code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import argparse import sys import os import pandas as pd import time from zeno_etl_libs.db.db import MySQL, DB sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") """ opening the postgres connection """ rs_db = DB() rs_db.open_connection() """ opening the MySQL connection """ ms_db = MySQL(read_only=False) ms_db.open_connection() """ opening the MySQL write(many) connection """ ms_db_write = MySQL(read_only=False) ms_db_write.open_connection() ms_schema = "test-generico" if env in ("dev", "stage") else "prod2-generico" """ Query to get patients-metadata from RS """ query = f""" SELECT id as "patient-id", date("first-bill-date") as "first-bill-date", date("last-bill-date") as "last-bill-date", "number-of-bills", "total-spend", "average-bill-value" FROM "prod2-generico"."patients-metadata-2" order by id desc """ patients_meta_rs = rs_db.get_df(query=query) patients_meta_rs.columns = [c.replace('-', '_') for c in patients_meta_rs.columns] """ date columns converted to string """ for i in ['first_bill_date', 'last_bill_date']: patients_meta_rs[i] = pd.to_datetime(patients_meta_rs[i], errors='coerce').dt.strftime("%Y-%m-%d") logger.info(f"patients_meta_rs sample data: \n{str(patients_meta_rs[0:2])}") """checking the latest last_bill_date """ try: bill_date_max_pg = pd.to_datetime(patients_meta_rs['last_bill_date']).max().strftime('%Y-%m-%d') except ValueError: bill_date_max_pg = '0000-00-00' logger.info("patients_meta_rs, latest last_bill_date: {}".format(bill_date_max_pg)) logger.info("patients_meta_rs, total count {}".format(len(patients_meta_rs))) """ Query to get patients-metadata from MySQL """ query = f""" SELECT `patient-id`, `first-bill-date`, `last-bill-date`, `number-of-bills`, `total-spend`, `average-bill-value` FROM `{ms_schema}`.`patients-metadata` """ patients_meta_ms = pd.read_sql_query(query, ms_db.connection) patients_meta_ms.columns = [c.replace('-', '_') for c in patients_meta_ms.columns] """ date columns converted to string """ for i in ['first_bill_date', 'last_bill_date']: patients_meta_ms[i] = pd.to_datetime(patients_meta_ms[i], errors='coerce').dt.strftime("%Y-%m-%d") try: bill_date_max_ms = pd.to_datetime(patients_meta_ms['last_bill_date']).max().strftime('%Y-%m-%d') except ValueError: bill_date_max_ms = '0000-00-00' logger.info("patients_meta_ms, latest last_bill_date: {}".format(bill_date_max_ms)) logger.info("patients_meta_ms, total count: {}".format(len(patients_meta_ms))) """ merge the Redshift and MySQL data """ patients_meta_union = patients_meta_rs.merge( patients_meta_ms[['patient_id', 'first_bill_date', 'last_bill_date', 'number_of_bills']], how='outer', on=['patient_id', 'first_bill_date', 'last_bill_date', 'number_of_bills'], indicator=True ) metadata_cols = ['patient_id', 'first_bill_date', 'last_bill_date', 'number_of_bills', 'total_spend', 'average_bill_value'] """ New data in redshift has two parts 1. Insert - Completely new customers 2. Update - Old customers with data change """ patients_meta_new = patients_meta_union[patients_meta_union['_merge'] == 'left_only'] patients_meta_new = patients_meta_new[metadata_cols] logger.info("patients_meta_new (difference), total count: {}".format(len(patients_meta_new))) ms_patient_ids = patients_meta_ms['patient_id'].to_list() # mysql patients ids # To be inserted patients_meta_new_insert = patients_meta_new.query("patient_id not in @ms_patient_ids") patients_meta_new_insert.columns = [c.replace('_', '-') for c in patients_meta_new_insert.columns] """ Don't upload patients ids which are not in patients table, Can be Removed later """ query = f""" SELECT `id` AS `patient-id` FROM `{ms_schema}`.`patients` """ patients = pd.read_sql_query(query, ms_db.connection) patients_meta_new_insert_clean = patients_meta_new_insert.merge(patients, how='inner', on=['patient-id']) logger.info("Absent in patients table count: {}".format( len(patients_meta_new_insert) - len(patients_meta_new_insert_clean))) logger.info("patients_meta_new_insert_clean (to be inserted) count: {}".format(len(patients_meta_new_insert_clean))) logger.info("Ignored if patient is absent in patient table") if len(patients_meta_new_insert_clean): logger.info("Start of insert, patients_meta_new_insert...") patients_meta_new_insert_clean.to_sql( name='patients-metadata', con=ms_db_write.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("End of insert, patients_meta_new_insert...") """ Delay to allow the replication in RDS DB replica (for Inserts)""" time.sleep(5) """Verifying the inserted data""" query = f""" SELECT `patient-id` FROM `{ms_schema}`.`patients-metadata` WHERE `patient-id` in ('%s') """ % ("','".join([str(i) for i in patients_meta_new_insert_clean['patient-id'].to_list()])) inserted_in_mysql = pd.read_sql_query(query, ms_db_write.connection) logger.info("Total successfully inserted patients metadata count: {}".format(len(inserted_in_mysql))) expected_insert_count = len(patients_meta_new_insert_clean) actual_insert_count = len(inserted_in_mysql) is_insert_successful = False if expected_insert_count == actual_insert_count: logger.info(f"[INFO] Insert was successful.") is_insert_successful = True else: logger.info(f"[ERROR] Insert was incomplete, count expected: {expected_insert_count}, " f"actual: {actual_insert_count}") """ To be updated """ patients_meta_new_update = patients_meta_new.query("patient_id in @ms_patient_ids") patients_meta_new_update.columns = [c.replace('_', '-') for c in patients_meta_new_update.columns] logger.info("patients_meta_new_update count: {}".format(len(patients_meta_new_update))) patients_meta_new_update_dicts = list(patients_meta_new_update.apply(dict, axis=1)) """ Query to bulk update """ query = f""" UPDATE `{ms_schema}`.`patients-metadata` SET `first-bill-date` = %s, `last-bill-date` = %s, `number-of-bills` = %s, `total-spend` = %s, `average-bill-value` = %s WHERE `patient-id` = %s """ logger.info("Start of update, patients_meta_new_update...") batch_size = 1000 cur = ms_db_write.connection.cursor() for start_index in range(0, len(patients_meta_new_update_dicts), batch_size): logger.info( f"Updating from start index: {start_index}, to: " f"{min((start_index + batch_size), len(patients_meta_new_update_dicts))}") values = patients_meta_new_update_dicts[start_index: start_index + batch_size] values_list = [] for i in values: values_list.append( (i['first-bill-date'], i['last-bill-date'], i['number-of-bills'], i['total-spend'], i['average-bill-value'], i['patient-id']) ) """ Updating multiple patients at time """ try: cur.executemany(query, values_list) except ms_db_write.connection.Error as e: try: logger.info("MySQL Error [%d]: %s" % (e.args[0], e.args[1])) except IndexError: logger.info("MySQL Error: %s" % str(e)) ms_db_write.connection.rollback() ms_db_write.connection.commit() cur.close() logger.info("End of update, patients_meta_new_update...") """ Delay to allow the replication in RDS DB replica """ time.sleep(5) """Verifying the updated data""" query = f""" SELECT `patient-id`, `first-bill-date`, `last-bill-date`, `number-of-bills`, `total-spend`, `average-bill-value` FROM `{ms_schema}`.`patients-metadata` where date(`updated-at`) >= CURRENT_DATE() """ """ Alert: We are intentionally reading it from write database because we want real time numbers for validation """ updated_in_mysql = pd.read_sql_query(query, ms_db_write.connection) for i in ['first-bill-date', 'last-bill-date']: updated_in_mysql[i] = pd.to_datetime(updated_in_mysql[i], errors='coerce').dt.strftime("%Y-%m-%d") # Inner join with existing data updated_in_mysql_matched = updated_in_mysql.merge( patients_meta_new_update[["patient-id", "first-bill-date", "last-bill-date", "number-of-bills"]], how='inner', on=["patient-id", "first-bill-date", "last-bill-date", "number-of-bills"]) logger.info("Total successfully updated patients metadata count: {}".format(len(updated_in_mysql_matched))) expected_update_count = len(patients_meta_new_update) actual_update_count = len(updated_in_mysql_matched) is_update_successful = False if expected_update_count == actual_update_count: logger.info(f"[INFO] Update was successful.") is_update_successful = True else: logger.info(f"[ERROR] Update was incomplete, count expected: {expected_update_count}, " f"actual: {actual_update_count}") if not is_update_successful: raise Exception("Update in the metadata table failed.") if not is_insert_successful: raise Exception("Insert in the metadata table failed.") """ closing the database connections """ rs_db.close_connection() ms_db.close() ms_db_write.close() logger.info("Closed all DB connections successfully.")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patients-metadata-mysql-sync/patients-metadata-mysql-sync.py
patients-metadata-mysql-sync.py
#@owner: [email protected] #@Purpose: To find purchase sales ration at drug level and purchase margin. import os import sys import datetime import argparse import pandas as pd import numpy as np from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.db.db import MSSql from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sd', '--start_date', default='NA', type=str, required=False) parser.add_argument('-ed', '--end_date', default='NA', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to start_date = args.start_date end_date = args.end_date os.environ['env'] = env cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() d = datetime.timedelta(days = 5) start_dt=cur_date-d end_dt = cur_date - datetime.timedelta(1) if start_date == 'NA' and end_date == 'NA': start_date = start_dt end_date = end_dt s3=S3() logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() # Net Sales q_1=''' select '' as "wh-name", 'SB' as "sub-type-1", 'store' as "sub-type-2", '' as "sub-type-3", s."drug-id" , s."drug-name" , s."type" as "drug-type", s.category as "drug-category", (case when s."company-id"=6984 then 'true' else 'false' end) as "goodaid-flag", (case when s."invoice-item-reference" is null then 76 else s."distributor-id" end ) as "distributor-id", (case when s."invoice-item-reference" is null then 'Local Purchase' else s."distributor-name" end ) as "distributor-name", (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ) as "as-ms-pr", date(s."created-at") as "approved-date", SUM(s."net-quantity") as "net-quantity", SUM(s."net-quantity"*s.rate) as "net-value", SUM(s."net-quantity"*s.mrp) as "mrp-value", SUM(s."net-quantity"*s."purchase-rate") as "wc-value" from "prod2-generico".sales s left join (select * from (select "invoice-item-id", "short-book-id", row_number() over(partition by "invoice-item-id" order by "short-book-id" desc) as count_new from "prod2-generico"."prod2-generico"."short-book-invoice-items" sbii ) a where a.count_new=1 ) g on s."invoice-item-reference" = g."invoice-item-id" left join "prod2-generico"."prod2-generico"."short-book-1" sb on g."short-book-id" = sb.id where date(s."created-at")>='{}' and date(s."created-at")<='{}' and s."franchisee-id" =1 and s."store-b2b" ='Store' group by "sub-type-1", "sub-type-2", "sub-type-3", s."drug-id" , s."drug-name", s."type" , s.category , (case when s."company-id"=6984 then 'true' else 'false' end) , (case when s."invoice-item-reference" is null then 76 else s."distributor-id" end ) , (case when s."invoice-item-reference" is null then 'Local Purchase' else s."distributor-name" end ) , (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ), date(s."created-at") '''.format(start_date, end_date) store_sales=rs_db.get_df(query=q_1) # DC q_4=''' select '' as "wh-name", 'PB' as "sub-type-1", 'DC' as "sub-type-2", '' as "sub-type-3", d.id as "drug-id", d."drug-name" , d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ) as "as-ms-pr", date(i."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value", SUM(ii.mrp*ii."actual-quantity") as "mrp-value", SUM(ii."net-value") as "wc-value" from "prod2-generico"."prod2-generico"."invoice-items" ii left join "prod2-generico"."prod2-generico".invoices i on ii."invoice-id" = i.id left join "prod2-generico"."prod2-generico".stores s on i."dc-id" =s.id left join "prod2-generico"."prod2-generico".stores s2 on i."store-id" =s2.id left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id left join (select * from (select "invoice-item-id", "short-book-id", row_number() over(partition by "invoice-item-id" order by "short-book-id" desc) as count_new from "prod2-generico"."prod2-generico"."short-book-invoice-items" sbii ) a where a.count_new=1 ) g on ii.id = g."invoice-item-id" left join "prod2-generico"."prod2-generico"."short-book-1" sb on g."short-book-id" = sb.id where date(i."approved-at") >='{}' and date(i."approved-at") <='{}' and s2."franchisee-id" =1 and i."distributor-id" !=8105 group by "sub-type-1", "sub-type-2", "sub-type-3", d.id , d."drug-name" , d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ), date(i."approved-at") '''.format(start_date, end_date) network_dc_purchase=rs_db.get_df(query=q_4) # Lp q_5=''' select '' as "wh-name", 'PB' as "sub-type-1", 'LP' as "sub-type-2", '' as "sub-type-3", d.id as "drug-id" , d."drug-name" , d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", '' as "as-ms-pr", date(i."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value", SUM(ii.mrp*ii."actual-quantity") as "mrp-value", SUM(ii."net-value") as "wc-value" from "prod2-generico"."prod2-generico"."invoice-items-1" ii left join "prod2-generico"."prod2-generico"."invoices-1" i on ii."franchisee-invoice-id" =i.id left join "prod2-generico"."prod2-generico".stores s on s.id = i."store-id" left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id where ii."invoice-item-reference" is null and s."franchisee-id" =1 and date(i."approved-at") >='{}' and date(i."approved-at") <='{}' group by "sub-type-1", "sub-type-2", "sub-type-3", d.id , d."drug-name", d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , date(i."approved-at") '''.format(start_date, end_date) network_lp_purchase=rs_db.get_df(query=q_5) # Sale to Franchise q_6=''' select '' as "wh-name", 'SB' as "sub-type-1", 'Franchisee' as "sub-type-2", (case when i."distributor-id" = 8105 then 'WH' else 'DC' end) as "sub-type-3", d.id as "drug-id", d."drug-name" , d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", '' as "as-ms-pr", date(i1."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value", SUM(ii.mrp*ii."actual-quantity") as "mrp-value", SUM(ii2."net-value") as "wc-value" from "prod2-generico"."prod2-generico"."invoice-items-1" ii left join "prod2-generico"."prod2-generico"."invoice-items" ii2 on ii."invoice-item-reference" =ii2.id left join "prod2-generico"."prod2-generico"."invoices-1" i1 on ii."franchisee-invoice-id" =i1.id left join "prod2-generico"."prod2-generico".invoices i on ii."invoice-id" =i.id left join "prod2-generico"."prod2-generico".stores s on i1."store-id" =s.id left join "prod2-generico"."prod2-generico".franchisees f on s."franchisee-id" =f.id left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id where date(i1."approved-at") >='{}' and date(i1."approved-at") <='{}' and s."franchisee-id" !=1 and i1."franchisee-invoice" =0 group by "sub-type-1", "sub-type-2", (case when i."distributor-id" = 8105 then 'WH' else 'DC' end), d.id , d."drug-name", d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , date(i1."approved-at"); '''.format(start_date, end_date) network_franchisee_sale=rs_db.get_df(query=q_6) drug_info = ''' select d.id as "drug-id", d."drug-name", d."type" as "drug-type" , d."category" as "drug-category", (case when d."company-id" =6984 then 'true' else 'false' end) as "goodaid-flag" from "prod2-generico".drugs d ''' drug_info = rs_db.get_df(query=drug_info) mssql = MSSql(connect_via_tunnel=False) cnxn = mssql.open_connection() cursor = cnxn.cursor() #Warehouse purchase q_7=''' select 'bhiwnadi-warehouse' as "wh-name", 'PB' as "sub-type-1", 'WH' as "sub-type-2", (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end) as "sub-type-3", CONVERT(int, i.Barcode) as "drug-id", sp.acno as "distributor-id", a."name" as "distributor-name", (CASE when f.Uid is null then 'Auto' else 'manual' end ) as "as-ms-pr", CONVERT(date , sp.Vdt) as "approved-date", SUM(sp.qty) as "net-quantity", SUM(sp.netamt + sp.taxamt) as "net-value", SUM(f1.mrp*sp.Qty) as "mrp-value", SUM(sp.NetAmt+sp.Taxamt) as "wc-value" from salepurchase2 sp left join item i on sp.itemc = i.code left join FIFO f1 on (f1.Pbillno = sp.Pbillno and f1.Psrlno = sp.Psrlno and f1.Itemc = sp.Itemc and f1.Vdt = sp.Vdt) left join acm a on sp.acno = a.code left join (Select Uid,Vtyp,Vdt,Acno,Vno FROM Salepurchase1 sp1 where sp1.Vtyp ='PO' and sp1.Slcd ='SL') f on (f.Vno=sp.RefVno and convert(date,sp.RefVdt) =convert(date,f.Vdt) and sp.Acno =f.acno) where sp.vtype = 'PB' and sp.vdt >= '{}' and sp.vdt <= '{}' and sp.qty >0 and isnumeric(i.Barcode) = 1 and i.barcode not like '%[^0-9]%' and sp.Acno not IN (59489) group by (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end), i.Barcode , sp.acno , a."name" , (CASE when f.Uid is null then 'Auto' else 'manual' end ), sp.Vdt '''.format(start_date, end_date) network_wh_purchase_bhiwandi= pd.read_sql(q_7,cnxn) mssql_ga = MSSql(connect_via_tunnel=False,db='Esdata_WS_2') cnxn = mssql_ga.open_connection() cursor = cnxn.cursor() q_8='''select 'goodaid-warehouse' as "wh-name", 'PB' as "sub-type-1", 'WH' as "sub-type-2", (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end) as "sub-type-3", CONVERT(int, i.Barcode) as "drug-id", sp.acno as "distributor-id", a."name" as "distributor-name", (CASE when f.Uid is null then 'Auto' else 'manual' end ) as "as-ms-pr", CONVERT(date , sp.Vdt) as "approved-date", SUM(sp.qty) as "net-quantity", SUM(sp.netamt + sp.taxamt) as "net-value", SUM(f1.mrp*sp.Qty) as "mrp-value", SUM(sp.NetAmt+sp.Taxamt) as "wc-value" from salepurchase2 sp left join item i on sp.itemc = i.code left join FIFO f1 on (f1.Pbillno = sp.Pbillno and f1.Psrlno = sp.Psrlno and f1.Itemc = sp.Itemc and f1.Vdt = sp.Vdt) left join acm a on sp.acno = a.code left join (Select Uid,Vtyp,Vdt,Acno,Vno FROM Salepurchase1 sp1 where sp1.Vtyp ='PO' and sp1.Slcd ='SL') f on (f.Vno=sp.RefVno and convert(date,sp.RefVdt) =convert(date,f.Vdt) and sp.Acno =f.acno) where sp.vtype = 'PB' and sp.vdt >= '{}' and sp.vdt <= '{}' and sp.qty >0 and isnumeric(i.Barcode) = 1 and i.barcode not like '%[^0-9]%' group by (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end), i.Barcode , sp.acno , a."name" , (CASE when f.Uid is null then 'Auto' else 'manual' end ), sp.Vdt '''.format(start_date, end_date) network_wh_purchase_goodaid= pd.read_sql(q_8,cnxn) mssql_tepl = MSSql(connect_via_tunnel=False,db='Esdata_TEPL') cnxn = mssql_tepl.open_connection() cursor = cnxn.cursor() q_9='''select 'tepl-warehouse' as "wh-name", 'PB' as "sub-type-1", 'WH' as "sub-type-2", (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end) as "sub-type-3", CONVERT(int, i.Barcode) as "drug-id", sp.acno as "distributor-id", a."name" as "distributor-name", (CASE when f.Uid is null then 'Auto' else 'manual' end ) as "as-ms-pr", CONVERT(date , sp.Vdt) as "approved-date", SUM(sp.qty) as "net-quantity", SUM(sp.netamt + sp.taxamt) as "net-value", SUM(f1.mrp*sp.Qty) as "mrp-value", SUM(sp.NetAmt+sp.Taxamt) as "wc-value" from salepurchase2 sp left join item i on sp.itemc = i.code left join FIFO f1 on (f1.Pbillno = sp.Pbillno and f1.Psrlno = sp.Psrlno and f1.Itemc = sp.Itemc and f1.Vdt = sp.Vdt) left join acm a on sp.acno = a.code left join (Select Uid,Vtyp,Vdt,Acno,Vno FROM Salepurchase1 sp1 where sp1.Vtyp ='PO' and sp1.Slcd ='SL') f on (f.Vno=sp.RefVno and convert(date,sp.RefVdt) =convert(date,f.Vdt) and sp.Acno =f.acno) where sp.vtype = 'PB' and sp.vdt >= '{}' and sp.vdt <= '{}' and sp.qty >0 and isnumeric(i.Barcode) = 1 and i.barcode not like '%[^0-9]%' group by (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end), i.Barcode , sp.acno , a."name" , (CASE when f.Uid is null then 'Auto' else 'manual' end ), sp.Vdt '''.format(start_date, end_date) network_wh_purchase_tepl= pd.read_sql(q_9,cnxn) network_wh_purchase=pd.concat([network_wh_purchase_bhiwandi, network_wh_purchase_goodaid,network_wh_purchase_tepl], sort=False,ignore_index=False) network_wh_purchase[['drug-id']]= \ network_wh_purchase[['drug-id']].\ apply(pd.to_numeric, errors='ignore').astype('Int64') network_wh_purchase=pd.merge(network_wh_purchase,drug_info,how='left',on='drug-id') network_wh_purchase[['drug-type','drug-category', 'goodaid-flag']]=\ network_wh_purchase[['drug-type','drug-category', 'goodaid-flag']].\ fillna('NA') network_wh_purchase[['net-quantity']]=\ network_wh_purchase[['net-quantity']].astype(np.int64) network_wh_purchase=network_wh_purchase[['wh-name','sub-type-1', 'sub-type-2','sub-type-3', 'drug-id','drug-name','drug-type','drug-category', 'goodaid-flag','distributor-id', 'distributor-name','as-ms-pr','approved-date','net-quantity', 'net-value','mrp-value','wc-value']] sale_purchase_all=pd.concat([store_sales, network_dc_purchase, network_lp_purchase, network_wh_purchase,network_franchisee_sale], sort=False,ignore_index=False) sale_purchase_all[['drug-id', 'distributor-id']]= \ sale_purchase_all[['drug-id','distributor-id']].\ apply(pd.to_numeric, errors='ignore').astype('Int64') sale_purchase_all[['net-quantity']]=sale_purchase_all[['net-quantity']].astype(np.int64) sale_purchase_all[['net-value','mrp-value','wc-value']]=\ sale_purchase_all[['net-value','mrp-value','wc-value']].\ astype(np.float64) created_at = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") sale_purchase_all['created-at']=datetime.datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") updated_at = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") sale_purchase_all['updated-at']=datetime.datetime.strptime(updated_at,"%Y-%m-%d %H:%M:%S") sale_purchase_all['created-by'] = 'etl-automation' sale_purchase_all['updated-by'] = 'etl-automation' sale_purchase_all.columns = [c.replace('_', '-') for c in sale_purchase_all.columns] schema = "prod2-generico" table_name = "purchase-sales-meta-drug-level" table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) #truncating the last 5 days data delete_q = """ delete from "prod2-generico"."purchase-sales-meta-drug-level" where date("approved-date") >= '{start_date_n}' and date("approved-date") <= '{end_date_n}' and "sub-type-1" in ('inventory', 'SB', 'PB') """.format(start_date_n=start_date, end_date_n=end_date) rs_db.execute(delete_q) #Keep only Last one year data delete_one_year=''' delete from "prod2-generico"."purchase-sales-meta-drug-level" where date("approved-date")<=current_date -interval '12 months' ''' rs_db.execute(delete_one_year) s3.write_df_to_db(df=sale_purchase_all[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) status=True if status==True: script_status="Success" else: script_status="Failed" email = Email() #email.send_email_file( # subject=f"purchase_sales # start date: {start_date} end date: {end_date} {script_status}", #mail_body=f"purchase_sales status: {script_status} ", #to_emails=email_to) email.send_email_file(subject=f"sale purchase report drug level for date {end_date}", mail_body=f"PFA sale purchase data drug level for date {end_date} ", to_emails=email_to) rs_db.close_connection() mssql.close_connection() mssql_ga.close_connection() mssql_tepl.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ops-data-query/purchase-sales-drug-level.py
purchase-sales-drug-level.py
#@owner: [email protected] #@Purpose: To find purchase sales ration at store and network level import os import sys from dateutil.tz import gettz import datetime import argparse import pandas as pd import numpy as np sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.db.db import MSSql from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default= "[email protected],[email protected],[email protected]", type=str, required=False) parser.add_argument('-sd', '--start_date', default='NA', type=str, required=False) parser.add_argument('-ed', '--end_date', default='NA', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to start_date = args.start_date end_date = args.end_date os.environ['env'] = env cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() d = datetime.timedelta(days = 5) start_dt=cur_date-d end_dt = cur_date - datetime.timedelta(1) if start_date == 'NA' and end_date == 'NA': start_date = start_dt end_date = end_dt s3=S3() logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() #Store-sales q_1='''select 'store' as "type-1", s."store-id" as "entity-id" , s."store-name" as "entity-name" , 'SB' as "sub-type-1", '' as "sub-type-2", '' as "sub-type-3", s."type" as "drug-type", s.category as "drug-category", (case when s."company-id"=6984 then 'true' else 'false' end) as "goodaid-flag", (case when s."invoice-item-reference" is null then 76 else s."distributor-id" end ) as "distributor-id", (case when s."invoice-item-reference" is null then 'Local Purchase' else s."distributor-name" end ) as "distributor-name", (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ) as "as-ms-pr", date(s."created-at") as "approved-date", SUM(s."net-quantity") as "net-quantity", SUM(s."net-quantity"*s.rate) as "net-value" from "prod2-generico".sales s left join (select * from (select "invoice-item-id", "short-book-id", row_number() over(partition by "invoice-item-id" order by "short-book-id" desc) as count_new from "prod2-generico"."prod2-generico"."short-book-invoice-items" sbii ) a where a.count_new=1 ) g on s."invoice-item-reference" = g."invoice-item-id" left join "prod2-generico"."prod2-generico"."short-book-1" sb on g."short-book-id" = sb.id where date(s."created-at")>='{}' and date(s."created-at")<='{}' and s."franchisee-id" =1 and s."store-b2b" ='Store' group by "type-1" , s."store-id" , s."store-name" , "sub-type-1", "sub-type-2", "sub-type-3", s."type" , s.category , (case when s."company-id"=6984 then 'true' else 'false' end) , (case when s."invoice-item-reference" is null then 76 else s."distributor-id" end ) , (case when s."invoice-item-reference" is null then 'Local Purchase' else s."distributor-name" end ) , (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ) , date(s."created-at") '''.format(start_date, end_date) store_sales=rs_db.get_df(query=q_1) #Store DC/WH Purchase q_2=''' select 'store' as "type-1", i."store-id" as "entity-id" , s."name" as "entity-name", 'PB' as "sub-type-1", (case when i."distributor-id" = 8105 then 'WH' else 'DC' end) as "sub-type-2", '' as "sub-type-3", d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ) as "as-ms-pr", date(i."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value" from "prod2-generico"."prod2-generico"."invoice-items" ii left join "prod2-generico"."prod2-generico".invoices i on ii."invoice-id" = i.id left join "prod2-generico"."prod2-generico".stores s on s.id = i."store-id" left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id left join (select * from (select "invoice-item-id", "short-book-id", row_number() over(partition by "invoice-item-id" order by "short-book-id" desc) as count_new from "prod2-generico"."prod2-generico"."short-book-invoice-items" sbii ) a where a.count_new=1 ) g on ii.id = g."invoice-item-id" left join "prod2-generico"."prod2-generico"."short-book-1" sb on g."short-book-id" = sb.id where date(i."approved-at") >='{}' and date(i."approved-at") <='{}' and s."franchisee-id" =1 group by "type-1", i."store-id" , s."name" , "sub-type-1", (case when i."distributor-id" = 8105 then 'WH' else 'DC' end) , "sub-type-3", d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ), date(i."approved-at") '''.format(start_date, end_date) store_dc_wh_purchase=rs_db.get_df(query=q_2) #Store Local Purchase q_3=''' select 'store' as "type-1", i."store-id" as "entity-id" , s."name" as "entity-name", 'PB' as "sub-type-1", 'LP' as "sub-type-2", '' as "sub-type-3", d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", '' as "as-ms-pr", date(i."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value" from "prod2-generico"."prod2-generico"."invoice-items-1" ii left join "prod2-generico"."prod2-generico"."invoices-1" i on ii."franchisee-invoice-id" =i.id left join "prod2-generico"."prod2-generico".stores s on s.id = i."store-id" left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id where ii."invoice-item-reference" is null and s."franchisee-id" =1 and date(i."approved-at") >='{}' and date(i."approved-at") <='{}' group by "type-1", i."store-id" , s."name" , "sub-type-1", "sub-type-2", "sub-type-3", d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , "as-ms-pr", date(i."approved-at") '''.format(start_date, end_date) store_lp_purchase=rs_db.get_df(query=q_3) #Network Level # DC Purchase q_4=''' select 'network' as "type-1", i."dc-id" as "entity-id" , s."name" as "entity-name", 'PB' as "sub-type-1", 'DC' as "sub-type-2", '' as "sub-type-3", d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ) as "as-ms-pr", date(i."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value" from "prod2-generico"."prod2-generico"."invoice-items" ii left join "prod2-generico"."prod2-generico".invoices i on ii."invoice-id" = i.id left join "prod2-generico"."prod2-generico".stores s on i."dc-id" =s.id left join "prod2-generico"."prod2-generico".stores s2 on i."store-id" =s2.id left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id left join (select * from (select "invoice-item-id", "short-book-id", row_number() over(partition by "invoice-item-id" order by "short-book-id" desc) as count_new from "prod2-generico"."prod2-generico"."short-book-invoice-items" sbii ) a where a.count_new=1 ) g on ii.id = g."invoice-item-id" left join "prod2-generico"."prod2-generico"."short-book-1" sb on g."short-book-id" = sb.id where date(i."approved-at") >='{}' and date(i."approved-at") <='{}' and s2."franchisee-id" =1 and i."distributor-id" !=8105 group by "type-1", i."dc-id" , s."name" , "sub-type-1", "sub-type-2", "sub-type-3", d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , (case when sb."patient-id"=4480 and sb."auto-short"=1 then 'AS' When sb."auto-short"=0 and sb."auto-generated"=0 and sb."patient-id"!=4480 then 'PR' when sb."auto-short" =1 and sb."patient-id" !=4480 then 'MS' else 'distributor-dump' end ) , date(i."approved-at") '''.format(start_date, end_date) network_dc_purchase=rs_db.get_df(query=q_4) # Local purchase network q_5=''' select 'network' as "type-1", '' as "entity-id", '' as "entity-name", 'PB' as "sub-type-1", 'LP' as "sub-type-2", '' as "sub-type-3", d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", '' as "as-ms-pr", date(i."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value" from "prod2-generico"."prod2-generico"."invoice-items-1" ii left join "prod2-generico"."prod2-generico"."invoices-1" i on ii."franchisee-invoice-id" =i.id left join "prod2-generico"."prod2-generico".stores s on s.id = i."store-id" left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id where ii."invoice-item-reference" is null and s."franchisee-id" =1 and date(i."approved-at") >='{}' and date(i."approved-at") <='{}' group by "type-1", "entity-id" , "entity-name" , "sub-type-1", "sub-type-2", "sub-type-3", d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , date(i."approved-at") '''.format(start_date, end_date) network_lp_purchase=rs_db.get_df(query=q_5) # Sale to Franchisee q_6=''' select 'network' as "type-1", s."franchisee-id" as "entity-id" , f."name" as "entity-name", 'SB' as "sub-type-1", 'Franchisee' as "sub-type-2", (case when i."distributor-id" = 8105 then 'WH' else 'DC' end) as "sub-type-3", d."type" as "drug-type", d.category as "drug-category", (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", i."distributor-id" , d2."name" as "distributor-name", '' as "as-ms-pr", date(i1."approved-at") as "approved-date", SUM(ii."actual-quantity") as "net-quantity", SUM(ii."net-value") as "net-value" from "prod2-generico"."prod2-generico"."invoice-items-1" ii left join "prod2-generico"."prod2-generico"."invoices-1" i1 on ii."franchisee-invoice-id" =i1.id left join "prod2-generico"."prod2-generico".invoices i on ii."invoice-id" =i.id left join "prod2-generico"."prod2-generico".stores s on i1."store-id" =s.id left join "prod2-generico"."prod2-generico".franchisees f on s."franchisee-id" =f.id left join "prod2-generico"."prod2-generico".drugs d on ii."drug-id" = d.id left join "prod2-generico"."prod2-generico".distributors d2 on i."distributor-id" =d2.id where date(i1."approved-at") >='{}' and date(i1."approved-at") <='{}' and s."franchisee-id" !=1 and i1."franchisee-invoice" =0 group by "type-1", s."franchisee-id" , f."name" , "sub-type-1", "sub-type-2", (case when i."distributor-id" = 8105 then 'WH' else 'DC' end), d."type" , d.category , (case when d."company-id" = 6984 then 'true' else 'false' end), i."distributor-id" , d2."name" , date(i1."approved-at"); '''.format(start_date, end_date) network_franchisee_sale=rs_db.get_df(query=q_6) #Drug INFO # drug info drug_info = ''' select d.id as "drug-id", d."type" as "drug-type" , d."category" as "drug-category", (case when d."company-id" =6984 then 'true' else 'false' end) as "goodaid-flag" from "prod2-generico".drugs d ''' drug_info = rs_db.get_df(query=drug_info) # Warehouse purchase network # Bhiwandi Warehouse mssql_bhw = MSSql(connect_via_tunnel=False) cnxn = mssql_bhw.open_connection() cursor = cnxn.cursor() q_7=''' select 'network' as "type-1", 199 as "entity-id" , 'bhiwandi-warehouse' as "entity-name", 'PB' as "sub-type-1", 'WH' as "sub-type-2", (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end) as "sub-type-3", i.Barcode as "drug-id", sp.acno as "distributor-id", a."name" as "distributor-name", (CASE when f.Uid is null then 'Auto' else 'manual' end ) as "as-ms-pr", CONVERT(date , sp.Vdt) as "approved-date", SUM(sp.qty) as "net-quantity", SUM(sp.netamt + sp.taxamt) as "net-value" from salepurchase2 sp left join item i on sp.itemc = i.code left join acm a on sp.acno = a.code left join (Select Uid,Vtyp,Vdt,Acno,Vno FROM Salepurchase1 sp1 where sp1.Vtyp ='PO' and sp1.Slcd ='SL') f on (f.Vno=sp.RefVno and convert(date,sp.RefVdt) =convert(date,f.Vdt) and sp.Acno =f.acno) where sp.vtype = 'PB' and sp.vdt >= '{}' and sp.vdt <= '{}' and sp.qty >0 and isnumeric(i.Barcode) = 1 and i.barcode not like '%[^0-9]%' and sp.Acno not IN (59489) group by (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end), i.Barcode , sp.acno , a."name" , (CASE when f.Uid is null then 'Auto' else 'manual' end ), sp.Vdt; '''.format(start_date, end_date) network_wh_purchase_bhiwandi= pd.read_sql(q_7,cnxn) # GOODAID Warehouse mssql_ga = MSSql(connect_via_tunnel=False,db='Esdata_WS_2') cnxn = mssql_ga.open_connection() cursor = cnxn.cursor() q_8=''' select 'network' as "type-1", 343 as "entity-id" , 'goodaid-warehouse' as "entity-name", 'PB' as "sub-type-1", 'WH' as "sub-type-2", (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end) as "sub-type-3", i.Barcode as "drug-id", sp.acno as "distributor-id", a."name" as "distributor-name", (CASE when f.Uid is null then 'Auto' else 'manual' end ) as "as-ms-pr", CONVERT(date , sp.Vdt) as "approved-date", SUM(sp.qty) as "net-quantity", SUM(sp.netamt + sp.taxamt) as "net-value" from salepurchase2 sp left join item i on sp.itemc = i.code left join acm a on sp.acno = a.code left join (Select Uid,Vtyp,Vdt,Acno,Vno FROM Salepurchase1 sp1 where sp1.Vtyp ='PO' and sp1.Slcd ='SL') f on (f.Vno=sp.RefVno and convert(date,sp.RefVdt) =convert(date,f.Vdt) and sp.Acno =f.acno) where sp.vtype = 'PB' and sp.vdt >= '{}' and sp.vdt <= '{}' and sp.qty >0 and isnumeric(i.Barcode) = 1 and i.barcode not like '%[^0-9]%' group by (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end), i.Barcode , sp.acno , a."name" , (CASE when f.Uid is null then 'Auto' else 'manual' end ), sp.Vdt '''.format(start_date, end_date) network_wh_purchase_goodaid= pd.read_sql(q_8,cnxn) mssql_tepl = MSSql(connect_via_tunnel=False,db='Esdata_TEPL') cnxn = mssql_tepl.open_connection() cursor = cnxn.cursor() q_9=''' select 'network' as "type-1", 342 as "entity-id" , 'tepl-warehouse' as "entity-name", 'PB' as "sub-type-1", 'WH' as "sub-type-2", (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end) as "sub-type-3", i.Barcode as "drug-id", sp.acno as "distributor-id", a."name" as "distributor-name", (CASE when f.Uid is null then 'Auto' else 'manual' end ) as "as-ms-pr", CONVERT(date , sp.Vdt) as "approved-date", SUM(sp.qty) as "net-quantity", SUM(sp.netamt + sp.taxamt) as "net-value" from salepurchase2 sp left join item i on sp.itemc = i.code left join acm a on sp.acno = a.code left join (Select Uid,Vtyp,Vdt,Acno,Vno FROM Salepurchase1 sp1 where sp1.Vtyp ='PO' and sp1.Slcd ='SL') f on (f.Vno=sp.RefVno and convert(date,sp.RefVdt) =convert(date,f.Vdt) and sp.Acno =f.acno) where sp.vtype = 'PB' and sp.vdt >= '{}' and sp.vdt <= '{}' and sp.qty >0 and isnumeric(i.Barcode) = 1 and i.barcode not like '%[^0-9]%' group by (CASE when sp.vno>0 then 'barcoded' else 'non-barcoded' end), i.Barcode , sp.acno , a."name" , (CASE when f.Uid is null then 'Auto' else 'manual' end ), sp.Vdt '''.format(start_date, end_date) network_wh_purchase_tepl= pd.read_sql(q_9,cnxn) network_wh_purchase=\ pd.concat([network_wh_purchase_bhiwandi,network_wh_purchase_goodaid,network_wh_purchase_tepl], sort=False,ignore_index=False) network_wh_purchase[['drug-id']]= network_wh_purchase[['drug-id']].\ apply(pd.to_numeric, errors='ignore').\ astype('Int64') network_wh_purchase=pd.merge(network_wh_purchase,drug_info,how='left',on='drug-id') network_wh_purchase[['drug-type','drug-category', 'goodaid-flag']]=\ network_wh_purchase[['drug-type','drug-category', 'goodaid-flag']].\ fillna('NA') network_wh_purchase=network_wh_purchase.drop(['drug-id'],axis=1) network_wh_purchase[['net-quantity']]=network_wh_purchase[['net-quantity']].astype(np.int64) network_wh_purchase=network_wh_purchase.\ groupby(['type-1','entity-id','entity-name','sub-type-1', 'sub-type-2','sub-type-3','drug-type','drug-category', 'goodaid-flag','distributor-id', 'distributor-name','as-ms-pr','approved-date']).sum() network_wh_purchase=network_wh_purchase.reset_index() network_wh_purchase[['entity-id']]=network_wh_purchase[['entity-id']].replace(0, np.nan) network_wh_purchase=network_wh_purchase[['type-1','entity-id','entity-name','sub-type-1', 'sub-type-2','sub-type-3','drug-type','drug-category', 'goodaid-flag','distributor-id', 'distributor-name','as-ms-pr','approved-date','net-quantity', 'net-value']] sale_purchase_all=pd.concat([store_sales,store_dc_wh_purchase,store_lp_purchase, network_dc_purchase, network_lp_purchase,network_wh_purchase,network_franchisee_sale], sort=False,ignore_index=False) sale_purchase_all[['entity-id', 'distributor-id']]= \ sale_purchase_all[['entity-id','distributor-id']].\ apply(pd.to_numeric, errors='ignore').astype('Int64') sale_purchase_all[['net-quantity']]=sale_purchase_all[['net-quantity']].astype(np.int64) sale_purchase_all[['net-value']]=sale_purchase_all[['net-value']].astype(np.float64) #code for daily investor mail sale_purchase_investor=sale_purchase_all[sale_purchase_all["approved-date"]==end_date] sale_purchase_investor=sale_purchase_investor[sale_purchase_investor["type-1"]=='store'] sale_purchase_investor=sale_purchase_investor[sale_purchase_investor["sub-type-1"]=='PB'] sale_purchase_investor=sale_purchase_investor.\ drop(["type-1","sub-type-1","sub-type-3","drug-type", "drug-category","goodaid-flag","distributor-id", "distributor-name","as-ms-pr","net-quantity"],axis=1) sale_purchase_investor=sale_purchase_investor.groupby(['entity-id','entity-name', 'sub-type-2', 'approved-date']).sum() sale_purchase_investor = pd.pivot_table(sale_purchase_investor, values='net-value', index=['entity-id', 'entity-name','approved-date'], columns=['sub-type-2']).reset_index() sale_purchase_investor=sale_purchase_investor.fillna(0) sale_purchase_investor=sale_purchase_investor.reset_index() sale_purchase_investor=sale_purchase_investor.drop(["index"],axis=1) sale_purchase_file_name = 'purchase_sale/sale_purchase_report_{}.csv'.format(end_date) sale_purchase_uri = s3.save_df_to_s3(df=sale_purchase_investor, file_name=sale_purchase_file_name) created_at = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") sale_purchase_all['created-at']=datetime.datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") updated_at = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") sale_purchase_all['updated-at']=datetime.datetime.strptime(updated_at,"%Y-%m-%d %H:%M:%S") sale_purchase_all['created-by'] = 'etl-automation' sale_purchase_all['updated-by'] = 'etl-automation' sale_purchase_all.columns = [c.replace('_', '-') for c in sale_purchase_all.columns] schema = "prod2-generico" table_name = "purchase-sales-meta" table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) #truncating the last 5 days data delete_q = """ DELETE FROM "prod2-generico"."purchase-sales-meta" WHERE date("approved-date") >= '{start_date_n}' and date("approved-date") <= '{end_date_n}' """.format(start_date_n=start_date, end_date_n=end_date) rs_db.execute(delete_q) #Keep only Last one year data delete_one_year=''' delete from "prod2-generico"."purchase-sales-meta" where date("approved-date")<=current_date -interval '12 months' ''' rs_db.execute(delete_one_year) s3.write_df_to_db(df=sale_purchase_all[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) status=True if status==True: script_status="Success" else: script_status="Failed" email = Email() #email.send_email_file(subject=f"purchase_sales # start date: {start_date} end date: {end_date} {script_status}", #mail_body=f"purchase_sales status: {script_status} ", #to_emails=email_to) email.send_email_file(subject=f"sale purchase report for date {end_date}", mail_body=f"PFA sale purchase data for date {end_date} ", to_emails=email_to, file_uris=[sale_purchase_uri]) rs_db.close_connection() mssql_bhw.close_connection() mssql_ga.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ops-data-query/ops-data-query.py
