code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import pandas as pd import numpy as np import datetime as dt import time from dateutil.relativedelta import relativedelta from scipy.stats import norm from zeno_etl_libs.utils.ipc2.engine.data_load import LoadData from zeno_etl_libs.utils.ipc2.engine.forecast import Forecast from zeno_etl_libs.utils.ipc2.engine.feat_engg import Feature_Engg from zeno_etl_libs.utils.ipc_pmf.ipc_drug_fcst.engine.data_pre_process import PreprocessData from zeno_etl_libs.utils.ipc_pmf.ipc_drug_fcst.engine.segmentation import Segmentation from zeno_etl_libs.utils.ipc_pmf.ipc_drug_fcst.engine.ts_fcst import TS_forecast from zeno_etl_libs.utils.ipc_pmf.config_ipc_drug import * def ipc_drug_forecast(store_id, reset_date, type_list, schema, db, logger): store_id_list = ("({})").format(store_id) # for sql pass last_date = dt.date(day=1, month=4, year=2019) # max history # define empty variables in case of fail weekly_fcst = pd.DataFrame() ts_fcst = pd.DataFrame() ts_fcst_cols = [] logger.info("Data Loading Started...") data_load_obj = LoadData() ( drug_list, sales_history, cfr_pr, calendar, first_bill_date ) = data_load_obj.load_all_input( type_list=type_list, store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, schema=schema, db=db ) logger.info("Data Pre Processing Started...") data_prep_obj = PreprocessData() ( drug_sales_4w_wtd, drug_sales_latest_4w, drug_sales_latest_12w, train_4w_agg_vald_max_date, sales_pred_4w_agg_vald, train_vald_max_date, sales_pred_vald, sales_4w_agg, sales_pred_4w_agg, sales, sales_pred, cal_sales, sales_daily ) = data_prep_obj.preprocess_all( sales=sales_history, drug_list=drug_list, cfr_pr=cfr_pr, calendar=calendar, first_bill_date=first_bill_date, last_date=last_date ) train_max_date = sales[date_col].max() end_date = sales_pred[date_col].max() logger.info("Segmentation Started...") seg_obj = Segmentation() seg_df = seg_obj.get_weekly_segmentation( df=sales.copy(deep=True), df_sales_daily=sales_daily.copy(deep=True), train_max_date=train_max_date, end_date=end_date ) seg_df['reset_date'] = str(reset_date) # ======================================================================== # VALIDATION AND BEST MODEL FOR BUCKET SELECTION # ======================================================================== # Find validation period actual demand valid_start_date = train_max_date - relativedelta(weeks=4) valid_period_demand = sales.loc[sales[date_col] > valid_start_date] valid_period_demand = valid_period_demand.groupby(key_col, as_index=False).agg( {target_col: "sum"}) min_history_date_validation = valid_start_date - relativedelta(weeks=4) df_min_date = sales_pred_vald.groupby(key_col, as_index=False).agg( {date_col: 'min'}) df_min_date['min_allowed_date'] = min_history_date_validation ts_ids_to_drop = \ df_min_date.loc[df_min_date['min_allowed_date'] < df_min_date[date_col]][ key_col].tolist() # Perform Un-Aggregated TS Forecast merged_df1 = pd.merge(sales_pred_vald, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[ merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] merged_df1 = merged_df1[~merged_df1['ts_id'].isin(ts_ids_to_drop)] # calculate bucket wise wmape valid_wmape = {'Model': []} for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: valid_wmape[bucket] = [] if runs_ts_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast( df=merged_df1.copy(), train_max_date=train_vald_max_date, forecast_start=train_vald_max_date + relativedelta(weeks=1)) for model in ts_fcst_cols: df_model = ts_fcst[[key_col, 'Mixed', model]] df_model = df_model.groupby(key_col, as_index=False).agg( {'Mixed': 'first', model: 'sum'}) df_model = df_model.merge(valid_period_demand, on=key_col, how='left') df_model['error'] = df_model[model] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg( {'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error'] / \ df_bucket_wmape[target_col] valid_wmape['Model'].append(model) for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = \ df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket][ 'wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) if run_ml_flag == 1: forecast_start = train_vald_max_date + relativedelta(weeks=1) weekly_fcst = run_LGBM(merged_df1, train_vald_max_date, forecast_start, logger, is_validation=True) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg( {'preds_lgb': 'sum'}) df_model = lgbm_fcst.merge(valid_period_demand, on=key_col, how='left') df_model = df_model.merge(seg_df[[key_col, 'Mixed']], how='left', on='ts_id') df_model['error'] = df_model['preds_lgb'] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg( {'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error'] / \ df_bucket_wmape[target_col] valid_wmape['Model'].append('LGBM') for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket][ 'wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) # Perform Aggregated TS Forecast merged_df1 = pd.merge(sales_pred_4w_agg_vald, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[ merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] merged_df1 = merged_df1[~merged_df1['ts_id'].isin(ts_ids_to_drop)] if run_ts_4w_agg_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast_agg( df=merged_df1.copy(), train_max_date=train_4w_agg_vald_max_date, forecast_start=train_4w_agg_vald_max_date + relativedelta(weeks=1)) for model in ts_fcst_cols: df_model = ts_fcst[[key_col, 'Mixed', model]] df_model = df_model.groupby(key_col, as_index=False).agg( {'Mixed': 'first', model: 'sum'}) df_model = df_model.merge(valid_period_demand, on=key_col, how='left') df_model['error'] = df_model[model] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg( {'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error'] / \ df_bucket_wmape[target_col] valid_wmape['Model'].append(model) for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = \ df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket][ 'wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) if run_ml_4w_agg_flag == 1: forecast_start = train_4w_agg_vald_max_date + relativedelta(weeks=4) weekly_fcst = run_LGBM(merged_df1, train_4w_agg_vald_max_date, forecast_start, logger, is_validation=True, agg_4w=True) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg( {'preds_lgb': 'sum'}) df_model = lgbm_fcst.merge(valid_period_demand, on=key_col, how='left') df_model = df_model.merge(seg_df[[key_col, 'Mixed']], how='left', on='ts_id') df_model['error'] = df_model['preds_lgb'] - df_model[target_col] df_model['abs_error'] = abs(df_model['error']) df_bucket_wmape = df_model.groupby('Mixed', as_index=False).agg( {'abs_error': 'sum', target_col: 'sum'}) df_bucket_wmape['wmape'] = df_bucket_wmape['abs_error'] / \ df_bucket_wmape[target_col] valid_wmape['Model'].append('LGBM_4w_agg') for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: try: wmape = df_bucket_wmape.loc[df_bucket_wmape['Mixed'] == bucket][ 'wmape'].values[0] except: wmape = np.inf valid_wmape[bucket].append(wmape) # ======================================================================== # Choose best model based on lowest wmape # ======================================================================== best_bucket_model = {} for bucket in ['AW', 'AX', 'AY', 'AZ', 'BW', 'BX', 'BY', 'BZ', 'CW', 'CX', 'CY', 'CZ', 'DW', 'DX', 'DY', 'DZ']: min_wmape = min(valid_wmape[bucket]) if min_wmape != np.inf: best_bucket_model[bucket] = valid_wmape['Model'][ valid_wmape[bucket].index(min_wmape)] else: best_bucket_model[bucket] = default_model # default # FIXED BUCKETS # best_bucket_model['CY'] = 'LGBM' # best_bucket_model['CZ'] = 'LGBM' # best_bucket_model['DY'] = 'LGBM' # best_bucket_model['DZ'] = 'LGBM' # ======================================================================== # TRAINING AND FINAL FORECAST # ======================================================================== # Perform Un-Aggregated TS Forecast merged_df1 = pd.merge(sales_pred, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[ merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] if runs_ts_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast( df=merged_df1.copy(), train_max_date=train_max_date, forecast_start=train_max_date + relativedelta(weeks=2)) final_fcst = pd.DataFrame() for model_fcst in ts_fcst_cols: df_model_fcst = ts_fcst.groupby(key_col, as_index=False).agg( {model_fcst: 'sum'}) df_model_fcst.rename({model_fcst: 'fcst'}, axis=1, inplace=True) df_model_fcst['model'] = model_fcst final_fcst = final_fcst.append(df_model_fcst) if run_ml_flag == 1: forecast_start = train_max_date + relativedelta(weeks=2) weekly_fcst = run_LGBM(merged_df1, train_max_date, forecast_start, logger, is_validation=False) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg( {'preds_lgb': 'sum'}) lgbm_fcst.rename({'preds_lgb': 'fcst'}, axis=1, inplace=True) lgbm_fcst['model'] = 'LGBM' final_fcst = final_fcst.append(lgbm_fcst) # Perform Aggregated TS Forecast merged_df1 = pd.merge(sales_pred_4w_agg, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[ merged_df1['PLC Status L1'].isin(['Mature', 'New Product'])] if run_ts_4w_agg_flag == 1: ts_fcst_obj = TS_forecast() ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast_agg( df=merged_df1.copy(), train_max_date=train_max_date, forecast_start=train_max_date + relativedelta(weeks=2)) for model_fcst in ts_fcst_cols: df_model_fcst = ts_fcst.groupby(key_col, as_index=False).agg( {model_fcst: 'sum'}) df_model_fcst.rename({model_fcst: 'fcst'}, axis=1, inplace=True) df_model_fcst['model'] = model_fcst final_fcst = final_fcst.append(df_model_fcst) if run_ml_4w_agg_flag == 1: forecast_start = train_max_date + relativedelta(weeks=2) weekly_fcst = run_LGBM(merged_df1, train_max_date, forecast_start, logger, is_validation=False, agg_4w=True) lgbm_fcst = weekly_fcst.groupby(key_col, as_index=False).agg( {'preds_lgb': 'sum'}) lgbm_fcst.rename({'preds_lgb': 'fcst'}, axis=1, inplace=True) lgbm_fcst['model'] = 'LGBM_4w_agg' final_fcst = final_fcst.append(lgbm_fcst) final_fcst = final_fcst.merge(seg_df[[key_col, 'Mixed']], on=key_col, how='left') final_fcst.rename({'Mixed': 'bucket'}, axis=1, inplace=True) # Choose buckets forecast of best models as final forecast final_selected_fcst = pd.DataFrame() for bucket in best_bucket_model.keys(): df_selected = final_fcst.loc[(final_fcst['bucket'] == bucket) & (final_fcst['model'] == best_bucket_model[ bucket])] final_selected_fcst = final_selected_fcst.append(df_selected) # add comb rejected due to recent sales list_all_comb = final_fcst[key_col].unique().tolist() list_all_final_comb = final_selected_fcst[key_col].unique().tolist() list_comb_rejects = list(set(list_all_comb) - set(list_all_final_comb)) comb_fcst_to_add = final_fcst.loc[ (final_fcst[key_col].isin(list_comb_rejects)) & (final_fcst["model"] == default_model)] final_selected_fcst = final_selected_fcst.append(comb_fcst_to_add) final_selected_fcst = final_selected_fcst.merge(seg_df[[key_col, 'std']], on=key_col, how='left') final_selected_fcst[[store_col, drug_col]] = final_selected_fcst[ 'ts_id'].str.split('_', expand=True) final_selected_fcst[store_col] = final_selected_fcst[store_col].astype(int) model_name_map = {'preds_ETS_12w': 'ETS_12w', 'preds_ma': 'MA', 'preds_ETS_auto': 'ETS_auto', 'preds_croston': 'Croston', 'preds_ETS_4w_auto': 'ETS_4w_auto', 'preds_AE_ts': 'AvgTS', 'preds_prophet': 'Prophet'} final_selected_fcst["model"] = final_selected_fcst["model"].map( model_name_map).fillna(final_selected_fcst["model"]) return final_selected_fcst, seg_df, drug_sales_latest_12w, drug_sales_latest_4w, drug_sales_4w_wtd def run_LGBM(merged_df1, train_max_date, forecast_start, logger, is_validation=False, agg_4w=False): start_time = time.time() merged_df1['All'] = 'All' slice_col = 'All' forecast_volume = merged_df1[merged_df1[date_col] > train_max_date][ target_col].sum() assert forecast_volume == 0 logger.info( "forecast start {} total volume: {}".format(forecast_start, forecast_volume) ) forecast_df = pd.DataFrame() validation_df = pd.DataFrame() weekly_fcst = pd.DataFrame() if agg_4w: end_range = 2 else: end_range = 5 for i in range(1, end_range): if is_validation: num_shift_lags = i else: num_shift_lags = i + 1 # for group_name in merged_df1[slice_col].dropna.unique(): # slice_col = 'Mixed' # for groups in [['AW', 'BW', 'CW', 'DW'], ['AX', 'BX', 'CX', 'DX'], ['AY', 'BY', 'CY', 'DY'], ['AZ', 'BZ', 'CZ', 'DZ']]: for groups in ['All']: logger.info('Group: {}'.format(groups)) logger.info("Feature Engineering Started...") feat_df = pd.DataFrame() for one_df in [merged_df1]: feat_engg_obj = Feature_Engg() one_feat_df = feat_engg_obj.feat_agg( one_df[ one_df[slice_col] == groups ].drop(slice_col, axis=1).copy(deep=True), train_max_date=train_max_date, num_shift_lag=num_shift_lags ) feat_df = pd.concat([one_feat_df, feat_df]) if pd.DataFrame(feat_df).empty: continue logger.info( "Forecasting Started for {}...".format(forecast_start)) forecast_obj = Forecast() fcst_df, val_df, Feature_Imp_all = forecast_obj.get_STM_forecast( feat_df.copy(deep=True), forecast_start=forecast_start, num_shift_lags=num_shift_lags ) forecast_df = pd.concat([forecast_df, fcst_df], axis=0) validation_df = pd.concat([validation_df, val_df]) ml_fc_cols = [i for i in forecast_df.columns if i.startswith('preds_')] # forecast_df['AE'] = forecast_df[ml_fc_cols].mean(axis=1) end_time = time.time() logger.info( "total time for {} forecast: {}" .format(forecast_start, end_time - start_time) ) forecast_start = forecast_start + relativedelta(weeks=1) # weekly_fcst = pd.concat([weekly_fcst, forecast_df]) return forecast_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_drug_fcst/forecast_main.py
forecast_main.py
import numpy as np np.random.seed(0) import pandas as pd # import time # import re # from datetime import date # from dateutil.relativedelta import relativedelta # from statsmodels.tsa.exponential_smoothing.ets import ETSModel from prophet import Prophet from statsmodels.tsa.api import ExponentialSmoothing # import sktime from zeno_etl_libs.utils.ipc2.helpers.helper_functions import \ applyParallel_croston # from boruta import BorutaPy from zeno_etl_libs.utils.ipc_pmf.config_ipc_drug import ( date_col, target_col, models_un_agg, models_agg ) import logging logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') class TS_forecast: def train_test_split(self, df, train_max_date, forecast_start): df.rename(columns={date_col: 'ds', target_col: 'y'}, inplace=True) df.sort_values(by=['ds'], inplace=True) train = df[df['ds'] <= train_max_date] test = df[df['ds'] >= forecast_start] return train, test def Croston_TSB(self, ts, extra_periods=4, alpha=0.4, beta=0.4): d = np.array(ts) # Transform the input into a numpy array cols = len(d) # Historical period length d = np.append(d, [ np.nan] * extra_periods) # Append np.nan into the demand array to cover future periods # level (a), probability(p) and forecast (f) a, p, f = np.full((3, cols + extra_periods), np.nan) # Initialization first_occurence = np.argmax(d[:cols] > 0) a[0] = d[first_occurence] p[0] = 1 / (1 + first_occurence) f[0] = p[0] * a[0] # Create all the t+1 forecasts for t in range(0, cols): if d[t] > 0: a[t + 1] = alpha * d[t] + (1 - alpha) * a[t] p[t + 1] = beta * (1) + (1 - beta) * p[t] else: a[t + 1] = a[t] p[t + 1] = (1 - beta) * p[t] f[t + 1] = p[t + 1] * a[t + 1] # Future Forecast a[cols + 1:cols + extra_periods] = a[cols] p[cols + 1:cols + extra_periods] = p[cols] f[cols + 1:cols + extra_periods] = f[cols] df = pd.DataFrame.from_dict( {"Demand": d, "Forecast": f, "Period": p, "Level": a, "Error": d - f}) return df[-extra_periods:] def ETS_forecast(self, train, test, latest_12w_fit=False): try: train.set_index(['ds'], inplace=True) test.set_index(['ds'], inplace=True) train.index.freq = train.index.inferred_freq test.index.freq = test.index.inferred_freq if latest_12w_fit: train = train[-12:] # use only latest 3 months fit = ExponentialSmoothing(train['y']).fit() preds = fit.forecast(len(test) + 1) preds = preds[-len(test):] except Exception as e: logger.info("error in ETS fcst") logger.info(str(e)) preds = 0 return preds def ma_forecast(self, data): """ Purpose: Compute MA forecast for the for the forecast horizon specified Inputs: time series to create forecast Output: series with forecasted values """ sma_df = data.copy(deep=True) yhat = [] if len(data) >= 8: for i in range(5): sma_val = sma_df.rolling(8).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) else: for i in range(5): sma_val = sma_df.rolling(len(data)).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) logger.info(yhat) return yhat[-4:] def prophet_fcst(self, train, test, params=None): # reg_list = [] try: if params is None: pro = Prophet() else: pro = Prophet(n_changepoints=params) # for j in train.columns: # if j not in col_list: # pro.add_regressor(j) # reg_list.append(j) pro.fit(train[['ds', 'y']]) pred_f = pro.predict(test) test = test[["ds", "y"]] test = pd.merge(test, pred_f, on="ds", how="left") except Exception as e: logger.info("error in prophet fcst") logger.info(str(e)) test['yhat'] = 0 return test def ts_forecast_un_agg(self, df, train_max_date, forecast_start): train, test = self.train_test_split(df, train_max_date=train_max_date, forecast_start=forecast_start) test = test.sort_values(by=['ds']) if 'croston' in models_un_agg: preds_croston = self.Croston_TSB(train['y']) test['preds_croston'] = preds_croston['Forecast'].values if 'ETS_Auto' in models_un_agg: preds_ETS = self.ETS_forecast(train.copy(), test.copy()) try: test['preds_ETS_auto'] = preds_ETS.values except: test['preds_ETS_auto'] = 0 if 'ETS_12w' in models_un_agg: preds_ETS = self.ETS_forecast(train.copy(), test.copy(), latest_12w_fit=True) try: test['preds_ETS_12w'] = preds_ETS.values except: test['preds_ETS_12w'] = 0 if 'MA' in models_un_agg: preds_ma = self.ma_forecast(train['y']) test['preds_ma'] = preds_ma if 'prophet' in models_un_agg: preds_prophet = self.prophet_fcst(train.copy(), test.copy()) test['preds_prophet'] = preds_prophet['yhat'].values return test def ts_forecast_agg(self, df, train_max_date, forecast_start): train, test = self.train_test_split(df, train_max_date=train_max_date, forecast_start=forecast_start) test = test.sort_values(by=['ds']) if 'ETS_4w_agg' in models_agg: preds_ETS = self.ETS_forecast(train.copy(), test.copy(), latest_12w_fit=True) try: test['preds_ETS_4w_auto'] = preds_ETS.values except: test['preds_ETS_4w_auto'] = 0 return test def apply_ts_forecast(self, df, train_max_date, forecast_start): # global train_date # train_date = train_max_date # global forecast_start_date # forecast_start_date = forecast_start preds = applyParallel_croston( df.groupby('ts_id'), func=self.ts_forecast_un_agg, train_max_date=train_max_date, forecast_start=forecast_start ) preds.rename(columns={'ds': date_col, 'y': target_col}, inplace=True) ts_fcst_cols = [i for i in preds.columns if i.startswith('preds_')] for col in ts_fcst_cols: preds[col].fillna(0, inplace=True) preds[col] = np.where(preds[col] < 0, 0, preds[col]) # preds['preds_AE_ts'] = preds[ts_fcst_cols].mean(axis=1) # ts_fcst_cols = ts_fcst_cols + ['preds_AE_ts'] return preds, ts_fcst_cols def apply_ts_forecast_agg(self, df, train_max_date, forecast_start): # global train_date # train_date = train_max_date # global forecast_start_date # forecast_start_date = forecast_start preds = applyParallel_croston( df.groupby('ts_id'), func=self.ts_forecast_agg, train_max_date=train_max_date, forecast_start=forecast_start ) preds.rename(columns={'ds': date_col, 'y': target_col}, inplace=True) ts_fcst_cols = [i for i in preds.columns if i.startswith('preds_')] for col in ts_fcst_cols: preds[col].fillna(0, inplace=True) preds[col] = np.where(preds[col] < 0, 0, preds[col]) # preds['preds_AE_ts'] = preds[ts_fcst_cols].mean(axis=1) return preds, ts_fcst_cols
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_drug_fcst/engine/ts_fcst.py
ts_fcst.py
import pandas as pd import datetime import numpy as np from zeno_etl_libs.utils.ipc_pmf.config_ipc_drug import date_col, store_col, \ drug_col, target_col, key_col, local_testing class PreprocessData: def add_ts_id(self, df): df = df[~df[drug_col].isnull()].reset_index(drop=True) df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[drug_col].astype(int).astype(str) ) return df def preprocess_sales(self, df, drug_list): df.rename(columns={ 'net_sales_quantity': target_col }, inplace=True) df.rename(columns={ 'sales_date': date_col }, inplace=True) set_dtypes = { store_col: int, drug_col: int, date_col: str, target_col: float } df = df.astype(set_dtypes) df[target_col] = df[target_col].round() df[date_col] = pd.to_datetime(df[date_col]) df = df.groupby( [store_col, drug_col, key_col, date_col] )[target_col].sum().reset_index() df = df[df[drug_col].isin(drug_list[drug_col].unique().tolist())] return df def get_formatted_data(self, df): df_start = df.groupby([key_col])[date_col].min().reset_index().rename( columns={date_col: 'sales_start'}) df = df[[key_col, date_col, target_col]] min_date = df[date_col].dropna().min() end_date = df[date_col].dropna().max() date_range = [] date_range = pd.date_range( start=min_date, end=end_date, freq='d' ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = np.nan df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = pd.merge(df, df_start, how='left', on=key_col) df = df[df[date_col] >= df['sales_start']] df[[store_col, drug_col]] = df[key_col].str.split('_', expand=True) df[[store_col, drug_col]] = df[[store_col, drug_col]] df[store_col] = df[store_col].astype(int) df[drug_col] = df[drug_col].astype(int) return df def preprocess_cfr_pr(self, df): set_dtypes = { store_col: int, drug_col: int, 'loss_quantity': int } df = df.astype(set_dtypes) df['shortbook_date'] = pd.to_datetime(df['shortbook_date']) return df def merge_cfr_pr(self, sales, cfr_pr): df = sales.merge(cfr_pr, left_on=[store_col, drug_col, date_col], right_on=[store_col, drug_col, 'shortbook_date'], how='left') df[date_col] = df[date_col].combine_first(df['shortbook_date']) df[target_col].fillna(0, inplace=True) df['loss_quantity'].fillna(0, inplace=True) df[target_col] += df['loss_quantity'] df.drop(['shortbook_date', 'loss_quantity'], axis=1, inplace=True) return df def preprocess_calendar(self, df, last_date): df.rename(columns={'date': date_col}, inplace=True) df[date_col] = pd.to_datetime(df[date_col]) cal_sales = df.copy() cal_sales['week_begin_dt'] = cal_sales.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales['month_begin_dt'] = cal_sales.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) cal_sales['key'] = 1 ld = pd.to_datetime(last_date) cal_sales = cal_sales[cal_sales[date_col] > ld] return df, cal_sales def merge_calendar(self, sales, calendar): df = sales.merge(calendar, how='left', on=date_col ) # df_week_days_count = df.groupby([key_col, 'year', 'week_of_year'])[date_col].count().reset_index().rename(columns = {date_col:'week_days_count'}) # df['week_days_count'] = 1 df['week_begin_dt'] = df.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) df_week_days_count = df.groupby(['ts_id', 'week_begin_dt'])[ date_col].count().reset_index().rename( columns={date_col: 'week_days_count'}) # df = df.groupby(['ts_id', store_col, drug_col, ]).resample('W-Mon', on =date_col )[target_col].sum().reset_index() df = df.groupby(['ts_id', store_col, drug_col, 'week_begin_dt'])[ target_col].sum().reset_index() df = pd.merge(df, df_week_days_count, how='left', on=[key_col, 'week_begin_dt']) df = df[df['week_days_count'] == 7].reset_index(drop=True) df.drop(columns=['week_days_count'], inplace=True) df.rename(columns={'week_begin_dt': date_col}, inplace=True) return df def preprocess_bill_date(self, df): df.rename(columns={'store-id': store_col}, inplace=True) df['bill_date'] = pd.to_datetime(df['bill_date']) return df def merge_first_bill_date(self, sales, first_bill_date): df = pd.merge(sales, first_bill_date, on=[store_col]) df = df[df[date_col] >= df['bill_date']].reset_index(drop=True) df.drop(columns=['bill_date'], inplace=True) return df def make_future_df(self, df): start_date_df = ( df .groupby(key_col)[date_col] .min() .reset_index() .rename(columns={date_col: 'start_date'}) ) df = df[[key_col, date_col, target_col]] end_date = df[date_col].max() + datetime.timedelta(weeks=5) min_date = df[date_col].min() date_range = pd.date_range( start=min_date, end=end_date, freq="W-MON" ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = 0 df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = df.merge(start_date_df, on=key_col, how='left') df = df[ df[date_col] >= df['start_date'] ] df.drop('start_date', axis=1, inplace=True) df[[store_col, drug_col]] = df[key_col].str.split('_', expand=True) return df def make_future_df_4w_agg(self, df): start_date_df = ( df .groupby(key_col)[date_col] .min() .reset_index() .rename(columns={date_col: 'start_date'}) ) df = df[[key_col, date_col, target_col]] fcst_week_start = df[date_col].max() + datetime.timedelta(weeks=5) date_range = [fcst_week_start] df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = 0 df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = df.merge(start_date_df, on=key_col, how='left') df = df[ df[date_col] >= df['start_date'] ] df.drop('start_date', axis=1, inplace=True) df[[store_col, drug_col]] = df[key_col].str.split('_', expand=True) return df def sales_pred_vald_df( self, df ): vald_max_date = df[date_col].max() - datetime.timedelta(weeks=4) df_vald_train = df.loc[df[date_col] <= vald_max_date] df_vald_future = df.loc[~(df[date_col] <= vald_max_date)] df_vald_future[target_col] = 0 df_final = df_vald_train.append(df_vald_future) train_vald_max_date = df_vald_train[date_col].max() return df_final, train_vald_max_date def sales_4w_agg( self, df ): # ===================================================================== # Combine 4 weeks into an arbitrary group # ===================================================================== unique_ts_ids = df[key_col].unique().tolist() sales_4w_agg = pd.DataFrame() for ts_id in unique_ts_ids: week_gp_size = 4 sales_temp = df.loc[df[key_col] == ts_id] available_week_count = sales_temp.shape[0] if available_week_count >= (3 * week_gp_size): allowable_week_count = int( week_gp_size * np.fix(available_week_count / week_gp_size)) sales_temp = sales_temp.sort_values(by=["date"], ascending=True) sales_temp = sales_temp[-allowable_week_count:] week_gps_count = int(allowable_week_count / week_gp_size) week_gps_list = np.arange(1, week_gps_count + 1, 1) week_gps_id_list = np.repeat(week_gps_list, week_gp_size) sales_temp["week_gps_id"] = week_gps_id_list sales_temp = sales_temp.groupby( [key_col, store_col, drug_col, "week_gps_id"], as_index=False).agg( {"date": "first", "actual_demand": "sum"}) sales_4w_agg = sales_4w_agg.append(sales_temp) sales_4w_agg = sales_4w_agg.drop("week_gps_id", axis=1) sales_pred_4w_agg = self.make_future_df_4w_agg(sales_4w_agg.copy()) return sales_4w_agg, sales_pred_4w_agg def drug_sales_12w_4w( self, df ): date_12w_back = df[date_col].max() - datetime.timedelta(weeks=12) df_12w = df.loc[df[date_col] > date_12w_back] date_4w_back = df[date_col].max() - datetime.timedelta(weeks=4) df_4w = df.loc[df[date_col] > date_4w_back] df_count = df_12w.groupby([store_col, drug_col], as_index=False).agg( {target_col: 'count'}) df_count.rename({target_col: 'week_count'}, axis=1, inplace=True) drugs_with_12w_data = df_count.loc[df_count['week_count'] == 12][drug_col].tolist() drugs_with_4w_data = df_count.loc[(df_count['week_count'] >= 4) & (df_count['week_count'] != 12)][drug_col].tolist() df_12w = df_12w.groupby([store_col, drug_col], as_index=False).agg( {target_col: 'sum'}) df_12w = df_12w.loc[df_12w[drug_col].isin(drugs_with_12w_data)] df_4w = df_4w.groupby([store_col, drug_col], as_index=False).agg( {target_col: 'sum'}) df_4w = df_4w.loc[df_4w[drug_col].isin(drugs_with_4w_data)] return df_12w, df_4w def drug_sales_4w_wtd( self, df ): date_4w_back = df[date_col].max() - datetime.timedelta(weeks=4) df_4w = df.loc[df[date_col] > date_4w_back] # sales > 0 and all 4 latest week df_4w_1 = df_4w[df_4w[target_col] > 0] df_4w_cnt = df_4w_1.groupby([store_col, drug_col], as_index=False).agg( {target_col: 'count'}) df_4w_cnt.rename({target_col: 'week_count'}, axis=1, inplace=True) list_4w_drugs = df_4w_cnt.loc[df_4w_cnt['week_count'] == 4][drug_col].tolist() df_4w_1 = df_4w_1.loc[df_4w_1[drug_col].isin(list_4w_drugs)] dates_list = list(df_4w.date.unique()) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[3], 0.4, 0) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[2], 0.3, df_4w_1['weights']) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[1], 0.2, df_4w_1['weights']) df_4w_1['weights'] = np.where(df_4w_1[date_col] == dates_list[0], 0.1, df_4w_1['weights']) df_4w_1['wtd_demand'] = df_4w_1[target_col] * df_4w_1['weights'] df_4w_1 = df_4w_1.groupby([store_col, drug_col], as_index=False).agg( {'wtd_demand': 'sum'}) # sales > 0 and only 3 latest week df_4w_2 = df_4w[df_4w[target_col] > 0] df_4w_cnt = df_4w_2.groupby([store_col, drug_col], as_index=False).agg( {target_col: 'count'}) df_4w_cnt.rename({target_col: 'week_count'}, axis=1, inplace=True) list_4w_drugs = df_4w_cnt.loc[df_4w_cnt['week_count'] == 3][drug_col].tolist() df_4w_2 = df_4w_2.loc[df_4w_2[drug_col].isin(list_4w_drugs)] df_4w_2['w_count'] = np.tile(np.arange(1, 4), len(df_4w_2))[:len(df_4w_2)] df_4w_2['weights'] = np.where(df_4w_2['w_count'] == 3, 0.5, 0) df_4w_2['weights'] = np.where(df_4w_2['w_count'] == 2, 0.3, df_4w_2['weights']) df_4w_2['weights'] = np.where(df_4w_2['w_count'] == 1, 0.2, df_4w_2['weights']) df_4w_2['wtd_demand'] = df_4w_2[target_col] * df_4w_2['weights'] df_4w_2 = df_4w_2.groupby([store_col, drug_col], as_index=False).agg( {'wtd_demand': 'sum'}) # sales > 0 and only 2 latest week df_4w_3 = df_4w[df_4w[target_col] > 0] df_4w_cnt = df_4w_3.groupby([store_col, drug_col], as_index=False).agg( {target_col: 'count'}) df_4w_cnt.rename({target_col: 'week_count'}, axis=1, inplace=True) list_4w_drugs = df_4w_cnt.loc[df_4w_cnt['week_count'] == 2][drug_col].tolist() df_4w_3 = df_4w_3.loc[df_4w_3[drug_col].isin(list_4w_drugs)] df_4w_3['w_count'] = np.tile(np.arange(1, 3), len(df_4w_3))[:len(df_4w_3)] df_4w_3['weights'] = np.where(df_4w_3['w_count'] == 2, 0.6, 0) df_4w_3['weights'] = np.where(df_4w_3['w_count'] == 1, 0.4, df_4w_3['weights']) df_4w_3['wtd_demand'] = df_4w_3[target_col] * df_4w_3['weights'] df_4w_3 = df_4w_3.groupby([store_col, drug_col], as_index=False).agg( {'wtd_demand': 'sum'}) df_4w = pd.concat([df_4w_1, df_4w_2, df_4w_3], axis=0) df_4w['wtd_demand'] = np.round(df_4w['wtd_demand'] * 4) return df_4w def preprocess_all( self, sales=None, cfr_pr=None, drug_list=None, calendar=None, first_bill_date=None, last_date=None, ): sales = self.add_ts_id(sales) # filter ################################################# if local_testing == 1: tsid_list = \ sales.sort_values(by=['net_sales_quantity'], ascending=False)[ key_col].unique().tolist()[:20] sales = sales[sales[key_col].isin(tsid_list)] ################################################# sales = self.preprocess_sales(sales, drug_list) sales = self.get_formatted_data(sales) cfr_pr = self.preprocess_cfr_pr(cfr_pr) sales_daily = self.merge_cfr_pr(sales, cfr_pr) calendar, cal_sales = self.preprocess_calendar(calendar, last_date) sales = self.merge_calendar(sales_daily, calendar) first_bill_date = self.preprocess_bill_date(first_bill_date) sales = self.merge_first_bill_date(sales, first_bill_date) sales_pred = self.make_future_df(sales.copy()) sales_pred_vald, train_vald_max_date = self.sales_pred_vald_df(sales) sales_4w_agg, sales_pred_4w_agg = self.sales_4w_agg(sales) sales_pred_4w_agg_vald, train_4w_agg_vald_max_date = self.sales_pred_vald_df(sales_4w_agg) drug_sales_latest_12w, drug_sales_latest_4w = self.drug_sales_12w_4w(sales) drug_sales_4w_wtd = self.drug_sales_4w_wtd(sales) return ( drug_sales_4w_wtd, drug_sales_latest_4w, drug_sales_latest_12w, train_4w_agg_vald_max_date, sales_pred_4w_agg_vald, train_vald_max_date, sales_pred_vald, sales_4w_agg, sales_pred_4w_agg, sales, sales_pred, cal_sales, sales_daily )
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_drug_fcst/engine/data_pre_process.py
data_pre_process.py
import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta from tqdm import tqdm import logging import warnings warnings.filterwarnings("ignore") logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') from zeno_etl_libs.utils.ipc_pmf.config_ipc_drug import ( date_col, target_col, store_col, drug_col, eol_cutoff ) class Segmentation: def add_ts_id(self, df): df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[drug_col].astype(int).astype(str) ) return df def _calc_abc(self, df52): B_cutoff = 0.5 C_cutoff = 0.8 D_cutoff = 0.95 tot_sales = ( df52.groupby([ 'ts_id' ])[target_col].sum().reset_index() ) tot_sales.rename(columns={target_col: 'total_LY_sales'}, inplace=True) tot_sales.sort_values('total_LY_sales', ascending=False, inplace=True) tot_sales["perc_sales"] = ( tot_sales['total_LY_sales'] / tot_sales['total_LY_sales'].sum() ) tot_sales["cum_perc_sales"] = tot_sales.perc_sales.cumsum() tot_sales["ABC"] = "A" tot_sales.loc[tot_sales.cum_perc_sales > B_cutoff, "ABC"] = "B" tot_sales.loc[tot_sales.cum_perc_sales > C_cutoff, "ABC"] = "C" tot_sales.loc[tot_sales.cum_perc_sales > D_cutoff, "ABC"] = "D" # tot_sales = self.add_ts_id(tot_sales) return tot_sales[['ts_id', 'ABC', 'total_LY_sales']] # TODO: lower COV cutoffs def get_abc_classification(self, df52): province_abc = df52.groupby( [store_col] ).apply(self._calc_abc) province_abc = province_abc[['ts_id', "ABC"]].reset_index(drop=True) # one tot_sales = ( df52 .groupby(['ts_id'])[target_col] .agg(['sum', 'mean']) .reset_index() ) tot_sales.rename( columns={'sum': 'total_LY_sales', 'mean': 'avg_ly_sales'}, inplace=True) tot_sales = tot_sales.merge( province_abc, on=['ts_id'], how='left' ) tot_sales = tot_sales.drop_duplicates() # tot_sales = self.add_ts_id(tot_sales) tot_sales = tot_sales[['ts_id', 'ABC']] return tot_sales def get_xyzw_classification(self, df1): input_ts_id = df1['ts_id'].unique() df1 = df1[df1[target_col] > 0] cov_df = df1.groupby(['ts_id'])[target_col].agg( ["mean", "std", "count", "sum"]) cov_df.reset_index(drop=False, inplace=True) cov_df['cov'] = np.where( ((cov_df["count"] > 2) & (cov_df["sum"] > 0)), (cov_df["std"]) / (cov_df["mean"]), np.nan ) cov_df['WXYZ'] = 'Z' cov_df.loc[cov_df['cov'] <= 1.2, 'WXYZ'] = 'Y' cov_df.loc[cov_df['cov'] <= 0.8, 'WXYZ'] = 'X' cov_df.loc[cov_df['cov'] <= 0.5, 'WXYZ'] = 'W' # cov_df = self.add_ts_id(cov_df) cov_df = cov_df[['ts_id', 'cov', 'WXYZ']] non_mapped_ts_ids = list( set(input_ts_id) - set(cov_df['ts_id'].unique()) ) non_mapped_cov = pd.DataFrame({ 'ts_id': non_mapped_ts_ids, 'cov': [np.nan] * len(non_mapped_ts_ids), 'WXYZ': ['Z'] * len(non_mapped_ts_ids) }) cov_df = pd.concat([cov_df, non_mapped_cov], axis=0) cov_df = cov_df.reset_index(drop=True) return cov_df def get_std(self, df1): input_ts_id = df1['ts_id'].unique() # df1 = df1[df1[target_col]>0] std_df = df1.groupby(['ts_id'])[target_col].agg(["std"]) return std_df def calc_interval_mean(self, x, key): df = pd.DataFrame({"X": x, "ts_id": key}).reset_index( drop=True).reset_index() df = df[df.X > 0] df["index_shift"] = df["index"].shift(-1) df["interval"] = df["index_shift"] - df["index"] df = df.dropna(subset=["interval"]) df['ADI'] = np.mean(df["interval"]) return df[['ts_id', 'ADI']] def calc_adi(self, df): # df = self.add_ts_id(df) logger.info( 'Combinations entering adi: {}'.format(df['ts_id'].nunique())) dict_of = dict(iter(df.groupby(['ts_id']))) logger.info("Total tsids in df: {}".format(df.ts_id.nunique())) logger.info("Total dictionary length: {}".format(len(dict_of))) list_dict = [ self.calc_interval_mean(dict_of[x][target_col], x) for x in tqdm(dict_of.keys()) ] data = ( pd.concat(list_dict) .reset_index(drop=True) .drop_duplicates() .reset_index(drop=True) ) logger.info('Combinations exiting adi: {}'.format(data.ts_id.nunique())) return data def get_PLC_segmentation(self, df, mature_cutoff_date, eol_cutoff_date): df1 = df[df[target_col] > 0] df1 = df1.groupby(['ts_id']).agg({date_col: [min, max]}) df1.reset_index(drop=False, inplace=True) df1.columns = [' '.join(col).strip() for col in df1.columns.values] df1['PLC Status L1'] = 'Mature' df1.loc[ (df1[date_col + ' min'] > mature_cutoff_date), 'PLC Status L1' ] = 'New Product' df1.loc[ (df1[date_col + ' max'] <= eol_cutoff_date), 'PLC Status L1' ] = 'EOL' # df1 = self.add_ts_id(df1) df1 = df1[['ts_id', 'PLC Status L1']] return df1 def get_group_mapping(self, seg_df): seg_df['Mixed'] = seg_df['ABC'].astype(str) + seg_df['WXYZ'].astype(str) seg_df['Group'] = 'Group3' group1_mask = seg_df['Mixed'].isin(['AW', 'AX', 'BW', 'BX']) seg_df.loc[group1_mask, 'Group'] = 'Group1' group2_mask = seg_df['Mixed'].isin(['AY', 'AZ', 'BY', 'BZ']) seg_df.loc[group2_mask, 'Group'] = 'Group2' return seg_df def calc_dem_pat(self, cov_df, adi_df): logger.info('Combinations entering calc_dem_pat: {}'.format( cov_df.ts_id.nunique())) logger.info('Combinations entering calc_dem_pat: {}'.format( adi_df.ts_id.nunique())) df = pd.merge(cov_df, adi_df, how='left', on='ts_id') df["cov2"] = np.power(df["cov"], 2) df["classification"] = "Lumpy" df.loc[ (df.ADI >= 1.32) & (df.cov2 < 0.49), "classification" ] = "Intermittent" df.loc[ (df.ADI < 1.32) & (df.cov2 >= 0.49), "classification" ] = "Erratic" df.loc[ (df.ADI < 1.32) & (df.cov2 < 0.49), "classification" ] = "Smooth" logger.info( 'Combinations exiting calc_dem_pat: {}'.format(df.ts_id.nunique())) return df[['ts_id', 'classification']] def get_start_end_dates_df(self, df, key_col, date_col, target_col, train_max_date, end_date): start_end_date_df = ( df[df[target_col] > 0] .groupby(key_col)[date_col] .agg({'min', 'max'}) .reset_index() .rename(columns={'min': 'start_date', 'max': 'end_date'}) ) start_end_date_df.loc[ ( start_end_date_df['end_date'] > ( train_max_date - relativedelta(weeks=eol_cutoff) ) ), 'end_date' ] = end_date return start_end_date_df def get_weekly_segmentation(self, df, df_sales_daily, train_max_date, end_date): df = df[df[date_col] <= train_max_date] df1 = df[ df[date_col] > (train_max_date - relativedelta(weeks=52)) ].copy(deep=True) df_std = df_sales_daily[ df_sales_daily[date_col] > (train_max_date - relativedelta(days=90)) ].copy(deep=True) df1 = self.add_ts_id(df1) abc_df = self._calc_abc(df1) xyzw_df = self.get_xyzw_classification(df1) std_df = self.get_std(df_std) adi_df = self.calc_adi(df1) demand_pattern_df = self.calc_dem_pat(xyzw_df[['ts_id', 'cov']], adi_df) mature_cutoff_date = train_max_date - relativedelta(weeks=52) eol_cutoff_date = train_max_date - relativedelta(weeks=13) plc_df = self.get_PLC_segmentation(df, mature_cutoff_date, eol_cutoff_date) start_end_date_df = self.get_start_end_dates_df( df, key_col='ts_id', date_col=date_col, target_col=target_col, train_max_date=train_max_date, end_date=end_date ) seg_df = plc_df.merge(abc_df, on='ts_id', how='outer') seg_df = seg_df.merge(xyzw_df, on='ts_id', how='outer') seg_df = seg_df.merge(adi_df, on='ts_id', how='outer') seg_df = seg_df.merge(demand_pattern_df, on='ts_id', how='outer') seg_df = seg_df.merge(start_end_date_df, on='ts_id', how='outer') seg_df = seg_df.merge(std_df, on='ts_id', how='outer') seg_df = self.get_group_mapping(seg_df) seg_df['Mixed'] = np.where(seg_df['Mixed']=='nannan', np.nan, seg_df['Mixed']) return seg_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc_pmf/ipc_drug_fcst/engine/segmentation.py
segmentation.py
from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from datetime import timedelta import pandas as pd # Common utility functions for crm-campaigns listed in this class # Connections also inititated in the class, to be closed when the script is closed. class CrmCampaigns: """ # Sequence # Data prep # no_bill_in_last_n_days(data, run_date, last_n_days_param = 15) # no_call_in_last_n_days(data, run_date, last_n_days_param = 30) # patient_latest_store(data) # remove_dnd(data) # db_write() """ def __init__(self): self.logger = get_logger() self.ms_connection_read = MySQL() self.ms_connection_read.open_connection() # ALERT: read_only=False, if you want connection which writes self.ms_connection_write = MySQL(read_only=False) self.ms_connection_write.open_connection() self.rs_db = DB() self.rs_db.open_connection() ############################## # Utility functions ############################## def patient_latest_store(self, data_pass): data_base_c_grp = data_pass.copy() patients = tuple(data_base_c_grp['patient_id'].to_list()) self.logger.info("Length of patients tuple is - {}".format(len(patients))) ########################################## # Latest store-id ########################################## store_q = """ select `patient-id`, `store-id`, `created-at` from ( select `patient-id`, `store-id`, `created-at`, ROW_NUMBER() OVER (partition by `patient-id` order by `created-at` desc) as bill_rank_desc from `bills-1` b where `patient-id` in {} ) sub where bill_rank_desc = 1 """.format(patients) data_store = pd.read_sql_query(store_q, self.ms_connection_read.connection) data_store.columns = [c.replace('-', '_') for c in data_store.columns] self.logger.info("Length of data store is {}".format(len(data_store))) # Already unique, but still check data_store['created_at'] = pd.to_datetime(data_store['created_at']) data_store = data_store.sort_values(by=['patient_id', 'created_at'], ascending=[True, False]) # Keep latest store-id data_store = data_store.drop_duplicates(subset='patient_id') data_store = data_store[['patient_id', 'store_id']].copy() self.logger.info("Length of data store after dropping duplicates - is " "{}".format(len(data_store))) return data_store def no_bill_in_last_n_days(self, data_pass, run_date, last_n_days_param=15): ########################################## # No bills in last 15 days ########################################## data_base_c_grp = data_pass.copy() patients = tuple(data_base_c_grp['patient_id'].to_list()) self.logger.info("Length of patients tuple is - {}".format(len(patients))) # Take parameter input, default is 15 last_n_days_cutoff = last_n_days_param self.logger.info("Last n days cutoff is {}".format(last_n_days_cutoff)) run_date_minus_n_days = (pd.to_datetime(run_date) - timedelta(days=last_n_days_cutoff)).strftime("%Y-%m-%d") self.logger.info("Run date minus n days is {}".format(run_date_minus_n_days)) lb_q = """ SELECT `patient-id` FROM `bills-1` WHERE `created-at` >= '{0} 00:00:00' and `patient-id` in {1} GROUP BY `patient-id` """.format(run_date_minus_n_days, patients) already_billed = pd.read_sql_query(lb_q, self.ms_connection_read.connection) already_billed.columns = [c.replace('-', '_') for c in already_billed.columns] already_billed_list = already_billed['patient_id'].to_list() self.logger.info("Length of Already billed last 15 days (List)- " "fetched is {}".format(len(already_billed_list))) data_base_c_grp = data_base_c_grp.query("patient_id not in @already_billed_list") self.logger.info("Length of data base after filtering already billed - " "length is {}".format(len(data_base_c_grp))) return data_base_c_grp def no_call_in_last_n_days(self, data_pass, run_date, last_n_days_param=30): ########################################## # No calls in last 30 days period ########################################## data_base_c_grp = data_pass.copy() patients = tuple(data_base_c_grp['patient_id'].to_list()) self.logger.info("Length of patients tuple is - {}".format(len(patients))) # Take parameter input, default is 15 last_n_days_cutoff = last_n_days_param self.logger.info("Last n days cutoff is {}".format(last_n_days_cutoff)) run_date_minus_n_days = (pd.to_datetime(run_date) - timedelta(days=last_n_days_cutoff)).strftime("%Y-%m-%d") self.logger.info("Run date minus n days is {}".format(run_date_minus_n_days)) calling_q = """ SELECT `patient-id` FROM `calling-dashboard` WHERE (`list-date` >= '{0}' OR `call-date` >= '{0}') and `patient-id` in {1} GROUP BY `patient-id` """.format(run_date_minus_n_days, patients) data_c = pd.read_sql_query(calling_q, self.ms_connection_read.connection) data_c.columns = [c.replace('-', '_') for c in data_c.columns] already_p = data_c['patient_id'].drop_duplicates().to_list() self.logger.info("Length of Calling last {0} days (List)- " "fetched is {1}".format(last_n_days_cutoff, len(already_p))) data_base_c_grp = data_base_c_grp.query("patient_id not in @already_p") self.logger.info("Length of data base after filtering already called - " "length is {}".format(len(data_base_c_grp))) return data_base_c_grp def remove_dnd(self, data_pass): data_base_c_grp = data_pass.copy() read_schema = 'prod2-generico' self.rs_db.execute(f"set search_path to '{read_schema}'", params=None) # Read DND list dnd_q = """ select (case when a."patient-id" is not null then a."patient-id" else b."id" end) as "patient-id" from "dnd-list" a left join "prod2-generico"."patients" b on a."phone" = b."phone" where a."call-dnd" = 1 """ self.logger.info(dnd_q) self.rs_db.execute(dnd_q, params=None) dnd: pd.DataFrame = self.rs_db.cursor.fetch_dataframe() if dnd is None: dnd = pd.DataFrame(columns=['patient_id']) dnd.columns = [c.replace('-', '_') for c in dnd.columns] self.logger.info("dnd data length is : {}".format(len(dnd))) dnd_list = dnd['patient_id'].drop_duplicates().to_list() # Remove those already covered data_base_c_grp = data_base_c_grp.query("patient_id not in @dnd_list") self.logger.info("Net list after removing DND - length is : {}".format(len(data_base_c_grp))) return data_base_c_grp def db_write(self, data_pass, run_date_str, campaign_id_param, callback_reason_str_param, store_daily_limit_param=5, default_sort_needed=True): self.logger.info("Running for run date {}".format(run_date_str)) data_base_c_grp = data_pass.copy() # If default_sort then default sort on ABV descending, for each store if default_sort_needed: data_base_c_grp = data_base_c_grp.sort_values(by=['store_id', 'average_bill_value'], ascending=[True, False]) data_base_c_grp['priority'] = data_base_c_grp.groupby(['store_id']).cumcount() + 1 else: # assumes that sorting is already done, with priority column present pass ########################################## # Filter on Ranking ########################################## # Take parameter input, default is 5 store_daily_limit = store_daily_limit_param self.logger.info("Store level daily call limit is {}".format(store_daily_limit)) read_schema = 'prod2-generico' self.rs_db.execute(f"set search_path to '{read_schema}'", params=None) store_limit_q = f"""select "store-id" as "store_id", "store-daily-limit" from "{read_schema}"."store-calling-exceptions" sce where "campaign-id" = {campaign_id_param} and current_date between "start-date" and "end-date"; """ store_limit = self.rs_db.get_df(query=store_limit_q) data_base_c_grp = pd.merge(data_base_c_grp, store_limit, on='store_id', how='left') data_base_c_grp["store-daily-limit"] = data_base_c_grp["store-daily-limit"].fillna(store_daily_limit_param) data_base_c_grp = data_base_c_grp[data_base_c_grp['priority'] <= data_base_c_grp["store-daily-limit"]] data_base_c_grp = data_base_c_grp.drop(columns=["store-daily-limit"]) self.logger.info("Length of data base after Rank filtering - " "length is {}".format(len(data_base_c_grp))) ########################################## # WRITE to calling dashboard ########################################## data_export = data_base_c_grp[['store_id', 'patient_id', 'priority']].copy() data_export['list_date'] = run_date_str data_export['call_date'] = data_export['list_date'] data_export['campaign_id'] = campaign_id_param # integer data_export['callback_reason'] = callback_reason_str_param # string data_export.columns = [c.replace('_', '-') for c in data_export.columns] ########################################## # DANGER ZONE ########################################## self.logger.info("Insert started for length {}".format(len(data_export))) data_export.to_sql(name='calling-dashboard', con=self.ms_connection_write.engine, if_exists='append', index=False, chunksize=500, method='multi') self.logger.info("Insert done") def close_connections(self): # Closing the DB Connection self.ms_connection_read.close() self.ms_connection_write.close() self.rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/consumer/crm_campaigns.py
crm_campaigns.py
import pandas as pd import numpy as np import datetime as dt import time from dateutil.relativedelta import relativedelta from scipy.stats import norm from zeno_etl_libs.utils.ipc2.config_ipc import * from zeno_etl_libs.utils.ipc2.engine.data_load import LoadData from zeno_etl_libs.utils.ipc2.engine.data_pre_process import PreprocessData from zeno_etl_libs.utils.ipc2.engine.segmentation import Segmentation from zeno_etl_libs.utils.ipc2.engine.ts_fcst import TS_forecast from zeno_etl_libs.utils.ipc2.engine.forecast import Forecast from zeno_etl_libs.utils.ipc2.engine.feat_engg import Feature_Engg def ipc_forecast(store_id, reset_date, type_list, schema, db, logger): store_id_list = ("({})").format(store_id) # for sql pass last_date = dt.date(day=1, month=4, year=2019) # max history #baseline # last_date = pd.to_datetime(reset_date).date() - dt.timedelta(weeks=26) # capping sales history to 6 months # last_date = pd.to_datetime(reset_date).date() - dt.timedelta(weeks=52) # capping sales history to 12 months load_max_date = pd.to_datetime(reset_date).date() - dt.timedelta(days = pd.to_datetime(reset_date).dayofweek+1) # define empty variables in case of fail weekly_fcst = pd.DataFrame() ts_fcst = pd.DataFrame() ts_fcst_cols = [] logger.info("Data Loading Started...") data_load_obj = LoadData() ( drug_list, sales_history, cfr_pr, calendar, first_bill_date ) = data_load_obj.load_all_input( type_list=type_list, store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, load_max_date=load_max_date, schema=schema, db=db ) logger.info("Data Pre Processing Started...") data_prep_obj = PreprocessData() ( sales, sales_pred, cal_sales, sales_daily ) = data_prep_obj.preprocess_all( sales=sales_history, drug_list=drug_list, cfr_pr=cfr_pr, calendar=calendar, first_bill_date=first_bill_date, last_date=last_date ) train_max_date = sales[date_col].max() end_date = sales_pred[date_col].max() logger.info("Segmentation Started...") seg_obj = Segmentation() seg_df, drug_class = seg_obj.get_weekly_segmentation( df=sales.copy(deep=True), df_sales_daily=sales_daily.copy(deep=True), train_max_date=train_max_date, end_date=end_date ) seg_df['reset_date'] = str(reset_date) seg_df['PLC Status L1'].fillna('NPI',inplace=True) #correction for missed combinations in fcst merged_df1 = pd.merge(sales_pred, seg_df, how='left', on=['ts_id']) merged_df1 = merged_df1[merged_df1['PLC Status L1'].isin(['Mature', 'NPI'])] if runs_ts_flag == 1: ts_fcst_obj = TS_forecast() # df_ts_fcst = applyParallel( # merged_df1.groupby('ts_id'), # func=TS_forecast.ts_forecast( # df=merged_df1.copy(), train_max_date = train_max_date, # forecast_start = train_max_date + relativedelta(weeks=2))) ts_fcst, ts_fcst_cols = ts_fcst_obj.apply_ts_forecast( df=merged_df1.copy(), train_max_date=train_max_date, forecast_start=train_max_date + relativedelta(weeks=2)) # ========================= Forecast for 1-4 weeks ========================= if run_ml_flag == 1: start_time = time.time() forecast_start = train_max_date + relativedelta(weeks=2) merged_df1['All'] = 'All' slice_col = 'All' forecast_volume = merged_df1[merged_df1[date_col] > train_max_date][ target_col].sum() assert forecast_volume == 0 logger.info( "forecast start {} total volume: {}".format(forecast_start, forecast_volume) ) forecast_df = pd.DataFrame() validation_df = pd.DataFrame() for i in range(1, 5): num_shift_lags = i + 1 # for group_name in merged_df1[slice_col].dropna.unique(): for group_name in ['All']: logger.info('Group: {}'.format(group_name)) logger.info("Feature Engineering Started...") feat_df = pd.DataFrame() for one_df in [merged_df1]: feat_engg_obj = Feature_Engg() one_feat_df = feat_engg_obj.feat_agg( one_df[ one_df[slice_col] == group_name ].drop(slice_col, axis=1).copy(deep=True), train_max_date=train_max_date, num_shift_lag=num_shift_lags ) feat_df = pd.concat([one_feat_df, feat_df]) if pd.DataFrame(feat_df).empty: continue logger.info( "Forecasting Started for {}...".format(forecast_start)) forecast_obj = Forecast() fcst_df, val_df, Feature_Imp_all = forecast_obj.get_STM_forecast( feat_df.copy(deep=True), forecast_start=forecast_start, num_shift_lags=num_shift_lags ) forecast_df = pd.concat([forecast_df, fcst_df], axis=0) validation_df = pd.concat([validation_df, val_df]) ml_fc_cols = [i for i in forecast_df.columns if i.startswith('preds_')] forecast_df['AE'] = forecast_df[ml_fc_cols].mean(axis=1) end_time = time.time() logger.info( "total time for {} forecast: {}" .format(forecast_start, end_time - start_time) ) forecast_start = forecast_start + relativedelta(weeks=1) weekly_fcst = pd.concat([weekly_fcst, forecast_df]) weekly_fcst['reset_date'] = reset_date if runs_ts_flag == 0: weekly_fcst = weekly_fcst.copy(deep=True) if run_ml_flag == 0: weekly_fcst = ts_fcst.copy(deep=True) weekly_fcst['reset_date'] = reset_date if (run_ml_flag == 1 & runs_ts_flag == 1): weekly_fcst = pd.merge(weekly_fcst, ts_fcst[[key_col, date_col] + ts_fcst_cols], how='left', on=[key_col, date_col]) weekly_fcst.drop_duplicates(inplace=True) weekly_fcst['model'] = 'LGBM' weekly_fcst[[store_col, drug_col]] = weekly_fcst[key_col].str.split('_', expand=True) weekly_fcst.rename(columns={'preds_lgb': 'fcst'}, inplace=True) # weekly_fcst.rename(columns={'preds_xgb_rf_target':'fcst'},inplace=True) weekly_fcst = pd.merge(weekly_fcst, seg_df[['ts_id', 'std', 'Mixed']], how='left', on=['ts_id']) weekly_fcst.rename(columns={'Mixed': 'bucket'}, inplace=True) for key in percentile_bucket_dict.keys(): print(key, percentile_bucket_dict[key]) indexs = weekly_fcst[weekly_fcst.bucket == key].index weekly_fcst.loc[indexs, 'percentile'] = percentile_bucket_dict[key] weekly_fcst.loc[indexs, 'fcst'] = np.round( weekly_fcst.loc[indexs, 'fcst'] + norm.ppf(percentile_bucket_dict[key]) * weekly_fcst.loc[indexs, 'std']) weekly_fcst = weekly_fcst[ ['store_id', 'drug_id', 'model', 'date', 'fcst', 'std', 'bucket', 'percentile']] fc_cols = [i for i in weekly_fcst.columns if i.startswith('preds_')] weekly_fcst['std'].fillna(seg_df['std'].mean(), inplace=True) # agg_fcst = weekly_fcst.groupby( # ['model', 'store_id', 'drug_id', 'bucket', 'percentile']).\ # agg({'fcst': 'sum', 'std': sum_std}).reset_index() agg_fcst = weekly_fcst.groupby( ['model', 'store_id', 'drug_id', 'bucket', 'percentile']). \ agg({'fcst': 'sum', 'std': 'mean'}).reset_index() agg_fcst['store_id'] = agg_fcst['store_id'].astype(int) agg_fcst['drug_id'] = agg_fcst['drug_id'].astype(int) return agg_fcst, cal_sales, weekly_fcst, seg_df, drug_class
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/forecast_main.py
forecast_main.py
import pandas as pd import numpy as np def post_processing(safety_stock_df, weekly_fcst, seg_df, store_id, schema, db, logger): # get drug_name, type and grade seg_df[['store_id', 'drug_id']] = seg_df['ts_id'].str.split('_', expand=True) seg_df['store_id'] = seg_df['store_id'].astype(int) seg_df['drug_id'] = seg_df['drug_id'].astype(int) drug_list1 = list(safety_stock_df["drug_id"].unique()) drug_list2 = list(seg_df["drug_id"].unique()) drug_list = tuple(set(drug_list1+drug_list2)) # get drugs in both tables q_drug_info = f""" select d.id as drug_id, "drug-name" as drug_name, type, coalesce(doi."drug-grade", 'NA') as drug_grade from "{schema}".drugs d left join "{schema}"."drug-order-info" doi on d.id = doi."drug-id" where d.id in {drug_list} and doi."store-id" = {store_id} """ df_drug_info = db.get_df(q_drug_info) # get store name q_store_name = f""" select name from "{schema}".stores where id = {store_id} """ store_name = db.get_df(q_store_name)['name'][0] # get current inventory and avg_ptr info q_inv = f""" select "drug-id" as drug_id, sum("locked-quantity"+quantity+ "locked-for-audit"+"locked-for-transfer"+"locked-for-check"+ "locked-for-return") as curr_inventory from "{schema}"."inventory-1" i where "store-id" = {store_id} and "drug-id" in {drug_list} group by "drug-id" """ df_inv = db.get_df(q_inv) q_avg_ptr_store = f""" select "drug-id" as drug_id, avg(ptr) as avg_ptr from "{schema}"."inventory-1" i where "store-id" = {store_id} and "drug-id" in {drug_list} and DATEDIFF(day, date("created-at"), current_date) < 365 group by "drug-id" """ df_avg_ptr_store = db.get_df(q_avg_ptr_store) q_avg_ptr_sys = f""" select "drug-id" as drug_id, "avg-ptr" as avg_ptr_sys from "{schema}"."drug-std-info" dsi """ df_avg_ptr_sys = db.get_df(q_avg_ptr_sys) # add all to ss table safety_stock_df['store_id'] = store_id safety_stock_df['store_name'] = store_name safety_stock_df = safety_stock_df.merge( df_drug_info, on='drug_id', how='left') safety_stock_df['drug_grade'].fillna('NA', inplace=True) safety_stock_df = safety_stock_df.merge( df_inv, on='drug_id', how='left') safety_stock_df = safety_stock_df.merge( df_avg_ptr_store, on='drug_id', how='left') safety_stock_df = safety_stock_df.merge( df_avg_ptr_sys, on='drug_id', how='left') # replace NA in avg_ptr with system-avg_ptr safety_stock_df["avg_ptr"] = np.where(safety_stock_df["avg_ptr"].isna(), safety_stock_df["avg_ptr_sys"], safety_stock_df["avg_ptr"]) safety_stock_df.drop("avg_ptr_sys", axis=1, inplace=True) safety_stock_df["avg_ptr"] = safety_stock_df["avg_ptr"].astype(float) # calculate DOH safety_stock_df['safety_stock_days'] = np.where( (safety_stock_df['fcst'] == 0) | (safety_stock_df['safety_stock'] == 0), 0, safety_stock_df['safety_stock'] / (safety_stock_df['fcst'] / 28)) safety_stock_df['reorder_days'] = np.where( (safety_stock_df['fcst'] == 0) | (safety_stock_df['reorder_point'] == 0), 0, safety_stock_df['reorder_point'] / (safety_stock_df['fcst'] / 28)) safety_stock_df['order_upto_days'] = np.where( (safety_stock_df['fcst'] == 0) | (safety_stock_df['order_upto_point'] == 0), 0, safety_stock_df['order_upto_point'] / (safety_stock_df['fcst'] / 28)) # calculate max-value, to-order-qty and to-order-val safety_stock_df["max_value"] = safety_stock_df['order_upto_point'] * \ safety_stock_df['avg_ptr'] safety_stock_df['to_order_quantity'] = np.where( safety_stock_df['curr_inventory'] <= safety_stock_df['reorder_point'], safety_stock_df['order_upto_point'] - safety_stock_df['curr_inventory'], 0) safety_stock_df['to_order_value'] = safety_stock_df['to_order_quantity'] * \ safety_stock_df['avg_ptr'] # formatting weekly_fcst table weekly_fcst['store_name'] = store_name weekly_fcst.rename( columns={'date': 'week_begin_dt', 'fcst': 'weekly_fcst', 'std': 'fcst_std'}, inplace=True) # formatting segmentation table seg_df.rename(columns={'std': 'sales_std', 'cov': 'sales_cov', 'Mixed': 'bucket', 'Group': 'group', 'PLC Status L1': 'plc_status', 'ADI': 'adi', 'total_LY_sales': 'total_ly_sales', 'start_date': 'sale_start_date'}, inplace=True) seg_df['plc_status'] = np.where(seg_df['plc_status'] == 'NPI', 'New Product', seg_df['plc_status']) seg_df['sale_start_date'] = seg_df['sale_start_date'].dt.date seg_df['store_name'] = store_name seg_df = seg_df.merge(df_drug_info, on='drug_id', how='left') seg_df['drug_grade'].fillna('NA', inplace=True) # get oder_value_summary for email attachment order_value = safety_stock_df.pivot_table( index=['store_id', 'store_name', 'type'], values=['to_order_quantity', 'to_order_value'], aggfunc='sum', margins=True, margins_name='Total').reset_index() return safety_stock_df, order_value, weekly_fcst, seg_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/post_processing.py
post_processing.py
import pandas as pd import numpy as np def wh_consolidation(safety_stock_df, db, schema, logger): """ replace for drugs which has a substitute available in WH (corrected logic) """ # getting list of SKUs to be rejected and substituted wh_subs_query = f""" select "drug-id" , "drug-id-replaced" , "same-release" from "{schema}"."wh-sku-subs-master" wssm left join "{schema}".drugs d on wssm."drug-id" = d.id where "add-wh" = 'No' and d."type" not in ('ethical') """ df_wh_subs = db.get_df(wh_subs_query) df_wh_subs.columns = [c.replace('-', '_') for c in df_wh_subs.columns] all_assort_drugs = list(safety_stock_df.loc[ safety_stock_df["order_upto_point"] > 0]["drug_id"].unique()) # reject cases reject_cases_1 = df_wh_subs.loc[ df_wh_subs["drug_id"] == df_wh_subs["drug_id_replaced"]] reject_drugs_lst_1 = list(reject_cases_1["drug_id"].unique()) reject_cases_2 = df_wh_subs.loc[ (df_wh_subs["drug_id"] != df_wh_subs["drug_id_replaced"]) & (df_wh_subs["same_release"] == 'NO')] reject_drugs_lst_2 = list(reject_cases_2["drug_id"].unique()) # replace cases replace_cases = df_wh_subs.loc[ (df_wh_subs["drug_id"] != df_wh_subs["drug_id_replaced"]) & (df_wh_subs["same_release"] == 'YES')] reject_drugs_lst_3 = list(replace_cases["drug_id"].unique()) replace_merge_df = safety_stock_df.merge( replace_cases, on="drug_id", how="inner").drop("same_release", axis=1)[ ["drug_id", "drug_id_replaced", "safety_stock", "reorder_point", "order_upto_point"]] # get preferred entry in case of multiple drug_id with same drug_id_replaced # choosing the case with highest OUP replace_merge_df = replace_merge_df.sort_values( by=['drug_id_replaced', 'order_upto_point'], ascending=False) preferred_drug_replace_map = replace_merge_df.groupby( "drug_id_replaced").agg({"drug_id": "first"}) # first will have highest OUP preferred_drug_replace_df = replace_merge_df.merge( preferred_drug_replace_map, on=["drug_id", "drug_id_replaced"], how="inner") substitute_drugs_add_df = preferred_drug_replace_df.copy() substitute_drugs_add_df = substitute_drugs_add_df.drop("drug_id", axis=1) substitute_drugs_add_df.rename(columns={"drug_id_replaced": "drug_id"}, inplace=True) # only need to add the substitute if below condition satisfy substitute_drugs_add_df = substitute_drugs_add_df.loc[ (substitute_drugs_add_df["order_upto_point"] > 0) & (~substitute_drugs_add_df["drug_id"].isin(all_assort_drugs))] # remove previous entry with 0 OUP for substitute drug if present (avoids duplicate) substitute_drugs = list(substitute_drugs_add_df["drug_id"].unique()) safety_stock_df = safety_stock_df.loc[~( (safety_stock_df["order_upto_point"] == 0) & (safety_stock_df["drug_id"].isin(substitute_drugs)))] # filling the relevant columns substitute_drugs_add_df['model'] = 'NA' substitute_drugs_add_df['bucket'] = 'NA' substitute_drugs_add_df['fcst'] = 0 substitute_drugs_add_df['std'] = 0 substitute_drugs_add_df['lead_time_mean'] = 0 substitute_drugs_add_df['lead_time_std'] = 0 reject_drugs_lst = list(set(reject_drugs_lst_1 + reject_drugs_lst_2 + reject_drugs_lst_3)) logger.info(f"Drugs to reject: {len(reject_drugs_lst)}") logger.info(f"Drugs to add as substitute: {substitute_drugs_add_df.shape[0]}") ss_zero_cases = safety_stock_df.loc[safety_stock_df["drug_id"].isin(reject_drugs_lst)] ss_rest_cases = safety_stock_df.loc[~safety_stock_df["drug_id"].isin(reject_drugs_lst)] ss_zero_cases["safety_stock"] = 0 ss_zero_cases["reorder_point"] = 0 ss_zero_cases["order_upto_point"] = 0 safety_stock_df_final = pd.concat( [ss_rest_cases, ss_zero_cases, substitute_drugs_add_df]) return safety_stock_df_final def goodaid_consolidation(safety_stock_df, db, schema, logger, substition_type=None): """ for goodaid compositions, only keep goodaid and those drugs in same composition which are part of WH portfolio. reject all other drugs in that composition """ if substition_type is None: substition_type = ['generic'] # Good Aid SKU list ga_sku_query = """ select wh."drug-id" , d.composition from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where wh."add-wh" = 'Yes' and d."company-id" = 6984 and d.type in {0} """.format( str(substition_type).replace('[', '(').replace(']', ')'), schema=schema) ga_sku = db.get_df(ga_sku_query) ga_sku.columns = [c.replace('-', '_') for c in ga_sku.columns] logger.info('GoodAid SKU list ' + str(ga_sku.shape[0])) # Generic Top SKU ga_active_composition = tuple(ga_sku['composition'].values) top_sku_query = """ select wh."drug-id" , d.composition from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where wh."add-wh" = 'Yes' and d."company-id" != 6984 and d.type in {0} and d.composition in {1} """.format( str(substition_type).replace('[', '(').replace(']', ')'), str(ga_active_composition), schema=schema) top_sku = db.get_df(top_sku_query) top_sku.columns = [c.replace('-', '_') for c in top_sku.columns] logger.info('GoodAid comp Top SKU list ' + str(top_sku.shape[0])) # SS substition for other drugs rest_sku_query = """ select id as drug_id, composition from "{schema}".drugs where composition in {0} and id not in {1} and "company-id" != 6984 and type in {2} """.format(str(ga_active_composition), str(tuple(top_sku['drug_id'].values)), str(substition_type).replace('[', '(').replace(']', ')'), schema=schema) rest_sku = db.get_df(rest_sku_query) logger.info('GoodAid comp rest SKU list ' + str(rest_sku.shape[0])) # substitution logic starts gaid_drug_list = list(ga_sku["drug_id"].unique()) top_drug_list = list(top_sku["drug_id"].unique()) reject_drug_list = list(rest_sku["drug_id"].unique()) ss_zero_cases = safety_stock_df.loc[safety_stock_df["drug_id"].isin(reject_drug_list)] ss_rest_cases = safety_stock_df.loc[~safety_stock_df["drug_id"].isin(reject_drug_list)] logger.info('Setting rest sku SS, ROP, OUP to zero') ss_zero_cases["safety_stock"] = 0 ss_zero_cases["reorder_point"] = 0 ss_zero_cases["order_upto_point"] = 0 safety_stock_df_final = pd.concat([ss_rest_cases, ss_zero_cases]) return safety_stock_df_final def D_class_consolidation(safety_stock_df, store_id, db, schema, logger): """ for D class drugs, discard drugs from assortment for which same composition is present in A,B or C class """ drugs_list = tuple(safety_stock_df["drug_id"].unique()) comp = f""" select id as drug_id, composition from "{schema}".drugs d where "id" in {drugs_list} """ df_comp = db.get_df(comp) df = pd.merge(safety_stock_df, df_comp, how='left', on=['drug_id']) df['store_comp'] = str(store_id) + "_" + df['composition'].astype(str) df_blank_comp = df[df['composition'] == ""] df = df[df['composition'] != ""].reset_index(drop=True) df['ABC Class'] = np.where(df['bucket'].isin(['AW', 'AX', 'AY', 'AZ']), 'A', np.nan) df['ABC Class'] = np.where(df['bucket'].isin(['BW', 'BX', 'BY', 'BZ']), 'B', df['ABC Class']) df['ABC Class'] = np.where(df['bucket'].isin(['CW', 'CX', 'CY', 'CZ']), 'C', df['ABC Class']) df['ABC Class'] = np.where(df['bucket'].isin(['DW', 'DX', 'DY', 'DZ']), 'D', df['ABC Class']) df['ABC Class'].fillna('None', inplace=True) list_ABC = df[(df['ABC Class'].isin(['A', 'B', 'C'])) & (df['order_upto_point'] > 0)][ 'store_comp'].unique().tolist() list_D = df[(df['ABC Class'].isin(['D'])) & (df['order_upto_point'] > 0)][ 'store_comp'].unique().tolist() common_comp_D = [value for value in list_D if value in list_ABC] D_exc_comp = [value for value in list_D if value not in list_ABC] df_D = df[df['ABC Class'] == 'D'] df_D_new = df_D.copy() df_D_new['order_upto_point'] = np.where( df_D_new['store_comp'].isin(common_comp_D), 0, df_D_new['order_upto_point']) df_D_new['reorder_point'] = np.where( df_D_new['store_comp'].isin(common_comp_D), 0, df_D_new['reorder_point']) df_D_new['safety_stock'] = np.where( df_D_new['store_comp'].isin(common_comp_D), 0, df_D_new['safety_stock']) df_remove_D = df[df['ABC Class'] != 'D'] df_add_new_D = pd.concat([df_remove_D, df_D_new]) df_add_blank_comp = pd.concat([df_add_new_D, df_blank_comp]) safety_stock_df_final = df_add_blank_comp.drop( columns=['store_comp', 'composition', 'ABC Class']) return safety_stock_df_final
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/portfolio_consolidation.py
portfolio_consolidation.py
import numpy as np from zeno_etl_libs.utils.ipc.lead_time import lead_time from zeno_etl_libs.utils.ipc2.helpers.correction_flag import compare_df, \ add_correction_flag from zeno_etl_libs.utils.ipc2.heuristics.sl_heuristics import calculate_ss from zeno_etl_libs.utils.ipc2.heuristics.doh_heuristics import ss_doh_wh_cap, \ ss_doh_non_wh_cap from zeno_etl_libs.utils.ipc2.heuristics.ipcv3_heuristics import v3_corrections from zeno_etl_libs.utils.ipc2.heuristics.ipcv4_heuristics import v4_corrections from zeno_etl_libs.utils.ipc2.heuristics.ipcv5_heuristics import v5_corrections from zeno_etl_libs.utils.ipc2.heuristics.ipcv3N_heuristics import v3N_corrections def safety_stock_calc(agg_fcst, cal_sales, store_id, reset_date, v3_active_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, v4_active_flag, drug_type_list_v4, v5_active_flag, open_po_turbhe_active, schema, db, logger): fcst_weeks = 4 order_freq = 4 # ================== TEMPORARY FOR OPEN-PO TURBHE STORES =================== if open_po_turbhe_active == 'Y': q_turbhe_stores = f""" select distinct "store-id" from "{schema}"."store-dc-mapping" sdm left join "{schema}".stores s on s.id =sdm."store-id" where "forward-dc-id" = 169 and s."franchisee-id" = 1 and name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' """ df_turbhe_stores = db.get_df(q_turbhe_stores) turbhe_stores = df_turbhe_stores["store-id"].tolist() # add store_id 2 & 264 (mulund east and mulund west sarvodaya) turbhe_stores += [2, 264] if store_id in turbhe_stores: order_freq = 3 # ========================= LEAD TIME CALCULATIONS ========================= lt_drug, lt_store_mean, lt_store_std = lead_time( store_id, cal_sales, reset_date, db, schema, logger) safety_stock_df = agg_fcst.merge( lt_drug[['drug_id', 'lead_time_mean', 'lead_time_std']], how='left', on='drug_id') safety_stock_df['lead_time_mean'].fillna(lt_store_mean, inplace=True) safety_stock_df['lead_time_std'].fillna(lt_store_std, inplace=True) # ==================== SS, ROP, OUP CALCULATION BEGINS ===================== # impute store_std for cases where store-drug std<1 safety_stock_df['lead_time_std'] = np.where( safety_stock_df['lead_time_std'] < 1, lt_store_std, safety_stock_df['lead_time_std']) # calculate SS safety_stock_df = calculate_ss(safety_stock_df, fcst_weeks, logger) # SS-DOH CAPPING #1 logger.info(f"DOH1 (SS-WH-DOH) Correction starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = ss_doh_wh_cap(safety_stock_df, schema, db) df_post_corr = safety_stock_df.copy() logger.info(f"Sum SS before: {df_pre_corr['safety_stock'].sum()}") logger.info(f"Sum SS after: {df_post_corr['safety_stock'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['safety_stock']) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'DOH1') # SS-DOH CAPPING #2 logger.info(f"DOH2 (SS-Non-WH-DOH) Correction starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = ss_doh_non_wh_cap(safety_stock_df, schema, db) df_post_corr = safety_stock_df.copy() logger.info(f"Sum SS before: {df_pre_corr['safety_stock'].sum()}") logger.info(f"Sum SS after: {df_post_corr['safety_stock'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger, cols_to_compare=['safety_stock']) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'DOH2') # calculate ROP - add lead time demand to SS safety_stock_df['reorder_point'] = safety_stock_df.apply( lambda row: np.round( row['lead_time_mean'] * row['fcst'] / fcst_weeks / 7), axis=1) + safety_stock_df['safety_stock'] # calculate OUP - add order_freq demand to ROP safety_stock_df['order_upto_point'] = ( safety_stock_df['reorder_point'] + np.round( np.where( # if rounding off give 0, increase it to 4-week forecast (safety_stock_df['reorder_point'] + safety_stock_df[ 'fcst'] * order_freq / fcst_weeks / 7 < 0.5) & (safety_stock_df['fcst'] > 0), safety_stock_df['fcst'], safety_stock_df['fcst'] * order_freq / fcst_weeks / 7)) ) # correction for negative forecast safety_stock_df['safety_stock'] = np.where( safety_stock_df['safety_stock'] < 0, 0, safety_stock_df['safety_stock']) safety_stock_df['reorder_point'] = np.where( safety_stock_df['reorder_point'] < 0, 0, safety_stock_df['reorder_point']) safety_stock_df['order_upto_point'] = np.where( safety_stock_df['order_upto_point'] < 0, 0, safety_stock_df['order_upto_point']) # ========== CORRECTION PLUGINS (REWORK SS,ROP,OUP BASED ON REQ) =========== final_ss_df = safety_stock_df.copy() # if v3_active_flag == 'Y': # logger.info("IPC V3 Correction starts") # df_pre_corr = final_ss_df.copy() # final_ss_df = v3_corrections(final_ss_df, store_id, # corrections_selling_probability_cutoff, # corrections_cumulative_probability_cutoff, # schema, db, logger) # df_post_corr = final_ss_df.copy() # logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") # logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") # corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) # final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'V3') if v3_active_flag == 'Y': logger.info("IPC V3N Correction starts") df_pre_corr = final_ss_df.copy() final_ss_df = v3N_corrections(final_ss_df, store_id, reset_date, schema, db, logger) df_post_corr = final_ss_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'V3N') if v4_active_flag == 'Y': logger.info("IPC V4 Correction starts") df_pre_corr = final_ss_df.copy() final_ss_df = v4_corrections(final_ss_df, drug_type_list_v4, db, schema) df_post_corr = final_ss_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'V4') # currently v5 only active for pilot stores if (v5_active_flag == 'Y') & (store_id in [51, 134, 83]): logger.info("IPC V5 STD-Qty Correction starts") df_pre_corr = final_ss_df.copy() final_ss_df = v5_corrections(final_ss_df, db, schema, logger) df_post_corr = final_ss_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'V5') # correct cases where ROP=OUP df_pre_corr = final_ss_df.copy() final_ss_df['order_upto_point'] = np.where( ((final_ss_df['order_upto_point'] > 0) & (final_ss_df['reorder_point'] == final_ss_df['order_upto_point'])), final_ss_df['reorder_point'] + 1, final_ss_df['order_upto_point']) df_post_corr = final_ss_df.copy() corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) final_ss_df = add_correction_flag(final_ss_df, corr_drug_lst, 'OUP_CORR') return final_ss_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/safety_stock.py
safety_stock.py
import numpy as np import pandas as pd import datetime as dt def check_oup_outlier(safety_stock_df, store_id, reset_date, db, schema): """ Find cases where OUP > Past 90 days net-sales + pr_loss """ safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] # check only for cases where fcst & oup > 0 df_check_cases = safety_stock_df.loc[ (safety_stock_df["fcst"] > 0) & (safety_stock_df["order_upto_point"] > 0)] df_check_cases = df_check_cases[[ "store_id", "store_name", "drug_id", "drug_name", "type", "model", "fcst", "safety_stock", "reorder_point", "order_upto_point", "correction_flags", "curr_inventory", "to_order_quantity", "to_order_value"]] drug_list = list(df_check_cases["drug_id"].unique()) drug_list_str = str(drug_list).replace('[', '(').replace(']', ')') p90d_begin_date = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() - \ dt.timedelta(days=90) p90d_begin_date = p90d_begin_date.strftime("%Y-%m-%d") q_p90d_sales = f""" select "drug-id" as drug_id, sum("net-quantity") as net_sales_p90d from "{schema}".sales s where "store-id" = {store_id} and "drug-id" in {drug_list_str} and date("created-at") >= '{p90d_begin_date}' and date("created-at") < '{reset_date}' group by "drug-id" """ df_p90d_sales = db.get_df(q_p90d_sales) q_p90d_pr_loss = f""" select "drug-id" as drug_id, sum("loss-quantity") as pr_loss_p90d from "{schema}"."cfr-patient-request" where "store-id" = {store_id} and "shortbook-date" >= '{p90d_begin_date}' and "shortbook-date" < '{reset_date}' and "drug-id" in {drug_list_str} and ("drug-category" = 'chronic' or "repeatability-index" >= 40) and "loss-quantity" > 0 group by "drug-id" """ df_p90d_pr_loss = db.get_df(q_p90d_pr_loss) df_check_cases = df_check_cases.merge(df_p90d_sales, on="drug_id", how="left") df_check_cases = df_check_cases.merge(df_p90d_pr_loss, on="drug_id", how="left") df_check_cases["net_sales_p90d"] = df_check_cases["net_sales_p90d"].fillna(0).astype(int) df_check_cases["pr_loss_p90d"] = df_check_cases["pr_loss_p90d"].fillna(0).astype(int) df_check_cases["p90d_demand"] = df_check_cases["net_sales_p90d"] + df_check_cases["pr_loss_p90d"] df_check_cases["outlier"] = 'NA' df_check_cases["outlier"] = np.where( df_check_cases["order_upto_point"] > df_check_cases["p90d_demand"], 'Y', 'N') df_outliers = df_check_cases.loc[df_check_cases["outlier"] == 'Y'] outlier_drugs = list(df_outliers["drug_id"].unique()) manual_doid_upd_df = df_outliers[["store_id", "drug_id", "safety_stock", "reorder_point", "order_upto_point"]] manual_doid_upd_df.rename(columns={"safety_stock": "ss", "reorder_point": "rop", "order_upto_point": "oup"}, inplace=True) return outlier_drugs, df_outliers, manual_doid_upd_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/helpers/outlier_check.py
outlier_check.py
import numpy as np np.random.seed(0) import pandas as pd # import time # import re # from datetime import date # from dateutil.relativedelta import relativedelta # from statsmodels.tsa.exponential_smoothing.ets import ETSModel from prophet import Prophet from statsmodels.tsa.api import ExponentialSmoothing # import sktime from sktime.forecasting.ets import AutoETS from zeno_etl_libs.utils.ipc2.helpers.helper_functions import sum_std,\ applyParallel, applyParallel_croston # from boruta import BorutaPy from zeno_etl_libs.utils.ipc2.config_ipc import ( date_col, target_col, models ) import logging logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') class TS_forecast: def train_test_split(self, df, train_max_date, forecast_start): df.rename(columns={date_col: 'ds', target_col: 'y'}, inplace=True) df.sort_values(by=['ds'], inplace=True) train = df[df['ds'] <= train_max_date] test = df[df['ds'] >= forecast_start] return train, test def Croston_TSB(self, ts, extra_periods=4, alpha=0.4, beta=0.4): d = np.array(ts) # Transform the input into a numpy array cols = len(d) # Historical period length d = np.append(d, [ np.nan] * extra_periods) # Append np.nan into the demand array to cover future periods # level (a), probability(p) and forecast (f) a, p, f = np.full((3, cols + extra_periods), np.nan) # Initialization first_occurence = np.argmax(d[:cols] > 0) a[0] = d[first_occurence] p[0] = 1 / (1 + first_occurence) f[0] = p[0] * a[0] # Create all the t+1 forecasts for t in range(0, cols): if d[t] > 0: a[t + 1] = alpha * d[t] + (1 - alpha) * a[t] p[t + 1] = beta * (1) + (1 - beta) * p[t] else: a[t + 1] = a[t] p[t + 1] = (1 - beta) * p[t] f[t + 1] = p[t + 1] * a[t + 1] # Future Forecast a[cols + 1:cols + extra_periods] = a[cols] p[cols + 1:cols + extra_periods] = p[cols] f[cols + 1:cols + extra_periods] = f[cols] df = pd.DataFrame.from_dict( {"Demand": d, "Forecast": f, "Period": p, "Level": a, "Error": d - f}) return df[-extra_periods:] def ETS_forecast(self, train, test): try: train.set_index(['ds'], inplace=True) test.set_index(['ds'], inplace=True) train.index.freq = train.index.inferred_freq test.index.freq = test.index.inferred_freq # fit in statsmodels # model = AutoETS(sp=52,auto=True,allow_multiplicative_trend = False, additive_only=True) # fit = model.fit(train['y']) try: # fit = ETSModel(np.asarray(train['y']) ,seasonal_periods=52 ,trend='add', seasonal='add').fit() fit = AutoETS(auto=True).fit(train['y']) preds = fit.predict(test.index) except Exception as e: logger.info("error in Auto-ETS") logger.info(str(e)) fit = ExponentialSmoothing(train['y']).fit() preds = fit.forecast(len(test) + 1) preds = preds[-len(test):] except Exception as e: logger.info("error in ETS fcst") logger.info(str(e)) preds = 0 return preds def ma_forecast(self, data): """ Purpose: Compute MA forecast for the for the forecast horizon specified Inputs: time series to create forecast Output: series with forecasted values """ sma_df = data.copy(deep=True) yhat = [] if len(data) >= 8: for i in range(5): sma_val = sma_df.rolling(8).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) else: for i in range(5): sma_val = sma_df.rolling(len(data)).mean().iloc[-1] sma_df.loc[sma_df.index.max() + 1] = sma_val yhat.append(sma_val) logger.info(yhat) return yhat[-4:] def prophet_fcst(self, train, test, params=None): # reg_list = [] try: if params is None: pro = Prophet() else: pro = Prophet(n_changepoints=params) # for j in train.columns: # if j not in col_list: # pro.add_regressor(j) # reg_list.append(j) pro.fit(train[['ds', 'y']]) pred_f = pro.predict(test) test = test[["ds", "y"]] test = pd.merge(test, pred_f, on="ds", how="left") except Exception as e: logger.info("error in prophet fcst") logger.info(str(e)) test['yhat'] = 0 return test def ts_forecast(self, df, train_max_date, forecast_start): train, test = self.train_test_split(df, train_max_date=train_max_date, forecast_start=forecast_start) test = test.sort_values(by=['ds']) if 'croston' in models: preds_croston = self.Croston_TSB(train['y']) test['preds_croston'] = preds_croston['Forecast'].values if 'ETS' in models: preds_ETS = self.ETS_forecast(train.copy(), test.copy()) try: test['preds_ETS'] = preds_ETS.values except: test['preds_ETS'] = 0 if 'MA' in models: preds_ma = self.ma_forecast(train['y']) test['preds_ma'] = preds_ma if 'prophet' in models: preds_prophet = self.prophet_fcst(train.copy(), test.copy()) test['preds_prophet'] = preds_prophet['yhat'].values return test def apply_ts_forecast(self, df, train_max_date, forecast_start): # global train_date # train_date = train_max_date # global forecast_start_date # forecast_start_date = forecast_start preds = applyParallel_croston( df.groupby('ts_id'), func=self.ts_forecast, train_max_date=train_max_date, forecast_start=forecast_start ) preds.rename(columns={'ds': date_col, 'y': target_col}, inplace=True) ts_fcst_cols = [i for i in preds.columns if i.startswith('preds_')] for col in ts_fcst_cols: preds[col].fillna(0, inplace=True) preds[col] = np.where(preds[col] < 0, 0, preds[col]) preds['preds_AE_ts'] = preds[ts_fcst_cols].mean(axis=1) return preds, ts_fcst_cols
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/engine/ts_fcst.py
ts_fcst.py
import pandas as pd import datetime import numpy as np from zeno_etl_libs.utils.ipc2.config_ipc import date_col, store_col, \ drug_col, target_col, key_col, local_testing class PreprocessData: def add_ts_id(self, df): df = df[~df[drug_col].isnull()].reset_index(drop=True) df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[drug_col].astype(int).astype(str) ) return df def preprocess_sales(self, df, drug_list): df.rename(columns={ 'net_sales_quantity': target_col }, inplace=True) df.rename(columns={ 'sales_date': date_col }, inplace=True) set_dtypes = { store_col: int, drug_col: int, date_col: str, target_col: float } df = df.astype(set_dtypes) df[target_col] = df[target_col].round() df[date_col] = pd.to_datetime(df[date_col]) df = df.groupby( [store_col, drug_col, key_col, date_col] )[target_col].sum().reset_index() df = df[df[drug_col].isin(drug_list[drug_col].unique().tolist())] return df def get_formatted_data(self, df): df_start = df.groupby([key_col])[date_col].min().reset_index().rename( columns={date_col: 'sales_start'}) df = df[[key_col, date_col, target_col]] min_date = df[date_col].dropna().min() end_date = df[date_col].dropna().max() date_range = [] date_range = pd.date_range( start=min_date, end=end_date, freq='d' ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = np.nan df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = pd.merge(df, df_start, how='left', on=key_col) df = df[df[date_col] >= df['sales_start']] df[[store_col, drug_col]] = df[key_col].str.split('_', expand=True) df[[store_col, drug_col]] = df[[store_col, drug_col]].astype(int) return df def preprocess_cfr_pr(self, df): set_dtypes = { store_col: int, drug_col: int, 'loss_quantity': int } df = df.astype(set_dtypes) df['shortbook_date'] = pd.to_datetime(df['shortbook_date']) return df def merge_cfr_pr(self, sales, cfr_pr): df = sales.merge(cfr_pr, left_on=[store_col, drug_col, date_col], right_on=[store_col, drug_col, 'shortbook_date'], how='left') df[date_col] = df[date_col].combine_first(df['shortbook_date']) df[target_col].fillna(0, inplace=True) df['loss_quantity'].fillna(0, inplace=True) df[target_col] += df['loss_quantity'] df.drop(['shortbook_date', 'loss_quantity'], axis=1, inplace=True) return df def preprocess_calendar(self, df, last_date): df.rename(columns={'date': date_col}, inplace=True) df[date_col] = pd.to_datetime(df[date_col]) cal_sales = df.copy() cal_sales['week_begin_dt'] = cal_sales.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales['month_begin_dt'] = cal_sales.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) cal_sales['key'] = 1 ld = pd.to_datetime(last_date) cal_sales = cal_sales[cal_sales[date_col] > ld] return df, cal_sales def merge_calendar(self, sales, calendar): df = sales.merge(calendar, how='left', on=date_col ) # df_week_days_count = df.groupby([key_col, 'year', 'week_of_year'])[date_col].count().reset_index().rename(columns = {date_col:'week_days_count'}) # df['week_days_count'] = 1 df['week_begin_dt'] = df.apply( lambda x: x[date_col] - datetime.timedelta(x['day_of_week']), axis=1) df_week_days_count = df.groupby(['ts_id', 'week_begin_dt'])[ date_col].count().reset_index().rename( columns={date_col: 'week_days_count'}) # df = df.groupby(['ts_id', store_col, drug_col, ]).resample('W-Mon', on =date_col )[target_col].sum().reset_index() df = df.groupby(['ts_id', store_col, drug_col, 'week_begin_dt'])[ target_col].sum().reset_index() df = pd.merge(df, df_week_days_count, how='left', on=[key_col, 'week_begin_dt']) df = df[df['week_days_count'] == 7].reset_index(drop=True) df.drop(columns=['week_days_count'], inplace=True) df.rename(columns={'week_begin_dt': date_col}, inplace=True) return df def preprocess_bill_date(self, df): df.rename(columns={'store-id': store_col}, inplace=True) df['bill_date'] = pd.to_datetime(df['bill_date']) return df def merge_first_bill_date(self, sales, first_bill_date): df = pd.merge(sales, first_bill_date, on=[store_col]) df = df[df[date_col] >= df['bill_date']].reset_index(drop=True) df.drop(columns=['bill_date'], inplace=True) return df def make_future_df(self, df): start_date_df = ( df .groupby(key_col)[date_col] .min() .reset_index() .rename(columns={date_col: 'start_date'}) ) df = df[[key_col, date_col, target_col]] end_date = df[date_col].max() + datetime.timedelta(weeks=5) min_date = df[date_col].min() date_range = pd.date_range( start=min_date, end=end_date, freq="W-MON" ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = 0 df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = df.merge(start_date_df, on=key_col, how='left') df = df[ df[date_col] >= df['start_date'] ] df.drop('start_date', axis=1, inplace=True) df[[store_col, drug_col]] = df[key_col].str.split('_', expand=True) return df def preprocess_all( self, sales=None, cfr_pr=None, drug_list=None, calendar=None, first_bill_date=None, last_date=None, ): sales = self.add_ts_id(sales) # filter ################################################# if local_testing == 1: tsid_list = \ sales.sort_values(by=['net_sales_quantity'], ascending=False)[ key_col].unique().tolist()[:10] sales = sales[sales[key_col].isin(tsid_list)] ################################################# sales = self.preprocess_sales(sales, drug_list) sales = self.get_formatted_data(sales) cfr_pr = self.preprocess_cfr_pr(cfr_pr) sales_daily = self.merge_cfr_pr(sales, cfr_pr) calendar, cal_sales = self.preprocess_calendar(calendar, last_date) sales = self.merge_calendar(sales_daily, calendar) first_bill_date = self.preprocess_bill_date(first_bill_date) sales = self.merge_first_bill_date(sales, first_bill_date) sales_pred = self.make_future_df(sales.copy()) return ( sales, sales_pred, cal_sales, sales_daily )
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/engine/data_pre_process.py
data_pre_process.py
