity", "ordered-at", "completed-at", "invoiced-at", "dispatched-at", "received-at", "sb-status", "decline-reason", "inventory-at-ordering", "re-ordered-at", "dc-ff-time", "store-received-ff-time", "consumer-ff-time", "order-raised-at-dc", "order-raised-at-distributor", "billed-at", "store-name", "store-manager", "line-manager", "abo", "city", "store-b2b", "substituted", "gross-quantity", "gross-revenue-value", "net-quantity", "net-revenue-value", "selling-rate", "store-delivered-at", "franchisee-short-book" ) select pso."id" as "id", pso."created-at" as "created-at", pso."created-by" as "created-by", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", extract(year from pso."created-at") as "year-created-at", extract(month from pso."created-at") as "month-created-at", pso."patient-id" as "patient-id" , pso."doctor-id" as "doctor-id" , pso."store-id" as "store-id" , pso."bill-id" as "bill-id" , pso."drug-id" as "drug-id", pso."zeno-order-id" as "zeno-order-id", pso."drug-name" as "drug-name" , pso."requested-quantity" as "pso-requested-quantity", pso."inventory-quantity" as "pso-inventory-quantity", pso."order-number" as "order-number" , pso."order-source" as "order-source" , pso."order-type" as "order-type" , pso."patient-request-id" as "patient-request-id" , pso."payment-type" as "payment-type" , pso."promo-id" as "promo-id", pso.status as "pso-status", (case when ms."gross-quantity" > 0 then 1 else 0 end) as "fulfilled-to-consumer", d2."type" , d2."category" , d2."company" , d2."company-id" as "company-id" , d2."composition" , d2."composition-master-id" as "composition-master-id", NVL(prlp."lp-fulfilled-qty", 0) as "lp-fulfilled-qty", sb."id" as "sb-id", sb."distributor-id" as "ff-distributor", sb."ordered-distributor-id" as "ordered-distributor-id", sb."quantity" as "quantity" , sb."required-quantity" as "required-quantity" , case when sb."ordered-at" = '0101-01-01' then null else sb."ordered-at" end as "ordered-at", case when sb."completed-at" = '0101-01-01' then null else sb."completed-at" end as "completed-at", case when sb."invoiced-at" = '0101-01-01' then null else sb."invoiced-at" end as "invoiced-at", case when sb."dispatched-at" = '0101-01-01' then null else sb."dispatched-at" end as "dispatched-at", case when sb."received-at" = '0101-01-01' then null else sb."received-at" end as "received-at", sb."status" as "sb-status", sb."decline-reason" as "decline-reason", sb."inventory-at-ordering" as "inventory-at-ordering" , case when sb."re-ordered-at" = '0101-01-01' then null else sb."re-ordered-at" end as "re-ordered-at", (case when (pso."created-at" = '0101-01-01' or msda."store-delivered-at" = '0101-01-01') then null else datediff(hour, pso."created-at", msda."store-delivered-at") end) as "dc-ff-time", (case when (pso."created-at" = '0101-01-01' or sb."received-at" = '0101-01-01') then null else datediff(hour, pso."created-at", sb."received-at") end) as "store-received-ff-time", (case when (pso."created-at" = '0101-01-01' or b2."created-at" = '0101-01-01') then null else datediff(hour, pso."created-at", b2."created-at") end) as "consumer-ff-time", (case when sb."quantity">0 then 1 else 0 end) as "order-raised-at-dc", (case when ("ordered-at" = '0101-01-01' or "ordered-at" is null) then 0 else 1 end) as "order-raised-at-distributor", b2."created-at" as "billed-at", msm."store" as "store-name", msm."store-manager", msm."line-manager", msm."abo", msm."city", msm."store-b2b", case when "generic-flag" is null then 'not-available' when "generic-flag" is not null and d2."type" = 'generic' then 'substituted' when "generic-flag" is not null and d2."type" != 'generic' then 'not-substituted' else 'not-available' end as "substituted", ms."gross-quantity", ms."gross-revenue-value", ms."net-quantity", ms."net-revenue-value", case when sgdp."selling-rate" is null and d2."type" = 'generic' then 35 when sgdp."selling-rate" is null and d2."type" != 'generic' then 100 else sgdp."selling-rate" end as "selling-rate", msda."store-delivered-at", sb."franchisee-short-book" as "franchisee-short-book" from "prod2-generico"."patients-store-orders" pso left join ( select prlp."patient-request-id" , sum("fulfilled-quantity") as "lp-fulfilled-qty" from "prod2-generico"."patient-request-local-purchase" prlp inner join "prod2-generico"."patients-store-orders" pso on NVL(pso."patient-request-id", 0) = prlp."patient-request-id" group by prlp."patient-request-id" ) as prlp on prlp."patient-request-id" = NVL(pso."patient-request-id", 0) left join "prod2-generico"."patient-requests-short-books-map" mprsb on NVL(pso."patient-request-id", 0) = mprsb."patient-request-id" left join "prod2-generico"."short-book-1" sb on sb.id = mprsb."short-book-id" left join "prod2-generico"."store-delivered" msda on mprsb."short-book-id" = msda."id" left join "prod2-generico"."bills-1" b2 on b2.id = NVL(pso."bill-id", 0) left join "prod2-generico"."drugs" d2 on d2."id" = pso."drug-id" left join "prod2-generico"."substitutable-compositions" msc on msc."id" = d2."composition-master-id" left join "prod2-generico"."sales-agg" ms on ms."bill-id" = pso."bill-id" and ms."drug-id" = pso."drug-id" inner join "prod2-generico"."stores-master" msm on pso."store-id" = msm.id left join "prod2-generico"."store-group-drug-price" sgdp on msm."store-group-id" = sgdp."store-group-id" and pso."drug-id" = sgdp."drug-id" and sgdp."cluster-id" is null where pso."id" > {}; """ update_query = """ update "prod2-generico"."{}" as t set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "bill-id" = s."bill-id", "drug-id" = s."drug-id", "order-number" = s."order-number", "order-type" = s."order-type", "patient-request-id" = s."patient-request-id", "payment-type" = s."payment-type", "promo-id" = s."promo-id", "pso-status" = s."pso-status", "fulfilled-to-consumer" = s."fulfilled-to-consumer", "type" = s."type", "category" = s."category", "company" = s."company", "composition" = s."composition", "lp-fulfilled-qty" = s."lp-fulfilled-qty", "sb-id" = s."sb-id", "ff-distributor" = s."ff-distributor", "ordered-distributor-id" = s."ordered-distributor-id", "quantity" = s."quantity", "required-quantity" = s."required-quantity", "ordered-at" = s."ordered-at", "completed-at" = s."completed-at", "invoiced-at" = s."invoiced-at", "dispatched-at" = s."dispatched-at", "received-at" = s."received-at", "sb-status" = s."sb-status", "decline-reason" = s."decline-reason", "inventory-at-ordering" = s."inventory-at-ordering", "re-ordered-at" = s."re-ordered-at", "dc-ff-time" = s."dc-ff-time", "store-received-ff-time" = s."store-received-ff-time", "consumer-ff-time" = s."consumer-ff-time", "order-raised-at-dc" = s."order-raised-at-dc", "order-raised-at-distributor" = s."order-raised-at-distributor", "billed-at" = s."billed-at", "store-manager" = s."store-manager", "line-manager" = s."line-manager", "abo" = s."abo", "substituted" = s."substituted", "gross-quantity" = s."gross-quantity", "gross-revenue-value" = s."gross-revenue-value", "net-quantity" = s."net-quantity", "net-revenue-value" = s."net-revenue-value", "selling-rate" = s."selling-rate", "store-delivered-at" = s."store-delivered-at", "franchisee-short-book" = s."franchisee-short-book" from ( select pso."id" as "id", pso."bill-id" as "bill-id" , pso."drug-id" as "drug-id", pso."order-number" as "order-number" , pso."order-type" as "order-type" , pso."patient-request-id" as "patient-request-id" , pso."payment-type" as "payment-type" , pso."promo-id" as "promo-id", pso.status as "pso-status", (case when ms."gross-quantity" > 0 then 1 else 0 end) as "fulfilled-to-consumer", d2."type", d2."category" , d2."company" , d2."composition" , NVL(prlp."lp-fulfilled-qty", 0) as "lp-fulfilled-qty", sb."id" as "sb-id", sb."distributor-id" as "ff-distributor", sb."ordered-distributor-id" as "ordered-distributor-id", sb."quantity" as "quantity" , sb."required-quantity" as "required-quantity" , case when sb."ordered-at" = '0101-01-01' then null else sb."ordered-at" end as "ordered-at", case when sb."completed-at" = '0101-01-01' then null else sb."completed-at" end as "completed-at", case when sb."invoiced-at" = '0101-01-01' then null else sb."invoiced-at" end as "invoiced-at", case when sb."dispatched-at" = '0101-01-01' then null else sb."dispatched-at" end as "dispatched-at", case when sb."received-at" = '0101-01-01' then null else sb."received-at" end as "received-at", sb."status" as "sb-status", sb."decline-reason" as "decline-reason", sb."inventory-at-ordering" as "inventory-at-ordering" , case when sb."re-ordered-at" = '0101-01-01' then null else sb."re-ordered-at" end as "re-ordered-at", (case when (pso."created-at" = '0101-01-01' or msda."store-delivered-at" = '0101-01-01') then null else datediff(hour, pso."created-at", msda."store-delivered-at") end) as "dc-ff-time", (case when (pso."created-at" = '0101-01-01' or sb."received-at" = '0101-01-01') then null else datediff(hour, pso."created-at", sb."received-at") end) as "store-received-ff-time", (case when (pso."created-at" = '0101-01-01' or ms."created-at" = '0101-01-01') then null else datediff(hour, pso."created-at", ms."created-at") end) as "consumer-ff-time", (case when sb."quantity">0 then 1 else 0 end) as "order-raised-at-dc", (case when (sb."ordered-at" = '0101-01-01' or sb."ordered-at" is null) then 0 else 1 end) as "order-raised-at-distributor", ms."created-at" as "billed-at", msm."store-manager", msm."line-manager", msm."abo", case when msc."generic-flag" is null then 'not-available' when msc."generic-flag" is not null and d2."type" = 'generic' then 'substituted' when msc."generic-flag" is not null and d2."type" != 'generic' then 'not-substituted' else 'not-available' end as "substituted", ms."gross-quantity", ms."gross-revenue-value", ms."net-quantity", ms."net-revenue-value", case when sgdp."selling-rate" is null and d2."type" = 'generic' then 35 when sgdp."selling-rate" is null and d2."type" != 'generic' then 100 else sgdp."selling-rate" end as "selling-rate", msda."store-delivered-at", sb."franchisee-short-book" as "franchisee-short-book" from "prod2-generico"."{}" prm inner join "prod2-generico"."patients-store-orders" pso on prm.id = pso.id left join ( select prlp."patient-request-id" , sum("fulfilled-quantity") as "lp-fulfilled-qty" from "prod2-generico"."patient-request-local-purchase" prlp inner join "prod2-generico"."patients-store-orders" pso on NVL(pso."patient-request-id", 0) = prlp."patient-request-id" group by prlp."patient-request-id" ) as prlp on prlp."patient-request-id" = NVL(pso."patient-request-id", 0) left join "prod2-generico"."patient-requests-short-books-map" mprsb on NVL(pso."patient-request-id", 0) = mprsb."patient-request-id" left join "prod2-generico"."short-book-1" sb on sb.id = mprsb."short-book-id" left join "prod2-generico"."store-delivered" msda on mprsb."short-book-id" = msda."id" inner join "prod2-generico"."drugs" d2 on d2."id" = pso."drug-id" left join "prod2-generico"."substitutable-compositions" msc on msc."id" = d2."composition-master-id" left join "prod2-generico"."sales_agg" ms on ms."bill-id" = pso."bill-id" and ms."drug-id" = pso."drug-id" inner join "prod2-generico"."stores-master" msm on pso."store-id" = msm.id left join "prod2-generico"."store-group-drug-price" sgdp on msm."store-group-id" = sgdp."store-group-id" and pso."drug-id" = sgdp."drug-id" and sgdp."cluster-id" is null where prm."updated-at" < pso."updated-at" or prm."updated-at" < sb."updated-at" or prm."updated-at" < msc."updated-at" or prm."updated-at" < msda."updated-at" or prm."updated-at" < d2."updated-at" ) as s where t.id = s.id; """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/patient_request/__init__.py
__init__.py
sales_query = """ select a."bill-id", f."store-id", c."id" as "drug-id", c."drug-name", c."type", c."category", c."company", a."created-at", a."quantity", b."id" as "inventory-id", b."mrp", b."ptr" AS "zp-ptr", b."ptr" AS "final-ptr", b."purchase-rate" AS "wc-ptr", a."rate", a."cgst-rate", a."sgst-rate", a."igst-rate", f."payment-method", f."net-payable", f."patient-id", (a."rate" * a."quantity") as "value", d."franchisee-id" , ii."franchisee-invoice" from {schema}."bills-1{suffix_to_table}" f join {schema}."bill-items-1{suffix_to_table}" a on f."id" = a."bill-id" left join {schema}."inventory-1{suffix_to_table}" b on a."inventory-id" = b."id" left join {schema}."drugs{suffix_to_table}" c on c."id" = b."drug-id" left join {schema}."stores{suffix_to_table}" d on d."id"= b."store-id" left join {schema}."invoices-1{suffix_to_table}" ii on b."franchisee-invoice-id" = ii.id where a."created-at" >= '{analysis_start_time}' and a."created-at" <= '{analysis_end_time}' -- and f."store-id" = 2 """ customer_returns_query = """ SELECT b."return-id", b."bill-id", b."bill-id" as "returned-bill-id", a."store-id", a."patient-id", a."total-items", a."return-value", b."inventory-id", b."returned-quantity", b."cgst-rate", b."sgst-rate", b."igst-rate", b."rate", b."return-value", b."billed-at", b."returned-at", c."drug-id", c."drug-id" as "returned-drug-id", d."type", d."category", d."company", c."mrp", c."ptr" AS "zp-ptr", c."ptr" AS "final-ptr", c."purchase-rate" AS "wc-ptr", e."payment-method", s."franchisee-id" , ii."franchisee-invoice" FROM {schema}."customer-returns-1{suffix_to_table}" a JOIN {schema}."customer-return-items-1{suffix_to_table}" b ON a."id" = b."return-id" LEFT JOIN {schema}."inventory-1{suffix_to_table}" c ON c."id" = b."inventory-id" LEFT JOIN {schema}."drugs{suffix_to_table}" d ON d."id" = c."drug-id" LEFT JOIN {schema}."bills-1{suffix_to_table}" e ON e."id" = b."bill-id" left join {schema}."invoices-1{suffix_to_table}" ii on c."franchisee-invoice-id" = ii.id left join {schema}."stores{suffix_to_table}" s on a."store-id" = s.id WHERE b."returned-at" >='{analysis_start_time}' AND b."returned-at" <= '{analysis_end_time}' -- AND a."store-id" = 2 """ order_source_query = """ select pso."bill-id" as "zeno_bill_id", "order-source" from {schema}."patients-store-orders{suffix_to_table}" pso where "order-source" = 'zeno' and pso."bill-id" is not null group by pso."bill-id", "order-source" """ store_list_query = """ SELECT "id" AS "store-id", "name" AS "store-name", "franchisee-id" FROM {schema}."stores{suffix_to_table}" """ inventory_query = """ select a."store-id", a."drug-id", (a."quantity"+ a."locked-for-check" + a."locked-for-audit" + a."locked-for-return" + a."locked-for-transfer") as "quantity", a."ptr" AS "final-ptr", a."expiry", b."drug-name", b."type", b."category", b."company", a."created-at", c."vat", s."franchisee-id" , ii."franchisee-invoice" from {schema}."inventory-1{suffix_to_table}" a left join {schema}."drugs{suffix_to_table}" b on a."drug-id" = b."id" left join {schema}."invoice-items-1{suffix_to_table}" c on a."invoice-item-id" = c."id" left join {schema}."invoices-1{suffix_to_table}" ii on a."franchisee-invoice-id" = ii.id left join {schema}."stores{suffix_to_table}" s on a."store-id" = s.id where (a."quantity"> 0 OR a."locked-for-check" > 0 OR a."locked-for-audit" > 0 OR a."locked-for-return" > 0 OR a."locked-for-transfer" > 0 ) """ customers_initial_bill_date = """ select f."patient-id", f."store-id", min (f."created-at") as "created-at" from {schema}."bills-1{suffix_to_table}" f group by f."patient-id" , f."store-id" """ purchase_from_wc_query = """ select i."franchisee-invoice-item-id", b."franchisee-invoice-id", b."invoice-id", a."invoice-date", a."created-at", a."store-id", b."drug-id", c."type", c."category", c."company", b."actual-quantity", b."net-value" as "zp_received_net_value", b."vat" as "zp_vat", i."net-value" , i."actual-quantity" as "1_actual_quantity", b."actual-quantity" as "2_actual_quantity", i."vat" as "wc_vat", s."franchisee-id" , a."franchisee-invoice" , case when s."opened-at" is NULL then 'launch_stock' when date(s."opened-at") = '0101-01-01' then 'launch_stock' when (inv."invoice-date") < (s."opened-at") then 'launch_stock' else 'normal' end as "launch_flag" from {schema}."invoices-1{suffix_to_table}" a join {schema}."invoice-items-1{suffix_to_table}" b on a."id" = b."franchisee-invoice-id" left join {schema}."drugs{suffix_to_table}" c on c."id" = b."drug-id" join {schema}."invoice-items{suffix_to_table}" i on i."id" = b."invoice-item-reference" left join {schema}."invoices{suffix_to_table}" inv on inv."id" = a."invoice-reference" left join {schema}."stores{suffix_to_table}" s on a."store-id" = s.id where a."invoice-date" >= '{analysis_start_time}' and a."invoice-date"<= '{analysis_end_time}' and a.status not in ('live' , 'inbox') -- and a."franchisee-invoice" = 0 -- and a."store-id" = 2 """ zippin_return_data_query = """ select * from ( select row_number() over(partition by r.id order by r.id desc) as "row", date(d."dispatched-at") as "dispatch-date", date(r."settled-at") as "settled-date", e."name", d."serial" as "debit-note", d."credit-note-reference", d."status", d."store-id", s."name" as "cost-centre", e."gstn", r."id" as "return-item-id", r.taxable as "old-taxable-value", r.net /( (1 + r.gst / 100)) as "taxable-value", r."gst" as "tax-rate", r."gst-amount" as "tax-value", r."net" as "net-value", e."id" as "distributor-id", d.id as "debit-note-id", y."drug-id", p."type", p."category", p."company", y."purchase-rate" , y."purchase-rate" * r."returned-quantity" as "cogs", ii2."vat", s."franchisee-id" , ii."franchisee-invoice" from {schema}."return-items-1{suffix_to_table}" r left join {schema}."inventory-1{suffix_to_table}" y on y."id" = r."inventory-id" left join {schema}."drugs{suffix_to_table}" p on p."id" = y."drug-id" left join {schema}."debit-note-items-1{suffix_to_table}" dni on r.id = dni."item-id" left join {schema}."debit-notes-1{suffix_to_table}" d on dni."debit-note-id" = d."id" join {schema}."distributors{suffix_to_table}" e on d."dist-id" = e."id" join {schema}."stores{suffix_to_table}" s on d."store-id" = s."id" left join {schema}."invoices-1{suffix_to_table}" ii on y."franchisee-invoice-id" = ii.id left join {schema}."invoice-items-1{suffix_to_table}" ii2 on y."invoice-item-id" = ii2.id where r.status = 'settled' and d."is-internal-debit-note" = 0 and dni."is-active" = 1 and r."settled-at" >= '{analysis_start_time}' and r."settled-at" <= '{analysis_end_time}' and d."dist-id" != 64)a where a."row" = 1 """ zippin_return_data_query_revised_1 = """ select date(d."dispatched-at") as "dispatch-date", date(r."settled-at") as "settled-date", e."name", d."serial" as "debit-note", d."credit-note-reference", d."status", d."store-id", s."name" as "cost-centre", e."gstn", r."id" as "return-item-id", r.taxable as "old-taxable-value", r.net/( (1 + r.gst / 100)) as "taxable-value", r."gst" as "tax-rate", r."gst-amount" as "tax-value", r."net" as "net-value", e."id" as "distributor-id", d.id as "debit-note-id", y."drug-id", p."type", p."category", p."company", y."purchase-rate" , y."purchase-rate" * r."returned-quantity" as "cogs", ii2."vat", s."franchisee-id" , ii."franchisee-invoice" from {schema}."return-items-1{suffix_to_table}" r left join {schema}."inventory-1{suffix_to_table}" y on y."id" = r."inventory-id" left join {schema}."drugs{suffix_to_table}" p on p."id" = y."drug-id" left join {schema}."debit-notes-1{suffix_to_table}" d on r."debit-note-reference" = d."id" join {schema}."distributors{suffix_to_table}" e on d."dist-id" = e."id" join {schema}."stores{suffix_to_table}" s on d."store-id" = s."id" left join {schema}."invoices-1{suffix_to_table}" ii on y."franchisee-invoice-id" = ii.id left join {schema}."invoice-items-1{suffix_to_table}" ii2 on y."invoice-item-id" = ii2.id where r.status = 'settled' and r."settled-at" >='{analysis_start_time}' and r."settled-at" <= '{analysis_end_time}' and d."dist-id" != 64 """ mysql_old_db_zippin_return_data_query = """ select date(d.`dispatched-at`) as `dispatch-date`, date(r.`settled-at`) as `settled-date`, e.`name`, d.`serial` as `debit-note`, d.`credit-note-reference`, d.`status`, d.`store-id`, s.`name` as `cost-centre`, e.`gstn`, r.`id` as `return-item-id`, r.taxable as `old-taxable-value`, r.net/( (1 + r.gst / 100)) as `taxable-value`, r.`gst` as `tax-rate`, r.`gst-amount` as `tax-value`, r.`net` as `net-value`, e.`id` as `distributor-id`, d.id as `debit-note-id`, y.`drug-id`, p.`type`, p.`category`, p.`company`, y.`purchase-rate` , y.`purchase-rate` * r.`returned-quantity` as `cogs`, ii2.`vat`, s.`franchisee-id` , ii.`franchisee-invoice` from `return-items-1` r left join `inventory-1` y on y.`id` = r.`inventory-id` left join `drugs` p on p.`id` = y.`drug-id` left join `debit-notes-1` d on r.`debit-note-reference` = d.`id` join `distributors` e on d.`dist-id` = e.`id` join `stores` s on d.`store-id` = s.`id` left join `invoices-1` ii on y.`franchisee-invoice-id` = ii.id left join `invoice-items-1` ii2 on y.`invoice-item-id` = ii2.id where r.status = 'settled' and r.`settled-at` >='{analysis_start_time}' and r.`settled-at` <= '{analysis_end_time}' and d.`dist-id` != 64 """ old_donotuse_zippin_return_data_query = """ select date(d."dispatched-at") as "dispatch-date", e."name", d."serial" as "debit-note", d."credit-note-reference", d."status", d."store-id", s."name" as "cost-centre", e."gstn", r."id" as "return-item-id", r."taxable" as "taxable-value", r."gst" as "tax-rate", r."gst-amount" as "tax-value", r."net" as "net-value", e."id" as "distributor-id", d.id as "debit-note-id", y."drug-id", p."type", p."category", p."company", y."purchase-rate" , y."purchase-rate" * r."returned-quantity" as "cogs", ii2."vat", s."franchisee-id" , ii."franchisee-invoice" from {schema}."return-items-1{suffix_to_table}" r left join {schema}."inventory-1{suffix_to_table}" y on y."id" = r."inventory-id" left join {schema}."drugs{suffix_to_table}" p on p."id" = y."drug-id" join {schema}."debit-notes-1{suffix_to_table}" d on r."debit-note-reference" = d."id" join {schema}."distributors{suffix_to_table}" e on d."dist-id" = e."id" join {schema}."stores{suffix_to_table}" s on d."store-id" = s."id" left join {schema}."invoices-1{suffix_to_table}" ii on y."franchisee-invoice-id" = ii.id left join {schema}."invoice-items-1{suffix_to_table}" ii2 on y."invoice-item-id" = ii2.id where d."dispatched-at">='{analysis_start_time}' and d."dispatched-at"<= '{analysis_end_time}' and d."dist-id" != 64 """ workcell_return_data_query = """ select date(d."dispatched-at") as "dispatch-date", d."created-at" as "created-date", e."name", d."serial" as "debit-note", d."credit-note-reference", d."status", d."store-id", s."name" as "cost-centre", e."gstn", r."id" as "return-item-id", r."taxable" as "taxable-value", r."gst" as "tax-rate", r."gst-amount" as "tax-value", r."net" as "net-value", y."drug-id", o."type", o."category", o."company", y."purchase-rate" , y."purchase-rate" * r."returned-quantity" as "cogs", ii2."vat", s."franchisee-id" , ii1."franchisee-invoice" from {schema}."return-items{suffix_to_table}" as r left join {schema}."inventory{suffix_to_table}" y on r."inventory-id"= y."id" left join {schema}."drugs{suffix_to_table}" o on o."id" = y."drug-id" join {schema}."debit-notes{suffix_to_table}" as d on r."debit-note-reference" = d."id" join {schema}."distributors{suffix_to_table}" as e on d."dist-id" = e."id" join {schema}."stores{suffix_to_table}" as s on d."store-id" = s."id" left join {schema}."invoices{suffix_to_table}" ii on y."invoice-id" = ii.id left join {schema}."invoices-1{suffix_to_table}" ii1 on ii1."invoice-reference" = ii.id left join {schema}."invoice-items{suffix_to_table}" ii2 on y."invoice-item-id" = ii2.id where d."dispatched-at">='{analysis_start_time}' and d."dispatched-at"<='{analysis_end_time}' """ local_purchase_data_query = """ select a."id" as "inventory-id", "invoice-reference", b."franchisee-invoice-id", c."distributor-id", x."name", a."store-id", s."name" as "store-name", a."drug-id", d."drug-name", d."type", d."category", d."company", "vat", b."actual-quantity", b."net-value", a."ptr", a."purchase-rate", a."created-at", c."dispatch-status", s."franchisee-id" , c."franchisee-invoice" from {schema}."inventory-1{suffix_to_table}" a join {schema}."invoice-items-1{suffix_to_table}" b on a."invoice-item-id" = b."id" left join {schema}."invoices-1{suffix_to_table}" c on a."franchisee-invoice-id" = c."id" left join {schema}."drugs{suffix_to_table}" d on a."drug-id" = d."id" left join {schema}."stores{suffix_to_table}" s on s."id" = a."store-id" left join {schema}."distributors{suffix_to_table}" x on x."id" = c."distributor-id" where ((s."franchisee-id" = 1 and "invoice-reference" is null) or (s."franchisee-id" != 1 and c."distributor-id" = 76 )) and c."invoice-date" >= '{analysis_start_time}' and c."invoice-date" <= '{analysis_end_time}' """ # Note - Local Purchase data was based on inventory -> created-at, till Nov 2022, changed to invoice-date in dec 2022 generic_composition_count_query = """ select count(distinct t."composition") as "count" from ( select "id", "drug-name", "type", "composition" from {schema}."drugs{suffix_to_table}" where "type" = 'generic' and "composition" != '' ) t """ ethical_margin_query = """ select sum(a."actual-quantity" * a."mrp") as "value1", sum(a."net-value") as "net-value" from {schema}."invoice-items{suffix_to_table}" a join {schema}."invoices{suffix_to_table}" b on a."invoice-id" = b."id" join {schema}."distributors{suffix_to_table}" c on c."id" = b."distributor-id" join {schema}."drugs{suffix_to_table}" d on d."id" = a."drug-id" where c."credit-period">0 and d."type" = 'ethical' and a."created-at" >= '{analysis_start_time}' and a."created-at" <= '{analysis_end_time}' group by date_part(year, a."created-at"), date_part (month,a."created-at") """ ethical_margin_fofo_query = """ select sum(a."actual-quantity" * a."mrp") as "value1", sum(a."net-value") as "net-value" from {schema}."invoice-items{suffix_to_table}" a join {schema}."invoices{suffix_to_table}" b on a."invoice-id" = b."id" left join {schema}."invoices-1{suffix_to_table}" ii on ii."invoice-reference" = b."id" join {schema}."distributors{suffix_to_table}" c on c."id" = b."distributor-id" join {schema}."drugs{suffix_to_table}" d on d."id" = a."drug-id" left join {schema}."stores{suffix_to_table}" s on s."id" = b."store-id" where c."credit-period">0 and d."type" = 'ethical' and a."created-at" >= '{analysis_start_time}' and a."created-at" <= '{analysis_end_time}' and s."franchisee-id" != 1 and ii."franchisee-invoice" {equality_symbol} 0 group by date_part(year, a."created-at"), date_part (month,a."created-at") """ home_delivery_data_query = """ select pso."order-number", pso.id as "patient-store-order-id", pso."patient-request-id", pso."zeno-order-id" , pso."patient-id" , pso."order-source" as "order-source-pso" , pso."order-type" , pso."status" as "pso-status", pso."created-at" as "pso-created-at", pso."store-id" , s."name" as "store-name", s."franchisee-id", pso."drug-id" , pso."drug-name" , pso."requested-quantity", pso."inventory-quantity" as "inventory-at-creation", pr."required-quantity", pr."quantity-to-order", pso."bill-id", b."created-at" as "bill-date", dt."delivered-at", ss."type" as "slot-type" from {schema}."patients-store-orders{suffix_to_table}" pso left join {schema}."patient-requests{suffix_to_table}" pr on pso."patient-request-id" = pr.id join {schema}."stores{suffix_to_table}" s on s."id" = pso."store-id" left join {schema}."bills-1{suffix_to_table}" b on b."id" = pso."bill-id" left join {schema}."delivery-tracking{suffix_to_table}" dt on dt."patient-store-order-id" = pso."id" left join {schema}."store-slots{suffix_to_table}" ss on pso."slot-id" = ss.id where dt."delivered-at" >= '{analysis_start_time}' and dt."delivered-at"<= '{analysis_end_time}' and pso."order-type" = 'delivery' and pso."bill-id" is not null order by pso."created-at" desc """ delivery_bill_ids_query = """ select "bill-id" from {schema}."patients-store-orders{suffix_to_table}" pso where pso."order-type" = 'delivery' group by "bill-id" """ cumulative_consumers_data_query = """ select f."store-id" , count(distinct "patient-id") as "total-cons", count(distinct case when c.company != 'GOODAID' and c."type" in ('generic', 'high-value-generic') then "patient-id" end) as "generic-without-gaid-cons", count(distinct case when c."type" in ('generic', 'high-value-generic') then "patient-id" end) as "generic-cons", count(distinct case when c.company in ('GOODAID') then "patient-id" end) as "total-gaid-cons", count(distinct case when c.category in ('chronic') then "patient-id" end) as "total-chronic-cons" from {schema}."bills-1{suffix_to_table}" f join {schema}."bill-items-1{suffix_to_table}" a on f."id" = a."bill-id" left join {schema}."inventory-1{suffix_to_table}" b on a."inventory-id" = b."id" left join {schema}."drugs{suffix_to_table}" c on c."id" = b."drug-id" -- where -- f."store-id" = 2 group by f."store-id" """ cumulative_consumers_fofo_data_query = """ select f."store-id" , count(distinct "patient-id") as "total-cons", count(distinct case when c.company != 'GOODAID' and c."type" in ('generic', 'high-value-generic') then "patient-id" end) as "generic-without-gaid-cons", count(distinct case when c."type" in ('generic', 'high-value-generic') then "patient-id" end) as "generic-cons", count(distinct case when c.company in ('GOODAID') then "patient-id" end) as "total-gaid-cons", count(distinct case when c.category in ('chronic') then "patient-id" end) as "total-chronic-cons" from {schema}."bills-1{suffix_to_table}" f join {schema}."bill-items-1{suffix_to_table}" a on f."id" = a."bill-id" left join {schema}."inventory-1{suffix_to_table}" b on a."inventory-id" = b."id" left join {schema}."drugs{suffix_to_table}" c on c."id" = b."drug-id" left join {schema}."invoices-1{suffix_to_table}" ii on b."franchisee-invoice-id" = ii.id left join {schema}."stores{suffix_to_table}" s on s."id" = f."store-id" where s."franchisee-id" != 1 and ii."franchisee-invoice" {equality_symbol} 0 group by f."store-id" """ other_files_ethical_margin_query = """ select date_part (year, a."created-at") as "year", date_part(month, a."created-at") as "month", sum(a."actual-quantity" * a."mrp") as "actual-quantity * mrp", sum(a."net-value") as "net-value" from {schema}."invoice-items{suffix_to_table}" a join {schema}."invoices{suffix_to_table}" b on a."invoice-id" = b."id" join {schema}."distributors{suffix_to_table}" c on c."id" = b."distributor-id" join {schema}."drugs{suffix_to_table}" d on d."id" = a."drug-id" where c."credit-period">0 and d."type" = 'ethical' and date(a."created-at") >= '2021-08-01' group by date_part(year, a."created-at"), date_part(month, a."created-at") """ other_files_distributor_margin_query = """ select date_part(year,a."created-at") as "year", date_part(month,a."created-at") as "month", c."name", sum(a."actual-quantity"* a."mrp") as "actual-quantity * mrp", sum(a."net-value") as "net-value" from {schema}."invoice-items{suffix_to_table}" a join {schema}."invoices{suffix_to_table}" b on a."invoice-id"= b."id" join {schema}."distributors{suffix_to_table}" c on c."id"= b."distributor-id" join {schema}."drugs{suffix_to_table}" d on d."id"= a."drug-id" where c."credit-period">0 and date_part (year ,a."created-at") = {choose_year} and date_part (month ,a."created-at") = {choose_month} group by date_part (year,a."created-at"), date_part (month,a."created-at"), c."name" """ other_files_inventory_at_dc_near_expiry_data_query = """ select a."invoice-number", b."invoice-id", b."vat", a."invoice-date", a."store-id", b."drug-id", a."net-payable", b."net-value", case when b."actual-quantity" = 0 then 0 else (b."net-value"*1.0 / b."actual-quantity"*1.0) end as "final-ptr", b."actual-quantity", a."created-at", a."received-at", "status", "dispatch-status", c."type", c."category", b."expiry" from {schema}."invoices{suffix_to_table}" a join {schema}."invoice-items{suffix_to_table}" b on a."id" = b."invoice-id" join {schema}."drugs{suffix_to_table}" c on b."drug-id" = c."id" where "status" = 'approved' and "dispatch-status" in ('dispatch-status-na') """ goodaid_store_sales_query = """ select date_part (year, b."created-AT") as "YEAR", date_part (month, b."created-AT") as "MONTH", b."store-id", max(s."name") as "store-name", SUM(c."mrp" * a."quantity") as "gross_mrp", SUM((c."mrp" * a."quantity") / (1 + ((a."cgst-rate" + a."sgst-rate")/ 100))) as "gross_mrp_taxable", SUM(a."rate" * a."quantity") as "gross_revenue", SUM((a."rate" * a."quantity") / (1 + ((a."cgst-rate" + a."sgst-rate")/ 100))) as "gross_revenue_taxable", SUM(c."purchase-rate" * a."quantity") as "gross_cogs", SUM((c."purchase-rate" * a."quantity") / (1 + ((a."cgst-rate" + a."sgst-rate")/ 100))) as "gross_cogs_taxable", sum(a."quantity") as "gross_quantity" from {schema}."bill-items-1{suffix_to_table}" a left join {schema}."bills-1{suffix_to_table}" b on b."id" = a."bill-id" left join {schema}."inventory-1{suffix_to_table}" c on c."id" = a."inventory-id" left join {schema}."stores{suffix_to_table}" s on s."id" = b."store-id" left join {schema}."drugs{suffix_to_table}" d on d."id" = c."drug-id" where date_part (year, a."created-AT") = {choose_year} and date_part (month, a."created-AT") ={choose_month} and d."company" = 'GOODAID' group by date_part(year, b."created-AT"), date_part(month, b."created-AT"), b."store-id" """ goodaid_store_returns_query = """ select date_part (year,b."returned-at") as "year", date_part (month,b."returned-at") as "month", b."store-id", max(s."name") as "store-name", (SUM(c."mrp" * a."returned-quantity") * -1) as "returns_mrp", (SUM((c."mrp" * a."returned-quantity") / (1 + ((a."cgst-rate" + a."sgst-rate")/ 100))) * -1) as "returns_mrp_taxable", (SUM(a."rate" * a."returned-quantity") * - 1) as "returns", (SUM((a."rate" * a."returned-quantity") / (1 + ((a."cgst-rate" + a."sgst-rate")/ 100))) * -1) as "returns_taxable", (SUM(c."purchase-rate" * a."returned-quantity") * -1) as "returns_cogs", (SUM((c."purchase-rate" * a."returned-quantity") / (1 + ((a."cgst-rate" + a."sgst-rate")/ 100))) * -1) as "returns_cogs_taxable", (sum(a."returned-quantity") * -1) as "returned_quantity" from {schema}."customer-return-items-1{suffix_to_table}" a left join {schema}."customer-returns-1{suffix_to_table}" b on b."id" = a."return-id" left join {schema}."inventory-1{suffix_to_table}" c on c."id" = a."inventory-id" left join {schema}."stores{suffix_to_table}" s on s."id" = b."store-id" left join {schema}."drugs{suffix_to_table}" d on d."id" = c."drug-id" where date_part(year,a."returned-at") = {choose_year} and date_part(month,a."returned-at") = {choose_month} and d."company" = 'GOODAID' group by date_part(year,b."returned-at"), date_part(month,b."returned-at"), b."store-id" """ goodaid_zippin_inventory_query = """ select a."store-id", s."name" as "store-name", a."drug-id", b."drug-name", b."type", b."category", a."expiry", c."vat", ((a."quantity"+ a."locked-for-check" + a."locked-for-audit" + a."locked-for-return" + a."locked-for-transfer")) as "quantity", ((a."quantity"+ a."locked-for-check" + a."locked-for-audit" + a."locked-for-return" + a."locked-for-transfer") * a."ptr") as "value", a."ptr", a."created-at" from {schema}."inventory-1{suffix_to_table}" a join {schema}."invoice-items-1{suffix_to_table}" c on a."invoice-item-id" = c."id" left join {schema}."drugs{suffix_to_table}" b on a."drug-id" = b."id" left join {schema}."stores{suffix_to_table}" s on s."id" = a."store-id" where (a."quantity"> 0 or a."locked-for-check" > 0 or a."locked-for-audit" > 0 or a."locked-for-return" > 0 or a."locked-for-transfer" > 0) and b."company" = 'GOODAID' """ goodaid_dc_inventory_query = """ select m."dc-id" as store_id, ( select "name" from {schema}."stores{suffix_to_table}" where id = m."dc-id" limit 1) as store_name, vat, sum("post_tax") post_tax, sum(taxable_amount) as taxable_amount from ( select a."store-id", ( select "forward-dc-id" from {schema}."store-dc-mapping{suffix_to_table}" where max(dgs.type) = "drug-type" and "store-id" = a."store-id" limit 1) as "dc-id", round(sum( coalesce (a."locked-quantity" * "purchase-rate", 0) )) "post_tax", b.vat, round(sum(coalesce (a."locked-quantity" * a."purchase-rate", 0) / (1 + b.vat / 100) )) as "taxable_amount" from {schema}."inventory{suffix_to_table}" a join {schema}."invoice-items{suffix_to_table}" b on a."invoice-item-id" = b.id join {schema}."drugs{suffix_to_table}" dgs on dgs.id = a."drug-id" where "dgs"."company" = 'GOODAID' group by a."store-id", b.vat union select a."store-id", ( select "forward-dc-id" from {schema}."store-dc-mapping{suffix_to_table}" where max(dgs."type") = "drug-type" and "store-id" = a."store-id" limit 1) as "dc-id", round(sum( coalesce (a."locked-quantity" * "purchase-rate", 0) )) "post_tax", b.vat, round(sum( coalesce (a."locked-quantity" * a."purchase-rate", 0) / (1 + b.vat / 100) )) as "taxable_amount" from {schema}."inventory-1{suffix_to_table}" a join {schema}."invoice-items-1{suffix_to_table}" b on a."invoice-item-id" = b.id join {schema}."drugs{suffix_to_table}" dgs on dgs.id = a."drug-id" where "dgs"."company" = 'GOODAID' group by a."store-id", b.vat union select b."store-id", ( select "return-dc-id" from {schema}."store-dc-mapping{suffix_to_table}" where max(dgs.type) = "drug-type" and "store-id" = b."store-id" limit 1) as "dc-id", round(sum( coalesce (a."returned-quantity" * c."purchase-rate", 0))) "post_tax", d.vat, round(sum( coalesce (a."returned-quantity" * c."purchase-rate", 0) / (1 + d.vat / 100) )) as "taxable_amount" from {schema}."return-items{suffix_to_table}" a join {schema}."returns-to-dc{suffix_to_table}" b on a."return-id" = b.id join {schema}."inventory{suffix_to_table}" c on a."inventory-id" = c.id join {schema}."drugs{suffix_to_table}" dgs on dgs.id = c."drug-id" join {schema}."invoice-items{suffix_to_table}" d on c."invoice-item-id" = d.id where a."status" in ('saved', 'approved') and "dgs"."company" = 'GOODAID' group by b."store-id", d.vat ) m group by "dc-id", vat; """ goodaid_wh_inventory_query = """ select "drug-id", "drug-name", sum("balance-quantity") as wh_qty, sum("balance-value") as wh_value from "prod2-generico"."wh-inventory-ss" wis where date("created-at") = '{date}' group by "drug-id", "drug-name" """ goodaid_drugs_query = """ select "id" as "drug_id", "company" from {schema}."drugs{suffix_to_table}" where "company" = 'GOODAID' """ store_info_query = """ select sm.id as "store-id", sm."name" as "store-name", case when sm."franchisee-id" = 1 then 'COCO' else 'FOFO' end as "franchise-flag", zc."name" as "city-name", sg."name" as "store-group-name", zis."name" as "state-name" from {schema}."stores{suffix_to_table}" sm left join "prod2-generico"."zeno-city" zc on sm."city-id" = zc.id left join "prod2-generico"."store-groups" sg on sm."store-group-id" = sg.id left join "prod2-generico"."zeno-indian-states" zis on zc."indian-state-id" = zis.id """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/mis/mis_queries.py
mis_queries.py