ops-data-query.py
import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.fcst_performance.helper_functions import get_store_ids, \ handle_multiple_resets from zeno_etl_libs.utils.fcst_performance.get_data import GetData from zeno_etl_libs.utils.fcst_performance.data_operations import cal_fields_store_drug_level def main(debug_mode, days_to_replenish, days_delta, reset_date, exclude_stores, rs_db_read, rs_db_write, read_schema, write_schema): s3 = S3() logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' # Get store_ids with corresponding store_type-map for above reset date store_ids, store_type_map = get_store_ids(reset_date, exclude_stores, rs_db_read, read_schema) try: if store_ids: logger.info(f"Store IDs to perform calculations: {store_ids}") # Initialize get_data class object get_data = GetData(store_ids, reset_date, days_to_replenish, days_delta, rs_db_read, read_schema, logger) logger.info(f"Fetching required data for all stores") # Get required raw data for all stores and group by store_id df_inv_comb = get_data.curr_inv().groupby("store_id") df_sales_comb = get_data.sales_28day().groupby("store_id") df_pr_loss_comb = get_data.pr_loss_28day().groupby("store_id") df_3m_sales_comb = get_data.sales_3m().groupby("store_id") df_sdl_combined = [] for index, store_id in enumerate(store_ids): print(f"Calculations started for store_id: {store_id}") logger.info(f"Calculations started for store_id: {store_id}") store_type = store_type_map[index] # Get uploaded_at cut_off_condition if multiple resets happened sql_cut_off_condition = handle_multiple_resets(reset_date, store_id, store_type, rs_db_read, read_schema, logger) if store_type == "ipc": df_ss = get_data.ipc_ss(store_id, sql_cut_off_condition) elif store_type == "non_ipc": df_ss = get_data.non_ipc_ss(store_id, sql_cut_off_condition) else: df_ss = get_data.ipc2_ss(store_id, sql_cut_off_condition) # Get store level data from grouped data df_inv = df_inv_comb.get_group(store_id) df_sales = df_sales_comb.get_group(store_id) df_pr_loss = df_pr_loss_comb.get_group(store_id).groupby( "drug_id")["pr_loss"].sum().reset_index() df_3m_sales = df_3m_sales_comb.get_group(store_id) # Get store-drug level forecast performance table logger.info("Creating store-drug level table") df_sdl = cal_fields_store_drug_level(df_ss, df_inv, df_sales, df_pr_loss, df_3m_sales) df_sdl_combined.append(df_sdl) df_store_drug_lvl = pd.concat(df_sdl_combined) logger.info("All calculations completed") # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") df_store_drug_lvl['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_store_drug_lvl['created-by'] = 'etl-automation' df_store_drug_lvl['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_store_drug_lvl['updated-by'] = 'etl-automation' df_store_drug_lvl.columns = [c.replace('_', '-') for c in df_store_drug_lvl.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='forecast-performance-store-drug-level', schema=write_schema) columns = list(table_info['column_name']) df_store_drug_lvl = df_store_drug_lvl[columns] # required column order logger.info("Writing to table: forecast-performance-store-drug-level") s3.write_df_to_db(df=df_store_drug_lvl, table_name='forecast-performance-store-drug-level', db=rs_db_write, schema=write_schema) else: logger.info("Writing to RS-DB skipped") else: logger.info("No Stores to evaluate") status = 'Success' logger.info(f"Forecast performance code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Forecast performance code execution status: {status}") return status, store_ids if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="N", type=str, required=False) parser.add_argument('-dtr', '--days_to_replenish', default="4", type=str, required=False) parser.add_argument('-dd', '--days_delta', default="28", type=str, required=False) parser.add_argument('-rd', '--reset_date', default="YYYY-MM-DD", type=str, required=False) parser.add_argument('-exs', '--exclude_stores', default="282,283,293,291,295,299,303,302,298,316,311,313", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode # JOB EXCLUSIVE PARAMS days_to_replenish = int(args.days_to_replenish) days_delta = int(args.days_delta) reset_date = args.reset_date exclude_stores = args.exclude_stores.replace(" ", "").split(",") logger = get_logger() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # Default value: days_to_replenish = 4, days_delta = 28 if days_delta < 28: logger.info(f"INPUT: days_delta = {days_delta} not acceptable, changing to 28") days_delta = 28 # convert sting store_ids to int exclude_stores = [int(i) for i in exclude_stores] # Reset date to look for in ss_table if reset_date == 'YYYY-MM-DD': reset_date = dt.date.today() - dt.timedelta(days_to_replenish + days_delta) logger.info(f"Store reset date selected: {reset_date}") else: reset_date = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() logger.info(f"INPUT: Store reset date: {reset_date}") if (dt.date.today() - reset_date).days < (days_delta + days_to_replenish): logger.info("Reset date too close, reverting to default") reset_date = dt.date.today() - dt.timedelta(days_to_replenish + days_delta) logger.info(f"Store reset date selected: {reset_date}") # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() """ calling the main function """ status, store_ids = main( debug_mode, days_to_replenish, days_delta, reset_date, exclude_stores, rs_db_read, rs_db_write, read_schema, write_schema) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"Fcst Performance Job (GLUE-{env}) {str(dt.date.today())}: {status}", mail_body=f""" Debug Mode: {debug_mode} Job Params: {args} Reset Date Evaluated: {str(reset_date)} Store ID's Evaluated: {store_ids} """, to_emails=email_to) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/fcst_performance/fcst_performance_main.py
fcst_performance_main.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger def main(db): table_name = "sb-sla" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "etl-created-by", "updated-by", "updated-at", "patient-id", "store-name", "drug-name", "as-ms-pr", "round", "distributor-flag", "invoice-tat", "dispatch-tat", "delivery-tat", "re-order-tat", "ordered-tat", "status", "requested-quantity", "quantity", "required-quantity", "inventory-at-creation", "inventory-at-ordering", "created-at", "year-created-at", "month-created-at", "ordered-time", "invoiced-at", "dispatched-at", "delivered-at", "completed-at", "re-ordered-at", "store-delivered-at", "decline-reason", "type", "store-id", "drug-id", "company", "company-id", "composition", "composition-master-id", "category", "schedule", "sub-type", "preferred-distributor-id", "preferred-distributor-name", "drug-grade", "purchase-rate", "ptr", "distributor-type", "recieved-distributor-id", "received-distributor-name", "forward-dc-id", "dc-name", "abo", "line-manager", "store-manager", "city", "store-b2b", "franchisee-short-book", "auto-check", "sla-id" ) select a.id, 'etl-automation' as "etl-created-by", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", a."patient-id" as "patient-id", b."name" as "store-name", a."drug-name" as "drug-name", (case when a."auto-short" = 1 and a."created-by" = 'AUTO SHORT' and a."patient-id" = 4480 then 'as' when a."auto-short" = 1 and a."patient-id" != 4480 then 'ms' else 'pr' end) as "as-ms-pr", (case when extract('hour' from a."created-at")<14 then 1 when (extract('hour' from a."created-at")>= 14 and extract('hour' from a."created-at")<23) then 2 else 3 end) as "round" , (case when a."distributor-id" = 8105 then 'wh' else 'dc' end) as "distributor-flag" , --Fulfillment on Invoice (case when (date(a."invoiced-at") = '0101-01-01' or date(a."created-at") = '0101-01-01') then null else dateadd(hour, tat."invoice-time",(dateadd(day, tat."invoice-date", date(a."created-at")))) end) as "invoice-tat", --Fulfillment on dispatch (case when (date(a."dispatched-at") = '0101-01-01' or date(a."created-at") = '0101-01-01') then null else dateadd(hour, tat."dispatch-time",(dateadd(day, tat."dispatch-date", date(a."created-at")))) end) as "dispatch-tat", --Fulfillment on delivery (case when (date(msda."store-delivered-at") = '0101-01-01' or date(a."created-at") = '0101-01-01') then null else dateadd(hour, tat."delivery-time",(dateadd(day, tat."delivery-date", date(a."created-at")))) end) as "delivery-tat", -- Re-order Timing -- (case when (date(a."re-ordered-at") = '0101-01-01' or date(a."created-at") = '0101-01-01') then null else dateadd(hour, tat."reorder-time",(dateadd(day, tat."reorder-date", date(a."created-at")))) end) as "re-order-tat", --order Timing-- (case when (date(a."ordered-at") = '0101-01-01' or date(a."created-at") = '0101-01-01') then null else dateadd(hour, tat."reorder-time",(dateadd(day, tat."reorder-date", date(a."created-at")))) end) as "ordered-tat", a."status" as "status", a."requested-quantity" as "requested-quantity", a."quantity" as "quantity", a."required-quantity" as "required-quantity", a."inventory-at-creation" as "inventory-at-creation" , a."inventory-at-ordering" as "inventory-at-ordering", case when a."created-at" = '0101-01-01' then null else a."created-at" end as "created-at", extract(year from a."created-at") as "year-created-at", extract(month from a."created-at") as "month-created-at", case when date(a."ordered-at") = '0101-01-01' then null else a."ordered-at" end as "ordered-time", case when date(a."invoiced-at") = '0101-01-01' then null else a."invoiced-at" end as "invoiced-at", case when date(a."dispatched-at") = '0101-01-01' then null else a."dispatched-at" end as "dispatched-at", case when date(a."delivered-at") = '0101-01-01' then null else a."delivered-at" end as "delivered-at", case when date(a."completed-at") = '0101-01-01' then null else a."completed-at" end as "completed-at", case when date(a."re-ordered-at") = '0101-01-01' then null else a."re-ordered-at" end as "re-ordered-at", case when date(msda."store-delivered-at") = '0101-01-01' then null else msda."store-delivered-at" end as "store-delivered-at", a."decline-reason" as "decline-reason", c."type", a."store-id" as "store-id", a."drug-id" as "drug-id", c."company", c."company-id" as "company-id" , c."composition" , c."composition-master-id" as "composition-master-id" , c."category" , c."schedule" , c."sub-type" as "sub-type" , f."id" as "preferred-distributor-id", f."name" as "preferred-distributor-name", e."drug-grade" as "drug-grade", dp."purchase-rate" as "purchase-rate", dp."ptr", d."type" as "distributor-type", d."id" as "recieved-distributor-id", d."name" as "received-distributor-name", j."forward-dc-id" as "forward-dc-id", ss."name" as "dc-name", msm."abo" , msm."line-manager" , msm."store-manager" , msm."city", msm."store-b2b", a."franchisee-short-book" as "franchisee-short-book", a."auto-check", tat."sla-id" from "prod2-generico"."short-book-1" a left join "prod2-generico"."stores" b on b."id" = a."store-id" left join "prod2-generico"."drugs" c on c."id" = a."drug-id" left join ( select "drug-id", AVG("purchase-rate") as "purchase-rate", AVG(ptr) as "ptr" from "prod2-generico"."inventory-1" i where "created-at" >= dateadd(day, -360, CURRENT_DATE) group by "drug-id") as dp on a."drug-id" = dp."drug-id" left join "prod2-generico"."distributors" d on d."id" = a."distributor-id" left join "prod2-generico"."drug-order-info" e on e."store-id" = a."store-id" and e."drug-id" = a."drug-id" left join "prod2-generico"."distributors" f on a."preferred-distributor" = f."id" left join ( select * from "prod2-generico"."store-dc-mapping" where "drug-type" = 'ethical') j on j."store-id" = a."store-id" left join "prod2-generico"."stores" ss on ss."id" = j."forward-dc-id" left join "prod2-generico"."store-delivered" msda on a."id" = msda."id" left join "prod2-generico"."stores-master" msm on a."store-id" = msm.id left join "prod2-generico"."tat-sla" tat on (case when extract('hour' from a."created-at")<14 then 1 when (extract('hour' from a."created-at")>= 14 and extract('hour' from a."created-at")<23) then 2 else 3 end) = tat.round and (case when a."distributor-id" = 8105 then 'wh' else 'dc' end) = tat."distributor-type" and (case when a."auto-short" = 1 and a."created-by" = 'AUTO SHORT' and a."patient-id" = 4480 then 'as_ms' when a."auto-short" = 1 and a."patient-id" != 4480 then 'as_ms' else 'pr' end) = tat."as-ms-pr-flag" and datepart(weekday, a."created-at") = tat.day and a."store-id" = tat."store-id" where a."status" not in ('deleted'); """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sb-sla/sb-sla.py
sb-sla.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz from zeno_etl_libs.helper.websocket.websocket import Websocket import json from datetime import datetime, timedelta import argparse import pandas as pd import numpy as np import time import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-st', '--start1', default="NULL", type=str, required=False) parser.add_argument('-ed', '--start2', default="NULL", type=str, required=False) parser.add_argument('-ct', '--cluster_to_exclude_if_blank_none', default="NULL", type=str, required=False) parser.add_argument('-wt', '--write_to_mysql', default="1", type=str, required=False) parser.add_argument('-ah', '--api_hit', default="1", type=str, required=False) parser.add_argument('-rfm', '--read_from_mysql', default="0", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to start1 = args.start1 start2 = args.start2 cluster_to_exclude_if_blank_none = args.cluster_to_exclude_if_blank_none write_to_mysql = args.write_to_mysql api_hit = args.api_hit read_from_mysql = args.read_from_mysql if int(read_from_mysql) == 1: read_from_mysql = True else: read_from_mysql = False os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() mysql_write = MySQL(read_only=False) mysql_write.open_connection() # Reason for using Mysql read - Just after writing We want to hit API with Incremetally added ID mysql_read = MySQL() mysql_read.open_connection() s3 = S3() ws = Websocket() start_time = datetime.now(tz=gettz('Asia/Kolkata')) today_date = start_time.strftime('%Y-%m-%d') logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("write_to_mysql- " + write_to_mysql) logger.info("api_hit- " + api_hit) logger.info("read_from_mysql- " + str(read_from_mysql)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") code_started_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') code_started_at_datetime = datetime.now(tz=gettz('Asia/Kolkata')) # ============================================================================= # set parameters # ============================================================================= if start1 == "NULL" and start2 == "NULL": # pick orders from to last night 2030 to today morning 0800 logger.info("Read automated dates") if datetime.now(tz=gettz('Asia/Kolkata')).strftime('%H:%M:%S') < '09:30:00': start1 = (datetime.now(tz=gettz('Asia/Kolkata')) - timedelta(days=1)).strftime('%Y-%m-%d 19:00:00') start2 = (datetime.now(tz=gettz('Asia/Kolkata'))).strftime('%Y-%m-%d 09:00:00') logger.info("start1 {}".format(start1)) logger.info("start2 {}".format(start2)) logger.info("") else: if env == 'dev': def ceil_dt(dt, delta): return dt + (datetime(1, 1, 1, 0, 0, tzinfo=gettz('Asia/Calcutta')) - dt) % delta else: def ceil_dt(dt, delta): return dt + (datetime(1, 1, 1, 0, 0, 0, tzinfo=gettz('Asia/Calcutta')) - dt) % delta + timedelta( minutes=23, seconds=20) start2 = (ceil_dt(datetime.now(tz=gettz('Asia/Kolkata')), timedelta(minutes=-30))) # If startup time is more than 6.40 minutes, ceil_dt gives output of next timeinterval if start2>code_started_at_datetime: start2 = start2 + timedelta( minutes=-30, seconds=0) start1 = (start2 - timedelta(minutes=30)).strftime('%Y-%m-%d %H:%M:%S') start2 = start2.strftime('%Y-%m-%d %H:%M:%S') logger.info("start1 {}".format(start1)) logger.info("start2 {}".format(start2)) logger.info("") else: start1 = start1 start2 = start2 logger.info("Read manual dates") logger.info("start1 {}".format(start1)) logger.info("start2 {}".format(start2)) # start1 = '2022-07-07 08:00:00' # start2 = '2022-07-07 10:00:00' # Writng this function so that we can get list of stores irrespective of input format in parameter def fetch_number(list): list2 = [] for i in list: try: int(i) list2.append(int(i)) except: pass return list2 if cluster_to_exclude_if_blank_none == "NULL": logger.info('Missing parameter for cluster exclusion, Taking all cluster') cluster_to_exclude_if_blank_none = [] else: cluster_to_exclude_if_blank_none = cluster_to_exclude_if_blank_none cluster_to_exclude_if_blank_none = fetch_number(cluster_to_exclude_if_blank_none[1:-1].split(',')) logger.info('read parameters for cluster exclusion, cluster id to exclude are - {}'.format( cluster_to_exclude_if_blank_none)) # ============================================================================= # store clusters # ============================================================================= if read_from_mysql: qc = """ select sf.`feature-id`, f.feature, sf.`store-id`, sf.`is-active`, sc.`cluster-id` from features f join `store-features` sf on f.id = sf.`feature-id` join `store-clusters` sc on sc.`store-id` = sf.`store-id` where sf.`feature-id` = 69 and sf.`is-active` = 1 and sc.`is-active` = 1 """ store_clusters = pd.read_sql_query(qc, mysql_read.connection) else: qc = """ select sf."feature-id", f.feature, sf."store-id", sf."is-active", sc."cluster-id" from "prod2-generico".features f join "prod2-generico"."store-features" sf on f.id = sf."feature-id" join "prod2-generico"."store-clusters" sc on sc."store-id" = sf."store-id" where sf."feature-id" = 69 and sf."is-active" = 1 and sc."is-active" = 1 """ store_clusters = rs_db.get_df(qc) cluster_fullfilment_final = pd.DataFrame() orders_raw = pd.DataFrame() cluster_list = list(set(store_clusters['cluster-id'].unique()) - set(cluster_to_exclude_if_blank_none)) for cluster in cluster_list: logger.info("") logger.info("cluster {}".format(cluster)) temp = store_clusters[store_clusters['cluster-id'] == cluster] cluster_stores = tuple(map(int, list(temp['store-id'].unique()))) # cluster_stores = tuple(map(int, list([2, 4, 7, 8, 230, 244, 264]))) logger.info("cluster stores {}".format(cluster_stores)) logger.info("") summ_data = pd.DataFrame() for i in cluster_stores: logger.info("running for store {}".format(i)) logger.info("") # analysis_store = tuple(map(int, list([i]))) analysis_store = i # analysis_cluster = tuple(map(int, [x for x in cluster_stores if x != i])) analysis_cluster = cluster_stores # for manual run # i = 8 # analysis_store = tuple(map(int, list([i]))) # analysis_cluster = tuple(map(int, [x for x in cluster_stores if x != i])) # ============================================================================= # Fetch open PSOs for selected time period # ============================================================================= if read_from_mysql: orde = """ select pso.`order-number`, pso.`patient-request-id`, pso.`zeno-order-id` , pso.`patient-id` , pso.id as `pso-id`, pso.`order-source` , pso.`order-type` , pso.`status`, pso.`created-at`, pso.`store-id` , s.`name` as `store-name`, pso.`drug-id` , pso.`drug-name` , pso.`requested-quantity`, pso.`inventory-quantity` as `inventory-at-creation`, pr.`required-quantity`, pr.`quantity-to-order` from `prod2-generico`.`patients-store-orders` pso left join `prod2-generico`.`patient-requests` pr on pso.`patient-request-id` = pr.id join `prod2-generico`.`stores` s on s.`id` = pso.`store-id` where pr.`created-at` > '{start1}' and pr.`created-at` <= '{start2}' and pso.`store-id` = {analysis_store} and pso.status not in ('billed', 'completed') order by pso.`created-at` DESC """.format(start1=start1, start2=start2, analysis_store=analysis_store) orders = pd.read_sql_query(orde, mysql_read.connection) else: orde = """ select pso."order-number", pso."patient-request-id", pso."zeno-order-id" , pso."patient-id" , pso.id as "pso-id", pso."order-source" , pso."order-type" , pso."status", pso."created-at", pso."store-id" , s."name" as "store-name", pso."drug-id" , pso."drug-name" , pso."requested-quantity", pso."inventory-quantity" as "inventory-at-creation", pr."required-quantity", pr."quantity-to-order" from "prod2-generico"."patients-store-orders" pso left join "prod2-generico"."patient-requests" pr on pso."patient-request-id" = pr.id join "prod2-generico"."stores" s on s."id" = pso."store-id" where pr."created-at" > '{start1}' and pr."created-at" <= '{start2}' and pso."store-id" = {analysis_store} and pso.status not in ('billed', 'completed') order by pso."created-at" DESC; """.format(start1=start1, start2=start2, analysis_store=analysis_store) orders = rs_db.get_df(orde) orders = orders[~orders['drug-id'].isnull()] # ============================================================================= # cluster inventory # ============================================================================= drugs = tuple(map(int, list(orders['drug-id'].unique()))) if len(drugs) < 2: drugs = drugs + (0, 0) if read_from_mysql: q_inv = """ select i.`store-id`, s.`name` as `store-name`, i.`drug-id`, sum(i.`quantity`) as `ci` from `prod2-generico`.`inventory-1` i join `prod2-generico`.stores s on i.`store-id` = s.`id` where i.`store-id` in {cluster_stores} and i.`drug-id` in {drugs} and i.`quantity` > 0 and i.`expiry` > (NOW() + INTERVAL 90 DAY) group by i.`store-id`, s.`name`, i.`drug-id`; """.format(cluster_stores=cluster_stores, drugs=drugs) df_inv = pd.read_sql_query(q_inv, mysql_read.connection) else: q_inv = """ select i."store-id", s."name" as "store-name", i."drug-id", sum(i."quantity") as "ci" from "prod2-generico"."inventory-1" i join "prod2-generico".stores s on i."store-id" = s."id" where i."store-id" in {cluster_stores} and i."drug-id" in {drugs} and i."quantity" > 0 and i."expiry" > dateadd(day,90,getdate()) group by i."store-id", s."name", i."drug-id"; """.format(cluster_stores=cluster_stores, drugs=drugs) df_inv = rs_db.get_df(q_inv) clus_inv = df_inv[df_inv['store-id'].isin(analysis_cluster)] # ============================================================================= # Start - Pilot - Mulund West can receive Items but should not transfer item # ============================================================================= clus_inv = clus_inv[~clus_inv['store-id'].isin([4])] # ============================================================================= # End- Pilot - Mulund West can receive Items but should not transfer item # ============================================================================= # cluster store inventory sum clus_inv_st_sum = clus_inv.groupby(['drug-id', 'store-id', 'store-name'], as_index=False).agg({ 'ci': ['sum'] }).reset_index(drop=True) clus_inv_st_sum.columns = ["-".join(x) for x in clus_inv_st_sum.columns.ravel()] clus_inv_st_sum.rename(columns={'store-name-': 'clus-store-name', 'store-id-': 'store-id', 'drug-id-': 'drug-id', 'ci-sum': 'clus-store-inv'}, inplace=True) # cluster inventory sum clus_inv_all_sum = clus_inv.groupby(['drug-id'], as_index=False).agg({ 'ci': ['sum'] }).reset_index(drop=True) clus_inv_all_sum.columns = ["-".join(x) for x in clus_inv_all_sum.columns.ravel()] clus_inv_all_sum.rename(columns={'drug-id-': 'drug-id', 'ci-sum': 'clus-inv'}, inplace=True) orders_clus_inv = pd.merge(left=orders, right=clus_inv_st_sum, how='left', on=['drug-id'], suffixes=('-x', '-y')).rename( columns={'store-id-y': 'clus-store-id'}) orders_clus_inv = pd.merge(left=orders_clus_inv, right=clus_inv_all_sum, how='left', on=['drug-id'], suffixes=('-x', '-y')).rename( columns={'store-id-y': 'clus-store-id'}) summ_data = summ_data.append(orders_clus_inv) summ_data['clus-inv'].fillna(0, inplace=True) summ_data['clus-store-inv'].fillna(0, inplace=True) summ_data['required-quantity'].fillna(0, inplace=True) summ_data['quantity-to-order'].fillna(0, inplace=True) summ_data['clus-inv-diff'] = (summ_data['clus-store-inv'] - summ_data['quantity-to-order']) # remove same store transfer due to partial inventory summ_data = summ_data[~(summ_data['store-id-x'] == summ_data['clus-store-id'])] # for QC later orders_raw = orders_raw.append([summ_data]) # ============================================================================= # MOST CRITICAL: tagging where to fulfill from # the logic can be cleaner # ============================================================================= conditions = [ (summ_data['quantity-to-order'] > 0) & (summ_data['clus-inv-diff'] >= 0), (summ_data['quantity-to-order'] == 0) ] choices = ['ff-using-single-store', 'ff-using-self-store'] summ_data['color'] = np.select(conditions, choices) summ_data1 = summ_data[summ_data['color'].isin(['ff-using-single-store', 'ff-using-self-store'])] summ_data1 = summ_data1[['order-number', 'patient-id', 'pso-id', 'drug-id', 'color']].drop_duplicates().rename( columns={'color': 'tag'}) summ_data = pd.merge(left=summ_data, right=summ_data1, how='left', on=['order-number', 'patient-id', 'pso-id', 'drug-id']) conditions = [ ( (summ_data['quantity-to-order'] > 0) & (summ_data['clus-inv'] >= summ_data['quantity-to-order']) & (summ_data['tag'].isnull()) ) ] choices = ['ff-using-multi-store'] summ_data['tag'] = np.select(conditions, choices, default=summ_data['tag']) summ_data['tag'].fillna('ff-using-DC-WH', inplace=True) # to consider partial ff cases summ_data_temp = summ_data.groupby(['order-number', 'pso-id']).size().reset_index().rename( columns={0: 'cumsum'}) summ_data['order-number'] = summ_data['order-number'].astype(object) summ_data_temp['order-number'] = summ_data_temp['order-number'].astype(object) summ_data['pso-id'] = summ_data['pso-id'].astype(int) summ_data_temp['pso-id'] = summ_data_temp['pso-id'].astype(int) summ_data = pd.merge(left=summ_data, right=summ_data_temp, how='left', on=['order-number', 'pso-id']) conditions = [ ( (summ_data['quantity-to-order'] > 0) & (summ_data['tag'] == 'ff-using-DC-WH') & (summ_data['cumsum'] == 1) ), ( (summ_data['quantity-to-order'] > 0) & (summ_data['tag'] == 'ff-using-DC-WH') & (summ_data['cumsum'] > 1) ) ] choices = ['ff-using-single-store', 'ff-using-multi-store'] summ_data['tag'] = np.select(conditions, choices, default=summ_data['tag']) # ============================================================================= # distance calculation # ============================================================================= strs = """ select * from ( select sd."store-id-x" as "store-id-x", sd."store-id-y" as "clus-store-id", sd."distance-on-road" as "distance" from "prod2-generico"."store-distance" sd where sd."store-id-x" in {})x where x."clus-store-id" in {} """.format(cluster_stores, cluster_stores) str_info_cross = rs_db.get_df(strs) summ_data = pd.merge(summ_data, str_info_cross[['store-id-x', 'clus-store-id', 'distance']], how='left', left_on=['store-id-x', 'clus-store-id'], right_on=['store-id-x', 'clus-store-id']) summ_data_clean = summ_data.drop(summ_data[ # ((summ_data['tag'] == 'ff_using_single_store') & # (summ_data.clus_inv_diff < 0)) | (summ_data['tag'] == 'ff-using-self-store') | (summ_data['tag'] == 'ff-using-DC-WH')].index) # this is likely redundant str_avail_cnt = summ_data_clean.groupby(['clus-store-id'])['pso-id'].count().reset_index().rename( columns={'pso-id': 'drug-availability-cnt'}) summ_data_clean = pd.merge(summ_data_clean, str_avail_cnt, how='left', left_on=['clus-store-id'], right_on=['clus-store-id']) # ============================================================================= # ff_using_single_store # ============================================================================= ff_using_single_store = summ_data_clean[ summ_data_clean['tag'] == 'ff-using-single-store'] ff_using_single_store_best = ff_using_single_store.sort_values( ['clus-store-inv', 'distance'], ascending=[False, True]).groupby(['order-number', 'pso-id']).head(1) ff_using_single_store_best = ff_using_single_store_best[['order-number', 'pso-id', 'clus-store-id', 'clus-store-name']]. \ rename(columns={'clus-store-id': 'best-store-id', 'clus-store-name': 'best-store-name'}) ff_using_single_store_best_all = pd.merge(ff_using_single_store, ff_using_single_store_best, how='left', left_on=['order-number', 'pso-id'], right_on=['order-number', 'pso-id']) ff_using_single_store_final = ff_using_single_store_best_all[ ff_using_single_store_best_all['clus-store-id'] == ff_using_single_store_best_all['best-store-id']] # ============================================================================= # ff_using_multi_store # ============================================================================= ff_using_multi_store = summ_data_clean[ summ_data_clean['tag'] == 'ff-using-multi-store'] ff_using_multi_store.sort_values(['order-number', 'pso-id', 'clus-store-inv'], ascending=[True, True, False], inplace=True) ff_using_multi_store['cumsum'] = ff_using_multi_store.groupby(['order-number', 'pso-id'])['clus-store-inv'].cumsum() ff_using_multi_store['cond'] = np.where( ff_using_multi_store['cumsum'] >= ff_using_multi_store['quantity-to-order'], 'red', 'green') ff_using_multi_store['temp'] = ff_using_multi_store['cumsum'].mask(ff_using_multi_store['cond'] != 'red').groupby( ff_using_multi_store['pso-id']).transform('first').astype(int, errors='ignore') ff_using_multi_store['cond'] = np.where(((ff_using_multi_store['cumsum'] == ff_using_multi_store['temp']) & (ff_using_multi_store['cond'] == 'red')), 'green', ff_using_multi_store['cond']) del ff_using_multi_store['temp'] ff_using_multi_store_final = ff_using_multi_store[ ff_using_multi_store['cond'] == 'green'] ff_using_multi_store_final['best-store-id'] = ff_using_multi_store_final['clus-store-id'] ff_using_multi_store_final['best-store-name'] = ff_using_multi_store_final['clus-store-name'] ff_using_single_multi_store = ff_using_single_store_final.append( [ff_using_multi_store_final]) # ============================================================================= # final dataset # ============================================================================= ff_using_single_multi_store['to-pick'] = np.where(( (ff_using_single_multi_store['clus-store-inv'] >= ff_using_single_multi_store['quantity-to-order'])), ff_using_single_multi_store['quantity-to-order'], ff_using_single_multi_store['clus-store-inv']) ff_using_single_multi_store['cluster-id'] = cluster cluster_fullfilment_final = (cluster_fullfilment_final.append([ff_using_single_multi_store])) # ============================================================================= # check whether algorithm missed any PSOs # ============================================================================= check_final = cluster_fullfilment_final.groupby(['pso-id'])['to-pick'].sum().reset_index() check_first = orders_raw[ orders_raw['quantity-to-order'] > 0][[ 'pso-id', 'drug-name', 'quantity-to-order', 'clus-inv']].drop_duplicates().reset_index(drop=True) check_first = check_first.groupby(['pso-id']).agg( {'quantity-to-order': [np.sum], 'drug-name': [max], 'clus-inv': [np.max]}).reset_index() check_first.columns = ["-".join(x) for x in check_first.columns.ravel()] check_first.rename(columns={'pso-id-': 'pso-id', 'drug-name-max': 'drug-name', 'quantity-to-order-sum': 'quantity-to-order', 'clus-inv-amax': 'clus-inv'}, inplace=True) check_first1 = check_first check_first = check_first[check_first['clus-inv'] > 0] check_first_final = pd.merge(check_first1, check_final, how='left', left_on=['pso-id'], right_on=['pso-id']) logger.info("") logger.info("missed {}".format((len(check_first) - len(check_final)))) logger.info("missed PSOs {}". format(list(sorted(set(check_first['pso-id']) - set(check_final['pso-id']))))) logger.info("") # ============================================================================= # for pushing to DSS/PROD # ============================================================================= output_df = cluster_fullfilment_final[['pso-id', 'best-store-id', 'best-store-name', 'store-id-x', 'store-name', 'drug-id', 'drug-name', 'to-pick', 'created-at', 'cluster-id']].rename(columns={ 'best-store-name': 'from-store', 'store-name': 'to-store', 'to-pick': 'item-quantity', 'created-at': 'pso-created_at' }) output_df['slot-date'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d') output_df['is-active'] = 1 output_df['created-by'] = '[email protected]' output_df['updated-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') output_df.sort_values(by=['from-store'], ascending=False, inplace=True) # for DSS output_df.rename(columns={'pso-id': 'patient-store-order-id', 'best-store-id': 'from-store-id', 'best-store-name': 'from-store-name', 'store-id-x': 'to-store-id', 'store-name': 'to-store-name'}, inplace=True) # for MySQL output_df_mysql = output_df[['patient-store-order-id', 'item-quantity', 'from-store-id', 'to-store-id', 'slot-date', 'is-active', 'created-by', 'updated-at']] output_df_mysql.rename(columns={ 'patient-store-order-id': 'patient-store-order-id', 'item-quantity': 'item-quantity', 'from-store-id': 'from-store-id', 'to-store-id': 'to-store-id', 'slot-date': 'slot-date', 'is-active': 'is-active', 'created-by': 'created-by', 'updated-at': 'updated-at'}, inplace=True) logger.info("") logger.info("completed for cluster {}".format(cluster_stores)) logger.info("") logger.info("{} PSOs created from {} to {}".format(len(output_df), start1, start2)) logger.info("") pso_cluster_fulfillment = output_df pso_cluster_fulfillment['pso-created-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # output_df_json = json.loads(output_df.to_json(orient='records')) pso_cluster_fulfillment[['from-store-id', 'to-store-id', 'drug-id', 'item-quantity']] = pso_cluster_fulfillment[ ['from-store-id', 'to-store-id', 'drug-id', 'item-quantity']].apply(pd.to_numeric, errors='ignore').astype('Int64') # # ============================================================================= # writing to PG # ============================================================================= # pushing pso_cluster_fulfillment table to redshift table status2 = False number_of_writing_attempts = 0 if int(write_to_mysql) == 1: try: number_of_writing_attempts = number_of_writing_attempts + 1 schema = 'prod2-generico' table_name = 'pso-cluster-fulfillment' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) s3.write_df_to_db(df=pso_cluster_fulfillment[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(' ') logger.info('table appended to Redshift') # pushing to mysql prod output_df_mysql.to_sql( name='pso-stock-transfer-mapping', con=mysql_write.engine, if_exists='append', chunksize=500, method='multi', index=False) logger.info(' ') logger.info('table appended to MySQL') status2 = True # ============================================================================= # Sending Notification to stores # ============================================================================= if int(api_hit) == 1: logger.info('sleep for 10 second') time.sleep(10) mysql_read2 = MySQL() mysql_read2.open_connection() # Reading Newly added queried if env == 'dev': mysql_schema = '`test-generico`' else: mysql_schema = '`prod2-generico`' mysql_inserted_items_query = """ SELECT pstm.id , pstm.