import numpy as np np.random.seed(0) import pandas as pd import time import re from dateutil.relativedelta import relativedelta from category_encoders.target_encoder import TargetEncoder from category_encoders.leave_one_out import LeaveOneOutEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from category_encoders.cat_boost import CatBoostEncoder from xgboost import XGBRegressor from xgboost import XGBRFRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor # from boruta import BorutaPy from zeno_etl_libs.utils.ipc2.config_ipc import ( date_col, target_col, flag_sample_weights, flag_seasonality_index, models ) import logging logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') class Forecast: def one_hot_encode(self, df, one_hot_cols): added_one_hot_cols = [] for col in one_hot_cols: one_hot_df = pd.get_dummies(df[col], prefix=col, drop_first=False) df = pd.concat([df.drop(col, axis=1), one_hot_df], axis=1) added_one_hot_cols += one_hot_df.columns.to_list() return df, added_one_hot_cols def encode(self, X_train, y_train, cat_cols, encoder_type='Target'): if len(cat_cols) == 0: return X_train, None cat_cols = list(set(cat_cols) & set(X_train.columns)) logger.debug('Categorical Encoding Started...') if encoder_type == 'Target': encoder = TargetEncoder(cols=cat_cols) elif encoder_type == 'Catboost': encoder = CatBoostEncoder(cols=cat_cols) elif encoder_type == 'LeaveOneOut': encoder = LeaveOneOutEncoder(cols=cat_cols) X_train_enc = encoder.fit_transform( X_train, y_train ) return X_train_enc, encoder # def get_target_encode(X_train, y_train, target_encode_cols): # for col in target_encode_cols: # encoder = TargetEncoder() # encoder.fit_transform(df[[col, province_col]], df[target_col]) # encoder.transform() # return df def get_feature_imp(self, algo, algo_name, feature_cols, forecast_month): importance = algo.feature_importances_.round(4) names = np.array(feature_cols) Feature_Imp = pd.DataFrame(data=np.column_stack((names, importance) ), columns=['names', 'importance']) Feature_Imp.columns = ['Feature', 'Feature_Importance'] Feature_Imp[date_col] = forecast_month Feature_Imp = Feature_Imp[[date_col, 'Feature', 'Feature_Importance']] Feature_Imp = Feature_Imp.rename( columns={'Feature_Importance': algo_name}) return (Feature_Imp) def get_train_test_split( self, df, train_max_date, forecast_start_date, forecast_end_date, num_shift_lags=1 ): # TODO - no need to do this. Lags are offset enough. we can use latest week data train = df[df[date_col] <= train_max_date] # train train = train[ (train[date_col] < forecast_start_date) ] # train.dropna(inplace = True) train.set_index(['ts_id', date_col], inplace=True) X_train = train.drop(target_col, axis=1) y_train = train[target_col].fillna(0) # test test = df[ (df[date_col] >= forecast_start_date) & (df[date_col] <= forecast_end_date) ] test.set_index(['ts_id', date_col], inplace=True) X_test = test.drop(target_col, axis=1) y_test = test[target_col] return X_train, y_train, X_test, y_test def get_regex_filtered_data(self, l): regex = re.compile(r"\[|\]|<", re.IGNORECASE) filtered_l = [ regex.sub("_", col) if any( x in str(col) for x in set(("[", "]", "<", " "))) else col for col in l ] filtered_l = [i.replace(" ", "_") for i in filtered_l] return filtered_l def add_sample_weights(self, df, max_date, forecast_start): df['days_till_last_day'] = (df[date_col] - max_date).dt.days df['sample_weights'] = np.exp(df['days_till_last_day'] / 2) df.loc[ df[date_col] == (forecast_start - relativedelta(months=12)), 'sample_weights' ] = 1 df.loc[ df[date_col] == (forecast_start - relativedelta(months=24)), 'sample_weights' ] = 1 df = df.set_index(['ts_id', date_col]) return df['sample_weights'] def get_model_predictions( self, model, model_name, X_test, y_test, Feature_Imp_all, feature_cols, forecast_start ): if Feature_Imp_all.empty: Feature_Imp_all = self.get_feature_imp( model, model_name, feature_cols, forecast_start ) else: Feature_Imp_all = pd.merge( Feature_Imp_all, self.get_feature_imp(model, model_name, feature_cols, forecast_start), how='outer', on=[date_col, 'Feature'] ) if pd.DataFrame(X_test).empty: return y_test, Feature_Imp_all y_pred = model.predict(X_test) pred_col = 'preds_{}'.format(model_name) y_test[pred_col] = y_pred y_test.loc[y_test[pred_col] < 0, pred_col] = 0 y_test[pred_col] = y_test[pred_col].fillna(0) lgb_acc = 1 - self.wmape(y_test[target_col], y_test[pred_col]) logger.info( "{} Accuracy {}: {}" .format(model_name, forecast_start.strftime("%b"), lgb_acc) ) return y_test, Feature_Imp_all def wmape(self, actuals, forecast): error = abs(actuals - forecast) wmape_val = error.sum() / actuals.sum() return wmape_val def get_STM_forecast(self, df, forecast_start, num_shift_lags=1): global num_cols, cat_cols ts_features = [ i for i in df.columns if ( ('lag' in i) | ('_Sin' in i) | ('_Cos' in i) | ('_mean' in i) | ('_trend' in i) | ('ewm' in i) | ('seasonality_index' in i) ) ] flag_cols = [i for i in df.columns if i.endswith('_flag')] num_cols = ( ts_features ) target_encode_cols = [ ] one_hot_cols = [ 'classification', 'Group', 'ABC', 'WXYZ', 'PLC Status L1' ] df, added_one_hot_cols = self.one_hot_encode(df, one_hot_cols) # df = self.get_target_encode(df, target_encode_cols) train_max_date = (forecast_start - relativedelta(weeks=num_shift_lags)) X_train, y_train, X_test, y_test = self.get_train_test_split( df, train_max_date, forecast_start, forecast_start, num_shift_lags=num_shift_lags ) # TODO: # Add more cat features from item heirarchy and province, planning item, # rolling features # ewma # promo # Nan --> keep it # ETS as a feature cat_features = [ # 'covid_flag' ] + target_encode_cols feature_cols = num_cols + flag_cols + added_one_hot_cols + [ 'LOL', 'Year_Num', 'Quarter_Num', 'Quarter_Sin', 'Quarter_Cos', 'Month_Num', 'Month_Sin', 'Month_Cos', 'cov', 'ADI' ] feature_cols = list(set(df.columns) & set(feature_cols)) # cat_features = [] X_train = X_train[feature_cols + cat_features] X_test = X_test[feature_cols + cat_features] X_train.columns = self.get_regex_filtered_data(X_train.columns) X_test.columns = self.get_regex_filtered_data(X_test.columns) y_test = y_test.reset_index() val = ( X_train .reset_index() .merge(y_train.reset_index(), on=[date_col, 'ts_id'], how='left') ) _, _, X_val, y_val = self.get_train_test_split( val, train_max_date=train_max_date - relativedelta(weeks=8), forecast_start_date=train_max_date - relativedelta(weeks=7), forecast_end_date=train_max_date, num_shift_lags=num_shift_lags ) y_val = y_val.reset_index() filtered_cat_features = self.get_regex_filtered_data(cat_features) # X_train.dropna() Feature_Imp_all = pd.DataFrame() # X_train[filtered_cat_features] = X_train[filtered_cat_features].astype(str) # Encoding X_train_target, encoder = self.encode(X_train, y_train, filtered_cat_features, 'Target') if encoder != None: X_test_target = encoder.transform( X_test[encoder.get_feature_names()]) X_val_target = encoder.transform(X_val[encoder.get_feature_names()]) else: X_test_target = X_test.copy(deep=True) X_val_target = X_val.copy(deep=True) smaple_weights = self.add_sample_weights( X_train_target.reset_index()[['ts_id', date_col]], max_date=train_max_date, forecast_start=forecast_start ) if 'XGB' in models: ###XGBRF## logger.info("Forecasting XGRF...") xgb_rf = XGBRFRegressor(n_estimators=750, random_state=42) xgb_sample_weights = None if flag_sample_weights['xgb']: xgb_sample_weights = smaple_weights X_train_xgb = X_train_target X_test_xgb = X_test_target X_val_xgb = X_val_target if flag_seasonality_index['xgb']: seas_cols = [i for i in X_train_target.columns if 'seasonality_index' in i] X_train_xgb = X_train_target.drop(seas_cols, axis=1).copy() X_test_xgb = X_test_target.drop(seas_cols, axis=1).copy() X_val_xgb = X_val_target.drop(seas_cols, axis=1).copy() xgb_rf.fit(X_train_xgb, y_train, sample_weight=xgb_sample_weights) y_test, Feature_Imp_all = self.get_model_predictions( model=xgb_rf, model_name='xgb_rf_target', X_test=X_test_xgb, y_test=y_test, Feature_Imp_all=Feature_Imp_all, feature_cols=X_train_xgb.columns, forecast_start=forecast_start ) y_val, Feature_Imp_all = self.get_model_predictions( model=xgb_rf, model_name='xgb_rf_target', X_test=X_val_xgb, y_test=y_val, Feature_Imp_all=Feature_Imp_all, feature_cols=X_train_xgb.columns, forecast_start=forecast_start ) if 'CTB' in models: ###Catboost Target## logger.info("Forecasting CB...") cb = CatBoostRegressor( n_estimators=1000, learning_rate=0.01, cat_features=filtered_cat_features, # one_hot_max_size = 16, random_state=42, verbose=0 ) ctb_sample_weights = None if flag_sample_weights['ctb']: ctb_sample_weights = smaple_weights X_train_ctb = X_train X_test_ctb = X_test X_val_ctb = X_val if flag_seasonality_index['ctb']: seas_cols = [i for i in X_train.columns if 'seasonality_index' in i] X_train_ctb = X_train.drop(seas_cols, axis=1).copy() X_test_ctb = X_test.drop(seas_cols, axis=1).copy() X_val_ctb = X_val.drop(seas_cols, axis=1).copy() cb.fit(X_train_ctb, y_train, sample_weight=ctb_sample_weights) y_test, Feature_Imp_all = self.get_model_predictions( model=cb, model_name='cb_target', X_test=X_test_ctb, y_test=y_test, Feature_Imp_all=Feature_Imp_all, feature_cols=X_train_ctb.columns, forecast_start=forecast_start ) y_val, Feature_Imp_all = self.get_model_predictions( model=cb, model_name='cb_target', X_test=X_val_ctb, y_test=y_val, Feature_Imp_all=Feature_Imp_all, feature_cols=X_train_ctb.columns, forecast_start=forecast_start ) if 'LGBM' in models: ###LGBM## logger.info("Forecasting LGBM...") lgb = LGBMRegressor( n_estimators=2000, learning_rate=0.005, max_depth=10, num_leaves=int((2 ** 10) / 2), max_bin=1000, random_state=42, verbose=-1, categorical_feature=filtered_cat_features, ) X_train1 = X_train.copy(deep=True) X_test1 = X_test.copy(deep=True) X_val1 = X_val.copy(deep=True) logger.info("LGBM train: {}".format(X_train1.head(2))) logger.info( 'Filtered cat features:{}'.format(filtered_cat_features)) logger.info('Filtered cat features columns:{}'.format( X_train1[filtered_cat_features].columns)) logger.info('Filtered cat features dtypes:{}'.format( X_train1[filtered_cat_features].dtypes)) # X_train1[filtered_cat_features] = X_train1[filtered_cat_features].astype('category') # X_test1[filtered_cat_features] = X_test1[filtered_cat_features].astype('category') # X_val1[filtered_cat_features] = X_val1[filtered_cat_features].astype('category') lgb_sample_weights = None if flag_sample_weights['lgbm']: lgb_sample_weights = smaple_weights X_train_lgbm = X_train1 X_test_lgbm = X_test1 X_val_lgbm = X_val1 if flag_seasonality_index['lgbm']: seas_cols = [i for i in X_train1.columns if 'seasonality_index' in i] X_train_lgbm = X_train1.drop(seas_cols, axis=1).copy() X_test_lgbm = X_test1.drop(seas_cols, axis=1).copy() X_val_lgbm = X_val1.drop(seas_cols, axis=1).copy() lgb.fit(X_train_lgbm, y_train, sample_weight=lgb_sample_weights) y_test, Feature_Imp_all = self.get_model_predictions( model=lgb, model_name='lgb', X_test=X_test_lgbm, y_test=y_test, Feature_Imp_all=Feature_Imp_all, feature_cols=X_test_lgbm.columns, forecast_start=forecast_start ) y_val, Feature_Imp_all = self.get_model_predictions( model=lgb, model_name='lgb', X_test=X_val_lgbm, y_test=y_val, Feature_Imp_all=Feature_Imp_all, feature_cols=X_test_lgbm.columns, forecast_start=forecast_start ) return y_test, y_val, Feature_Imp_all
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/engine/forecast.py
forecast.py
class LoadData: def load_file(self, db, query): df = db.get_df(query) df.columns = [c.replace('-', '_') for c in df.columns] return df def load_all_input( self, type_list=None, store_id_list=None, last_date=None, reset_date=None, load_max_date=None, schema=None, db=None ): drug_list = self.load_file( query=""" select id as drug_id from "{schema}".drugs where type in {0} """.format(type_list, schema=schema), db=db ) sales_history = self.load_file( query=""" select date("created-at") as "sales-date","store-id", "drug-id" , sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" in {store_id_list} and date("created-at") >= '{last_date}' and date("created-at") <= '{load_max_date}' group by "store-id", "drug-id", "sales-date" """.format( store_id_list=store_id_list, last_date=last_date, load_max_date=load_max_date, schema=schema), db=db ) cfr_pr = self.load_file( query=f""" select "store-id", "drug-id","shortbook-date", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" where "shortbook-date" >= '{last_date}' and "shortbook-date" <= '{load_max_date}' and "drug-id" <> -1 and ("drug-category" = 'chronic' or "repeatability-index" >= 40) and "loss-quantity" > 0 and "drug-type" in {type_list} and "store-id" in {store_id_list} group by "store-id","drug-id", "shortbook-date" """, db=db ) calendar = self.load_file( query=""" select date, year, month, "week-of-year", "day-of-week" from "{schema}".calendar where date < '{reset_date}' """.format(schema=schema, reset_date=reset_date), db=db ) first_bill_date = self.load_file( query=""" select "store-id" , min(date("created-at")) as bill_date from "{schema}".sales where "store-id" in {store_id_list} group by "store-id" """.format(schema=schema, store_id_list=store_id_list), db=db ) return ( drug_list, sales_history, cfr_pr, calendar, first_bill_date )
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/engine/data_load.py
data_load.py
import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta from tqdm import tqdm import logging import warnings warnings.filterwarnings("ignore") logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') from zeno_etl_libs.utils.ipc2.config_ipc import ( date_col, target_col, store_col, drug_col, eol_cutoff ) class Segmentation: def add_ts_id(self, df): df['ts_id'] = ( df[store_col].astype(int).astype(str) + '_' + df[drug_col].astype(int).astype(str) ) return df def _calc_abc(self, df52): B_cutoff = 0.8 C_cutoff = 0.95 D_cutoff = 0.995 tot_sales = ( df52.groupby([ 'ts_id' ])[target_col].sum().reset_index() ) tot_sales.rename(columns={target_col: 'total_LY_sales'}, inplace=True) tot_sales.sort_values('total_LY_sales', ascending=False, inplace=True) tot_sales["perc_sales"] = ( tot_sales['total_LY_sales'] / tot_sales['total_LY_sales'].sum() ) tot_sales["cum_perc_sales"] = tot_sales.perc_sales.cumsum() tot_sales["ABC"] = "A" tot_sales.loc[tot_sales.cum_perc_sales > B_cutoff, "ABC"] = "B" tot_sales.loc[tot_sales.cum_perc_sales > C_cutoff, "ABC"] = "C" tot_sales.loc[tot_sales.cum_perc_sales > D_cutoff, "ABC"] = "D" # tot_sales = self.add_ts_id(tot_sales) return tot_sales[['ts_id', 'ABC', 'total_LY_sales']] # TODO: lower COV cutoffs def get_abc_classification(self, df52): province_abc = df52.groupby( [store_col] ).apply(self._calc_abc) province_abc = province_abc[['ts_id', "ABC"]].reset_index(drop=True) # one tot_sales = ( df52 .groupby(['ts_id'])[target_col] .agg(['sum', 'mean']) .reset_index() ) tot_sales.rename( columns={'sum': 'total_LY_sales', 'mean': 'avg_ly_sales'}, inplace=True) tot_sales = tot_sales.merge( province_abc, on=['ts_id'], how='left' ) tot_sales = tot_sales.drop_duplicates() # tot_sales = self.add_ts_id(tot_sales) tot_sales = tot_sales[['ts_id', 'ABC']] return tot_sales def get_xyzw_classification(self, df1): input_ts_id = df1['ts_id'].unique() df1 = df1[df1[target_col] > 0] cov_df = df1.groupby(['ts_id'])[target_col].agg( ["mean", "std", "count", "sum"]) cov_df.reset_index(drop=False, inplace=True) cov_df['cov'] = np.where( ((cov_df["count"] > 2) & (cov_df["sum"] > 0)), (cov_df["std"]) / (cov_df["mean"]), np.nan ) cov_df['WXYZ'] = 'Z' cov_df.loc[cov_df['cov'] <= 1.2, 'WXYZ'] = 'Y' cov_df.loc[cov_df['cov'] <= 0.8, 'WXYZ'] = 'X' cov_df.loc[cov_df['cov'] <= 0.5, 'WXYZ'] = 'W' # cov_df = self.add_ts_id(cov_df) cov_df = cov_df[['ts_id', 'cov', 'WXYZ']] non_mapped_ts_ids = list( set(input_ts_id) - set(cov_df['ts_id'].unique()) ) non_mapped_cov = pd.DataFrame({ 'ts_id': non_mapped_ts_ids, 'cov': [np.nan] * len(non_mapped_ts_ids), 'WXYZ': ['Z'] * len(non_mapped_ts_ids) }) cov_df = pd.concat([cov_df, non_mapped_cov], axis=0) cov_df = cov_df.reset_index(drop=True) return cov_df def get_std(self, df1): input_ts_id = df1['ts_id'].unique() # df1 = df1[df1[target_col]>0] std_df = df1.groupby(['ts_id'])[target_col].agg(["std"]) return std_df def calc_interval_mean(self, x, key): df = pd.DataFrame({"X": x, "ts_id": key}).reset_index( drop=True).reset_index() df = df[df.X > 0] df["index_shift"] = df["index"].shift(-1) df["interval"] = df["index_shift"] - df["index"] df = df.dropna(subset=["interval"]) df['ADI'] = np.mean(df["interval"]) return df[['ts_id', 'ADI']] def calc_adi(self, df): # df = self.add_ts_id(df) logger.info( 'Combinations entering adi: {}'.format(df['ts_id'].nunique())) dict_of = dict(iter(df.groupby(['ts_id']))) logger.info("Total tsids in df: {}".format(df.ts_id.nunique())) logger.info("Total dictionary length: {}".format(len(dict_of))) list_dict = [ self.calc_interval_mean(dict_of[x][target_col], x) for x in tqdm(dict_of.keys()) ] data = ( pd.concat(list_dict) .reset_index(drop=True) .drop_duplicates() .reset_index(drop=True) ) logger.info('Combinations exiting adi: {}'.format(data.ts_id.nunique())) return data def get_PLC_segmentation(self, df, mature_cutoff_date, eol_cutoff_date): df1 = df[df[target_col] > 0] df1 = df1.groupby(['ts_id']).agg({date_col: [min, max]}) df1.reset_index(drop=False, inplace=True) df1.columns = [' '.join(col).strip() for col in df1.columns.values] df1['PLC Status L1'] = 'Mature' df1.loc[ (df1[date_col + ' min'] > mature_cutoff_date), 'PLC Status L1' ] = 'NPI' df1.loc[ (df1[date_col + ' max'] <= eol_cutoff_date), 'PLC Status L1' ] = 'EOL' # df1 = self.add_ts_id(df1) df1 = df1[['ts_id', 'PLC Status L1']] return df1 def get_group_mapping(self, seg_df): seg_df['Mixed'] = seg_df['ABC'].astype(str) + seg_df['WXYZ'].astype(str) seg_df['Group'] = 'Group3' group1_mask = seg_df['Mixed'].isin(['AW', 'AX', 'BW', 'BX']) seg_df.loc[group1_mask, 'Group'] = 'Group1' group2_mask = seg_df['Mixed'].isin(['AY', 'AZ', 'BY', 'BZ']) seg_df.loc[group2_mask, 'Group'] = 'Group2' return seg_df def calc_dem_pat(self, cov_df, adi_df): logger.info('Combinations entering calc_dem_pat: {}'.format( cov_df.ts_id.nunique())) logger.info('Combinations entering calc_dem_pat: {}'.format( adi_df.ts_id.nunique())) df = pd.merge(cov_df, adi_df, how='left', on='ts_id') df["cov2"] = np.power(df["cov"], 2) df["classification"] = "Lumpy" df.loc[ (df.ADI >= 1.32) & (df.cov2 < 0.49), "classification" ] = "Intermittent" df.loc[ (df.ADI < 1.32) & (df.cov2 >= 0.49), "classification" ] = "Erratic" df.loc[ (df.ADI < 1.32) & (df.cov2 < 0.49), "classification" ] = "Smooth" logger.info( 'Combinations exiting calc_dem_pat: {}'.format(df.ts_id.nunique())) return df[['ts_id', 'classification']] def get_start_end_dates_df(self, df, key_col, date_col, target_col, train_max_date, end_date): start_end_date_df = ( df[df[target_col] > 0] .groupby(key_col)[date_col] .agg({'min', 'max'}) .reset_index() .rename(columns={'min': 'start_date', 'max': 'end_date'}) ) start_end_date_df.loc[ ( start_end_date_df['end_date'] > ( train_max_date - relativedelta(weeks=eol_cutoff) ) ), 'end_date' ] = end_date return start_end_date_df def get_weekly_segmentation(self, df, df_sales_daily, train_max_date, end_date): df = df[df[date_col] <= train_max_date] df1 = df[ df[date_col] > (train_max_date - relativedelta(weeks=52)) ].copy(deep=True) df_std = df_sales_daily[ df_sales_daily[date_col] > (train_max_date - relativedelta(days=90)) ].copy(deep=True) df1 = self.add_ts_id(df1) abc_df = self._calc_abc(df1) xyzw_df = self.get_xyzw_classification(df1) std_df = self.get_std(df_std) adi_df = self.calc_adi(df1) demand_pattern_df = self.calc_dem_pat(xyzw_df[['ts_id', 'cov']], adi_df) mature_cutoff_date = train_max_date - relativedelta(weeks=52) eol_cutoff_date = train_max_date - relativedelta(weeks=13) plc_df = self.get_PLC_segmentation(df, mature_cutoff_date, eol_cutoff_date) start_end_date_df = self.get_start_end_dates_df( df, key_col='ts_id', date_col=date_col, target_col=target_col, train_max_date=train_max_date, end_date=end_date ) seg_df = plc_df.merge(abc_df, on='ts_id', how='outer') seg_df = seg_df.merge(xyzw_df, on='ts_id', how='outer') seg_df = seg_df.merge(adi_df, on='ts_id', how='outer') seg_df = seg_df.merge(demand_pattern_df, on='ts_id', how='outer') seg_df = seg_df.merge(start_end_date_df, on='ts_id', how='outer') seg_df = seg_df.merge(std_df, on='ts_id', how='outer') seg_df = self.get_group_mapping(seg_df) seg_df['Mixed'] = np.where(seg_df['Mixed']=='nannan', np.nan, seg_df['Mixed']) drug_class = seg_df[ ['ts_id', 'total_LY_sales', 'std', 'cov', 'ABC', 'WXYZ']] drug_class[[store_col, drug_col]] = drug_class['ts_id'].str.split('_', expand=True) drug_class.rename( columns={'total_LY_sales': 'net_sales', 'std': 'sales_std_dev', 'cov': 'sales_cov', 'ABC': 'bucket_abc', 'WXYZ': 'bucket_xyz'}, inplace=True) drug_class.drop(columns=['ts_id'], inplace=True) # seg_df[[store_col, drug_col]] = seg_df['ts_id'].str.split('_', expand = True) # seg_df.drop(columns=['ts_id'],inplace=True) # seg_df.rename(columns={'std':'sales_std_dev', 'cov':'sales_cov', 'ABC':'bucket_abcd', 'WXYZ':'bucket_wxyz', 'Mixed':'bucket'}, inplace=True) # seg_df['PLC Status L1'] = np.where(seg_df['PLC Status L1']=='NPI', 'New_Product', seg_df['PLC Status L1']) # seg_df['start_date'] = seg_df['start_date'].astype(str) # seg_df = seg_df[[store_col, drug_col,'PLC Status L1', 'total_LY_sales', 'bucket_abcd', 'bucket_wxyz', 'bucket', 'classification', 'Group', 'sales_std_dev', 'sales_cov', 'ADI', 'start_date' ]] # seg_df = pd.merge(seg_df, drug_class[[store_col, 'store_name', drug_col, ]]) return seg_df, drug_class
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/engine/segmentation.py
segmentation.py
from datetime import date import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta from tqdm import tqdm import time from statsmodels.tsa.arima_model import ARMA from sklearn.linear_model import LinearRegression import logging import warnings warnings.filterwarnings("ignore") logger = logging.getLogger("_logger") logging.basicConfig(level=logging.DEBUG, format='%(message)s') from zeno_etl_libs.utils.ipc2.config_ipc import ( date_col, target_col, store_col, drug_col, eol_cutoff, add_lags_diff_flag, add_monthly_lags_flag, rolling_time_feat, ewma_lags, trend_lags, lags, lags_diff, monthly_lags, ) class Feature_Engg: def add_week_of_month(self, df): df["week_of_month"] = df[date_col].apply(lambda d: (d.day - 1) // 7 + 1) return df def add_month(self, df): df['Month'] = df[date_col].dt.month return df def calc_si(self, df, num_shift_lag=1): max_date = df[date_col].max() time_lag = (len(df) // cutoff_dic["si_week_freq"]) * cutoff_dic[ "si_week_freq"] min_date = max_date + relativedelta(months=-time_lag) df = df[(df[date_col] > min_date)] try: tsid_mean = np.mean(df[target_col].shift(num_shift_lag)) except BaseException as e: logger.info(df.ts_id.iloc[0]) logger.info(e) # continue df = df.groupby(["ts_id", "Week_Number"])[ target_col].mean().reset_index() df["Seas_index"] = df[target_col] / tsid_mean df = df[["ts_id", "Week_Number", "Seas_index"]] return df def ratio_based_si(self, df, train_max_date, num_shift_lag): if 'ts_id' not in df.columns: df = self.add_ts_id(df) train = df[df[date_col] <= train_max_date] dict_of = dict(iter(train.groupby(["ts_id"]))) si_list = [self.calc_si(dict_of[x], num_shift_lag) for x in dict_of.keys()] si_df = pd.concat(si_list) if 'Seas_index' in df.columns: df.drop(['Seas_index'], axis=1, inplace=True) df = pd.merge(df, si_df, how="left", on=["ts_id", "Week_Number"]) df['Seas_index'].fillna(1, inplace=True) return df def add_ARMA_forecast(self, data): model = ARMA(data[target_col], order=(0, 1)) model_fit = model.fit(disp=False) # forecast for required time priods yhat = model_fit.predict( len(data) - cutoff_dic["forecast_horizon_period"], len(data) - 1 ) data["ARMA_Forecast"] = yhat data["Actuals + ARMA"] = np.where( data["ARMA_Forecast"].isnull(), data[target_col], data["ARMA_Forecast"] ) return data[["ts_id", date_col, "Actuals + ARMA"]] def trend_sim_lin_reg(self, df): df.sort_values(by=date_col, inplace=True) df.reset_index() df["index"] = df.index x = df["index"].values.reshape(-1, 1) y = df[target_col].values.reshape(-1, 1) # fit linear regression regressor = LinearRegression() regressor.fit(x, y) return regressor.coef_ def add_trend_lags(self, actuals, fcst): # for i in lags: # fcst['Lag_' + str(i)] = fcst['Actuals + ARMA'].shift(i) # fcst = fcst.fillna(0) # fcst["rolling_ly_lag"] = (0.1 * fcst["Lag_104"]) + (0.9 * fcst["Lag_52"]) # fcst.drop(['Lag_' + str(i) for i in lags], axis = 1, inplace = True) actuals_trend = actuals.groupby(["ts_id"])[ target_col].sum().reset_index() actuals_trend["trend_value"] = self.trend_sim_lin_reg(actuals)[0, 0] return actuals_trend, fcst def add_lags(self, df, lag_list, num_shift_lag=1): is_drop_ts_id = False if 'ts_id' not in df.columns: df = self.add_ts_id(df) is_drop_ts_id = True df_grp_sum = (df.groupby([date_col, "ts_id"])[target_col] .sum() .unstack()) lag_l = [] lag_l_diff = [] for lag in lag_list: lag_df = ( df_grp_sum .shift(lag + num_shift_lag - 1) .fillna(method="bfill") .stack() .reset_index() ) lag_df_diff = ( df_grp_sum .shift(lag + num_shift_lag - 1) .diff(1) .fillna(method="bfill") .stack() .reset_index() ) lag_df.rename(columns={0: "lag_" + str(lag)}, inplace=True) lag_df_diff.rename(columns={0: "lag_" + str(lag) + '_diff'}, inplace=True) if "lag_" + str(lag) in df.columns: df.drop("lag_" + str(lag), axis=1, inplace=True) if "lag_" + str(lag) + '_diff' in df.columns: df.drop("lag_" + str(lag) + '_diff', axis=1, inplace=True) lag_l.append(lag_df.set_index(["ts_id", date_col])) lag_l.append(lag_df_diff.set_index(["ts_id", date_col])) lag_df = None for l in lag_l: if lag_df is None: lag_df = l else: lag_df = lag_df.join(l) df = df.merge(lag_df.reset_index(), on=["ts_id", date_col], how="left") df.drop("ts_id", axis=1, inplace=is_drop_ts_id) return df def add_lag_diff(self, df, lags_diff, num_shift_lag=1): drop_cols = [] for i, j in lags_diff: col_name = 'lag_diff_{}_{}'.format(i, j) if col_name in df.columns: df.drop(col_name, axis=1, inplace=True) if 'lag_' + str(i) not in df.columns: df = self.add_lags(df, [i], num_shift_lag=num_shift_lag) drop_cols.append('lag_' + str(i)) if 'lag_' + str(j) not in df.columns: df = self.add_lags(df, [j], num_shift_lag=num_shift_lag) drop_cols.append('lag_' + str(j)) drop_cols.append('lag_' + str(j) + '_diff') df[col_name] = df['lag_' + str(i)] - df['lag_' + str(j)] if len(drop_cols) > 0: df.drop(drop_cols, axis=1, inplace=True) return df def add_montly_lags(self, df, monthly_lags, num_shift_lag=1): start = time.time() mo_lag_dict = {} for lag in monthly_lags: mo_lag_dict[lag] = [] for week_num in df['week_of_month'].unique(): one_week_df = df[df['week_of_month'] == week_num][ ['ts_id', date_col, target_col]] df_grp = one_week_df.groupby([date_col, 'ts_id'])[ target_col].sum().unstack() df_grp.sort_index(axis=1, inplace=True) for lag in monthly_lags: lag1 = lag mo_lag = ( df_grp .shift(lag1) .bfill() .unstack() .reset_index() .rename(columns={0: str(lag) + '_mo_lag'}) ) # for diff_num in range(1,5): # diff_col = str(lag)+'_mo_lag_diff'+ str(diff_num) # mo_lag_diff = ( # df_grp # .shift(lag1) # .diff(diff_num) # .bfill() # .unstack() # .reset_index() # .rename(columns = {0: str(lag) +'_mo_lag_diff' + str(diff_num)}) # ) # mo_lag = mo_lag.merge(mo_lag_diff, on = ['ts_id', date_col], how = 'left') mo_lag_dict[lag].append(mo_lag) for lag in monthly_lags: col_name = str(lag) + '_mo_lag' if col_name in df.columns: df.drop(col_name, axis=1, inplace=True) for diff_num in range(1, 5): diff_col = str(lag) + '_mo_lag_diff' + str(diff_num) if diff_col in df.columns: df.drop(diff_col, axis=1, inplace=True) mo_lag = pd.concat(mo_lag_dict[lag]) for diff_num in range(1, 5): diff_col = str(lag) + '_mo_lag_diff' + str(diff_num) mo_lag_diff = ( mo_lag .groupby([date_col, 'ts_id']) [str(lag) + '_mo_lag'] .sum() .unstack() .sort_index() .diff(diff_num) .bfill() .stack() .reset_index() .rename(columns={0: diff_col}) ) mo_lag = mo_lag.merge(mo_lag_diff, on=['ts_id', date_col], how='left') df = df.merge(mo_lag, on=['ts_id', date_col], how='left') end = time.time() logger.debug( "Time for updated monthly lags: {} mins".format((end - start) / 60)) return df def add_rolling_lag(self, df, num_shift_lag=1): df["rolling lag"] = ( (0.4 * df[target_col].shift(num_shift_lag)) + (0.3 * df[target_col].shift(num_shift_lag + 1)) + (0.2 * df[target_col].shift(num_shift_lag + 2)) + (0.1 * df[target_col].shift(num_shift_lag + 3)) ) return df def add_start_end_dates(self, df): # Look for monthly format 4-4-5 and then make logic is_drop_week_of_month = False if 'week_of_month' not in df.columns: df = self.add_week_of_month(df) is_drop_week_of_month = True df["MonthStart"] = 0 df.loc[df['week_of_month'] == 1, 'MonthStart'] = 1 df.drop('week_of_month', axis=1, inplace=is_drop_week_of_month) # df[date_col]= pd.to_datetime(df[date_col]) month_end_list = ( df[df['MonthStart'] == 1][date_col].dt.date - relativedelta( weeks=1) ).values df['MonthEnd'] = 0 df.loc[ df[date_col].isin(month_end_list), 'MonthEnd' ] = 1 # df["MonthEnd"] = df[date_col].dt.is_month_end.astype(int) df["QuarterStart"] = ( df[date_col].dt.month.isin([1, 4, 7, 10]).astype(int) & df['MonthStart'] ) df["QuarterEnd"] = ( df[date_col].dt.month.isin([3, 6, 9, 12]).astype(int) & df['MonthEnd'] ) return df def add_holiday_ratio(self, df): df["Holiday_Ratio"] = df["holiday_count"].fillna(0) / 7 return df def add_rolling_time_features(self, df, week_list, agg_dict, num_shift_lag=1): roll_l = [] roll_l_diff = [] drop_cols = set() df_grp_sum = ( df.groupby([date_col, "ts_id"])[target_col] .sum() .unstack() .shift(num_shift_lag) ) for num in week_list: week_df = ( df_grp_sum .rolling(num) .agg(agg_dict) .bfill() .ffill() .unstack() .unstack(level=1) .reset_index() ).rename( columns={ "level_0": "ts_id", "mean": "avg_week" + str(num), "median": "median_week" + str(num), "std": "std_week" + str(num), "max": "max_week" + str(num), "min": "min_week" + str(num), } ) week_df_diff = ( df_grp_sum .rolling(num) .agg('mean') .diff(1) .bfill() .ffill() .unstack() .reset_index() ).rename(columns={0: "avg_week" + str(num) + "_diff"}) drop_cols = drop_cols.union( set(week_df.drop(["ts_id", date_col], axis=1).columns) | set(week_df_diff.drop(["ts_id", date_col], axis=1).columns) ) roll_l.append(week_df.set_index(["ts_id", date_col])) roll_l.append(week_df_diff.set_index(["ts_id", date_col])) drop_cols = list(drop_cols & set(df.columns)) df.drop(drop_cols, axis=1, inplace=True) week_df = None for l in roll_l: if week_df is None: week_df = l else: week_df = week_df.join(l) df = df.merge(week_df.reset_index(), on=["ts_id", date_col], how="left") # for i in [13, 25, 52]: # roll_df = df_grp_sum.shift(num_shift_lag).bfill().rolling(i, min_periods = 1) # roll_df = ( # roll_df.quantile(0.75) # - roll_df.quantile(0.25) # ).unstack().reset_index().rename(columns = {0: 'Quantile_diff_'+str(i)}) # if 'Quantile_diff_'+str(i) in df.columns: # df.drop('Quantile_diff_'+str(i), axis = 1, inplace = True) # df = df.merge(roll_df, on = ['ts_id', date_col], how = 'left') return df def add_ewma(self, df, week_list, agg_dict, num_shift_lag=1): ewma_l = [] df_grp_sum = (df.groupby([date_col, "ts_id"])[target_col] .sum() .unstack() .shift(num_shift_lag) .bfill() .ffill()) for num in week_list: week_df = ( df_grp_sum .ewm(span=num, ignore_na=True, adjust=True, min_periods=1) .agg(agg_dict) .bfill() .ffill() .unstack() .unstack(level=1) .reset_index() ) week_df.rename(columns={ "level_0": "ts_id", "mean": "ewma_" + str(num) }, inplace=True) if "ewma_" + str(num) in df.columns: df.drop("ewma_" + str(num), axis=1, inplace=True) ewma_l.append(week_df.set_index(["ts_id", date_col])) week_df = None for l in ewma_l: if week_df is None: week_df = l else: week_df = week_df.join(l) df = df.merge(week_df.reset_index(), on=["ts_id", date_col], how="left") return df def add_trend(self, df, week_list, num_shift_lag=1): # is_drop = True if 'ts_id' not in df.columns: df = self.add_ts_id(df) df_grp = ( df.groupby([date_col, "ts_id"])[target_col] .sum() .unstack() ) df_grp = df_grp.shift(num_shift_lag).bfill() numerator = df_grp.rolling(5, min_periods=1).mean() # all_trends_df = None df.set_index([date_col, "ts_id"], inplace=True) for num in week_list: denominator = df_grp.rolling(num, min_periods=1).mean() one_trend_df = (numerator / ( denominator + 1e-8)).bfill().ffill().stack().reset_index() one_trend_df.rename(columns={0: "trend_week" + str(num)}, inplace=True) if "trend_week" + str(num) in df.columns: df.drop(columns="trend_week" + str(num), inplace=True) df = df.join(one_trend_df.set_index([date_col, "ts_id"]), how='left') # all_trends_df.append(one_trend_df) return df.reset_index() def create_one_hot_holiday(self, df, col, name, on="holiday"): df[name] = 0 df.loc[df[on] == col, name] = 1 return df def add_week_of_month(self, df): df["week_of_month"] = df[date_col].apply(lambda d: (d.day - 1) // 7 + 1) return df def add_year_month(self, df): year_df = df[date_col].dt.year month_df = df[date_col].dt.month df['YearMonth'] = year_df.astype(str) + '_' + month_df.astype(str) return df def add_month(self, df): df['Month'] = df[date_col].dt.month return df def feat_agg(self, df, train_max_date, num_shift_lag): if pd.DataFrame(df).empty: return df if target_col not in df.columns: raise ValueError( "{} col not in dataframe passed".format(target_col)) if date_col not in df.columns: raise ValueError("{} col not in dataframe passed".format(date_col)) df = self.add_week_of_month(df) df = self.add_month(df) df.loc[df[date_col] > train_max_date, target_col] = np.nan logger.debug("Adding TS Features...") logger.debug("Adding lags...") logger.debug("Lags: {}".format(lags)) df = self.add_lags(df, lags, num_shift_lag=num_shift_lag) if add_lags_diff_flag: logger.debug("Adding Lag Diff") logger.debug( "lags_diff: {}".format(lags_diff, num_shift_lag=num_shift_lag)) df = self.add_lag_diff(df, lags_diff) if add_monthly_lags_flag: logger.debug("Adding Monthly lags..") df = self.add_montly_lags(df, monthly_lags, num_shift_lag=num_shift_lag) logger.debug("Adding start end dates...") df = self.add_start_end_dates(df) logger.debug("Adding rolling time features...") df = self.add_rolling_time_features( df, rolling_time_feat["lags"], rolling_time_feat["agg_func_dict"], num_shift_lag=num_shift_lag ) logger.debug("Adding ewma...") df = self.add_ewma(df, ewma_lags, {"mean"}, num_shift_lag=num_shift_lag) logger.debug("Adding trend...") df = self.add_trend(df, trend_lags, num_shift_lag=num_shift_lag) logger.debug("TS Features added successfully...") logger.info("maxdate after TS: {}".format(df[date_col].max())) return df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/engine/feat_engg.py
feat_engg.py
import pandas as pd import numpy as np import datetime as dt def v5_corrections(store_id, safety_stock_df, db, schema, logger): """ Main function to perform V5 corrections """ # Get Drug STD Qty and list of repeatable drug_ids df_3m_drugs, unique_drugs_3m = get_3m_drug_std_qty(store_id, db, schema, logger) # Locate drugs to perform correction check df_std_check = safety_stock_df.loc[safety_stock_df["drug_id"].isin( unique_drugs_3m)][["drug_id", "fcst", "safety_stock", "reorder_point", "order_upto_point"]] # Drugs not forecasted by IPC drugs_3m_not_set = list(set(unique_drugs_3m) ^ set(df_std_check["drug_id"].unique())) logger.info(f"Number of drugs not forecasted: {len(drugs_3m_not_set)}") # Merge STD Qty with SS table and find drugs correction areas df_std_check = df_3m_drugs.merge(df_std_check, on="drug_id", how="left") df_std_check = df_std_check.dropna() df_std_check["rop>=std_qty"] = np.where( df_std_check["reorder_point"] >= df_std_check["std_qty"], "Y", "N") tot_rep_drugs = df_std_check.shape[0] corr_req = df_std_check.loc[df_std_check['rop>=std_qty'] == 'N'].shape[0] corr_not_req = df_std_check.loc[df_std_check['rop>=std_qty'] == 'Y'].shape[0] logger.info(f"Number of repeatable drugs: {tot_rep_drugs}") logger.info(f"Number of repeatable drugs corrections required: {corr_req}") logger.info(f"Number of repeatable drugs corrections not required: {corr_not_req}") # CORRECTION STARTS order_freq = 4 column_order = list(df_std_check.columns) column_order += ["corr_ss", "corr_rop", "corr_oup"] # CASE1: No changes required df_no_change = df_std_check.loc[df_std_check["rop>=std_qty"] == "Y"].copy() df_no_change["corr_ss"] = df_no_change["safety_stock"].astype(int) df_no_change["corr_rop"] = df_no_change["reorder_point"].astype(int) df_no_change["corr_oup"] = df_no_change["order_upto_point"].astype(int) # CASE2: SS & ROP & OUP is Non Zero df_change1 = df_std_check.loc[(df_std_check["rop>=std_qty"] == "N") & (df_std_check["safety_stock"] != 0) & (df_std_check["reorder_point"] != 0) & (df_std_check["order_upto_point"] != 0)].copy() df_change1["mul_1"] = df_change1["reorder_point"] / df_change1["safety_stock"] df_change1["mul_2"] = df_change1["order_upto_point"] / df_change1["reorder_point"] df_change1["corr_rop"] = df_change1["std_qty"] df_change1["corr_ss"] = np.ceil(df_change1["corr_rop"] / df_change1["mul_1"]).astype(int) # If ROP >= OUP, then in those cases, increase OUP. df_change11 = df_change1.loc[ df_change1["corr_rop"] >= df_change1["order_upto_point"]].copy() df_change12 = df_change1.loc[ df_change1["corr_rop"] < df_change1["order_upto_point"]].copy() df_change11["corr_oup"] = np.ceil(df_change11["corr_rop"] + ( df_change11["fcst"] * order_freq / 28)).astype(int) df_change12["corr_oup"] = np.ceil(df_change12["corr_rop"] + ( df_change12["fcst"] * order_freq / 28)).astype(int) df_change1 = df_change11.append(df_change12) df_change1 = df_change1[column_order] # CASE3: Any of SS & ROP & OUP is Zero df_change2 = df_std_check.loc[(df_std_check["rop>=std_qty"] == "N")].copy() df_change2 = df_change2.loc[~((df_change2["safety_stock"] != 0) & (df_change2["reorder_point"] != 0) & (df_change2["order_upto_point"] != 0))].copy() df_change2["corr_rop"] = df_change2["std_qty"].astype(int) df_change2["corr_ss"] = np.floor(df_change2["corr_rop"] / 2).astype(int) # If ROP >= OUP, then in those cases, increase OUP. df_change21 = df_change2.loc[ df_change2["corr_rop"] >= df_change2["order_upto_point"]].copy() df_change22 = df_change2.loc[ df_change2["corr_rop"] < df_change2["order_upto_point"]].copy() df_change21["corr_oup"] = np.ceil(df_change21["corr_rop"] + ( df_change21["fcst"] * order_freq / 28)).astype(int) df_change22["corr_oup"] = np.ceil(df_change22["corr_rop"] + ( df_change22["fcst"] * order_freq / 28)).astype(int) df_change2 = df_change21.append(df_change22) df_change2 = df_change2[column_order] # Combine all 3 cases df_corrected = df_no_change.append(df_change1) df_corrected = df_corrected.append(df_change2) df_corrected = df_corrected.sort_index(ascending=True) # Get DF of corrected drugs and merge with input DF df_corrected_to_merge = df_corrected.loc[df_corrected["rop>=std_qty"] == "N"][ ["drug_id", "corr_ss", "corr_rop", "corr_oup"]] corr_safety_stock_df = safety_stock_df.merge(df_corrected_to_merge, on="drug_id", how="left") # Make corrections for required drugs corr_safety_stock_df["safety_stock"] = np.where( corr_safety_stock_df["corr_ss"] >= 0, corr_safety_stock_df["corr_ss"], corr_safety_stock_df["safety_stock"]) corr_safety_stock_df["reorder_point"] = np.where( corr_safety_stock_df["corr_rop"] >= 0, corr_safety_stock_df["corr_rop"], corr_safety_stock_df["reorder_point"]) corr_safety_stock_df["order_upto_point"] = np.where( corr_safety_stock_df["corr_oup"] >= 0, corr_safety_stock_df["corr_oup"], corr_safety_stock_df["order_upto_point"]) corr_safety_stock_df.drop(["corr_ss", "corr_rop", "corr_oup"], axis=1, inplace=True) corr_safety_stock_df["max_value"] = corr_safety_stock_df["order_upto_point"] * \ corr_safety_stock_df["fptr"] assert safety_stock_df.shape == corr_safety_stock_df.shape # Evaluate PRE and POST correction pre_post_metrics = { "metric": ["pre_corr", "post_corr"], "ss_qty": [safety_stock_df["safety_stock"].sum(), corr_safety_stock_df["safety_stock"].sum()], "ss_val": [round((safety_stock_df["safety_stock"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["safety_stock"] * corr_safety_stock_df["fptr"]).sum(), 2)], "rop_qty": [safety_stock_df["reorder_point"].sum(), corr_safety_stock_df["reorder_point"].sum()], "rop_val": [round((safety_stock_df["reorder_point"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["reorder_point"] * corr_safety_stock_df["fptr"]).sum(), 2)], "oup_qty": [safety_stock_df["order_upto_point"].sum(), corr_safety_stock_df["order_upto_point"].sum()], "oup_val": [round((safety_stock_df["order_upto_point"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["order_upto_point"] * corr_safety_stock_df["fptr"]).sum(), 2)] } pre_post_metics_df = pd.DataFrame.from_dict(pre_post_metrics).set_index('metric').T pre_post_metics_df["delta"] = pre_post_metics_df["post_corr"] - pre_post_metics_df["pre_corr"] pre_post_metics_df["change%"] = round((pre_post_metics_df["delta"] / pre_post_metics_df["pre_corr"]) * 100, 2) logger.info(f"\n{str(pre_post_metics_df)}") return corr_safety_stock_df def max_mode(pd_series): return int(max(pd_series.mode())) def get_3m_drug_std_qty(store_id, db, schema, logger): """ To fetch repeatable patient-drug qty from past 90days and calculate standard drug qty. """ start_date = (dt.date.today() - dt.timedelta(days=90)).strftime("%Y-%m-%d") end_date = dt.date.today().strftime("%Y-%m-%d") q_3m = """ select "patient-id" , "old-new" , "drug-id" , date("created-at") as "on-date", quantity as "tot-qty" from "{schema}".sales where "store-id" = {0} and "is-repeatable" = 1 and "bill-flag" = 'gross' and "created-at" > '{1} 00:00:00' and "created-at" < '{2} 00:00:00' """.format(store_id, start_date, end_date, schema=schema) df_3m = db.get_df(q_3m) df_3m.columns = [c.replace('-', '_') for c in df_3m.columns] # Get patient-drug-level STD Qty df_3m["3m_bills"] = 1 df_3m["std_qty"] = df_3m["tot_qty"] df_3m_patient = df_3m.groupby(["patient_id", "drug_id"], as_index=False).agg( {"3m_bills": "sum", "tot_qty": "sum", "std_qty": max_mode}) logger.info(f"Total repeatable patients: {len(df_3m_patient.patient_id.unique())}") # Get drug-level STD Qty df_3m_drugs = df_3m_patient.groupby("drug_id", as_index=False).agg( {"std_qty": "max"}) # STD Qty > 10 is considered outliers, to drop. drug_count_before = df_3m_drugs.shape[0] df_3m_drugs = df_3m_drugs.loc[df_3m_drugs["std_qty"] <= 10] drug_count_after = df_3m_drugs.shape[0] logger.info(f"Number of outlier drugs STD Qty: {drug_count_before-drug_count_after}") # Repeatable drugs STD Qty to check against IPC set ROP unique_drugs_3m = list(df_3m_drugs["drug_id"].unique()) return df_3m_drugs, unique_drugs_3m
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/heuristics/ipcv5_heuristics_old.py
ipcv5_heuristics_old.py
import pandas as pd import numpy as np import datetime as dt def v3_corrections(final_ss_df, store_id, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, schema, db, logger): final_ss_df['store_id'] = store_id q_prob = f""" select * from "{schema}"."ipc-corrections-rest-cases" where "store-id" = {store_id} """ q_prob_111 = f""" select * from "{schema}"."ipc-corrections-111-cases" where "store-id" = {store_id} """ prob_matrix = db.get_df(q_prob) df_111 = db.get_df(q_prob_111) prob_matrix.columns = [c.replace('-', '_') for c in prob_matrix.columns] df_111.columns = [c.replace('-', '_') for c in df_111.columns] # list of drugs for which corrections is required. i.e. max value 0. df_corrections_list = final_ss_df[ final_ss_df['order_upto_point'] == 0][['store_id', 'drug_id']] df_corrections = pd.merge( df_corrections_list, prob_matrix, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections = df_corrections.drop(columns={'corrected_max'}) df_corrections['order_upto_point'] = np.round( df_corrections['current_ma_3_months']) df_corrections_1 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_less_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_more_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 0)] df_corrections_1 = df_corrections_1[ (df_corrections_1['selling_probability'] >= corrections_selling_probability_cutoff['ma_less_than_2']) & (df_corrections_1['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections_2[ (df_corrections_2['selling_probability'] >= corrections_selling_probability_cutoff['ma_more_than_2']) & (df_corrections_2['current_flag_ma_less_than_2'] == 0)] df_corrections = pd.concat( [df_corrections_1, df_corrections_2]).reset_index(drop=True) df_corrections_final = df_corrections.copy()[ ['store_id', 'drug_id', 'current_bucket', 'selling_probability', 'cumm_prob', 'current_flag_ma_less_than_2', 'avg_ptr', 'current_ma_3_months']] df_corrections = df_corrections[ ['store_id', 'drug_id', 'order_upto_point']] df_corrections['reorder_point'] = np.floor( df_corrections['order_upto_point'] / 2) df_corrections['safety_stock'] = np.floor( df_corrections['order_upto_point'] / 4) df_corrections = df_corrections.set_index(['store_id', 'drug_id']) final_ss_df = final_ss_df.set_index(['store_id', 'drug_id']) final_ss_df.update(df_corrections) final_ss_df = final_ss_df.reset_index() df_corrections = df_corrections.reset_index() df_corrections = pd.merge( df_corrections, df_corrections_final, on=['store_id', 'drug_id'], how='left', validate='one_to_one') # update 111 cases here. df_corrections_111 = pd.merge( df_corrections_list, df_111, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections_111 = df_corrections_111.drop( columns={'original_max', 'corrected_max', 'inv_impact', 'max_impact'}, axis=1) df_corrections_111['order_upto_point'] = np.round( df_corrections_111['ma_3_months']) df_corrections_111['reorder_point'] = np.floor( df_corrections_111['order_upto_point'] / 2) df_corrections_111['safety_stock'] = np.floor( df_corrections_111['order_upto_point'] / 4) df_corrections_111 = df_corrections_111.set_index( ['store_id', 'drug_id']) final_ss_df = final_ss_df.set_index(['store_id', 'drug_id']) final_ss_df.update(df_corrections_111) final_ss_df = final_ss_df.reset_index() df_corrections_111 = df_corrections_111.reset_index() # set reset date curr_date = str(dt.date.today()) df_corrections['reset_date'] = curr_date df_corrections_111['reset_date'] = curr_date final_ss_df.drop('store_id', axis=1, inplace=True) return final_ss_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/heuristics/ipcv3_heuristics.py
ipcv3_heuristics.py
from zeno_etl_libs.helper.aws.s3 import S3 import pandas as pd import numpy as np def v5_corrections(safety_stock_df, db, schema, logger): # ======================= DEFINE BUCKETS TO CORRECT ======================== corr_buckets = ['AW', 'AX', 'AY', 'BX', 'BY'] # ========================================================================== logger.info("Reading STD-Qty for all drugs") # get drug-std_qty data (TO CHANGE READ IF LIVE FOR ALL STORES) s3 = S3() file_path = s3.download_file_from_s3('STD_QTY_IPC/df_std_qty.csv') df_std_qty = pd.read_csv(file_path) logger.info("Define Max-STD-Qty for all drugs based on confidence") for index, row in df_std_qty.iterrows(): if row["std_qty_3_cf"] == 'H': max_std_qty = row["std_qty_3"] elif row["std_qty_2_cf"] in ['H', 'M']: max_std_qty = row["std_qty_2"] else: max_std_qty = row["std_qty"] df_std_qty.loc[index, "max_std_qty"] = max_std_qty # merge std and max.std to base df safety_stock_df = safety_stock_df.merge( df_std_qty[["drug_id", "std_qty", "max_std_qty"]], on="drug_id", how="left") safety_stock_df["std_qty"] = safety_stock_df["std_qty"].fillna(1) safety_stock_df["max_std_qty"] = safety_stock_df["max_std_qty"].fillna(1) # drugs to correct and not correct df_to_corr = safety_stock_df.loc[ safety_stock_df["bucket"].isin(corr_buckets)] df_not_to_corr = safety_stock_df.loc[ ~safety_stock_df["bucket"].isin(corr_buckets)] logger.info(f"Num drugs considered for correction {df_to_corr.shape[0]}") logger.info(f"Num drugs not considered for correction {df_not_to_corr.shape[0]}") logger.info("Correction logic starts") for index, row in df_to_corr.iterrows(): fcst = row["fcst"] rop = row["reorder_point"] oup = row["order_upto_point"] std = row["std_qty"] max_std = row["max_std_qty"] new_rop = std_round(rop, std=max_std) if (new_rop != 0) & (new_rop / rop >= 2): new_rop = std_round(rop, std=std) if (new_rop / rop >= 2) & (new_rop > fcst): new_rop = rop # no correction if (new_rop == 0) & (oup > 0): new_oup = std else: new_oup = std_round(oup, std=max_std) if (new_oup <= new_rop) & (new_oup != 0): new_oup = std_round(new_rop + 1, std=max_std) df_to_corr.loc[index, "reorder_point"] = new_rop df_to_corr.loc[index, "order_upto_point"] = new_oup corr_safety_stock_df = pd.concat([df_to_corr, df_not_to_corr]) corr_safety_stock_df.drop(columns=["std_qty", "max_std_qty"], axis=1, inplace=True) return corr_safety_stock_df def std_round(x, std): """ round x to the closest higher multiple of std-qty """ return std * np.ceil(x/std)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/heuristics/ipcv5_heuristics.py
ipcv5_heuristics.py
import pandas as pd import numpy as np import datetime as datetime from datetime import timedelta from zeno_etl_libs.utils.ipc2.config_ipc import key_col, date_col, store_col, drug_col, target_col def load_data(store_id,start_d, end_d,db,schema): mos = f''' select * from "{schema}".sales where date("created-at") >= '{start_d}' and date("created-at") < '{end_d}' and "store-id" in ({store_id}) ''' cfr = f'''select cpr."store-id" , cpr."drug-id" , cpr."shortbook-date", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" cpr where "shortbook-date" >= '{start_d}' and "shortbook-date" < '{end_d}' and cpr."drug-id" <> -1 and ("drug-category" = 'chronic' or "repeatability-index" >= 40) and "loss-quantity" > 0 and "drug-type" in ('ethical', 'ayurvedic', 'generic', 'discontinued-products', 'banned', 'general', 'high-value-ethical', 'baby-product', 'surgical', 'otc', 'glucose-test-kit', 'category-2', 'category-1', 'category-4', 'baby-food', '', 'category-3') and "store-id" in ({store_id}) group by cpr."store-id" , cpr."drug-id" , "shortbook-date" ''' df_mos = db.get_df(mos) df_cfr = db.get_df(cfr) df_mos.columns = [c.replace('-', '_') for c in df_mos.columns] df_cfr.columns = [c.replace('-', '_') for c in df_cfr.columns] return df_mos,df_cfr def pre_process_data(df_mos,df_cfr): set_dtypes = { store_col: int, drug_col: int, 'loss_quantity': int } df_cfr = df_cfr.astype(set_dtypes) df_cfr['shortbook_date'] = pd.to_datetime(df_cfr['shortbook_date']) df_mos['created_at'] = pd.to_datetime(df_mos['created_at']) df_mos['sales_date'] = pd.to_datetime(df_mos['created_at'].dt.date) df_mos['drug_id'].fillna(0,inplace=True) df_mos['ts_id'] = df_mos['store_id'].astype(int).astype(str) + "_" + df_mos['drug_id'].astype(int).astype(str) df_mos = df_mos.groupby(['ts_id', 'sales_date', 'store_id', 'drug_id' ])['net_quantity'].sum().reset_index() df_mos.rename(columns={'sales_date':date_col},inplace=True) df_mos.rename(columns={'net_quantity':target_col},inplace=True) return df_mos, df_cfr def get_formatted_data(df, key_col, date_col, store_col, drug_col, target_col): df = df[[key_col, date_col, target_col]] min_date = df[date_col].dropna().min() end_date = df[date_col].dropna().max() date_range = [] date_range = pd.date_range( start= min_date, end= end_date, freq= 'd' ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = np.nan df = ( df .fillna(0) .stack() .reset_index() .rename(columns = {0: target_col}) ) df[[store_col, drug_col]] = df[key_col].str.split('_', expand = True) df[[store_col, drug_col]] = df[[store_col, drug_col]].astype(float).astype(int) return df def aggreagte_data(df_sales, df_cfr): df = df_sales.merge(df_cfr, left_on=[store_col, drug_col, date_col], right_on=[store_col, drug_col, 'shortbook_date'], how='left') df[date_col] = df[date_col].combine_first(df['shortbook_date']) df[target_col].fillna(0, inplace=True) df['loss_quantity'].fillna(0, inplace=True) df[target_col] += df['loss_quantity'] df.drop(['shortbook_date', 'loss_quantity'], axis=1, inplace=True) df_l3m_sales = df.groupby([store_col,drug_col])[target_col].sum().reset_index() df_l3m_sales.rename(columns={target_col:'l3m_sales_qty'},inplace=True) return df_l3m_sales def implement_corrections(final_ss_df,df_l3m_sales): cols = final_ss_df.columns df = pd.merge(final_ss_df,df_l3m_sales,how='left', on=[store_col,drug_col] ) df['fcst_zero_w_sales'] = np.where(((df['fcst']==0)&(df['l3m_sales_qty']>0)&(df['order_upto_point']==0)),1, 0) df['order_upto_point'] = np.where(df['fcst_zero_w_sales']==1,np.round((df['l3m_sales_qty']/3)*(18/30)), df['order_upto_point']) df['order_upto_point'] = np.where(((df['fcst_zero_w_sales']==1)&(df['l3m_sales_qty']==2)&(df['order_upto_point']==0)),1, df['order_upto_point']) df['reorder_point'] = np.where(df['fcst_zero_w_sales']==1,np.floor((df['l3m_sales_qty']/3)*(13/30)), df['reorder_point']) df['reorder_point'] = np.where((df['fcst_zero_w_sales']==1)&(df['reorder_point']==df['order_upto_point'])&(df['reorder_point']>0),df['order_upto_point']-1, df['reorder_point']) df['safety_stock'] = np.where(df['fcst_zero_w_sales']==1,np.floor((df['l3m_sales_qty']/3)*(7/30)), df['safety_stock']) df = df[cols] return df def v3N_corrections(final_ss_df, store_id, reset_date, schema, db, logger): end_d = pd.to_datetime(reset_date) start_d = end_d - timedelta(days= 90) start_d = str(start_d.date()) end_d = str(end_d.date()) df_mos,df_cfr = load_data(store_id=store_id,start_d=start_d, end_d=end_d,db=db,schema=schema) df_mos, df_cfr = pre_process_data(df_mos=df_mos, df_cfr=df_cfr) df_sales = get_formatted_data(df=df_mos, key_col=key_col, date_col = date_col, target_col=target_col, store_col=store_col, drug_col=drug_col) df_l3m_sales = aggreagte_data(df_sales=df_sales, df_cfr = df_cfr) final_ss_df = implement_corrections(final_ss_df=final_ss_df, df_l3m_sales=df_l3m_sales) return final_ss_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc2/heuristics/ipcv3N_heuristics.py
ipcv3N_heuristics.py
import numpy as np import pandas as pd from datetime import datetime from scipy.stats import norm from zeno_etl_libs.utils.ipc.lead_time import lead_time from zeno_etl_libs.utils.ipc.heuristics.ipcv4_heuristics import ipcv4_heuristics from zeno_etl_libs.utils.ipc.heuristics.ipcv5_heuristics import v5_corrections # from zeno_etl_libs.utils.ipc.heuristics.ipcv6_heuristics import v6_corrections def non_ipc_safety_stock_calc( store_id, cal_sales, reset_date, final_predict, drug_class, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, train_flag, drug_type_list_v4, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, db, schema, logger): '''LEAD TIME CALCULATION''' lt_drug, lt_store_mean, lt_store_std = lead_time( store_id, cal_sales, reset_date, db, schema, logger) service_level = 0.95 num_days = 4 * 7 order_freq = 4 z = norm.ppf(service_level) print(lt_store_mean, lt_store_std) drug_class = drug_class.copy() drug_class['bucket'] = drug_class['bucket_abc'] + drug_class['bucket_xyz'] safety_stock_df = final_predict.merge( lt_drug[['drug_id', 'lead_time_mean', 'lead_time_std']], how='left', on='drug_id') safety_stock_df['lead_time_mean'].fillna(lt_store_mean, inplace=True) safety_stock_df['lead_time_std'].fillna(lt_store_std, inplace=True) safety_stock_df = safety_stock_df.merge( drug_class[['drug_id', 'bucket']], on='drug_id', how='left') safety_stock_df['bucket'].fillna('NA', inplace=True) safety_stock_df['demand_daily'] = safety_stock_df['fcst']/num_days safety_stock_df['demand_daily_deviation'] = ( safety_stock_df['std']/np.sqrt(num_days)) # heuristics #1 safety_stock_df['lead_time_std'] = np.where( safety_stock_df['lead_time_std'] < 1, lt_store_std, safety_stock_df['lead_time_std']) # non ipc store safety stock safety_stock_df['safety_stock'] = np.round( z * np.sqrt( ( safety_stock_df['lead_time_mean'] * safety_stock_df['demand_daily_deviation'] * safety_stock_df['demand_daily_deviation'] ) + ( safety_stock_df['lead_time_std'] * safety_stock_df['lead_time_std'] * safety_stock_df['demand_daily'] * safety_stock_df['demand_daily'] ))) safety_stock_df['reorder_point'] = np.round( safety_stock_df['safety_stock'] + safety_stock_df['demand_daily'] * safety_stock_df['lead_time_mean']) safety_stock_df['order_upto_point'] = np.round( safety_stock_df['reorder_point'] + safety_stock_df['demand_daily'] * order_freq) safety_stock_df['safety_stock_days'] = np.round( num_days * safety_stock_df['safety_stock'] / safety_stock_df['fcst']) safety_stock_df['reorder_days'] = np.round( num_days * safety_stock_df['reorder_point'] / safety_stock_df['fcst']) safety_stock_df['order_upto_days'] = np.round( num_days * safety_stock_df['order_upto_point'] / safety_stock_df['fcst']) # getting order value drug_list = list(safety_stock_df['drug_id'].unique()) print(len(drug_list)) drug_str = str(drug_list).replace('[', '(').replace(']', ')') fptr_query = """ select "drug-id" , avg(ptr) as fptr, sum(quantity) as curr_inventory from "{schema}"."inventory-1" i where "store-id" = {store_id} and "drug-id" in {drug_str} group by "drug-id" """.format(store_id=store_id, drug_str=drug_str, schema=schema) fptr = db.get_df(fptr_query) fptr.columns = [c.replace('-', '_') for c in fptr.columns] fptr["fptr"] = fptr["fptr"].astype(float) safety_stock_df = safety_stock_df.merge(fptr, on='drug_id', how='left') safety_stock_df['fptr'].fillna(100, inplace=True) safety_stock_df['max_value'] = ( safety_stock_df['fptr'] * safety_stock_df['order_upto_point']) # correction plugin - Start if corrections_flag & train_flag: safety_stock_df['correction_flag'] = 'N' safety_stock_df['store_id'] = store_id print("corrections code is running now:") q_prob = f"""select * from "{schema}"."ipc-corrections-rest-cases" """ q_prob_111 = f"""select * from "{schema}"."ipc-corrections-111-cases" """ prob_matrix = db.get_df(q_prob) df_111 = db.get_df(q_prob_111) prob_matrix.columns = [c.replace('-', '_') for c in prob_matrix.columns] df_111.columns = [c.replace('-', '_') for c in df_111.columns] # list of drugs for which corrections is required. i.e. max value 0. df_corrections_list = safety_stock_df[ safety_stock_df['order_upto_point'] == 0][['store_id', 'drug_id']] df_corrections = pd.merge( df_corrections_list, prob_matrix, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections = df_corrections.drop(columns={'corrected_max'}) df_corrections['order_upto_point'] = np.round( df_corrections['current_ma_3_months']) df_corrections_1 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_less_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_more_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 0)] df_corrections_1 = df_corrections_1[ (df_corrections_1['selling_probability'] >= corrections_selling_probability_cutoff['ma_less_than_2']) & (df_corrections_1['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections_2[ (df_corrections_2['selling_probability'] >= corrections_selling_probability_cutoff['ma_more_than_2']) & (df_corrections_2['current_flag_ma_less_than_2'] == 0)] df_corrections = pd.concat( [df_corrections_1, df_corrections_2]).reset_index(drop=True) df_corrections_final = df_corrections.copy()[ ['store_id', 'drug_id', 'current_bucket', 'selling_probability', 'cumm_prob', 'current_flag_ma_less_than_2', 'avg_ptr', 'current_ma_3_months']] # adding run time current inventory df_corrections_final = pd.merge( df_corrections_final, safety_stock_df[['store_id', 'drug_id', 'curr_inventory']], on=['store_id', 'drug_id'], how='left', validate='one_to_one') df_corrections = df_corrections[ ['store_id', 'drug_id', 'order_upto_point']] df_corrections['reorder_point'] = np.floor( df_corrections['order_upto_point'] / 2) df_corrections['safety_stock'] = np.floor( df_corrections['order_upto_point'] / 4) df_corrections['correction_flag'] = 'Y' df_corrections['is_ipc'] = 'Y' df_corrections = df_corrections.set_index(['store_id', 'drug_id']) safety_stock_df = safety_stock_df.set_index(['store_id', 'drug_id']) safety_stock_df.update(df_corrections) safety_stock_df = safety_stock_df.reset_index() df_corrections = df_corrections.reset_index() df_corrections = pd.merge( df_corrections, df_corrections_final, on=['store_id', 'drug_id'], how='left', validate='one_to_one') # update 111 cases here. df_corrections_111 = pd.merge( df_corrections_list, df_111, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections_111 = df_corrections_111.drop( columns={'current_inventory', 'original_max', 'corrected_max', 'inv_impact', 'max_impact'}, axis=1) df_corrections_111['order_upto_point'] = np.round( df_corrections_111['ma_3_months']) df_corrections_111['reorder_point'] = np.floor( df_corrections_111['order_upto_point'] / 2) df_corrections_111['safety_stock'] = np.floor( df_corrections_111['order_upto_point'] / 4) df_corrections_111['correction_flag'] = 'Y' df_corrections_111['is_ipc'] = 'Y' # adding run time current inventory df_corrections_111 = pd.merge( df_corrections_111, safety_stock_df[['store_id', 'drug_id', 'curr_inventory']], on=['store_id', 'drug_id'], how='left', validate='one_to_one') df_corrections_111 = df_corrections_111.set_index( ['store_id', 'drug_id']) safety_stock_df = safety_stock_df.set_index(['store_id', 'drug_id']) safety_stock_df.update(df_corrections_111) safety_stock_df = safety_stock_df.reset_index() df_corrections_111 = df_corrections_111.reset_index() # set reset date curr_date = str(datetime.now()) df_corrections['reset_date'] = curr_date df_corrections_111['reset_date'] = curr_date safety_stock_df = safety_stock_df.drop(['store_id'], axis=1) else: print('corrections block skipped :') df_corrections = pd.DataFrame() df_corrections_111 = pd.DataFrame() safety_stock_df['correction_flag'] = 'N' # Correction plugin - End # # Chronic drug changes if chronic_max_flag == 'Y': # based on ME OOS feedback - keep chronic drugs drug_max_zero = tuple( safety_stock_df.query('order_upto_point == 0')['drug_id']) # reading chronic drug list drug_chronic_max_zero_query = ''' select id as drug_id from "{schema}".drugs where category = 'chronic' and id in {0} '''.format(str(drug_max_zero), schema=schema) drug_chronic_max_zero = db.get_df(drug_chronic_max_zero_query)[ 'drug_id'] # setting non zero max for such drugs safety_stock_df.loc[ (safety_stock_df['drug_id'].isin(drug_chronic_max_zero)) & (safety_stock_df['order_upto_point'] == 0), 'order_upto_point'] = 1 safety_stock_df.loc[ (safety_stock_df['drug_id'].isin(drug_chronic_max_zero)) & (safety_stock_df['order_upto_point'] == 0), 'correction_flag'] = 'Y_chronic' safety_stock_df = ipcv4_heuristics(safety_stock_df, drug_type_list_v4, db, schema) if v5_active_flag == "Y": logger.info("IPC V5 Correction Starts") safety_stock_df = v5_corrections(store_id, safety_stock_df, db, schema, logger) logger.info("IPC V5 Correction Successful") # if v6_active_flag == "Y": # logger.info("IPC V6 Correction Starts") # safety_stock_df, drugs_max_to_lock_ipcv6, drug_rejects_ipcv6 = \ # v6_corrections(store_id, safety_stock_df, reset_date, v6_type_list, # v6_ptr_cut_off, logger) # # # add algo name to v6 write table # drugs_max_to_lock_ipcv6["algo"] = 'non-ipc' # drug_rejects_ipcv6["algo"] = 'non-ipc' # logger.info("IPC V6 Correction Successful") # else: drugs_max_to_lock_ipcv6 = pd.DataFrame() drug_rejects_ipcv6 = pd.DataFrame() return safety_stock_df, df_corrections, df_corrections_111, \ drugs_max_to_lock_ipcv6, drug_rejects_ipcv6
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/non_ipc/safety_stock/safety_stock.py
safety_stock.py
import pandas as pd import datetime def forecast_patient_data(store_id_list, type_list, reset_date, db, schema, logger=None, last_date=None): ''' FETCHING HISTORICAL PATIENT DATA''' if last_date is None: last_date = datetime.date(day=1, month=4, year=2019) print('Date range', str(last_date), str(reset_date)) # store list if type(store_id_list) is not list: store_id_list = [store_id_list] store_id_list = str(store_id_list).replace('[', '(').replace(']', ')') # drug list drug_list_query = """ select id as drug_id from "{schema}".drugs where type in {0} """.format(type_list, schema=schema) drug_list = db.get_df(drug_list_query) drug_list_tuple = tuple(drug_list['drug_id']) # getting patient data patient_data_query = """ select date(a."created-at") as "sales-date", inv."drug-id", count(distinct "patient-id") as "patient-count" from "{schema}"."bills-1" f join "{schema}"."bill-items-1" a on f.id = a."bill-id" left join "{schema}"."inventory-1" inv on a."inventory-id" = inv.id where date(a."created-at") >= '{last_date}' and date(a."created-at") <= '{reset_date}' and f."store-id" in {store_id_list} and inv."drug-id" in {drug_list} group by date(a."created-at"), inv."drug-id" union all select date(a."returned-at") as "sales-date", inv."drug-id", count(distinct "patient-id")*-1 as "patient-count" from "{schema}"."customer-return-items-1" a join "{schema}"."bills-1" b on a."bill-id" = b.id left join "{schema}"."inventory-1" inv on a."inventory-id" = inv.id where date(a."returned-at") >= '{last_date}' and date(a."returned-at") <= '{reset_date}' and b."store-id" in {store_id_list} and inv."drug-id" in {drug_list} group by date(a."returned-at"), inv."drug-id" """.format(store_id_list=store_id_list, last_date=str(last_date), reset_date=str(reset_date), drug_list=drug_list_tuple, schema=schema) patient_data = db.get_df(patient_data_query) patient_data.columns = [col.replace('-', '_') for col in patient_data.columns] '''CREATING DAY-DRUG patient_data CROSS TABLE''' calendar_query = """ select date, year, month, "week-of-year", "day-of-week" from "{schema}".calendar """.format(schema=schema) calendar = db.get_df(calendar_query) calendar.columns = [c.replace('-', '_') for c in calendar.columns] calendar['date'] = pd.to_datetime(calendar['date']) patient_data['sales_date'] = pd.to_datetime(patient_data['sales_date']) print('Distinct drug count', patient_data.drug_id.nunique()) print('No of days', patient_data.sales_date.nunique()) cal_patient_weekly = calendar.loc[ (pd.to_datetime(calendar['date']) >= patient_data.sales_date.min()) & (calendar['date'] <= patient_data.sales_date.max())] # removing the first week if it has less than 7 days min_year = cal_patient_weekly.year.min() x = cal_patient_weekly.loc[(cal_patient_weekly.year == min_year)] min_month = x.month.min() x = x.loc[(x.month == min_month)] min_week = x.week_of_year.min() if x.loc[x.week_of_year == min_week].shape[0] < 7: print('removing dates for', min_year, min_month, min_week) cal_patient_weekly = cal_patient_weekly.loc[ ~((cal_patient_weekly.week_of_year == min_week) & (cal_patient_weekly.year == min_year))] # removing the latest week if it has less than 7 days max_year = cal_patient_weekly.year.max() x = cal_patient_weekly.loc[(cal_patient_weekly.year == max_year)] max_month = x.month.max() x = x.loc[(x.month == max_month)] max_week = x.week_of_year.max() if x.loc[x.week_of_year == max_week].shape[0] < 7: print('removing dates for', max_year, max_month, max_week) cal_patient_weekly = cal_patient_weekly.loc[ ~((cal_patient_weekly.week_of_year == max_week) & (cal_patient_weekly.year == max_year))] # adding week begin date cal_patient_weekly['week_begin_dt'] = cal_patient_weekly.apply( lambda x: x['date'] - datetime.timedelta(x['day_of_week']), axis=1) drugs = patient_data[['drug_id']].drop_duplicates() drugs['key'] = 1 cal_patient_weekly['key'] = 1 cal_drug_w = drugs.merge(cal_patient_weekly, on='key', how='inner') cal_drug_w.drop('key', axis=1, inplace=True) cal_drug_patient_w = cal_drug_w.merge( patient_data, left_on=['drug_id', 'date'], right_on=['drug_id', 'sales_date'], how='left') cal_drug_patient_w.drop('sales_date', axis=1, inplace=True) cal_drug_patient_w.patient_count.fillna(0, inplace=True) # assertion test to check no of drugs * no of days equals total entries drug_count = cal_drug_patient_w.drug_id.nunique() day_count = cal_drug_patient_w.date.nunique() print('Distinct no of drugs', drug_count) print('Distinct dates', day_count) print('DF shape', cal_drug_patient_w.shape[0]) # assert drug_count*day_count == cal_drug_sales.shape[0] # checking for history available and store opening date first_bill_query = """ select min(date("created-at")) as bill_date from "{schema}"."bills-1" where "store-id" in {0} """.format(store_id_list, schema=schema) first_bill_date = db.get_df(first_bill_query).values[0][0] print(first_bill_date) cal_drug_patient_w = cal_drug_patient_w.query( 'date >= "{}"'.format(first_bill_date)) cal_drug_patient_weekly = cal_drug_patient_w.groupby( ['drug_id', 'week_begin_dt', 'week_of_year'] )['patient_count'].sum().reset_index() cal_drug_patient_weekly.rename( columns={'week_begin_dt': 'date'}, inplace=True) return cal_drug_patient_weekly
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/non_ipc/data_prep/patient_data.py
patient_data.py
import datetime from zeno_etl_libs.utils.ipc.data_prep import forecast_data_prep from zeno_etl_libs.utils.non_ipc.data_prep.patient_data import forecast_patient_data from zeno_etl_libs.utils.ipc.item_classification import abc_xyz_classification def non_ipc_data_prep(store_id_list, reset_date, type_list, db, schema, agg_week_cnt=4, logger=None): # getting demand data cal_drug_sales_weekly, _, _ = forecast_data_prep( store_id_list, type_list, reset_date, db, schema) # getting patient data cal_drug_patient_weekly = forecast_patient_data( store_id_list, type_list, reset_date, db, schema) # merging patient and demand data cal_drug_data_weekly = cal_drug_sales_weekly.merge(cal_drug_patient_weekly) '''ADDITIONAL CHECKS''' n = 12 prev_n_week_dt = ( cal_drug_data_weekly['date'].max() - datetime.timedelta(n*7)) logger.info('Previous week date for last 12 weeks' + str(prev_n_week_dt)) prev_n_week_sales = cal_drug_data_weekly[ cal_drug_data_weekly['date'] > prev_n_week_dt].\ groupby('drug_id')['net_sales_quantity'].sum().reset_index() prev_no_sales_drug_weekly = prev_n_week_sales.loc[ prev_n_week_sales['net_sales_quantity'] <= 0, 'drug_id'].values prev_sales_drug_weekly = prev_n_week_sales.loc[ prev_n_week_sales['net_sales_quantity'] > 0, 'drug_id'].values logger.info('No net sales of drugs within last 12 weeks' + str(len(prev_no_sales_drug_weekly))) logger.info('Sales of drugs within last 12 weeks' + str(len(prev_sales_drug_weekly))) # getting drug id with atleast one sale in last 12 weeks cal_drug_data_weekly = cal_drug_data_weekly[ cal_drug_data_weekly.drug_id.isin(prev_sales_drug_weekly)] '''4 WEEKS AGGREGATION''' cal_drug_data_weekly['week_number'] = cal_drug_data_weekly.\ groupby('drug_id')['date'].rank(ascending=False) - 1 cal_drug_data_weekly['agg_wk_count'] = ( cal_drug_data_weekly['week_number']/agg_week_cnt).astype(int) + 1 agg_wk_ct_lt_4 = cal_drug_data_weekly.\ groupby('agg_wk_count')['week_number'].nunique().reset_index() agg_wk_ct_lt_4 = agg_wk_ct_lt_4.query('week_number < 4')['agg_wk_count'] # removing incomplete 4-week period cal_drug_data_weekly = cal_drug_data_weekly[ ~cal_drug_data_weekly['agg_wk_count'].isin(agg_wk_ct_lt_4)] cal_drug_data_agg_weekly = cal_drug_data_weekly.\ groupby(['drug_id', 'agg_wk_count']).\ agg({'date': 'min', 'net_sales_quantity': 'sum', 'patient_count': 'sum' }).\ reset_index() cal_drug_data_agg_weekly.sort_values(['drug_id', 'date'], inplace=True) '''SKU CLASSIFICATIONS''' # Taking latest 3 4-week period for classification bucket_period = 3 agg_wk_classification = cal_drug_data_agg_weekly.loc[ cal_drug_data_agg_weekly['agg_wk_count'] <= bucket_period, 'date' ].dt.date.unique() cal_drug_data_classification = cal_drug_data_agg_weekly[ cal_drug_data_agg_weekly['date'].isin(agg_wk_classification)] cal_drug_data_classification.rename( columns={'date': 'month_begin_dt'}, inplace=True) drug_class, bucket_sales = abc_xyz_classification( cal_drug_data_classification) return cal_drug_data_agg_weekly, cal_drug_data_weekly, drug_class,\ bucket_sales
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/non_ipc/data_prep/non_ipc_data_prep.py
non_ipc_data_prep.py
import numpy as np import pandas as pd from functools import reduce from scipy.optimize import minimize, LinearConstraint from zeno_etl_libs.utils.warehouse.forecast.errors import ape_calc, ae_calc,\ train_error def optimise_ab_mae(weights, naive_fcst, ma_fcst, ets_fcst, actual): fcst = weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst return np.sum(abs((fcst - actual)))/len(naive_fcst) def optimise_ab_sse(weights, naive_fcst, ma_fcst, ets_fcst, actual): fcst = weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst return np.sum((fcst - actual)**2) def optimise_c_mae( weights, naive_fcst, ma_fcst, ets_fcst, croston_fcst, actual): fcst = ( weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst + weights[3]*croston_fcst) return np.sum(abs((fcst - actual)))/len(naive_fcst) def optimise_c_sse( weights, naive_fcst, ma_fcst, ets_fcst, croston_fcst, actual): fcst = ( weights[0]*naive_fcst + weights[1]*ma_fcst + weights[2]*ets_fcst + weights[3]*croston_fcst) return np.sum((fcst - actual)**2) def ensemble_minimisation( train, error, predict, kind='mae', logger=None): # mergring train dfs for weighted average of mdels train = train.copy() train_cols = ['drug_id', 'month_begin_dt', 'year', 'month', 'actual', 'fcst', 'std', 'ape', 'ae'] train = [x[train_cols] for x in train] all_train = reduce( lambda left, right: pd.merge( left, right, on=['drug_id', 'month_begin_dt', 'year', 'month'], how='outer'), train) all_train.columns = [ 'drug_id', 'month_begin_dt', 'year', 'month', 'actual', 'fcst_naive', 'std_naive', 'ape_naive', 'ae_naive', 'actual_ma', 'fcst_ma', 'std_ma', 'ape_ma', 'ae_ma', 'actual_ets', 'fcst_ets', 'std_ets', 'ape_ets', 'ae_ets', 'actual_croston', 'fcst_croston', 'std_croston', 'ape_croston', 'ae_croston'] all_train.drop( ['actual_ma', 'actual_ets', 'actual_croston'], axis=1, inplace=True) # mergring predict dfs for forecast predict = predict.copy() predict_cols = ['drug_id', 'month_begin_dt', 'year', 'month', 'fcst', 'std'] predict = [x[predict_cols] for x in predict] all_predict = reduce( lambda left, right: pd.merge( left, right, on=['drug_id', 'month_begin_dt', 'year', 'month'], how='outer'), predict) all_predict.columns = [ 'drug_id', 'month_begin_dt', 'year', 'month', 'fcst_naive', 'std_naive', 'fcst_ma', 'std_ma', 'fcst_ets', 'std_ets', 'fcst_croston', 'std_croston'] '''BASE MODELS WEIGHT OPTIMISATION - A/B''' all_train_ab = all_train[all_train['ape_croston'].isna()] all_predict_ab = all_predict[all_predict['fcst_croston'].isna()] # individial forecast and actuals naive_fcst_ab = all_train_ab['fcst_naive'].values ma_fcst_ab = all_train_ab['fcst_ma'].values ets_fcst_ab = all_train_ab['fcst_ets'].values actual_ab = all_train_ab['actual'].values # initialisation weights_ab = np.array([1/3, 1/3, 1/3]) bounds_ab = ((0, 1), (0, 1), (0, 1)) # constrains on weights: sum(wi) = 1 constrain_ab = LinearConstraint([1, 1, 1], [1], [1]) # minimising errors for A/B buckets if kind == 'mae': results = minimize( optimise_ab_mae, x0=weights_ab, bounds=bounds_ab, constraints=constrain_ab, args=(naive_fcst_ab, ma_fcst_ab, ets_fcst_ab, actual_ab)) final_weights_ab = results.x elif kind == 'sse': results = minimize( optimise_ab_sse, x0=weights_ab, bounds=bounds_ab, constraints=constrain_ab, args=(naive_fcst_ab, ma_fcst_ab, ets_fcst_ab, actual_ab)) final_weights_ab = results.x else: final_weights_ab = weights_ab # creating final train, error and predict dataset all_train_ab['fcst'] = np.round( final_weights_ab[0]*naive_fcst_ab + final_weights_ab[1]*ma_fcst_ab + final_weights_ab[2]*ets_fcst_ab) all_train_ab['std'] = np.round(np.sqrt( (final_weights_ab[0]*naive_fcst_ab)**2 + (final_weights_ab[1]*ma_fcst_ab)**2 + (final_weights_ab[2]*ets_fcst_ab)**2)) all_train_ab['hyper_params'] = str(tuple(final_weights_ab)) all_train_ab['model'] = kind all_predict_ab['fcst'] = np.round( final_weights_ab[0]*all_predict_ab['fcst_naive'] + final_weights_ab[1]*all_predict_ab['fcst_ma'] + final_weights_ab[2]*all_predict_ab['fcst_ets']) all_predict_ab['std'] = np.round(np.sqrt( (final_weights_ab[0]*all_predict_ab['fcst_naive'])**2 + (final_weights_ab[1]*all_predict_ab['fcst_ma'])**2 + (final_weights_ab[2]*all_predict_ab['fcst_ets'])**2)) all_predict_ab['model'] = kind '''BASE MODELS WEIGHT OPTIMISATION - C''' all_train_c = all_train[~all_train['ape_croston'].isna()] all_predict_c = all_predict[~all_predict['fcst_croston'].isna()] # individial forecast and actuals naive_fcst_c = all_train_c['fcst_naive'].values ma_fcst_c = all_train_c['fcst_ma'].values ets_fcst_c = all_train_c['fcst_ets'].values croston_fcst_c = all_train_c['fcst_croston'].values actual_c = all_train_c['actual'].values # initialisation weights_c = np.array([1/4, 1/4, 1/4, 1/4]) bounds_c = ((0, 1), (0, 1), (0, 1), (0, 1)) # constrains on weights: sum(wi) = 1 constrain_c = LinearConstraint([1, 1, 1, 1], [1], [1]) # minimising errors for C buckets if kind == 'mae': results = minimize( optimise_c_mae, x0=weights_c, bounds=bounds_c, constraints=constrain_c, args=(naive_fcst_c, ma_fcst_c, ets_fcst_c, croston_fcst_c, actual_c)) final_weights_c = results.x elif kind == 'sse': results = minimize( optimise_c_sse, x0=weights_c, bounds=bounds_c, constraints=constrain_c, args=(naive_fcst_c, ma_fcst_c, ets_fcst_c, croston_fcst_c, actual_c)) final_weights_c = results.x else: final_weights_c = weights_c # creating final train, error and predict dataset all_train_c['fcst'] = np.round( final_weights_c[0]*naive_fcst_c + final_weights_c[1]*ma_fcst_c + final_weights_c[2]*ets_fcst_c + final_weights_c[3]*croston_fcst_c) all_train_c['std'] = np.round(np.sqrt( (final_weights_c[0]*naive_fcst_c)**2 + (final_weights_c[1]*ma_fcst_c)**2 + (final_weights_c[2]*ets_fcst_c)**2 + (final_weights_c[3]*croston_fcst_c)**2)) all_train_c['hyper_params'] = str(tuple(final_weights_c)) all_train_c['model'] = kind all_predict_c['fcst'] = np.round( final_weights_c[0]*all_predict_c['fcst_naive'] + final_weights_c[1]*all_predict_c['fcst_ma'] + final_weights_c[2]*all_predict_c['fcst_ets'] + final_weights_c[3]*all_predict_c['fcst_croston']) all_predict_c['std'] = np.round(np.sqrt( (final_weights_c[0]*all_predict_c['fcst_naive'])**2 + (final_weights_c[1]*all_predict_c['fcst_ma'])**2 + (final_weights_c[2]*all_predict_c['fcst_ets'])**2 + (final_weights_c[3]*all_predict_c['fcst_croston'])**2)) all_predict_c['model'] = kind '''COMPILING TRAINING AND FORECAST ''' # train ensemble_train = pd.concat([all_train_ab, all_train_c], axis=0) ensemble_train['ape'] = ensemble_train.apply( lambda row: ape_calc(row['actual'], row['fcst']), axis=1) ensemble_train['ae'] = ensemble_train.apply( lambda row: ae_calc(row['actual'], row['fcst']), axis=1) cols = train_cols + ['hyper_params', 'model'] ensemble_train = ensemble_train[cols] # train error ensemble_train_error = ensemble_train.groupby('drug_id').\ apply(train_error).\ reset_index(drop=True) ensemble_train_error['model'] = kind # predict ensemble_predict = pd.concat([all_predict_ab, all_predict_c], axis=0) cols = predict_cols + ['model'] ensemble_predict = ensemble_predict[cols] return ensemble_train, ensemble_train_error, ensemble_predict
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/non_ipc/forecast/ensemble_minimisation.py
ensemble_minimisation.py
import numpy as np from zeno_etl_libs.utils.warehouse.forecast.helper_functions import make_future_df from zeno_etl_libs.utils.warehouse.forecast.errors import ape_calc, ae_calc def croston_tsb(ts, horizon=1, alpha=0.5, beta=0.7): # Transform the input into a numpy array d = np.array(ts) # Historical period length cols = len(d) # Append np.nan into the demand array to cover future periods d = np.append(d, [np.nan]*horizon) # level (a), probability(p) and forecast (f) a, p, f = np.full((3, cols+horizon), np.nan) # Initialization first_occurence = np.argmax(d[:cols] > 0) a[0] = d[first_occurence] p[0] = 1/(1 + first_occurence) f[0] = p[0]*a[0] # Create all the t forecasts for t in range(0, cols): if d[t] > 0: a[t+1] = alpha*d[t] + (1-alpha)*a[t] p[t+1] = beta*(1) + (1-beta)*p[t] else: a[t+1] = a[t] p[t+1] = (1-beta)*p[t] f[t+1] = p[t+1]*a[t+1] # creating forecast for t in range(cols, cols+horizon-1): if f[t] > 1: a[t+1] = alpha*f[t] + (1-alpha)*a[t] p[t+1] = beta*(1) + (1-beta)*p[t] else: a[t+1] = a[t] p[t+1] = (1-beta)*p[t] f[t+1] = p[t+1]*a[t+1] # Future Forecast # a[cols+1:cols+horizon] = a[cols] # p[cols+1:cols+horizon] = p[cols] # f[cols+1:cols+horizon] = f[cols] # df = pd.DataFrame.from_dict( # {"Demand":d,"Forecast":f,"Period":p,"Level":a,"Error":d-f}) return np.round(f), d-f def croston_train_weekly(df, out_of_sample=4, horizon=4, params=None): if params is not None: alpha = params[0] beta = params[1] else: alpha = 0.5 beta = 0.7 train = df.copy() train.drop(train.tail(out_of_sample).index, inplace=True) # dividing the series into train and validation set input_series = train['net_sales_quantity'].values validation = df['net_sales_quantity'].tail(out_of_sample).values train_forecast, train_error = croston_tsb( input_series, horizon, alpha, beta) fcst = train_forecast[-out_of_sample:] error = train_forecast[:-out_of_sample] std = np.sqrt((np.std(input_series)**2 + sum(np.square(error))/len(error))) predict_df = make_future_df(train[:-out_of_sample+1], 1) predict_df['fcst'] = sum(fcst) predict_df['std'] = np.round(std*np.sqrt(horizon)) predict_df['actual'] = sum(validation) predict_df['ape'] = [ ape_calc(actual, forecast) for actual, forecast in zip( predict_df['actual'], predict_df['fcst'])] predict_df['ae'] = [ ae_calc(actual, forecast) for actual, forecast in zip( predict_df['actual'], predict_df['fcst'])] predict_df['hyper_params'] = str(params) return predict_df def croston_predict_weekly(df, out_of_sample=4, horizon=4, params=None): if params is not None: alpha = params[0] beta = params[1] else: alpha = 0.5 beta = 0.7 train = df.copy() # dividing the series into train and validation set input_series = train['net_sales_quantity'].values train_forecast, train_error = croston_tsb( input_series, horizon, alpha, beta) fcst = train_forecast[-out_of_sample:] error = train_forecast[:-out_of_sample] std = np.sqrt((np.std(input_series)**2 + sum(np.square(error))/len(error))) predict_df = make_future_df(train[:-out_of_sample+1], 1) predict_df['fcst'] = sum(fcst) predict_df['std'] = np.round(std*np.sqrt(horizon)) return predict_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/non_ipc/forecast/croston.py
croston.py
import time import pandas as pd from itertools import product from zeno_etl_libs.utils.warehouse.forecast.moving_average import ma_train_monthly,\ ma_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.ets import ets_train_monthly,\ ets_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.errors import train_error from zeno_etl_libs.utils.warehouse.forecast.helper_functions import apply_parallel_ets from zeno_etl_libs.utils.non_ipc.forecast.\ helper_functions import non_ipc_error_report, apply_parallel_croston from zeno_etl_libs.utils.non_ipc.forecast.croston import croston_train_weekly,\ croston_predict_weekly from zeno_etl_libs.utils.non_ipc.forecast.\ ensemble_champion import ensemble_champion from zeno_etl_libs.utils.non_ipc.forecast.\ ensemble_minimisation import ensemble_minimisation def non_ipc_forecast( drug_sales_monthly, drug_data_weekly, drug_class, out_of_sample, horizon, train_flag, logger=None, kind='mae'): if train_flag: '''BASE FORECASTING - NAIVE''' logger.info('STARTING NAIVE TRAINING AND FORECAST') # making copy for data naive_train_data = drug_sales_monthly.copy() naive_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) k = 1 # for naive using the ma train function # train start = time.time() naive_train = naive_train_data.groupby('drug_id').apply( ma_train_monthly, k, out_of_sample).\ reset_index(drop=True) end = time.time() logger.info('Naive Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() naive_train_error = naive_train.groupby('drug_id').apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('Naive Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() naive_predict = naive_train_data.groupby('drug_id').\ apply(ma_predict_monthly, k, out_of_sample).reset_index(drop=True) end = time.time() logger.info('Naive Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Naive error reports # _ = non_ipc_error_report(naive_train_error, naive_train, drug_class) # model informations naive_train['hyper_params'] = '' naive_train['model'] = 'naive' naive_train_error['model'] = 'naive' naive_predict['model'] = 'naive' '''BASE FORECASTING - MOVING AVERAGE''' logger.info('STARTING MOVING AVERAGE TRAINING AND FORECAST') ma_train_data = drug_sales_monthly.copy() ma_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) k = 3 # for MA3 # train start = time.time() ma_train = ma_train_data.groupby('drug_id').apply( ma_train_monthly, k, out_of_sample).\ reset_index(drop=True) end = time.time() logger.info('MA Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() ma_train_error = ma_train.groupby('drug_id').apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('MA Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() ma_predict = ma_train_data.groupby('drug_id').\ apply(ma_predict_monthly, k, out_of_sample).reset_index(drop=True) end = time.time() logger.info('MA Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Moving average error reports # _ = non_ipc_error_report(ma_train_error, ma_train, drug_class) # model informations ma_train['hyper_params'] = '' ma_train['model'] = 'ma' ma_train_error['model'] = 'ma' ma_predict['model'] = 'ma' '''BASE FORECASTING - EXPONENTIAL SMOOTHING''' logger.info('STARTING ESM TRAINING AND FORECAST') # model parameters # holts winter implementation - single, double and triple exponential trend = ['additive', None] seasonal = ['additive', None] damped = [True, False] seasonal_periods = [12] use_boxcox = [True, False] ets_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) ets_train_data = drug_sales_monthly.copy() ets_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) # train start = time.time() ets_train = apply_parallel_ets( ets_train_data.groupby('drug_id'), ets_train_monthly, ets_params, horizon, out_of_sample).reset_index(drop=True) end = time.time() logger.info('ETS Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() ets_train_error = ets_train.groupby('drug_id').apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('ETS Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() ets_predict = apply_parallel_ets( ets_train_data.groupby('drug_id'), ets_predict_monthly, ets_train, horizon, out_of_sample).reset_index(drop=True) end = time.time() logger.info('ETS Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Exponential smoothing error reports # _ = non_ipc_error_report(ets_train_error, ets_train, drug_class) # model information ets_train['model'] = 'ets' ets_train_error['model'] = 'ets' ets_predict['model'] = 'ets' '''BASE FORECASTING - CROSTON FOR C BUCKET''' logger.info('STARTING CROSTON TRAINING AND FORECAST') # getting drug list for C bucket c_bucket_drug_list = list( drug_class[drug_class['bucket_abc'] == 'C']['drug_id']) logger.info('No of drugs in Bucket C for Croston' + str(len(c_bucket_drug_list))) croston_train_data = drug_data_weekly.copy() croston_train_data = croston_train_data[ croston_train_data['drug_id'].isin(c_bucket_drug_list)] croston_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) # Runtime parameters croston_out_of_sample = 4 croston_horizon = 4 croston_params = (0.5, 0.5) # train start = time.time() croston_train = apply_parallel_croston( croston_train_data.groupby('drug_id'), croston_train_weekly, croston_horizon, croston_out_of_sample, croston_params).\ reset_index(drop=True) end = time.time() logger.info('Croston Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() croston_train_error = croston_train.groupby('drug_id').\ apply(train_error).\ reset_index(drop=True) end = time.time() logger.info('Croston Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() croston_predict = apply_parallel_croston( croston_train_data.groupby('drug_id'), croston_predict_weekly, croston_horizon, croston_out_of_sample, croston_params).\ reset_index(drop=True) end = time.time() logger.info('Croston Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # Croston error reports # _ = non_ipc_error_report(croston_train_error, croston_train, drug_class) # model information croston_train['model'] = 'croston' croston_train_error['model'] = 'croston' croston_predict['model'] = 'croston' '''BASE MODELS: COMBINING''' train = [naive_train, ma_train, ets_train, croston_train] error = [ naive_train_error, ma_train_error, ets_train_error, croston_train_error] predict = [naive_predict, ma_predict, ets_predict, croston_predict] base_train = pd.concat(train, axis=0) base_train['final_fcst'] = 'N' base_train_error = pd.concat(error, axis=0) base_train_error['final_fcst'] = 'N' base_predict = pd.concat(predict, axis=0) base_predict['final_fcst'] = 'N' '''ENSEMBLE FORECASTING - CHAMPION MODEL''' logger.info('STARTING ENSEMBLE CHAMPION MODEL SELECTION') champion_train, champion_train_error, champion_predict = ensemble_champion( train, error, predict, logger) champion_train['model'] = 'champion_' + champion_train['model'] champion_train_error['model'] = 'champion_' + champion_train_error['model'] champion_predict['model'] = 'champion_' + champion_predict['model'] champion_train['final_fcst'] = 'Y' champion_train_error['final_fcst'] = 'Y' champion_predict['final_fcst'] = 'Y' # Champion model ensmeble training errors # _ = non_ipc_error_report(champion_train_error, champion_train, drug_class) '''ENSEMBLE FORECASTING - SSE MINIMISATION''' optimised_train, optimised_train_error,\ optimised_predict = ensemble_minimisation( train, error, predict, kind, logger) optimised_train['final_fcst'] = 'N' optimised_train_error['final_fcst'] = 'N' optimised_predict['final_fcst'] = 'N' # Optimised errors model ensmeble training errors # _ = non_ipc_error_report( # optimised_train_error, optimised_train, drug_class) '''BASE MODELS: COMBINING''' ensemble_train = [champion_train, optimised_train] ensemble_error = [champion_train_error, optimised_train_error] ensemble_predict = [champion_predict, optimised_predict] ensemble_train = pd.concat(ensemble_train, axis=0) ensemble_error = pd.concat(ensemble_error, axis=0) ensemble_predict = pd.concat(ensemble_predict, axis=0) else: '''BASE FORECASTING - SIMPLE EXPONENTIAL SMOOTHING''' logger.info('STARTING SES FORECAST') # model parameters # holts winter implementation - single exponential trend = [None] seasonal = [None] damped = [False] seasonal_periods = [12] use_boxcox = [False] ses_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) ses_train_data = drug_sales_monthly.copy() ses_train_data.rename(columns={'date': 'month_begin_dt'}, inplace=True) ses_train_data['hyper_params'] = str(ses_params[0]) # predict start = time.time() ses_predict = apply_parallel_ets( ses_train_data.groupby('drug_id'), ets_predict_monthly, ses_train_data, horizon, out_of_sample).reset_index(drop=True) end = time.time() logger.info('ETS Fcst: Run time ' + str(round(end-start, 2)) + 'secs') # model information ses_predict['model'] = 'ses' # creating final return df base_train = pd.DataFrame() base_train_error = pd.DataFrame() base_predict = pd.DataFrame() ensemble_train = pd.DataFrame() ensemble_error = pd.DataFrame() ensemble_predict = ses_predict ensemble_predict['final_fcst'] = 'Y' return base_train, base_train_error,\ base_predict, ensemble_train, ensemble_error, ensemble_predict
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/non_ipc/forecast/forecast_main.py
forecast_main.py
import pandas as pd import numpy as np from functools import reduce def ensemble_champion(train, error, predict, logger=None): # mergring error dfs for best model selection all_train_error = reduce( lambda left, right: pd.merge(left, right, on='drug_id', how='outer'), error) all_train_error.columns = [ 'drug_id', 'mae_naive', 'mape_naive', 'model_naive', 'mae_ma', 'mape_ma', 'model_ma', 'mae_ets', 'mape_ets', 'model_ets', 'mae_croston', 'mape_croston', 'model_croston'] # Best model selection all_train_error['mape_best'] = all_train_error[[ 'mape_naive', 'mape_ma', 'mape_ets', 'mape_croston']].min(axis=1) all_train_error['model_best'] = np.select([ all_train_error['mape_best'] == all_train_error['mape_ets'], all_train_error['mape_best'] == all_train_error['mape_ma'], all_train_error['mape_best'] == all_train_error['mape_croston'], all_train_error['mape_best'] == all_train_error['mape_naive']], ['ets', 'ma', 'croston', 'naive'] ) # Different models concatenation naive_drug_best = all_train_error[all_train_error['model_best'] == 'naive'] ma_drug_best = all_train_error[all_train_error['model_best'] == 'ma'] ets_drug_best = all_train_error[all_train_error['model_best'] == 'ets'] croston_drug_best = all_train_error[ all_train_error['model_best'] == 'croston'] print( len(all_train_error), len(naive_drug_best), len(ma_drug_best), len(ets_drug_best), len(croston_drug_best)) logger.info('Total drugs: ' + str(len(all_train_error))) logger.info('Naive drugs: ' + str(len(naive_drug_best))) logger.info('MA drugs: ' + str(len(ma_drug_best))) logger.info('ETS drugs: ' + str(len(ets_drug_best))) logger.info('Croston drugs: ' + str(len(croston_drug_best))) # creating ensemble dfs naive_train_best = train[0][train[0]['drug_id'].isin( naive_drug_best['drug_id'])] naive_train_error_best = error[0][error[0]['drug_id'].isin( naive_drug_best['drug_id'])] naive_predict_best = predict[0][predict[0]['drug_id'].isin( naive_drug_best['drug_id'])] ma_train_best = train[1][train[1]['drug_id'].isin( ma_drug_best['drug_id'])] ma_train_error_best = error[1][error[1]['drug_id'].isin( ma_drug_best['drug_id'])] ma_predict_best = predict[1][predict[1]['drug_id'].isin( ma_drug_best['drug_id'])] ets_train_best = train[2][train[2]['drug_id'].isin( ets_drug_best['drug_id'])] ets_train_error_best = error[2][error[2]['drug_id'].isin( ets_drug_best['drug_id'])] ets_predict_best = predict[2][predict[2]['drug_id'].isin( ets_drug_best['drug_id'])] croston_train_best = train[3][train[3]['drug_id'].isin( croston_drug_best['drug_id'])] croston_train_error_best = error[3][error[3]['drug_id'].isin( croston_drug_best['drug_id'])] croston_predict_best = predict[3][predict[3]['drug_id'].isin( croston_drug_best['drug_id'])] ensemble_train = pd.concat( [naive_train_best, ma_train_best, ets_train_best, croston_train_best], axis=0) ensemble_train_error = pd.concat( [naive_train_error_best, ma_train_error_best, ets_train_error_best, croston_train_error_best], axis=0) ensemble_predict = pd.concat( [naive_predict_best, ma_predict_best, ets_predict_best, croston_predict_best], axis=0) return ensemble_train, ensemble_train_error, ensemble_predict