import decimal import os # from zeno_etl_libs.queries.mis import mis_queries # # from zeno_etl_libs.helper.aws.s3 import S3 # from zeno_etl_libs.db.db import DB # from zeno_etl_libs.helper import helper import json import datetime from datetime import date, timedelta from dateutil.relativedelta import relativedelta import pandas as pd import numpy as np class Mis: def __init__(self,analysis_start_time,analysis_end_time,suffix_to_table,schema_to_select,choose_year,choose_month,rs_db=None,logger=None,mis_queries=None): self.analysis_start_time = analysis_start_time self.analysis_end_time = analysis_end_time self.suffix_to_table = suffix_to_table self.schema_to_select = schema_to_select self.choose_year = choose_year self.choose_month = choose_month self.rs_db = rs_db self.logger = logger self.logger.info('You have instantiated Mis class') self.mis_queries = mis_queries def sales(self): sales_query = self.mis_queries.sales_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) df = self.rs_db.get_df(sales_query) df.columns = [c.replace('-', '_') for c in df.columns] return df def customer_returns(self): customer_returns_query = self.mis_queries.customer_returns_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) df = self.rs_db.get_df(customer_returns_query) df.columns = [c.replace('-', '_') for c in df.columns] return df def order_source(self): order_source_query = self.mis_queries.order_source_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) order_source = self.rs_db.get_df(order_source_query) order_source.columns = [c.replace('-', '_') for c in order_source.columns] return order_source def store_list(self): store_list_query = self.mis_queries.store_list_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) store_list = self.rs_db.get_df(store_list_query) store_list.columns = [c.replace('-', '_') for c in store_list.columns] return store_list def inventory(self): inventory_query = self.mis_queries.inventory_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) inventory = self.rs_db.get_df(inventory_query) inventory.columns = [c.replace('-', '_') for c in inventory.columns] return inventory def cumulative_consumers_data(self): cumulative_consumers_data_query = self.mis_queries.cumulative_consumers_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) cumulative_consumers_data = self.rs_db.get_df(cumulative_consumers_data_query) cumulative_consumers_data.columns = [c.replace('-', '_') for c in cumulative_consumers_data.columns] return cumulative_consumers_data def cumulative_consumers_fofo_data(self): workcell_cumulative_consumers_fofo_data_query = self.mis_queries.cumulative_consumers_fofo_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table,equality_symbol='=') workcell_cumulative_consumers_fofo_data = self.rs_db.get_df(workcell_cumulative_consumers_fofo_data_query) workcell_cumulative_consumers_fofo_data.columns = [c.replace('-', '_') for c in workcell_cumulative_consumers_fofo_data.columns] others_cumulative_consumers_fofo_data_query = self.mis_queries.cumulative_consumers_fofo_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table,equality_symbol='!=') others_cumulative_consumers_fofo_data = self.rs_db.get_df(others_cumulative_consumers_fofo_data_query) others_cumulative_consumers_fofo_data.columns = [c.replace('-', '_') for c in others_cumulative_consumers_fofo_data.columns] return workcell_cumulative_consumers_fofo_data,others_cumulative_consumers_fofo_data def purchase_from_wc_data(self): purchase_from_wc_query = self.mis_queries.purchase_from_wc_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) df = self.rs_db.get_df(purchase_from_wc_query) df.columns = [c.replace('-', '_') for c in df.columns] df['wc_purchase_net_value'] = (df['net_value'] / df['1_actual_quantity']) * df['2_actual_quantity'] return df def zippin_return_data(self): zippin_return_data_query = self.mis_queries.zippin_return_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) df = self.rs_db.get_df(zippin_return_data_query) df.columns = [c.replace('-', '_') for c in df.columns] return df def workcell_return_data(self): workcell_return_data_query = self.mis_queries.workcell_return_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) df = self.rs_db.get_df(workcell_return_data_query) df.columns = [c.replace('-', '_') for c in df.columns] return df def cons_initial_bill_date(self,): customers_initial_bill_date_query = self.mis_queries.customers_initial_bill_date.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) customers_initial_bill_date = self.rs_db.get_df(customers_initial_bill_date_query) customers_initial_bill_date.columns = [c.replace('-', '_') for c in customers_initial_bill_date.columns] return customers_initial_bill_date def local_purchase_data(self): local_purchase_data_query = self.mis_queries.local_purchase_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table , analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) local_purchase_data = self.rs_db.get_df(local_purchase_data_query ) local_purchase_data.columns = [c.replace('-', '_') for c in local_purchase_data.columns] return local_purchase_data def home_delivery_data(self): home_delivery_data_query = self.mis_queries.home_delivery_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) df = self.rs_db.get_df(home_delivery_data_query) df.columns = [c.replace('-', '_') for c in df.columns] return df def delivery_bill_ids(self): delivery_bill_ids_query = self.mis_queries.delivery_bill_ids_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) delivery_bill_ids = self.rs_db.get_df(delivery_bill_ids_query) delivery_bill_ids.columns = [c.replace('-', '_') for c in delivery_bill_ids.columns] return delivery_bill_ids def order_type_tag(self,company, type_, tag): if tag == 'breakup': if company == 'GOODAID': return 'GOODAID' # elif type_ in ('ethical'): # return 'ethical' # elif type_ in ('generic'): # return 'generic' # else: # return 'others' elif type_ in ('ethical', 'high-value-ethical'): return 'ethical' elif type_ in ('generic', 'high-value-generic'): return 'generic' else: return 'others' elif tag == 'unified': # if type_ in ('ethical'): # return 'ethical' # elif type_ in ('generic'): # return 'generic' # else: # return 'others' if type_ in ('ethical', 'high-value-ethical'): return 'ethical' elif type_ in ('generic', 'high-value-generic'): return 'generic' else: return 'others' else: self.logger.info('please provide valid tag') def taxable_value(self,quantity,rate,cgst,sgst,igst): # igst = 0 return quantity*rate/(1 + ((cgst+sgst+igst)/100)) def taxable_value_vat_based(self,quantity,rate,vat): quantity = float(quantity) rate = float(rate) vat = float(vat) taxable = (quantity*rate)/(1 + ((vat)/100)) taxable = float(taxable) return taxable def taxable_value_vat_based_2(self,value,vat): value = float(value) vat = float(vat) taxable = (value)/(1 + ((vat)/100)) taxable = float(taxable) return taxable def fofo_final_distributor(self,franchisee_id,franchisee_invoice): if franchisee_id ==1: if franchisee_invoice == 0 or franchisee_invoice is None: return 'workcell' else: return 'other' if franchisee_id != 1: if franchisee_invoice == 0: return 'workcell' else: return 'other' def fofo_distributor_bifurcation(self,df): columns = [x for x in df.columns if x not in ['tag_flag', 'fofo_distributor', 'order_source','type1','category']] workcell = df.loc[df['fofo_distributor'] == 'workcell'][columns].reset_index() other = df.loc[df['fofo_distributor'] == 'other'][columns].reset_index() combined = df.loc[df['fofo_distributor'] == 'combined'][columns].reset_index() if other.empty: other.loc[0] = 0 if workcell.empty: workcell.loc[0] = 0 if combined.empty: combined.loc[0] = 0 both = workcell + other - combined both['fofo_distributor'] = 'both' both = both.loc[both['fofo_distributor'] == 'both'].reset_index() only_workcell = workcell - both only_workcell['fofo_distributor'] = 'only_workcell' only_other = other - both only_other['fofo_distributor'] = 'only_other' fofo_distributor_bifurcation_ = pd.concat([only_workcell, only_other, both], sort=True) fofo_distributor_bifurcation_.replace(0, np.nan, inplace=True) return fofo_distributor_bifurcation_ def fofo_distributor_bifurcation_next_calculation_steps(self,df, df_fofo, groupbylist): df['fofo_distributor'] = 'combined' df_1 = df[df_fofo.columns] df_fofo = pd.concat([df_fofo, df_1], sort=True) df_fofo.fillna(0, inplace=True) order = df_fofo['tag_flag'].drop_duplicates(keep='first').to_frame() df_fofo = df_fofo.reset_index(drop=True) df_fofo = df_fofo.groupby(groupbylist).apply(lambda x: self.fofo_distributor_bifurcation(x)).reset_index()[ [x for x in df_fofo.columns if x not in ['level_1', 'level_2', 'index']]] df_fofo = order.merge(df_fofo, on='tag_flag', how='left') return df_fofo def gmv_gross_payment(self, Gross, stores, fofo_tag = 'no'): gross = Gross.copy(deep = True) gross['GMV_sale'] = gross['quantity'] * gross['mrp'] gross['gross_sale'] = gross['quantity'] * gross['rate'] if fofo_tag=='no': gross_sale_summary = gross.groupby(['store_id', 'type1', 'category', 'payment_method', 'order_source'], as_index=False).agg({ 'quantity': ['sum'], 'GMV_sale': ['sum'], 'gross_sale': ['sum'] }).reset_index(drop=True) gross_sale_summary.columns = ["_".join(x) for x in gross_sale_summary.columns.ravel()] gross_sale_summary.fillna(0, inplace=True) gross_sale = pd.merge(left=gross_sale_summary, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) gross_sale.rename(columns={'type1_': 'type1', 'category_': 'category', 'payment_method_': 'payment_method', 'order_source_': 'order_source', 'quantity_sum': 'quantity', 'GMV_sale_sum': 'GMV_sales', 'gross_sale_sum': 'gross_sales'}, inplace=True) gross_sale[['GMV_sales', 'gross_sales']] = gross_sale[['GMV_sales', 'gross_sales']].astype(float) gross_sale.fillna(0, inplace=True) # #GMV df_gross_returns2a = gross_sale.groupby(['store_id', 'store_name', 'type1', 'order_source'])[['GMV_sales']].sum().reset_index() df_gross_returns2 = pd.pivot_table(df_gross_returns2a, values='GMV_sales', index=['type1', 'order_source'], columns=['store_name']).reset_index() df_gross_returns2['tag_flag'] = 'gmv' # GROSS df_gross_returns3a = gross_sale.groupby(['store_id', 'store_name', 'type1', 'order_source'])[['gross_sales']].sum().reset_index() df_gross_returns3 = pd.pivot_table(df_gross_returns3a, values='gross_sales', index=['type1', 'order_source'], columns=['store_name']).reset_index() df_gross_returns3['tag_flag'] = 'gross' # Payment gross_sale['payment'] = np.where(gross_sale['payment_method'].isin(['cash', 'card']), gross_sale['payment_method'], 'upi') df_gross_returns4a = gross_sale.groupby(['store_id', 'store_name', 'payment', 'order_source'])[['gross_sales']].sum().reset_index() df_gross_returns4 = pd.pivot_table(df_gross_returns4a, values='gross_sales', index=['payment', 'order_source'], columns=['store_name']).reset_index() df_gross_returns4['tag_flag'] = 'payment' gmv_gross_payment = pd.concat([df_gross_returns2, df_gross_returns3, df_gross_returns4], sort=True) cols_to_move = ['tag_flag', 'type1', 'payment', 'order_source'] gmv_gross_payment = gmv_gross_payment[cols_to_move + [col for col in gmv_gross_payment.columns if col not in cols_to_move]] return gmv_gross_payment elif fofo_tag == 'yes': gross = gross[gross['franchisee_id']!=1] gross_sale_summary = gross.groupby(['store_id', 'type1', 'category', 'payment_method', 'order_source','fofo_distributor'], as_index=False).agg({ 'quantity': ['sum'], 'GMV_sale': ['sum'], 'gross_sale': ['sum'] }).reset_index(drop=True) gross_sale_summary.columns = ["_".join(x) for x in gross_sale_summary.columns.ravel()] gross_sale_summary.fillna(0, inplace=True) gross_sale = pd.merge(left=gross_sale_summary, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) gross_sale.rename(columns={'type1_': 'type1', 'category_': 'category', 'payment_method_': 'payment_method', 'order_source_': 'order_source', 'fofo_distributor_':'fofo_distributor', 'quantity_sum': 'quantity', 'GMV_sale_sum': 'GMV_sales', 'gross_sale_sum': 'gross_sales'}, inplace=True) gross_sale[['GMV_sales', 'gross_sales']] = gross_sale[['GMV_sales', 'gross_sales']].astype(float) gross_sale.fillna(0, inplace=True) # #GMV df_gross_returns2a = gross_sale.groupby(['store_id', 'store_name', 'type1', 'order_source','fofo_distributor'])[['GMV_sales']].sum().reset_index() df_gross_returns2 = pd.pivot_table(df_gross_returns2a, values='GMV_sales', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() df_gross_returns2['tag_flag'] = 'gmv' # GROSS df_gross_returns3a = gross_sale.groupby(['store_id', 'store_name', 'type1', 'order_source','fofo_distributor'])[['gross_sales']].sum().reset_index() df_gross_returns3 = pd.pivot_table(df_gross_returns3a, values='gross_sales', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() df_gross_returns3['tag_flag'] = 'gross' # Payment gross_sale['payment'] = np.where(gross_sale['payment_method'].isin(['cash', 'card']), gross_sale['payment_method'], 'upi') df_gross_returns4a = gross_sale.groupby(['store_id', 'store_name', 'payment', 'order_source','fofo_distributor'])[['gross_sales']].sum().reset_index() df_gross_returns4 = pd.pivot_table(df_gross_returns4a, values='gross_sales', index=['payment', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() df_gross_returns4['tag_flag'] = 'payment' gmv_gross_payment = pd.concat([df_gross_returns2, df_gross_returns3, df_gross_returns4], sort=True) cols_to_move = ['tag_flag', 'type1', 'payment', 'order_source','fofo_distributor'] gmv_gross_payment = gmv_gross_payment[cols_to_move + [col for col in gmv_gross_payment.columns if col not in cols_to_move]] return gmv_gross_payment def netsale_tax_cogs(self,Gross,Returns,stores,fofo_tag = 'no'): gross = Gross.copy(deep = True) returns = Returns.copy(deep = True) if fofo_tag=='no': gross['gross_sale'] = gross['quantity'] * gross['rate'] gross['gross_COGS'] = gross['quantity'] * gross['wc_ptr'] gross['gross_sale_taxable'] = np.vectorize(self.taxable_value)(gross['quantity'], gross['rate'], gross['cgst_rate'], gross['sgst_rate'], gross['igst_rate']) gross['gross_COGS_taxable'] = np.vectorize(self.taxable_value)(gross['quantity'], gross['wc_ptr'], gross['cgst_rate'], gross['sgst_rate'], gross['igst_rate']) gross_sale_summary = gross.groupby(['store_id', 'type1', 'order_source'], as_index=False).agg({ 'quantity': ['sum'], 'gross_sale': ['sum'], 'gross_COGS': ['sum'], 'gross_sale_taxable':['sum'], 'gross_COGS_taxable':['sum'] }).reset_index(drop=True) gross_sale_summary.columns = ["_".join(x) for x in gross_sale_summary.columns.ravel()] returns['gross_returns'] = returns['rate'] * returns['returned_quantity'] returns['returns_COGS'] = returns['wc_ptr'] * returns['returned_quantity'] returns['gross_returns_taxable'] = np.vectorize(self.taxable_value)(returns['returned_quantity'], returns['rate'], returns['cgst_rate'], returns['sgst_rate'], returns['igst_rate']) returns['returns_COGS_taxable'] = np.vectorize(self.taxable_value)(returns['returned_quantity'], returns['wc_ptr'], returns['cgst_rate'], returns['sgst_rate'], returns['igst_rate']) returns_summary = returns.groupby(['store_id', 'type1', 'order_source'], as_index=False).agg({ 'returned_quantity':['sum'], 'gross_returns':['sum'], 'returns_COGS':['sum'], 'gross_returns_taxable': ['sum'], 'returns_COGS_taxable': ['sum']}).reset_index(drop=True) returns_summary.columns = ["_".join(x) for x in returns_summary.columns.ravel()] gross_returns = pd.merge(left=gross_sale_summary, right=returns_summary, how='outer', on=['store_id_', 'type1_', 'order_source_']) gross_returns.fillna(0, inplace=True) gross_returns['net_sale'] = gross_returns['gross_sale_sum'] - gross_returns['gross_returns_sum'] gross_returns['net_sale_taxable'] = gross_returns['gross_sale_taxable_sum'] - gross_returns['gross_returns_taxable_sum'] gross_returns['net_COGS'] = gross_returns['gross_COGS_sum'] - gross_returns['returns_COGS_sum'] gross_returns['net_COGS_taxable'] = gross_returns['gross_COGS_taxable_sum'] - gross_returns[ 'returns_COGS_taxable_sum'] gross_returns1 = pd.merge(left=gross_returns, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) gross_returns1.rename(columns={ 'type1_': 'type1', 'order_source_':'order_source', 'quantity_sum':'quantity', 'gross_sale_sum': 'gross_sales', 'gross_COGS_sum': 'gross_COGS', 'gross_sale_taxable_sum': 'gross_sale_taxable', 'gross_COGS_taxable_sum': 'gross_COGS_taxable', 'returned_quantity_sum': 'returned_quantity', 'gross_returns_sum': 'gross_returns', 'returns_COGS_sum': 'returns_COGS', 'gross_returns_taxable_sum': 'gross_returns_taxable', 'returns_COGS_taxable_sum': 'returns_COGS_taxable'}, inplace=True) gross_returns1[['net_sale','net_sale_taxable','net_COGS_taxable']] = gross_returns1[['net_sale','net_sale_taxable','net_COGS_taxable']].astype(float) gross_returns2 = pd.pivot_table(gross_returns1, values='net_sale', index=['type1', 'order_source'], columns=['store_name']).reset_index() gross_returns2['tag_flag'] = 'net_sale' gross_returns3 = pd.pivot_table(gross_returns1, values='net_sale_taxable', index=['type1', 'order_source'], columns=['store_name']).reset_index() gross_returns3['tag_flag'] = 'net_sale_taxable' gross_returns4 = pd.pivot_table(gross_returns1, values='net_COGS_taxable', index=['type1', 'order_source'], columns=['store_name']).reset_index() gross_returns4['tag_flag'] = 'net_COGS_taxable' net_sale_taxes_cogs = pd.concat([gross_returns2, gross_returns3, gross_returns4]) cols_to_move = ['tag_flag', 'type1', 'order_source'] net_sale_taxes_cogs = net_sale_taxes_cogs[cols_to_move + [col for col in net_sale_taxes_cogs.columns if col not in cols_to_move]] return net_sale_taxes_cogs if fofo_tag == 'yes': gross = gross[gross['franchisee_id'] != 1] returns = returns[returns['franchisee_id'] != 1] gross['gross_sale'] = gross['quantity'] * gross['rate'] gross['gross_COGS'] = gross['quantity'] * gross['wc_ptr'] gross['gross_sale_taxable'] = np.vectorize(self.taxable_value)(gross['quantity'], gross['rate'], gross['cgst_rate'], gross['sgst_rate'], gross['igst_rate']) gross['gross_COGS_taxable'] = np.vectorize(self.taxable_value)(gross['quantity'], gross['wc_ptr'], gross['cgst_rate'], gross['sgst_rate'], gross['igst_rate']) gross_sale_summary = gross.groupby(['store_id', 'type1', 'order_source','fofo_distributor'], as_index=False).agg({ 'quantity': ['sum'], 'gross_sale': ['sum'], 'gross_COGS': ['sum'], 'gross_sale_taxable': ['sum'], 'gross_COGS_taxable': ['sum'] }).reset_index(drop=True) gross_sale_summary.columns = ["_".join(x) for x in gross_sale_summary.columns.ravel()] returns['gross_returns'] = returns['rate'] * returns['returned_quantity'] returns['returns_COGS'] = returns['wc_ptr'] * returns['returned_quantity'] returns['gross_returns_taxable'] = np.vectorize(self.taxable_value)(returns['returned_quantity'], returns['rate'], returns['cgst_rate'], returns['sgst_rate'], returns['igst_rate']) returns['returns_COGS_taxable'] = np.vectorize(self.taxable_value)(returns['returned_quantity'], returns['wc_ptr'], returns['cgst_rate'], returns['sgst_rate'], returns['igst_rate']) returns_summary = returns.groupby(['store_id', 'type1', 'order_source','fofo_distributor'], as_index=False).agg({ 'returned_quantity': ['sum'], 'gross_returns': ['sum'], 'returns_COGS': ['sum'], 'gross_returns_taxable': ['sum'], 'returns_COGS_taxable': ['sum']}).reset_index(drop=True) returns_summary.columns = ["_".join(x) for x in returns_summary.columns.ravel()] gross_returns = pd.merge(left=gross_sale_summary, right=returns_summary, how='outer', on=['store_id_', 'type1_', 'order_source_','fofo_distributor_']) gross_returns.fillna(0, inplace=True) gross_returns['net_sale'] = gross_returns['gross_sale_sum'] - gross_returns['gross_returns_sum'] gross_returns['net_sale_taxable'] = gross_returns['gross_sale_taxable_sum'] - gross_returns[ 'gross_returns_taxable_sum'] gross_returns['net_COGS'] = gross_returns['gross_COGS_sum'] - gross_returns['returns_COGS_sum'] gross_returns['net_COGS_taxable'] = gross_returns['gross_COGS_taxable_sum'] - gross_returns[ 'returns_COGS_taxable_sum'] gross_returns1 = pd.merge(left=gross_returns, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) gross_returns1.rename(columns={'type1_': 'type1', 'order_source_': 'order_source', 'fofo_distributor_':'fofo_distributor', 'quantity_sum': 'quantity', 'gross_sale_sum': 'gross_sales', 'gross_COGS_sum': 'gross_COGS', 'gross_sale_taxable_sum': 'gross_sale_taxable', 'gross_COGS_taxable_sum': 'gross_COGS_taxable', 'returned_quantity_sum': 'returned_quantity', 'gross_returns_sum': 'gross_returns', 'returns_COGS_sum': 'returns_COGS', 'gross_returns_taxable_sum': 'gross_returns_taxable', 'returns_COGS_taxable_sum': 'returns_COGS_taxable'}, inplace=True) gross_returns1[['net_sale', 'net_sale_taxable', 'net_COGS_taxable']] = gross_returns1[ ['net_sale', 'net_sale_taxable', 'net_COGS_taxable']].astype(float) gross_returns2 = pd.pivot_table(gross_returns1, values='net_sale', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() gross_returns2['tag_flag'] = 'net_sale' gross_returns3 = pd.pivot_table(gross_returns1, values='net_sale_taxable', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() gross_returns3['tag_flag'] = 'net_sale_taxable' gross_returns4 = pd.pivot_table(gross_returns1, values='net_COGS_taxable', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() gross_returns4['tag_flag'] = 'net_COGS_taxable' net_sale_taxes_cogs = pd.concat([gross_returns2, gross_returns3, gross_returns4]) cols_to_move = ['tag_flag', 'type1', 'order_source','fofo_distributor'] net_sale_taxes_cogs = net_sale_taxes_cogs[cols_to_move + [col for col in net_sale_taxes_cogs.columns if col not in cols_to_move]] return net_sale_taxes_cogs def inventory_ageing(self, Inventory, stores, mis_tag = 'breakup',fofo_tag = 'no'): inventory_data = Inventory.copy(deep = True) inventory_data['value'] = inventory_data['quantity'] * inventory_data['final_ptr'] inventory_data['days'] = (pd.to_datetime(self.analysis_end_time) - inventory_data['created_at']).dt.days conditions = [ (inventory_data['days'] >= 0) & (inventory_data['days'] <= 30), (inventory_data['days'] >= 31) & (inventory_data['days'] <= 60), (inventory_data['days'] >= 61) & (inventory_data['days'] <= 90), (inventory_data['days'] >= 91)] choices = ['0_30', '31_60', '61_90', '90+'] inventory_data['age_bracket'] = np.select(conditions, choices) inventory_data['vat'] = inventory_data['vat'].fillna(0) inventory_data['vat'] = inventory_data['vat'].astype(float) inventory_data['taxable'] = np.vectorize(self.taxable_value_vat_based)(inventory_data['quantity'], inventory_data['final_ptr'], inventory_data['vat']) if fofo_tag == 'no': df_ageing = inventory_data.groupby(['store_id', 'type1', 'category', 'age_bracket'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'value': ['sum'], 'taxable': ['sum']}).reset_index(drop=True) df_ageing.columns = ["_".join(x) for x in df_ageing.columns.ravel()] df_ageing = pd.merge(left=df_ageing, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) df_ageing_grp = df_ageing.groupby(['store_id_', 'store_name', 'type1_', 'age_bracket_'])[['taxable_sum']].sum().reset_index() # generic df_ageing_generic = df_ageing_grp[df_ageing_grp['type1_'] == 'generic'] df_ageing_generic1 = pd.pivot_table(df_ageing_generic, values='taxable_sum', index=['type1_', 'age_bracket_'], columns=['store_name']).reset_index() # ethical df_ageing_ethical = df_ageing_grp[df_ageing_grp['type1_'] == 'ethical'] df_ageing_ethical1 = pd.pivot_table(df_ageing_ethical, values='taxable_sum', index=['type1_', 'age_bracket_'], columns=['store_name']).reset_index() # others df_ageing_grp_others = df_ageing.groupby(['store_id_', 'store_name', 'type1_'])[['taxable_sum']].sum().reset_index() df_ageing_others = df_ageing_grp_others[df_ageing_grp_others['type1_'] == 'others'] df_ageing_others1 = pd.pivot_table(df_ageing_others, values='taxable_sum', index=['type1_'], columns=['store_name']).reset_index() if mis_tag == 'breakup': # GOODAID df_ageing_goodaid = df_ageing_grp[df_ageing_grp['type1_'] == 'GOODAID'] df_ageing_goodaid1 = pd.pivot_table(df_ageing_goodaid, values='taxable_sum', index=['type1_', 'age_bracket_'], columns=['store_name']).reset_index() inventory_ageing = pd.concat([df_ageing_generic1, df_ageing_ethical1, df_ageing_others1, df_ageing_goodaid1],sort=True) elif mis_tag=='unified': inventory_ageing = pd.concat([df_ageing_generic1, df_ageing_ethical1, df_ageing_others1],sort=True) else: self.logger.info('please pass correct mis_tag') return None inventory_ageing['tag_flag'] = 'inventory_ageing' cols_to_move = ['tag_flag', 'type1_', 'age_bracket_'] inventory_ageing = inventory_ageing[cols_to_move + [col for col in inventory_ageing.columns if col not in cols_to_move]] inventory_ageing.rename(columns={'type1_': 'type1'}, inplace=True) return inventory_ageing elif fofo_tag == 'yes': inventory_data = inventory_data[inventory_data['franchisee_id'] != 1] df_ageing = inventory_data.groupby(['store_id', 'type1', 'category','fofo_distributor', 'age_bracket'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'value': ['sum'], 'taxable': ['sum']}).reset_index(drop=True) df_ageing.columns = ["_".join(x) for x in df_ageing.columns.ravel()] df_ageing = pd.merge(left=df_ageing, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) df_ageing_grp = df_ageing.groupby(['store_id_', 'store_name', 'type1_','fofo_distributor_' ,'age_bracket_'])[['taxable_sum']].sum().reset_index() # generic df_ageing_generic = df_ageing_grp[df_ageing_grp['type1_'] == 'generic'] df_ageing_generic1 = pd.pivot_table(df_ageing_generic, values='taxable_sum', index=['type1_', 'age_bracket_','fofo_distributor_'], columns=['store_name']).reset_index() # ethical df_ageing_ethical = df_ageing_grp[df_ageing_grp['type1_'] == 'ethical'] df_ageing_ethical1 = pd.pivot_table(df_ageing_ethical, values='taxable_sum', index=['type1_', 'age_bracket_','fofo_distributor_'], columns=['store_name']).reset_index() # others df_ageing_grp_others = df_ageing.groupby(['store_id_', 'store_name', 'type1_','fofo_distributor_'])[['taxable_sum']].sum().reset_index() df_ageing_others = df_ageing_grp_others[df_ageing_grp_others['type1_'] == 'others'] df_ageing_others1 = pd.pivot_table(df_ageing_others, values='taxable_sum', index=['type1_','fofo_distributor_'], columns=['store_name']).reset_index() if mis_tag == 'breakup': # GOODAID df_ageing_goodaid = df_ageing_grp[df_ageing_grp['type1_'] == 'GOODAID'] df_ageing_goodaid1 = pd.pivot_table(df_ageing_goodaid, values='taxable_sum', index=['type1_','fofo_distributor_' ,'age_bracket_'], columns=['store_name']).reset_index() inventory_ageing = pd.concat([df_ageing_generic1, df_ageing_ethical1, df_ageing_others1, df_ageing_goodaid1], sort=True) elif mis_tag == 'unified': inventory_ageing = pd.concat([df_ageing_generic1, df_ageing_ethical1, df_ageing_others1], sort=True) else: self.logger.info('please pass correct mis_tag') return None inventory_ageing['tag_flag'] = 'inventory_ageing' cols_to_move = ['tag_flag', 'type1_', 'fofo_distributor_','age_bracket_'] inventory_ageing = inventory_ageing[cols_to_move + [col for col in inventory_ageing.columns if col not in cols_to_move]] inventory_ageing.rename(columns={'type1_': 'type1', 'fofo_distributor_':'fofo_distributor'}, inplace=True) return inventory_ageing def near_expiry(self,Inventory,stores,mis_tag = 'breakup',fofo_tag = 'no'): inventory_data = Inventory.copy(deep=True) inventory_data['value'] = inventory_data['quantity'] * inventory_data['final_ptr'] inventory_data['expiry_date'] = pd.to_datetime(inventory_data['expiry'], format='%Y-%m-%d %H:%M:%S', errors='coerce') inventory_data['days_to_expiry'] = (pd.to_datetime(self.analysis_end_time) - inventory_data['expiry_date']).dt.days inventory_data1 = inventory_data[ (inventory_data['days_to_expiry'] < 0) & (inventory_data['days_to_expiry'] > -90)] inventory_data1['taxable'] = np.vectorize(self.taxable_value_vat_based)(inventory_data1['quantity'], inventory_data1['final_ptr'],inventory_data1['vat']) if fofo_tag == 'no': near_expiry = inventory_data1.groupby(['store_id', 'type1'], as_index=False).agg({ 'value': ['sum'], 'taxable': ['sum']}).reset_index(drop=True) near_expiry.columns = ["_".join(x) for x in near_expiry.columns.ravel()] near_expiry = pd.merge(left=near_expiry, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) # generic near_expiry_generic = near_expiry[near_expiry['type1_'] == 'generic'] near_expiry_generic1 = pd.pivot_table(near_expiry_generic, values='taxable_sum', index=['type1_'], columns=['store_name']).reset_index() # ethical near_expiry_ethical = near_expiry[near_expiry['type1_'] == 'ethical'] near_expiry_ethical1 = pd.pivot_table(near_expiry_ethical, values='taxable_sum', index=['type1_'], columns=['store_name']).reset_index() # others near_expiry_others = near_expiry[near_expiry['type1_'] == 'others'] near_expiry_others1 = pd.pivot_table(near_expiry_others, values='taxable_sum', index=['type1_'], columns=['store_name']).reset_index() if mis_tag == 'breakup': near_expiry_goodaid = near_expiry[near_expiry['type1_'] == 'GOODAID'] # If there are no items in near expiry for goodaid if len(near_expiry_goodaid)!= 0: near_expiry_goodaid1 = pd.pivot_table(near_expiry_goodaid, values='taxable_sum', index=['type1_'], columns=['store_name']).reset_index() else: near_expiry_goodaid1 = near_expiry_ethical1.copy(deep=True) near_expiry_goodaid1.loc[:] = np.nan near_expiry_goodaid1['type1_'][0] = 'GOODAID' near_expiry = pd.concat([near_expiry_generic1, near_expiry_ethical1, near_expiry_others1, near_expiry_goodaid1],sort=True) elif mis_tag=='unified': near_expiry = pd.concat([near_expiry_generic1, near_expiry_ethical1, near_expiry_others1],sort=True) else: self.logger.info('please pass correct mis_tag') return None near_expiry['tag_flag'] = 'near_expiry' cols_to_move = ['tag_flag', 'type1_'] near_expiry = near_expiry[cols_to_move + [col for col in near_expiry.columns if col not in cols_to_move]] near_expiry.rename(columns={'type1_': 'type1'}, inplace=True) return near_expiry elif fofo_tag == 'yes': inventory_data1 = inventory_data1[inventory_data1['franchisee_id']!=1] near_expiry = inventory_data1.groupby(['store_id', 'type1','fofo_distributor'], as_index=False).agg({ 'value': ['sum'], 'taxable': ['sum']}).reset_index(drop=True) near_expiry.columns = ["_".join(x) for x in near_expiry.columns.ravel()] near_expiry = pd.merge(left=near_expiry, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) # generic near_expiry_generic = near_expiry[near_expiry['type1_'] == 'generic'] near_expiry_generic1 = pd.pivot_table(near_expiry_generic, values='taxable_sum', index=['type1_','fofo_distributor_'], columns=['store_name']).reset_index() # ethical near_expiry_ethical = near_expiry[near_expiry['type1_'] == 'ethical'] near_expiry_ethical1 = pd.pivot_table(near_expiry_ethical, values='taxable_sum', index=['type1_','fofo_distributor_'], columns=['store_name']).reset_index() # others near_expiry_others = near_expiry[near_expiry['type1_'] == 'others'] near_expiry_others1 = pd.pivot_table(near_expiry_others, values='taxable_sum', index=['type1_','fofo_distributor_'], columns=['store_name']).reset_index() if mis_tag == 'breakup': near_expiry_goodaid = near_expiry[near_expiry['type1_'] == 'GOODAID'] # If there are no items in near expiry for goodaid if len(near_expiry_goodaid) != 0: near_expiry_goodaid1 = pd.pivot_table(near_expiry_goodaid, values='taxable_sum', index=['type1_','fofo_distributor_'], columns=['store_name']).reset_index() else: near_expiry_goodaid1 = near_expiry_ethical1.copy(deep=True) near_expiry_goodaid1.loc[:] = np.nan near_expiry_goodaid1['type1_'][0] = 'GOODAID' near_expiry = pd.concat([near_expiry_generic1, near_expiry_ethical1, near_expiry_others1, near_expiry_goodaid1], sort=True) elif mis_tag == 'unified': near_expiry = pd.concat([near_expiry_generic1, near_expiry_ethical1, near_expiry_others1], sort=True) else: self.logger.info('please pass correct mis_tag') return None near_expiry['tag_flag'] = 'near_expiry' cols_to_move = ['tag_flag', 'type1_','fofo_distributor_'] near_expiry = near_expiry[cols_to_move + [col for col in near_expiry.columns if col not in cols_to_move]] near_expiry.rename(columns={'type1_': 'type1', 'fofo_distributor_':'fofo_distributor'}, inplace=True) return near_expiry def sales_by_volume(self,Sales,stores): sales = Sales.copy(deep = True) generic_volume = sales.groupby(['store_id', 'type1', 'order_source'])[['quantity']].sum().reset_index().rename( columns={'quantity': "generic_volume"}) generic_volume = pd.merge(left=generic_volume, right=stores, how='left', left_on=['store_id'], right_on=['store_id']) generic_volume = pd.pivot_table(generic_volume, values='generic_volume', index=['type1', 'order_source'], columns=['store_name']).reset_index() generic_volume['tag_flag'] = 'sales_by_volume' return generic_volume def gross_rev_chronic_acute(self,Sales,Returns,stores): sales = Sales.copy(deep = True) returns = Returns.copy(deep = True) sales['COGS'] = sales['quantity'] * sales['final_ptr'] df_a1a = sales.groupby(['store_id', 'type1', 'category', 'order_source'], as_index=False).agg({ 'value': ['sum'], 'quantity': ['sum'], 'COGS': ['sum'], 'bill_id': pd.Series.nunique, 'drug_id': pd.Series.nunique}).reset_index(drop=True) df_a1a.columns = ["_".join(x) for x in df_a1a.columns.ravel()] returns['returned_value'] = returns['returned_quantity'] * returns['rate'] returns['returned_COGS'] = returns['returned_quantity'] * returns['final_ptr'] df_b2 = returns.groupby(['store_id', 'type1', 'category', 'order_source'], as_index=False).agg({ 'returned_value': ['sum'], 'returned_quantity': ['sum'], 'returned_COGS': ['sum'], 'returned_bill_id': pd.Series.nunique, 'returned_drug_id': pd.Series.nunique}).reset_index(drop=True) df_b2.columns = ["_".join(x) for x in df_b2.columns.ravel()] df_a_b = pd.merge(left=df_a1a, right=df_b2, how='outer', on=['store_id_', 'type1_', 'category_', 'order_source_']) df_a_b.fillna(0, inplace=True) df_a_b['net_sale'] = df_a_b['value_sum'] - df_a_b['returned_value_sum'] df_a_b['net_COGS'] = df_a_b['COGS_sum'] - df_a_b['returned_COGS_sum'] df_a_b['net_quantity'] = df_a_b['quantity_sum'] - df_a_b['returned_quantity_sum'] df_a4 = df_a_b.groupby(['store_id_', 'category_', 'type1_', 'order_source_'], as_index=False).agg({ 'net_sale': ['sum'], 'net_quantity': ['sum'], 'net_COGS': ['sum'], 'bill_id_nunique': ['sum'], 'drug_id_nunique': ['sum']}).reset_index(drop=True) df_a4.columns = ["_".join(x) for x in df_a4.columns.ravel()] df_a4 = pd.merge(left=df_a4, right=stores, how='left', left_on=['store_id__'], right_on=['store_id']) df_a5 = df_a4[df_a4['category__'] == 'chronic'] df_a5_sale = df_a5.groupby(['store_id__', 'store_name', 'category__', 'type1__', 'order_source__'])[['net_sale_sum']].sum().reset_index() df_a5_qty = df_a5.groupby(['store_id__', 'store_name', 'category__', 'type1__', 'order_source__'])[['net_quantity_sum']].sum().reset_index() df_a5_sale['net_sale_sum'] = df_a5_sale['net_sale_sum'].astype(float) gross_rev_chronic_sale = pd.pivot_table(df_a5_sale, values='net_sale_sum', index=['category__', 'type1__', 'order_source__'], columns=['store_name']).reset_index() df_a5_qty['net_quantity_sum'] = df_a5_qty['net_quantity_sum'].astype(float) gross_rev_chronic_vol = pd.pivot_table(df_a5_qty, values='net_quantity_sum', index=['category__', 'type1__', 'order_source__'], columns=['store_name']).reset_index() df_a6 = df_a4[df_a4['category__'] == 'acute'] df_a6_sale = df_a6.groupby(['store_id__', 'store_name', 'category__', 'type1__', 'order_source__'])[['net_sale_sum']].sum().reset_index() df_a6_qty = df_a6.groupby(['store_id__', 'store_name', 'category__', 'type1__', 'order_source__'])[['net_quantity_sum']].sum().reset_index() df_a6_sale['net_sale_sum'] = df_a6_sale['net_sale_sum'].astype(float) gross_rev_acute_sale = pd.pivot_table(df_a6_sale, values='net_sale_sum', index=['category__', 'type1__', 'order_source__'], columns=['store_name']).reset_index() df_a6_qty['net_quantity_sum'] = df_a6_qty['net_quantity_sum'].astype(float) gross_rev_acute_vol = pd.pivot_table(df_a6_qty, values='net_quantity_sum', index=['category__', 'type1__', 'order_source__'], columns=['store_name']).reset_index() gross_rev_chronic_sale_vol = pd.concat([gross_rev_chronic_sale, gross_rev_chronic_vol]) gross_rev_chronic_sale_vol['tag_flag'] = 'gross_rev_chronic_sale_vol' gross_rev_chronic_sale_vol.rename(columns={'type1__': 'type1'}, inplace=True) gross_rev_chronic_sale_vol.rename(columns={'category__': 'category'}, inplace=True) gross_rev_chronic_sale_vol.rename(columns={'order_source__': 'order_source'}, inplace=True) gross_rev_acute_sale_vol = pd.concat([gross_rev_acute_sale, gross_rev_acute_vol]) gross_rev_acute_sale_vol['tag_flag'] = 'gross_rev_acute_sale_vol' gross_rev_acute_sale_vol.rename(columns={'type1__': 'type1'}, inplace=True) gross_rev_acute_sale_vol.rename(columns={'category__': 'category'}, inplace=True) gross_rev_acute_sale_vol.rename(columns={'order_source__': 'order_source'}, inplace=True) return gross_rev_chronic_sale_vol, gross_rev_acute_sale_vol def cummulative_cons(self, Cumulative_consumers_data, mis_tag): cumulative_consumers_data = Cumulative_consumers_data.copy(deep=True) all_time_cons1 = pd.pivot_table(cumulative_consumers_data, values='total_cons', columns=['store_name']).reset_index() if mis_tag == 'breakup': cumulative_consumers_data.rename(columns={'generic_without_gaid_cons': 'total_generic_cons'}, inplace=True) all_time_generic_cons1 = pd.pivot_table(cumulative_consumers_data, values='total_generic_cons', columns=['store_name']).reset_index() all_time_gaid_cons1 = pd.pivot_table(cumulative_consumers_data, values='total_gaid_cons', columns=['store_name']).reset_index() else: cumulative_consumers_data.rename(columns={'generic_cons': 'total_generic_cons'}, inplace=True) all_time_generic_cons1 = pd.pivot_table(cumulative_consumers_data, values='total_generic_cons', columns=['store_name']).reset_index() all_time_chronic_cons1 = pd.pivot_table(cumulative_consumers_data, values='total_chronic_cons', columns=['store_name']).reset_index() cumulative_consumers_data['total_acute_cons'] = cumulative_consumers_data['total_cons'] - \ cumulative_consumers_data['total_chronic_cons'] all_time_acute_cons1 = pd.pivot_table(cumulative_consumers_data, values='total_acute_cons', columns=['store_name']).reset_index() if mis_tag == 'breakup': cummulative_cons = pd.concat([all_time_cons1, all_time_generic_cons1, all_time_gaid_cons1, all_time_chronic_cons1, all_time_acute_cons1], sort=True) else: cummulative_cons = pd.concat([all_time_cons1, all_time_generic_cons1, all_time_chronic_cons1, all_time_acute_cons1], sort=True) cummulative_cons.rename(columns={'index': 'tag_flag'}, inplace=True) return cummulative_cons def cummulative_cons_fofo(self, Workcell_cumulative_consumers_fofo_data,Others_cumulative_consumers_fofo_data, mis_tag): workcell_cumulative_consumers_fofo_data = Workcell_cumulative_consumers_fofo_data.copy(deep=True) others_cumulative_consumers_data = Others_cumulative_consumers_fofo_data.copy(deep=True) workcell_all_time_cons1 = pd.pivot_table(workcell_cumulative_consumers_fofo_data, values='total_cons', columns=['store_name']).reset_index() others_all_time_cons1 = pd.pivot_table(others_cumulative_consumers_data, values='total_cons', columns=['store_name']).reset_index() if mis_tag == 'breakup': workcell_cumulative_consumers_fofo_data.rename(columns={'generic_without_gaid_cons': 'total_generic_cons'}, inplace=True) workcell_all_time_generic_cons1 = pd.pivot_table(workcell_cumulative_consumers_fofo_data, values='total_generic_cons', columns=['store_name']).reset_index() workcell_all_time_gaid_cons1 = pd.pivot_table(workcell_cumulative_consumers_fofo_data, values='total_gaid_cons', columns=['store_name']).reset_index() others_cumulative_consumers_data.rename(columns={'generic_without_gaid_cons': 'total_generic_cons'}, inplace=True) others_all_time_generic_cons1 = pd.pivot_table(others_cumulative_consumers_data, values='total_generic_cons', columns=['store_name']).reset_index() others_all_time_gaid_cons1 = pd.pivot_table(others_cumulative_consumers_data, values='total_gaid_cons', columns=['store_name']).reset_index() else: workcell_cumulative_consumers_fofo_data.rename(columns={'generic_cons': 'total_generic_cons'}, inplace=True) workcell_all_time_generic_cons1 = pd.pivot_table(workcell_cumulative_consumers_fofo_data, values='total_generic_cons', columns=['store_name']).reset_index() others_cumulative_consumers_data.rename(columns={'generic_cons': 'total_generic_cons'}, inplace=True) others_all_time_generic_cons1 = pd.pivot_table(others_cumulative_consumers_data, values='total_generic_cons', columns=['store_name']).reset_index() workcell_all_time_chronic_cons1 = pd.pivot_table(workcell_cumulative_consumers_fofo_data, values='total_chronic_cons', columns=['store_name']).reset_index() others_all_time_chronic_cons1 = pd.pivot_table(others_cumulative_consumers_data, values='total_chronic_cons', columns=['store_name']).reset_index() workcell_cumulative_consumers_fofo_data['total_acute_cons'] = workcell_cumulative_consumers_fofo_data['total_cons'] - \ workcell_cumulative_consumers_fofo_data['total_chronic_cons'] others_cumulative_consumers_data['total_acute_cons'] = others_cumulative_consumers_data['total_cons'] - \ others_cumulative_consumers_data['total_chronic_cons'] workcell_all_time_acute_cons1 = pd.pivot_table(workcell_cumulative_consumers_fofo_data, values='total_acute_cons', columns=['store_name']).reset_index() others_all_time_acute_cons1 = pd.pivot_table(others_cumulative_consumers_data, values='total_acute_cons', columns=['store_name']).reset_index() workcell_all_time_cons1['fofo_distributor'] = 'workcell' workcell_all_time_generic_cons1['fofo_distributor'] = 'workcell' workcell_all_time_chronic_cons1['fofo_distributor'] = 'workcell' workcell_all_time_acute_cons1['fofo_distributor'] = 'workcell' others_all_time_cons1['fofo_distributor'] = 'other' others_all_time_generic_cons1['fofo_distributor'] = 'other' others_all_time_chronic_cons1['fofo_distributor'] = 'other' others_all_time_acute_cons1['fofo_distributor'] = 'other' if mis_tag == 'breakup': workcell_all_time_gaid_cons1['fofo_distributor'] = 'workcell' others_all_time_gaid_cons1['fofo_distributor'] = 'other' cummulative_cons_fofo = pd.concat([workcell_all_time_cons1, others_all_time_cons1, workcell_all_time_generic_cons1, others_all_time_generic_cons1, workcell_all_time_gaid_cons1, others_all_time_gaid_cons1, workcell_all_time_chronic_cons1, others_all_time_chronic_cons1, workcell_all_time_acute_cons1, others_all_time_acute_cons1], sort=True) else: cummulative_cons_fofo = pd.concat([workcell_all_time_cons1, others_all_time_cons1, workcell_all_time_generic_cons1, others_all_time_generic_cons1, workcell_all_time_chronic_cons1, others_all_time_chronic_cons1, workcell_all_time_acute_cons1, others_all_time_acute_cons1], sort=True) cummulative_cons_fofo.rename(columns={'index': 'tag_flag'}, inplace=True) return cummulative_cons_fofo def total_cons_mis_month(self,Sales, Stores,fofo_tag = 'no'): sales = Sales.copy(deep = True) stores = Stores.copy(deep = True) sales = pd.merge(left=sales, right=stores, how='left', on=['store_id']) if fofo_tag == 'yes': sales = sales[sales['franchisee_id'] != 1] if fofo_tag == 'no': total_cons = sales.groupby(['store_id', 'store_name', 'order_source'])[['patient_id']].nunique().reset_index().rename( columns={'patient_id': "total_consumers_MIS_month"}) total_cons['tag_flag'] = 'total_cons_mis_month' total_cons_mis_month = pd.pivot_table(total_cons, values='total_consumers_MIS_month', index=['tag_flag', 'order_source'], columns=['store_name']).reset_index() elif fofo_tag =='yes': total_cons = sales.groupby(['store_id', 'store_name', 'fofo_distributor' ,'order_source'])[['patient_id']].nunique().reset_index().rename( columns={'patient_id': "total_consumers_MIS_month"}) total_cons['tag_flag'] = 'total_cons_mis_month' total_cons_mis_month = pd.pivot_table(total_cons, values='total_consumers_MIS_month', index=['tag_flag','fofo_distributor' , 'order_source'], columns=['store_name']).reset_index() # total_cons_mis_month.rename(columns={'index': 'tag_flag'}, inplace=True) return total_cons_mis_month def category_wise_customer_type_count(self,Sales,Store): sales = Sales.copy(deep = True) stores = Store.copy(deep = True) sales = pd.merge(left=sales, right=stores, how='left', on=['store_id']) sales['flag'] = np.where(sales['category'] == "chronic", 1, 0) sales_chronic = sales[sales['category'] == 'chronic'] sales_chronic.loc[:,'tag_flag'] = "customer_type_chronic" df49 = sales_chronic.groupby(['store_id', 'store_name', 'category', 'order_source', 'tag_flag'])[ ['patient_id']].nunique().reset_index().rename( columns={'patient_id': "customer_type_chronic"}) customer_type_chronic = pd.pivot_table(df49, values='customer_type_chronic', index=['tag_flag', 'category', 'order_source'], columns=['store_name']).reset_index() sales_acute = sales[sales['category'] == 'acute'] sales_acute.loc[:,'tag_flag'] = "customer_type_acute" df50 = sales_acute.groupby(['store_id', 'store_name', 'category', 'order_source', 'tag_flag'])[ ['patient_id']].nunique().reset_index().rename( columns={'patient_id': "customer_type_acute"}) customer_type_acute = pd.pivot_table(df50, values='customer_type_acute', index=['tag_flag', 'category', 'order_source'], columns=['store_name']).reset_index() category_wise_customer_type = pd.concat([customer_type_chronic, customer_type_acute]) # customer_type.rename(columns={'index': 'tag_flag'}, inplace=True) return category_wise_customer_type def new_customers(self,Sales,All_cons_initial_bill_date,Stores): sales = Sales.copy(deep = True) all_cons_initial_bill_date = All_cons_initial_bill_date.copy(deep = True) stores = Stores.copy(deep= True) mis_month_cons_min_bill_date = sales.groupby(['store_id', 'order_source', 'patient_id'])[['created_at']].min().reset_index() new_cons_1 = pd.merge(left=all_cons_initial_bill_date, right=mis_month_cons_min_bill_date, how='inner', on=['store_id', 'patient_id', 'created_at']) new_cons_1['flag'] = "new_cons" new_cons = new_cons_1.groupby(['store_id', 'order_source'])[['patient_id']].nunique().reset_index().rename( columns={'patient_id': "new_consumers"}) new_cons = pd.merge(left=new_cons, right=stores, how='left', on=['store_id']) new_cons['tag_flag'] = 'new_consumers' new_cons_total = pd.pivot_table(new_cons, values='new_consumers', index=['tag_flag', 'order_source'], columns=['store_name']).reset_index() # new chronic consumers df_fe = pd.merge(left=new_cons_1[['store_id', 'order_source', 'patient_id', 'flag']], right=sales, how='left', on=['store_id', 'order_source', 'patient_id']) new_cons_chronic = df_fe.groupby(['store_id', 'category', 'order_source'])[['patient_id']].nunique().reset_index().rename( columns={'patient_id': "new_chronic_consumers"}) new_cons_chronic1 = new_cons_chronic[new_cons_chronic['category'].isin(['chronic'])] new_cons_chronic1 = pd.merge(left=new_cons_chronic1, right=stores, how='left', on=['store_id']) new_cons_chronic1['tag_flag'] = 'new_chronic_consumers' new_cons_chronic2 = pd.pivot_table(new_cons_chronic1, values='new_chronic_consumers', index=['tag_flag', 'order_source'], columns=['store_name']).reset_index() new_customers = pd.concat([new_cons_total, new_cons_chronic2],sort=True) return new_customers def tot_repeat_consumers(self, Sales,All_cons_initial_bill_date,Stores ): sales = Sales.copy(deep=True) all_cons_initial_bill_date = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) total_cons = sales.groupby(['store_id', 'order_source'])[['patient_id']].nunique().reset_index().rename( columns={'patient_id': "total_consumers"}) aug_cons_min = sales.groupby(['store_id', 'order_source', 'patient_id'])[['created_at']].min().reset_index() aug_new_cons = pd.merge(left=all_cons_initial_bill_date, right=aug_cons_min, how='inner', on=['store_id', 'patient_id', 'created_at']) new_cons = aug_new_cons.groupby(['store_id', 'order_source'])[['patient_id']].nunique().reset_index().rename( columns={'patient_id': "new_consumers"}) repeat_cons = pd.merge(left=total_cons, right=new_cons, how='left', on=['store_id', 'order_source']) repeat_cons['repeat_consumers'] = repeat_cons['total_consumers'] - repeat_cons['new_consumers'] repeat_cons = pd.merge(left=repeat_cons, right=stores, how='left', on=['store_id']) repeat_cons['tag_flag'] = 'repeat_consumers' repeat_cons1 = pd.pivot_table(repeat_cons, values='repeat_consumers', index=['tag_flag', 'order_source'], columns=['store_name']).reset_index() # repeat_cons1.rename(columns={'index': 'tag_flag'}, inplace=True) return repeat_cons1 def new_cons_vol_qty(self, Sales, All_cons_initial_bill_date, Stores): sales = Sales.copy(deep=True) all_cons_initial_bill_date = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) aug_cons_min = sales.groupby(['store_id', 'order_source', 'patient_id'])[['created_at']].min().reset_index() aug_new_cons = pd.merge(left=all_cons_initial_bill_date, right=aug_cons_min, how='inner', on=['store_id', 'patient_id', 'created_at']) new_cons = aug_new_cons.groupby(['store_id', 'order_source'])[['patient_id']].nunique().reset_index().rename( columns={'patient_id': "new_consumers"}) aug_value_volumne = sales.groupby(['store_id', 'order_source', 'patient_id'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'quantity': ['sum'], 'value': ['sum']}).reset_index(drop=True) aug_value_volumne.columns = ["_".join(x) for x in aug_value_volumne.columns.ravel()] aug_value_volumne.rename(columns={'store_id_': "store_id", 'patient_id_': "patient_id", 'order_source_': "order_source"}, inplace=True) new_cons_value_vol = pd.merge(left=aug_new_cons, right=aug_value_volumne, how='left', on=['store_id', 'order_source', 'patient_id']) new_cons_value_vol1 = new_cons_value_vol.groupby(['store_id', 'order_source'], as_index=False).agg({ 'quantity_sum': ['sum'], 'value_sum': ['sum']}).reset_index(drop=True) new_cons_value_vol1.columns = ["_".join(x) for x in new_cons_value_vol1.columns.ravel()] new_cons_value_vol2 = pd.merge(left=new_cons_value_vol1, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) new_cons_value_vol2['value_sum_sum'] = new_cons_value_vol2['value_sum_sum'].astype(float) new_cons_volume = pd.pivot_table(new_cons_value_vol2, values='value_sum_sum', index=['order_source_'], columns=['store_name']).reset_index() new_cons_volume['tag_flag'] = 'new_consumer_value' new_cons_value_vol2['quantity_sum_sum'] = new_cons_value_vol2['quantity_sum_sum'].astype(float) new_cons_qty = pd.pivot_table(new_cons_value_vol2, values='quantity_sum_sum', index=['order_source_'], columns=['store_name']).reset_index() new_cons_qty['tag_flag'] = 'new_consumer_qty' new_cons_vol_qty = pd.concat([new_cons_volume, new_cons_qty], sort=True) new_cons_vol_qty.rename(columns={'order_source_': "order_source"}, inplace=True) # new_cons_vol_qty.rename(columns={'index': 'tag_flag'}, inplace=True) # new_cons_vol_qty.loc[new_cons_vol_qty.tag_flag == 'quantity_sum_sum', 'tag_flag'] = 'new_consumer_qty' # new_cons_vol_qty.loc[new_cons_vol_qty.tag_flag == 'value_sum_sum', 'tag_flag'] = 'new_consumer_value' return new_cons_vol_qty def total_bills_new_repeat(self, Sales, All_cons_initial_bill_date, Stores,choose_year,choose_month,fofo_tag = 'no'): sales = Sales.copy(deep=True) df1 = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) if fofo_tag == 'yes': sales = sales[sales['franchisee_id'] != 1] df1['year'] = df1['created_at'].dt.year df1["month"] = df1['created_at'].dt.month df1 = df1[(df1['year'] == int(choose_year)) & (df1['month'] == int(choose_month))] sales['flag'] = np.where(sales['category'] == "chronic", 1, 0) if fofo_tag=='no': df2 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['flag']].sum().reset_index() elif fofo_tag=='yes': df2 = sales.groupby(['store_id', 'order_source', 'fofo_distributor' ,'patient_id'])[['flag']].sum().reset_index() df2['check'] = np.where(df2['flag'] > 0, "chronic", "acute") df3 = pd.merge(left=df1, right=df2, how='left', on=['store_id', 'patient_id']) df5 = pd.merge(left=df2, right=df1, how='left', on=['store_id', 'patient_id']) df6 = df5[df5['year'].isnull()] if fofo_tag == 'no': df9 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['bill_id']].nunique().reset_index() df10 = pd.merge(left=df3, right=df9, how='left', on=['store_id', 'order_source', 'patient_id']) df11 = df10.groupby(['store_id', 'order_source'])[['bill_id']].sum().reset_index().rename(columns={ "bill_id": "new_consumers_bills_count"}) df12 = pd.merge(left=df6, right=df9, how='left', on=['store_id', 'order_source', 'patient_id']) df13 = df12.groupby(['store_id', 'order_source'])[['bill_id']].sum().reset_index().rename(columns={ "bill_id": "repeat_consumers_bills_count"}) df14 = pd.merge(left=df11, right=df13, how='left', on=['store_id', 'order_source']) elif fofo_tag == 'yes': df9 = sales.groupby(['store_id', 'order_source', 'fofo_distributor' , 'patient_id'])[['bill_id']].nunique().reset_index() df10 = pd.merge(left=df3, right=df9, how='left', on=['store_id', 'order_source', 'fofo_distributor' , 'patient_id']) df11 = df10.groupby(['store_id', 'fofo_distributor' , 'order_source'])[['bill_id']].sum().reset_index().rename(columns={ "bill_id": "new_consumers_bills_count"}) df12 = pd.merge(left=df6, right=df9, how='left', on=['store_id', 'fofo_distributor' , 'order_source', 'patient_id']) df13 = df12.groupby(['store_id', 'fofo_distributor' , 'order_source'])[['bill_id']].sum().reset_index().rename(columns={ "bill_id": "repeat_consumers_bills_count"}) df14 = pd.merge(left=df11, right=df13, how='left', on=['store_id', 'fofo_distributor' , 'order_source']) df14 = pd.merge(left=df14, right=stores, how='left', on=['store_id']) if fofo_tag == 'no': total_bills_new = pd.pivot_table(df14, values='new_consumers_bills_count', index='order_source', columns=['store_name']).reset_index() total_bills_new['tag_flag'] = 'new_consumers_bills_count' total_bills_repeat = pd.pivot_table(df14, values='repeat_consumers_bills_count', index='order_source', columns=['store_name']).reset_index() total_bills_repeat['tag_flag'] = 'repeat_consumers_bills_count' elif fofo_tag == 'yes': total_bills_new = pd.pivot_table(df14, values='new_consumers_bills_count', index=['order_source','fofo_distributor'], columns=['store_name']).reset_index() total_bills_new['tag_flag'] = 'new_consumers_bills_count' total_bills_repeat = pd.pivot_table(df14, values='repeat_consumers_bills_count', index=['order_source','fofo_distributor'], columns=['store_name']).reset_index() total_bills_repeat['tag_flag'] = 'repeat_consumers_bills_count' total_bills_new_repeat = pd.concat([total_bills_new, total_bills_repeat], sort=True) return total_bills_new_repeat def total_bills_chronic_acute(self, Sales, Customer_returns, Stores, fofo_tag = 'no'): sales = Sales.copy(deep=True) customer_returns = Customer_returns.copy(deep=True) stores = Stores.copy(deep=True) sales['value'] = sales['quantity'] * sales['rate'] sales['COGS'] = sales['quantity'] * sales['final_ptr'] customer_returns['returned_value'] = customer_returns['returned_quantity'] * customer_returns['rate'] customer_returns['returned_COGS'] = customer_returns['returned_quantity'] * customer_returns['final_ptr'] if fofo_tag=='no': df_a1a = sales.groupby(['store_id', 'order_source', 'type1', 'category'], as_index=False).agg({ 'value': ['sum'], 'quantity': ['sum'], 'COGS': ['sum'], 'bill_id': pd.Series.nunique, 'drug_id': pd.Series.nunique}).reset_index(drop=True) df_a1a.columns = ["_".join(x) for x in df_a1a.columns.ravel()] df_b2 = customer_returns.groupby(['store_id', 'order_source', 'type1', 'category'], as_index=False).agg({ 'returned_value': ['sum'], 'returned_quantity': ['sum'], 'returned_COGS': ['sum'], 'returned_bill_id': pd.Series.nunique, 'returned_drug_id': pd.Series.nunique}).reset_index(drop=True) df_b2.columns = ["_".join(x) for x in df_b2.columns.ravel()] df_a_b = pd.merge(left=df_a1a, right=df_b2, how='outer', on=['store_id_', 'order_source_', 'type1_', 'category_']) df_a_b.fillna(0, inplace=True) df_a_b['net_sale'] = df_a_b['value_sum'] - df_a_b['returned_value_sum'] df_a_b['net_COGS'] = df_a_b['COGS_sum'] - df_a_b['returned_COGS_sum'] df_a_b['net_quantity'] = df_a_b['quantity_sum'] - df_a_b['returned_quantity_sum'] df_a4 = df_a_b.groupby(['store_id_', 'order_source_', 'category_', 'type1_'], as_index=False).agg({ 'net_sale': ['sum'], 'net_quantity': ['sum'], 'net_COGS': ['sum'], 'bill_id_nunique': ['sum'], 'drug_id_nunique': ['sum']}).reset_index(drop=True) df_a4.columns = ["_".join(x) for x in df_a4.columns.ravel()] df_a4 = pd.merge(left=df_a4, right=stores, how='left', left_on=['store_id__'], right_on=['store_id']) df_a5 = df_a4[df_a4['category__'] == 'chronic'] total_bills_chronic = pd.pivot_table(df_a5, values='bill_id_nunique_sum', index=['order_source__', 'category__', 'type1__'], columns=['store_name']).reset_index() df_a6 = df_a4[df_a4['category__'] == 'acute'] total_bills_acute = pd.pivot_table(df_a6, values='bill_id_nunique_sum', index=['order_source__', 'category__', 'type1__'], columns=['store_name']).reset_index() total_bills_chronic_acute = pd.concat([total_bills_chronic, total_bills_acute]) total_bills_chronic_acute['tag_flag'] = 'total_bills' total_bills_chronic_acute.rename(columns={'type1__': 'type1', 'category__': 'category', 'order_source__': 'order_source'}, inplace=True) elif fofo_tag == 'yes': sales = sales[sales['franchisee_id'] != 1] customer_returns = customer_returns[customer_returns['franchisee_id'] != 1] df_a1a = sales.groupby(['store_id', 'order_source', 'fofo_distributor' ,'type1', 'category'], as_index=False).agg({ 'value': ['sum'], 'quantity': ['sum'], 'COGS': ['sum'], 'bill_id': pd.Series.nunique, 'drug_id': pd.Series.nunique}).reset_index(drop=True) df_a1a.columns = ["_".join(x) for x in df_a1a.columns.ravel()] df_b2 = customer_returns.groupby(['store_id', 'order_source', 'fofo_distributor', 'type1', 'category'], as_index=False).agg({ 'returned_value': ['sum'], 'returned_quantity': ['sum'], 'returned_COGS': ['sum'], 'returned_bill_id': pd.Series.nunique, 'returned_drug_id': pd.Series.nunique}).reset_index(drop=True) df_b2.columns = ["_".join(x) for x in df_b2.columns.ravel()] df_a_b = pd.merge(left=df_a1a, right=df_b2, how='outer', on=['store_id_', 'order_source_', 'fofo_distributor_', 'type1_', 'category_']) df_a_b.fillna(0, inplace=True) df_a_b['net_sale'] = df_a_b['value_sum'] - df_a_b['returned_value_sum'] df_a_b['net_COGS'] = df_a_b['COGS_sum'] - df_a_b['returned_COGS_sum'] df_a_b['net_quantity'] = df_a_b['quantity_sum'] - df_a_b['returned_quantity_sum'] df_a4 = df_a_b.groupby(['store_id_', 'order_source_', 'fofo_distributor_', 'category_', 'type1_'], as_index=False).agg({ 'net_sale': ['sum'], 'net_quantity': ['sum'], 'net_COGS': ['sum'], 'bill_id_nunique': ['sum'], 'drug_id_nunique': ['sum']}).reset_index(drop=True) df_a4.columns = ["_".join(x) for x in df_a4.columns.ravel()] df_a4 = pd.merge(left=df_a4, right=stores, how='left', left_on=['store_id__'], right_on=['store_id']) df_a5 = df_a4[df_a4['category__'] == 'chronic'] total_bills_chronic = pd.pivot_table(df_a5, values='bill_id_nunique_sum', index=['order_source__', 'fofo_distributor__', 'category__', 'type1__'], columns=['store_name']).reset_index() df_a6 = df_a4[df_a4['category__'] == 'acute'] total_bills_acute = pd.pivot_table(df_a6, values='bill_id_nunique_sum', index=['order_source__', 'fofo_distributor__', 'category__', 'type1__'], columns=['store_name']).reset_index() total_bills_chronic_acute = pd.concat([total_bills_chronic, total_bills_acute]) total_bills_chronic_acute['tag_flag'] = 'total_bills' total_bills_chronic_acute.rename(columns={'type1__': 'type1', 'category__': 'category', 'order_source__': 'order_source', 'fofo_distributor__': 'fofo_distributor'}, inplace=True) return total_bills_chronic_acute def bills_per_cons_new_repeat(self, Sales, All_cons_initial_bill_date ,Stores, choose_year,choose_month): sales = Sales.copy(deep=True) df1 = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) df1['year'] = df1['created_at'].dt.year df1["month"] = df1['created_at'].dt.month df1 = df1[(df1['year'] == int(choose_year)) & (df1['month'] == int(choose_month))] sales['flag'] = np.where(sales['category'] == "chronic", 1, 0) df2 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['flag']].sum().reset_index() df2['check'] = np.where(df2['flag'] > 0, "chronic", "acute") df3 = pd.merge(left=df1, right=df2, how='left', on=['store_id', 'patient_id']) df5 = pd.merge(left=df2, right=df1, how='left', on=['store_id', 'patient_id']) df6 = df5[df5['year'].isnull()] df30 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['bill_id']].nunique().reset_index().rename(columns={ "bill_id": "no_of_bills"}) # new consumers df31 = pd.merge(left=df3, right=df30, how='left', on=['store_id', 'order_source', 'patient_id']) df32 = df31.groupby(['store_id', 'order_source'])[['no_of_bills']].mean().reset_index().rename(columns={ "no_of_bills": "new_consumers_avg_no_of_bills"}) # repeat consumers df33 = pd.merge(left=df6, right=df30, how='left', on=['store_id', 'order_source', 'patient_id']) df34 = df33.groupby(['store_id', 'order_source'])[['no_of_bills']].mean().reset_index().rename(columns={ "no_of_bills": "repeat_consumers_avg_no_of_bills"}) df35 = pd.merge(left=df32, right=df34, how='left', on=['store_id', 'order_source']) df35 = pd.merge(left=df35, right=stores, how='left', on=['store_id']) bills_per_cons_new = pd.pivot_table(df35, values='new_consumers_avg_no_of_bills', index='order_source', columns=['store_name']).reset_index() bills_per_cons_new['tag_flag'] = 'new_consumers_avg_no_of_bills' bills_per_cons_repeat = pd.pivot_table(df35, values='repeat_consumers_avg_no_of_bills', index='order_source', columns=['store_name']).reset_index() bills_per_cons_repeat['tag_flag'] = 'repeat_consumers_avg_no_of_bills' bills_per_cons_new_repeat = pd.concat([bills_per_cons_new, bills_per_cons_repeat]) # bills_per_cons_new_repeat.rename(columns={'index': 'tag_flag'}, inplace=True) return bills_per_cons_new_repeat def abv_new_repeat_chronic(self, Sales, All_cons_initial_bill_date ,Stores, choose_year,choose_month ): sales = Sales.copy(deep=True) df1 = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) df1['year'] = df1['created_at'].dt.year df1["month"] = df1['created_at'].dt.month df1 = df1[(df1['year'] == int(choose_year)) & (df1['month'] == int(choose_month))] sales['flag'] = np.where(sales['category'] == "chronic", 1, 0) df2 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['flag']].sum().reset_index() df2['check'] = np.where(df2['flag'] > 0, "chronic", "acute") df3 = pd.merge(left=df1, right=df2, how='left', on=['store_id', 'patient_id']) df5 = pd.merge(left=df2, right=df1, how='left', on=['store_id', 'patient_id']) df6 = df5[df5['year'].isnull()] sales['value'] = sales['quantity'] * sales['rate'] sales['value'] = sales['value'].astype(float) df36 = sales.groupby(['store_id', 'order_source', 'patient_id', 'bill_id'])[['value']].sum().reset_index() df37 = df36.groupby(['store_id', 'order_source', 'patient_id'])[['value']].mean().reset_index() # new consumers df38 = pd.merge(left=df3, right=df37, how='left', on=['store_id', 'order_source', 'patient_id']) df39 = df38.groupby(['store_id', 'order_source'])[['value']].mean().reset_index().rename(columns={ "value": "new_consumers_avg_bill_value"}) # repeat consumers df40 = pd.merge(left=df6, right=df37, how='left', on=['store_id', 'order_source', 'patient_id']) df41 = df40.groupby(['store_id', 'order_source'])[['value']].mean().reset_index().rename(columns={ "value": "repeat_consumers_avg_bill_value"}) df42 = pd.merge(left=df39, right=df41, how='left', on=['store_id', 'order_source']) df42 = pd.merge(left=df42, right=stores, how='left', on=['store_id']) df42['new_consumers_avg_bill_value'] = df42['new_consumers_avg_bill_value'].astype(float) abv_new = pd.pivot_table(df42, values='new_consumers_avg_bill_value', index='order_source', columns=['store_name']).reset_index() abv_new['tag_flag'] = 'new_consumers_avg_bill_value' df42['repeat_consumers_avg_bill_value'] = df42['repeat_consumers_avg_bill_value'].astype(float) abv_repeat = pd.pivot_table(df42, values='repeat_consumers_avg_bill_value', index='order_source', columns=['store_name']).reset_index() abv_repeat['tag_flag'] = 'repeat_consumers_avg_bill_value' df_a9 = sales.groupby(['store_id', 'order_source', 'bill_id', 'category'])[['value']].sum().reset_index() df_a10 = df_a9.groupby(['store_id', 'order_source', 'category'])[['value']].mean().reset_index().rename(columns= { 'value': "chronic_consumers_avg_bill_value"}) df_a11 = df_a10[df_a10['category'] == 'chronic'] df_a11 = pd.merge(left=df_a11, right=stores, how='left', on=['store_id']) abv_chronic = pd.pivot_table(df_a11, values='chronic_consumers_avg_bill_value', index='order_source', columns=['store_name']).reset_index() abv_chronic['tag_flag'] = 'chronic_consumers_avg_bill_value' abv_new_repeat_chronic = pd.concat([abv_new, abv_repeat, abv_chronic]) return abv_new_repeat_chronic def items_per_cons_new_repeat(self,Sales, All_cons_initial_bill_date ,Stores, choose_year,choose_month ): sales = Sales.copy(deep=True) df1 = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) df1['year'] = df1['created_at'].dt.year df1["month"] = df1['created_at'].dt.month df1 = df1[(df1['year'] == int(choose_year)) & (df1['month'] == int(choose_month))] sales['flag'] = np.where(sales['category'] == "chronic", 1, 0) df2 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['flag']].sum().reset_index() df2['check'] = np.where(df2['flag'] > 0, "chronic", "acute") df3 = pd.merge(left=df1, right=df2, how='left', on=['store_id', 'patient_id']) df5 = pd.merge(left=df2, right=df1, how='left', on=['store_id', 'patient_id']) df6 = df5[df5['year'].isnull()] df43 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['drug_id']].nunique().reset_index() # new consumers df44 = pd.merge(left=df3, right=df43, how='left', on=['store_id', 'order_source', 'patient_id']) df45 = df44.groupby(['store_id', 'order_source'])[['drug_id']].mean().reset_index().rename(columns={ "drug_id": "new_consumers_avg_items"}) # repeat consumers df46 = pd.merge(left=df6, right=df43, how='left', on=['store_id', 'order_source', 'patient_id']) df47 = df46.groupby(['store_id', 'order_source'])[['drug_id']].mean().reset_index().rename(columns={ "drug_id": "repeat_consumers_avg_items"}) df48 = pd.merge(left=df45, right=df47, how='left', on=['store_id', 'order_source']) df48 = pd.merge(left=df48, right=stores, how='left', on=['store_id']) items_per_cons_new = pd.pivot_table(df48, values='new_consumers_avg_items', index='order_source', columns=['store_name']).reset_index() items_per_cons_new['tag_flag'] = 'new_consumers_avg_items' items_per_cons_repeat = pd.pivot_table(df48, values='repeat_consumers_avg_items', index='order_source', columns=['store_name']).reset_index() items_per_cons_repeat['tag_flag'] = 'repeat_consumers_avg_items' items_per_cons_new_repeat = pd.concat([items_per_cons_new, items_per_cons_repeat]) # items_per_cons_new_repeat.rename(columns={'index': 'tag_flag'}, inplace=True) return items_per_cons_new_repeat def tot_items_sold_new_repeat(self, Sales, All_cons_initial_bill_date, Stores, choose_year, choose_month): sales = Sales.copy(deep=True) df1 = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) df1['year'] = df1['created_at'].dt.year df1["month"] = df1['created_at'].dt.month df1 = df1[(df1['year'] == int(choose_year)) & (df1['month'] == int(choose_month))] sales['flag'] = np.where(sales['category'] == "chronic", 1, 0) df2 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['flag']].sum().reset_index() df2['check'] = np.where(df2['flag'] > 0, "chronic", "acute") df3 = pd.merge(left=df1, right=df2, how='left', on=['store_id', 'patient_id']) df5 = pd.merge(left=df2, right=df1, how='left', on=['store_id', 'patient_id']) df6 = df5[df5['year'].isnull()] df24 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['quantity']].sum().reset_index() # new consumers df25 = pd.merge(left=df3, right=df24, how='left', on=['store_id', 'order_source', 'patient_id']) df26 = df25.groupby(['store_id', 'order_source'])[['quantity']].sum().reset_index().rename(columns={ "quantity": "new_consumers_qty"}) # repeat consumers df27 = pd.merge(left=df6, right=df24, how='left', on=['store_id', 'order_source', 'patient_id']) df28 = df27.groupby(['store_id', 'order_source'])[['quantity']].sum().reset_index().rename(columns={ "quantity": "repeat_consumers_qty"}) df29 = pd.merge(left=df26, right=df28, how='left', on=['store_id', 'order_source']) df29 = pd.merge(left=df29, right=stores, how='left', on=['store_id']) tot_items_sold_new = pd.pivot_table(df29, values='new_consumers_qty', index='order_source', columns=['store_name']).reset_index() tot_items_sold_new['tag_flag'] = 'new_consumers_qty' tot_items_sold_repeat = pd.pivot_table(df29, values='repeat_consumers_qty', index='order_source', columns=['store_name']).reset_index() tot_items_sold_repeat['tag_flag'] = 'repeat_consumers_qty' tot_items_sold_new_repeat = pd.concat([tot_items_sold_new, tot_items_sold_repeat]) # tot_items_sold_new_repeat.rename(columns={'index': 'tag_flag'}, inplace=True) return tot_items_sold_new_repeat def generic_cons_overall_new(self, Sales, All_cons_initial_bill_date, Stores,fofo_tag = 'no'): sales = Sales.copy(deep=True) all_cons_first = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) if fofo_tag=='no': generic_cons = sales.groupby(['store_id', 'order_source', 'type'])[['patient_id']].nunique().reset_index().rename(columns={ "patient_id": "generic_cons_overall"}) generic_cons = generic_cons[generic_cons['type'].isin(['generic', 'high-value-generic'])] generic_cons = pd.merge(left=generic_cons, right=stores, how='left', on=['store_id']) generic_cons_overall = pd.pivot_table(generic_cons, values='generic_cons_overall', index='order_source', columns=['store_name']).reset_index() generic_cons_overall['tag_flag'] = 'generic_cons_overall' aug_cons_min = sales.groupby(['store_id', 'order_source', 'patient_id'])[['created_at']].min().reset_index() aug_new_cons = pd.merge(left=all_cons_first, right=aug_cons_min, how='inner', on=['store_id', 'patient_id', 'created_at']) aug_new_cons['flag'] = "aug_new" new_cons_generic = pd.merge(left=aug_new_cons[['store_id', 'order_source', 'patient_id', 'flag']], right=sales, how='left', on=['store_id', 'order_source', 'patient_id']) new_cons_generic1 = new_cons_generic.groupby(['store_id', 'order_source', 'type'])[ ['patient_id']].nunique().reset_index().rename(columns={ "patient_id": "generic_cons_new"}) new_cons_generic1 = new_cons_generic1[new_cons_generic1['type'].isin(['generic', 'high-value-generic'])] new_cons_generic1 = pd.merge(left=new_cons_generic1, right=stores, how='left', on=['store_id']) generic_cons_new = pd.pivot_table(new_cons_generic1, values='generic_cons_new', index='order_source', columns=['store_name']).reset_index() generic_cons_new['tag_flag'] = 'generic_cons_new' generic_cons_overall_new = pd.concat([generic_cons_overall, generic_cons_new]) elif fofo_tag=='yes': sales = sales[sales['franchisee_id'] != 1] generic_cons = sales.groupby(['store_id', 'order_source','fofo_distributor', 'type'])[['patient_id']].nunique().reset_index().rename( columns={ "patient_id": "generic_cons_overall"}) generic_cons = generic_cons[generic_cons['type'].isin(['generic', 'high-value-generic'])] generic_cons = pd.merge(left=generic_cons, right=stores, how='left', on=['store_id']) generic_cons_overall = pd.pivot_table(generic_cons, values='generic_cons_overall', index=['order_source','fofo_distributor'], columns=['store_name']).reset_index() generic_cons_overall['tag_flag'] = 'generic_cons_overall' aug_cons_min = sales.groupby(['store_id', 'order_source', 'patient_id'])[['created_at']].min().reset_index() aug_new_cons = pd.merge(left=all_cons_first, right=aug_cons_min, how='inner', on=['store_id', 'patient_id', 'created_at']) aug_new_cons['flag'] = "aug_new" new_cons_generic = pd.merge(left=aug_new_cons[['store_id', 'order_source', 'patient_id', 'flag']], right=sales, how='left', on=['store_id', 'order_source', 'patient_id']) new_cons_generic1 = new_cons_generic.groupby(['store_id', 'order_source','fofo_distributor', 'type'])[ ['patient_id']].nunique().reset_index().rename(columns={ "patient_id": "generic_cons_new"}) new_cons_generic1 = new_cons_generic1[new_cons_generic1['type'].isin(['generic', 'high-value-generic'])] new_cons_generic1 = pd.merge(left=new_cons_generic1, right=stores, how='left', on=['store_id']) generic_cons_new = pd.pivot_table(new_cons_generic1, values='generic_cons_new', index=['order_source','fofo_distributor'], columns=['store_name']).reset_index() generic_cons_new['tag_flag'] = 'generic_cons_new' generic_cons_overall_new = pd.concat([generic_cons_overall, generic_cons_new]) return generic_cons_overall_new def power_cons_overall_new(self, Sales, All_cons_initial_bill_date, Stores, power_consumer_value): sales = Sales.copy(deep=True) all_cons_first = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) power_cons_aug = sales.groupby(['store_id', 'order_source', 'patient_id'])[['value']].sum().reset_index() power_cons_aug1 = power_cons_aug[power_cons_aug['value'] > power_consumer_value] power_cons = power_cons_aug1.groupby(['store_id', 'order_source'])[ ['patient_id']].nunique().reset_index().rename( columns={ "patient_id": "power_cons_overall"}) power_cons = pd.merge(left=power_cons, right=stores, how='left', on=['store_id']) power_cons_overall = pd.pivot_table(power_cons, values='power_cons_overall', index='order_source', columns=['store_name']).reset_index() power_cons_overall['tag_flag'] = 'power_cons_overall' aug_cons_min = sales.groupby(['store_id', 'order_source', 'patient_id'])[['created_at']].min().reset_index() aug_new_cons = pd.merge(left=all_cons_first, right=aug_cons_min, how='inner', on=['store_id', 'patient_id', 'created_at']) aug_new_cons['flag'] = "aug_new" df_fg = pd.merge(left=aug_new_cons[['store_id', 'order_source', 'patient_id', 'flag']], right=power_cons_aug1, how='left', on=['store_id', 'order_source', 'patient_id']) df_fg1 = df_fg[df_fg['value'].notnull()] new_power_cons = df_fg1.groupby(['store_id', 'order_source'])[['patient_id']].nunique().reset_index().rename( columns={ "patient_id": "power_cons_new"}) new_power_cons = pd.merge(left=new_power_cons, right=stores, how='left', on=['store_id']) power_cons_new = pd.pivot_table(new_power_cons, values='power_cons_new', index='order_source', columns=['store_name']).reset_index() power_cons_new['tag_flag'] = 'power_cons_new' power_cons_overall_new = pd.concat([power_cons_overall, power_cons_new]) # power_cons_overall_new.rename(columns={'index': 'tag_flag'}, inplace=True) return power_cons_overall_new def power_consumers_sale(self, Sales, Stores, power_consumer_value, mis_type, fofo_tag = 'no'): sales = Sales.copy(deep=True) stores = Stores.copy(deep=True) if fofo_tag == 'no': ad1 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['value']].sum().reset_index() ad2 = ad1[ad1['value'] > power_consumer_value] ad3 = pd.merge(left=ad2[['store_id', 'order_source', 'patient_id']], right=sales, how='left', on=['store_id', 'order_source', 'patient_id']) power_cons_sales = ad3.groupby(['store_id', 'order_source', 'type1'])[['value']].sum().reset_index() power_cons_sales['value'] = power_cons_sales['value'].astype(float) power_cons_sales = pd.merge(left=power_cons_sales, right=stores, how='left', on=['store_id']) power_cons_sales_ethical = power_cons_sales[power_cons_sales['type1'] == 'ethical'] power_cons_sales_ethical = pd.pivot_table(power_cons_sales_ethical, values='value', index=['type1', 'order_source'], columns=['store_name']).reset_index() power_cons_sales_generic = power_cons_sales[power_cons_sales['type1'] == 'generic'] power_cons_sales_generic = pd.pivot_table(power_cons_sales_generic, values='value', index=['type1', 'order_source'], columns=['store_name']).reset_index() power_cons_sales_others = power_cons_sales[power_cons_sales['type1'] == 'others'] power_cons_sales_others = pd.pivot_table(power_cons_sales_others, values='value', index=['type1', 'order_source'], columns=['store_name']).reset_index() power_cons_sales_gaid = power_cons_sales[power_cons_sales['type1'] == 'GOODAID'] power_cons_sales_gaid = pd.pivot_table(power_cons_sales_gaid, values='value', index=['type1', 'order_source'], columns=['store_name']).reset_index() power_cons_sales_overall = power_cons_sales.groupby(['store_id', 'store_name', 'order_source'])[ ['value']].sum().reset_index().rename(columns={ "value": "total"}) power_cons_sales_overall = pd.pivot_table(power_cons_sales_overall, values='total', index=['order_source'], columns=['store_name']).reset_index().rename(columns={ "index": "type1"}) if mis_type == 'breakup': power_consumers_sale = pd.concat([power_cons_sales_overall, power_cons_sales_ethical, power_cons_sales_generic, power_cons_sales_others, power_cons_sales_gaid], sort=True) elif mis_type == 'unified': power_consumers_sale = pd.concat([power_cons_sales_overall, power_cons_sales_ethical, power_cons_sales_generic, power_cons_sales_others], sort=True) else: self.logger.info('provide valid mis_type') return None power_consumers_sale['tag_flag'] = 'power_cons_sale' return power_consumers_sale elif fofo_tag == 'yes': sales = sales[sales['franchisee_id']!