`to-store-id` , pstm.`from-store-id` FROM {schema}.`pso-stock-transfer-mapping` pstm WHERE pstm.`created-at` >= '{code_started_at}' """.format(code_started_at=code_started_at, schema=mysql_schema) inserted_items = pd.read_sql_query(mysql_inserted_items_query, mysql_read2.connection) # logger.info(inserted_items) # logger.info(mysql_inserted_items_query) mysql_read2.close() for index, row in inserted_items.iterrows(): payload = { "destinations": [ row['from-store-id'].astype(str) ], "message": "cluster-request", "payload": f"{row['id']}-{row['to-store-id']}" } response = ws.send(payload=payload) logger.info('API hit successful for Notification in billing panel') else: logger.info('No API hit - Parameter is set as 0') except Exception as error: logger.exception(error) logger.info(f'writing to mysql failed - attempt - {number_of_writing_attempts}') status2 = False if status2 == False: logger.info('Writing to mysql table failed, Mostly it is due to deadlock issue, sleep for 3 mins') time.sleep(180) logger.info('slept for 3 mins') try: number_of_writing_attempts = number_of_writing_attempts + 1 logger.info(f'attempt number - {number_of_writing_attempts}') # pushing to mysql prod output_df_mysql.to_sql( name='pso-stock-transfer-mapping', con=mysql_write.engine, if_exists='append', chunksize=500, method='multi', index=False) logger.info(' ') logger.info('table appended to MySQL') status2 = True # ============================================================================= # Sending Notification to stores # ============================================================================= if int(api_hit) == 1: logger.info('sleep for 10 second') time.sleep(10) mysql_read3 = MySQL() mysql_read3.open_connection() # Reading Newly added queried if env == 'dev': mysql_schema = '`test-generico`' else: mysql_schema = '`prod2-generico`' mysql_inserted_items_query = """ SELECT pstm.id , pstm.`to-store-id` , pstm.`from-store-id` FROM {schema}.`pso-stock-transfer-mapping` pstm WHERE pstm.`created-at` >= '{code_started_at}' """.format(code_started_at=code_started_at, schema=mysql_schema) inserted_items = pd.read_sql_query(mysql_inserted_items_query, mysql_read3.connection) mysql_read3.close() for index, row in inserted_items.iterrows(): payload = { "destinations": [ row['from-store-id'].astype(str) ], "message": "cluster-request", "payload": f"{row['id']}-{row['to-store-id']}" } response = ws.send(payload=payload) logger.info('API hit successful for Notification in billing panel') else: logger.info('No API hit - Parameter is set as 0') except Exception as error: logger.exception(error) logger.info(f'writing to mysql failed - attempt - {number_of_writing_attempts}') status2 = False if status2 is True: status = 'Success' else: status = 'Failed' else: status = 'test' pso_added_uri = s3.save_df_to_s3(df=check_first_final, file_name='pso_transfer_details_{}_{}.csv'.format(start1, start2)) end_time = datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject='{} - {} - {} PSOs, {} clus_missed, {} algo_missed from {} to {}'.format( env, status, len(check_first1), (len(check_first1) - len(check_final)), (len(check_first) - len(check_final)), start1, start2), mail_body=f" pso-stock-transfer-mapping table update - {status}\n" f"Time for job completion - {min_to_complete} mins\n" f" Number of writing attempts - {number_of_writing_attempts}", to_emails=email_to, file_uris=[pso_added_uri]) rs_db.close_connection() mysql_write.close() mysql_read.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/cluster/pso-cluster-fulfillment.py
pso-cluster-fulfillment.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json from datetime import datetime, timedelta import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rn', '--refresh_for_n_days', default="10", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to refresh_for_n_days = args.refresh_for_n_days os.environ['env'] = env logger = get_logger(level = 'INFO') logger.info(f"env: {env}") #secrets = config.secrets rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.now() logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("refresh_for_n_days - " + str(refresh_for_n_days)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") # ============================================================================= # set parameters # ============================================================================= #pso_date1 = "2022-01-07 00:00:00" # launch date of 3 hour delivery # Use this when you want to refresh whole table pso_date1 = (datetime.now(tz=gettz('Asia/Kolkata')) - timedelta(days=int(refresh_for_n_days))).strftime('%Y-%m-%d %H:%M:%S') # Use this when only to update for only 7 days pso_date2 = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # ============================================================================= # store clusters # ============================================================================= qc = """ select sf."feature-id", f.feature, sf."store-id", sf."is-active", sc."cluster-id", c.name as "cluster-name", sc."is-active" as "sc-is-active" from "prod2-generico".features f join "prod2-generico"."store-features" sf on f.id = sf."feature-id" join "prod2-generico"."store-clusters" sc on sc."store-id" = sf."store-id" join "prod2-generico".clusters c on c.id = sc."cluster-id" where sf."feature-id" = 69 and sf."is-active" = 1 and sc."is-active" = 1 """ store_clusters = rs_db.get_df(qc) # ============================================================================= # fetching all stores # ============================================================================= stores_query = """ SELECT "id" AS "store-id" FROM "prod2-generico"."stores" """ stores = rs_db.get_df(stores_query) all_stores = stores.merge(store_clusters, on = 'store-id', how = 'left') all_stores['cluster-id'] = all_stores['cluster-id'].fillna(0) all_stores['cluster-id'] = all_stores['cluster-id'].astype(int) clusterlist = sorted(all_stores['cluster-id'].unique()) orders_transfers_all = pd.DataFrame() for cluster in clusterlist : logger.info("") logger.info("cluster {}".format(cluster)) temp = all_stores[all_stores['cluster-id'] == cluster] cluster_stores = tuple(map(int, list(temp['store-id'].unique()))) # ============================================================================= # GET PRs # ============================================================================= q1 = """ select pso."order-number", pso.id as "patient-store-order-id", pso."patient-request-id", pso."zeno-order-id" , pso."patient-id" , pso."order-source" , pso."order-type" , pso."status" as "pso-status", pso."created-at" as "pso-created-at", pso."store-id" , s."name" as "store-name", pso."drug-id" , pso."drug-name" , pso."requested-quantity", pso."inventory-quantity" as "inventory-at-creation", pr."required-quantity", pr."quantity-to-order", pso."bill-id", b."created-at" as "bill-date", dt."delivered-at", ss."type" as "slot-type", pso."slot-date" , ss."start-time" as "slot-start-time", ss."end-time" as "slot-end-time", s."franchisee-id", pso."slot-recommendation-status" from "prod2-generico"."patients-store-orders" pso left join "prod2-generico"."patient-requests" pr on pso."patient-request-id" = pr.id join "prod2-generico"."stores" s on s."id" = pso."store-id" left join "prod2-generico"."bills-1" b on b."id" = pso."bill-id" left join "prod2-generico"."delivery-tracking" dt on dt."patient-store-order-id" = pso."id" left join "prod2-generico"."store-slots" ss on pso."slot-id" = ss.id where pso."created-at" >= '{pso_date1}' and pso."created-at" <= '{pso_date2}' and pso."store-id" in {cluster_stores} order by pso."created-at" desc; """.format(pso_date1=pso_date1, pso_date2=pso_date2, cluster_stores=cluster_stores) orders = rs_db.get_df(q1) orders['required-quantity'].fillna(0, inplace=True) orders['quantity-to-order'].fillna(0, inplace=True) orders['availability-tag'] = np.where( orders['quantity-to-order'] > 0, "pr-short", np.nan) orders['availability-tag'] = orders.fillna('').sort_values( ['order-number', 'availability-tag']).groupby('order-number')['availability-tag'].transform('last') orders['availability-tag'] = np.where( orders['availability-tag'] != 'pr-short', "pr-not-short", orders['availability-tag']) # ============================================================================= # Initial Slot # ============================================================================= qslot = """ select t."order-number", t."recommended-slot-date", t."recommended-slot-id", t."selected-slot" from (SELECT pso."order-number", pso."slot-date", psr."recommended-slot-date", pso."slot-id", psr."recommended-slot-id", (case WHEN pso."slot-date" = psr."recommended-slot-date" AND pso."slot-id" = psr."recommended-slot-id" THEN 'recommended_slot' ELSE 'not_recommended_slot' END) "selected-slot", ROW_NUMBER() OVER(PARTITION BY pso."order-number" ORDER BY pso."slot-date", pso."slot-id" desc) AS "row-value" FROM "prod2-generico"."patients-store-orders" pso LEFT JOIN "prod2-generico"."pso-slot-recommendation" psr ON pso."order-number" = psr."order-number" LEFT JOIN "prod2-generico"."store-slots" ss ON pso."slot-id" = ss.id WHERE pso."created-at" >='{pso_date1}' and pso."created-at" <= '{pso_date2}' and pso."store-id" in {cluster_stores}) t where "row-value" = 1; """.format(pso_date1=pso_date1, pso_date2=pso_date2, cluster_stores=cluster_stores) orders_slot_recommendation = rs_db.get_df(qslot) orders = orders.merge(orders_slot_recommendation,on ='order-number',how='left' ) # ============================================================================= # Get transfers # ============================================================================= if cluster!= 0: trnfrs = tuple(map(int, list(orders['patient-store-order-id'].unique()))) q2 = """ select pso."order-number", pstm."patient-store-order-id", pstm."from-store-id", pstm."to-store-id", pstm."item-quantity" as "to-be-transferred-qty", sti."quantity" as "actual-transferred-qty", st."total-items", pstm."status" as "tn-status", st."status" as "transfer-status", st."initiated-at", st."transferred-at", st."received-at", DATEDIFF(min,st."transferred-at",st."received-at") as "transfer-minutes", zo."created-at" as "zeno-created-at" from "prod2-generico"."pso-stock-transfer-mapping" pstm left join "prod2-generico"."patients-store-orders" pso on pso.id = pstm."patient-store-order-id" left join "prod2-generico"."stock-transfers-1" st on st.id = pstm."stock-transfer-id" left join "prod2-generico"."stock-transfer-items-1" sti on sti.id = pstm."stock-transfer-item-id" left join "prod2-generico"."zeno-order" zo on zo.id = pso."zeno-order-id" where pstm."patient-store-order-id" in {} """.format(trnfrs) transfers = rs_db.get_df(q2) transfers['received-at'] = pd.to_datetime(transfers['received-at'], format='%Y-%m-%d %H:%M:%S', errors='coerce') transfers_summ = transfers.groupby(['order-number', 'patient-store-order-id']).agg( {'initiated-at': [np.max], 'transferred-at': [np.max], 'received-at': [np.max], 'zeno-created-at': [np.max], 'to-be-transferred-qty': [np.sum], 'actual-transferred-qty': [np.sum]}).reset_index() transfers_summ.columns = ["-".join(x) for x in transfers_summ.columns.ravel()] transfers_summ.rename(columns={'initiated-at-amax': 'initiated-at', 'transferred-at-amax': 'transferred-at', 'received-at-amax': 'received-at', 'to-be-transferred-qty-sum': 'to-be-transferred-qty', 'actual-transferred-qty-sum': 'actual-transferred-qty', 'transfer-status-': 'transfer-status', 'order-number-': 'order-number', 'patient-store-order-id-': 'patient-store-order-id', 'zeno-created-at-amax': 'zeno-created-at'}, inplace=True) orders_transfers = pd.merge(left=orders, right=transfers_summ, how='left', on=['order-number', 'patient-store-order-id']) orders_transfers['to-be-transferred-qty'].fillna(0, inplace=True) orders_transfers['actual-transferred-qty'].fillna(0, inplace=True) orders_transfers['zeno-created-at'] = pd.to_datetime(orders_transfers['zeno-created-at']) # lead to pso creation orders_transfers['lead-to-pso-creation-hours'] = ( (orders_transfers['pso-created-at'] - orders_transfers['zeno-created-at']) / np.timedelta64(1, 'h')) # PSO to transfer intitate orders_transfers['pso-to-transfer-initiate-hours'] = ( (orders_transfers['initiated-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) # PSO to transfer transferred orders_transfers['pso-to-transfer-transfer-hours'] = ( (orders_transfers['transferred-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) # PSO to transfer recevied orders_transfers['pso-to-transfer-received-hours'] = ( (orders_transfers['received-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) if cluster == 0: orders_transfers= orders # PSO to bill orders_transfers['pso-to-bill-hours'] = ((orders_transfers['bill-date'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) orders_transfers['pso-to-bill-hours'] = np.where( orders_transfers['pso-to-bill-hours'] < 0, 0, orders_transfers['pso-to-bill-hours']) # PSO to delivered conditions = [orders_transfers['delivered-at']=='0101-01-01 00:00:00',orders_transfers['delivered-at']=='101-01-01 00:00:00',orders_transfers['delivered-at']!='0101-01-01 00:00:00'] choices = [None,None,orders_transfers['delivered-at']] orders_transfers['delivered-at'] = np.select(conditions,choices) orders_transfers['delivered-at'] = pd.to_datetime(orders_transfers['delivered-at'], errors = 'coerce') orders_transfers['pso-to-delivered-hours'] = ( (orders_transfers['delivered-at'] - orders_transfers['pso-created-at']) / np.timedelta64(1, 'h')) orders_transfers['cluster-id'] = cluster # ============================================================================= # Cluster Name # ============================================================================= qc1 = """ select c.id AS "cluster-id" , c.name AS "cluster-name" from "prod2-generico".clusters c """ cluster_info = rs_db.get_df(qc1) orders_transfers = pd.merge(orders_transfers, cluster_info, on='cluster-id', how='left') if cluster == 0: orders_transfers['cluster-name'] = 'not-in-any-cluster' # ============================================================================= # OTIF calculation -- In Full Flag # ============================================================================= bills = tuple(map(int, list(orders_transfers[orders_transfers['bill-id'].notna()]['bill-id'].unique()))) qc2 = """ select bi."bill-id", count(distinct i."drug-id") as "drug-billed-cnt", sum(bi.quantity) as "quantity-billed-sum" from "prod2-generico"."bills-1" b join "prod2-generico"."bill-items-1" bi on b.id = bi."bill-id" join "prod2-generico"."inventory-1" i on i.id = bi."inventory-id" where bi."bill-id" in {} group by bi."bill-id" """.format(bills) billed = rs_db.get_df(qc2) orders_transfers1 = pd.merge(left=orders_transfers, right=billed, how='left', on=['bill-id']) orders_transfers_d_infull1 = orders_transfers.groupby( ['order-number'])['drug-id'].nunique().reset_index().rename( columns={'drug-id': 'drug-ordered-cnt'}) orders_transfers_q_infull1 = orders_transfers.groupby( ['order-number']).agg( {'requested-quantity': [np.sum]}).reset_index().rename( columns={'requested-quantity': 'requested-quantity-ordered-sum'}) orders_transfers_q_infull1.columns = ["-".join(x) for x in orders_transfers_q_infull1.columns.ravel()] orders_transfers_q_infull1.rename(columns={'requested-quantity-ordered-sum-sum': 'requested-quantity-ordered-sum', 'order-number-': 'order-number'}, inplace=True) orders_transfers_infull1 = pd.merge(orders_transfers_d_infull1, orders_transfers_q_infull1, on='order-number', how='inner') orders_transfers2 = pd.merge(left=orders_transfers1, right=orders_transfers_infull1, how='left', on=['order-number']) orders_transfers2['in-full-flag'] = np.where( orders_transfers2['drug-billed-cnt'] >= orders_transfers2['drug-ordered-cnt'], "in-full", "not-in-full") orders_transfers2['qty-in-full-flag'] = np.where( orders_transfers2['quantity-billed-sum'] >= orders_transfers2['requested-quantity-ordered-sum'], "qty-in-full", "qty-not-in-full") orders_transfers2['drug-billed-cnt'].fillna(0, inplace=True) orders_transfers2['quantity-billed-sum'].fillna(0, inplace=True) orders_transfers2['drug-ordered-cnt'].fillna(0, inplace=True) orders_transfers2['requested-quantity-ordered-sum'].fillna(0, inplace=True) # del orders_transfers2['drug_ordered_cnt'] # del orders_transfers2['drug_billed_cnt'] # del orders_transfers2['quantity_billed_sum'] # del orders_transfers2['requested_quantity_ordered_sum'] # ============================================================================= # OTIF calculation -- on_time_flag # ============================================================================= def string_to_time(x): try: return datetime.strptime(x, "%I:%M %p").time() except: try: return datetime.strptime(x, "%I:%M%p").time() except: return "Can't convert" orders_transfers2['slot-end-time-format'] = orders_transfers2['slot-end-time'].apply(lambda x: string_to_time(x)) orders_transfers2['slot-end-date-time'] = orders_transfers2.apply(lambda x: datetime.combine(x['slot-date'], x['slot-end-time-format']), 1) conditions = [ (orders_transfers2['order-type']== 'delivery') & (orders_transfers2['delivered-at'] <= orders_transfers2['slot-end-date-time']), (orders_transfers2['order-type'] != 'delivery') & (orders_transfers2['bill-date'] <= orders_transfers2['slot-end-date-time']), (orders_transfers2['delivered-at'] > orders_transfers2['slot-end-date-time']) ] choices = ['on-time','on-time','not-on-time'] orders_transfers2['on-time-slot-basis-flag'] = np.select(conditions, choices, default='not-on-time') orders_transfers2['otif-flag'] = np.where( ((orders_transfers2['in-full-flag'] == 'in-full') & (orders_transfers2['on-time-slot-basis-flag'] == 'on-time')), "otif", "not-otif") orders_transfers2['qty-otif-flag'] = np.where( ((orders_transfers2['qty-in-full-flag'] == 'qty-in-full') & (orders_transfers2['on-time-slot-basis-flag'] == 'on-time')), "qty-otif", "qty-not-otif") logger.info("") logger.info( "length is same {}".format(len(orders) == len(orders_transfers2))) logger.info("") orders_transfers_all = orders_transfers_all.append(orders_transfers2) pso_cluster_fulfillment_board = orders_transfers_all # pso_cluster_fulfillment_board.to_csv(r"D:\3 hours delivery\ClusterFulfillment\Quantity_OTIF\data1.csv") pso_cluster_fulfillment_board['updated-at'] = datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # Converting int column with null value to int data type if cluster!= 0: pso_cluster_fulfillment_board[['patient-request-id', 'zeno-order-id', 'drug-id','required-quantity', 'quantity-to-order', 'bill-id', 'to-be-transferred-qty', 'actual-transferred-qty', 'drug-billed-cnt', 'quantity-billed-sum','recommended-slot-id','inventory-at-creation']] = pso_cluster_fulfillment_board[['patient-request-id', 'zeno-order-id', 'drug-id','required-quantity', 'quantity-to-order', 'bill-id', 'to-be-transferred-qty', 'actual-transferred-qty', 'drug-billed-cnt', 'quantity-billed-sum','recommended-slot-id','inventory-at-creation']].apply(pd.to_numeric, errors='ignore').astype('Int64') else: pso_cluster_fulfillment_board[ ['patient-request-id', 'zeno-order-id', 'drug-id', 'required-quantity', 'quantity-to-order', 'bill-id', 'drug-billed-cnt', 'quantity-billed-sum','recommended-slot-id','inventory-at-creation']] = \ pso_cluster_fulfillment_board[ ['patient-request-id', 'zeno-order-id', 'drug-id', 'required-quantity', 'quantity-to-order', 'bill-id', 'drug-billed-cnt', 'quantity-billed-sum','recommended-slot-id','inventory-at-creation']].apply( pd.to_numeric, errors='ignore').astype('Int64') # ============================================================================= # writing to Redshift # ============================================================================= schema = 'prod2-generico' table_name = 'pso-cluster-fulfillment-board-temp' table_name2 = 'pso-cluster-fulfillment-board' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) table_info2 = helper.get_table_info(db=rs_db_write, table_name=table_name2, schema=schema) status2 = False status1 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' delete from "{schema}"."{table_name}" ''' rs_db_write.execute(truncate_query) logger.info(str(table_name) + ' table deleted') s3.write_df_to_db(df=pso_cluster_fulfillment_board[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(str(table_name) + ' table uploaded') status2 = True if status2: if isinstance(table_info2, type(None)): raise Exception(f"table: {table_name2} do not exist, create the table first") else: logger.info(f"Table:{table_name2} exists") delete_main_query = f''' delete from "{schema}"."{table_name2}" where "{schema}"."{table_name2}"."pso-created-at" >= '{pso_date1}' ''' rs_db_write.execute(delete_main_query) logger.info(str(table_name2) + ' table deleted') insert_main_query = f''' insert into "{schema}"."{table_name2}" select * from "{schema}"."{table_name}" ''' rs_db_write.execute(insert_main_query) status1 = True logger.info(str(table_name2) + ' table uploaded') if status1 is True: status = 'Success' else: status = 'Failed' #logger.close() end_time = datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds()/60 , 2) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name2} table updated", mail_body=f"{table_name2} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/cluster/pso-cluster-fulfillment-board.py
pso-cluster-fulfillment-board.py
#created by - saurav maskar #Objective - push all transfer note failed everyday into store audit, #Transfer note are failing because inventory is at store according to system # but it is not locally found, so we need to put those in audit import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json from datetime import datetime, timedelta import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() s3 = S3() start_time = datetime.now() logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("") # date parameter logger.info("code started at {}".format(datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") # ============================================================================= # set parameters # ============================================================================= # Change pso_date_1 As Date required to add in audit, yesterdays, pso_date1 = (datetime.now() - timedelta(days = 1)).date() pso_date2 = (datetime.now() - timedelta(days = 1)).date() # ============================================================================= # expired pso # ============================================================================= q1 = """ Select pstm."from-store-id" AS "store-id" , pso."drug-id" FROM "prod2-generico"."pso-stock-transfer-mapping" pstm Left JOIN "prod2-generico"."pso-stock-transfer-inventory-mapping" pstim ON pstm.id = pstim."pso-stock-transfer-mapping-id" Left join "prod2-generico"."patients-store-orders" pso ON pstm."patient-store-order-id" = pso.id WHERE DATE(pso."created-at") >= '{}' and DATE(pso."created-at") <= '{}' and pstm."status" = 'expired' order by pso."created-at" DESC """.format(pso_date1, pso_date2) expired_pso = rs_db.get_df(q1) expired_pso['store-drug'] = expired_pso['store-id'].astype(str) + "-" +expired_pso['drug-id'].astype(str) logger.info("") logger.info("fetched expired pso's data, total items - {}".format(len(expired_pso['store-drug'])) ) logger.info("") #============================================================================= # drugs which are already in audit extra and not scanned to be removed #============================================================================= q2 = """ select ae."drug-id" , ae."store-id" FROM "prod2-generico"."audit-extra" ae WHERE ae.status = 'active' """ store_drugs_in_audit = rs_db.get_df(q2) store_drugs_in_audit['store-drug-audit'] = store_drugs_in_audit['store-id'].astype(str) + "-" +store_drugs_in_audit['drug-id'].astype(str) logger.info("") logger.info("fetched active store-drug combinations in audit extra - {}".format(len(store_drugs_in_audit['store-drug-audit']))) logger.info("") #Checking if store-drug combination is already in audit expired_pso_audit_check = pd.merge(expired_pso ,store_drugs_in_audit['store-drug-audit'],left_on = 'store-drug', right_on = 'store-drug-audit', how ='left') expired_pso_after_audit_check = expired_pso_audit_check[expired_pso_audit_check['store-drug-audit'].isna()] unique_store_drug_series = pd.Series(expired_pso_after_audit_check['store-drug'].unique()) unique_store_drug_1 = unique_store_drug_series.str.split(pat= '-', expand = True) logger.info("") logger.info("Removed drugs which are already in audit extra and status is saved, unique store-drug-combination - {}".format(len(unique_store_drug_1))) logger.info("") # ============================================================================= # creating output table # ============================================================================= unique_store_drug = pd.DataFrame() if len(unique_store_drug_1)>0: unique_store_drug['drug-id'] = unique_store_drug_1[1].astype(int) unique_store_drug['store-id'] = unique_store_drug_1[0].astype(int) unique_store_drug['created-by'] = '[email protected]' logger.info("") logger.info("Table to append created, items to add - {}".format(len(unique_store_drug['drug-id']))) logger.info("") else: logger.info("") logger.info("Table to append created, items to add - {}".format(len(unique_store_drug))) logger.info("") # ============================================================================= # writing to audit_extra # ============================================================================= # prod mysql mysql_write = MySQL(read_only=False) mysql_write.open_connection() status2 = False try: unique_store_drug.to_sql( name='audit-extra', con=mysql_write.engine, if_exists='append', chunksize=500, method='multi', index=False) logger.info('') logger.info('audit-extra' + ' table appended') status2 = True except: logger.info(' ') logger.info(str('audit-extra') + ' table not appended correctly') status2 = False if status2 is True: status = 'Success' else: status = 'Failed' end_time = datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() # email.send_email_file(subject='{} {} : Cluster Audit extra table'.format( # env, status), # mail_body=f" audit-extra table updated, Time for job completion - {min_to_complete} mins ", # to_emails=email_to, file_uris=[pso_added_uri]) rs_db.close_connection() mysql_write.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/cluster/cluster-audit-extra.py
cluster-audit-extra.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, PostGreWrite from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import numpy as np import datetime import gc from dateutil.relativedelta import relativedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() # Redshift rs_db = DB() rs_db.open_connection() # PostGre pg = PostGreWrite() pg.open_connection() s3 = S3() schema = 'prod2-generico' table_name1 = 'dexter-medicine-suggestion' table_info1 = helper.get_table_info(db=rs_db, table_name=table_name1, schema=schema) # ============================================================================= # Retrieve recent patient entries # ============================================================================= mdate =""" select max(bill_date::date) as max_date from dexter_medicine_suggestion """ m_date = pd.read_sql_query(mdate, pg.connection) max_date = m_date.max_date[0] if pd.isna(max_date)==False: date1 = max_date.strftime('%Y-%m-%d') else: date1= (datetime.datetime.today() + relativedelta(months=-12)).replace(day=1).strftime('%Y-%m-%d') mquery = f""" (select "patient-id" from "prod2-generico"."sales" where "created-date" >= '{date1}' group by "patient-id") """ ######################################################### # Billing data (lengthy dataset) ######################################################## bills_q = f""" select s1."created-date" as "bill-date", s1."patient-id" , s1."bill-id" , s1."drug-id", sum(s1."revenue-value") as "spend", sum(s1."net-quantity") as "quantity" from "{schema}"."sales" s1 inner join {mquery} s2 on s1."patient-id" = s2."patient-id" where s1."bill-flag" = 'gross' and s1."created-date" >= date(date_trunc('month', current_date) - interval '12 month') group by s1."created-date" , s1."patient-id" , s1."bill-id" , s1."drug-id" """ data_bill = rs_db.get_df(bills_q) data_bill.columns = [c.replace('-', '_') for c in data_bill.columns] data_bill['bill_date'] = pd.to_datetime(data_bill['bill_date']) logger.info('Column names of data_bill table {}'.format(str(data_bill.columns))) drugs_q = f""" SELECT "id" as drug_id, "composition", "drug-name", "type", "category", "repeatability-index", "front-img-url" FROM "{schema}"."drugs" """ data_drugs = rs_db.get_df(drugs_q) data_drugs.columns = [c.replace('-', '_') for c in data_drugs.columns] logger.info("Data for drugs fetched") # Merge these data-frames data_raw = data_bill.merge(data_drugs, how='left', on=['drug_id']) data_raw[['quantity','spend']].fillna(0,inplace=True) data_raw['quantity']=data_raw['quantity'].astype('int64') data_raw['spend']=data_raw['spend'].astype('float64') logger.info('Column names of data_raw table {}'.format(str(data_raw.columns))) # Delete temp data-frames del [[data_bill]] gc.collect() data_bill = pd.DataFrame() # Fill NA logger.info("Composition NA is {}".format(data_raw['composition'].isnull().sum())) data_raw['composition'] = data_raw['composition'].fillna('') logger.info("Front image url NA is {}".format(data_raw['front_img_url'].isnull().sum())) data_raw['front_img_url'] = data_raw['front_img_url'].fillna('') logger.info("Raw data length - {}".format(len(data_raw))) logger.info("Raw data info - {}".format(str(data_raw.info()))) # Grp on unique columns data_bill_base = data_raw.groupby(['patient_id', 'composition', 'bill_date', 'bill_id', 'drug_id', 'drug_name', 'type', 'category', 'repeatability_index', 'front_img_url'])[['spend', 'quantity']].sum().reset_index() logger.info(str(data_bill_base.columns)) # Avg rate again data_bill_base['rate'] = data_bill_base['spend'] / data_bill_base['quantity'] # Delete temp dataframes del [[data_raw]] gc.collect() data_raw = pd.DataFrame() logger.info("Data length after grouping at unique level - " "{}".format(len(data_bill_base))) # Last bill date and NOB data_bill_base_grp = data_bill_base.groupby(['patient_id']).agg({'bill_date': 'max', 'bill_id': 'nunique'} ).reset_index() data_bill_base_grp = data_bill_base_grp.rename(columns={'bill_date': 'overall_last_bill_date', 'bill_id': 'overall_num_orders'}) logger.info("Length of patient level last bill date and nob is " "{}".format(len(data_bill_base_grp))) # Drug level Last bill date and NOB data_bill_base_grp2 = data_bill_base.groupby(['patient_id', 'drug_id']).agg( {'bill_date': 'max', 'bill_id': 'nunique'}).reset_index() data_bill_base_grp2 = data_bill_base_grp2.rename(columns={'bill_date': 'last_bill_date', 'bill_id': 'num_orders'}) logger.info("Length of patient drug level last bill date and nob is " "{}".format(len(data_bill_base_grp2))) # Sort the base data and make unique on patient-drug data_bill_base_unique = data_bill_base.sort_values(by=['patient_id', 'drug_id', 'bill_date'], ascending=[True, True, False]) data_bill_base_unique = data_bill_base_unique.drop_duplicates(subset=['patient_id', 'drug_id']) logger.info("Patient drug level unique base data length is " "{}".format(len(data_bill_base_unique))) # Merge with patient-drug metadata data_bill_base2 = data_bill_base_unique.merge(data_bill_base_grp2, how='left', on=['patient_id', 'drug_id']) logger.info("After merging with patient drug metadata, length is " "{}".format(len(data_bill_base2))) # Merge with patient-metadata data_bill_base2 = data_bill_base2.merge(data_bill_base_grp, how='left', on=['patient_id']) logger.info("After merging with patient metadata, length is " "{}".format(len(data_bill_base2))) # Recency data_bill_base2['recency'] = (data_bill_base2['overall_last_bill_date'] - data_bill_base2['last_bill_date']).dt.days # Recency flag data_bill_base2['recency_flag'] = np.where(data_bill_base2['recency'] <= 90, 1, 0) # Sort on recency and drug nob and last bill date data_bill_base2 = data_bill_base2.sort_values(by=['recency_flag', 'num_orders', 'last_bill_date'], ascending=[False, False, False]) # Rank data_bill_base2['recommendation_rank'] = data_bill_base2.groupby(['patient_id'] ).cumcount() + 1 # Filter top 12 data_bill_base_f = data_bill_base2[data_bill_base2['recommendation_rank'] <= 12] logger.info("After rank filtering length is {}".format(len(data_bill_base_f))) ############################################## # Necessary columns ############################################## data_bill_base_f['is_chronic'] = np.where(data_bill_base_f['category'] == 'chronic', 1, 0) data_bill_base_f['is_repeatable'] = np.where(( ((data_bill_base_f['category'] == 'chronic') & (data_bill_base_f['repeatability_index'] >= 40)) | (data_bill_base_f['repeatability_index'] >= 80)), 1, 0) data_bill_base_f = data_bill_base_f.rename(columns={'type': 'drug_type', 'category': 'drug_category', 'num_orders': 'drug_nob', 'front_img_url': 'drug_front_image_url'}) data_bill_base_f['last_bill_quantity'] = data_bill_base_f['quantity'] data_bill_base_f['refill_date'] = data_bill_base_f['bill_date'] + datetime.timedelta(days=15) data_bill_base_f['price_rank'] = data_bill_base_f.sort_values( by=['patient_id', 'rate'], ascending=[True, True]).groupby( ['patient_id']).cumcount() + 1 data_bill_base_f['refill_date_rank'] = data_bill_base_f.sort_values( by=['patient_id', 'refill_date'], ascending=[True, True]).groupby( ['patient_id']).cumcount() + 1 data_bill_base_f = data_bill_base_f[~data_bill_base_f['drug_id'].isnull()] logger.info("After non-null drug-id length is {}".format(len(data_bill_base_f))) data_export = data_bill_base_f[['patient_id', 'composition', 'drug_id', 'drug_name', 'drug_category', 'drug_type', 'bill_date', 'quantity', 'refill_date', 'price_rank', 'refill_date_rank', 'is_repeatable', 'is_chronic', 'recommendation_rank', 'last_bill_date', 'last_bill_quantity', 'drug_nob', 'drug_front_image_url', 'recency_flag']] # Convert to date-month-year format for i in ['bill_date', 'refill_date', 'last_bill_date']: data_export[i] = data_export[i].dt.strftime("%d-%b-%Y") data_export['drug_id'] = data_export['drug_id'].astype('int64') logger.info("Data export length is - {}".format(len(data_export))) data_update = data_export[['patient_id']].drop_duplicates() # Write to PostGre #update table table_update = 'dexter_medicine_suggestion_update' truncate_u = f""" DELETE FROM {table_update} """ pg.engine.execute(truncate_u) data_update.to_sql(name=table_update, con=pg.engine, if_exists='append', index=False, method='multi', chunksize=500) # if one wants to reset index then use this in query -> RESTART IDENTITY table_name1_pg = table_name1.replace("-", "_") truncate_q = f""" DELETE FROM {table_name1_pg} m1 using (select patient_id from dexter_medicine_suggestion_update) m2 where m1.patient_id = m2.patient_id""" pg.engine.execute(truncate_q) for rank_number in range(1, 13): final_data_rank = data_export[data_export['recommendation_rank'] == rank_number] logger.info("Uploading for rank number: {}".format(rank_number)) final_data_rank.to_sql(name=table_name1_pg, con=pg.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("Successful with length: {}".format(len(final_data_rank))) # # # Write to Redshift DB # data_export['created_at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( # '%Y-%m-%d %H:%M:%S') # data_export['updated_at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( # '%Y-%m-%d %H:%M:%S') # data_export['created_by'] = 'etl-automation' # data_export['updated_by'] = 'etl-automation' # # data_export.columns = [c.replace('_', '-') for c in data_export.columns] # if isinstance(table_info1, type(None)): # raise Exception(f"table: {table_name1} do not exist, create the table first") # else: # logger.info(f"Table:{table_name1} exists") # # truncate_query = f''' DELETE FROM "{schema}"."{table_name1}" ''' # rs_db.execute(truncate_query) # # s3.write_df_to_db(df=data_export[table_info1['column_name']], table_name=table_name1, db=rs_db, # schema=schema) # Closing the DB Connection rs_db.close_connection() pg.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/dexter-medicine-recommendation/dexter-medicine-recommendation.py