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/non_ipc/forecast/ensemble_champion.py
ensemble_champion.py
import numpy as np import pandas as pd from calendar import monthrange from dateutil.relativedelta import relativedelta from datetime import datetime from dateutil.tz import gettz from zeno_etl_libs.db.db import MSSql from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.utils.warehouse.data_prep.wh_data_prep import get_launch_stock_per_store def lead_time(): mssql = MSSql(connect_via_tunnel=False) cnxn = mssql.open_connection() cursor = cnxn.cursor() # Reading lead time data # Last 90 days on purchase date # excluding TEPL distributor # Diff between PO created date and gatepass date sql_bhw = ''' SELECT * FROM ( SELECT 199 as "wh_id", i.Barcode as "drug_id" , i.name as "drug_name", a.Altercode as "distributor_id", a.Name as "distributor_name", a2.vdt as "gate-pass-date", --sp.Vdt as "purchase_date", --sp.RefVdt as "po_opend_date", s.PBillDt as "po_created_date", s.UpdatedOn as "purchase_confirm_date", sp.Qty as "quantity" , DATEDIFF(day, s.PBillDt , a2.vdt) as "lead_time" FROM SalePurchase2 sp left join Item i on sp.Itemc = i.code left join Salepurchase1 s on sp.Vtype = s.Vtyp and sp.Vno = s.Vno and sp.Vdt = s.Vdt left join Acknow a2 on sp.Pbillno =a2.Pbillno left join acm a on sp.Acno = a.code Where sp.Vtype = 'PB' and sp.Vdt >= cast(DATEADD(day, -91, GETDATE()) as date) and sp.Vdt <= cast(DATEADD(day, -1, GETDATE()) as date) and i.Compname NOT IN ('GOODAID', 'PURE & C') and i.Barcode NOT LIKE '%[^0-9]%' and isnumeric(i.Barcode) = 1 and a.code NOT IN (59468, 59489)) a Where (a."lead_time">0 and a."lead_time"<7); ''' data_bhw = pd.read_sql(sql_bhw, cnxn) data_bhw[['drug_id']] \ = data_bhw[['drug_id']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') #TEPL Data mssql_tepl = MSSql(connect_via_tunnel=False, db='Esdata_TEPL') cnxn = mssql_tepl.open_connection() cursor = cnxn.cursor() sql_tepl = ''' SELECT * FROM ( SELECT 342 as "wh_id", i.Barcode as "drug_id" , i.name as "drug_name", a.Altercode as "distributor_id", a.Name as "distributor_name", a2.vdt as "gate-pass-date", --sp.Vdt as "purchase_date", --sp.RefVdt as "po_opend_date", s.PBillDt as "po_created_date", s.UpdatedOn as "purchase_confirm_date", sp.Qty as "quantity" , DATEDIFF(day, s.PBillDt , a2.vdt) as "lead_time" FROM SalePurchase2 sp left join Item i on sp.Itemc = i.code left join Salepurchase1 s on sp.Vtype = s.Vtyp and sp.Vno = s.Vno and sp.Vdt = s.Vdt left join Acknow a2 on sp.Pbillno =a2.Pbillno left join acm a on sp.Acno = a.code Where sp.Vtype = 'PB' and sp.Vdt >= cast(DATEADD(day, -91, GETDATE()) as date) and sp.Vdt <= cast(DATEADD(day, -1, GETDATE()) as date) and i.Compname NOT IN ('GOODAID', 'PURE & C') and i.Barcode NOT LIKE '%[^0-9]%' and isnumeric(i.Barcode) = 1) a Where (a."lead_time">0 and a."lead_time"<7); ''' data_tepl = pd.read_sql(sql_tepl, cnxn) data_tepl[['drug_id']] \ = data_tepl[['drug_id']] \ .apply(pd.to_numeric, errors='ignore').astype('Int64') data=pd.concat([data_bhw,data_tepl],sort=False,ignore_index=False) run_date = str(datetime.now(tz=gettz('Asia/Kolkata'))) lead_time_data = 'warehouse_lead_time/lead_time_data_dump_{}.csv'.format(run_date) s3 = S3() s3.save_df_to_s3(df=data, file_name=lead_time_data) data=data.drop(["wh_id"],axis=1) # Reading Preferred distributor from S3 s3 = S3() preferred_distributor = pd.read_csv(s3.download_file_from_s3(file_name="warehouse/preferred_distributors.csv")) df_new = pd.merge(data, preferred_distributor, how='left', on='drug_id') df_new[["lead_time", "distributor_1"]] = df_new[["lead_time", "distributor_1"]].fillna(0) df_new[["distributor_1"]] = df_new[["distributor_1"]].astype('int') # function for weighted mean def w_avg(df, values, weights): d = df[values] w = df[weights] return (d * w).sum() / w.sum() df_new_1 = df_new.groupby(["drug_id", "distributor_id"]).apply(w_avg, 'lead_time', 'quantity').rename( 'weighted_lead_time').reset_index() df_std = df_new.groupby(["drug_id", "distributor_id"])[["lead_time"]].std().reset_index() df_std.rename(columns={'lead_time': 'lead_time_std'}, inplace=True) df_drug_distributor = pd.merge(df_new_1, df_std, how='left', on=['drug_id', 'distributor_id']) df_drug_distributor = pd.merge(df_drug_distributor, preferred_distributor, how='left', on=["drug_id"]) df_drug_distributor[["distributor_1", "lead_time_std"]] = df_drug_distributor[ ["distributor_1", "lead_time_std"]].fillna(0) df_drug_distributor[["distributor_1"]] = df_drug_distributor[["distributor_1"]].astype('int') # lead time mean Capping 7 days. df_drug_distributor['weighted_lead_time'] = np.where(df_drug_distributor['weighted_lead_time'] > 7, 7, df_drug_distributor['weighted_lead_time']) # minimum lead time 2 days df_drug_distributor['weighted_lead_time'] = np.where(df_drug_distributor['weighted_lead_time'] < 2, 2, df_drug_distributor['weighted_lead_time']) # Lead time Std capping of 2 days df_drug_distributor['lead_time_std'] = np.where(df_drug_distributor['lead_time_std'] > 2, 2, df_drug_distributor['lead_time_std']) # Minimum Lead time std is 1 day df_drug_distributor['lead_time_std'] = np.where(df_drug_distributor['lead_time_std'] < 1, 1, df_drug_distributor['lead_time_std']) df_drug_distributor[["distributor_id"]] = df_drug_distributor[["distributor_id"]].astype('int') df_drug_distributor['same_distributor'] = np.where( df_drug_distributor['distributor_id'] == df_drug_distributor["distributor_1"], True, False) preferred_distributor_drug = df_drug_distributor[df_drug_distributor["same_distributor"] == True] other_distributor_drug = df_drug_distributor[df_drug_distributor["same_distributor"] == False] # Drugs not in preferred distributor drugs_not_in_preferred_distributor = df_drug_distributor[ ~df_drug_distributor['drug_id'].isin(preferred_distributor_drug['drug_id'])] drugs_not_in_preferred_distributor_mean = drugs_not_in_preferred_distributor.groupby(["drug_id"])[ ["weighted_lead_time"]].mean().reset_index() drugs_not_in_preferred_distributor_std = drugs_not_in_preferred_distributor.groupby(["drug_id"])[ ["weighted_lead_time"]].std().reset_index() drugs_not_in_preferred_distributor_1 = pd.merge(drugs_not_in_preferred_distributor_mean, drugs_not_in_preferred_distributor_std, how='left', on='drug_id') drugs_not_in_preferred_distributor_1 = drugs_not_in_preferred_distributor_1.fillna(0) # Capping drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] > 7, 7, drugs_not_in_preferred_distributor_1['weighted_lead_time_x']) drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_x'] < 2, 2, drugs_not_in_preferred_distributor_1['weighted_lead_time_x']) drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] > 2, 2, drugs_not_in_preferred_distributor_1['weighted_lead_time_y']) drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] = np.where( drugs_not_in_preferred_distributor_1['weighted_lead_time_y'] < 1, 1, drugs_not_in_preferred_distributor_1['weighted_lead_time_y']) drugs_not_in_preferred_distributor_1.rename( columns={'weighted_lead_time_x': 'weighted_lead_time', 'weighted_lead_time_y': 'lead_time_std'}, inplace=True) drug_in_preferred_distributor = preferred_distributor_drug.drop( ['drug_name', 'distributor_id', 'distributor_1', 'distributor_name_1', 'same_distributor'], axis=1) drug_lead_time_std = pd.concat([drug_in_preferred_distributor, drugs_not_in_preferred_distributor_1], sort=False, ignore_index=True) weighted_lead_time_mean = drug_lead_time_std[["drug_id", "weighted_lead_time"]] weighted_lead_time_std = drug_lead_time_std[["drug_id", "lead_time_std"]] #Assumption barcoding lead time 2 days and barcoding lead time std of 0.5 days barcoding_lead_time=2 barcoding_lead_time_std=0.5 weighted_lead_time_mean['barcoding_lead_time']=barcoding_lead_time weighted_lead_time_std['barcoding_lead_time_std']=barcoding_lead_time_std weighted_lead_time_mean['weighted_lead_time'] = weighted_lead_time_mean['weighted_lead_time'] + \ weighted_lead_time_mean['barcoding_lead_time'] weighted_lead_time_std['lead_time_std'] = np.sqrt( weighted_lead_time_std['lead_time_std'] * weighted_lead_time_std['lead_time_std'] + weighted_lead_time_std['barcoding_lead_time_std'] * weighted_lead_time_std['barcoding_lead_time_std']) weighted_lead_time_mean=weighted_lead_time_mean.drop(['barcoding_lead_time'],axis=1) weighted_lead_time_std=weighted_lead_time_std.drop(['barcoding_lead_time_std'],axis=1) return weighted_lead_time_mean, weighted_lead_time_std def review_time(): # Review Time for distributor s3 = S3() df_1 = pd.read_csv(s3.download_file_from_s3(file_name="warehouse/review_time_warehouse_distributor.csv")) # Preferred distributor df_2 = pd.read_csv(s3.download_file_from_s3(file_name="warehouse/preferred_distributors.csv")) # If null then take 4 days of review time df_1 = df_1.fillna(4) df_1['review_time'] = df_1['review_time'].astype('int') review_time_new = pd.merge(df_2, df_1, left_on='distributor_1', right_on='distributor_id', how='left') review_time_new = review_time_new.drop( ["drug_name", "distributor_1", "distributor_name_1", "distributor_id", "distributor_name"], axis=1) return review_time_new def wh_safety_stock_calc( ss_runtime_var, wh_drug_list, forecast, last_month_sales, demand_daily_deviation, current_month_date, forecast_date, reset_date, logger=None, expected_nso=0, nso_history_days=90, rs_db=None): """ Safety stock calculation for warehouse """ # Lead time mean & Std lead_time_mean, lead_time_std = lead_time() service_level = ss_runtime_var['service_level'] # 0.95 ordering_freq = ss_runtime_var['ordering_freq'] # 4 max_review_period = review_time() z = ss_runtime_var['z'] cap_ss_days = ss_runtime_var['cap_ss_days'] if cap_ss_days == 0: cap_ss_days = 100000 # getting latest month forecast forecast['month_begin_dt'] = pd.to_datetime( forecast['month_begin_dt']).dt.date first_month = forecast['month_begin_dt'].min() forecast_first_month = forecast[forecast['month_begin_dt'] == first_month] # creating inventory level dataframe repln = forecast_first_month.copy() repln = pd.merge(repln, lead_time_mean, how='left', on='drug_id') # merge lead time mean repln = pd.merge(repln, lead_time_std, how='left', on='drug_id') # merge lead time std repln = pd.merge(repln, max_review_period, how='left', on='drug_id') # merge review time # rename the columns repln.rename(columns={'weighted_lead_time': 'lead_time_mean', 'review_time': 'max_review_period'}, inplace=True) # Use default of 4 , 2 and 4 lead time mean , std and r.t if data is missing repln['lead_time_mean'] = repln['lead_time_mean'].fillna(4) repln['lead_time_std'] = repln['lead_time_std'].fillna(2) repln['max_review_period'] = repln['max_review_period'].fillna(4) repln['ordering_freq'] = ordering_freq repln['service_level'] = service_level repln['z_value'] = z repln = wh_drug_list.merge(repln, on='drug_id') num_days = monthrange(first_month.year, first_month.month)[1] repln['demand_daily'] = repln['fcst'] / num_days # check to see if forecast error is to be used instead of actual demand daily deviation if ss_runtime_var['use_fcst_error'] == 'Y': hist_fcst_err = get_forecast_error(rs_db, ss_runtime_var['fcst_hist_to_use'], last_month_sales, current_month_date, forecast_date, num_days) hist_fcst_err['demand_daily_deviation'] = hist_fcst_err['demand_daily_deviation'] / np.sqrt(num_days) repln = repln.merge(hist_fcst_err, on='drug_id', how='left') print("used forecast error instead of demand deviation") else: repln = repln.merge(demand_daily_deviation, on='drug_id', how='left') repln['demand_daily_deviation'].fillna(0, inplace=True) # warehouse overall safety stock repln['ss_wo_cap'] = np.round(repln['z_value'] * np.sqrt( ( repln['lead_time_mean'] * repln['demand_daily_deviation'] * repln['demand_daily_deviation'] ) + ( repln['lead_time_std'] * repln['lead_time_std'] * repln['demand_daily'] * repln['demand_daily'] ))) repln = repln.merge(last_month_sales, on='drug_id', how='left') repln['safety_stock_days'] = np.round( repln['ss_wo_cap'] * num_days / repln['fcst'], 1) # calculate capping days repln['cap_ss_days'] = np.round(repln['lead_time_mean'] + repln['z_value'] * repln['lead_time_std'] + repln['max_review_period']) repln['cap_ss_days'] = np.where(repln['cap_ss_days'] > cap_ss_days, cap_ss_days, repln['cap_ss_days']) # capping SS days based in forecasted sales repln['safety_stock'] = np.where(repln['safety_stock_days'] > repln['cap_ss_days'], np.round(repln['cap_ss_days'] * repln['fcst'] / num_days), repln['ss_wo_cap']) # setting min SS at 2 days based on forecasted sales repln['safety_stock'] = np.where(repln['safety_stock_days'] < 2, np.round(2 * repln['fcst'] / num_days), repln['safety_stock']) # capping SS days based on last month's sales repln['safety_stock'] = np.where(repln['safety_stock'] * num_days / repln['last_month_sales'] > cap_ss_days, np.round(cap_ss_days * repln['last_month_sales'] / num_days), repln['safety_stock']) repln['rop_without_nso'] = np.round(repln['safety_stock'] + repln['demand_daily'] * (repln['lead_time_mean'] + repln['max_review_period'])) #tweaking ROP to include launch stock launch_stock_per_store = get_launch_stock_per_store(rs_db, nso_history_days, reset_date) repln = repln.merge(launch_stock_per_store, on='drug_id', how='left') repln['launch_stock_per_store'].fillna(0, inplace=True) repln['expected_nso'] = expected_nso repln['reorder_point'] = repln['rop_without_nso'] + \ np.round((repln['lead_time_mean'] + repln['max_review_period']) * repln['expected_nso'] / num_days) * \ repln['launch_stock_per_store'] repln['reorder_point'] = np.round(repln['reorder_point']) repln['oup_without_nso'] = np.round( repln['rop_without_nso'] + repln['demand_daily'] * repln['ordering_freq']) repln['order_upto_point'] = np.round( repln['reorder_point'] + repln['demand_daily'] * repln['ordering_freq']) # shelf safety stock repln['shelf_min'] = np.round(repln['safety_stock'] / 2) repln['shelf_max'] = repln['safety_stock'] # days of safety stock, reorder point and order upto point calculations repln['last_month_sales'].fillna(0, inplace=True) repln['safety_stock_days'] = np.round( repln['safety_stock'] * num_days / repln['last_month_sales'], 1) repln['reorder_point_days'] = np.round( repln['reorder_point'] * num_days / repln['last_month_sales'], 1) repln['order_upto_days'] = np.round( repln['order_upto_point'] * num_days / repln['last_month_sales'], 1) return repln def get_forecast_error(rs_db, fcst_hist_to_use, last_month_sales, current_month_date, forecast_date, num_days): first_forecast_month = str(current_month_date - relativedelta(months=fcst_hist_to_use)) q = """ select wss."drug-id" as drug_id, wss."month-begin-dt" as month_forecasted, wss."fcst" as forecast, ( select wss1."last-month-sales" from "prod2-generico"."wh-safety-stock" wss1 where wss."drug-id" = wss1."drug-id" and date(add_months(wss."month-begin-dt", 1))= wss1."month-begin-dt" order by wss1."drug-id", wss1."month-begin-dt" limit 1 ) as actual from "prod2-generico"."wh-safety-stock" wss where 1 = 1 and wss.fcst notnull and wss."month-begin-dt" >= '{}' and wss."month-begin-dt" >= '2022-02-01' order by wss."drug-id", wss."month-begin-dt" """.format(first_forecast_month) hist_fcst_err = rs_db.get_df(q) last_month_date = pd.to_datetime(forecast_date) - relativedelta(months=1) last_month_sales['last_month_date'] = last_month_date.date() hist_fcst_err = hist_fcst_err.merge(last_month_sales, left_on=['drug_id', 'month_forecasted'], right_on=['drug_id', 'last_month_date'], how='left') hist_fcst_err['actual'] = np.where(np.isnan(hist_fcst_err['actual']), hist_fcst_err['last_month_sales'], hist_fcst_err['actual']) hist_fcst_err.drop(columns=['last_month_sales', 'last_month_date'], inplace=True) hist_fcst_err = hist_fcst_err[np.isnan(hist_fcst_err['actual']) == False] hist_fcst_err['squared_error'] = (hist_fcst_err['forecast'] - hist_fcst_err['actual']) ** 2 hist_fcst_err = hist_fcst_err.groupby('drug_id').apply(get_rmse).reset_index() hist_fcst_err['demand_daily_deviation'] = hist_fcst_err['rmse'] / np.sqrt(num_days) return hist_fcst_err[['drug_id', 'demand_daily_deviation']] def get_rmse(df): if len(df) >= 2: rmse = np.sqrt(df['squared_error'].sum() / len(df)) else: rmse = None return pd.Series(dict(rmse=rmse))
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/safety_stock/wh_safety_stock.py
wh_safety_stock.py
import pandas as pd def stores_ss_consolidation(safety_stock_df, db, schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point'): # getting list of SKUs to be substituted and substituted with wh_list_query = f""" select "drug-id" , "drug-id-replaced" , "same-release" from "{schema}"."wh-sku-subs-master" where "add-wh" = 'No' """ wh_list = db.get_df(wh_list_query) wh_list.columns = [c.replace('-', '_') for c in wh_list.columns] # 3 lists - to not keep, to substitute and to substitute with sku_reject_list = wh_list.loc[ wh_list['same_release'] == 'NO', 'drug_id'] sku_to_replace_list = wh_list.loc[ wh_list['same_release'] == 'YES', 'drug_id'] sku_substitute_list = wh_list.loc[ wh_list['same_release'] == 'YES', 'drug_id_replaced'] # seperating safety_stock_df where change will happen and where it wont sku_cnsld_list = list(sku_reject_list) + list(sku_to_replace_list) + list(sku_substitute_list) safety_stock_df_cnsld = safety_stock_df[ (safety_stock_df['drug_id'].isin(sku_cnsld_list)) ] print('SS to be changed due to WH ', safety_stock_df_cnsld.shape[0]) safety_stock_df_rest = safety_stock_df[ ~(safety_stock_df['drug_id'].isin(sku_cnsld_list)) ] if len(safety_stock_df_cnsld) > 0: # SKU to be changed - not to keep and substitute with sku_reject = safety_stock_df_cnsld.merge( wh_list.query('same_release == "NO"')[ ['drug_id']].drop_duplicates(), how='inner', on='drug_id') sku_to_replace = safety_stock_df_cnsld.merge( wh_list.query('same_release == "YES"')[ ['drug_id', 'drug_id_replaced']].drop_duplicates(), how='inner', on='drug_id') sku_substitute = safety_stock_df_cnsld.merge( wh_list.query('same_release == "YES"')[ ['drug_id_replaced']].drop_duplicates(), how='inner', left_on='drug_id', right_on='drug_id_replaced') sku_substitute.drop('drug_id_replaced', axis=1, inplace=True) print('SKU rejected ', sku_reject.shape[0]) print('SKU replace ', sku_to_replace.shape[0]) print('SKU substitute ', sku_substitute.shape[0]) # updated ss calculation - to reject sku_reject_new = sku_reject.copy() sku_reject_new[min_column] = 0 sku_reject_new[ss_column] = 0 sku_reject_new[max_column] = 0 # updated ss calculation - to replace with wh skus sku_substitute_new = sku_to_replace.groupby('drug_id_replaced')[ [min_column, ss_column, max_column]].sum().reset_index() sku_substitute_new.rename(columns={'drug_id_replaced': 'drug_id'}, inplace=True) sku_to_replace_new = sku_to_replace.copy() sku_to_replace_new.drop('drug_id_replaced', axis=1, inplace=True) sku_to_replace_new[min_column] = 0 sku_to_replace_new[ss_column] = 0 sku_to_replace_new[max_column] = 0 # updated ss calculation - to substitute with sku_substitute_new = sku_substitute.merge( sku_substitute_new[['drug_id', min_column, ss_column, max_column]], on='drug_id', suffixes=('', '_y'), how='left') sku_substitute_new[min_column + '_y'].fillna(0, inplace=True) sku_substitute_new[ss_column + '_y'].fillna(0, inplace=True) sku_substitute_new[max_column + '_y'].fillna(0, inplace=True) sku_substitute_new[min_column] = ( sku_substitute_new[min_column] + sku_substitute_new[min_column + '_y']) sku_substitute_new[ss_column] = ( sku_substitute_new[ss_column] + sku_substitute_new[ss_column + '_y']) sku_substitute_new[max_column] = ( sku_substitute_new[max_column] + sku_substitute_new[max_column + '_y']) sku_substitute_new.drop( [min_column + '_y', ss_column + '_y', max_column + '_y'], axis=1, inplace=True) # merging final dataframe safety_stock_df_prev = pd.concat( [sku_reject, sku_to_replace, sku_substitute], axis=0, ignore_index=True) safety_stock_df_new = pd.concat( [safety_stock_df_rest, sku_reject_new, sku_to_replace_new, sku_substitute_new], axis=0, ignore_index=True) else: safety_stock_df_new = safety_stock_df.copy() safety_stock_df_prev = pd.DataFrame() # test cases 1- pre and post count should be same pre_drug_count = safety_stock_df.shape[0] post_drug_count = safety_stock_df_new.shape[0] pre_max_qty = safety_stock_df[max_column].sum() post_max_qty = safety_stock_df_new[max_column].sum() if pre_drug_count == post_drug_count: print('WARNING: SKU count dont match after consolidation') print('Reduction in max quantity:', str(round(100*(1 - post_max_qty/pre_max_qty), 2)) + '%') return safety_stock_df_new, safety_stock_df_prev
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/wh_intervention/store_portfolio_consolidation.py
store_portfolio_consolidation.py
import pandas as pd import numpy as np from datetime import timedelta, datetime from calendar import monthrange from zeno_etl_libs.utils.ipc.data_prep import forecast_data_prep def data_checks(drug_sales_monthly, wh_drug_list, reset_date, logger, rs_db): # MONTHLY CHECKS logger.info( str(drug_sales_monthly.drug_id.nunique()) + str(drug_sales_monthly['month_begin_dt'].nunique())) logger.info(str( drug_sales_monthly.drug_id.nunique() * drug_sales_monthly['month_begin_dt'].nunique())) assert (drug_sales_monthly.drug_id.nunique() * drug_sales_monthly['month_begin_dt'].nunique() == len(drug_sales_monthly)) # CHECKING FOR DRUGS NOT IN SALES DATA MONTHLY drug_missed_fcst = wh_drug_list[ ~wh_drug_list.drug_id.isin(drug_sales_monthly['drug_id'])]['drug_id'] drug_missed_fcst = str(list(drug_missed_fcst)) drug_missed_fcst = drug_missed_fcst.replace('[', '(').replace(']', ')') if len(drug_missed_fcst) > 2: drug_missed_fcst = rs_db.get_df(''' select id as drug_id, "drug-name" as drug_name, type, date("created-at") as creation_date from "prod2-generico".drugs where id in {} '''.format(drug_missed_fcst)) drug_missed_sale_history = rs_db.get_df(''' select "drug-id" as drug_id, date(max("created-at")) as last_sale_date from "prod2-generico".sales where "created-at" < {reset_date} and quantity > 0 and "drug-id" in {drug_id_list} group by "drug-id" '''.format(drug_id_list = str( list(drug_missed_fcst['drug_id'])).replace('[', '(').replace( ']', ')'), reset_date = str(reset_date))) drug_missed_fcst = drug_missed_fcst.merge( drug_missed_sale_history, on='drug_id', how='inner') logger.info( 'Drug in SKU list but with no history' + str(drug_missed_fcst)) # DRUGS NOT -> DISCONTINUIED/BANNED OR NULL & SALE NOT ZERO IN 6 MONTH days = 152 logger.info('Total missing sales' + str(len(drug_missed_fcst))) logger.info( 'Removing unnecessary drug types' + str(drug_missed_fcst[ drug_missed_fcst.type.isin( ['discontinued-products', 'banned', '']) ].shape[0])) logger.info( 'Removing drugs with no sales in last 6 months' + str(drug_missed_fcst[ drug_missed_fcst['last_sale_date'] <= (reset_date - timedelta(days=days))].shape[0])) drug_missed_fcst_list = drug_missed_fcst[ (~drug_missed_fcst.type.isin( ['discontinued-products', 'banned', ''])) & (drug_missed_fcst['last_sale_date'] > (reset_date - timedelta(days=days))) ].sort_values('last_sale_date') logger.info('Missing drug list' + str(drug_missed_fcst_list)) return 0 def get_product_list(rs_db): '''Getting product list to be kept in warehousee''' # TODO - IN FUTURE TO BE COMIING FROM WMS DB wh_drug_list_query = ''' select wssm."drug-id" as drug_id, d."drug-name" drug_name, d."type", d.category, d.company, 'NA' as bucket from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on d.id = wssm."drug-id" where wssm."add-wh" = 'Yes' and d."type" not in ('discontinued-products') and d.company <> 'GOODAID' ''' wh_drug_list = rs_db.get_df(wh_drug_list_query) return wh_drug_list def wh_data_prep( store_id_list, current_month_date, reset_date, type_list, rs_db, logger, ss_runtime_var, schema): '''Getting data prepared for warehouse forecasting''' # CALLING STORES DATA PREP FOR ALL STORES AS LOGIC IS SAME last_date = datetime(day=1, month=4, year=2021).date() next_month_date = datetime(current_month_date.year + int(current_month_date.month / 12), ((current_month_date.month % 12) + 1), 1).date() _, drug_sales_monthly, _, demand_daily_deviation = forecast_data_prep( store_id_list, type_list, reset_date, rs_db, schema, logger, last_date=None, is_wh='Y') # GETTING PRODUCT LIST wh_drug_list = get_product_list(rs_db) logger.info('# of Drugs in WH list' + str(len(wh_drug_list))) # FILTERING OUT DRUG ID NOT CONSIDERED IN ABX-XYZ CLASSIFICATION drug_sales_monthly = drug_sales_monthly[ drug_sales_monthly.drug_id.isin(wh_drug_list['drug_id'])] # Extrapolate current month's sales but with condition if ss_runtime_var['for_next_month'] == 'Y': if ss_runtime_var['debug_mode'] == 'Y': curr_day = pd.to_datetime(reset_date).day - 1 curr_month_days = monthrange( current_month_date.year, current_month_date.month)[1] else: curr_day = datetime.now().day - 1 curr_month_days = monthrange( current_month_date.year, current_month_date.month)[1] drug_sales_monthly['net_sales_quantity'] = np.where( drug_sales_monthly['month_begin_dt'] == str(current_month_date), round(drug_sales_monthly['net_sales_quantity'] * curr_month_days / curr_day), drug_sales_monthly['net_sales_quantity']) else: drug_sales_monthly = drug_sales_monthly[ drug_sales_monthly['month_begin_dt'] != str(current_month_date)] # DATA CHECKS _ = data_checks( drug_sales_monthly, wh_drug_list, current_month_date, logger, rs_db) # FILTERING OUT LENGTH OF TIME SERIES BASED ON FIRST BILL DATE drug_list = drug_sales_monthly.drug_id.unique() bill_date_query = ''' select i."drug-id" as drug_id, min(date(bi."created-at")) as "first_bill_date" from "prod2-generico"."bill-items-1" bi join "prod2-generico"."inventory-1" i on i.id = bi."inventory-id" where i."drug-id" in {} group by i."drug-id" '''.format(tuple(drug_list) + (0, 0)) bill_date = rs_db.get_df(bill_date_query) bill_date['first_bill_date'] = pd.to_datetime(bill_date['first_bill_date']) bill_date['bill_month'] = [ datetime(b_date.year, b_date.month, 1).date() for b_date in bill_date['first_bill_date']] # TAKING HISTORY FROM THE POINT FIRST SALE IS MADE drug_sales_monthly = drug_sales_monthly.merge( bill_date, how='left', on='drug_id') assert sum(drug_sales_monthly['first_bill_date'].isna()) == 0 drug_sales_monthly = drug_sales_monthly.query( 'month_begin_dt >= bill_month') # EXPLORING HISTORY OF DRUGS drug_history = drug_sales_monthly. \ groupby('drug_id')['net_sales_quantity'].count().reset_index() drug_history.columns = ['drug_id', 'month_history'] logger.info('Total Drugs' + str(len(drug_history))) logger.info('History >= 12 months' + str( len(drug_history.query('month_history >=12')))) logger.info('History 3-11 months' + str( len(drug_history.query('month_history < 12'). query('month_history >=3')))) logger.info('History < 3 months' + str( len(drug_history.query('month_history < 3')))) return drug_sales_monthly, wh_drug_list, drug_history, demand_daily_deviation def get_launch_stock_per_store(rs_db, days, reset_date): new_stores_list_query = """ select id as store_id, date("opened-at") as opened_at from "prod2-generico".stores s where "opened-at" >= '{reset_date}' - {days} and "opened-at" <= '{reset_date}' and id not in (281, 297) and "franchisee-id" = 1 """.format(reset_date=reset_date, days=days) new_stores_list = rs_db.get_df(new_stores_list_query) store_ids_list = tuple(new_stores_list['store_id'].astype(str))+('0','0') # get shortbook launch orders sb_orders_query = ''' select distinct sb."store-id" as store_id, sb."drug-id" as drug_id, date(sb."created-at") as created_at, sb.quantity as ordered_quantity, date(s2."opened-at") as opened_at from "prod2-generico"."short-book-1" sb left join "prod2-generico".stores s2 on s2.id = sb."store-id" where "store-id" in {store_ids} and date(sb."created-at") < date(s2."opened-at") '''.format(store_ids=store_ids_list, days=days) sb_orders = rs_db.get_df(sb_orders_query) wh_drug_list = get_product_list(rs_db) df = sb_orders.copy() df = df[df['drug_id'].isin(wh_drug_list['drug_id'])] df = df[['store_id', 'drug_id', 'ordered_quantity']] df.drop_duplicates(inplace=True) new_stores_count = sb_orders['store_id'].nunique() df = df[['drug_id', 'ordered_quantity']] launch_stock = df.groupby('drug_id').sum().reset_index() launch_stock_per_store = launch_stock.copy() launch_stock_per_store['ordered_quantity'] = \ launch_stock['ordered_quantity'] / new_stores_count launch_stock_per_store.rename( columns={'ordered_quantity': 'launch_stock_per_store'}, inplace=True) return launch_stock_per_store
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/data_prep/wh_data_prep.py
wh_data_prep.py
import numpy as np from zeno_etl_libs.utils.warehouse.forecast.helper_functions import make_future_df,\ ape_calc, ae_calc from fbprophet import Prophet # prophet train def prophet_train_monthly( df, n_changepoints_factor=4, changepoint_prior_scale=0.2, growth='linear', changepoint_range=1, interval_width=0.68, mcmc_samples=0, horizon=3, out_of_sample=3): # params n_changepoints = int(np.round(len(df)/n_changepoints_factor)) # dividing the series into train and validation set df = df.copy() df['days'] = df['month_begin_dt'].dt.daysinmonth df.rename(columns={'month_begin_dt': 'ds', 'net_sales_quantity': 'y'}, inplace=True) train_df = df.drop(df.tail(out_of_sample).index) validation_df = df.tail(out_of_sample) # model building model = Prophet( growth=growth, n_changepoints=n_changepoints, changepoint_prior_scale=changepoint_prior_scale, changepoint_range=changepoint_range, interval_width=interval_width, mcmc_samples=mcmc_samples, yearly_seasonality=False, weekly_seasonality=False, daily_seasonality=False) model.add_seasonality(name='yearly_e', period=365.25, fourier_order=12) model.add_regressor(name='days', mode='multiplicative') fit = model.fit(train_df) validation_fcst = fit.predict(validation_df)[[ 'yhat', 'yhat_upper', 'yhat_lower']] # calculating standard deviation of additive terms and tremd validation_std = ( validation_fcst['yhat_upper'].values - validation_fcst['yhat_lower'].values) # writing to final df predict_df = validation_df predict_df['fcst'] = np.round(validation_fcst['yhat'].values) predict_df['std'] = np.round(validation_std) # calculating errors predict_df['ape'] = [ ape_calc(actual, forecast) for actual, forecast in zip(predict_df['y'], predict_df['fcst'])] predict_df['ae'] = [ ae_calc(actual, forecast) for actual, forecast in zip(predict_df['y'], predict_df['fcst'])] predict_df.rename(columns={'ds': 'month_begin_dt', 'y': 'actual'}, inplace=True) predict_df.drop('days', axis=1, inplace=True) return predict_df # , fit # prophet train def prophet_predict_monthly( df, n_changepoints_factor=4, changepoint_prior_scale=0.2, growth='linear', changepoint_range=1, interval_width=0.68, mcmc_samples=0, horizon=3, out_of_sample=3): # params n_changepoints = int(np.round(len(df)/n_changepoints_factor)) # creating predict df df = df.copy() df['days'] = df['month_begin_dt'].dt.daysinmonth predict_df = make_future_df(df, out_of_sample) predict_df['days'] = predict_df['month_begin_dt'].dt.daysinmonth # column name change for prophet df.rename(columns={'month_begin_dt': 'ds', 'net_sales_quantity': 'y'}, inplace=True) predict_df.rename( columns={'month_begin_dt': 'ds', 'net_sales_quantity': 'y'}, inplace=True) # model building model = Prophet( growth=growth, n_changepoints=n_changepoints, changepoint_prior_scale=changepoint_prior_scale, changepoint_range=changepoint_range, interval_width=interval_width, mcmc_samples=mcmc_samples, yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False) fit = model.fit(df) forecast = fit.predict(predict_df)[[ 'yhat', 'yhat_upper', 'yhat_lower']] # calculating standard deviation of additive terms and tremd forecast_std = ( forecast['yhat_upper'].values - forecast['yhat_lower'].values) # writing to final df predict_df['fcst'] = np.round(forecast['yhat'].values) predict_df['std'] = np.round(forecast_std) predict_df.rename(columns={'ds': 'month_begin_dt', 'y': 'actual'}, inplace=True) predict_df.drop('days', axis=1, inplace=True) return predict_df # , fit
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/forecast/prophet.py
prophet.py
import pandas as pd from dateutil.relativedelta import relativedelta from joblib import Parallel, delayed from multiprocessing import cpu_count # weekly vs monthly demand pattern def month_week_plt(monthly_data, weekly_data, drug_id, drug_name, bucket): week = weekly_data.loc[ weekly_data['drug_id'] == drug_id] week.rename(columns={'week_begin_dt': 'date'}, inplace=True) ax = week[['date', 'net_sales_quantity']].set_index('date').plot() ax.set_title('{} {} {}'.format(drug_id, drug_name, bucket), ) month = monthly_data.loc[ monthly_data['drug_id'] == drug_id] month.rename(columns={'month_begin_dt': 'date'}, inplace=True) ax = month[['date', 'net_sales_quantity']].set_index('date').plot() ax.set_title('{} {} {}'.format(drug_id, drug_name, bucket)) return 0 # make forward looking data frame for forecast def make_future_df(df, horizon): df = df.copy() drug_id = df['drug_id'].values[-1] # prev_month_dt = df['month_begin_dt'].dt.date.values[-1] prev_month_dt = pd.to_datetime(df['month_begin_dt'].values[-1]) if horizon == 3: predict_month_dt = [ prev_month_dt + relativedelta(months=h) for h in range(1, horizon + 1)] predict_year = [ (prev_month_dt + relativedelta(months=h)).year for h in range(1, horizon + 1)] predict_month = [ (prev_month_dt + relativedelta(months=h)).month for h in range(1, horizon + 1)] else: predict_month_dt = [ prev_month_dt + relativedelta(days=28*h) for h in range(1, horizon + 1)] predict_year = [ (prev_month_dt + relativedelta(days=28*h)).year for h in range(1, horizon + 1)] predict_month = [ (prev_month_dt + relativedelta(days=28*h)).month for h in range(1, horizon + 1)] predict_df = pd.DataFrame() predict_df['drug_id'] = pd.Series([drug_id] * horizon) predict_df['month_begin_dt'] = pd.to_datetime(pd.Series(predict_month_dt)) predict_df['year'] = pd.Series(predict_year) predict_df['month'] = pd.Series(predict_month) predict_df['fcst'] = 0 return predict_df # forecast visualisation def forecast_viz(train, forecast, drug_id, drug_name, bucket, model, k=3): train = train.copy() forecast = forecast.copy() train = train[['drug_id', 'month_begin_dt', 'net_sales_quantity']] foreacast = forecast[['drug_id', 'month_begin_dt', 'fcst']] merged = train.merge( foreacast, how='outer', on=['drug_id', 'month_begin_dt']) merged.drop('drug_id', axis=1, inplace=True) ax = merged.set_index('month_begin_dt').plot() ax.set_title('{} {} {} {}'.format(drug_id, drug_name, bucket, model)) return 0 # parallel thread execution def apply_parallel_ets( dfGrouped, func, ets_params, horizon=3, out_of_sample=3): retLst = Parallel(n_jobs=cpu_count() - 4, verbose=10)( delayed(func)( group, ets_params, horizon, out_of_sample) for name, group in dfGrouped) return pd.concat(retLst) def apply_parallel_prophet( dfGrouped, func, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample): retLst = Parallel(n_jobs=cpu_count() - 4, verbose=10)( delayed(func)( group, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample) for name, group in dfGrouped) return pd.concat(retLst)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/forecast/helper_functions.py
helper_functions.py
import time import pandas as pd import numpy as np from itertools import product from zeno_etl_libs.utils.warehouse.forecast.errors import train_error, \ train_error_ets_h1 from zeno_etl_libs.utils.warehouse.forecast.moving_average import \ ma_train_monthly, \ ma_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.ets import ets_train_monthly, \ ets_predict_monthly # from zeno_etl_libs.utils.warehouse.forecast.prophet import prophet_train_monthly,\ # prophet_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.naive import naive_predict_monthly from zeno_etl_libs.utils.warehouse.forecast.helper_functions import \ apply_parallel_ets # from scripts.ops.warehouse.forecast.\ # helper_functions import apply_parallel_prophet def wh_forecast(drug_sales_monthly, wh_drug_list, drug_history, logger=None): """ Bucketing based on History 1. For drugs with history < 3 months -> Naive 2. For drugs with history 3-11 month -> MA, SES (Simple exponential smoothing) 3. For drugs with history >= 12 months -> MA, ETS (Error, Trend,Seasonality) """ # BUCKET BASED ON HISTORY bucket_h3 = drug_history[drug_history['month_history'] < 3] bucket_h2minus = drug_history[ (drug_history['month_history'] >= 3) & (drug_history['month_history'] <= 5)] bucket_h2 = drug_history[ (drug_history['month_history'] >= 6) & (drug_history['month_history'] < 12)] bucket_h1 = drug_history[drug_history['month_history'] >= 12] bucket_log = ''' Bucket H1 12+ months history - {}, Bucket H2 6-11 months history - {}, Bucket H2- 3-5 months history - {}, Bucket H3 <3 months history - {}'''.format( len(bucket_h1), len(bucket_h2), len(bucket_h2minus), len(bucket_h3) ) logger.info(bucket_log) # SUBSETTING SALE HISTORY DATA FOR BUCKETS drug_sales_monthly_bucket_h1 = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h1['drug_id'])] drug_sales_monthly_bucket_h2 = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h2['drug_id'])] drug_sales_monthly_bucket_h2minus = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h2minus['drug_id'])] drug_sales_monthly_bucket_h3 = drug_sales_monthly[ drug_sales_monthly['drug_id'].isin(bucket_h3['drug_id'])] ''' H1 bucket - Train and Forecast''' logger.info( 'Drugs for training' + str(drug_sales_monthly_bucket_h1.drug_id.nunique())) # FORECASTING MODULES: MOVING AVERAGES K=3 ma_train_data_h1 = drug_sales_monthly_bucket_h1.copy() ma_train_data_h1 = ma_train_data_h1[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters # k = 3 # N moving average horizon = 3 # future forecast # train start = time.time() ma_train_h1 = ma_train_data_h1.groupby('drug_id').apply(ma_train_monthly). \ reset_index(drop=True) end = time.time() logger.info('H1 MA Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ma_train_error_h1 = ma_train_h1.groupby('drug_id').apply(train_error). \ reset_index(drop=True) end = time.time() logger.info('H1 MA Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ma_predict_h1 = ma_train_data_h1.groupby('drug_id'). \ apply(ma_predict_monthly).reset_index(drop=True) end = time.time() logger.info('H1 MA Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # FORECASTING MODULES: EXPONENTIAL SMOOTHING ets_train_data_h1 = drug_sales_monthly_bucket_h1.copy() ets_train_data_h1 = ets_train_data_h1[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters horizon = 3 # future forecast out_of_sample = 3 # out of sample forecast # holts winter implementation trend = ['additive', None] seasonal = ['additive', None] damped = [True, False] seasonal_periods = [12] use_boxcox = [True, False] ets_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) # train start = time.time() ets_train_h1 = apply_parallel_ets( ets_train_data_h1.groupby('drug_id'), ets_train_monthly, ets_params).reset_index(drop=True) end = time.time() logger.info('H1 ETS Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ets_train_error_h1 = ets_train_h1.groupby('drug_id').apply( train_error_ets_h1). \ reset_index(drop=True) end = time.time() logger.info('H1 ETS Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ets_predict_h1 = apply_parallel_ets( ets_train_data_h1.groupby('drug_id'), ets_predict_monthly, ets_train_h1).reset_index(drop=True) end = time.time() logger.info('H1 ETS Fcst: Run time ' + str(round(end - start, 2)) + 'secs') ''' # TODO - PROPHET TO BE INTG. LATER # FORECASTING MODULES: PROPHET prophet_train_data_h1 = drug_sales_monthly_bucket_h1.copy() prophet_train_data_h1 = prophet_train_data_h1[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters horizon = 3 # future forecast # holts winter implementation n_changepoints_factor = 4 changepoint_prior_scale = 0.2 growth = 'linear' changepoint_range = 1 interval_width = 0.68 mcmc_samples = 0 # train start = time.time() prophet_train_h1 = apply_parallel_prophet( prophet_train_data_h1.groupby('drug_id'), prophet_train_monthly, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample ).reset_index(drop=True) end = time.time() logger.info( 'H1 Prophet Train: Run time ' + str(round(end-start, 2)) + 'secs') # train error start = time.time() prophet_train_error_h1 = prophet_train_h1.groupby('drug_id').\ apply(train_error).reset_index(drop=True) end = time.time() logger.info( 'H1 Prophet Error: Run time ' + str(round(end-start, 2)) + 'secs') # predict start = time.time() prophet_predict_h1 = apply_parallel_prophet( prophet_train_data_h1.groupby('drug_id'), prophet_predict_monthly, n_changepoints_factor, changepoint_prior_scale, growth, changepoint_range, interval_width, mcmc_samples, horizon, out_of_sample ).reset_index(drop=True) end = time.time() logger.info( 'H1 Prophet Fcst: Run time ' + str(round(end-start, 2)) + 'secs') ''' # FORECASTING MODULE - ENSEMBLE # identifying best model for each drug - using MA and ETS ensemble_error_h1 = ets_train_error_h1.merge( ma_train_error_h1, how='outer', on='drug_id', suffixes=('_ets', '_ma')) ensemble_error_h1['model'] = np.where( ensemble_error_h1['mape_ma'] < ensemble_error_h1['mape_ets'], 'ma', 'ets') # choosing ma where SS days for ets is crossing 1 month if ensemble_error_h1.loc[0]['model'] == 'ma': ensemble_error_h1['ss_days_ets'] = 14.84 * ensemble_error_h1['std'] / \ ensemble_error_h1['actual'] else: ensemble_error_h1['ss_days_ets'] = 14.84 * ensemble_error_h1['std'] / \ ensemble_error_h1['actual'] ensemble_error_h1['model'] = np.where(ensemble_error_h1['ss_days_ets'] > 28, 'ma', 'ets') ensemble_error_h1.loc[np.isnan(ensemble_error_h1['std']), 'model'] = 'ma' del ensemble_error_h1['actual'] del ensemble_error_h1['std'] del ensemble_error_h1['ss_days_ets'] del ets_train_error_h1['actual'] del ets_train_error_h1['std'] ensemble_error_h1['mape'] = np.where( ensemble_error_h1['model'] == 'ma', ensemble_error_h1['mape_ma'], ensemble_error_h1['mape_ets']) ensemble_error_h1['mae'] = np.where( ensemble_error_h1['model'] == 'ma', ensemble_error_h1['mae_ma'], ensemble_error_h1['mae_ets']) # creating ensemble dataframe for best model - MA + ETS ma_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ma', 'drug_id'] ets_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ets', 'drug_id'] ma_train_best_h1 = ma_train_h1[ ma_train_h1['drug_id'].isin(ma_drug_best_h1)] ma_predict_best_h1 = ma_predict_h1[ ma_predict_h1['drug_id'].isin(ma_drug_best_h1)] ma_train_best_h1['model'] = 'ma' ma_predict_best_h1['model'] = 'ma' ets_train_best_h1 = ets_train_h1[ ets_train_h1['drug_id'].isin(ets_drug_best_h1)] ets_predict_best_h1 = ets_predict_h1[ ets_predict_h1['drug_id'].isin(ets_drug_best_h1)] ets_train_best_h1['model'] = 'ets' ets_predict_best_h1['model'] = 'ets' ensemble_train_h1 = pd.concat( [ma_train_best_h1, ets_train_best_h1], axis=0) ensemble_predict_h1 = pd.concat( [ma_predict_best_h1, ets_predict_best_h1], axis=0) ''' # TODO - PROPHET TO BE INTG. LATER # identifying best model for each drug - using MA, ETS and Prophet ensemble_error_h1 = ets_train_error_h1.merge( ma_train_error_h1, how='outer', on='drug_id', suffixes=('_ets', '_ma')).merge( prophet_train_error_h1, how='outer', on='drug_id', suffixes=('', '_prophet')) ensemble_error_h1.columns = [ 'drug_id', 'mae_ets', 'mape_ets', 'mae_ma', 'mape_ma', 'mae_prophet', 'mape_prophet'] ensemble_error_h1['model'] = np.select( [(ensemble_error_h1['mape_ma'] < ensemble_error_h1['mape_ets']) & (ensemble_error_h1['mape_ma'] < ensemble_error_h1['mape_prophet']), (ensemble_error_h1['mape_ets'] < ensemble_error_h1['mape_ma']) & (ensemble_error_h1['mape_ets'] < ensemble_error_h1['mape_prophet']), (ensemble_error_h1['mape_prophet'] < ensemble_error_h1['mape_ma']) & (ensemble_error_h1['mape_prophet'] < ensemble_error_h1['mape_ets'])], ['ma', 'ets', 'prophet'], default='ets') ensemble_error_h1['mape'] = np.select( [ensemble_error_h1['model'] == 'ma', ensemble_error_h1['model'] == 'ets', ensemble_error_h1['model'] == 'prophet'], [ensemble_error_h1['mape_ma'], ensemble_error_h1['mape_ets'], ensemble_error_h1['mape_prophet']], default=ensemble_error_h1['mape_ets']) ensemble_error_h1['mae'] = np.select( [ensemble_error_h1['model'] == 'ma', ensemble_error_h1['model'] == 'ets', ensemble_error_h1['model'] == 'prophet'], [ensemble_error_h1['mae_ma'], ensemble_error_h1['mae_ets'], ensemble_error_h1['mae_prophet']], default=ensemble_error_h1['mae_ets']) # creating ensemble dataframe for best model - MA + ETS + Prophet ma_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ma', 'drug_id'] ets_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'ets', 'drug_id'] prophet_drug_best_h1 = ensemble_error_h1.loc[ ensemble_error_h1['model'] == 'prophet', 'drug_id'] ma_train_best_h1 = ma_train[ ma_train_h1['drug_id'].isin(ma_drug_best_h1)] ma_predict_best_h1 = ma_predict[ ma_predict['drug_id'].isin(ma_drug_best_h1)] ma_train_best_h1['model'] = 'ma' ma_predict_best_h1['model'] = 'ma' ets_train_best_h1 = ets_train_h1[ ets_train_h1['drug_id'].isin(ets_drug_best_h1)] ets_predict_best_h1 = ets_predict_h1[ ets_predict_h1['drug_id'].isin(ets_drug_best_h1)] ets_train_best_h1['model'] = 'ets' ets_predict_best_h1['model'] = 'ets' prophet_train_best_h1 = prophet_train_h1[ prophet_train_h1['drug_id'].isin(prophet_drug_best_h1)] prophet_predict_best_h1 = prophet_predict_h1[ prophet_predict_h1['drug_id'].isin(prophet_drug_best_h1)] prophet_train_best_h1['model'] = 'prophet' prophet_predict_best_h1['model'] = 'prophet' ensemble_train_h1 = pd.concat( [ma_train_best_h1, ets_train_best_h1, prophet_train_best_h1], axis=0) ensemble_predict_h1 = pd.concat( [ma_predict_best_h1, ets_predict_best_h1, prophet_predict_best_h1], axis=0) ''' # H1 BUCKET AGGREGATING ma_train_h1['model'] = 'ma' ma_train_h1['history_bucket'] = 'H1' ets_train_h1['model'] = 'ets' ets_train_h1['history_bucket'] = 'H1' ma_train_error_h1['model'] = 'ma' ma_train_error_h1['history_bucket'] = 'H1' ets_train_error_h1['model'] = 'ets' ets_train_error_h1['history_bucket'] = 'H1' ma_predict_h1['model'] = 'ma' ma_predict_h1['history_bucket'] = 'H1' ets_predict_h1['model'] = 'ets' ets_predict_h1['history_bucket'] = 'H1' train_h1 = pd.concat([ma_train_h1, ets_train_h1], axis=0) train_error_h1 = pd.concat([ma_train_error_h1, ets_train_error_h1], axis=0) predict_h1 = pd.concat([ma_predict_h1, ets_predict_h1], axis=0) train_h1['forecast_type'] = 'train' train_h1['final_fcst'] = 'N' train_error_h1['forecast_type'] = 'train' train_error_h1['final_fcst'] = 'N' predict_h1['forecast_type'] = 'forecast' predict_h1['final_fcst'] = 'N' ensemble_train_h1['forecast_type'] = 'train' ensemble_train_h1['final_fcst'] = 'Y' ensemble_train_h1['history_bucket'] = 'H1' ensemble_error_h1['forecast_type'] = 'train' ensemble_error_h1['final_fcst'] = 'Y' ensemble_error_h1['history_bucket'] = 'H1' ensemble_predict_h1['forecast_type'] = 'forecast' ensemble_predict_h1['final_fcst'] = 'Y' ensemble_predict_h1['history_bucket'] = 'H1' ''' H2/H2- bucket - Train and Forecast''' logger.info( 'Drugs for training' + str(drug_sales_monthly_bucket_h2.drug_id.nunique())) # FORECASTING MODULES: MOVING AVERAGES K=3 ma_train_data_h2 = drug_sales_monthly_bucket_h2.copy() ma_train_data_h2 = ma_train_data_h2[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # model parameters horizon = 3 # future forecast # train start = time.time() ma_train_h2 = ma_train_data_h2.groupby('drug_id').apply(ma_train_monthly). \ reset_index(drop=True) end = time.time() logger.info('H2 MA Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ma_train_error_h2 = ma_train_h2.groupby('drug_id').apply(train_error). \ reset_index(drop=True) end = time.time() logger.info('H2 MA Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ma_predict_h2 = ma_train_data_h2.groupby('drug_id'). \ apply(ma_predict_monthly).reset_index(drop=True) end = time.time() logger.info('H2 MA Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # FORECASTING MODULES: SIMPLE EXPONENTIAL SMOOTHING ses_train_data_h2 = drug_sales_monthly_bucket_h2.copy() ses_train_data_h2 = ses_train_data_h2[ ['drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # variables horizon = 3 # future forecast out_of_sample = 3 # out of sample forecast # ses implementation trend = [None] seasonal = [None] damped = [False] seasonal_periods = [12] use_boxcox = [False] ses_params = list( product(trend, seasonal, damped, seasonal_periods, use_boxcox)) # train start = time.time() ses_train_h2 = apply_parallel_ets( ses_train_data_h2.groupby('drug_id'), ets_train_monthly, ses_params ).reset_index(drop=True) end = time.time() logger.info('H2 ETS Train: Run time ' + str(round(end - start, 2)) + 'secs') # train error start = time.time() ses_train_error_h2 = ses_train_h2.groupby('drug_id').apply(train_error). \ reset_index(drop=True) end = time.time() logger.info('H2 ETS Error: Run time ' + str(round(end - start, 2)) + 'secs') # predict start = time.time() ses_predict_h2 = apply_parallel_ets( ses_train_data_h2.groupby('drug_id'), ets_predict_monthly, ses_train_h2).reset_index(drop=True) end = time.time() logger.info('H2 ETS Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # FORECASTING MODULE - ENSEMBLE # identifying best model for each drug - using MA and SES ensemble_error_h2 = ses_train_error_h2.merge( ma_train_error_h2, how='outer', on='drug_id', suffixes=('_ses', '_ma')) ensemble_error_h2['model'] = np.where( ensemble_error_h2['mape_ma'] < ensemble_error_h2['mape_ses'], 'ma', 'ses') ensemble_error_h2['mape'] = np.where( ensemble_error_h2['model'] == 'ma', ensemble_error_h2['mape_ma'], ensemble_error_h2['mape_ses']) ensemble_error_h2['mae'] = np.where( ensemble_error_h2['model'] == 'ma', ensemble_error_h2['mae_ma'], ensemble_error_h2['mae_ses']) # creating ensemble dataframe for best_h2 model - MA + ses ma_drug_best_h2 = ensemble_error_h2.loc[ ensemble_error_h2['model'] == 'ma', 'drug_id'] ses_drug_best_h2 = ensemble_error_h2.loc[ ensemble_error_h2['model'] == 'ses', 'drug_id'] ma_train_best_h2 = ma_train_h2[ ma_train_h2['drug_id'].isin(ma_drug_best_h2)] ma_predict_best_h2 = ma_predict_h2[ ma_predict_h2['drug_id'].isin(ma_drug_best_h2)] ma_train_best_h2['model'] = 'ma' ma_predict_best_h2['model'] = 'ma' ses_train_best_h2 = ses_train_h2[ ses_train_h2['drug_id'].isin(ses_drug_best_h2)] ses_predict_best_h2 = ses_predict_h2[ ses_predict_h2['drug_id'].isin(ses_drug_best_h2)] ses_train_best_h2['model'] = 'ses' ses_predict_best_h2['model'] = 'ses' ensemble_train_h2 = pd.concat( [ma_train_best_h2, ses_train_best_h2], axis=0) # getting best model for H2- bucket ensemble_model_agg = ensemble_error_h2.groupby('model')['drug_id']. \ count().reset_index() ensemble_model_best_h2 = ensemble_model_agg.loc[ ensemble_model_agg['drug_id'] == ensemble_model_agg['drug_id'].max(), 'model'].values[0] logger.info('Best model for H2 forecast' + ensemble_model_best_h2) # H2 minus bucket predic based on the best_h2 model overall train_data_h2minus = drug_sales_monthly_bucket_h2minus.copy() predict_h2minus = pd.DataFrame() start = time.time() if ensemble_model_best_h2 == 'ses' and len(drug_sales_monthly_bucket_h2minus): start = time.time() train_data_h2minus['hyper_params'] = str(ses_params[0]) predict_h2minus = apply_parallel_ets( train_data_h2minus.groupby('drug_id'), ets_predict_monthly, train_data_h2minus). \ reset_index(drop=True) if ensemble_model_best_h2 == 'ma': start = time.time() predict_h2minus = train_data_h2minus.groupby('drug_id'). \ apply(ma_predict_monthly).reset_index(drop=True) predict_h2minus['model'] = ensemble_model_best_h2 end = time.time() logger.info( 'H2 Minus Fcst: Run time ' + str(round(end - start, 2)) + 'secs') ensemble_predict_h2 = pd.concat( [ma_predict_best_h2, ses_predict_best_h2, predict_h2minus], axis=0) # H2 BUCKET AGGREGATING ma_train_h2['model'] = 'ma' ma_train_h2['history_bucket'] = 'H2' ses_train_h2['model'] = 'ses' ses_train_h2['history_bucket'] = 'H2' ma_train_error_h2['model'] = 'ma' ma_train_error_h2['history_bucket'] = 'H2' ses_train_error_h2['model'] = 'ses' ses_train_error_h2['history_bucket'] = 'H2' ma_predict_h2['model'] = 'ma' ma_predict_h2['history_bucket'] = 'H2' ses_predict_h2['model'] = 'ses' ses_predict_h2['history_bucket'] = 'H2' train_h2 = pd.concat([ma_train_h2, ses_train_h2], axis=0) train_error_h2 = pd.concat([ma_train_error_h2, ses_train_error_h2], axis=0) predict_h2 = pd.concat([ma_predict_h2, ses_predict_h2], axis=0) train_h2['forecast_type'] = 'train' train_h2['final_fcst'] = 'N' train_error_h2['forecast_type'] = 'train' train_error_h2['final_fcst'] = 'N' predict_h2['forecast_type'] = 'forecast' predict_h2['final_fcst'] = 'N' ensemble_train_h2['forecast_type'] = 'train' ensemble_train_h2['final_fcst'] = 'Y' ensemble_train_h2['history_bucket'] = 'H2' ensemble_error_h2['forecast_type'] = 'train' ensemble_error_h2['final_fcst'] = 'Y' ensemble_error_h2['history_bucket'] = 'H2' ensemble_predict_h2['forecast_type'] = 'forecast' ensemble_predict_h2['final_fcst'] = 'Y' ensemble_predict_h2['history_bucket'] = 'H2' ''' H3- bucket - Train and Forecast''' logger.info( 'Drugs for training' + str(drug_sales_monthly_bucket_h2.drug_id.nunique())) # FORECASTING MODULES: NAIVE naive_train_data_h3 = drug_sales_monthly_bucket_h3.copy() naive_train_data_h3 = naive_train_data_h3[[ 'drug_id', 'month_begin_dt', 'year', 'month', 'net_sales_quantity']] # predict start = time.time() naive_predict_h3 = naive_train_data_h3.groupby('drug_id'). \ apply(naive_predict_monthly, horizon).reset_index(drop=True) end = time.time() logger.info( 'H3 Naive Fcst: Run time ' + str(round(end - start, 2)) + 'secs') # H3 BUCKET AGGREGATING naive_predict_h3['model'] = 'naive' naive_predict_h3['history_bucket'] = 'H3' predict_h3 = naive_predict_h3.copy() predict_h3['forecast_type'] = 'forecast' predict_h3['final_fcst'] = 'N' ensemble_predict_h3 = naive_predict_h3.copy() ensemble_predict_h3['forecast_type'] = 'forecast' ensemble_predict_h3['final_fcst'] = 'Y' ''' AGG. TRAIN/ERROR/FORECAST TABLES ''' train = pd.concat([train_h1, train_h2], axis=0) error = pd.concat([train_error_h1, train_error_h2], axis=0) predict = pd.concat([predict_h1, predict_h2, predict_h3], axis=0) ensemble_train = pd.concat([ensemble_train_h1, ensemble_train_h2], axis=0) ensemble_error = pd.concat([ensemble_error_h1, ensemble_error_h2], axis=0) ensemble_predict = pd.concat( [ensemble_predict_h1, ensemble_predict_h2, ensemble_predict_h3], axis=0) # Letting code to not fail when h3 bucket is empty if 'net_sales_quantity' in predict.columns: del predict['net_sales_quantity'] if 'net_sales_quantity' in ensemble_predict.columns: del ensemble_predict['net_sales_quantity'] # converting data to str objection train['month_begin_dt'] = train['month_begin_dt']. \ dt.date.astype(str) predict['month_begin_dt'] = predict['month_begin_dt']. \ dt.date.astype(str) ensemble_train['month_begin_dt'] = ensemble_train['month_begin_dt']. \ dt.date.astype(str) ensemble_predict['month_begin_dt'] = ensemble_predict['month_begin_dt']. \ dt.date.astype(str) return train, error, predict, ensemble_train, ensemble_error, \ ensemble_predict
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/forecast/forecast_main.py
forecast_main.py
import numpy as np from zeno_etl_libs.utils.warehouse.forecast.helper_functions import make_future_df from zeno_etl_libs.utils.warehouse.forecast.errors import ape_calc, ae_calc from statsmodels.tsa.holtwinters import ExponentialSmoothing # ets train def ets_train_monthly(df, ets_params, horizon=3, out_of_sample=3, logger=None): train = df.copy() train.drop(train.tail(out_of_sample).index, inplace=True) # dividing the series into train and validation set drug_id = train['drug_id'].values[0] input_series = train['net_sales_quantity'].values validation = df['net_sales_quantity'].tail(out_of_sample).values # creating dummy best fit param and fit values best_fit = None best_fit_params = [None, None, False, None, False] best_accuracy = np.inf best_ape = [0]*horizon best_ae = [0]*horizon # best_fittedvalues = [0]*len(train) # best_fcastvalues = [0]*horizon # running a loop for grid search for params in ets_params: trend, seasonal, damped, seasonal_periods, use_boxcox = params try: ape = [] ae = [] # model fitting model = ExponentialSmoothing( input_series, trend=trend, seasonal=seasonal, damped=damped, seasonal_periods=seasonal_periods, use_boxcox=use_boxcox) fit = model.fit(optimized=True) # accuracy parameter can be - aic, bic, sse or mape forecast = np.round(fit.forecast(horizon)) # print(forecast) ape = [ ape_calc(actual, forecast) for actual, forecast in zip(validation, forecast)] ae = [ ae_calc(actual, forecast) for actual, forecast in zip(validation, forecast)] fit_mape = np.mean(ape) # fit_mae = np.mean(ae) # fitted_values = fit.fittedvalues # identifying the best fit params if (fit_mape <= best_accuracy) & (fit_mape != -np.inf): best_fit = fit best_fit_params = params best_accuracy = fit_mape best_ape = ape best_ae = ae # best_fittedvalues = fitted_values best_forecast = forecast except Exception as error: # print(params,':', error) error_str = '''Drug {} Params {} Error: {}'''.format( drug_id, str(params), error) # logger.info(error_str) pass # creating out of output dataset predict_df = make_future_df(train, out_of_sample) # getting forecast deviation sigma = sse*(1 + alpha^2(h-1))/n holts methods alpha = best_fit.params['smoothing_level'] std = np.round( np.sqrt(best_fit.sse*(1 + alpha * alpha * (horizon-1)) / len(best_fit.fittedvalues))) predict_df['fcst'] = best_forecast predict_df['std'] = std predict_df['actual'] = validation # model variables predict_df['ape'] = best_ape predict_df['ae'] = best_ae predict_df['hyper_params'] = str(best_fit_params) return predict_df # ets predict def ets_predict_monthly(df, ets_train, horizon=3, out_of_sample=3): df = df.copy() print("running for drug_id --> " + str(df['drug_id'].unique()[0])) fit_params = ets_train[ets_train['drug_id']==df['drug_id'].unique()[0]] fit_params = tuple(eval(fit_params['hyper_params'].values[0])) series = df['net_sales_quantity'].values # getting best fit params for forecast trend, seasonal, damped, seasonal_periods, use_boxcox = fit_params # creating model instance try: model = ExponentialSmoothing( series, trend=trend, seasonal=seasonal, damped=damped, seasonal_periods=seasonal_periods, use_boxcox=use_boxcox) fit = model.fit(optimized=True) if np.isnan(fit.sse) == True or fit.forecast(horizon)[0] < 0 or \ (series[-1] > 0 and fit.forecast(horizon)[0] > 0 and (0.33 > series[-1]/fit.forecast(horizon)[0] or series[-1]/fit.forecast(horizon)[0] > 3)): raise Exception( 'ets hyperparams giving outliers for drug_id: ' \ + str(df['drug_id'].unique()[0]) + \ ' running model with default params') except Exception as error: model = ExponentialSmoothing( series, trend=None, seasonal=None, damped=False, seasonal_periods=seasonal_periods, use_boxcox=False) fit = model.fit(optimized=True) print(error) # creating out of output dataset predict_df = make_future_df(df, horizon) predict_df['fcst'] = np.round(fit.forecast(horizon)) # getting forecast deviation sigma = sse*(1 + alpha^2(h-1))/n holts methods alpha = fit.params['smoothing_level'] std = np.round( np.sqrt(fit.sse*(1 + alpha * alpha * (horizon-1)) / len(fit.fittedvalues))) predict_df['std'] = std return predict_df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/forecast/ets.py
ets.py
import numpy as np import pandas as pd from matplotlib import pyplot as plt # absolute percentage error calculation def ape_calc(actual, forecast): if (actual == 0) & (forecast == 0): ape = 0 elif forecast == 0: ape = 1 elif actual == 0: ape = 1 else: ape = abs((forecast - actual)/actual) return ape # abs error calculation def ae_calc(actual, forecast): if (actual == 0) & (forecast == 0): ae = 0 elif forecast == 0: ae = actual elif actual == 0: ae = forecast else: ae = abs(forecast - actual) return ae # weighted mape calculation def wmape(actual, forecast): wmape = sum(abs(forecast-actual))/sum(actual) return round(100*wmape, 1) # avg mape, ape for the forecast horizon def train_error(train_df): drug_id = train_df['drug_id'].values[-1] mae = np.mean(train_df['ae']) mape = np.mean(train_df['ape']) return pd.DataFrame( [[drug_id, mae, mape]], columns=['drug_id', 'mae', 'mape']) def train_error_ets_h1(train_df): drug_id = train_df['drug_id'].values[-1] mae = np.mean(train_df['ae']) mape = np.mean(train_df['ape']) actual = np.mean(train_df['actual']) std = np.mean(train_df['std']) return pd.DataFrame( [[drug_id, mae, mape, actual, std]], columns=['drug_id', 'mae', 'mape', 'actual', 'std']) # error reporting overall def error_report(error_df, wh_drug_list, drug_history): print('MAE and MAPE error') error_df = error_df.copy() error_df['mape'] = np.round(error_df['mape'] * 100, 1) print(np.round(error_df.mae.mean()), error_df.mape.mean(), '\n') print('MAPE describe') print(error_df['mape'].describe(), '\n') print('MAPE Plots') fig, ax = plt.subplots() error_df['mape'].hist(ax=ax, bins=100, bottom=0.05) ax.set_yscale('log') ax.set_ylabel('# of SKUs') ax.set_xlabel('MAPE') print(' ', '\n') print('MAPE where error % > 100%') print(error_df.query('mape > 1').sort_values('mape')['mape'].mean(), '\n') print('MAE describe') print(error_df['mae'].describe(), '\n') print('MAE Plots') fig, ax = plt.subplots() error_df['mae'].hist(ax=ax, bins=100, bottom=0.05) ax.set_ylabel('# of SKUs') ax.set_xlabel('MAE') ax.set_yscale('log') print('ERROR MAPPING WITH BUCKETS AND HISTORY') error_bucket = error_df.merge( wh_drug_list[['drug_id', 'bucket']], on='drug_id').\ merge(drug_history, on='drug_id') fig, ax = plt.subplots() error_bucket.groupby('month_history')['mape'].mean().plot() ax.set_ylabel('MAPE') ax.set_xlabel('Available history') print(error_bucket.groupby('bucket')['mape'].mean()) return 0 def error_report_monthly(train_data, wh_drug_list, drug_history): train_data = train_data.copy() train_data['ape'] = np.round(train_data['ape'] * 100, 1) train_data['out_month'] = train_data.\ groupby('drug_id')['month_begin_dt'].rank() print('MAE and MAPE error') print( train_data.groupby('out_month')['ape'].mean(), train_data.groupby('out_month')['ae'].mean()) print('MAPE describe') print(train_data.groupby('out_month')['ape'].describe(), '\n') print('MAPE Plots') for month in train_data['out_month'].unique(): train_data_month = train_data[train_data['out_month'] == month] fig, ax = plt.subplots() train_data_month['ape'].hist(ax=ax, bins=100, bottom=0.05) plt.title('MAPE: Month out {}'.format(month)) ax.set_yscale('log') ax.set_ylabel('# of SKUs') ax.set_xlabel('APE') print(' ', '\n') print('MAPE where error % > 100%') print(train_data.query('ape > 1').groupby('out_month')['ape'].mean(), '\n') print('MAE describe') print(train_data.groupby('out_month')['ae'].describe(), '\n') print('MAE Plots') for month in train_data['out_month'].unique(): train_data_month = train_data[train_data['out_month'] == month] fig, ax = plt.subplots() train_data_month['ae'].hist(ax=ax, bins=100, bottom=0.05) plt.title('MAE: Month out {}'.format(month)) ax.set_yscale('log') ax.set_yscale('log') ax.set_ylabel('# of SKUs') ax.set_xlabel('AE') print(' ', '\n') print('ERROR MAPPING WITH BUCKETS AND HISTORY') train_bucket = train_data.merge( wh_drug_list[['drug_id', 'bucket']], on='drug_id').\ merge(drug_history, on='drug_id') fig, ax = plt.subplots() colors = {1: 'red', 2: 'green', 3: 'blue'} for month in train_bucket['out_month'].unique(): train_bucket_month = train_bucket[train_bucket['out_month'] == month] train_bucket_month.groupby('month_history')['ape'].mean().\ plot(color=colors[month], title='APE: Month out {}'.format(month), label=month) print('APE: Month out {}'.format(month)) print(train_bucket_month.groupby('bucket')['ape'].mean()) plt.title('APE: Month out vs Data history' + str(colors)) ax.set_ylabel('APE') ax.set_xlabel('Available history') return 0 # weigheted mape report def wmape_report(train_data, wh_drug_list, drug_history): train_data = train_data.copy() train_data['out_month'] = train_data.\ groupby('drug_id')['month_begin_dt'].rank() print('wMAPE', wmape(train_data['actual'], train_data['fcst'])) print('Month out wMAPE', train_data.groupby('out_month'). apply(lambda row: wmape(row['actual'], row['fcst']))) train_bucket = train_data.merge( wh_drug_list[['drug_id', 'bucket']], on='drug_id').\ merge(drug_history, on='drug_id') print('Bucket out wMAPE', train_bucket.groupby('bucket'). apply(lambda row: wmape(row['actual'], row['fcst']))) print('Bucket out 1st Month wMAPE', train_bucket.query('out_month == 1'). groupby('bucket').apply( lambda row: wmape(row['actual'], row['fcst']))) return 0
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/warehouse/forecast/errors.py
errors.py
import pandas as pd import numpy as np import datetime as dt def ranking_override_dc(features_rank, db, read_schema, logger, override_type_list=['AS/MS']): # Get distributor preference list current_date = dt.date.today().strftime('%Y-%m-%d') q_preference = """ select "dc-id", "drug-id", "distributor-preference", "distributor-id" from "{read_schema}"."distributor-ranking-preference" where "is-active" = 1 and "start-date" < '{0}' and "end-date" > '{0}' and "dc-id" is not null """.format(current_date, read_schema=read_schema) rank_override = db.get_df(q_preference) if rank_override.shape[0] != 0: # Manual rank override logic starts logger.info(f"Overriding for {override_type_list}") original_shape = features_rank.shape features_rank = features_rank.reset_index(drop=True) rank_override = rank_override.dropna() rank_override = rank_override.drop_duplicates() rank_override = rank_override.sort_values( ['dc_id', 'drug_id', 'distributor_preference', 'distributor_id'], ascending=[True, True, True, True]).reset_index(drop=True) rank_override_grp = rank_override.groupby(["dc_id", "drug_id"], as_index=False).agg( {"distributor_id": dist_order}) rank_override_grp.rename({"distributor_id": "override_dist_order"}, axis=1, inplace=True) df_merged = features_rank.merge(rank_override_grp, on=["dc_id", "drug_id"], how="left") df_rank_override = df_merged.loc[~df_merged["override_dist_order"].isna()] df_rank_override = df_rank_override.loc[ df_rank_override["request_type"].isin(override_type_list)] index_to_drop = df_rank_override.index.values.tolist() features_rank = features_rank.drop(index_to_drop) logger.info(f"Number of rows to update ranks: {original_shape[0]-features_rank.shape[0]}") df_rank_override["final_dist_1"] = df_rank_override["final_dist_1"].fillna(0) df_rank_override["final_dist_2"] = df_rank_override["final_dist_2"].fillna(0) df_rank_override["final_dist_3"] = df_rank_override["final_dist_3"].fillna(0) dist_1 = np.array(df_rank_override["final_dist_1"].astype(int)) dist_2 = np.array(df_rank_override["final_dist_2"].astype(int)) dist_3 = np.array(df_rank_override["final_dist_3"].astype(int)) stacked_dist = np.stack((dist_1, dist_2, dist_3), axis=-1) df_rank_override["prev_dist_order"] = list(stacked_dist) order_list = [] for index, row in df_rank_override.iterrows(): eval_string = str(row["override_dist_order"]) + "+" + str(list(row["prev_dist_order"])) order_list.append(str(eval(eval_string)[:3]).replace('[', '').replace(']', '').replace(' ', '')) df_rank_override["final_order"] = order_list df_final_order = df_rank_override['final_order'].str.split(pat=',', expand=True).rename( columns={0: 'final_dist_1', 1: 'final_dist_2', 2: 'final_dist_3'}) df_final_order["final_dist_1"] = df_final_order["final_dist_1"].astype(int) df_final_order["final_dist_2"] = df_final_order["final_dist_2"].astype(int) df_final_order["final_dist_3"] = df_final_order["final_dist_3"].astype(int) df_final_order = df_final_order.replace({0: np.nan}) df_rank_override["final_dist_1"] = df_final_order["final_dist_1"] df_rank_override["final_dist_2"] = df_final_order["final_dist_2"] df_rank_override["final_dist_3"] = df_final_order["final_dist_3"] df_rank_override.drop(["override_dist_order", "prev_dist_order", "final_order"], axis=1, inplace=True) features_rank = features_rank.append(df_rank_override) features_rank.sort_index(ascending=True, inplace=True) assert features_rank.shape == original_shape else: logger.info("Skipping..: no rank preferences present in table") return features_rank def ranking_override_franchisee(features_rank, db, read_schema, logger, override_type_list=['AS/MS', 'PR']): # Get distributor preference list current_date = dt.date.today().strftime('%Y-%m-%d') q_preference = """ select "dc-id", "drug-id", "distributor-preference", "distributor-id" from "{read_schema}"."distributor-ranking-preference" where "is-active" = 1 and start_date < '{0}' and end_date > '{0}' and "store-id" is not null """.format(current_date, read_schema=read_schema) rank_override = db.get_df(q_preference) if rank_override.shape[0] != 0: # Manual rank override logic starts logger.info(f"Overriding for {override_type_list}") original_shape = features_rank.shape features_rank = features_rank.reset_index(drop=True) rank_override = rank_override.dropna() rank_override = rank_override.drop_duplicates() rank_override = rank_override.sort_values( ['store_id', 'drug_id', 'distributor_preference', 'distributor_id'], ascending=[True, True, True, True]).reset_index(drop=True) rank_override_grp = rank_override.groupby(["store_id", "drug_id"], as_index=False).agg( {"distributor_id": dist_order}) rank_override_grp.rename({"distributor_id": "override_dist_order"}, axis=1, inplace=True) df_merged = features_rank.merge(rank_override_grp, on=["store_id", "drug_id"], how="left") df_rank_override = df_merged.loc[~df_merged["override_dist_order"].isna()] df_rank_override = df_rank_override.loc[ df_rank_override["request_type"].isin(override_type_list)] index_to_drop = df_rank_override.index.values.tolist() features_rank = features_rank.drop(index_to_drop) logger.info(f"Number of rows to update ranks: {original_shape[0]-features_rank.shape[0]}") df_rank_override["final_dist_1"] = df_rank_override["final_dist_1"].fillna(0) df_rank_override["final_dist_2"] = df_rank_override["final_dist_2"].fillna(0) df_rank_override["final_dist_3"] = df_rank_override["final_dist_3"].fillna(0) dist_1 = np.array(df_rank_override["final_dist_1"].astype(int)) dist_2 = np.array(df_rank_override["final_dist_2"].astype(int)) dist_3 = np.array(df_rank_override["final_dist_3"].astype(int)) stacked_dist = np.stack((dist_1, dist_2, dist_3), axis=-1) df_rank_override["prev_dist_order"] = list(stacked_dist) order_list = [] for index, row in df_rank_override.iterrows(): eval_string = str(row["override_dist_order"]) + "+" + str(list(row["prev_dist_order"])) order_list.append(str(eval(eval_string)[:3]).replace('[', '').replace(']', '').replace(' ', '')) df_rank_override["final_order"] = order_list df_final_order = df_rank_override['final_order'].str.split(pat=',', expand=True).rename( columns={0: 'final_dist_1', 1: 'final_dist_2', 2: 'final_dist_3'}) df_final_order["final_dist_1"] = df_final_order["final_dist_1"].astype(int) df_final_order["final_dist_2"] = df_final_order["final_dist_2"].astype(int) df_final_order["final_dist_3"] = df_final_order["final_dist_3"].astype(int) df_final_order = df_final_order.replace({0: np.nan}) df_rank_override["final_dist_1"] = df_final_order["final_dist_1"] df_rank_override["final_dist_2"] = df_final_order["final_dist_2"] df_rank_override["final_dist_3"] = df_final_order["final_dist_3"] df_rank_override.drop(["override_dist_order", "prev_dist_order", "final_order"], axis=1, inplace=True) features_rank = features_rank.append(df_rank_override) features_rank.sort_index(ascending=True, inplace=True) assert features_rank.shape == original_shape else: logger.info("Skipping..: no rank preferences present in table") return features_rank def dist_order(pd_arr): """To arrange in preference order and avoid duplication""" pd_arr = list(pd_arr) dist_list = [i for n, i in enumerate(pd_arr) if i not in pd_arr[:n]] return dist_list[:3]
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking/ranking_intervention.py
ranking_intervention.py
import pandas as pd import numpy as np from sklearn import preprocessing def apply_topsis(features, x_train, weights, cutoff_percentage, volume_fraction): ''' cutoff percentage is cutoff for determining whether a distributor is low volume or not''' scaler = preprocessing.MinMaxScaler() # normalize features x_normalized = pd.DataFrame( scaler.fit_transform(x_train), columns=x_train.columns) # multiply with normalized weights here. x_weighted = np.multiply(x_normalized, weights) # merge drug id, dist id and dc id for reference x_weighted = pd.merge(features[['drug_id', 'partial_distributor_id', 'partial_dc_id']], x_weighted, left_index=True, right_index=True, how='inner') # define ideal best vector here ideal_best = x_weighted.agg({'lead_time': 'min', 'margin': 'max', 'bounce_rate': 'min', 'ff': 'max', 'lost_recency': 'max', 'success_recency': 'min'}).reset_index() ideal_best = ideal_best.set_index( 'index').rename(columns={0: 'ideal_best'}) # define ideal worse vector here. ideal_worse = x_weighted.agg({'lead_time': 'max', 'margin':'min', 'bounce_rate': 'max', 'ff': 'min', 'lost_recency': 'min', 'success_recency': 'max'}).reset_index() ideal_worse = ideal_worse.set_index( 'index').rename(columns={0: 'ideal_worse'}) x_weighted_best = pd.merge(x_weighted.T, ideal_best, how='left', left_index=True, right_index=True).T x_weighted_worse = pd.merge(x_weighted.T, ideal_worse, how='left', left_index=True, right_index=True).T # euclidean distance with ideal worse is calculated here. ideal_worse_ed = x_weighted_worse[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply(lambda x: np.linalg.norm(x.values - ideal_worse['ideal_worse'].values), axis=1) ideal_worse_ed = pd.DataFrame(ideal_worse_ed, columns=['ideal_worse_ed']) # euclidean distance with ideal best is calculated here. ideal_best_ed = x_weighted_best[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply(lambda x: np.linalg.norm(x.values - ideal_best['ideal_best'].values), axis=1) ideal_best_ed = pd.DataFrame(ideal_best_ed, columns=['ideal_best_ed']) # append ideal worse euclidean distance here. x_eval = pd.merge(x_weighted, ideal_worse_ed, how='left', left_index=True, right_index=True) # append ideal best euclidean distance here. x_eval = pd.merge(x_eval, ideal_best_ed, how='left', left_index=True, right_index=True) x_eval['performance'] = (x_eval['ideal_worse_ed'] / (x_eval['ideal_worse_ed'] + x_eval['ideal_best_ed'])) * 100 x_rank = x_eval.copy() x_rank['rank'] = x_rank.groupby(['partial_dc_id', 'drug_id'])[ 'performance'].rank(method='first', ascending=False) x_rank['rank'] = x_rank['rank'].astype(int) #################heuristics ############# features_rank = pd.merge(features, x_rank[['drug_id', 'partial_distributor_id', 'partial_dc_id', 'performance', 'rank']], how='outer', validate='one_to_one') # add filter for low volume distributor exclusion for heuristic substitute volume = features_rank.groupby(['partial_dc_id', 'partial_distributor_id', 'partial_distributor_name']).agg( total_requests=('total_requests', 'sum')) small_dist = volume.copy() cutoff = max(small_dist['total_requests']) * cutoff_percentage print(max(small_dist)) print('low volumne cutoff: ', cutoff) small_dist['is_small'] = np.where(volume['total_requests'] < cutoff, 1, 0) small_dist = small_dist.reset_index() small_dist['fraction_total_requests'] = small_dist['total_requests'] / \ small_dist['total_requests'].sum() # add flag for small distributors here features_rank = pd.merge(features_rank, small_dist[['partial_dc_id', 'partial_distributor_id', 'is_small']], on=['partial_dc_id', 'partial_distributor_id'], validate='many_to_one', how='left') dc_type_performance = features_rank.groupby(['partial_dc_id', 'drug_type', 'partial_distributor_id']).agg( dc_type_performance=('performance', 'mean')).reset_index() features_rank = pd.merge(features_rank, dc_type_performance, on=['partial_dc_id', 'drug_type', 'partial_distributor_id'], how='left', validate='many_to_one') # determine dc type rank features_rank['dc_type_rank'] = \ features_rank[(features_rank['is_small'] == 0) | ((features_rank['drug_type'] != 'generic') & (features_rank['drug_type'] != 'ethical'))].groupby(['partial_dc_id', 'drug_type'])['dc_type_performance'].rank( method='dense', ascending=False).astype(int, errors='ignore') dc_type_rank_ref = pd.pivot_table(features_rank, index=['partial_dc_id', 'drug_type'], columns=['dc_type_rank'], values='partial_distributor_id').add_prefix('dc_drug_type_level_dist_').reset_index() features_rank = pd.merge(features_rank, dc_type_rank_ref[['partial_dc_id', 'drug_type', 'dc_drug_type_level_dist_1.0', 'dc_drug_type_level_dist_2.0', 'dc_drug_type_level_dist_3.0']], how='left', on=['partial_dc_id', 'drug_type'], validate='many_to_one') # append enterprise type rank enterprise_type_performance = features_rank.groupby(['drug_type', 'partial_distributor_id']).agg( enterprise_type_performance=('performance', 'mean')).reset_index() features_rank = pd.merge(features_rank, enterprise_type_performance, on=['drug_type', 'partial_distributor_id'], how='left', validate='many_to_one') features_rank['enterprise_type_rank'] = features_rank[(features_rank['is_small'] == 0) | ((features_rank['drug_type'] != 'generic') & (features_rank['drug_type'] != 'ethical'))].groupby(['drug_type'])[ 'enterprise_type_performance'].rank(method='dense', ascending=False).astype(int, errors='ignore') enterprise_type_rank_ref = pd.pivot_table(features_rank, index=['drug_type'], columns=['enterprise_type_rank'], values='partial_distributor_id').add_prefix('enterprise_drug_type_level_dist_').reset_index() features_rank = pd.merge(features_rank, enterprise_type_rank_ref[['drug_type', 'enterprise_drug_type_level_dist_1.0', 'enterprise_drug_type_level_dist_2.0', 'enterprise_drug_type_level_dist_3.0']], how='left', on=['drug_type'], validate='many_to_one') # 999 denotes that bounce rate = 1 and total requests is greater than 5 for that distributor. features_rank['rank'] = np.where( (features_rank['rank'] == 1) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 2) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 3) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) output_ranks = pd.pivot_table(features_rank, index=['partial_dc_id', 'drug_id'], columns='rank', values='partial_distributor_id')[[1, 2, 3]].add_prefix('final_dist_').add_suffix('.0').reset_index() features_rank = pd.merge(features_rank, output_ranks, on=['partial_dc_id', 'drug_id'], how='left', validate='many_to_one') # add volume fraction here features_rank['volume_fraction'] = volume_fraction ######organize output here #################### # remove .0 suffix from columns features_rank.columns = features_rank.columns.str.replace(r'.0$', '') # remove partial_ prefix from columns features_rank.columns = features_rank.columns.str.replace(r'^partial_', '') # decide columns to be included here features_rank = features_rank[['dc_id', 'dc_name', 'distributor_id', 'distributor_name', 'distributor_type', 'is_small', 'drug_id', 'drug_name', 'drug_type', 'lead_time', 'margin', 'total_lost', 'total_requests', 'bounce_rate', 'ff', 'lost_recency', 'success_recency', 'performance', 'rank', 'final_dist_1', 'final_dist_2', 'final_dist_3', 'dc_drug_type_level_dist_1', 'dc_drug_type_level_dist_2', 'dc_drug_type_level_dist_3', 'enterprise_drug_type_level_dist_1', 'enterprise_drug_type_level_dist_2', 'enterprise_drug_type_level_dist_3', 'volume_fraction']] return features_rank def apply_topsis_franchisee(features, x_train, weights, cutoff_percentage, volume_fraction): '''cutoff percentage is cutoff for determining whether a distributor is low volume or not''' scaler = preprocessing.MinMaxScaler() # normalize features x_normalized = pd.DataFrame( scaler.fit_transform(x_train), columns=x_train.columns) # multiply with normalized weights here. x_weighted = np.multiply(x_normalized, weights) # merge drug id, dist id and store id for reference x_weighted = pd.merge( features[['drug_id', 'partial_distributor_id', 'store_id']], x_weighted, left_index=True, right_index=True, how='inner') # define ideal best vector here ideal_best = x_weighted.agg( {'lead_time': 'min', 'margin': 'max', 'bounce_rate': 'min', 'ff': 'max', 'lost_recency': 'max', 'success_recency': 'min'}).reset_index() ideal_best = ideal_best.set_index( 'index').rename(columns={0: 'ideal_best'}) # define ideal worse vector here. ideal_worse = x_weighted.agg({'lead_time': 'max', 'margin': 'min', 'bounce_rate': 'max', 'ff': 'min', 'lost_recency': 'min', 'success_recency': 'max'}).reset_index() ideal_worse = ideal_worse.set_index( 'index').rename(columns={0: 'ideal_worse'}) x_weighted_best = pd.merge(x_weighted.T, ideal_best, how='left', left_index=True, right_index=True).T x_weighted_worse = pd.merge(x_weighted.T, ideal_worse, how='left', left_index=True, right_index=True).T # euclidean distance with ideal worse is calculated here. ideal_worse_ed = x_weighted_worse[ ['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply( lambda x: np.linalg.norm(x.values - ideal_worse['ideal_worse'].values), axis=1) ideal_worse_ed = pd.DataFrame(ideal_worse_ed, columns=['ideal_worse_ed']) # euclidean distance with ideal best is calculated here. ideal_best_ed = x_weighted_best[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']].apply( lambda x: np.linalg.norm(x.values - ideal_best['ideal_best'].values), axis=1) ideal_best_ed = pd.DataFrame(ideal_best_ed, columns=['ideal_best_ed']) # append ideal worse euclidean distance here. x_eval = pd.merge(x_weighted, ideal_worse_ed, how='left', left_index=True, right_index=True) # append ideal best euclidean distance here. x_eval = pd.merge(x_eval, ideal_best_ed, how='left', left_index=True, right_index=True) x_eval['performance'] = (x_eval['ideal_worse_ed'] / (x_eval['ideal_worse_ed'] + x_eval[ 'ideal_best_ed'])) * 100 x_rank = x_eval.copy() x_rank['rank'] = x_rank.groupby(['store_id', 'drug_id'])[ 'performance'].rank(method='first', ascending=False) x_rank['rank'] = x_rank['rank'].astype(int) #################heuristics ############# features_rank = pd.merge(features, x_rank[['drug_id', 'partial_distributor_id', 'store_id', 'performance', 'rank']], how='outer', validate='one_to_one') # add filter for low volume distributor exclusion for heuristic substitute volume = features_rank.groupby(['store_id', 'partial_distributor_id', 'partial_distributor_name']).agg( total_requests=('total_requests', 'sum')) small_dist = volume.copy() cutoff = max(small_dist['total_requests']) * cutoff_percentage print(max(small_dist)) print('low volumne cutoff: ', cutoff) small_dist['is_small'] = np.where(volume['total_requests'] < cutoff, 1, 0) small_dist = small_dist.reset_index() small_dist['fraction_total_requests'] = small_dist['total_requests'] / \ small_dist['total_requests'].sum() # add flag for small distributors here features_rank = pd.merge(features_rank, small_dist[['store_id', 'partial_distributor_id', 'is_small']], on=['store_id', 'partial_distributor_id'], validate='many_to_one', how='left') store_type_performance = features_rank.groupby( ['store_id', 'drug_type', 'partial_distributor_id']).agg( store_type_performance=('performance', 'mean')).reset_index() features_rank = pd.merge(features_rank, store_type_performance, on=['store_id', 'drug_type', 'partial_distributor_id'], how='left', validate='many_to_one') # determine store type rank features_rank['store_type_rank'] = \ features_rank[(features_rank['is_small'] == 0) | ( (features_rank['drug_type'] != 'generic') & ( features_rank['drug_type'] != 'ethical'))].groupby( ['store_id', 'drug_type'])['store_type_performance'].rank( method='dense', ascending=False).astype(int, errors='ignore') store_type_rank_ref = \ pd.pivot_table(features_rank, index=['store_id', 'drug_type'], columns=['store_type_rank'], values='partial_distributor_id')[[1, 2, 3]].add_prefix( 'store_drug_type_level_dist_').reset_index() features_rank = pd.merge(features_rank, store_type_rank_ref[['store_id', 'drug_type', 'store_drug_type_level_dist_1', 'store_drug_type_level_dist_2', 'store_drug_type_level_dist_3']], how='left', on=['store_id', 'drug_type'], validate='many_to_one') # 999 denotes that bounce rate = 1 and total requests is greater than 5 for that distributor. features_rank['rank'] = np.where( (features_rank['rank'] == 1) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 2) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) features_rank['rank'] = np.where( (features_rank['rank'] == 3) & (features_rank['bounce_rate'] == 1) & ( features_rank['total_requests'] > 5), 999, features_rank['rank']) output_ranks = \ pd.pivot_table(features_rank, index=['store_id', 'drug_id'], columns='rank', values='partial_distributor_id')[[1, 2, 3]].add_prefix( 'final_dist_').add_suffix('.0').reset_index() features_rank = pd.merge(features_rank, output_ranks, on=['store_id', 'drug_id'], how='left', validate='many_to_one') # add volume fraction here features_rank['volume_fraction'] = volume_fraction ######organize output here #################### # remove .0 suffix from columns features_rank.columns = features_rank.columns.str.replace(r'.0$', '') # remove partial_ prefix from columns features_rank.columns = features_rank.columns.str.replace(r'^partial_', '') # decide columns to be included here features_rank = features_rank[['store_id', 'store_name', 'franchisee_id', 'distributor_id', 'distributor_name', 'distributor_type', 'is_small', 'drug_id', 'drug_name', 'drug_type', 'lead_time', 'margin', 'total_lost', 'total_requests', 'bounce_rate', 'ff', 'lost_recency', 'success_recency', 'performance', 'rank', 'final_dist_1', 'final_dist_2', 'final_dist_3', 'store_drug_type_level_dist_1', 'store_drug_type_level_dist_2', 'store_drug_type_level_dist_3', 'volume_fraction']] return features_rank
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking/topsis.py
topsis.py
import pandas as pd from zeno_etl_libs.utils.distributor_ranking.pull_data import pull_data, pull_data_franchisee from zeno_etl_libs.utils.distributor_ranking.preprocess_features import preprocess_features_dc, preprocess_features_franchisee from zeno_etl_libs.utils.distributor_ranking.calculate_features import calculate_features from zeno_etl_libs.utils.distributor_ranking.topsis import apply_topsis, apply_topsis_franchisee def ranking_calc_dc(time_interval, weights_as, weights_pr, as_low_volume_cutoff, pr_low_volume_cutoff, volume_fraction, db, read_schema, logger): '''output distributor ranking for AS and PR separately''' logger.info('starting to import data') # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval + 7 df_features, df_distributors = pull_data(time_interval, db, read_schema) logger.info('finished importing data') ######################### preprocessing starts ######################### logger.info('started preprocessing') df_features = preprocess_features_dc(df_features, db, read_schema) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id'], how='left', validate='many_to_one') logger.info('finished preprocessing') ########################## preprocessing ends ########################## ####################### features calculation starts ####################### features = calculate_features(df_features, group_cols=['partial_dc_id','partial_distributor_id','drug_id']) ##### add neccessary columns in features ##### # add drug type column here features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist type column here features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_type']].drop_duplicates(), on=['partial_distributor_id'], how='left', validate='many_to_one') # add dc name here. features = pd.merge(features, df_features[['partial_dc_id', 'dc_name']].dropna().drop_duplicates(), on=['partial_dc_id'], validate='many_to_one', how='left') # add drug name here features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') #### apply topsis #### # weights format is [lead time, margin, bounce rate, ff, lost recency, success recency] x_train = features[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']] features_as = apply_topsis(features=features, x_train=x_train, weights=weights_as, cutoff_percentage=as_low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for as') features_pr = apply_topsis(features=features, x_train=x_train, weights=weights_pr, cutoff_percentage=pr_low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for pr') features_as.loc[:, 'request_type'] = 'AS/MS' features_pr.loc[:, 'request_type'] = 'PR' features_rank = pd.concat([features_as, features_pr]) return features_rank def ranking_calc_franchisee(time_interval, weights_as, weights_pr, low_volume_cutoff, volume_fraction, db, read_schema, logger): '''output distributor ranking for AS and PR separately''' logger.info('starting to import data') # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval + 7 df_features, df_distributors = pull_data_franchisee(time_interval, db, read_schema) logger.info('finished importing data') ######################### preprocessing starts ######################### logger.info('started preprocessing') df_features = preprocess_features_franchisee(df_features, db, read_schema) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id'], how='left', validate='many_to_one') logger.info('finished preprocessing') ########################## preprocessing ends ########################## ####################### features calculation starts ####################### features = calculate_features(df_features, group_cols=['store_id','partial_distributor_id', 'drug_id']) ##### add neccessary columns in features ##### # add drug type column here features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist type column here features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_type']].drop_duplicates(), on=['partial_distributor_id'], how='left', validate='many_to_one') # add store name and franchisee_id here. features = pd.merge(features, df_features[ ['store_id', 'store_name', 'franchisee_id']].dropna().drop_duplicates(), on=['store_id'], validate='many_to_one', how='left') # add drug name here features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') #### apply topsis #### # weights format is [lead time, margin, bounce rate, ff, lost recency, success recency] x_train = features[['lead_time', 'margin', 'bounce_rate', 'ff', 'lost_recency', 'success_recency']] features_rank_as = apply_topsis_franchisee(features=features, x_train=x_train, weights=weights_as, cutoff_percentage=low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for franchisee as') features_rank_pr = apply_topsis_franchisee(features=features, x_train=x_train, weights=weights_pr, cutoff_percentage=low_volume_cutoff, volume_fraction=volume_fraction) logger.info('applied topsis for franchisee pr') features_rank_as.loc[:, 'request_type'] = 'AS/MS' features_rank_pr.loc[:, 'request_type'] = 'PR' features_rank = pd.concat([features_rank_as, features_rank_pr]) return features_rank