=1] ad1 = sales.groupby(['store_id', 'order_source','patient_id'])[['value']].sum().reset_index() ad2 = ad1[ad1['value'] > power_consumer_value] ad3 = pd.merge(left=ad2[['store_id', 'order_source' ,'patient_id']], right=sales, how='left', on=['store_id', 'order_source' ,'patient_id']) power_cons_sales = ad3.groupby(['store_id', 'order_source', 'fofo_distributor' , 'type1'])[['value']].sum().reset_index() power_cons_sales['value'] = power_cons_sales['value'].astype(float) power_cons_sales = pd.merge(left=power_cons_sales, right=stores, how='left', on=['store_id']) power_cons_sales_ethical = power_cons_sales[power_cons_sales['type1'] == 'ethical'] power_cons_sales_ethical = pd.pivot_table(power_cons_sales_ethical, values='value', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() power_cons_sales_generic = power_cons_sales[power_cons_sales['type1'] == 'generic'] power_cons_sales_generic = pd.pivot_table(power_cons_sales_generic, values='value', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() power_cons_sales_others = power_cons_sales[power_cons_sales['type1'] == 'others'] power_cons_sales_others = pd.pivot_table(power_cons_sales_others, values='value', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() power_cons_sales_gaid = power_cons_sales[power_cons_sales['type1'] == 'GOODAID'] power_cons_sales_gaid = pd.pivot_table(power_cons_sales_gaid, values='value', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() power_cons_sales_overall = power_cons_sales.groupby(['store_id', 'store_name', 'order_source','fofo_distributor'])[ ['value']].sum().reset_index().rename(columns={ "value": "total"}) power_cons_sales_overall = pd.pivot_table(power_cons_sales_overall, values='total', index=['order_source','fofo_distributor'], columns=['store_name']).reset_index().rename(columns={ "index": "type1"}) if mis_type == 'breakup': power_consumers_sale = pd.concat([power_cons_sales_overall, power_cons_sales_ethical, power_cons_sales_generic, power_cons_sales_others, power_cons_sales_gaid], sort=True) elif mis_type == 'unified': power_consumers_sale = pd.concat([power_cons_sales_overall, power_cons_sales_ethical, power_cons_sales_generic, power_cons_sales_others], sort=True) else: self.logger.info('provide valid mis_type') return None power_consumers_sale['tag_flag'] = 'power_cons_sale' return power_consumers_sale def power_cons_bills(self, Sales, Stores, power_consumer_value,fofo_tag = 'no'): sales = Sales.copy(deep=True) stores = Stores.copy(deep=True) if fofo_tag == 'no': power_cons_aug = sales.groupby(['store_id', 'order_source', 'patient_id'])[['value']].sum().reset_index() power_cons_aug1 = power_cons_aug[power_cons_aug['value'] > power_consumer_value] df_lp = pd.merge(left=power_cons_aug1[['store_id', 'order_source', 'patient_id']], right=sales, how='left', on=['store_id', 'order_source', 'patient_id']) power_cons_bills = df_lp.groupby(['store_id', 'order_source'])[['bill_id']].nunique().reset_index().rename( columns={ "bill_id": "no_of_bills"}) power_cons_bills = pd.merge(left=power_cons_bills, right=stores, how='left', on=['store_id']) power_cons_bills = pd.pivot_table(power_cons_bills, values='no_of_bills', index='order_source', columns=['store_name']).reset_index() power_cons_bills['tag_flag'] = "no_of_bills" # power_cons_bills.rename(columns={'index': 'tag_flag'}, inplace=True) power_cons_bills.loc[power_cons_bills['tag_flag'] == 'no_of_bills', 'tag_flag'] = 'Power cons no_of_bills' return power_cons_bills elif fofo_tag == 'yes': sales = sales[sales['franchisee_id'] != 1] power_cons_aug = sales.groupby(['store_id', 'order_source' ,'patient_id'])[['value']].sum().reset_index() power_cons_aug1 = power_cons_aug[power_cons_aug['value'] > power_consumer_value] df_lp = pd.merge(left=power_cons_aug1[['store_id', 'order_source','patient_id']], right=sales, how='left', on=['store_id', 'order_source','patient_id']) power_cons_bills = df_lp.groupby(['store_id', 'order_source','fofo_distributor'])[['bill_id']].nunique().reset_index().rename( columns={ "bill_id": "no_of_bills"}) power_cons_bills = pd.merge(left=power_cons_bills, right=stores, how='left', on=['store_id']) power_cons_bills = pd.pivot_table(power_cons_bills, values='no_of_bills', index=['order_source','fofo_distributor'], columns=['store_name']).reset_index() power_cons_bills['tag_flag'] = "no_of_bills" # power_cons_bills.rename(columns={'index': 'tag_flag'}, inplace=True) power_cons_bills.loc[power_cons_bills['tag_flag'] == 'no_of_bills', 'tag_flag'] = 'Power cons no_of_bills' return power_cons_bills def home_delivery(self, Sales, Customer_returns, Home_delivery_data, Stores, delivery_bill_ids,mis_tag,fofo_tag = 'no' ): sales = Sales.copy(deep=True) customer_returns = Customer_returns.copy(deep=True) home_delivery_data = Home_delivery_data.copy(deep=True) stores = Stores.copy(deep=True) delivery_bill_ids = delivery_bill_ids.copy(deep=True) if fofo_tag == 'yes': home_delivery_data = home_delivery_data[home_delivery_data['franchisee_id'] != 1] sales = sales[sales['franchisee_id'] != 1] customer_returns = customer_returns[customer_returns['franchisee_id'] != 1] # Consumer Count HD_cons = home_delivery_data.groupby(['store_id', 'order_source'])[ ['patient_id']].nunique().reset_index().rename(columns={ "patient_id": "no_of_HD_consumers"}) HD_cons = pd.merge(left=HD_cons, right=stores, how='left', on=['store_id']) HD_cons_count = pd.pivot_table(HD_cons, values='no_of_HD_consumers', index='order_source', columns=['store_name']).reset_index() HD_cons_count['tag_flag'] = 'no_of_HD_consumers' # Deliverd count home_delivery_data['key'] = home_delivery_data['patient_id'].astype(str) + '-' + home_delivery_data[ 'order_number'].astype(str) + '-' + home_delivery_data['bill_id'].astype(str) if mis_tag == 'breakup': home_delivery_data['order_source2'] = np.where(home_delivery_data.order_source_pso.isin(['zeno']), "ecomm", "store") elif mis_tag == 'unified': home_delivery_data['order_source2'] = 'all' HD_count = home_delivery_data.groupby(['store_id', 'order_source2']).agg( {'key': pd.Series.nunique}).reset_index() HD_count = pd.merge(left=HD_count, right=stores, how='left', on=['store_id']) HD_count.rename(columns={'key': 'count_of_HD_delivered'}, inplace=True) HD_count_delivered = pd.pivot_table(HD_count, values='count_of_HD_delivered', index='order_source2', columns=['store_name']).reset_index() HD_count_delivered.rename(columns={'order_source2': 'order_source'}, inplace =True) HD_count_delivered['tag_flag'] = 'count_of_HD_delivered' # HD sales if fofo_tag == 'no': sales = sales[['store_id', 'order_source', 'bill_id', 'rate', 'quantity', 'type1']] customer_returns = customer_returns[ ['store_id', 'order_source', 'bill_id', 'rate', 'returned_quantity', 'type1']] elif fofo_tag=='yes': sales = sales[['store_id', 'order_source', 'fofo_distributor', 'bill_id', 'rate', 'quantity', 'type1']] customer_returns = customer_returns[ ['store_id', 'order_source', 'fofo_distributor', 'bill_id', 'rate', 'returned_quantity', 'type1']] customer_returns['returned_quantity'] = customer_returns['returned_quantity'] * (-1) customer_returns.rename(columns={'returned_quantity': 'quantity'}, inplace=True) sales = pd.concat([sales, customer_returns], sort=True) sales['quantity'] = sales['quantity'].astype(float) sales['rate'] = sales['rate'].astype(float) sales['value'] = sales['rate'] * sales['quantity'] HD_bills = tuple(map(int, list(delivery_bill_ids[~delivery_bill_ids['bill_id'].isnull()]['bill_id'].unique()))) HD_sales = sales[sales['bill_id'].isin(HD_bills)] if fofo_tag=='no': HD_sales_by_type = HD_sales.groupby(['store_id', 'type1', 'order_source'])[["value"]].sum().reset_index() elif fofo_tag == 'yes': HD_sales_by_type = HD_sales.groupby(['store_id', 'type1', 'order_source', 'fofo_distributor'])[["value"]].sum().reset_index() HD_sales_by_type = pd.merge(left=HD_sales_by_type, right=stores, how='left', on=['store_id']) HD_sales_by_type['value'] = HD_sales_by_type['value'].astype(float) if fofo_tag == 'no': HD_sales = pd.pivot_table(HD_sales_by_type, values='value', index=['type1', 'order_source'], columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) elif fofo_tag == 'yes': HD_sales = pd.pivot_table(HD_sales_by_type, values='value', index=['type1', 'order_source', 'fofo_distributor'], columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) HD_sales.rename(columns={'index': 'tag_flag'}, inplace=True) home_delivery = pd.concat([HD_cons_count, HD_count_delivered, HD_sales], sort=True) home_delivery.loc[home_delivery['tag_flag'] == 'ethical', 'tag_flag'] = 'HD ethical sale' home_delivery.loc[home_delivery['tag_flag'] == 'generic', 'tag_flag'] = 'HD generic sale' home_delivery.loc[home_delivery['tag_flag'] == 'others', 'tag_flag'] = 'HD others sale' if mis_tag == 'breakup': home_delivery.loc[home_delivery['tag_flag'] == 'GOODAID', 'tag_flag'] = 'GOODAID sale' return home_delivery def home_delivery_fofo_consumers(self, Workcell_home_delivery_data_fofo, Other_home_delivery_data_fofo, Stores, mis_tag, fofo_tag = 'yes'): workcell_home_delivery_data_fofo = Workcell_home_delivery_data_fofo.copy(deep=True) other_home_delivery_data_fofo = Other_home_delivery_data_fofo.copy(deep=True) stores = Stores.copy(deep=True) # workcell Consumer Count workcell_HD_cons = workcell_home_delivery_data_fofo.groupby(['store_id', 'order_source'])[ ['patient_id']].nunique().reset_index().rename(columns={ "patient_id": "no_of_HD_consumers"}) workcell_HD_cons = pd.merge(left=workcell_HD_cons, right=stores, how='left', on=['store_id']) workcell_HD_cons_count = pd.pivot_table(workcell_HD_cons, values='no_of_HD_consumers', index='order_source', columns=['store_name']).reset_index() workcell_HD_cons_count['tag_flag'] = 'no_of_HD_consumers' workcell_HD_cons_count['fofo_distributor'] = 'workcell' # other Consumer Count other_HD_cons = other_home_delivery_data_fofo.groupby(['store_id', 'order_source'])[ ['patient_id']].nunique().reset_index().rename(columns={ "patient_id": "no_of_HD_consumers"}) other_HD_cons = pd.merge(left=other_HD_cons, right=stores, how='left', on=['store_id']) other_HD_cons_count = pd.pivot_table(other_HD_cons, values='no_of_HD_consumers', index='order_source', columns=['store_name']).reset_index() other_HD_cons_count['tag_flag'] = 'no_of_HD_consumers' other_HD_cons_count['fofo_distributor'] = 'other' # Deliverd count workcell_home_delivery_data_fofo['key'] = workcell_home_delivery_data_fofo['patient_id'].astype(str) + '-' + workcell_home_delivery_data_fofo[ 'order_number'].astype(str) + '-' + workcell_home_delivery_data_fofo['bill_id'].astype(str) other_home_delivery_data_fofo['key'] = other_home_delivery_data_fofo['patient_id'].astype(str) + '-' + other_home_delivery_data_fofo[ 'order_number'].astype(str) + '-' + other_home_delivery_data_fofo['bill_id'].astype(str) if mis_tag == 'breakup': workcell_home_delivery_data_fofo['order_source2'] = np.where( workcell_home_delivery_data_fofo.order_source_pso.isin(['zeno']),"ecomm", "store") other_home_delivery_data_fofo['order_source2'] = np.where( other_home_delivery_data_fofo.order_source_pso.isin(['zeno']), "ecomm", "store") elif mis_tag == 'unified': workcell_home_delivery_data_fofo['order_source2'] = 'all' other_home_delivery_data_fofo['order_source2'] = 'all' workcell_HD_count = workcell_home_delivery_data_fofo.groupby(['store_id', 'order_source2']).agg( {'key': pd.Series.nunique}).reset_index() other_HD_count = other_home_delivery_data_fofo.groupby(['store_id', 'order_source2']).agg( {'key': pd.Series.nunique}).reset_index() workcell_HD_count = pd.merge(left=workcell_HD_count, right=stores, how='left', on=['store_id']) workcell_HD_count.rename(columns={'key': 'count_of_HD_delivered'}, inplace=True) workcell_HD_count_delivered = pd.pivot_table(workcell_HD_count, values='count_of_HD_delivered', index='order_source2', columns=['store_name']).reset_index() workcell_HD_count_delivered.rename(columns={'order_source2': 'order_source'}, inplace=True) workcell_HD_count_delivered['tag_flag'] = 'count_of_HD_delivered' other_HD_count = pd.merge(left=other_HD_count, right=stores, how='left', on=['store_id']) other_HD_count.rename(columns={'key': 'count_of_HD_delivered'}, inplace=True) other_HD_count_delivered = pd.pivot_table(other_HD_count, values='count_of_HD_delivered', index='order_source2', columns=['store_name']).reset_index() other_HD_count_delivered.rename(columns={'order_source2': 'order_source'}, inplace=True) other_HD_count_delivered['tag_flag'] = 'count_of_HD_delivered' workcell_HD_count_delivered['fofo_distributor'] = 'workcell' other_HD_count_delivered['fofo_distributor'] = 'other' home_delivery = pd.concat([workcell_HD_cons_count,other_HD_cons_count,workcell_HD_count_delivered,other_HD_count_delivered], sort=True) return home_delivery def purchase_from_worckell(self, Purchase_from_workcell_data, Stores,mis_tag,fofo_tag = 'no', launch_flag = 'normal'): purchase_from_wc_data = Purchase_from_workcell_data.copy(deep=True) stores = Stores.copy(deep=True) if launch_flag == 'launch_stock': purchase_from_wc_data = purchase_from_wc_data[purchase_from_wc_data['launch_flag'] == 'launch_stock'] purchase_from_wc_data['zp_received_tax'] = np.vectorize(self.taxable_value_vat_based_2)( purchase_from_wc_data['zp_received_net_value'], purchase_from_wc_data['zp_vat']) purchase_from_wc_data['wc_purchased_tax'] = np.vectorize(self.taxable_value_vat_based_2)( purchase_from_wc_data['wc_purchase_net_value'], purchase_from_wc_data['wc_vat']) if fofo_tag=='no': df_yy1 = purchase_from_wc_data.groupby(['store_id', 'type1', 'category'], as_index=False).agg({ 'zp_received_net_value': ['sum'], 'zp_received_tax': ['sum'], 'wc_purchase_net_value': ['sum'], 'wc_purchased_tax': ['sum']}).reset_index(drop=True) df_yy1.columns = ["_".join(x) for x in df_yy1.columns.ravel()] df_yy1.columns = df_yy1.columns.str.rstrip('_x') df_yy2 = df_yy1.groupby(['store_id', 'type1'])[["zp_received_tax_sum"]].sum().reset_index() df_yy2 = pd.merge(left=df_yy2, right=stores, how='left', on=['store_id']) purchase_from_wc = pd.pivot_table(df_yy2, values='zp_received_tax_sum', index='type1', columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) purchase_from_wc.rename(columns={'index': 'tag_flag'}, inplace=True) if launch_flag == 'normal': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'purchase_from_wc_ethical' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'purchase_from_wc_generic' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'purchase_from_wc_others' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'purchase_from_wc_GOODAID' elif launch_flag == 'launch_stock': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_ethical' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_generic' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_others' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_GOODAID' return purchase_from_wc elif fofo_tag =='yes': purchase_from_wc_data = purchase_from_wc_data[purchase_from_wc_data['franchisee_id']!=1] df_yy1 = purchase_from_wc_data.groupby(['store_id', 'type1','fofo_distributor', 'category'], as_index=False).agg({ 'zp_received_net_value': ['sum'], 'zp_received_tax': ['sum'], 'wc_purchase_net_value': ['sum'], 'wc_purchased_tax': ['sum']}).reset_index(drop=True) df_yy1.columns = ["_".join(x) for x in df_yy1.columns.ravel()] df_yy1.columns = df_yy1.columns.str.rstrip('_x') df_yy2 = df_yy1.groupby(['store_id', 'type1','fofo_distributor'])[["zp_received_tax_sum"]].sum().reset_index() df_yy2 = pd.merge(left=df_yy2, right=stores, how='left', on=['store_id']) purchase_from_wc = pd.pivot_table(df_yy2, values='zp_received_tax_sum', index=['type1','fofo_distributor'], columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) purchase_from_wc.rename(columns={'index': 'tag_flag'}, inplace=True) if launch_flag == 'normal': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'purchase_from_wc_ethical' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'purchase_from_wc_generic' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'purchase_from_wc_others' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'purchase_from_wc_GOODAID' elif launch_flag == 'launch_stock': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_ethical' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_generic' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_others' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_GOODAID' return purchase_from_wc def purchase_from_worckell_including_tax(self, Purchase_from_workcell_data, Stores,mis_tag,fofo_tag = 'no', launch_flag = 'normal'): purchase_from_wc_data = Purchase_from_workcell_data.copy(deep=True) stores = Stores.copy(deep=True) if launch_flag == 'launch_stock': purchase_from_wc_data = purchase_from_wc_data[purchase_from_wc_data['launch_flag'] == 'launch_stock'] purchase_from_wc_data['zp_received_tax'] = np.vectorize(self.taxable_value_vat_based_2)( purchase_from_wc_data['zp_received_net_value'], purchase_from_wc_data['zp_vat']) purchase_from_wc_data['wc_purchased_tax'] = np.vectorize(self.taxable_value_vat_based_2)( purchase_from_wc_data['wc_purchase_net_value'], purchase_from_wc_data['wc_vat']) if fofo_tag=='no': df_yy1 = purchase_from_wc_data.groupby(['store_id', 'type1', 'category'], as_index=False).agg({ 'zp_received_net_value': ['sum'], 'zp_received_tax': ['sum'], 'wc_purchase_net_value': ['sum'], 'wc_purchased_tax': ['sum']}).reset_index(drop=True) df_yy1.columns = ["_".join(x) for x in df_yy1.columns.ravel()] df_yy1.columns = df_yy1.columns.str.rstrip('_x') df_yy2 = df_yy1.groupby(['store_id', 'type1'])[["zp_received_net_value_sum"]].sum().reset_index() df_yy2 = pd.merge(left=df_yy2, right=stores, how='left', on=['store_id']) purchase_from_wc = pd.pivot_table(df_yy2, values='zp_received_net_value_sum', index='type1', columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) purchase_from_wc.rename(columns={'index': 'tag_flag'}, inplace=True) if launch_flag == 'normal': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'purchase_from_wc_ethical_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'purchase_from_wc_generic_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'purchase_from_wc_others_inc_tax' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'purchase_from_wc_GOODAID_inc_tax' elif launch_flag == 'launch_stock': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_ethical_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_generic_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_others_inc_tax' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_GOODAID_inc_tax' return purchase_from_wc elif fofo_tag =='yes': purchase_from_wc_data = purchase_from_wc_data[purchase_from_wc_data['franchisee_id']!=1] df_yy1 = purchase_from_wc_data.groupby(['store_id', 'type1','fofo_distributor', 'category'], as_index=False).agg({ 'zp_received_net_value': ['sum'], 'zp_received_tax': ['sum'], 'wc_purchase_net_value': ['sum'], 'wc_purchased_tax': ['sum']}).reset_index(drop=True) df_yy1.columns = ["_".join(x) for x in df_yy1.columns.ravel()] df_yy1.columns = df_yy1.columns.str.rstrip('_x') df_yy2 = df_yy1.groupby(['store_id', 'type1','fofo_distributor'])[["zp_received_net_value_sum"]].sum().reset_index() df_yy2 = pd.merge(left=df_yy2, right=stores, how='left', on=['store_id']) purchase_from_wc = pd.pivot_table(df_yy2, values='zp_received_net_value_sum', index=['type1','fofo_distributor'], columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) purchase_from_wc.rename(columns={'index': 'tag_flag'}, inplace=True) if launch_flag == 'normal': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'purchase_from_wc_ethical_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'purchase_from_wc_generic_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'purchase_from_wc_others_inc_tax' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'purchase_from_wc_GOODAID_inc_tax' elif launch_flag == 'launch_stock': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_ethical_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'generic', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_generic_inc_tax' purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'others', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_others_inc_tax' if mis_tag == 'breakup': purchase_from_wc.loc[purchase_from_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'launch_stock_in_purchase_from_wc_GOODAID_inc_tax' return purchase_from_wc def cogs_for_wc(self, Purchase_from_workcell_data, Stores, mis_tag,fofo_tag = 'no'): purchase_from_wc_data = Purchase_from_workcell_data.copy(deep=True) stores = Stores.copy(deep=True) purchase_from_wc_data['zp_received_tax'] = np.vectorize(self.taxable_value_vat_based_2)( purchase_from_wc_data['zp_received_net_value'], purchase_from_wc_data['zp_vat']) purchase_from_wc_data['wc_purchased_tax'] = np.vectorize(self.taxable_value_vat_based_2)( purchase_from_wc_data['wc_purchase_net_value'], purchase_from_wc_data['wc_vat']) if fofo_tag == 'no': df_yy1 = purchase_from_wc_data.groupby(['store_id', 'type1', 'category'], as_index=False).agg({ 'zp_received_net_value': ['sum'], 'zp_received_tax': ['sum'], 'wc_purchase_net_value': ['sum'], 'wc_purchased_tax': ['sum']}).reset_index(drop=True) df_yy1.columns = ["_".join(x) for x in df_yy1.columns.ravel()] df_yy1.columns = df_yy1.columns.str.rstrip('_x') df_yy2 = df_yy1.groupby(['store_id', 'type1'])[["wc_purchased_tax_sum"]].sum().reset_index() df_yy2 = pd.merge(left=df_yy2, right=stores, how='left', on=['store_id']) cogs_for_wc = pd.pivot_table(df_yy2, values='wc_purchased_tax_sum', index='type1', columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) cogs_for_wc.rename(columns={'index': 'tag_flag'}, inplace=True) cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'cogs_for_wc_ethical' cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'generic', 'tag_flag'] = 'cogs_for_wc_generic' cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'others', 'tag_flag'] = 'cogs_for_wc_others' if mis_tag == 'breakup': cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'cogs_for_wc_GOODAID' return cogs_for_wc elif fofo_tag == 'yes': purchase_from_wc_data = purchase_from_wc_data[purchase_from_wc_data['franchisee_id']!=1] df_yy1 = purchase_from_wc_data.groupby(['store_id', 'type1','fofo_distributor', 'category'], as_index=False).agg({ 'zp_received_net_value': ['sum'], 'zp_received_tax': ['sum'], 'wc_purchase_net_value': ['sum'], 'wc_purchased_tax': ['sum']}).reset_index(drop=True) df_yy1.columns = ["_".join(x) for x in df_yy1.columns.ravel()] df_yy1.columns = df_yy1.columns.str.rstrip('_x') df_yy2 = df_yy1.groupby(['store_id','fofo_distributor', 'type1'])[["wc_purchased_tax_sum"]].sum().reset_index() df_yy2 = pd.merge(left=df_yy2, right=stores, how='left', on=['store_id']) cogs_for_wc = pd.pivot_table(df_yy2, values='wc_purchased_tax_sum', index=['type1','fofo_distributor'], columns=['store_name']).reset_index().rename(columns={ "type1": "index"}) cogs_for_wc.rename(columns={'index': 'tag_flag'}, inplace=True) cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'ethical', 'tag_flag'] = 'cogs_for_wc_ethical' cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'generic', 'tag_flag'] = 'cogs_for_wc_generic' cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'others', 'tag_flag'] = 'cogs_for_wc_others' if mis_tag == 'breakup': cogs_for_wc.loc[cogs_for_wc['tag_flag'] == 'GOODAID', 'tag_flag'] = 'cogs_for_wc_GOODAID' return cogs_for_wc def return_from_zippin(self, Zp_to_wc_return, mis_tag,fofo_tag = 'no'): zp_to_wc_return = Zp_to_wc_return.copy(deep=True) zp_to_wc_return['return_cogs_taxable'] = np.vectorize(self.taxable_value_vat_based_2)( zp_to_wc_return['cogs'], zp_to_wc_return['vat']) if fofo_tag == 'no': zp_to_wc_return1 = zp_to_wc_return.groupby(['cost_centre', 'type1'])[["taxable_value"]].sum().reset_index() zp_to_wc_return1['taxable_value'] = zp_to_wc_return1['taxable_value'].astype(float) return_from_zippin = pd.pivot_table(zp_to_wc_return1, values='taxable_value', index='type1', columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_zippin.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_zippin.loc[return_from_zippin['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_zp_ethical' return_from_zippin.loc[return_from_zippin['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_zp_generic' return_from_zippin.loc[return_from_zippin['tag_flag'] == 'others', 'tag_flag'] = 'return_from_zp_others' if mis_tag == 'breakup': return_from_zippin.loc[return_from_zippin['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_zp_GOODAID' # Return Cogs Taxable zp_to_wc_return2 = zp_to_wc_return.groupby(['cost_centre', 'type1'])[["return_cogs_taxable"]].sum().reset_index() zp_to_wc_return2['return_cogs_taxable'] = zp_to_wc_return2['return_cogs_taxable'].astype(float) return_from_zippin_Cogs_taxable = pd.pivot_table(zp_to_wc_return2, values='return_cogs_taxable', index='type1', columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_zippin_Cogs_taxable.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_zp_COGS_taxable_ethical' return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_zp_COGS_taxable_generic' return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'others', 'tag_flag'] = 'return_from_zp_COGS_taxable_others' if mis_tag == 'breakup': return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_zp_COGS_taxable_GOODAID' # Return net value zp_to_wc_return3 = zp_to_wc_return.groupby(['cost_centre', 'type1'])[["net_value"]].sum().reset_index() zp_to_wc_return3['net_value'] = zp_to_wc_return3['net_value'].astype(float) return_from_zippin_net_value_inc_tax = pd.pivot_table(zp_to_wc_return3, values='net_value', index='type1', columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_zippin_net_value_inc_tax.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_zp_inc_tax_ethical' return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_zp_inc_tax_generic' return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'others', 'tag_flag'] = 'return_from_zp_inc_tax_others' if mis_tag == 'breakup': return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_zp_inc_tax_GOODAID' elif fofo_tag == 'yes': zp_to_wc_return = zp_to_wc_return[zp_to_wc_return['franchisee_id']!=1] zp_to_wc_return1 = zp_to_wc_return.groupby(['cost_centre', 'type1','fofo_distributor'])[["taxable_value"]].sum().reset_index() zp_to_wc_return1['taxable_value'] = zp_to_wc_return1['taxable_value'].astype(float) return_from_zippin = pd.pivot_table(zp_to_wc_return1, values='taxable_value', index=['type1','fofo_distributor'], columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_zippin.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_zippin.loc[return_from_zippin['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_zp_ethical' return_from_zippin.loc[return_from_zippin['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_zp_generic' return_from_zippin.loc[return_from_zippin['tag_flag'] == 'others', 'tag_flag'] = 'return_from_zp_others' if mis_tag == 'breakup': return_from_zippin.loc[return_from_zippin['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_zp_GOODAID' # Return Cogs Taxable zp_to_wc_return2 = zp_to_wc_return.groupby(['cost_centre', 'type1', 'fofo_distributor'])[ ["return_cogs_taxable"]].sum().reset_index() zp_to_wc_return2['return_cogs_taxable'] = zp_to_wc_return2['return_cogs_taxable'].astype(float) return_from_zippin_Cogs_taxable = pd.pivot_table(zp_to_wc_return2, values='return_cogs_taxable', index=['type1', 'fofo_distributor'], columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_zippin_Cogs_taxable.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_zp_COGS_taxable_ethical' return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_zp_COGS_taxable_generic' return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'others', 'tag_flag'] = 'return_from_zp_COGS_taxable_others' if mis_tag == 'breakup': return_from_zippin_Cogs_taxable.loc[return_from_zippin_Cogs_taxable['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_zp_COGS_taxable_GOODAID' # Return net value zp_to_wc_return3 = zp_to_wc_return.groupby(['cost_centre', 'type1', 'fofo_distributor'])[["net_value"]].sum().reset_index() zp_to_wc_return3['net_value'] = zp_to_wc_return3['net_value'].astype(float) return_from_zippin_net_value_inc_tax = pd.pivot_table(zp_to_wc_return3, values='net_value', index=['type1', 'fofo_distributor'], columns=['cost_centre']).reset_index().rename( columns={ "type1": "index"}) return_from_zippin_net_value_inc_tax.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_zp_inc_tax_ethical' return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_zp_inc_tax_generic' return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'others', 'tag_flag'] = 'return_from_zp_inc_tax_others' if mis_tag == 'breakup': return_from_zippin_net_value_inc_tax.loc[return_from_zippin_net_value_inc_tax['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_zp_inc_tax_GOODAID' return_from_zippin = pd.concat([return_from_zippin,return_from_zippin_Cogs_taxable,return_from_zippin_net_value_inc_tax],sort=True) return return_from_zippin def return_from_workcell(self, Wc_return, mis_tag, fofo_tag = 'no'): wc_return = Wc_return.copy(deep=True) wc_return['return_cogs_taxable'] = np.vectorize(self.taxable_value_vat_based_2)( wc_return['cogs'], wc_return['vat']) if fofo_tag == 'no': wc_return1 = wc_return.groupby(['cost_centre', 'type1'])[["taxable_value"]].sum().reset_index() wc_return1['taxable_value'] = wc_return1['taxable_value'].astype(float) return_from_workcell = pd.pivot_table(wc_return1, values='taxable_value', index='type1', columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_workcell.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_workcell.loc[return_from_workcell['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_wc_ethical' return_from_workcell.loc[return_from_workcell['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_wc_generic' return_from_workcell.loc[return_from_workcell['tag_flag'] == 'others', 'tag_flag'] = 'return_from_wc_others' return_from_workcell.loc[return_from_workcell['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_wc_GOODAID' # Return Cogs Taxable wc_return2 = wc_return.groupby(['cost_centre', 'type1'])[["return_cogs_taxable"]].sum().reset_index() wc_return2['return_cogs_taxable'] = wc_return2['return_cogs_taxable'].astype(float) return_from_workcell_Cogs_taxable = pd.pivot_table(wc_return2, values='return_cogs_taxable', index='type1', columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_workcell_Cogs_taxable.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_wc_COGS_taxable_ethical' return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_wc_COGS_taxable_generic' return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'others', 'tag_flag'] = 'return_from_wc_COGS_taxable_others' return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_wc_COGS_taxable_GOODAID' elif fofo_tag == 'yes': wc_return = wc_return[wc_return['franchisee_id']!=1] wc_return1 = wc_return.groupby(['cost_centre', 'type1','fofo_distributor'])[["taxable_value"]].sum().reset_index() wc_return1['taxable_value'] = wc_return1['taxable_value'].astype(float) return_from_workcell = pd.pivot_table(wc_return1, values='taxable_value', index=['type1','fofo_distributor'], columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_workcell.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_workcell.loc[return_from_workcell['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_wc_ethical' return_from_workcell.loc[return_from_workcell['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_wc_generic' return_from_workcell.loc[return_from_workcell['tag_flag'] == 'others', 'tag_flag'] = 'return_from_wc_others' return_from_workcell.loc[return_from_workcell['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_wc_GOODAID' # Return COGS taxable wc_return2 = wc_return.groupby(['cost_centre', 'type1', 'fofo_distributor'])[["return_cogs_taxable"]].sum().reset_index() wc_return2['return_cogs_taxable'] = wc_return2['return_cogs_taxable'].astype(float) return_from_workcell_Cogs_taxable = pd.pivot_table(wc_return2, values='return_cogs_taxable', index=['type1', 'fofo_distributor'], columns=['cost_centre']).reset_index().rename(columns={ "type1": "index"}) return_from_workcell_Cogs_taxable.rename(columns={'index': 'tag_flag'}, inplace=True) return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'ethical', 'tag_flag'] = 'return_from_wc_COGS_taxable_ethical' return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'generic', 'tag_flag'] = 'return_from_wc_COGS_taxable_generic' return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'others', 'tag_flag'] = 'return_from_wc_COGS_taxable_others' return_from_workcell_Cogs_taxable.loc[return_from_workcell_Cogs_taxable['tag_flag'] == 'GOODAID', 'tag_flag'] = 'return_from_wc_COGS_taxable_GOODAID' # return_from_workcell = pd.concat([return_from_workcell,return_from_workcell_Cogs_taxable],sort=True) return return_from_workcell def total_sku_instock(self, Inventory, mis_tag,fofo_tag = 'no'): inventory = Inventory.copy(deep=True) if fofo_tag == 'no': total_sku_instock = inventory.groupby(['type1'])[["drug_id"]].nunique().reset_index() elif fofo_tag == 'yes': inventory = inventory[inventory['franchisee_id']!=1] total_sku_instock = inventory.groupby(['type1','fofo_distributor'])[["drug_id"]].nunique().reset_index() total_sku_instock.rename(columns={'type1': 'tag_flag'}, inplace=True) total_sku_instock.loc[total_sku_instock['tag_flag'] == 'ethical', 'tag_flag'] = 'total_sku_instock_ethical' total_sku_instock.loc[total_sku_instock['tag_flag'] == 'generic', 'tag_flag'] = 'total_sku_instock_generic' total_sku_instock.loc[total_sku_instock['tag_flag'] == 'others', 'tag_flag'] = 'total_sku_instock_others' if mis_tag == 'breakup': total_sku_instock.loc[total_sku_instock['tag_flag'] == 'GOODAID', 'tag_flag'] = 'total_sku_instock_GOODAID' total_sku_instock.rename(columns={'drug_id': 'count'}, inplace=True) return total_sku_instock def chronic_acute_qty(self, Inventory, Stores): total_SKU = Inventory.copy(deep=True) stores = Stores.copy(deep=True) total_SKU['value'] = total_SKU['quantity'] * total_SKU['final_ptr'] total_SKU_amount_qty = total_SKU.groupby(['store_id', 'type1', 'category'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'quantity': ['sum'], 'value': ['sum']}).reset_index(drop=True) total_SKU_amount_qty.columns = ["_".join(x) for x in total_SKU_amount_qty.columns.ravel()] total_SKU_amount_qty = pd.merge(left=total_SKU_amount_qty, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) total_SKU_amount_qty2 = total_SKU_amount_qty[total_SKU_amount_qty['category_'] == 'chronic'] chronic_qty = pd.pivot_table(total_SKU_amount_qty2, values='quantity_sum', index='type1_', columns=['store_name']).reset_index() chronic_qty['tag_flag'] = 'chronic_qty' total_SKU_amount_qty3 = total_SKU_amount_qty[total_SKU_amount_qty['category_'] == 'acute'] acute_qty = pd.pivot_table(total_SKU_amount_qty3, values='quantity_sum', index='type1_', columns=['store_name']).reset_index() acute_qty['tag_flag'] = 'acute_qty' chronic_acute_qty = pd.concat([chronic_qty, acute_qty], sort=True) chronic_acute_qty.rename(columns={'type1_': 'type1'}, inplace=True) return chronic_acute_qty def lp_chronic_acute(self, Local_purchase_data, Sales, fofo_tag = 'no'): local_purchase_data = Local_purchase_data.copy(deep=True) sales = Sales.copy(deep=True) if fofo_tag == 'yes': local_purchase_data = local_purchase_data[local_purchase_data['franchisee_id']!=1] sales = sales[sales['franchisee_id']!=1] sold_local_purchase = sales.merge(local_purchase_data, on='inventory_id', how='inner') sold_local_purchase['sold_quantity'] = sold_local_purchase['quantity'] sold_local_purchase['revenue'] = sold_local_purchase['quantity'] * sold_local_purchase['rate'] df1 = sold_local_purchase.groupby(['inventory_id'], as_index=False).agg({ 'sold_quantity': ['sum'], 'revenue': ['sum']}).reset_index(drop=True) df1.columns = ["_".join(x) for x in df1.columns.ravel()] df1.columns = df1.columns.str.rstrip('_') df2 = pd.merge(left=local_purchase_data, right=df1, how='left', on=['inventory_id']) if fofo_tag == 'no': lp1 = df2.groupby(['store_id', 'store_name', 'category', 'type1'])[['net_value']].sum().reset_index() elif fofo_tag == 'yes': lp1 = df2.groupby(['store_id', 'store_name', 'category', 'type1', 'fofo_distributor'])[['net_value']].sum().reset_index() lp_chronic = lp1[lp1['category'] == 'chronic'] lp_chronic['net_value'] = lp_chronic['net_value'].astype(float) if fofo_tag == 'no': lp_chronic = pd.pivot_table(lp_chronic, values='net_value', index='type1', columns=['store_name']).reset_index() lp_chronic['tag_flag'] = 'local_purchase_chronic' lp_acute = lp1[lp1['category'] == 'acute'] lp_acute['net_value'] = lp_acute['net_value'].astype(float) lp_acute = pd.pivot_table(lp_acute, values='net_value', index='type1', columns=['store_name']).reset_index() lp_acute['tag_flag'] = 'local_purchase_acute' elif fofo_tag == 'yes': lp_chronic = pd.pivot_table(lp_chronic, values='net_value', index=['type1','fofo_distributor'], columns=['store_name']).reset_index() lp_chronic['tag_flag'] = 'local_purchase_chronic' lp_acute = lp1[lp1['category'] == 'acute'] lp_acute['net_value'] = lp_acute['net_value'].astype(float) lp_acute = pd.pivot_table(lp_acute, values='net_value', index=['type1','fofo_distributor'], columns=['store_name']).reset_index() lp_acute['tag_flag'] = 'local_purchase_acute' lp_chronic_acute = pd.concat([lp_chronic, lp_acute], sort=True) return lp_chronic_acute def repeat_consumer_chronic_acute(self, Sales, All_cons_initial_bill_date, Stores,choose_year,choose_month): sales = Sales.copy(deep=True) df1 = All_cons_initial_bill_date.copy(deep=True) stores = Stores.copy(deep=True) df1['year'] = df1['created_at'].dt.year df1["month"] = df1['created_at'].dt.month df1 = df1[(df1['year'] == int(choose_year)) & (df1['month'] == int(choose_month))] sales['flag'] = np.where(sales['category'] == "chronic", 1, 0) df2 = sales.groupby(['store_id', 'order_source', 'patient_id'])[['flag']].sum().reset_index() df2['check'] = np.where(df2['flag'] > 0, "chronic", "acute") df5 = pd.merge(left=df2, right=df1, how='left', on=['store_id', 'patient_id']) df6 = df5[df5['year'].isnull()] df6['repeat'] = "yes" zx = pd.merge(left=sales, right=df6[['store_id', 'order_source', 'patient_id', 'repeat']], how='left', on=['store_id', 'order_source', 'patient_id']) zx1 = zx[zx['repeat'] == 'yes'] zx1['value'] = zx1['rate'] * zx1['quantity'] zx2 = zx1.groupby(['store_id', 'order_source', 'category', 'type1'])["value"].sum().reset_index() zx2 = pd.merge(left=zx2, right=stores, how='left', on=['store_id']) repeat_chronic_sale = zx2[zx2['category'] == 'chronic'] repeat_chronic_sale['value'] = repeat_chronic_sale['value'].astype(float) repeat_chronic_sale = pd.pivot_table(repeat_chronic_sale, values='value', index=['type1', 'order_source'], columns=['store_name']).reset_index() repeat_chronic_sale['tag_flag'] = 'repeat_consumer_chronic_sale' repeat_acute_sale = zx2[zx2['category'] == 'acute'] repeat_acute_sale['value'] = repeat_acute_sale['value'].astype(float) repeat_acute_sale = pd.pivot_table(repeat_acute_sale, values='value', index=['type1', 'order_source'], columns=['store_name']).reset_index() repeat_acute_sale['tag_flag'] = 'repeat_consumer_acute_sale' repeat_consumer_chronic_acute = pd.concat([repeat_chronic_sale, repeat_acute_sale],sort=True) return repeat_consumer_chronic_acute def inventory_6to12months(self, Inventory, Stores, mis_tag = 'breakup'): df_dd = Inventory.copy(deep=True) stores = Stores.copy(deep=True) df_dd['value'] = df_dd['quantity'] * df_dd['final_ptr'] df_dd['days'] = (pd.to_datetime(self.analysis_end_time) - df_dd['created_at']).dt.days conditions = [ (df_dd['days'] >= 180) & (df_dd['days'] <= 365), (df_dd['days'] >= 365)] choices = ['6_12', '12+'] df_dd['age_bracket'] = np.select(conditions, choices) df_dd['type1'] = np.where(df_dd['type'].isin(['ethical', 'high-value-ethical']), "ethical", df_dd['type']) df_dd['type1'] = np.where(df_dd['type'].isin(['generic', 'high-value-generic']), "generic", df_dd['type']) df_dd['type1'] = np.where(~df_dd['type1'].isin(['ethical', 'generic']), "others", df_dd['type1']) if mis_tag == 'breakup': df_dd['type1'] = np.where(df_dd['company'].isin(['GOODAID']), "GOODAID", df_dd['type1']) df_dd['taxable'] = (df_dd['quantity'] * df_dd['final_ptr']) / (1 + ((df_dd['vat']) / 100)) df_ageing = df_dd.groupby(['store_id', 'category', 'type1', 'age_bracket'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'value': ['sum'], 'taxable': ['sum']}).reset_index(drop=True) df_ageing.columns = ["_".join(x) for x in df_ageing.columns.ravel()] df_ageing1 = df_ageing[df_ageing['age_bracket_'].isin(['6_12', '12+'])] df_ageing1 = pd.merge(left=df_ageing1, right=stores, how='left', left_on=['store_id_'], right_on=['store_id']) df_ageing1['taxable_sum'] = df_ageing1['taxable_sum'].astype(float) inventory_6to12months = pd.pivot_table(df_ageing1, values='taxable_sum', index=['age_bracket_', 'category_', 'type1_'], columns=['store_name']).reset_index() inventory_6to12months.rename(columns={'type1_': 'type1'}, inplace=True) inventory_6to12months.rename(columns={'category_': 'category'}, inplace=True) inventory_6to12months['tag_flag'] = 'inventory_6to12months' return inventory_6to12months def zippin_pl_cogs(self, Sales, Customer_returns, Stores,fofo_tag = 'no'): df_aa = Sales.copy(deep=True) df_bb = Customer_returns.copy(deep=True) stores = Stores.copy(deep=True) df_aa['GMV'] = df_aa['quantity'] * df_aa['mrp'] df_aa['GMV_tax'] = np.vectorize(self.taxable_value)(df_aa['quantity'], df_aa['mrp'], df_aa['cgst_rate'], df_aa['sgst_rate'], df_aa['igst_rate']) df_aa['REVENUE'] = df_aa['quantity'] * df_aa['rate'] df_aa['REVENUE_tax'] = np.vectorize(self.taxable_value)(df_aa['quantity'], df_aa['rate'], df_aa['cgst_rate'], df_aa['sgst_rate'], df_aa['igst_rate']) df_aa['COGS'] = df_aa['quantity'] * df_aa['final_ptr'] df_aa['COGS_tax'] = np.vectorize(self.taxable_value)(df_aa['quantity'], df_aa['final_ptr'], df_aa['cgst_rate'], df_aa['sgst_rate'], df_aa['igst_rate']) # df_aa['TAX'] = (df_aa['quantity'] * df_aa['final_ptr']) / (1 + ((df_aa['cgst_rate'] + df_aa['sgst_rate']) / 100)) df_aa[['GMV', 'GMV_tax', 'REVENUE', 'REVENUE_tax', 'COGS', 'COGS_tax']] = df_aa[ ['GMV', 'GMV_tax', 'REVENUE', 'REVENUE_tax', 'COGS', 'COGS_tax']].astype(float) if fofo_tag == 'no': df_gross = df_aa.groupby(['store_id', 'type1', 'category', 'payment_method', 'order_source'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'quantity': ['sum'], 'GMV': ['sum'], 'GMV_tax': ['sum'], 'REVENUE': ['sum'], 'REVENUE_tax': ['sum'], 'COGS': ['sum'], 'COGS_tax': ['sum'], 'bill_id': pd.Series.nunique # 'net_payable': ['mean'] }).reset_index(drop=True) df_gross.columns = ["_".join(x) for x in df_gross.columns.ravel()] df_gross.rename(columns={'store_id_': 'store_id', 'type1_': 'type1', 'category_': 'category', 'payment_method_': 'payment_method', 'order_source_': 'order_source'}, inplace=True) ABV_temp = df_aa.drop_duplicates(subset=['store_id', 'type1', 'category', 'payment_method', 'bill_id', 'net_payable', 'order_source']) ABV_temp['net_payable'] = ABV_temp['net_payable'].astype(float) ABV = ABV_temp.groupby(['store_id', 'type1', 'category', 'payment_method', 'order_source'])["net_payable"].mean().reset_index() df_gross_all = pd.merge(left=df_gross, right=ABV, how='left', on=['store_id', 'type1', 'category', 'payment_method', 'order_source']) df_bb['GMV'] = df_bb['returned_quantity'] * df_bb['mrp'] df_bb['GMV_tax'] = np.vectorize(self.taxable_value)(df_bb['returned_quantity'], df_bb['mrp'], df_bb['cgst_rate'], df_bb['sgst_rate'], df_bb['igst_rate']) df_bb['REVENUE'] = df_bb['returned_quantity'] * df_bb['rate'] df_bb['REVENUE_tax'] = np.vectorize(self.taxable_value)(df_bb['returned_quantity'], df_bb['rate'], df_bb['cgst_rate'], df_bb['sgst_rate'], df_bb['igst_rate']) df_bb['COGS'] = df_bb['returned_quantity'] * df_bb['final_ptr'] df_bb['COGS_tax'] = np.vectorize(self.taxable_value)(df_bb['returned_quantity'], df_bb['final_ptr'], df_bb['cgst_rate'], df_bb['sgst_rate'], df_bb['igst_rate']) # df_bb['TAX'] = (df_bb['returned_quantity'] * df_bb['final_ptr']) / (1 + ((df_bb['cgst_rate'] + df_bb['sgst_rate']) / 100)) df_bb[['GMV', 'GMV_tax', 'REVENUE', 'REVENUE_tax', 'COGS', 'COGS_tax']] = df_bb[ ['GMV', 'GMV_tax', 'REVENUE', 'REVENUE_tax', 'COGS', 'COGS_tax']].astype(float) df_returns = df_bb.groupby(['store_id', 'type1', 'category', 'payment_method', 'order_source'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'returned_quantity': ['sum'], 'GMV': ['sum'], 'GMV_tax': ['sum'], 'REVENUE': ['sum'], 'REVENUE_tax': ['sum'], 'COGS': ['sum'], 'COGS_tax': ['sum']}).reset_index(drop=True) df_returns.columns = ["_".join(x) for x in df_returns.columns.ravel()] df_returns.rename(columns={'store_id_': 'store_id', 'type1_': 'type1', 'category_': 'category', 'payment_method_': 'payment_method', 'order_source_': 'order_source'}, inplace=True) df_gross_returns = pd.merge(left=df_gross_all, right=df_returns, how='outer', on=['store_id', 'type1', 'category', 'payment_method', 'order_source']) df_gross_returns.rename(columns={'store_id_': 'store_id', 'type1_': 'type', 'category_': 'category', 'drug_id_nunique_x': 'no_of_drugs_sales', 'GMV_sum_x': 'GMV_sales', 'GMV_tax_sum_x': 'GMV_sales_tax', 'REVENUE_sum_x': 'REVENUE_sales', 'REVENUE_tax_sum_x': 'REVENUE_sales_tax', 'COGS_sum_x': 'COGS_sales', 'COGS_tax_sum_x': 'COGS_sales_tax', 'drug_id_nunique_y': 'no_of_drugs_returns', 'GMV_sum_y': 'GMV_returns', 'GMV_tax_sum_y': 'GMV_returns_tax', 'REVENUE_sum_y': 'REVENUE_returns', 'REVENUE_tax_sum_y': 'REVENUE_returns_tax', 'COGS_sum_y': 'COGS_returns', 'COGS_tax_sum_y': 'COGS_returns_tax'}, inplace=True) df_gross_returns.fillna(0, inplace=True) df_gross_returns['net_cogs'] = df_gross_returns['COGS_sales_tax'] - df_gross_returns['COGS_returns_tax'] df_gross_returns = pd.merge(left=df_gross_returns, right=stores, how='left', on=['store_id']) zp_pl_cogs = df_gross_returns.groupby(['store_id', 'store_name', 'type1', 'order_source'])[['net_cogs']].sum().reset_index() zp_pl_cogs['net_cogs'] = zp_pl_cogs['net_cogs'].astype(float) zp_pl_cogs1 = pd.pivot_table(zp_pl_cogs, values='net_cogs', index=['type1', 'order_source'], columns=['store_name']).reset_index() zp_pl_cogs1['tag_flag'] = 'zp_pl_cogs' return zp_pl_cogs1 elif fofo_tag == 'yes': df_aa = df_aa[df_aa['franchisee_id']!