dexter-medicine-recommendation.py
import csv import math # importing libraries from datetime import datetime from warnings import filterwarnings import numpy as np import pandas as pd import xlsxwriter filterwarnings("ignore") import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from datetime import timedelta st_dt1 = (datetime.now() - timedelta(days=2)).strftime("%Y-%m-%d") ed_dt1 = (datetime.now() - timedelta(days=2)).strftime("%Y-%m-%d") st_dt2 = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d") ed_dt2 = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d") parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sd1', '--start_date1', default=None, type=str, required=False) parser.add_argument('-ed1', '--end_date1', default=None, type=str, required=False) parser.add_argument('-sd2', '--start_date2', default=None, type=str, required=False) parser.add_argument('-ed2', '--end_date2', default='', type=str, required=False) parser.add_argument('-ip', '--initial_param', default='all', type=str, required=False) parser.add_argument('-ipv', '--initial_param_value', default='all', type=str, required=False) parser.add_argument('-p', '--param', default='all_params', type=str, required=False) parser.add_argument('-pl', '--param_limit', default=5, type=int, required=False) parser.add_argument('-ml', '--max_level', default=5, type=int, required=False) parser.add_argument('-dt', '--data', default='filter', type=str, required=False) # parser.add_argument('-fc', '--filter_cutoff',default= 5, type= float, required=False ) parser.add_argument('-ad', '--additional_data', default='both', type=str, required=False) parser.add_argument('-hpl', '--hidden_param_list', default=None, type=str, required=False) parser.add_argument('-msl', '--manual_sort_list', default=None, type=str, required=False) parser.add_argument('-tp', '--top_parameter', default=5, type=int, required=False) parser.add_argument('-ms', '--manual_sorting', default='no', type=str, required=False) parser.add_argument('-sb', '--sorting_basis', default='param_value', type=str, required=False) parser.add_argument('-fb', '--filter_basis', default='percentage', type=str, required=False) # parser.add_argument('-dr', '--impact_direction',default= '', type= str, required=False ) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env # parameters email_to = args.email_to start_date1 = args.start_date1 end_date1 = args.end_date1 start_date2 = args.start_date2 end_date2 = args.end_date2 initial_param = args.initial_param initial_param_value = args.initial_param_value param = args.param param_limit = args.param_limit max_level = args.max_level data = args.data # filter_cutoff = args.filter_cutoff additional_data = args.additional_data hidden_param_list = args.hidden_param_list manual_sort_list = args.manual_sort_list top_parameter = args.top_parameter manual_sorting = args.manual_sorting # impact_direction = args.impact_direction sorting_basis = args.sorting_basis filter_basis = args.filter_basis if start_date1 == None and end_date1 == None: start_date1 = st_dt1 end_date1 = ed_dt1 if start_date2 == None and end_date2 == '': start_date2 = st_dt2 end_date2 = ed_dt2 if hidden_param_list == None: hidden_param_list = ['abo', 'line_manager', 'cluster_name', 'store_staff'] if manual_sort_list == None: manual_sort_list = ['old_new_customer', 'drug_name', 'drug_type', 'drug_category', 'drug_company', 'drug_composition', 'pr_flag', 'hd_flag', 'ecom_flag', 'payment_method', 'promo_code', 'city', 'franchisee_name', 'cluster_name', 'store_name''store_staff', 'abo', 'line_manager'] elif manual_sort_list != None: input_list = list(manual_sort_list.split(',')) manual_sort_list = [] manual_sort_list.extend(input_list) logger = get_logger() logger.info(f"env: {env}") logger.info(f"print the env again: {env}") schema = 'prod2-generico' rs_db = DB() rs_db.open_connection() s3 = S3() read_schema = 'prod2-generico' # Query to fetch sales data query1 = f""" select s."bill-id" , s."patient-id" , s."store-id" , s."drug-id" , s."drug-name", s."type" as "drug-type" , s.category as "drug-category", (case when s.composition = '' then 'null_composition' else s.composition end) as "drug-composition", s.company as "drug-company", (case when s."bill-flag" = 'gross' then s.quantity when s."bill-flag" = 'return' then (-1*s.quantity) else 0 end) as quantity, date(s."created-at" ), s.rate , s.ptr , s."substitution-status" , s."created-by" as "store-staff", s."bill-flag" , s."old-new" as "old-new-customer", s."payment-method" , s."promo-code" , s."pc-type" , (case when s."pr-flag" = true then 'PR' else 'Non-PR' end) as "PR-flag" , (case when s."hd-flag" = true then 'HD' else 'Non-HD' end) as "HD-flag" , (case when s."ecom-flag" = true then 'Ecom' else 'store' end) as "Ecom-flag" , s."store-name" , s."line-manager" , s.city , s.abo , s."franchisee-id" , s."franchisee-name" , s."cluster-id" , s."cluster-name" , s."drug-grade" , s."doctor-id" , (case when s."bill-flag" = 'gross' then (s.rate * s.quantity) when s."bill-flag" = 'return' then (-1*(s.rate * s.quantity)) else 0 end) as sales from "{read_schema}".sales s where date(s."created-at" ) between '{start_date1}' and '{end_date1}'; """ # sales data for period 1 query = query1 mos1 = rs_db.get_df(query=query) mos1.columns = [c.replace('-', '_') for c in mos1.columns] # initial filter if initial_param == 'all': mos1 = mos1 else: mos1 = mos1[mos1[initial_param] == initial_param_value] # for period 2 query2 = f""" select s."bill-id" , s."patient-id" , s."store-id" , s."drug-id" , s."drug-name", s."type" as "drug-type" , s.category as "drug-category", (case when s.composition = '' then 'null_composition' else s.composition end) as "drug-composition", s.company as "drug-company", (case when s."bill-flag" = 'gross' then s.quantity when s."bill-flag" = 'return' then (-1*s.quantity) else 0 end) as quantity, date(s."created-at" ), s.rate , s.ptr , s."substitution-status" , s."created-by" as "store-staff", s."bill-flag" , s."old-new" as "old-new-customer", s."payment-method" , s."promo-code" , s."pc-type" , (case when s."pr-flag" = true then 'PR' else 'Non-PR' end) as "PR-flag" , (case when s."hd-flag" = true then 'HD' else 'Non-HD' end) as "HD-flag" , (case when s."ecom-flag" = true then 'Ecom' else 'store' end) as "Ecom-flag" , s."store-name" , s."line-manager" , s.city , s.abo , s."franchisee-id" , s."franchisee-name" , s."cluster-id" , s."cluster-name" , s."drug-grade" , s."doctor-id" , (case when s."bill-flag" = 'gross' then (s.rate * s.quantity) when s."bill-flag" = 'return' then (-1*(s.rate * s.quantity)) else 0 end) as sales from "{read_schema}".sales s where date(s."created-at" ) between '{start_date2}' and '{end_date2}'; """ # sales data for period 2 mos2 = rs_db.get_df(query=query2) mos2.columns = [c.replace('-', '_') for c in mos2.columns] # initial filter if initial_param == 'all': mos2 = mos2 else: mos2 = mos2[mos2[initial_param] == initial_param_value] # defining change fuction def change(A, B): if A is None: return float(np.round(B, 2)) elif B is None: return float(np.round((-1 * A), 2)) elif A is None and B is None: return float(0) else: return float(np.round((B - A), 2)) # Defining function to calculate percentage change def per_change(A, B): if (A == 0): return float((B - A)) elif (A == B): return float((B - A)) else: return float(((B - A) / A) * 100) # The function takes the bills-1 table and the period as 'period1' or 'period2' def sale(table): return float(table['sales'].sum()) def break_sale(table, sale_type): if sale_type == 'gross': mos_gs_local = table[table['bill_flag'] == 'gross'] return mos_gs_local if sale_type == 'return': mos_ret_local = table[table['bill_flag'] == 'return'] mos_ret_local['sales'] = np.where(mos_ret_local['sales'] <= 0, -1 * mos_ret_local['sales'], mos_ret_local['sales']) mos_ret_local['quantity'] = np.where(mos_ret_local['quantity'] <= 0, -1 * mos_ret_local['quantity'], mos_ret_local['quantity']) return mos_ret_local # Defining functions for all required metrics def num_cust(table): num = table.patient_id.nunique() return float(num) def avg_gs_per_customer(table): gs = sale(table) num = num_cust(table) return (gs / num) if (num) != 0 else 0 def num_bills(table): num = table.bill_id.nunique() return float(num) def avg_gs_per_bill(table): gs = sale(table) num = num_bills(table) return (gs / num) if (num) != 0 else 0 def num_drugs(table): num = table.drug_id.nunique() return float(num) def avg_gs_per_drug(table): gs = sale(table) num = num_drugs(table) return (gs / num) if (num) != 0 else 0 def num_quantity(table): num = table['quantity'].sum() return float(num) def rate(table): gs = sale(table) num = num_quantity(table) return (gs / num) if (num) != 0 else 0 def num_bills_per_customer(table): num1 = num_bills(table) num2 = num_cust(table) return (num1 / num2) if (num2) != 0 else 0 def num_quantity_per_bill(table): num1 = num_quantity(table) num2 = num_bills(table) return (num1 / num2) if (num2) != 0 else 0 # taking num of unique drug-bill combination def num_bills_drugs(table): num = len(table[['bill_id', 'drug_id']].drop_duplicates()) return float(num) def num_drugs_per_bill(table): num1 = num_bills_drugs(table) num2 = num_bills(table) return (num1 / num2) if (num2) != 0 else 0 def num_quantity_per_drug(table): num1 = num_quantity(table) num2 = num_drugs(table) return (num1 / num2) if (num2) != 0 else 0 def avg_gs_per_drug_per_bill(table): gs = sale(table) num = num_bills_drugs(table) return (gs / num) if (num) != 0 else 0 def num_quantity_per_drug_per_bill(table): num1 = num_quantity(table) num2 = num_bills_drugs(table) return (num1 / num2) if (num2) != 0 else 0 # Defining function to find cont factor of metrics def metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global): ret2_sim = float(gs2_sim) * float(ret_per2) ns2_sim = float(gs2_sim) - float(ret2_sim) metric_fact = np.divide((ns2_local - ns2_sim), ns2_global) * 100 return float(metric_fact) # Function to store metric values in dictionary def metric(t1, t2, ns2_local, gs1_local, gs2_local, ret_per1, ret_per2, ns2_global): # defining dictionary to store the metrics d = {} # No. of customers nc1 = num_cust(t1) nc2 = num_cust(t2) # Avg gs per customer: agpc1 = avg_gs_per_customer(t1) agpc2 = avg_gs_per_customer(t2) # Cont of Num of cust gs2_sim = float(agpc2) * float(nc1) d['nc'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # Cont of ACV gs2_sim = float(agpc1) * float(nc2) d['ACV'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # No. of bills per customer nbpc1 = num_bills_per_customer(t1) nbpc2 = num_bills_per_customer(t2) # avg_gs_per_bill agpb1 = avg_gs_per_bill(t1) agpb2 = avg_gs_per_bill(t2) # cont. of number of bills agpc2_sim = float(nbpc1) * float(agpb2) gs2_sim = agpc2_sim * float(nc2) d['nbpc'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # cont. of ABV agpc2_sim = float(nbpc2) * float(agpb1) gs2_sim = agpc2_sim * float(nc2) d['ABV'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # num of drugs per bill ndpb1 = num_drugs_per_bill(t1) ndpb2 = num_drugs_per_bill(t2) # avg gs per drug per bill agpdpb1 = avg_gs_per_drug_per_bill(t1) agpdpb2 = avg_gs_per_drug_per_bill(t2) # cont of num of drugs per bill agpb2_sim = float(ndpb1) * float(agpdpb2) agpc2_sim = agpb2_sim * float(nbpc2) gs2_sim = agpc2_sim * float(nc2) d['ndpb'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # cont. of avg gs per drug per bill agpb2_sim = float(ndpb2) * float(agpdpb1) agpc2_sim = agpb2_sim * float(nbpc2) gs2_sim = agpc2_sim * float(nc2) d['agpdpb'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # number of quantities per drug per bill nqpdpb1 = num_quantity_per_drug_per_bill(t1) nqpdpb2 = num_quantity_per_drug_per_bill(t2) # Avg gs per quantity agpq1 = rate(t1) agpq2 = rate(t2) # cont by number of quantities per drug per bill agpdpb2_sim = float(nqpdpb1) * float(agpq2) agpb2_sim = float(ndpb2) * agpdpb2_sim agpc2_sim = agpb2_sim * float(nbpc2) gs2_sim = agpc2_sim * float(nc2) d['nqpdpb'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # cont by Avg gs per quantity agpdpb2_sim = float(nqpdpb2) * float(agpq1) agpb2_sim = float(ndpb2) * agpdpb2_sim agpc2_sim = agpb2_sim * float(nbpc2) gs2_sim = agpc2_sim * float(nc2) d['rate'] = metric_factor(gs2_sim, ret_per2, gs2_local, ns2_local, ns2_global) # returing the dictionary containing all metric values return d # Function to store the metric in a dataFrame def store_table(df, d, ret_fact, ns2_global): # gross sale # level 1 df['Return%'] = ret_fact # level 2 df['Number_cust'] = d['nc'] df['ACV'] = d['ACV'] # Level 3 df['Nob_per_cust'] = d['nbpc'] df['ABV'] = d['ABV'] # Level 4 df['Drugs_per_bill'] = d['ndpb'] # df['Avg. spend per drug per bill'] = d['agpdpb'] # Level 5 df['Quantity_per_drug'] = d['nqpdpb'] df['Avg_rate_per_quantity'] = d['rate'] return df # Function to calculate change factor of any parameter def factor_param(d1, d2, ns1, ns2, calc_type): ns1_param = sale(d1) ns2_param = sale(d2) if calc_type == 'per': ns1_param_fact = ns1_param / ns1 ns2_sim_param = ns2 * ns1_param_fact elif calc_type == 'abs': ns2_sim_param = ns1_param ch_ns2_param = ns2_param - ns2_sim_param ns_factor_param = (ch_ns2_param / ns2) * 100 return ns_factor_param # Function to control level of output columns i.e level of decomposition def level(table, max_level, local_list): if max_level == 1: df = table.loc[:, local_list[0:2]] return df if max_level == 2: df = table.loc[:, local_list[0:4]] return df if max_level == 3: df = table.loc[:, local_list[0:6]] return df if max_level == 4: df = table.loc[:, local_list[0:7]] return df if max_level == 5: df = table.loc[:, local_list[0:9]] return df # Function which returns the final table containing the metric contributions of total change of net sale def decomposition(table1, table2, df, ns2_global): # period1 net sale ns1_local = sale(table1) # period2 net sale ns2_local = sale(table2) # defining gross sale metrics mos1_gs_local = break_sale(table1, 'gross') mos2_gs_local = break_sale(table2, 'gross') gs1_local = sale(mos1_gs_local) gs2_local = sale(mos2_gs_local) # defining return metrics mos1_ret_local = break_sale(table1, 'return') mos2_ret_local = break_sale(table2, 'return') ret1_local = sale(mos1_ret_local) ret2_local = sale(mos2_ret_local) # return to be calculate as return % ret_per1 = np.divide(ret1_local, gs1_local) ret_per2 = np.divide(ret2_local, gs2_local) ret2_sim = ret_per1 * gs2_local ns2_sim = gs2_local - ret2_sim ret_fact = np.divide((ns2_local - ns2_sim), ns2_global) * 100 # calling metrics d = metric(mos1_gs_local, mos2_gs_local, ns2_local, gs1_local, gs2_local, ret_per1, ret_per2, ns2_global) # final data frame df_final = store_table(df, d, ret_fact, ns2_global) return df_final # Its like the final main function to call the decomposition function with given parameter and limit def my_func(param, param_limit, max_level): # period1 net sale ns1 = sale(mos1) # period2 net sale ns2 = sale(mos2) ns2_global = ns2 # Abs list abs_list = ['drug_name', 'drug_composition', 'store_staff', 'store_name', 'line_manager', 'city', 'abo', 'franchisee_name', 'cluster_name', 'old_new_customer'] pct_list = ['drug_type', 'drug_category', 'drug_company', 'payment_method', 'promo_code', 'pr_flag', 'hd_flag', 'ecom_flag'] # If parameters are set # sorting the parameter values in descending order of change of net sale from period1 to period2 df1_sort = mos1.groupby(param)['sales'].sum().reset_index() df2 = pd.DataFrame() df2[param] = df1_sort[param] df3 = pd.DataFrame() df3['sales'] = df1_sort['sales'] df3 = df3.applymap(lambda x: np.float(x)) df1_sort = pd.concat([df2, df3], axis=1) df1_sort['fraction'] = (df1_sort['sales'] / ns1) * 100 df2_sort = mos2.groupby(param)['sales'].sum().reset_index() df4 = pd.DataFrame() df4[param] = df2_sort[param] df5 = pd.DataFrame() df5['sales'] = df2_sort['sales'] df5 = df5.applymap(lambda x: np.float(x)) df2_sort = pd.concat([df4, df5], axis=1) df2_sort['fraction'] = (df2_sort['sales'] / ns2) * 100 df_sort = pd.merge(df1_sort, df2_sort, on=param, how='outer') df_sort.fillna(0, inplace=True) # sales diff df_sort['s_diff'] = df_sort['sales_y'] - df_sort['sales_x'] # fraction diff df_sort['f_diff'] = df_sort['fraction_y'] - df_sort['fraction_x'] # sorting absolute values df_sort1 = df_sort[param] df_sort2 = df_sort[['sales_x', 'fraction_x', 'sales_y', 'fraction_y', 's_diff', 'f_diff']] df_sort2 = np.abs(df_sort2) df_sort3 = pd.concat([df_sort1, df_sort2], axis=1) df_sort3 # sorting if param in abs_list: df_sort = df_sort3.sort_values('s_diff', ascending=False) elif param in pct_list: df_sort = df_sort3.sort_values('f_diff', ascending=False) # listing the sorted parameters sort_list = list(df_sort[param]) # choosing the parameter values from set limit if len(sort_list) <= param_limit: param_list = sort_list else: param_list = sort_list[0:param_limit] # creating dataframe with rows as parameter values df_temp = pd.DataFrame() # Iterating through each parameter value for c in param_list: # Filtering base table based on set parameter p1 = mos1[mos1[param] == c] p2 = mos2[mos2[param] == c] # calculating contribution factor by calling the factor_param function if param in abs_list: ns_factor_param = factor_param(p1, p2, ns1, ns2, 'abs') elif param in pct_list: ns_factor_param = factor_param(p1, p2, ns1, ns2, 'per') # printing the contribution of parameters in total change of net sale df_op = pd.DataFrame(index=[c]) df_op['Net sale'] = ns_factor_param # Calling the decomposition funtion for set parameters and level df2 = decomposition(p1, p2, df_op, ns2_global) df_final = pd.concat([df_temp, df2]) df_temp = df_final # Arranging column names in a relevant way local_list = ['Net sale', 'Return%', 'Number_cust', 'ACV', 'Nob_per_cust', 'ABV', 'Drugs_per_bill', 'Quantity_per_drug', 'Avg_rate_per_quantity'] # return final df return level(df_final, max_level, local_list) # Function to store output for all param in the list def all_param(param_list, param_limit, max_level): df_param_dict = {} for param in param_list: df_local = my_func(param, param_limit, max_level) df_local['params'] = param df_param_dict[param] = df_local return df_param_dict # Sorting param on the basis of contribution to change def sort_param(df_param_dict): params = [] cont_value = [] for key in df_param_dict: params.append(key) cont_value.append(abs(np.abs(df_param_dict[key]['Net sale']).sum())) df_local = pd.DataFrame(data={'param': params, 'contribution': cont_value}) df_sorted = df_local.sort_values('contribution', ascending=False) sorted_param_list = list(df_sorted['param']) return sorted_param_list # Concating all stores dataframe in descending order of contribution def concat(sorted_param_list, df_param_dict): p = 0 df_final = pd.DataFrame() for param in sorted_param_list: df_temp = df_param_dict[param] df_final = pd.concat([df_final, df_temp]) p = p + 1 index = list(df_final.index) df_final.set_index(['params', index], inplace=True) return df_final # Function to filter data based on larger contribution def filtered(df, ch_ns, upper_value=0.95, lower_value=0.05): uv = np.quantile(df, upper_value) lv = np.quantile(df, lower_value) if ch_ns > 0: df = df.applymap(lambda x: np.nan if x <= uv else x) elif ch_ns < 0: df = df.applymap(lambda x: np.nan if x >= lv else x) df = df.applymap(lambda x: np.round(x, 2)) df = df.dropna(axis=0, how='all') df = df.dropna(axis=1, how='all') return df # Defining funstion to calculate absolute difference def difference(p, pv, metric): local_df1 = mos1[mos1[p] == pv] local_df2 = mos2[mos2[p] == pv] if metric == 'Net sale': ns_local1 = sale(local_df1) ns_local2 = sale(local_df2) abs_ch = change(ns_local1, ns_local2) elif metric == 'Return%': mos1_gs_local = break_sale(local_df1, 'gross') mos2_gs_local = break_sale(local_df2, 'gross') gs1_local = sale(mos1_gs_local) gs2_local = sale(mos2_gs_local) mos1_ret_local = break_sale(local_df1, 'return') mos2_ret_local = break_sale(local_df2, 'return') ret1_local = sale(mos1_ret_local) ret2_local = sale(mos2_ret_local) ret_per1 = np.divide(ret1_local, gs1_local) * 100 ret_per2 = np.divide(ret2_local, gs2_local) * 100 abs_ch = change(ret_per1, ret_per2) elif metric == 'Number_cust': nc1 = num_cust(local_df1) nc2 = num_cust(local_df2) abs_ch = change(nc1, nc2) elif metric == 'ACV': agpc1 = avg_gs_per_customer(local_df1) agpc2 = avg_gs_per_customer(local_df2) abs_ch = change(agpc1, agpc2) elif metric == 'Nob_per_cust': nbpc1 = num_bills_per_customer(local_df1) nbpc2 = num_bills_per_customer(local_df2) abs_ch = change(nbpc1, nbpc2) elif metric == 'ABV': agpb1 = avg_gs_per_bill(local_df1) agpb2 = avg_gs_per_bill(local_df2) abs_ch = change(agpb1, agpb2) elif metric == 'Drugs_per_bill': ndpb1 = num_drugs_per_bill(local_df1) ndpb2 = num_drugs_per_bill(local_df2) abs_ch = change(ndpb1, ndpb2) elif metric == 'Quantity_per_drug': nqpdpb1 = num_quantity_per_drug_per_bill(local_df1) nqpdpb2 = num_quantity_per_drug_per_bill(local_df2) abs_ch = change(nqpdpb1, nqpdpb2) elif metric == 'Avg_rate_per_quantity': agpq1 = rate(local_df1) agpq2 = rate(local_df2) abs_ch = change(agpq1, agpq2) return abs_ch # Defining function to create data frame for differecnce def diff_df(df): df_diff = df.copy() params_list = list(df_diff['params']) param_value_list = list(df_diff['parameter value']) column_list = list(df_diff.columns)[2:] # Iterating through all the entries in the final dataframe for c in column_list: for (p, pv) in zip(params_list, param_value_list): df_diff[c] = np.where((df_diff['params'] == p) & (df_diff['parameter value'] == pv), difference(p, pv, c), df_diff[c]) return df_diff # Defining function to find top parameter def top_param(df_filtered, ch_ns, top_parameter, filter_basis): df_array = df_filtered.iloc[:, 2:].values list1 = [] for l in df_array: for m in l: list1.append(m) # removing nan and inf list1 = [v for v in list1 if not (math.isinf(v) or math.isnan(v))] # Top N values if ch_ns < 0: # Ascending order sort_list = list(np.sort(list1)) else: # Descending order sort_list = list(np.sort(list1)) sort_list.reverse() if filter_basis == 'percentage': length = len(sort_list) per = int((length * top_parameter) / 100) selected_list = sort_list[0:per] else: selected_list = sort_list[0:top_parameter] df1 = df_filtered.iloc[:, :2] df2 = df_filtered.iloc[:, 2:] df3 = df2.applymap(lambda x: np.nan if x not in selected_list else x) df_filtered = pd.concat([df1, df3], axis=1) df_index = df_filtered.set_index(['params', 'parameter value']) df_filtered = df_index.dropna(axis=0, how='all') df_filtered = df_filtered.dropna(axis=1, how='all') df_filtered.reset_index(inplace=True) return df_filtered # defining summary function def summary(df_local): p_list = list(df_local['params'].values) pv_list = list(df_local['parameter value'].values) metrics = (list(df_local.columns))[2:] df_array = df_local.iloc[:, 2:].values value_list = [] for l in df_array: value_list.append(list(l)) zip_list = list(zip(p_list, pv_list, value_list)) n = len(metrics) # Adding corresponding data final_list = [] for m in zip_list: for i in range(n): if math.isnan(m[2][i]) is False: final_list.append([m[0], m[1], metrics[i], m[2][i]]) return final_list # Final run function def run(ch_ns, hidden_param_list, manual_sort_list, param='all_params', param_limit=5, max_level=5, data='filter', filter_basis='percentage', top_parameter=5, manual_sorting='no', sorting_basis='param_value'): # threshold = filter_cutoff / 100 if param != 'all_params': input_list = list(param.split(',')) param_list = [] param_list.extend(input_list) df_param_dict = all_param(param_list, param_limit, max_level) sorted_param_list = sort_param(df_param_dict) df_required = concat(sorted_param_list, df_param_dict) df_pr = df_required.copy() if data == 'full': df_pr = df_pr.applymap(lambda x: np.round(x, 2)) df_pr.reset_index(inplace=True) df_pr.rename(columns={'level_1': 'parameter value'}, inplace=True) df_filtered = df_pr.copy() # df_filtered = df_filtered[~(df_filtered['params'].isin(hidden_param_list))] # return df_filtered elif data == 'filter': # df_pr = df_pr.applymap(lambda x: 0 if x == np.nan else x) # df_pr = df_pr.fillna(0) # df = filtered(df_pr,ch_ns, (1 - threshold), threshold) df_pr = df_pr.applymap(lambda x: np.round(x, 2)) df_pr.reset_index(inplace=True) df_pr.rename(columns={'level_1': 'parameter value'}, inplace=True) # local_hidden_list = [].append(initial_param) # Hiding the initial param from impact factor # df_pr = df_pr[~(df_pr['params'].isin(local_hidden_list))] df = top_param(df_pr, ch_ns, top_parameter, filter_basis) df_filtered = df.copy() # df_filtered = df_filtered[~(df_filtered['params'].isin(hidden_param_list))] # return df_filtered if param == 'all_params': param_list = ['drug_name', 'drug_type', 'drug_category', 'drug_composition', 'drug_company', 'store_staff', 'old_new_customer', 'payment_method', 'promo_code', 'pr_flag', 'hd_flag', 'ecom_flag', 'store_name', 'line_manager', 'city', 'abo', 'franchisee_name', 'cluster_name'] df_param_dict = all_param(param_list, param_limit, max_level) sorted_param_list = sort_param(df_param_dict) df_required = concat(sorted_param_list, df_param_dict) df_pr = df_required.copy() if data == 'full': df_pr = df_pr.applymap(lambda x: np.round(x, 2)) df_pr.reset_index(inplace=True) df_pr.rename(columns={'level_1': 'parameter value'}, inplace=True) # hidden values hidden_param_value = ['acute', 'store', 'cash', 'ZIPPIN PHARMA PVT. LTD', 'MAH-MUM'] df_filtered = df_pr.copy() df_filtered = df_filtered[~(df_filtered['parameter value'].isin(hidden_param_value))] df_filtered = df_filtered[~(df_filtered['params'].isin(hidden_param_list))] # return df_filtered elif data == 'filter': df_pr = df_pr.applymap(lambda x: np.round(x, 2)) df_pr.reset_index(inplace=True) df_pr.rename(columns={'level_1': 'parameter value'}, inplace=True) # hidden values hidden_param_value = ['acute', 'store', 'cash', 'ZIPPIN PHARMA PVT. LTD', 'MAH-MUM'] df_filtered = df_pr.copy() df_filtered = df_filtered[~(df_filtered['parameter value'].isin(hidden_param_value))] hidden_param_list.append(initial_param) df_filtered = df_filtered[~(df_filtered['params'].isin(hidden_param_list))] df_filtered = top_param(df_filtered, ch_ns, top_parameter, filter_basis) # return df_filtered if data == 'full': if manual_sorting == 'no': # hidden_param = hidden_param_list if sorting_basis == 'param': df_filtered = df_filtered elif sorting_basis == 'param_value': if ch_ns > 0: sort_col = list(df_filtered.columns)[2] df_filtered = df_filtered.sort_values(sort_col, ascending=False) else: sort_col = list(df_filtered.columns)[2] df_filtered = df_filtered.sort_values(sort_col, ascending=True) # dropping null rows and columns df_filtered = df_filtered.dropna(axis=0, how='all') df_filtered = df_filtered.dropna(axis=1, how='all') elif manual_sorting == 'yes': # taking the sorted parameters into a list param_list = list(df_filtered['params'].values) manual_sort_list = manual_sort_list manual_sort = [] for p in manual_sort_list: if p in param_list: manual_sort.append(p) # sorting by sorted param df_concat = pd.DataFrame() for c in manual_sort: df_temp = df_filtered[df_filtered['params'] == c] df_concat = pd.concat([df_concat, df_temp]) df_filtered = df_concat return df_filtered elif data == 'filter': if manual_sorting == 'no': df_filtered = df_filtered # sorting in asc/desc order if ch_ns > 0: sort_col = list(df_filtered.columns)[2] df_filtered = df_filtered.sort_values(sort_col, ascending=False) else: sort_col = list(df_filtered.columns)[2] df_filtered = df_filtered.sort_values(sort_col, ascending=True) elif manual_sorting == 'yes': df_filtered = df_filtered # taking the sorted parameters into a list param_list = list(df_filtered['params'].values) manual_sort_list = list(manual_sort_list) manual_sort = [] for p in manual_sort_list: if p in param_list: manual_sort.append(p) # sorting by sorted param df_concat = pd.DataFrame() for c in manual_sort: df_temp = df_filtered[df_filtered['params'] == c] df_concat = pd.concat([df_concat, df_temp]) df_filtered = df_concat return df_filtered # percent change in net sale from p1 to p2 ns1 = sale(mos1) ns2 = sale(mos2) ch_ns = change(ns1, ns2) pc_ns = np.round(per_change(ns1, ns2), 2) # Running final function to get output df_filtered = run(ch_ns=ch_ns, hidden_param_list=hidden_param_list, manual_sort_list=manual_sort_list, param=param, param_limit=param_limit, max_level=max_level, data=data, filter_basis=filter_basis, top_parameter=top_parameter, manual_sorting=manual_sorting, sorting_basis=sorting_basis) # Running function to get summary for top 5 parameters df_top = run(ch_ns, hidden_param_list, manual_sort_list, param, param_limit, max_level, 'filter', 'abs', 5, 'no', 'param_value') summary_list = summary(df_top) df_top_diff = diff_df(df_top) summary_list_diff = summary(df_top_diff) # taking those difference where data is present summary_list_filtered = [] for m in summary_list: for n in summary_list_diff: if m[0:3] == n[0:3]: if n not in summary_list_filtered: summary_list_filtered.append(n) # Writing summary if ch_ns > 0: summary_text = f'Net Sale is increased by {pc_ns}% \n' else: summary_text = f'Net Sale is decreased by {pc_ns * -1}% \n' x = len(summary_list) for i in range(x): m = summary_list[i] n = summary_list_filtered[i] if n[3] > 0: change_word = 'is increased' else: change_word = 'is decreased' if n[2] == 'Number_cust': if n[0] == 'old_new_customer': summary_text = summary_text + f" \n {i + 1}. The number of {n[1]} customers {change_word} by {np.abs(int(n[3]))} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " elif n[0] in ['drug_type', 'drug_category']: summary_text = summary_text + f" \n {i + 1}. The number of customers for {n[1]} {n[0].replace('_', ' ')} {change_word} by {np.abs(int(n[3]))} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " elif n[0] in ['pr_flag', 'hd_flag', 'ecom_flag']: summary_text = summary_text + f" \n {i + 1}. The number of customers for {n[1]} {change_word} by {np.abs(int(n[3]))} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " elif n[0] in ['payment_method']: summary_text = summary_text + f" \n {i + 1}. The number of customers for {n[1]} payment {change_word} by {np.abs(int(n[3]))} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " else: summary_text = summary_text + f" \n {i + 1}. The number of customers for the {n[0].replace('_', ' ')} {n[1]} {change_word} by {np.abs(int(n[3]))} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " else: if n[0] == 'old_new_customer': summary_text = summary_text + f" \n {i + 1}. The {n[2].replace('_', ' ')} of {n[1]} customers {change_word} by {np.abs(n[3])} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " elif n[0] in ['drug_type', 'drug_category']: summary_text = summary_text + f" \n {i + 1}. The {n[2].replace('_', ' ')} for {n[1]} {n[0].replace('_', ' ')} {change_word} by {np.abs(n[3])} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " elif n[0] in ['pr_flag', 'hd_flag', 'ecom_flag']: summary_text = summary_text + f" \n {i + 1}. The {n[2].replace('_', ' ')} for {n[1]} {change_word} by {np.abs(n[3])} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " elif n[0] in ['payment_method']: summary_text = summary_text + f" \n {i + 1}. The {n[2].replace('_', ' ')} for {n[1]} payment {change_word} by {np.abs(n[3])} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " else: summary_text = summary_text + f" \n {i + 1}. The {n[2].replace('_', ' ')} for the {n[0].replace('_', ' ')} {n[1]} {change_word} by {np.abs(n[3])} and contributing to estimated {np.round(((m[3] * ns2 * 0.01) / 100000), 2)} Lakhs revenue " # Finally dropping null rows and columns df_index = df_filtered.set_index(['params', 'parameter value']) df_filtered = df_index.dropna(axis=0, how='all') df_filtered = df_filtered.dropna(axis=1, how='all') df_filtered.reset_index(inplace=True) # Additional data if additional_data == 'difference' or additional_data == 'both': # Absolute difference df_diff = diff_df(df_filtered) # reverse of absolute dataframe df_diff.rename(columns={'parameter value': ''}, inplace=True) df_diff_rev = df_diff.T df_diff_rev.to_csv('/tmp/final_output_diff.csv', index=True, header=False) if additional_data == 'absolute_impact' or additional_data == 'both': df1 = df_filtered.iloc[:, :2] df2 = df_filtered.iloc[:, 2:] df3 = df2.applymap(lambda x: round(np.divide((x * ns2), 100), 2) if x != np.nan else x) df_abs = pd.concat([df1, df3], axis=1) # reverse of absolute dataframe df_abs.rename(columns={'parameter value': ''}, inplace=True) df_abs_rev = df_abs.T df_abs_rev.to_csv('/tmp/final_output_abs.csv', index=True, header=False) # saving reverese dataframes df_filtered.rename(columns={'parameter value': ''}, inplace=True) df_rev = df_filtered.T df_rev.to_csv('/tmp/final_output.csv', index=True, header=False) # Formatting Excel path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" if not os.path.exists(path): os.mkdir(path, 0o777) time_now = datetime.now().strftime('%Y_%m_%d_%H%M%S') file_name = "sales_decomposition_{}_{}.xlsx".format(email_to, time_now) local_file_full_path = path + file_name # wrting to excel book = xlsxwriter.Workbook(local_file_full_path, {'strings_to_numbers': True}) ws = book.add_worksheet("SD") bold = book.add_format({'bold': True}) cell_format_bg_yl = book.add_format({'bold': True}) cell_format_bg_yl.set_bg_color('yellow') cell_format_bg_gr = book.add_format() cell_format_bg_gr.set_bg_color('green') cell_format_bg_rd = book.add_format() cell_format_bg_rd.set_bg_color('red') ws.write(0, 0, "Sales Decomposition", cell_format_bg_yl) if initial_param != 'all': ws.write(2, 0, "Overall filter applied for", bold) ws.write(2, 1, initial_param, bold) ws.write(2, 2, initial_param_value, bold) else: ws.write(2, 0, "Overall filter applied for all parameters", bold) ws.write(1, 5, "Period 1") ws.write(2, 5, "Period 2") ws.write(0, 6, "Start Date") ws.write(0, 7, "End Date") ws.write(1, 6, start_date1) ws.write(1, 7, end_date1) ws.write(2, 6, start_date2) ws.write(2, 7, end_date2) ws.write(1, 8, "Net Sale1") ws.write(1, 9, ns1) ws.write(2, 8, "Net Sale2") ws.write(2, 9, ns2) ws.write(4, 5, "Net Sale Change ") if ch_ns > 0: ws.write(4, 6, ch_ns, cell_format_bg_gr) elif ch_ns < 0: ws.write(4, 6, ch_ns, cell_format_bg_rd) ws.write(5, 5, "Net Sale Ch% ") if pc_ns > 0: ws.write(5, 6, pc_ns, cell_format_bg_gr) elif pc_ns < 0: ws.write(5, 6, pc_ns, cell_format_bg_rd) # Adding csv data to excel # Adding csv data to excel ws.write(7, 0, "Percentage Impact", cell_format_bg_yl) limit2 = df_rev.shape[1] + 1 row_index = 8 with open("/tmp/final_output.csv") as csvfile: csv_reader = csv.reader(csvfile) for row in csv_reader: for l in range(limit2): if l == 0: ws.write(row_index, l, row[l], bold) else: ws.write(row_index, l, row[l]) row_index += 1 ws.conditional_format('B10:DX19', {'type': '3_color_scale'}) if additional_data == 'difference': # adding difference data ws.write(20, 0, "Difference", cell_format_bg_yl) limit3 = df_diff_rev.shape[1] + 1 row_index = 21 with open("/tmp/final_output_diff.csv") as csvfile: csv_reader = csv.reader(csvfile) for row in csv_reader: for l in range(limit3): if l == 0: ws.write(row_index, l, row[l], bold) else: ws.write(row_index, l, row[l]) row_index += 1 ws.conditional_format('B23:DX36', {'type': '3_color_scale'}) if additional_data == 'absolute_impact': # adding absolute change data ws.write(20, 0, "Absolute Impact", cell_format_bg_yl) limit4 = df_abs_rev.shape[1] + 1 row_index = 21 with open("/tmp/final_output_abs.csv") as csvfile: csv_reader = csv.reader(csvfile) for row in csv_reader: for l in range(limit4): if l == 0: ws.write(row_index, l, row[l], bold) else: ws.write(row_index, l, row[l]) row_index += 1 ws.conditional_format('B23:DX36', {'type': '3_color_scale'}) if additional_data == 'both': # adding adifference data ws.write(20, 0, "Difference", cell_format_bg_yl) limit3 = df_diff_rev.shape[1] + 1 row_index = 21 with open("/tmp/final_output_diff.csv") as csvfile: csv_reader = csv.reader(csvfile) for row in csv_reader: for l in range(limit3): if l == 0: ws.write(row_index, l, row[l], bold) else: ws.write(row_index, l, row[l]) row_index += 1 ws.conditional_format('B23:DX36', {'type': '3_color_scale'}) # adding absolute change data ws.write(33, 0, "Absolute Impact on Net Sale", cell_format_bg_yl) limit4 = df_abs_rev.shape[1] + 1 row_index = 34 with open("/tmp/final_output_abs.csv") as csvfile: csv_reader = csv.reader(csvfile) for row in csv_reader: for l in range(limit4): if l == 0: ws.write(row_index, l, row[l], bold) else: ws.write(row_index, l, row[l]) row_index += 1 ws.conditional_format('B36:DX50', {'type': '3_color_scale'}) # changing width of column if limit2 >= 12: limit = limit2 else: limit = 12 for l in range(limit): ws.set_column(0, l, 15) # ws2 for summary ws2 = book.add_worksheet("Summary") ws2.write(0, 0, "Summary for top contributing factors", cell_format_bg_yl) ws2.write(3, 0, summary_text) ws2.set_column(0, 0, 60) # worksheet3 to store parameters ws3 = book.add_worksheet("Parameters") ws3.write(0, 0, "Parameters Applied", cell_format_bg_yl) ws3.write(2, 0, "Overall Filter Selector", bold) ws3.write(2, 1, initial_param) ws3.write(3, 0, "Overall Filter Value", bold) ws3.write(3, 1, initial_param_value) ws3.write(4, 0, "Impact Parameters", bold) if param != 'all_params': # input_list = list(param.split(',')) ws3.write(4, 1, param) else: param_list = "['drug_name', 'drug_type', 'drug_category', 'drug_composition', 'drug_company', 'store_staff','old_new_customer', 'payment_method','promo_code', 'pr_flag', 'hd_flag', 'ecom_flag', 'store_name', 'line_manager', 'city', 'abo','franchisee_name', 'cluster_name']" ws3.write(4, 1, param_list) ws3.write(5, 0, "Max Top Values in each Inpact Parameter", bold) ws3.write(5, 1, param_limit) ws3.write(6, 0, "Output Values Filter", bold) ws3.write(6, 1, data) ws3.write(7, 0, "Select Top %", bold) ws3.write(7, 1, top_parameter) ws3.write(8, 0, "Manual Sorting", bold) ws3.write(8, 1, manual_sorting) ws3.set_column(0, 0, 30) # closing Excel book.close() # uploading to s3 s3.s3_client.upload_file( Filename=local_file_full_path, Bucket=s3.bucket_name, Key=file_name) # sending email to user Email().send_email_file( subject=f"sales decomposition analysis with overall filter {initial_param} as {initial_param_value} ", mail_body=summary_text, to_emails=email_to, file_paths=[local_file_full_path]) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sales-decomposition/sales-decomposition.py