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking/distributor_ranking_calc.py
distributor_ranking_calc.py
import pandas as pd import numpy as np def preprocess_features_dc(df_features, db, read_schema): '''df_features is the raw data variable ''' # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where selling rate is 0 otherwise margin becomes infinity df_features = df_features[df_features['selling_rate']!=0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) # if no dc information is present then remove those cases. df_features = df_features[((~df_features['partial_dc_id'].isna()) | ( ~df_features['forward_dc_id'].isna()))] # for those cases where invoice doesn't exist, take invoice dc as obtained from sdm table df_features['partial_dc_id'] = df_features['partial_dc_id'].fillna( df_features['forward_dc_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs entries print('pulling drug-distributor filter data') q_drug_distributor = """select DISTINCT "distributor-id" as "partial_distributor_id", "drug-id" as drug_id from "{read_schema}"."distributor-drugs" dd """ drug_distributor_list_filter = db.get_df(q_drug_distributor.format(read_schema=read_schema)) df_features = pd.merge(df_features, drug_distributor_list_filter, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') return df_features def preprocess_features_franchisee(df_features, db, read_schema): '''df_features is the raw data variable ''' # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where selling rate is 0 otherwise margin becomes infinity df_features = df_features[df_features['selling_rate']!=0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs entries print('pulling drug-distributor filter data') q_drug_distributor = """select DISTINCT "distributor-id" as "partial_distributor_id", "drug-id" as drug_id from "{read_schema}"."distributor-drugs" dd """ drug_distributor_list_filter = db.get_df(q_drug_distributor.format(read_schema=read_schema)) df_features = pd.merge(df_features, drug_distributor_list_filter, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') return df_features
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking/preprocess_features.py
preprocess_features.py
import pandas as pd def postprocess_ranking_dc(features_rank, volume_fraction): tech_input = features_rank.copy() # drop cases for tech input where all 3 distributor assigned are NULL. # Since they automatically need to go to dc drug type level. tech_input = tech_input[~((tech_input['final_dist_1'].isna()) & ( tech_input['final_dist_2'].isna()) & ( tech_input['final_dist_3'].isna()))] tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_2']) tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_2'], 'final_dist_2'] = float('NaN') tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') tech_input['final_dist_2'] = tech_input['final_dist_2'].fillna( tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_2'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') # append dc_drug_type entries as separate rows in tech input dc_drug_type_entries = features_rank[ ['dc_id', 'drug_type', 'request_type', 'dc_drug_type_level_dist_1', 'dc_drug_type_level_dist_2', 'dc_drug_type_level_dist_3']].drop_duplicates().rename( columns={'dc_drug_type_level_dist_1': 'final_dist_1', 'dc_drug_type_level_dist_2': 'final_dist_2', 'dc_drug_type_level_dist_3': 'final_dist_3' }) dc_drug_type_entries['drug_id'] = float('NaN') dc_drug_type_entries['volume_fraction'] = volume_fraction dc_drug_type_entries = dc_drug_type_entries[ ['dc_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = pd.concat([tech_input, dc_drug_type_entries]) # append enterprise_drug_type entries as separate rows in tech input enterprise_drug_type_entries = features_rank[ ['drug_type', 'request_type', 'enterprise_drug_type_level_dist_1', 'enterprise_drug_type_level_dist_2', 'enterprise_drug_type_level_dist_3']].drop_duplicates().rename( columns={'enterprise_drug_type_level_dist_1': 'final_dist_1', 'enterprise_drug_type_level_dist_2': 'final_dist_2', 'enterprise_drug_type_level_dist_3': 'final_dist_3'}) enterprise_drug_type_entries['dc_id'] = float('NaN') enterprise_drug_type_entries['drug_id'] = float('NaN') enterprise_drug_type_entries['volume_fraction'] = volume_fraction enterprise_drug_type_entries = enterprise_drug_type_entries[ ['dc_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = pd.concat([tech_input, enterprise_drug_type_entries]) tech_input["store_id"] = float('NaN') tech_input["franchisee_id"] = 1 # ZIPPIN PHARMA tech_input = tech_input[['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = tech_input.drop_duplicates() return tech_input def postprocess_ranking_franchisee(features_rank, volume_fraction): tech_input = features_rank.copy() # drop cases for tech input where all 3 distributor assigned are NULL. # Since they automatically need to go to store drug type level. tech_input = tech_input[~((tech_input['final_dist_1'].isna()) & ( tech_input['final_dist_2'].isna()) & (tech_input['final_dist_3'].isna()))] tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_2']) tech_input['final_dist_1'] = tech_input['final_dist_1'].fillna( tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_2'], 'final_dist_2'] = float('NaN') tech_input.loc[tech_input['final_dist_1'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') tech_input['final_dist_2'] = tech_input['final_dist_2'].fillna(tech_input['final_dist_3']) tech_input.loc[tech_input['final_dist_2'] == tech_input['final_dist_3'], 'final_dist_3'] = float('NaN') tech_input = tech_input[['store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction','final_dist_1', 'final_dist_2', 'final_dist_3']] # append store_drug_type entries as separate rows in tech input store_drug_type_entries = features_rank[ ['store_id', 'franchisee_id', 'drug_type', 'request_type', 'store_drug_type_level_dist_1', 'store_drug_type_level_dist_2', 'store_drug_type_level_dist_3']].drop_duplicates().rename( columns={'store_drug_type_level_dist_1': 'final_dist_1', 'store_drug_type_level_dist_2': 'final_dist_2', 'store_drug_type_level_dist_3': 'final_dist_3' }) store_drug_type_entries['drug_id'] = float('NaN') store_drug_type_entries['volume_fraction'] = volume_fraction store_drug_type_entries = store_drug_type_entries[ ['store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = pd.concat([tech_input, store_drug_type_entries], sort=False) tech_input['dc_id'] = float('NaN') tech_input = tech_input[['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] tech_input = tech_input.drop_duplicates() return tech_input
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking/postprocess_ranking.py
postprocess_ranking.py
from functools import reduce import numpy as np import pandas as pd def calculate_features(df_features, group_cols): """ DC-LEVEL: group_cols=['partial_dc_id','partial_distributor_id', 'drug_id'] FRANCHISEE-LEVEL: group_cols=['store_id','partial_distributor_id', 'drug_id'] """ '''outputs the calculated features when supplied with raw data''' dfx = df_features[df_features['invoice_count'] != 0] ####################### feature calculation starts ######################## ####lead time calculations ######## df_lead_time = df_features.copy() cond_0 = (df_lead_time['invoice_count'] == 0) df_lead_time['lead_time'] = float('NaN') # for those cases where reordered does not exists and invoice count is 0 # lead time is invoiced-at - created at for invoice count 0 df_lead_time['lead_time'] = np.where((df_lead_time['original_created_at_2'].isna()) & (~cond_0), (df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at']).astype('timedelta64[h]'), df_lead_time['lead_time']) # for cases where invoiced_at - reordered_at < 8, lead time is unreliable. df_lead_time['lead_time'] = np.where( (~df_lead_time['original_created_at_2'].isna() | (((df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at_2']).astype('timedelta64[h]')) > 8)) & (~cond_0), (df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at_2']).astype('timedelta64[h]'), df_lead_time['lead_time']) df_lead_time['lead_time'] = np.where( (~df_lead_time['original_created_at_2'].isna() | (((df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at_2']).astype('timedelta64[h]')) < 8)) & (~cond_0), (df_lead_time['partial_invoiced_at'] - df_lead_time['original_created_at']).astype('timedelta64[h]'), df_lead_time['lead_time']) # invoice count 0, take lead time as max value # This is done because we are eventually scaling things between 0 to 1. df_lead_time['lead_time'] = np.where(cond_0, df_lead_time['lead_time'].max(), df_lead_time['lead_time']) # If after taking the condition for lead time less than 8, # still cases are present then those are unreliable, take lead time as mean. df_lead_time.loc[df_lead_time['lead_time'] < 8, 'lead_time'] = df_lead_time[df_lead_time['lead_time'] > 8][ 'lead_time'].mean() # lead time for a distributor per drug id is the average of lead time per order. df_lead_time = df_lead_time.groupby(group_cols).agg( lead_time=('lead_time', 'mean')).reset_index() # sanity check assert df_lead_time.shape[0] == \ df_features[group_cols].drop_duplicates().shape[0] print('finished lead time calculations') ####### margin calculation starts ####### df_margin = dfx.copy() df_margin['margin'] = (df_margin['selling_rate'] - df_margin['distributor_rate']) / df_margin['selling_rate'] df_margin = df_margin.groupby(group_cols).agg(margin=('margin', 'mean')).reset_index() # sanity check assert df_margin.shape[0] == dfx[group_cols].drop_duplicates().shape[0] print('finished margin calculations') ####### bounce rate calculation ####### df_br = df_features.groupby(group_cols).agg( total_lost=('is_lost', 'sum'), total_requests=('is_lost', 'count')).reset_index() df_br['bounce_rate'] = (df_br['total_lost']) / df_br['total_requests'] # sanity check assert df_br.shape[0] == df_features[group_cols].drop_duplicates().shape[0] print('finished bounce rate calculations') ####### ff calculation ####### df_sorted = dfx.groupby(['short_book_1_id'], as_index=False).apply( lambda x: x.sort_values(by=['partial_invoiced_at'])) # for multiple invoices, calculate cumulative fulfilled quantities df_sorted = df_sorted.groupby(['short_book_1_id']).apply( lambda x: x['partial_quantity'].cumsum()).reset_index().rename( columns={'partial_quantity': 'cum_partial_quantity'}) df_sorted = df_sorted.set_index('level_1') df_fulfillment = pd.merge(df_sorted, dfx, left_index=True, right_index=True, how='left', suffixes=('', '_y')) assert df_fulfillment['short_book_1_id'].equals( df_fulfillment['short_book_1_id_y']) df_fulfillment = df_fulfillment[ ['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'cum_partial_quantity']] # cum required quantity is quantity left after subtracting cum quantity from all previous invoices. df_fulfillment['cum_required_quantity'] = df_fulfillment['original_order'] - \ df_fulfillment['cum_partial_quantity'] # the real required quantity while placing an order is quantity # unfulfilled by the previours invoice. Hence shifted by 1 df_fulfillment['actual_required'] = df_fulfillment.groupby( ['short_book_1_id']).shift(1)['cum_required_quantity'] # fill single invoices with the original order df_fulfillment['actual_required'] = df_fulfillment['actual_required'].fillna( df_fulfillment['original_order']) # put actual required = 0 when ordered exceeds required. df_fulfillment.loc[df_fulfillment['actual_required'] < 0, 'actual_required'] = 0 df_fulfillment['redundant_order_flag'] = np.where( df_fulfillment['actual_required'] == 0, 1, 0) df_fulfillment = df_fulfillment[['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'actual_required', 'redundant_order_flag']] df_fulfillment['ff'] = df_fulfillment['partial_quantity'] / \ df_fulfillment['actual_required'] # for those quantities where nothing was required and still order placed, take them as 0. df_fulfillment.loc[(df_fulfillment['actual_required'] == 0) & ( df_fulfillment['partial_quantity'] > 0), 'ff'] = 1 df_fulfillment.loc[(df_fulfillment['ff'] > 1), 'ff'] = 1 # removed redundant orders here. df_ff = df_fulfillment[df_fulfillment['redundant_order_flag'] != 1].groupby(group_cols).agg(ff=('ff', 'mean')).reset_index() print('finished ff calculations') ####### recency lost calculations ####### # number of days ago it was marked lost. df_recency_lost = df_features[df_features['is_lost'] == 1].groupby(group_cols).agg( max_lost_date=('original_created_at', 'max')).reset_index() df_recency_lost['lost_recency'] = ( pd.datetime.today() - pd.to_datetime(df_recency_lost['max_lost_date'])).dt.days df_recency_lost = df_recency_lost[group_cols + ['lost_recency']] ####### recency success calculations ####### # number of days ago it was marked success df_recency_success = df_features[df_features['is_lost'] == 0].groupby(group_cols).agg( max_success_date=('original_created_at', 'max')).reset_index() df_recency_success['success_recency'] = ( pd.datetime.today() - pd.to_datetime(df_recency_success['max_success_date'])).dt.days df_recency_success = df_recency_success[group_cols + ['success_recency']] print('finished recency calculations') ######################## feature calculation ends ######################### ################## compiling all the features ############################# meg_list = [df_lead_time, df_margin, df_br, df_ff, df_recency_lost, df_recency_success] features = reduce( lambda left, right: pd.merge(left, right, on=group_cols, how='outer'), meg_list) # lead_time: Replace lead time NA (i.e. bounce rate 1) with max lead time. features['lead_time'] = features['lead_time'].fillna( features['lead_time'].max()) # margin features['margin'] = features['margin'].fillna(features['margin'].mean()) # ff features.loc[(features['ff'].isna()) & ( features['bounce_rate'] == 1), 'ff'] = 0 features['ff'] = features['ff'].fillna(features['ff'].mean()) # for bounce rate = 0. features['lost_recency'] = features['lost_recency'].fillna( features['lost_recency'].max()) # for bounce rate = 1 features['success_recency'] = features['success_recency'].fillna( features['success_recency'].max()) print('finished compiling features') return features
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking/calculate_features.py
calculate_features.py
Q_FEATURES = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."dc-id" as "partial-dc-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", d."drug-name", d.type as "drug_type", sdm."forward-dc-id", s.name as "dc-name" from "{read_schema}"."short-book-1" sb left join "{read_schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{read_schema}".invoices i on sbi."invoice-id" = i.id left join "{read_schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{read_schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{read_schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{read_schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{read_schema}".drugs d on sb."drug-id" = d.id left join "{read_schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{read_schema}"."store-dc-mapping" sdm on sb."store-id" = sdm."store-id" and dis.type = sdm."drug-type" left join "{read_schema}".stores s on i."dc-id" = s.id where DATEDIFF(day, date(sb."created-at"), current_date) <= {0} and DATEDIFF(day, date(sb."created-at"), current_date) >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' """ Q_FEATURES_FRANCHISEE = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."store-id", ss."franchisee-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", d."drug-name", d.type as "drug_type", ss."name" as "store-name" from "{read_schema}"."short-book-1" sb left join "{read_schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{read_schema}".invoices i on sbi."invoice-id" = i.id left join "{read_schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{read_schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{read_schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{read_schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{read_schema}".drugs d on sb."drug-id" = d.id left join "{read_schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{read_schema}".stores s on i."dc-id" = s.id left join "{read_schema}".stores ss on sb."store-id" = ss.id where DATEDIFF(day, date(sb."created-at"), current_date) <= {0} and DATEDIFF(day, date(sb."created-at"), current_date) >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' and ss."franchisee-id" != 1 """ Q_DISTRIBUTORS = """ select id as "partial-distributor-id", name as "partial-distributor-name", type as "partial-distributor-type" from "{read_schema}".distributors """ def pull_data(time_interval, db, read_schema): ''' time interval is the buffer cutoff after which data isn't taken. 7 days in our case''' df_features = db.get_df(Q_FEATURES.format(time_interval, read_schema=read_schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(read_schema=read_schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) return df_features, df_distributors def pull_data_franchisee(time_interval, db, read_schema): ''' time interval is the buffer cutoff after which data isn't taken. 7 days in our case''' df_features = db.get_df(Q_FEATURES_FRANCHISEE.format(time_interval, read_schema=read_schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(read_schema=read_schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) return df_features, df_distributors
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking/pull_data.py
pull_data.py
from datetime import timedelta class GetData: """To fetch required data from SQL and PostGre""" def __init__(self, store_ids, reset_date, days_to_replenish, days_delta, db, schema, logger): """ Arguments: store_ids: (list) store id list reset_date: (datetime.date) format days_to_replenish: (int) days to skip for inventory replenishment from date of reset """ self.store_ids = str(store_ids).replace('[', '(').replace(']', ')') self.reset_date = reset_date.strftime('%Y-%m-%d') self.date_before_90days = (reset_date - timedelta(90)).strftime('%Y-%m-%d') self.start_date = (reset_date + timedelta(days_to_replenish)).strftime('%Y-%m-%d') self.end_date = (reset_date + timedelta(days_to_replenish+days_delta-1)).strftime('%Y-%m-%d') # considering sales period of 28 days (start & end date included in sql) self.db = db self.schema = schema self.logger = logger def ipc_ss(self, store_id, sql_cut_off_condition): """Fetch safety stock table for current IPC store and reset date""" self.logger.info(f"Fetching ipc_ss data for store_id: {store_id}") q_ss = """ select * from "{schema}"."ipc-safety-stock" where "store-id" = {0} and "reset-date" = '{1}' {2} """.format(store_id, self.reset_date, sql_cut_off_condition, schema=self.schema) df_ss = self.db.get_df(q_ss) df_ss.columns = [c.replace('-', '_') for c in df_ss.columns] df_ss["store_type"] = "ipc" return df_ss def non_ipc_ss(self, store_id, sql_cut_off_condition): """Fetch safety stock table for current Non-IPC store and reset date""" self.logger.info(f"Fetching non_ipc_ss data for store_id: {store_id}") q_ss = """ select * from "{schema}"."non-ipc-safety-stock" where "store-id" = {0} and "reset-date" = '{1}' {2} """.format(store_id, self.reset_date, sql_cut_off_condition, schema=self.schema) df_ss = self.db.get_df(q_ss) df_ss.columns = [c.replace('-', '_') for c in df_ss.columns] df_ss["store_type"] = "non_ipc" return df_ss def ipc2_ss(self, store_id, sql_cut_off_condition): """Fetch safety stock table for IPC2.0 store and reset date""" self.logger.info(f"Fetching ipc2_ss data for store_id: {store_id}") q_ss = """ select * from "{schema}"."ipc2-safety-stock" where "store-id" = {0} and "reset-date" = '{1}' {2} """.format(store_id, self.reset_date, sql_cut_off_condition, schema=self.schema) df_ss = self.db.get_df(q_ss) df_ss.columns = [c.replace('-', '_') for c in df_ss.columns] df_ss["store_type"] = "ipc2" return df_ss def curr_inv(self): """Fetch current inventory for all stores""" self.logger.info("Fetching inventory data") q_inv = """ SELECT "drug-id" as drug_id, "store-id" as store_id, AVG(ptr) AS average_ptr, SUM("locked-quantity"+quantity+"locked-for-audit"+"locked-for-transfer" +"locked-for-check"+"locked-for-return") AS current_inventory FROM "{schema}"."inventory-1" WHERE "store-id" in {0} GROUP BY "store-id", "drug-id" """.format(self.store_ids, schema=self.schema) df_inv_comb = self.db.get_df(q_inv) return df_inv_comb def sales_3m(self): """Fetch last 3 months sales data for finding weather NPI or not.""" self.logger.info("Fetching 3 months sales data") q_3m_sales = """ select "drug-id", "store-id", sum("net-quantity") as "net-sales-3m" from "{schema}".sales where "store-id" in {0} and date("created-at") between '{1}' and '{2}' group by "store-id", "drug-id" """.format(self.store_ids, self.date_before_90days, self.reset_date, schema=self.schema) df_3m_sales_comb = self.db.get_df(q_3m_sales) df_3m_sales_comb.columns = [c.replace('-', '_') for c in df_3m_sales_comb.columns] return df_3m_sales_comb def sales_28day(self): """Fetch 28 days sales data after date of reset""" self.logger.info("Fetching 28 days sales data") q_sales = """ select "drug-id", "store-id", sum("net-quantity") as "net-sales" from "{schema}".sales where "store-id" in {0} and date("created-at") between '{1}' and '{2}' group by "store-id", "drug-id" """.format(self.store_ids, self.start_date, self.end_date, schema=self.schema) df_sales_comb = self.db.get_df(q_sales) df_sales_comb.columns = [c.replace('-', '_') for c in df_sales_comb.columns] return df_sales_comb def pr_loss_28day(self): """Fetch 28 days PR losses after date of reset""" self.logger.info("Fetching 28 days pr loss data") q_pr = """ select "drug-id", "store-id", sum("loss-quantity") as "pr-loss" from "{schema}"."cfr-patient-request" where "shortbook-date" between '{1}' and '{2}' and "store-id" in {0} group by "store-id", "drug-id" """.format(self.store_ids, self.start_date, self.end_date, schema=self.schema) df_pr_loss_comb = self.db.get_df(q_pr) df_pr_loss_comb.columns = [c.replace('-', '_') for c in df_pr_loss_comb.columns] df_pr_loss_comb["pr_loss"] = df_pr_loss_comb["pr_loss"].astype(float) return df_pr_loss_comb
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/fcst_performance/get_data.py
get_data.py
from datetime import timedelta def get_store_ids(reset_date, exclude_stores, db, schema): """ Get IPC and Non-IPC store-ids which was reset on specified reset date Parameters: reset_date: (datetime.date) format Returns: store_ids: (list) of ipc and non-ipc store ids store_type_map: (list) of ipc and non-ipc store types respectively """ reset_date = reset_date.strftime('%Y-%m-%d') if not exclude_stores: exclude_stores = "(0)" else: exclude_stores = tuple(exclude_stores) # Get list of all store_ids q_stores = f""" select "id", name, "opened-at" as opened_at from "{schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {exclude_stores} """ stores_list = list(db.get_df(q_stores)["id"]) stores_list_sql = str(stores_list).replace('[', '(').replace(']', ')') # Get list of IPC stores which was reset on specified reset date q_ipc = """ select distinct "store-id" from "{schema}"."ipc-safety-stock" where "store-id" in {0} and "reset-date" = '{1}' """.format(stores_list_sql, reset_date, schema=schema) ipc_stores = list(db.get_df(q_ipc)["store-id"]) # Get list of Non-IPC stores which was reset on specified reset date q_non_ipc = """ select distinct "store-id" from "{schema}"."non-ipc-safety-stock" where "store-id" in {0} and "reset-date" = '{1}' """.format(stores_list_sql, reset_date, schema=schema) non_ipc_stores = list(db.get_df(q_non_ipc)["store-id"]) # Get list of Non-IPC stores which was reset on specified reset date q_ipc2 = """ select distinct "store-id" from "{schema}"."ipc2-safety-stock" where "store-id" in {0} and "reset-date" = '{1}' """.format(stores_list_sql, reset_date, schema=schema) ipc2_stores = list(db.get_df(q_ipc2)["store-id"]) store_ids = ipc_stores + non_ipc_stores + ipc2_stores store_type_map = ["ipc"] * len(ipc_stores) \ + ["non_ipc"] * len(non_ipc_stores) \ + ["ipc2"] * len(ipc2_stores) return store_ids, store_type_map def handle_multiple_resets(reset_date, store_id, store_type, db, schema, logger): """ Check if multiple reset occurred on specified reset date Parameters: reset_date: (datetime.date) format store_id: (int) format store_type: (str) format IPC or Non-IPC Returns: sql_cut_off_condition: (str) sql condition to use in query for taking only the latest reset that occurred. """ sql_reset_date = reset_date.strftime('%Y-%m-%d') if store_type == "ipc": sql_store_type = "ipc" elif store_type == "non_ipc": sql_store_type = "non-ipc" else: sql_store_type = "ipc2" q_drug = """ select "drug-id" from "{schema}"."{0}-safety-stock" where "store-id" = {1} and "reset-date" = '{2}' limit 1 """.format(sql_store_type, store_id, sql_reset_date, schema=schema) rand_drug_id = db.get_df(q_drug)["drug-id"][0] q_upload_time = """ select * from "{schema}"."{0}-safety-stock" where "store-id" = {1} and "reset-date" = '{2}' and "drug-id" = {3} order by "updated-at" desc """.format(sql_store_type, store_id, sql_reset_date, rand_drug_id, schema=schema) df_upload_time = db.get_df(q_upload_time)["updated-at"] reset_count = df_upload_time.shape[0] if reset_count > 1: logger.info(f"Multiple resets detected for store_id: {store_id}") cut_off_datetime = df_upload_time[0] - timedelta(minutes=1) sql_cut_off_condition = """ and "updated-at" > '{}' """.format( str(cut_off_datetime)) else: sql_cut_off_condition = "" return sql_cut_off_condition
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/fcst_performance/helper_functions.py
helper_functions.py
from datetime import date from zeno_etl_libs.utils.fcst_performance import metric_calc import pandas as pd def cal_fields_store_drug_level(df_ss, df_inv, df_sales, df_pr_loss, df_3m_sales): """ Calculate all the fields for store-drug level forecast performance assessment Parameters: df_ss: (pd.DataFrame) safety stock data IPC or Non-IPC df_inv: (pd.DataFrame) current inventory data df_sales: (pd.DataFrame) 28 days sales data df_pr_loss: (pd.DataFrame) 28 days pr loss data df_3m_sales: (pd.DataFrame) 3 month sales before reset (for NPI) Returns: df_sdl: (pd-DataFrame) of store-drug level performance metrics """ # Merge Inventory and NPI dataframe df_inv_npi = pd.merge(df_inv, df_3m_sales, on="drug_id", how="left") df_inv_npi.net_sales_3m.fillna(0, inplace=True) df_inv_npi['is_npi'] = (df_inv_npi['net_sales_3m'] == 0) # Merge sales and PR loss dataframe df_sales_pr = pd.merge(df_sales, df_pr_loss, on="drug_id", how="left") df_sales_pr.pr_loss.fillna(0, inplace=True) # Merge inventory, NPI, sales and PR loss dataframes df_merged = pd.merge(df_inv_npi, df_sales_pr, on="drug_id", how="left") df_merged.net_sales.fillna(0, inplace=True) df_merged.pr_loss.fillna(0, inplace=True) df_merged = df_merged[["drug_id", "current_inventory", "is_npi", "net_sales", "pr_loss"]] df_merged.rename(columns={"net_sales": "net_sales_28days", "pr_loss": "pr_loss_28days"}, inplace=True) # Merge all collected data with SS table df_all_combined = pd.merge(df_ss, df_merged, on="drug_id", how="left") df_all_combined = df_all_combined[df_all_combined['drug_name'].notna()] df_all_combined.current_inventory.fillna(0, inplace=True) df_all_combined.net_sales_28days.fillna(0, inplace=True) df_all_combined.pr_loss_28days.fillna(0, inplace=True) df_all_combined.is_npi.fillna(True, inplace=True) # Creating dataframe of required format df_all_combined.rename(columns={"curr_inventory": "inventory_at_reset", "std": "fcst_std", "type": "drug_type", "current_inventory": "inventory_at_measurement", "avg_ptr": "fptr"}, inplace=True) df_all_combined["is_npi"] = df_all_combined["is_npi"].apply( lambda x: 'Y' if x == True else 'N') df_sdl = df_all_combined[["store_id", "store_type", "drug_id", "drug_name", "drug_type", "drug_grade", "reset_date", "bucket", "is_npi", "model", "percentile", "fcst", "fcst_std", "safety_stock", "reorder_point", "order_upto_point", "inventory_at_reset", "fptr", "inventory_at_measurement", "net_sales_28days", "pr_loss_28days"]].copy() df_sdl["demand_28days"] = df_sdl["net_sales_28days"] + df_sdl["pr_loss_28days"] df_sdl["fcst_error"] = df_sdl["fcst"] - df_sdl["demand_28days"] for index, row in df_sdl.iterrows(): forecast = row["fcst"] actual = row["demand_28days"] df_sdl.loc[index, "perc_error"] = metric_calc.pe(forecast, actual) df_sdl["measurement_date"] = date.today() return df_sdl
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/fcst_performance/data_operations.py
data_operations.py
import pandas as pd from zeno_etl_libs.utils.distributor_ranking2.pull_data import \ pull_data_dc, pull_data_franchisee from zeno_etl_libs.utils.distributor_ranking2.calculate_ranks import \ calc_ranks_dc, get_final_ranks_dc, calc_ranks_franchisee, \ get_final_ranks_franchisee from zeno_etl_libs.utils.distributor_ranking2.preprocess_features import \ preprocess_features_dc, preprocess_features_franchisee from zeno_etl_libs.utils.distributor_ranking2.calculate_features import \ calculate_features from zeno_etl_libs.utils.distributor_ranking2.post_process_ranking import \ post_process_ranking_dc, post_process_ranking_franchisee def ranking_calc_dc(reset_date, time_interval_dc, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger, db, schema): # =============================== PULL DATA =============================== logger.info("Pulling data for DC") # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval_dc + 7 df_features, df_distributors, df_dc_distributors_mapping, \ df_distributor_drugs = pull_data_dc( reset_date, time_interval, db, schema) # ========================== DATA PRE-PROCESSING ========================== logger.info("Preprocessing data") df_features = preprocess_features_dc(df_features, df_dc_distributors_mapping, df_distributor_drugs) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # ========================== FEATURE CALCULATION ========================== logger.info("Calculating features") features = calculate_features(df_features, reset_date, time_interval_dc, logger, group_cols=['partial_dc_id', 'partial_distributor_id', 'drug_id']) # add drug type column features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist info features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_credit_period', 'drug_type', 'dist_type_portfolio_size']].drop_duplicates(), on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # add dc name features = pd.merge(features, df_features[ ['partial_dc_id', 'dc_name']].dropna().drop_duplicates(), on=['partial_dc_id'], validate='many_to_one', how='left') # add drug name features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') # ========================= CALCULATE RANKS AS/MS ========================= logger.info("Ranking starts AS/MS") rank_drug_lvl, rank_drug_type_lvl, disq_entries = calc_ranks_dc( features, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, logger) final_ranks = get_final_ranks_dc( rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, as_ms_weights_dc_drug_lvl, logger) # ====================== POST PROCESS RANK DFs AS/MS ====================== logger.info("Post processing rank-DFs AS/MS") final_ranks_as_ms, ranked_features_as_ms = post_process_ranking_dc( features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl) final_ranks_as_ms["request_type"] = "AS/MS" ranked_features_as_ms["request_type"] = "AS/MS" # ========================== CALCULATE RANKS PR =========================== logger.info("Ranking starts PR") rank_drug_lvl, rank_drug_type_lvl, disq_entries = calc_ranks_dc( features, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger) final_ranks = get_final_ranks_dc( rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, pr_weights_dc_drug_lvl, logger) # ======================== POST PROCESS RANK DFs PR ======================= logger.info("Post processing rank-DFs PR") final_ranks_pr, ranked_features_pr = post_process_ranking_dc( features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl) final_ranks_pr["request_type"] = "PR" ranked_features_pr["request_type"] = "PR" # =========================== JOIN DFs AS/MS & PR ========================= final_ranks = pd.concat([final_ranks_as_ms, final_ranks_pr], axis=0) ranked_features = pd.concat([ranked_features_as_ms, ranked_features_pr], axis=0) return ranked_features, final_ranks def ranking_calc_franchisee(reset_date, time_interval_franchisee, franchisee_stores, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger, db, schema): # =============================== PULL DATA =============================== logger.info("Pulling data for franchisee") # add 7 days to time interval since we do not want to include last week's data. time_interval = time_interval_franchisee + 7 df_features, df_distributors, df_distributor_drugs = pull_data_franchisee( reset_date, time_interval, franchisee_stores, db, schema) # ========================== DATA PRE-PROCESSING ========================== logger.info("Preprocessing data") df_features = preprocess_features_franchisee( df_features, df_distributor_drugs, db, schema) # add distributor name and distributor features here. df_features = pd.merge(df_features, df_distributors, on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # ========================== FEATURE CALCULATION ========================== logger.info("Calculating features") features = calculate_features(df_features, reset_date, time_interval_franchisee, logger, group_cols=['store_id', 'partial_distributor_id', 'drug_id']) # add drug type column features = pd.merge(features, df_features[['drug_id', 'drug_type']].drop_duplicates(), on=['drug_id'], how='left', validate='many_to_one') # add dist info features = pd.merge(features, df_features[ ['partial_distributor_id', 'partial_distributor_name', 'partial_distributor_credit_period', 'drug_type', 'dist_type_portfolio_size']].drop_duplicates(), on=['partial_distributor_id', 'drug_type'], how='left', validate='many_to_one') # add store name and franchisee_id here. features = pd.merge( features, df_features[['store_id', 'store_name', 'franchisee_id']].dropna().drop_duplicates(), on=['store_id'], validate='many_to_one', how='left') # add drug name features = pd.merge(features, df_features[['drug_id', 'drug_name']].drop_duplicates(), on=['drug_id'], validate='many_to_one', how='left') # ============================ CALCULATE RANKS ============================ logger.info("Ranking starts") rank_drug_lvl, rank_drug_type_lvl = calc_ranks_franchisee( features, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger) final_ranks = get_final_ranks_franchisee( rank_drug_lvl, rank_drug_type_lvl, features, logger) # ========================= POST PROCESS RANK DFs ========================= logger.info("Post processing rank-DFs") final_ranks, ranked_features = post_process_ranking_franchisee( features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_franchisee_drug_lvl, weights_franchisee_type_lvl) final_ranks["request_type"] = "ALL" ranked_features["request_type"] = "ALL" return ranked_features, final_ranks
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking2/distributor_ranking_calc.py
distributor_ranking_calc.py
import pandas as pd import numpy as np def process_tech_df(final_ranks_dc, final_ranks_franchisee, volume_fraction): tech_input = pd.concat([final_ranks_dc, final_ranks_franchisee], axis=0) tech_input['volume_fraction'] = volume_fraction tech_input.rename( {"partial_dc_id": "dc_id", "distributor_rank_1": "final_dist_1", "distributor_rank_2": "final_dist_2", "distributor_rank_3": "final_dist_3"}, axis=1, inplace=True) # combine volume fraction split for cases where total distributors < 3 volume_fraction_split = tech_input['volume_fraction'].str.split( pat='-', expand=True).rename( columns={0: 'volume_fraction_1', 1: 'volume_fraction_2', 2: 'volume_fraction_3'}) tech_input['volume_fraction_1'] = volume_fraction_split[ 'volume_fraction_1'].astype(float) tech_input['volume_fraction_2'] = volume_fraction_split[ 'volume_fraction_2'].astype(float) tech_input['volume_fraction_3'] = volume_fraction_split[ 'volume_fraction_3'].astype(float) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_3'].isna(), tech_input['volume_fraction_2'] + tech_input['volume_fraction_3'], tech_input['volume_fraction_2']) tech_input['volume_fraction_3'] = np.where( tech_input['final_dist_3'].isna(), 0, tech_input['volume_fraction_3']) tech_input['volume_fraction_1'] = np.where( tech_input['final_dist_2'].isna(), tech_input['volume_fraction_1'] + tech_input['volume_fraction_2'], tech_input['volume_fraction_1']) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_2'].isna(), 0, tech_input['volume_fraction_2']) tech_input['volume_fraction'] = tech_input['volume_fraction_1'].astype( 'str') + '-' + tech_input['volume_fraction_2'].astype( 'str') + '-' + tech_input['volume_fraction_3'].astype('str') tech_input = tech_input[ ['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] # adhoc changes by tech, table restructure tech_input = tech_input.reset_index( drop=True).reset_index().rename(columns={'index': 'id'}) tech_input[['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']] = tech_input[ 'volume_fraction'].str.split('-', 3, expand=True) tech_input.loc[tech_input['request_type'] == 'AS/MS', 'request_type'] = 'manual-short/auto-short' tech_input.loc[tech_input['request_type'] == 'PR', 'request_type'] = 'patient-request' tech_input.loc[tech_input['request_type'] == 'ALL', 'request_type'] = 'all' volume_fraction_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']).sort_values( by='id') distributor_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['final_dist_1', 'final_dist_2', 'final_dist_3']).sort_values( by='id').rename(columns={'value': 'distributor_id'}) distributor_ranking_rule_values = pd.merge(distributor_melt, volume_fraction_melt, left_index=True, right_index=True, suffixes=('', '_y')) distributor_ranking_rule_values = distributor_ranking_rule_values[ ['id', 'distributor_id', 'value']].rename( columns={'id': 'distributor_ranking_rule_id'}).reset_index( drop=True) distributor_ranking_rule_values = distributor_ranking_rule_values.reset_index().rename( columns={'index': 'id'}) # drop null values in distributor_id(for cases where historical distributors are < 3) distributor_ranking_rule_values = distributor_ranking_rule_values[ ~distributor_ranking_rule_values['distributor_id'].isna()] # convert distributor_id in int format distributor_ranking_rule_values['distributor_id'] = \ distributor_ranking_rule_values['distributor_id'].astype(int) distributor_ranking_rules = tech_input[['id', 'drug_id', 'dc_id', 'franchisee_id', 'store_id', 'drug_type', 'request_type']] return distributor_ranking_rules, distributor_ranking_rule_values
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking2/tech_processing.py
tech_processing.py
import pandas as pd import numpy as np def preprocess_features_dc(df_features, df_dc_distributors_mapping, df_distributor_drugs): # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where mrp is 0 otherwise margin becomes infinity df_features = df_features[df_features['mrp'] != 0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) # if no dc information is present then remove those cases. df_features = df_features[((~df_features['partial_dc_id'].isna()) | ( ~df_features['forward_dc_id'].isna()))] # for those cases where invoice doesn't exist, take invoice dc as obtained from sdm table df_features['partial_dc_id'] = df_features['partial_dc_id'].fillna( df_features['forward_dc_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs not part of distributor portfolio df_features = pd.merge(df_features, df_distributor_drugs, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') # filter out distributors not part of active dc-distributor mapping df_features = pd.merge(df_features, df_dc_distributors_mapping, on=['partial_dc_id', 'partial_distributor_id'], how='inner', validate='many_to_one') return df_features def preprocess_features_franchisee(df_features, df_distributor_drugs, db, read_schema): # remove those entries where no order is given to dc or the order value doesn't exist df_features = df_features[(df_features['original_order'] > 0) & ( ~df_features['original_order'].isna())] df_features = df_features.drop_duplicates() # due to stock rotation, invoice_item_id could be same. So remove duplicates. # Since drop duplicates drops out all na values, separate na and non na # and then apply drop duplicates df_features_1 = df_features[~df_features[ 'invoice_item_id'].isna()] df_features_2 = df_features[df_features['invoice_item_id'].isna()] df_features_1 = df_features_1.drop_duplicates(subset=['invoice_item_id']) # concat back na values after you separate them df_features = pd.concat([df_features_1, df_features_2]) #remove cases where mrp is 0 otherwise margin becomes infinity df_features = df_features[df_features['mrp'] != 0] # if distributor id isn't assigned in short book then remove it. df_features = df_features[(~df_features['short_book_distributor_id'].isna()) | (~df_features['partial_distributor_id'].isna())] # for those cases where invoice doesn't exist, take distributor as short book distributor df_features['partial_distributor_id'] = df_features['partial_distributor_id'].fillna( df_features['short_book_distributor_id']) df_features['partial_created_at'] = pd.to_datetime( df_features['partial_created_at'], errors='coerce') df_features['partial_invoiced_at'] = pd.to_datetime( df_features['partial_invoiced_at'], errors='coerce') df_features['original_created_at'] = pd.to_datetime( df_features['original_created_at'], errors='coerce') df_features['original_created_at_2'] = pd.to_datetime( df_features['original_created_at_2'], errors='coerce') # append number of invoices against each sb id. invoice_count = df_features.groupby(['short_book_1_id']).agg( invoice_count=('invoice_id', 'count')).reset_index() df_features = pd.merge(df_features, invoice_count, on=[ 'short_book_1_id'], how='left') # fill those cases where no invoice is present with zero. df_features['invoice_count'] = df_features['invoice_count'].fillna(0) # to avoid cases where wrong product is received, we compare with invoice items drugs id as well. df_features['is_lost'] = np.where( (df_features['invoice_items_drug_id'] != df_features['drug_id']) | (df_features['partial_invoiced_at'].isna()), 1, 0) # for new drugs where drug id hasn't been assigned yet, ranking won't be generated until the drug id is assigned. df_features = df_features[~df_features['drug_id'].isna()] # remove entries for which drug type hasn't been assigned df_features = df_features[~df_features['drug_type'].isna()] # remove discontinued or banned products df_features = df_features[ ~((df_features['drug_type'] == 'discontinued-products') | (df_features['drug_type'] == 'banned'))] # sanity check assert df_features[df_features['invoice_count'] == 0].shape[0] == df_features[df_features['invoice_id'].isna()].shape[0] # filter out distributor-drugs not part of distributor portfolio df_features = pd.merge(df_features, df_distributor_drugs, on=['partial_distributor_id', 'drug_id'], how='inner', validate='many_to_one') return df_features
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking2/preprocess_features.py
preprocess_features.py
import pandas as pd import numpy as np import math from zeno_etl_libs.utils.distributor_ranking2.correction_flag import add_corr_flag def calc_ranks_dc(features, weights_dc_drug_lvl, weights_dc_type_lvl, logger): # =========================== DRUG LEVEL RANKING ========================== logger.info("DC-drug level ranking starts") # select only relevant columns required for ranking rank_drug_lvl = features[ ['partial_dc_id', 'partial_distributor_id', 'drug_id', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_dc_dist']] # set significant digits for features with decimal points rank_drug_lvl["margin"] = np.round(rank_drug_lvl["margin"], 3) rank_drug_lvl["wtd_ff"] = np.round(rank_drug_lvl["wtd_ff"], 3) rank_drug_lvl["request_volume_dc_dist"] = np.round( rank_drug_lvl["request_volume_dc_dist"], 3) # rank each features rank_drug_lvl["rank_margin"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])['margin'].rank( method='dense', ascending=False) rank_drug_lvl["rank_ff"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_lvl["rank_dc_dist_credit_period"] = \ rank_drug_lvl.groupby(['partial_dc_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_lvl['rank_dc_dist_volume'] = features.groupby(['partial_dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin & ff rank_drug_lvl["wtd_rank"] = (rank_drug_lvl["rank_margin"] * weights_dc_drug_lvl["margin"]) + \ (rank_drug_lvl["rank_ff"] * weights_dc_drug_lvl["ff"]) rank_drug_lvl["wtd_rank"] = np.round(rank_drug_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["partial_dc_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume", "rank_dist_type_portfolio_size"] sort_asc_order = group_col_sort_asc_order + [True, True, True, True] rank_drug_lvl = rank_drug_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_lvl['index'] = rank_drug_lvl.index # final ranking based on preference order rank_drug_lvl["final_rank"] = \ rank_drug_lvl.groupby(['partial_dc_id', 'drug_id'])['index'].rank( method='first', ascending=True) rank_drug_lvl.drop('index', axis=1, inplace=True) # ========================== D.TYPE LEVEL RANKING ========================= logger.info("DC-drug-type level ranking starts") # select only relevant columns required for ranking rank_drug_type_lvl = features[ ['partial_dc_id', 'partial_distributor_id', 'drug_id', 'drug_type', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_dc_dist']] # group by dc-distributor-drug_type level and calculate features rank_drug_type_lvl = rank_drug_type_lvl.groupby( ["partial_dc_id", "partial_distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "dist_type_portfolio_size": "first", "partial_distributor_credit_period": "first", "request_volume_dc_dist": "first"}) # round features to 3 significant digits rank_drug_type_lvl["margin"] = np.round(rank_drug_type_lvl["margin"], 3) rank_drug_type_lvl["wtd_ff"] = np.round(rank_drug_type_lvl["wtd_ff"], 3) rank_drug_type_lvl["request_volume_dc_dist"] = np.round( rank_drug_type_lvl["request_volume_dc_dist"], 3) # rank each features rank_drug_type_lvl["rank_margin"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])['margin'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_ff"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_type_lvl["rank_dc_dist_credit_period"] = \ rank_drug_type_lvl.groupby(['partial_dc_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_type_lvl['rank_dc_dist_volume'] = \ rank_drug_type_lvl.groupby(['partial_dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin, ff & portfolio size rank_drug_type_lvl["wtd_rank"] = (rank_drug_type_lvl["rank_margin"] * weights_dc_type_lvl["margin"]) + \ (rank_drug_type_lvl["rank_ff"] * weights_dc_type_lvl["ff"]) + \ (rank_drug_type_lvl["rank_dist_type_portfolio_size"] * weights_dc_type_lvl["portfolio_size"]) rank_drug_type_lvl["wtd_rank"] = np.round(rank_drug_type_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["partial_dc_id", "drug_type"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] rank_drug_type_lvl = rank_drug_type_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_type_lvl['index'] = rank_drug_type_lvl.index # final ranking based on preference order rank_drug_type_lvl["final_rank"] = \ rank_drug_type_lvl.groupby(['partial_dc_id', 'drug_type'])['index'].rank( method='first', ascending=True) rank_drug_type_lvl.drop('index', axis=1, inplace=True) # ================== DISQUALIFY POOR DC-DRUG-DISTRIBUTORS ================= # For cases where a poor distributor in terms of wtd.ff and ff_requests # comes in rank 3 or higher => disqualify it. As a result the rank 3 slot # becomes vacant for the slot filling logic to assign another distributor # which will get a chance to fulfill the order. If the assigned distributor # performs good it will be better ranked in subsequent resets, else it will # also get disqualified in similar way in later resets. This will keep the # cycle to constantly look for better distributors. Else it might get locked # in a cycle of ranking the same poor distributor over and over again. disq_entries = rank_drug_lvl.merge( features[["partial_dc_id", "partial_distributor_id", "drug_id", "ff_requests"]], on=["partial_dc_id", "partial_distributor_id", "drug_id"], how="left") # disqualify condition disq_entries["disqualify"] = np.where( (disq_entries["final_rank"] >= 3) & ((disq_entries["ff_requests"] == 0) | (disq_entries["wtd_ff"] < 0.4)), 1, 0) disq_entries = disq_entries.loc[(disq_entries["disqualify"] == 1)] disq_entries = disq_entries[["partial_dc_id", "partial_distributor_id", "drug_id", "disqualify"]] return rank_drug_lvl, rank_drug_type_lvl, disq_entries def get_final_ranks_dc(rank_drug_lvl, rank_drug_type_lvl, disq_entries, features, df_distributor_drugs, df_distributors, df_dc_distributors_mapping, weights_dc_drug_lvl, logger): """ get final ranking format and apply slot filling logic to rank slots which are empty. """ final_ranks = rank_drug_lvl[["partial_dc_id", "drug_id"]].drop_duplicates() final_ranks = final_ranks.merge( features[["drug_id", "drug_type"]].drop_duplicates(), on="drug_id", how="left") # remove disqualified entries rank_drug_lvl = rank_drug_lvl.merge( disq_entries, on=["partial_dc_id", "partial_distributor_id", "drug_id"], how="left") rank_drug_lvl = rank_drug_lvl.loc[rank_drug_lvl["disqualify"] != 1] logger.info("Creating final df format") # make final ranking df for rank in [1, 2, 3]: df_rank = rank_drug_lvl.loc[rank_drug_lvl["final_rank"] == rank] df_rank = df_rank[ ["partial_dc_id", "drug_id", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["partial_dc_id", "drug_id"], how="left") final_ranks[f"distributor_rank_{rank}"] = final_ranks[ f"distributor_rank_{rank}"].astype(float) # ================== FILL MISSING RANK SLOTS DC-DRUG LVL ================== # get all dc-drug with missing slots logger.info("Get allowable dc-drug-distributors to fill slots") missing_rank_dc_drugs = final_ranks.loc[ (final_ranks["distributor_rank_2"].isna()) | (final_ranks["distributor_rank_3"].isna())] missing_rank_dc_drugs = missing_rank_dc_drugs[["partial_dc_id", "drug_id", "drug_type"]] # list all missing drugs list_missing_rank_drugs = list(missing_rank_dc_drugs["drug_id"].unique()) # get all distributors with missing drugs in their portfolio select_distributor_drugs = df_distributor_drugs.loc[ df_distributor_drugs["drug_id"].isin(list_missing_rank_drugs)] # assign it to all dc available_mappings = missing_rank_dc_drugs.merge(select_distributor_drugs, on="drug_id", how="left") # merge distributor details available_mappings = available_mappings.merge( df_distributors[["partial_distributor_id", "partial_distributor_credit_period"]].drop_duplicates(), on="partial_distributor_id", how="left") # calculate features on drug_type level for dc-distributors (margin & ff) distributor_type_lvl_features = features.groupby( ["partial_dc_id", "partial_distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "request_volume_dc_dist": "first"}) available_mappings = available_mappings.merge( distributor_type_lvl_features, on=["partial_dc_id", "partial_distributor_id", "drug_type"], how="left") # fill na and set significant digits available_mappings["margin"] = available_mappings["margin"].fillna(0) available_mappings["wtd_ff"] = available_mappings["wtd_ff"].fillna(0) available_mappings["request_volume_dc_dist"] = available_mappings[ "request_volume_dc_dist"].fillna(0) available_mappings["margin"] = np.round(available_mappings["margin"], 3) available_mappings["wtd_ff"] = np.round(available_mappings["wtd_ff"], 3) available_mappings["request_volume_dc_dist"] = np.round( available_mappings["request_volume_dc_dist"], 3) # remove inactive dc-distributors available_mappings = available_mappings.merge( df_dc_distributors_mapping, on=["partial_dc_id", "partial_distributor_id"], how="inner") # remove disqualified entries available_mappings = available_mappings.merge( disq_entries, on=["partial_dc_id", "partial_distributor_id", "drug_id"], how="left") available_mappings = available_mappings.loc[available_mappings["disqualify"] != 1] # ranking distributors based on dc-drug level logic logger.info("Ranking allowable dc-drug-distributors") available_mapping_ranked = available_mappings.copy() available_mapping_ranked["rank_margin"] = \ available_mapping_ranked.groupby(['partial_dc_id', 'drug_id'])[ 'margin'].rank(method='dense', ascending=False) available_mapping_ranked["rank_ff"] = \ available_mapping_ranked.groupby(['partial_dc_id', 'drug_id'])[ 'wtd_ff'].rank(method='dense', ascending=False) available_mapping_ranked["rank_dc_dist_credit_period"] = \ available_mapping_ranked.groupby(['partial_dc_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) available_mapping_ranked['rank_dc_dist_volume'] = \ available_mapping_ranked.groupby(['partial_dc_id'])[ 'request_volume_dc_dist'].rank(method='dense', ascending=False) # calculate wtd.ranks available_mapping_ranked["wtd_rank"] = (available_mapping_ranked["rank_margin"] * weights_dc_drug_lvl["margin"]) + \ (available_mapping_ranked["rank_ff"] * weights_dc_drug_lvl["ff"]) available_mapping_ranked["wtd_rank"] = np.round( available_mapping_ranked["wtd_rank"], 1) # set sorting order group_cols = ["partial_dc_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_dc_dist_credit_period", "rank_dc_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] available_mapping_ranked = available_mapping_ranked.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) available_mapping_ranked['index'] = available_mapping_ranked.index # get final ranks available_mapping_ranked["final_rank"] = \ available_mapping_ranked.groupby(['partial_dc_id', 'drug_id'])[ 'index'].rank(method='first', ascending=True) available_mapping_ranked.drop('index', axis=1, inplace=True) pre_corr = final_ranks.copy() # to compare pre-post correction # adding auxiliary ranking to empty slot dc-drugs logger.info("Filling empty rank slots with ranked distributors") for rank in [1, 2, 3]: df_rank = available_mapping_ranked.loc[ available_mapping_ranked["final_rank"] == rank] df_rank = df_rank[ ["partial_dc_id", "drug_id", "partial_distributor_id"]] df_rank.rename( {"partial_distributor_id": f"aux_distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["partial_dc_id", "drug_id"], how="left") final_ranks[f"aux_distributor_rank_{rank}"] = final_ranks[ f"aux_distributor_rank_{rank}"].astype(float) for index, row in final_ranks.iterrows(): # if rank 2 empty and aux_rank present if math.isnan(row["distributor_rank_2"]) & \ (not math.isnan(row["aux_distributor_rank_1"])): if row["aux_distributor_rank_1"] != row["distributor_rank_1"]: final_ranks.loc[index, "distributor_rank_2"] = row[ "aux_distributor_rank_1"] elif not math.isnan(row["aux_distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_2"] = row[ "aux_distributor_rank_2"] for index, row in final_ranks.iterrows(): # if rank 1 & 2 filled, rank 3 empty and aux_ranks present if (not math.isnan(row["distributor_rank_1"])) & \ (not math.isnan(row["distributor_rank_2"])) & \ (math.isnan(row["distributor_rank_3"])): if (not math.isnan(row["aux_distributor_rank_1"])) & \ (row["aux_distributor_rank_1"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_1"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_1"] elif (not math.isnan(row["aux_distributor_rank_2"])) & \ (row["aux_distributor_rank_2"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_2"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_2"] elif (not math.isnan(row["aux_distributor_rank_3"])) & \ (row["aux_distributor_rank_3"] != row["distributor_rank_1"]) & \ (row["aux_distributor_rank_3"] != row["distributor_rank_2"]): final_ranks.loc[index, "distributor_rank_3"] = row[ "aux_distributor_rank_3"] final_ranks = final_ranks.drop( ["aux_distributor_rank_1", "aux_distributor_rank_2", "aux_distributor_rank_3"], axis=1) post_corr = final_ranks.copy() # to compare pre-post correction # add correction flags where rank2 & rank3 slot filling took place logger.info("Adding correction flags for filled rank slots") final_ranks = add_corr_flag(final_ranks, pre_corr, post_corr, col_to_compare="distributor_rank_2", corr_flag="R2F", group_cols=["partial_dc_id", "drug_id"]) final_ranks = add_corr_flag(final_ranks, pre_corr, post_corr, col_to_compare="distributor_rank_3", corr_flag="R3F", group_cols=["partial_dc_id", "drug_id"]) # ================== COMBINE DC-DRUG LVL & DC-TYPE LVL =================== # add dc-drug-type level ranking logger.info("Adding dc-drug-type level ranking to final df") final_ranks_type_lvl = rank_drug_type_lvl[ ["partial_dc_id", "drug_type"]].drop_duplicates() # create dc-type level final ranking format for rank in [1, 2, 3]: df_rank = rank_drug_type_lvl.loc[ rank_drug_type_lvl["final_rank"] == rank] df_rank = df_rank[ ["partial_dc_id", "drug_type", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks_type_lvl = final_ranks_type_lvl.merge(df_rank, on=["partial_dc_id", "drug_type"], how="left") final_ranks_type_lvl[f"distributor_rank_{rank}"] = final_ranks_type_lvl[ f"distributor_rank_{rank}"].astype(float) # combine dc-drug lvl and dc-drug-type lvl final_ranks = pd.concat([final_ranks, final_ranks_type_lvl], axis=0) final_ranks["correction_flags"] = final_ranks["correction_flags"].fillna("") return final_ranks def calc_ranks_franchisee(features, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger): # =========================== DRUG LEVEL RANKING ========================== logger.info("Franchisee-store-drug level ranking starts") # select only relevant columns required for ranking rank_drug_lvl = features[ ['store_id', 'partial_distributor_id', 'drug_id', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_store_dist']] # set significant digits for features with decimal points rank_drug_lvl["margin"] = np.round(rank_drug_lvl["margin"], 3) rank_drug_lvl["wtd_ff"] = np.round(rank_drug_lvl["wtd_ff"], 3) rank_drug_lvl["request_volume_store_dist"] = np.round( rank_drug_lvl["request_volume_store_dist"], 3) # rank each features rank_drug_lvl["rank_margin"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['margin'].rank( method='dense', ascending=False) rank_drug_lvl["rank_ff"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_lvl["rank_store_dist_credit_period"] = \ rank_drug_lvl.groupby(['store_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_lvl['rank_store_dist_volume'] = features.groupby(['store_id'])[ 'request_volume_store_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin & ff rank_drug_lvl["wtd_rank"] = (rank_drug_lvl["rank_margin"] * weights_franchisee_drug_lvl["margin"]) + \ (rank_drug_lvl["rank_ff"] * weights_franchisee_drug_lvl["ff"]) rank_drug_lvl["wtd_rank"] = np.round(rank_drug_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["store_id", "drug_id"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_store_dist_credit_period", "rank_store_dist_volume", "rank_dist_type_portfolio_size"] sort_asc_order = group_col_sort_asc_order + [True, True, True, True] rank_drug_lvl = rank_drug_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_lvl['index'] = rank_drug_lvl.index # final ranking based on preference order rank_drug_lvl["final_rank"] = \ rank_drug_lvl.groupby(['store_id', 'drug_id'])['index'].rank( method='first', ascending=True) rank_drug_lvl.drop('index', axis=1, inplace=True) # ========================== D.TYPE LEVEL RANKING ========================= logger.info("Franchisee-drug-type level ranking starts") # select only relevant columns required for ranking rank_drug_type_lvl = features[ ['store_id', 'partial_distributor_id', 'drug_id', 'drug_type', 'margin', 'wtd_ff', 'dist_type_portfolio_size', 'partial_distributor_credit_period', 'request_volume_store_dist']] # group by dc-distributor-drug_type level and calculate features rank_drug_type_lvl = rank_drug_type_lvl.groupby( ["store_id", "partial_distributor_id", "drug_type"], as_index=False).agg({"margin": np.average, "wtd_ff": np.average, "dist_type_portfolio_size": "first", "partial_distributor_credit_period": "first", "request_volume_store_dist": "first"}) # round features to 3 significant digits rank_drug_type_lvl["margin"] = np.round(rank_drug_type_lvl["margin"], 3) rank_drug_type_lvl["wtd_ff"] = np.round(rank_drug_type_lvl["wtd_ff"], 3) rank_drug_type_lvl["request_volume_store_dist"] = np.round( rank_drug_type_lvl["request_volume_store_dist"], 3) # rank each features rank_drug_type_lvl["rank_margin"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['margin'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_ff"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['wtd_ff'].rank( method='dense', ascending=False) rank_drug_type_lvl["rank_dist_type_portfolio_size"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])[ 'dist_type_portfolio_size'].rank(method='dense', ascending=False) rank_drug_type_lvl["rank_store_dist_credit_period"] = \ rank_drug_type_lvl.groupby(['store_id'])[ 'partial_distributor_credit_period'].rank(method='dense', ascending=False) rank_drug_type_lvl['rank_store_dist_volume'] = \ rank_drug_type_lvl.groupby(['store_id'])[ 'request_volume_store_dist'].rank(method='dense', ascending=False) # primary ranking only based on margin, ff & portfolio size rank_drug_type_lvl["wtd_rank"] = (rank_drug_type_lvl["rank_margin"] * weights_franchisee_type_lvl["margin"]) + \ (rank_drug_type_lvl["rank_ff"] * weights_franchisee_type_lvl["ff"]) + \ (rank_drug_type_lvl["rank_dist_type_portfolio_size"] * weights_franchisee_type_lvl["portfolio_size"]) rank_drug_type_lvl["wtd_rank"] = np.round(rank_drug_type_lvl["wtd_rank"], 1) # setting rules of ranking preference order in cases of ties group_cols = ["store_id", "drug_type"] group_col_sort_asc_order = [True, True] sort_columns = group_cols + ["wtd_rank", "rank_store_dist_credit_period", "rank_store_dist_volume"] sort_asc_order = group_col_sort_asc_order + [True, True, True] rank_drug_type_lvl = rank_drug_type_lvl.sort_values( sort_columns, ascending=sort_asc_order).reset_index(drop=True) rank_drug_type_lvl['index'] = rank_drug_type_lvl.index # final ranking based on preference order rank_drug_type_lvl["final_rank"] = \ rank_drug_type_lvl.groupby(['store_id', 'drug_type'])['index'].rank( method='first', ascending=True) rank_drug_type_lvl.drop('index', axis=1, inplace=True) return rank_drug_lvl, rank_drug_type_lvl def get_final_ranks_franchisee(rank_drug_lvl, rank_drug_type_lvl, features, logger): """ get final ranking format. no slot filling logic for franchisee stores. """ final_ranks = rank_drug_lvl[["store_id", "drug_id"]].drop_duplicates() final_ranks = final_ranks.merge( features[["drug_id", "drug_type"]].drop_duplicates(), on="drug_id", how="left") logger.info("Creating final df format") # make final ranking df for rank in [1, 2, 3]: df_rank = rank_drug_lvl.loc[rank_drug_lvl["final_rank"] == rank] df_rank = df_rank[ ["store_id", "drug_id", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks = final_ranks.merge(df_rank, on=["store_id", "drug_id"], how="left") final_ranks[f"distributor_rank_{rank}"] = final_ranks[ f"distributor_rank_{rank}"].astype(float) # add franchisee-store-drug-type level ranking logger.info("Adding franchisee-store-drug-typ level ranking to final df") final_ranks_type_lvl = rank_drug_type_lvl[ ["store_id", "drug_type"]].drop_duplicates() # create store-type level final ranking format for rank in [1, 2, 3]: df_rank = rank_drug_type_lvl.loc[ rank_drug_type_lvl["final_rank"] == rank] df_rank = df_rank[ ["store_id", "drug_type", "partial_distributor_id"]] df_rank.rename({"partial_distributor_id": f"distributor_rank_{rank}"}, axis=1, inplace=True) final_ranks_type_lvl = final_ranks_type_lvl.merge(df_rank, on=["store_id", "drug_type"], how="left") final_ranks_type_lvl[f"distributor_rank_{rank}"] = final_ranks_type_lvl[ f"distributor_rank_{rank}"].astype(float) # combine store-drug lvl and store-drug-type lvl final_ranks = pd.concat([final_ranks, final_ranks_type_lvl], axis=0) return final_ranks
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking2/calculate_ranks.py
calculate_ranks.py
import pandas as pd import numpy as np def post_process_ranking_dc(features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_dc_drug_lvl, weights_dc_type_lvl): # add drug_id dummy column in type lvl rank_drug_type_lvl["drug_id"] = np.nan # add weights column rank_drug_type_lvl["weights"] = str(weights_dc_type_lvl) rank_drug_lvl["weights"] = str(weights_dc_drug_lvl) # additional details to be added drugs_info = features[["drug_id", "drug_type", "drug_name"]].drop_duplicates() dc_info = features[["partial_dc_id", "dc_name"]].drop_duplicates() distributor_info = features[["partial_distributor_id", "partial_distributor_name"]].drop_duplicates() # adding details into drug_lvl_df rank_drug_lvl = rank_drug_lvl.merge(drugs_info, on="drug_id", how="left") rank_drug_lvl = rank_drug_lvl.merge(dc_info, on="partial_dc_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # adding details into drug_type_lvl_df rank_drug_type_lvl = rank_drug_type_lvl.merge(dc_info, on="partial_dc_id", how="left") rank_drug_type_lvl = rank_drug_type_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # combine drug_lvl and drug_type_lvl df ranked_features = pd.concat([rank_drug_lvl, rank_drug_type_lvl], axis=0) # add details into final_ranks df final_ranks = final_ranks.merge(dc_info, on="partial_dc_id", how="left") final_ranks = final_ranks.merge(drugs_info[["drug_id", "drug_name"]], on="drug_id", how="left") # add columns for franchisee rank addition because # both dc & franchisee features/ranks needs to be written to same table. final_ranks["franchisee_id"] = 1 # zippin id final_ranks["store_id"] = np.nan final_ranks["store_name"] = "" ranked_features["franchisee_id"] = 1 # zippin id ranked_features["store_id"] = np.nan ranked_features["store_name"] = "" ranked_features["request_volume_store_dist"] = np.nan ranked_features["rank_store_dist_credit_period"] = np.nan ranked_features["rank_store_dist_volume"] = np.nan return final_ranks, ranked_features def post_process_ranking_franchisee(features, rank_drug_lvl, rank_drug_type_lvl, final_ranks, weights_franchisee_drug_lvl, weights_franchisee_type_lvl): # add drug_id dummy column in type lvl rank_drug_type_lvl["drug_id"] = np.nan # add weights column rank_drug_type_lvl["weights"] = str(weights_franchisee_type_lvl) rank_drug_lvl["weights"] = str(weights_franchisee_drug_lvl) # additional details to be added drugs_info = features[["drug_id", "drug_type", "drug_name"]].drop_duplicates() store_info = features[["store_id", "store_name", "franchisee_id"]].drop_duplicates() distributor_info = features[["partial_distributor_id", "partial_distributor_name"]].drop_duplicates() # adding details into drug_lvl_df rank_drug_lvl = rank_drug_lvl.merge(drugs_info, on="drug_id", how="left") rank_drug_lvl = rank_drug_lvl.merge(store_info, on="store_id", how="left") rank_drug_lvl = rank_drug_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # adding details into drug_type_lvl_df rank_drug_type_lvl = rank_drug_type_lvl.merge(store_info, on="store_id", how="left") rank_drug_type_lvl = rank_drug_type_lvl.merge( distributor_info, on="partial_distributor_id", how="left") # combine drug_lvl and drug_type_lvl df ranked_features = pd.concat([rank_drug_lvl, rank_drug_type_lvl], axis=0) # add details into final_ranks df final_ranks = final_ranks.merge(store_info, on="store_id", how="left") final_ranks = final_ranks.merge(drugs_info[["drug_id", "drug_name"]], on="drug_id", how="left") # add columns for dc rank addition because # both dc & franchisee features/ranks needs to be written to same table. final_ranks["partial_dc_id"] = np.nan final_ranks["dc_name"] = "" final_ranks["correction_flags"] = "" ranked_features["partial_dc_id"] = np.nan ranked_features["dc_name"] = "" ranked_features["request_volume_dc_dist"] = np.nan ranked_features["rank_dc_dist_credit_period"] = np.nan ranked_features["rank_dc_dist_volume"] = np.nan return final_ranks, ranked_features
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking2/post_process_ranking.py
post_process_ranking.py
from functools import reduce import numpy as np import pandas as pd import datetime as dt def calculate_features(df_features, reset_date, time_interval, logger, group_cols): """ DC-LEVEL: group_cols=['partial_dc_id','partial_distributor_id', 'drug_id'] FRANCHISEE-LEVEL: group_cols=['store_id','partial_distributor_id', 'drug_id'] """ dfx = df_features[df_features['invoice_count'] != 0] # ========================== MARGIN CALCULATION ========================== # (follows same logic as in distributor ranking 1.0) logger.info("Calculating margin") df_margin = dfx.copy() df_margin['margin'] = (df_margin['mrp'] - df_margin['distributor_rate']) / df_margin[ 'mrp'] df_margin = df_margin.groupby(group_cols).agg( margin=('margin', 'mean')).reset_index() # sanity check assert df_margin.shape[0] == dfx[group_cols].drop_duplicates().shape[0] # ====================== WTD.FULFILLMENT CALCULATION ====================== logger.info("Calculating wtd.ff") # get length of 3 period split period_length = round(time_interval / 3) # p1 : t-1 (latest period) # p2 : t-2 period # p3 : t-3 period p1_end = pd.Timestamp(reset_date - dt.timedelta(6)) p1_start = p1_end - dt.timedelta(period_length) p2_end = p1_start p2_start = p2_end - dt.timedelta(period_length) p3_end = p2_start p3_start = p3_end - dt.timedelta(period_length + 1) df_ff_1 = ff_calc(dfx, group_cols, p_start=p1_start, p_end=p1_end, period_flag="p1") df_ff_2 = ff_calc(dfx, group_cols, p_start=p2_start, p_end=p2_end, period_flag="p2") df_ff_3 = ff_calc(dfx, group_cols, p_start=p3_start, p_end=p3_end, period_flag="p3") df_ff_comb = pd.concat([df_ff_1, df_ff_2, df_ff_3], axis=0) # count cases where all 3 or 2 or 1 periods data present df_ff_period_cnt = df_ff_comb.groupby(group_cols, as_index=False).agg( {"period_flag": "count"}) df_ff_period_cnt.rename({"period_flag": "period_count"}, axis=1, inplace=True) # Cases with 3 periods present # weighted by 0.5, 0.3, 0.2 for p1, p2, p3 respectively df_3p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 3][ group_cols] df_ff_comb_3p = df_ff_comb.merge(df_3p, on=group_cols, how="inner") df_ff_comb_3p['period'] = np.tile(np.arange(1, 4), len(df_ff_comb_3p))[ :len(df_ff_comb_3p)] df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 1, 0.5, 0) df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 2, 0.3, df_ff_comb_3p['weights']) df_ff_comb_3p['weights'] = np.where(df_ff_comb_3p['period'] == 3, 0.2, df_ff_comb_3p['weights']) df_ff_comb_3p["wtd_ff"] = df_ff_comb_3p["ff"] * df_ff_comb_3p["weights"] df_ff_comb_3p = df_ff_comb_3p.groupby(group_cols, as_index=False).agg( {"wtd_ff": "sum"}) # Cases with 2 periods present # weighted by 0.6, 0.4 for latest, early respectively df_2p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 2][ group_cols] df_ff_comb_2p = df_ff_comb.merge(df_2p, on=group_cols, how="inner") df_ff_comb_2p['period'] = np.tile(np.arange(1, 3), len(df_ff_comb_2p))[ :len(df_ff_comb_2p)] df_ff_comb_2p['weights'] = np.where(df_ff_comb_2p['period'] == 1, 0.6, 0) df_ff_comb_2p['weights'] = np.where(df_ff_comb_2p['period'] == 2, 0.4, df_ff_comb_2p['weights']) df_ff_comb_2p["wtd_ff"] = df_ff_comb_2p["ff"] * df_ff_comb_2p["weights"] df_ff_comb_2p = df_ff_comb_2p.groupby(group_cols, as_index=False).agg( {"wtd_ff": "sum"}) # Cases with 1 period present # weighted by 1 for whatever period present df_1p = df_ff_period_cnt.loc[df_ff_period_cnt["period_count"] == 1][ group_cols] df_ff_comb_1p = df_ff_comb.merge(df_1p, on=group_cols, how="inner") df_ff_comb_1p = df_ff_comb_1p[group_cols + ["ff"]] df_ff_comb_1p.rename({"ff": "wtd_ff"}, axis=1, inplace=True) # combine all df_ff_comb = pd.concat([df_ff_comb_3p, df_ff_comb_2p, df_ff_comb_1p], axis=0) # ======================== DIST VOLUME CALCULATION ======================== if group_cols[0] == "partial_dc_id": base_lvl = 'dc' else: base_lvl = 'store' logger.info(f"Calculating {base_lvl}-distributor volume") df_vol = df_features.groupby(group_cols).agg( total_lost=('is_lost', 'sum'), total_requests=('is_lost', 'count')).reset_index() df_vol["ff_requests"] = df_vol["total_requests"] - df_vol["total_lost"] df_vol["ff_requests"] = np.where(df_vol["ff_requests"] < 0, 0, df_vol["ff_requests"]) df_vol.drop(["total_lost", "total_requests"], axis=1, inplace=True) if base_lvl == 'dc': # calculate request volume dc request_volume_dc = df_vol.groupby("partial_dc_id", as_index=False).agg( total_requests_dc=("ff_requests", "sum")) request_volume_dc_dist = df_vol.groupby( ["partial_dc_id", "partial_distributor_id"], as_index=False).agg( total_requests_dc_dist=("ff_requests", "sum")) df_vol = df_vol.merge(request_volume_dc_dist, on=["partial_dc_id", "partial_distributor_id"], how="left") df_vol = df_vol.merge(request_volume_dc, on="partial_dc_id", how="left") df_vol["request_volume_dc_dist"] = df_vol["total_requests_dc_dist"] / \ df_vol["total_requests_dc"] df_vol.drop(["total_requests_dc_dist", "total_requests_dc"], axis=1, inplace=True) else: # calculate request volume store (franchisee) request_volume_store = df_vol.groupby("store_id", as_index=False).agg( total_requests_store=("ff_requests", "sum")) request_volume_store_dist = df_vol.groupby( ["store_id", "partial_distributor_id"], as_index=False).agg( total_requests_store_dist=("ff_requests", "sum")) df_vol = df_vol.merge(request_volume_store_dist, on=["store_id", "partial_distributor_id"], how="left") df_vol = df_vol.merge(request_volume_store, on="store_id", how="left") df_vol["request_volume_store_dist"] = df_vol["total_requests_store_dist"] / \ df_vol["total_requests_store"] df_vol.drop(["total_requests_store_dist", "total_requests_store"], axis=1, inplace=True) # =========================== COMPILE FEATURES =========================== logger.info("Compiling all features") meg_list = [df_margin, df_ff_comb, df_vol] features = reduce( lambda left, right: pd.merge(left, right, on=group_cols, how='outer'), meg_list) # rounding off to 3 significant digits features["margin"] = np.round(features["margin"], 3) features["wtd_ff"] = np.round(features["wtd_ff"], 3) features[f"request_volume_{base_lvl}_dist"] = np.round( features[f"request_volume_{base_lvl}_dist"], 3) return features def ff_calc(dfx, group_cols, p_start=None, p_end=None, period_flag="None"): """ Base FF calculation same as in distributor ranking 1.0 """ # split base data by period dfx = dfx.loc[ (dfx["original_created_at"] > p_start) & (dfx["original_created_at"] < p_end)] df_sorted = dfx.groupby(['short_book_1_id'], as_index=False).apply( lambda x: x.sort_values(by=['partial_invoiced_at'])) # for multiple invoices, calculate cumulative fulfilled quantities df_sorted = df_sorted.groupby(['short_book_1_id']).apply( lambda x: x['partial_quantity'].cumsum()).reset_index().rename( columns={'partial_quantity': 'cum_partial_quantity'}) df_sorted = df_sorted.set_index('level_1') df_fulfillment = pd.merge(df_sorted, dfx, left_index=True, right_index=True, how='left', suffixes=('', '_y')) assert df_fulfillment['short_book_1_id'].equals( df_fulfillment['short_book_1_id_y']) df_fulfillment = df_fulfillment[ ['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'cum_partial_quantity']] # cum required quantity is quantity left after subtracting cum quantity from all previous invoices. df_fulfillment['cum_required_quantity'] = df_fulfillment['original_order'] - \ df_fulfillment['cum_partial_quantity'] # the real required quantity while placing an order is quantity # unfulfilled by the previours invoice. Hence shifted by 1 df_fulfillment['actual_required'] = df_fulfillment.groupby( ['short_book_1_id']).shift(1)['cum_required_quantity'] # fill single invoices with the original order df_fulfillment['actual_required'] = df_fulfillment['actual_required'].fillna( df_fulfillment['original_order']) # put actual required = 0 when ordered exceeds required. df_fulfillment.loc[df_fulfillment['actual_required'] < 0, 'actual_required'] = 0 df_fulfillment['redundant_order_flag'] = np.where( df_fulfillment['actual_required'] == 0, 1, 0) df_fulfillment = df_fulfillment[['short_book_1_id'] + group_cols + ['original_order', 'partial_quantity', 'actual_required', 'redundant_order_flag']] df_fulfillment['ff'] = df_fulfillment['partial_quantity'] / \ df_fulfillment['actual_required'] # for those quantities where nothing was required and still order placed, take them as 0. df_fulfillment.loc[(df_fulfillment['actual_required'] == 0) & ( df_fulfillment['partial_quantity'] > 0), 'ff'] = 1 df_fulfillment.loc[(df_fulfillment['ff'] > 1), 'ff'] = 1 # removed redundant orders here. df_ff = df_fulfillment[df_fulfillment['redundant_order_flag'] != 1].groupby( group_cols).agg(ff=('ff', 'mean')).reset_index() # add period_flag df_ff["period_flag"] = period_flag return df_ff
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking2/calculate_features.py
calculate_features.py
Q_FEATURES = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."dc-id" as "partial-dc-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", inv."mrp", d."drug-name", d.type as "drug_type", sdm."forward-dc-id", s.name as "dc-name" from "{schema}"."short-book-1" sb left join "{schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{schema}".invoices i on sbi."invoice-id" = i.id left join "{schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{schema}".drugs d on sb."drug-id" = d.id left join "{schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{schema}"."store-dc-mapping" sdm on sb."store-id" = sdm."store-id" and dis.type = sdm."drug-type" left join "{schema}".stores s on i."dc-id" = s.id where DATEDIFF(day, date(sb."created-at"), '{reset_date}') <= {time_interval} and DATEDIFF(day, date(sb."created-at"), '{reset_date}') >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' and sb."store-id" in (2,4,7,16,54,82,231,234,244,278,297,23,28,39,216,218,235,229,280,8,13,21,26,31,45,188,208,221,222,230,241,260,264,20,36,61,134,160,184,195,215,224,226,245,252,273,281) """ # (2,4,7,16,54,82,231,234,244,278,297,23,28,39,216,218,235,229,280,8,13,21,26,31,45,188,208,221,222,230,241,260,264,20,36,61,134,160,184,195,215,224,226,245,252,273,281) Q_FEATURES_FRANCHISEE = """ select sb.id as "short-book-1-id" , sb."ordered-distributor-id" as "short-book-distributor-id", sb."store-id", ss."franchisee-id", sb."drug-id", coalesce(sb.quantity, 0) as "original-order", sb."required-quantity" as "final-unfulfilled", sb."created-at" as "original-created-at", sb."re-ordered-at" as "original-created-at-2", sbi."quantity" as "partial-quantity", i.id as "invoice-id", i."distributor-id" as "partial-distributor-id", i."created-at" as "partial-created-at", i."approved-at" as "partial-invoiced-at", ii.id as "invoice-item-id", ii."drug-id" as "invoice-items-drug-id", inv.id as "inventory-id", inv."invoice-item-id" as "inv-invoice-item-id", inv."purchase-rate" as "distributor-rate", inv."selling-rate", inv."mrp", d."drug-name", d.type as "drug_type", ss."name" as "store-name" from "{schema}"."short-book-1" sb left join "{schema}"."short-book-invoices" sbi on sbi."short-book-id" = sb.id left join "{schema}".invoices i on sbi."invoice-id" = i.id left join "{schema}"."short-book-invoice-items" sbii on sb.id = sbii."short-book-id" left join "{schema}"."invoice-items" ii on ii.id = sbii."invoice-item-id" left join "{schema}"."invoice-items-1" ii1 on ii1."invoice-item-reference" = ii.id left join "{schema}"."inventory-1" inv on inv."invoice-item-id" = ii1.id left join "{schema}".drugs d on sb."drug-id" = d.id left join "{schema}".distributors dis on dis.id = sb."ordered-distributor-id" left join "{schema}".stores s on i."dc-id" = s.id left join "{schema}".stores ss on sb."store-id" = ss.id where DATEDIFF(day, date(sb."created-at"), '{reset_date}') <= {time_interval} and DATEDIFF(day, date(sb."created-at"), '{reset_date}') >= 7 and sb."quantity" > 0 and sb."ordered-distributor-id" != 76 and sb."ordered-distributor-id" != 5000 and sb."ordered-distributor-id" != 8105 and i."distributor-id" != 8105 and sb.status != 'deleted' and ss."franchisee-id" != 1 {franchisee_stores_execute_query} """ Q_DISTRIBUTORS = """ select db.id as "partial-distributor-id", db.name as "partial-distributor-name", db."credit-period" as "partial-distributor-credit-period", d."type" as "drug-type", count(distinct dd."drug-id") as "dist-type-portfolio-size" from "{schema}".distributors db left join "{schema}"."distributor-drugs" dd on db.id = dd."distributor-id" left join "{schema}".drugs d on dd."drug-id" = d.id group by "partial-distributor-id", "partial-distributor-name", "partial-distributor-credit-period", "drug-type" """ Q_DC_DISTRIBUTOR_MAPPING = """ select "dc-id" as "partial-dc-id", "distributor-id" as "partial-distributor-id" from "{schema}"."dc-distributor-mapping" ddm where "is-active" = 1 group by "dc-id" , "distributor-id" """ Q_DISTRIBUTOR_DRUGS = """ select "distributor-id" as "partial-distributor-id" , "drug-id" from "{schema}"."distributor-drugs" dd group by "distributor-id" , "drug-id" """ def pull_data_dc(reset_date, time_interval, db, schema): df_features = db.get_df(Q_FEATURES.format( reset_date=reset_date, time_interval=time_interval, schema=schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(schema=schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] df_distributors = df_distributors.dropna() df_distributors = df_distributors.loc[df_distributors["drug_type"] != ''] df_dc_distributors_mapping = db.get_df(Q_DC_DISTRIBUTOR_MAPPING.format(schema=schema)) df_dc_distributors_mapping.columns = [c.replace('-', '_') for c in df_dc_distributors_mapping.columns] df_distributor_drugs = db.get_df(Q_DISTRIBUTOR_DRUGS.format(schema=schema)) df_distributor_drugs.columns = [c.replace('-', '_') for c in df_distributor_drugs.columns] df_distributor_drugs.drop_duplicates(inplace=True) # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) df_features["mrp"] = df_features["mrp"].astype(float) return df_features, df_distributors, df_dc_distributors_mapping, df_distributor_drugs def pull_data_franchisee(reset_date, time_interval, franchisee_stores, db, schema): if franchisee_stores == [0]: franchisee_stores_execute_query = "" else: franchisee_stores_execute_query = f""" and sb."store-id" in {str(franchisee_stores).replace('[', '(').replace(']',')')} """ df_features = db.get_df(Q_FEATURES_FRANCHISEE.format( reset_date=reset_date, time_interval=time_interval, franchisee_stores_execute_query=franchisee_stores_execute_query, schema=schema)) df_features.columns = [c.replace('-', '_') for c in df_features.columns] df_distributors = db.get_df(Q_DISTRIBUTORS.format(schema=schema)) df_distributors.columns = [c.replace('-', '_') for c in df_distributors.columns] df_distributors = df_distributors.dropna() df_distributor_drugs = db.get_df(Q_DISTRIBUTOR_DRUGS.format(schema=schema)) df_distributor_drugs.columns = [c.replace('-', '_') for c in df_distributor_drugs.columns] df_distributor_drugs.drop_duplicates(inplace=True) # ensure data types df_features["distributor_rate"] = df_features["distributor_rate"].astype(float) df_features["selling_rate"] = df_features["selling_rate"].astype(float) df_features["mrp"] = df_features["mrp"].astype(float) return df_features, df_distributors, df_distributor_drugs
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/distributor_ranking2/pull_data.py
pull_data.py
import numpy as np # Global Queries Q_REPEATABLE = """ SELECT id AS "drug-id", "is-repeatable" FROM "{schema}".drugs WHERE "is-repeatable" = 1 """ Q_PTR = """ select "drug-id", AVG(ptr) as ptr FROM "{schema}"."inventory-1" GROUP BY "drug-id" """ Q_STORES = """ select id as "store-id", name as "store-name" FROM "{schema}".stores """ Q_DRUG_INFO = """ select id as "drug-id", "drug-name", type, category FROM "{schema}".drugs """ # Queries with parameters def prep_data_from_sql(query_pass, db): data_fetched = db.get_df(query_pass) data_fetched.columns = [c.replace('-', '_') for c in data_fetched.columns] return data_fetched def query_drug_grade(store_id, schema): query = """ SELECT "drug-id", "drug-grade" FROM "{schema}"."drug-order-info" WHERE "store-id" = {0} """.format(store_id, schema=schema) return query def query_max_zero(store_id, schema): query = """ SELECT "store-id", "drug-id" FROM "{schema}"."drug-order-info" WHERE "store-id" = {0} and max = 0 """.format(store_id, schema=schema) return query def query_inventory(store_id, schema): query = """ SELECT "store-id", "drug-id", SUM(quantity) AS "current-inventory" FROM "{schema}"."inventory-1" WHERE "store-id" = {0} GROUP BY "store-id", "drug-id" """.format(store_id, schema=schema) return query def get_drug_info(store_id, db, schema): # Inventory and PTR info for order value # Also, drug-type and drug-grade q_inv = query_inventory(store_id, schema) data_inv = prep_data_from_sql(q_inv, db) data_ptr = prep_data_from_sql(Q_PTR.format(schema=schema), db) data_ptr["ptr"] = data_ptr["ptr"].astype(float) data_drug_info = prep_data_from_sql(Q_DRUG_INFO.format(schema=schema), db) q_drug_grade = query_drug_grade(store_id, schema) data_drug_grade = prep_data_from_sql(q_drug_grade, db) data_stores = prep_data_from_sql(Q_STORES.format(schema=schema), db) return data_inv, data_ptr, data_drug_info, data_drug_grade, data_stores def order_value_report(ss_drug_sales): ss_drug_sales['to_order_quantity'] = np.where( ss_drug_sales['current_inventory'] < ss_drug_sales['safety_stock'], ss_drug_sales['max'] - ss_drug_sales['current_inventory'], 0 ) ss_drug_sales['to_order_value'] = ( ss_drug_sales['to_order_quantity'] * ss_drug_sales['ptr']) order_value = ss_drug_sales.groupby( ['type', 'store_name', 'drug_grade']). \ agg({'to_order_quantity': 'sum', 'to_order_value': 'sum'}). \ reset_index() return order_value
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/new_stores/helper_functions.py
helper_functions.py