=1] df_bb = df_bb[df_bb['franchisee_id'] != 1] df_gross = df_aa.groupby(['store_id', 'type1', 'category', 'fofo_distributor' ,'payment_method', 'order_source'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'quantity': ['sum'], 'GMV': ['sum'], 'GMV_tax': ['sum'], 'REVENUE': ['sum'], 'REVENUE_tax': ['sum'], 'COGS': ['sum'], 'COGS_tax': ['sum'], 'bill_id': pd.Series.nunique # 'net_payable': ['mean'] }).reset_index(drop=True) df_gross.columns = ["_".join(x) for x in df_gross.columns.ravel()] df_gross.rename(columns={'store_id_': 'store_id', 'type1_': 'type1', 'category_': 'category', 'payment_method_': 'payment_method', 'order_source_': 'order_source', 'fofo_distributor_':'fofo_distributor'}, inplace=True) ABV_temp = df_aa.drop_duplicates(subset=['store_id', 'type1', 'category', 'payment_method', 'bill_id', 'net_payable', 'order_source','fofo_distributor']) ABV_temp['net_payable'] = ABV_temp['net_payable'].astype(float) ABV = ABV_temp.groupby(['store_id', 'type1', 'category', 'payment_method', 'order_source','fofo_distributor'])["net_payable"].mean().reset_index() df_gross_all = pd.merge(left=df_gross, right=ABV, how='left', on=['store_id', 'type1', 'category', 'payment_method', 'order_source','fofo_distributor']) df_bb['GMV'] = df_bb['returned_quantity'] * df_bb['mrp'] df_bb['GMV_tax'] = np.vectorize(self.taxable_value)(df_bb['returned_quantity'], df_bb['mrp'], df_bb['cgst_rate'], df_bb['sgst_rate'], df_bb['igst_rate']) df_bb['REVENUE'] = df_bb['returned_quantity'] * df_bb['rate'] df_bb['REVENUE_tax'] = np.vectorize(self.taxable_value)(df_bb['returned_quantity'], df_bb['rate'], df_bb['cgst_rate'], df_bb['sgst_rate'], df_bb['igst_rate']) df_bb['COGS'] = df_bb['returned_quantity'] * df_bb['final_ptr'] df_bb['COGS_tax'] = np.vectorize(self.taxable_value)(df_bb['returned_quantity'], df_bb['final_ptr'], df_bb['cgst_rate'], df_bb['sgst_rate'], df_bb['igst_rate']) # df_bb['TAX'] = (df_bb['returned_quantity'] * df_bb['final_ptr']) / (1 + ((df_bb['cgst_rate'] + df_bb['sgst_rate']) / 100)) df_bb[['GMV', 'GMV_tax', 'REVENUE', 'REVENUE_tax', 'COGS', 'COGS_tax']] = df_bb[ ['GMV', 'GMV_tax', 'REVENUE', 'REVENUE_tax', 'COGS', 'COGS_tax']].astype(float) df_returns = df_bb.groupby(['store_id', 'type1', 'category', 'payment_method', 'order_source','fofo_distributor'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'returned_quantity': ['sum'], 'GMV': ['sum'], 'GMV_tax': ['sum'], 'REVENUE': ['sum'], 'REVENUE_tax': ['sum'], 'COGS': ['sum'], 'COGS_tax': ['sum']}).reset_index(drop=True) df_returns.columns = ["_".join(x) for x in df_returns.columns.ravel()] df_returns.rename(columns={'store_id_': 'store_id', 'type1_': 'type1', 'category_': 'category', 'payment_method_': 'payment_method', 'order_source_': 'order_source', 'fofo_distributor_':'fofo_distributor'}, inplace=True) df_gross_returns = pd.merge(left=df_gross_all, right=df_returns, how='outer', on=['store_id', 'type1', 'category', 'payment_method', 'order_source','fofo_distributor']) df_gross_returns.rename(columns={'store_id_': 'store_id', 'type1_': 'type', 'category_': 'category', 'fofo_distributor_':'fofo_distributor', 'drug_id_nunique_x': 'no_of_drugs_sales', 'GMV_sum_x': 'GMV_sales', 'GMV_tax_sum_x': 'GMV_sales_tax', 'REVENUE_sum_x': 'REVENUE_sales', 'REVENUE_tax_sum_x': 'REVENUE_sales_tax', 'COGS_sum_x': 'COGS_sales', 'COGS_tax_sum_x': 'COGS_sales_tax', 'drug_id_nunique_y': 'no_of_drugs_returns', 'GMV_sum_y': 'GMV_returns', 'GMV_tax_sum_y': 'GMV_returns_tax', 'REVENUE_sum_y': 'REVENUE_returns', 'REVENUE_tax_sum_y': 'REVENUE_returns_tax', 'COGS_sum_y': 'COGS_returns', 'COGS_tax_sum_y': 'COGS_returns_tax'}, inplace=True) df_gross_returns.fillna(0, inplace=True) df_gross_returns['net_cogs'] = df_gross_returns['COGS_sales_tax'] - df_gross_returns['COGS_returns_tax'] df_gross_returns = pd.merge(left=df_gross_returns, right=stores, how='left', on=['store_id']) zp_pl_cogs = df_gross_returns.groupby(['store_id', 'store_name', 'type1', 'order_source','fofo_distributor'])[['net_cogs']].sum().reset_index() zp_pl_cogs['net_cogs'] = zp_pl_cogs['net_cogs'].astype(float) zp_pl_cogs1 = pd.pivot_table(zp_pl_cogs, values='net_cogs', index=['type1', 'order_source','fofo_distributor'], columns=['store_name']).reset_index() zp_pl_cogs1['tag_flag'] = 'zp_pl_cogs' return zp_pl_cogs1 def comp_count(self, Inventory, mis_tag): inventory = Inventory.copy(deep=True) if mis_tag == 'breakup': conditions = [inventory['type1'] == 'GOODAID', inventory['type1'] != 'GOODAID'] choices = ['GOODAID', inventory['type']] inventory['type'] = np.select(conditions, choices) comp_count = inventory.groupby(['type'])['drug_id'].nunique().reset_index() comp_count['tag_flag'] = 'drug_count_by_type' comp_count.rename(columns = {'drug_id':'count', 'type':'type1'}, inplace = True) return comp_count def generic_composition_count(self): generic_composition_count_query = self.mis_queries.generic_composition_count_query.format( schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) generic_composition_count = self.rs_db.get_df(generic_composition_count_query) generic_composition_count.columns = [c.replace('-', '_') for c in generic_composition_count.columns] generic_composition_count['tag_flag'] = 'generic_composition_count' return generic_composition_count def ethical_margin(self): ethical_margin_query = self.mis_queries.ethical_margin_query.format( schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time) ethical_margin = self.rs_db.get_df(ethical_margin_query) ethical_margin.columns = [c.replace('-', '_') for c in ethical_margin.columns] ethical_margin['margin'] = 1 - (ethical_margin['net_value']/ethical_margin['value1']) ethical_margin = ethical_margin[['margin']] ethical_margin['tag_flag'] = 'ethical_margin' return ethical_margin def ethical_margin_fofo(self): ethical_margin_query = self.mis_queries.ethical_margin_fofo_query.format( schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time, equality_symbol = '=' ) ethical_margin = self.rs_db.get_df(ethical_margin_query) ethical_margin.columns = [c.replace('-', '_') for c in ethical_margin.columns] ethical_margin['margin'] = 1 - (ethical_margin['net_value'] / ethical_margin['value1']) ethical_margin = ethical_margin[['margin']] ethical_margin['tag_flag'] = 'ethical_margin' ethical_margin['fofo_distributor'] = 'workcell' other_ethical_margin_query = self.mis_queries.ethical_margin_fofo_query.format( schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=self.analysis_start_time, analysis_end_time=self.analysis_end_time, equality_symbol='!=') other_ethical_margin = self.rs_db.get_df(other_ethical_margin_query) other_ethical_margin.columns = [c.replace('-', '_') for c in other_ethical_margin.columns] other_ethical_margin['margin'] = 1 - (other_ethical_margin['net_value'] / other_ethical_margin['value1']) other_ethical_margin = other_ethical_margin[['margin']] other_ethical_margin['tag_flag'] = 'ethical_margin' other_ethical_margin['fofo_distributor'] = 'other' ethical_margin = pd.concat([ethical_margin,other_ethical_margin],sort = True) return ethical_margin def chronic_generic_count(self, Sales, fofo_tag='no'): df_r = Sales.copy(deep=True) if fofo_tag == 'yes': df_r = df_r[df_r['franchisee_id'] != 1] df_r['flag'] = np.where((df_r['category'] == 'chronic'), 1, 0) df_r['flag2'] = np.where(((df_r['category'] == 'chronic') & (df_r['type'] == 'generic')), 1, 0) if fofo_tag == 'no': df_r3 = df_r.groupby(['store_id', 'patient_id'])[['flag2']].sum().reset_index() chronic_generic = df_r3[df_r3['flag2'] > 0].count()["flag2"] total = df_r3['flag2'].count() chronic_generic_percentage = chronic_generic / total chronic_generic_count = pd.DataFrame({'tag_flag': pd.Series("Chronic customers buying generics", dtype='str'), 'count': pd.Series(chronic_generic, dtype='float')}) elif fofo_tag == 'yes': df_r3 = df_r.groupby(['store_id', 'patient_id', 'fofo_distributor'])[['flag2']].sum().reset_index() chronic_generic = df_r3[df_r3['flag2'] > 0].count()["flag2"] chronic_generic_workcell = df_r3[(df_r3['flag2'] > 0) & (df_r3['fofo_distributor'] == 'workcell')].count()[ "flag2"] chronic_generic_other = df_r3[(df_r3['flag2'] > 0) & (df_r3['fofo_distributor'] == 'other')].count()[ "flag2"] chronic_generic_count_combined = pd.DataFrame({'tag_flag': pd.Series("Chronic customers buying generics", dtype='str'), 'count': pd.Series(chronic_generic, dtype='float'), 'fofo_distributor': pd.Series("combined", dtype='str')}) chronic_generic_count_workcell = pd.DataFrame({'tag_flag': pd.Series("Chronic customers buying generics", dtype='str'), 'count': pd.Series(chronic_generic_workcell, dtype='float'), 'fofo_distributor': pd.Series("workcell", dtype='str')}) chronic_generic_count_other = pd.DataFrame({'tag_flag': pd.Series("Chronic customers buying generics", dtype='str'), 'count': pd.Series(chronic_generic_other, dtype='float'), 'fofo_distributor': pd.Series("other", dtype='str')}) chronic_generic_count = pd.concat([chronic_generic_count_workcell, chronic_generic_count_other], sort=True) chronic_generic_count = self.fofo_distributor_bifurcation_next_calculation_steps( chronic_generic_count_combined, chronic_generic_count, ['tag_flag']) return chronic_generic_count def sales_data_for_repeat_customer(self,date1,date2): sales_query = self.mis_queries.sales_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, analysis_start_time=date1, analysis_end_time=date2) df = self.rs_db.get_df(sales_query) df.columns = [c.replace('-', '_') for c in df.columns] return df def repeat_cons_other_def_curr_month(self, sales_data_for_repeat_customer, stores,choose_month): choose_month = int(choose_month) df_aa = sales_data_for_repeat_customer.copy(deep=True) df_aa['year'] = df_aa['created_at'].dt.year df_aa['month'] = df_aa['created_at'].dt.month df_aa['type1'] = np.where(df_aa['type'].isin(['ethical', 'high-value-ethical']), "ethical", df_aa['type']) df_aa['type1'] = np.where(df_aa['type'].isin(['generic', 'high-value-generic']), "generic", df_aa['type']) df_aa['type1'] = np.where(~df_aa['type1'].isin(['ethical', 'generic']), "others", df_aa['type1']) df1 = df_aa.groupby(['store_id', 'patient_id', 'type1', 'category', 'bill_id', 'year', 'month'])[["value"]].sum().reset_index() df2 = df1.groupby(['store_id', 'patient_id', 'type1', 'category'])[["month"]].nunique().reset_index().rename(columns={ 'month': 'unique_months_billed'}) # ============================================================================= # Total repeat consumers # ============================================================================= df3 = df2[df2['unique_months_billed'] >= 2] df4 = df3.groupby(['store_id', 'type1', 'category'])[["patient_id"]].count().reset_index().rename(columns={ 'patient_id': 'repeat_consumers_count'}) df4['tag_flag'] = 'repeat_cons_other_def_curr_month_count' df4 = pd.merge(left=df4, right=stores, how='left', on=['store_id']) df4 = pd.pivot_table(df4, values='repeat_consumers_count', index=['tag_flag', 'type1', 'category'], columns=['store_name']).reset_index() # ============================================================================= # Repeat consumers lost # ============================================================================= # df5 = df1[df1['month'].isin([9, 10, 11])] def previous_months(month): month = int(month) if month<=0: return month + 12 else: return month df5 = df1[df1['month'].isin([previous_months(choose_month-5), previous_months(choose_month-4), previous_months(choose_month-3)])] df6 = df5.groupby(['store_id', 'patient_id', 'type1', 'category'])[["month"]].nunique().reset_index().rename(columns={ 'month': 'unique_months_billed_till_July'}) # df7 = df1[df1['month'].isin([12, 1, 2])] df7 = df1[df1['month'].isin([previous_months(choose_month-2), previous_months(choose_month-1), previous_months(choose_month)])] df8 = df7.groupby(['store_id', 'patient_id', 'type1', 'category'])[["month"]].nunique().reset_index().rename(columns={ 'month': 'unique_months_billed_after_July'}) df9 = pd.merge(left=df6, right=df8, how='left', on=['store_id', 'patient_id', 'type1', 'category']) df10 = df9[df9['unique_months_billed_after_July'].isnull()] df11 = df10.groupby(['store_id', 'type1', 'category'])[["patient_id"]].count().reset_index() df11['tag_flag'] = 'repeat_cons_other_def_curr_month_lost' df11 = pd.merge(left=df11, right=stores, how='left', on=['store_id']) df11 = pd.pivot_table(df11, values='patient_id', index=['tag_flag', 'type1', 'category'], columns=['store_name']).reset_index() repeat_cons_other_def_curr_month = pd.concat([df4, df11]) return repeat_cons_other_def_curr_month def repeat_cons_other_def_past3_month(self, sales_data_for_repeat_customer, stores,choose_month): choose_month = int(choose_month) df_aa = sales_data_for_repeat_customer.copy(deep=True) df_aa['year'] = df_aa['created_at'].dt.year df_aa['month'] = df_aa['created_at'].dt.month df_aa['type1'] = np.where(df_aa['type'].isin(['ethical', 'high-value-ethical']), "ethical", df_aa['type']) df_aa['type1'] = np.where(df_aa['type'].isin(['generic', 'high-value-generic']), "generic", df_aa['type']) df_aa['type1'] = np.where(~df_aa['type1'].isin(['ethical', 'generic']), "others", df_aa['type1']) df1 = df_aa.groupby(['store_id', 'patient_id', 'type1', 'category', 'bill_id', 'year', 'month'])[["value"]].sum().reset_index() df2 = df1.groupby(['store_id', 'patient_id', 'type1', 'category'])[["month"]].nunique().reset_index().rename( columns={ 'month': 'unique_months_billed'}) # ============================================================================= # Total repeat consumers # ============================================================================= df3 = df2[df2['unique_months_billed'] >= 2] df4 = df3.groupby(['store_id', 'type1', 'category'])[["patient_id"]].count().reset_index().rename(columns={ 'patient_id': 'repeat_consumers_count'}) df4['tag_flag'] = 'repeat_cons_other_def_past3_month_count' df4 = pd.merge(left=df4, right=stores, how='left', on=['store_id']) df4 = pd.pivot_table(df4, values='repeat_consumers_count', index=['tag_flag', 'type1', 'category'], columns=['store_name']).reset_index() # ============================================================================= # Repeat consumers lost # ============================================================================= # df5 = df1[df1['month'].isin([6, 7, 8])] def previous_months(month): month = int(month) if month <= 0: return month + 12 else: return month df5 = df1[df1['month'].isin( [previous_months(choose_month - 8), previous_months(choose_month - 7), previous_months(choose_month - 6)])] df6 = df5.groupby(['store_id', 'patient_id', 'type1', 'category'])[["month"]].nunique().reset_index().rename( columns={ 'month': 'unique_months_billed_till_July'}) # df7 = df1[df1['month'].isin([9, 10, 11])] df7 = df1[df1['month'].isin( [previous_months(choose_month - 5), previous_months(choose_month - 4), previous_months(choose_month-3)])] df8 = df7.groupby(['store_id', 'patient_id', 'type1', 'category'])[["month"]].nunique().reset_index().rename( columns={ 'month': 'unique_months_billed_after_July'}) df9 = pd.merge(left=df6, right=df8, how='left', on=['store_id', 'patient_id', 'type1', 'category']) df10 = df9[df9['unique_months_billed_after_July'].isnull()] df11 = df10.groupby(['store_id', 'type1', 'category'])[["patient_id"]].count().reset_index() df11['tag_flag'] = 'repeat_cons_other_def_past3_month_lost' df11 = pd.merge(left=df11, right=stores, how='left', on=['store_id']) df11 = pd.pivot_table(df11, values='patient_id', index=['tag_flag', 'type1', 'category'], columns=['store_name']).reset_index() repeat_cons_other_def_past3_month = pd.concat([df4, df11]) return repeat_cons_other_def_past3_month def other_files_ethical_margin(self): other_files_ethical_margin_query = self.mis_queries.other_files_ethical_margin_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) other_files_ethical_margin = self.rs_db.get_df(other_files_ethical_margin_query) other_files_ethical_margin.columns = [c.replace('-', '_') for c in other_files_ethical_margin.columns] return other_files_ethical_margin def other_files_distributor_margin(self): other_files_distributor_margin_query = self.mis_queries.other_files_distributor_margin_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, choose_year=self.choose_year, choose_month = self.choose_month) other_files_distributor_margin = self.rs_db.get_df(other_files_distributor_margin_query) other_files_distributor_margin.columns = [c.replace('-', '_') for c in other_files_distributor_margin.columns] return other_files_distributor_margin def other_files_inventory_at_dc_near_expiry(self): other_files_inventory_at_dc_near_expiry_data_query = self.mis_queries.other_files_inventory_at_dc_near_expiry_data_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) df_yy = self.rs_db.get_df(other_files_inventory_at_dc_near_expiry_data_query) df_yy.columns = [c.replace('-', '_') for c in df_yy.columns] df_yy['type1'] = np.where(df_yy['type'].isin(['ethical', 'high-value-ethical']), "ethical", df_yy['type']) df_yy['type1'] = np.where(df_yy['type'].isin(['generic', 'high-value-generic']), "generic", df_yy['type']) df_yy['type1'] = np.where(~df_yy['type1'].isin(['ethical', 'generic']), "others", df_yy['type1']) df_yy['taxable'] = (df_yy['actual_quantity'] * df_yy['final_ptr']) / (1 + ((df_yy['vat']) / 100)) df_yy['days'] = (pd.to_datetime('today') - df_yy['created_at']).dt.days conditions = [ (df_yy['days'] >= 0) & (df_yy['days'] <= 30), (df_yy['days'] >= 31) & (df_yy['days'] <= 60), (df_yy['days'] >= 61) & (df_yy['days'] <= 90), (df_yy['days'] >= 91)] choices = ['0_30', '31_60', '61_90', '90+'] df_yy['age_bracket'] = np.select(conditions, choices) df_yy['expiry_date'] = pd.to_datetime(df_yy['expiry'], format='%Y-%m-%d %H:%M:%S', errors='coerce') df_yy['days_to_expiry'] = (pd.to_datetime('today') - df_yy['expiry_date']).dt.days df_yy2 = df_yy[(df_yy['days_to_expiry'] < 0) & (df_yy['days_to_expiry'] > -90)] DC_near_expiry = df_yy2.groupby(['store_id', 'type1', 'category', 'age_bracket'], as_index=False).agg({ 'drug_id': pd.Series.nunique, 'net_value': ['sum'], 'taxable': ['sum']}).reset_index(drop=True) DC_near_expiry.columns = ["_".join(x) for x in DC_near_expiry.columns.ravel()] return DC_near_expiry def goodaid_gross_return(self): goodaid_store_sales_query = self.mis_queries.goodaid_store_sales_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, choose_year=self.choose_year, choose_month = self.choose_month) goodaid_store_sales = self.rs_db.get_df(goodaid_store_sales_query) goodaid_store_sales.columns = [c.replace('-', '_') for c in goodaid_store_sales.columns] goodaid_store_returns_query = self.mis_queries.goodaid_store_returns_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table, choose_year=self.choose_year, choose_month = self.choose_month) goodaid_store_returns = self.rs_db.get_df(goodaid_store_returns_query) goodaid_store_returns.columns = [c.replace('-', '_') for c in goodaid_store_returns.columns] gross_and_returns = pd.merge(left=goodaid_store_sales, right=goodaid_store_returns, how='left', on=['year', 'month', 'store_id', 'store_name']) return gross_and_returns def goodaid_zippin_inventory(self): goodaid_zippin_inventory_query = self.mis_queries.goodaid_zippin_inventory_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) df_gg = self.rs_db.get_df(goodaid_zippin_inventory_query) df_gg.columns = [c.replace('-', '_') for c in df_gg.columns] df_gg['days'] = (pd.to_datetime('today') - df_gg['created_at']).dt.days conditions = [ (df_gg['days'] >= 0) & (df_gg['days'] <= 30), (df_gg['days'] >= 31) & (df_gg['days'] <= 60), (df_gg['days'] >= 61) & (df_gg['days'] <= 90), (df_gg['days'] >= 91)] choices = ['0_30', '31_60', '61_90', '90+'] df_gg['ageing'] = np.select(conditions, choices) df_gg['expiry_date'] = pd.to_datetime(df_gg['expiry'], format='%Y-%m-%d %H:%M:%S', errors='coerce') df_gg['days_to_expiry'] = (df_gg['expiry_date'] - pd.to_datetime('today')).dt.days del df_gg['days'] del df_gg['expiry'] return df_gg def goodaid_dc_inventory(self): goodaid_dc_inventory_query = self.mis_queries.goodaid_dc_inventory_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) df_jk1 = self.rs_db.get_df(goodaid_dc_inventory_query) df_jk1.columns = [c.replace('-', '_') for c in df_jk1.columns] return df_jk1 def goodaid_wh_inventory(self): date = datetime.datetime(int(self.choose_year), int(self.choose_month)+1, 1, 0, 0, 0).strftime('%Y-%m-%d') goodaid_wh_inventory_query = self.mis_queries.goodaid_wh_inventory_query.format(date = date) wh_inv = self.rs_db.get_df(goodaid_wh_inventory_query) wh_inv.columns = [c.replace('-', '_') for c in wh_inv.columns] goodaid_drugs_query = self.mis_queries.goodaid_drugs_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) goodaid_drugs = self.rs_db.get_df(goodaid_drugs_query) goodaid_drugs.columns = [c.replace('-', '_') for c in goodaid_drugs.columns] wh_inventory = pd.merge(left=wh_inv, right=goodaid_drugs, how='inner', on=['drug_id']) return wh_inventory return df_jk1 def store_info(self): store_info_query = self.mis_queries.store_info_query.format(schema=self.schema_to_select, suffix_to_table=self.suffix_to_table) store_info = self.rs_db.get_df(store_info_query) store_info.columns = [c.replace('-', '_') for c in store_info.columns] return store_info
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/mis/mis_class.py
mis_class.py
max_store_id = """ select max("id") as "store-id-max" from "prod2-generico"."{}" """ insert_stores_query = """insert into "prod2-generico"."{}" ( "id", "etl-created-by", "created-at", "updated-by", "updated-at", "store", "line-manager", "abo", "store-manager", "store-type", "opened-at", "date-diff", "month-diff", "latitude", "longitude", "store-contact-1", "store-contact-2", "store-address", "city", "store-b2b", "line", "landmark", "store-group-id", "franchisee-id", "franchisee-name", "cluster-id", "cluster-name", "acquired", "old-new-static", "line-manager-email", "abo-email", "store-manager-email", "store-email" ) select st.id as id, 'etl-automation' as "etl-created-by", max(st."created-at") as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", max(st.name) as "store", max(case when b.type = 'line-manager' then b.name end) as "line-manager", max(case when b.type = 'area-business-owner' then b.name end) as "abo", max(case when b.type = 'store-manager' then b.name end) as "store-manager", max(st.category) as "store-type", DATE("opened-at") as "opened-at", datediff(day, DATE("opened-at"), current_date) as "date-diff", datediff(month, DATE("opened-at"), current_date) as "month-diff", max(st."lat") as "latitude", max(st."lon") as "longitude", max(st."contact-number-1") as "store-contact-1", max(st."contact-number-2") as "store-contact-2", max(st."address") as "store-address", max(sg.name) as "city", case when lower(SUBSTRING(st.name, 1, 3))= 'b2b' then 'B2B' else 'Store' end as "store-b2b", '' as line, '' as landmark, max(st."store-group-id") as "store-group-id", st."franchisee-id", f."name", s."cluster-id", s."cluster-name", st."acquired", (case when date(st."opened-at")>= '2022-04-01' then 'new' when date(st."opened-at")= '0101-01-01' then 'not-opened' else 'old' end) as "old-new-static", max(case when b.type = 'line-manager' then b.email end) as "line-manager-email", max(case when b.type = 'area-business-owner' then b.email end) as "abo-email", max(case when b.type = 'store-manager' then b.email end) as "store-manager-email", max(st.email) as "store-email" from "prod2-generico".stores st inner join "prod2-generico".franchisees f on st."franchisee-id" = f.id left join ( select us."store-id", u."name" as name, u."created-at" as "date", u.type, u.email , row_number() over( partition by us."store-id", u.type order by u."created-at" desc) as t_rank from "prod2-generico"."users-stores" as us inner join "prod2-generico"."users" as u on u."id" = us."user-id" where u.type in ('line-manager', 'store-manager', 'area-business-owner')) as b on st.id = b."store-id" and b.t_rank = 1 inner join "prod2-generico"."store-groups" sg on st."store-group-id" = sg.id left join ( select sf."store-id" as "store-id", sf."is-active" as "sf-is-active", sc."cluster-id" as "cluster-id", c.name as "cluster-name", sc."is-active" as "sc-is-active" from "prod2-generico".features f join "prod2-generico"."store-features" sf on f.id = sf."feature-id" join "prod2-generico"."store-clusters" sc on sc."store-id" = sf."store-id" join "prod2-generico".clusters c on c.id = sc."cluster-id" where sf."feature-id" = 69 and sf."is-active" = 1 and sc."is-active" = 1 ) as s on st.id = s."store-id" where st.id > {} group by st.id, st.name, st."opened-at", st."franchisee-id", f."name", s."cluster-id", s."cluster-name", st."acquired", "old-new-static";""" update_stores_query = """update "prod2-generico"."{}" as sm set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "line-manager" = b."line-manager", "abo" = b."abo", "store" = b."store", "franchisee-name" = b."franchisee-name", "cluster-id" = b."cluster-id", "cluster-name" = b."cluster-name", "acquired"=b."acquired", "opened-at"=b."opened-at", "old-new-static"=b."old-new-static", "line-manager-email" = b."line-manager-email", "abo-email" = b."abo-email", "store-manager-email" = b."store-manager-email", "store-email" = b."store-email" from ( select st.id as id, st."acquired", st.name as "store", st."opened-at", (case when date(st."opened-at")>='2022-04-01' then 'new' when date(st."opened-at")='0101-01-01' then 'not-opened' else 'old' end) as "old-new-static", f."name" as "franchisee-name", s."cluster-id" as "cluster-id", s."cluster-name" as "cluster-name", max(case when b.type = 'line-manager' then b.name end) as "line-manager", max(case when b.type = 'area-business-owner' then b.name end) as "abo", max(case when b.type = 'line-manager' then b.email end) as "line-manager-email", max(case when b.type = 'area-business-owner' then b.email end) as "abo-email", max(case when b.type = 'store-manager' then b.email end) as "store-manager-email", max(st.email) as "store-email" from "prod2-generico"."{}" sm inner join "prod2-generico".stores st on st.id = sm.id inner join "prod2-generico".franchisees f on st."franchisee-id" = f.id left join ( select us."store-id", u."name" as name, u."created-at" as "date", u.type, u.email, row_number() over( partition by us."store-id", u.type order by u."created-at" desc) as t_rank from "prod2-generico"."users-stores" as us inner join "prod2-generico"."users" as u on u."id" = us."user-id" where u.type in ('line-manager', 'store-manager', 'area-business-owner')) as b on st.id = b."store-id" and b.t_rank = 1 inner join "prod2-generico"."store-groups" sg on st."store-group-id" = sg.id left join ( select sf."store-id" as "store-id", sf."is-active" as "sf-is-active", sc."cluster-id" as "cluster-id", c.name as "cluster-name", sc."is-active" as "sc-is-active" from "prod2-generico".features f join "prod2-generico"."store-features" sf on f.id = sf."feature-id" join "prod2-generico"."store-clusters" sc on sc."store-id" = sf."store-id" join "prod2-generico".clusters c on c.id = sc."cluster-id" where sf."feature-id" = 69 and sf."is-active" = 1 and sc."is-active" = 1 ) as s on st.id = s."store-id" group by st.id, st."acquired", st.name, st."opened-at", "old-new-static", f."name", s."cluster-id", s."cluster-name") as b where sm.id = b.id and (sm.abo != b.abo or sm."line-manager" != b."line-manager" or sm."acquired" != b."acquired" or b."cluster-id" != sm."cluster-id" or b."cluster-name" != sm."cluster-name" or b."franchisee-name" != sm."franchisee-name" or b."opened-at" != sm."opened-at" or b."line-manager-email" != sm."line-manager-email" or b."abo-email" != sm."abo-email" or b."store-manager-email" != sm."store-manager-email" or b."store-email" != sm."store-email"); """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/storesmaster/storesmaster_config.py
storesmaster_config.py
update_query = """update "prod2-generico"."{}" SET "cohort-quarter" = stg."cohort-quarter", "cohort-quarter-number" = stg."cohort-quarter-number", "year-cohort" = stg."year-cohort", "store-id" = stg."store-id", "bill-quarter" = stg."bill-quarter", "bill-quarter-number" = stg."bill-quarter-number", "year-bill" = stg."year-bill", "bill-date" = stg."bill-date", "day-zero-in-cohort-quarter" = stg."day-zero-in-cohort-quarter", "day-zero-in-bill-quarter" = stg."day-zero-in-bill-quarter", "day-index" = stg."day-index", "quarter-diff" = stg."quarter-diff", "resurrection-candidate" = stg."resurrection-candidate", "cohort-quarter-patients" = stg."cohort-quarter-patients", "cohort-resurrection-candidates" = stg."cohort-resurrection-candidates" from "prod2-generico"."{}" retention inner join "{}-stg" stg on stg."patient-id" = retention."patient-id" """ insert_query = """insert into "prod2-generico"."{}" select stg.* from "{}-stg" stg left join "prod2-generico"."{}" retention on stg."patient-id" = retention."patient-id" where retention."patient-id" IS NULL """ temp_create = """create temp table "{}-stg" ( "created-at" TIMESTAMP WITHOUT TIME ZONE ENCODE az64 ,"created-by" VARCHAR(765) ENCODE lzo ,"updated-by" VARCHAR(765) ENCODE lzo ,"updated-at" TIMESTAMP WITHOUT TIME ZONE ENCODE az64 ,"patient-id" BIGINT NOT NULL ENCODE az64 ,"store-id" INTEGER NOT NULL ENCODE az64 ,"bill-date" DATE NOT NULL ENCODE az64 ,"last-bill-created-at" TIMESTAMP WITHOUT TIME ZONE ENCODE az64 ,"year-bill" INTEGER NOT NULL ENCODE az64 ,"bill-quarter" VARCHAR(255) ENCODE lzo ,"bill-quarter-number" INTEGER NOT NULL ENCODE az64 ,"year-cohort" INTEGER NOT NULL ENCODE az64 ,"cohort-quarter" VARCHAR(255) ENCODE lzo ,"cohort-quarter-number" INTEGER NOT NULL ENCODE az64 ,"day-zero-in-cohort-quarter" TIMESTAMP WITHOUT TIME ZONE ENCODE az64 ,"day-zero-in-bill-quarter" TIMESTAMP WITHOUT TIME ZONE ENCODE az64 ,"day-index" INTEGER ENCODE az64 ,"quarter-diff" INTEGER ENCODE az64 ,"resurrection-candidate" INTEGER ENCODE az64 ,"cohort-quarter-patients" BIGINT ENCODE az64 ,"cohort-resurrection-candidates" BIGINT ENCODE az64 );"""
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/queries/retention_day_quarter/retention_day_quarter_config.py
retention_day_quarter_config.py