sales-decomposition.py
import os import sys import argparse from datetime import datetime import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, PostGreWrite, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.utils.general_funcs import nearest_store, month_diff parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to logger = get_logger() logger.info(f"env: {env}") """ DB connections """ pg_db = PostGreWrite() pg_db.open_connection() ms_db = MySQL() ms_db.open_connection() run_date = datetime.today().strftime("%Y-%m-%b") stores_q = """ SELECT st.id AS 'store_id', st.name AS 'store', sa.`name` as `line_manager`, abo.name AS 'abo', sm.name AS 'store_manager', st.category AS 'store_type', DATE(`opened-at`) AS 'opened_at', CAST(st.`lat` AS DECIMAL(10,6)) AS `latitude`, CAST(st.`lon` AS DECIMAL(10,6)) AS `longitude`, st.`contact-number-1` AS `store-contact-1`, st.`contact-number-2` AS `store-contact-2`, st.`address` AS `store-address`, sg.name as `city`, case when lower(SUBSTRING(st.name, 1, 3))='b2b' then 'B2B' else 'Store' end as `store_b2b`, st.`franchisee-id` as franchisee_id, fc.`name` as `franchisee_name` FROM stores st LEFT JOIN ( SELECT us.`store-id`, u.`name`, MAX(u.`created-at`) AS `date` FROM `users-stores` AS us LEFT JOIN `users` AS u ON u.`id` = us.`user-id` WHERE `type` = 'area-business-owner' GROUP BY us.`store-id` ) AS abo ON abo.`store-id` = st.id LEFT JOIN ( SELECT us.`store-id`, u.`name`, MAX(u.`created-at`) AS `date` FROM `users-stores` AS us LEFT JOIN `users` AS u ON u.`id` = us.`user-id` WHERE `type` = 'store-manager' GROUP BY us.`store-id` ) AS sm ON sm.`store-id` = st.id LEFT JOIN ( SELECT us.`store-id`, u.`name`, MAX(u.`created-at`) AS `date` FROM `users-stores` AS us LEFT JOIN `users` AS u ON u.`id` = us.`user-id` WHERE `type` = 'line-manager' GROUP BY us.`store-id` ) AS sa ON sa.`store-id` = st.id LEFT JOIN `store-groups` sg on st.`store-group-id` =sg.id LEFT JOIN `franchisees` fc on st.`franchisee-id` = fc.`id` """ data = pd.read_sql_query(stores_q, ms_db.connection) # data['opened_at'] = pd.to_datetime(data['opened_at'], errors='coerce') data['run_date'] = pd.to_datetime(run_date) # data['date_diff'] = (data['run_date'] - data['opened_at']).dt.days # Month diff # data['month_diff'] = month_diff(data['run_date'], data['opened_at']) # Filling Null values in lat lon data['latitude'] = data['latitude'].fillna(0) data['longitude'] = data['longitude'].fillna(0) # Nearest store calc data['nearest_store'] = data['store_id'].apply(lambda x: nearest_store(x, data, lat_lon_col_name=['latitude', 'longitude'], from_distance=5)[1:]) # data['nearest_store'] = data['nearest_store'].apply(lambda x: str(x.tolist())) data['nearest_store'] = data['nearest_store'].apply(lambda x: x.tolist(), 1) data['line_store'] = data['store_id'] data['line'] = "NA" data['landmark'] = "NA" truncate_q = """ DELETE FROM stores_master """ pg_db.engine.execute(truncate_q) # Data type correction data['nearest_store'] = data['nearest_store'].apply(lambda x: str(x).replace("[", "{").replace("]", "}")) for d in tuple(data[['store_id', 'nearest_store']].values): query = f""" INSERT INTO stores_master (store_id, nearest_store) VALUES ('%s', '%s') """ % tuple(d) pg_db.engine.execute(query) # old method # data.to_sql(name='stores_master', con=pg_db.engine, if_exists='append', index=False, method='multi', chunksize=500) pg_db.close_connection() ms_db.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/stores-master/nearest_store.py
nearest_store.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.config.common import Config from zeno_etl_libs.helper.email.email import Email import argparse import pandas as pd import datetime import numpy as np import math import simplejson, urllib.request from datetime import datetime, timedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to logger = get_logger() logger.info(f"env: {env}") start_time = datetime.now() rs_db = DB() rs_db.open_connection() s3 = S3() # Start logger.info('Script Manager Initialized') # ============================================================================= # Fetching store in clusters # ============================================================================= store_clusters_query = f''' select sf."store-id", sc."cluster-id" from "prod2-generico".features f join "prod2-generico"."store-features" sf on f.id = sf."feature-id" join "prod2-generico"."store-clusters" sc on sc."store-id" = sf."store-id" where sf."feature-id" = 69 and sf."is-active" = 1 and sc."is-active" = 1 ''' store_clusters = rs_db.get_df(store_clusters_query) if isinstance(store_clusters, type(None)): store_clusters = pd.DataFrame(columns=['store-id', 'cluster-id']) logger.info("") logger.info("Fetched Store Clusters") str_info_cross = pd.DataFrame() for cluster in store_clusters['cluster-id'].unique(): temp = store_clusters[store_clusters['cluster-id'] == cluster] cluster_stores = tuple(map(int, list(temp['store-id'].unique()))) strs = """ select id as "store-id", name as "store-name", lat , lon from "prod2-generico".stores where id in {} """.format(cluster_stores) str_info = rs_db.get_df(strs) str_info['key'] = 0 str_info_cross_cluster = str_info.merge(str_info, on='key', how='outer', suffixes=('-x', '-y')) str_info_cross_cluster = str_info_cross_cluster[(str_info_cross_cluster['store-id-x'] != str_info_cross_cluster['store-id-y'])] del str_info_cross_cluster['key'] str_info_cross = str_info_cross.append(str_info_cross_cluster, ignore_index=True) if isinstance(str_info_cross, type(None)): str_info_cross = pd.DataFrame(columns=['store-id-x', 'store-name-x', 'lat-x', 'lon-x', 'store-id-y', 'store-name-y', 'lat-y', 'lon-y']) logger.info("") logger.info("Created Store Mapping in Cluster") # ============================================================================= # Checking If New Stores are added or not # Distance calculation will only run if there is change in cluster stores # ============================================================================= strs2 = """ select sd."store-id-x" as "store-id-x-in-dss", sd."store-id-y" as "store-id-y-in-dss" from "prod2-generico"."store-distance" sd """ str_info_in_DSS = rs_db.get_df(strs2) if isinstance(str_info_in_DSS, type(None)): str_info_in_DSS = pd.DataFrame(columns=['store-id-x-in-dss', 'store-id-y-in-dss']) check_if_change_in_cluster_store = str_info_cross.merge(str_info_in_DSS, left_on=['store-id-x', 'store-id-y'], right_on=['store-id-x-in-dss', 'store-id-y-in-dss'], how='left') differece = len(check_if_change_in_cluster_store[check_if_change_in_cluster_store['store-id-x-in-dss'].isna()]) logger.info("") logger.info("Changes in store clusters - {}".format(differece)) if differece == 0: logger.info("") logger.info("No Changes in Cluster stores So not running GMAPS API part to fetch distance") status2 = True table_status = 'Unchanged' api_status = 'No hit' else: logger.info("") logger.info("Changes in Cluster stores So running GMAPS API part to fetch distance") table_status = 'Updated' api_status = 'hit' # ========================================================================= # Calculating Distance in air # ========================================================================= def distance_cal(a, b, c, d): R = 6373.0 lat1 = math.radians(a) lon1 = math.radians(b) lat2 = math.radians(c) lon2 = math.radians(d) dlon = lon2 - lon1 dlat = lat2 - lat1 a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) distance = R * c distance = distance * 1000 # To convert in meters distance = round(distance, 0) distance = int(distance) return distance str_info_cross['lat-x'] = str_info_cross['lat-x'].astype('float') str_info_cross['lon-x'] = str_info_cross['lon-x'].astype('float') str_info_cross['lat-y'] = str_info_cross['lat-y'].astype('float') str_info_cross['lon-y'] = str_info_cross['lon-y'].astype('float') str_info_cross['distance-in-air'] = np.vectorize(distance_cal)(str_info_cross['lat-x'], str_info_cross['lon-x'], str_info_cross['lat-y'], str_info_cross['lon-y']) logger.info('') logger.info('Calculated Distance in Air') # ========================================================================= # Calculating Distance on road # ========================================================================= str_info_cross['lat-x'] = str_info_cross['lat-x'].astype('str') str_info_cross['lon-x'] = str_info_cross['lon-x'].astype('str') str_info_cross['lat-y'] = str_info_cross['lat-y'].astype('str') str_info_cross['lon-y'] = str_info_cross['lon-y'].astype('str') str_info_cross['lat-lon-x'] = str_info_cross[['lat-x', 'lon-x']].apply(lambda x: ','.join(x[x.notnull()]), axis=1) str_info_cross['lat-lon-y'] = str_info_cross[['lat-y', 'lon-y']].apply(lambda x: ','.join(x[x.notnull()]), axis=1) configobj = Config.get_instance() secrets = configobj.get_secrets() api_key = secrets['GMAPS_API_KEY'] gmaps_op = pd.DataFrame() distance_matrix = pd.DataFrame() for index, row in str_info_cross.iterrows(): # logger.info (index) lat_lon_x = row['lat-lon-x'] lat_lon_y = row['lat-lon-y'] url = "https://maps.googleapis.com/maps/api/distancematrix/json?origins={0}&destinations={1}&mode=driving&language=en-EN&sensor=false&key={2}".format( str(lat_lon_x), str(lat_lon_y), api_key) result = simplejson.load(urllib.request.urlopen(url)) distance = result["rows"][0]["elements"][0]["distance"]["value"] gmaps_op['store-id-x'] = row[0:1] gmaps_op['store-id-y'] = row['store-id-y'] gmaps_op['distance'] = distance distance_matrix = distance_matrix.append([gmaps_op]).reset_index(drop=True) str_info_cross = pd.merge(left=str_info_cross, right=distance_matrix, how='left', on=['store-id-x', 'store-id-y']) str_info_cross.rename(columns={'distance': 'distance-on-road'}, inplace=True) del str_info_cross['lat-lon-x'] del str_info_cross['lat-lon-y'] logger.info('') logger.info('Calculated Distance on road via GMAPS API') # str_info_cross['distance-on-road']=10 str_info_cross['uploaded-at'] = datetime.datetime.now() # ========================================================================= # Writing table in Redshift # ========================================================================= schema = 'prod2-generico' table_name = 'store-distance' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if isinstance(table_info, type(None)): logger.info('') logger.info(f"Table:{table_name} table does not exist - table uploaded") s3.write_df_to_db(df=str_info_cross[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) else: logger.info('') logger.info(f"Table:{table_name} table exist") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=str_info_cross[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") if status2 is True: status = 'Success' else: status = 'Failed' end_time = datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject='{} {} : store_distance table {} - GMAPS API - {}'.format( env, status, table_status, api_status), mail_body=f" pso-stock-transfer-mapping table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/stores-master/store_distance.py
store_distance.py
# !/usr/bin/env python # coding: utf-8 import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import time import pandas as pd import numpy as np from pandas.api.types import is_numeric_dtype # pip install mutagen import urllib from mutagen.mp3 import MP3 parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-l', '--limit', default=None, type=int, required=False) parser.add_argument('-dw', '--db_write', default="yes", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to limit = args.limit db_write = args.db_write # env = 'stage' # limit = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") # Connections rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() # ALERT: read_only=False, if you want connection which writes # this is mysql_write ms_connection = MySQL(read_only=False) ms_connection.open_connection() s3 = S3() # Global variable # Run date # run_date = datetime.today().strftime('%Y-%m-%d') # Timezone aware run_date = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d") # run_date = '2021-09-01' logger.info("Running for {}".format(run_date)) #################################### # DND list update #################################### def dnd_list_update(): ######################################### # Connections start ######################################### read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) ########################################## # DND customers ########################################## calling_q = """ SELECT a.`patient-id`, b.`comment-id`, b.`comment`, c.`call-status` FROM `calling-dashboard` a INNER JOIN `calling-history` b on a.`id` = b.`calling-dashboard-id` LEFT JOIN `call-statuses` c ON b.`comment-id` = c.`id` WHERE b.`comment-id` in (79) GROUP BY a.`patient-id`, b.`comment-id`, b.`comment`, c.`call-status` """ calling_q = calling_q.replace('`', '"') logger.info(calling_q) data_c = rs_db.get_df(query=calling_q) data_c.columns = [c.replace('-', '_') for c in data_c.columns] logger.info("Length of DND list fetched is {}".format(len(data_c))) logger.info("Unique".format(data_c.nunique())) logger.info("Unique comment-id is {}".format(data_c['comment_id'].unique())) logger.info("Unique comment is {}".format(data_c['comment'].unique())) logger.info("Unique call-status is {}".format(data_c['call_status'].unique())) # Final list data = data_c[['patient_id']].drop_duplicates() data['call_dnd'] = 1 data['reason'] = 'Calling dashboard - Do not disturb' logger.info("DND list length is {}".format(len(data))) logger.info("Export columns are {}".format(data.columns)) # Remove those that are already part read_schema = 'prod2-generico' rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) dnd_q = """ SELECT "patient-id" FROM "dnd-list" WHERE "patient-id" is not null GROUP BY "patient-id" """ dnd_q = dnd_q.replace('`', '"') logger.info(dnd_q) data_dss = rs_db_write.get_df(query=dnd_q) data_dss.columns = [c.replace('-', '_') for c in data_dss.columns] # Already dnd already_dnd = data_dss['patient_id'].dropna().drop_duplicates().to_list() data_export = data[~data['patient_id'].isin(already_dnd)] logger.info("Data export length - after removing already in list, is {}".format(len(data_export))) # Dummy column values data_export['phone'] = "-1" data_export['sms_dnd'] = 0 # Timestamp data_export['created_at'] = pd.to_datetime(datetime.now()) # Created-by data_export['created_by'] = 'etl-automation' ########################################## # DANGER ZONE ########################################## logger.info("Insert started for length {}".format(len(data_export))) write_schema = 'prod2-generico' write_table_name = 'dnd-list' table_info = helper.get_table_info(db=rs_db, table_name=write_table_name, schema=write_schema) table_info_clean = table_info[~table_info['column_name'].isin(['id', 'updated-at'])] data_export.columns = [c.replace('_', '-') for c in data_export.columns] s3.write_df_to_db(df=data_export[table_info_clean['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Insert done") def calling_history_metadata(): ###################################################### # Check existing ###################################################### # Check data already in DSS read_schema = 'prod2-generico' rs_db_write.execute(f"set search_path to '{read_schema}'", params=None) call_ds_q = """ SELECT "calling-history-id" FROM "calling-history-metadata" """ call_ds_q = call_ds_q.replace('`', '"') logger.info(call_ds_q) last_dss = rs_db_write.get_df(query=call_ds_q) last_dss.columns = [c.replace('-', '_') for c in last_dss.columns] already_present = tuple(last_dss['calling_history_id'].to_list()) logger.info("Interaction id's present in DSS are : " "{}".format(len(already_present))) ######################################## # Check recording lengths to be inserted ######################################## read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) limit_str = f" limit {limit} ; " if limit else "" calling_h_q = f""" SELECT id AS `calling-history-id`, `call-recording-url` FROM `calling-history` WHERE `call-recording-url` != '' {limit_str} """ calling_h_q = calling_h_q.replace('`', '"') # logger.info(calling_h_q) data = rs_db.get_df(query=calling_h_q) data.columns = [c.replace('-', '_') for c in data.columns] logger.info("Interaction history present in mySQL : {}".format(len(data))) # Removing already present in dss data = data[~data['calling_history_id'].isin(already_present)] logger.info("New interaction history present in mySQL : {}".format(len(data))) # If testing # data = data.sample(n=10) ######################## # Calculation ######################## def get_length(url): try: download_data = urllib.request.urlopen(url) local_file_path = s3.download_file_from_s3(file_name='sample.mp3') f = open(local_file_path, 'wb') f.write(download_data.read()) f.close() audio = MP3(local_file_path) return audio.info.length except: return 0 data['call_duration'] = data.apply(lambda row: get_length(row['call_recording_url']), axis=1) data_insert_dss = data[['calling_history_id', 'call_duration']] ######################################################### # INSERT ######################################################## # Insert using to_sql data_insert_dss.columns = [c.replace('_', '-') for c in data_insert_dss.columns] logger.info("DSS - insert length is {}".format(len(data_insert_dss))) expected_data_length_insert = len(last_dss) + len(data_insert_dss) logger.info("DSS - Resulted data length after insert should be is " "{}".format(expected_data_length_insert)) # DSS insert logger.info("DSS - Insert starting") write_schema = 'prod2-generico' write_table_name = 'calling-history-metadata' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) # table_info_clean = table_info[~table_info['column_name'].isin(['id', 'updated-at'])] data_export = data_insert_dss.copy() data_export.columns = [c.replace('_', '-') for c in data_export.columns] s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("DSS - Insert ended") def calling_dashboard_info_update(run_date_param=None): ###################################################### # Check Tickets ###################################################### s = """ SELECT a.*, b.`campaign-name` FROM `calling-dashboard` a LEFT JOIN `calling-dashboard-campaigns` b on a.`campaign-id` = b.id """ tickets_data = pd.read_sql_query(s, ms_connection.connection) tickets_data.columns = [c.replace('-', '_') for c in tickets_data.columns] # Convert date values to date type tickets_data['list_date'] = pd.to_datetime(tickets_data['list_date'], errors='coerce') tickets_data['call_date'] = pd.to_datetime(tickets_data['call_date'], errors='coerce') logger.info("Tickets present in existing sheet : {}".format(len(tickets_data))) ######################################################### # Check which tickets have call date earlier than today, but still in open or reopen status ######################################################## # fetch run_date from parameters # if not, take current date as run date if run_date_param is not None: run_date = run_date_param else: run_date = datetime.today().strftime('%Y-%m-%d') logger.info("Running for {}".format(run_date)) # Check open tickets open_tickets = tickets_data[tickets_data['status'].isin(['open', 'reopen'])] logger.info("Total open tickets are {}".format(len(open_tickets))) # Check backlog tickets backlog_tickets = open_tickets[open_tickets['list_date'] < run_date] logger.info("Total backlog open tickets are {}".format(len(backlog_tickets))) # Update call date and backlog count for backlog tickets backlog_update = backlog_tickets[['id', 'list_date', 'call_date', 'backlog_days_count']] backlog_update['call_date'] = run_date backlog_update['backlog_days_count'] = ( pd.to_datetime(backlog_update['call_date']) - backlog_update['list_date']).dt.days backlog_update_mysql = backlog_update[['id', 'call_date', 'backlog_days_count']] # Out of this, how many do we actually need to update? s = """ SELECT `id`, `call-date`, `backlog-days-count` FROM `calling-dashboard` """ last_data_mysql = pd.read_sql_query(s, ms_connection.connection) last_data_mysql.columns = [c.replace('-', '_') for c in last_data_mysql.columns] # Join and check exactly which to update # Data match with mySQL common_cols = ['id', 'call_date', 'backlog_days_count'] # To merge, keep both dtypes same backlog_update_mysql['call_date'] = pd.to_datetime(backlog_update_mysql['call_date']).dt.strftime("%Y-%m-%d") last_data_mysql['call_date'] = pd.to_datetime(last_data_mysql['call_date']).dt.strftime("%Y-%m-%d") data_update_mysql = backlog_update_mysql[common_cols].merge( last_data_mysql[common_cols], how='outer', on=common_cols, indicator=True) # To update data_update_mysql = data_update_mysql[data_update_mysql['_merge'] == 'left_only'] data_update_mysql = data_update_mysql[['id', 'call_date', 'backlog_days_count']] data_update_mysql.columns = [c.replace('_', '-') for c in data_update_mysql.columns] logger.info("Update to be done for backlog tickets count is {}".format(len(data_update_mysql))) data_to_be_updated_list_mysql = list(data_update_mysql.apply(dict, axis=1)) ################################# # DANGER ZONE start ################################# # mySQL write engine update_counter = 0 for i in data_to_be_updated_list_mysql: update_q = """ UPDATE `calling-dashboard` SET `call-date` = '{1}', `backlog-days-count` = {2} WHERE `id` = {0} """.format(i['id'], i['call-date'], i['backlog-days-count']) # logger.info("Running update for ticket {}".format(i['id'])) # logger.info("id:", i['id'], "call-date:", i['call-date'], # "backlog-days-count:", i['backlog-days-count']) if db_write == 'yes': ms_connection.engine.execute(update_q) # logger.info("Update for ticket {} is successful".format(i['id'])) # Print success periodically update_counter = update_counter + 1 if update_counter % 1000 == 0: logger.info("mySQL - Update done till row {}".format(update_counter)) ################################# # DANGER ZONE END ################################# logger.info("mySQL - Update for calling-dashboard successful") # Verify updates s = """ SELECT `id`, `call-date`, `backlog-days-count` FROM `calling-dashboard` """ update_mysql_verify = pd.read_sql_query(s, ms_connection.connection) # To merge, keep both dtypes same update_mysql_verify['call-date'] = pd.to_datetime(update_mysql_verify['call-date']).dt.strftime("%Y-%m-%d") # Inner join with existing data update_mysql_check = update_mysql_verify.merge(data_update_mysql, how='inner', on=['id', 'call-date', 'backlog-days-count']) logger.info("mySQL - Update done for data entries length is {}".format(len(update_mysql_check))) if len(update_mysql_check) != len(data_update_mysql): logger.info("Warning: Error, update didn't happen for all entries") ############################################ # Create follow-up tickets ############################################# # Check which tickets have requested follow-up s = """ SELECT a.`calling-dashboard-id`, a.`follow-up-required`, a.`follow-up-at`, b.`original-reference-id`, b.`store-id`, b.`campaign-id`, b.`callback-reason`, b.`patient-id`, b.`follow-up-count` FROM `calling-history` a LEFT JOIN `calling-dashboard` b on a.`calling-dashboard-id` = b.`id` """ history_data = pd.read_sql_query(s, ms_connection.connection) history_data.columns = [c.replace('-', '_') for c in history_data.columns] # Convert follow up time to timestamp # Right now format is dd-mm-yy so putting dayfirst = True filter history_data['follow_up_at'] = pd.to_datetime(history_data['follow_up_at'], dayfirst=True, errors='coerce') # Keep date as string only history_data['follow_up_date'] = history_data['follow_up_at'].dt.strftime("%Y-%m-%d") logger.info("Follow up date converted to string") # Take only those who have requested follow-up # Check if flag is integer os string if is_numeric_dtype(history_data['follow_up_required']): follow_up_data = history_data[history_data['follow_up_required'] == 1] logger.info( "Follow up required (integer flag) is present in interactions - " "length is {}".format(len(follow_up_data))) else: follow_up_data = history_data[history_data['follow_up_required'] == '1'] logger.info( "Follow up required (string flag) is present in interactions - " "length is {}".format(len(follow_up_data))) # Sort on follow up dates, max is first follow_up_data = follow_up_data.sort_values(by=['calling_dashboard_id', 'follow_up_at'], ascending=[True, False]) # Choose only maximum follow-up time follow_up_data['rank'] = follow_up_data.groupby(['calling_dashboard_id']).cumcount() + 1 follow_up_data_latest = follow_up_data[follow_up_data['rank'] == 1] logger.info("Follow up data (max date per ticket) length is {}".format(len(follow_up_data_latest))) # Keep only future follow-ups follow_up_data_latest_valid = follow_up_data_latest[ follow_up_data_latest['follow_up_at'] >= pd.to_datetime(run_date)] logger.info("Valid (future) follow up date length is {}".format(len(follow_up_data_latest_valid))) # New ticket information new_ticket_data = follow_up_data_latest_valid.copy() # If reference id already exists, then copy it, else take ticket id new_ticket_data['new_ticket_reference_id'] = np.where(new_ticket_data['original_reference_id'] > 0, new_ticket_data['original_reference_id'], new_ticket_data['calling_dashboard_id']) # Drop other ticket id columns new_ticket_data.drop(['calling_dashboard_id', 'original_reference_id'], axis=1, inplace=True) # New original reference id new_ticket_data = new_ticket_data.rename(columns={ 'new_ticket_reference_id': 'original_reference_id'}) # Keep only one new follow-up on unique original_reference_id new_ticket_data2 = new_ticket_data.copy() new_ticket_data2['follow_up_date'] = pd.to_datetime(new_ticket_data2['follow_up_date']) # Sort on follow up dates, max is first new_ticket_data2 = new_ticket_data2.sort_values(by=['original_reference_id', 'follow_up_date'], ascending=[True, False]) # Choose only maximum follow-up time new_ticket_data2['rank'] = new_ticket_data2.groupby(['original_reference_id']).cumcount() + 1 # Only one for one ticket new_ticket_data3 = new_ticket_data2[new_ticket_data2['rank'] == 1] # Keep date as string only new_ticket_data3['follow_up_date'] = new_ticket_data3['follow_up_date'].dt.strftime("%Y-%m-%d") logger.info("Follow up date converted to string") # Since new ticket is generated, so add 1 to follow-up count new_ticket_data3['follow_up_count'] = new_ticket_data3['follow_up_count'] + 1 # Ticket list date taken as follow up date new_ticket_data3['list_date'] = new_ticket_data3['follow_up_date'] # Call date same as list date for now new_ticket_data3['call_date'] = new_ticket_data3['list_date'] # Update data-type to follow up new_ticket_data3['data_type'] = 'follow up' logger.info("One follow up for one root ticket - upload to be done - length is {}".format(len(new_ticket_data3))) # INSERT DATA # Final columns upload_cols = ['store_id', 'original_reference_id', 'list_date', 'call_date', 'patient_id', 'campaign_id', 'data_type', 'callback_reason', 'follow_up_count'] data_upload_mysql = new_ticket_data3[upload_cols] unique_check_cols = ['store_id', 'list_date', 'campaign_id', 'callback_reason', 'patient_id'] # Assert uniqueness, for DB update unique_data = data_upload_mysql[unique_check_cols].drop_duplicates() if len(data_upload_mysql) != len(unique_data): logger.info("Warning, duplicate entries for date {}".format(run_date)) # Check last data first # Check on store, list date, campaign id, subtype id, patient id # Don't check on data-type yet s = """ SELECT `store-id`, `list-date`, `campaign-id`, `callback-reason`, `patient-id` FROM `calling-dashboard` """ last_data_mysql = pd.read_sql_query(s, ms_connection.connection) last_data_mysql.columns = [c.replace('-', '_') for c in last_data_mysql.columns] logger.info("Last data in mySQL length {}".format(len(last_data_mysql))) # Join and check which to insert and which to update # To merge, keep both dtypes same last_data_mysql['list_date'] = pd.to_datetime(last_data_mysql['list_date']).dt.strftime("%Y-%m-%d") # Data match with mySQL data_export_mysql = data_upload_mysql.merge( last_data_mysql, how='outer', on=unique_check_cols, indicator=True) # To upload data_upload_mysql2 = data_export_mysql[data_export_mysql['_merge'] == 'left_only'] data_insert_mysql = data_upload_mysql2[upload_cols] # Priority can be default, can be updated later on # Don't do any update in DSS for now # Check last data s = """ SELECT `id` FROM `calling-dashboard` """ last_data_mysql = pd.read_sql_query(s, ms_connection.connection) # Insert using to_sql data_insert_mysql.columns = [c.replace('_', '-') for c in data_insert_mysql.columns] logger.info("mySQL - insert to be done - length is {}".format(len(data_insert_mysql))) expected_data_length_insert = len(last_data_mysql) + len(data_insert_mysql) logger.info("mySQL - Resulted data length after insert should be is {}".format(expected_data_length_insert)) # Upload to mySQL DB logger.info("mySQL - Insert starting") if db_write == 'yes': data_insert_mysql.to_sql(name='calling-dashboard', con=ms_connection.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") logger.info("Follow up data uploaded to mySQL for run date {} with length : " "{}".format(run_date, len(data_insert_mysql))) logger.info("Sleeping for 10 seconds") time.sleep(10) logger.info("Slept for 10 seconds") # Verify the inserted data s = """ SELECT `id` FROM `calling-dashboard` """ insert_mysql_verify = pd.read_sql_query(s, ms_connection.connection) logger.info("mySQL - After insert - calling dashboard length is : {}".format(len(insert_mysql_verify))) if len(insert_mysql_verify) != expected_data_length_insert: logger.info("Warning: Error, update didn't happen for all entries") def calling_dashboard_feedback_loop(run_date_param=None, follow_up_limit_param=None, transaction_goal_campaigns_list_param=[]): ###################################################### # Check Tickets ###################################################### s = """ SELECT a.*, b.`campaign-name` FROM `calling-dashboard` a LEFT JOIN `calling-dashboard-campaigns` b on a.`campaign-id` = b.id """ tickets_data = pd.read_sql_query(s, ms_connection.connection) tickets_data.columns = [c.replace('-', '_') for c in tickets_data.columns] # Convert date values to date type tickets_data['list_date'] = pd.to_datetime(tickets_data['list_date'], errors='coerce') tickets_data['call_date'] = pd.to_datetime(tickets_data['call_date'], errors='coerce') logger.info("Tickets present in existing sheet : {}".format(len(tickets_data))) ######################################################### # Check which tickets have list date earlier than today, and in closed state ######################################################## # fetch run_date from parameters # if not, take current date as run date if run_date_param is not None: run_date = run_date_param else: run_date = datetime.today().strftime('%Y-%m-%d') logger.info("Running for {}".format(run_date)) # Check closed tickets close_tickets = tickets_data[tickets_data['status'].isin(['closed'])] logger.info("Total closed tickets are {}".format(len(close_tickets))) # Check only maximum timestamp of non-null comments # First fetch calling-history # Tickets prior to run date, and of run date, if exist # Tickets till T-2 only, in order to avoid scheduling in advance run_date_minus2 = (pd.to_datetime(run_date) - timedelta(days=2)).strftime("%Y-%m-%d") close_tickets2 = close_tickets[close_tickets['list_date'] <= run_date_minus2] logger.info("Total closed tickets prior to run date minus2 is {}".format(len(close_tickets2))) tickets = tuple(close_tickets2['id'].to_list()) logger.info("Tickets to find in calling-history are : {}".format(len(tickets))) ############################################ # Create follow-up tickets - for Non-responders ############################################# # Check which tickets actually require follow-up s = """ SELECT a.`calling-dashboard-id`, a.`follow-up-required`, a.`comment`, a.`created-at`, b.`original-reference-id`, b.`store-id`, b.`campaign-id`, b.`callback-reason`, b.`patient-id`, b.`follow-up-count` FROM `calling-history` a LEFT JOIN `calling-dashboard` b on a.`calling-dashboard-id` = b.`id` WHERE b.