from datetime import datetime from datetime import timedelta from zeno_etl_libs.db.db import PostGre from scipy.stats import norm from zeno_etl_libs.utils.new_stores.new_store_stock_triggers import * from zeno_etl_libs.utils.new_stores.helper_functions import * def new_stores_ss_calc(store_id, run_date, db, schema, logger): ##################################################### # Final function for new stores (1-3 months) safety stock # Combines base and triggers algorithm ##################################################### # Get demand data_demand = get_demand(store_id, db, schema) # Get lead time data_lt, lt_store_mean, lt_store_std = get_lead_time(store_id, run_date) # Service level - hardcoded service_level = 0.95 z = norm.ppf(service_level) ##################################################### # SS calculation - Base algo ##################################################### data = ss_calc(data_demand, data_lt, lt_store_mean, lt_store_std, z, db, schema) data['algo_type'] = 'base' logger.info("Length Base algo data {}".format(len(data))) # Max>0 data_forecast_pos = data[data['max'] > 0].copy() logger.info("Length Base algo forecast positive - data {}".format(len(data_forecast_pos))) ##################################################### # Triggers ##################################################### # Put max==0 logic here, and pass those drug-ids, for given store data_algo_max0 = data[data['max'] == 0][['drug_id']].drop_duplicates() data_algo_max0_list = data_algo_max0['drug_id'].to_list() logger.info("Max 0 drugs from base algo, length is {}".format(len(data_algo_max0_list))) # But this is max0 from base algo, there maybe other max0 in drug-order-info # Fetching them # Formatted SQL queries q_max0 = query_max_zero(store_id, schema) data_doi_max0 = prep_data_from_sql(q_max0, db) data_doi_max0 = data_doi_max0[['drug_id']].drop_duplicates() logger.info("Max 0 drugs from mysql drug-order-info, length is {}".format(len(data_doi_max0))) # Remove drugs for which forecast is already positive data_forecast_pos_list = data_forecast_pos['drug_id'].drop_duplicates().to_list() data_doi_max0_forecast0 = data_doi_max0[~data_doi_max0['drug_id'].isin(data_forecast_pos_list)] logger.info("Max 0 drugs from mysql drug-order-info, after removing forecast positive," "length is {}".format(len(data_doi_max0_forecast0))) # Append both and take unique data_doi_max0_forecast0_append = data_doi_max0_forecast0[~data_doi_max0_forecast0['drug_id'].isin( data_algo_max0_list)] logger.info("Max 0 drugs from mysql drug-order-info, non overlapping with forecast 0, " "length is {}".format(len(data_doi_max0_forecast0_append))) max0_drugs_df = data_algo_max0.append(data_doi_max0_forecast0_append) max0_drugs_df = max0_drugs_df.drop_duplicates(subset='drug_id') logger.info("Final Max 0 drugs, length is {}".format(len(max0_drugs_df))) triggers_data, triggers_summary, \ triggers_store_report = triggers_combined(store_id, run_date, max0_drugs_df, db, schema) triggers_data = triggers_data[['drug_id', 'min', 'safety_stock', 'max']] triggers_data['algo_type'] = 'non_sales_triggers' # Output to s3 bucket # triggers_summary.to_csv(output_dir_path + f'triggers_summary_{store_id}_{run_date}.csv', # index=False) # triggers_store_report.to_csv(output_dir_path + # f'triggers_store_report_{store_id}_{run_date}.csv', index=False) logger.info("Length Triggers algo data raw {}".format(len(triggers_data))) # Remove those that are already part of base algo and already max>0 drugs_base = data_forecast_pos['drug_id'].drop_duplicates().to_list() # Overlapping triggers_data_overlap = triggers_data[triggers_data['drug_id'].isin(drugs_base)] logger.info("Length triggers algo data overlapping {}".format(len(triggers_data_overlap))) triggers_data_append = triggers_data[~triggers_data['drug_id'].isin(drugs_base)] logger.info("Length triggers algo data non-overlapping {}".format(len(triggers_data_append))) # Append base algo, and triggers algo output data_final = data_forecast_pos.append(triggers_data_append) logger.info("Length data final {}".format(len(data_final))) # Put store id data_final['store_id'] = store_id # Final schema data_final = data_final[['store_id', 'drug_id', 'min', 'safety_stock', 'max', 'algo_type']] return data_final def get_demand(store_id, db, schema): # sales query q_sales = f""" select "store-id", "drug-id", date("created-at") as "sales-date", sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" = {store_id} group by "store-id", "drug-id", "sales-date" """ data_s = db.get_df(q_sales) data_s.columns = [c.replace('-', '_') for c in data_s.columns] data_s['sales_date'] = pd.to_datetime(data_s['sales_date']) # cfr pr loss q_cfr_pr = f""" select "store-id", "drug-id", "attributed-loss-date" as "sales-date", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" where "store-id" = {store_id} and "drug-id" > 0 and "loss-quantity" > 0 group by "store-id", "drug-id", "attributed-loss-date" """ data_cfr_pr = db.get_df(q_cfr_pr) data_cfr_pr["loss-quantity"] = data_cfr_pr["loss-quantity"].astype(float) data_cfr_pr['sales-date'] = pd.to_datetime(data_cfr_pr['sales-date']) data_cfr_pr.columns = [c.replace('-', '_') for c in data_cfr_pr.columns] # Merge merge_data = data_s.merge(data_cfr_pr, how='outer', on=['store_id', 'drug_id', 'sales_date']) for i in ['net_sales_quantity', 'loss_quantity']: merge_data[i] = merge_data[i].fillna(0) merge_data['demand_quantity'] = merge_data['net_sales_quantity'] + merge_data['loss_quantity'] data_demand = merge_data.groupby(['drug_id', 'sales_date'])['demand_quantity'].sum().reset_index() data_demand = data_demand.sort_values(by=['drug_id', 'sales_date']) return data_demand def get_lead_time(store_id, run_date): # Shortbook is normally created after some delay, of actual trigger event sb_creation_delay_ethical = 1 sb_creation_delay_other = 1 sb_creation_delay_generic = 2 # Fetch data last 'N' days end_date = str(datetime.strptime(run_date, '%Y-%m-%d') - timedelta(7)) begin_date = str(datetime.strptime(run_date, '%Y-%m-%d') - timedelta(97)) # ==== TEMP READ FROM PG ==== pg = PostGre() pg.open_connection() # =========================== lead_time_query = ''' select store_id, drug_id, drug_type, status, created_at, received_at from ops_fulfillment where request_type = 'Auto Short' and store_id = {store_id} and created_at <= '{end_date}' and created_at >= '{begin_date}' and status not in ('failed', 'deleted') '''.format( store_id=store_id, end_date=end_date, begin_date=begin_date) lead_time = pd.read_sql_query(lead_time_query, pg.connection) # Convert null received at, to true null lead_time['created_at'] = pd.to_datetime(lead_time['created_at']) lead_time['received_at'].replace({'0000-00-00 00:00:00': ''}, inplace=True) lead_time['received_at'] = pd.to_datetime(lead_time['received_at']) # Calculate lead time lead_time['lead_time'] = (lead_time['received_at'] - lead_time['created_at']).astype('timedelta64[h]') / 24 # Missing value impute lead_time['lead_time'].fillna(7, inplace=True) # Incorporate delay values lead_time['lead_time'] = np.select( [lead_time['drug_type'] == 'generic', lead_time['drug_type'] == 'ethical'], [lead_time['lead_time'] + sb_creation_delay_generic, lead_time['lead_time'] + sb_creation_delay_ethical], default=lead_time['lead_time'] + sb_creation_delay_other ) # Store averages lt_store_mean = round(lead_time.lead_time.mean(), 2) lt_store_std = round(lead_time.lead_time.std(ddof=0), 2) # Summarize at drug level lt_drug = lead_time.groupby('drug_id'). \ agg({'lead_time': [np.mean, np.std]}).reset_index() lt_drug.columns = ['drug_id', 'lead_time_mean', 'lead_time_std'] # Impute for std missing lt_drug['lead_time_std'] = np.where( lt_drug['lead_time_std'].isin([0, np.nan]), lt_store_std, lt_drug['lead_time_std'] ) # ===== CLOSE PG ===== pg.close_connection() # ==================== return lt_drug, lt_store_mean, lt_store_std def ss_calc(data_demand, data_lt, lt_store_mean, lt_store_std, z, db, schema): # Drug type restrictions if any q_drugs = f""" select id as "drug-id", type from "{schema}".drugs """ # where `type` in ('ethical','generic') data_drugs = db.get_df(q_drugs) data_drugs.columns = [c.replace('-', '_') for c in data_drugs.columns] # Avg and standard deviation demand data_demand_min_date = data_demand['sales_date'].min() data_demand_max_date = data_demand['sales_date'].max() # Create full demand list, across all calendar dates, drug_id level drugs = data_demand[['drug_id']].drop_duplicates() dates = pd.DataFrame({'sales_date': pd.date_range(data_demand_min_date, data_demand_max_date, freq='D')}) drugs['key'] = 0 dates['key'] = 0 drug_dates = drugs[['drug_id', 'key']].merge(dates, on='key', how='outer')[['drug_id', 'sales_date']] data_demand_all = drug_dates.merge(data_demand, how='left', on=['drug_id', 'sales_date']) data_demand_all['demand_quantity'] = data_demand_all['demand_quantity'].fillna(0) # Merge with drugs master data_demand_all = data_demand_all.merge(data_drugs, how='left', on='drug_id') # Treat outliers ''' data_demand_all['demand_quantity'] = np.where(data_demand_all['demand_quantity'] > 20, np.log(data_demand_all['demand_quantity']), data_demand_all['demand_quantity']) ''' # Calculate demand mean and std data_demand_all_mean_std = data_demand_all.groupby(['drug_id', 'type'])['demand_quantity'].agg( ['mean', 'std']).reset_index() data_demand_all_mean_std = data_demand_all_mean_std.rename(columns={'mean': 'demand_mean', 'std': 'demand_std'}) # Merge with lead time mean and std data = data_demand_all_mean_std.merge(data_lt, how='left', on='drug_id') data['lead_time_mean'] = data['lead_time_mean'].fillna(lt_store_mean) data['lead_time_std'] = data['lead_time_std'].fillna(lt_store_std) # Safety stock calculation data['safety_stock'] = np.round(z * np.sqrt(data['lead_time_mean'] * np.square(data['demand_std']) + np.square(data['demand_mean']) * np.square(data['lead_time_std']))) data['reorder_point'] = np.round(data['lead_time_mean'] * data['demand_mean'] + data['safety_stock']) # Keep 30days stock by default data['order_upto_point'] = np.round(data['demand_mean'] * 30) # Adjustment for ethical data['order_upto_point'] = np.round(np.where(data['type'].isin(['ethical', 'high-value-ethical']), data['order_upto_point'] * (1 / 2), data['order_upto_point'] * (2 / 3))) # Sanity check, order_upto_point (max) to be not less than reorder point data['order_upto_point'] = np.round(np.where(data['order_upto_point'] < data['reorder_point'], data['reorder_point'], data['order_upto_point'])) # Where re-order point is 1,2,3 and is same as order_upto_point (max) then do max = max+1 data['order_upto_point'] = np.round(np.where(((data['reorder_point'].isin([1, 2, 3])) & (data['order_upto_point'] == data['reorder_point'])), data['order_upto_point'] + 1, data['order_upto_point'])) # order-upto-point 1,2,3 corrections # Source - ops/ipc/safety_stock one_index = data[ data['order_upto_point'].isin([1])].index data.loc[one_index, 'safety_stock'] = 0 data.loc[one_index, 'reorder_point'] = 1 data.loc[one_index, 'order_upto_point'] = 2 two_index = data[ data['order_upto_point'].isin([2])].index data.loc[two_index, 'safety_stock'] = 0 data.loc[two_index, 'reorder_point'] = 1 data.loc[two_index, 'order_upto_point'] = 2 three_index = data[ data['order_upto_point'].isin([3])].index data.loc[three_index, 'safety_stock'] = 1 data.loc[three_index, 'reorder_point'] = 2 data.loc[three_index, 'order_upto_point'] = 3 # Where re-order point is >=4 and is same as order_upto_point (max) then do max = 1.5*max data['order_upto_point'] = np.round(np.where(((data['reorder_point'] >= 4) & (data['order_upto_point'] == data['reorder_point'])), data['order_upto_point'] * 1.5, data['order_upto_point'])) # Sanity check for max again data['order_upto_point'] = np.round(np.where(data['order_upto_point'] < data['reorder_point'], data['reorder_point'], data['order_upto_point'])) data = data.rename(columns={'safety_stock': 'min', 'reorder_point': 'safety_stock', 'order_upto_point': 'max'}) data = data[['drug_id', 'min', 'safety_stock', 'max']] return data
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/new_stores/new_stores_ipc.py
new_stores_ipc.py
from zeno_etl_libs.utils.new_stores.helper_functions import * import pandas as pd import numpy as np def query_search(store_id, schema): query = f""" SELECT id, "store-id", "drug-id", "created-at" FROM "{schema}".searches WHERE "store-id" = {store_id} """ return query def query_patient_request(store_id, schema): query = f""" SELECT id, "store-id", "drug-id", "quantity", "created-at" FROM "{schema}"."short-book-1" WHERE "auto-short" = 0 and "auto-generated" = 0 and "store-id" = {store_id} """ return query def query_manual_short(store_id, schema): query = f""" SELECT id, "store-id", "drug-id", "quantity", "created-at" FROM "{schema}"."short-book-1" WHERE "auto-short" = 1 and "home-delivery" = 0 and "patient-id" != 4480 and "store-id" = {store_id} """ return query def query_local_purchase(store_id, schema): query = f""" SELECT i."store-id", i."drug-id", i."created-at", ii."invoice-item-reference", ii."actual-quantity" as quantity, ii."net-value" as "lp-value" FROM "{schema}"."inventory-1" i LEFT JOIN "{schema}"."invoice-items-1" ii ON ii.id = i."invoice-item-id" WHERE i."store-id" = {store_id} AND ii."invoice-item-reference" IS NULL """ return query def query_stock_transfer(store_id, schema): query = f""" SELECT a."source-store", a."destination-store", b."inventory-id", c."drug-id", b.quantity, b."received-at" FROM "{schema}"."stock-transfers-1" a INNER JOIN "{schema}"."stock-transfer-items-1" b on a.id = b."transfer-id" LEFT JOIN "{schema}"."inventory-1" c on b."inventory-id" = c.id WHERE a."destination-store" = {store_id} """ return query def triggers_combined(store_id, run_date, max0_drugs_df, db, schema): ############################# # Main consolidated function, for triggers ############################# # Get formatted SQL queries q_search = query_search(store_id, schema) q_pr = query_patient_request(store_id, schema) q_ms = query_manual_short(store_id, schema) q_lp = query_local_purchase(store_id, schema) q_st = query_stock_transfer(store_id, schema) # Data prep, using SQL data_merge_c = data_prep_triggers(q_search, q_pr, q_ms, q_lp, q_st, run_date, db, schema) # Augment with max0 info, current inventory info, ptr info data_merge_c = data_augment_doi_inv(data_merge_c, store_id, max0_drugs_df, db, schema) # Rule for which drugs to set max for data_merge_c = make_keep_col(data_merge_c) # Some extra filters and final df # max_set_final is the final df at drug level max_set_final, max_set_summary, max_set_f_store_summary = final_reset_sku(data_merge_c, db, schema) return max_set_final, max_set_summary, max_set_f_store_summary def pre_trigger_data_prep_c(data_pass, run_date): data = data_pass.copy() data['created_at'] = pd.to_datetime(data['created_at']) data_merge = data.copy() data_merge['day_diff_current'] = (data_merge['created_at'] - pd.to_datetime(run_date)).dt.days # Last 84days data_merge_before = data_merge[data_merge['day_diff_current'].between(-84, -1)].copy() data_merge_before['trigger_date'] = data_merge_before['created_at'].dt.date # Group, to calculate unique days of trigger, and trigger quantity data_merge_before_grp = data_merge_before.groupby(['store_id', 'drug_id']).agg({'created_at': 'count', 'trigger_date': 'nunique', 'quantity': 'sum'}).reset_index() # Rename columns data_merge_before_grp = data_merge_before_grp.rename(columns={'created_at': 'times_trigger', 'trigger_date': 'days_trigger'}) # Change to integer for i in ['drug_id', 'quantity']: data_merge_before_grp[i] = data_merge_before_grp[i].astype(int) return data_merge_before_grp def data_prep_triggers(q_search, q_pr, q_ms, q_lp, q_st, run_date, db, schema): ######################################## # Search ######################################## data_search_c = prep_data_from_sql(q_search, db) data_search_c['quantity'] = 1 data_search_grp_c = pre_trigger_data_prep_c(data_search_c, run_date) data_search_grp_c = data_search_grp_c.rename(columns={'times_trigger': 'times_searched', 'days_trigger': 'days_searched', 'quantity': 'quantity_searched'}) ######################################## # PR ######################################## data_pr_c = prep_data_from_sql(q_pr, db) data_pr_grp_c = pre_trigger_data_prep_c(data_pr_c, run_date) data_pr_grp_c = data_pr_grp_c.rename(columns={'times_trigger': 'times_pr', 'days_trigger': 'days_pr', 'quantity': 'quantity_pr'}) ######################################## # MS ######################################## data_ms_c = prep_data_from_sql(q_ms, db) data_ms_grp_c = pre_trigger_data_prep_c(data_ms_c, run_date) data_ms_grp_c = data_ms_grp_c.rename(columns={'times_trigger': 'times_ms', 'days_trigger': 'days_ms', 'quantity': 'quantity_ms'}) ######################################## # LP ######################################## data_lp_c = prep_data_from_sql(q_lp, db) data_lp_grp_c = pre_trigger_data_prep_c(data_lp_c, run_date) data_lp_grp_c = data_lp_grp_c.rename(columns={'times_trigger': 'times_lp', 'days_trigger': 'days_lp', 'quantity': 'quantity_lp'}) ######################################## # Stock transfer ######################################## data_st_c = prep_data_from_sql(q_st, db) data_st_c['received_at'] = pd.to_datetime(data_st_c['received_at'], errors='coerce') data_st_c = data_st_c[~data_st_c['received_at'].isnull()] # Exclude central stores from source-stores data_st_c = data_st_c[~data_st_c['source_store'].isin([52, 60, 92, 111])] data_st_c['store_id'] = data_st_c['destination_store'] data_st_c['created_at'] = data_st_c['received_at'] data_st_grp_c = pre_trigger_data_prep_c(data_st_c, run_date) data_st_grp_c = data_st_grp_c.rename(columns={'times_trigger': 'times_st', 'days_trigger': 'days_st', 'quantity': 'quantity_st'}) ######################################## # Merge all ######################################## data_merge_c = data_search_grp_c.merge(data_pr_grp_c, how='outer', on=['store_id', 'drug_id']) data_merge_c = data_merge_c.merge(data_ms_grp_c, how='outer', on=['store_id', 'drug_id']) data_merge_c = data_merge_c.merge(data_lp_grp_c, how='outer', on=['store_id', 'drug_id']) data_merge_c = data_merge_c.merge(data_st_grp_c, how='outer', on=['store_id', 'drug_id']) # Fill missing values with 0 data_merge_c = data_merge_c.fillna(0).astype(int) # Binary columns, which will be used later for i in ['times_searched', 'times_pr', 'times_ms', 'times_lp', 'times_st']: data_merge_c[i + '_b'] = np.where(data_merge_c[i] > 0, 1, 0) # Aggregate data_merge_c['num_triggers'] = (data_merge_c['times_searched_b'] + data_merge_c['times_pr_b'] + data_merge_c['times_ms_b'] + data_merge_c['times_lp_b'] + data_merge_c['times_st_b']) # Repeatable info merge data_r = prep_data_from_sql(Q_REPEATABLE.format(schema=schema), db) data_merge_c = data_merge_c.merge(data_r, how='left', on='drug_id') data_merge_c['is_repeatable'] = data_merge_c['is_repeatable'].fillna(0) # Columns about repeat event flags for i in ['days_searched', 'days_pr', 'days_ms', 'days_lp', 'days_st']: data_merge_c[i + '_r'] = np.where(data_merge_c[i] > 1, 1, 0) # Number of repeat triggers sum data_merge_c['num_repeat_triggers'] = (data_merge_c['days_searched_r'] + data_merge_c['days_pr_r'] + data_merge_c['days_ms_r'] + data_merge_c['days_lp_r'] + data_merge_c['days_st_r']) # Number of non search triggers data_merge_c['num_repeat_triggers_non_search'] = (data_merge_c['days_pr_r'] + data_merge_c['days_ms_r'] + data_merge_c['days_lp_r'] + data_merge_c['days_st_r']) return data_merge_c def data_augment_doi_inv(data_pass, store_id, max0_drugs_df, db, schema): # Formatted SQL queries # q_max0 = query_max_zero(store_id) q_inv = query_inventory(store_id, schema) data_merge_c = data_pass.copy() ######################################## # Max0 drugs ######################################## # connection = current_config.mysql_conn() # data_max0 = prep_data_from_sql(q_max0, connection) # data_max0['max0'] = 1 # Take max0 from df passed data_max0 = max0_drugs_df.copy() data_max0['store_id'] = store_id data_max0['max0'] = 1 ######################################## # Current inventory ######################################## q_inv = query_inventory(store_id, schema=schema) data_inv = prep_data_from_sql(q_inv, db) data_inv['curr_inv0'] = np.where(data_inv['current_inventory'] == 0, 1, 0) ######################################## # PTR ######################################## # SQL data_ptr = prep_data_from_sql(Q_PTR.format(schema=schema), db) data_ptr["ptr"] = data_ptr["ptr"].astype(float) # Merge Max info, and impute if not present data_merge_c = data_merge_c.merge(data_max0, how='inner', on=['store_id', 'drug_id']) data_merge_c['max0'] = data_merge_c['max0'].fillna(0) # Merge inventory and impute if not present data_merge_c = data_merge_c.merge(data_inv, how='left', on=['store_id', 'drug_id']) data_merge_c['curr_inv0'] = data_merge_c['curr_inv0'].fillna(1) # Merge PTR and impute an average value if null data_merge_c = data_merge_c.merge(data_ptr, how='left', on=['drug_id']) data_merge_c['ptr'] = data_merge_c['ptr'].fillna(67) # Max0, inv0 both data_merge_c['max0_inv0'] = data_merge_c['max0'] * data_merge_c['curr_inv0'] return data_merge_c def make_keep_col(data_pass): data = data_pass.copy() # Rule is written here, for if we want to set max for a drug data['keep'] = np.where(((data['num_triggers'] >= 4) | ((data['num_triggers'] == 3) & (data['num_repeat_triggers'] >= 1)) | ((data['num_triggers'] == 3) & (data['num_repeat_triggers'] == 0) & ( data['is_repeatable'] == 1)) | ((data['num_triggers'] == 2) & (data['num_repeat_triggers'] >= 2)) | ((data['num_triggers'] == 2) & (data['num_repeat_triggers'] == 1) & ( data['is_repeatable'] == 1)) | ((data['num_triggers'] == 2) & (data['num_repeat_triggers'] == 1) & ( data['num_repeat_triggers_non_search'] == 1)) | ((data['num_triggers'] == 1) & (data['num_repeat_triggers'] == 1) & ( data['is_repeatable'] == 1)) | ((data['num_triggers'] == 1) & (data['num_repeat_triggers'] == 1) & ( data['num_repeat_triggers_non_search'] == 1)) ), 1, 0) # Rounding off to 2 decimals for i in ['max0', 'curr_inv0', 'max0_inv0']: data[i] = np.round(data[i], 2) # Columns for order information data['sku'] = 1 data['keep_sku'] = (data['sku'] * data['keep'] * data['max0']).astype(int) data['order_sku'] = (data['sku'] * data['keep'] * data['max0_inv0']).astype(int) data['max_value'] = data['keep_sku'] * data['ptr'] data['order_value'] = data['order_sku'] * data['ptr'] return data def final_reset_sku(data_pass, db, schema): data_merge_c = data_pass.copy() ######################################## # Some hardcoded decisions, to control inventory rise ######################################## # Should be revisited later max_set = data_merge_c[(data_merge_c['keep_sku'] == 1)].copy() # Summary by triggers max_set_summary = max_set.groupby(['num_triggers', 'num_repeat_triggers', 'num_repeat_triggers_non_search', 'is_repeatable']).agg({'drug_id': 'count', 'max0': 'mean', 'curr_inv0': 'mean', 'max0_inv0': 'mean'}).reset_index() max_set_summary = max_set_summary.rename(columns={'drug_id': 'drugs'}) max_set_summary['is_repeatable'] = max_set_summary['is_repeatable'].astype('int') max_set_summary = max_set_summary.sort_values(by=['num_triggers', 'num_repeat_triggers', 'is_repeatable', 'num_repeat_triggers_non_search'], ascending=(False, False, False, False)) # Some high value ethical drugs, can increase order value max_set_f1 = max_set[max_set['ptr'] <= 300].copy() # Keep only 2+ triggers for now max_set_f2 = max_set_f1[max_set_f1['num_triggers'] >= 2].copy() # Stores info merge # SQL stores = prep_data_from_sql(Q_STORES.format(schema=schema), db) max_set_f = max_set_f2.merge(stores, how='left', on='store_id') # Order summary for store max_set_f_store_summary = max_set_f.groupby(['store_id', 'store_name'])[ 'keep_sku', 'order_sku', 'max_value', 'order_value'].sum().reset_index() for i in ['max_value', 'order_value']: max_set_f_store_summary[i] = np.round(max_set_f_store_summary[i], 0).astype(int) # Min, SS, Max to be set as 0,0,1 # Can be revisited later if policy change or more confidence max_set_final = max_set_f[['store_id', 'drug_id']].drop_duplicates() max_set_final['min'] = 0 max_set_final['safety_stock'] = 0 max_set_final['max'] = 1 # 'max_set_final' is the final df, at drug level # Rest data-frames are summary data-frames return max_set_final, max_set_summary, max_set_f_store_summary
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/new_stores/new_store_stock_triggers.py
new_store_stock_triggers.py
import numpy as np import pandas as pd def get_ga_composition_sku(db, schema, substition_type=['generic'], logger=None): ''' to get good aid sku and top sku ''' # Good Aid SKU list ga_sku_query = """ select wh."drug-id" , d.composition from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where wh."add-wh" = 'Yes' and d."company-id" = 6984 and d.type in {0} """.format(str(substition_type).replace('[', '(').replace(']', ')'), schema=schema) ga_sku = db.get_df(ga_sku_query) ga_sku.columns = [c.replace('-', '_') for c in ga_sku.columns] logger.info('GoodAid SKU list ' + str(ga_sku.shape[0])) # ga_sku_query = ''' # select drug_id, composition # from good_aid_substitution_sku # where start_date <= '{}' # '''.format(current_date) # pg_connection = current_config.data_science_postgresql_conn() # ga_sku = pd.read_sql_query(ga_sku_query, pg_connection) # pg_connection.close() # logger.info('GoodAid SKU list ' + str(ga_sku.shape[0])) # Generic Top SKU ga_active_composition = tuple(ga_sku['composition'].values) top_sku_query = """ select wh."drug-id" , d.composition from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where wh."add-wh" = 'Yes' and d."company-id" != 6984 and d.type in {0} and d.composition in {1} """.format(str(substition_type).replace('[', '(').replace(']', ')'), str(ga_active_composition), schema=schema) top_sku = db.get_df(top_sku_query) top_sku.columns = [c.replace('-', '_') for c in top_sku.columns] logger.info('GoodAid comp Top SKU list ' + str(top_sku.shape[0])) # ga_active_composition = tuple(ga_sku['composition'].values) # top_sku_query = ''' # select drug_id, composition # from good_aid_generic_sku # where active_flag = 'YES' # and composition in {} # '''.format(str(ga_active_composition)) # pg_connection = current_config.data_science_postgresql_conn() # top_sku = pd.read_sql_query(top_sku_query, pg_connection) # pg_connection.close() # logger.info('GoodAid comp Top SKU list ' + str(top_sku.shape[0])) # SS substition for other drugs rest_sku_query = """ select id as drug_id, composition from "{schema}".drugs where composition in {0} and id not in {1} and type in {2} """.format(str(ga_active_composition), str(tuple(top_sku['drug_id'].values)), str(substition_type).replace('[', '(').replace(']', ')'), schema=schema) rest_sku = db.get_df(rest_sku_query) logger.info('GoodAid comp rest SKU list ' + str(rest_sku.shape[0])) return ga_sku, top_sku, rest_sku def update_ga_ss(safety_stock_df, store_id, db, schema, ga_inv_weight=0.5, rest_inv_weight=0, top_inv_weight=1, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=None): '''updating safety stock for good aid ''' # good aid ss log good_aid_ss_log = pd.DataFrame() pre_max_qty = safety_stock_df[max_column].sum() # get drug list logger.info('Getting SKU list') ga_sku, top_sku, rest_sku = get_ga_composition_sku(db, schema, substition_type, logger) # get composition level ss numbers logger.info('Aggregating composition level SS') ga_composition = pd.concat([ga_sku, top_sku, rest_sku], axis=0) columns_list = ['drug_id', 'composition', min_column, ss_column, max_column] ga_composition_ss = ga_composition.merge( safety_stock_df, on='drug_id')[columns_list] ga_composition_ss_agg = ga_composition_ss.groupby( ['composition'])[min_column, ss_column, max_column].sum(). \ reset_index() # get index for different drug lists rest_sku_index = safety_stock_df[ safety_stock_df['drug_id'].isin(rest_sku['drug_id'])].index top_sku_index = safety_stock_df[ safety_stock_df['drug_id'].isin(top_sku['drug_id'])].index ga_sku_index = safety_stock_df[ safety_stock_df['drug_id'].isin(ga_sku['drug_id'])].index logger.info('Updating safety stock') # logging rest SKU ss from algo prev_rest_sku_ss = safety_stock_df.loc[rest_sku_index]. \ merge(rest_sku)[columns_list] prev_rest_sku_ss['sku_type'] = 'rest generic' good_aid_ss_log = good_aid_ss_log.append(prev_rest_sku_ss) # setting rest SKU ss safety_stock_df.loc[rest_sku_index, min_column] = np.round( rest_inv_weight * safety_stock_df.loc[rest_sku_index, min_column]) safety_stock_df.loc[rest_sku_index, ss_column] = np.round( rest_inv_weight * safety_stock_df.loc[rest_sku_index, ss_column]) safety_stock_df.loc[rest_sku_index, max_column] = np.round( rest_inv_weight * safety_stock_df.loc[rest_sku_index, max_column]) # logging rest SKU ss from algo prev_top_sku_ss = safety_stock_df.loc[top_sku_index]. \ merge(top_sku)[columns_list] prev_top_sku_ss['sku_type'] = 'top generic' good_aid_ss_log = good_aid_ss_log.append(prev_top_sku_ss) # settng top SKU ss safety_stock_df.loc[top_sku_index, min_column] = np.round( top_inv_weight * safety_stock_df.loc[top_sku_index, min_column]) safety_stock_df.loc[top_sku_index, ss_column] = np.round( top_inv_weight * safety_stock_df.loc[top_sku_index, ss_column]) safety_stock_df.loc[top_sku_index, max_column] = np.round( top_inv_weight * safety_stock_df.loc[top_sku_index, max_column]) # logging goodaid SKU ss from algo prev_ga_sku_ss = safety_stock_df.loc[ga_sku_index]. \ merge(ga_sku)[columns_list] prev_ga_sku_ss['sku_type'] = 'good aid' good_aid_ss_log = good_aid_ss_log.append(prev_ga_sku_ss) # setting goodaid SKU ss ga_sku_ss = ga_composition_ss_agg.merge(ga_sku)[columns_list] ga_sku_ss[min_column] = np.round(ga_inv_weight * ga_sku_ss[min_column]) ga_sku_ss[ss_column] = np.round(ga_inv_weight * ga_sku_ss[ss_column]) ga_sku_ss[max_column] = np.round(ga_inv_weight * ga_sku_ss[max_column]) ss_df_columns = safety_stock_df.columns safety_stock_df = safety_stock_df.merge( ga_sku_ss, how='left', on=['drug_id']) safety_stock_df[min_column] = np.max( safety_stock_df[[min_column + '_y', min_column + '_x']], axis=1) safety_stock_df[ss_column] = np.max( safety_stock_df[[ss_column + '_y', ss_column + '_x']], axis=1) safety_stock_df[max_column] = np.max( safety_stock_df[[max_column + '_y', max_column + '_x']], axis=1) safety_stock_df = safety_stock_df[ss_df_columns] # updating new good aid skus ga_sku_new_entries = ga_sku_ss.loc[ ~ga_sku_ss['drug_id'].isin(safety_stock_df['drug_id'])] if len(ga_sku_new_entries) > 0: ga_sku_new_entries_drug_list = str( list(ga_sku_new_entries['drug_id']) ).replace('[', '(').replace(']', ')') ga_sku_drug_info_query = """ select d.id as drug_id, "drug-name" as drug_name, type, coalesce(doi."drug-grade", 'NA') as drug_grade from "{schema}".drugs d left join "{schema}"."drug-order-info" doi on d.id = doi."drug-id" where d.id in {0} and doi."store-id" = {1} """.format(ga_sku_new_entries_drug_list, store_id, schema=schema) ga_sku_drug_info = db.get_df(ga_sku_drug_info_query) ga_sku_new_entries = ga_sku_new_entries.merge(ga_sku_drug_info) # filling the relevant columns ga_sku_new_entries['model'] = 'NA' ga_sku_new_entries['bucket'] = 'NA' ga_sku_new_entries['fcst'] = 0 ga_sku_new_entries['std'] = 0 ga_sku_new_entries['lead_time_mean'] = 0 ga_sku_new_entries['lead_time_std'] = 0 ga_sku_new_entries['correction_flag'] = 'N' safety_stock_df = safety_stock_df.append( ga_sku_new_entries)[ss_df_columns] good_aid_ss_log.insert( loc=0, column='store_id', value=store_id) # renaming min/ss/max column name according to the table good_aid_ss_log.rename( columns={min_column: 'safety_stock', ss_column: 'reorder_point', max_column: 'order_upto_point'}, inplace=True) post_max_qty = safety_stock_df[max_column].sum() print('Reduction in max quantity:', str(round(100 * (1 - post_max_qty / pre_max_qty), 2)) + '%') return safety_stock_df, good_aid_ss_log
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/goodaid_substitution.py
goodaid_substitution.py
import numpy as np import math import datetime as dt """ Steps - 1. Get Auto short total time -> from creation to received at store 2. If marked as lost make it 7 days 3. Max LT capped at 7 days Recent corrections: 1. AS & MS added (earlier only AS) 2. In case of no history in past 90 days, set default store_lt = 4 days """ def lead_time(store_id, cal_sales, reset_date, db, schema, logger=None): sb_creation_delay_ethical = 1 sb_creation_delay_other = 1 sb_creation_delay_generic = 2 end_date = str(( dt.datetime.strptime(reset_date, '%Y-%m-%d') - dt.timedelta(7)).date()) begin_date = str(cal_sales.date.dt.date.max() - dt.timedelta(97)) logger.info("Lead Time Calculation Starts") logger.info(f"SB Begin Date: {begin_date}, SB End Date: {end_date}") lead_time_query = f""" select "store-id" , "drug-id" , "type" , status , "created-to-delivery-hour" as "lt-hrs" from "{schema}"."as-ms" am where "as-ms" in ('AS', 'MS') and "store-id" = {store_id} and date("created-at") <= '{end_date}' and date("created-at") >= '{begin_date}' and status not in ('failed', 'deleted') """ lead_time = db.get_df(lead_time_query) lead_time.columns = [c.replace('-', '_') for c in lead_time.columns] # classify all types into generic, ethical & others lead_time["type"] = np.where( lead_time["type"].isin(['ethical', 'high-value-ethical']), 'ethical', lead_time["type"]) lead_time["type"] = np.where(lead_time["type"].isin(['ethical', 'generic']), lead_time["type"], 'others') lead_time["lt_days"] = lead_time["lt_hrs"] / 24 lead_time["lt_days"] = lead_time["lt_days"].fillna(7) lead_time["lt_days"] = np.where(lead_time["lt_days"] > 7, 7, lead_time["lt_days"]) # add SB creation delay lead_time['lt_days'] = np.select( [lead_time['type'] == 'generic', lead_time['type'] == 'ethical'], [lead_time['lt_days'] + sb_creation_delay_generic, lead_time['lt_days'] + sb_creation_delay_ethical], default=lead_time['lt_days'] + sb_creation_delay_other) lt_store_mean = round(lead_time.lt_days.mean(), 2) lt_store_std = round(lead_time.lt_days.std(ddof=0), 2) # to handle cases where no AS,MS history in past 90 days if math.isnan(lt_store_mean): lt_store_mean = 4 if math.isnan(lt_store_std): lt_store_std = 0 lt_drug = lead_time.groupby('drug_id'). \ agg({'lt_days': [np.mean, np.std]}).reset_index() lt_drug.columns = ['drug_id', 'lead_time_mean', 'lead_time_std'] lt_drug['lead_time_std'] = np.where( lt_drug['lead_time_std'].isin([0, np.nan]), lt_store_std, lt_drug['lead_time_std']) logger.info("Lead Time Calculation Completed") return lt_drug, lt_store_mean, lt_store_std
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/lead_time.py
lead_time.py
import numpy as np def generic_portfolio(safety_stock_df, db, schema, logger=None): """ To keep at least 1 drug in every active generic compositions """ comp_drugs_to_keep = get_preference_drugs(db, schema, logger) # get compositions of all generic drugs in store with OUP>0 all_drugs = tuple(safety_stock_df.loc[ safety_stock_df["order_upto_point"] > 0][ "drug_id"].unique()) q_gen_drugs = f""" select id as "drug-id", composition from "{schema}".drugs d where id in {all_drugs} and "type" = 'generic' """ df_gen_drugs = db.get_df(q_gen_drugs) df_gen_drugs.columns = [c.replace('-', '_') for c in df_gen_drugs.columns] df_gen_drugs = df_gen_drugs.loc[df_gen_drugs["composition"] != ''] compostitions_in_store = list(df_gen_drugs["composition"].unique()) # get additional composition-drugs to add compositon_not_in_store = comp_drugs_to_keep.loc[ ~comp_drugs_to_keep["composition"].isin(compostitions_in_store)] logger.info(f"To keep {compositon_not_in_store.shape[0]} additional " f"composition-drugs in store") # drugs to add in current ss table drugs_to_add = compositon_not_in_store[["drug_id", "std_qty"]] final_df = safety_stock_df.merge(drugs_to_add, on="drug_id", how="outer") # handle NaN columns for additional drugs final_df["model"] = final_df["model"].fillna('NA') final_df["bucket"] = final_df["bucket"].fillna('NA') final_df['fcst'] = final_df['fcst'].fillna(0) final_df['std'] = final_df['std'].fillna(0) final_df['lead_time_mean'] = final_df['lead_time_mean'].fillna(0) final_df['lead_time_std'] = final_df['lead_time_std'].fillna(0) final_df["safety_stock"] = final_df["safety_stock"].fillna(0) final_df["reorder_point"] = final_df["reorder_point"].fillna(0) final_df["order_upto_point"] = final_df["order_upto_point"].fillna(0) # set OUP=STD_QTY for added drugs final_df["order_upto_point"] = np.where(final_df["std_qty"].notna(), final_df["std_qty"], final_df["order_upto_point"]) final_df = final_df.drop("std_qty", axis=1) return final_df def get_preference_drugs(db, schema, logger=None): """ Get all active generic compositions in WH and the preferred drugs in that compositions, the preference order is as follows: * Choose GAID if available * Else choose highest selling drug in past 90 days at system level """ q_wh_gen_sku = f""" select wssm."drug-id" , d.composition , d."company-id" from "{schema}"."wh-sku-subs-master" wssm left join "{schema}".drugs d on wssm."drug-id" = d.id where "add-wh" = 'Yes' and d."type" = 'generic' """ df_wh_gen_sku = db.get_df(q_wh_gen_sku) df_wh_gen_sku.columns = [c.replace('-', '_') for c in df_wh_gen_sku.columns] # clear drugs with no composition present df_wh_gen_sku = df_wh_gen_sku.loc[df_wh_gen_sku["composition"] != ''] logger.info(f"Distinct generic compositions in WH: {len(df_wh_gen_sku.composition.unique())}") logger.info(f"Distinct generic drugs in WH: {df_wh_gen_sku.shape[0]}") drug_ids = tuple(df_wh_gen_sku.drug_id.unique()) # get past 90 days sales info of the preferred drugs q_sales = f""" select "drug-id" , sum("revenue-value") as "gross-sales" from "{schema}".sales s where "drug-id" in {drug_ids} and datediff('day', date("created-at"), CURRENT_DATE ) < 90 and "bill-flag" = 'gross' group by "drug-id" """ df_sales = db.get_df(q_sales) df_sales.columns = [c.replace('-', '_') for c in df_sales.columns] df_wh_gen_sku = df_wh_gen_sku.merge(df_sales, on="drug_id", how="left") df_wh_gen_sku["gross_sales"] = df_wh_gen_sku["gross_sales"].fillna(0) df_wh_gen_sku["is_gaid"] = np.where(df_wh_gen_sku["company_id"] == 6984, 1, 0) # order priority: GA, Sales df_wh_gen_sku = df_wh_gen_sku.sort_values( by=['composition', 'is_gaid', 'gross_sales'], ascending=False) # choose the first preference for every composition comp_drug_list = df_wh_gen_sku.groupby('composition', as_index=False).agg( {'drug_id': 'first'}) # get std-qty to keep q_drug_std_info = f""" select "drug-id" , "std-qty" from "{schema}"."drug-std-info" dsi """ df_drug_std_info = db.get_df(q_drug_std_info) df_drug_std_info.columns = [c.replace('-', '_') for c in df_drug_std_info.columns] comp_drug_list = comp_drug_list.merge(df_drug_std_info, on="drug_id", how="left") # fill NA values with defaults comp_drug_list["std_qty"] = comp_drug_list["std_qty"].fillna(1) return comp_drug_list
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/store_portfolio_additions.py
store_portfolio_additions.py
import pandas as pd import numpy as np import time from zeno_etl_libs.django.api import Sql from zeno_etl_libs.db.db import MySQL def doid_update(data, type_list, db, schema, logger=None, gaid_omit=True): # GA skus to be omitted ga_sku_query = f""" select "drug-id" as drug_id from "{schema}"."wh-sku-subs-master" wh left join "{schema}".drugs d on d.id = wh."drug-id" where d."company-id" = 6984 """ ga_sku = db.get_df(ga_sku_query) ga_sku_list = tuple(ga_sku['drug_id']) # import pdb; pdb.set_trace() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() data = data[['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max']] data = data.rename(columns={ 'corr_min': 'min', 'corr_ss': 'safe_stock', 'corr_max': 'max'}) # check if gaid drugs need not to be omitted if gaid_omit == False: ga_sku_list = (0, 0) data = data[~data['drug_id'].isin(ga_sku_list)] mysql = MySQL() sql = Sql() for store_id in data['store_id'].unique(): current_ss_query = """ SELECT doid.id, doid.`store-id` , doid.`drug-id` , doid.min, doid.`safe-stock` , doid.max FROM `drug-order-info-data` doid left join drugs d on d.id = doid.`drug-id` where doid.`store-id` = {store_id} and d.`type` in {type_list} and d.id not in {ga_sku_list} """.format(store_id=store_id, type_list=type_list, ga_sku_list=ga_sku_list, schema=schema) mysql.open_connection() current_ss = pd.read_sql(current_ss_query, mysql.connection) mysql.close() current_ss.columns = [c.replace('-', '_') for c in current_ss.columns] data_store = data.loc[ data['store_id'] == store_id, ['store_id', 'drug_id', 'min', 'safe_stock', 'max']] # Not let the code erroneously force non-gaid drugs to zero how = 'outer' if not gaid_omit: how = 'right' ss_joined = current_ss.merge( data_store, on=['store_id', 'drug_id'], how=how, suffixes=('_old', '')) ss_joined['min'].fillna(0, inplace=True) ss_joined['safe_stock'].fillna(0, inplace=True) ss_joined['max'].fillna(0, inplace=True) new_drug_entries = new_drug_entries.append( ss_joined[ss_joined['id'].isna()]) ss_joined = ss_joined[~ss_joined['id'].isna()] logger.info('Mysql upload for store ' + str(store_id)) logger.info('New entries ' + str( ss_joined[ss_joined['id'].isna()].shape[0])) ss_joined['flag'] = np.where( (ss_joined['min_old'] == ss_joined['min']) & (ss_joined['safe_stock_old'] == ss_joined['safe_stock']) & (ss_joined['max_old'] == ss_joined['max']), 'values same', 'values changed' ) ss_to_upload = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['id', 'min', 'safe_stock', 'max']] logger.info('SS to update only for ' + str( ss_joined[ss_joined['flag'] != 'values same'].shape[0])) data_to_be_updated_list = list(ss_to_upload.apply(dict, axis=1)) if len(data_to_be_updated_list) > 0: chunk_size = 1000 for i in range(0, len(data_to_be_updated_list), chunk_size): status, msg = sql.update( {'table': 'DrugOrderInfoData', 'data_to_be_updated': data_to_be_updated_list[i:i+chunk_size]}, logger) logger.info(f"DrugOrderInfoData update API " f"count: {min(i+chunk_size, len(data_to_be_updated_list))}, status: {status}, msg: {msg}") drug_list = str(list(ss_joined.loc[ ss_joined['flag'] == 'values changed', 'drug_id'].unique()) ).replace('[', '(').replace(']', ')') update_test_query = """ SELECT `store-id` , `drug-id` , min , `safe-stock` , max from `drug-order-info-data` doid where `store-id` = {store_id} and `drug-id` in {drug_list} """.format(store_id=store_id, drug_list=drug_list, schema=schema) time.sleep(15) mysql.open_connection() update_test = pd.read_sql(update_test_query, mysql.connection) mysql.close() update_test.columns = [c.replace('-', '_') for c in update_test.columns] update_test = ss_joined.loc[ ss_joined['flag'] == 'values changed', ['store_id', 'drug_id', 'min', 'safe_stock', 'max']].merge( update_test, on=['store_id', 'drug_id'], suffixes=('_new', '_prod')) update_test['mismatch_flag'] = np.where( (update_test['min_new'] == update_test['min_prod']) & (update_test['safe_stock_new'] == update_test[ 'safe_stock_prod']) & (update_test['max_new'] == update_test['max_prod']), 'updated', 'not updated' ) missed_entries = missed_entries.append( update_test[update_test['mismatch_flag'] == 'not updated']) logger.info( 'Entries updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'updated'].shape[0])) logger.info( 'Entries not updated successfully: ' + str(update_test[ update_test['mismatch_flag'] == 'not updated'].shape[ 0])) return new_drug_entries, missed_entries
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/doid_update_ss.py
doid_update_ss.py
import numpy as np def post_processing(store_id, drug_class, weekly_fcst, safety_stock_df, db, schema, logger): ''' getting drug name, type, grades, store name''' drug_id_list = tuple(drug_class.drug_id.unique()) drug_info_query = """ select d.id as drug_id, "drug-name" as drug_name, type, coalesce(doi."drug-grade", 'NA') as drug_grade from "{schema}".drugs d left join "{schema}"."drug-order-info" doi on d.id = doi."drug-id" where d.id in {0} and doi."store-id" = {1} """.format(str(drug_id_list), store_id, schema=schema) drug_info = db.get_df(drug_info_query) q_store_name = f""" select name from "{schema}".stores where id = {store_id} """ store_name = db.get_df(q_store_name)['name'][0] safety_stock_df['store_id'] = store_id safety_stock_df['store_name'] = store_name safety_stock_df = safety_stock_df.merge( drug_info, on='drug_id', how='left') safety_stock_df['drug_grade'].fillna('NA', inplace=True) safety_stock_df = safety_stock_df[[ 'store_id', 'store_name', 'model', 'drug_id', 'drug_name', 'type', 'drug_grade', 'bucket', 'percentile', 'fcst', 'std', 'lead_time_mean', 'lead_time_std', 'safety_stock', 'reorder_point', 'order_upto_point', 'safety_stock_days', 'reorder_days', 'order_upto_days', 'fptr', 'curr_inventory', 'max_value','correction_flag']] weekly_fcst['store_id'] = store_id weekly_fcst['store_name'] = store_name weekly_fcst = weekly_fcst[['store_id', 'store_name', 'model', 'drug_id', 'date', 'fcst', 'std']] drug_class['store_id'] = store_id drug_class['store_name'] = store_name drug_class = drug_class.merge( drug_info[['drug_id', 'drug_grade', 'type']], on='drug_id', how='left') drug_class['drug_grade'].fillna('NA', inplace=True) drug_class = drug_class[['store_id', 'store_name', 'drug_id', 'drug_grade', 'type', 'net_sales', 'sales_std_dev', 'sales_cov', 'bucket_abc', 'bucket_xyz']] '''Getting order value''' safety_stock_df['to_order_quantity'] = np.where( safety_stock_df['curr_inventory'] <= safety_stock_df['reorder_point'], safety_stock_df['order_upto_point'] - safety_stock_df['curr_inventory'], 0) safety_stock_df['to_order_value'] = ( safety_stock_df['to_order_quantity'] * safety_stock_df['fptr']) order_value = safety_stock_df.pivot_table( index=['type', 'store_name', 'drug_grade'], values=['to_order_quantity', 'to_order_value'], aggfunc='sum', margins=True, margins_name='Total').reset_index() return drug_class, weekly_fcst, safety_stock_df, order_value
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/post_processing.py
post_processing.py
import numpy as np def abc_xyz_classification(cal_drug_sales_monthly, logger=None): cut_cov = (0.3, 1.0) cut_sales = (4, 30) # taking last 12 months data only for classification n = 12 prev_n_month_dt = cal_drug_sales_monthly[ ['month_begin_dt']].drop_duplicates().\ sort_values('month_begin_dt', ascending=False)['month_begin_dt'].\ head(n) cal_drug_sales_classification = cal_drug_sales_monthly[ cal_drug_sales_monthly.month_begin_dt.isin(prev_n_month_dt)] print(len(cal_drug_sales_classification)) # monthly averages for classification drug_class = cal_drug_sales_classification.\ groupby('drug_id').agg({'net_sales_quantity': [np.mean, np.std]}).\ reset_index() drug_class.columns = ['drug_id', 'net_sales', 'sales_std_dev'] drug_class = drug_class[drug_class['net_sales'] >= 0] drug_class['sales_cov'] = ( drug_class['sales_std_dev'] / drug_class['net_sales']) # assertion error to check all sales positive assert len(drug_class[ drug_class['net_sales'] < 0]) == 0 # handling infs drug_class['sales_cov'] = np.where( drug_class['sales_cov'] == np.inf, drug_class['sales_std_dev'], drug_class['sales_cov'] ) # assigning buckets drug_class['bucket_abc'] = np.select( [(drug_class['net_sales'] <= cut_sales[0]), (drug_class['net_sales'] > cut_sales[0]) & (drug_class['net_sales'] <= cut_sales[1]), (drug_class['net_sales'] > cut_sales[1])], ['C', 'B', 'A'], default='NA') drug_class['bucket_xyz'] = np.select( [drug_class['sales_cov'] <= cut_cov[0], (drug_class['sales_cov'] > cut_cov[0]) & (drug_class['sales_cov'] <= cut_cov[1]), drug_class['sales_cov'] > cut_cov[1]], ['X', 'Y', 'Z'], default='NA') print(drug_class.drug_id.nunique()) # summary bucket_sales = drug_class.groupby( ['bucket_abc', 'bucket_xyz']).agg( {'drug_id': 'count', 'net_sales': ['sum', 'mean'], 'sales_cov': 'mean'}).reset_index() bucket_sales.columns = ['bucket_abc', 'bucket_xyz', 'drug_id', 'net_sales', 'avg_sales_per_drug', 'sales_cov'] bucket_sales['net_sales_frac'] = round( 100*bucket_sales['net_sales']/drug_class.net_sales.sum(), 2) bucket_sales['drug_frac'] = round( 100*bucket_sales['drug_id']/drug_class.drug_id.nunique(), 2) bucket_sales['avg_sales_per_drug'] = ( bucket_sales['net_sales']/bucket_sales['drug_id']) print(bucket_sales) return drug_class, bucket_sales
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/item_classification.py
item_classification.py
import datetime import numpy as np import pandas as pd def forecast_data_prep(store_id_list, type_list, reset_date, db, schema, logger=None, last_date=None, is_wh='N'): ''' FETCHING HISTORICAL SALES AND SALES LOSS DATA ''' if last_date is None: last_date = datetime.date(day=1, month=4, year=2019) print('Date range', str(last_date), str(reset_date)) # store list if type(store_id_list) is not list: store_id_list = [store_id_list] store_id_list = str(store_id_list).replace('[', '(').replace(']', ')') # drug list drug_list_query = """ select id as drug_id from "{schema}".drugs where type in {0} """.format(type_list, schema=schema) drug_list = db.get_df(drug_list_query) # sales query sales_query = """ select date("created-at") as "sales-date", "drug-id" , sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" in {store_id_list} and date("created-at") >= '{last_date}' and date("created-at") < '{reset_date}' group by "sales-date", "drug-id" """.format( store_id_list=store_id_list, last_date=last_date, reset_date=reset_date, schema=schema) sales_history = db.get_df(sales_query) sales_history.columns = [c.replace('-', '_') for c in sales_history.columns] calendar_query = """ select date, year, month, "week-of-year", "day-of-week" from "{schema}".calendar """.format(schema=schema) calendar = db.get_df(calendar_query) calendar.columns = [c.replace('-', '_') for c in calendar.columns] sales_history = sales_history.merge(drug_list, how='inner', on='drug_id') # cfr pr loss cfr_pr_query = f""" select "attributed-loss-date", "drug-id", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" where "shortbook-date" >= '{last_date}' and "shortbook-date" < '{reset_date}' and "drug-id" <> -1 and ("drug-category" = 'chronic' or "repeatability-index" >= 40) and "loss-quantity" > 0 and "drug-type" in {type_list} and "store-id" in {store_id_list} group by "attributed-loss-date", "drug-id" """ cfr_pr = db.get_df(cfr_pr_query) cfr_pr["loss-quantity"] = cfr_pr["loss-quantity"].astype(float) cfr_pr.columns = [c.replace('-', '_') for c in cfr_pr.columns] print(sales_history.sales_date.max()) print(cfr_pr.attributed_loss_date.max()) sales_history = sales_history.groupby( ['sales_date', 'drug_id']).sum().reset_index() # imputing days with no sales with zero sales sales_history['sales_date'] = pd.to_datetime(sales_history['sales_date']) sales_history = get_formatted_data(sales_history, 'drug_id', 'sales_date', 'net_sales_quantity') cfr_pr['attributed_loss_date'] = pd.to_datetime(cfr_pr['attributed_loss_date']) # total demand merge sales = sales_history.merge( cfr_pr, left_on=['sales_date', 'drug_id'], right_on=['attributed_loss_date', 'drug_id'], how='left') sales['sales_date'] = sales['sales_date'].combine_first( sales['attributed_loss_date']) sales['net_sales_quantity'].fillna(0, inplace=True) sales['loss_quantity'].fillna(0, inplace=True) sales['net_sales_quantity'] += sales['loss_quantity'] sales.drop(['attributed_loss_date', 'loss_quantity'], axis=1, inplace=True) print(sales.drug_id.nunique()) #To get daily demand deviation drugwise demand_daily_deviation = sales[sales['sales_date'] > pd.to_datetime(reset_date) - datetime.timedelta(days = 29)] demand_daily_deviation = demand_daily_deviation.groupby('drug_id').std().reset_index() demand_daily_deviation = demand_daily_deviation.rename(columns={'net_sales_quantity': 'demand_daily_deviation'}) ''' CREATING DAY-DRUG SALES CROSS TABLE ''' calendar['date'] = pd.to_datetime(calendar['date']) sales['sales_date'] = pd.to_datetime(sales['sales_date']) print('Distinct drug count', sales.drug_id.nunique()) print('No of days', sales.sales_date.nunique()) cal_sales_weekly = calendar.loc[ (pd.to_datetime(calendar['date']) >= sales.sales_date.min()) & (calendar['date'] <= sales.sales_date.max())] cal_sales_monthly = calendar.loc[ (pd.to_datetime(calendar['date']) >= sales.sales_date.min()) & (calendar['date'] <= sales.sales_date.max())] # removing the first week if it has less than 7 days min_year = cal_sales_weekly.year.min() x = cal_sales_weekly.loc[(cal_sales_weekly.year == min_year)] min_month = x.month.min() x = x.loc[(x.month == min_month)] min_week = x.week_of_year.min() if x.loc[x.week_of_year == min_week].shape[0] < 7: print('removing dates for', min_year, min_month, min_week) cal_sales_weekly = cal_sales_weekly.loc[ ~((cal_sales_weekly.week_of_year == min_week) & (cal_sales_weekly.year == min_year))] # removing the latest week if it has less than 7 days max_year = cal_sales_weekly.year.max() x = cal_sales_weekly.loc[(cal_sales_weekly.year == max_year)] max_month = x.month.max() x = x.loc[(x.month == max_month)] max_week = x.week_of_year.max() if x.loc[x.week_of_year == max_week].shape[0] < 7: print('removing dates for', max_year, max_month, max_week) cal_sales_weekly = cal_sales_weekly.loc[ ~((cal_sales_weekly.week_of_year == max_week) & (cal_sales_weekly.year == max_year))] # adding week begin date cal_sales_weekly['week_begin_dt'] = cal_sales_weekly.apply( lambda x: x['date'] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales_weekly['month_begin_dt'] = cal_sales_weekly.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) cal_sales_monthly['week_begin_dt'] = cal_sales_monthly.apply( lambda x: x['date'] - datetime.timedelta(x['day_of_week']), axis=1) cal_sales_monthly['month_begin_dt'] = cal_sales_monthly.apply( lambda x: x['date'] - datetime.timedelta(x['date'].day - 1), axis=1) drugs = sales[['drug_id']].drop_duplicates() drugs['key'] = 1 cal_sales_weekly['key'] = 1 cal_drug_w = drugs.merge(cal_sales_weekly, on='key', how='inner') cal_drug_w.drop('key', axis=1, inplace=True) cal_drug_sales_w = cal_drug_w.merge( sales, left_on=['drug_id', 'date'], right_on=['drug_id', 'sales_date'], how='left') del cal_drug_w cal_drug_sales_w.drop('sales_date', axis=1, inplace=True) cal_drug_sales_w.net_sales_quantity.fillna(0, inplace=True) cal_sales_monthly['key'] = 1 cal_drug_m = drugs.merge(cal_sales_monthly, on='key', how='inner') cal_drug_m.drop('key', axis=1, inplace=True) cal_drug_sales_m = cal_drug_m.merge( sales, left_on=['drug_id', 'date'], right_on=['drug_id', 'sales_date'], how='left') del cal_drug_m cal_drug_sales_m.drop('sales_date', axis=1, inplace=True) cal_drug_sales_m.net_sales_quantity.fillna(0, inplace=True) # assertion test to check no of drugs * no of days equals total entries drug_count = cal_drug_sales_w.drug_id.nunique() day_count = cal_drug_sales_w.date.nunique() print('Distinct no of drugs', drug_count) print('Distinct dates', day_count) print('DF shape', cal_drug_sales_w.shape[0]) # assert drug_count*day_count == cal_drug_sales.shape[0] # checking for history available and store opening date first_bill_query = """ select min(date("created-at")) as bill_date from "{schema}"."bills-1" where "store-id" in {store_id_list} """.format(schema=schema, store_id_list=store_id_list) first_bill_date = db.get_df(first_bill_query).values[0][0] print(first_bill_date) cal_drug_sales_w = cal_drug_sales_w.query( 'date >= "{}"'.format(first_bill_date)) cal_drug_sales_m = cal_drug_sales_m.query( 'date >= "{}"'.format(first_bill_date)) ''' AGGREGATION AT WEEKLY LEVEL ''' cal_drug_sales_weekly = cal_drug_sales_w.groupby( ['drug_id', 'week_begin_dt', 'week_of_year'] )['net_sales_quantity'].sum().reset_index() del cal_drug_sales_w print(cal_drug_sales_weekly.drug_id.nunique()) # getting drug ids that havent been sold in the last 26 weeks n = 26 prev_n_week_dt = ( cal_drug_sales_weekly.week_begin_dt.max() - datetime.timedelta(n * 7)) prev_n_week_sales = cal_drug_sales_weekly[ cal_drug_sales_weekly['week_begin_dt'] > prev_n_week_dt]. \ groupby('drug_id')['net_sales_quantity'].sum().reset_index() prev_no_sales_drug_weekly = prev_n_week_sales.loc[ prev_n_week_sales['net_sales_quantity'] <= 0, 'drug_id'].values cal_drug_sales_weekly = cal_drug_sales_weekly[ ~cal_drug_sales_weekly.drug_id.isin(prev_no_sales_drug_weekly)] print(cal_drug_sales_weekly.drug_id.nunique()) cal_drug_sales_weekly.rename( columns={'week_begin_dt': 'date'}, inplace=True) validation_week = 4 validation_weeks = cal_drug_sales_weekly['date'].drop_duplicates(). \ nlargest(validation_week) print(validation_weeks) cal_drug_sales_weekly['sample_flag'] = np.where( cal_drug_sales_weekly['date'].isin(validation_weeks), 'validation', 'insample') ''' AGGREGATION AT MONTHLY LEVEL ''' cal_drug_sales_monthly = cal_drug_sales_m.groupby( ['drug_id', 'month_begin_dt', 'year', 'month'] )['net_sales_quantity'].sum().reset_index() del cal_drug_sales_m if is_wh == 'N': # removing incomplete month's sales cal_drug_sales_monthly = cal_drug_sales_monthly[ cal_drug_sales_monthly.month_begin_dt != max( cal_drug_sales_monthly.month_begin_dt)] # getting drug ids that havent been sold in the 6 months print(cal_drug_sales_monthly.drug_id.nunique()) n = 6 prev_n_month_dt = cal_drug_sales_monthly[ ['month_begin_dt']].drop_duplicates(). \ sort_values('month_begin_dt', ascending=False )['month_begin_dt'].head(n - 1) prev_n_month_sales = cal_drug_sales_monthly[ cal_drug_sales_monthly['month_begin_dt'].isin(prev_n_month_dt)]. \ groupby('drug_id')['net_sales_quantity'].sum().reset_index() prev_no_sales_drug_monthly = prev_n_month_sales.loc[ prev_n_month_sales['net_sales_quantity'] <= 0, 'drug_id'].values # removing such drugs cal_drug_sales_monthly = cal_drug_sales_monthly[ (~cal_drug_sales_monthly.drug_id.isin(prev_no_sales_drug_monthly)) ] print(cal_drug_sales_monthly.drug_id.nunique()) if is_wh == 'Y': return cal_drug_sales_weekly, cal_drug_sales_monthly, cal_sales_weekly, demand_daily_deviation else: return cal_drug_sales_weekly, cal_drug_sales_monthly, cal_sales_weekly def get_formatted_data(df, key_col, date_col, target_col): df_start = df.groupby([key_col])[date_col].min().reset_index().rename(columns={date_col: 'sales_start'}) df = df[[key_col, date_col, target_col]] min_date = df[date_col].dropna().min() end_date = df[date_col].dropna().max() date_range = [] date_range = pd.date_range( start=min_date, end=end_date, freq='d' ) date_range = list(set(date_range) - set(df[date_col])) df = ( df .groupby([date_col] + [key_col])[target_col] .sum() .unstack() ) for date in date_range: df.loc[date, :] = np.nan df = ( df .fillna(0) .stack() .reset_index() .rename(columns={0: target_col}) ) df = pd.merge(df, df_start, how='left', on=key_col) df = df[df[date_col] >= df['sales_start']] return df
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/data_prep.py
data_prep.py
import pandas as pd import numpy as np import time from scipy.stats import norm from zeno_etl_libs.utils.ipc.data_prep import forecast_data_prep from zeno_etl_libs.utils.ipc.item_classification import abc_xyz_classification from zeno_etl_libs.utils.ipc.forecasting_modules.helper_functions import sum_std,\ applyParallel, applyParallel_lstm from zeno_etl_libs.utils.ipc.forecasting_modules.lstm import lstm_forecast from zeno_etl_libs.utils.ipc.forecasting_modules.moving_average import moving_average from zeno_etl_libs.utils.ipc.forecasting_modules.prophet import prophet_weekly_predict from zeno_etl_libs.utils.ipc.lead_time import lead_time from zeno_etl_libs.utils.ipc.safety_stock import safety_stock_calc def ipc_forecast_reset( store_id, type_list, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, db, schema, drug_type_list_v4, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, chronic_max_flag='N', logger=None): '''DATA PREPATION''' cal_drug_sales_weekly, cal_drug_sales_monthly,\ cal_sales = forecast_data_prep(store_id, type_list, reset_date, db, schema, logger) '''ITEM CLASSIFICATION''' drug_class, bucket_sales = abc_xyz_classification( cal_drug_sales_monthly, logger) '''FORECASTING''' forecast_horizon = 4 # LSTM week_in = 8 week_out = 4 epochs = 200 n_neurons = 8 use_dropout = 0.2 error_factor = 2 lstm_drug_list = drug_class.loc[ (drug_class['bucket_abc'] == 'A') & (drug_class['bucket_xyz'] == 'X') | (drug_class['bucket_abc'] == 'A') & (drug_class['bucket_xyz'] == 'Y') | (drug_class['bucket_abc'] == 'B') & (drug_class['bucket_xyz'] == 'X'), 'drug_id'] lstm_data_weekly = cal_drug_sales_weekly.loc[ cal_drug_sales_weekly['drug_id'].isin(lstm_drug_list)] start = time.time() lstm_weekly_fcst = applyParallel_lstm( lstm_data_weekly.groupby('drug_id'), lstm_forecast, n_neurons=n_neurons, week_in=week_in, week_out=week_out, forecast_horizon=forecast_horizon, epochs=epochs, use_dropout=use_dropout, error_factor=error_factor).\ reset_index(drop=True) end = time.time() print('Run time ', end-start) # MOVING AVERAGES ma_drug_list = drug_class.loc[ (drug_class['bucket_abc'] == 'B') & (drug_class['bucket_xyz'] == 'Y') | (drug_class['bucket_abc'] == 'B') & (drug_class['bucket_xyz'] == 'Z') | (drug_class['bucket_abc'] == 'C') & (drug_class['bucket_xyz'] == 'X'), 'drug_id'] ma_data_weekly = cal_drug_sales_weekly.loc[ cal_drug_sales_weekly['drug_id'].isin(ma_drug_list)] start = time.time() ma_weekly_fcst = ma_data_weekly.groupby('drug_id').\ apply(moving_average).reset_index(drop=True) end = time.time() print('Run time ', end-start) # PROPHET prophet_drug_list = drug_class.loc[ (drug_class['bucket_abc'] == 'C') & (drug_class['bucket_xyz'] == 'Y') | (drug_class['bucket_abc'] == 'C') & (drug_class['bucket_xyz'] == 'Z') | (drug_class['bucket_abc'] == 'A') & (drug_class['bucket_xyz'] == 'Z'), 'drug_id'] prophet_data_weekly = cal_drug_sales_weekly.loc[ cal_drug_sales_weekly['drug_id'].isin(prophet_drug_list)] start = time.time() prophet_weekly_fcst = applyParallel( prophet_data_weekly.groupby('drug_id'), prophet_weekly_predict).\ reset_index(drop=True) end = time.time() print('Run time ', end-start) '''COMPILING OUTPUT AND PERCENTILE FORECAST''' columns = ['model', 'drug_id', 'date', 'fcst', 'std'] ma_weekly_fcst['model'] = 'MA' ma_weekly_fcst = ma_weekly_fcst[columns] prophet_weekly_fcst['model'] = 'Prophet' prophet_weekly_fcst = prophet_weekly_fcst[columns] lstm_weekly_fcst['model'] = 'LSTM' lstm_weekly_fcst = lstm_weekly_fcst[columns] weekly_fcst = pd.concat( [ma_weekly_fcst, prophet_weekly_fcst, lstm_weekly_fcst], axis=0) percentile_bucket_dict = { 'AX': 0.5, 'AY': 0.5, 'AZ': 0.5, 'BX': 0.5, 'BY': 0.6, 'BZ': 0.6, 'CX': 0.5, 'CY': 0.6, 'CZ': 0.6} print(weekly_fcst.drug_id.nunique()) weekly_fcst = weekly_fcst.merge( drug_class[['drug_id', 'bucket_abc', 'bucket_xyz']], on='drug_id', how='inner') weekly_fcst['bucket'] = ( weekly_fcst['bucket_abc'] + weekly_fcst['bucket_xyz']) weekly_fcst.drop(['bucket_abc', 'bucket_xyz'], axis=1, inplace=True) for key in percentile_bucket_dict.keys(): print(key, percentile_bucket_dict[key]) indexs = weekly_fcst[weekly_fcst.bucket == key].index weekly_fcst.loc[indexs, 'percentile'] = percentile_bucket_dict[key] weekly_fcst.loc[indexs, 'fcst'] = np.round( weekly_fcst.loc[indexs, 'fcst'] + norm.ppf(percentile_bucket_dict[key]) * weekly_fcst.loc[indexs, 'std']) agg_fcst = weekly_fcst.groupby( ['model', 'drug_id', 'bucket', 'percentile']).\ agg({'fcst': 'sum', 'std': sum_std}).reset_index() '''LEAD TIME CALCULATION''' lt_drug, lt_store_mean, lt_store_std = lead_time( store_id, cal_sales, reset_date, db, schema, logger) '''SAFETY STOCK CALCULATION''' safety_stock_df, df_corrections, df_corrections_111, \ drugs_max_to_lock_ipcv6, drug_rejects_ipcv6 = safety_stock_calc( agg_fcst, store_id, forecast_horizon, lt_drug, lt_store_mean, lt_store_std, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, drug_type_list_v4, db, schema, logger) return drug_class, weekly_fcst, safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, drug_rejects_ipcv6
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/forecast_reset.py
forecast_reset.py
import pandas as pd import numpy as np from scipy.stats import norm from datetime import datetime from zeno_etl_libs.utils.ipc.heuristics.base import base_heuristics from zeno_etl_libs.utils.ipc.heuristics.ipcv4_heuristics import ipcv4_heuristics from zeno_etl_libs.utils.ipc.heuristics.ipcv5_heuristics import v5_corrections # from scripts.ops.ipc.heuristics.ipcv6_heuristics import v6_corrections ''' service level - 95% safety stock = z-score * sqrt(std_lead_time^2 * avg_demand^2 + avg_lead_time^2 * std_demand^2) re-order point = avg_lead_time + avg_demand + safety stock ''' def safety_stock_calc(agg_fcst, store_id, forecast_horizon, lt_drug, lt_store_mean, lt_store_std, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, drug_type_list_v4, db, schema, logger): service_level = 0.95 fcst_weeks = 4 order_freq = 4 z = norm.ppf(service_level) print(lt_store_mean, lt_store_std) safety_stock_df = agg_fcst.merge( lt_drug[['drug_id', 'lead_time_mean', 'lead_time_std']], how='left', on='drug_id') safety_stock_df['lead_time_mean'].fillna(lt_store_mean, inplace=True) safety_stock_df['lead_time_std'].fillna(lt_store_std, inplace=True) # heuristics #1 safety_stock_df['lead_time_std'] = np.where( safety_stock_df['lead_time_std'] < 1, lt_store_std, safety_stock_df['lead_time_std']) # safeyty stock value - variation in demand & lead time safety_stock_df['safety_stock'] = safety_stock_df.apply( lambda row: np.round(z * np.sqrt( (row['lead_time_mean'] * np.square( row['std'] / np.sqrt(fcst_weeks * 7)) + np.square(row['lead_time_std'] * row['fcst'] / fcst_weeks / 7)) )), axis=1) safety_stock_df['safety_stock'] = np.where( safety_stock_df['fcst'] == 0, 0, safety_stock_df['safety_stock']) # consider avg fulfillment times safety_stock_df['reorder_point'] = safety_stock_df.apply( lambda row: np.round( row['lead_time_mean'] * row['fcst'] / fcst_weeks / 7), axis=1) + safety_stock_df['safety_stock'] # ordering frequency 7 days # heuristics #2 safety_stock_df['order_upto_point'] = ( safety_stock_df['reorder_point'] + np.round( np.where( # if rounding off give 0, increase it to 4-week forecast (safety_stock_df['reorder_point'] + safety_stock_df[ 'fcst'] * order_freq / fcst_weeks / 7 < 0.5) & (safety_stock_df['fcst'] > 0), safety_stock_df['fcst'], safety_stock_df['fcst'] * order_freq / fcst_weeks / 7)) ) # correction for negative forecast safety_stock_df['safety_stock'] = np.where( safety_stock_df['safety_stock'] < 0, 0, safety_stock_df['safety_stock']) safety_stock_df['reorder_point'] = np.where( safety_stock_df['reorder_point'] < 0, 0, safety_stock_df['reorder_point']) safety_stock_df['order_upto_point'] = np.where( safety_stock_df['order_upto_point'] < 0, 0, safety_stock_df['order_upto_point']) safety_stock_df['safety_stock_days'] = np.round( 7 * forecast_horizon * safety_stock_df['safety_stock'] / safety_stock_df['fcst']) safety_stock_df['reorder_days'] = np.round( 7 * forecast_horizon * safety_stock_df['reorder_point'] / safety_stock_df['fcst']) safety_stock_df['order_upto_days'] = np.round( 7 * forecast_horizon * safety_stock_df['order_upto_point'] / safety_stock_df['fcst']) # heuristics #3 safety_stock_df['order_upto_point'] = np.where( safety_stock_df['order_upto_days'] < 14, np.round(14 * safety_stock_df['fcst'] / fcst_weeks / 7), safety_stock_df['order_upto_point'] ) safety_stock_df['order_upto_days'] = np.round( 7 * forecast_horizon * safety_stock_df['order_upto_point'] / safety_stock_df['fcst']) # recent actuals base adjustments safety_stock_df = base_heuristics( store_id, safety_stock_df, reset_date, db, schema, logger) # getting order value drug_list = list(safety_stock_df['drug_id'].unique()) print(len(drug_list)) drug_str = str(drug_list).replace('[', '(').replace(']', ')') fptr_query = """ select "drug-id" , avg(ptr) as fptr, sum(quantity) as curr_inventory from "{schema}"."inventory-1" i where "store-id" = {store_id} and "drug-id" in {drug_str} group by "drug-id" """.format(store_id=store_id, drug_str=drug_str, schema=schema) fptr = db.get_df(fptr_query) fptr.columns = [c.replace('-', '_') for c in fptr.columns] fptr["fptr"] = fptr["fptr"].astype(float) final_pred_ss_df = safety_stock_df.merge(fptr, on='drug_id', how='left') final_pred_ss_df['fptr'].fillna(100, inplace=True) final_pred_ss_df['max_value'] = ( final_pred_ss_df['fptr'] * final_pred_ss_df['order_upto_point']) print(final_pred_ss_df.groupby('bucket')['max_value'].sum().reset_index()) print(28 * final_pred_ss_df['order_upto_point'].sum() / final_pred_ss_df['fcst'].sum()) print(final_pred_ss_df['max_value'].sum()) # correction plugin - Start if corrections_flag: final_pred_ss_df['correction_flag'] = 'N' final_pred_ss_df['store_id'] = store_id print("corrections code is running now:") q_prob = f"""select * from "{schema}"."ipc-corrections-rest-cases" """ q_prob_111 = f"""select * from "{schema}"."ipc-corrections-111-cases" """ prob_matrix = db.get_df(q_prob) df_111 = db.get_df(q_prob_111) prob_matrix.columns = [c.replace('-', '_') for c in prob_matrix.columns] df_111.columns = [c.replace('-', '_') for c in df_111.columns] # list of drugs for which corrections is required. i.e. max value 0. df_corrections_list = final_pred_ss_df[ final_pred_ss_df['order_upto_point'] == 0][['store_id', 'drug_id']] df_corrections = pd.merge( df_corrections_list, prob_matrix, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections = df_corrections.drop(columns={'corrected_max'}) df_corrections['order_upto_point'] = np.round( df_corrections['current_ma_3_months']) df_corrections_1 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_less_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections[ (df_corrections['cumm_prob'] >= corrections_cumulative_probability_cutoff['ma_more_than_2']) & (df_corrections['current_flag_ma_less_than_2'] == 0)] df_corrections_1 = df_corrections_1[ (df_corrections_1['selling_probability'] >= corrections_selling_probability_cutoff['ma_less_than_2']) & (df_corrections_1['current_flag_ma_less_than_2'] == 1)] df_corrections_2 = df_corrections_2[ (df_corrections_2['selling_probability'] >= corrections_selling_probability_cutoff['ma_more_than_2']) & (df_corrections_2['current_flag_ma_less_than_2'] == 0)] df_corrections = pd.concat( [df_corrections_1, df_corrections_2]).reset_index(drop=True) df_corrections_final = df_corrections.copy()[ ['store_id', 'drug_id', 'current_bucket', 'selling_probability', 'cumm_prob', 'current_flag_ma_less_than_2', 'avg_ptr', 'current_ma_3_months']] # adding run time current inventory df_corrections_final = pd.merge( df_corrections_final, final_pred_ss_df[['store_id', 'drug_id', 'curr_inventory']], on=['store_id', 'drug_id'], how='left', validate='one_to_one') df_corrections = df_corrections[ ['store_id', 'drug_id', 'order_upto_point']] df_corrections['reorder_point'] = np.floor( df_corrections['order_upto_point'] / 2) df_corrections['safety_stock'] = np.floor( df_corrections['order_upto_point'] / 4) df_corrections['correction_flag'] = 'Y' df_corrections['is_ipc'] = 'Y' df_corrections = df_corrections.set_index(['store_id', 'drug_id']) final_pred_ss_df = final_pred_ss_df.set_index(['store_id', 'drug_id']) final_pred_ss_df.update(df_corrections) final_pred_ss_df = final_pred_ss_df.reset_index() df_corrections = df_corrections.reset_index() df_corrections = pd.merge( df_corrections, df_corrections_final, on=['store_id', 'drug_id'], how='left', validate='one_to_one') # update 111 cases here. df_corrections_111 = pd.merge( df_corrections_list, df_111, how='inner', on=['store_id', 'drug_id'], validate='one_to_one') df_corrections_111 = df_corrections_111.drop( columns={'current_inventory', 'original_max', 'corrected_max', 'inv_impact', 'max_impact'}, axis=1) df_corrections_111['order_upto_point'] = np.round( df_corrections_111['ma_3_months']) df_corrections_111['reorder_point'] = np.floor( df_corrections_111['order_upto_point'] / 2) df_corrections_111['safety_stock'] = np.floor( df_corrections_111['order_upto_point'] / 4) df_corrections_111['correction_flag'] = 'Y' df_corrections_111['is_ipc'] = 'Y' # adding run time current inventory df_corrections_111 = pd.merge( df_corrections_111, final_pred_ss_df[['store_id', 'drug_id', 'curr_inventory']], on=['store_id', 'drug_id'], how='left', validate='one_to_one') df_corrections_111 = df_corrections_111.set_index( ['store_id', 'drug_id']) final_pred_ss_df = final_pred_ss_df.set_index(['store_id', 'drug_id']) final_pred_ss_df.update(df_corrections_111) final_pred_ss_df = final_pred_ss_df.reset_index() df_corrections_111 = df_corrections_111.reset_index() # set reset date curr_date = str(datetime.now()) df_corrections['reset_date'] = curr_date df_corrections_111['reset_date'] = curr_date else: print('corrections block skipped :') final_pred_ss_df["store_id"] = store_id final_pred_ss_df["correction_flag"] = 'N' df_corrections = pd.DataFrame() df_corrections_111 = pd.DataFrame() # Correction plugin - End # final_pred_ss_df = final_pred_ss_df.drop(['store_id'], axis=1) # Chronic drug changes if chronic_max_flag == 'Y': # based on ME OOS feedback - keep chronic drugs drug_max_zero = tuple( final_pred_ss_df.query('order_upto_point == 0')['drug_id']) # reading chronic drug list drug_chronic_max_zero_query = ''' select id as drug_id from "{schema}".drugs where category = 'chronic' and id in {0} '''.format(str(drug_max_zero), schema=schema) drug_chronic_max_zero = db.get_df(drug_chronic_max_zero_query)['drug_id'] # setting non zero max for such drugs final_pred_ss_df.loc[ (final_pred_ss_df['drug_id'].isin(drug_chronic_max_zero)) & (final_pred_ss_df['order_upto_point'] == 0), 'order_upto_point'] = 1 final_pred_ss_df.loc[ (final_pred_ss_df['drug_id'].isin(drug_chronic_max_zero)) & (final_pred_ss_df['order_upto_point'] == 0), 'correction_flag'] = 'Y_chronic' # Min/SS/Max overlap correction final_pred_ss_df['safety_stock_days'].fillna(0, inplace=True) final_pred_ss_df['reorder_days'].fillna(0, inplace=True) final_pred_ss_df['order_upto_days'].fillna(0, inplace=True) final_pred_ss_df = ipcv4_heuristics(final_pred_ss_df, drug_type_list_v4, db, schema) if v5_active_flag == "Y": logger.info("IPC V5 Correction Starts") final_pred_ss_df = v5_corrections(store_id, final_pred_ss_df, logger) logger.info("IPC V5 Correction Successful") # if v6_active_flag == "Y": # logger.info("IPC V6 Correction Starts") # final_pred_ss_df, drugs_max_to_lock_ipcv6, drug_rejects_ipcv6 = \ # v6_corrections(store_id, final_pred_ss_df, reset_date, v6_type_list, # v6_ptr_cut_off, logger) # # # add algo name to v6 write table # drugs_max_to_lock_ipcv6["algo"] = 'ipc' # drug_rejects_ipcv6["algo"] = 'ipc' # logger.info("IPC V6 Correction Successful") # else: drugs_max_to_lock_ipcv6 = pd.DataFrame() drug_rejects_ipcv6 = pd.DataFrame() return final_pred_ss_df, df_corrections, df_corrections_111, \ drugs_max_to_lock_ipcv6, drug_rejects_ipcv6
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/safety_stock.py
safety_stock.py
import datetime import pandas as pd import numpy as np import keras.backend as K from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import LSTM import tensorflow as tf tf.__version__ def ae_weight_calc(y_true, y_pred, pos_error_weight): # dim of y_pred, y_true [n_batch, output var] error = y_true - y_pred greater = K.greater(error, 0) # 0 for y pred is more, 1 for y_pred is less greater = K.cast(greater, K.floatx()) greater = greater + pos_error_weight error = K.abs(error) error = K.mean(error*greater, axis=1) return error def custom_loss(pos_error_weight): def ae_specific_loss(y_true, y_pred): return ae_weight_calc(y_true, y_pred, pos_error_weight) # Returns the (y_true, y_pred) loss function return ae_specific_loss # create a differenced series for stationarity def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return pd.Series(diff) def series_to_supervised(df, n_in=1, n_out=1, dropnan=True): if type(df) == pd.DataFrame: data = df[['net_sales_quantity']].values else: data = df data_df = pd.DataFrame(data) n_vars = 1 cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(data_df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(data_df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg def prepare_data(df, n_test=1, n_in=1, n_out=1): np.random.seed(1234) # transform into lag and lead supervised_df = series_to_supervised(df, n_in=n_in, n_out=n_out) date_df = df[['date']].reset_index(drop=True) supervised_df = supervised_df.merge( date_df, how='inner', left_index=True, right_index=True) # marking test and train supervised_df['sample_flag'] = '' supervised_df.iloc[0:-n_test]['sample_flag'] = 'train' supervised_df.iloc[-n_test:]['sample_flag'] = 'validation' # transform data to be stationary raw_values = df[['net_sales_quantity']].values diff_series = difference(raw_values, 1) diff_values = diff_series.values diff_values = diff_values.reshape(len(diff_values), 1) # rescale values to -1, 1 scaler = MinMaxScaler(feature_range=(-1, 1)) scaled_values = scaler.fit_transform(diff_values) scaled_values = scaled_values.reshape(len(scaled_values), 1) # transform into supervised learning problem X, y supervised_scaled_df = series_to_supervised( scaled_values, n_in=n_in, n_out=n_out) supervised_scaled_df = supervised_scaled_df.merge( date_df, how='inner', left_index=True, right_index=True) # marking test and train for scaled version supervised_scaled_df['sample_flag'] = '' supervised_scaled_df.iloc[0:-n_test]['sample_flag'] = 'train' supervised_scaled_df.iloc[-n_test:]['sample_flag'] = 'validation' return supervised_df, supervised_scaled_df, scaler # fit an LSTM network to training data def fit_lstm( X, y, n_in=1, n_out=1, n_batch=1, nb_epoch=1000, n_neurons=4, use_dropout=False, error_factor=1): # reshape training into [samples, timesteps, features] X = X.reshape(X.shape[0], 1, X.shape[1]) # design network model = Sequential() model.add(LSTM( n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True)) if use_dropout is not False: model.add(Dropout(use_dropout)) model.add(Dense(y.shape[1])) loss = custom_loss(error_factor) model.compile(loss=loss, optimizer='adam') # print(model.summary()) # model.compile(loss='mean_squared_error', optimizer='adam') # fit network for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False) model.reset_states() return model # make one forecast with an LSTM, def forecast_lstm(model, X, n_batch): # reshape input pattern to [samples, timesteps, features] forecasts = [] # make forecast for i in range(X.shape[0]): X_input = X[i, :].reshape(1, n_batch, X.shape[1]) forecast = model.predict(X_input, batch_size=n_batch) # convert to array forecasts.append(list(forecast.reshape(forecast.shape[1]))) return forecasts def inverse_transform(data_df, scaler, undifferenced_df, col_names): undifferenced_df = undifferenced_df.loc[data_df.index] for col in undifferenced_df.columns: if (data_df[col].dtype == float): data_df[col] = scaler.inverse_transform(data_df[[col]]) data_df[col] += undifferenced_df[col] col_names = ['var1(t-1)'] + col_names for i in list((range(1, len(col_names)))): data_df[col_names[i]] = scaler.inverse_transform( data_df[[col_names[i]]]) data_df[col_names[i]] += data_df[col_names[i - 1]] data_df[col_names] = np.round(data_df[col_names]) return data_df def lstm_horizon_ape(df, col_names): predicted = df[col_names].sum(axis=1) actual = df[[x.replace('_hat', '') for x in col_names]].sum(axis=1) return abs(predicted - actual)/actual def lstm_forecast( df, n_neurons=1, week_in=1, week_out=1, forecast_horizon=4, epochs=90, use_dropout=False, n_batch=1, error_factor=1): drug_id = df['drug_id'].unique()[0] start_date = df.date.max() date_list = [ start_date + datetime.timedelta(days=d*7) for d in range(1, forecast_horizon+1)] fcst = [0] * forecast_horizon # setting seed for reproducibility np.random.seed(1234) tf.random.set_seed(1234) supervised_df, supervised_scaled_df, scaler = prepare_data( df, n_test=forecast_horizon, n_in=week_in, n_out=4) train = supervised_scaled_df _, test, _ = prepare_data( df, n_test=forecast_horizon, n_in=week_in, n_out=0) variable_name = list(train.columns) variable_name = variable_name[:-2] X_train, y_train = ( train[variable_name].values[:, 0:week_in], train[variable_name].values[:, week_in:]) X_test = test[variable_name[:week_in]].iloc[-1] X_test = np.reshape(np.ravel(X_test), (1, X_test.shape[0])) model = fit_lstm( X_train, y_train, n_in=week_in, n_out=week_out, n_batch=n_batch, nb_epoch=epochs, n_neurons=n_neurons, use_dropout=use_dropout, error_factor=error_factor) hat_col = variable_name[week_in:] hat_col = [x + '_hat' for x in hat_col] scaler_test_fcst = forecast_lstm(model, X_test, n_batch=n_batch) test_fcst = scaler.inverse_transform(scaler_test_fcst) test_fcst = np.ravel(test_fcst) for i in range(len(test_fcst)): fcst[i] = df.net_sales_quantity.iloc[-1] + np.sum(test_fcst[:i]) if fcst[i] < 0: fcst[i] = 0 fcst_df = pd.DataFrame({ 'drug_id': drug_id, 'date': date_list, 'fcst': np.round(fcst), 'std': np.round(df.net_sales_quantity.iloc[-8:].std())}) return fcst_df def lstm_wide_long(df, supervised_hat, hat_col): drug_id = df['drug_id'].values[0] supervised_hat = supervised_hat[supervised_hat['drug_id'] == drug_id] return_df = df.copy() fcst = ( list(supervised_hat.iloc[:-1][hat_col[0]].values) + list(supervised_hat.iloc[-1][hat_col].values)) return_df.loc[-len(fcst):, 'fcst'] = pd.Series( fcst, index=df.index[-len(fcst):]) return return_df def hinge_error(error): return sum(error < 0)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/forecasting_modules/lstm.py
lstm.py
from ast import literal_eval import pandas as pd import numpy as np def ipcv4_heuristics(final_pred_ss_df, drug_type_list_v4, db, schema): ''' drug_tupe_list_v4 variable has format as drug_type_list_v4 = {'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}', 'ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}', 'others':'{0:[0,0,0], 1:[0,0,2], 2:[0,1,2],3:[1,2,3]}'} final_pred_ss_df has the following format Index(['drug_id', 'model', 'bucket', 'percentile', 'fcst', 'std', 'lead_time_mean', 'lead_time_std', 'safety_stock', 'reorder_point', 'order_upto_point', 'safety_stock_days', 'reorder_days', 'order_upto_days', 'fptr', 'curr_inventory', 'max_value', 'correction_flag'], dtype='object') ''' q_drug_type_info = f""" select id as drug_id, "type" as drug_type from "{schema}".drugs """ drug_type_info = db.get_df(q_drug_type_info) #convert drug types which are not generic or ethical as 'others' drug_type_info['drug_type'] = np.where( (drug_type_info['drug_type'] == 'ethical') | (drug_type_info['drug_type'] == 'generic'), drug_type_info['drug_type'],'others') final_pred_ss_df_v4 = pd.merge(final_pred_ss_df, drug_type_info, on=['drug_id'], how='left') for drug_type in drug_type_list_v4.keys(): for max_value, ops_value in literal_eval(drug_type_list_v4[drug_type]).items(): safety_stock = ops_value[0] # min value reorder_point = ops_value[1] # ss value order_upto_point = ops_value[2] # max value index_list = final_pred_ss_df_v4[ (final_pred_ss_df_v4['order_upto_point'].isin([max_value])) & ( final_pred_ss_df_v4['drug_type'] == drug_type)].index final_pred_ss_df_v4.loc[index_list, 'safety_stock'] = safety_stock final_pred_ss_df_v4.loc[index_list, 'reorder_point'] = reorder_point final_pred_ss_df_v4.loc[index_list, 'order_upto_point'] = order_upto_point print('Cases with {0} max: {1} for drug_type:{2} '.format(max_value, len(index_list), drug_type)) #remove the drug type column that was previously added final_pred_ss_df_v4 = final_pred_ss_df_v4.drop(['drug_type'], axis = 1) return final_pred_ss_df_v4
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/heuristics/ipcv4_heuristics.py
ipcv4_heuristics.py
import numpy as np from datetime import datetime, timedelta def get_demand_heuristics(start_date, end_date, drug_list, store_id, db, schema, logger): # sales query print('getting data for store', store_id) sales_query = f""" select date("created-at") as "sales-date", "drug-id" , sum("net-quantity") as "net-sales-quantity" from "{schema}".sales s where "store-id" = {store_id} and date("created-at") >= '{start_date}' and date("created-at") < '{end_date}' and "drug-id" in {drug_list} group by "sales-date", "drug-id" """ sales_history = db.get_df(sales_query) sales_history.columns = [c.replace('-', '_') for c in sales_history.columns] # cfr pr loss cfr_pr_query = f""" select "attributed-loss-date", "drug-id", sum("loss-quantity") as "loss-quantity" from "{schema}"."cfr-patient-request" where "shortbook-date" >= '{start_date}' and "shortbook-date" < '{end_date}' and "drug-id" <> -1 and ("drug-category" = 'chronic' or "repeatability-index" >= 40) and "loss-quantity" > 0 and "drug-id" in {drug_list} and "store-id" = {store_id} group by "attributed-loss-date", "drug-id" """ cfr_pr = db.get_df(cfr_pr_query) cfr_pr["loss-quantity"] = cfr_pr["loss-quantity"].astype(float) cfr_pr.columns = [c.replace('-', '_') for c in cfr_pr.columns] # total demand merge demand = sales_history.merge( cfr_pr, left_on=['sales_date', 'drug_id'], right_on=['attributed_loss_date', 'drug_id'], how='left') demand['sales_date'] = demand['sales_date'].combine_first( demand['attributed_loss_date']) demand['net_sales_quantity'].fillna(0, inplace=True) demand['loss_quantity'].fillna(0, inplace=True) demand['net_sales_quantity'] += demand['loss_quantity'] demand.drop( ['attributed_loss_date', 'loss_quantity'], axis=1, inplace=True) # aggregating demand at level demand_agg = demand.groupby( ['drug_id'])['net_sales_quantity'].sum().reset_index() demand_agg.columns = ['drug_id', 'historical_demand'] # getting drug type drug_type_query = """ select id as drug_id, type as drug_type from "{schema}".drugs where id in {0} """.format(drug_list, schema=schema) drug_type = db.get_df(drug_type_query) demand_agg = demand_agg.merge(drug_type, on=['drug_id'], how='left') return demand_agg def base_heuristics( store_id, safety_stock_df, reset_date, db, schema, logger=None, raf_range=(0.25, 0.75), corr_raf=0.5): # getting time period for last 4 weeks date = datetime.strptime(reset_date, '%Y-%m-%d') end_date = (date - timedelta(days=date.weekday())).date() start_date = end_date - timedelta(days=28) end_date = str(end_date) start_date = str(start_date) logger.info( 'Getting last 4 week data for base heuristic from' + start_date + 'to' + end_date) # getting demand for heuristics - A/B class only bucket_class_list = ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ'] drug_list = tuple(list(safety_stock_df.loc[ safety_stock_df.bucket.isin(bucket_class_list), 'drug_id'])) demand = get_demand_heuristics( start_date, end_date, drug_list, store_id, db, schema, logger) safety_stock_adj = safety_stock_df.merge( demand, how='left', on=['drug_id']) safety_stock_adj['historical_demand'].fillna(0, inplace=True) # RAF factor calculation safety_stock_adj['raf'] = np.select( [safety_stock_adj['historical_demand'] == 0], [0.5], default=safety_stock_adj['order_upto_point'] / safety_stock_adj['historical_demand']) # adjustment using RAF: for low low_raf_index = safety_stock_adj[ (safety_stock_adj['bucket'].isin(bucket_class_list)) & (safety_stock_adj['raf'] < raf_range[0]) ].index safety_stock_adj.loc[low_raf_index, 'order_upto_point'] = np.round( np.where( safety_stock_adj.loc[low_raf_index, 'order_upto_point'] == 0, safety_stock_adj.loc[low_raf_index, 'historical_demand']*corr_raf, (safety_stock_adj.loc[low_raf_index, 'order_upto_point']*corr_raf / safety_stock_adj.loc[low_raf_index, 'raf']) )) safety_stock_adj.loc[low_raf_index, 'reorder_point'] = np.round( safety_stock_adj.loc[low_raf_index, 'order_upto_point']/2) safety_stock_adj.loc[low_raf_index, 'safety_stock'] = np.round( safety_stock_adj.loc[low_raf_index, 'reorder_point']/2) # print(safety_stock_adj.head()) # adjustment using RAF: for high high_raf_index = safety_stock_adj[ (safety_stock_adj['bucket'].isin(bucket_class_list)) & (safety_stock_adj['raf'] > raf_range[1]) ].index safety_stock_adj.loc[high_raf_index, 'order_upto_point'] = np.round( safety_stock_adj.loc[high_raf_index, 'order_upto_point'] * corr_raf / safety_stock_adj['raf']) safety_stock_adj.loc[high_raf_index, 'reorder_point'] = np.round( safety_stock_adj.loc[high_raf_index, 'order_upto_point']/2) safety_stock_adj.loc[high_raf_index, 'safety_stock'] = np.round( safety_stock_adj.loc[high_raf_index, 'reorder_point']/2) logger.info( 'Out of total line items ' + str(len(safety_stock_adj)) + '\n' + 'Decreased: Total ' + str(len(high_raf_index)) + '\n' + 'Decreased: Generic ' + str(len(safety_stock_adj.iloc[high_raf_index]. query('drug_type == "generic"'))) + '\n' + 'Decreased: Ethical ' + str(len(safety_stock_adj.iloc[high_raf_index]. query('drug_type == "ethical"'))) + '\n' + 'Increased: Total ' + str(len(low_raf_index)) + '\n' + 'Increased: Generic ' + str(len(safety_stock_adj.iloc[low_raf_index]. query('drug_type == "generic"'))) + '\n' + 'Increased: Ethical ' + str(len(safety_stock_adj.iloc[low_raf_index]. query('drug_type == "ethical"'))) ) return safety_stock_adj[safety_stock_df.columns]
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/heuristics/base.py
base.py
import pandas as pd import numpy as np import datetime as dt def v5_corrections(store_id, safety_stock_df, db, schema, logger): """ Main function to perform V5 corrections """ # Get Drug STD Qty and list of repeatable drug_ids df_3m_drugs, unique_drugs_3m = get_3m_drug_std_qty(store_id, db, schema, logger) # Locate drugs to perform correction check df_std_check = safety_stock_df.loc[safety_stock_df["drug_id"].isin( unique_drugs_3m)][["drug_id", "fcst", "safety_stock", "reorder_point", "order_upto_point"]] # Drugs not forecasted by IPC drugs_3m_not_set = list(set(unique_drugs_3m) ^ set(df_std_check["drug_id"].unique())) logger.info(f"Number of drugs not forecasted: {len(drugs_3m_not_set)}") # Merge STD Qty with SS table and find drugs correction areas df_std_check = df_3m_drugs.merge(df_std_check, on="drug_id", how="left") df_std_check = df_std_check.dropna() df_std_check["rop>=std_qty"] = np.where( df_std_check["reorder_point"] >= df_std_check["std_qty"], "Y", "N") tot_rep_drugs = df_std_check.shape[0] corr_req = df_std_check.loc[df_std_check['rop>=std_qty'] == 'N'].shape[0] corr_not_req = df_std_check.loc[df_std_check['rop>=std_qty'] == 'Y'].shape[0] logger.info(f"Number of repeatable drugs: {tot_rep_drugs}") logger.info(f"Number of repeatable drugs corrections required: {corr_req}") logger.info(f"Number of repeatable drugs corrections not required: {corr_not_req}") # CORRECTION STARTS order_freq = 4 column_order = list(df_std_check.columns) column_order += ["corr_ss", "corr_rop", "corr_oup"] # CASE1: No changes required df_no_change = df_std_check.loc[df_std_check["rop>=std_qty"] == "Y"].copy() df_no_change["corr_ss"] = df_no_change["safety_stock"].astype(int) df_no_change["corr_rop"] = df_no_change["reorder_point"].astype(int) df_no_change["corr_oup"] = df_no_change["order_upto_point"].astype(int) # CASE2: SS & ROP & OUP is Non Zero df_change1 = df_std_check.loc[(df_std_check["rop>=std_qty"] == "N") & (df_std_check["safety_stock"] != 0) & (df_std_check["reorder_point"] != 0) & (df_std_check["order_upto_point"] != 0)].copy() df_change1["mul_1"] = df_change1["reorder_point"] / df_change1["safety_stock"] df_change1["mul_2"] = df_change1["order_upto_point"] / df_change1["reorder_point"] df_change1["corr_rop"] = df_change1["std_qty"] df_change1["corr_ss"] = np.ceil(df_change1["corr_rop"] / df_change1["mul_1"]).astype(int) # If ROP >= OUP, then in those cases, increase OUP. df_change11 = df_change1.loc[ df_change1["corr_rop"] >= df_change1["order_upto_point"]].copy() df_change12 = df_change1.loc[ df_change1["corr_rop"] < df_change1["order_upto_point"]].copy() df_change11["corr_oup"] = np.ceil(df_change11["corr_rop"] + ( df_change11["fcst"] * order_freq / 28)).astype(int) df_change12["corr_oup"] = np.ceil(df_change12["corr_rop"] + ( df_change12["fcst"] * order_freq / 28)).astype(int) df_change1 = df_change11.append(df_change12) df_change1 = df_change1[column_order] # CASE3: Any of SS & ROP & OUP is Zero df_change2 = df_std_check.loc[(df_std_check["rop>=std_qty"] == "N")].copy() df_change2 = df_change2.loc[~((df_change2["safety_stock"] != 0) & (df_change2["reorder_point"] != 0) & (df_change2["order_upto_point"] != 0))].copy() df_change2["corr_rop"] = df_change2["std_qty"].astype(int) df_change2["corr_ss"] = np.floor(df_change2["corr_rop"] / 2).astype(int) # If ROP >= OUP, then in those cases, increase OUP. df_change21 = df_change2.loc[ df_change2["corr_rop"] >= df_change2["order_upto_point"]].copy() df_change22 = df_change2.loc[ df_change2["corr_rop"] < df_change2["order_upto_point"]].copy() df_change21["corr_oup"] = np.ceil(df_change21["corr_rop"] + ( df_change21["fcst"] * order_freq / 28)).astype(int) df_change22["corr_oup"] = np.ceil(df_change22["corr_rop"] + ( df_change22["fcst"] * order_freq / 28)).astype(int) df_change2 = df_change21.append(df_change22) df_change2 = df_change2[column_order] # Combine all 3 cases df_corrected = df_no_change.append(df_change1) df_corrected = df_corrected.append(df_change2) df_corrected = df_corrected.sort_index(ascending=True) # Get DF of corrected drugs and merge with input DF df_corrected_to_merge = df_corrected.loc[df_corrected["rop>=std_qty"] == "N"][ ["drug_id", "corr_ss", "corr_rop", "corr_oup"]] corr_safety_stock_df = safety_stock_df.merge(df_corrected_to_merge, on="drug_id", how="left") # Make corrections for required drugs corr_safety_stock_df["safety_stock"] = np.where( corr_safety_stock_df["corr_ss"] >= 0, corr_safety_stock_df["corr_ss"], corr_safety_stock_df["safety_stock"]) corr_safety_stock_df["reorder_point"] = np.where( corr_safety_stock_df["corr_rop"] >= 0, corr_safety_stock_df["corr_rop"], corr_safety_stock_df["reorder_point"]) corr_safety_stock_df["order_upto_point"] = np.where( corr_safety_stock_df["corr_oup"] >= 0, corr_safety_stock_df["corr_oup"], corr_safety_stock_df["order_upto_point"]) corr_safety_stock_df.drop(["corr_ss", "corr_rop", "corr_oup"], axis=1, inplace=True) corr_safety_stock_df["max_value"] = corr_safety_stock_df["order_upto_point"] * \ corr_safety_stock_df["fptr"] assert safety_stock_df.shape == corr_safety_stock_df.shape # Evaluate PRE and POST correction pre_post_metrics = { "metric": ["pre_corr", "post_corr"], "ss_qty": [safety_stock_df["safety_stock"].sum(), corr_safety_stock_df["safety_stock"].sum()], "ss_val": [round((safety_stock_df["safety_stock"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["safety_stock"] * corr_safety_stock_df["fptr"]).sum(), 2)], "rop_qty": [safety_stock_df["reorder_point"].sum(), corr_safety_stock_df["reorder_point"].sum()], "rop_val": [round((safety_stock_df["reorder_point"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["reorder_point"] * corr_safety_stock_df["fptr"]).sum(), 2)], "oup_qty": [safety_stock_df["order_upto_point"].sum(), corr_safety_stock_df["order_upto_point"].sum()], "oup_val": [round((safety_stock_df["order_upto_point"] * safety_stock_df["fptr"]).sum(), 2), round((corr_safety_stock_df["order_upto_point"] * corr_safety_stock_df["fptr"]).sum(), 2)] } pre_post_metics_df = pd.DataFrame.from_dict(pre_post_metrics).set_index('metric').T pre_post_metics_df["delta"] = pre_post_metics_df["post_corr"] - pre_post_metics_df["pre_corr"] pre_post_metics_df["change%"] = round((pre_post_metics_df["delta"] / pre_post_metics_df["pre_corr"]) * 100, 2) logger.info(f"\n{str(pre_post_metics_df)}") return corr_safety_stock_df def max_mode(pd_series): return int(max(pd_series.mode())) def get_3m_drug_std_qty(store_id, db, schema, logger): """ To fetch repeatable patient-drug qty from past 90days and calculate standard drug qty. """ start_date = (dt.date.today() - dt.timedelta(days=90)).strftime("%Y-%m-%d") end_date = dt.date.today().strftime("%Y-%m-%d") q_3m = """ select "patient-id" , "old-new" , "drug-id" , date("created-at") as "on-date", quantity as "tot-qty" from "{schema}".sales where "store-id" = {0} and "is-repeatable" = 1 and "bill-flag" = 'gross' and "created-at" > '{1} 00:00:00' and "created-at" < '{2} 00:00:00' """.format(store_id, start_date, end_date, schema=schema) df_3m = db.get_df(q_3m) df_3m.columns = [c.replace('-', '_') for c in df_3m.columns] # Get patient-drug-level STD Qty df_3m["3m_bills"] = 1 df_3m["std_qty"] = df_3m["tot_qty"] df_3m_patient = df_3m.groupby(["patient_id", "drug_id"], as_index=False).agg( {"3m_bills": "sum", "tot_qty": "sum", "std_qty": max_mode}) logger.info(f"Total repeatable patients: {len(df_3m_patient.patient_id.unique())}") # Get drug-level STD Qty df_3m_drugs = df_3m_patient.groupby("drug_id", as_index=False).agg( {"std_qty": "max"}) # STD Qty > 10 is considered outliers, to drop. drug_count_before = df_3m_drugs.shape[0] df_3m_drugs = df_3m_drugs.loc[df_3m_drugs["std_qty"] <= 10] drug_count_after = df_3m_drugs.shape[0] logger.info(f"Number of outlier drugs STD Qty: {drug_count_before-drug_count_after}") # Repeatable drugs STD Qty to check against IPC set ROP unique_drugs_3m = list(df_3m_drugs["drug_id"].unique()) return df_3m_drugs, unique_drugs_3m