import os import time from io import BytesIO import boto3 import pandas as pd import pg8000 import pymongo import redshift_connector as rc from sqlalchemy import create_engine from zeno_etl_libs.config.common import Config class Athena: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.athena_connection = None self.db_secrets = secrets self.region = 'ap-south-1' self.aws_access_key_id = secrets['AWS_ACCESS_KEY_ID'] self.aws_secret_access_key = secrets['AWS_SECRET_ACCESS_KEY_ID'] self.s3_resource = boto3.resource('s3', self.region, aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key) self.s3_client = boto3.client('s3', self.region, aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key) def connection(self, schema_name=None): """ This function creates an Athena connection based on the schema name input: schema_name: STRING (This variable connects with the specified database in Athena, default value: None) output: Athena Connection object """ s3_staging_dir = 's3://aws-glue-temporary-921939243643-ap-south-1/athena/' if schema_name: conn_str = f"awsathena+rest://{self.db_secrets['AWS_ACCESS_KEY_ID']}:{self.db_secrets['AWS_SECRET_ACCESS_KEY_ID']}@athena.{self.db_secrets['AWS_REGION']}.amazonaws.com:443/{schema_name}?s3_staging_dir{s3_staging_dir}&work_group=primary" else: schema_name = self.db_secrets['DATALAKE_DATABASE'] conn_str = f"awsathena+rest://{self.db_secrets['AWS_ACCESS_KEY_ID']}:{self.db_secrets['AWS_SECRET_ACCESS_KEY_ID']}@athena.{self.db_secrets['AWS_REGION']}.amazonaws.com:443/{schema_name}?s3_staging_dir{s3_staging_dir}&work_group=primary" # Create the SQLAlchemy connection. Note that you need to have pyathena installed for this. engine = create_engine( conn_str.format( aws_access_key_id=self.db_secrets['AWS_ACCESS_KEY_ID'], aws_secret_access_key=self.db_secrets['AWS_SECRET_ACCESS_KEY_ID'], region_name=self.db_secrets['AWS_REGION'], schema_name=schema_name, s3_staging_dir=s3_staging_dir, ) ) athena_connection = engine.connect() self.athena_connection = athena_connection return athena_connection def get_df(self, query=None): df = pd.read_sql_query(query, self.athena_connection) return df def ingest_df_to_datalake(self, df, table_name=None, index=False, is_mis=False): file_name = self.db_secrets['DATALAKE_DATABASE'] + '/' + table_name + f"/LOAD{int(time.time() * 1000)}.parquet" path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" if not os.path.exists(path): os.mkdir(path, 0o777) parquet_buffer = BytesIO() # df.to_parquet(parquet_buffer, index=index, engine='fastparquet') df.to_parquet(parquet_buffer, index=index, engine='pyarrow') # df.to_csv(local_file_path_csv) if is_mis: bucket_name = 'prod-mis-datalake' else: bucket_name = 'zeno-data-lake' self.s3_resource.Object(bucket_name, file_name).put(Body=parquet_buffer.getvalue()) s3_uri = f"s3://{bucket_name}/{file_name}" return s3_uri class DB: def __init__(self, read_only=True): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets self.cursor = None self.connection = None self.read_only = read_only def open_connection(self): """ :return DB cursor """ """function returns the redshift connection or cursor""" if self.read_only: self.connection = rc.connect( host=self.db_secrets['REDSHIFT_HOST'], database=self.db_secrets['REDSHIFT_DB'], user=self.db_secrets['REDSHIFT_USER'], password=self.db_secrets['REDSHIFT_PASSWORD'], port=int(self.db_secrets['REDSHIFT_PORT']), ssl=bool(int(self.db_secrets['REDSHIFT_SSL'])) ) else: self.connection = rc.connect( host=self.db_secrets['REDSHIFT_WRITE_HOST'], database=self.db_secrets['REDSHIFT_WRITE_DB'], user=self.db_secrets['REDSHIFT_WRITE_USER'], password=self.db_secrets['REDSHIFT_WRITE_PASSWORD'], port=int(self.db_secrets['REDSHIFT_WRITE_PORT']), ssl=bool(int(self.db_secrets['REDSHIFT_WRITE_SSL'])) ) self.connection.autocommit = True cursor: rc.Cursor = self.connection.cursor() self.cursor = cursor return cursor def execute(self, query, params=None): """ query: "select * from table where col = '%s' and col2 = '%s' " params: (x, y) """ try: self.cursor.execute(query, params) except Exception as e: print(f"e: {e}") if not self.connection.autocommit: self.cursor.execute("rollback") raise Exception(e) def get_df(self, query) -> pd.DataFrame: self.execute(query, params=None) df: pd.DataFrame = self.cursor.fetch_dataframe() if isinstance(df, type(None)): return pd.DataFrame( columns=[desc[0].decode("utf-8") for desc in self.cursor.description]) else: return df def close_connection(self): """ make sure to close the connection, after all the DB operation are over """ print("Redshift DB connection closed successfully.") self.cursor.close() class RedShiftDB(DB): pass class RedShiftPG8000: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets self.cursor = None self.connection = None def open_connection(self): """ :return DB cursor """ """function returns the redshift connection or cursor""" self.connection = pg8000.connect( host=self.db_secrets['REDSHIFT_HOST'], database=self.db_secrets['REDSHIFT_DB'], user=self.db_secrets['REDSHIFT_USER'], password=self.db_secrets['REDSHIFT_PASSWORD'], port=int(self.db_secrets['REDSHIFT_PORT']) ) self.connection.autocommit = True cursor: rc.Cursor = self.connection.cursor() self.cursor = cursor return cursor def execute(self, query): """ query: "select * from table where col = '%s' and col2 = '%s' " params: (x, y) """ try: self.cursor.execute(query) except Exception as e: print(f"e: {e}") self.cursor.execute("rollback") # self.cursor.execute(query) # self.cursor.execute(query) raise Exception(e) def close_connection(self): """ make sure to close the connection, after all the DB operation are over """ print("Redshift DB connection closed successfully.") self.cursor.close() class RedShift: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets self.connection = None self.engine = None # dispose the engine after user self.url = f"postgresql+psycopg2://{self.db_secrets['REDSHIFT_USER']}:{self.db_secrets['REDSHIFT_PASSWORD']}@" \ f"{self.db_secrets['REDSHIFT_HOST']}:{self.db_secrets['REDSHIFT_PORT']}/" \ f"{self.db_secrets['REDSHIFT_DB']}" def open_connection(self): """ :return DB cursor """ """function returns the redshift connection or cursor""" self.engine = create_engine(self.url) self.connection = self.engine.connect() self.connection.autocommit = True return self.connection def execute(self, query): try: self.engine.execute(query) except Exception as e: print(f"e: {e}") self.engine.execute("rollback") raise Exception(e) def close_connection(self): """ make sure to close the connection, after all the DB operation are over """ self.connection.close() self.engine.dispose() print("Redshift DB connection closed successfully.") class MySQL: """ MySQL DB Connection """ """ implementing singleton design pattern for DB Class """ def __init__(self, read_only=True): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets if read_only: self.user = self.db_secrets['MS_USER'] self.password = self.db_secrets['MS_PASSWORD'] self.host = self.db_secrets['MS_HOST'] self.port = self.db_secrets['MS_PORT'] self.db = self.db_secrets['MS_DB'] else: self.user = self.db_secrets['MYSQL_WRITE_USER'] self.password = self.db_secrets['MYSQL_WRITE_PASSWORD'] self.host = self.db_secrets['MYSQL_WRITE_HOST'] self.port = self.db_secrets['MYSQL_WRITE_PORT'] self.db = self.db_secrets['MYSQL_WRITE_DATABASE'] self.url = f"mysql+pymysql://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}" self.engine = None self.connection = None self.cursor = None # Not calling open_connection() function, to avoid DB connection at class instantiation # self.connection = self.open_connection() def open_connection(self): """ :return: connection to mysql DB using pymysql lib """ # self.connection = pymysql.connect(host=self.host, user=self.user, password=self.password, db=self.db, # port=int(self.port)) self.engine = create_engine(self.url, connect_args={'connect_timeout': 3600}) self.connection = self.engine.raw_connection() self.cursor = self.connection.cursor() return self.cursor def close(self): """ closes the DB connection :return None """ print("MySQL DB connection closed successfully!") self.connection.close() self.engine.dispose() class PostGre: """ MySQL DB Connection """ """ implementing singleton design pattern for DB Class """ def __init__(self, is_internal=False): """ @param is_internal: True means DB is owned by tech team, we want a connection with that """ configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets if is_internal: self.user = self.db_secrets[f'INTERNAL_PG_USER'] self.password = self.db_secrets['INTERNAL_PG_PASSWORD'] self.host = self.db_secrets['INTERNAL_PG_HOST'] self.port = self.db_secrets['INTERNAL_PG_PORT'] self.db = self.db_secrets['INTERNAL_PG_DB'] else: self.user = self.db_secrets['PG_USER'] self.password = self.db_secrets['PG_PASSWORD'] self.host = self.db_secrets['PG_HOST'] self.port = self.db_secrets['PG_PORT'] self.db = self.db_secrets['PG_DB'] self.url = f"postgresql://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}" self.connection = None self.cursor = None def open_connection(self): # import psycopg2 # conn_string = f"dbname='{self.db}' port='{self.port}' user='{self.user}' password='{self.password}' " \ # f"host='{self.host}'" # self.connection = psycopg2.connect(conn_string) self.connection = pg8000.connect( database=self.db, user=self.user, password=self.password, host=self.host, port=self.port ) self.cursor = self.connection.cursor() return self.connection def connection(self): """ :return: connection to mysql DB using pymysql lib """ return self.open_connection() def execute(self, query, params=None): """ query: "select * from table where col = '%s' and col2 = '%s' " params: (x, y) """ try: self.connection.execute(query, params) except Exception as e: print(f"e: {e}") self.connection.execute("rollback") def close(self): """ closes the DB connection :return None """ self.connection.close() print("PostGre DB connection closed successfully!") def close_connection(self): self.close() class PostGreWrite: """ implementing singleton design pattern for DB Class """ def __init__(self, is_internal=False): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets if is_internal: self.user = self.db_secrets[f'INTERNAL_PG_USER'] self.password = self.db_secrets['INTERNAL_PG_PASSWORD'] self.host = self.db_secrets['INTERNAL_PG_HOST'] self.port = self.db_secrets['INTERNAL_PG_PORT'] self.db = self.db_secrets['INTERNAL_PG_DB'] else: self.user = self.db_secrets['PG_USER'] self.password = self.db_secrets['PG_PASSWORD'] self.host = self.db_secrets['PG_HOST'] self.port = self.db_secrets['PG_PORT'] self.db = self.db_secrets['PG_DB'] self.url = f"postgresql+pg8000://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}" # self.url = f"postgresql://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}" self.engine = None self.connection = None self.cursor = None def open_connection(self): """ :return: connection to mysql DB using pymysql lib """ self.engine = create_engine(self.url) self.connection = self.engine.raw_connection() self.cursor = self.connection.cursor() return self.connection def close(self): """ closes the DB connection :return None """ print("PostGre DB connection closed successfully!") self.engine.dispose() def close_connection(self): self.close() class RedshiftEngine: def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets self.connection = None def open_connection(self): """ :return DB cursor """ """function returns the redshift connection or cursor""" host = self.db_secrets['REDSHIFT_HOST'] database = self.db_secrets['REDSHIFT_DB'] user = self.db_secrets['REDSHIFT_USER'] password = self.db_secrets['REDSHIFT_PASSWORD'] port = int(self.db_secrets['REDSHIFT_PORT']) ssl = bool(int(self.db_secrets['REDSHIFT_SSL'])) uri = f"postgresql://{user}:{password}@{host}:{port}/{database}" self.connection = pg8000.connect(uri) def execute(self, query, params=None): """ query: "select * from table where col = '%s' and col2 = '%s' " params: (x, y) """ try: self.connection.execute(query, params) except Exception as e: print(f"e: {e}") self.connection.execute("rollback") def create_report_table_using_df(self, df, table_name, schema): try: df.head(5).to_sql( name=table_name, con=self.connection, index=False, if_exists='fail', schema=schema) query = f"""truncate table "{schema}"."{table_name}"; """ self.connection.execute(query) print(f"Created table: {table_name}, successfully.") except Exception as e: print(f"Error creating table: {e}") def close_connection(self): """ make sure to close the connection, after all the DB operation are over """ print("Redshift DB connection closed successfully.") self.connection.close() class MongoDB: """ Mongo DB Connection """ """ implementing singleton design pattern for DB Class """ def __init__(self): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets self.user = self.db_secrets['MONGO_USER'] self.password = self.db_secrets['MONGO_PASSWORD'] self.host = self.db_secrets['MONGO_HOST'] self.port = self.db_secrets['MONGO_PORT'] self.connection = None self.cursor = None def open_connection(self, auth_source): self.connection = pymongo.MongoClient(self.host, self.port, username=self.user, password=self.password, authSource=auth_source) return self.connection def connection(self, auth_source): return self.open_connection(auth_source) def close(self): """ closes the DB connection :return None """ self.connection.close() print("Mongo DB connection closed successfully!") def close_connection(self): self.close() def download_private_key_from_s3(): # s3 = boto3.resource('s3') # file = "id_rsa" # ssh_pkey_full_path = '/tmp/' + file # bucket_name = "aws-prod-glue-assets-921939243643-ap-south-1" # logger.info(f"bucket_name: {bucket_name}") # logger.info(f"ssh_pkey_full_path: {ssh_pkey_full_path}") # s3.Bucket(bucket_name).download_file("private/" + file, file) # logger.info(f"ssh_pkey_full_path downloaded successfully") # return ssh_pkey_full_path pass class MSSql: """ MSSQL DB Connection """ """ implementing singleton design pattern for DB Class """ def __init__(self, connect_via_tunnel=True, db=None): configobj = Config.get_instance() secrets = configobj.get_secrets() self.db_secrets = secrets self.user = self.db_secrets['WH_MSSQL_USER'] self.password = self.db_secrets['WH_MSSQL_PASSWORD'] self.host = self.db_secrets['WH_MSSQL_HOST'] self.port = self.db_secrets['WH_MSSQL_PORT'] if db is None: self.db = self.db_secrets['WH_MSSQL_DATABASE'] else: self.db = db self.connection_string = "DRIVER={ODBC Driver 17 for SQL Server};SERVER=" + self.host + ";DATABASE=" + \ self.db + ";UID=" + self.user + ";PWD=" + self.password + ";TrustServerCertificate=yes" # self.url = f"mssql+pymssql://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}" # TODO: switch on tunnel connect self.connect_via_tunnel = False self.connection = None self.cursor = None self.tunnel = None def __start_tunnel(self): from sshtunnel import SSHTunnelForwarder try: self.tunnel = SSHTunnelForwarder( ('workstation.generico.in', 22), ssh_username='glue', ssh_pkey=download_private_key_from_s3(), ssh_private_key_password='', remote_bind_address=('wh1.zeno.health', 1433) ) # logger.info("Tunnel class ok") self.tunnel.start() # logger.info("Tunnel started") except Exception as error: raise Exception("MSSQL error while starting tunnel is: {}".format(error)) def open_connection(self): try: if self.connect_via_tunnel: self.__start_tunnel() import pymssql self.connection = pymssql.connect(server=self.host, user=self.user, password=self.password, database=self.db, port=self.port) self.cursor = self.connection.cursor() return self.connection except Exception as error: raise Exception("MSSQL error while establishing connection is: {}".format(error)) def connection(self): """ :return: connection to mysql DB using pymysql lib """ return self.open_connection() def close(self): """ closes the DB connection :return None """ self.connection.close() if self.connect_via_tunnel: self.tunnel.close() print("MSSQL DB connection closed successfully!") def close_connection(self): self.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/db/db.py
db.py
from math import sin, cos, sqrt, atan2, radians ################################## # month diff calculation ################################## def month_diff(date_a, date_b): """ This function returns month difference between calendar dates 'date_a' and 'date_b' """ return 12 * (date_a.dt.year - date_b.dt.year) + (date_a.dt.month - date_b.dt.month) # Pass cleaner tuple (string format) into SQL query # Handles single item tuple def sql_tuple(a_tuple): """ This function converts a tuple into a parasable string format for SQL query purpose For example - (1,) a single item tuple will be converted to (1), But if tuple is (1,2) then will remain as (1,2) """ if len(a_tuple) == 1: return '({})'.format(a_tuple[0]) return str(a_tuple) def nearest_store(store_id, data, lat_lon_col_name=['latitude', 'longitude'], from_distance=5, ): """ helper function to get the nearby stores """ """ filtering out the nan values """ R = 6378.1 # radius of earth in KM print(f"nearest_store calculation started for store id: {store_id}") data['lat_r'] = data[lat_lon_col_name[0]].apply(lambda x: radians(float(x))) data['lon_r'] = data[lat_lon_col_name[1]].apply(lambda x: radians(float(x))) lat1 = data[data['store_id'] == store_id]['lat_r'].values[0] lon1 = data[data['store_id'] == store_id]['lon_r'].values[0] data['lat1'] = lat1 data['lon1'] = lon1 data['dlon'] = data['lon_r'] - data['lon1'] data['dlat'] = data['lat_r'] - data['lat1'] data['a'] = data.apply( lambda x: sin(x['dlat'] / 2) ** 2 + cos(x['lat1']) * cos(x['lat_r']) * sin(x['dlon'] / 2) ** 2, 1) data['c'] = data.apply(lambda x: 2 * atan2(sqrt(x['a']), sqrt(1 - x['a'])), 1) data['distance'] = R * data['c'] near_stores = data[data['distance'] <= from_distance].sort_values('distance')['store_id'].values data.drop(columns=['lat_r', 'lon_r', 'lat1', 'lon1', 'dlon', 'dlat', 'a', 'c', 'distance'], inplace=True) return near_stores # Change HH:MM:SS to seconds def hms_to_seconds(t): """ This function converts HH:MM:SS (for example 02:23:18 (2hrs, 23minutes, 18seconds) # into total seconds value, which is 8598 in this) """ split_t = [int(i) for i in t.split(':')] if len(split_t) == 3: h, m, s = split_t return 3600 * h + 60 * m + s elif len(split_t) == 2: m, s = split_t return 60 * m + s else: s = split_t[0] return s
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/general_funcs.py
general_funcs.py
import pandas as pd import numpy as np import time from zeno_etl_libs.django.api import Sql from zeno_etl_libs.db.db import MySQL def doid_custom_write(data, logger, ss_col=None, rop_col=None, oup_col=None): """ data : (pd.DataFrame) can contains columns ["store_id", "drug_id", ss_col, rop_col, oup_col] if only "store_id" and "drug_id" present then ss,rop,oup is set to zero and updated into DOID """ data = data.drop_duplicates() if None in [ss_col, rop_col, oup_col]: data["min"] = 0 data["safe_stock"] = 0 data["max"] = 0 else: data.rename({ss_col: 'min', rop_col: 'safe_stock', oup_col: 'max'}, axis=1, inplace=True) mysql = MySQL(read_only=False) mysql.open_connection() sql = Sql() missed_entries = pd.DataFrame() logger.info("MySQL DOID write starts") for store_id in data['store_id'].unique(): logger.info('Mysql upload for store ' + str(store_id)) current_ss_query = f""" SELECT doid.id, doid.`store-id` , doid.`drug-id` , doid.min, doid.`safe-stock` , doid.max FROM `drug-order-info-data` doid where doid.`store-id` = {store_id} """ current_ss = pd.read_sql(current_ss_query, mysql.connection) current_ss.columns = [c.replace('-', '_') for c in current_ss.columns] data_store = data.loc[ data['store_id'] == store_id, ['store_id', 'drug_id', 'min', 'safe_stock', 'max']] ss_joined = current_ss.merge( data_store, on=['store_id', 'drug_id'], how='right', suffixes=('_old', '')) ss_joined['flag'] = np.where( (ss_joined['min_old'] == ss_joined['min']) & (ss_joined['safe_stock_old'] == ss_joined['safe_stock']) & (ss_joined['max_old'] == ss_joined['max']), 'values same', 'values changed') ss_to_upload = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['id', 'min', 'safe_stock', 'max']] logger.info('SS to update only for ' + str( ss_joined[ss_joined['flag'] != 'values same'].shape[0])) ss_to_upload["id"] = ss_to_upload["id"].astype(float) data_to_be_updated_list = list(ss_to_upload.apply(dict, axis=1)) if len(data_to_be_updated_list) > 0: chunk_size = 1000 for i in range(0, len(data_to_be_updated_list), chunk_size): status, msg = sql.update( {'table': 'DrugOrderInfoData', 'data_to_be_updated': data_to_be_updated_list[ i:i + chunk_size]}, logger) logger.info(f"DrugOrderInfoData update API " f"count: {min(i + chunk_size, len(data_to_be_updated_list))}, " f"status: {status}, msg: {msg}") drug_list = str(list(ss_joined.loc[ ss_joined[ 'flag'] == 'values changed', 'drug_id'].unique()) ).replace('[', '(').replace(']', ')') update_test_query = f""" SELECT `store-id` , `drug-id` , min , `safe-stock` , max from `drug-order-info-data` doid where `store-id` = {store_id} and `drug-id` in {drug_list} """ # time.sleep(15) update_test = pd.read_sql(update_test_query, mysql.connection) update_test.columns = [c.replace('-', '_') for c in update_test.columns] update_test = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['store_id', 'drug_id', 'min', 'safe_stock', 'max']].merge( update_test, on=['store_id', 'drug_id'], suffixes=('_new', '_prod')) update_test['mismatch_flag'] = np.where( (update_test['min_new'] == update_test['min_prod']) & (update_test['safe_stock_new'] == update_test[ 'safe_stock_prod']) & (update_test['max_new'] == update_test['max_prod']), 'updated', 'not updated') missed_entries = missed_entries.append( update_test[update_test['mismatch_flag'] == 'not updated']) logger.info( 'Entries updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'updated'].shape[0])) logger.info( 'Entries not updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'not updated'].shape[ 0])) mysql.close() return missed_entries
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/doid_write.py
doid_write.py
import datetime import numpy as np import pandas as pd # from memory_profiler import profile def remove_duplicates(df: pd.DataFrame, f): """ #remove duplicates from dataframe of the form id, f, ptr #f corresponds to quantity which is added up for duplicate ids #ptr remains same for all """ print(f"Removed duplicates on column: {f}") df1 = df.groupby('id', as_index=False)[f].sum() df2 = df.drop_duplicates(subset='id').drop(columns=f) df = pd.merge(left=df1, right=df2, on='id', how='left') return df def getids(df: pd.DataFrame): """ utility function to generate string to be used in "in" query """ return ",".join(str(i) for i in df['id'].unique()) def combin_xin(recon_l: pd.DataFrame, xin_l: pd.DataFrame): """ this will take care of stores own inventory coming back """ return pd.concat([recon_l, xin_l], axis=0).drop_duplicates(subset='id') class Data: """ class to get the inventory related data Example: 'o', 'cr', 'xin', 'xout', 'ret', 'sold', 'del', 'ar', 'rr', 'c' """ def __init__(self, db, csv_store_ids, start_date, end_date): """ :param db: database connection :param csv_store_ids: multiple store ids in csv :param start_date: start date in IST :param end_date: end date in IST """ self.db = db self.csv_store_ids = csv_store_ids self.start_ts = f"{start_date} 02:00:00" # in IST self.end_ts = f"{end_date} 03:00:00" # in IST """ since snapshots names are in UTC so tables alias is one day back""" start_date_utc = datetime.datetime.strptime(start_date, '%Y-%m-%d') + datetime.timedelta( days=-1) start_date_utc = start_date_utc.strftime("%Y-%m-%d") end_date_utc = datetime.datetime.strptime(end_date, '%Y-%m-%d') + datetime.timedelta( days=-1) end_date_utc = end_date_utc.strftime("%Y-%m-%d") self.s_alias = f"-mis-{start_date_utc}" if start_date == "2022-06-01": # Only for 2022-06-01 manual snapshot, since snapshot name and date are same self.s_alias = f"-mis-{start_date}" self.e_alias = f"-mis-{end_date_utc}" self.s_schema = "public" self.e_schema = "public" """ Data frames """ self.recon_l = pd.DataFrame() # Final reconciled data frame self.p_l = pd.DataFrame() # purchased / received self.o_l = pd.DataFrame() # opening / initial self.cr_l = pd.DataFrame() # self.xin_l = pd.DataFrame() # self.cin_l = pd.DataFrame() # cluster stock transfer in self.xout_l = pd.DataFrame() # self.cout_l = pd.DataFrame() # cluster stock transfer out self.sold_l = pd.DataFrame() # self.ret_l = pd.DataFrame() # self.ar_l = pd.DataFrame() # self.rr_l = pd.DataFrame() # self.del_l = pd.DataFrame() # self.c_l = pd.DataFrame() # def take_union(self): """ select one value of barcode from left or right data frame """ for col in ['barcode', 'ptr']: self.recon_l[col] = np.where(self.recon_l[f'{col}_x'].isna(), self.recon_l[f'{col}_y'], self.recon_l[f'{col}_x']) self.recon_l.drop(columns=[f'{col}_x', f'{col}_y'], axis=1, inplace=True) def opening(self): """ opening inventory calculation """ q = f""" select id, nvl("barcode-reference", 0) barcode, quantity o, ptr from "{self.s_schema}"."inventory-1{self.s_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is null and quantity != 0 order by id """ o_l_1 = self.db.get_df(query=q) q = f""" select id, nvl("barcode-reference", 0) barcode, quantity o, ptr from "{self.s_schema}"."inventory-1{self.s_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is not null and quantity != 0 order by id """ o_l_2 = self.db.get_df(query=q) self.o_l = pd.concat([o_l_1, o_l_2], ignore_index=True) return self.o_l def purchased(self): """ purchased inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."actual-quantity" p, c.ptr from "{self.e_schema}"."invoice-items-1{self.e_alias}" a join "{self.e_schema}"."invoices-1{self.e_alias}" b on a."franchisee-invoice-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (c."invoice-item-id" = a.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a."actual-quantity" !=0 """ self.p_l = self.db.get_df(query=q) return self.p_l def customer_returns(self): """ customer return inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" cr, c.ptr from "{self.e_schema}"."customer-return-items-1{self.e_alias}" a join "{self.e_schema}"."customer-returns-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."returned-at" >= '{self.start_ts}' and b."returned-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" cr, c.ptr from "{self.e_schema}"."customer-return-items-1{self.e_alias}" a join "{self.e_schema}"."customer-returns-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."returned-at" >= '{self.start_ts}' and b."returned-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.cr_l = self.db.get_df(query=q) self.cr_l = remove_duplicates(df=self.cr_l, f="cr") return self.cr_l def xin(self): """ Stock transfer in - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a.quantity xin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."destination-store") where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a.quantity xin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."destination-store") where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 """ self.xin_l = self.db.get_df(query=q) self.xin_l = remove_duplicates(df=self.xin_l, f="xin") return self.xin_l def cin(self): """ Cluster Stock Transfer in - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a.quantity cin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."destination-store") join "{self.e_schema}"."cluster-tasks{self.e_alias}" ct on (a."transfer-id" = ct."stock-transfer-id" and ct."task-type" = 'stock-transfer') where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a.quantity cin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."destination-store") join "{self.e_schema}"."cluster-tasks{self.e_alias}" ct on (a."transfer-id" = ct."stock-transfer-id" and ct."task-type" = 'stock-transfer') where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 """ self.cin_l = self.db.get_df(query=q) self.cin_l = remove_duplicates(df=self.cin_l, f="cin") return self.cin_l def xout(self): """ Stock transfer out inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."quantity" xout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."source-store") where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."quantity" xout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."source-store") where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 """ self.xout_l = self.db.get_df(query=q) self.xout_l = remove_duplicates(self.xout_l, "xout") return self.xout_l def cout(self): """ Cluster Stock Transfer out inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."quantity" cout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."source-store") join "{self.e_schema}"."cluster-tasks{self.e_alias}" ct on (a."transfer-id" = ct."stock-transfer-id" and ct."task-type" = 'stock-transfer') where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."quantity" cout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."source-store") join "{self.e_schema}"."cluster-tasks{self.e_alias}" ct on (a."transfer-id" = ct."stock-transfer-id" and ct."task-type" = 'stock-transfer') where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 """ self.cout_l = self.db.get_df(query=q) self.cout_l = remove_duplicates(self.cout_l, "cout") return self.cout_l def sold(self): """ Sold inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."quantity" sold, c.ptr from "{self.e_schema}"."bill-items-1{self.e_alias}" a join "{self.e_schema}"."bills-1{self.e_alias}" b on a."bill-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."quantity" sold, c.ptr from "{self.e_schema}"."bill-items-1{self.e_alias}" a join "{self.e_schema}"."bills-1{self.e_alias}" b on a."bill-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a.quantity !=0 """ self.sold_l = self.db.get_df(query=q) self.sold_l = remove_duplicates(self.sold_l, "sold") return self.sold_l def returned_to_dc(self): """ Return to dc - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" ret, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" ret, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.ret_l = self.db.get_df(query=q) self.ret_l = remove_duplicates(self.ret_l, "ret") return self.ret_l def deleted(self): """ Deleted - inventory calculation """ q = f""" select a.id, nvl("barcode-reference", 0) barcode, a.quantity del, a.ptr from "{self.s_schema}"."inventory-1{self.s_alias}" a join "{self.e_schema}"."deleted-invoices{self.e_alias}" c on a."invoice-id" = c.id where a."store-id" in ({self.csv_store_ids}) and c."deleted-at" >= '{self.start_ts}' and c."deleted-at" <= '{self.end_ts}' and a.quantity !=0 union select a.id, nvl("barcode-reference", 0) barcode, a.quantity del, a.ptr from "{self.s_schema}"."inventory-1{self.s_alias}" a join "{self.e_schema}"."deleted-invoices-1{self.e_alias}" c on a."franchisee-invoice-id" = c.id where a."store-id" in ({self.csv_store_ids}) and c."deleted-at" >= '{self.start_ts}' and c."deleted-at" <= '{self.end_ts}' and a.quantity !=0 """ self.del_l = self.db.get_df(query=q) self.del_l = remove_duplicates(self.del_l, "del") return self.del_l def closing(self): """ Closing inventory calculation """ q = f""" select id, nvl("barcode-reference", 0) barcode, quantity c, ptr from "{self.e_schema}"."inventory-1{self.e_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is null and quantity !=0 order by id """ c_l_1 = self.db.get_df(query=q) q = f""" select id, nvl("barcode-reference", 0) barcode, quantity c, ptr from "{self.e_schema}"."inventory-1{self.e_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is not null and quantity !=0 order by id """ c_l_2 = self.db.get_df(query=q) self.c_l = pd.concat([c_l_1, c_l_2], ignore_index=True) return self.c_l def audit_recon(self): """ Audit recon - inventory calculation """ q = f""" select b.id, nvl("barcode-reference", 0) barcode, a.change ar, b.ptr from "{self.e_schema}"."inventory-changes-1{self.e_alias}" a join "{self.e_schema}"."inventory-1{self.e_alias}" b on (a."inventory-id" = b.id and b."store-id" = a."store-id") where a."store-id" in ({self.csv_store_ids}) and a."created-at" >= '{self.start_ts}' and a."created-at" <= '{self.end_ts}' and a.change !=0 union all select b.id, nvl("barcode-reference", 0) barcode, a.change ar, b.ptr from "{self.e_schema}"."inventory-changes-1{self.e_alias}" a join "{self.e_schema}"."inventory-1{self.e_alias}" b on (a."inventory-id" = b."barcode-reference" and b."store-id" = a."store-id") where a."store-id" in ({self.csv_store_ids}) and a."created-at" >= '{self.start_ts}' and a."created-at" <= '{self.end_ts}' and a.change !=0 """ self.ar_l = self.db.get_df(query=q) self.ar_l = remove_duplicates(self.ar_l, "ar") return self.ar_l def reverted_returns(self): """ Reverted returns - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" rr, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and a."reverted-at" >= '{self.start_ts}' and a."reverted-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" rr, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and a."reverted-at" >= '{self.start_ts}' and a."reverted-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.rr_l = self.db.get_df(query=q) self.rr_l = remove_duplicates(self.rr_l, "rr") return self.rr_l def get_meta_data(self): """ extra data needed for inventory """ q = f""" select i.id, i."purchase-rate" , d."drug-name" from "prod2-generico"."prod2-generico"."inventory-1" i left join "prod2-generico"."prod2-generico".drugs d on i."drug-id" = d.id where i."store-id" in ({self.csv_store_ids}) """ return self.db.get_df(query=q) # @profile def start_data_fetch(self): """ calls all the function which fetch the data from database """ print("Starting data fetch.") self.opening() print("opening: Successfully fetched.") self.purchased() print("purchased: Successfully fetched.") self.customer_returns() print("customer_returns: Successfully fetched.") self.xin() print("xin: Successfully fetched.") self.cin() print("cin: Successfully fetched.") self.xout() print("xout: Successfully fetched.") self.cout() print("cout: Successfully fetched.") self.sold() print("sold: Successfully fetched.") self.returned_to_dc() print("returned_to_dc: Successfully fetched.") self.deleted() print("deleted: Successfully fetched.") self.closing() print("closing: Successfully fetched.") self.audit_recon() print("audit_recon: Successfully fetched.") self.reverted_returns() print("reverted_returns: Successfully fetched.") # @profile def concat(self): """ data fetching from database """ self.start_data_fetch() """ ## combine initial and received temp_l = select(p_l, :id, :barcode, :p => :o, :ptr) recon_l = vcat(o_l, temp_l) ## following handles inventory lying in inventory-1 but received later recon_l = remove_duplicates(recon_l, "o") recon_l = combine_cr(recon_l, cr_l) recon_l = combine_xin(recon_l, xin_l) recon_l = combine_xout(recon_l, xout_l) recon_l = combine_sold(recon_l, sold_l) recon_l = combine_ret(recon_l, ret_l) recon_l = combine_ar(recon_l, ar_l) recon_l = combine_rr(recon_l, rr_l) recon_l = leftjoin(recon_l, select(del_l, :id, :del), on = :id) recon_l = leftjoin(recon_l, select(c_l, :id, :c), on = :id) """ """ combine initial and received and call it opening(o) """ self.p_l.rename(columns={'p': 'o'}, inplace=True) """ following handles inventory lying in inventory-1 but received later """ self.recon_l = pd.concat([self.p_l, self.o_l], ignore_index=True) self.recon_l = remove_duplicates(self.recon_l, "o") """combine_cr: following handles the case where inventory was stock transferred, after the start time and returned before end time """ self.recon_l = pd.merge(self.recon_l, self.cr_l, on='id', how='outer') self.take_union() """combine_xin: this will take care of stores own inventory coming back""" self.recon_l = pd.merge(self.recon_l, self.xin_l, on='id', how='outer') self.take_union() """combine_cin: this will take care of stores own inventory coming back from cluster """ self.recon_l = pd.merge(self.recon_l, self.cin_l, on='id', how='outer') self.take_union() """combine_xout: this will take care of stores own inventory transferred out""" self.recon_l = pd.merge(self.recon_l, self.xout_l, on='id', how='outer') self.take_union() """combine_cout: this will take care of stores own inventory transferred out from cluster""" self.recon_l = pd.merge(self.recon_l, self.cout_l, on='id', how='outer') self.take_union() """combine_sold: this will take care of stores inventory sold """ self.recon_l = pd.merge(self.recon_l, self.sold_l, on='id', how='outer') self.take_union() """combine_ret: this will take care of stores inventory returned """ self.recon_l = pd.merge(self.recon_l, self.ret_l, on='id', how='outer') self.take_union() """combine_ar: """ self.recon_l = pd.merge(self.recon_l, self.ar_l, on='id', how='outer') self.take_union() """combine_rr: """ self.recon_l = pd.merge(self.recon_l, self.rr_l, on='id', how='outer') self.take_union() self.recon_l = pd.merge(self.recon_l, self.del_l, on='id', how='left') self.take_union() self.recon_l = pd.merge(self.recon_l, self.c_l, on='id', how='left') self.take_union() """ calculate the error """ self.recon_l = self.recon_l.fillna(0) for col in ['id', 'o', 'cr', 'xin', 'cin', 'xout', 'cout', 'ret', 'sold', 'del', 'ar', 'rr', 'c', 'barcode']: self.recon_l[col] = pd.to_numeric(self.recon_l[col]) self.recon_l[col] = self.recon_l[col].astype('int', errors='raise') """ since cin and cout are sub set of xin xout so will not be part of error calculation """ self.recon_l['e'] = self.recon_l['o'] + self.recon_l['cr'] + self.recon_l['xin'] - \ self.recon_l['xout'] - \ self.recon_l['ret'] - self.recon_l['sold'] - self.recon_l['del'] + \ self.recon_l['ar'] + \ self.recon_l['rr'] - self.recon_l['c'] return self.recon_l
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/inventory/inventory.py
inventory.py
import datetime import numpy as np # from memory_profiler import profile import pandas as pd def remove_duplicates(df: pd.DataFrame, f): """ #remove duplicates from dataframe of the form id, f, ptr #f corresponds to quantity which is added up for duplicate ids #ptr remains same for all """ print(f"Removed duplicates on column: {f}") df1 = df.groupby('id', as_index=False)[f].sum() df2 = df.drop_duplicates(subset='id').drop(columns=f) df = pd.merge(left=df1, right=df2, on='id', how='left') return df def getids(df: pd.DataFrame): """ utility function to generate string to be used in "in" query """ return ",".join(str(i) for i in df['id'].unique()) def combin_xin(recon_l: pd.DataFrame, xin_l: pd.DataFrame): """ this will take care of stores own inventory coming back """ return pd.concat([recon_l, xin_l], axis=0).drop_duplicates(subset='id') class Data: """ class to get the inventory related data Example: 'o', 'cr', 'xin', 'xout', 'ret', 'sold', 'del', 'ar', 'rr', 'c' """ def __init__(self, db, csv_store_ids, start_date, end_date, snapshot_ist_time_delta=0): """ :param db: database connection :param csv_store_ids: multiple store ids in csv :param start_date: start date in IST :param end_date: end date in IST """ self.db = db self.csv_store_ids = csv_store_ids self.start_ts = f"{start_date} 02:00:00" # in IST self.end_ts = f"{end_date} 03:00:00" # in IST """ since snapshots names are in UTC so tables alias is one day back""" start_date_utc = datetime.datetime.strptime(start_date, '%Y-%m-%d') - datetime.timedelta( days=snapshot_ist_time_delta) start_date_utc = start_date_utc.strftime("%Y-%m-%d") end_date_utc = datetime.datetime.strptime(end_date, '%Y-%m-%d') - datetime.timedelta( days=snapshot_ist_time_delta) end_date_utc = end_date_utc.strftime("%Y-%m-%d") self.s_alias = f"-mis-{start_date_utc}" if start_date == "2022-06-01": # Only for 2022-06-01 manual snapshot, since snapshot name and date are same self.s_alias = f"-mis-{start_date}" self.e_alias = f"-mis-{end_date_utc}" self.s_schema = "public" self.e_schema = "public" """ Data frames """ self.recon_l = pd.DataFrame() # Final reconciled data frame self.p_l = pd.DataFrame() # purchased / received self.prd_l = pd.DataFrame() # purchased return dispatched self.prs_l = pd.DataFrame() # purchased return settled self.o_l = pd.DataFrame() # opening / initial self.cr_l = pd.DataFrame() # self.xin_l = pd.DataFrame() # self.xout_l = pd.DataFrame() # self.sold_l = pd.DataFrame() # self.ret_l = pd.DataFrame() # self.ar_l = pd.DataFrame() # self.rr_l = pd.DataFrame() # self.del_l = pd.DataFrame() # self.c_l = pd.DataFrame() # def take_union(self): """ select one value of barcode from left or right data frame """ for col in ['barcode', 'ptr']: self.recon_l[col] = np.where(self.recon_l[f'{col}_x'].isna(), self.recon_l[f'{col}_y'], self.recon_l[f'{col}_x']) self.recon_l.drop(columns=[f'{col}_x', f'{col}_y'], axis=1, inplace=True) def opening(self): """ opening inventory calculation """ q = f""" select id, nvl("barcode-reference", 0) barcode, quantity o, ptr from "{self.s_schema}"."inventory-1{self.s_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is null and quantity != 0 order by id """ o_l_1 = self.db.get_df(query=q) q = f""" select id, nvl("barcode-reference", 0) barcode, quantity o, ptr from "{self.s_schema}"."inventory-1{self.s_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is not null and quantity != 0 order by id """ o_l_2 = self.db.get_df(query=q) self.o_l = pd.concat([o_l_1, o_l_2], ignore_index=True) return self.o_l def purchased(self): """ purchased inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."actual-quantity" p, c.ptr from "{self.e_schema}"."invoice-items-1{self.e_alias}" a join "{self.e_schema}"."invoices-1{self.e_alias}" b on a."franchisee-invoice-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (c."invoice-item-id" = a.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a."actual-quantity" !=0 """ self.p_l = self.db.get_df(query=q) return self.p_l def purchased_return_dispatched(self): """ purchased return dispatched inventory calculation """ q = f""" select d.id , nvl("barcode-reference", 0) barcode, c."returned-quantity" prd, d."ptr" from "{self.e_schema}"."debit-notes-1{self.e_alias}" a join "{self.e_schema}"."debit-note-items-1{self.e_alias}" b on b."debit-note-id" = a.id join "{self.e_schema}"."return-items-1{self.e_alias}" c on b."item-id" = c.id join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" e on c."return-id" = e.id join "{self.e_schema}"."inventory-1{self.e_alias}" d on c."inventory-id" = d.id where e."store-id" in ({self.csv_store_ids}) and a."dispatched-at" >= '{self.start_ts}' and a."dispatched-at" <= '{self.end_ts}' """ self.prd_l = self.db.get_df(query=q) return self.prd_l def purchased_return_settled(self): """ purchased return settled inventory calculation """ q = f""" select d.id , nvl("barcode-reference", 0) barcode, c."returned-quantity" prs, d."ptr" from "{self.e_schema}"."debit-notes-1{self.e_alias}" a join "{self.e_schema}"."debit-note-items-1{self.e_alias}" b on b."debit-note-id" = a.id join "{self.e_schema}"."return-items-1{self.e_alias}" c on b."item-id" = c.id join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" e on c."return-id" = e.id join "{self.e_schema}"."inventory-1{self.e_alias}" d on c."inventory-id" = d.id where e."store-id" in ({self.csv_store_ids}) and a."settled-at" >= '{self.start_ts}' and a."settled-at" <= '{self.end_ts}' """ self.prs_l = self.db.get_df(query=q) return self.prs_l def customer_returns(self): """ customer return inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" cr, c.ptr from "{self.e_schema}"."customer-return-items-1{self.e_alias}" a join "{self.e_schema}"."customer-returns-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."returned-at" >= '{self.start_ts}' and b."returned-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" cr, c.ptr from "{self.e_schema}"."customer-return-items-1{self.e_alias}" a join "{self.e_schema}"."customer-returns-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."returned-at" >= '{self.start_ts}' and b."returned-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.cr_l = self.db.get_df(query=q) self.cr_l = remove_duplicates(df=self.cr_l, f="cr") return self.cr_l def xin(self): """ Stock transfer in - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a.quantity xin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."destination-store") where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a.quantity xin, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."destination-store") where b."destination-store" in ({self.csv_store_ids}) and b."received-at" >= '{self.start_ts}' and b."received-at" <= '{self.end_ts}' and a.quantity !=0 """ self.xin_l = self.db.get_df(query=q) self.xin_l = remove_duplicates(df=self.xin_l, f="xin") return self.xin_l def xout(self): """ Stock transfer out inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."quantity" xout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."source-store") where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."quantity" xout, c.ptr from "{self.e_schema}"."stock-transfer-items-1{self.e_alias}" a join "{self.e_schema}"."stock-transfers-1{self.e_alias}" b on a."transfer-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."source-store") where b."source-store" in ({self.csv_store_ids}) and a."transferred-at" >= '{self.start_ts}' and a."transferred-at" <= '{self.end_ts}' and a.quantity !