`id` in {} """.format(tickets) history_data = pd.read_sql_query(s, ms_connection.connection) history_data.columns = [c.replace('-', '_') for c in history_data.columns] logger.info("History data - length is {0} and unique tickets length is " "{1}".format(len(history_data), history_data['calling_dashboard_id'].nunique())) # Change to datetime history_data['created_at'] = pd.to_datetime(history_data['created_at']) # ORIGINAL REFERENCE ID, if exists, then take it as reference # If reference id already exists, then copy it, else take ticket id history_data['org_calling_dashboard_id'] = np.where(history_data['original_reference_id'] > 0, history_data['original_reference_id'], history_data['calling_dashboard_id']) logger.info("Original reference id, if exists, has been taken up as original calling dashboard id," "so now unique tickets are {0}".format(history_data['org_calling_dashboard_id'].nunique())) # Remove the tickets which already have at least a one follow-up required flag, # because they will already be counted already_follow_up_data = history_data[history_data['follow_up_required'] == 1][ ['org_calling_dashboard_id']].drop_duplicates() logger.info("Already Follow up required tickets - length is {}".format(len(already_follow_up_data))) already_follow_up_data_t = already_follow_up_data['org_calling_dashboard_id'].to_list() history_data2 = history_data.query("org_calling_dashboard_id not in @already_follow_up_data_t") logger.info( "After removing redundant entries - History data - length is " "{0} and unique tickets length is {1}".format( len(history_data2), history_data2['org_calling_dashboard_id'].nunique())) non_response_cols = ['Ringing/Not answering', 'Call rejected/Busy', 'Not reachable/Switched off'] # First see how many of them are also tagged in call-statuses master s = """ SELECT id AS call_status_id, `call-status` FROM `call-statuses` """ dropdown_master = pd.read_sql_query(s, ms_connection.connection) dropdown_master.columns = [c.replace('-', '_') for c in dropdown_master.columns] logger.info("Dropdown master currently has dropdowns - length {}".format(len(dropdown_master))) dropdown_match = dropdown_master.query("call_status in @non_response_cols") logger.info("Dropdown master match with non-response cols defined - " "length {}".format(len(dropdown_match))) # Latest non-null comment should be one-amongst the non-response columns follow_up_data_dropna = history_data2[~history_data2['comment'].isnull()] logger.info("Follow up data - non-null comment - length is " "{}".format(len(follow_up_data_dropna))) follow_up_data = follow_up_data_dropna[follow_up_data_dropna['comment'] != ''] logger.info("Follow up data - non-empty string comment - length is " "{}".format(len(follow_up_data))) # Sort on interaction timestamp, max is first follow_up_data = follow_up_data.sort_values(by=['org_calling_dashboard_id', 'created_at'], ascending=[True, False]) # Choose only maximum follow-up time follow_up_data['rank'] = follow_up_data.groupby(['org_calling_dashboard_id']).cumcount() + 1 follow_up_data_latest = follow_up_data[follow_up_data['rank'] == 1] logger.info("Follow up data (latest interaction per ticket) length is " "{}".format(len(follow_up_data_latest))) # Latest interaction was non-response follow_up_data_latest_nr = follow_up_data_latest.query("comment in @non_response_cols") logger.info("Follow up data (latest interaction per ticket) Non-response length is {}".format( len(follow_up_data_latest_nr))) follow_up_data_latest_nr['interaction_date'] = follow_up_data_latest_nr['created_at'].dt.strftime("%Y-%m-%d") follow_up_data_latest_nr['day_diff_rundate'] = (pd.to_datetime(run_date) - pd.to_datetime( follow_up_data_latest_nr['interaction_date'])).dt.days # Add 2 days to latest interaction date, parametrize it later follow_up_data_latest_nr['latest_date_plus2'] = (pd.to_datetime(follow_up_data_latest_nr['interaction_date']) + timedelta(days=2)).dt.strftime("%Y-%m-%d") # If follow-up is after >=2 days, keep rundate # If follow-up is for yesterdays' tickets, then add 2days follow_up_data_latest_nr['follow_up_date'] = np.where(follow_up_data_latest_nr['day_diff_rundate'] >= 2, run_date, follow_up_data_latest_nr['latest_date_plus2']) # Remove those who are already-followed-up 3times, parametrized if follow_up_limit_param is not None: follow_up_limit = follow_up_limit_param else: follow_up_limit = 1 logger.info("Follow up limit is {}".format(follow_up_limit)) follow_up_data_latest_nr_focus1 = follow_up_data_latest_nr[ follow_up_data_latest_nr['follow_up_count'] < follow_up_limit] logger.info( "Follow up data after removing those already follow up equal to " "limit or more times - length is {}".format( len(follow_up_data_latest_nr_focus1))) # Remove those with >7 days, vintage, parametrize it later follow_up_data_latest_nr_focus2 = follow_up_data_latest_nr_focus1[ follow_up_data_latest_nr_focus1['day_diff_rundate'] <= 7] logger.info("Follow up data after removing those with 7+days passed " "since last interaction - length is {}".format( len(follow_up_data_latest_nr_focus2))) # Transaction goal - campaigns - patamatrized if len(transaction_goal_campaigns_list_param) > 0: transaction_goal_campaigns_list = transaction_goal_campaigns_list_param else: transaction_goal_campaigns_list = tickets_data['campaign_id'].drop_duplicates().to_list() logger.info("Transaction goal campaigns are {}".format(transaction_goal_campaigns_list)) # For, transaction goal campaigns, if transaction done in last 15 days, then no call # parametrize it later bill_days_cutoff = 15 logger.info("Last bill date cutoff for transaction goal campaigns is " "{}".format(bill_days_cutoff)) # Now join with patients-metadata s = """ SELECT `patient-id`, max(date(`created-at`)) as `last-bill-date` FROM `bills-1` GROUP BY `patient-id` """ patients_lbd = pd.read_sql_query(s, ms_connection.connection) patients_lbd.columns = [c.replace('-', '_') for c in patients_lbd.columns] # Merge follow_up_data_latest_nr_focus2 = follow_up_data_latest_nr_focus2.merge(patients_lbd, how='left', on=['patient_id']) # Check recency follow_up_data_latest_nr_focus2['day_diff_lbd_rundate'] = (pd.to_datetime(run_date) - pd.to_datetime( follow_up_data_latest_nr_focus2['last_bill_date'], errors='coerce')).dt.days # If campaign is in transaction goal campaigns then filter, else as it is follow_up_data_latest_nr_focus2['exclude_goal_completed'] = np.where( ((follow_up_data_latest_nr_focus2['campaign_id'].isin(transaction_goal_campaigns_list)) & (follow_up_data_latest_nr_focus2['day_diff_lbd_rundate'] <= bill_days_cutoff)), 1, 0) to_be_removed = follow_up_data_latest_nr_focus2[follow_up_data_latest_nr_focus2['exclude_goal_completed'] == 1] logger.info("To be removed due to transaction goal completed - in relevant campaigns - " "length {}".format(len(to_be_removed))) follow_up_data_final = follow_up_data_latest_nr_focus2[ follow_up_data_latest_nr_focus2['exclude_goal_completed'] == 0] logger.info("Final follow up data after removing transaction goal completed tickets - " "length {}".format(len(follow_up_data_final))) # New ticket information new_ticket_data = follow_up_data_final.copy() # If reference id already exists, then copy it, else take ticket id # org_calling_dashboard_id we have, which is combined # Drop other ticket id columns new_ticket_data.drop(['calling_dashboard_id', 'original_reference_id'], axis=1, inplace=True) # New original reference id new_ticket_data = new_ticket_data.rename(columns={ 'org_calling_dashboard_id': 'original_reference_id'}) # Keep only one new follow-up on unique original_reference_id new_ticket_data2 = new_ticket_data.copy() new_ticket_data2['follow_up_date'] = pd.to_datetime(new_ticket_data2['follow_up_date']) # Sort on follow up dates, max is first new_ticket_data2 = new_ticket_data2.sort_values(by=['original_reference_id', 'follow_up_date'], ascending=[True, False]) # Choose only maximum follow-up time new_ticket_data2['rank'] = new_ticket_data2.groupby(['original_reference_id']).cumcount() + 1 # Only one for one ticket new_ticket_data3 = new_ticket_data2[new_ticket_data2['rank'] == 1] logger.info("Max for one original ticket - length {}".format(len(new_ticket_data3))) # Remove those original reference id's which already have another ticket open # Check open tickets open_tickets = tickets_data[tickets_data['status'].isin(['open', 'reopen'])] open_tickets_ref_id = open_tickets['original_reference_id'].drop_duplicates().to_list() new_ticket_data3 = new_ticket_data3.query("original_reference_id not in @open_tickets_ref_id") logger.info("After removing those with already open tickets in root, - " "length {}".format(len(new_ticket_data3))) # Keep date as string only new_ticket_data3['follow_up_date'] = new_ticket_data3['follow_up_date'].dt.strftime("%Y-%m-%d") logger.info("Follow up date converted to string") # Since new ticket is generated, so add 1 to follow-up count new_ticket_data3['follow_up_count'] = new_ticket_data3['follow_up_count'] + 1 # Ticket list date taken as follow up date new_ticket_data3['list_date'] = new_ticket_data3['follow_up_date'] # If ticket date in negative then keep run-date new_ticket_data3['list_date'] = np.where(pd.to_datetime(new_ticket_data3['list_date']) < run_date, run_date, new_ticket_data3['list_date']) # Call date same as list date for now new_ticket_data3['call_date'] = new_ticket_data3['list_date'] # Update data-type to follow up new_ticket_data3['data_type'] = 'follow up' logger.info("One follow up for one root ticket - upload to be done - " "length is {}".format(len(new_ticket_data3))) ################################################# # Sanity check, if original reference id already has 2 follow ups in list ################################################# reference_tickets = tuple(new_ticket_data3['original_reference_id'].dropna().drop_duplicates().to_list()) logger.info("Reference ticket length is {}".format(len(reference_tickets))) s = """ SELECT `original-reference-id`, count(`id`) as already_ticket_count FROM `calling-dashboard` WHERE `original-reference-id` in {} GROUP BY `original-reference-id` """.format(reference_tickets) followup_already = pd.read_sql_query(s, ms_connection.connection) followup_already.columns = [c.replace('-', '_') for c in followup_already.columns] # Already follow ups done, as per limit followup_already_limit = followup_already[followup_already['already_ticket_count'] >= follow_up_limit].copy() logger.info('Already follow up done as per limit, or more times length is {}'.format(len(followup_already_limit))) # Remove these from the list followup_already_two_list = followup_already_limit['original_reference_id'].to_list() new_ticket_data4 = new_ticket_data3.query("original_reference_id not in @followup_already_two_list") logger.info('After removing those with already follow up done 2 or more times length is ' '{}'.format(len(new_ticket_data4))) # INSERT DATA # Final columns upload_cols = ['store_id', 'original_reference_id', 'list_date', 'call_date', 'patient_id', 'campaign_id', 'data_type', 'callback_reason', 'follow_up_count'] data_upload_mysql = new_ticket_data4[upload_cols] unique_check_cols = ['store_id', 'list_date', 'campaign_id', 'callback_reason', 'patient_id'] # Assert uniqueness, for DB update unique_data = data_upload_mysql[unique_check_cols].drop_duplicates() logger.info("Unique data should be - length is {}".format(len(unique_data))) if len(data_upload_mysql) != len(unique_data): logger.info("Warning, duplicate entries for date {}".format(run_date)) data_upload_mysql = data_upload_mysql.drop_duplicates(subset=unique_check_cols) logger.info("Unique data after dropping duplicates - length is " "{}".format(len(data_upload_mysql))) # Check last data first # Check on store, list date, campaign id, subtype id, patient id # Don't check on data-type yet s = """ SELECT `store-id`, `list-date`, `campaign-id`, `callback-reason`, `patient-id` FROM `calling-dashboard` GROUP BY `store-id`, `list-date`, `campaign-id`, `callback-reason`, `patient-id` """ last_data_mysql = pd.read_sql_query(s, ms_connection.connection) last_data_mysql.columns = [c.replace('-', '_') for c in last_data_mysql.columns] logger.info("Last data in mySQL length {}".format(len(last_data_mysql))) # Join and check which to insert and which to update # To merge, keep both dtypes same last_data_mysql['list_date'] = pd.to_datetime(last_data_mysql['list_date'] ).dt.strftime("%Y-%m-%d") # Data match with mySQL data_export_mysql = data_upload_mysql.merge( last_data_mysql, how='outer', on=unique_check_cols, indicator=True) # To upload data_upload_mysql2 = data_export_mysql[data_export_mysql['_merge'] == 'left_only'].copy() logger.info("After removing same day duplicate tickets - length is {}".format(len(data_upload_mysql2))) data_insert_mysql = data_upload_mysql2[upload_cols].copy() # Priority can be default, can be updated later on # Don't do any update in DSS for now # Check last data s = """ SELECT `id` FROM `calling-dashboard` """ last_data_mysql = pd.read_sql_query(s, ms_connection.connection) # Insert using to_sql data_insert_mysql.columns = [c.replace('_', '-') for c in data_insert_mysql.columns] logger.info("mySQL - insert to be done - length is {}".format(len(data_insert_mysql))) expected_data_length_insert = len(last_data_mysql) + len(data_insert_mysql) logger.info("mySQL - Resulted data length after insert should be is " "{}".format(expected_data_length_insert)) # Upload to mySQL DB logger.info("mySQL - Insert starting") if db_write == 'yes': data_insert_mysql.to_sql(name='calling-dashboard', con=ms_connection.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") logger.info( "Follow up data uploaded to mySQL for run date {} with length : " "{}".format(run_date, len(data_insert_mysql))) logger.info("Sleeping for 10 seconds") time.sleep(10) logger.info("Slept for 10 seconds") # Verify the inserted data s = """ SELECT `id` FROM `calling-dashboard` """ insert_mysql_verify = pd.read_sql_query(s, ms_connection.connection) logger.info("mySQL - After insert - calling dashboard length is : " "{}".format(len(insert_mysql_verify))) if len(insert_mysql_verify) != expected_data_length_insert: logger.info("Warning: Error, update didn't happen for all entries") def calling_dashboard_profile_status(): ###################################################### # Check existing tickets ###################################################### s = """ SELECT id AS calling_dashboard_id, `patient-id`, `campaign-id` AS mysql_campaign_id, `callback-reason` FROM `calling-dashboard` """ tickets_info = pd.read_sql_query(s, ms_connection.connection) tickets_info.columns = [c.replace('-', '_') for c in tickets_info.columns] logger.info("Tickets present in existing sheet : {}".format(len(tickets_info))) # Check campaign in mySQL s = """ SELECT id AS mysql_campaign_id, `is-active`, `patient-billing-status-display` FROM `calling-dashboard-campaigns` """ mysql_campaigns = pd.read_sql_query(s, ms_connection.connection) mysql_campaigns.columns = [c.replace('-', '_') for c in mysql_campaigns.columns] logger.info("Campaigns present in mySQL are : {}".format(len(mysql_campaigns))) campaign_metadata = mysql_campaigns.copy() # To-do. Hard-coded. Evaluate later campaign_metadata['patient_bill_status_cutoff_d'] = 30 # Now join with tickets data # Only keep relevant ones, by doing inner join with status enabled campaigns tickets_info2 = tickets_info.merge(campaign_metadata[['mysql_campaign_id', 'patient_billing_status_display', 'patient_bill_status_cutoff_d']], how='inner', on=['mysql_campaign_id']) # bill status missing value input if any bill_days_cutoff_default = 30 tickets_info2['patient_bill_status_cutoff_d'] = tickets_info2['patient_bill_status_cutoff_d'].fillna( bill_days_cutoff_default) # Now join with patients-metadata # To-do change with RS ETL table patients-metadata-2 s = """ SELECT `patient-id`, max(date(`created-at`)) as `last-bill-date` FROM `bills-1` GROUP BY `patient-id` """ patients_lbd = pd.read_sql_query(s, ms_connection.connection) patients_lbd.columns = [c.replace('-', '_') for c in patients_lbd.columns] # Merge tickets_info2 = tickets_info2.merge(patients_lbd, how='left', on=['patient_id']) # Check recency tickets_info2['day_diff'] = (pd.to_datetime(run_date) - pd.to_datetime(tickets_info2['last_bill_date'], errors='coerce')).dt.days # Check if days fall within the range # Only bill status enabled campaigns logger.info("DSS campaign metadata for status enabled - fetched") tickets_info2['profile_status'] = np.where(tickets_info2['patient_billing_status_display'] == 1, np.where(tickets_info2['day_diff'] <= tickets_info2[ 'patient_bill_status_cutoff_d'], 'Active', 'Inactive'), 'NA') ######################################################### # Profile status to update ######################################################## upload_profile_data = tickets_info2[['calling_dashboard_id', 'profile_status']] logger.info("Upload profile data for these many tickets : " "{}".format(len(upload_profile_data))) # Check last data s = """ SELECT `calling-dashboard-id`, `profile-status` FROM `patient-profile-status` """ last_data_mysql = pd.read_sql_query(s, ms_connection.connection) last_data_mysql.columns = [c.replace('-', '_') for c in last_data_mysql.columns] # Join and check which to insert and which to update # Data match with mySQL data_export_mysql = upload_profile_data.merge( last_data_mysql, how='outer', on=['calling_dashboard_id', 'profile_status'], indicator=True) # To upload data_upload_mysql = data_export_mysql[data_export_mysql['_merge'] == 'left_only'] data_upload_mysql = data_upload_mysql[['calling_dashboard_id', 'profile_status']] ######################################################### # INSERT OR UPDATE ######################################################## # Out of this, how many need insert and how many update? mysql_tickets = last_data_mysql['calling_dashboard_id'].to_list() # Insert data_insert_mysql = data_upload_mysql.query("calling_dashboard_id not in @mysql_tickets") # How many do we need to update data_update_mysql = data_upload_mysql.query("calling_dashboard_id in @mysql_tickets") # Insert using to_sql data_insert_mysql.columns = [c.replace('_', '-') for c in data_insert_mysql.columns] logger.info("mySQL - insert length is {}".format(len(data_insert_mysql))) expected_data_length_insert = len(last_data_mysql) + len(data_insert_mysql) logger.info("mySQL - Resulted data length after insert should be is " "{}".format(expected_data_length_insert)) # MySQL insert logger.info("mySQL - Insert starting") if db_write == 'yes': data_insert_mysql.to_sql(name='patient-profile-status', con=ms_connection.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") logger.info("Sleeping for 10 seconds") time.sleep(10) logger.info("Slept for 10 seconds") # Verify the inserted data s = """ SELECT `calling-dashboard-id`, `profile-status` FROM `patient-profile-status` """ insert_mysql_verify = pd.read_sql_query(s, ms_connection.connection) logger.info("mySQL - After insert - patients profile status length is : " "{}".format(len(insert_mysql_verify))) if len(insert_mysql_verify) != expected_data_length_insert: logger.info("Warning: Error, update didn't happen for all entries") # Update existing entries # Have to do one by one data_update_mysql.columns = [c.replace('_', '-') for c in data_update_mysql.columns] logger.info("mySQL - Update to be done for data entries length is " "{}".format(len(data_update_mysql))) # Try SQL engine data_to_be_updated_list_mysql = list(data_update_mysql.apply(dict, axis=1)) logger.info("mySQL - Update to be done for data entries - converted into list - " "length is {}".format( len(data_to_be_updated_list_mysql))) ################################# # DANGER ZONE start ################################# # mySQL write engine logger.info("mySQL - update for patients profile status started") update_counter = 0 for i in data_to_be_updated_list_mysql: update_q = """ UPDATE `patient-profile-status` SET `profile-status` = '{1}' WHERE `calling-dashboard-id` = {0} """.format(i['calling-dashboard-id'], i['profile-status']) if db_write == 'yes': ms_connection.engine.execute(update_q) # Print success periodically update_counter = update_counter + 1 if update_counter % 1000 == 0: logger.info("mySQL - Update done till row {}".format(update_counter)) ################################# # DANGER ZONE END ################################# logger.info("mySQL - update for patients profile status successful") # Verify s = """ SELECT `calling-dashboard-id`, `profile-status` FROM `patient-profile-status` """ update_mysql_verify = pd.read_sql_query(s, ms_connection.connection) # Inner join with existing data update_mysql_check = update_mysql_verify.merge(data_update_mysql, how='inner', on=["calling-dashboard-id", "profile-status"]) logger.info("mySQL - Update done for data entries length is {}".format(len(update_mysql_check))) if len(update_mysql_check) != len(data_update_mysql): logger.info("Warning: Error, update didn't happen for all entries") #################################################### # Main block ################################################### # Run DND List update() logger.info("Running DND list update") dnd_list_update() # Run Calling history metadata logger.info("Running Calling history metadata update") try: calling_history_metadata() except: logger.info("Error in calling_history_metadata") # Run calling dashboard info update logger.info("Running Calling dashboard info update") calling_dashboard_info_update() # Run calling dashboard feedback loop logger.info("Running Calling feedback loop update") calling_dashboard_feedback_loop() # Run calling dashboard profile status logger.info("Running Calling profile status update") calling_dashboard_profile_status() ################################################# # Closing the DB Connections rs_db.close_connection() rs_db_write.close_connection() ms_connection.close() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/calling-dashboard-daily-update/calling-dashboard-daily-update.py
calling-dashboard-daily-update.py
import argparse import sys import os import time from zeno_etl_libs.helper import helper sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.redshift import Redshift parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-ss', '--source_schema_name', default="prod2-generico", type=str, required=False) parser.add_argument('-ts', '--target_schema_name', default="public", type=str, required=False) parser.add_argument('-lot', '--list_of_tables', default="", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-st', '--snapshot_type', default="automated", type=str, required=False) parser.add_argument('-ud', '--utc_date', default="NA", type=str, required=False) parser.add_argument('-re', '--reason_code', default="mis", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") source_schema_name = args.source_schema_name target_schema_name = args.target_schema_name list_of_tables = args.list_of_tables email_to = args.email_to snapshot_type = args.snapshot_type utc_date = args.utc_date reason_code = args.reason_code utc_dates = utc_date.split(",") """ get the last snapshot, if not given """ rs = Redshift() list_of_tables = list_of_tables.split(",") logger.info(f"source_schema_name: {source_schema_name}") logger.info(f"target_schema_name: {target_schema_name}") logger.info(f"list_of_tables: {list_of_tables}") logger.info(f"email_to: {email_to}") logger.info(f"reason_code: {reason_code}") for utc_date in utc_dates: if utc_date == "NA": utc_date = None snapshot_identifier = rs.get_snapshot_identifier(snapshot_type=snapshot_type, utc_date=utc_date) snapshot_date = snapshot_identifier[-19:-9] logger.info(f"snapshot_date: {snapshot_date}") logger.info(f"snapshot_identifier: {snapshot_identifier}") if not list_of_tables: raise Exception("Please provide list of tables") source_database_name = rs.database_name cluster_identifier = rs.cluster_identifier """ since we have single database in redshift so keeping source and target db same """ target_database_name = source_database_name client = rs.client email = Email() rs_db = DB(read_only=False) rs_db.open_connection() success_tables_list = [] failed_tables_list = [] for i in list_of_tables: logger.info(f"started table: {i}") new_table_name = i + '-' + str(reason_code) + '-' + str(snapshot_date) table_info = helper.get_table_info(db=rs_db, table_name=new_table_name, schema=target_schema_name) if isinstance(table_info, type(None)): logger.info(f"Table: {new_table_name} is absent.") else: success_tables_list.append(i) logger.info(f"Table already exists: {new_table_name}, moving to next table") table_restore_status = "Already Present" email.send_email_file( subject=f"[Table Restoration], Table: {i}, Status: {table_restore_status}", mail_body=f"Status: {table_restore_status} \nTable: {i} \nSnapshot Date: {snapshot_date} " f"\nCluster Identifier: {cluster_identifier} \nMessage: None", to_emails=email_to, file_uris=[], file_paths=[]) continue response = client.restore_table_from_cluster_snapshot( ClusterIdentifier=cluster_identifier, SnapshotIdentifier=snapshot_identifier, SourceDatabaseName=source_database_name, SourceSchemaName=source_schema_name, SourceTableName=i, TargetDatabaseName=target_database_name, TargetSchemaName=target_schema_name, NewTableName=new_table_name ) logger.info(f"response: {response}") table_restore_status = response['TableRestoreStatus']['Status'] table_restore_request_id = response['TableRestoreStatus']['TableRestoreRequestId'] message = "" while table_restore_status not in ('SUCCEEDED', 'FAILED', 'CANCELED'): time.sleep(60) response = client.describe_table_restore_status( ClusterIdentifier=cluster_identifier, TableRestoreRequestId=table_restore_request_id, MaxRecords=20 ) for r in response['TableRestoreStatusDetails']: table_restore_status = r['Status'] logger.info(f"Status: {r['Status']}") message = r.get("Message") if table_restore_status == 'SUCCEEDED': success_tables_list.append(i) else: failed_tables_list.append(i) email.send_email_file( subject=f"[Table Restoration], Table: {i}, Status: {table_restore_status}", mail_body=f"Status: {table_restore_status} \nTable: {i} \nSnapshot Date: {snapshot_date} " f"\nCluster Identifier: {cluster_identifier} \nMessage:{message}", to_emails=email_to, file_uris=[], file_paths=[]) email.send_email_file( subject=f"[Table Restoration], Full Status: Success-{len(success_tables_list)}, Failed-{len(failed_tables_list)}", mail_body=f"Table successfully restored: {success_tables_list} \nTable restore failed: {failed_tables_list} " f"\nSnapshot Date: {snapshot_date} \nCluster Identifier: {cluster_identifier}", to_emails=email_to, file_uris=[], file_paths=[])
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/restore-from-snapshot/restore_from_snapshot.py
restore_from_snapshot.py
import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import MySQL from zeno_etl_libs.logger import get_logger import argparse import pandas as pd parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") mysql = MySQL() mysql.open_connection() # ALERT: read_only=False, if you want connection which writes mysql_write = MySQL(read_only=False) mysql_write.open_connection() # select demo query = "SELECT * from `prod2-generico`.`test` limit 1" df = pd.read_sql(sql=query, con=mysql_write.connection) logger.info(f"df: {df}") # Insert demo df[['col1']].to_sql(name='test', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=500, schema='prod2-generico') # single line update demo update_q = """ UPDATE `prod2-generico`.`test` SET `col2` = '{1}' WHERE `col1` = '{0}' """.format('xyz', '123') logger.info(update_q) mysql_write.engine.execute(update_q) # delete demo delete_q = """ delete from `prod2-generico`.`test` WHERE `col1` = '{0}' """.format('xyz') logger.info(delete_q) mysql_write.engine.execute(delete_q) # Bulk update /update many at the same tome values_list = [{"col1": "abc", "col2": "xyz"}] values_tuple = [] for i in values_list: values_tuple.append((i['col2'], i['col1'])) logger.info(values_tuple) """ Query to bulk update """ query = """ UPDATE `test` SET `col2` = %s WHERE `col1` = %s """ try: a = mysql_write.cursor.executemany(query, values_tuple) logger.info(a) except mysql_write.cursor.Error as e: try: logger.info("MySQL Error [%d]: %s" % (e.args[0], e.args[1])) except IndexError: logger.info("MySQL Error: %s" % str(e)) mysql_write.close() mysql.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/experiments/mysql-sql-alchemny-demo.py
mysql-sql-alchemny-demo.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB def main(db): try: table_name = "promo" db.execute(query="begin ;") # db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) update_query = f"""update "prod2-generico"."{table_name}" a set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "promo-code" = b."promo-code" , "promo-code-type" = b."code-type", "promo-eligibility" = b."type", "promo-discount-type" = b."discount-type", "promo-min-purchase" = b."min-purchase", "campaign-id" = b."campaign-id", "campaign-name" = b."campaign" from ( select pc.id, pc."promo-code", pc."code-type", pc."type", pc."discount-type", pc."min-purchase", pc."campaign-id", c."campaign" from "prod2-generico"."{table_name}" a inner join "prod2-generico"."promo-codes" pc on a.id = pc.id left join "prod2-generico".campaigns c on pc."campaign-id" = c.id where pc."updated-at" > a."updated-at" or c."updated-at" > a."updated-at") b where a.id = b.id; """ db.execute(query=update_query) insert_query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "promo-code", "promo-code-type", "promo-eligibility", "promo-discount-type", "promo-min-purchase", "campaign-id", "campaign-name" ) select pc.id , pc."created-by", pc."created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at" , pc."promo-code" as "promo-code" , pc."code-type" as "promo-code-type", pc."type" as "promo-eligibility", pc."discount-type" as "promo-discount-type", pc."min-purchase" as "promo-min-purchase", pc."campaign-id" as "campaign-id", c."campaign" as "campaign-name" from "prod2-generico"."promo-codes" pc left join "prod2-generico"."{table_name}" pr on pc.id = pr.id left join "prod2-generico".campaigns c on pc."campaign-id" = c.id where pr.id IS NULL """ db.execute(query=insert_query) """ committing the transaction """ db.execute(query=" end; ") except Exception as error: raise error if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env print(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/experiments/insert_update_exp.py
insert_update_exp.py
import argparse import os import sys from zeno_etl_libs.db.db import DB sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-ul', '--user_list', default="", type=str, required=False, help="This is env(dev, stage, prod)") args, unknown = parser.parse_known_args() env = args.env user_list = args.user_list or "" os.environ['env'] = env user_list = user_list.split(",") rs_db = DB() rs_db.open_connection() logger = get_logger() def get_pids(user=""): query = f""" select s.process as process_id, c.remotehost || ':' || c.remoteport as remote_address, s.user_name as username, s.starttime as session_start_time, s.db_name, i.starttime as current_query_time, i.text as query from stv_sessions s left join pg_user u on u.usename = s.user_name left join stl_connection_log c on c.pid = s.process and c.event = 'authenticated' left join stv_inflight i on u.usesysid = i.userid and s.process = i.pid where username = '{user}' order by session_start_time desc; """ df = rs_db.get_df(query=query) return df def kill_connection(pid): query = f""" select pg_terminate_backend({pid}); """ rs_db.execute(query=query) for user in user_list: pids_df = get_pids(user=user) """ extra filter to be 100% sure """ pids_df['username'] = pids_df['username'].apply(lambda x: x.strip()) pids_df1 = pids_df[pids_df['username'].isin(["ro_django_accounts"])] for pid in pids_df1['process_id']: kill_connection(pid=pid) logger.info(f"Killed, pid: {pid}") rs_db.close_connection() logger.info(f"info message")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/experiments/kill_rs_connection.py
kill_rs_connection.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.queries.sales import sales_config import pandas as pd def main(db, table_suffix): table_name = f"sales" bill_table_name = "bill-flags" stores_master_table_name = "stores-master" if table_suffix: table_name = f"sales_{table_suffix}" bill_table_name = f"bill-flags-{table_suffix}" stores_master_table_name = f"stores-master-{table_suffix}" db.execute(query="begin ;") db.execute(sales_config.max_bill_id.format(table_name), params=None) sales_intermediate: pd.DataFrame = rs_db.cursor.fetch_dataframe() max_bill_id = sales_intermediate.values[0][0] db.execute(sales_config.max_return_id.format(table_name), params=None) returns_intermediate: pd.DataFrame = rs_db.cursor.fetch_dataframe() max_return_id = returns_intermediate.values[0][0] db.execute(sales_config.insert_sales_record.format( table_name, bill_table_name, stores_master_table_name, max_bill_id, bill_table_name, stores_master_table_name, max_return_id)) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-ts', '--table_suffix', default="", type=str, required=False, help="Table suffix for testing.") args, unknown = parser.parse_known_args() env = args.env table_suffix = args.table_suffix os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db, table_suffix=table_suffix) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/experiments/insert_optimized_sales.py
insert_optimized_sales.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db, table_suffix): table_name = f"sales" bill_table_name = "bill-flags" stores_master_table_name = "stores-master" if table_suffix: table_name = f"sales_{table_suffix}" bill_table_name = f"bill-flags-{table_suffix}" stores_master_table_name = f"stores-master-{table_suffix}" db.execute(query="begin ;") gross_update_query = f""" update "prod2-generico"."{table_name}" set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "drug-name" = c."drug-name", "type" = c."type", "category" = c."category", "patient-category" = p."patient-category", "p-reference" = p."reference", "pr-flag" = NVL(pso2."pr-flag", false), "hd-flag" = NVL(pso2."hd-flag", false), "ecom-flag" = NVL(pso2."ecom-flag", false), "hsncode" = c."hsncode", "is-repeatable" = c."is-repeatable", "store-manager" = msm."store-manager", "line-manager" = msm."line-manager", abo = msm.abo, city = msm.city, "store-b2b" = msm."store-b2b", composition = c.composition, company = c.company from "prod2-generico"."{table_name}" sales join "prod2-generico"."drugs" c on c."id" = sales."drug-id" join "prod2-generico"."patients" p on sales."patient-id" = p."id" join "prod2-generico"."{bill_table_name}" as pso2 on sales."bill-id" = pso2."id" join "prod2-generico"."{stores_master_table_name}" as msm on sales."store-id" = msm."id" where ( c."updated-at" > sales."updated-at" or p."updated-at" > sales."updated-at" or pso2."updated-at" > sales."updated-at" or msm."updated-at" > sales."updated-at") and sales."bill-flag" = 'gross'; """ #TODO: Optimize the bills-flag table db.execute(query=gross_update_query) return_update_query = f"""update "prod2-generico"."{table_name}" set "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()), "drug-name" = c."drug-name", "type" = c."type", "category" = c."category", "patient-category" = p."patient-category", "p-reference" = p."reference", "pr-flag" = NVL(pso2."pr-flag", false), "hd-flag" = NVL(pso2."hd-flag", false), "ecom-flag" = NVL(pso2."ecom-flag", false), "hsncode" = c."hsncode", "is-repeatable" = c."is-repeatable", "store-manager" = msm."store-manager", "line-manager" = msm."line-manager", abo = msm.abo, city = msm.city, "store-b2b" = msm."store-b2b", composition = c.composition, company = c.company from "prod2-generico"."{table_name}" sales join "prod2-generico"."drugs" c on c."id" = sales."drug-id" join "prod2-generico"."patients" p on sales."patient-id" = p."id" join "prod2-generico"."{bill_table_name}" as pso2 on sales."bill-id" = pso2."id" join "prod2-generico"."{stores_master_table_name}" as msm on sales."store-id" = msm."id" where ( c."updated-at" > sales."updated-at" or p."updated-at" > sales."updated-at" or pso2."updated-at" > sales."updated-at" or msm."updated-at" > sales."updated-at") and sales."bill-flag" = 'return'; """ db.execute(query=return_update_query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-ts', '--table_suffix', default="", type=str, required=False, help="Table suffix for testing.") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() table_suffix = args.table_suffix logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db, table_suffix=table_suffix) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/experiments/update_optimized_sales.py
update_optimized_sales.py
import argparse import sys import os import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import MySQL parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-ss', '--source_schema', default="prod2-generico-14-08-22", type=str, required=False) parser.add_argument('-ts', '--target_schema', default="dev-3-9-22-generico", type=str, required=False) # parser.add_argument('-tn', '--table_name', default="molecule-master", type=str, required=False) # parser.add_argument('-cns', '--column_names', default="name,molecule-group", type=str, # required=False) args, unknown = parser.parse_known_args() env = args.env source_schema = args.source_schema target_schema = args.target_schema def get_data(table=None, columns=None, db=None, count=None): column_str = ",".join(["`" + col + "`" for col in columns]) limit_str = f" limit {count} " if count else " " # limit_str = f" limit 10 " query = f""" SELECT id, {column_str} from {table} order by id {limit_str}; """ return pd.read_sql_query(con=db.connection, sql=query) os.environ['env'] = env logger = get_logger() # DB source mysql_db_source = MySQL(read_only=False) mysql_db_source.open_connection() # DB target mysql_db_target = MySQL(read_only=False) mysql_db_target.open_connection() table_columns = { "molecule-master": "name,molecule-group,hash", "composition-master-molecules-master-mapping": "molecule-master-id,composition-master-id,unit-type,unit-type-value", "composition-master": "composition,hash", "release-pattern-master": "name,group,short-form", "drug-molecule-release": "molecule-master-id,release,drug-id", "drugs": "available-in,composition-master-id", "available-in-group-mapping": "available-in,available-group" } for table_name, column_names in table_columns.items(): logger.info(f"table: {table_name}") # table_name = args.table_name # column_names = args.column_names column_names = column_names.split(",") source_table_name = f"`{source_schema}`.`{table_name}`" target_table_name = f"`{target_schema}`.`{table_name}`" # logger.info(f"source_table_name: {source_table_name}") # logger.info(f"target_table_name: {target_table_name}") df_source = get_data(table=source_table_name, columns=column_names, db=mysql_db_source) length = len(df_source) logger.info(f"df_source: {df_source.head(2)}") logger.info(f"df_source length: {length}") df_target = get_data(table=target_table_name, columns=column_names, db=mysql_db_target, count=length) logger.info(f"df_target: {df_target.head(2)}") df = df_source.compare(df_target) if df.empty: logger.info(f"Matched Successfully!") else: logger.info(f"\n\nMatch Failed: {df}") # logger.info("\n\n")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/experiments/compare_tables.py