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/zeno_etl_libs/utils/ipc/heuristics/ipcv5_heuristics.py
ipcv5_heuristics.py
all_secrets = { "development/etl": { "ENV": "dev", "REDSHIFT_DB": "prod2-generico", "REDSHIFT_HOST": "localhost", "REDSHIFT_USER": "admin", "REDSHIFT_PASSWORD": "vJF1TFxZaq9hkubMuQmpgA==", "REDSHIFT_PORT": "5460", "REDSHIFT_SSL": "0", "REDSHIFT_WRITE_DB": "prod2-generico", "REDSHIFT_WRITE_HOST": "localhost", "REDSHIFT_WRITE_USER": "admin", "REDSHIFT_WRITE_PASSWORD": "vJF1TFxZaq9hkubMuQmpgA==", "REDSHIFT_WRITE_PORT": "5460", "REDSHIFT_WRITE_SSL": "0", "MS_DB": "prod2-generico", "MS_HOST": "localhost", "MS_USER": "ro", "MS_PASSWORD": "obahegen63", "MS_PORT": "3311", "MYSQL_WRITE_HOST": "localhost", "MYSQL_WRITE_DATABASE": "test-generico", "MYSQL_WRITE_USER": "server", "MYSQL_WRITE_PASSWORD": "dev-server", "MYSQL_WRITE_PORT": "3306", "PG_HOST": "127.0.0.1", "PG_USER": "data_science_admin", "PG_PASSWORD": "T+ckpmRHASGShsi1W2BPBAZbx4=", "PG_PORT": "5435", "PG_DB": "datascience_generico", "INTERNAL_PG_HOST": "127.0.0.1", "INTERNAL_PG_USER": "ds_read_only", "INTERNAL_PG_PASSWORD": "HaE5mOxoZ0rjezcZ+gujzA==", "INTERNAL_PG_PORT": "5435", "INTERNAL_PG_DB": "generico_internal", "MONGO_HOST": "localhost", "MONGO_DB": "generico-crm", "MONGO_USER": "crm_generico", "MONGO_PASSWORD": "Ivynwg+lNAbwc39jECd+o3ZGe/I=", "MONGO_PORT": 27017, "WH_MSSQL_HOST": "127.0.0.1", "WH_MSSQL_PORT": "1433", "WH_MSSQL_DATABASE": "esdata", "WH_MSSQL_USER": "rodata", "WH_MSSQL_PASSWORD": "icanonlyread", "AWS_ACCESS_KEY_ID": "AKIA5NJ64OJ5UEZ4LS5P", "AWS_SECRET_ACCESS_KEY_ID": "Ps7rjzBURYi3T74WTFHDfLGwfdjoo9CvYojaaD7O", "AWS_REGION": "ap-south-1", "AWS_ACCOUNT_ID": "921939243643", "CLEVERTAP_ACCOUNT_ID": "R5Z-K95-RZ6Z", "CLEVERTAP_PASSCODE": 'ETK-RUZ-MHUL', "NODE_NOTIFICATION_BASE_URL": "http://stag-node.generico.in:3001/", "NOTIFICATION_AUTH_TOKEN": "bearer secret_c28365c7515cb33b7f4b585ad8b0dc59724d0e68b73119df038f1a1b91d63d0871bcf97e8d3992c54f135fd3e364eb49d12b0609a0733dbbd095f40301005e28639182ba1c44b56a7de6fde1d4a01b17fa8d945f3922a04d4cf2994c0a564026dd403f1879a1db9064625410b647fa3ff6e07a8b93cf3ffabfb91c2f9c65975df66384630ea2113de9c9dd77d9aec6367287570e2abee975d5924f56267fab32d3a11ac0e6a8f311a0f35f174ca55bff0b30908fa3f4428c433cf3c33b001409497a488d1ad86a290e86af1310f41b3df161dc2250063fbbe55ce5db8097364005b4d86b787c5407613085fb261567adbb7b0ddd5c994ab31afbd477a6a7288a", "LOGGER_LEVEL": "INFO", "GMAPS_API_KEY": "AIzaSyAM4MXbhAnt3GcADbHDQ251ULnUCGj6M7s", "FRESHSERVICE_API": "nIIbufKTxrqLDyobzwgT", "LEARNTRON_API_TOKEN": "wv7qC9K6/zeXtDUhDJVRo1fGs99YVC/A+k15+PQJHVcFP2LbPJYplcdvt+B0RD6H", "DJANGO_ACCOUNTS_BASE_URL": "https://stag-accounts.generico.in/", "DJANGO_OAUTH_TOKEN": "GPCFDazdfYFWTXF3qrWIawlLhygQEj", "FLASK_DS_APP_BASE_URL": "https://rcbrrvicsg.execute-api.ap-south-1.amazonaws.com/staging", "FLASK_DS_APP_X_API_KEY": 'o783ilbugb7j3My5hT9mC5sWu4qcPOWs7JVDEYHY', "CLUSTER_IDENTIFIER": "stag-mysql-redshift-cluster-1", "MANUAL_SNAPSHOT_RETENTION_PERIOD": "5", "ZENO_WEBSOC_API_TOKEN": "12345678", "ZENO_WEBSOC_BASE_URL": "https://dev-websoc.generico.in", "DATALAKE_DATABASE": "development" } }
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/secret/zeno_secrets.py
zeno_secrets.py
``` !pip install zeno_etl_libs==1.0.69 """main wrapper for distributor ranking algorithm""" import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz from fractions import Fraction sys.path.append('../../../..') from zeno_etl_libs.utils.distributor_ranking.distributor_ranking_calc import ranking_calc_dc, ranking_calc_franchisee from zeno_etl_libs.utils.distributor_ranking.ranking_intervention import ranking_override_dc, ranking_override_franchisee from zeno_etl_libs.utils.distributor_ranking.postprocess_ranking import postprocess_ranking_dc, postprocess_ranking_franchisee from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email ``` ## Main Function ``` def main(debug_mode, weights_as, weights_pr, as_low_volume_cutoff, pr_low_volume_cutoff, low_volume_cutoff_franchisee, volume_fraction, time_interval, time_interval_franchisee, rank_override_dc_active, rank_override_franchisee_active, db_read, db_write, read_schema, write_schema, s3, logger): mysql_write = MySQL(read_only=False) logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' reset_date = dt.date.today() # weights format is [lead time, margin, bounce rate, ff, lost recency, success recency] weights_as = [float(Fraction(i)) for i in list(weights_as.values())] weights_pr = [float(Fraction(i)) for i in list(weights_pr.values())] # define empty variable in case of code fail dc_evaluated = [] franchisee_stores_evaluated = [] logger.info("Checking input weights") try: assert(sum(weights_as) == 1) assert(sum(weights_pr) == 1) logger.info("Weight inputs summing up to one") except: logger.info("Weights not summing up to one, reverting to defaults") weights_as = [2 / 13, 1 / 13, 4 / 13, 4 / 13, 1 / 13, 1 / 13] weights_pr = [6 / 15, 1 / 15, 3 / 15, 3 / 15, 1 / 15, 1 / 15] try: # calculate ranks logger.info("Calculating Zippin DC-level Ranking") features_rank_dc = ranking_calc_dc( time_interval=time_interval, weights_as=weights_as, weights_pr=weights_pr, as_low_volume_cutoff=as_low_volume_cutoff, pr_low_volume_cutoff=pr_low_volume_cutoff, volume_fraction=volume_fraction, db=db_read, read_schema=read_schema, logger=logger) logger.info("Completed Zippin DC-level Ranking") logger.info("Calculating Franchisee Store-level Ranking") features_rank_franchisee = ranking_calc_franchisee( time_interval=time_interval_franchisee, weights_as=weights_as, weights_pr=weights_pr, low_volume_cutoff=low_volume_cutoff_franchisee, volume_fraction=volume_fraction, db=db_read, read_schema=read_schema, logger=logger) logger.info("Completed Franchisee Store-level Ranking") logger.info('Number of dc-drug_id combinations evaluated :' + str(features_rank_dc[features_rank_dc['request_type'] == 'AS/MS'].shape[0])) logger.info('Number of franchisee store-drug_id combinations evaluated :' + str(features_rank_franchisee[features_rank_franchisee['request_type'] == 'AS/MS'].shape[0])) if rank_override_dc_active == 'Y': logger.info("Rank override DC level begins") features_rank_dc = ranking_override_dc( features_rank_dc, db_read, read_schema, logger, override_type_list=['AS/MS']) logger.info("Rank override DC level successful") if rank_override_franchisee_active == 'Y': logger.info("Rank override franchisee store level begins") features_rank_franchisee = ranking_override_franchisee( features_rank_franchisee, db_read, read_schema, logger, override_type_list=['AS/MS', 'PR']) logger.info("Rank override franchisee store level successful") # postprocess features for dc level ranking tech_input_dc_level = postprocess_ranking_dc(features_rank_dc, volume_fraction) # postprocess features for franchisee store level ranking tech_input_franchisee_level = postprocess_ranking_franchisee( features_rank_franchisee, volume_fraction) # combine both dc-level and frachisee-level ranking tech_input = pd.concat([tech_input_dc_level, tech_input_franchisee_level]) # combine volume fraction split for cases where total distributors < 3 volume_fraction_split = tech_input['volume_fraction'].str.split( pat='-', expand=True).rename( columns={0: 'volume_fraction_1', 1: 'volume_fraction_2', 2: 'volume_fraction_3'}) tech_input['volume_fraction_1'] = volume_fraction_split[ 'volume_fraction_1'].astype(float) tech_input['volume_fraction_2'] = volume_fraction_split[ 'volume_fraction_2'].astype(float) tech_input['volume_fraction_3'] = volume_fraction_split[ 'volume_fraction_3'].astype(float) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_3'].isna(), tech_input['volume_fraction_2'] + tech_input['volume_fraction_3'], tech_input['volume_fraction_2']) tech_input['volume_fraction_3'] = np.where( tech_input['final_dist_3'].isna(), 0, tech_input['volume_fraction_3']) tech_input['volume_fraction_1'] = np.where( tech_input['final_dist_2'].isna(), tech_input['volume_fraction_1'] + tech_input['volume_fraction_2'], tech_input['volume_fraction_1']) tech_input['volume_fraction_2'] = np.where( tech_input['final_dist_2'].isna(), 0, tech_input['volume_fraction_2']) tech_input['volume_fraction'] = tech_input['volume_fraction_1'].astype( 'str') + '-' + tech_input['volume_fraction_2'].astype( 'str') + '-' + tech_input['volume_fraction_3'].astype('str') tech_input = tech_input[ ['dc_id', 'store_id', 'franchisee_id', 'drug_id', 'drug_type', 'request_type', 'volume_fraction', 'final_dist_1', 'final_dist_2', 'final_dist_3']] ############ adhoc changes by tech, table restructure ############ tech_input = tech_input.reset_index( drop=True).reset_index().rename(columns={'index': 'id'}) tech_input[['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']] = tech_input[ 'volume_fraction'].str.split('-', 3, expand=True) tech_input.loc[tech_input['request_type'] == 'AS/MS', 'request_type'] = 'manual-short/auto-short' tech_input.loc[tech_input['request_type'] == 'PR', 'request_type'] = 'patient-request' volume_fraction_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['volume_fraction_1', 'volume_fraction_2', 'volume_fraction_3']).sort_values(by='id') distributor_melt = pd.melt(tech_input, id_vars=['id'], value_vars=['final_dist_1', 'final_dist_2', 'final_dist_3']).sort_values(by='id').rename(columns={'value': 'distributor_id'}) distributor_ranking_rule_values = pd.merge(distributor_melt, volume_fraction_melt, left_index=True, right_index=True, suffixes=('', '_y')) distributor_ranking_rule_values = distributor_ranking_rule_values[ ['id', 'distributor_id', 'value']].rename( columns={'id': 'distributor_ranking_rule_id'}).reset_index( drop=True) distributor_ranking_rule_values = distributor_ranking_rule_values.reset_index().rename(columns={'index': 'id'}) # drop null values in distributor_id(for cases where historical distributors are < 3) distributor_ranking_rule_values = distributor_ranking_rule_values[ ~distributor_ranking_rule_values['distributor_id'].isna()] # convert distributor_id in int format distributor_ranking_rule_values['distributor_id'] = \ distributor_ranking_rule_values['distributor_id'].astype(int) distributor_ranking_rules = tech_input[['id', 'drug_id', 'dc_id', 'franchisee_id', 'store_id', 'drug_type', 'request_type']] # for email info dc_evaluated = distributor_ranking_rules["dc_id"].unique().tolist() franchisee_stores_evaluated = distributor_ranking_rules["store_id"].unique().tolist() # adding required fields distributor_ranking_rules['rule_start_date'] = reset_date distributor_ranking_rules['is_active'] = 1 distributor_ranking_rules['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') distributor_ranking_rules['created_by'] = 'etl-automation' features_rank_dc.loc[:, 'reset_date'] = reset_date features_rank_dc['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') features_rank_dc['created_by'] = 'etl-automation' features_rank_franchisee.loc[:, 'reset_date'] = reset_date features_rank_franchisee['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') features_rank_franchisee['created_by'] = 'etl-automation' # formatting column names distributor_ranking_rule_values.columns = [c.replace('_', '-') for c in distributor_ranking_rule_values.columns] distributor_ranking_rules.columns = [c.replace('_', '-') for c in distributor_ranking_rules.columns] features_rank_dc.columns = [c.replace('_', '-') for c in features_rank_dc.columns] features_rank_franchisee.columns = [c.replace('_', '-') for c in features_rank_franchisee.columns] if debug_mode == 'N': logger.info("Writing table to RS-DB") logger.info("Writing to table: distributor-features-dc") s3.write_df_to_db(df=features_rank_dc, table_name='distributor-features-dc', db=db_write, schema=write_schema) logger.info("Writing to table: distributor-features-franchisee") s3.write_df_to_db(df=features_rank_franchisee, table_name='distributor-features-franchisee', db=db_write, schema=write_schema) logger.info("Writing table to RS-DB completed!") mysql_write.open_connection() logger.info("Updating table to MySQL") try: index_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rules`', con=mysql_write.connection).values[0]) + 1 redundant_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rule-values`', con=mysql_write.connection).values[0]) + 1 except: index_increment = 1 redundant_increment = 1 logger.info(f"Incremented distributor-ranking-rules by {index_increment}") logger.info(f"Incremented distributor-ranking-rule-values by {redundant_increment}") distributor_ranking_rules['id'] = distributor_ranking_rules['id'] + index_increment distributor_ranking_rule_values['distributor-ranking-rule-id'] = distributor_ranking_rule_values[ 'distributor-ranking-rule-id'] + index_increment distributor_ranking_rule_values['id'] = distributor_ranking_rule_values['id'] + redundant_increment logger.info("Setting existing rules to inactive") mysql_write.engine.execute("UPDATE `distributor-ranking-rules` SET `is-active` = 0") logger.info("Writing to table: distributor-ranking-rules") distributor_ranking_rules.to_sql( name='distributor-ranking-rules', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) logger.info("Writing to table: distributor-ranking-rule-values") distributor_ranking_rule_values.to_sql( name='distributor-ranking-rule-values', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) logger.info("Updating table to MySQL completed!") mysql_write.close() else: logger.info("Writing to RS-DB & MySQL skipped") status = 'Success' logger.info(f"Distributor Ranking code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Distributor Ranking code execution status: {status}") return status, reset_date, dc_evaluated, franchisee_stores_evaluated ``` ## Pass Param ``` env = "dev" email_to = "[email protected]" debug_mode = "N" os.environ['env'] = env logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() ``` ## Read Params from RS table ``` from zeno_etl_libs.helper.parameter.job_parameter import parameter args = parameter.get_params(job_id=112) # JOB EXCLUSIVE PARAMS weights_as = args["weights_as"] weights_pr = args["weights_pr"] as_low_volume_cutoff = args["as_low_volume_cutoff"] pr_low_volume_cutoff = args["pr_low_volume_cutoff"] low_volume_cutoff_franchisee = args["low_volume_cutoff_franchisee"] volume_fraction = args["volume_fraction"] time_interval = args["time_interval"] time_interval_franchisee = args["time_interval_franchisee"] rank_override_dc_active = args["rank_override_dc_active"] rank_override_franchisee_active = args["rank_override_franchisee_active"] ``` ## Execute Main Function ``` """ calling the main function """ status, reset_date, dc_evaluated, franchisee_stores_evaluated = main( debug_mode, weights_as, weights_pr, as_low_volume_cutoff, pr_low_volume_cutoff, low_volume_cutoff_franchisee, volume_fraction, time_interval, time_interval_franchisee, rank_override_dc_active, rank_override_franchisee_active, rs_db_read, rs_db_write, read_schema, write_schema, s3, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() ``` ## Send Email Notification ``` # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"Distributor Ranking Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} DC's Evaluated: {dc_evaluated} Franchisee Stores Evaluated: {franchisee_stores_evaluated} Job Params: {args} """, to_emails=email_to) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/distributor-ranking-main/distributor_ranking_main.ipynb
distributor_ranking_main.ipynb
``` #installing extra libraries on prod !pip install zeno-etl-libs==1.0.40 !pip install google-cloud-storage==1.43.0 !pip install openpyxl==3.0.9 !pip install nltk==3.6.7 !pip install apiclient==1.0.4 """ Analysing Playstore reviews on daily basis Author : [email protected] """ import argparse import sys import re import os import pandas as pd import dateutil import datetime from dateutil.tz import gettz import numpy as np import time import datetime import os import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.tokenize import word_tokenize, RegexpTokenizer, sent_tokenize from nltk.corpus import stopwords from collections import defaultdict nltk.download('wordnet') nltk.download('omw-1.4') nltk.download('stopwords') nltk.download('punkt') nltk.download('vader_lexicon') sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper ``` ## Pass Params ``` env = "dev" full_run = 0 email_to ="[email protected],[email protected]" os.environ['env'] = env logger = get_logger() logger.info(f"full_run: {full_run}") rs_db = DB() rs_db_write = DB(read_only=False) rs_db.open_connection() rs_db_write.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'playstore-reviews-analysis' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) # max of data playstore_q = """ select max("review-created-at") max_exp from "prod2-generico"."playstore-reviews-analysis" """ max_exp_date = rs_db.get_df(playstore_q) max_exp_date['max_exp'].fillna(np.nan, inplace=True) print(max_exp_date.info()) max_exp_date = max_exp_date['max_exp'].to_string(index=False) print(max_exp_date) # params if full_run or max_exp_date == 'NaN': start = '2021-01-01' else: start = max_exp_date start = dateutil.parser.parse(start) print(start) #fetching all reviews from playstore-review table q = f""" select "review-id", "review", "review-created-at" from "prod2-generico"."playstore-reviews" where date("review-created-at")> '{start}' and review !='' and review is not null """ df = rs_db.get_df(q) df['review-created-at'] = pd.to_datetime(df['review-created-at']) df.head() ``` ## Define all functions ``` # finding sentiment intensity aanalyzer def sentiment_analyser(lst): sid = SentimentIntensityAnalyzer() sentiment = [sid.polarity_scores(x) for x in lst] neg = [sid.polarity_scores(x)['neg'] for x in lst] neu = [sid.polarity_scores(x)['neu'] for x in lst] pos = [sid.polarity_scores(x)['pos'] for x in lst] comp = [sid.polarity_scores(x)['compound'] for x in lst] return neg[0], neu[0], pos[0], comp[0] # removing stopwords def remove_sw(sent,corpus): stop_words = set(stopwords.words(corpus)) word_tokens = word_tokenize(sent) filtered_sentence = [w for w in word_tokens if not w.lower() in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) filtered_sentence=' '.join(filtered_sentence) return [filtered_sentence] #Remove URL def remove_url(txt): """Replace URLs found in a text string with nothing (i.e. it will remove the URL from the string). Parameters ---------- txt : string A text string that you want to parse and remove urls. Returns ------- The same txt string with url's removed. """ return " ".join(re.sub("([^0-9A-Za-z \t])|(\w+:\/\/\S+)", "", txt).split()) def generate_N_grams(text,ngram): words=[word for word in text if word not in set(stopwords.words('english'))] #print("Sentence after removing stopwords:",words) temp=zip(*[words[i:] for i in range(0,ngram)]) ans=[' '.join(ngram) for ngram in temp] return ans # match two list and find intersection def matchlist(a,b): matches=[] for item_a in a: for item_b in b: if item_a == item_b: matches.append(item_a) return list(set(matches)) # to convert list to string def listToString(s): # initialize an empty string str1 = "," # return string s = [str(x) for x in s] return (str1.join(s)) #sort string def sortstring(my_str): words = my_str.split(" ") # sort the list words.sort() # display the sorted words newSentence = " ".join(words) return newSentence print("Removing url") df['content_url'] =df['review'].apply(lambda x :remove_url(x.lower()),1) print("Removing stopwords") sw = 'english' df['content_sw'] =df['content_url'].apply(lambda x :remove_sw(x,sw),1) print("sentiment_analyser") df['neg','neu','pos','comp'] =df['content_sw'].apply(lambda x :sentiment_analyser(x),1) df[['neg','neu','pos','comp']]= df['neg','neu','pos','comp'].apply(pd.Series) df.drop(columns=('neg', 'neu', 'pos', 'comp'),inplace=True) df['positive-ratio'] = round((df['pos']/ (df['pos']+ df ['neg'])) , 2) df['negative-ratio'] = round((df['neg']/ (df['pos']+ df ['neg'])) , 2) w_tokenizer = nltk.tokenize.WhitespaceTokenizer() lemmatizer = nltk.stem.WordNetLemmatizer() def lemmatize_text(text): return [lemmatizer.lemmatize(w) for w in w_tokenizer.tokenize(text)] df['content_lem'] = df['content_url'].apply(lambda x :lemmatize_text(x.lower()),1) df['content_2gram'] = df['content_lem'].apply(lambda x :generate_N_grams(x,2),1) df['content_1gram'] = df['content_lem'].apply(lambda x :generate_N_grams(x,1),1) #place holder positiveValues2=defaultdict(int) negativeValues2=defaultdict(int) positiveValues1=defaultdict(int) negativeValues1=defaultdict(int) #get the count of every word in both the columns dataframes where sentiment="positive" for text in df[df['positive-ratio']>df['negative-ratio']].content_lem: for word in generate_N_grams(text,2): positiveValues2[word.lower()]+=1 for text in df[df['positive-ratio']>df['negative-ratio']].content_lem: for word in generate_N_grams(text,1): positiveValues1[word.lower()]+=1 #get the count of every word in both the columns dataframes where sentiment="negative" for text in df[df['positive-ratio']<=df['negative-ratio']].content_lem: for word in generate_N_grams(text,2): negativeValues2[word]+=1 #get the count of every word in both the columns of df_train and df_test dataframes where sentiment="negative" for text in df[df['positive-ratio']<=df['negative-ratio']].content_lem: for word in generate_N_grams(text,1): negativeValues1[word]+=1 #focus on more frequently occuring words for every sentiment=> #sort in DO wrt 2nd column in each of positiveValues,negativeValues df_positive2=pd.DataFrame(sorted(positiveValues2.items(),key=lambda x:x[1],reverse=True)) df_negative2=pd.DataFrame(sorted(negativeValues2.items(),key=lambda x:x[1],reverse=True)) df_positive1=pd.DataFrame(sorted(positiveValues1.items(),key=lambda x:x[1],reverse=True)) df_negative1=pd.DataFrame(sorted(negativeValues1.items(),key=lambda x:x[1],reverse=True)) #convert grams to list positive_grams2=df_positive2[0][:20].tolist() positive_grams1=df_positive1[0][:20].tolist() negative_grams2=df_negative2[0][:20].tolist() negative_grams1=df_negative1[0][:20].tolist() df['top_grams2']= np.where(df['positive-ratio']>df['negative-ratio'],df['content_2gram'].apply(lambda x :matchlist(x,positive_grams2),1) ,df['content_2gram'].apply(lambda x :matchlist(x,negative_grams2),1) ) df['top_grams1']= np.where(df['positive-ratio']>df['negative-ratio'],df['content_1gram'].apply(lambda x :matchlist(x,positive_grams1),1) ,df['content_1gram'].apply(lambda x :matchlist(x,negative_grams1),1) ) df['top-grams-one']= df['top_grams1'].apply(lambda x :listToString(x)) df['top-grams-two']= df['top_grams2'].apply(lambda x :listToString(x)) df['top-grams-two']= df['top-grams-two'].apply(lambda x :sortstring(x),1) df.head() final_ana = df[['review-id','review-created-at','positive-ratio','negative-ratio','top-grams-one','top-grams-two']] #etl columns final_ana['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') final_ana['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') final_ana['created-by'] = 'etl-automation' final_ana['updated-by'] = 'etl-automation' if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "review-created-at" >'{start}' ''' print(truncate_query) rs_db_write.execute(truncate_query) s3.write_df_to_db(df=final_ana[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection() ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/playstore-review/playstore-reviews-analysis.ipynb
playstore-reviews-analysis.ipynb
``` # Only on stage and prod !pip install Levenshtein==0.17.0 !pip install zeno-etl-libs==1.0.51 !pip install openpyxl==3.0.10 """ Purpose: Fuzzy match to get patient names and store these patients in table, and finally email the data on regular basis. author : [email protected] """ import sys import os import pandas as pd import datetime from dateutil.tz import gettz import numpy as np import Levenshtein as lev sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.email.email import Email ``` ## Pass Params ``` env = "dev" full_run = 0 email_to ="NA" batch_size = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") logger.info(f"full_run: {full_run}") logger.info(f"batch_size: {batch_size}") logger.info(f"email_to: {email_to}") # read rs_db = DB() rs_db.open_connection() # write rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() schema = 'prod2-generico' patients_table = 'playstore-patients' reviews_table = 'playstore-reviews' patients_table_info = helper.get_table_info(db=rs_db_write, table_name=patients_table, schema=schema) def get_last_processed_review_date(): # last review date in "playstore-patients" table query = f""" select max("review-created-at") last_review_at from "{schema}"."{patients_table}" """ df = rs_db_write.get_df(query=query) df['last_review_at'].fillna(np.nan, inplace=True) last_review_at = df['last_review_at'].to_string(index=False) logger.info(f"last_review_at in play store patients table: {last_review_at}") return last_review_at def get_orders(start_datetime, end_datetime): #Fetch zeno orders for a given date range zeno_q = f""" select zo.id as "zeno-order-id-before-review" , zo."patient-id" , zo."created-at" as "order-created-at", p.phone, p."name" as "matched-name" from "prod2-generico"."zeno-order" zo left join "prod2-generico".patients p on zo."patient-id" = p.id where zo."created-at" > '{start_datetime}' and zo."created-at" <= '{end_datetime}' and p."name" is not null """ df = rs_db.get_df(zeno_q) return df review_filter = "" if full_run: """ No filter, take all """ """ and truncate the playstore-patients tables """ logger.info(f"Full run is: {full_run}, so truncating the table.") query = f""" truncate table "{schema}"."{patients_table}"; """ rs_db_write.execute(query=query) else: last_processed_review_at = get_last_processed_review_date() if last_processed_review_at == 'NaN': """ No filter, take all """ pass else: review_filter = f""" and "review-created-at" > '{last_processed_review_at}' """ review_filter # Fetching required reviews from playstore-review table query = f""" select "review-id", "review", "author-name", "review-created-at", "star-rating" from "{schema}"."{reviews_table}" where "review-id" != '' {review_filter} order by "review-created-at" asc """ reviews_df = rs_db.get_df(query=query) reviews_df['review-created-at'] = pd.to_datetime(reviews_df['review-created-at']) if reviews_df.empty: logger.info("No reviews to process, to stopping here.") rs_db.close_connection() rs_db_write.close_connection() exit() else: logger.info(f"Total reviews to be processed: {len(reviews_df)}") # Process review in batches counter = 1 for b_df in helper.batch(reviews_df, batch_size): print(f"Counter: {counter}, len: {len(b_df)}\n") # Do all the processing logger.info(f" b_df {counter}: {b_df.head(1).transpose()} \n\n") start_datetime = b_df['review-created-at'].min() - datetime.timedelta(days=7) end_datetime = b_df['review-created-at'].max() orders_df = get_orders(start_datetime=start_datetime, end_datetime=end_datetime) # Cross join reviews and orders b_df['i'] = 1 orders_df['i'] = 1 df = pd.merge(b_df, orders_df, how='inner', on='i') df['author-name'] = df['author-name'].str.lower() df['matched-name'] = df['matched-name'].str.lower() # Apply name matching df['lev-ratio'] = df.apply(lambda row: lev.ratio(str(row['author-name']), str(row['matched-name'])), 1) df['rank-order'] = df.sort_values(['zeno-order-id-before-review'], ascending=[False]) \ .groupby(['review-id', 'matched-name']) \ .cumcount() + 1 top_df = df[(df['rank-order'] == 1)] top_df['top-matches'] = top_df.sort_values(['lev-ratio'], ascending=[False]).groupby(['review-id']).cumcount() + 1 # fetch top 3 name matches top_df = top_df[(top_df['top-matches'] <= 3)] top_df = top_df.sort_values(['star-rating', 'review-id', 'top-matches'], ascending=[True, True, True]) # Adding extra ETL columns top_df['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') top_df['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') top_df['created-by'] = 'etl-automation' top_df['updated-by'] = 'etl-automation' s3.write_df_to_db(df=top_df[patients_table_info['column_name']], table_name=patients_table, db=rs_db_write, schema=schema) if "@" in email_to: """ Which means we want to send an email """ file_name = 'Zeno_playstore.xlsx' columns_in_mail = ['review-id', 'review', 'star-rating', 'review-created-at', 'author-name', 'matched-name', 'zeno-order-id-before-review', 'patient-id', 'order-created-at'] file_path = s3.write_df_to_excel(data={'Zeno Playstore': top_df[columns_in_mail]}, file_name=file_name) email = Email() email.send_email_file( subject="Zeno Playstore", mail_body='Zeno Playstore', to_emails=email_to, file_uris=[], file_paths=[file_path] ) logger.info(f"Email has been sent successfully to: {email_to}") counter += 1 # """ For testing only """ # if counter >= 2: # break # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection() ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/playstore-review/playstore-patients-batch-process.ipynb
playstore-patients-batch-process.ipynb
``` !pip install zeno_etl_libs==1.0.72 # -*- coding: utf-8 -*- """ Created on Mon Apr 21 21:45:59 2022 @author: [email protected] @Purpose: To generate forecast and replenishment figures for Warehouse """ import os import sys import pandas as pd from datetime import datetime, timedelta from scipy.stats import norm from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.warehouse.data_prep.wh_data_prep import wh_data_prep from zeno_etl_libs.utils.warehouse.forecast.forecast_main import wh_forecast from zeno_etl_libs.utils.warehouse.safety_stock.wh_safety_stock import \ wh_safety_stock_calc from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.helper.parameter.job_parameter import parameter #tag = parameters env = "dev" os.environ['env'] = env # runtime variables job_params = parameter.get_params(job_id=117) ss_runtime_var = {'lead_time_mean': job_params['lead_time_mean'], 'lead_time_std': job_params['lead_time_std'], 'service_level': job_params['service_level'], 'ordering_freq': job_params['ordering_freq'], 'max_review_period': job_params['max_review_period'], 'z': round(norm.ppf(job_params['service_level']), 2), 'for_next_month': job_params['for_next_month'], 'cap_ss_days': job_params['cap_ss_days'], 'use_fcst_error': job_params['use_fcst_error'], 'fcst_hist_to_use': job_params['fcst_hist_to_use'], 'debug_mode': job_params['debug_mode'], 'simulate_for': job_params['simulate_for']} email_to = job_params['email_to'] debug_mode = job_params['debug_mode'] simulate_for = job_params['simulate_for'] err_msg = '' df_uri = '' schema = job_params['schema'] reset = job_params['reset'] wh_id = job_params['wh_id'] nso_history_days = job_params['nso_history_days'] status = False logger = get_logger() logger.info("Scripts begins") logger.info("Run time variables --> " + str(ss_runtime_var)) # getting run date for the script if debug_mode == 'Y' and simulate_for != '': reset_date = simulate_for current_month_date = (pd.to_datetime(simulate_for).date() - timedelta(days=pd.to_datetime(simulate_for).day - 1)) else: reset_date = str(datetime.now(tz=gettz('Asia/Kolkata')).date()) current_month_date = (datetime.now(tz=gettz('Asia/Kolkata')).date() - timedelta(days=datetime.now(tz=gettz('Asia/Kolkata')).day - 1)) if ss_runtime_var['for_next_month'] == 'Y': forecast_date = str( datetime(current_month_date.year + int(current_month_date.month / 12), ((current_month_date.month % 12) + 1), 1).date()) else: forecast_date = str(current_month_date) logger.info(f""" debug_mode --> {debug_mode} reset_date --> {reset_date}, current_month_date --> {current_month_date}, forecast_date --> {forecast_date} """) try: rs_db = DB() rs_db.open_connection() logger.info('reading input file to get expected_nso') params_table_query = """ select "month-begin-dt" as month_begin_dt, value as expected_nso from "prod2-generico"."wh-forecast-repln-input" where "param-name" = 'expected_nso' """ params_table = rs_db.get_df(params_table_query) logger.info('expected_nso parameter read') params_table = params_table.apply(pd.to_numeric, errors='ignore') params_table['month_begin_dt'] = params_table['month_begin_dt'].astype(str) try: expected_nso = int(params_table[ params_table[ 'month_begin_dt'] == forecast_date][ 'expected_nso']) except Exception as error: expected_nso = 0 logger.info(f"expected_nso --> {expected_nso}") store_query = ''' select "id", name, "opened-at" as opened_at from "prod2-generico".stores where "name" <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in (92, 52) ''' stores = rs_db.get_df(store_query) store_id_list = list(stores['id']) new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() # CONSIDERING DRUG TYPES FOR DATA LOAD type_list = rs_db.get_df( 'select distinct type from "prod2-generico".drugs') type_list = tuple(type_list[ ~type_list.type.isin( ['', 'banned', 'discontinued-products'])][ 'type']) # RUNNING DATA PREPARATION drug_sales_monthly, wh_drug_list, drug_history, demand_daily_deviation = wh_data_prep( store_id_list, current_month_date, reset_date, type_list, rs_db, logger, ss_runtime_var, schema) drug_sales_monthly['drug_id'] = drug_sales_monthly['drug_id'].astype(int, errors='ignore') drug_sales_monthly['year'] = drug_sales_monthly['year'].astype(int, errors='ignore') drug_sales_monthly['month'] = drug_sales_monthly['month'].astype(int, errors='ignore') drug_sales_monthly['net_sales_quantity'] = drug_sales_monthly['net_sales_quantity'].astype(int, errors='ignore') drug_history = drug_history.astype(int, errors='ignore') drug_sales_monthly['reset_date'] = reset_date # FORECASTING train, train_error, predict, wh_train, wh_train_error, wh_predict = wh_forecast( drug_sales_monthly, wh_drug_list, drug_history, logger) train['wh_id'] = wh_id train_error['wh_id'] = wh_id predict['wh_id'] = wh_id wh_train['wh_id'] = wh_id wh_train_error['wh_id'] = wh_id wh_predict['wh_id'] = wh_id train['forecast_date'] = forecast_date train_error['forecast_date'] = forecast_date predict['forecast_date'] = forecast_date wh_train['forecast_date'] = forecast_date wh_train_error['forecast_date'] = forecast_date wh_predict['forecast_date'] = forecast_date # SAFETY STOCK CALCULATIONS last_actual_month = drug_sales_monthly['month_begin_dt'].max() last_month_sales = drug_sales_monthly[ drug_sales_monthly['month_begin_dt'] == str(last_actual_month)] last_month_sales = last_month_sales[['drug_id', 'net_sales_quantity']] last_month_sales.rename( columns={'net_sales_quantity': 'last_month_sales'}, inplace=True) wh_safety_stock_df = wh_safety_stock_calc( ss_runtime_var, wh_drug_list, wh_predict, last_month_sales, demand_daily_deviation, current_month_date, forecast_date, reset_date, logger, expected_nso, nso_history_days, rs_db) wh_safety_stock_df['wh_id'] = wh_id wh_safety_stock_df['reset_date'] = str(reset_date) rs_db.close_connection() # WRITING TO POSTGRES s3 = S3() rs_db_write = DB(read_only=False) rs_db_write.open_connection() created_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") wh_safety_stock_df['ptr'] = '' wh_safety_stock_df['fcst'] = wh_safety_stock_df['fcst'].fillna(0).astype(int) wh_safety_stock_df['safety_stock'] = wh_safety_stock_df['safety_stock'].fillna(0).astype(int) wh_safety_stock_df['month'] = wh_safety_stock_df['month'].astype(int) wh_safety_stock_df['year'] = wh_safety_stock_df['year'].astype(int) wh_safety_stock_df['ss_wo_cap'] = wh_safety_stock_df['ss_wo_cap'].fillna(0).astype(int) wh_safety_stock_df['reorder_point'] = wh_safety_stock_df['reorder_point'].fillna(0).astype(int) wh_safety_stock_df['order_upto_point'] = wh_safety_stock_df['order_upto_point'].fillna(0).astype(int) wh_safety_stock_df['shelf_min'] = wh_safety_stock_df['shelf_min'].fillna(0).astype(int) wh_safety_stock_df['shelf_max'] = wh_safety_stock_df['shelf_max'].fillna(0).astype(int) wh_safety_stock_df['rop_without_nso'] = wh_safety_stock_df['rop_without_nso'].fillna(0).astype(int) wh_safety_stock_df['oup_without_nso'] = wh_safety_stock_df['oup_without_nso'].fillna(0).astype(int) wh_safety_stock_df['created_at'] = created_at wh_safety_stock_df['created_by'] = 'etl-automation' wh_safety_stock_df['updated_at'] = created_at wh_safety_stock_df['updated_by'] = 'etl-automation' columns = [c.replace('-', '_') for c in ['drug-id', 'drug-name', 'type', 'category', 'company', 'ptr', 'bucket', 'history-bucket', 'fcst', 'final-fcst', 'forecast-type', 'model', 'month', 'month-begin-dt', 'std', 'year', 'wh-id', 'forecast-date', 'lead-time-mean', 'lead-time-std', 'max-review-period', 'ordering-freq', 'service-level', 'z-value', 'demand-daily', 'demand-daily-deviation', 'safety-stock', 'launch-stock-per-store', 'expected-nso', 'rop-without-nso', 'reorder-point', 'oup-without-nso', 'order-upto-point', 'shelf-min', 'shelf-max', 'last-month-sales', 'safety-stock-days', 'reorder-point-days', 'order-upto-days', 'reset-date', 'created-at', 'created-by', 'updated-at', 'updated-by', 'cap_ss_days', 'ss_wo_cap']] wh_safety_stock_df = wh_safety_stock_df[columns] if debug_mode == 'N': # drug_sales_monthly drug_sales_monthly['created-at'] = created_at drug_sales_monthly['created-by'] = 'etl-automation' drug_sales_monthly['updated-at'] = created_at drug_sales_monthly['updated-by'] = 'etl-automation' s3.write_df_to_db(df=drug_sales_monthly, table_name='wh-drug-sales-monthly', db=rs_db_write, schema='prod2-generico') # train train['type'] = 'separate' train['created-at'] = created_at train['created-by'] = 'etl-automation' train['updated-at'] = created_at train['updated-by'] = 'etl-automation' s3.write_df_to_db(df=train, table_name='wh-train', db=rs_db_write, schema='prod2-generico') # wh_train wh_train['type'] = 'ensemble' wh_train['created-at'] = created_at wh_train['created-by'] = 'etl-automation' wh_train['updated-at'] = created_at wh_train['updated-by'] = 'etl-automation' s3.write_df_to_db(df=wh_train, table_name='wh-train', db=rs_db_write, schema='prod2-generico') # train_error train_error['type'] = 'separate' train_error['created-at'] = created_at train_error['created-by'] = 'etl-automation' train_error['updated-at'] = created_at train_error['updated-by'] = 'etl-automation' s3.write_df_to_db(df=train_error, table_name='wh-train-error', db=rs_db_write, schema='prod2-generico') # wh_train_error wh_train_error['type'] = 'ensemble' wh_train_error['created-at'] = created_at wh_train_error['created-by'] = 'etl-automation' wh_train_error['updated-at'] = created_at wh_train_error['updated-by'] = 'etl-automation' s3.write_df_to_db(df=wh_train_error[train_error.columns], table_name='wh-train-error', db=rs_db_write, schema='prod2-generico') # predict predict['type'] = 'separate' predict['created-at'] = created_at predict['created-by'] = 'etl-automation' predict['updated-at'] = created_at predict['updated-by'] = 'etl-automation' s3.write_df_to_db(df=predict, table_name='wh-predict', db=rs_db_write, schema='prod2-generico') # wh_predict wh_predict['type'] = 'ensemble' wh_predict['created-at'] = created_at wh_predict['created-by'] = 'etl-automation' wh_predict['updated-at'] = created_at wh_predict['updated-by'] = 'etl-automation' s3.write_df_to_db(df=wh_predict, table_name='wh-predict', db=rs_db_write, schema='prod2-generico') # wh_safety_stock_df s3.write_df_to_db(df=wh_safety_stock_df, table_name='wh-safety-stock', db=rs_db_write, schema='prod2-generico') if reset == 'Y': # UPLOADING SAFETY STOCK NUMBERS IN DRUG-ORDER-INFO ss_data_upload = wh_safety_stock_df.query('order_upto_point > 0')[ ['wh_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = [ 'store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries, missed_entries = doid_update( ss_data_upload, type_list, rs_db_write, schema, logger) logger.info('DOI updated as per request') logger.info('missed entries --> ' + str(missed_entries)) logger.info('new_drug_entries entries --> ' + str(new_drug_entries)) else: logger.info('DOID did not update as per request') rs_db_write.close_connection() df_uri = s3.save_df_to_s3(df=wh_safety_stock_df, file_name='wh_safety_stock_{date}.csv'.format(date=str(forecast_date))) status = True except Exception as error: err_msg = str(error) logger.info(str(error)) raise error email = Email() if debug_mode == 'Y': email_to = '[email protected],[email protected]' if status: result = 'Success' email.send_email_file(subject=f"Warehouse forecast & replenishment ({env}): {result}", mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[df_uri]) else: result = 'Failed' email.send_email_file(subject=f"Warehouse forecast & replenishment ({env}): {result}", mail_body=f"Run time: {datetime.now()} {err_msg}", to_emails=email_to, file_uris=[]) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/warehouse/wh_forecast_reset.ipynb
wh_forecast_reset.ipynb
``` !pip install zeno_etl_libs==1.0.36 """ Created on Sun May 1 23:28:09 2021 @author: [email protected] Purpose: To generate forecast for Goodaid drugs at Goodaid warehouse """ import os import sys import pandas as pd from datetime import datetime, timedelta import numpy as np from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.helper.parameter.job_parameter import parameter #tag = parameters env = "dev" os.environ['env'] = env job_params = parameter.get_params(job_id=125) email_to = job_params['email_to'] logger = get_logger() logger.info("Scripts begins. Env = " + env) status = False err_msg = '' df_uri = '' run_date = str(datetime.now().strftime("%Y-%m-%d")) drugs_not_in_doi = 0 drugs_missed = 0 drugs_updated = 0 try: rs_db = DB() rs_db.open_connection() # read inputs file to get parameters logger.info('reading input file to get parameters') params_table_query = """ select "param-name" as param, value from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" not in ('drug_lvl_fcst_inputs' , 's_and_op_factors') """ logger.info('input parameters read') params_table = rs_db.get_df(params_table_query) params_table = params_table.apply(pd.to_numeric, errors='ignore') days = int(params_table.where(params_table['param'] == 'days', axis=0).dropna()['value']) expected_new_stores = int(params_table.where( params_table['param'] == 'expected_new_stores', axis=0).dropna()['value']) wh_id = int(params_table.where(params_table['param'] == 'gaw_id', axis=0).dropna()['value']) revenue_min = int(params_table.where( params_table['param'] == 'revenue_min', axis=0).dropna()['value']) revenue_max = int(params_table.where( params_table['param'] == 'revenue_max', axis=0).dropna()['value']) # get active gaid drugs list drugs_query = ''' select wssm."drug-id" as drug_id, d.composition, d."drug-name" as drug_name, d.company, d."type", d.category from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on d.id = wssm."drug-id" where wssm."add-wh" = 'Yes' and d."type" not in ('discontinued-products') and d.company = 'GOODAID' ''' drugs = rs_db.get_df(drugs_query) logger.info('active drugs list pulled from wssm') # get 28 days sales for active gaid drugs drug_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as drug_sales_quantity from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - {days} and date("created-at") < current_date group by "drug-id" '''.format(days=days, drug_ids=tuple(drugs['drug_id'])) drug_sales = rs_db.get_df(drug_sales_query) logger.info('drug sales data pulled from rs') drug_sales['drug_sales_quantity'] = drug_sales[ 'drug_sales_quantity'] * 28 / days # get non-ethical composition level sale composition_sales_query = ''' select composition as composition, sum(quantity) as composition_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - {days} and date("created-at") < current_date and "type" <> 'ethical' group by composition '''.format(days=days, compositions=tuple(drugs['composition'])) composition_sales = rs_db.get_df(composition_sales_query) logger.info('composition data pulled from rs') composition_sales['composition_sales_quantity'] = composition_sales[ 'composition_sales_quantity'] * 28 / days # merging data main_df = drugs.merge(drug_sales, on='drug_id', how='left') main_df['drug_sales_quantity'].fillna(0, inplace=True) main_df = main_df.merge(composition_sales, on='composition', how='left') main_df['composition_sales_quantity'].fillna(0, inplace=True) # getting 50% of composition level sales main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity'] * 0.5 main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity_50%'].round(0) # calculate month-on-month sales growth # getting last-to-last 28 day sales for calcuating growth factor last_to_last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_to_last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 56 and date("created-at") < current_date - 28 group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_to_last_sales = rs_db.get_df(last_to_last_sales_query) logger.info('last-to-last 28 day sales data pulled from rs') # getting last 28 day sales last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 28 and date("created-at") < current_date group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_sales = rs_db.get_df(last_sales_query) logger.info('last 28 day sales data pulled from rs') # merging to main_df main_df = main_df.merge(last_to_last_sales, on='drug_id', how='left') main_df['last_to_last_28_day_sales'].fillna(0, inplace=True) main_df = main_df.merge(last_sales, on='drug_id', how='left') main_df['last_28_day_sales'].fillna(0, inplace=True) main_df['growth_factor'] = main_df['last_28_day_sales'] / main_df[ 'last_to_last_28_day_sales'] main_df['growth_factor'].fillna(1, inplace=True) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] == np.inf, 1, main_df['growth_factor']) # growth factor capped at 150% - min at 100% main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] > 1.5, 1.5, main_df['growth_factor']) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] < 1, 1, main_df['growth_factor']) # growth factor foreced to 1 when 50% comp sales > drug sales main_df['growth_factor'] = np.where(main_df[ 'composition_sales_quantity_50%'] > main_df[ 'drug_sales_quantity'], 1, main_df['growth_factor']) # get s&op factor logger.info('reading s&op factors table') input_table_query = """ select "drug-id" as drug_id, value as s_op_factor, "start-date" as start_date, "end-date" as end_date from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" = 's_and_op_factors' """ s_op_table = rs_db.get_df(input_table_query) logger.info('s&op factors table read') s_op_table = s_op_table.apply(pd.to_numeric, errors='ignore') s_op_table = s_op_table[ s_op_table['start_date'] <= datetime.now().date()] s_op_table = s_op_table[ s_op_table['end_date'] >= datetime.now().date()] s_op_table.drop('start_date', axis=1, inplace=True) s_op_table.drop('end_date', axis=1, inplace=True) main_df = main_df.merge(s_op_table, on='drug_id', how='left') main_df['s_op_factor'].fillna(1, inplace=True) # get avg gaid sales for 13-16 lakh revenue stores # getting stores lists to compare with stores_cmp_query = ''' select "store-id" as store_id, round(sum("revenue-value")) as revenue from "prod2-generico".sales where date("created-at") >= current_date - 28 and date("created-at") < current_date group by "store-id" ''' stores_cmp = rs_db.get_df(stores_cmp_query) stores_cmp = stores_cmp[stores_cmp['revenue'] > revenue_min] stores_cmp = stores_cmp[stores_cmp['revenue'] < revenue_max] stores_list_to_comp = tuple(stores_cmp['store_id']) logger.info('list of stores with revenue between 1.3 and 1.6 mil -->' + str(stores_list_to_comp)) # adding expected_new_stores column main_df['expected_new_stores'] = expected_new_stores # getting avg sales avg_store_sales_query = ''' select composition , sum(quantity)/ {count} as avg_drug_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - 28 and date("created-at") < current_date and "type" <> 'ethical' and "store-id" in {stores_list_to_comp} group by composition '''.format(compositions=tuple(drugs['composition']), \ stores_list_to_comp=stores_list_to_comp, \ count=len(stores_list_to_comp)) avg_store_sales = rs_db.get_df(avg_store_sales_query) logger.info('avg composition sales retrieved for sample stores') avg_store_sales['avg_drug_sales_quantity'] = avg_store_sales[ 'avg_drug_sales_quantity'].round() # merge to main_df main_df = main_df.merge(avg_store_sales, on='composition', how='left') main_df['avg_drug_sales_quantity'].fillna(0, inplace=True) # get final forecast figures main_df['forecast'] = main_df[[ 'drug_sales_quantity', 'composition_sales_quantity_50%']].max(axis=1) main_df['forecast'] = main_df['forecast'] * main_df['growth_factor'] * \ main_df['s_op_factor'] + main_df[ 'expected_new_stores'] * \ main_df['avg_drug_sales_quantity'] main_df['forecast'] = main_df['forecast'].round() # get input table and merge with main_df logger.info('reading input table') input_table_query = """ select "drug-id" as drug_id, lead_time_doh, safety_stock_doh, review_period from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" = 'drug_lvl_fcst_inputs' """ input_table = rs_db.get_df(input_table_query) logger.info('input table read') input_table = input_table.apply(pd.to_numeric, errors='ignore') input_table['reorder_point_doh'] = input_table['lead_time_doh'] + \ input_table['safety_stock_doh'] input_table['min_doh'] = input_table['safety_stock_doh'] input_table['order_upto_point_doh'] = input_table['lead_time_doh'] + \ input_table['safety_stock_doh'] + \ input_table['review_period'] main_df = main_df.merge(input_table, on='drug_id', how='left') # populating missing rows with defaults main_df['lead_time_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'lead_time_doh'].item(), inplace=True) main_df['safety_stock_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'safety_stock_doh'].item(), inplace=True) main_df['review_period'].fillna( input_table.loc[input_table['drug_id'] == 0, 'review_period'].item(), inplace=True) main_df['reorder_point_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'reorder_point_doh'].item(), inplace=True) main_df['min_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'min_doh'].item(), inplace=True) main_df['order_upto_point_doh'].fillna( input_table.loc[input_table['drug_id'] == 0, 'order_upto_point_doh'].item(), inplace=True) # calculate ss min max main_df['safety_stock'] = (main_df['forecast'] / 28 * main_df['safety_stock_doh']).round() main_df['reorder_point'] = (main_df['forecast'] / 28 * main_df['reorder_point_doh']).round() main_df['order_upto_point'] = (main_df['forecast'] / 28 * main_df['order_upto_point_doh']).round() # get table structure to write to to_upload_query = ''' select * from "prod2-generico"."wh-safety-stock" limit 1 ''' to_upload = rs_db.get_df(to_upload_query) to_upload.columns = [c.replace('-', '_') for c in to_upload.columns] to_upload.drop(0, axis=0, inplace=True) to_upload['drug_id'] = main_df['drug_id'] to_upload['drug_name'] = main_df['drug_name'] to_upload['type'] = main_df['type'] to_upload['category'] = main_df['category'] to_upload['company'] = main_df['company'] # to_upload['bucket'] = main_df['bucket'] to_upload['fcst'] = main_df['forecast'].astype(int, errors='ignore') to_upload['wh_id'] = wh_id to_upload['forecast_type'] = 'goodaid' to_upload['lead_time_mean'] = main_df['lead_time_doh'] to_upload['max_review_period'] = main_df['review_period'].astype(int, errors='ignore') to_upload['demand_daily'] = main_df['forecast'] / 28 to_upload['safety_stock'] = main_df['safety_stock'].astype(int, errors='ignore') to_upload['expected_nso'] = expected_new_stores to_upload['reorder_point'] = main_df['reorder_point'].astype(int, errors='ignore') to_upload['order_upto_point'] = main_df['order_upto_point'].astype(int, errors='ignore') to_upload['last_month_sales'] = main_df['drug_sales_quantity'].astype(int, errors='ignore') to_upload['safety_stock_days'] = main_df['safety_stock_doh'] to_upload['reorder_point_days'] = main_df['reorder_point_doh'] to_upload['order_upto_days'] = main_df['order_upto_point_doh'] to_upload['reset_date'] = run_date to_upload['month'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%m")) to_upload['year'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y")) to_upload['month_begin_dt'] = str( datetime.now(tz=gettz('Asia/Kolkata')).date() - timedelta(days=datetime.now(tz=gettz('Asia/Kolkata')).day - 1)) to_upload['created_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['created_by'] = 'etl-automation' to_upload['updated_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['updated_by'] = 'etl-automation' to_upload = to_upload.fillna('') rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() s3.write_df_to_db(df=to_upload, table_name='wh-safety-stock', db=rs_db_write, schema='prod2-generico') logger.info("wh-safety-stock table updated") # WRITING ATTACHMENTS FOR SUCCESS df_uri = s3.save_df_to_s3(df=main_df, file_name='GAW_goodaid_forecast_{date}.csv'.format(date=str(run_date))) # writing to doid logger.info('writing to doid for ' + str(int(to_upload[['drug_id']].nunique())) + ' drugs') ss_data_upload = to_upload.query('order_upto_point > 0')[ ['wh_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = [ 'store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] type_list = tuple(drugs['type'].unique()) ss_data_upload = ss_data_upload.astype(float) new_drug_entries, missed_entries = doid_update( ss_data_upload, type_list, rs_db, 'prod2-generico', logger, gaid_omit=False) rs_db.connection.close() drugs_not_in_doi = len(new_drug_entries) drugs_missed = len(missed_entries) drugs_updated = len(ss_data_upload) - len(missed_entries) - len(new_drug_entries) rs_db.close_connection() rs_db_write.close_connection() status = True except Exception as e: err_msg = str(e) logger.info('wh_goodaid_forecast_343 job failed') logger.exception(e) # Sending email email = Email() if status: result = 'Success' email.send_email_file(subject=f"GOODAID Warehouse forecast ({env}): {result}", mail_body=f""" drugs updated successfully --> {drugs_updated} drugs not updated --> {drugs_missed} drugs not in doid --> {drugs_not_in_doi} """, to_emails=email_to, file_uris=[df_uri]) else: result = 'Failed' email.send_email_file(subject=f"GOODAID Warehouse forecast ({env}): {result}", mail_body=f"Run time: {datetime.now(tz=gettz('Asia/Kolkata'))} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/warehouse/wh_goodaid_forecast_343.ipynb
wh_goodaid_forecast_343.ipynb
``` !pip install zeno_etl_libs==1.0.36 """ Created on Sun May 26 23:28:09 2021 @author: [email protected] Purpose: To generate forecast for Goodaid drugs at Bhiwandi warehouse """ import os import sys import pandas as pd from datetime import datetime, timedelta import numpy as np from dateutil.tz import gettz from scipy.stats import norm sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.helper.parameter.job_parameter import parameter #tag = parameters env = "dev" os.environ['env'] = env job_params = parameter.get_params(job_id=130) email_to = job_params['email_to'] days = job_params['days'] lead_time_mean = job_params['lead_time_mean'] lead_time_std = job_params['lead_time_std'] max_review_period = job_params['max_review_period'] wh_id = 199 cap_ss_days = job_params['cap_ss_days'] service_level = job_params['service_level'] ordering_freq = job_params['ordering_freq'] logger = get_logger() logger.info("Scripts begins. Env = " + env) status = False err_msg = '' df_uri = '' run_date = str(datetime.now().strftime("%Y-%m-%d")) drugs_not_in_doi = 0 drugs_missed = 0 drugs_updated = 0 def get_launch_stock_per_store(rs_db, days, drugs): new_stores_list_query = """ select id as store_id, date("opened-at") as opened_at from "prod2-generico".stores s where "opened-at" >= CURRENT_DATE - {days} and id not in (281, 297) """.format(days=days) new_stores_list = rs_db.get_df(new_stores_list_query) store_ids_list = tuple(new_stores_list['store_id'].astype(str)) # get shortbook launch orders sb_orders_query = ''' select distinct sb."store-id" as store_id, sb."drug-id" as drug_id, date(sb."created-at") as created_at, sb.quantity as ordered_quantity, date(s2."opened-at") as opened_at from "prod2-generico"."short-book-1" sb left join "prod2-generico".stores s2 on s2.id = sb."store-id" where "store-id" in {store_ids} and date(sb."created-at") < date(s2."opened-at") '''.format(store_ids=store_ids_list, days=days) sb_orders = rs_db.get_df(sb_orders_query) df = sb_orders.copy() df = df[df['drug_id'].isin(drugs['drug_id'])] df = df[['store_id', 'drug_id', 'ordered_quantity']] df.drop_duplicates(inplace=True) new_stores_count = sb_orders['store_id'].nunique() df = df[['drug_id', 'ordered_quantity']] launch_stock = df.groupby('drug_id').sum().reset_index() launch_stock_per_store = launch_stock.copy() launch_stock_per_store['ordered_quantity'] = \ launch_stock['ordered_quantity'] / new_stores_count launch_stock_per_store.rename( columns={'ordered_quantity': 'launch_stock_per_store'}, inplace=True) return launch_stock_per_store try: rs_db = DB() rs_db.open_connection() # read inputs file to get parameters logger.info('reading input file to get parameters') params_table_query = """ select "param-name" as param, value from "prod2-generico"."wh-goodaid-forecast-input" where "param-name" not in ('drug_lvl_fcst_inputs' , 's_and_op_factors') """ logger.info('input parameters read') params_table = rs_db.get_df(params_table_query) params_table = params_table.apply(pd.to_numeric, errors='ignore') revenue_min = int(params_table.where( params_table['param'] == 'revenue_min', axis=0).dropna()['value']) revenue_max = int(params_table.where( params_table['param'] == 'revenue_max', axis=0).dropna()['value']) new_stores_list_query = """ select id as store_id, date("opened-at") as opened_at from "prod2-generico".stores s where "opened-at" >= CURRENT_DATE - 90 and id not in (281, 297) """.format(days=days) new_stores_list = rs_db.get_df(new_stores_list_query) expected_new_stores = len(new_stores_list) logger.info("expected new stores --> " + str(expected_new_stores)) # get active gaid drugs list drugs_query = ''' select wssm."drug-id" as drug_id, d.composition, d."drug-name" as drug_name, d.company, d."type", d.category from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on d.id = wssm."drug-id" where wssm."add-wh" = 'Yes' and d."type" not in ('discontinued-products') and d.company = 'GOODAID' ''' drugs = rs_db.get_df(drugs_query) logger.info('active drugs list pulled from wssm') # get 28 days sales for active gaid drugs drug_sales_query = ''' select "drug-id" as drug_id, date("created-at") as created_at, sum(quantity) as drug_sales_quantity from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - {days} and date("created-at") < current_date group by "drug-id", date("created-at") '''.format(days=days, drug_ids=tuple(drugs['drug_id'])) sales_data_for_std = rs_db.get_df(drug_sales_query) drugs_std = sales_data_for_std.groupby('drug_id').std().reset_index() drugs_std = drugs_std.rename(columns={'drug_sales_quantity': 'demand_daily_deviation'}) drug_sales = sales_data_for_std.groupby('drug_id').sum().reset_index() logger.info('drug sales data pulled from rs') drug_sales['drug_sales_quantity'] = drug_sales[ 'drug_sales_quantity'] * 28 / days # get non-ethical composition level sale composition_sales_query = ''' select composition as composition, sum(quantity) as composition_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - {days} and date("created-at") < current_date and "type" <> 'ethical' group by composition '''.format(days=days, compositions=tuple(drugs['composition'])) composition_sales = rs_db.get_df(composition_sales_query) logger.info('composition data pulled from rs') composition_sales['composition_sales_quantity'] = composition_sales[ 'composition_sales_quantity'] * 28 / days # merging data main_df = drugs.merge(drug_sales, on='drug_id', how='left') main_df['drug_sales_quantity'].fillna(0, inplace=True) main_df = main_df.merge(composition_sales, on='composition', how='left') main_df['composition_sales_quantity'].fillna(0, inplace=True) # getting 50% of composition level sales main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity'] * 0.5 main_df['composition_sales_quantity_50%'] = main_df[ 'composition_sales_quantity_50%'].round(0) # calculate month-on-month sales growth # getting last-to-last 28 day sales for calcuating growth factor last_to_last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_to_last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 56 and date("created-at") < current_date - 28 group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_to_last_sales = rs_db.get_df(last_to_last_sales_query) logger.info('last-to-last 28 day sales data pulled from rs') # getting last 28 day sales last_sales_query = ''' select "drug-id" as drug_id, sum(quantity) as last_28_day_sales from "prod2-generico".sales where "drug-id" in {drug_ids} and date("created-at") >= current_date - 28 and date("created-at") < current_date group by "drug-id" '''.format(drug_ids=tuple(drugs['drug_id'])) last_sales = rs_db.get_df(last_sales_query) logger.info('last 28 day sales data pulled from rs') # merging to main_df main_df = main_df.merge(last_to_last_sales, on='drug_id', how='left') main_df['last_to_last_28_day_sales'].fillna(0, inplace=True) main_df = main_df.merge(last_sales, on='drug_id', how='left') main_df['last_28_day_sales'].fillna(0, inplace=True) main_df['growth_factor'] = main_df['last_28_day_sales'] / main_df[ 'last_to_last_28_day_sales'] main_df['growth_factor'].fillna(1, inplace=True) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] == np.inf, 1, main_df['growth_factor']) # growth factor capped at 150% - min at 100% main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] > 1.5, 1.5, main_df['growth_factor']) main_df['growth_factor'] = np.where(main_df[ 'growth_factor'] < 1, 1, main_df['growth_factor']) # growth factor foreced to 1 when 50% comp sales > drug sales main_df['growth_factor'] = np.where(main_df[ 'composition_sales_quantity_50%'] > main_df[ 'drug_sales_quantity'], 1, main_df['growth_factor']) main_df['s_op_factor'] = 1 # get avg gaid sales for 13-16 lakh revenue stores # getting stores lists to compare with stores_cmp_query = ''' select "store-id" as store_id, round(sum("revenue-value")) as revenue from "prod2-generico".sales where date("created-at") >= current_date - 28 and date("created-at") < current_date group by "store-id" ''' stores_cmp = rs_db.get_df(stores_cmp_query) stores_cmp = stores_cmp[stores_cmp['revenue'] > revenue_min] stores_cmp = stores_cmp[stores_cmp['revenue'] < revenue_max] stores_list_to_comp = tuple(stores_cmp['store_id']) logger.info('list of stores with revenue between 1.3 and 1.6 mil -->' + str(stores_list_to_comp)) # adding expected_new_stores column main_df['expected_new_stores'] = expected_new_stores # getting avg sales avg_store_sales_query = ''' select composition , sum(quantity)/ {count} as avg_drug_sales_quantity from "prod2-generico".sales where composition in {compositions} and date("created-at") >= current_date - 28 and date("created-at") < current_date and "type" <> 'ethical' and "store-id" in {stores_list_to_comp} group by composition '''.format(compositions=tuple(drugs['composition']), \ stores_list_to_comp=stores_list_to_comp, \ count=len(stores_list_to_comp)) avg_store_sales = rs_db.get_df(avg_store_sales_query) logger.info('avg composition sales retrieved for sample stores') avg_store_sales['avg_drug_sales_quantity'] = avg_store_sales[ 'avg_drug_sales_quantity'].round() # merge to main_df main_df = main_df.merge(avg_store_sales, on='composition', how='left') main_df['avg_drug_sales_quantity'].fillna(0, inplace=True) # get final forecast figures main_df['forecast'] = main_df[[ 'drug_sales_quantity', 'composition_sales_quantity_50%']].max(axis=1) main_df['forecast'] = main_df['forecast'] * main_df['growth_factor'] * \ main_df['s_op_factor'] + main_df[ 'expected_new_stores'] * \ main_df['avg_drug_sales_quantity'] main_df['forecast'] = main_df['forecast'].round() main_df['demand_daily'] = main_df['forecast'] / 28 main_df = main_df.merge(drugs_std, on='drug_id', how='left') main_df['demand_daily_deviation'].fillna(0, inplace=True) main_df['lead_time_mean'] = lead_time_mean main_df['lead_time_std'] = lead_time_std main_df['review_period'] = max_review_period main_df['ordering_freq'] = ordering_freq main_df['service_level'] = service_level # calculate ss min max main_df['ss_wo_cap'] = (norm.ppf(main_df['service_level']).round(2) * np.sqrt( ( main_df['lead_time_mean'] * main_df['demand_daily_deviation'] * main_df['demand_daily_deviation'] ) + ( main_df['lead_time_std'] * main_df['lead_time_std'] * main_df['demand_daily'] * main_df['demand_daily'] ) ) ).round(0) main_df['cap_ss_days'] = np.where(main_df['ss_wo_cap'] / main_df['forecast'] * 28 > cap_ss_days, cap_ss_days, '') main_df['safety_stock'] = np.where(main_df['ss_wo_cap'] / main_df['forecast'] * 28 > cap_ss_days, main_df['drug_sales_quantity'] / 28 * cap_ss_days, main_df['ss_wo_cap']).round(0) main_df['rop_without_nso'] = ( main_df['safety_stock'] + main_df['demand_daily'] * ( main_df['lead_time_mean'] + main_df['review_period'] ) ).round() launch_stock_per_store = get_launch_stock_per_store(rs_db, 90, drugs) main_df = main_df.merge(launch_stock_per_store, on='drug_id', how='left') main_df['launch_stock_per_store'].fillna(0, inplace=True) main_df['reorder_point'] = main_df['rop_without_nso'] + \ np.round((main_df['lead_time_mean'] + main_df['review_period']) * main_df['expected_new_stores'] / 90) * \ main_df['launch_stock_per_store'] main_df['order_upto_point'] = ( main_df['reorder_point'] + main_df['ordering_freq'] * main_df['demand_daily'] ).round() main_df['safety_stock_doh'] = main_df['safety_stock'] / main_df['forecast'] * 28 main_df['reorder_point_doh'] = main_df['reorder_point'] / main_df['forecast'] * 28 main_df['order_upto_point_doh'] = main_df['order_upto_point'] / main_df['forecast'] * 28 # get table structure to write to to_upload_query = ''' select * from "prod2-generico"."wh-safety-stock" limit 1 ''' to_upload = rs_db.get_df(to_upload_query) to_upload.columns = [c.replace('-', '_') for c in to_upload.columns] to_upload.drop(0, axis=0, inplace=True) to_upload['drug_id'] = main_df['drug_id'] to_upload['drug_name'] = main_df['drug_name'] to_upload['type'] = main_df['type'] to_upload['category'] = main_df['category'] to_upload['company'] = main_df['company'] # to_upload['bucket'] = main_df['bucket'] to_upload['fcst'] = main_df['forecast'].astype(int, errors='ignore') to_upload['wh_id'] = wh_id to_upload['forecast_type'] = 'goodaid_199' to_upload['lead_time_mean'] = main_df['lead_time_mean'] to_upload['max_review_period'] = main_df['review_period'].astype(int, errors='ignore') to_upload['demand_daily'] = main_df['demand_daily'] to_upload['std'] = main_df['demand_daily_deviation'] to_upload['safety_stock'] = main_df['safety_stock'].astype(int, errors='ignore') to_upload['expected_nso'] = expected_new_stores to_upload['rop_without_nso'] = main_df['rop_without_nso'].astype(int, errors='ignore') to_upload['reorder_point'] = main_df['reorder_point'].astype(int, errors='ignore') to_upload['order_upto_point'] = main_df['order_upto_point'].astype(int, errors='ignore') to_upload['last_month_sales'] = main_df['drug_sales_quantity'].astype(int, errors='ignore') to_upload['safety_stock_days'] = main_df['safety_stock_doh'] to_upload['reorder_point_days'] = main_df['reorder_point_doh'] to_upload['order_upto_days'] = main_df['order_upto_point_doh'] to_upload['reset_date'] = run_date to_upload['month'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%m")) to_upload['year'] = str(datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y")) to_upload['month_begin_dt'] = str( datetime.now(tz=gettz('Asia/Kolkata')).date() - timedelta(days=datetime.now(tz=gettz('Asia/Kolkata')).day - 1)) to_upload['created_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['created_by'] = 'etl-automation' to_upload['updated_at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") to_upload['updated_by'] = 'etl-automation' to_upload['cap_ss_days'] = main_df['cap_ss_days'] to_upload['ss_wo_cap'] = main_df['ss_wo_cap'].astype(int, errors='ignore') to_upload['lead_time_std'] = main_df['lead_time_std'] to_upload['ordering_freq'] = main_df['ordering_freq'] to_upload = to_upload.fillna('') #write connection rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() s3.write_df_to_db(df=to_upload, table_name='wh-safety-stock', db=rs_db_write, schema='prod2-generico') logger.info("wh-safety-stock table updated") # WRITING ATTACHMENTS FOR SUCCESS df_uri = s3.save_df_to_s3(df=main_df, file_name='BHW_goodaid_forecast_{date}.csv'.format(date=str(run_date))) # writing to doid logger.info('writing to doid for ' + str(int(to_upload[['drug_id']].nunique())) + ' drugs') ss_data_upload = to_upload.query('order_upto_point > 0')[ ['wh_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = [ 'store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] type_list = tuple(drugs['type'].unique()) ss_data_upload = ss_data_upload.astype(float) new_drug_entries, missed_entries = doid_update(ss_data_upload, type_list, rs_db, 'prod2-generico', logger, gaid_omit=False) rs_db.connection.close() drugs_not_in_doi = len(new_drug_entries) drugs_missed = len(missed_entries) drugs_updated = len(ss_data_upload) - len(missed_entries) - len(new_drug_entries) rs_db.close_connection() rs_db_write.close_connection() status = True except Exception as e: err_msg = str(e) logger.info('wh_goodaid_forecast_199 job failed') logger.exception(e) # Sending email email = Email() if status: result = 'Success' email.send_email_file(subject=f"Bhiwandi Warehouse GOODAID forecast ({env}): {result}", mail_body=f""" drugs updated successfully --> {drugs_updated} drugs not updated --> {drugs_missed} drugs not in doid --> {drugs_not_in_doi} """, to_emails=email_to, file_uris=[df_uri]) else: result = 'Failed' email.send_email_file(subject=f"Bhiwandi Warehouse GOODAID forecast ({env}): {result}", mail_body=f"Run time: {datetime.now(tz=gettz('Asia/Kolkata'))} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/warehouse/wh_goodaid_forecast_199.ipynb
wh_goodaid_forecast_199.ipynb
``` !pip install zeno_etl_libs==1.0.107 !pip install openpyxl """IPC combination level forecast for PMF stores""" import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper import helper from zeno_etl_libs.utils.ipc_pmf.ipc_combination_fcst.forecast_main import ipc_comb_forecast from zeno_etl_libs.utils.ipc_pmf.ipc_drug_fcst.forecast_main import ipc_drug_forecast from zeno_etl_libs.utils.ipc_pmf.ipc_combination_fcst.fcst_mapping import fcst_comb_drug_map from zeno_etl_libs.utils.ipc_pmf.safety_stock import safety_stock_calc from zeno_etl_libs.utils.ipc_pmf.post_processing import post_processing from zeno_etl_libs.utils.ipc_pmf.heuristics.recency_corr import fcst_correction from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update ``` # Main Function ``` def main(debug_mode, reset_stores, reset_date, type_list_comb_lvl, type_list_drug_lvl, v4_active_flag, drug_type_list_v4, read_schema, rs_db_read, write_schema, rs_db_write, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' # Define empty variables if required in case of fail safety_stock_df = pd.DataFrame() df_one_one = pd.DataFrame() df_one_many = pd.DataFrame() df_one_none = pd.DataFrame() df_none_one = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() try: for store_id in reset_stores: logger.info(f"Running for store id: {store_id} and reset date: {reset_date}") type_list_comb_lvl_str = str(type_list_comb_lvl).replace('[', '(').replace(']', ')') type_list_drug_lvl_str = str(type_list_drug_lvl).replace('[', '(').replace(']', ')') # RUNNING IPC-COMBINATION FORECAST PIPELINE logger.info("Combination Forecast Pipeline starts") fcst_df_comb_lvl, seg_df_comb_lvl, \ comb_sales_latest_12w, comb_sales_4w_wtd = ipc_comb_forecast( store_id, reset_date, type_list_comb_lvl_str, read_schema, rs_db_read, logger) # RUNNING IPC-DRUG FORECAST PIPELINE logger.info("Drug Forecast Pipeline starts") fcst_df_drug_lvl, seg_df_drug_lvl, drug_sales_latest_12w,\ drug_sales_latest_4w, drug_sales_4w_wtd = ipc_drug_forecast( store_id, reset_date, type_list_drug_lvl_str, read_schema, rs_db_read, logger) # RECENCY CORRECTION IF FCST=0, FCST=AVG_DEMAND_28D (FROM LATEST 12W) logger.info("Recency correction starts") fcst_df_comb_lvl, fcst_df_drug_lvl = fcst_correction( fcst_df_comb_lvl, comb_sales_latest_12w, fcst_df_drug_lvl, drug_sales_latest_12w, drug_sales_latest_4w, comb_sales_4w_wtd, drug_sales_4w_wtd, logger) # MAPPING FORECASTS TO ASSORTMENT DRUGS logger.info("Allotting combination forecasts to drugs") df_fcst_final, df_one_one, df_one_many, \ df_one_none, df_none_one = fcst_comb_drug_map( store_id, reset_date, fcst_df_comb_lvl, fcst_df_drug_lvl, type_list_comb_lvl, read_schema, rs_db_read, logger) # SAFETY STOCK CALCULATIONS logger.info("Safety Stock Calculations starts") safety_stock_df = safety_stock_calc( df_fcst_final, store_id, reset_date, v4_active_flag, drug_type_list_v4, drug_sales_latest_12w, read_schema, rs_db_read, logger) # POST PROCESSING SS DF logger.info("Post Processing SS-DF starts") safety_stock_df, seg_df_comb_lvl, seg_df_drug_lvl = post_processing( store_id, safety_stock_df, seg_df_comb_lvl, seg_df_drug_lvl, read_schema, rs_db_read, logger) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-pmf-safety-stock safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-pmf-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc-pmf-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc-pmf-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc-pmf-comb-segmentation seg_df_comb_lvl['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() seg_df_comb_lvl['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_comb_lvl['created-by'] = 'etl-automation' seg_df_comb_lvl['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_comb_lvl['updated-by'] = 'etl-automation' seg_df_comb_lvl.columns = [c.replace('_', '-') for c in seg_df_comb_lvl.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-pmf-comb-segmentation', schema=write_schema) columns = list(table_info['column_name']) seg_df_comb_lvl = seg_df_comb_lvl[columns] # required column order logger.info("Writing to table: ipc-pmf-comb-segmentation") s3.write_df_to_db(df=seg_df_comb_lvl, table_name='ipc-pmf-comb-segmentation', db=rs_db_write, schema=write_schema) # writing table ipc-pmf-drug-segmentation seg_df_drug_lvl['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() seg_df_drug_lvl['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_drug_lvl['created-by'] = 'etl-automation' seg_df_drug_lvl['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df_drug_lvl['updated-by'] = 'etl-automation' seg_df_drug_lvl.columns = [c.replace('_', '-') for c in seg_df_drug_lvl.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-pmf-drug-segmentation', schema=write_schema) columns = list(table_info['column_name']) seg_df_drug_lvl = seg_df_drug_lvl[columns] # required column order logger.info("Writing to table: ipc-pmf-drug-segmentation") s3.write_df_to_db(df=seg_df_drug_lvl, table_name='ipc-pmf-drug-segmentation', db=rs_db_write, schema=write_schema) logger.info("All writes to RS-DB completed!") # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.loc[ (safety_stock_df["order_upto_point"] > 0)] ss_data_upload = ss_data_upload[['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list_drug_lvl_str, rs_db_write, write_schema, logger, gaid_omit=False) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) status = 'Success' except Exception as error: logger.exception(error) return status, safety_stock_df, df_one_one, df_one_many, df_one_none, \ df_none_one, new_drug_entries, missed_entries ``` # Pass Prams ``` env = "dev" email_to = "[email protected]" debug_mode = "N" run_batch = "run_batch" tot_batch = "tot_batch" batch_stores = "batch_stores" os.environ['env'] = env logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() ``` # Read Params from RS table ``` from zeno_etl_libs.helper.parameter.job_parameter import parameter args = parameter.get_params(job_id=171) # JOB EXCLUSIVE PARAMS reset_date = args['reset_date'] reset_stores = args['reset_stores'] v4_active_flag = args['v4_active_flag'] drug_type_list_v4 = args['drug_type_list_v4'] type_list_comb_lvl = args['type_list_comb_lvl'] type_list_drug_lvl = args['type_list_drug_lvl'] if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") # for batch run reset_stores = list(set(reset_stores).intersection(batch_stores)) ``` # Execute Main Function ``` """ calling the main function """ status, safety_stock_df, df_one_one, df_one_many, df_one_none, \ df_none_one, new_drug_entries, missed_entries = main( debug_mode, reset_stores, reset_date, type_list_comb_lvl, type_list_drug_lvl, v4_active_flag, drug_type_list_v4, read_schema, rs_db_read, write_schema, rs_db_write, logger) # open RS connection rs_db_read.close_connection() rs_db_write.close_connection() ``` # Send Email Notification ``` ss_df_uri = s3.save_df_to_s3( safety_stock_df, file_name=f"safety_stock_df_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") all_cases_xl_path = s3.write_df_to_excel(data={ 'C1_one_one': df_one_one, 'C2_one_many': df_one_many, 'C3_one_none': df_one_none, 'C4_none_one': df_none_one}, file_name=f"all_mappings_{reset_date}.xlsx") email = Email() email.send_email_file( subject=f"IPC Combination Fcst (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[ss_df_uri, new_drug_entries_uri, missed_entries_uri], file_paths=[all_cases_xl_path]) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/ipc-pmf/ipc_pmf.ipynb
ipc_pmf.ipynb
``` !pip install zeno_etl_libs==1.0.40 """main wrapper for IPC safety stock reset""" import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.django.api import Django from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.ipc.forecast_reset import ipc_forecast_reset from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc.post_processing import post_processing from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.utils.ipc.store_portfolio_additions import generic_portfolio ``` ## Main Function ``` def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' if v3_active_flag == 'Y': corrections_flag = True else: corrections_flag = False # Define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() logger.info("Forecast pipeline starts...") try: for store_id in reset_stores: logger.info("IPC SS calculation started for store id: " + str(store_id)) if not type_list: type_list = str( list(reset_store_ops.loc[reset_store_ops['store_id'] == store_id, 'type'].unique())) type_list = type_list.replace('[', '(').replace(']', ')') # RUNNING FORECAST PIPELINE AND SAFETY STOCK CALC drug_class, weekly_fcst, safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, \ drug_rejects_ipcv6 = ipc_forecast_reset( store_id, type_list, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, rs_db_read, read_schema, drug_type_list_v4=drug_type_list_v4, v5_active_flag=v5_active_flag, v6_active_flag=v6_active_flag, v6_type_list=v6_type_list, v6_ptr_cut_off=v6_ptr_cut_off, chronic_max_flag=chronic_max_flag, logger=logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': safety_stock_df, consolidation_log = stores_ss_consolidation( safety_stock_df, rs_db_read, read_schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': safety_stock_df, good_aid_ss_log = update_ga_ss( safety_stock_df, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=logger) # KEEP ALL GENERIC COMPOSITIONS IN STORE if keep_all_generic_comp == 'Y': safety_stock_df = generic_portfolio(safety_stock_df, rs_db_read, read_schema, logger) # OMIT NPI DRUGS if omit_npi == 'Y': safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) # POST PROCESSING AND ORDER VALUE CALCULATION drug_class, weekly_fcst, safety_stock_df, \ order_value = post_processing(store_id, drug_class, weekly_fcst, safety_stock_df, rs_db_read, read_schema, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-forecast weekly_fcst.rename( columns={'date': 'week_begin_dt', 'fcst': 'point_forecast', 'std': 'forecast_deviation'}, inplace=True) weekly_fcst['store_id'] = weekly_fcst['store_id'].astype(int) weekly_fcst['drug_id'] = weekly_fcst['drug_id'].astype(int) weekly_fcst['forecast_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() weekly_fcst['week_begin_dt'] = weekly_fcst['week_begin_dt'] weekly_fcst['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['created-by'] = 'etl-automation' weekly_fcst['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['updated-by'] = 'etl-automation' weekly_fcst.columns = [c.replace('_', '-') for c in weekly_fcst.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-forecast', schema=write_schema) columns = list(table_info['column_name']) weekly_fcst = weekly_fcst[columns] # required column order logger.info("Writing to table: ipc-forecast") s3.write_df_to_db(df=weekly_fcst, table_name='ipc-forecast', db=rs_db_write, schema=write_schema) # writing table ipc-safety-stock safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc-abc-xyz-class drug_class['store_id'] = drug_class['store_id'].astype(int) drug_class['drug_id'] = drug_class['drug_id'].astype(int) drug_class['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() drug_class['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['created-by'] = 'etl-automation' drug_class['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['updated-by'] = 'etl-automation' drug_class.columns = [c.replace('_', '-') for c in drug_class.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-abc-xyz-class', schema=write_schema) columns = list(table_info['column_name']) drug_class = drug_class[columns] # required column order logger.info("Writing to table: ipc-abc-xyz-class") s3.write_df_to_db(df=drug_class, table_name='ipc-abc-xyz-class', db=rs_db_write, schema=write_schema) # to write ipc v6 tables ... # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.query('order_upto_point > 0')[ ['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) logger.info("All writes to RS-DB completed!") # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") if isinstance(reset_store_ops, pd.DataFrame): content_type = 74 object_id = reset_store_ops.loc[ reset_store_ops['store_id'] == store_id, 'object_id'].unique() for obj in object_id: request_body = {"object_id": int(obj), "content_type": content_type} api_response, _ = django.django_model_execution_log_create_api( request_body) reset_store_ops.loc[ reset_store_ops['object_id'] == obj, 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"IPC code execution status: {status}") return status, order_value_all, new_drug_entries, missed_entries ``` ## Pass Params ``` env = "dev" email_to = "[email protected]" debug_mode = "N" os.environ['env'] = env logger = get_logger() s3 = S3() django = Django() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() ``` ## Read params from RS table ``` from zeno_etl_libs.helper.parameter.job_parameter import parameter args = parameter.get_params(job_id=109) # JOB EXCLUSIVE PARAMS exclude_stores = args["exclude_stores"] goodaid_ss_flag = args["goodaid_ss_flag"] ga_inv_weight = args["ga_inv_weight"] rest_inv_weight = args["rest_inv_weight"] top_inv_weight = args["top_inv_weight"] chronic_max_flag = args["chronic_max_flag"] wh_gen_consolidation = args["wh_gen_consolidation"] v5_active_flag = args["v5_active_flag"] v6_active_flag = args["v6_active_flag"] v6_type_list = args["v6_type_list"] v6_ptr_cut_off = args["v6_ptr_cut_off"] reset_date = args["reset_date"] reset_stores = args["reset_stores"] v3_active_flag = args["v3_active_flag"] corrections_selling_probability_cutoff = args["corrections_selling_probability_cutoff"] corrections_cumulative_probability_cutoff = args["corrections_cumulative_probability_cutoff"] drug_type_list_v4 = args["drug_type_list_v4"] omit_npi = args["omit_npi"] keep_all_generic_comp = args["keep_all_generic_comp"] if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if reset_stores == [0]: # Fetch scheduled IPC stores from OPS ORACLE store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format(str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # considering reset of old stores only (age > 1 year) store_id = stores.loc[dt.datetime.now() - stores['opened_at'] > dt.timedelta(days=365), 'id'].values # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE AND s.bpos_store_id in {store_list} ) """.format( store_list=str(list(store_id)).replace('[', '(').replace(']', ')'), reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() reset_store_ops['api_call_response'] = False reset_stores = reset_store_ops['store_id'].unique() type_list = None else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None ``` ## Execute Main Function ``` """ calling the main function """ status, order_value_all, new_drug_entries, \ missed_entries = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() ``` ## Send Email Notification ``` # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"IPC SS Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/ipc-ss-main/ipc_ss_main.ipynb
ipc_ss_main.ipynb