=0 """ self.xout_l = self.db.get_df(query=q) self.xout_l = remove_duplicates(self.xout_l, "xout") return self.xout_l def sold(self): """ Sold inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."quantity" sold, c.ptr from "{self.e_schema}"."bill-items-1{self.e_alias}" a join "{self.e_schema}"."bills-1{self.e_alias}" b on a."bill-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a.quantity !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."quantity" sold, c.ptr from "{self.e_schema}"."bill-items-1{self.e_alias}" a join "{self.e_schema}"."bills-1{self.e_alias}" b on a."bill-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a.quantity !=0 """ self.sold_l = self.db.get_df(query=q) self.sold_l = remove_duplicates(self.sold_l, "sold") return self.sold_l def returned_to_dc(self): """ Return to dc - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" ret, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" ret, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and b."created-at" >= '{self.start_ts}' and b."created-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.ret_l = self.db.get_df(query=q) self.ret_l = remove_duplicates(self.ret_l, "ret") return self.ret_l def deleted(self): """ Deleted - inventory calculation """ q = f""" select a.id, nvl("barcode-reference", 0) barcode, a.quantity del, a.ptr from "{self.s_schema}"."inventory-1{self.s_alias}" a join "{self.e_schema}"."deleted-invoices{self.e_alias}" c on a."invoice-id" = c.id where a."store-id" in ({self.csv_store_ids}) and c."deleted-at" >= '{self.start_ts}' and c."deleted-at" <= '{self.end_ts}' and a.quantity !=0 union select a.id, nvl("barcode-reference", 0) barcode, a.quantity del, a.ptr from "{self.s_schema}"."inventory-1{self.s_alias}" a join "{self.e_schema}"."deleted-invoices-1{self.e_alias}" c on a."franchisee-invoice-id" = c.id where a."store-id" in ({self.csv_store_ids}) and c."deleted-at" >= '{self.start_ts}' and c."deleted-at" <= '{self.end_ts}' and a.quantity !=0 """ self.del_l = self.db.get_df(query=q) self.del_l = remove_duplicates(self.del_l, "del") return self.del_l def closing(self): """ Closing inventory calculation """ q = f""" select id, nvl("barcode-reference", 0) barcode, quantity c, ptr from "{self.e_schema}"."inventory-1{self.e_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is null and quantity !=0 order by id """ c_l_1 = self.db.get_df(query=q) q = f""" select id, nvl("barcode-reference", 0) barcode, quantity c, ptr from "{self.e_schema}"."inventory-1{self.e_alias}" where "store-id" in ({self.csv_store_ids}) and "barcode-reference" is not null and quantity !=0 order by id """ c_l_2 = self.db.get_df(query=q) self.c_l = pd.concat([c_l_1, c_l_2], ignore_index=True) return self.c_l def audit_recon(self): """ Audit recon - inventory calculation """ q = f""" select b.id, nvl("barcode-reference", 0) barcode, a.change ar, b.ptr from "{self.e_schema}"."inventory-changes-1{self.e_alias}" a join "{self.e_schema}"."inventory-1{self.e_alias}" b on (a."inventory-id" = b.id and b."store-id" = a."store-id") where a."store-id" in ({self.csv_store_ids}) and a."created-at" >= '{self.start_ts}' and a."created-at" <= '{self.end_ts}' and a.change !=0 union all select b.id, nvl("barcode-reference", 0) barcode, a.change ar, b.ptr from "{self.e_schema}"."inventory-changes-1{self.e_alias}" a join "{self.e_schema}"."inventory-1{self.e_alias}" b on (a."inventory-id" = b."barcode-reference" and b."store-id" = a."store-id") where a."store-id" in ({self.csv_store_ids}) and a."created-at" >= '{self.start_ts}' and a."created-at" <= '{self.end_ts}' and a.change !=0 """ self.ar_l = self.db.get_df(query=q) self.ar_l = remove_duplicates(self.ar_l, "ar") return self.ar_l def reverted_returns(self): """ Reverted returns - inventory calculation """ q = f""" select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" rr, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c.id and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and a."reverted-at" >= '{self.start_ts}' and a."reverted-at" <= '{self.end_ts}' and a."returned-quantity" !=0 union all select c.id, nvl("barcode-reference", 0) barcode, a."returned-quantity" rr, c.ptr from "{self.e_schema}"."return-items-1{self.e_alias}" a join "{self.e_schema}"."returns-to-dc-1{self.e_alias}" b on a."return-id" = b.id join "{self.e_schema}"."inventory-1{self.e_alias}" c on (a."inventory-id" = c."barcode-reference" and c."store-id" = b."store-id") where b."store-id" in ({self.csv_store_ids}) and a."reverted-at" >= '{self.start_ts}' and a."reverted-at" <= '{self.end_ts}' and a."returned-quantity" !=0 """ self.rr_l = self.db.get_df(query=q) self.rr_l = remove_duplicates(self.rr_l, "rr") return self.rr_l def get_meta_data(self): """ extra data needed for inventory """ q = f""" select i.id, i."purchase-rate" , d."drug-name" from "prod2-generico"."prod2-generico"."inventory-1" i left join "prod2-generico"."prod2-generico".drugs d on i."drug-id" = d.id where i."store-id" in ({self.csv_store_ids}) """ return self.db.get_df(query=q) # @profile def start_data_fetch(self): """ calls all the function which fetch the data from database """ print("Starting data fetch.") self.opening() print("opening: Successfully fetched.") self.purchased() print("purchased: Successfully fetched.") self.purchased_return_dispatched() print("purchased_return_dispatched : Successfully fetched.") self.purchased_return_settled() print("purchased_return_settled : Successfully fetched.") self.customer_returns() print("customer_returns: Successfully fetched.") self.xin() print("xin: Successfully fetched.") self.xout() print("xout: Successfully fetched.") self.sold() print("sold: Successfully fetched.") self.returned_to_dc() print("returned_to_dc: Successfully fetched.") self.deleted() print("deleted: Successfully fetched.") self.closing() print("closing: Successfully fetched.") self.audit_recon() print("audit_recon: Successfully fetched.") self.reverted_returns() print("reverted_returns: Successfully fetched.") # @profile def concat(self): """ data fetching from database """ self.start_data_fetch() """ ## combine initial and received temp_l = select(p_l, :id, :barcode, :p => :o, :ptr) recon_l = vcat(o_l, temp_l) ## following handles inventory lying in inventory-1 but received later recon_l = remove_duplicates(recon_l, "o") recon_l = combine_cr(recon_l, cr_l) recon_l = combine_xin(recon_l, xin_l) recon_l = combine_xout(recon_l, xout_l) recon_l = combine_sold(recon_l, sold_l) recon_l = combine_ret(recon_l, ret_l) recon_l = combine_ar(recon_l, ar_l) recon_l = combine_rr(recon_l, rr_l) recon_l = leftjoin(recon_l, select(del_l, :id, :del), on = :id) recon_l = leftjoin(recon_l, select(c_l, :id, :c), on = :id) """ # """ combine initial and received and call it opening(o) """ # self.p_l.rename(columns={'p': 'o'}, inplace=True) # self.recon_l = remove_duplicates(self.o_l, f="o") self.recon_l = self.o_l # """ following handles inventory lying in inventory-1 but received later """ # self.recon_l = pd.concat([self.p_l, self.o_l], ignore_index=True) # self.recon_l = remove_duplicates(self.recon_l, "o") """ purchase """ self.recon_l = pd.merge(self.recon_l, self.p_l, on='id', how='outer') self.take_union() # """ purchase_return_deleted """ # self.recon_l = pd.merge(self.recon_l, self.prd_l, on='id', how='outer') # self.take_union() # # """ purchase_return_settled """ # self.recon_l = pd.merge(self.recon_l, self.prs_l, on='id', how='outer') # self.take_union() self.recon_l['prd'] = 0 self.recon_l['prs'] = 0 """combine_cr: following handles the case where inventory was stock transferred, after the start time and returned before end time """ self.recon_l = pd.merge(self.recon_l, self.cr_l, on='id', how='outer') self.take_union() """combine_xin: this will take care of stores own inventory coming back""" self.recon_l = pd.merge(self.recon_l, self.xin_l, on='id', how='outer') self.take_union() """combine_xout: this will take care of stores own inventory transferred out""" self.recon_l = pd.merge(self.recon_l, self.xout_l, on='id', how='outer') self.take_union() """combine_sold: this will take care of stores inventory sold """ self.recon_l = pd.merge(self.recon_l, self.sold_l, on='id', how='outer') self.take_union() """combine_ret: this will take care of stores inventory returned """ self.recon_l = pd.merge(self.recon_l, self.ret_l, on='id', how='outer') self.take_union() """combine_ar: """ self.recon_l = pd.merge(self.recon_l, self.ar_l, on='id', how='outer') self.take_union() """combine_rr: """ self.recon_l = pd.merge(self.recon_l, self.rr_l, on='id', how='outer') self.take_union() """ deleted """ self.recon_l = pd.merge(self.recon_l, self.del_l, on='id', how='left') self.take_union() """ closing """ self.recon_l = pd.merge(self.recon_l, self.c_l, on='id', how='left') self.take_union() """ calculate the error """ self.recon_l = self.recon_l.fillna(0) for col in ['id', 'o', 'p', 'prd', 'prs', 'cr', 'xin', 'xout', 'ret', 'sold', 'del', 'ar', 'rr', 'c', 'barcode']: self.recon_l[col] = pd.to_numeric(self.recon_l[col]) self.recon_l[col] = self.recon_l[col].astype('int', errors='raise') self.recon_l['e'] = self.recon_l['o'] + self.recon_l['p'] + self.recon_l['cr'] + \ self.recon_l['xin'] - \ self.recon_l['xout'] - \ self.recon_l['ret'] - self.recon_l['sold'] - self.recon_l['del'] + \ self.recon_l['ar'] + \ self.recon_l['rr'] - self.recon_l['c'] return self.recon_l
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/inventory/inventory_2.py
inventory_2.py
import numpy as np import datetime as dt """ Steps - 1. Get Auto short total time -> from creation to received at store 2. If marked as lost make it 7 days 3. Max LT capped at 7 days """ def lead_time(store_id, reset_date, db, schema, logger=None): end_date = str(( dt.datetime.strptime(reset_date, '%Y-%m-%d') - dt.timedelta(7)).date()) begin_date = str(( dt.datetime.strptime(reset_date, '%Y-%m-%d') - dt.timedelta(97)).date()) logger.info("Lead Time Calculation Starts") logger.info(f"SB Begin Date: {begin_date}, SB End Date: {end_date}") lead_time_query = f""" select "store-id" , "drug-id" , "type" , status , "created-to-delivery-hour" as "lt-hrs" from "{schema}"."as-ms" am where "as-ms" = 'AS' and "store-id" = {store_id} and date("created-at") <= '{end_date}' and date("created-at") >= '{begin_date}' and status not in ('failed', 'deleted') """ lead_time = db.get_df(lead_time_query) lead_time.columns = [c.replace('-', '_') for c in lead_time.columns] # classify all types into generic, ethical & others lead_time["type"] = np.where( lead_time["type"].isin(['ethical', 'high-value-ethical']), 'ethical', lead_time["type"]) lead_time["type"] = np.where(lead_time["type"].isin(['ethical', 'generic']), lead_time["type"], 'others') lead_time["lt_days"] = lead_time["lt_hrs"] / 24 lead_time["lt_days"] = lead_time["lt_days"].fillna(7) lead_time["lt_days"] = np.where(lead_time["lt_days"] > 7, 7, lead_time["lt_days"]) lt_store_mean = np.ceil(lead_time.lt_days.mean()) lt_store_std = round(lead_time.lt_days.std(ddof=0), 2) lt_drug = lead_time.groupby('drug_id'). \ agg({'lt_days': [np.mean, np.std]}).reset_index() lt_drug.columns = ['drug_id', 'lead_time_mean', 'lead_time_std'] lt_drug['lead_time_std'] = np.where( lt_drug['lead_time_std'].isin([0, np.nan]), lt_store_std, lt_drug['lead_time_std']) lt_drug["lead_time_mean"] = np.ceil(lt_drug["lead_time_mean"]) lt_drug['lead_time_std'] = round(lt_drug['lead_time_std'], 2) logger.info("Lead Time Calculation Completed") return lt_drug, lt_store_mean, lt_store_std
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/lead_time.py
lead_time.py
import numpy as np def compare_df(df_pre, df_post, logger, cols_to_compare=None): num_drugs = len(df_pre["drug_id"].unique()) if num_drugs != df_pre.shape[0]: logger.info("WARNING: Duplicate drug entries present!") if cols_to_compare is None: cols_to_compare = ["safety_stock", "reorder_point", "order_upto_point"] df_pre = df_pre[["drug_id"] + cols_to_compare] df_post = df_post[["drug_id"] + cols_to_compare] df_comb = df_pre.merge(df_post, on="drug_id", how="outer", suffixes=('_pre', '_post')) df_comb["changed"] = 'N' for col in cols_to_compare: df_comb["changed"] = np.where( df_comb[col+str('_pre')] != df_comb[col+str('_post')], 'Y', df_comb["changed"]) drugs_corrected = list(df_comb.loc[df_comb["changed"] == 'Y']["drug_id"].unique()) return drugs_corrected def add_correction_flag(df, corr_drug_list, corr_flag): if "correction_flags" not in df.columns: df["correction_flags"] = "" df["correction_flags"] = df["correction_flags"].fillna("") df["correction_flags"] = np.where( (df["drug_id"].isin(corr_drug_list)) & (df["correction_flags"] != ""), df["correction_flags"] + '-' + corr_flag, df["correction_flags"]) df["correction_flags"] = np.where( (df["drug_id"].isin(corr_drug_list)) & (df["correction_flags"] == ""), corr_flag, df["correction_flags"]) return df def compare_df_comb(df_pre, df_post, logger, cols_to_compare=None): num_drugs = len(df_pre["comb_id"].unique()) if num_drugs != df_pre.shape[0]: logger.info("WARNING: Duplicate comb entries present!") if cols_to_compare is None: cols_to_compare = ["safety_stock", "reorder_point", "order_upto_point"] df_pre = df_pre[["comb_id"] + cols_to_compare] df_post = df_post[["comb_id"] + cols_to_compare] df_comb = df_pre.merge(df_post, on="comb_id", how="outer", suffixes=('_pre', '_post')) df_comb["changed"] = 'N' for col in cols_to_compare: df_comb["changed"] = np.where( df_comb[col+str('_pre')] != df_comb[col+str('_post')], 'Y', df_comb["changed"]) comb_corrected = list(df_comb.loc[df_comb["changed"] == 'Y']["comb_id"].unique()) return comb_corrected def add_correction_flag_comb(df, corr_comb_list, corr_flag): if "correction_flags" not in df.columns: df["correction_flags"] = "" df["correction_flags"] = df["correction_flags"].fillna("") df["correction_flags"] = np.where( (df["comb_id"].isin(corr_comb_list)) & (df["correction_flags"] != ""), df["correction_flags"] + '-' + corr_flag, df["correction_flags"]) df["correction_flags"] = np.where( (df["comb_id"].isin(corr_comb_list)) & (df["correction_flags"] == ""), corr_flag, df["correction_flags"]) return df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/correction_flag.py
correction_flag.py
platform_prod = 0 store_col = 'store_id' drug_col = 'drug_id' comb_col = 'comb_id' date_col = 'date' target_col = 'actual_demand' key_col = 'ts_id' eol_cutoff = 13 mature_cutoff = 52 forecast_horizon = 4 flag_weather = 0 flag_seasonality_index = { 'ctb': 0, 'lgbm': 0, 'xgb': 0 } flag_sample_weights = { 'ctb': 0, 'lgbm': 0, 'xgb': 0 } num_shift_lag = 3 lags = [1] add_lags_diff_flag = 1 lags_diff = [(1, 2)] add_monthly_lags_flag = 1 # monthly_lags = [1, 2, 3, 6, 12] monthly_lags = [1, 2, 3, 6] rolling_time_feat = { 'lags': [5, 13, 26, 53], 'agg_func_dict': {'min', 'max', 'mean', 'median', 'std'} } ewma_lags = [4, 8] # trend_lags = [13, 26, 53] trend_lags = [13, 26] perc_noise = [0.2, 0.5, 0.1] # fc_cols = ['preds_xgb_rf_target','preds_cb_target','preds_lgb','AE', 'croston_fcst'] # models = ['croston', 'prophet', 'ETS', 'MA', 'AE_ts', 'lgbm'] run_ml_flag = 1 runs_ts_flag = 1 run_ts_4w_agg_flag = 1 run_ml_4w_agg_flag = 0 models_un_agg = ['ETS_Auto', 'ETS_12w', 'MA', 'LGBM'] models_agg = ['ETS_4w_agg', 'LGBM_4w_agg'] local_testing = 0 models = ['LGBM'] default_model = 'LGBM' # lgbm_params = { # 'objective': 'regression_l1', # 'learning_rate': 0.01, # 'max_bin': 404, # 'num_leaves': 1000, # 'lambda_l1': 0.003657033571790936, # 'lambda_l2': 1.203092568431234, # 'cat_l2': 5.192935907692467, # 'cat_smooth': 9.67794952387374, # 'feature_fraction': 0.997997647335764, # 'bagging_fraction': 0.9162909273820165, # 'bagging_freq': 7, # 'min_data_in_leaf': 33, # 'min_child_samples': 5, # 'metric': 'rmse', # 'boosting_type': 'gbdt', # 'max_depth': -1, # 'random_state': 42, # 'force_row_wise': True, # 'verbose': -1, # 'num_iterations': 1500 # } # fc_cols = ['croston_fcst', 'ETS_fcst', 'ma_fcst','prophet_fcst', 'AE_ts_fcst'] # cols_rename = { # 'preds_xgb_rf_target': 'fcst_1', # 'preds_cb_target': 'fcst_2', # 'preds_lgb':'fcst_3', # 'AE':'fcst_4', # 'croston_fcst':'fcst_5' # } # cols_rename = { # 'croston_fcst': 'fcst_1', # 'ETS_fcst': 'fcst_2', # 'ma_fcst':'fcst_3', # 'prophet_fcst':'fcst_4', # 'AE_ts_fcst':'fcst_5' # }
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/config_ipc_combination.py
config_ipc_combination.py
import pandas as pd import numpy as np def post_processing(store_id, safety_stock_df, seg_df_comb_lvl, seg_df_drug_lvl, schema, db, logger): seg_df_comb_lvl[['store_id', 'comb_id']] = seg_df_comb_lvl['ts_id'].str.split('_', expand=True) seg_df_drug_lvl[['store_id', 'drug_id']] = seg_df_drug_lvl['ts_id'].str.split('_', expand=True) seg_df_drug_lvl['store_id'] = seg_df_drug_lvl['store_id'].astype(int) seg_df_drug_lvl['drug_id'] = seg_df_drug_lvl['drug_id'].astype(int) list_drugs = safety_stock_df['drug_id'].tolist() str_drugs = str(list_drugs).replace('[', '(').replace(']', ')') q_drug_info = f""" select d.id as drug_id, "drug-name" as drug_name, type, composition from "{schema}".drugs d where d.id in {str_drugs} """ df_drug_info = db.get_df(q_drug_info) # get store name q_store_name = f""" select name from "{schema}".stores where id = {store_id} """ store_name = db.get_df(q_store_name)['name'][0] # get current inventory and avg_ptr info q_inv = f""" select "drug-id" as drug_id, sum("locked-quantity"+quantity+ "locked-for-audit"+"locked-for-transfer"+"locked-for-check"+ "locked-for-return") as curr_inventory from "{schema}"."inventory-1" i where "store-id" = {store_id} and "drug-id" in {str_drugs} group by "drug-id" """ df_inv = db.get_df(q_inv) q_avg_ptr_store = f""" select "drug-id" as drug_id, avg(ptr) as avg_ptr from "{schema}"."inventory-1" i where "store-id" = {store_id} and "drug-id" in {str_drugs} and DATEDIFF(day, date("created-at"), current_date) < 365 group by "drug-id" """ df_avg_ptr_store = db.get_df(q_avg_ptr_store) q_avg_ptr_sys = f""" select "drug-id" as drug_id, "avg-ptr" as avg_ptr_sys from "{schema}"."drug-std-info" dsi """ df_avg_ptr_sys = db.get_df(q_avg_ptr_sys) # add all to ss table safety_stock_df['store_id'] = store_id safety_stock_df['store_name'] = store_name safety_stock_df = safety_stock_df.merge( df_drug_info, on='drug_id', how='left') safety_stock_df = safety_stock_df.merge( df_inv, on='drug_id', how='left') safety_stock_df = safety_stock_df.merge( df_avg_ptr_store, on='drug_id', how='left') safety_stock_df = safety_stock_df.merge( df_avg_ptr_sys, on='drug_id', how='left') # replace NA in avg_ptr with system-avg_ptr safety_stock_df["avg_ptr"] = np.where(safety_stock_df["avg_ptr"].isna(), safety_stock_df["avg_ptr_sys"], safety_stock_df["avg_ptr"]) safety_stock_df.drop("avg_ptr_sys", axis=1, inplace=True) safety_stock_df["avg_ptr"] = safety_stock_df["avg_ptr"].astype(float) # calculate DOH safety_stock_df['fcst'] = safety_stock_df['fcst'].fillna(0) safety_stock_df['safety_stock_days'] = np.where( (safety_stock_df['fcst'] == 0) | (safety_stock_df['safety_stock'] == 0), 0, safety_stock_df['safety_stock'] / (safety_stock_df['fcst'] / 28)) safety_stock_df['reorder_days'] = np.where( (safety_stock_df['fcst'] == 0) | (safety_stock_df['reorder_point'] == 0), 0, safety_stock_df['reorder_point'] / (safety_stock_df['fcst'] / 28)) safety_stock_df['order_upto_days'] = np.where( (safety_stock_df['fcst'] == 0) | (safety_stock_df['order_upto_point'] == 0), 0, safety_stock_df['order_upto_point'] / (safety_stock_df['fcst'] / 28)) # calculate max-value, to-order-qty and to-order-val safety_stock_df["max_value"] = safety_stock_df['order_upto_point'] * \ safety_stock_df['avg_ptr'] safety_stock_df['curr_inventory'] = safety_stock_df['curr_inventory'].fillna(0) safety_stock_df['to_order_quantity'] = np.where( safety_stock_df['curr_inventory'] <= safety_stock_df['reorder_point'], safety_stock_df['order_upto_point'] - safety_stock_df['curr_inventory'], 0) safety_stock_df['to_order_value'] = safety_stock_df['to_order_quantity'] * \ safety_stock_df['avg_ptr'] safety_stock_df = safety_stock_df[[ 'store_id', 'store_name', 'comb_id', 'fcst_source', 'map_type', 'fcst_wt', 'bucket', 'model', 'drug_id', 'drug_name', 'type', 'composition', 'fcst', 'std', 'lead_time_mean', 'lead_time_std', 'safety_stock', 'reorder_point', 'order_upto_point', 'correction_flags', 'curr_inventory', 'avg_ptr', 'safety_stock_days', 'reorder_days', 'order_upto_days', 'max_value', 'to_order_quantity', 'to_order_value']] # formatting segmentation table seg_df_comb_lvl.rename(columns={'std': 'sales_std', 'cov': 'sales_cov', 'Mixed': 'bucket', 'Group': 'group', 'PLC Status L1': 'plc_status', 'ADI': 'adi', 'total_LY_sales': 'total_ly_sales', 'start_date': 'sale_start_date'}, inplace=True) seg_df_comb_lvl['sale_start_date'] = seg_df_comb_lvl['sale_start_date'].dt.date seg_df_comb_lvl['store_name'] = store_name seg_df_drug_lvl.rename(columns={'std': 'sales_std', 'cov': 'sales_cov', 'Mixed': 'bucket', 'Group': 'group', 'PLC Status L1': 'plc_status', 'ADI': 'adi', 'total_LY_sales': 'total_ly_sales', 'start_date': 'sale_start_date'}, inplace=True) seg_df_drug_lvl['sale_start_date'] = seg_df_drug_lvl[ 'sale_start_date'].dt.date seg_df_drug_lvl['store_name'] = store_name return safety_stock_df, seg_df_comb_lvl, seg_df_drug_lvl
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/post_processing.py
post_processing.py
import pandas as pd import numpy as np from zeno_etl_libs.utils.ipc_pmf.lead_time import lead_time from zeno_etl_libs.utils.ipc_pmf.heuristics.sl_heuristics import calculate_ss from zeno_etl_libs.utils.ipc_pmf.heuristics.ss_doh_heuristics import ss_doh_min_cap, ss_doh_max_cap from zeno_etl_libs.utils.ipc2.helpers.correction_flag import compare_df, \ add_correction_flag from zeno_etl_libs.utils.ipc2.heuristics.ipcv4_heuristics import v4_corrections def safety_stock_calc(df_fcst_drug, store_id, reset_date, v4_active_flag, drug_type_list_v4, drug_sales_latest_12w, schema, db, logger): fcst_weeks = 4 order_freq = 2 # ========================= LEAD TIME CALCULATIONS ========================= lt_drug, lt_store_mean, lt_store_std = lead_time( store_id, reset_date, db, schema, logger) safety_stock_df = df_fcst_drug.merge( lt_drug[['drug_id', 'lead_time_mean', 'lead_time_std']], how='left', on='drug_id') safety_stock_df['lead_time_mean'].fillna(lt_store_mean, inplace=True) safety_stock_df['lead_time_std'].fillna(lt_store_std, inplace=True) # ==================== SS, ROP, OUP CALCULATION BEGINS ===================== # impute store_std for cases where store-drug std<1 safety_stock_df['lead_time_std'] = np.where( safety_stock_df['lead_time_std'] < 1, lt_store_std, safety_stock_df['lead_time_std']) # calculate SS safety_stock_df = calculate_ss(safety_stock_df, fcst_weeks, logger) # MIN-SS-DOH CAPPING logger.info(f"DOH1 Correction starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = ss_doh_min_cap(safety_stock_df) df_post_corr = safety_stock_df.copy() logger.info(f"Sum SS before: {df_pre_corr['safety_stock'].sum()}") logger.info(f"Sum SS after: {df_post_corr['safety_stock'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['safety_stock']) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'DOH1') # MAX-SS-DOH CAPPING logger.info(f"DOH2 Correction starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = ss_doh_max_cap(safety_stock_df) df_post_corr = safety_stock_df.copy() logger.info(f"Sum SS before: {df_pre_corr['safety_stock'].sum()}") logger.info(f"Sum SS after: {df_post_corr['safety_stock'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['safety_stock']) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'DOH2') # calculate ROP - add lead time demand to SS safety_stock_df['reorder_point'] = safety_stock_df.apply( lambda row: np.round( row['lead_time_mean'] * row['fcst'] / fcst_weeks / 7), axis=1) + safety_stock_df['safety_stock'] # calculate OUP - add order_freq demand to ROP safety_stock_df['order_upto_point'] = ( safety_stock_df['reorder_point'] + np.round( np.where( # if rounding off give 0, increase it to 4-week forecast (safety_stock_df['reorder_point'] + safety_stock_df[ 'fcst'] * order_freq / fcst_weeks / 7 < 0.5) & (safety_stock_df['fcst'] > 0), safety_stock_df['fcst'], safety_stock_df['fcst'] * order_freq / fcst_weeks / 7)) ) # ========== CORRECTION PLUGINS (REWORK SS,ROP,OUP BASED ON REQ) =========== final_ss_df = safety_stock_df.copy() if v4_active_flag == 'Y': logger.info("IPC V4 Correction starts") df_pre_corr = final_ss_df.copy() final_ss_df = v4_corrections(final_ss_df, drug_type_list_v4, db, schema) df_post_corr = final_ss_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'V4') # correct cases where ROP=OUP df_pre_corr = final_ss_df.copy() final_ss_df['order_upto_point'] = np.where( ((final_ss_df['order_upto_point'] > 0) & (final_ss_df['reorder_point'] == final_ss_df['order_upto_point'])), final_ss_df['reorder_point'] + 1, final_ss_df['order_upto_point']) df_post_corr = final_ss_df.copy() corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'OUP_CORR1') # OUP < STD Qty, STD Qty correction df_pre_corr = final_ss_df.copy() final_ss_df = std_qty_oup(final_ss_df, schema, db) df_post_corr = final_ss_df.copy() corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'STD_CORR') # Min OUP=2 for recently sold df_pre_corr = final_ss_df.copy() final_ss_df = min_oup_recency(final_ss_df, drug_sales_latest_12w) df_post_corr = final_ss_df.copy() corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'OUP_CORR2') return final_ss_df def std_qty_oup(df, schema, db): list_drugs = df['drug_id'].tolist() if list_drugs: str_drugs = str(list_drugs).replace('[', '(').replace(']', ')') else: str_drugs = '(0)' q_std_qty = f""" select "drug-id" , "std-qty" from "{schema}"."drug-std-info" dsi where "drug-id" in {str_drugs} """ df_std_qty = db.get_df(q_std_qty) df_std_qty.columns = [c.replace('-', '_') for c in df_std_qty.columns] df = df.merge(df_std_qty, on='drug_id', how='left') df['std_qty'] = df['std_qty'].fillna(1) df_to_corr = df.loc[df['order_upto_point'] < df['std_qty']] df_not_to_corr = df.loc[~(df['order_upto_point'] < df['std_qty'])] df_to_corr['order_upto_point'] = df_to_corr['std_qty'] df_to_corr['reorder_point'] = np.where(df_to_corr['order_upto_point'] > 1, round(df_to_corr['std_qty'] / 2), 0) df = df_not_to_corr.append(df_to_corr) df.drop('std_qty', axis=1, inplace=True) return df def min_oup_recency(df, drug_sales_latest_12w): drug_sales_latest_12w['latest_28d_demand'] = np.round( drug_sales_latest_12w['actual_demand'] / 3) df = df.merge(drug_sales_latest_12w[['drug_id', 'latest_28d_demand']], on='drug_id', how='left') df_to_corr = df.loc[(df['order_upto_point'] == 1) & (df['fcst'] > 0) & (df['latest_28d_demand'] > 0)] df_not_to_corr = df.loc[~((df['order_upto_point'] == 1) & (df['fcst'] > 0) & (df['latest_28d_demand'] > 0))] df_to_corr['order_upto_point'] = 2 df_to_corr['reorder_point'] = 1 df = df_not_to_corr.append(df_to_corr) df.drop('latest_28d_demand', axis=1, inplace=True) return df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/safety_stock.py
safety_stock.py
import pandas as pd import numpy as np import datetime as dt import time from dateutil.relativedelta import relativedelta from zeno_etl_libs.utils.ipc2.engine.data_load import LoadData from zeno_etl_libs.utils.ipc2.engine.forecast import Forecast from zeno_etl_libs.utils.ipc2.engine.feat_engg import Feature_Engg from zeno_etl_libs.utils.ipc_pmf.ipc_combination_fcst.engine.data_pre_process import PreprocessData from zeno_etl_libs.utils.ipc_pmf.ipc_combination_fcst.engine.segmentation import Segmentation from zeno_etl_libs.utils.ipc_pmf.ipc_combination_fcst.engine.ts_fcst import TS_forecast from zeno_etl_libs.utils.ipc_pmf.config_ipc_combination import * def ipc_comb_forecast(store_id, reset_date, type_list, schema, db, logger): store_id_list = ("({})").format(store_id) # for sql pass last_date = dt.date(day=1, month=4, year=2019) # max history # define empty variables in case of fail weekly_fcst = pd.DataFrame() ts_fcst = pd.DataFrame() ts_fcst_cols = [] logger.info("Data Loading Started...") data_load_obj = LoadData() ( drug_list, sales_history, cfr_pr, calendar, first_bill_date ) = data_load_obj.load_all_input( type_list=type_list, store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, schema=schema, db=db ) # consider only drugs in specified type drug_list = drug_list["drug_id"].unique().tolist() sales_history = sales_history.loc[sales_history[drug_col].isin(drug_list)] cfr_pr = cfr_pr.loc[cfr_pr[drug_col].isin(drug_list)] # ======================================================================== # AGGREGATE DRUG-LEVEL DEMAND TO COMBINATION LEVEL DEMAND # ======================================================================== sales_history, cfr_pr, comb_list = drugs_to_comb_gps(sales_history, cfr_pr, schema, db) # ======================================================================== logger.info("Data Pre Processing Started...") data_prep_obj = PreprocessData() ( comb_sales_4w_wtd, comb_sales_latest_12w, train_4w_agg_vald_max_date, sales_pred_4w_agg_vald, train_vald_max_date, sales_pred_vald, sales_4w_agg, sales_pred_4w_agg, sales, sales_pred, cal_sales, sales_daily ) = data_prep_obj.preprocess_all( sales=sales_history, comb_list=comb_list, cfr_pr=cfr_pr, calendar=calendar, first_bill_date=first_bill_date, last_date=last_date ) train_max_date = sales[date_col].max() end_date = sales_pred[date_col].max() logger.info("Segmentation Started...") seg_obj = Segmentation() seg_df = seg_obj.get_weekly_segmentation( df=sales.copy(deep=True), df_sales_daily=sales_daily.copy(deep=True), train_max_date=train_max_date, end_date=end_date ) seg_df['reset_date'] = str(reset_date) # ======================================================================== # VALIDATION AND BEST MODEL FOR BUCKET SELECTION # ======================================================================== # Find validation period actual demand valid_start_date = train_max_date - relativedelta(weeks=4) valid_period_demand = sales.loc[sales[date_col] > valid_start_date] valid_period_demand = valid_period_demand.groupby(key_col, as_index=False).agg({target_col: "sum"}) min_history_date_validation = valid_start_date - relativedelta(weeks=4) df_min_date = sales_pred_vald.groupby(key_col, as_index=False).agg({date_col: 'min'}) df_min_date['min_allowed_date'] = min_history_date_validation ts_ids_to_drop = df_min_date.loc[df_min_date['min_allowed_date']<df_min_date[date_col]][key_col].tolist() # Perform Un-Aggregated TS Forecast merged_df1 = pd.merge(sales_pred_vald, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] merged_df1 = merged_df1[~merged_df1['ts_id'].isin(ts_ids_to_drop)] # calculate bucket wise wmape valid_wmape = {'Model': []} for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: valid_wmape[bucket] = [] if runs_ts_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast( df=merged_df1.copy(), train_max_date=train_vald_max_date, forecast_start=train_vald_max_date + relativedelta(weeks=1)) for model in ts_fcst_cols: df_model = ts_fcst[[key_col, 'Mixed', model]] df_model = df_model.groupby(key_col, as_index=False).agg({'Mixed': 'first', model: 'sum'}) df_model = df_model.merge(valid_period_demand, on=key_col, how='left') df_model['error'] = df_model[model] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg({'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error']/df_bucket_wmape[target_col] valid_wmape['Model'].append(model) for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket]['wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) if run_ml_flag == 1: forecast_start = train_vald_max_date + relativedelta(weeks=1) weekly_fcst = run_LGBM(merged_df1, train_vald_max_date, forecast_start, logger, is_validation=True) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg({'preds_lgb': 'sum'}) df_model = lgbm_fcst.merge(valid_period_demand, on=key_col, how='left') df_model = df_model.merge(seg_df[[key_col, 'Mixed']], how='left', on='ts_id') df_model['error'] = df_model['preds_lgb'] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg( {'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error'] / df_bucket_wmape[target_col] valid_wmape['Model'].append('LGBM') for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket]['wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) # Perform Aggregated TS Forecast merged_df1 = pd.merge(sales_pred_4w_agg_vald, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] merged_df1 = merged_df1[~merged_df1['ts_id'].isin(ts_ids_to_drop)] if run_ts_4w_agg_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast_agg( df=merged_df1.copy(), train_max_date=train_4w_agg_vald_max_date, forecast_start=train_4w_agg_vald_max_date + relativedelta(weeks=1)) for model in ts_fcst_cols: df_model = ts_fcst[[key_col, 'Mixed', model]] df_model = df_model.groupby(key_col, as_index=False).agg( {'Mixed': 'first', model: 'sum'}) df_model = df_model.merge(valid_period_demand, on=key_col, how='left') df_model['error'] = df_model[model] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg( {'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error'] / df_bucket_wmape[target_col] valid_wmape['Model'].append(model) for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket]['wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) if run_ml_4w_agg_flag == 1: forecast_start = train_4w_agg_vald_max_date + relativedelta(weeks=4) weekly_fcst = run_LGBM(merged_df1, train_4w_agg_vald_max_date, forecast_start, logger, is_validation=True, agg_4w=True) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg( {'preds_lgb': 'sum'}) df_model = lgbm_fcst.merge(valid_period_demand, on=key_col, how='left') df_model = df_model.merge(seg_df[[key_col, 'Mixed']], how='left', on='ts_id') df_model['error'] = df_model['preds_lgb'] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg( {'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error'] / \ df_bucket_wmape[target_col] valid_wmape['Model'].append('LGBM_4w_agg') for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket][ 'wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) # ======================================================================== # Choose best model based on lowest wmape # ======================================================================== best_bucket_model = {} for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: min_wmape = min(valid_wmape[bucket]) if min_wmape != np.inf: best_bucket_model[bucket] = valid_wmape['Model'][valid_wmape[bucket].index(min_wmape)] else: best_bucket_model[bucket] = default_model # default # ======================================================================== # TRAINING AND FINAL FORECAST # ======================================================================== # Perform Un-Aggregated TS Forecast merged_df1 = pd.merge(sales_pred, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] if runs_ts_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast( df=merged_df1.copy(), train_max_date=train_max_date, forecast_start=train_max_date + relativedelta(weeks=2)) final_fcst = pd.DataFrame() for model_fcst in ts_fcst_cols: df_model_fcst = ts_fcst.groupby(key_col, as_index=False).agg({model_fcst: 'sum'}) df_model_fcst.rename({model_fcst: 'fcst'}, axis=1, inplace=True) df_model_fcst['model'] = model_fcst final_fcst = final_fcst.append(df_model_fcst) if run_ml_flag == 1: forecast_start = train_max_date + relativedelta(weeks=2) weekly_fcst = run_LGBM(merged_df1, train_max_date, forecast_start, logger, is_validation=False) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg({'preds_lgb': 'sum'}) lgbm_fcst.rename({'preds_lgb': 'fcst'}, axis=1, inplace=True) lgbm_fcst['model'] = 'LGBM' final_fcst = final_fcst.append(lgbm_fcst) # Perform Aggregated TS Forecast merged_df1 = pd.merge(sales_pred_4w_agg, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] if run_ts_4w_agg_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast_agg( df=merged_df1.copy(), train_max_date=train_max_date, forecast_start=train_max_date + relativedelta(weeks=2)) for model_fcst in ts_fcst_cols: df_model_fcst = ts_fcst.groupby(key_col, as_index=False).agg( {model_fcst: 'sum'}) df_model_fcst.rename({model_fcst: 'fcst'}, axis=1, inplace=True) df_model_fcst['model'] = model_fcst final_fcst = final_fcst.append(df_model_fcst) if run_ml_4w_agg_flag == 1: forecast_start = train_max_date + relativedelta(weeks=2) weekly_fcst = run_LGBM(merged_df1, train_max_date, forecast_start, logger, is_validation=False, agg_4w=True) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg( {'preds_lgb': 'sum'}) lgbm_fcst.rename({'preds_lgb': 'fcst'}, axis=1, inplace=True) lgbm_fcst['model'] = 'LGBM_4w_agg' final_fcst = final_fcst.append(lgbm_fcst) final_fcst = final_fcst.merge(seg_df[[key_col, 'Mixed']], on=key_col, how='left') final_fcst.rename({'Mixed': 'bucket'}, axis=1, inplace=True) # Choose buckets forecast of best models as final forecast final_selected_fcst = pd.DataFrame() for bucket in best_bucket_model.keys(): df_selected = final_fcst.loc[(final_fcst['bucket'] == bucket) & (final_fcst['model'] == best_bucket_model[bucket])] final_selected_fcst = final_selected_fcst.append(df_selected) # add comb rejected due to recent sales list_all_comb = final_fcst[key_col].unique().tolist() list_all_final_comb = final_selected_fcst[key_col].unique().tolist() list_comb_rejects = list(set(list_all_comb)-set(list_all_final_comb)) comb_fcst_to_add = final_fcst.loc[(final_fcst[key_col].isin(list_comb_rejects)) & (final_fcst["model"] == default_model)] final_selected_fcst = final_selected_fcst.append(comb_fcst_to_add) final_selected_fcst = final_selected_fcst.merge(seg_df[[key_col, 'std']], on=key_col, how='left') final_selected_fcst[[store_col, comb_col]] = final_selected_fcst['ts_id'].str.split('_', expand=True) final_selected_fcst[store_col] = final_selected_fcst[store_col].astype(int) model_name_map = {'preds_ETS_12w': 'ETS_12w', 'preds_ma': 'MA', 'preds_ETS_auto': 'ETS_auto', 'preds_ETS_4w_auto': 'ETS_4w_auto'} final_selected_fcst["model"] = final_selected_fcst["model"].map( model_name_map).fillna(final_selected_fcst["model"]) return final_selected_fcst, seg_df, comb_sales_latest_12w, comb_sales_4w_wtd def run_LGBM(merged_df1, train_max_date, forecast_start, logger, is_validation=False, agg_4w=False): start_time = time.time() merged_df1['All'] = 'All' slice_col = 'All' forecast_volume = merged_df1[merged_df1[date_col] > train_max_date][ target_col].sum() assert forecast_volume == 0 logger.info( "forecast start {} total volume: {}".format(forecast_start, forecast_volume) ) forecast_df = pd.DataFrame() validation_df = pd.DataFrame() weekly_fcst = pd.DataFrame() if agg_4w: end_range = 2 else: end_range = 5 for i in range(1, end_range): if is_validation: num_shift_lags = i else: num_shift_lags = i + 1 # for group_name in merged_df1[slice_col].dropna.unique(): # slice_col = 'Mixed' # for groups in [['AW', 'BW', 'CW', 'DW'], ['AX', 'BX', 'CX', 'DX'], ['AY', 'BY', 'CY', 'DY'], ['AZ', 'BZ', 'CZ', 'DZ']]: for groups in ['All']: logger.info('Group: {}'.format(groups)) logger.info("Feature Engineering Started...") feat_df = pd.DataFrame() for one_df in [merged_df1]: feat_engg_obj = Feature_Engg() one_feat_df = feat_engg_obj.feat_agg( one_df[ one_df[slice_col] == groups ].drop(slice_col, axis=1).copy(deep=True), train_max_date=train_max_date, num_shift_lag=num_shift_lags ) feat_df = pd.concat([one_feat_df, feat_df]) if pd.DataFrame(feat_df).empty: continue logger.info( "Forecasting Started for {}...".format(forecast_start)) forecast_obj = Forecast() fcst_df, val_df, Feature_Imp_all = forecast_obj.get_STM_forecast( feat_df.copy(deep=True), forecast_start=forecast_start, num_shift_lags=num_shift_lags ) forecast_df = pd.concat([forecast_df, fcst_df], axis=0) validation_df = pd.concat([validation_df, val_df]) ml_fc_cols = [i for i in forecast_df.columns if i.startswith('preds_')] # forecast_df['AE'] = forecast_df[ml_fc_cols].mean(axis=1) end_time = time.time() logger.info( "total time for {} forecast: {}" .format(forecast_start, end_time - start_time) ) forecast_start = forecast_start + relativedelta(weeks=1) # weekly_fcst = pd.concat([weekly_fcst, forecast_df]) return forecast_df def drugs_to_comb_gps(sales_history, cfr_pr, schema, db): """map all drugs to its combination groups""" q_drug_comp_hash = f""" select "drug-id" as drug_id, "group" as comb_id from "{schema}"."drug-substitution-mapping" dsm """ df_drug_comb = db.get_df(q_drug_comp_hash) sales_history = sales_history.merge(df_drug_comb, on="drug_id", how="left") sales_history = sales_history.groupby(["store_id", "comb_id", "sales_date"], as_index=False).agg({"net_sales_quantity": "sum"}) cfr_pr = cfr_pr.merge(df_drug_comb, on="drug_id", how="left") cfr_pr = cfr_pr.groupby(["store_id", "comb_id", "shortbook_date"], as_index=False).agg({"loss_quantity": "sum"}) comb_list = df_drug_comb[comb_col].unique().tolist() return sales_history, cfr_pr, comb_list