compare_tables.py
import argparse import os import sys import dateutil import geopy as geopy import geopy.distance sys.path.append('../../../..') sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-bs', '--batch_size', default=10, type=int, required=False) parser.add_argument('-fr', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run batch_size = args.batch_size os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = "patient-nearest-store" table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) def geo_distance(lat1, long1, lat2, long2): geo_dist = geopy.distance.geodesic((lat1, long1), (lat2, long2)).km return geo_dist max_q = f""" select max("created-at") max_exp from "{schema}"."{table_name}" """ max_date = rs_db.get_df(max_q) max_date = max_date['max_exp'][0] logger.info(f'max date: {max_date}') # params if max_date is None: start_date = '2017-05-13 00:00:00' start_date = dateutil.parser.parse(start_date) else: start_date = max_date logger.info(f'start_date: {start_date}') def get_store_data(): """ function returns the stores lat, long data """ store_query = f""" select id, -- store as nearest_store, latitude, longitude -- , "store-type" from "{schema}"."stores-master" sm where "store-type" != 'dc' and sm.latitude != '' and sm.latitude is not null and sm.longitude != '' and sm.longitude is not null and sm."id" is not null """ _store_df = rs_db.get_df(store_query) logger.info(f'store count: {_store_df.shape}') return _store_df def patient_nearest_store(): global patient_df for ix, patient in patient_df.iterrows(): nearest_store_id = store_df['id'][0] nearest_store_distance = 1000000 for iy, store in store_df.iterrows(): distance = geo_distance(patient['latitude'], patient['longitude'], store['latitude'], store['longitude']) if distance < nearest_store_distance: nearest_store_distance = distance nearest_store_id = store['id'] # logger.info( # f"i: {ix}, patient id: {patient['id']}, nearest_store_id: {nearest_store_id}, " # f"nearest_store_distance: {nearest_store_distance}") patient_df.loc[ix, 'nearest-store-id'] = int(nearest_store_id) # return patient_df def get_patients_data(batch=1): patient_query = f""" select pm.id , pm."last-bill-date" -- , pm."primary-store-id" , zpa.latitude , zpa.longitude -- , "previous-store-id" from "{schema}"."patients-metadata-2" pm inner join ( select "patient-id", latitude, longitude, rank() over (partition by "patient-id" order by "created-at" desc ) r from "{schema}"."zeno-patient-address" ) zpa on zpa."patient-id" = pm.id where r = 1 and zpa.latitude is not null and zpa.latitude != '' and zpa.longitude is not null and zpa.longitude != '' and pm."last-bill-date" >= '{start_date}' -- and pm.id is not null -- and pm.id = 5 -- and pm."primary-store-id" in (16,2) -- and pm."last-bill-date" >= CURRENT_DATE - 90 group by 1,2,3,4 order by pm."last-bill-date" asc LIMIT {batch_size} OFFSET {(batch - 1) * batch_size} """ _patient_df = rs_db.get_df(patient_query) logger.info(f'patient batch count: {_patient_df.shape}') return _patient_df # pat['i'] = 1 # store['i'] = 1 # hash_join = pat.merge(store, how='left', on='i') # hash_join['geo_dist'] = hash_join.apply( # lambda x: geo_distance(x.latitude_x, x.longitude_x, x.latitude_y, x.longitude_y), axis=1) # hash_join['rank'] = hash_join.sort_values(by=['geo_dist']).groupby(['patient-id']).cumcount() + 1 # hash_join = hash_join[hash_join['rank'] == 1].copy() # hash_join.columns = [c.replace('_', '-').lower() for c in hash_join.columns] # hash_join = hash_join[['patient-id', 'nearest-store-id']] # hash_join['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') # return hash_join try: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where date("created-at") > '{start_date}' ''' logger.info(f'truncate query: {truncate_query}') rs_db.execute(truncate_query) logger.info(f'batch size type:{type(batch_size)}') store_df = get_store_data() batch = 1 patient_df = get_patients_data(batch=batch) while not patient_df.empty: logger.info(f'Starting batch number:{batch}') patient_nearest_store() """ rename the columns """ patient_df.rename(columns={"id": "patient-id", "last-bill-date": "created-at"}, inplace=True) patient_df[['nearest-store-id']] = patient_df[['nearest-store-id']].astype(int) s3.write_df_to_db(df=patient_df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f'End of batch number:{batch}') if not full_run: break batch += 1 patient_df = get_patients_data(batch=batch) except Exception as e: logger.exception(e) finally: rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patient-nearest-store/patient-nearest-store.py
patient-nearest-store.py
import argparse import os import sys import geopy as geopy import geopy.distance sys.path.append('../../../..') sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-bs', '--batch_size', default=10, type=int, required=False) parser.add_argument('-fr', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run batch_size = args.batch_size os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = "lat-long-nearest-store" table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) def geo_distance(lat1, long1, lat2, long2): geo_dist = geopy.distance.geodesic((lat1, long1), (lat2, long2)).km return geo_dist query = f""" insert into "{schema}"."{table_name}" ( "created-at", "latitude", longitude, "nearest-store-id" ) select convert_timezone('Asia/Calcutta', GETDATE()), ll."latitude", ll.longitude, 0 from ( select latitude, longitude from "{schema}"."zeno-patient-address" where latitude != '' and latitude is not null and longitude != '' and longitude is not null group by 1, 2 ) ll left join "{schema}"."{table_name}" llns on (llns.latitude = ll.latitude and llns.longitude = ll.longitude) where llns.latitude is null and llns.longitude is null; """ """ Insert the new lat long in the table """ rs_db.execute(query=query) def get_store_data(): """ function returns the stores lat, long data """ store_query = f""" select id, -- store as nearest_store, latitude, longitude -- , "store-type" from "{schema}"."stores-master" sm where "store-type" != 'dc' and sm.latitude != '' and sm.latitude is not null and sm.longitude != '' and sm.longitude is not null and sm."id" is not null """ _store_df = rs_db.get_df(store_query) logger.info(f'store count: {_store_df.shape}') return _store_df def lat_long_nearest_store(): global lat_long_df for ix, lat_long in lat_long_df.iterrows(): nearest_store_id = store_df['id'][0] nearest_store_distance = 1000000 for iy, store in store_df.iterrows(): distance = geo_distance(lat_long['latitude'], lat_long['longitude'], store['latitude'], store['longitude']) if distance < nearest_store_distance: nearest_store_distance = distance nearest_store_id = store['id'] lat_long_df.loc[ix, 'nearest-store-id'] = int(nearest_store_id) # return patient_df def get_lat_long_data(batch=1): lat_long_query = f""" select latitude, longitude , "nearest-store-id" from "prod2-generico"."lat-long-nearest-store" where "nearest-store-id" = 0 LIMIT {batch_size} OFFSET {(batch - 1) * batch_size} """ _lat_long_df = rs_db.get_df(lat_long_query) logger.info(f'lat long batch count: {_lat_long_df.shape}') return _lat_long_df def update_nearest_store(): """ clean the temp table """ t_query = f""" TRUNCATE TABLE {lat_long_temp_table} ;""" rs_db.execute(query=t_query) # Fixing the data type lat_long_df[['nearest-store-id']] = lat_long_df[['nearest-store-id']].astype(int) # fill the temp table s3.write_df_to_db(df=lat_long_df[temp_table_info['column_name']], db=rs_db, table_name=lat_long_temp_table, schema=None) # Updating the data in table _query = f""" update "{schema}"."{table_name}" t set "nearest-store-id" = s."nearest-store-id" from {lat_long_temp_table} s where ( t.latitude = s.latitude and t.longitude = s.longitude) """ rs_db.execute(query=_query) try: store_df = get_store_data() batch = 1 lat_long_df = get_lat_long_data(batch=batch) if not lat_long_df.empty: # Create temp table and update the nearest store lat_long_temp_table = table_name.replace("-", "_") + "_temp" rs_db.execute(query=f"DROP table IF EXISTS {lat_long_temp_table};") _query = f""" CREATE TEMP TABLE {lat_long_temp_table} ( latitude VARCHAR(765) ENCODE lzo ,longitude VARCHAR(765) ENCODE lzo ,"nearest-store-id" INTEGER NOT NULL ENCODE az64 ); """ rs_db.execute(query=_query) temp_table_info = helper.get_table_info(db=rs_db, table_name=lat_long_temp_table, schema=None) while not lat_long_df.empty: logger.info(f'Starting batch number:{batch}') lat_long_nearest_store() # calculate the nearest store update_nearest_store() # update the nearest store logger.info(f'End of batch number:{batch}') if not full_run: break batch += 1 lat_long_df = get_lat_long_data(batch=batch) except Exception as e: logger.exception(e) finally: rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patient-nearest-store/lat-long-nearest-store.py
lat-long-nearest-store.py
# ============================================================================= # author: [email protected] # purpose: to populate store-group-drug-price # ============================================================================= # Note - In case of removing hardcoded discount remove block1,block2,block3 import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from dateutil.tz import gettz import datetime import argparse import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-t', '--tolerance_percentage', default=20, type=int, required=False) parser.add_argument('-ned', '--near_expiry_days', default=90, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to email_to = args.email_to tolerance_percentage = args.tolerance_percentage near_expiry_days = args.near_expiry_days os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("tolerance_percentage- " + str(tolerance_percentage)) logger.info("near_expiry_days- " + str(near_expiry_days)) # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) status2 = False if env == 'dev': logger.info('development env setting schema and table accordingly') schema2 = '`test-generico`' table2 = '`store-group-drug-price-data`' temp_sales_table = '`store-group-drug-price-data`' elif env == 'stage': logger.info('staging env setting schema and table accordingly') schema2 = '`test-generico`' table2 = '`store-group-drug-price-data`' temp_sales_table = '`store-group-drug-price-data`' elif env == 'prod': logger.info('prod env setting schema and table accordingly') schema2 = '`prod2-generico`' table2 = '`store-group-drug-price`' temp_sales_table = '`store-group-drug-price-copy`' # ============================================================================= # Fetching Price - where Inventory is available # ============================================================================= query_inv_price = """ select b.*, case when b."max-per-deviation-from-max-mrp" > {tolerance_percentage} then b."weighted-mrp" else b."mrp" end as "final-mrp", case when b."max-per-deviation-from-max-mrp" > {tolerance_percentage} then b."weighted-selling-rate" else b."selling-rate" end as "final-selling-rate" from ( select a.*, ROUND(sum(a."quantity" * a."mrp") over (partition by a."store-group-id" , a."drug-id" order by a.mrp desc, a."selling-rate" desc rows between unbounded preceding and unbounded following)/ sum(a."quantity") over (partition by a."store-group-id" , a."drug-id" order by a.mrp desc, a."selling-rate" desc rows between unbounded preceding and unbounded following), 2) as "weighted-mrp", ROUND(sum(a."quantity" * a."selling-rate") over (partition by a."store-group-id" , a."drug-id" order by a.mrp desc, a."selling-rate" desc rows between unbounded preceding and unbounded following)/ sum(a."quantity") over (partition by a."store-group-id" , a."drug-id" order by a.mrp desc, a."selling-rate" desc rows between unbounded preceding and unbounded following), 2) as "weighted-selling-rate", max(a."per-deviation-from-max-mrp") over (partition by a."store-group-id" , a."drug-id" order by a.mrp desc, a."selling-rate" desc rows between unbounded preceding and unbounded following) as "max-per-deviation-from-max-mrp" from ( select row_number() over (partition by s."store-group-id" , i."drug-id" order by i.mrp desc, i."selling-rate" desc) as "row", s."store-group-id", i."drug-id", sum(i.quantity) as "quantity", i.mrp, i."selling-rate", max(d."type") as "drug-type", case when i.mrp = 0 then 100 else ROUND((1 - (i.mrp / (max(i.mrp) over (partition by s."store-group-id" , i."drug-id" order by i.mrp desc, i."selling-rate" desc rows between unbounded preceding and unbounded following))))* 100, 2) end as "per-deviation-from-max-mrp", case when i."selling-rate" = 0 then 100 else ROUND((1 - (i."selling-rate" / (max(i."selling-rate") over (partition by s."store-group-id" , i."drug-id" order by i.mrp desc, i."selling-rate" rows between unbounded preceding and unbounded following))))* 100, 2) end as "per-deviation-from-max-selling-rate" from "prod2-generico"."inventory-1" i inner join "prod2-generico".stores s on i."store-id" = s.id inner join "prod2-generico".drugs d on i."drug-id" = d.id where i."franchisee-inventory" = 0 and d.schedule != 'h1' and i.mrp >= i."selling-rate" and (i.quantity >= 1 ) and i."expiry" > dateadd(day,{near_expiry_days},getdate()) group by s."store-group-id" , i."drug-id" , i.mrp , i."selling-rate") a)b """.format(tolerance_percentage=tolerance_percentage,near_expiry_days=near_expiry_days) inventory_combination = rs_db.get_df(query_inv_price) logger.info('Fetched current price data where inventory is available') # ============================================================================= # block1 - Hardcoded discount for ethical and high-value-ethical - 15% # ============================================================================= harcoded_discount = 15 multiply_mrp_by = ((100-harcoded_discount)/100) logger.info(f'hardcoded discount - {harcoded_discount}') logger.info(f'multiply_mrp_by - {multiply_mrp_by}') inventory_combination.rename(columns = {'final-selling-rate':'final-selling-rate1'},inplace = True) conditions = [inventory_combination['drug-type'].isin(['ethical','high-value-ethical'])] choices = [f'{harcoded_discount}%'] inventory_combination['harcoded_discount'] = np.select(conditions, choices) conditions = [inventory_combination['drug-type'].isin(['ethical','high-value-ethical']),~inventory_combination['drug-type'].isin(['ethical','high-value-ethical'])] choices = [inventory_combination['final-mrp'].astype(float)*multiply_mrp_by,inventory_combination['final-selling-rate1']] inventory_combination['final-selling-rate2'] = np.select(conditions, choices) inventory_combination['final-selling-rate'] = inventory_combination['final-selling-rate2'] # ============================================================================= # In case of removing hardcoded discount remove block1,block2,block3 # ============================================================================= final_price_inventory = inventory_combination[inventory_combination['row']==1][['store-group-id','drug-id','final-mrp','final-selling-rate']] final_price_inventory.rename(columns={'final-mrp':'mrp', 'final-selling-rate':'selling-rate'},inplace = True) # ============================================================================= # flagged cases analysis # ============================================================================= inventory_combination['store-group-drug'] = inventory_combination['store-group-id'].astype(str) + '-' + inventory_combination['drug-id'].astype(str) problematic_store_group_drug = inventory_combination[inventory_combination['max-per-deviation-from-max-mrp']>tolerance_percentage]['store-group-drug'].unique().tolist() inventory_available_total_cases = len(inventory_combination['store-group-drug'].unique()) inventory_available_flagged_cases = len(problematic_store_group_drug) flag_percentage = round((inventory_available_flagged_cases/inventory_available_total_cases)*100,2) logger.info(f'total inventory_available case - Store-group + Drug Combinations - {inventory_available_total_cases}') logger.info(f'Flagged inventory_available case - Store-group + Drug Combinations - {inventory_available_flagged_cases}') logger.info(f'flagged percentage - {flag_percentage}%') flagged_inventory_combination = inventory_combination[inventory_combination['store-group-drug'].isin(problematic_store_group_drug)] del flagged_inventory_combination['store-group-drug'] # flagged_inventory_combination.to_csv('D:\Store drug composition group\price_test_3.csv') # ============================================================================= # fetching data for store-group sold but no current inventory # ============================================================================= query_store_group_sold_but_no_inv= """ select concat(invsale."store-group-id", concat('-', invsale."drug-id")) as "store-group-drug" from ( select sale."store-group-id", sale."drug-id" , inv."store-group-inventory" from ( select st."store-group-id" , s."drug-id" from "prod2-generico"."prod2-generico".sales s left join "prod2-generico".stores st on s."store-id" = st.id where date(s."created-at") > date(dateadd(d, -30, current_date)) and s."bill-flag" = 'gross' and st."store-group-id" != 2 group by st."store-group-id" , s."drug-id")sale left join ( select i."drug-id" , s."store-group-id" , sum(i.quantity) as "store-group-inventory" from "prod2-generico"."prod2-generico"."inventory-1" i left join "prod2-generico".stores s on s.id = i."store-id" where s."store-group-id" != 2 and i."expiry" > dateadd(day,{near_expiry_days},getdate()) group by s."store-group-id" , i."drug-id")inv on sale."drug-id" = inv."drug-id" and sale."store-group-id" = inv."store-group-id")invsale where invsale."store-group-inventory" = 0 """.format(near_expiry_days=near_expiry_days) store_group_sale_but_no_inv = rs_db.get_df(query_store_group_sold_but_no_inv) logger.info('Fetched data for store-group sold but no current inventory') store_group_drug = tuple(map(str,list(store_group_sale_but_no_inv['store-group-drug'].unique()))) logger.info(f'store-group sold but no current inventory cases - {len(store_group_drug)}') # ============================================================================= # Fetching Price for store-group sold but no current inventory # ============================================================================= query_sale_price = """ select * from ( select row_number() over (partition by s."store-group-id" , i."drug-id" order by i.mrp desc, i."selling-rate" desc) as "row", s."store-group-id", i."drug-id", sum(i.quantity) as "quantity", i.mrp, i."selling-rate", max(d."type") as "drug-type" from "prod2-generico"."inventory-1" i inner join "prod2-generico".stores s on i."store-id" = s.id inner join "prod2-generico".drugs d on i."drug-id" = d.id where i."franchisee-inventory" = 0 and d.schedule != 'h1' and i.mrp >= i."selling-rate" -- and i."expiry" > dateadd(day,90,getdate()) and concat( s."store-group-id", concat('-', i."drug-id")) in {store_group_drug} group by s."store-group-id" , i."drug-id" , i.mrp , i."selling-rate")a where a."row" = 1 """.format(store_group_drug=store_group_drug) non_invenotory_combination = rs_db.get_df(query_sale_price) # ============================================================================= # block2 - Hardcoded discount for ethical and high-value-ethical - 15% # ============================================================================= logger.info(f'hardcoded discount - {harcoded_discount}') logger.info(f'multiply_mrp_by - {multiply_mrp_by}') non_invenotory_combination.rename(columns = {'selling-rate':'selling-rate1'},inplace = True) conditions = [non_invenotory_combination['drug-type'].isin(['ethical','high-value-ethical'])] choices = [f'{harcoded_discount}%'] non_invenotory_combination['harcoded_discount'] = np.select(conditions, choices) conditions = [non_invenotory_combination['drug-type'].isin(['ethical','high-value-ethical']),~non_invenotory_combination['drug-type'].isin(['ethical','high-value-ethical'])] choices = [non_invenotory_combination['mrp'].astype(float)*multiply_mrp_by,non_invenotory_combination['selling-rate1']] non_invenotory_combination['selling-rate2'] = np.select(conditions, choices) non_invenotory_combination['selling-rate'] = non_invenotory_combination['selling-rate2'] # ============================================================================= # In case of removing hardcoded discount remove block1,block2,block3 # ============================================================================= logger.info('Fetched current price data for no current inventory available cases') logger.info(f'price to update for non-inventory combinations for - {len(non_invenotory_combination["store-group-id"])} cases') # Difference analysis - Why prices are not to be updated for all sold but no inventory cases # a = pd.DataFrame(store_group_sale_but_no_inv['store-group-drug'].unique(), columns=['total']) # b=a['total'].str.split('-',expand=True) # b.rename(columns={0:'store_group_id_total', # 1:'drug_id_total'},inplace=True) # b['store_group_id_total'] = b['store_group_id_total'].astype(int) # b['drug_id_total'] = b['drug_id_total'].astype(int) # c = non_invenotory_combination[['store-group-id','drug-id']] # c.rename(columns = {'store-group-id':'store_group_id_cal', # 'drug-id':'drug_id_cal'},inplace =True) # b = b.merge(c,left_on=['store_group_id_total','drug_id_total'],right_on=['store_group_id_cal','drug_id_cal'],how='left') del non_invenotory_combination['row'] del non_invenotory_combination['quantity'] union = pd.concat([final_price_inventory, non_invenotory_combination[['store-group-id','drug-id','mrp','selling-rate']]]) # ============================================================================= # Fetching store-group and cluster combination # ============================================================================= qc = """ select sg.id as "store-group-id", cluster."cluster-id", sg."is-active" as "sg-is-active" from "prod2-generico"."store-groups" sg left join ( select s."store-group-id" as "store-group-id", sc."cluster-id" from "prod2-generico".features f join "prod2-generico"."store-features" sf on f.id = sf."feature-id" join "prod2-generico"."store-clusters" sc on sc."store-id" = sf."store-id" join "prod2-generico".stores s on sc."store-id" = s.id where -- sf."feature-id" = 69 -- and sf."is-active" = 1 -- and sc."is-active" = 1 group by s."store-group-id", sc."cluster-id")cluster on sg.id = cluster."store-group-id" """ store_group_clusters = rs_db.get_df(qc) store_group_clusters['cluster-id'] = store_group_clusters['cluster-id'].apply(pd.to_numeric, errors='ignore').astype('Int64') store_group_clusters['store-group-id'] = store_group_clusters['store-group-id'].apply(pd.to_numeric, errors='ignore').astype( 'Int64') logger.info('Fetched total store-group and cluster combinations') # ============================================================================= # Expanding store groups to clusters # ============================================================================= # Note - Selling rate can be made 0 where cluster inventory is not available (Meaning Out of Stock) # But those cases will be - inventory is available in store-group but not in cluster # Final Decision is yet to be made on this, till that time Out of stock will be based on Store-group inventory store_group_clusters_without_ndd = store_group_clusters[store_group_clusters['store-group-id']!=2] store_group_clusters_without_ndd['cluster-id'].fillna(-987125,inplace = True) store_group_without_cluster = pd.DataFrame(store_group_clusters_without_ndd['store-group-id'].unique(), columns = ['store-group-id']) store_group_without_cluster['cluster-id'] = -987125 store_group_clusters_without_ndd = store_group_clusters_without_ndd.merge(store_group_without_cluster, on=['store-group-id','cluster-id'], how='outer') union = union.merge(store_group_clusters_without_ndd[['store-group-id','cluster-id']], on='store-group-id',how='inner') union['cluster-id'] = union['cluster-id'].replace(-987125, np.nan) # union.to_csv('D:\Store drug composition group\price_test_5.csv') # ============================================================================= # updating Temp table with current data for clusters # ============================================================================= mysql_write = MySQL(read_only=False) mysql_write.open_connection() try: temp_table_name = '`store-group-drug-price-data-temp`' truncate_query = ''' DELETE FROM {schema2}.{temp_table_name} '''.format(schema2=schema2,temp_table_name=temp_table_name) mysql_write.engine.execute(truncate_query) logger.info('Existing store-group-drug-price-data-temp table Truncated') union.to_sql( name='store-group-drug-price-data-temp', con=mysql_write.engine, if_exists='append', chunksize=500, method='multi', index=False) logger.info(' ') logger.info('store-group-drug-price-data-temp table appended to MySQL') # ============================================================================= # Updating price where Mismatch in calculated and current table # ============================================================================= logger.info(' ') logger.info('Updating for clusters') for store_groups in store_group_clusters['store-group-id'].unique(): clusters = store_group_clusters[store_group_clusters['store-group-id']==store_groups]['cluster-id'].unique() if (len(clusters)==1 and pd.isna(clusters[0])) or store_groups==2: pass else: for cluster_id in sorted(clusters): logger.info('store group - {}, cluster {} - started '.format(store_groups,cluster_id)) update1_query = """ UPDATE {schema2}.{table2} sgdp INNER JOIN {schema2}.{temp_table_name} sgdp2 ON sgdp.`store-group-id` = sgdp2.`store-group-id` and sgdp.`cluster-id` = {cluster_id} and sgdp2.`cluster-id` = {cluster_id} and sgdp.`drug-id` = sgdp2.`drug-id` SET sgdp.mrp = sgdp2.mrp, sgdp.`selling-rate` = sgdp2.`selling-rate` WHERE sgdp.`store-group-id` != 2 and ( sgdp.mrp != sgdp2.mrp OR sgdp.`selling-rate` != sgdp2.`selling-rate`) """.format(cluster_id=cluster_id, schema2=schema2, table2=table2, temp_table_name=temp_table_name) mysql_write.engine.execute(update1_query) logger.info('store group - {} cluster {} - Update 1 MRP And Selling price '.format(store_groups, cluster_id)) # ============================================================================= # Updating selling rate to 0 where inventory is not present # ============================================================================= update2_query = """ UPDATE {schema2}.{table2} sgdp LEFT JOIN {schema2}.{temp_table_name} sgdp2 ON sgdp.`store-group-id` = sgdp2.`store-group-id` and sgdp.`cluster-id` = {cluster_id} and sgdp2.`cluster-id` = {cluster_id} and sgdp.`drug-id` = sgdp2.`drug-id` left join drugs d on d.id = sgdp.`drug-id` SET sgdp.`selling-rate` = 0 WHERE sgdp.`store-group-id` != 2 and d.schedule != 'h1' and sgdp.`selling-rate` != 0 and sgdp.`cluster-id` = {cluster_id} and sgdp.`store-group-id` = {store_groups} and sgdp2.id is NULL """.format(cluster_id=cluster_id, schema2=schema2, table2=table2, store_groups=store_groups, temp_table_name=temp_table_name) mysql_write.engine.execute(update2_query) logger.info('store group - {} cluster {} - Update 2 Selling price=0'.format(store_groups,cluster_id)) # ============================================================================= # Inserting data where data is not present # ============================================================================= insert_query = """ INSERT Into {schema2}.{table2} ( `store-group-id` , `drug-id` , `cluster-id` , mrp , `selling-rate` , `is-express` , `is-active` ) ( SELECT sgdpdt.`store-group-id` , sgdpdt.`drug-id` , sgdpdt.`cluster-id` , sgdpdt.mrp , sgdpdt.`selling-rate` , sgdpdt.`is-express` , sgdpdt.`is-active` FROM {schema2}.{temp_table_name} sgdpdt left join {schema2}.{table2} sgdp on sgdpdt.`store-group-id` = sgdp.`store-group-id` and sgdpdt.`cluster-id` = {cluster_id} and sgdp.`cluster-id` = {cluster_id} and sgdpdt.`drug-id` = sgdp.`drug-id` WHERE sgdp.id is NULL and sgdpdt.`store-group-id`= {store_groups} and sgdpdt.`cluster-id`= {cluster_id}) """.format(cluster_id=cluster_id, schema2=schema2, table2=table2, temp_table_name=temp_table_name, store_groups=store_groups) mysql_write.engine.execute(insert_query) logger.info('store group - {} cluster {} - Inserted data'.format(store_groups,cluster_id)) # ============================================================================= # Updating for Non clusters # Updating price where Mismatch in calculated and current table # ============================================================================= logger.info(' ') logger.info('Updating for non clusters') for store_groups in store_group_clusters['store-group-id'].unique(): if store_groups==2: pass else: logger.info(' ') logger.info('store group- {} started'.format(store_groups)) nc_update1_query = """ UPDATE {schema2}.{table2} sgdp INNER JOIN {schema2}.{temp_table_name} sgdp2 ON sgdp.`store-group-id` = {store_groups} and sgdp2.`store-group-id` = {store_groups} and sgdp.`cluster-id` is NULL and sgdp2.`cluster-id` is NULL and sgdp.`drug-id` = sgdp2.`drug-id` SET sgdp.mrp = sgdp2.mrp, sgdp.`selling-rate` = sgdp2.`selling-rate` WHERE sgdp.`store-group-id` != 2 and sgdp.`store-group-id` = {store_groups} and ( sgdp.mrp != sgdp2.mrp OR sgdp.`selling-rate` != sgdp2.`selling-rate`) """.format(schema2=schema2, table2=table2, temp_table_name=temp_table_name, store_groups=store_groups) mysql_write.engine.execute(nc_update1_query) logger.info('store group - {} cluster Null - Update 1 MRP And Selling price '.format(store_groups)) # ============================================================================= # Updating selling rate to 0 where inventory is not present # ============================================================================= nc_update2_query = """ UPDATE {schema2}.{table2} sgdp LEFT JOIN {schema2}.{temp_table_name} sgdp2 ON sgdp.`store-group-id` = {store_groups} and sgdp2.`store-group-id` = {store_groups} and sgdp.`cluster-id` is NULL and sgdp2.`cluster-id` is NULL and sgdp.`drug-id` = sgdp2.`drug-id` left join drugs d on d.id = sgdp.`drug-id` SET sgdp.`selling-rate` = 0 WHERE sgdp.`store-group-id` != 2 and d.schedule != 'h1' and sgdp.`selling-rate` != 0 and sgdp.`cluster-id` is NULL and sgdp.`store-group-id` = {store_groups} and sgdp2.id is NULL """.format(schema2=schema2, table2=table2, store_groups=store_groups, temp_table_name=temp_table_name) mysql_write.engine.execute(nc_update2_query) logger.info('store group - {} cluster Null - Update 2 Selling price=0'.format(store_groups)) # ============================================================================= # Inserting data where data is not present # ============================================================================= insert_query = """ INSERT Into {schema2}.{table2} ( `store-group-id` , `drug-id` , `cluster-id` , mrp , `selling-rate` , `is-express` , `is-active` ) ( SELECT sgdpdt.`store-group-id` , sgdpdt.`drug-id` , sgdpdt.`cluster-id` , sgdpdt.mrp , sgdpdt.`selling-rate` , sgdpdt.`is-express` , sgdpdt.`is-active` FROM {schema2}.{temp_table_name} sgdpdt left join {schema2}.{table2} sgdp on sgdpdt.`store-group-id` = {store_groups} and sgdp.`store-group-id` = {store_groups} and sgdpdt.`cluster-id` is NULL and sgdp.`cluster-id` is NULL and sgdpdt.`drug-id` = sgdp.`drug-id` WHERE sgdpdt.`store-group-id`= {store_groups} and sgdpdt.`cluster-id` is NULL and sgdp.id is NULL) """.format( schema2=schema2, table2=table2, temp_table_name=temp_table_name, store_groups=store_groups) mysql_write.engine.execute(insert_query) logger.info('store group - {} cluster NULL - Inserted data'.format(store_groups)) # ============================================================================= # This is used as safety Net, Can be scrapped in few days # ============================================================================= logger.info('Start - Updating Selling price = 0 cases which are billed in last month, Temporary Solution') sell_temp_query = """ update {schema2}.{table2} s1 inner join {schema2}.{temp_sales_table} s2 on s1.`store-group-id` = s2.`store-group-id` and s1.`cluster-id` <=> s2.`cluster-id` and s1.`drug-id` = s2.`drug-id` set s1.mrp = s2.mrp, s1.`selling-rate` = s2.`selling-rate` where s1.`selling-rate` = 0 and s2.`selling-rate` != 0 and s2.`mrp` != 0 and s2.`selling-rate`<= s2.`mrp`; """.format(schema2=schema2, table2=table2, temp_sales_table=temp_sales_table) mysql_write.engine.execute(sell_temp_query) logger.info('End - Updating Selling price = 0 cases which are billed in last month, Temporary Solution') # ============================================================================= # block3 - Hardcoded discount for ethical and high-value-ethical - 15% # ============================================================================= logger.info(f'hardcoded discount - {harcoded_discount}') logger.info(f'multiply_mrp_by - {multiply_mrp_by}') hardcoded_discount_query = """ update {schema2}.{table2} sgdp inner join {schema2}.drugs d on sgdp.`drug-id` = d.id set sgdp.`selling-rate` = sgdp.mrp*{multiply_mrp_by} where sgdp.`selling-rate` > 0 and sgdp.mrp > 0 and d.`type` in ('ethical', 'high-value-ethical') ; """.format(schema2=schema2, table2=table2,multiply_mrp_by=multiply_mrp_by) mysql_write.engine.execute(hardcoded_discount_query) logger.info('End - Updating Selling price hardcoded discount') # ============================================================================= # In case of removing hardcoded discount remove block1,block2,block3 # ============================================================================= status2 = True except Exception as error: logger.exception(error) status2 = False # ============================================================================= # Sending mail # ============================================================================= if status2 is True: status = 'Success' else: status = 'Failed' end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() flagged_inv = s3.save_df_to_s3(df=flagged_inventory_combination, file_name='flagged_cases_{}.csv'.format(cur_date)) raw_inventory = s3.save_df_to_s3(df=inventory_combination, file_name='raw_inventory_{}.csv'.format(cur_date)) raw_sale = s3.save_df_to_s3(df=non_invenotory_combination, file_name='raw_sold_but_no_inventory_{}.csv'.format(cur_date)) email.send_email_file(subject=f"{env}-{status} : {table2} table updated", mail_body=f"{table2} table update {status}, Time for job completion - {min_to_complete} mins\n" f"total inventory_available case - Store-group + Drug Combinations - {inventory_available_total_cases}\n" f"Flagged inventory_available case - Store-group + Drug Combinations - {inventory_available_flagged_cases}\n" f"flagged percentage - {flag_percentage}%\n" f"store-group sold but no current inventory cases - {len(store_group_drug)}\n" f"price to update for non-inventory combinations for - {len(non_invenotory_combination['store-group-id'])} cases\n" f"parameter used - \n" f"tolerance_percentage - {tolerance_percentage}\n" f"near expiry days parameter - {near_expiry_days}\n", to_emails=email_to, file_uris=[flagged_inv,raw_inventory,raw_sale]) # Closing the DB Connection rs_db.close_connection() mysql_write.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store-group-drug-price/store-group-drug-price.py
store-group-drug-price.