``` !pip install zeno_etl_libs==1.0.115 """ main wrapper for Distributor Ranking 2.0 algorithm author: [email protected] """ import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz from ast import literal_eval from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.distributor_ranking2.distributor_ranking_calc import ranking_calc_dc, ranking_calc_franchisee from zeno_etl_libs.utils.distributor_ranking2.tech_processing import process_tech_df ``` ## Main Function ``` def main(debug_mode, reset_date, time_interval_dc, time_interval_franchisee, volume_fraction, franchisee_ranking_active, franchisee_stores, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, s3, rs_db_read, rs_db_write, read_schema, write_schema): mysql_write = MySQL(read_only=False) logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' # define empty variables to return in case of fail final_ranks_franchisee = pd.DataFrame() ranked_features_franchisee = pd.DataFrame() dc_evaluated = [] franchisee_stores_evaluated = [] # ensure all weights adds upto 1 sum_all_wts = sum(list(as_ms_weights_dc_drug_lvl.values())) + \ sum(list(as_ms_weights_dc_type_lvl.values())) + \ sum(list(pr_weights_dc_drug_lvl.values())) + \ sum(list(pr_weights_dc_type_lvl.values())) + \ sum(list(weights_franchisee_drug_lvl.values())) + \ sum(list(weights_franchisee_type_lvl.values())) if sum_all_wts == 6: logger.info("All input weights add upto 1 | Continue Execution") else: logger.info("Input weights does not add upto 1 | Stop Execution") return status, reset_date, dc_evaluated, franchisee_stores_evaluated try: # calculate ranks logger.info("Calculating Zippin DC-level Ranking") ranked_features_dc, final_ranks_dc = ranking_calc_dc( reset_date, time_interval_dc, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger, db=rs_db_read, schema=read_schema) if franchisee_ranking_active == 'Y': logger.info("Calculating Franchisee-level Ranking") ranked_features_franchisee, \ final_ranks_franchisee = ranking_calc_franchisee( reset_date, time_interval_franchisee, franchisee_stores, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger, db=rs_db_read, schema=read_schema) else: logger.info("Skipping Franchisee-level Ranking") # process ranked dfs to tech required format distributor_ranking_rules, \ distributor_ranking_rule_values = process_tech_df( final_ranks_dc, final_ranks_franchisee, volume_fraction) # combine rank df and feature df (dc & franchisee) final_ranks = pd.concat([final_ranks_dc, final_ranks_franchisee], axis=0) ranked_features = pd.concat([ranked_features_dc, ranked_features_franchisee], axis=0) ranked_features.rename( {"partial_dc_id": "dc_id", "partial_distributor_id": "distributor_id", "partial_distributor_credit_period": "distributor_credit_period", "partial_distributor_name": "distributor_name"}, axis=1, inplace=True) final_ranks.rename( {"partial_dc_id": "dc_id"}, axis=1, inplace=True) # for email info dc_evaluated = distributor_ranking_rules["dc_id"].unique().tolist() franchisee_stores_evaluated = distributor_ranking_rules[ "store_id"].unique().tolist() # adding required fields in tech df distributor_ranking_rules['rule_start_date'] = reset_date distributor_ranking_rules['is_active'] = 1 distributor_ranking_rules['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') distributor_ranking_rules['created_by'] = 'etl-automation' # adding required fields in ds-internal df final_ranks.loc[:, 'reset_date'] = reset_date final_ranks['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') final_ranks['created_by'] = 'etl-automation' final_ranks['updated_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') final_ranks['updated_by'] = 'etl-automation' ranked_features.loc[:, 'reset_date'] = reset_date ranked_features['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ranked_features['created_by'] = 'etl-automation' ranked_features['updated_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ranked_features['updated_by'] = 'etl-automation' # formatting column names distributor_ranking_rule_values.columns = [c.replace('_', '-') for c in distributor_ranking_rule_values.columns] distributor_ranking_rules.columns = [c.replace('_', '-') for c in distributor_ranking_rules.columns] final_ranks.columns = [c.replace('_', '-') for c in final_ranks.columns] ranked_features.columns = [c.replace('_', '-') for c in ranked_features.columns] if debug_mode == 'N': logger.info("Writing table to RS-DB") logger.info("Writing to table: distributor-ranking2-features") table_info = helper.get_table_info(db=rs_db_write, table_name='distributor-ranking2-features', schema=write_schema) columns = list(table_info['column_name']) ranked_features = ranked_features[columns] # required column order s3.write_df_to_db(df=ranked_features, table_name='distributor-ranking2-features', db=rs_db_write, schema=write_schema) logger.info("Writing to table: distributor-ranking2-final-ranks") table_info = helper.get_table_info(db=rs_db_write, table_name='distributor-ranking2-final-ranks', schema=write_schema) columns = list(table_info['column_name']) final_ranks = final_ranks[columns] # required column order s3.write_df_to_db(df=final_ranks, table_name='distributor-ranking2-final-ranks', db=rs_db_write, schema=write_schema) logger.info("Writing table to RS-DB completed!") mysql_write.open_connection() logger.info("Updating table to MySQL") try: index_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rules`', con=mysql_write.connection).values[0]) + 1 redundant_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rule-values`', con=mysql_write.connection).values[0]) + 1 except: index_increment = 1 redundant_increment = 1 logger.info(f"Incremented distributor-ranking-rules by {index_increment}") logger.info(f"Incremented distributor-ranking-rule-values by {redundant_increment}") distributor_ranking_rules['id'] = distributor_ranking_rules['id'] + index_increment distributor_ranking_rule_values['distributor-ranking-rule-id'] = distributor_ranking_rule_values[ 'distributor-ranking-rule-id'] + index_increment distributor_ranking_rule_values['id'] = distributor_ranking_rule_values['id'] + redundant_increment logger.info("Setting existing rules to inactive") mysql_write.engine.execute("UPDATE `distributor-ranking-rules` SET `is-active` = 0") # mysql_write.engine.execute("SET FOREIGN_KEY_CHECKS=0") # use only in staging logger.info("Writing to table: distributor-ranking-rules") distributor_ranking_rules.to_sql( name='distributor-ranking-rules', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) logger.info("Writing to table: distributor-ranking-rule-values") distributor_ranking_rule_values.to_sql( name='distributor-ranking-rule-values', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) # mysql_write.engine.execute("SET FOREIGN_KEY_CHECKS=1") # use only in staging logger.info("Updating table to MySQL completed!") mysql_write.close() else: logger.info("Writing to RS-DB & MySQL skipped") status = 'Success' logger.info(f"Distributor Ranking code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Distributor Ranking code execution status: {status}") return status, reset_date, dc_evaluated, franchisee_stores_evaluated ``` ## Pass Param ``` env = "dev" email_to = "[email protected]" debug_mode = "N" os.environ['env'] = env logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() ``` ## Read Params from RS table ``` from zeno_etl_libs.helper.parameter.job_parameter import parameter args = parameter.get_params(job_id=94) # JOB EXCLUSIVE PARAMS reset_date = args["reset_date"] time_interval_dc = args["time_interval_dc"] time_interval_franchisee = args["time_interval_franchisee"] volume_fraction = args["volume_fraction"] franchisee_ranking_active = args["franchisee_ranking_active"] franchisee_stores = args["franchisee_stores"] as_ms_weights_dc_drug_lvl = args["as_ms_weights_dc_drug_lvl"] as_ms_weights_dc_type_lvl = args["as_ms_weights_dc_type_lvl"] pr_weights_dc_drug_lvl = args["pr_weights_dc_drug_lvl"] pr_weights_dc_type_lvl = args["pr_weights_dc_type_lvl"] weights_franchisee_drug_lvl = args["weights_franchisee_drug_lvl"] weights_franchisee_type_lvl = args["weights_franchisee_type_lvl"] if reset_date == 'YYYY-MM-DD': reset_date = dt.date.today() else: reset_date = dt.datetime.strptime(reset_date, "%Y-%m-%d").date() ``` ## Execute Main Function ``` """ calling the main function """ status, reset_date, dc_evaluated, \ franchisee_stores_evaluated = main( debug_mode, reset_date, time_interval_dc, time_interval_franchisee, volume_fraction, franchisee_ranking_active, franchisee_stores, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, s3, rs_db_read, rs_db_write, read_schema, write_schema) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() ``` ## Send Email Notification ``` # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"Distributor Ranking 2.0 Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} DC's Evaluated: {dc_evaluated} Franchisee Stores Evaluated: {franchisee_stores_evaluated} Job Params: {args} """, to_emails=email_to) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/distributor-ranking2-main/distributor_ranking2_main.ipynb
distributor_ranking2_main.ipynb
``` import argparse import os import datetime import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger env = "stage" os.environ['env'] = env logger = get_logger(level="INFO") db = DB(read_only=False) db.db_secrets db.open_connection() query = f""" insert into "prod2-generico"."temp-str" (col1) values ('Hello at {datetime.datetime.now()}') """ db.execute(query=query) db.close_connection() ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/redshift-write-demo.ipynb
redshift-write-demo.ipynb
``` """main wrapper for Non-IPC safety stock reset""" import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.utils.non_ipc.data_prep.non_ipc_data_prep import non_ipc_data_prep from zeno_etl_libs.utils.non_ipc.forecast.forecast_main import non_ipc_forecast from zeno_etl_libs.utils.non_ipc.safety_stock.safety_stock import non_ipc_safety_stock_calc from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc.post_processing import post_processing from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, agg_week_cnt, kind, rs_db_read, rs_db_write, read_schema, write_schema, logger): s3 = S3() logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' if v3_active_flag == 'Y': corrections_flag = True else: corrections_flag = False # Define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() logger.info("Forecast pipeline starts...") try: for store_id in reset_stores: logger.info("Non-IPC SS calculation started for store id: " + str(store_id)) # RUNNING DATA PREPARATION drug_data_agg_weekly, drug_data_weekly, drug_class, \ bucket_sales = non_ipc_data_prep( store_id_list=store_id, reset_date=reset_date, type_list=type_list, db=rs_db_read, schema=read_schema, agg_week_cnt=agg_week_cnt, logger=logger) # CREATING TRAIN FLAG TO HANDLE STORES WITH HISTORY < 16 WEEKS week_count = drug_data_weekly['date'].nunique() if week_count >= 16: train_flag = True else: train_flag = False # RUNNING FORECAST PIPELINE AND SAFETY STOCK CALC out_of_sample = 1 horizon = 1 train, error, predict, ensemble_train, ensemble_error, \ ensemble_predict = non_ipc_forecast( drug_data_agg_weekly, drug_data_weekly, drug_class, out_of_sample, horizon, train_flag, logger, kind) final_predict = ensemble_predict.query('final_fcst == "Y"') safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, \ drug_rejects_ipcv6 = non_ipc_safety_stock_calc( store_id, drug_data_weekly, reset_date, final_predict, drug_class, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, train_flag, drug_type_list_v4, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, rs_db_read, read_schema, logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': safety_stock_df, consolidation_log = stores_ss_consolidation( safety_stock_df, rs_db_read, read_schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': safety_stock_df, good_aid_ss_log = update_ga_ss( safety_stock_df, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=logger) # OMIT NPI DRUGS if omit_npi == 'Y': safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) # POST PROCESSING AND ORDER VALUE CALCULATION safety_stock_df['percentile'] = 0.5 final_predict.rename(columns={'month_begin_dt': 'date'}, inplace=True) drug_class, weekly_fcst, safety_stock_df, \ order_value = post_processing( store_id, drug_class, final_predict, safety_stock_df, rs_db_read, read_schema, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-forecast predict['forecast_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() predict['store_id'] = store_id predict['month_begin_dt'] = predict['month_begin_dt'].dt.date predict['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') predict['created-by'] = 'etl-automation' predict['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') predict['updated-by'] = 'etl-automation' predict.columns = [c.replace('_', '-') for c in predict.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-predict', schema=write_schema) columns = list(table_info['column_name']) predict = predict[columns] # required column order logger.info("Writing to table: non-ipc-predict") s3.write_df_to_db(df=predict, table_name='non-ipc-predict', db=rs_db_write, schema=write_schema) # writing table non-ipc-safety-stock safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: non-ipc-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='non-ipc-safety-stock', db=rs_db_write, schema=write_schema) # writing table non-ipc-abc-xyz-class drug_class['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() drug_class['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['created-by'] = 'etl-automation' drug_class['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['updated-by'] = 'etl-automation' drug_class.columns = [c.replace('_', '-') for c in drug_class.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-abc-xyz-class', schema=write_schema) columns = list(table_info['column_name']) drug_class = drug_class[columns] # required column order logger.info("Writing to table: non-ipc-abc-xyz-class") s3.write_df_to_db(df=drug_class, table_name='non-ipc-abc-xyz-class', db=rs_db_write, schema=write_schema) # to write ipc v6 tables ... # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.query('order_upto_point > 0')[ ['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) logger.info("All writes to RS-DB completed!") # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE # logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") # if reset_store_ops != None: # content_type = 74 # object_id = reset_store_ops.loc[ # reset_store_ops[ # 'store_id'] == store_id, 'object_id'].unique() # for obj in object_id: # request_body = { # "object_id": int(obj), "content_type": content_type} # api_response, _ = django_model_execution_log_create_api( # request_body) # reset_store_ops.loc[ # reset_store_ops['object_id'] == obj, # 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"Non-IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Non-IPC code execution status: {status}") return order_value_all, new_drug_entries, missed_entries # Parameter passing env = "dev" os.environ['env'] = env email_to = "[email protected]" debug_mode = "N" # JOB EXCLUSIVE PARAMS exclude_stores = [52, 60, 92, 243, 281] goodaid_ss_flag = "Y" ga_inv_weight = 0.5 rest_inv_weight = 0.0 top_inv_weight = 1 chronic_max_flag = "N" wh_gen_consolidation = "Y" v5_active_flag = "N" v6_active_flag = "N" v6_type_list = ['ethical', 'generic', 'others'] v6_ptr_cut_off = 400 reset_date = "YYYY-MM-DD" reset_stores = [263] v3_active_flag = "N" corrections_selling_probability_cutoff = "{'ma_less_than_2': 0.40, 'ma_more_than_2' : 0.40}" corrections_cumulative_probability_cutoff = "{'ma_less_than_2':0.50,'ma_more_than_2':0.63}" drug_type_list_v4 = "{'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}','ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}','others':'{0:[0,0,0], 1:[0,1,2], 2:[0,1,2],3:[1,2,3]}'}" agg_week_cnt = 4 kind = 'mae' omit_npi = 'N' # EVALUATE REQUIRED JSON PARAMS corrections_selling_probability_cutoff = literal_eval( corrections_selling_probability_cutoff) corrections_cumulative_probability_cutoff = literal_eval( corrections_cumulative_probability_cutoff) drug_type_list_v4 = literal_eval(drug_type_list_v4) logger = get_logger() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if reset_stores == [0]: # Fetch scheduled Non-IPC stores from OPS ORACLE store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format( str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # considering reset of stores aged (3 months < age < 1 year) store_id = stores.loc[ (dt.datetime.now() - stores['opened_at'] > dt.timedelta(days=90)) & (dt.datetime.now() - stores['opened_at'] <= dt.timedelta(days=365)), 'id'].values # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE AND s.bpos_store_id in {store_list} ) """.format( store_list=str(list(store_id)).replace('[', '(').replace(']',')'), reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() reset_store_ops['api_call_response'] = False reset_stores = reset_store_ops['store_id'].unique() type_list = str( list(reset_store_ops.loc[reset_store_ops['store_id'] == store_id, 'type'].unique())) type_list = type_list.replace('[', '(').replace(']', ')') else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None """ calling the main function """ order_value_all, new_drug_entries, \ missed_entries = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, agg_week_cnt, kind, rs_db_read, rs_db_write, read_schema, write_schema, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # SENT EMAIL ATTACHMENTS logger.info("Sending email attachments..") # to write .............. ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/non_ipc_ss_main.ipynb
non_ipc_ss_main.ipynb
``` """main wrapper for IPC safety stock reset""" import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.utils.ipc.forecast_reset import ipc_forecast_reset from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc.post_processing import post_processing from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update ``` # main ``` def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, rs_db_read, rs_db_write, read_schema, write_schema, logger): s3 = S3() logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' if v3_active_flag == 'Y': corrections_flag = True else: corrections_flag = False # Define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() logger.info("Forecast pipeline starts...") try: for store_id in reset_stores: logger.info("IPC SS calculation started for store id: " + str(store_id)) # RUNNING FORECAST PIPELINE AND SAFETY STOCK CALC drug_class, weekly_fcst, safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, \ drug_rejects_ipcv6 = ipc_forecast_reset( store_id, type_list, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, rs_db_read, read_schema, drug_type_list_v4=drug_type_list_v4, v5_active_flag=v5_active_flag, v6_active_flag=v6_active_flag, v6_type_list=v6_type_list, v6_ptr_cut_off=v6_ptr_cut_off, chronic_max_flag=chronic_max_flag, logger=logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': safety_stock_df, consolidation_log = stores_ss_consolidation( safety_stock_df, rs_db_read, read_schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': safety_stock_df, good_aid_ss_log = update_ga_ss( safety_stock_df, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=logger) # OMIT NPI DRUGS if omit_npi == 'Y': safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) # POST PROCESSING AND ORDER VALUE CALCULATION drug_class, weekly_fcst, safety_stock_df, \ order_value = post_processing(store_id, drug_class, weekly_fcst, safety_stock_df, rs_db_read, read_schema, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-forecast weekly_fcst.rename( columns={'date': 'week_begin_dt', 'fcst': 'point_forecast', 'std': 'forecast_deviation'}, inplace=True) weekly_fcst['forecast_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() weekly_fcst['week_begin_dt'] = weekly_fcst['week_begin_dt'] weekly_fcst['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['created-by'] = 'etl-automation' weekly_fcst['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['updated-by'] = 'etl-automation' weekly_fcst.columns = [c.replace('_', '-') for c in weekly_fcst.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-forecast', schema=write_schema) columns = list(table_info['column_name']) weekly_fcst = weekly_fcst[columns] # required column order logger.info("Writing to table: ipc-forecast") s3.write_df_to_db(df=weekly_fcst, table_name='ipc-forecast', db=rs_db_write, schema=write_schema) # writing table ipc-safety-stock safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc-abc-xyz-class drug_class['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() drug_class['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['created-by'] = 'etl-automation' drug_class['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['updated-by'] = 'etl-automation' drug_class.columns = [c.replace('_', '-') for c in drug_class.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-abc-xyz-class', schema=write_schema) columns = list(table_info['column_name']) drug_class = drug_class[columns] # required column order logger.info("Writing to table: ipc-abc-xyz-class") s3.write_df_to_db(df=drug_class, table_name='ipc-abc-xyz-class', db=rs_db_write, schema=write_schema) # to write ipc v6 tables ... # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.query('order_upto_point > 0')[ ['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) logger.info("All writes to RS-DB completed!") # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE # logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") # if reset_store_ops != None: # content_type = 74 # object_id = reset_store_ops.loc[ # reset_store_ops[ # 'store_id'] == store_id, 'object_id'].unique() # for obj in object_id: # request_body = { # "object_id": int(obj), "content_type": content_type} # api_response, _ = django_model_execution_log_create_api( # request_body) # reset_store_ops.loc[ # reset_store_ops['object_id'] == obj, # 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"IPC code execution status: {status}") return order_value_all, new_drug_entries, missed_entries # Parameter passing env = "stage" os.environ['env'] = env email_to = "[email protected]" debug_mode = "N" # JOB EXCLUSIVE PARAMS exclude_stores = [52, 60, 92, 243, 281] goodaid_ss_flag = "Y" ga_inv_weight = 0.5 rest_inv_weight = 0.0 top_inv_weight = 1 chronic_max_flag = "N" wh_gen_consolidation = "Y" v5_active_flag = "N" v6_active_flag = "N" v6_type_list = ['ethical', 'generic', 'others'] v6_ptr_cut_off = 400 reset_date = "YYYY-MM-DD" reset_stores = [2] v3_active_flag = "N" corrections_selling_probability_cutoff = "{'ma_less_than_2': 0.40, 'ma_more_than_2' : 0.40}" corrections_cumulative_probability_cutoff = "{'ma_less_than_2':0.50,'ma_more_than_2':0.63}" drug_type_list_v4 = "{'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}','ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}','others':'{0:[0,0,0], 1:[0,1,2], 2:[0,1,2],3:[1,2,3]}'}" omit_npi = 'N' # EVALUATE REQUIRED JSON PARAMS corrections_selling_probability_cutoff = literal_eval( corrections_selling_probability_cutoff) corrections_cumulative_probability_cutoff = literal_eval( corrections_cumulative_probability_cutoff) drug_type_list_v4 = literal_eval(drug_type_list_v4) logger = get_logger() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if 0: pass else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None """ calling the main function """ order_value_all, new_drug_entries, \ missed_entries = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, rs_db_read, rs_db_write, read_schema, write_schema, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # SENT EMAIL ATTACHMENTS logger.info("Sending email attachments..") # to write .............. ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/ipc_ss_main.ipynb
ipc_ss_main.ipynb
``` import asyncio import errno import io import logging import json import os import re import time from subprocess import Popen, PIPE, STDOUT, DEVNULL from shlex import split import zipfile as zip import botocore import boto3 def ensure_session(session=None): """If session is None, create a default session and return it. Otherwise return the session passed in""" if session is None: session = boto3.session.Session() return session def get_execution_role(session): """Return the role ARN whose credentials are used to call the API. Throws an exception if the current AWS identity is not a role. Returns: (str): The role ARN """ assumed_role = session.client("sts").get_caller_identity()["Arn"] if ":user/" in assumed_role: user_name = assumed_role[assumed_role.rfind("/") + 1 :] raise ValueError( f"You are running as the IAM user '{user_name}'. You must supply an IAM role to run SageMaker jobs." ) if "AmazonSageMaker-ExecutionRole" in assumed_role: role = re.sub( r"^(.+)sts::(\d+):assumed-role/(.+?)/.*$", r"\1iam::\2:role/service-role/\3", assumed_role, ) return role role = re.sub( r"^(.+)sts::(\d+):assumed-role/(.+?)/.*$", r"\1iam::\2:role/\3", assumed_role ) # Call IAM to get the role's path role_name = role[role.rfind("/") + 1 :] arn = session.client("iam").get_role(RoleName=role_name)["Role"]["Arn"] if ":role/" in arn: return arn message = "The current AWS identity is not a role: {}, therefore it cannot be used as a SageMaker execution role" raise ValueError(message.format(arn)) def execute_notebook( *, image, input_path, output_prefix, notebook, parameters, role=None, instance_type, session, in_vpc ): session = ensure_session(session) if not role: role = get_execution_role(session) elif "/" not in role: account = session.client("sts").get_caller_identity()["Account"] role = "arn:aws:iam::{}:role/{}".format(account, role) if "/" not in image: account = session.client("sts").get_caller_identity()["Account"] region = session.region_name image = "{}.dkr.ecr.{}.amazonaws.com/{}:latest".format(account, region, image) if notebook == None: notebook = input_path base = os.path.basename(notebook) nb_name, nb_ext = os.path.splitext(base) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) job_name = ( ("papermill-" + re.sub(r"[^-a-zA-Z0-9]", "-", nb_name))[: 62 - len(timestamp)] + "-" + timestamp ) input_directory = "/opt/ml/processing/input/" local_input = input_directory + os.path.basename(input_path) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) local_output = "/opt/ml/processing/output/" api_args = { "ProcessingInputs": [ { "InputName": "notebook", "S3Input": { "S3Uri": input_path, "LocalPath": input_directory, "S3DataType": "S3Prefix", "S3InputMode": "File", "S3DataDistributionType": "FullyReplicated", }, }, ], "ProcessingOutputConfig": { "Outputs": [ { "OutputName": "result", "S3Output": { "S3Uri": output_prefix, "LocalPath": local_output, "S3UploadMode": "EndOfJob", }, }, ], }, "ProcessingJobName": job_name, "ProcessingResources": { "ClusterConfig": { "InstanceCount": 1, "InstanceType": instance_type, "VolumeSizeInGB": 40, } }, "StoppingCondition": {"MaxRuntimeInSeconds": 7200}, "AppSpecification": { "ImageUri": image, "ContainerArguments": [ "run_notebook", ], }, "RoleArn": role, "Environment": {}, } if in_vpc: api_args["NetworkConfig"] = { 'EnableInterContainerTrafficEncryption': False, 'EnableNetworkIsolation': False, 'VpcConfig': { 'SecurityGroupIds': [ "sg-0101c938006dab959" ], 'Subnets': [ 'subnet-0446eb5f39df5ceca' ] } } api_args["Environment"]["PAPERMILL_INPUT"] = local_input api_args["Environment"]["PAPERMILL_OUTPUT"] = local_output + result if os.environ.get("AWS_DEFAULT_REGION") != None: api_args["Environment"]["AWS_DEFAULT_REGION"] = os.environ["AWS_DEFAULT_REGION"] api_args["Environment"]["PAPERMILL_PARAMS"] = json.dumps(parameters) api_args["Environment"]["PAPERMILL_NOTEBOOK_NAME"] = notebook api_args["Environment"]["AWS_ACCESS_KEY_ID"] = "AKIA5NJ64OJ5UEZ4LS5P" api_args["Environment"]["AWS_SECRET_ACCESS_KEY"] = "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" api_args["Environment"]["REGION_NAME"] = "ap-south-1" client = boto3.client("sagemaker") result = client.create_processing_job(**api_args) job_arn = result["ProcessingJobArn"] job = re.sub("^.*/", "", job_arn) return job def default_bucket(): return "sagemaker-ap-south-1-921939243643" def upload_notebook(notebook, session=None): """Uploads a notebook to S3 in the default SageMaker Python SDK bucket for this user. The resulting S3 object will be named "s3://<bucket>/papermill-input/notebook-YYYY-MM-DD-hh-mm-ss.ipynb". Args: notebook (str): The filename of the notebook you want to upload. (Required) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The resulting object name in S3 in URI format. """ with open(notebook, "rb") as f: return upload_fileobj(f, session) def upload_fileobj(notebook_fileobj, session=None): """Uploads a file object to S3 in the default SageMaker Python SDK bucket for this user. The resulting S3 object will be named "s3://<bucket>/papermill-input/notebook-YYYY-MM-DD-hh-mm-ss.ipynb". Args: notebook_fileobj (fileobj): A file object (as returned from open) that is reading from the notebook you want to upload. (Required) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The resulting object name in S3 in URI format. """ session = ensure_session(session) snotebook = "notebook-{}.ipynb".format( time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) ) s3 = session.client("s3") key = "papermill_input/" + snotebook bucket = default_bucket() s3path = "s3://{}/{}".format(bucket, key) s3.upload_fileobj(notebook_fileobj, bucket, key) return s3path def get_output_prefix(): """Returns an S3 prefix in the Python SDK default bucket.""" return "s3://{}/papermill_output".format(default_bucket()) def wait_for_complete(job_name, progress=True, sleep_time=10, session=None): """Wait for a notebook execution job to complete. Args: job_name (str): The name of the SageMaker Processing Job executing the notebook. (Required) progress (boolean): If True, print a period after every poll attempt. (Default: True) sleep_time (int): The number of seconds between polls. (Default: 10) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: A tuple with the job status and the failure message if any. """ session = ensure_session(session) client = session.client("sagemaker") done = False while not done: if progress: print(".", end="") desc = client.describe_processing_job(ProcessingJobName=job_name) status = desc["ProcessingJobStatus"] if status != "InProgress": done = True else: time.sleep(sleep_time) if progress: print() return status, desc.get("FailureReason") def download_notebook(job_name, output=".", session=None): """Download the output notebook from a previously completed job. Args: job_name (str): The name of the SageMaker Processing Job that executed the notebook. (Required) output (str): The directory to copy the output file to. (Default: the current working directory) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The filename of the downloaded notebook. """ session = ensure_session(session) client = session.client("sagemaker") desc = client.describe_processing_job(ProcessingJobName=job_name) prefix = desc["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"] notebook = os.path.basename(desc["Environment"]["PAPERMILL_OUTPUT"]) s3path = "{}/{}".format(prefix, notebook) if not os.path.exists(output): try: os.makedirs(output) except OSError as e: if e.errno != errno.EEXIST: raise p1 = Popen(split("aws s3 cp --no-progress {} {}/".format(s3path, output))) p1.wait() return "{}/{}".format(output.rstrip("/"), notebook) def run_notebook( image, notebook, parameters={}, role=None, instance_type="ml.m5.large", output_prefix=None, output=".", session=None, in_vpc=False ): """Run a notebook in SageMaker Processing producing a new output notebook. Args: image (str): The ECR image that defines the environment to run the job (required). notebook (str): The local notebook to upload and run (required). parameters (dict): The dictionary of parameters to pass to the notebook (default: {}). role (str): The name of a role to use to run the notebook (default: calls get_execution_role()). instance_type (str): The SageMaker instance to use for executing the job (default: ml.m5.large). output_prefix (str): The prefix path in S3 for where to store the output notebook (default: determined based on SageMaker Python SDK) output (str): The directory to copy the output file to (default: the current working directory). session (boto3.Session): The boto3 session to use. Will create a default session if not supplied (default: None). Returns: A tuple with the processing job name, the job status, the failure reason (or None) and the the path to the result notebook. The output notebook name is formed by adding a timestamp to the original notebook name. """ session = ensure_session(session) if output_prefix is None: output_prefix = get_output_prefix() s3path = upload_notebook(notebook, session) job_name = execute_notebook( image=image, input_path=s3path, output_prefix=output_prefix, notebook=notebook, parameters=parameters, role=role, instance_type=instance_type, session=session, in_vpc=in_vpc ) print("Job {} started".format(job_name)) status, failure_reason = wait_for_complete(job_name) if status == "Completed": local = download_notebook(job_name, output=output) else: local = None return (job_name, status, local, failure_reason) # run_notebook( # image="notebook-runner", # notebook="send-glue-job-logs.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # parameters={"job_name": "prod-8-sales"}, # in_vpc=False # ) # run_notebook( # image="notebook-runner", # notebook="redshift-write-demo.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # parameters={"env": "stage"}, # in_vpc=True # ) # run_notebook( # image="notebook-runner", # notebook="s3_read_write.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # in_vpc=False # ) # run_notebook( # image="notebook-runner", # notebook="ml-demo.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # in_vpc=True # ) run_notebook( image="notebook-runner", notebook="ipc_ss_main.ipynb", role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", parameters={"env": "stage"}, in_vpc=True ) # run_notebook( # image="notebook-runner", # notebook="Untitled.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # parameters={"env": "stage"}, # in_vpc=True # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/run_notebook.ipynb
run_notebook.ipynb
``` # External Libs import json import pandas as pd import matplotlib.pyplot as plt import numpy as np import math import random import os import datetime import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB # Set env env = "stage" os.environ['env'] = env logger = get_logger(level="INFO") logger.info(f"env: {env}") ``` ### Import modified dataset and category splits ``` s3 = S3(bucket_name="sagemaker-ap-south-1-921939243643") csv_full_path = s3.download_file_from_s3(file_name="data/modified_data.csv") df1 = pd.read_csv(csv_full_path) df2 = df1.loc[3:27, :] df2 = df2.drop(['Unnamed: 0'], axis=1) df2['Dates'] = pd.to_datetime(df2['Dates']) # converting to datetime format df2 = df2.set_index('Dates') df2.tail() ``` ### Train - Test Split Function <b>for_valid=True</b> implies, the split is for validation. In this case, all data before March 2021, is taken the last three months in the obtained dataset is taken as Test set, and all the prior datapoints are taken into Train set. <b>for_valid=False</b> implies the split is for final model. Hence all the datapoints before March 2021 is taken into Train set. The data of March 2021 is only considered into Test set. ``` def test_train_split(drug_id, for_valid=True): df3 = df2[[drug_id]] if for_valid: train = df3[0:-5] # Training Split test = df3[-5:-2] # Testing Split else: train = df3[0:-2] # Training Split test = df3[-2:-1] # For 2021 March return train, test ``` ### Model Libraries -- Imports ``` from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from sklearn.metrics import mean_squared_error, mean_absolute_error import warnings warnings.filterwarnings("ignore") # from statsmodels.tsa.api import SimpleExpSmoothing, Holt ``` ### Define Exponential Smoothening Model A simple exponential smoothing model. The <i><b>smoothing constant</b></i> hyperparameter is not provided, so that the algorithm finds the best parameter itself. This model does not capture any trend, it simply forecasts a constant value for all the future predictions. The forecasting is performed by giving higher weightage to the most recent values decided by the <i><b>smoothing constant</b></i>. ``` def exp_mod(drug_id, for_valid=True): train, test = test_train_split(drug_id, for_valid) fit = SimpleExpSmoothing(train).fit() # Optimum alpha automatically computed if for_valid: fcast = fit.forecast(len(test)) mae = mean_absolute_error(test, fcast) return mae else: fcast = fit.forecast(1) return int(math.ceil(fcast.values[0])) # result_1 = exp_mod('216583') # for testing # result_2 = exp_mod('216583', for_valid=False) # for testing ``` ### Define Holts Winter Model This is better model, due to its ability to capture trend. In order to fit the model, a <b><i>linear trend</i></b> is assumed. The hyperparameter values such as <i><b>smoothing_level</b></i> and <i><b>smoothing_trend</b></i> are also assumed to be <b>0.8</b> and <b>0.2</b> respectively. ``` def holts_mod(drug_id, for_valid=True): train, test = test_train_split(drug_id, for_valid) fit = Holt(train).fit(smoothing_level=0.8, smoothing_trend=0.2, optimized=False) # assume hyp-params and linear trend if for_valid: fcast = fit.forecast(len(test)) mae = mean_absolute_error(test, fcast) return mae else: fcast = fit.forecast(1) return int(math.ceil(fcast.values[0])) # result_3 = holts_mod('216583') # for testing # result_4 = holts_mod('216583', for_valid=False) # for testing ``` ### Define LSTM Model A basic LSTM model, much more powerfull than previous models. Uses special class of Neural Networks to train the model. The hyperparametrs such as <i><b>number of layers, number of neurons, activation function, optimizers</b></i> and <i><b>number of epochs</b></i> are assumed. ``` # preparing independent and dependent features def prepare_lstm_data(timeseries_data, n_features): X, y =[],[] for i in range(len(timeseries_data)): # find the end of this pattern end_ix = i + n_features # check if we are beyond the sequence if end_ix > len(timeseries_data)-1: break # gather input and output parts of the pattern seq_x, seq_y = timeseries_data[i:end_ix], timeseries_data[end_ix] X.append(seq_x) y.append(seq_y) return np.array(X), np.array(y) def lstm_mod(drug_id, for_valid=True, n_steps=3, epochs=500): n_features = 1 train, test = test_train_split(drug_id, for_valid) X, y = prepare_lstm_data(train.values, n_steps) # function call X = X.reshape((X.shape[0], X.shape[1], n_features)) # define model model = Sequential() model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(n_steps, n_features))) model.add(LSTM(50, activation='relu')) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # fit model model.fit(X, y, epochs=epochs, verbose=0) if for_valid: # demonstrate prediction for next n days x_input = train[-(len(test)):][drug_id].values temp_input=list(x_input) lst_output=[] i=0 while(i<len(test)): if(len(temp_input)>n_steps): x_input=np.array(temp_input[1:]) x_input = x_input.reshape((1, n_steps, n_features)) yhat = model.predict(x_input, verbose=0) temp_input.append(yhat[0][0]) temp_input=temp_input[1:] lst_output.append(yhat[0][0]) i=i+1 else: x_input = x_input.reshape((1, n_steps, n_features)) yhat = model.predict(x_input, verbose=0) temp_input.append(yhat[0][0]) lst_output.append(yhat[0][0]) i=i+1 #converting to dictionary --> df pred_dict = {'Dates': ['2020-12-01', '2021-01-01', '2021-02-01'], # assuming forecasting for 3 days 'Sales': lst_output} pred_df = pd.DataFrame(pred_dict) pred_df['Dates'] = pd.to_datetime(pred_df['Dates']) # converting to datetime format pred_df = pred_df.set_index('Dates') mae = mean_absolute_error(test, pred_df) return mae else: x_input = train[-3:][drug_id].values x_input = x_input.reshape((1, 3, 1)) yhat = model.predict(x_input, verbose=0) return int(math.ceil(yhat[0][0])) # result_5 = lstm_mod('216583') # for testing # result_6 = lstm_mod(drug_id='216583', for_valid=False) # for testing import tensorflow as tf import tensorflow_datasets as tfds print("TensorFlow version:", tf.__version__) print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) tf.config.list_physical_devices('GPU') (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=True, as_supervised=True, with_info=True, ) def normalize_img(image, label): """Normalizes images: `uint8` -> `float32`.""" return tf.cast(image, tf.float32) / 255., label batch_size = 128 ds_train = ds_train.map( normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_train = ds_train.cache() ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) ds_train = ds_train.batch(batch_size) ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) ds_test = ds_test.map( normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_test = ds_test.batch(batch_size) ds_test = ds_test.cache() ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu'), tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), # tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), # tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile( loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(0.001), metrics=['accuracy'], ) model.fit( ds_train, epochs=6, validation_data=ds_test, ) ## Write result to DB db = DB(read_only=False) db.open_connection() all_result = f"result_5: {datetime.datetime.now()}" query = f""" insert into "prod2-generico"."temp-str" (col1) values ('Hello at {datetime.datetime.now()}: {all_result}') """ db.execute(query=query) db.close_connection() ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/ml-demo.ipynb
ml-demo.ipynb
``` import asyncio import errno import io import logging import json import os import re import time from subprocess import Popen, PIPE, STDOUT, DEVNULL from shlex import split import zipfile as zip import botocore import boto3 def ensure_session(session=None): """If session is None, create a default session and return it. Otherwise return the session passed in""" if session is None: session = boto3.session.Session() return session def get_execution_role(session): """Return the role ARN whose credentials are used to call the API. Throws an exception if the current AWS identity is not a role. Returns: (str): The role ARN """ assumed_role = session.client("sts").get_caller_identity()["Arn"] if ":user/" in assumed_role: user_name = assumed_role[assumed_role.rfind("/") + 1 :] raise ValueError( f"You are running as the IAM user '{user_name}'. You must supply an IAM role to run SageMaker jobs." ) if "AmazonSageMaker-ExecutionRole" in assumed_role: role = re.sub( r"^(.+)sts::(\d+):assumed-role/(.+?)/.*$", r"\1iam::\2:role/service-role/\3", assumed_role, ) return role role = re.sub( r"^(.+)sts::(\d+):assumed-role/(.+?)/.*$", r"\1iam::\2:role/\3", assumed_role ) # Call IAM to get the role's path role_name = role[role.rfind("/") + 1 :] arn = session.client("iam").get_role(RoleName=role_name)["Role"]["Arn"] if ":role/" in arn: return arn message = "The current AWS identity is not a role: {}, therefore it cannot be used as a SageMaker execution role" raise ValueError(message.format(arn)) def execute_notebook( *, image, input_path, output_prefix, notebook, parameters, role=None, instance_type, session, in_vpc ): session = ensure_session(session) if not role: role = get_execution_role(session) elif "/" not in role: account = session.client("sts").get_caller_identity()["Account"] role = "arn:aws:iam::{}:role/{}".format(account, role) if "/" not in image: account = session.client("sts").get_caller_identity()["Account"] region = session.region_name image = "{}.dkr.ecr.{}.amazonaws.com/{}:latest".format(account, region, image) if notebook == None: notebook = input_path base = os.path.basename(notebook) nb_name, nb_ext = os.path.splitext(base) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) job_name = ( ("papermill-" + re.sub(r"[^-a-zA-Z0-9]", "-", nb_name))[: 62 - len(timestamp)] + "-" + timestamp ) input_directory = "/opt/ml/processing/input/" local_input = input_directory + os.path.basename(input_path) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) local_output = "/opt/ml/processing/output/" api_args = { "ProcessingInputs": [ { "InputName": "notebook", "S3Input": { "S3Uri": input_path, "LocalPath": input_directory, "S3DataType": "S3Prefix", "S3InputMode": "File", "S3DataDistributionType": "FullyReplicated", }, }, ], "ProcessingOutputConfig": { "Outputs": [ { "OutputName": "result", "S3Output": { "S3Uri": output_prefix, "LocalPath": local_output, "S3UploadMode": "EndOfJob", }, }, ], }, "ProcessingJobName": job_name, "ProcessingResources": { "ClusterConfig": { "InstanceCount": 1, "InstanceType": instance_type, "VolumeSizeInGB": 40, } }, "StoppingCondition": {"MaxRuntimeInSeconds": 7200}, "AppSpecification": { "ImageUri": image, "ContainerArguments": [ "run_notebook", ], }, "RoleArn": role, "Environment": {}, } if in_vpc: api_args["NetworkConfig"] = { 'EnableInterContainerTrafficEncryption': False, 'EnableNetworkIsolation': False, 'VpcConfig': { 'SecurityGroupIds': [ "sg-0101c938006dab959" ], 'Subnets': [ 'subnet-0446eb5f39df5ceca' ] } } api_args["Environment"]["PAPERMILL_INPUT"] = local_input api_args["Environment"]["PAPERMILL_OUTPUT"] = local_output + result if os.environ.get("AWS_DEFAULT_REGION") != None: api_args["Environment"]["AWS_DEFAULT_REGION"] = os.environ["AWS_DEFAULT_REGION"] api_args["Environment"]["PAPERMILL_PARAMS"] = json.dumps(parameters) api_args["Environment"]["PAPERMILL_NOTEBOOK_NAME"] = notebook api_args["Environment"]["AWS_ACCESS_KEY_ID"] = "AKIA5NJ64OJ5UEZ4LS5P" api_args["Environment"]["AWS_SECRET_ACCESS_KEY"] = "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" api_args["Environment"]["REGION_NAME"] = "ap-south-1" client = boto3.client("sagemaker") result = client.create_processing_job(**api_args) job_arn = result["ProcessingJobArn"] job = re.sub("^.*/", "", job_arn) return job def default_bucket(): return "sagemaker-ap-south-1-921939243643" def upload_notebook(notebook, session=None): """Uploads a notebook to S3 in the default SageMaker Python SDK bucket for this user. The resulting S3 object will be named "s3://<bucket>/papermill-input/notebook-YYYY-MM-DD-hh-mm-ss.ipynb". Args: notebook (str): The filename of the notebook you want to upload. (Required) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The resulting object name in S3 in URI format. """ with open(notebook, "rb") as f: return upload_fileobj(f, session) def upload_fileobj(notebook_fileobj, session=None): """Uploads a file object to S3 in the default SageMaker Python SDK bucket for this user. The resulting S3 object will be named "s3://<bucket>/papermill-input/notebook-YYYY-MM-DD-hh-mm-ss.ipynb". Args: notebook_fileobj (fileobj): A file object (as returned from open) that is reading from the notebook you want to upload. (Required) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The resulting object name in S3 in URI format. """ session = ensure_session(session) snotebook = "notebook-{}.ipynb".format( time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) ) s3 = session.client("s3") key = "papermill_input/" + snotebook bucket = default_bucket() s3path = "s3://{}/{}".format(bucket, key) s3.upload_fileobj(notebook_fileobj, bucket, key) return s3path def get_output_prefix(): """Returns an S3 prefix in the Python SDK default bucket.""" return "s3://{}/papermill_output".format(default_bucket()) def wait_for_complete(job_name, progress=True, sleep_time=10, session=None): """Wait for a notebook execution job to complete. Args: job_name (str): The name of the SageMaker Processing Job executing the notebook. (Required) progress (boolean): If True, print a period after every poll attempt. (Default: True) sleep_time (int): The number of seconds between polls. (Default: 10) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: A tuple with the job status and the failure message if any. """ session = ensure_session(session) client = session.client("sagemaker") done = False while not done: if progress: print(".", end="") desc = client.describe_processing_job(ProcessingJobName=job_name) status = desc["ProcessingJobStatus"] if status != "InProgress": done = True else: time.sleep(sleep_time) if progress: print() return status, desc.get("FailureReason") def download_notebook(job_name, output=".", session=None): """Download the output notebook from a previously completed job. Args: job_name (str): The name of the SageMaker Processing Job that executed the notebook. (Required) output (str): The directory to copy the output file to. (Default: the current working directory) session (boto3.Session): A boto3 session to use. Will create a default session if not supplied. (Default: None) Returns: The filename of the downloaded notebook. """ session = ensure_session(session) client = session.client("sagemaker") desc = client.describe_processing_job(ProcessingJobName=job_name) prefix = desc["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"] notebook = os.path.basename(desc["Environment"]["PAPERMILL_OUTPUT"]) s3path = "{}/{}".format(prefix, notebook) if not os.path.exists(output): try: os.makedirs(output) except OSError as e: if e.errno != errno.EEXIST: raise p1 = Popen(split("aws s3 cp --no-progress {} {}/".format(s3path, output))) p1.wait() return "{}/{}".format(output.rstrip("/"), notebook) def run_notebook( image, notebook, parameters={}, role=None, instance_type="ml.m5.large", output_prefix=None, output=".", session=None, in_vpc=False ): """Run a notebook in SageMaker Processing producing a new output notebook. Args: image (str): The ECR image that defines the environment to run the job (required). notebook (str): The local notebook to upload and run (required). parameters (dict): The dictionary of parameters to pass to the notebook (default: {}). role (str): The name of a role to use to run the notebook (default: calls get_execution_role()). instance_type (str): The SageMaker instance to use for executing the job (default: ml.m5.large). output_prefix (str): The prefix path in S3 for where to store the output notebook (default: determined based on SageMaker Python SDK) output (str): The directory to copy the output file to (default: the current working directory). session (boto3.Session): The boto3 session to use. Will create a default session if not supplied (default: None). Returns: A tuple with the processing job name, the job status, the failure reason (or None) and the the path to the result notebook. The output notebook name is formed by adding a timestamp to the original notebook name. """ session = ensure_session(session) if output_prefix is None: output_prefix = get_output_prefix() s3path = upload_notebook(notebook, session) job_name = execute_notebook( image=image, input_path=s3path, output_prefix=output_prefix, notebook=notebook, parameters=parameters, role=role, instance_type=instance_type, session=session, in_vpc=in_vpc ) print("Job {} started".format(job_name)) status, failure_reason = wait_for_complete(job_name) if status == "Completed": local = download_notebook(job_name, output=output) else: local = None return (job_name, status, local, failure_reason) # run_notebook( # image="notebook-runner", # notebook="send-glue-job-logs.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # parameters={"job_name": "prod-8-sales"}, # in_vpc=False # ) # run_notebook( # image="notebook-runner", # notebook="redshift-write-demo.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # parameters={"env": "stage"}, # in_vpc=True # ) # run_notebook( # image="notebook-runner", # notebook="s3_read_write.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # in_vpc=False # ) # run_notebook( # image="notebook-runner", # notebook="ml-demo.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # in_vpc=True # ) run_notebook( image="notebook-runner", notebook="ipc_ss_main.ipynb", role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", parameters={"env": "stage"}, in_vpc=True ) # run_notebook( # image="notebook-runner", # notebook="Untitled.ipynb", # role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", # parameters={"env": "stage"}, # in_vpc=True # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/.ipynb_checkpoints/run_notebook-checkpoint.ipynb
run_notebook-checkpoint.ipynb
``` import argparse import os import datetime import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger env = "stage" os.environ['env'] = env logger = get_logger(level="INFO") db = DB(read_only=False) db.db_secrets db.open_connection() query = f""" insert into "prod2-generico"."temp-str" (col1) values ('Hello at {datetime.datetime.now()}') """ db.execute(query=query) db.close_connection() ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/.ipynb_checkpoints/redshift-write-demo-checkpoint.ipynb
redshift-write-demo-checkpoint.ipynb
``` """main wrapper for IPC safety stock reset""" import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.utils.ipc.forecast_reset import ipc_forecast_reset from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc.post_processing import post_processing from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update ``` # main ``` def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, rs_db_read, rs_db_write, read_schema, write_schema, logger): s3 = S3() logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' if v3_active_flag == 'Y': corrections_flag = True else: corrections_flag = False # Define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() logger.info("Forecast pipeline starts...") try: for store_id in reset_stores: logger.info("IPC SS calculation started for store id: " + str(store_id)) # RUNNING FORECAST PIPELINE AND SAFETY STOCK CALC drug_class, weekly_fcst, safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, \ drug_rejects_ipcv6 = ipc_forecast_reset( store_id, type_list, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, rs_db_read, read_schema, drug_type_list_v4=drug_type_list_v4, v5_active_flag=v5_active_flag, v6_active_flag=v6_active_flag, v6_type_list=v6_type_list, v6_ptr_cut_off=v6_ptr_cut_off, chronic_max_flag=chronic_max_flag, logger=logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': safety_stock_df, consolidation_log = stores_ss_consolidation( safety_stock_df, rs_db_read, read_schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': safety_stock_df, good_aid_ss_log = update_ga_ss( safety_stock_df, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=logger) # OMIT NPI DRUGS if omit_npi == 'Y': safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) # POST PROCESSING AND ORDER VALUE CALCULATION drug_class, weekly_fcst, safety_stock_df, \ order_value = post_processing(store_id, drug_class, weekly_fcst, safety_stock_df, rs_db_read, read_schema, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-forecast weekly_fcst.rename( columns={'date': 'week_begin_dt', 'fcst': 'point_forecast', 'std': 'forecast_deviation'}, inplace=True) weekly_fcst['forecast_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() weekly_fcst['week_begin_dt'] = weekly_fcst['week_begin_dt'] weekly_fcst['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['created-by'] = 'etl-automation' weekly_fcst['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['updated-by'] = 'etl-automation' weekly_fcst.columns = [c.replace('_', '-') for c in weekly_fcst.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-forecast', schema=write_schema) columns = list(table_info['column_name']) weekly_fcst = weekly_fcst[columns] # required column order logger.info("Writing to table: ipc-forecast") s3.write_df_to_db(df=weekly_fcst, table_name='ipc-forecast', db=rs_db_write, schema=write_schema) # writing table ipc-safety-stock safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc-abc-xyz-class drug_class['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() drug_class['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['created-by'] = 'etl-automation' drug_class['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['updated-by'] = 'etl-automation' drug_class.columns = [c.replace('_', '-') for c in drug_class.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-abc-xyz-class', schema=write_schema) columns = list(table_info['column_name']) drug_class = drug_class[columns] # required column order logger.info("Writing to table: ipc-abc-xyz-class") s3.write_df_to_db(df=drug_class, table_name='ipc-abc-xyz-class', db=rs_db_write, schema=write_schema) # to write ipc v6 tables ... # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.query('order_upto_point > 0')[ ['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) logger.info("All writes to RS-DB completed!") # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE # logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") # if reset_store_ops != None: # content_type = 74 # object_id = reset_store_ops.loc[ # reset_store_ops[ # 'store_id'] == store_id, 'object_id'].unique() # for obj in object_id: # request_body = { # "object_id": int(obj), "content_type": content_type} # api_response, _ = django_model_execution_log_create_api( # request_body) # reset_store_ops.loc[ # reset_store_ops['object_id'] == obj, # 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"IPC code execution status: {status}") return order_value_all, new_drug_entries, missed_entries # Parameter passing env = "stage" os.environ['env'] = env email_to = "[email protected]" debug_mode = "N" # JOB EXCLUSIVE PARAMS exclude_stores = [52, 60, 92, 243, 281] goodaid_ss_flag = "Y" ga_inv_weight = 0.5 rest_inv_weight = 0.0 top_inv_weight = 1 chronic_max_flag = "N" wh_gen_consolidation = "Y" v5_active_flag = "N" v6_active_flag = "N" v6_type_list = ['ethical', 'generic', 'others'] v6_ptr_cut_off = 400 reset_date = "YYYY-MM-DD" reset_stores = [2] v3_active_flag = "N" corrections_selling_probability_cutoff = "{'ma_less_than_2': 0.40, 'ma_more_than_2' : 0.40}" corrections_cumulative_probability_cutoff = "{'ma_less_than_2':0.50,'ma_more_than_2':0.63}" drug_type_list_v4 = "{'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}','ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}','others':'{0:[0,0,0], 1:[0,1,2], 2:[0,1,2],3:[1,2,3]}'}" omit_npi = 'N' # EVALUATE REQUIRED JSON PARAMS corrections_selling_probability_cutoff = literal_eval( corrections_selling_probability_cutoff) corrections_cumulative_probability_cutoff = literal_eval( corrections_cumulative_probability_cutoff) drug_type_list_v4 = literal_eval(drug_type_list_v4) logger = get_logger() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if 0: pass else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None """ calling the main function """ order_value_all, new_drug_entries, \ missed_entries = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, rs_db_read, rs_db_write, read_schema, write_schema, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # SENT EMAIL ATTACHMENTS logger.info("Sending email attachments..") # to write .............. ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/experiments/.ipynb_checkpoints/ipc_ss_main-checkpoint.ipynb
ipc_ss_main-checkpoint.ipynb
``` !pip install zeno_etl_libs==1.0.49 """main wrapper for new-stores safety stock reset""" import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.new_stores.new_stores_ipc import new_stores_ss_calc from zeno_etl_libs.utils.new_stores.helper_functions import get_drug_info, order_value_report from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update ``` ## Main Function ``` def main(debug_mode, reset_stores, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, wh_gen_consolidation, type_list, rs_db_read, rs_db_write, read_schema, write_schema, s3, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' reset_date = dt.date.today().strftime("%Y-%m-%d") # define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() try: for store_id in reset_stores: logger.info("New store SS calculation started for store id: " + str(store_id)) # NEW STORES SS CALCULATION ss_stores = new_stores_ss_calc(store_id, reset_date, rs_db_read, read_schema, logger) # EXTRA INFO FETCH data_inv, data_ptr, data_drug_info, data_drug_grade,\ data_stores = get_drug_info(store_id, rs_db_read, read_schema) # MERGE DATA ss_stores_merge = ss_stores.merge( data_inv[['drug_id', 'current_inventory']], how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_ptr, how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_drug_info, how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_drug_grade, how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_stores, how='left', on='store_id') logger.info("Null values in dataframes, count is {}".format( ss_stores_merge.isnull().sum())) # fill Null values ss_stores_merge['current_inventory'].fillna(0, inplace=True) ss_stores_merge['ptr'].fillna(67, inplace=True) ss_stores_merge['type'].fillna('', inplace=True) ss_stores_merge['category'].fillna('', inplace=True) ss_stores_merge['drug_grade'].fillna('NA', inplace=True) # final data-frame name for update new_stores_ss = ss_stores_merge.copy() logger.info("SS list base algo+triggers length is {}".format( len(new_stores_ss))) logger.info( "Types in list are - {}".format(new_stores_ss['type'].unique())) # remove banned and discontinued drugs new_stores_ss = new_stores_ss[~new_stores_ss['type'].isin( ['banned', 'discontinued-products'])] logger.info( "Types in list are - {}".format(new_stores_ss['type'].unique())) logger.info( "SS list after removing banned and discontinued - length is {}".format( len(new_stores_ss))) # order value report order_value = order_value_report(new_stores_ss) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': new_stores_ss, consolidation_log = stores_ss_consolidation( new_stores_ss, rs_db_read, read_schema, min_column='min', ss_column='safety_stock', max_column='max') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': new_stores_ss, good_aid_ss_log = update_ga_ss( new_stores_ss, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='min', ss_column='safety_stock', max_column='max', logger=logger) # few more columns new_stores_ss['inventory_quantity'] = new_stores_ss['current_inventory'] new_stores_ss['fptr'] = new_stores_ss['ptr'] new_stores_ss['store_id'] = store_id new_stores_ss['daily_sales_1'] = -1 new_stores_ss['daily_sales_2'] = -1 new_stores_ss['daily_sales_3'] = -1 new_stores_ss['ads'] = -1 new_stores_ss['ads_min'] = -1 new_stores_ss['ads_ss'] = -1 new_stores_ss['ads_max'] = -1 new_stores_ss['algo_max_days'] = 30 # adjustment for ethical # same logic as in new_store_ipc_funcs.ss_calc new_stores_ss['algo_max_days'] = np.round( np.where(new_stores_ss['type'].isin( ['ethical', 'high-value-ethical']), new_stores_ss['algo_max_days'] * (1 / 2), new_stores_ss['algo_max_days'] * (2 / 3))) # for min new_stores_ss['algo_min_days'] = np.where(new_stores_ss['max'] > 0, (new_stores_ss['min'] / new_stores_ss['max'] ) * new_stores_ss[ 'algo_max_days'], 0) # for ss new_stores_ss['algo_ss_days'] = np.where(new_stores_ss['max'] > 0, (new_stores_ss[ 'safety_stock'] / new_stores_ss['max'] ) * new_stores_ss[ 'algo_max_days'], 0) new_stores_ss['corr_min'] = new_stores_ss['min'] new_stores_ss['corr_ss'] = new_stores_ss['safety_stock'] new_stores_ss['corr_max'] = new_stores_ss['max'] new_stores_ss['to_order_quantity'] = np.where( new_stores_ss['inventory_quantity'] <= new_stores_ss['corr_ss'], new_stores_ss['corr_max'] - new_stores_ss['inventory_quantity'], 0) new_stores_ss['to_order_value'] = new_stores_ss['fptr'] * \ new_stores_ss['to_order_quantity'] # required columns new_store_ss = new_stores_ss[[ 'store_id', 'store_name', 'drug_id', 'drug_name', 'type', 'category', 'drug_grade', 'inventory_quantity', 'min', 'safety_stock', 'max', 'daily_sales_1', 'daily_sales_2', 'daily_sales_3', 'ads', 'ads_min', 'ads_ss', 'ads_max', 'algo_min_days', 'algo_ss_days', 'algo_max_days', 'corr_min', 'corr_ss', 'corr_max', 'to_order_quantity', 'fptr', 'to_order_value', 'algo_type']] # overall order value order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table non-ipc-safety-stock # new_store_ss['store_id'] = new_store_ss['store_id'].astype(int) new_store_ss['reset-date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() new_store_ss['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') new_store_ss['created-by'] = 'etl-automation' new_store_ss['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') new_store_ss['updated-by'] = 'etl-automation' new_store_ss.columns = [c.replace('_', '-') for c in new_store_ss.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='new-store-safety-stock', schema=write_schema) columns = list(table_info['column_name']) new_store_ss = new_store_ss[columns] # required column order logger.info("Writing to table: new-store-safety-stock") s3.write_df_to_db(df=new_store_ss, table_name='new-store-safety-stock', db=rs_db_write, schema=write_schema) # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") new_store_ss.columns = [c.replace('-', '_') for c in new_store_ss.columns] ss_data_upload = new_store_ss.query('corr_max > 0')[ ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max']] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"New-Stores-SS code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"New-Stores-SS code execution status: {status}") return status, reset_date, new_drug_entries, missed_entries, order_value_all ``` ## Pass Params ``` env = "dev" email_to = "[email protected]" debug_mode = "N" os.environ['env'] = env logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() ``` ## Read params from RS table ``` from zeno_etl_libs.helper.parameter.job_parameter import parameter args = parameter.get_params(job_id=116) # JOB EXCLUSIVE PARAMS exclude_stores = args["exclude_stores"] goodaid_ss_flag = args["goodaid_ss_flag"] ga_inv_weight = args["ga_inv_weight"] rest_inv_weight = args["rest_inv_weight"] top_inv_weight = args["top_inv_weight"] wh_gen_consolidation = args["wh_gen_consolidation"] reset_stores = args["reset_stores"] ``` ## Get Stores and Type List ``` store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format(str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # new stores list new_stores = stores.loc[ (dt.datetime.now() - stores['opened_at'] <= dt.timedelta(days=90)) & (dt.datetime.now() - stores['opened_at'] >= dt.timedelta(days=30)), 'id'].values if reset_stores == [0]: # Fetch all new stores reset_stores = new_stores logger.info(f"Algo to run for all new stores: {reset_stores}") else: reset_stores = list(set(reset_stores).intersection(new_stores)) logger.info(f"Algo to run for specified new stores: {reset_stores}") if not reset_stores: logger.info(f"ALERT: None of specified stores is a new store") reset_stores = new_stores logger.info(f"REVERT: Algo to run for all new stores: {reset_stores}") type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" ``` ## Execute Main Function ``` """ calling the main function """ status, reset_date, new_drug_entries, missed_entries, \ order_value_all = main( debug_mode, reset_stores, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, wh_gen_consolidation, type_list, rs_db_read, rs_db_write, read_schema, write_schema, s3, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() ``` ## Send Email Notification ``` # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"New Stores SS Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/new-stores-ss-main/new_stores_ss_main.ipynb
new_stores_ss_main.ipynb
``` !pip install zeno_etl_libs==1.0.123 """main wrapper for IPC2.0 safety stock reset""" import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') # sys.path.insert(0,'/Users/tusharuike/ETL') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.django.api import Django from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper import helper from zeno_etl_libs.utils.ipc2.forecast_main import ipc_forecast from zeno_etl_libs.utils.ipc2.safety_stock import safety_stock_calc from zeno_etl_libs.utils.ipc2.portfolio_consolidation import wh_consolidation, \ goodaid_consolidation, D_class_consolidation from zeno_etl_libs.utils.ipc.store_portfolio_additions import generic_portfolio from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc2.post_processing import post_processing from zeno_etl_libs.utils.ipc2.helpers.correction_flag import compare_df, \ add_correction_flag from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.utils.ipc2.helpers.outlier_check import check_oup_outlier ``` # Main Function ``` def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, v3_active_flag, v4_active_flag, v5_active_flag, v6_active_flag, d_class_consolidation, wh_gen_consolidation, goodaid_ss_flag, keep_all_generic_comp, omit_npi, ga_inv_weight, rest_inv_weight, top_inv_weight, v6_type_list, v6_ptr_cut_off, open_po_turbhe_active, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, outlier_check, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' # Define empty variables if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() df_outliers_all = pd.DataFrame() manual_doid_upd_all = pd.DataFrame() try: for store_id in reset_stores: logger.info(f"Running for store id: {store_id} and reset date: {reset_date}") if not type_list: type_list = str( list(reset_store_ops.loc[reset_store_ops['store_id'] == store_id, 'type'].unique())) type_list = type_list.replace('[', '(').replace(']', ')') # RUNNING IPC2.0 FORECAST PIPELINE logger.info("Forecast Pipeline starts...") agg_fcst, cal_sales, weekly_fcst, seg_df, drug_class = ipc_forecast( store_id, reset_date, type_list, read_schema, rs_db_read, logger) # SAFETY STOCK CALCULATIONS logger.info("Safety Stock Calculations starts...") safety_stock_df = safety_stock_calc( agg_fcst, cal_sales, store_id, reset_date, v3_active_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, v4_active_flag, drug_type_list_v4, v5_active_flag, open_po_turbhe_active, read_schema, rs_db_read, logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': logger.info("WH Generic Consolidation starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = wh_consolidation( safety_stock_df, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'WH') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': logger.info("GA SS Modification starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = goodaid_consolidation( safety_stock_df, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'GA') # D-CLASS SKU CONSOLIDATION if d_class_consolidation == 'Y': logger.info("D Class Consolidation starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = D_class_consolidation( safety_stock_df, store_id, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'DCC') # KEEP ALL GENERIC COMPOSITIONS IN STORE if keep_all_generic_comp == 'Y': logger.info("All Generic Composition starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = generic_portfolio(safety_stock_df, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'AG') # OMIT NPI DRUGS if omit_npi == 'Y': logger.info("Omit NPI starts") df_pre_corr = safety_stock_df.copy() safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) df_post_corr = safety_stock_df.copy() logger.info(f"Sum OUP before: {df_pre_corr['order_upto_point'].sum()}") logger.info(f"Sum OUP after: {df_post_corr['order_upto_point'].sum()}") corr_drug_lst = compare_df(df_pre_corr, df_post_corr, logger) safety_stock_df = add_correction_flag(safety_stock_df, corr_drug_lst, 'NPI') # POST PROCESSING AND ORDER VALUE CALCULATIONS logger.info("Post Processing starts") safety_stock_df, order_value, weekly_fcst, \ seg_df = post_processing(safety_stock_df, weekly_fcst, seg_df, store_id, read_schema, rs_db_read, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc2-weekly-forecast weekly_fcst['store_id'] = weekly_fcst['store_id'].astype(int) weekly_fcst['drug_id'] = weekly_fcst['drug_id'].astype(int) weekly_fcst['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() weekly_fcst['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['created-by'] = 'etl-automation' weekly_fcst['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['updated-by'] = 'etl-automation' weekly_fcst.columns = [c.replace('_', '-') for c in weekly_fcst.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc2-weekly-forecast', schema=write_schema) columns = list(table_info['column_name']) weekly_fcst = weekly_fcst[columns] # required column order logger.info("Writing to table: ipc2-weekly-forecast") s3.write_df_to_db(df=weekly_fcst, table_name='ipc2-weekly-forecast', db=rs_db_write, schema=write_schema) # writing table ipc2-safety-stock safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc2-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc2-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc2-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc2-segmentation seg_df['store_id'] = seg_df['store_id'].astype(int) seg_df['drug_id'] = seg_df['drug_id'].astype(int) seg_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() seg_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df['created-by'] = 'etl-automation' seg_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') seg_df['updated-by'] = 'etl-automation' seg_df.columns = [c.replace('_', '-') for c in seg_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc2-segmentation', schema=write_schema) columns = list(table_info['column_name']) seg_df = seg_df[columns] # required column order logger.info("Writing to table: ipc2-segmentation") s3.write_df_to_db(df=seg_df, table_name='ipc2-segmentation', db=rs_db_write, schema=write_schema) logger.info("All writes to RS-DB completed!") # OUP OUTLIER CHECK if outlier_check == 'Y': logger.info("Outlier detection starts") outlier_drugs, df_outliers, \ manual_doid_upd_df = check_oup_outlier( safety_stock_df, store_id, reset_date, rs_db_read, read_schema) df_outliers_all = df_outliers_all.append(df_outliers) manual_doid_upd_all = manual_doid_upd_all.append(manual_doid_upd_df) else: outlier_drugs = [] # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.loc[ (safety_stock_df["order_upto_point"] > 0) & (~safety_stock_df["drug_id"].isin(outlier_drugs))] ss_data_upload = ss_data_upload[['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") if isinstance(reset_store_ops, pd.DataFrame): content_type = 74 object_id = reset_store_ops.loc[ reset_store_ops[ 'store_id'] == store_id, 'object_id'].unique() for obj in object_id: request_body = {"object_id": int(obj), "content_type": content_type} api_response, _ = django.django_model_execution_log_create_api( request_body) reset_store_ops.loc[ reset_store_ops['object_id'] == obj, 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"IPC code execution status: {status}") return status, order_value_all, new_drug_entries, missed_entries,\ df_outliers_all, manual_doid_upd_all ``` # Pass Params ``` env = "dev" email_to = "[email protected]" debug_mode = "N" run_batch = "run_batch" tot_batch = "tot_batch" batch_stores = "batch_stores" os.environ['env'] = env logger = get_logger() s3 = S3() django = Django() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() ``` # Read params from RS table ``` from zeno_etl_libs.helper.parameter.job_parameter import parameter args = parameter.get_params(job_id=140) # JOB EXCLUSIVE PARAMS exclude_stores = args["exclude_stores"] goodaid_ss_flag = args["goodaid_ss_flag"] ga_inv_weight = args["ga_inv_weight"] rest_inv_weight = args["rest_inv_weight"] top_inv_weight = args["top_inv_weight"] d_class_consolidation = args["d_class_consolidation"] wh_gen_consolidation = args["wh_gen_consolidation"] v5_active_flag = args["v5_active_flag"] v6_active_flag = args["v6_active_flag"] v6_type_list = args["v6_type_list"] v6_ptr_cut_off = args["v6_ptr_cut_off"] reset_date = args["reset_date"] reset_stores = args["reset_stores"] v3_active_flag = args["v3_active_flag"] v4_active_flag = args["v4_active_flag"] corrections_selling_probability_cutoff = args["corrections_selling_probability_cutoff"] corrections_cumulative_probability_cutoff = args["corrections_cumulative_probability_cutoff"] drug_type_list_v4 = args["drug_type_list_v4"] omit_npi = args["omit_npi"] keep_all_generic_comp = args["keep_all_generic_comp"] outlier_check = args["outlier_check"] open_po_turbhe_active = args["open_po_turbhe_active"] if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if reset_stores == [0]: # Fetch scheduled IPC stores from OPS ORACLE store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format(str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # only stores aged > 3 months are eligible store_id = stores.loc[dt.datetime.now() - stores['opened_at'] > dt.timedelta(days=90), 'id'].values # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE AND s.bpos_store_id in {store_list} ) """.format( store_list=str(list(store_id)).replace('[', '(').replace(']', ')'), reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() reset_store_ops['api_call_response'] = False scheduled_stores = reset_store_ops['store_id'].unique() type_list = None # for batch run reset_stores = list(set(scheduled_stores).intersection(batch_stores)) else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None # for batch run reset_stores = list(set(reset_stores).intersection(batch_stores)) scheduled_stores = [0] ``` # Execute Main Function ``` """ calling the main function """ status, order_value_all, new_drug_entries, missed_entries, \ df_outliers_all, manual_doid_upd_all = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, v3_active_flag, v4_active_flag, v5_active_flag, v6_active_flag, d_class_consolidation, wh_gen_consolidation, goodaid_ss_flag, keep_all_generic_comp, omit_npi, ga_inv_weight, rest_inv_weight, top_inv_weight, v6_type_list, v6_ptr_cut_off, open_po_turbhe_active, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, outlier_check, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() ``` # Send Email Notification ``` # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") df_outliers_all_uri = s3.save_df_to_s3(df_outliers_all, file_name=f"df_outliers_all_{reset_date}.csv") manual_doid_upd_all_uri = s3.save_df_to_s3(manual_doid_upd_all, file_name=f"manual_doid_upd_all_{reset_date}.csv") # SEND EMAIL ATTACHMENTS (IPC-RUN STATUS) logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"IPC2.0 SS Reset: (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Batch: {str(run_batch)+'/'+str(tot_batch)} Batch Stores: {batch_stores} Reset Stores: {reset_stores} Scheduled Stores: {scheduled_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) # SEND EMAIL ATTACHMENTS (OUTLIER WARNING) outlier_count = df_outliers_all.shape[0] if outlier_count > 0: outlier_order_qty = df_outliers_all["to_order_quantity"].sum() outlier_order_val = round(df_outliers_all["to_order_value"].sum(), 2) outlier_stores = list(df_outliers_all["store_id"].unique()) email.send_email_file( subject=f"IPC2.0 OUTLIER WARNING (SM-{env}) {reset_date}: " f"Cases {outlier_count}", mail_body=f""" Batch: {str(run_batch)+'/'+str(tot_batch)} Stores: {outlier_stores} Cases: {outlier_count} Order Quantity: {outlier_order_qty} Order Value: {outlier_order_val} Note: For the detected cases SS, ROP & OUP is set to 0. Please verify and upload attached file using DOID-GLUE JOB. """, to_emails=email_to, file_uris=[df_outliers_all_uri, manual_doid_upd_all_uri]) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/ipc2-ss-main/ipc2_ss_main.ipynb
ipc2_ss_main.ipynb
``` import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from dateutil.relativedelta import relativedelta from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet import pandas as pd import numpy as np import dateutil import datetime from datetime import timedelta from dateutil.tz import gettz import gc from zeno_etl_libs.django.api import Sql import typing from functools import reduce from sklearn.preprocessing import StandardScaler env = 'dev' datem = '' sqlwrite = 'yes' os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'drug-grades' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if datem=='': date1=date1 = datetime.date.today().strftime('%Y-%m-%d') # logger.info('Entry taken from params',str(date1)) else: date1=datem # logger.info('Selecting the default date as the job run date',str(date1)) q_aa = f""" select "bill-id", "patient-id" , "store-id" , "store-name" as "name", "drug-id" , "drug-name" , "type" , "created-date" as "created-at" , NVL(sum(case when "bill-flag" = 'gross' then quantity end), 0) as "sold-quantity", NVL(sum(case when "bill-flag" = 'return' then quantity end), 0) as "returned-quantity", sum("net-quantity") as "quantity", sum(rate) as "rate" from "prod2-generico"."sales" where datediff('day','{date1}', "created-date") between -180 and -1 group by "bill-id", "patient-id" , "store-id" , "store-name", "drug-id" , "drug-name" , "type" , "created-date" having sum("net-quantity")>0 """ logger.info(q_aa) df_aa = rs_db.get_df(q_aa) df_aa.columns = [c.replace('-', '_') for c in df_aa.columns] # logger.info('Shape of data',str(df_aa.shape)) df_aa['quantity'].fillna(0,inplace=True) df_aa['rate'].fillna(0,inplace=True) df_aa['value'] = df_aa['rate'] * df_aa['quantity'] # ============================================================================= # Store opened at # ============================================================================= q_bb = """ SELECT "id", datediff('day' , "opened-at", '{}') as "age" FROM "prod2-generico"."stores" WHERE datediff('day' , "opened-at", '{}' ) < 180 """.format(date1,date1) df_bb = rs_db.get_df(q_bb) df_bb.columns = [c.replace('-', '_') for c in df_bb.columns] logger.info('Shape of stores data:{}'.format(str(df_bb.shape))) def store_age(df_bb): if df_bb['age'] >= 90: return '3-6 month' else: return '1-3 month' df_bb['age1'] = df_bb.apply(lambda x: store_age(x), axis=1) # ============================================================================= # quantity sold # ============================================================================= df_qty = df_aa.groupby(['drug_id', 'store_id'])[['quantity']].sum().reset_index() df_qty1 = df_aa.groupby(['drug_id'])[['quantity']].sum().reset_index() # ============================================================================= # revenue # ============================================================================= df_revenue = df_aa.groupby(['drug_id', 'store_id'])[['value']].sum().reset_index() df_revenue1 = df_aa.groupby(['drug_id'])[['value']].sum().reset_index() # ============================================================================= # no. of bills # ============================================================================= df_bills = df_aa.groupby(['drug_id', 'store_id'])[['bill_id']].nunique().reset_index() df_bills1 = df_aa.groupby(['drug_id'])[['bill_id']].nunique().reset_index() # ============================================================================= # no. of consumers # ============================================================================= df_consumers = df_aa.groupby(['drug_id', 'store_id'])[['patient_id']].nunique().reset_index() df_consumers1 = df_aa.groupby(['drug_id'])[['patient_id']].nunique().reset_index() df_aa['created_at'] = pd.to_datetime(df_aa['created_at']) # ============================================================================= # no. of days sold # ============================================================================= df_aa['days'] = df_aa['created_at'].dt.date df_days = df_aa.groupby(['drug_id', 'store_id'])[['days']].nunique().reset_index() df_days1 = df_aa.groupby(['drug_id'])[['days']].nunique().reset_index() # ============================================================================= # recency (last sold) # ============================================================================= days = timedelta(1) period_end_d = pd.to_datetime(date1) - days df_recency = df_aa.groupby(['drug_id', 'store_id'])[['created_at']].max().reset_index() df_recency1 = df_aa.groupby(['drug_id'])[['created_at']].max().reset_index() df_recency['recency'] = (pd.to_datetime(period_end_d) - df_recency['created_at']).dt.days df_recency1['recency'] = (pd.to_datetime(period_end_d) - df_recency1['created_at']).dt.days # ============================================================================= # merge all features # ============================================================================= meg = [df_qty, df_revenue, df_bills, df_consumers, df_days, df_recency] df_features = reduce(lambda left, right: pd.merge(left, right, on=[ 'drug_id', 'store_id'], how='outer'), meg) del (df_features['created_at']) meg1 = [df_qty1, df_revenue1, df_bills1, df_consumers1, df_days1, df_recency1] df_features1 = reduce(lambda left, right: pd.merge(left, right, on=[ 'drug_id'], how='outer'), meg1) del (df_features1['created_at']) df_features = df_features1.append(df_features) df_features['store_id'] = df_features['store_id'].fillna(999) df_features = df_features.reset_index().drop('index', axis=1) # ============================================================================= # creating standard scaler store wise # ============================================================================= temp_normalise = df_features[['store_id', 'quantity', 'value', 'bill_id', 'patient_id', 'days', 'recency']] class SklearnWrapper: def __init__(self, transform: typing.Callable): self.transform = transform def __call__(self, df): transformed = self.transform.fit_transform(df.values) return pd.DataFrame(transformed, columns=df.columns, index=df.index) # This one will apply any sklearn transform you pass into it to a group. df_rescaled = ( temp_normalise.groupby('store_id') .apply(SklearnWrapper(StandardScaler())) .drop('store_id', axis=1) ) temp2_normalise = df_rescaled # ============================================================================= # importing pca_components and appling to scaled data set. # ============================================================================= pca_file_name= 'drug_grades/pca_components.csv' pca_file_path= s3.download_file_from_s3(file_name=pca_file_name) pca_components=pd.read_csv(pca_file_path,delimiter=',') # ============================================================================= # creating Euclidean Distance Caculator and applyin to nearest cluster # ============================================================================= cluster_file_name= 'drug_grades/cluster_centers_1.csv' pca_file_path= s3.download_file_from_s3(file_name=cluster_file_name) cluster_centers_set=pd.read_csv(pca_file_path,delimiter=',') cluster_centers_set = np.array(cluster_centers_set) # Euclidean Distance Caculator def dist(a, b, ax=1): return np.linalg.norm(a - b, axis=ax) clusters = [] test = np.dot(np.array(temp2_normalise), (np.array(pca_components).T)) for i in range(len(test)): distances = dist(np.array(test[i]), (cluster_centers_set)) cluster = np.argmin(distances) clusters.append(cluster) cluster_df = pd.DataFrame(clusters) cluster_df.columns = ['final_cluster'] # ============================================================================= # Summary pivot 1 # ============================================================================= test_df = pd.DataFrame(test) cluster_lvl_1 = pd.merge(test_df, cluster_df, right_index=True, left_index=True) cluster_lvl1_output = pd.merge(cluster_lvl_1, df_features, how='inner', left_index=True, right_index=True) cluster_lvl1_output_pivot = cluster_lvl1_output.groupby(['final_cluster', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index( drop=True) cluster_lvl1_output_pivot.columns = ['_'.join(x) for x in cluster_lvl1_output_pivot.columns.ravel()] cluster_lvl1_output_pivot_name = 'drug_grades/{}.csv'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) # Uploading File to S3 s3.save_df_to_s3(df=cluster_lvl1_output_pivot, file_name=cluster_lvl1_output_pivot_name) # ============================================================================= # # 2nd level # ============================================================================= # ============================================================================= # Further split of large cluster # ============================================================================= further_split_lvl2 = cluster_lvl1_output[cluster_lvl1_output['final_cluster'] == 0] # change features here if needed further_split_lvl2 = pd.DataFrame(further_split_lvl2[[0, 1, 2, 3]]) further_split_lvl2_mat = np.array(further_split_lvl2) cluster2_file_name= 'drug_grades/cluster_centers_2.csv' pca_file_path= s3.download_file_from_s3(file_name=cluster2_file_name) cluster_centers_set2=pd.read_csv(pca_file_path,delimiter=',') cluster_centers_set2 = np.array(cluster_centers_set2) clusters_lvl2 = [] for i in range(len(further_split_lvl2)): distances = dist((further_split_lvl2_mat[i]), (cluster_centers_set2)) clusterlvl2 = np.argmin(distances) clusters_lvl2.append(clusterlvl2) further_split_lvl2_df = pd.DataFrame(further_split_lvl2) further_split_lvl2_df['final_cluster_lvl2'] = clusters_lvl2 # ============================================================================= # Summary pivot 2 # ============================================================================= cluster_lvl2_output = pd.merge(cluster_lvl1_output, further_split_lvl2_df[['final_cluster_lvl2']], how='inner', left_index=True, right_index=True) cluster_lvl2_output_pivot = cluster_lvl2_output.groupby(['final_cluster_lvl2', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index( drop=True) cluster_lvl2_output_pivot.columns = ['_'.join(x) for x in cluster_lvl2_output_pivot.columns.ravel()] cluster_lvl2_output_pivot_name = 'drug_grades/{}.csv'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) # Uploading File to S3 s3.save_df_to_s3(df=cluster_lvl2_output_pivot, file_name=cluster_lvl2_output_pivot_name) # ============================================================================= # Final cluster # ============================================================================= cluster_file = cluster_lvl1_output[cluster_lvl1_output['final_cluster'] != 0] final_cluster_file = cluster_file.append(cluster_lvl2_output) final_cluster_file['cluster'] = final_cluster_file['final_cluster' ].astype(str) + '_' + final_cluster_file['final_cluster_lvl2'].astype(str) final_output_pivot = final_cluster_file.groupby(['cluster', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index(drop=True) final_output_pivot.columns = ['_'.join(x) for x in final_output_pivot.columns.ravel()] final_output_pivot['drug%'] = final_output_pivot['drug_id_count' ] / final_output_pivot['drug_id_count'].sum() final_output_pivot['spend%'] = final_output_pivot['value_sum' ] / final_output_pivot['value_sum'].sum() final_output_pivot['drug%']=final_output_pivot['drug%'].astype('float64') final_output_pivot['spend%']=final_output_pivot['spend%'].astype('float64') final_output_pivot['factor'] = final_output_pivot['spend%'] / final_output_pivot['drug%'] # ============================================================================= # cluster allocation # ============================================================================= new_store = df_bb['id'].values new_store1 = df_bb['id'][df_bb['age1'] == '3-6 month'].values new_store2 = df_bb['id'][df_bb['age1'] == '1-3 month'].values new_store1_cluster = final_cluster_file[final_cluster_file.store_id.isin(new_store1)] new_store2_cluster = final_cluster_file[final_cluster_file.store_id.isin(new_store2)] Enterprise_cluster = final_cluster_file[final_cluster_file.store_id == 999] old_stores_cluster = final_cluster_file[(~final_cluster_file.store_id.isin(new_store)) & (final_cluster_file.store_id != 999)] new_store1_cluster.drop(['cluster'], axis=1, inplace=True) new_store2_cluster.drop(['cluster'], axis=1, inplace=True) new_store1_predict = pd.merge(new_store1_cluster, Enterprise_cluster[['drug_id', 'cluster']], how='left', left_on='drug_id', right_on='drug_id') for i in range(len(new_store2)): Enterprise_temp = Enterprise_cluster.copy() Enterprise_temp['new_store_id'] = new_store2[i] if i == 0: new_store2_predict_data = Enterprise_temp else: new_store2_predict_data = new_store2_predict_data.append(Enterprise_temp) new_store2_predict = new_store2_predict_data del new_store2_predict['store_id'] new_store2_predict = new_store2_predict.rename({'new_store_id': 'store_id'}, axis=1) cluster_all = new_store1_predict.append(new_store2_predict) cluster_all = cluster_all.append(Enterprise_cluster) cluster_all = cluster_all.append(old_stores_cluster) # ============================================================================= # Summary report # ============================================================================= cluster_all_pivote = cluster_all.groupby(['cluster', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index(drop=True) cluster_all_pivote.columns = ['_'.join(x) for x in cluster_all_pivote.columns.ravel()] cluster_all_pivote['drug%'] = cluster_all_pivote['drug_id_count' ] / cluster_all_pivote['drug_id_count'].sum() cluster_all_pivote['spend%'] = cluster_all_pivote['value_sum' ] / cluster_all_pivote['value_sum'].sum() cluster_all_pivote['drug%'] = cluster_all_pivote['drug%'].astype('float64') cluster_all_pivote['spend%'] = cluster_all_pivote['spend%'].astype('float64') cluster_all_pivote['factor'] = cluster_all_pivote['spend%' ] / cluster_all_pivote['drug%'] cluster_all_pivote_name = 'drug_grades/{}.csv'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) # Uploading File to S3 s3.save_df_to_s3(df=cluster_all_pivote, file_name=cluster_all_pivote_name) # ============================================================================= # Assigning Cluster # ============================================================================= def assign_cluster(cluster_all): if cluster_all['cluster'] == '1_nan': return 'A1' elif cluster_all['cluster'] == '2_nan': return 'A1' elif cluster_all['cluster'] == '4_nan': return 'A2' elif cluster_all['cluster'] == '0_2.0': return 'B' elif cluster_all['cluster'] == '3_nan': return 'D' elif cluster_all['cluster'] == '0_0.0': return 'C' elif cluster_all['cluster'] == '0_1.0': return 'C' else: return cluster_all['cluster'] cluster_all['grade'] = cluster_all.apply(lambda row: assign_cluster(row), axis=1) cluster_all_name = 'drug_grades/{}.csv'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) # Uploading File to S3 s3.save_df_to_s3(df=cluster_all, file_name=cluster_all_name) cluster_all_pivote1 = cluster_all.groupby(['grade', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index(drop=True) cluster_all_pivote1.columns = ['_'.join(x) for x in cluster_all_pivote1.columns.ravel()] cluster_all_pivote1['drug%'] = cluster_all_pivote1['drug_id_count' ] / cluster_all_pivote1['drug_id_count'].sum() cluster_all_pivote1['spend%'] = cluster_all_pivote1['value_sum' ] / cluster_all_pivote1['value_sum'].sum() cluster_all_pivote1['drug%'] = cluster_all_pivote1['drug%'].astype('float64') cluster_all_pivote1['spend%'] = cluster_all_pivote1['spend%'].astype('float64') cluster_all_pivote1['factor'] = cluster_all_pivote1['spend%' ] / cluster_all_pivote1['drug%'] cluster_all_pivote1_name = 'drug_grades/{}.csv'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) # Uploading File to S3 s3.save_df_to_s3(df=cluster_all_pivote1, file_name=cluster_all_pivote1_name) final_data = cluster_all[['store_id', 'drug_id', 'grade']] final_data['calculation_date'] = date1 rs_db_write = DB(read_only=False) rs_db_write.open_connection() final_data.columns = [c.replace('_', '-') for c in final_data.columns] final_data['created-at'] = datetime.datetime.now() final_data['store-id'] = final_data['store-id'].astype(int) final_data['drug-id'] = final_data['drug-id'].astype(int) s3.write_df_to_db(df=final_data[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) '''getting current grades and replacing them with new if changed''' new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() for store_id in final_data['store-id'].unique(): if sqlwrite == 'yes': if store_id != 999: current_grade_query = f''' SELECT id, "store-id", "drug-id", "drug-grade" FROM "prod2-generico"."drug-order-info-data" WHERE "store-id" = {store_id} ''' current_grade = rs_db.get_df(current_grade_query) current_grade.columns = [c.replace('-', '_') for c in current_grade.columns] current_grade.columns = list(map( lambda s: str.replace(s, '-', '_'), list(current_grade.columns.values) )) final_data_store = final_data.loc[ final_data['store-id'] == store_id, ['store-id', 'drug-id', 'grade']] final_data_store.columns = [c.replace('-', '_') for c in final_data_store.columns] grade_joined = current_grade.merge( final_data_store, on=['store_id', 'drug_id'], how='outer') grade_joined.loc[grade_joined['grade'].isna(), 'grade'] = 'NA' new_drug_entries = new_drug_entries.append( grade_joined[grade_joined['id'].isna()]) grade_joined = grade_joined[~grade_joined['id'].isna()] grade_joined['change_flag'] = np.where( grade_joined['drug_grade'] == grade_joined['grade'], 'same', 'changed') logger.info('Store ' + str(store_id)) logger.info('Total grades calculated' + str(final_data_store.shape[0])) logger.info('Grades changed' + str(grade_joined[ grade_joined['change_flag'] == 'changed'].shape[0])) grades_to_change = grade_joined.loc[ grade_joined['change_flag'] == 'changed', ['id', 'store_id', 'drug_id', 'grade']] grades_to_change.columns = ['id', 'store_id', 'drug_id', 'drug_grade'] data_to_be_updated_list = list( grades_to_change[['id', 'drug_grade']].apply(dict, axis=1)) sql = Sql() sql.update( {'table': 'DrugOrderInfoData', 'data_to_be_updated': data_to_be_updated_list}, logger ) update_test_query = f''' SELECT "store-id", "drug-id", "drug-grade" FROM "prod2-generico"."drug-order-info-data" WHERE "store-id" = {store_id} and "grade-updated-at" >= CURRENT_TIMESTAMP - INTERVAL '10 MINUTE' and "grade-updated-at" < CURRENT_TIMESTAMP ''' update_test = rs_db.get_df(update_test_query) update_test.columns = [c.replace('-', '_') for c in update_test.columns] update_test.columns = list(map( lambda s: str.replace(s, '-', '_'), list(update_test.columns.values) )) update_test = grades_to_change.merge( update_test, how='left', on=['store_id', 'drug_id'], suffixes=('', '_updated')) mismatch = update_test[ update_test['drug_grade'] != update_test['drug_grade_updated']] missed_entries = missed_entries.append(mismatch) logger.info('For store ' + str(store_id) + 'update mismatch count' + str(mismatch.shape[0])) new_drug_entries_name = 'drug_grades/{}.csv'.format(new_drug_entries) # Uploading File to S3 s3.save_df_to_s3(df=new_drug_entries[ ['store_id', 'drug_id', 'drug_grade']], file_name=new_drug_entries_name) missed_entries_name = 'drug_grades/{}.csv'.format(missed_entries) # Uploading File to S3 s3.save_df_to_s3(df=missed_entries, file_name=missed_entries_name) rs_db.close_connection() rs_db_write.close_connection() ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/drug-grades/drug-grades.ipynb