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_combination_fcst/forecast_main.py
forecast_main.py
import pandas as pd import numpy as np import datetime as dt from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet from zeno_etl_libs.utils.ipc_pmf.config_ipc_combination import * def fcst_comb_drug_map(store_id, reset_date, comb_fcst_df, drug_fcst_df, type_list_comb_lvl, schema, db, logger): # Round off forecast values comb_fcst_df['fcst'] = np.round(comb_fcst_df['fcst']) comb_fcst_df = comb_fcst_df.loc[comb_fcst_df['fcst'] > 0] # Read assortment from GSheet gs = GoogleSheet() spreadsheet_id = "1tFHCTr3CHdb0UOFseK_ntjAUJSHQHcjLmysPPCWRM04" ast_data = gs.download(data={ "spreadsheet_id": spreadsheet_id, "sheet_name": "Sheet1", "listedFields": []}) df_assortment = pd.DataFrame(ast_data) df_assortment.columns = [c.replace('-', '_') for c in df_assortment.columns] df_assortment[drug_col] = df_assortment[drug_col].astype(int) df_assortment['drug_name'] = df_assortment['drug_name'].astype(str) df_assortment['count'] = 1 df_assortment_comb = df_assortment.loc[df_assortment['type'].isin(type_list_comb_lvl)] # Read combinations and corresponding composition list_unq_comb = comb_fcst_df[comb_col].tolist() if list_unq_comb: str_unq_comb = str(list_unq_comb).replace('[', '(').replace(']', ')') else: str_unq_comb = '(0)' q_comb_drug = f""" select dsm."drug-id" as drug_id, dsm."group" as comb_id, d."drug-name" as drug_name, d.type, d.composition from "{schema}"."drug-substitution-mapping" dsm left join "{schema}".drugs d on dsm."drug-id" = d.id where dsm."group" in {str_unq_comb} """ df_comb_drug = db.get_df(q_comb_drug) # Get all mapping cases merge_comb_drug = df_comb_drug[[drug_col, comb_col]].merge( df_assortment_comb[[drug_col, 'drug_name', 'count']], on=drug_col, how="outer") count_comp_drugs = merge_comb_drug.groupby(comb_col, as_index=False).agg({'count': 'sum'}) list_comb_one_one = count_comp_drugs[count_comp_drugs['count'] == 1][comb_col].tolist() list_comb_one_many = count_comp_drugs[count_comp_drugs['count'] > 1][comb_col].tolist() list_comb_one_none = count_comp_drugs[count_comp_drugs['count'] == 0][comb_col].tolist() # Allocate forecast to drugs df_assortment_merge = df_assortment_comb.merge(df_comb_drug, on=drug_col, how='left') list_drug_with_comb_fcst = df_assortment_merge.loc[df_assortment_merge[comb_col].notna()][drug_col].tolist() df_all_comb = comb_fcst_df.merge(df_assortment_merge, on=comb_col, how='left') df_all_comb = df_all_comb[[store_col, comb_col, 'bucket', 'model', drug_col, 'fcst', 'std', 'correction_flags']] df_fcst_final = pd.DataFrame() # Case 1: One-One, direct assign df_temp = df_all_comb.loc[df_all_comb[comb_col].isin(list_comb_one_one)] df_temp['fcst_wt'] = 1 df_temp['map_type'] = 'one-one' df_temp['fcst_source'] = 'combination_fcst' df_fcst_final = df_fcst_final.append(df_temp) df_one_one = df_temp.copy() df_one_one = df_one_one.merge(df_assortment_comb, on=drug_col, how='left') df_one_one.drop('count', axis=1, inplace=True) # Case 2: One-Many, assign based on past month sales contribution df_temp = df_all_comb.loc[df_all_comb[comb_col].isin(list_comb_one_many)] df_temp = drug_sales_multiplier(df_temp, store_id, reset_date, schema, db) df_one_many = df_temp.copy() df_temp.drop(['sales_90d', 'comb_sales_90d'], axis=1, inplace=True) df_temp['fcst'] = df_temp['fcst'] * df_temp['fcst_wt'] df_temp['std'] = df_temp['std'] * df_temp['fcst_wt'] df_temp['map_type'] = 'one-many' df_temp['fcst_source'] = 'combination_fcst' df_fcst_final = df_fcst_final.append(df_temp) df_one_many = df_one_many.merge(df_assortment_comb, on=drug_col, how='left') df_one_many.drop('count', axis=1, inplace=True) # Case 3: One-None, to send df_one_none = df_all_comb.loc[df_all_comb[comb_col].isin(list_comb_one_none)] df_one_none.drop(drug_col, axis=1, inplace=True) df_one_none = df_one_none.merge(df_comb_drug, on=comb_col, how='left') df_one_none = drug_sales_multiplier(df_one_none, store_id, reset_date, schema, db) df_one_none = df_one_none.loc[df_one_none['sales_90d'] > 0] df_one_none.drop('fcst_wt', axis=1, inplace=True) # Case 4: No Comb - Drugs, to map with drug-level-fcst df_none_one = df_assortment.loc[~df_assortment[drug_col].isin(list_drug_with_comb_fcst)] df_none_one.drop('count', axis=1, inplace=True) # get drug-combination groups list_drugs = df_none_one[drug_col].tolist() if list_drugs: str_list_drugs = str(list_drugs).replace('[', '(').replace(']', ')') else: str_list_drugs = '(0)' q_comb_drug = f""" select dsm."drug-id" as drug_id, dsm."group" as comb_id, d."drug-name" as drug_name, d.type, d.composition from "{schema}"."drug-substitution-mapping" dsm left join "{schema}".drugs d on dsm."drug-id" = d.id where dsm."drug-id" in {str_list_drugs} """ df_comb_drug = db.get_df(q_comb_drug) drug_fcst_df.drop(key_col, axis=1, inplace=True) df_fcst_drug_level_merge = drug_fcst_df.merge(df_none_one[[drug_col]], on=drug_col, how='inner') df_fcst_drug_level_merge = df_fcst_drug_level_merge.merge( df_comb_drug, on=drug_col, how='left') df_fcst_drug_level_merge['fcst_source'] = 'drug_fcst' df_fcst_drug_level_merge['fcst_wt'] = np.nan df_fcst_drug_level_merge['map_type'] = np.nan df_fcst_final = df_fcst_final.append(df_fcst_drug_level_merge[df_fcst_final.columns]) # filter only drugs without combination drugs_with_comb = df_comb_drug[drug_col].tolist() df_none_one = df_none_one.loc[~df_none_one[drug_col].isin(drugs_with_comb)] # Append reject cases forecasted_drugs = df_fcst_final[drug_col].tolist() assortment_drugs = df_assortment[drug_col].tolist() reject_drugs = list(set(forecasted_drugs) ^ set(assortment_drugs)) df_reject_cases = df_assortment.loc[df_assortment[drug_col].isin(reject_drugs)][[drug_col]] df_reject_cases[store_col] = store_id df_reject_cases['bucket'] = 'NA' df_reject_cases['model'] = 'NA' df_reject_cases['fcst'] = 0 df_reject_cases['std'] = 0 df_reject_cases['fcst_wt'] = np.nan df_reject_cases['map_type'] = np.nan df_reject_cases['fcst_source'] = np.nan df_reject_cases['correction_flags'] = "" df_reject_cases = df_reject_cases.merge(df_comb_drug, on=drug_col, how='left') df_fcst_final = df_fcst_final.append(df_reject_cases[df_fcst_final.columns]) # Round off forecast values df_fcst_final['fcst'] = df_fcst_final['fcst'].astype(float) df_fcst_final['fcst'] = np.round(df_fcst_final['fcst']) return df_fcst_final, df_one_one, df_one_many, df_one_none, df_none_one def drug_sales_multiplier(df, store_id, reset_date, schema, db): list_drugs = df[drug_col].tolist() if list_drugs: str_drugs = str(list_drugs).replace('[', '(').replace(']', ')') else: str_drugs = '(0)' sales_start = (dt.datetime.strptime(reset_date, '%Y-%m-%d').date() - dt.timedelta(days=90)).strftime('%Y-%m-%d') q_drug_sales = f""" select "drug-id" , sum("net-quantity") as sales_90d from "{schema}".sales s where "store-id" = {store_id} and date("created-at") >= '{sales_start}' and date("created-at") < '{reset_date}' and "drug-id" in {str_drugs} group by "drug-id" """ df_drug_sales = db.get_df(q_drug_sales) df_drug_sales.columns = [c.replace('-', '_') for c in df_drug_sales.columns] df = df.merge(df_drug_sales, on=drug_col, how='left') df['sales_90d'] = df['sales_90d'].fillna(0) df_comb_sales_sum = df.groupby(comb_col, as_index=False).agg({'sales_90d': 'sum'}) df_comb_sales_sum.rename({'sales_90d': 'comb_sales_90d'}, axis=1, inplace=True) df = df.merge(df_comb_sales_sum, on=comb_col, how='left') df['fcst_wt'] = df['sales_90d']/df['comb_sales_90d'] df['fcst_wt'] = df['fcst_wt'].fillna(0) # assign equal split for combination with 0 sales zero_sales_comb = df_comb_sales_sum.loc[ df_comb_sales_sum['comb_sales_90d'] == 0][comb_col].tolist() df_comb_equal_split_cases = df.groupby(comb_col, as_index=False).agg({drug_col: 'count'}) df_comb_equal_split_cases.rename({drug_col: 'count'}, axis=1, inplace=True) df_comb_equal_split_cases = df_comb_equal_split_cases.loc[df_comb_equal_split_cases[comb_col].isin(zero_sales_comb)] df_comb_equal_split_cases['equal_split_wt'] = 1/df_comb_equal_split_cases['count'] df = df.merge(df_comb_equal_split_cases, on=comb_col, how='left') df['fcst_wt'] = np.where(df['equal_split_wt'].isna(), df['fcst_wt'], df['equal_split_wt']) df.drop(['count', 'equal_split_wt'], axis=1, inplace=True) return df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_combination_fcst/fcst_mapping.py
fcst_mapping.py
import numpy as np np.random.seed(0) import pandas as pd # import time # import re # from datetime import date # from dateutil.relativedelta import relativedelta # from statsmodels.tsa.exponential_smoothing.ets import ETSModel from prophet import Prophet from statsmodels.tsa.api import ExponentialSmoothing # import sktime from zeno_etl_libs.utils.ipc2.helpers.helper_functions import \ applyParallel_croston # from boruta import BorutaPy from zeno_etl_libs.utils.ipc_pmf.config_ipc_combination import ( date_col, target_col, models_un_agg, models_agg ) import logging logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') class TS_forecast: def train_test_split(self, df, train_max_date, forecast_start): df.rename(columns={date_col: 'ds', target_col: 'y'}, inplace=True) df.sort_values(by=['ds'], inplace=True) train = df[df['ds'] <= train_max_date] test = df[df['ds'] >= forecast_start] return train, test def Croston_TSB(self, ts, extra_periods=4, alpha=0.4, beta=0.4): d = np.array(ts) # Transform the input into a numpy array cols = len(d) # Historical period length d = np.append(d, [ np.nan] * extra_periods) # Append np.nan into the demand array to cover future periods # level (a), probability(p) and forecast (f) a, p, f = np.full((3, cols + extra_periods), np.nan) # Initialization first_occurence = np.argmax(d[:cols] > 0) a[0] = d[first_occurence] p[0] = 1 / (1 + first_occurence) f[0] = p[0] * a[0] # Create all the t+1 forecasts for t in range(0, cols): if d[t] > 0: a[t + 1] = alpha * d[t] + (1 - alpha) * a[t] p[t + 1] = beta * (1) + (1 - beta) * p[t] else: a[t + 1] = a[t] p[t + 1] = (1 - beta) * p[t] f[t + 1] = p[t + 1] * a[t + 1] # Future Forecast a[cols + 1:cols + extra_periods] = a[cols] p[cols + 1:cols + extra_periods] = p[cols] f[cols + 1:cols + extra_periods] = f[cols] df = pd.DataFrame.from_dict( {"Demand": d, "Forecast": f, "Period": p, "Level": a, "Error": d - f}) return df[-extra_periods:] def ETS_forecast(self, train, test, latest_12w_fit=False): try: train.set_index(['ds'], inplace=True) test.set_index(['ds'], inplace=True) train.index.freq = train.index.inferred_freq test.index.freq = test.index.inferred_freq if latest_12w_fit: train = train[-12:] # use only latest 3 months fit = ExponentialSmoothing(train['y']).fit() preds = fit.forecast(len(test) + 1) preds = preds[-len(test):] except Exception as e: logger.info("error in ETS fcst") logger.info(str(e)) preds = 0 return preds def ma_forecast(self, data): """ Purpose: Compute MA forecast for the for the forecast horizon specified Inputs: time series to create forecast Output: series with forecasted values """ sma_df = data.copy(deep=True) yhat = [] if len(data) >= 8: for i in range(5): sma_val = sma_df.rolling(8).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) else: for i in range(5): sma_val = sma_df.rolling(len(data)).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) logger.info(yhat) return yhat[-4:] def prophet_fcst(self, train, test, params=None): # reg_list = [] try: if params is None: pro = Prophet() else: pro = Prophet(n_changepoints=params) # for j in train.columns: # if j not in col_list: # pro.add_regressor(j) # reg_list.append(j) pro.fit(train[['ds', 'y']]) pred_f = pro.predict(test) test = test[["ds", "y"]] test = pd.merge(test, pred_f, on="ds", how="left") except Exception as e: logger.info("error in prophet fcst") logger.info(str(e)) test['yhat'] = 0 return test def ts_forecast_un_agg(self, df, train_max_date, forecast_start): train, test = self.train_test_split(df, train_max_date=train_max_date, forecast_start=forecast_start) test = test.sort_values(by=['ds']) if 'croston' in models_un_agg: preds_croston = self.Croston_TSB(train['y']) test['preds_croston'] = preds_croston['Forecast'].values if 'ETS_Auto' in models_un_agg: preds_ETS = self.ETS_forecast(train.copy(), test.copy()) try: test['preds_ETS_auto'] = preds_ETS.values except: test['preds_ETS_auto'] = 0 if 'ETS_12w' in models_un_agg: preds_ETS = self.ETS_forecast(train.copy(), test.copy(), latest_12w_fit=True) try: test['preds_ETS_12w'] = preds_ETS.values except: test['preds_ETS_12w'] = 0 if 'MA' in models_un_agg: preds_ma = self.ma_forecast(train['y']) test['preds_ma'] = preds_ma if 'prophet' in models_un_agg: preds_prophet = self.prophet_fcst(train.copy(), test.copy()) test['preds_prophet'] = preds_prophet['yhat'].values return test def ts_forecast_agg(self, df, train_max_date, forecast_start): train, test = self.train_test_split(df, train_max_date=train_max_date, forecast_start=forecast_start) test = test.sort_values(by=['ds']) if 'ETS_4w_agg' in models_agg: preds_ETS = self.ETS_forecast(train.copy(), test.copy(), latest_12w_fit=True) try: test['preds_ETS_4w_auto'] = preds_ETS.values except: test['preds_ETS_4w_auto'] = 0 return test def apply_ts_forecast(self, df, train_max_date, forecast_start): # global train_date # train_date = train_max_date # global forecast_start_date # forecast_start_date = forecast_start preds = applyParallel_croston( df.groupby('ts_id'), func=self.ts_forecast_un_agg, train_max_date=train_max_date, forecast_start=forecast_start ) preds.rename(columns={'ds': date_col, 'y': target_col}, inplace=True) ts_fcst_cols = [i for i in preds.columns if i.startswith('preds_')] for col in ts_fcst_cols: preds[col].fillna(0, inplace=True) preds[col] = np.where(preds[col] < 0, 0, preds[col]) # preds['preds_AE_ts'] = preds[ts_fcst_cols].mean(axis=1) return preds, ts_fcst_cols def apply_ts_forecast_agg(self, df, train_max_date, forecast_start): # global train_date # train_date = train_max_date # global forecast_start_date # forecast_start_date = forecast_start preds = applyParallel_croston( df.groupby('ts_id'), func=self.ts_forecast_agg, train_max_date=train_max_date, forecast_start=forecast_start ) preds.rename(columns={'ds': date_col, 'y': target_col}, inplace=True) ts_fcst_cols = [i for i in preds.columns if i.startswith('preds_')] for col in ts_fcst_cols: preds[col].fillna(0, inplace=True) preds[col] = np.where(preds[col] < 0, 0, preds[col]) # preds['preds_AE_ts'] = preds[ts_fcst_cols].mean(axis=1) return preds, ts_fcst_cols
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_combination_fcst/engine/ts_fcst.py
ts_fcst.py
import pandas as pd import datetime import numpy as np from zeno_etl_libs.utils.ipc_pmf.config_ipc_combination import date_col, store_col, \ comb_col, target_col, key_col, local_testing class PreprocessData: def add_ts_id(self, df): df = df[~df[comb_col].isnull()].reset_index(drop=True) df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[comb_col].astype(str) ) return df def preprocess_sales(self, df, comb_list): df.rename(columns={ 'net_sales_quantity': target_col }, inplace=True) df.rename(columns={ 'sales_date': date_col }, inplace=True) set_dtypes = { store_col: int, comb_col: str, date_col: str, target_col: float } df = df.astype(set_dtypes) df[target_col] = df[target_col].round() df[date_col] = pd.to_datetime(df[date_col]) df = df.groupby( [store_col, comb_col, key_col, date_col] )[target_col].sum().reset_index() df = df[df[comb_col].isin(comb_list)] return df def get_formatted_data(self, df): df_start = df.groupby([key_col])[date_col].min().reset_index().rename( columns={date_col: 'sales_start'}) df = df[[key_col, date_col, target_col]] min_date = df[date_col].dropna().min() end_date = df[date_col].dropna().max() date_range = [] date_range = pd.date_range( start=min_date, end=end_date, freq='d' ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = np.nan df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = pd.merge(df, df_start, how='left', on=key_col) df = df[df[date_col] >= df['sales_start']] df[[store_col, comb_col]] = df[key_col].str.split('_', expand=True) df[[store_col, comb_col]] = df[[store_col, comb_col]] df[store_col] = df[store_col].astype(int) df[comb_col] = df[comb_col].astype(str) return df def preprocess_cfr_pr(self, df): set_dtypes = { store_col: int, comb_col: str, 'loss_quantity': int } df = df.astype(set_dtypes) df['shortbook_date'] = pd.to_datetime(df['shortbook_date']) return df def merge_cfr_pr(self, sales, cfr_pr): df = sales.merge(cfr_pr, left_on=[store_col, comb_col, date_col], right_on=[store_col, comb_col, 'shortbook_date'], how='left') df[date_col] = df[date_col].combine_first(df['shortbook_date']) df[target_col].fillna(0, inplace=True) df['loss_quantity'].fillna(0, inplace=True) df[target_col] += df['loss_quantity'] df.drop(['shortbook_date', 'loss_quantity'], axis=1, inplace=True) return df def preprocess_calendar(self, df, last_date): df.rename(columns={'date': date_col}, inplace=True) df[date_col] = pd.to_datetime(df[date_col]) cal_sales = df.copy() cal_sales['week_begin_dt'] = cal_sales.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales['month_begin_dt'] = cal_sales.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) cal_sales['key'] = 1 ld = pd.to_datetime(last_date) cal_sales = cal_sales[cal_sales[date_col] > ld] return df, cal_sales def merge_calendar(self, sales, calendar): df = sales.merge(calendar, how='left', on=date_col ) # df_week_days_count = df.groupby([key_col, 'year', 'week_of_year'])[date_col].count().reset_index().rename(columns = {date_col:'week_days_count'}) # df['week_days_count'] = 1 df['week_begin_dt'] = df.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) df_week_days_count = df.groupby(['ts_id', 'week_begin_dt'])[ date_col].count().reset_index().rename( columns={date_col: 'week_days_count'}) # df = df.groupby(['ts_id', store_col, drug_col, ]).resample('W-Mon', on =date_col )[target_col].sum().reset_index() df = df.groupby(['ts_id', store_col, comb_col, 'week_begin_dt'])[ target_col].sum().reset_index() df = pd.merge(df, df_week_days_count, how='left', on=[key_col, 'week_begin_dt']) df = df[df['week_days_count'] == 7].reset_index(drop=True) df.drop(columns=['week_days_count'], inplace=True) df.rename(columns={'week_begin_dt': date_col}, inplace=True) return df def preprocess_bill_date(self, df): df.rename(columns={'store-id': store_col}, inplace=True) df['bill_date'] = pd.to_datetime(df['bill_date']) return df def merge_first_bill_date(self, sales, first_bill_date): df = pd.merge(sales, first_bill_date, on=[store_col]) df = df[df[date_col] >= df['bill_date']].reset_index(drop=True) df.drop(columns=['bill_date'], inplace=True) return df def make_future_df(self, df): start_date_df = ( df .groupby(key_col)[date_col] .min() .reset_index() .rename(columns={date_col: 'start_date'}) ) df = df[[key_col, date_col, target_col]] end_date = df[date_col].max() + datetime.timedelta(weeks=5) min_date = df[date_col].min() date_range = pd.date_range( start=min_date, end=end_date, freq="W-MON" ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = 0 df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = df.merge(start_date_df, on=key_col, how='left') df = df[ df[date_col] >= df['start_date'] ] df.drop('start_date', axis=1, inplace=True) df[[store_col, comb_col]] = df[key_col].str.split('_', expand=True) return df def make_future_df_4w_agg(self, df): start_date_df = ( df .groupby(key_col)[date_col] .min() .reset_index() .rename(columns={date_col: 'start_date'}) ) df = df[[key_col, date_col, target_col]] fcst_week_start = df[date_col].max() + datetime.timedelta(weeks=5) date_range = [fcst_week_start] df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = 0 df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = df.merge(start_date_df, on=key_col, how='left') df = df[ df[date_col] >= df['start_date'] ] df.drop('start_date', axis=1, inplace=True) df[[store_col, comb_col]] = df[key_col].str.split('_', expand=True) return df def sales_pred_vald_df( self, df ): vald_max_date = df[date_col].max() - datetime.timedelta(weeks=4) df_vald_train = df.loc[df[date_col] <= vald_max_date] df_vald_future = df.loc[~(df[date_col] <= vald_max_date)] df_vald_future[target_col] = 0 df_final = df_vald_train.append(df_vald_future) train_vald_max_date = df_vald_train[date_col].max() return df_final, train_vald_max_date def sales_4w_agg( self, df ): # ===================================================================== # Combine 4 weeks into an arbitrary group # ===================================================================== unique_ts_ids = df[key_col].unique().tolist() sales_4w_agg = pd.DataFrame() for ts_id in unique_ts_ids: week_gp_size = 4 sales_temp = df.loc[df[key_col] == ts_id] available_week_count = sales_temp.shape[0] if available_week_count >= (3 * week_gp_size): allowable_week_count = int( week_gp_size * np.fix(available_week_count / week_gp_size)) sales_temp = sales_temp.sort_values(by=["date"], ascending=True) sales_temp = sales_temp[-allowable_week_count:] week_gps_count = int(allowable_week_count / week_gp_size) week_gps_list = np.arange(1, week_gps_count + 1, 1) week_gps_id_list = np.repeat(week_gps_list, week_gp_size) sales_temp["week_gps_id"] = week_gps_id_list sales_temp = sales_temp.groupby( [key_col, store_col, comb_col, "week_gps_id"], as_index=False).agg( {"date": "first", "actual_demand": "sum"}) sales_4w_agg = sales_4w_agg.append(sales_temp) sales_4w_agg = sales_4w_agg.drop("week_gps_id", axis=1) sales_pred_4w_agg = self.make_future_df_4w_agg(sales_4w_agg.copy()) return sales_4w_agg, sales_pred_4w_agg def comb_sales_12w( self, df ): date_12w_back = df[date_col].max() - datetime.timedelta(weeks=12) df_12w = df.loc[df[date_col] > date_12w_back] df_12w = df_12w.groupby([store_col, comb_col], as_index=False).agg( {target_col: 'sum'}) return df_12w def comb_sales_4w_wtd( self, df ): date_4w_back = df[date_col].max() - datetime.timedelta(weeks=4) df_4w = df.loc[df[date_col] > date_4w_back] # sales > 0 and all 4 latest week df_4w_1 = df_4w[df_4w[target_col] > 0] df_4w_cnt = df_4w_1.groupby([store_col, comb_col], as_index=False).agg( {target_col: 'count'}) df_4w_cnt.rename({target_col: 'week_count'}, axis=1, inplace=True) list_4w_combs = df_4w_cnt.loc[df_4w_cnt['week_count'] == 4][comb_col].tolist() df_4w_1 = df_4w_1.loc[df_4w_1[comb_col].isin(list_4w_combs)] dates_list = list(df_4w_1.date.unique()) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[3], 0.4, 0) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[2], 0.3, df_4w_1['weights']) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[1], 0.2, df_4w_1['weights']) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[0], 0.1, df_4w_1['weights']) df_4w_1['wtd_demand'] = df_4w_1[target_col] * df_4w_1['weights'] df_4w_1 = df_4w_1.groupby([store_col, comb_col], as_index=False).agg( {'wtd_demand': 'sum'}) # sales > 0 and only 3 latest week df_4w_2 = df_4w[df_4w[target_col] > 0] df_4w_cnt = df_4w_2.groupby([store_col, comb_col], as_index=False).agg( {target_col: 'count'}) df_4w_cnt.rename({target_col: 'week_count'}, axis=1, inplace=True) list_4w_combs = df_4w_cnt.loc[df_4w_cnt['week_count'] == 3][comb_col].tolist() df_4w_2 = df_4w_2.loc[df_4w_2[comb_col].isin(list_4w_combs)] df_4w_2['w_count'] = np.tile(np.arange(1, 4), len(df_4w_2))[:len(df_4w_2)] df_4w_2['weights'] = np.where(df_4w_2['w_count'] == 3, 0.5, 0) df_4w_2['weights'] = np.where(df_4w_2['w_count'] == 2, 0.3, df_4w_2['weights']) df_4w_2['weights'] = np.where(df_4w_2['w_count'] == 1, 0.2, df_4w_2['weights']) df_4w_2['wtd_demand'] = df_4w_2[target_col] * df_4w_2['weights'] df_4w_2 = df_4w_2.groupby([store_col, comb_col], as_index=False).agg( {'wtd_demand': 'sum'}) # sales > 0 and only 2 latest week df_4w_3 = df_4w[df_4w[target_col] > 0] df_4w_cnt = df_4w_3.groupby([store_col, comb_col], as_index=False).agg( {target_col: 'count'}) df_4w_cnt.rename({target_col: 'week_count'}, axis=1, inplace=True) list_4w_combs = df_4w_cnt.loc[df_4w_cnt['week_count'] == 2][ comb_col].tolist() df_4w_3 = df_4w_3.loc[df_4w_3[comb_col].isin(list_4w_combs)] df_4w_3['w_count'] = np.tile(np.arange(1, 3), len(df_4w_3))[:len(df_4w_3)] df_4w_3['weights'] = np.where(df_4w_3['w_count'] == 2, 0.6, 0) df_4w_3['weights'] = np.where(df_4w_3['w_count'] == 1, 0.4, df_4w_3['weights']) df_4w_3['wtd_demand'] = df_4w_3[target_col] * df_4w_3['weights'] df_4w_3 = df_4w_3.groupby([store_col, comb_col], as_index=False).agg( {'wtd_demand': 'sum'}) df_4w = pd.concat([df_4w_1, df_4w_2, df_4w_3], axis=0) df_4w['wtd_demand'] = np.round(df_4w['wtd_demand'] * 4) return df_4w def preprocess_all( self, sales=None, cfr_pr=None, comb_list=None, calendar=None, first_bill_date=None, last_date=None, ): sales = self.add_ts_id(sales) # filter ################################################# if local_testing == 1: tsid_list = \ sales.sort_values(by=['net_sales_quantity'], ascending=False)[ key_col].unique().tolist()[:20] sales = sales[sales[key_col].isin(tsid_list)] ################################################# sales = self.preprocess_sales(sales, comb_list) sales = self.get_formatted_data(sales) cfr_pr = self.preprocess_cfr_pr(cfr_pr) sales_daily = self.merge_cfr_pr(sales, cfr_pr) calendar, cal_sales = self.preprocess_calendar(calendar, last_date) sales = self.merge_calendar(sales_daily, calendar) first_bill_date = self.preprocess_bill_date(first_bill_date) sales = self.merge_first_bill_date(sales, first_bill_date) sales_pred = self.make_future_df(sales.copy()) sales_pred_vald, train_vald_max_date = self.sales_pred_vald_df(sales) sales_4w_agg, sales_pred_4w_agg = self.sales_4w_agg(sales) sales_pred_4w_agg_vald, train_4w_agg_vald_max_date = self.sales_pred_vald_df(sales_4w_agg) comb_sales_latest_12w = self.comb_sales_12w(sales) comb_sales_4w_wtd = self.comb_sales_4w_wtd(sales) return ( comb_sales_4w_wtd, comb_sales_latest_12w, train_4w_agg_vald_max_date, sales_pred_4w_agg_vald, train_vald_max_date, sales_pred_vald, sales_4w_agg, sales_pred_4w_agg, sales, sales_pred, cal_sales, sales_daily )
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_combination_fcst/engine/data_pre_process.py
data_pre_process.py
import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta from tqdm import tqdm import logging import warnings warnings.filterwarnings("ignore") logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') from zeno_etl_libs.utils.ipc_pmf.config_ipc_combination import ( date_col, target_col, store_col, comb_col, eol_cutoff ) class Segmentation: def add_ts_id(self, df): df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[comb_col].astype(str) ) return df def _calc_abc(self, df52): B_cutoff = 0.5 C_cutoff = 0.80 D_cutoff = 0.95 tot_sales = ( df52.groupby([ 'ts_id' ])[target_col].sum().reset_index() ) tot_sales.rename(columns={target_col: 'total_LY_sales'}, inplace=True) tot_sales.sort_values('total_LY_sales', ascending=False, inplace=True) tot_sales["perc_sales"] = ( tot_sales['total_LY_sales'] / tot_sales['total_LY_sales'].sum() ) tot_sales["cum_perc_sales"] = tot_sales.perc_sales.cumsum() tot_sales["ABC"] = "A" tot_sales.loc[tot_sales.cum_perc_sales > B_cutoff, "ABC"] = "B" tot_sales.loc[tot_sales.cum_perc_sales > C_cutoff, "ABC"] = "C" tot_sales.loc[tot_sales.cum_perc_sales > D_cutoff, "ABC"] = "D" # tot_sales = self.add_ts_id(tot_sales) return tot_sales[['ts_id', 'ABC', 'total_LY_sales', 'perc_sales', 'cum_perc_sales']] # TODO: lower COV cutoffs def get_abc_classification(self, df52): province_abc = df52.groupby( [store_col] ).apply(self._calc_abc) province_abc = province_abc[['ts_id', "ABC"]].reset_index(drop=True) # one tot_sales = ( df52 .groupby(['ts_id'])[target_col] .agg(['sum', 'mean']) .reset_index() ) tot_sales.rename( columns={'sum': 'total_LY_sales', 'mean': 'avg_ly_sales'}, inplace=True) tot_sales = tot_sales.merge( province_abc, on=['ts_id'], how='left' ) tot_sales = tot_sales.drop_duplicates() # tot_sales = self.add_ts_id(tot_sales) tot_sales = tot_sales[['ts_id', 'ABC']] return tot_sales def get_xyzw_classification(self, df1): input_ts_id = df1['ts_id'].unique() df1 = df1[df1[target_col] > 0] cov_df = df1.groupby(['ts_id'])[target_col].agg( ["mean", "std", "count", "sum"]) cov_df.reset_index(drop=False, inplace=True) cov_df['cov'] = np.where( ((cov_df["count"] > 2) & (cov_df["sum"] > 0)), (cov_df["std"]) / (cov_df["mean"]), np.nan ) cov_df['WXYZ'] = 'Z' cov_df.loc[cov_df['cov'] <= 1.2, 'WXYZ'] = 'Y' cov_df.loc[cov_df['cov'] <= 0.8, 'WXYZ'] = 'X' cov_df.loc[cov_df['cov'] <= 0.5, 'WXYZ'] = 'W' # cov_df = self.add_ts_id(cov_df) cov_df = cov_df[['ts_id', 'cov', 'WXYZ']] non_mapped_ts_ids = list( set(input_ts_id) - set(cov_df['ts_id'].unique()) ) non_mapped_cov = pd.DataFrame({ 'ts_id': non_mapped_ts_ids, 'cov': [np.nan] * len(non_mapped_ts_ids), 'WXYZ': ['Z'] * len(non_mapped_ts_ids) }) cov_df = pd.concat([cov_df, non_mapped_cov], axis=0) cov_df = cov_df.reset_index(drop=True) return cov_df def get_std(self, df1): input_ts_id = df1['ts_id'].unique() # df1 = df1[df1[target_col]>0] std_df = df1.groupby(['ts_id'])[target_col].agg(["std"]) return std_df def calc_interval_mean(self, x, key): df = pd.DataFrame({"X": x, "ts_id": key}).reset_index( drop=True).reset_index() df = df[df.X > 0] df["index_shift"] = df["index"].shift(-1) df["interval"] = df["index_shift"] - df["index"] df = df.dropna(subset=["interval"]) df['ADI'] = np.mean(df["interval"]) return df[['ts_id', 'ADI']] def calc_adi(self, df): # df = self.add_ts_id(df) logger.info( 'Combinations entering adi: {}'.format(df['ts_id'].nunique())) dict_of = dict(iter(df.groupby(['ts_id']))) logger.info("Total tsids in df: {}".format(df.ts_id.nunique())) logger.info("Total dictionary length: {}".format(len(dict_of))) list_dict = [ self.calc_interval_mean(dict_of[x][target_col], x) for x in tqdm(dict_of.keys()) ] data = ( pd.concat(list_dict) .reset_index(drop=True) .drop_duplicates() .reset_index(drop=True) ) logger.info('Combinations exiting adi: {}'.format(data.ts_id.nunique())) return data def get_PLC_segmentation(self, df, mature_cutoff_date, eol_cutoff_date): df1 = df[df[target_col] > 0] df1 = df1.groupby(['ts_id']).agg({date_col: [min, max]}) df1.reset_index(drop=False, inplace=True) df1.columns = [' '.join(col).strip() for col in df1.columns.values] df1['PLC Status L1'] = 'Mature' df1.loc[ (df1[date_col + ' min'] > mature_cutoff_date), 'PLC Status L1' ] = 'New Product' df1.loc[ (df1[date_col + ' max'] <= eol_cutoff_date), 'PLC Status L1' ] = 'EOL' # df1 = self.add_ts_id(df1) df1 = df1[['ts_id', 'PLC Status L1']] return df1 def get_group_mapping(self, seg_df): seg_df['Mixed'] = seg_df['ABC'].astype(str) + seg_df['WXYZ'].astype(str) seg_df['Group'] = 'Group3' group1_mask = seg_df['Mixed'].isin(['AW', 'AX', 'BW', 'BX']) seg_df.loc[group1_mask, 'Group'] = 'Group1' group2_mask = seg_df['Mixed'].isin(['AY', 'AZ', 'BY', 'BZ']) seg_df.loc[group2_mask, 'Group'] = 'Group2' return seg_df def calc_dem_pat(self, cov_df, adi_df): logger.info('Combinations entering calc_dem_pat: {}'.format( cov_df.ts_id.nunique())) logger.info('Combinations entering calc_dem_pat: {}'.format( adi_df.ts_id.nunique())) df = pd.merge(cov_df, adi_df, how='left', on='ts_id') df["cov2"] = np.power(df["cov"], 2) df["classification"] = "Lumpy" df.loc[ (df.ADI >= 1.32) & (df.cov2 < 0.49), "classification" ] = "Intermittent" df.loc[ (df.ADI < 1.32) & (df.cov2 >= 0.49), "classification" ] = "Erratic" df.loc[ (df.ADI < 1.32) & (df.cov2 < 0.49), "classification" ] = "Smooth" logger.info( 'Combinations exiting calc_dem_pat: {}'.format(df.ts_id.nunique())) return df[['ts_id', 'classification']] def get_start_end_dates_df(self, df, key_col, date_col, target_col, train_max_date, end_date): start_end_date_df = ( df[df[target_col] > 0] .groupby(key_col)[date_col] .agg({'min', 'max'}) .reset_index() .rename(columns={'min': 'start_date', 'max': 'end_date'}) ) start_end_date_df.loc[ ( start_end_date_df['end_date'] > ( train_max_date - relativedelta(weeks=eol_cutoff) ) ), 'end_date' ] = end_date return start_end_date_df def get_weekly_segmentation(self, df, df_sales_daily, train_max_date, end_date): df = df[df[date_col] <= train_max_date] df1 = df[ df[date_col] > (train_max_date - relativedelta(weeks=52)) ].copy(deep=True) df_std = df_sales_daily[ df_sales_daily[date_col] > (train_max_date - relativedelta(days=90)) ].copy(deep=True) df1 = self.add_ts_id(df1) abc_df = self._calc_abc(df1) xyzw_df = self.get_xyzw_classification(df1) std_df = self.get_std(df_std) adi_df = self.calc_adi(df1) demand_pattern_df = self.calc_dem_pat(xyzw_df[['ts_id', 'cov']], adi_df) mature_cutoff_date = train_max_date - relativedelta(weeks=52) eol_cutoff_date = train_max_date - relativedelta(weeks=13) plc_df = self.get_PLC_segmentation(df, mature_cutoff_date, eol_cutoff_date) start_end_date_df = self.get_start_end_dates_df( df, key_col='ts_id', date_col=date_col, target_col=target_col, train_max_date=train_max_date, end_date=end_date ) seg_df = plc_df.merge(abc_df, on='ts_id', how='outer') seg_df = seg_df.merge(xyzw_df, on='ts_id', how='outer') seg_df = seg_df.merge(adi_df, on='ts_id', how='outer') seg_df = seg_df.merge(demand_pattern_df, on='ts_id', how='outer') seg_df = seg_df.merge(start_end_date_df, on='ts_id', how='outer') seg_df = seg_df.merge(std_df, on='ts_id', how='outer') seg_df = self.get_group_mapping(seg_df) seg_df['Mixed'] = np.where(seg_df['Mixed']=='nannan', np.nan, seg_df['Mixed']) return seg_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_combination_fcst/engine/segmentation.py
segmentation.py
import numpy as np from zeno_etl_libs.utils.ipc_pmf.correction_flag import compare_df, \ add_correction_flag, compare_df_comb, add_correction_flag_comb def fcst_correction(fcst_df_comb_lvl, comb_sales_latest_12w, fcst_df_drug_lvl, drug_sales_latest_12w, drug_sales_latest_4w, comb_sales_4w_wtd, drug_sales_4w_wtd, logger): comb_sales_latest_12w['latest_28d_demand'] = np.round( comb_sales_latest_12w['actual_demand'] / 3) drug_sales_latest_12w['latest_28d_demand'] = np.round( drug_sales_latest_12w['actual_demand'] / 3) fcst_df_comb_lvl['fcst'] = np.round(fcst_df_comb_lvl['fcst']) fcst_df_comb_lvl = fcst_df_comb_lvl.merge( comb_sales_latest_12w[['comb_id', 'latest_28d_demand']], on='comb_id', how='left') fcst_df_drug_lvl['drug_id'] = fcst_df_drug_lvl['drug_id'].astype(int) fcst_df_drug_lvl['fcst'] = np.round(fcst_df_drug_lvl['fcst']) fcst_df_drug_lvl = fcst_df_drug_lvl.merge( drug_sales_latest_12w[['drug_id', 'latest_28d_demand']], on='drug_id', how='left') logger.info(f"Combination Fcst Recency Correction starts") df_pre_corr = fcst_df_comb_lvl.copy() fcst_df_comb_lvl['fcst'] = np.where(fcst_df_comb_lvl['fcst'] == 0, fcst_df_comb_lvl['latest_28d_demand'], fcst_df_comb_lvl['fcst']) df_post_corr = fcst_df_comb_lvl.copy() logger.info(f"Sum Fcst before: {df_pre_corr['fcst'].sum()}") logger.info(f"Sum Fcst after: {df_post_corr['fcst'].sum()}") corr_comb_lst = compare_df_comb(df_pre_corr, df_post_corr, logger, cols_to_compare=['fcst']) fcst_df_comb_lvl = add_correction_flag_comb(fcst_df_comb_lvl, corr_comb_lst, 'REC_CORR1') logger.info(f"Drug Fcst Recency Correction 1 starts") df_pre_corr = fcst_df_drug_lvl.copy() fcst_df_drug_lvl['fcst'] = np.where(fcst_df_drug_lvl['fcst'] == 0, fcst_df_drug_lvl['latest_28d_demand'], fcst_df_drug_lvl['fcst']) df_post_corr = fcst_df_drug_lvl.copy() logger.info(f"Sum Fcst before: {fcst_df_drug_lvl['fcst'].sum()}") logger.info(f"Sum Fcst after: {fcst_df_drug_lvl['fcst'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['fcst']) fcst_df_drug_lvl = add_correction_flag(fcst_df_drug_lvl, corr_drug_lst, 'REC_CORR1') fcst_df_comb_lvl.drop('latest_28d_demand', axis=1, inplace=True) fcst_df_drug_lvl.drop('latest_28d_demand', axis=1, inplace=True) # add drugs with recent sales forecasted_drug_list = fcst_df_drug_lvl['drug_id'].tolist() df_add1 = drug_sales_latest_12w.loc[~drug_sales_latest_12w['drug_id'].isin(forecasted_drug_list)] df_add2 = drug_sales_latest_4w.loc[~drug_sales_latest_4w['drug_id'].isin(forecasted_drug_list)] df_add1.rename({'latest_28d_demand': 'fcst'}, axis=1, inplace=True) df_add1.drop('actual_demand', axis=1, inplace=True) df_add2.rename({'actual_demand': 'fcst'}, axis=1, inplace=True) df_add = df_add1.append(df_add2) df_add = df_add.loc[df_add['fcst'] > 0] if df_add.shape[0] > 0: df_add['model'] = 'NA' df_add['bucket'] = 'NA' df_add['std'] = 0 df_add['correction_flags'] = "" df_add['ts_id'] = ( df_add['store_id'].astype(int).astype(str) + '_' + df_add['drug_id'].astype(int).astype(str) ) logger.info(f"Drug Fcst Recency Correction 2 starts") df_pre_corr = fcst_df_drug_lvl.copy() fcst_df_drug_lvl = fcst_df_drug_lvl.append(df_add[fcst_df_drug_lvl.columns]) df_post_corr = fcst_df_drug_lvl.copy() logger.info(f"Sum Fcst before: {fcst_df_drug_lvl['fcst'].sum()}") logger.info(f"Sum Fcst after: {fcst_df_drug_lvl['fcst'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['fcst']) fcst_df_drug_lvl = add_correction_flag(fcst_df_drug_lvl, corr_drug_lst, 'REC_CORR2') fcst_df_comb_lvl['fcst'] = np.where(fcst_df_comb_lvl['fcst'] < 0, 0, fcst_df_comb_lvl['fcst']) fcst_df_drug_lvl['fcst'] = np.where(fcst_df_drug_lvl['fcst'] < 0, 0, fcst_df_drug_lvl['fcst']) # fcst 4 week weighted replace logger.info(f"Comb Fcst Recency Correction 3 starts") df_pre_corr = fcst_df_comb_lvl.copy() fcst_df_comb_lvl = fcst_df_comb_lvl.merge(comb_sales_4w_wtd, on=['store_id', 'comb_id'], how='left') fcst_df_comb_lvl['fcst'] = np.where(fcst_df_comb_lvl['fcst'] < fcst_df_comb_lvl['wtd_demand'], fcst_df_comb_lvl['wtd_demand'], fcst_df_comb_lvl['fcst']) df_post_corr = fcst_df_comb_lvl.copy() logger.info(f"Sum Fcst before: {df_pre_corr['fcst'].sum()}") logger.info(f"Sum Fcst after: {df_post_corr['fcst'].sum()}") corr_comb_lst = compare_df_comb(df_pre_corr, df_post_corr, logger, cols_to_compare=['fcst']) fcst_df_comb_lvl = add_correction_flag_comb(fcst_df_comb_lvl, corr_comb_lst, 'REC_CORR3') logger.info(f"Drug Fcst Recency Correction 3 starts") df_pre_corr = fcst_df_drug_lvl.copy() fcst_df_drug_lvl = fcst_df_drug_lvl.merge(drug_sales_4w_wtd, on=['store_id', 'drug_id'], how='left') fcst_df_drug_lvl['fcst'] = np.where(fcst_df_drug_lvl['fcst'] < fcst_df_drug_lvl['wtd_demand'], fcst_df_drug_lvl['wtd_demand'], fcst_df_drug_lvl['fcst']) df_post_corr = fcst_df_drug_lvl.copy() logger.info(f"Sum Fcst before: {df_pre_corr['fcst'].sum()}") logger.info(f"Sum Fcst after: {df_post_corr['fcst'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['fcst']) fcst_df_drug_lvl = add_correction_flag(fcst_df_drug_lvl, corr_drug_lst, 'REC_CORR3') fcst_df_comb_lvl.drop('wtd_demand', axis=1, inplace=True) fcst_df_drug_lvl.drop('wtd_demand', axis=1, inplace=True) return fcst_df_comb_lvl, fcst_df_drug_lvl
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/heuristics/recency_corr.py
recency_corr.py