drug-grades.ipynb
``` !pip install -U pandasql !pip install zeno_etl_libs==1.0.38 """ Author:[email protected] Purpose: Churn prediction """ import json import os from datetime import datetime as dt from pickle import load, dump import argparse import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email import matplotlib.pyplot as plt import numpy as np import pandas as pd from dateutil.relativedelta import relativedelta from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, roc_curve, plot_roc_curve from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.tree import DecisionTreeClassifier env = "dev" email_to = ["[email protected]"] re_train = 1 features = [] schema = "prod2-generico" prod_write = 1 # params ( retrain or just predict from trained model ) if re_train: end = str(dt.today().date()) start = str(dt.today().date() - relativedelta(months=7)) else: end = str(dt.today().date()) start = str(dt.today().date() - relativedelta(months=6)) features = ['patient-id'] + features os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") #table_name = 'customer-behaviour-segment' rs_db = DB() rs_db.open_connection() table_name = 'consumer-churn' rs_db_write = DB(read_only=prod_write) rs_db_write.open_connection() s3 = S3(bucket_name='datascience-manager') def seek(): """ get the data """ pass def run_fun(rs_db, s3): # write logic here pass table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) logger.info(table_info) read_schema = 'prod2-generico' if isinstance(table_info, type(None)): print(f"table: {table_name} do not exist") else: truncate_query = f""" DELETE FROM "{read_schema}"."consumer-churn" WHERE DATE("created-at") = '{dt.now().date()}';""" logger.info(truncate_query) rs_db_write.execute(truncate_query) # data_fetching data_q = f""" select rm."patient-id" , rm.id as "bill-id", rm."bill-date", rm."created-at" as "bill-created-at", rm."total-spend", rm."spend-generic", rm."value-segment", rm."system-age-days" as "system-age" from "{read_schema}"."retention-master" rm where rm."bill-date" between '{start}' and '{end}'; """ data = rs_db.get_df(data_q) def dataframe_creator(bill_data, re_train, features=[]) : # Preparing dataset data['bill-date'] = pd.to_datetime(data['bill-date']) if re_train: df_end = str(dt.today().date() + relativedelta(months=-1)) else: df_end = str(dt.today().date()) df = data[(data['bill-date'] < df_end)] df = df[['patient-id', 'bill-id', 'bill-date', 'bill-created-at', 'total-spend', 'spend-generic', 'value-segment', 'system-age']] logger.info(df.info()) # data type correction df['total-spend'] = df['total-spend'].astype(float) df['spend-generic'] = df['spend-generic'].astype(float) # total spend and ABV in 6 months df2_nob_spend = df.groupby('patient-id', as_index=False).agg({'bill-id': 'nunique', 'total-spend': ['mean', 'sum'], 'spend-generic': 'sum'}) df2_nob_spend['generic-pc'] = df2_nob_spend[('spend-generic', 'sum')] / df2_nob_spend[('total-spend', 'sum')] df2_nob_spend = df2_nob_spend.drop(columns=[('spend-generic', 'sum')]) df2_nob_spend.columns = ['patient-id', 'nob', 'abv', 'total-spend', 'generic-pc'] df3_rec_bill = df.sort_values('bill-created-at', ascending=False) df3_rec_bill = df3_rec_bill.groupby('patient-id', as_index=False).head(1) df3_rec_bill['value-segment'] = df3_rec_bill['value-segment'].map({'platinum': 4, 'gold': 3, 'silver': 2, 'others': 1}) df3_rec_bill.loc[:, 'today'] = df_end df3_rec_bill['recency'] = pd.to_datetime(df3_rec_bill['today']) - df3_rec_bill['bill-date'] df3_rec_bill['recency'] = df3_rec_bill['recency'].dt.days df3_rec_bill = df3_rec_bill[['patient-id', 'recency', 'system-age', 'value-segment']] df4_bill_diff = df[['bill-id', 'patient-id', 'bill-date']] df4_bill_diff = df4_bill_diff.sort_values('bill-date') df4_bill_diff['shifted-date'] = df4_bill_diff.groupby('patient-id', as_index=False)['bill-date'].shift(1) df4_bill_diff['bill-diff'] = df4_bill_diff['bill-date'] - df4_bill_diff['shifted-date'] df4_bill_diff['bill-diff'] = df4_bill_diff['bill-diff'].dt.days df4_bill_diff['bill-diff'] = df4_bill_diff.groupby('patient-id', as_index=False)['bill-diff'].backfill() df4_bill_diff = df4_bill_diff.groupby('patient-id', as_index=False).agg({'bill-diff': ['mean', 'std']}) df4_bill_diff = df4_bill_diff.fillna(0) df4_bill_diff.columns = ['patient-id', 'mean-purchase-interval', 'std-purchase-interval'] final_df = pd.merge(df2_nob_spend, df3_rec_bill, on='patient-id', how='left') final_df = pd.merge(final_df, df4_bill_diff, on='patient-id', how='left') for i in final_df.columns: if final_df[i].dtype == 'float64': final_df[i] = final_df[i].round(4) if re_train: train_label = data[(data['bill-date'] >= df_end)] train_label = train_label[['patient-id']].drop_duplicates() train_label['churn'] = 0 final_df = pd.merge(final_df, train_label, on='patient-id', how='left') final_df['churn'] = final_df['churn'].fillna(1) final_df = final_df.drop_duplicates(subset='patient-id') else: final_df = final_df.drop_duplicates(subset='patient-id') final_df = final_df[features] final_df = final_df.dropna() return final_df def find_optimal_cutoff(target, predicted): """ Find the optimal probability cutoff point for a classification model ---------- target : Matrix with dependent or target data, where rows are observations predicted : Matrix with predicted data, where rows are observations Returns ------- list type, with optimal cutoff value """ fpr, tpr, threshold = roc_curve(target, predicted) i = np.arange(len(tpr)) roc = pd.DataFrame( {'tf': pd.Series(tpr - (1 - fpr), index=i), 'threshold': pd.Series(threshold, index=i)}) roc_t = roc.iloc[(roc.tf - 0).abs().argsort()[:1]] return list(roc_t['threshold']) if re_train == 1 : final_df = dataframe_creator(data, re_train=1, features=[]) else : final_df = dataframe_creator(data, re_train=0, features=features) if re_train: y = final_df[['churn']] X = final_df.drop(columns=['churn', 'patient-id']) # train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0, stratify=y) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.20, random_state=0, stratify=y_train) # Baseline DecisionTree Model dtc = DecisionTreeClassifier() dtc.fit(X_train, y_train) dtc_report = classification_report(y_val, dtc.predict(X_val)) logger.info('decision_tree baseline model classification report validation data : ' '{}'.format(dtc_report)) # extracting all alphas alphas = dtc.cost_complexity_pruning_path(X_train, y_train) alphas = alphas['ccp_alphas'] # finding best alphas g_search = GridSearchCV(dtc, param_grid={'ccp_alpha': list(set(alphas.round(6)))}, cv=5, scoring='roc_auc', n_jobs=-1, verbose=0) # fit the grid search to the data g_search.fit(X_train, y_train) # putting best params in DT dtc = DecisionTreeClassifier(**g_search.best_params_) dtc.fit(X_train, y_train) # bp = best params dtc_report_bp_train = classification_report(y_train, dtc.predict(X_train)) dtc_report_bp_val = classification_report(y_val, dtc.predict(X_val)) logger.info('decision_tree tuned model classification report train : ' '{}'.format(dtc_report_bp_train)) logger.info('decision_tree tuned model classification report validation : ' '{}'.format(dtc_report_bp_val)) ft_imp = pd.DataFrame(data=dtc.feature_importances_, index=X_train.columns).sort_values(0, ascending=False) ft_imp[1] = ft_imp[0].cumsum() # feature selection feat_selection = ft_imp[ft_imp[1] < 0.90] if len(feat_selection) <= 5: feat = ft_imp.index[:5] else: feat = feat_selection.index X_train = X_train[feat] X_test = X_test[feat] X_val = X_val[feat] X = X[feat] logger.info('feature selected : {}'.format(feat)) # Taking best params from DT depth = np.linspace(dtc.get_depth() / 2, dtc.get_depth(), 5).round() alpha = dtc.ccp_alpha # Create the parameter grid based on the results of best decision tree param_grid = { 'bootstrap': [True], 'max_depth': depth, 'max_features': ["sqrt", "log2"], 'ccp_alpha': [alpha], 'n_estimators': [25, 50, 75, 100, 150, 200, 250] } # Create a based model rf = RandomForestClassifier() # Instantiate the grid search model grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=0, scoring='roc_auc') grid_search.fit(X_train, y_train) rf = RandomForestClassifier(**grid_search.best_params_) rf.fit(X_train, y_train) # classification report rf_report_bp_train = classification_report(y_train, rf.predict(X_train)) rf_report_bp_val = classification_report(y_val, rf.predict(X_val)) rf_report_bp_test = classification_report(y_test, rf.predict(X_test)) logger.info('random_forest tuned model classification report train : ' '{}'.format(rf_report_bp_train)) logger.info('random_forest tuned model classification report validation : ' '{}'.format(rf_report_bp_val)) logger.info('random_forest tuned model classification report test : ' '{}'.format(rf_report_bp_test)) cutoff = find_optimal_cutoff(y_train, rf.predict_proba(X_train)[:, 1])[0] # Train data #plot_roc_curve(rf, X_train, y_train) # plt.savefig(output_dir_path + 'roc_curve_Train.png') logger.info('optimal cutoff value : {}'.format(round(cutoff, 3))) # Validation data #plot_roc_curve(rf, X_val, y_val) # plt.savefig(output_dir_path + 'roc_curve_Val.png') # Test data #plot_roc_curve(rf, X_test, y_test) # plt.savefig(output_dir_path + 'roc_curve_Test.png') # # Saving model # dump(rf, open(output_dir_path + 'model.pkl', 'wb')) # script_manager_obj.s3_admin_obj.upload_object(output_dir_path + 'model.pkl', # f'data/Job-{script_manager_obj.job_id}/input/model.pkl') if re_train: final_df = dataframe_creator(data, re_train=0, features=feat) final_df['churn-prob'] = rf.predict_proba(final_df)[:, 1] final_df['churn-prediction'] = np.where(final_df['churn-prob'] >= cutoff, 1, 0) final_df['created-at'] = dt.now().date() final_df['re-trained'] = 1 else: # script_manager_obj.s3_admin_obj.get_object(f'data/Job-{script_manager_obj.job_id}/input/model.pkl', # input_dir_path) # rf = load(open(input_dir_path + 'model.pkl', 'rb')) pred = final_df.drop(columns=['patient-id']) final_df['churn-prob'] = rf.predict_proba(pred)[:, 1] final_df['churn-prediction'] = np.where(final_df['churn-prob'] >= job_data_params['cutoff'], 1, 0) final_df['created-at'] = dt.now().date() final_df['re-trained'] = 0 # Write to csv s3.save_df_to_s3(df=final_df, file_name='consumer_churn_prediction_{}.csv'.format(dt.today()), index=False) # data type correction final_df['churn'] = final_df['churn'].astype(int) final_df['value-segment'] = final_df['value-segment'].astype(int) # upload to db s3.write_df_to_db(df=final_df[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) email = Email() subject = "Task status churn calcualtion" mail_body = "Churn data upload succeeded" file_uris= [] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris, file_paths=[]) # for action_dict in actions_list: # if action_dict['category'] == 'EML': # to_emails = action_dict['email_to'] # subject = 'churn prediction algo status : {}'.format(status) # mail_body = 'Table fetch from {} to {} '.format(start, end) # if job_data_params['re_train']: # file_paths = [output_dir_path + 'debug_{}.txt'.format(script_manager_obj.job_id), # output_dir_path + 'roc_curve_Train.png', # output_dir_path + 'roc_curve_Val.png', # output_dir_path + 'roc_curve_Test.png'] # else: # file_paths = [output_dir_path + 'debug_{}.txt'.format(script_manager_obj.job_id)] # send_email_file(subject, mail_body, to_emails, file_paths) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/consumer-churn/consumer-churn.ipynb
consumer-churn.ipynb
``` !pip install -U pandasql !pip install zeno_etl_libs==1.0.31 !pip install pymssql """ # Author - [email protected], [email protected] # Purpose - script with DSS write action for customer behaviour (transactional) segment """ import os import json import argparse import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from datetime import datetime as dt, timedelta import numpy as np import pandas as pd import gc import pandasql as ps from dateutil.tz import gettz # Normalisation (Standardization) def standardize(x_var, mean_x, std_x): """ Standardizing 'x' variable by it's mean and std provided """ return (x_var - mean_x) / std_x def cluster_predict(data_matrix, centroids): """ Predict cluster number, from data matrix given And centroids given Just find nearest cluster for each data point """ clusters = [] for unit in data_matrix: distances = [] for center in centroids: dist = np.sum((unit - center) ** 2) # print(dist) distances.append(dist) # print(distances) closest_centroid = np.argmin(distances) # print(closest_centroid) clusters.append(closest_centroid) return clusters env = "dev" email_to = ["[email protected]", "[email protected]"] period_end_d_plus1 = "0" schema = "public" os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") table_name = 'customer-behaviour-segment' rs_db = DB() rs_db.open_connection() s3 = S3(bucket_name='datascience-manager') def seek(): """ get the data """ pass def run_fun(rs_db, s3): # write logic here pass table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) logger.info(table_info) # Segment calculation date can either be fetched from db manager or from run-date # Segment calculation date should be 1st of every month try: period_end_d_plus1 = str(dt.strptime(period_end_d_plus1, "%Y-%m-%d").date()) period_end_d_plus1 = period_end_d_plus1[:-3] + '-01' except ValueError: period_end_d_plus1 = dt.today().strftime('%Y-%m') + '-01' read_schema = 'prod2-generico' calc_year_month = dt.strptime(period_end_d_plus1, "%Y-%m-%d").strftime("%Y_%b") # Period start date period_start_d_ts = dt.strptime(period_end_d_plus1, '%Y-%m-%d') - timedelta(days=180) period_start_d = period_start_d_ts.strftime('%Y-%m-%d') # Period end date period_end_d_ts = dt.strptime(period_end_d_plus1, '%Y-%m-%d') - timedelta(days=1) period_end_d = period_end_d_ts.strftime('%Y-%m-%d') ################################################### # Patients and bills in last 6 months ################################################### data_q = f""" select s."patient-id", count(distinct s."bill-id") as "num-bills-period", min(date(s."created-at")) as "first-time-in-period", max(date(s."created-at")) as "last-time-in-period", count(distinct date(s."created-at")) as "num-days-visited", sum(s.quantity) as "total-quantity-period", sum(s."revenue-value") as "total-spend-period", sum(case when s."type" in ('ethical', 'high-value-ethical') then quantity else 0 end) as "quantity-ethical", sum(case when s."type" in ('generic', 'high-value-generic') then quantity else 0 end) as "quantity-generic", sum(case when s."type" = 'surgical' then quantity else 0 end) as "quantity-surgical", sum(case when s."type" = 'ayurvedic' then quantity else 0 end) as "quantity-ayurvedic", sum(case when s."type" = 'general' then quantity else 0 end) as "quantity-general", sum(case when s."type" = 'otc' then quantity else 0 end) as "quantity-otc", sum(case when s."category" = 'chronic' then quantity else 0 end) as "quantity-chronic", min(pm."first-bill-date") as "overall-min-bill-date", min(pm."hd-min-bill-date") as "min-hd-creation-date" from "{read_schema}".sales s left join "{read_schema}"."patients-metadata-2" pm on s."patient-id" = pm.id where DATE(s."created-at") between '{period_start_d}' and '{period_end_d}' and s."bill-flag" = 'gross' group by s."patient-id"; """ bill_data = rs_db.get_df(query=data_q) logger.info(f"fetched data - data-type {bill_data.info()}") bill_data['first-time-in-period'] = pd.to_datetime(bill_data['first-time-in-period']) bill_data['last-time-in-period'] = pd.to_datetime(bill_data['last-time-in-period']) bill_data['total-spend-period'] = bill_data['total-spend-period'].astype(float) bill_data[(bill_data['quantity-generic']==0)].sort_values('num-days-visited', ascending=False).head() #26455527 # ################################################### # # Bill level summary # ################################################### # bill_summ_q = """ # SELECT # `bill-id`, # `patient-id`, # `bill-date`, # SUM(quantity) AS `total-quantity-bill`, # SUM(rate*quantity) AS `total-spend-bill`, # SUM(CASE # WHEN `drug-type` IN ('ethical','high-value-ethical') THEN quantity # ELSE 0 # END) AS `quantity-ethical`, # SUM(CASE # WHEN `drug-type` IN ('generic','high-value-generic') THEN quantity # ELSE 0 # END) AS `quantity-generic`, # SUM(CASE # WHEN `drug-type` = 'surgical' THEN quantity # ELSE 0 # END) AS `quantity-surgical`, # SUM(CASE # when `drug-type` = 'ayurvedic' THEN quantity # ELSE 0 # END) AS `quantity-ayurvedic`, # SUM(CASE # WHEN `drug-type` = 'general' THEN quantity # ELSE 0 # END) AS `quantity-general`, # SUM(CASE # WHEN `drug-type` = 'otc' THEN quantity # ELSE 0 # END) AS `quantity-otc`, # SUM(CASE # WHEN `drug-category` = 'chronic' THEN quantity # ELSE 0 # END) AS `quantity-chronic` # FROM # data # GROUP BY # `bill-id`, # `patient-id`, # `bill-date` # """ # bill_grp = ps.sqldf(bill_summ_q, locals()) # ################################################### # # Patient level grouping # ################################################### # patient_summ_q = """ # SELECT # `patient-id`, # COUNT(distinct `bill-id`) AS `num-bills-period`, # MIN(`bill-date`) AS `first-time-in-period`, # MAX(`bill-date`) AS `last-time-in-period`, # COUNT(DISTINCT `bill-date`) AS `num-days-visited`, # SUM(`total-quantity-bill`) AS `total-quantity-period`, # SUM(`total-spend-bill`) AS `total-spend-period`, # SUM(`quantity-ethical`) AS `quantity-ethical`, # SUM(`quantity-generic`) AS `quantity-generic`, # SUM(`quantity-surgical`) AS `quantity-surgical`, # SUM(`quantity-ayurvedic`) AS `quantity-ayurvedic`, # SUM(`quantity-general`) AS `quantity-general`, # SUM(`quantity-otc`) AS `quantity-otc`, # SUM(`quantity-chronic`) AS `quantity-chronic` # FROM # bill_grp # GROUP BY # `patient-id` # """ # patient_level = ps.sqldf(patient_summ_q, locals()) # ################################################### # # Customer minimum bill date # ################################################### # acq_q = f""" # SELECT # "patient-id", # MIN(DATE("created-at")) AS "overall-min-bill-date" # FROM # "{read_schema}"."bills-1" # WHERE # DATE("created-at") <= '{period_end_d}' # GROUP BY # "patient-id" # """ # data_cc = rs_db.get_df(query=acq_q) # data_cc['overall-min-bill-date'] = pd.to_datetime(data_cc['overall-min-bill-date']) # ################################################### # # HD customers # ################################################### # hd_q = f""" # SELECT # "patient-id", # MIN(DATE("created-at")) AS "min-hd-creation-date" # FROM # "{read_schema}"."patients-store-orders" # WHERE # "order-type" = 'delivery' # and DATE("created-at") <= '{period_end_d}' # GROUP BY # "patient-id" # """ # data_hd = rs_db.get_df(query=hd_q) # data_hd['min-hd-creation-date'] = pd.to_datetime(data_hd['min-hd-creation-date']) # # Append this info # data_merge = patient_level.merge(data_cc, how='left', on=['patient-id', 'patient-id']) # data_merge = data_merge.merge(data_hd, how='left', on=['patient-id', 'patient-id']) # Change data-sets names data = bill_data.copy() # for types_col in ['quantity-ethical', 'quantity-generic', 'quantity-surgical', # 'quantity-ayurvedic', 'quantity-general', 'quantity-otc', # 'quantity-chronic']: # print(types_col + "-pc") ################################################### # Derived features ################################################### data['spend-per-bill'] = np.round(data['total-spend-period'] / data['num-bills-period'], 2) data['units-per-bill'] = np.round(data['total-quantity-period'] / data['num-bills-period'], 2) data['total-interaction-period'] = (pd.to_datetime(data['last-time-in-period']).dt.normalize() - pd.to_datetime(data['first-time-in-period']).dt.normalize() ).dt.days data['avg-purchase-interval'] = data['total-interaction-period'] / (data['num-days-visited'] - 1) # Generico age is defined as last date in period, to date creation of customer data['generico-age-customer'] = (pd.to_datetime(data['last-time-in-period']).dt.normalize() - pd.to_datetime(data['overall-min-bill-date']).dt.normalize() ).dt.days data['recency-customer'] = (pd.to_datetime(period_end_d).normalize() - pd.to_datetime(data['last-time-in-period']).dt.normalize() ).dt.days for types_col in ['quantity-ethical', 'quantity-generic', 'quantity-surgical', 'quantity-ayurvedic', 'quantity-general', 'quantity-otc', 'quantity-chronic']: data[types_col + "-pc"] = data[types_col] / data['total-quantity-period'] data['chronic-yes'] = np.where(data['quantity-chronic-pc'] > 0, 1, 0) ################################################### # Remove outliers - custom defined as of now ################################################### data_for_mean_std = data[data['units-per-bill'] <= 50] data_for_mean_std = data_for_mean_std[data_for_mean_std['spend-per-bill'] <= 10000] data_for_mean_std = data_for_mean_std[data_for_mean_std['num-days-visited'] <= 52] data_for_mean_std = data_for_mean_std[data_for_mean_std['num-bills-period'] <= 52] ################################################### # Clustering is done for old repeat customers only, so ################################################### old_c_period_end_d_ts = dt.strptime(period_end_d, '%Y-%m-%d') - timedelta(days=60) old_c_period_end_d = old_c_period_end_d_ts.strftime('%Y-%m-%d') data_for_mean_std = data_for_mean_std[ (pd.to_datetime(data_for_mean_std['overall-min-bill-date']) <= old_c_period_end_d) & (data_for_mean_std['num-days-visited'] > 1)] feature_names = ['num-days-visited', 'spend-per-bill', 'units-per-bill', 'total-interaction-period', 'avg-purchase-interval', 'generico-age-customer', 'recency-customer', 'quantity-ethical-pc', 'quantity-generic-pc', 'quantity-surgical-pc', 'quantity-ayurvedic-pc', 'quantity-general-pc', 'quantity-otc-pc', 'quantity-chronic-pc'] # feature_names data_for_mean_std = data_for_mean_std[feature_names] # Save mean and sd mean_std_old_repeat_14f = pd.DataFrame(columns=['feature-name', 'mean', 'std']) mean_std_old_repeat_14f['feature-name'] = data_for_mean_std.columns for i in data_for_mean_std.columns: data_i_mean = data_for_mean_std[i].mean() data_i_std = data_for_mean_std[i].std() mean_std_old_repeat_14f.loc[mean_std_old_repeat_14f['feature-name'] == i, 'mean'] = data_i_mean mean_std_old_repeat_14f.loc[mean_std_old_repeat_14f['feature-name'] == i, 'std'] = data_i_std ################################################### # Pre-processing starts here ################################################### # Extra info appended data['home-delivery-flag'] = np.where(data['min-hd-creation-date'] <= period_end_d, 'yes', 'no') # HD flag for summarization purpose data['hd-yes'] = np.where(data['home-delivery-flag'] == 'yes', 1, 0) data['newcomer-flag'] = np.where(pd.to_datetime(data['overall-min-bill-date']) > old_c_period_end_d, 'newcomer', 'old_customer') data['singletripper-flag'] = np.where(data['num-days-visited'] == 1, 'singletripper', 'repeat_customer') data_superset = data.copy() data_old_repeat = data[ (data['newcomer-flag'] == 'old_customer') & (data['singletripper-flag'] == 'repeat_customer')].copy() # Save this as main data data = data_old_repeat.copy() data = data[feature_names] # Import mean and std per feature mean_std_features = mean_std_old_repeat_14f.copy() mean_std_features = mean_std_features[['feature-name', 'mean', 'std']] # Standardization for i in data.columns: mean_i = list(mean_std_features.loc[mean_std_features['feature-name'] == i, 'mean'])[0] std_i = list(mean_std_features.loc[mean_std_features['feature-name'] == i, 'std'])[0] # Standardize data[i + "-norm"] = standardize(data[i], mean_i, std_i) # Keep only Standardized columns for modelling norm_cols = [i for i in data.columns if i.endswith("-norm")] data = data[norm_cols] # Read PCA Components pca_components = pd.read_csv(s3.download_file_from_s3('data/Job-6/input/pca_repeat_14f_10pca_94pc_variance.csv')) pca_components.drop(columns=['Unnamed: 0'], inplace=True) # Convert dataset to matrix form data_mat = np.array(data) # Convert PCA components to matrix form pca_mat = np.array(pca_components).T # Multiply data matrix to PCA matrix, to transform into PCA features data_to_pca = np.matmul(data_mat, pca_mat) # KMeans # centroids import kmeans_centroids = pd.read_csv(s3.download_file_from_s3('data/Job-6/input/kmeans_centroids_repeat_6c_14f_10pca.csv')) kmeans_centroids.drop(columns=['Unnamed: 0'], inplace=True) kmeans_centroids # Convert centroids data-set to matrix form kmeans_centroids_mat = np.array(kmeans_centroids) ################################################### # Predict ################################################### # Predict cluster number cluster_no = cluster_predict(data_to_pca, kmeans_centroids_mat) # Back to pandas data-set data_final = data.copy() data_final['cluster'] = cluster_no data_merge = data_old_repeat.merge(data_final, how='inner', left_index=True, right_index=True) # To summarize on summary_cols_median = ['num-days-visited', 'spend-per-bill', 'units-per-bill', 'total-interaction-period', 'avg-purchase-interval', 'generico-age-customer', 'recency-customer', 'quantity-ethical-pc', 'quantity-generic-pc', 'quantity-chronic-pc', 'total-spend-period'] # for info purpose summary_cols_mean = summary_cols_median + ['chronic-yes', 'hd-yes'] median_agg_dict = {'num-days-visited': ['count', 'median'], 'spend-per-bill': 'median', 'units-per-bill': 'median', 'total-interaction-period': 'median', 'avg-purchase-interval': 'median', 'generico-age-customer': 'median', 'recency-customer': 'median', 'quantity-ethical-pc': 'median', 'quantity-generic-pc': 'median', 'quantity-chronic-pc': 'median', 'total-spend-period': ['median', 'sum']} # Make it re-usable later on mean_agg_dict = {'num-days-visited': ['count', 'mean'], 'spend-per-bill': 'mean', 'units-per-bill': 'mean', 'total-interaction-period': 'mean', 'avg-purchase-interval': 'mean', 'generico-age-customer': 'mean', 'recency-customer': 'mean', 'quantity-ethical-pc': 'mean', 'quantity-generic-pc': 'mean', 'quantity-chronic-pc': 'mean', 'total-spend-period': ['mean', 'sum'], 'chronic-yes': 'mean', 'hd-yes': 'mean'} ################################################### # Profile summary of clusters ################################################### # Mean profile profile_data = data_merge[summary_cols_mean + ['cluster']].groupby( ['cluster']).agg(mean_agg_dict) length_base_cluster = len(data_merge) def profile_extra_cols(profile_data_pass, length_base_pass): # Segment % share in data-set profile_data_pass['count-pc'] = np.round( profile_data_pass['num-days-visited']['count'] * 100 / length_base_pass) # Round all numbers profile_data_pass = np.round(profile_data_pass, 2) return profile_data_pass profile_data = profile_extra_cols(profile_data, length_base_cluster) # Median profile profile_data_med = data_merge[summary_cols_median + ['cluster']].groupby( ['cluster']).agg(median_agg_dict) profile_data_med = profile_extra_cols(profile_data_med, length_base_cluster) # Save both profile summaries (mean and median) to .csv s3.save_df_to_s3(df=profile_data, file_name='Behaviour_Segment_Output/profile_data_{}.csv'.format(calc_year_month), index=False) s3.save_df_to_s3(df=profile_data_med, file_name='Behaviour_Segment_Output/profile_data_med_{}.csv'.format(calc_year_month), index=False) ################################################### # Name clusters ################################################### data_merge['cluster-name'] = data_merge['cluster'].map({0: 'generic_heavy', 1: 'regular', 3: 'super', 5: 'ethical_heavy', 2: 'other_type', 4: 'other_type'}) # Patient_id wise, for all data_superset_merge = data_superset.merge(data_merge[['patient-id', 'cluster-name']], how='left', on=['patient-id', 'patient-id']) def assign_extra_segment(data_pass): """ Add segment names to segments not covered in clustering """ if (data_pass['newcomer-flag'] == 'newcomer' and data_pass['singletripper-flag'] == 'repeat_customer'): return 'newcomer_repeat' elif (data_pass['newcomer-flag'] == 'newcomer' and data_pass['singletripper-flag'] == 'singletripper'): return 'newcomer_singletripper' elif (data_pass['newcomer-flag'] == 'old_customer' and data_pass['singletripper-flag'] == 'singletripper'): return 'singletripper' else: return data_pass['cluster-name'] # Assign segment names for extra segments data_superset_merge['behaviour-segment'] = data_superset_merge.apply( lambda row: assign_extra_segment(row), axis=1) data_superset_merge.groupby('behaviour-segment', as_index=False)['patient-id'].nunique() ################################################### # Profiling all segment (Summary statistics for information) ################################################### # Mean profile profile_data_all = data_superset_merge[summary_cols_mean + ['behaviour-segment']].groupby( ['behaviour-segment']).agg(mean_agg_dict) length_base_segment = len(data_superset_merge) profile_data_all = profile_extra_cols(profile_data_all, length_base_segment) # Median profile profile_data_med_all = data_superset_merge[summary_cols_median + ['behaviour-segment']].groupby( ['behaviour-segment']).agg(median_agg_dict) profile_data_med_all = profile_extra_cols(profile_data_med_all, length_base_segment) # Save both profile summaries (mean and median) to .csv profile_data_all = s3.save_df_to_s3(df=profile_data_all, file_name='Behaviour_Segment_Output/profile_data_all_{}.csv'.format(calc_year_month), index=False) profile_data_med_all =s3.save_df_to_s3(df=profile_data_med_all, file_name='Behaviour_Segment_Output/profile_data_med_all_{}.csv'.format(calc_year_month), index=False) # Save as .csv, the profile summary of each segment for i in data_superset_merge['behaviour-segment'].unique(): segment_i = data_superset_merge[data_superset_merge['behaviour-segment'] == i] logger.info(f'Length of {i} segment is {len(segment_i)}') # Summarize profile_i = segment_i[summary_cols_mean].describe() s3.save_df_to_s3(df=profile_i, file_name='profile_{}.csv'.format(i), index=False) # Now this data is source of truth data = data_superset_merge.copy() ################################################### # Assign unique store to patient ################################################### patient_store_q = f""" select pm.id as "patient-id", "primary-store-id" as "store-id", s."name" as "store-name" from "{read_schema}"."patients-metadata-2" pm left join "{read_schema}".stores s on pm."primary-store-id" = s.id where DATEDIFF('days', '{period_end_d_plus1}', "last-bill-date") between -180 and -1; """ data_store = rs_db.get_df(query=patient_store_q) # data_store['rank'] = data_store.sort_values(['store-bills', 'store-spend'], # ascending=[False, False] # ).groupby(['patient-id']).cumcount() + 1 # patient_store = data_store[data_store['rank'] == 1][['patient-id', 'store-id']] # # Stores # stores_q = f""" # SELECT # "id" AS "store-id", # "name" AS "store-name" # FROM # "{read_schema}"."stores" # """ # stores = rs_db.get_df(query=stores_q) # patient_store = patient_store.merge(stores, how='inner', # on=['store-id', 'store-id']) data = data.merge(data_store, how='left', left_on=['patient-id'], right_on=['patient-id']) # Export data keep_cols = ['patient-id', 'num-bills-period', 'total-spend-period', 'spend-per-bill', 'units-per-bill', 'generico-age-customer', 'recency-customer', 'quantity-ethical-pc', 'quantity-generic-pc', 'quantity-chronic-pc', 'chronic-yes', 'hd-yes', 'newcomer-flag', 'singletripper-flag', 'behaviour-segment', 'store-id', 'store-name'] write_data = data[keep_cols] # Round some numbers for i in ['quantity-ethical-pc', 'quantity-generic-pc', 'quantity-chronic-pc']: write_data[i] = np.round(write_data[i], 2) for i in ['total-spend-period', 'spend-per-bill']: write_data[i] = np.round(write_data[i], 2) write_data = write_data.rename(columns={'units-per-bill': 'quantity-per-bill'}) # Make some columns for logging purpose runtime_date = dt.today().strftime('%Y-%m-%d') runtime_month = dt.today().strftime('%Y-%m') write_data['segment-calculation-date'] = period_end_d_plus1 write_data['upload-date'] = runtime_date write_data['base-list-identifier'] = runtime_month #data-type correction write_data['generico-age-customer'] = write_data['generico-age-customer'].fillna(0) write_data['store-id'] = write_data['store-id'].fillna(0) write_data['store-id'] = write_data['store-id'].astype(int) logger.info(write_data.info()) # etl write_data['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') write_data['created-by'] = 'etl-automation' write_data['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') write_data['updated-by'] = 'etl-automation' if isinstance(table_info, type(None)): print(f"table: {table_name} do not exist") else: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" WHERE "segment-calculation-date" = '{period_end_d_plus1}' ''' logger.info(truncate_query) rs_db.execute(truncate_query) # drop duplicates subset - patient-id write_data.drop_duplicates(subset=['patient-id'], inplace=True) s3.save_df_to_s3(df=write_data, file_name='Behaviour_Segment_Output/behaviour_segment_data_{}.csv'.format(calc_year_month), index=False) ################################################### # Append this updated_churn to Redshift DB ################################################### s3.write_df_to_db(df=write_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) email = Email() subject = "Task Status behaviour segment calculation" mail_body = "Behaviour segments upload succeeded" file_uris= [profile_data_all, profile_data_med_all] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris, file_paths=[]) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/behaviour-segment/behaviour-segment.ipynb
behaviour-segment.ipynb
import argparse import sys from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from datetime import datetime, timedelta import numpy as np import pandas as pd import gc import pandasql as ps from datetime import datetime as dt # Normalisation (Standardization) def standardize(x_var, mean_x, std_x): """ Standardizing 'x' variable by it's mean and std provided """ return (x_var - mean_x) / std_x def cluster_predict(data_matrix, centroids): """ Predict cluster number, from data matrix given And centroids given Just find nearest cluster for each data point """ clusters = [] for unit in data_matrix: distances = [] for center in centroids: dist = np.sum((unit - center) ** 2) # print(dist) distances.append(dist) # print(distances) closest_centroid = np.argmin(distances) # print(closest_centroid) clusters.append(closest_centroid) return clusters parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default=["[email protected]", "[email protected]"], type=str, required=False) parser.add_argument('-pedp', '--period_end_d_plus1', default="0", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to period_end_d_plus1 = args.period_end_d_plus1 logger = get_logger() logger.info(f"env: {env}") schema = 'prod2-generico' table_name = 'customer-behaviour-segment-test' rs_db = DB() rs_db.open_connection() s3 = S3(bucket_name='datascience-manager') def seek(): """ get the data """ pass def run_fun(rs_db, s3): # write logic here pass table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) logger.info(table_info) # Segment calculation date can either be fetched from db manager or from run-date try: period_end_d_plus1 = args.period_end_d_plus1 period_end_d_plus1 = str(datetime.strptime(period_end_d_plus1, "%Y-%m-%d").date()) except ValueError: period_end_d_plus1 = datetime.today().strftime('%Y-%m-%d') if isinstance(table_info, type(None)): print(f"table: {table_name} do not exist") else: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" WHERE "segment-calculation-date" = '{period_end_d_plus1}' ''' logger.info(truncate_query) rs_db.execute(truncate_query) read_schema = 'prod2-generico' calc_year_month = datetime.strptime(period_end_d_plus1, "%Y-%m-%d").strftime("%Y_%b") # Period start date period_start_d_ts = datetime.strptime(period_end_d_plus1, '%Y-%m-%d') - timedelta(days=180) period_start_d = period_start_d_ts.strftime('%Y-%m-%d') # Period end date period_end_d_ts = datetime.strptime(period_end_d_plus1, '%Y-%m-%d') - timedelta(days=1) period_end_d = period_end_d_ts.strftime('%Y-%m-%d') ################################################### # Patients and bills in last 6 months ################################################### bills_q = f""" SELECT "id" AS "bill-id", "patient-id", DATE("created-at") AS "bill-date" FROM "{read_schema}"."bills-1" WHERE DATE("created-at") between '{period_start_d}' and '{period_end_d}' """ data_bill = rs_db.get_df(query=bills_q) ################################################### # Bill-items in last 6months ################################################### bi_q = f""" SELECT "bill-id", "inventory-id", "rate", "quantity" FROM "{read_schema}"."bill-items-1" WHERE DATE("created-at") between '{period_start_d}' and '{period_end_d}' """ data_billitem = rs_db.get_df(query=bi_q) ################################################### # Inventory data ################################################### inv_q = f""" SELECT "id" AS "inventory-id", "drug-id" FROM "{read_schema}"."inventory-1" GROUP BY "id", "drug-id" """ data_inventory = rs_db.get_df(query=inv_q) ################################################### # Drugs ################################################### drugs_q = f""" SELECT "id" AS "drug-id", "type" AS "drug-type", "category" AS "drug-category", "is-repeatable", "repeatability-index" FROM "{read_schema}"."drugs" """ data_drugs = rs_db.get_df(query=drugs_q) # Merge these data-frames data = data_bill.merge(data_billitem, how='inner', on=['bill-id']) data = data.merge(data_inventory, how='left', on=['inventory-id']) data = data.merge(data_drugs, how='left', on=['drug-id']) # Delete temp data-frames del [[data_bill, data_billitem, data_inventory, data_drugs]] gc.collect() data_bill = pd.DataFrame() data_billitem = pd.DataFrame() data_inventory = pd.DataFrame() data_drugs = pd.DataFrame() data['bill-date'] = pd.to_datetime(data['bill-date']).dt.date data['rate'] = data['rate'].astype(float) ################################################### # Bill level summary ################################################### bill_summ_q = """ SELECT `bill-id`, `patient-id`, `bill-date`, SUM(quantity) AS `total-quantity-bill`, SUM(rate*quantity) AS `total-spend-bill`, SUM(CASE WHEN `drug-type` IN ('ethical','high-value-ethical') THEN quantity ELSE 0 END) AS `quantity-ethical`, SUM(CASE WHEN `drug-type` IN ('generic','high-value-generic') THEN quantity ELSE 0 END) AS `quantity-generic`, SUM(CASE WHEN `drug-type` = 'surgical' THEN quantity ELSE 0 END) AS `quantity-surgical`, SUM(CASE when `drug-type` = 'ayurvedic' THEN quantity ELSE 0 END) AS `quantity-ayurvedic`, SUM(CASE WHEN `drug-type` = 'general' THEN quantity ELSE 0 END) AS `quantity-general`, SUM(CASE WHEN `drug-type` = 'otc' THEN quantity ELSE 0 END) AS `quantity-otc`, SUM(CASE WHEN `drug-category` = 'chronic' THEN quantity ELSE 0 END) AS `quantity-chronic` FROM data GROUP BY `bill-id`, `patient-id`, `bill-date` """ bill_grp = ps.sqldf(bill_summ_q, locals()) ################################################### # Patient level grouping ################################################### patient_summ_q = """ SELECT `patient-id`, COUNT(distinct `bill-id`) AS `num-bills-period`, MIN(`bill-date`) AS `first-time-in-period`, MAX(`bill-date`) AS `last-time-in-period`, COUNT(DISTINCT `bill-date`) AS `num-days-visited`, SUM(`total-quantity-bill`) AS `total-quantity-period`, SUM(`total-spend-bill`) AS `total-spend-period`, SUM(`quantity-ethical`) AS `quantity-ethical`, SUM(`quantity-generic`) AS `quantity-generic`, SUM(`quantity-surgical`) AS `quantity-surgical`, SUM(`quantity-ayurvedic`) AS `quantity-ayurvedic`, SUM(`quantity-general`) AS `quantity-general`, SUM(`quantity-otc`) AS `quantity-otc`, SUM(`quantity-chronic`) AS `quantity-chronic` FROM bill_grp GROUP BY `patient-id` """ patient_level = ps.sqldf(patient_summ_q, locals()) ################################################### # Customer minimum bill date ################################################### acq_q = f""" SELECT "patient-id", MIN(DATE("created-at")) AS "overall-min-bill-date" FROM "{read_schema}"."bills-1" WHERE DATE("created-at") <= '{period_end_d}' GROUP BY "patient-id" """ data_cc = rs_db.get_df(query=acq_q) data_cc['overall-min-bill-date'] = pd.to_datetime(data_cc['overall-min-bill-date']) ################################################### # HD customers ################################################### hd_q = f""" SELECT "patient-id", MIN(DATE("created-at")) AS "min-hd-creation-date" FROM "{read_schema}"."patients-store-orders" WHERE "order-type" = 'delivery' and DATE("created-at") <= '{period_end_d}' GROUP BY "patient-id" """ data_hd = rs_db.get_df(query=hd_q) data_hd['min-hd-creation-date'] = pd.to_datetime(data_hd['min-hd-creation-date']) # Append this info data_merge = patient_level.merge(data_cc, how='left', on=['patient-id', 'patient-id']) data_merge = data_merge.merge(data_hd, how='left', on=['patient-id', 'patient-id']) # Change data-sets names data = data_merge.copy() for types_col in ['quantity-ethical', 'quantity-generic', 'quantity-surgical', 'quantity-ayurvedic', 'quantity-general', 'quantity-otc', 'quantity-chronic']: logger.info(types_col + "-pc") ################################################### # Derived features ################################################### data['spend-per-bill'] = np.round(data['total-spend-period'] / data['num-bills-period'], 2) data['units-per-bill'] = np.round(data['total-quantity-period'] / data['num-bills-period'], 2) data['total-interaction-period'] = (pd.to_datetime(data['last-time-in-period']).dt.normalize() - pd.to_datetime(data['first-time-in-period']).dt.normalize() ).dt.days data['avg-purchase-interval'] = data['total-interaction-period'] / (data['num-days-visited'] - 1) # Generico age is defined as last date in period, to date creation of customer data['generico-age-customer'] = (pd.to_datetime(data['last-time-in-period']).dt.normalize() - pd.to_datetime(data['overall-min-bill-date']).dt.normalize() ).dt.days data['recency-customer'] = (pd.to_datetime(period_end_d).normalize() - pd.to_datetime(data['last-time-in-period']).dt.normalize() ).dt.days for types_col in ['quantity-ethical', 'quantity-generic', 'quantity-surgical', 'quantity-ayurvedic', 'quantity-general', 'quantity-otc', 'quantity-chronic']: data[types_col + "-pc"] = data[types_col] / data['total-quantity-period'] data['chronic-yes'] = np.where(data['quantity-chronic-pc'] > 0, 1, 0) ################################################### # Remove outliers - custom defined as of now ################################################### data_for_mean_std = data[data['units-per-bill'] <= 50] data_for_mean_std = data_for_mean_std[data_for_mean_std['spend-per-bill'] <= 10000] data_for_mean_std = data_for_mean_std[data_for_mean_std['num-days-visited'] <= 52] data_for_mean_std = data_for_mean_std[data_for_mean_std['num-bills-period'] <= 52] ################################################### # Clustering is done for old repeat customers only, so ################################################### old_c_period_end_d_ts = datetime.strptime(period_end_d, '%Y-%m-%d') - timedelta(days=60) old_c_period_end_d = old_c_period_end_d_ts.strftime('%Y-%m-%d') data_for_mean_std = data_for_mean_std[ (pd.to_datetime(data_for_mean_std['overall-min-bill-date']) <= old_c_period_end_d) & (data_for_mean_std['num-days-visited'] > 1)] feature_names = ['num-days-visited', 'spend-per-bill', 'units-per-bill', 'total-interaction-period', 'avg-purchase-interval', 'generico-age-customer', 'recency-customer', 'quantity-ethical-pc', 'quantity-generic-pc', 'quantity-surgical-pc', 'quantity-ayurvedic-pc', 'quantity-general-pc', 'quantity-otc-pc', 'quantity-chronic-pc'] # feature_names data_for_mean_std = data_for_mean_std[feature_names] # Save mean and sd mean_std_old_repeat_14f = pd.DataFrame(columns=['feature-name', 'mean', 'std']) mean_std_old_repeat_14f['feature-name'] = data_for_mean_std.columns for i in data_for_mean_std.columns: data_i_mean = data_for_mean_std[i].mean() data_i_std = data_for_mean_std[i].std() mean_std_old_repeat_14f.loc[mean_std_old_repeat_14f['feature-name'] == i, 'mean'] = data_i_mean mean_std_old_repeat_14f.loc[mean_std_old_repeat_14f['feature-name'] == i, 'std'] = data_i_std ################################################### # Pre-processing starts here ################################################### # Extra info appended data['home-delivery-flag'] = np.where(data['min-hd-creation-date'] <= period_end_d, 'yes', 'no') # HD flag for summarization purpose data['hd-yes'] = np.where(data['home-delivery-flag'] == 'yes', 1, 0) data['newcomer-flag'] = np.where(pd.to_datetime(data['overall-min-bill-date']) > old_c_period_end_d, 'newcomer', 'old-customer') data['singletripper-flag'] = np.where(data['num-days-visited'] == 1, 'singletripper', 'repeat-customer') data_superset = data.copy() data_old_repeat = data[ (data['newcomer-flag'] == 'old-customer') & (data['singletripper-flag'] == 'repeat-customer')].copy() # Save this as main data data = data_old_repeat.copy() data = data[feature_names] # Import mean and std per feature mean_std_features = mean_std_old_repeat_14f.copy() mean_std_features = mean_std_features[['feature-name', 'mean', 'std']] # Standardization for i in data.columns: mean_i = list(mean_std_features.loc[mean_std_features['feature-name'] == i, 'mean'])[0] std_i = list(mean_std_features.loc[mean_std_features['feature-name'] == i, 'std'])[0] # Standardize data[i + "-norm"] = standardize(data[i], mean_i, std_i) # Keep only Standardized columns for modelling norm_cols = [i for i in data.columns if i.endswith("-norm")] data = data[norm_cols] # Read PCA Components pca_components = pd.read_csv(s3.download_file_from_s3('data/Job-6/input/pca_repeat_14f_10pca_94pc_variance.csv')) pca_components.drop(columns=['Unnamed: 0'], inplace=True) # Convert dataset to matrix form data_mat = np.array(data) # Convert PCA components to matrix form pca_mat = np.array(pca_components).T # Multiply data matrix to PCA matrix, to transform into PCA features data_to_pca = np.matmul(data_mat, pca_mat) # KMeans # centroids import kmeans_centroids = pd.read_csv(s3.download_file_from_s3('data/Job-6/input/kmeans_centroids_repeat_6c_14f_10pca.csv')) kmeans_centroids.drop(columns=['Unnamed: 0'], inplace=True) # Convert centroids data-set to matrix form kmeans_centroids_mat = np.array(kmeans_centroids) ################################################### # Predict ################################################### # Predict cluster number cluster_no = cluster_predict(data_to_pca, kmeans_centroids_mat) # Back to pandas data-set data_final = data.copy() data_final['cluster'] = cluster_no data_merge = data_old_repeat.merge(data_final, how='inner', left_index=True, right_index=True) # To summarize on summary_cols_median = ['num-days-visited', 'spend-per-bill', 'units-per-bill', 'total-interaction-period', 'avg-purchase-interval', 'generico-age-customer', 'recency-customer', 'quantity-ethical-pc', 'quantity-generic-pc', 'quantity-chronic-pc', 'total-spend-period'] # for info purpose summary_cols_mean = summary_cols_median + ['chronic-yes', 'hd-yes'] median_agg_dict = {'num-days-visited': ['count', 'median'], 'spend-per-bill': 'median', 'units-per-bill': 'median', 'total-interaction-period': 'median', 'avg-purchase-interval': 'median', 'generico-age-customer': 'median', 'recency-customer': 'median', 'quantity-ethical-pc': 'median', 'quantity-generic-pc': 'median', 'quantity-chronic-pc': 'median', 'total-spend-period': ['median', 'sum']} # Make it re-usable later on mean_agg_dict = {'num-days-visited': ['count', 'mean'], 'spend-per-bill': 'mean', 'units-per-bill': 'mean', 'total-interaction-period': 'mean', 'avg-purchase-interval': 'mean', 'generico-age-customer': 'mean', 'recency-customer': 'mean', 'quantity-ethical-pc': 'mean', 'quantity-generic-pc': 'mean', 'quantity-chronic-pc': 'mean', 'total-spend-period': ['mean', 'sum'], 'chronic-yes': 'mean', 'hd-yes': 'mean'} ################################################### # Profile summary of clusters ################################################### # Mean profile profile_data = data_merge[summary_cols_mean + ['cluster']].groupby( ['cluster']).agg(mean_agg_dict) length_base_cluster = len(data_merge) def profile_extra_cols(profile_data_pass, length_base_pass): # Segment % share in data-set profile_data_pass['count-pc'] = np.round( profile_data_pass['num-days-visited']['count'] * 100 / length_base_pass) # Round all numbers profile_data_pass = np.round(profile_data_pass, 2) return profile_data_pass profile_data = profile_extra_cols(profile_data, length_base_cluster) # Median profile profile_data_med = data_merge[summary_cols_median + ['cluster']].groupby( ['cluster']).agg(median_agg_dict) profile_data_med = profile_extra_cols(profile_data_med, length_base_cluster) # Save both profile summaries (mean and median) to .csv s3.save_df_to_s3(df=profile_data, file_name='Behaviour_Segment_Output/profile_data_{}.csv'.format(calc_year_month), index=False) s3.save_df_to_s3(df=profile_data_med, file_name='Behaviour_Segment_Output/profile_data_med_{}.csv'.format(calc_year_month), index=False) ################################################### # Name clusters ################################################### data_merge['cluster-name'] = data_merge['cluster'].map({0: 'generic_heavy', 1: 'regular', 3: 'super', 5: 'ethical_heavy', 2: 'other_type', 4: 'other_type'}) # Patient_id wise, for all data_superset_merge = data_superset.merge(data_merge[['patient-id', 'cluster-name']], how='left', on=['patient-id', 'patient-id']) def assign_extra_segment(data_pass): """ Add segment names to segments not covered in clustering """ if (data_pass['newcomer-flag'] == 'newcomer' and data_pass['singletripper-flag'] == 'repeat_customer'): return 'newcomer_repeat' elif (data_pass['newcomer-flag'] == 'newcomer' and data_pass['singletripper-flag'] == 'singletripper'): return 'newcomer-singletripper' elif (data_pass['newcomer-flag'] == 'old_customer' and data_pass['singletripper-flag'] == 'singletripper'): return 'singletripper' else: return data_pass['cluster-name'] # Assign segment names for extra segments data_superset_merge['behaviour-segment'] = data_superset_merge.apply( lambda row: assign_extra_segment(row), axis=1) ################################################### # Profiling all segment (Summary statistics for information) ################################################### # Mean profile profile_data_all = data_superset_merge[summary_cols_mean + ['behaviour-segment']].groupby( ['behaviour-segment']).agg(mean_agg_dict) length_base_segment = len(data_superset_merge) profile_data_all = profile_extra_cols(profile_data_all, length_base_segment) # Median profile profile_data_med_all = data_superset_merge[summary_cols_median + ['behaviour-segment']].groupby( ['behaviour-segment']).agg(median_agg_dict) profile_data_med_all = profile_extra_cols(profile_data_med_all, length_base_segment) # Save both profile summaries (mean and median) to .csv profile_data_all = s3.save_df_to_s3(df=profile_data_all, file_name='Behaviour_Segment_Output/profile_data_all_{}.csv'.format( calc_year_month), index=False) profile_data_med_all = s3.save_df_to_s3(df=profile_data_med_all, file_name='Behaviour_Segment_Output/profile_data_med_all_{}.csv'.format( calc_year_month), index=False) # Save as .csv, the profile summary of each segment for i in data_superset_merge['behaviour-segment'].unique(): segment_i = data_superset_merge[data_superset_merge['behaviour-segment'] == i] logger.info(f'Length of {i} segment is {len(segment_i)}') # Summarize profile_i = segment_i[summary_cols_mean].describe() s3.save_df_to_s3(df=profile_i, file_name='profile_{}.csv'.format(i), index=False) # Now this data is source of truth data = data_superset_merge.copy() ################################################### # Assign unique store to patient ################################################### patient_store_q = f""" SELECT "patient-id", "store-id", COUNT(DISTINCT "id") AS "store-bills", SUM("net-payable") AS "store-spend" FROM "{read_schema}"."bills-1" WHERE DATEDIFF('days', '{period_end_d_plus1}', DATE("created-at")) between -180 and -1 GROUP BY "patient-id", "store-id" """ data_store = rs_db.get_df(query=patient_store_q) data_store['rank'] = data_store.sort_values(['store-bills', 'store-spend'], ascending=[False, False] ).groupby(['patient-id']).cumcount() + 1 patient_store = data_store[data_store['rank'] == 1][['patient-id', 'store-id']] # Stores stores_q = f""" SELECT "id" AS "store-id", "name" AS "store-name" FROM "{read_schema}"."stores" """ stores = rs_db.get_df(query=stores_q) patient_store = patient_store.merge(stores, how='inner', on=['store-id', 'store-id']) data = data.merge(patient_store, how='left', left_on=['patient-id'], right_on=['patient-id']) # Export data keep_cols = ['patient-id', 'num-bills-period', 'total-spend-period', 'spend-per-bill', 'units-per-bill', 'generico-age-customer', 'recency-customer', 'quantity-ethical-pc', 'quantity-generic-pc', 'quantity-chronic-pc', 'chronic-yes', 'hd-yes', 'newcomer-flag', 'singletripper-flag', 'behaviour-segment', 'store-id', 'store-name'] write_data = data[keep_cols] # Round some numbers for i in ['quantity-ethical-pc', 'quantity-generic-pc', 'quantity-chronic-pc']: write_data[i] = np.round(write_data[i], 2) for i in ['total-spend-period', 'spend-per-bill']: write_data[i] = np.round(write_data[i], 2) write_data = write_data.rename(columns={'units-per-bill': 'quantity-per-bill'}) # Make some columns for logging purpose runtime_date = datetime.today().strftime('%Y-%m-%d') runtime_month = datetime.today().strftime('%Y-%m') write_data['segment-calculation-date'] = period_end_d_plus1 write_data['upload-date'] = runtime_date write_data['base_list-identifier'] = runtime_month # etl write_data['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') write_data['created-by'] = 'etl-automation' write_data['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') write_data['updated-by'] = 'etl-automation' s3.save_df_to_s3(df=write_data, file_name='Behaviour_Segment_Output/behaviour_segment_data_{}.csv'.format(calc_year_month), index=False) ################################################### # Append this updated_churn to Redshift DB ################################################### s3.write_df_to_db(df=write_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) email = Email() subject = "Task Status behaviour segment calculation" mail_body = "Behaviour segments upload succeeded" file_uris = [profile_data_all, profile_data_med_all] email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris, file_paths=[])
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/behaviour-segment/behaviour-segment.py
behaviour-segment.py
``` #installing extra libraries on prod !pip install zeno-etl-libs==1.0.40 !pip install openpyxl==3.0.9 !pip install nltk==3.6.7 !pip install tweepy==4.3.0 !pip install apiclient==1.0.4 """ Fetching Playstore reviews on daily basis Author : [email protected] """ import argparse import sys import re import os import pandas as pd import dateutil import datetime from dateutil.tz import gettz import numpy as np import time import datetime import os import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.tokenize import word_tokenize, RegexpTokenizer, sent_tokenize from nltk.corpus import stopwords nltk.download('stopwords') nltk.download('punkt') # divides a whole text data into sentences nltk.download('vader_lexicon') import tweepy sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.email.email import Email ``` ## Pass Params ``` env = "dev" full_run = 0 email_to ="[email protected],[email protected],[email protected],[email protected],[email protected]" os.environ['env'] = env logger = get_logger() logger.info(f"full_run: {full_run}") rs_db = DB(read_only=False) rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'zeno-tweets' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # max of data table_q = """ select max("tweet-created-at") max_exp from "prod2-generico"."zeno-tweets" """ max_exp_date = rs_db.get_df(table_q) max_exp_date['max_exp'].fillna(np.nan, inplace=True) print(max_exp_date.info()) max_exp_date = max_exp_date['max_exp'].to_string(index=False) print(max_exp_date) # params if full_run or max_exp_date == 'NaN': start = '2017-05-13' else: start = max_exp_date start = dateutil.parser.parse(start) # defining keys and tokens consumer_key = 'c57SU7sulViKSmjsOTi4kTO3W' consumer_secret = 'cNT3yk5ibQ315AWNCJHgE9ipCGlM1XnenHZu9cBWaVL3q7fPew' access_token = '796747210159517701-DhOBQgwzeb6q4eXlI4WjwPRJH1CuEIT' access_token_secret = 'sMrnPZ4ExI8um43wquUvFEUCTyY61HYRf7z3jv00ltXlt' # making api connection # authentication def auth(consumer_key, consumer_secret, access_token, access_token_secret): auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) return api api = auth(consumer_key, consumer_secret, access_token, access_token_secret) # remove url def remove_url(txt): """Replace URLs found in a text string with nothing (i.e. it will remove the URL from the string). Parameters ---------- txt : string A text string that you want to parse and remove urls. Returns ------- The same txt string with url's removed. """ return " ".join(re.sub("([^0-9A-Za-z \t])|(\w+:\/\/\S+)", "", txt).split()) # searching for the keyword in tweeter and tokenizing it def tweet(search_term, count=100000): # Create a custom search term and define the number of tweets tweets = api.search_tweets(search_term, count=count) # Remove URLs tweets_no_urls = [remove_url(tweet.text) for tweet in tweets] # lowercase tweet_data = [sent_tokenize(x.lower()) for x in tweets_no_urls] tweet_data = pd.DataFrame(data=tweet_data, columns=['tweetext']) tweet_att = [[search_term, x.lang, x.user.location, x.created_at, x.id, x.user.name, x.user.followers_count, x.user.friends_count, x.text, x.place, x.user.time_zone] for x in tweets] tweet_att = pd.DataFrame(data=tweet_att, columns=['search_term', 'lang', 'loc', 'created-at', 'id', 'username', 'followers', 'friends', 'og tweet', 'place', 'Tz']) final_data = pd.concat([tweet_data, tweet_att], axis=1) return final_data # removing stopwords def remove_sw(sent, corpus): stop_words = set(stopwords.words(corpus)) word_tokens = word_tokenize(sent) filtered_sentence = [w for w in word_tokens if not w.lower() in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) filtered_sentence = ' '.join(filtered_sentence) return [filtered_sentence] # finding sentiment intensity analyzer def sentiment_analyser(lst): sid = SentimentIntensityAnalyzer() sentiment = [sid.polarity_scores(x) for x in lst] neg = [sid.polarity_scores(x)['neg'] for x in lst] neu = [sid.polarity_scores(x)['neu'] for x in lst] pos = [sid.polarity_scores(x)['pos'] for x in lst] comp = [sid.polarity_scores(x)['compound'] for x in lst] return neg[0], neu[0], pos[0], comp[0] # running all above functions def run_all(search_term, count=1000000): print("API handshake successful") print("Searching for term ", search_term) tweet_data = tweet(search_term, count=count) # print(tweet_data) print("Removing stopwords") sw = 'english' if tweet_data.empty: return tweet_data else: tweet_data['tweetext_filter'] = tweet_data['tweetext'].apply(lambda x: remove_sw(x, sw), 1) print("Analysing sentiment for ", search_term) tweet_data['neg', 'neu', 'pos', 'comp'] = tweet_data['tweetext_filter'].apply(lambda x: sentiment_analyser(x), 1) tweet_data[['neg', 'neu', 'pos', 'comp']] = tweet_data['neg', 'neu', 'pos', 'comp'].apply(pd.Series) tweet_data.drop(columns=('neg', 'neu', 'pos', 'comp'), inplace=True) # sentiment, neg, neu, pos, comp = sentiment_analyser(tweets) # df = build_df(pos,neg,neu,comp, tweets) print('Done \n') return tweet_data search_terms = ['#zeno_health','@zeno_health'] tws = pd.DataFrame() try: for search_term in search_terms: tw = run_all(search_term, count=1000000) tws = pd.concat([tws, tw], axis=0) print('Done') tws = tws[((tws['lang'].isin(['en', 'hi']) & (~tws['tweetext'].str.startswith('rt'))))] except BaseException as e: print('failed on_status,', str(e)) time.sleep(3) tws if tws.empty: print('DataFrame is empty!') exit() tws = tws[ ['og tweet', 'id', 'created-at', 'search_term', 'lang', 'loc', 'username', 'followers', 'friends', 'neg', 'neu', 'pos', 'comp']] dict = {'id': 'tweet-id', 'og tweet': 'tweet', 'search_term': 'search-term', 'lang': 'language', 'loc': 'location', 'created-at': 'tweet-created-at', 'pos': 'positive-sentiment', 'neu': 'neutral-sentiment', 'neg': 'negative-sentiment', 'comp': 'compound-sentiment'} tws.rename(columns=dict, inplace=True) tws['tweet-created-at'] = pd.to_datetime(tws['tweet-created-at']). \ dt.tz_convert('Asia/Kolkata').dt.tz_localize(None) # etl tws['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') tws['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') tws['created-by'] = 'etl-automation' tws['updated-by'] = 'etl-automation' tws['tweet-type'] = np.where(tws['negative-sentiment'] >= tws['positive-sentiment'], 'Detractor', 'Promoter') tws_mail = tws[['tweet-id', 'tweet', 'tweet-created-at', 'search-term', 'language', 'location', 'username', 'followers', 'friends', 'tweet-type']] tws_mail = tws_mail.sort_values(by=['tweet-type'], ascending=True) tws_mail = tws_mail[(tws_mail['tweet-created-at'] > start)] tws = tws[(tws['tweet-created-at'] > start)] if tws.empty: print('DataFrame is empty!') rs_db.close_connection() exit() tws.columns = [c.replace('_', '-') for c in tws.columns] if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "tweet-created-at" >'{start}' ''' print(truncate_query) rs_db.execute(truncate_query) s3.write_df_to_db(df=tws[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) file_name = 'Zeno_Tweets.xlsx' file_path = s3.write_df_to_excel(data={'Zeno Tweets': tws_mail}, file_name=file_name) email = Email() # file_path ='/Users/Lenovo/Downloads/utter.csv' email.send_email_file(subject="Zeno Tweets", mail_body='Zeno Tweets', to_emails=email_to, file_uris=[], file_paths=[file_path]) rs_db.close_connection() ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/tweets/zeno-tweets.ipynb
zeno-tweets.ipynb
``` !pip install zeno_etl_libs==1.0.40 """main wrapper for Non-IPC safety stock reset""" import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.django.api import Django from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.non_ipc.data_prep.non_ipc_data_prep import non_ipc_data_prep from zeno_etl_libs.utils.non_ipc.forecast.forecast_main import non_ipc_forecast from zeno_etl_libs.utils.non_ipc.safety_stock.safety_stock import non_ipc_safety_stock_calc from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc.post_processing import post_processing from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.utils.ipc.store_portfolio_additions import generic_portfolio ``` ## Main Function ``` def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, agg_week_cnt, kind, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' if v3_active_flag == 'Y': corrections_flag = True else: corrections_flag = False # Define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() logger.info("Forecast pipeline starts...") try: for store_id in reset_stores: logger.info("Non-IPC SS calculation started for store id: " + str(store_id)) if not type_list: type_list = str( list(reset_store_ops.loc[reset_store_ops['store_id'] == store_id, 'type'].unique())) type_list = type_list.replace('[', '(').replace(']', ')') # RUNNING DATA PREPARATION drug_data_agg_weekly, drug_data_weekly, drug_class, \ bucket_sales = non_ipc_data_prep( store_id_list=store_id, reset_date=reset_date, type_list=type_list, db=rs_db_read, schema=read_schema, agg_week_cnt=agg_week_cnt, logger=logger) # CREATING TRAIN FLAG TO HANDLE STORES WITH HISTORY < 16 WEEKS week_count = drug_data_weekly['date'].nunique() if week_count >= 16: train_flag = True else: train_flag = False # RUNNING FORECAST PIPELINE AND SAFETY STOCK CALC out_of_sample = 1 horizon = 1 train, error, predict, ensemble_train, ensemble_error, \ ensemble_predict = non_ipc_forecast( drug_data_agg_weekly, drug_data_weekly, drug_class, out_of_sample, horizon, train_flag, logger, kind) final_predict = ensemble_predict.query('final_fcst == "Y"') safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, \ drug_rejects_ipcv6 = non_ipc_safety_stock_calc( store_id, drug_data_weekly, reset_date, final_predict, drug_class, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, chronic_max_flag, train_flag, drug_type_list_v4, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, rs_db_read, read_schema, logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': safety_stock_df, consolidation_log = stores_ss_consolidation( safety_stock_df, rs_db_read, read_schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': safety_stock_df, good_aid_ss_log = update_ga_ss( safety_stock_df, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=logger) # KEEP ALL GENERIC COMPOSITIONS IN STORE if keep_all_generic_comp == 'Y': safety_stock_df = generic_portfolio(safety_stock_df, rs_db_read, read_schema, logger) # OMIT NPI DRUGS if omit_npi == 'Y': safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) # POST PROCESSING AND ORDER VALUE CALCULATION safety_stock_df['percentile'] = 0.5 final_predict.rename(columns={'month_begin_dt': 'date'}, inplace=True) drug_class, weekly_fcst, safety_stock_df, \ order_value = post_processing( store_id, drug_class, final_predict, safety_stock_df, rs_db_read, read_schema, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-forecast predict['forecast_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() predict['store_id'] = store_id predict['store_id'] = predict['store_id'].astype(int) predict['drug_id'] = predict['drug_id'].astype(int) predict['month_begin_dt'] = predict['month_begin_dt'].dt.date predict['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') predict['created-by'] = 'etl-automation' predict['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') predict['updated-by'] = 'etl-automation' predict.columns = [c.replace('_', '-') for c in predict.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-predict', schema=write_schema) columns = list(table_info['column_name']) predict = predict[columns] # required column order logger.info("Writing to table: non-ipc-predict") s3.write_df_to_db(df=predict, table_name='non-ipc-predict', db=rs_db_write, schema=write_schema) # writing table non-ipc-safety-stock safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: non-ipc-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='non-ipc-safety-stock', db=rs_db_write, schema=write_schema) # writing table non-ipc-abc-xyz-class drug_class['store_id'] = drug_class['store_id'].astype(int) drug_class['drug_id'] = drug_class['drug_id'].astype(int) drug_class['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() drug_class['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['created-by'] = 'etl-automation' drug_class['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['updated-by'] = 'etl-automation' drug_class.columns = [c.replace('_', '-') for c in drug_class.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='non-ipc-abc-xyz-class', schema=write_schema) columns = list(table_info['column_name']) drug_class = drug_class[columns] # required column order logger.info("Writing to table: non-ipc-abc-xyz-class") s3.write_df_to_db(df=drug_class, table_name='non-ipc-abc-xyz-class', db=rs_db_write, schema=write_schema) # to write ipc v6 tables ... # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] # prevent heavy outliers ss_data_upload = safety_stock_df.query('order_upto_point < 1000') ss_data_upload = ss_data_upload.query('order_upto_point > 0')[ ['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) logger.info("All writes to RS-DB completed!") # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") if isinstance(reset_store_ops, pd.DataFrame): content_type = 74 object_id = reset_store_ops.loc[ reset_store_ops['store_id'] == store_id, 'object_id'].unique() for obj in object_id: request_body = {"object_id": int(obj), "content_type": content_type} api_response, _ = django.django_model_execution_log_create_api( request_body) reset_store_ops.loc[ reset_store_ops['object_id'] == obj, 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"Non-IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Non-IPC code execution status: {status}") return status, order_value_all, new_drug_entries, missed_entries ``` ## Pass Params ``` env = "dev" email_to = "[email protected]" debug_mode = "N" os.environ['env'] = env logger = get_logger() s3 = S3() django = Django() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() ``` ## Read params from RS table ``` from zeno_etl_libs.helper.parameter.job_parameter import parameter args = parameter.get_params(job_id=110) # JOB EXCLUSIVE PARAMS exclude_stores = args["exclude_stores"] goodaid_ss_flag = args["goodaid_ss_flag"] ga_inv_weight = args["ga_inv_weight"] rest_inv_weight = args["rest_inv_weight"] top_inv_weight = args["top_inv_weight"] chronic_max_flag = args["chronic_max_flag"] wh_gen_consolidation = args["wh_gen_consolidation"] v5_active_flag = args["v5_active_flag"] v6_active_flag = args["v6_active_flag"] v6_type_list = args["v6_type_list"] v6_ptr_cut_off = args["v6_ptr_cut_off"] reset_date = args["reset_date"] reset_stores = args["reset_stores"] v3_active_flag = args["v3_active_flag"] corrections_selling_probability_cutoff = args["corrections_selling_probability_cutoff"] corrections_cumulative_probability_cutoff = args["corrections_cumulative_probability_cutoff"] drug_type_list_v4 = args["drug_type_list_v4"] agg_week_cnt = args["agg_week_cnt"] kind = args["kind"] omit_npi = args["omit_npi"] keep_all_generic_comp = args["keep_all_generic_comp"] ``` ## Get Stores and Type List ``` if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if reset_stores == [0]: # Fetch scheduled Non-IPC stores from OPS ORACLE store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format( str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # considering reset of stores aged (3 months < age < 1 year) store_id = stores.loc[ (dt.datetime.now() - stores['opened_at'] > dt.timedelta(days=90)) & (dt.datetime.now() - stores['opened_at'] <= dt.timedelta(days=365)), 'id'].values # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE AND s.bpos_store_id in {store_list} ) """.format( store_list=str(list(store_id)).replace('[', '(').replace(']',')'), reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() reset_store_ops['api_call_response'] = False reset_stores = reset_store_ops['store_id'].unique() type_list = None else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None ``` ## Execute Main Function ``` """ calling the main function """ status, order_value_all, new_drug_entries, \ missed_entries = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, agg_week_cnt, kind, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() ``` ## Send Email Notification ``` # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"Non-IPC SS Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/non-ipc-ss-main/non_ipc_ss_main.ipynb
non_ipc_ss_main.ipynb
``` !pip install zeno_etl_libs==1.0.30 """ Script for updating and keeping standard drug info. fields included: ['qty_sold_l2y', 'revenue_l2y', 'num_bills_l2y', 'std_qty', 'purchase_interval', 'avg_ptr', 'avg_selling_rate'] author: [email protected] """ import os import sys import pandas as pd import datetime as dt import numpy as np import statistics as stats from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email import argparse ``` ## Main Function ``` def main(debug_mode, rs_db, read_schema, write_schema, table_name, s3, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' try: # get drug-patient data from mos logger.info("Getting historical data from sales table, bill_flag='gross'") q_mos_drugs = f""" select "drug-id" , "bill-id" , "patient-id" , quantity , "revenue-value" as sales, date("created-at") as bill_date from "{read_schema}".sales s where "bill-flag" = 'gross' and DATEDIFF(day, date("created-at"), current_date) < 730 and "store-id" not in (243) """ df_mos_drugs = rs_db.get_df(q_mos_drugs) df_mos_drugs.columns = [c.replace('-', '_') for c in df_mos_drugs.columns] df_mos_drugs["bill_date"] = pd.to_datetime(df_mos_drugs["bill_date"]) df_drugs = df_mos_drugs.drop(["bill_id", "patient_id", "quantity", "sales", "bill_date"], axis=1).drop_duplicates() dd_qty_sales = df_mos_drugs.groupby("drug_id", as_index=False).agg( {"quantity": "sum", "sales": "sum"}) ################################ # get purchase interval of drugs ################################ logger.info("Calculating patient-drug-interval") df_mos_drugs["bill_date1"] = df_mos_drugs["bill_date"] grp_pts_drug = df_mos_drugs.groupby(["patient_id", "drug_id"], as_index=False).agg( {"bill_date": "count", "bill_date1": "max"}) grp_pts_drug.rename( {"bill_date": "bill_counts", "bill_date1": "latest_date"}, axis=1, inplace=True) # only drugs with atleast 4 bills taken grp_pts_drug = grp_pts_drug.loc[grp_pts_drug["bill_counts"] > 3] df_mos_drugs = df_mos_drugs.drop("bill_date1", axis=1) # only latest 10 patient considered for purchase interval calculation grp_drugs = grp_pts_drug.groupby(["drug_id"], as_index=False).agg( {'patient_id': latest_20}) pts_drugs_to_consider = grp_drugs.explode('patient_id') pts_drugs_to_consider = pts_drugs_to_consider.merge(df_mos_drugs, on=["patient_id", "drug_id"], how="left") interval_pts_drug = pts_drugs_to_consider.groupby(["patient_id", "drug_id"], as_index=False).agg( {"bill_date": pts_drug_interval}) interval_pts_drug.rename({"bill_date": "purchase_interval"}, axis=1, inplace=True) drug_intv = interval_pts_drug.groupby("drug_id", as_index=False).agg( {"purchase_interval": median}) # handling edge cases drug_intv["purchase_interval"] = np.where( drug_intv["purchase_interval"] == 0, 180, drug_intv["purchase_interval"]) drug_intv["purchase_interval"] = np.where( drug_intv["purchase_interval"] > 180, 180, drug_intv["purchase_interval"]) logger.info("patient-drug-interval calculation finished") df_drugs = df_drugs.merge(dd_qty_sales, on="drug_id", how="left") df_drugs.rename({"quantity": "qty_sold_l2y", "sales": "revenue_l2y"}, axis=1, inplace=True) df_drugs = df_drugs.merge(drug_intv, on="drug_id", how="left") df_drugs["purchase_interval"] = df_drugs["purchase_interval"].fillna(180) dd = df_mos_drugs.groupby("drug_id", as_index=False).agg( {"bill_id": count_unique}) df_drugs = df_drugs.merge(dd, on="drug_id", how="left") df_drugs.rename({"bill_id": "num_bills_l2y"}, axis=1, inplace=True) dd = df_mos_drugs.groupby("drug_id", as_index=False).agg({"quantity": mode}) df_drugs = df_drugs.merge(dd, on="drug_id", how="left") df_drugs.rename({"quantity": "mode"}, axis=1, inplace=True) dd = df_mos_drugs.groupby("drug_id", as_index=False).agg( {"quantity": median}) df_drugs = df_drugs.merge(dd, on="drug_id", how="left") df_drugs.rename({"quantity": "median"}, axis=1, inplace=True) df_drugs["std_qty"] = np.where(df_drugs["mode"] > df_drugs["median"], df_drugs["median"], df_drugs["mode"]) df_drugs["std_qty"] = np.where(df_drugs["num_bills_l2y"] <= 10, 1, df_drugs["std_qty"]) df_drugs["std_qty"] = np.where(df_drugs["std_qty"] > 30, 1, df_drugs["std_qty"]) df_drugs["std_qty"] = df_drugs["std_qty"].fillna(1) df_drugs["revenue_l2y"] = df_drugs["revenue_l2y"].fillna(0) df_drugs["qty_sold_l2y"] = df_drugs["qty_sold_l2y"].fillna(0) df_drugs["std_qty"] = df_drugs["std_qty"].astype(int) df_drugs["revenue_l2y"] = df_drugs["revenue_l2y"].astype(float) df_drugs["qty_sold_l2y"] = df_drugs["qty_sold_l2y"].astype(int) df_drugs.dropna(subset=['drug_id', 'num_bills_l2y'], inplace=True) df_drugs["drug_id"] = df_drugs["drug_id"].astype(int) df_drugs["num_bills_l2y"] = df_drugs["num_bills_l2y"].astype(int) df_drugs["avg_selling_rate"] = df_drugs["revenue_l2y"] / df_drugs[ "qty_sold_l2y"] ################################ # get avg-ptr and drug-type info ################################ logger.info("Calculating other fields") # get PTR info for all drugs q_inv = f""" SELECT "drug-id" as drug_id , AVG(ptr) as avg_ptr from "{read_schema}"."inventory-1" i where DATEDIFF(day, date("created-at"), current_date) < 730 group by "drug-id" """ df_inv = rs_db.get_df(q_inv) df_drugs = df_drugs.merge(df_inv, on="drug_id", how="left") # get necessary drug info from drugs master q_drugs = f""" SELECT id as drug_id, type from "{read_schema}".drugs d """ df_drug_info = rs_db.get_df(q_drugs) df_drugs = df_drugs.merge(df_drug_info, on="drug_id", how="left") # default ptr value for generic=35 and rest=100 df_drugs["avg_ptr"] = np.where( (df_drugs["avg_ptr"].isna()) & (df_drugs["type"] == "generic"), 35, df_drugs["avg_ptr"]) df_drugs["avg_ptr"] = np.where( (df_drugs["avg_ptr"].isna()) & (df_drugs["type"] != "generic"), 100, df_drugs["avg_ptr"]) # required format for RS wrtie df_drugs = df_drugs[['drug_id', 'qty_sold_l2y','revenue_l2y', 'num_bills_l2y', 'std_qty', 'purchase_interval', 'avg_ptr', 'avg_selling_rate']] df_drugs.columns = [c.replace('_', '-') for c in df_drugs.columns] df_drugs['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_drugs['created-by'] = 'etl-automation' df_drugs['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_drugs['updated-by'] = 'etl-automation' logger.info("All calculations complete") if debug_mode == 'N': logger.info(f"Truncating {table_name} in {write_schema}") truncate_query = f""" truncate table "{write_schema}"."{table_name}" """ rs_db.execute(truncate_query) logger.info(f"Truncating {table_name} in {write_schema} successful") logger.info("Writing table to RS-DB") s3.write_df_to_db(df=df_drugs, table_name=table_name, db=rs_db, schema=write_schema) logger.info("Writing table to RS-DB completed") else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"Drug-Std-Info code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Drug-Std-Info code execution status: {status}") return status ``` ## Dependent Functions ``` def pts_drug_interval(pd_arr): """Purchase interval between buying on patient-drug level considering median interval""" df = pd.DataFrame(pd_arr, columns=["bill_date"]) df = df.sort_values(by='bill_date', ascending=True) df["delta"] = (df['bill_date']-df['bill_date'].shift()) df = df.dropna() median_days = df["delta"].median().days return median_days def latest_20(pd_arr): """To consider only latest 20 patients who bought drug in more than 4 qty objective: to reduce run time""" pts_list = list(pd_arr)[-20:] return pts_list def count_unique(pd_arr): return len(pd_arr.unique()) def mode(pd_arr): return min(pd_arr.mode()) def median(pd_arr): return stats.median(pd_arr) ``` ## Pass Params & Run Algo ``` email_to = "[email protected]" debug_mode = "Y" env = "dev" os.environ['env'] = env logger = get_logger() rs_db = DB() s3 = S3() read_schema = 'prod2-generico' write_schema = 'prod2-generico' table_name = 'drug-std-info' # open RS connection rs_db.open_connection() """ calling the main function """ status = main(debug_mode=debug_mode, rs_db=rs_db, read_schema=read_schema, write_schema=write_schema, table_name=table_name, s3=s3, logger=logger) # close RS connection rs_db.close_connection() ``` ## Send Email Notification ``` # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() reset_date = dt.date.today().strftime("%Y-%m-%d") email.send_email_file( subject=f"Drug-STD-Info Update (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} """, to_emails=email_to) logger.info("Script ended") ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/scripts/drug-std-info/drug_std_info.ipynb
drug_std_info.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\distributor-ranking2-main\\distributor_ranking2_main.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, instance_type="ml.c5.2xlarge", env=env ) # if env == "dev": # import papermill as pm # pm.execute_notebook( # input_path=input_file, # output_path=f"{output_path}/{result}", # parameters=parameters # ) # elif env in ("stage", "prod"): # run_notebook.run_notebook( # image=f"{env}-notebook-runner", # notebook=input_file, # output=output_path, # parameters=parameters, # timeout_in_sec=7200, # in_vpc=True, # env=env, # instance_type="ml.c5.9xlarge" # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_distributor_ranking2_main.ipynb
run_distributor_ranking2_main.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\non-ipc-ss-main\\non_ipc_ss_main.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=7200, in_vpc=True, instance_type="ml.c5.9xlarge", env=env ) # if env == "dev": # import papermill as pm # pm.execute_notebook( # input_path=input_file, # output_path=f"{output_path}/{result}", # parameters=parameters # ) # elif env in ("stage", "prod"): # run_notebook.run_notebook( # image=f"{env}-notebook-runner", # notebook=input_file, # output=output_path, # parameters=parameters, # timeout_in_sec=7200, # in_vpc=True, # env=env, # instance_type="ml.c5.9xlarge" # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_non_ipc_ss_main.ipynb
run_non_ipc_ss_main.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\warehouse\\wh_goodaid_forecast_343.ipynb" parameters = { "env": env } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=7200, in_vpc=True, env=env ) # if env == "dev": # import papermill as pm # pm.execute_notebook( # input_path=input_file, # output_path=f"{output_path}/{result}", # parameters=parameters # ) # elif env in ("stage", "prod"): # run_notebook.run_notebook( # image=f"{env}-notebook-runner", # notebook=input_file, # output=output_path, # parameters=parameters, # timeout_in_sec=7200, # in_vpc=True, # env=env, # instance_type="ml.c5.9xlarge" # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_wh_goodaid_forecast.ipynb
run_wh_goodaid_forecast.ipynb
``` import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\distributor-ranking-main\\distributor_ranking_main.ipynb" parameters = { "env": "prod", "email_to":"[email protected]", "debug_mode":"Y" } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, env=env ) # if env == "dev": # import papermill as pm # pm.execute_notebook( # input_path=input_file, # output_path=f"{output_path}/{result}", # parameters=parameters # ) # elif env in ("stage", "prod"): # run_notebook.run_notebook( # image=f"{env}-notebook-runner", # notebook=input_file, # output=output_path, # parameters=parameters, # timeout_in_sec=7200, # in_vpc=True, # env=env, # instance_type="ml.c5.9xlarge" # ) ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_distributor_ranking_main.ipynb
run_distributor_ranking_main.ipynb
``` !pip uninstall zeno_etl_libs import sys import datetime import time import re import os # To add path so that we can improt zeno_etl_libs from local folder sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook env = "prod" notebook_file = "\\scripts\\playstore-review\\ecomm-playstore-reviews.ipynb" parameters = { "env": env, "full_run":0 } os.environ['env'] = env base = "\\".join(os.getcwd().split("\\")[:-2]) input_file = base + notebook_file output_path = base + "\\run\\logs" name = os.path.basename(notebook_file) nb_name, nb_ext = os.path.splitext(name) timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) result = "{}-{}{}".format(nb_name, timestamp, nb_ext) if env == "dev": import papermill as pm pm.execute_notebook( input_path=input_file, output_path=f"{output_path}/{result}", parameters=parameters ) elif env in ("stage", "prod"): run_notebook.run_notebook( image=f"{env}-notebook-runner", notebook=input_file, output=output_path, parameters=parameters, timeout_in_sec=3600, in_vpc=True, instance_type="ml.m5.large", env=env ) !aws s3 cp s3://sagemaker-ap-south-1-921939243643/papermill_output/ecomm-playstore-reviews-2022-06-17-11-18-31.ipynb . ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/sagemaker-jobs/src/run/code/run_playstore_reviews.ipynb
run_playstore_reviews.ipynb