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from dateutil.tz import gettz import datetime import argparse import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") status2 = False if env == 'dev': logger.info('development env setting schema and table accordingly') schema2 = '`test-generico`' table2 = '`store-group-composition-master-data-`' elif env == 'stage': logger.info('staging env setting schema and table accordingly') schema2 = '`test-generico`' table2 = '`store-group-composition-master-data-`' else: logger.info('prod env setting schema and table accordingly') schema2 = '`prod2-generico`' table2 = '`store-group-composition-master`' # TODO -- query fetches 12L record, reduce data size if possible # ============================================================================= # Fetching Compositions for cluster # ============================================================================= s2 = """ select s."store-group-id", sc."cluster-id" as "cluster-id", i."drug-id" , max(d."release") as "release", max(d."dosage-form") as "dosage-form" , max(d.composition) as "composition", Case when max(d."company-id") = 6984 then 'GOODAID' ELSE 'other' END AS "goodaid-flag", CASE when max(d."type") in ('ethical', 'high-value-ethical') THEN 'ethical' WHEN max(d."type") in ('generic', 'high-value-generic') THEN 'generic' ELSE 'others' END AS "drug-type" from "prod2-generico"."inventory-1" i inner join "prod2-generico"."store-clusters" sc on i."store-id" = sc."store-id" and sc."is-active" = 1 inner join "prod2-generico".stores s on i."store-id" = s.id inner join "prod2-generico".drugs d on i."drug-id" = d.id where i."franchisee-inventory" = 0 and i.quantity>0 group by s."store-group-id", sc."cluster-id" , i."drug-id" """ cluster_combination = rs_db.get_df(s2) logger.info('Fetched data for clusters') # ============================================================================= # Fetching Compositions for non cluster # ============================================================================= s3 = """ select s."store-group-id", NULL as "cluster-id", i."drug-id" , max(d."release") as "release", max(d."dosage-form") as "dosage-form", max(d.composition) as "composition", Case when max(d."company-id") = 6984 then 'GOODAID' ELSE 'other' END AS "goodaid-flag", CASE when max(d."type") in ('ethical', 'high-value-ethical') THEN 'ethical' WHEN max(d."type") in ('generic', 'high-value-generic') THEN 'generic' ELSE 'others' END AS "drug-type" from "prod2-generico"."inventory-1" i inner join "prod2-generico".stores s on i."store-id" = s.id inner join "prod2-generico".drugs d on i."drug-id" = d.id where i."franchisee-inventory" = 0 and i.quantity>0 group by s."store-group-id", i."drug-id" """ non_cluster_combination = rs_db.get_df(s3) logger.info('Fetched data for non clusters') union = pd.concat([cluster_combination, non_cluster_combination]) union = union[union['composition'].notna()] # ============================================================================= # Calculating current composition master # ============================================================================= def conversion_to_str_for_join(x): if type(x)!= type(None) and x is not None and x != 'nan' and pd.notna(x): return str(int(x)) else: return str(x) union['drug-id'] = union['drug-id'].apply(conversion_to_str_for_join) union['cluster-id'] = union['cluster-id'].fillna('-123') # ethical mask = (((union['drug-type'] == 'ethical') | (union['drug-type'] == 'high-value-ethical') )& (union['composition'] != '') & (union['composition'].notna())) ethical = union[mask] ethical.reset_index(drop=True, inplace=True) ethical = ethical.groupby(['store-group-id', 'cluster-id', 'composition', 'dosage-form', 'release']).agg( {'drug-id': ','.join}).reset_index() ethical.rename(columns={'drug-id': 'ethical-drug-id-list'}, inplace=True) # generic mask2 = ((union['drug-type'] == 'generic') & (union['composition'] != '') & (union['composition'].notna())) generic = union[mask2] generic.reset_index(drop=True, inplace=True) generic = generic.groupby(['store-group-id', 'cluster-id', 'composition', 'dosage-form', 'release']).agg( {'drug-id': ','.join}).reset_index() generic.rename(columns={'drug-id': 'generic-drug-id-list-dummy'}, inplace=True) # goodaid mask3 = ((union['goodaid-flag'] == 'GOODAID') & (union['composition'] != '') & (union['composition'].notna())) goodaid = union[mask3] goodaid.reset_index(drop=True, inplace=True) goodaid = goodaid.groupby(['store-group-id', 'cluster-id', 'composition', 'dosage-form', 'release']).agg( {'drug-id': ','.join}).reset_index() goodaid.rename(columns={'drug-id': 'goodaid-drug-id-list'}, inplace=True) union = pd.merge(ethical, generic ,how = 'outer',on =['store-group-id', 'cluster-id', 'composition', 'dosage-form', 'release']) union = pd.merge(union, goodaid, how='outer', on=['store-group-id', 'cluster-id', 'composition', 'dosage-form', 'release']) def drug_list_sorter_goodaid(x): if type(x) == type(None) or x == 'nan' or pd.isna(x): return x else: lst = x.split(',') lst.sort(reverse=True) lst = lst[:1] sorted_csv = ",".join(lst) return sorted_csv # In Goodaid only show single entry union['goodaid-drug-id-list'] = union['goodaid-drug-id-list'].apply(drug_list_sorter_goodaid) # If goodaid is present then in generic only show goodaid conditions = [ union['goodaid-drug-id-list'].notna(), union['goodaid-drug-id-list'].isna() ] choices = [ union['goodaid-drug-id-list'], union['generic-drug-id-list-dummy']] union['generic-drug-id-list'] = np.select(conditions, choices) # If generic is present then we won't show ethical conditions = [ union['generic-drug-id-list'].notna(), union['generic-drug-id-list'].isna() ] choices = [ None, union['ethical-drug-id-list']] union['ethical-drug-id-list'] = np.select(conditions, choices) union = union[['store-group-id', 'cluster-id', 'release', 'dosage-form', 'composition', 'ethical-drug-id-list', 'generic-drug-id-list']] union['cluster-id'] = union['cluster-id'].replace(['-123'],np.nan) # Sorting drug-list for join with prod table and updating value where there is change def drug_list_sorter(x): if type(x) == type(None) or x == 'nan' or pd.isna(x): return x else: lst = x.split(',') lst.sort(reverse=True) lst = lst[:5] sorted_csv = ",".join(lst) return sorted_csv union['ethical-drug-id-list'] = union['ethical-drug-id-list'].apply(drug_list_sorter) union['generic-drug-id-list'] = union['generic-drug-id-list'].apply(drug_list_sorter) logger.info('Calculated composition master, ready to make changes on prod table') # ============================================================================= # writing to Prod # ============================================================================= mysql_write = MySQL(read_only=False) mysql_write.open_connection() status2 = False try: truncate_query = ''' DELETE FROM {}.{} sgcm WHERE sgcm.`store-group-id` != 2 '''.format(schema2, table2) mysql_write.engine.execute(truncate_query) logger.info(str(table2) + ' Existing table truncated, except where store-group-id is 2') if env == 'dev': table2 = 'store-group-composition-master-data-' elif env == 'stage': table2 = 'store-group-composition-master-data-' elif env=='prod': table2 = 'store-group-composition-master' else: table2 = 'store-group-composition-master-data-' union.to_sql( name=table2, con=mysql_write.engine, if_exists='append', chunksize=500, method='multi', index=False) logger.info(' ') logger.info(str(table2) + ' table appended to MySQL') status2 = True except Exception as error: logger.info(str(table2) + 'table load failed') finally: if status2 is True: end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}- Success : {table2} table updated", mail_body=f"{table2} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) # Closing the DB Connection rs_db.close_connection() mysql_write.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store-group-drug-price/store-group-composition-master.py
store-group-composition-master.py
# !/usr/bin/env python # coding: utf-8 import argparse import os import sys from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.utils.consumer.crm_campaigns import CrmCampaigns # Import custom functions from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-dw', '--db_write', default="yes", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to db_write = args.db_write # env = 'stage' # limit = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") # Instantiate the CRM campaigns class cc = CrmCampaigns() ''' # Connections rs_db = DB() rs_db.open_connection() ''' # Global variable # Run date # run_date = datetime.today().strftime('%Y-%m-%d') # Timezone aware run_date = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d") # run_date = '2021-09-01' logger.info("Running for {}".format(run_date)) # Custom campaigns start # Read data # Can come from SQL query or from .csv read from an s3 folder def campaign_mandatory_steps(data_pass, run_date, last_n_days_bill_param=15, last_n_days_call_param=30, exclude_store=[0]): # Mandatory steps # Remove Last 15 days billed already data_pass = cc.no_bill_in_last_n_days(data_pass, run_date, last_n_days_param=last_n_days_bill_param) # Should not have been called in last 30-days thru calling dashboard data_pass = cc.no_call_in_last_n_days(data_pass, run_date, last_n_days_param=last_n_days_call_param) data_pass = data_pass[~data_pass['store_id'].isin(exclude_store)] # Read DND list data_pass = cc.remove_dnd(data_pass) return data_pass def data_prep_pune_custom_campaign(): """ """ # Pune custom campaign store_group_id_param = 3 # Pune trans_start_d_param = (pd.to_datetime(run_date) - timedelta(days=120)).strftime("%Y-%m-%d") trans_end_d_param = (pd.to_datetime(run_date) - timedelta(days=30)).strftime("%Y-%m-%d") abv_lower_cutoff_param = 200 abv_upper_cutoff_param = 2000 read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = """ select a."store-id", a."patient-id", date(b."last-bill-date") as "last-bill-date", b."average-bill-value" from ( select rm."store-id", rm."patient-id" from "retention-master" rm inner join "stores-master" sm on rm."store-id" = sm."id" where rm."is-repeatable" = True and sm."store-group-id" = {0} and date(rm."bill-date") between '{1}' and '{2}' group by rm."store-id", rm."patient-id") a inner join "patients-metadata-2" b on a."patient-id" = b."id" where date(b."last-bill-date") between '{1}' and '{2}' and b."average-bill-value" between {3} and {4} order by a."store-id" asc, b."average-bill-value" desc """.format(store_group_id_param, trans_start_d_param, trans_end_d_param, abv_lower_cutoff_param, abv_upper_cutoff_param) logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id', 'last_bill_date', 'average_bill_value']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info("Unique data length {}".format(len(data_base_c_grp))) return data_base_c_grp def data_prep_fofo_custom_campaign(): trans_start_d_param = (pd.to_datetime(run_date) - timedelta(days=120)).strftime("%Y-%m-%d") trans_end_d_param = (pd.to_datetime(run_date) - timedelta(days=15)).strftime("%Y-%m-%d") abv_lower_cutoff_param = 200 abv_upper_cutoff_param = 2000 read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = """ select a."store-id", a."patient-id", date(b."last-bill-date") as "last-bill-date", b."average-bill-value" from ( select rm."store-id", rm."patient-id" from "retention-master" rm inner join "stores-master" sm on rm."store-id" = sm."id" where rm."is-repeatable" = True and sm."franchisee-id" != 1 and date(rm."bill-date") between '{0}' and '{1}' group by rm."store-id", rm."patient-id") a inner join "patients-metadata-2" b on a."patient-id" = b."id" where date(b."last-bill-date") between '{0}' and '{1}' and b."average-bill-value" between {2} and {3} order by a."store-id" asc, b."average-bill-value" desc """.format(trans_start_d_param, trans_end_d_param, abv_lower_cutoff_param, abv_upper_cutoff_param) logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id', 'last_bill_date', 'average_bill_value']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info("Unique data length {}".format(len(data_base_c_grp))) return data_base_c_grp def data_prep_refill_campaign(): # For refill date filtering run_date_plus7 = (pd.to_datetime(run_date) + timedelta(days=7)).strftime("%Y-%m-%d") # For active patient filtering run_date_minus25 = (pd.to_datetime(run_date) - timedelta(days=25)).strftime("%Y-%m-%d") run_date_minus60 = (pd.to_datetime(run_date) - timedelta(days=60)).strftime("%Y-%m-%d") # For last calling date filtering run_date_minus30 = (pd.to_datetime(run_date) - timedelta(days=30)).strftime("%Y-%m-%d") logger.info(f"Run date is {run_date}") ########################################## # Reill data ########################################## read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) refill_q = """ SELECT a."patient-id", a."store-id", a."drug-id", b."category", a."refill-date" FROM "retention-refill" a LEFT JOIN "drugs" b on a."drug-id" = b."id" WHERE a."refill-date" between '{0}' and '{1}' """.format(run_date, run_date_plus7) logger.info(refill_q) cc.rs_db.execute(refill_q, params=None) data_base: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data_base is None: data_base = pd.DataFrame(columns=['patient_id', 'store_id', 'drug_id', 'refill_date']) data_base.columns = [c.replace('-', '_') for c in data_base.columns] logger.info(len(data_base)) logger.info("Length of refill data base is {}".format(len(data_base))) # Chronic only - current logic data_base_c = data_base[data_base['category'] == 'chronic'].copy() logger.info("After Filtering chronic - Length of data base is " "{}".format(len(data_base_c))) ########################################## # Atleast 2 chronic drugs ########################################## data_base_c_grp = data_base_c.groupby(['store_id', 'patient_id'])['drug_id'].count().reset_index() logger.info("After grouping - Length of data base is {}".format(len(data_base_c_grp))) data_base_c_grp = data_base_c_grp[data_base_c_grp['drug_id'] >= 2] logger.info("After atleast 2drugs criteria filter - " "Length of data base is {}".format(len(data_base_c_grp))) data_base_c_grp = data_base_c_grp[['store_id', 'patient_id']] data_base_c_grp = data_base_c_grp.drop_duplicates(subset='patient_id') logger.info("After dropping duplicates - Length of data base is " "{}".format(len(data_base_c_grp))) ########################################## # Active customers window (-60 to -25) # Was -45 to -15 originally ########################################## read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) pm_q = """ SELECT id as "patient-id", "average-bill-value" FROM "patients-metadata-2" WHERE date("last-bill-date") between '{0}' and '{1}' """.format(run_date_minus60, run_date_minus25) logger.info(pm_q) cc.rs_db.execute(pm_q, params=None) data_pm: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data_pm is None: data_pm = pd.DataFrame(columns=['patient_id', 'average_bill_value']) data_pm.columns = [c.replace('-', '_') for c in data_pm.columns] logger.info(len(data_pm)) logger.info("Length of Active patients (-60 to -25) metadata - " "fetched is {}".format(len(data_pm))) # Merge with active customers data_base_c_grp = data_base_c_grp.merge(data_pm, how='inner', on='patient_id') logger.info("After merging with patients metadata - " "Length of data base is {}".format(len(data_base_c_grp))) ########################################## # ABV Filter ########################################## data_base_c_grp = data_base_c_grp[data_base_c_grp['average_bill_value'].between(250, 1500)] logger.info("Length of data base after ABV filtering - " "length is {}".format(len(data_base_c_grp))) return data_base_c_grp def data_prep_premium_cum_hd_campaign(): # Single data for 2 campaigns, separated only by HD vs non-HD # For active patient filtering run_date_minus91 = (pd.to_datetime(run_date) - timedelta(days=91)).strftime("%Y-%m-%d") run_date_minus180 = (pd.to_datetime(run_date) - timedelta(days=180)).strftime("%Y-%m-%d") logger.info(f"Run date is {run_date}") ####################################### # SQL Logic ####################################### read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) list_q = """ select pm."id" as patient_id from "patients-metadata-2" pm inner join ( select "patient-id" from "customer-value-segment" where "value-segment" in ('platinum', 'gold', 'silver') group by "patient-id" ) seg on pm."id" = seg."patient-id" where pm."is-repeatable" is True and (current_date - date(pm."last-bill-date")) between 91 and 180 and pm."average-bill-value" >= 250 group by pm."id" """ logger.info(list_q) cc.rs_db.execute(list_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['patient_id']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(f"Data fetched with length: {len(data)}") # Final list logger.info(f"Unique patients list length is: {len(data)}") ########################################## # Active customers window (-180 to -91) ########################################## read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) pm_q = """ SELECT id as "patient-id", "average-bill-value" FROM "patients-metadata-2" WHERE date("last-bill-date") between '{0}' and '{1}' """.format(run_date_minus180, run_date_minus91) logger.info(pm_q) cc.rs_db.execute(pm_q, params=None) data_pm: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data_pm is None: data_pm = pd.DataFrame(columns=['patient_id', 'average_bill_value']) data_pm.columns = [c.replace('-', '_') for c in data_pm.columns] logger.info(len(data_pm)) logger.info("Length of Active patients (-180 to -91) metadata - " "fetched is {}".format(len(data_pm))) # Merge with active customers data_base_c_grp = data.merge(data_pm, how='inner', on='patient_id') logger.info("After merging with patients metadata - " "Length of data base is {}".format(len(data_base_c_grp))) ########################################## # Latest store-id ########################################## data_store = cc.patient_latest_store(data_base_c_grp) ######################################## # Merge ######################################## data_base_c_grp = data_base_c_grp.merge(data_store, how='inner', on='patient_id') logger.info(f"After merging with store-id data - Length of data base is {len(data_base_c_grp)}") ########################################## # Non-HD vs HD filtering ########################################## read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) hd_q = """ SELECT "patient-id" FROM "retention-master" a WHERE date("bill-date") between '{0}' and '{1}' and "hd-flag" is True GROUP BY "patient-id" """.format(run_date_minus180, run_date_minus91) cc.rs_db.execute(hd_q, params=None) data_hd: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data_hd is None: data_hd = pd.DataFrame(columns=['patient_id']) data_hd.columns = [c.replace('-', '_') for c in data_hd.columns] data_hd['hd_flag'] = 1 logger.info("Length of HD active 180-91 is - {}".format(len(data_hd))) # Merge with premium set data_base_c_grp = data_base_c_grp.merge(data_hd, how='left', on='patient_id') data_base_c_grp['hd_flag'] = data_base_c_grp['hd_flag'].fillna(0) logger.info("After merging with hd-data, length is {}".format(len(data_base_c_grp))) logger.info("HD filtered data length is {}".format(data_base_c_grp['hd_flag'].sum())) return data_base_c_grp def data_prep_pilot_store_margin(): """ Pilot Project extra discount """ store_ids_mulund = [2, 4, 230, 244, 264] # Mulund Cluster store_ids_thane = [89, 126, 122, 139, 144, 145, 233, 304] # Thane Cluster store_ids = store_ids_mulund + store_ids_thane lost_customer_cutoff_1 = 30 lost_customer_cutoff_2 = 120 read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = f""" select T1."store-id", T1."patient-id", T1."last-bill-date", T1."average-bill-value" from ( select "previous-store-id" as "store-id", id as "patient-id", date("last-bill-date") as "last-bill-date", "average-bill-value", rank() over (partition by "previous-store-id" order by "average-bill-value" desc) as "rank" from "patients-metadata-2" pm where "previous-store-id" in {tuple(store_ids)} and datediff('days', "last-bill-date", current_date) >= {lost_customer_cutoff_1} and datediff('days', "last-bill-date", current_date) <= {lost_customer_cutoff_2}) T1 where T1."rank" <= 100; """ logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id', 'last_bill_date', 'average_bill_value']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info("Unique data length {}".format(len(data_base_c_grp))) return data_base_c_grp """"" def data_prep_diagnostic_calling(): # Calling for diagnostic read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = select pm.id as "patient-id", 149 as "store-id", 1 as "priority" from "patients-metadata-2" pm left join ( select distinct "patient-id" from redemption r where status in ('REDEMPTION', 'COMPLETED') and datediff('days', "redemption-date", current_date)<= 30) T1 on pm.id = T1."patient-id" where pm."is-chronic" = true and pm."primary-disease" in ('anti-diabetic', 'cardiac', 'blood-related', 'vitamins-minerals-nutrients') and pm."value-segment-anytime" in ('gold', 'silver', 'platinum') and pm."behaviour-segment-anytime" not in ('singletripper', 'newcomer_singletripper', 'newcomer-singletripper', 'other_type') and DATEDIFF('day', pm."last-bill-date", current_date)<= 90 and T1."patient-id" is null order by pm."last-bill-date" limit 360; logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info("Unique data length {}".format(len(data_base_c_grp))) return data_base_c_grp """"" def data_prep_churn_calling(): """ Calling for inactive customer FOFO """ read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = """select t1."store-id", t1."patient-id","average-bill-value" from ( select pm."primary-store-id" as "store-id", cc."patient-id" as "patient-id",pm."average-bill-value", dense_rank() over (partition by pm."primary-store-id" order by cc."churn-prob" desc, pm."last-bill-date" desc) as "rank" from "consumer-churn" cc left join "patients-metadata-2" pm on cc."patient-id" = pm.id left join "stores-master" sm on pm."primary-store-id" = sm.id where cc."created-at" = (select max("created-at") from "consumer-churn" cc) and sm."franchisee-id" != 1) t1 where "rank" <= 50; """ logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info(f"Unique data length: {len(data_base_c_grp)}") return data_base_c_grp ############################################################## # Devansh Medical ############################################################# def data_prep_churn_calling_devansh(): """ Calling for inactive customer Devansh """ read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = """select "primary-store-id" as "store-id", id as "patient-id" , "average-bill-value" from "prod2-generico"."patients-metadata-2" pm where pm."primary-store-id" = '331' and "last-bill-date" <= CURRENT_DATE -60 order by "average-bill-value" desc """ logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info(f"Unique data length: {len(data_base_c_grp)}") return data_base_c_grp ################################################################################### # Loyal Chronic Pilot by Manish Ahire ################################################################################### def data_prep_pilot_loyal_chronic(): """ Pilot by Manish Ahire """ store_ids_mumbai = [144,223,233,242,257,4] # Mumbai store_ids_pune = [246,266] # pune store_ids = store_ids_mumbai + store_ids_pune lost_customer_cutoff_1 = 90 lost_customer_cutoff_2 = 180 abv_lower_cutoff_param = 400 read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = f""" select T1."store-id", T1."patient-id", T1."last-bill-date", T1."average-bill-value" from ( select pm."previous-store-id" as "store-id", pm.id as "patient-id", date(pm."last-bill-date") as "last-bill-date", "average-bill-value", rank() over (partition by pm."previous-store-id" order by pm."average-bill-value" desc) as "rank" from "prod2-generico"."patients-metadata-2" pm inner join "prod2-generico"."retention-master" rm on pm.id= rm."patient-id" and rm.id = pm."last-bill-id" and rm."loyal-customer-flag" =1 where pm."previous-store-id" in {tuple(store_ids)} and datediff('days', pm."last-bill-date", current_date) >= {lost_customer_cutoff_1} and pm."average-bill-value" >= {abv_lower_cutoff_param} and pm."is-chronic"=1 and datediff('days', "last-bill-date", current_date) <= {lost_customer_cutoff_2} ) T1 where T1."rank" <= 500; """ logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id', 'last_bill_date', 'average_bill_value']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info("Unique data length {}".format(len(data_base_c_grp))) return data_base_c_grp ################################################################################### # Mix high value by Manish Ahire ################################################################################### def data_prep_mix_high_value(): """ Pilot by Manish Ahire """ store_ids_mumbai = [144,223,233,242,257,4] # Mumbai store_ids_pune = [246,266] # pune store_ids = store_ids_mumbai + store_ids_pune lost_customer_cutoff_1 = 90 lost_customer_cutoff_2 = 120 abv_lower_cutoff_param = 400 read_schema = 'prod2-generico' cc.rs_db.execute(f"set search_path to '{read_schema}'", params=None) data_q = f""" select T1."store-id", T1."patient-id", T1."last-bill-date", T1."average-bill-value" from ( select pm."previous-store-id" as "store-id", pm.id as "patient-id", date(pm."last-bill-date") as "last-bill-date", "average-bill-value", rank() over (partition by pm."previous-store-id" order by pm."average-bill-value" desc) as "rank" from "prod2-generico"."patients-metadata-2" pm inner join "prod2-generico"."retention-master" rm on pm.id= rm."patient-id" and rm.id = pm."last-bill-id" and rm."total-spend" >=400 where pm."previous-store-id" in {tuple(store_ids)} and datediff('days', pm."last-bill-date", current_date) >= {lost_customer_cutoff_1} and datediff('days', "last-bill-date", current_date) <= {lost_customer_cutoff_2} ) T1 where T1."rank" <= 100; """ logger.info(data_q) cc.rs_db.execute(data_q, params=None) data: pd.DataFrame = cc.rs_db.cursor.fetch_dataframe() if data is None: data = pd.DataFrame(columns=['store_id', 'patient_id', 'last_bill_date', 'average_bill_value']) data.columns = [c.replace('-', '_') for c in data.columns] logger.info(len(data)) data_base_c_grp = data.drop_duplicates(subset='patient_id') logger.info("Unique data length {}".format(len(data_base_c_grp))) return data_base_c_grp ######################################################################### # Main execution starts: ######################################################################### ################################################ # Pune custom campaign ################################################ logger.info("Pune custom campaign starts") data = data_prep_pune_custom_campaign() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=30, exclude_store=[331]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 32, 'Inactive customer', store_daily_limit_param=5, default_sort_needed=True) ################################################ # FOFO custom campaign ################################################ logger.info("fofo custom campaign starts") data = data_prep_fofo_custom_campaign() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=15, exclude_store=[331]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 2, 'FOFO Churn calling', store_daily_limit_param=5, default_sort_needed=True) ################################################ # Thane & Mulund cluster margin hit pilot ################################################ logger.info("Thane and Mulund cluster discount pilot") data = data_prep_pilot_store_margin() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=30, exclude_store=[331]) # Split Thane and Mulund data data_mulund = data[data['store_id'].isin([2, 4, 230, 244, 264])].copy() # DB Write if db_write == 'yes': cc.db_write(data_mulund, run_date, 39, '20% discount pilot on Mulund Cluster', store_daily_limit_param=10, default_sort_needed=True) data_thane = data[data['store_id'].isin([89, 126, 122, 139, 144, 145, 233, 304])].copy() # DB Write if db_write == 'yes': cc.db_write(data_thane, run_date, 39, '18% discount pilot on Thane cluster', store_daily_limit_param=10, default_sort_needed=True) ################################################ # Refill campaign ################################################ logger.info("Refill campaign starts") data = data_prep_refill_campaign() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=24, last_n_days_call_param=30, exclude_store=[331]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 21, 'Medicine Refill estimated', store_daily_limit_param=5, default_sort_needed=True) ################################################ # Premium non-HD and HD campaign ################################################ logger.info("Premium non-hd and hd campaign starts") data = data_prep_premium_cum_hd_campaign() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=30, exclude_store=[331]) # Split non-hd and hd data data_nonhd = data[data['hd_flag'] != 1].copy() # DB Write if db_write == 'yes': cc.db_write(data_nonhd, run_date, 26, 'Lost customer', store_daily_limit_param=10, default_sort_needed=True) data_hd = data[data['hd_flag'] == 1].copy() # DB Write if db_write == 'yes': cc.db_write(data_hd, run_date, 28, 'Lost customer', store_daily_limit_param=5, default_sort_needed=True) """"" ################################################ # Diagnostic Calling ################################################ logger.info("Diagnostic Calling") data = data_prep_diagnostic_calling() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=0, last_n_days_call_param=30, exclude_store=[331]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 40, 'Diagnostic calling', store_daily_limit_param=180, default_sort_needed=False) """"" ################################################ # FOFO Churn Calling ################################################ logger.info("FOFO Churn Calling") data = data_prep_churn_calling() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=30, exclude_store=[0]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 2, 'FOFO Churn calling', store_daily_limit_param=15, default_sort_needed=True) ################################################ # Devansh Churn Calling ################################################ logger.info("Devansh Lost Customer Calling") data = data_prep_churn_calling_devansh() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=30, exclude_store=[0]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 41, 'Devansh Lost Customer', store_daily_limit_param=20, default_sort_needed=True) ################################################ # Loyal Chronic Pilot by Manish Ahire ################################################ logger.info("Loyal Chronic Pilot by Manish Ahire") data = data_prep_pilot_loyal_chronic() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=60, exclude_store=[0]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 45, 'Loyal Chronic Pilot', store_daily_limit_param=30, default_sort_needed=True) ################################################ # Mix High Value Pilot by Manish Ahire ################################################ logger.info("Mix High value by Manish Ahire") data = data_prep_mix_high_value() # Mandatory steps data = campaign_mandatory_steps(data, run_date, last_n_days_bill_param=15, last_n_days_call_param=45, exclude_store=[0]) # DB Write if db_write == 'yes': cc.db_write(data, run_date, 46, 'Mix High Value Lost Pilot', store_daily_limit_param=30, default_sort_needed=True) ################################################# # Closing the DB Connections cc.close_connections() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/crm-campaigns/crm-campaigns.py
crm-campaigns.py
import argparse import datetime import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import numpy as np import pandas as pd # from memory_profiler import profile status = { "updated": "updated", "pending": "pending", "updating": "updating", } patients_metadata_table = "patients-metadata-2" bill_metadata_table = "bills-1-metadata" schema = "prod2-generico" def insert_new_patients(db): limit_str = f" limit {limit}; " if limit else "" query = f''' insert into "{schema}"."{patients_metadata_table}" (id, "created-at", "updated-at", "created-by", "etl-status" ) select p.id, p."created-at", convert_timezone('Asia/Calcutta', GETDATE()), 'etl-job', '{status['pending']}' from "{schema}"."patients" p inner join ( select "patient-id" from "{schema}"."{bill_metadata_table}" bm group by "patient-id" ) bm1 on bm1."patient-id" = p.id left join "{schema}"."{patients_metadata_table}" pm on pm.id = p.id where pm.id is null -- and date(p."updated-at") between '2021-06-01' and '2021-11-30' and (pm."etl-status" != '{status['updated']}' or pm."etl-status" is null) {limit_str} ''' db.execute(query, params=None) def mark_old_patients_pending(db): # mark old patients etl-status pending if they have transacted query = f""" update "{schema}"."{patients_metadata_table}" pm2 set "etl-status" = '{status['pending']}', "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()) from ( select pm.id from "{schema}"."{patients_metadata_table}" pm inner join "{schema}"."{bill_metadata_table}" bm on pm.id = bm."patient-id" where pm."updated-at" < bm."updated-at" ) ab where pm2.id = ab.id; """ db.execute(query, params=None) """ Sometimes jobs fails and updating count keeps increasing and we always get memory error, so to fix this mark all updating status to pending """ query = f""" update "{schema}"."{patients_metadata_table}" set "etl-status" = 'pending' where "etl-status" = 'updating' """ db.execute(query, params=None) def mark_pending_patients_updating(db): limit_str = f"limit {batch_size} " if batch_size else "" query = f""" update "{schema}"."{patients_metadata_table}" pm2 set "etl-status" = '{status['updating']}' from ( select pm.id from "{schema}"."{patients_metadata_table}" pm where "etl-status" = '{status['pending']}' {limit_str} ) ab where pm2.id = ab.id; """ db.execute(query, params=None) def get_to_be_updated_patients(db): # ## Considering only changed patients query = f''' select id, "created-at", "updated-at", "created-by", "etl-status" from "{schema}"."{patients_metadata_table}" pm where "etl-status" = '{status['updating']}' ''' db.execute(query, params=None) _changed_patients: pd.DataFrame = db.cursor.fetch_dataframe() return _changed_patients def update_bill_agg_fields(db): query = f""" update "{schema}"."{patients_metadata_table}" t set -- "first-bill-date" = s."first-bill-date", "last-bill-date" = s."last-bill-date", -- "first-bill-id" = s."first-bill-id", "last-bill-id" = s."last-bill-id", "average-bill-value" = s."average-bill-value", "total-quantity" = s."total-quantity", "quantity-generic" = s."quantity-generic", "quantity-chronic" = s."quantity-chronic", "quantity-ethical" = s."quantity-ethical", "quantity-rx" = s."quantity-rx", "quantity-repeatable" = s."quantity-repeatable", "quantity-goodaid" = s."quantity-goodaid", "quantity-others-type" = s."quantity-others-type", "number-of-bills" = s."number-of-bills", "hd-bills" = s."hd-bills", "is-repeatable" = s."is-repeatable", "is-generic" = s."is-generic", "is-chronic" = s."is-chronic", "is-goodaid" = s."is-goodaid", "is-ethical" = s."is-ethical", "is-rx" = s."is-rx", "is-others-type" = s."is-others-type", "hd-flag" = s."hd-flag", "ecom-flag" = s."ecom-flag", "crm-flag" = s."crm-flag", "pr-flag" = s."pr-flag", "total-spend" = s."total-spend", "spend-generic" = s."spend-generic", "promo-min-bill-date" = s."promo-min-bill-date", "hd-min-bill-date" = s."hd-min-bill-date", "ecom-min-bill-date" = s."ecom-min-bill-date", "pr-min-bill-date" = s."pr-min-bill-date", "generic-min-bill-date" = s."generic-min-bill-date", "goodaid-min-bill-date" = s."goodaid-min-bill-date", "ethical-min-bill-date" = s."ethical-min-bill-date", "chronic-min-bill-date" = s."chronic-min-bill-date", "repeatable-min-bill-date" = s."repeatable-min-bill-date", "others-type-min-bill-date" = s."others-type-min-bill-date", "digital-payment-min-bill-date" = s."digital-payment-min-bill-date", "rx-min-bill-date" = s."rx-min-bill-date", "digital-payment-flag" = s."digital-payment-flag", "total-mrp-value" = s."total-mrp-value", "recency-customer-days" = s."recency-customer-days", "system-age-days" = s."system-age-days", "quantity-generic-pc" = s."quantity-generic-pc", "quantity-chronic-pc" = s."quantity-chronic-pc", "quantity-ethical-pc" = s."quantity-ethical-pc", "quantity-repeatable-pc" = s."quantity-repeatable-pc", "quantity-goodaid-pc" = s."quantity-goodaid-pc", "quantity-others-type-pc" = s."quantity-others-type-pc", "spend-generic-pc" = s."spend-generic-pc" from ( select pm.id , -- min(bm."created-at") as "first-bill-date", max(bm."created-at") as "last-bill-date", -- min(bm.id) as "first-bill-id", max(bm.id) as "last-bill-id", round(sum(bm."total-spend")/ count(distinct bm.id), 4) as "average-bill-value", sum(bm."total-quantity") as "total-quantity", sum(bm."quantity-generic") as "quantity-generic", case when sum(bm."total-quantity") in (0, null) then -1 else round(100.0 * sum(bm."quantity-generic")/ sum(bm."total-quantity"), 4) end as "quantity-generic-pc", sum(bm."quantity-chronic") as "quantity-chronic", case when sum(bm."total-quantity") in (0, null) then -1 else round(100.0 * sum(bm."quantity-chronic")/ sum(bm."total-quantity"), 4) end as "quantity-chronic-pc", sum(bm."quantity-ethical") as "quantity-ethical", case when sum(bm."total-quantity") in (0, null) then -1 else round(100.0 * sum(bm."quantity-ethical")/ sum(bm."total-quantity"), 4) end as "quantity-ethical-pc", sum(bm."quantity-repeatable") as "quantity-repeatable", case when sum(bm."total-quantity") in (0, null) then -1 else round(100.0 * sum(bm."quantity-repeatable") / sum(bm."total-quantity"), 4) end as "quantity-repeatable-pc", sum(bm."quantity-goodaid") as "quantity-goodaid", case when sum(bm."total-quantity") in (0, null) then -1 else round(100.0 * sum(bm."quantity-goodaid")/ sum(bm."total-quantity"), 4) end as "quantity-goodaid-pc", sum(bm."quantity-others-type") as "quantity-others-type", case when sum(bm."total-quantity") in (0, null) then -1 else round(100.0 * sum(bm."quantity-others-type")/ sum(bm."total-quantity"), 4) end as "quantity-others-type-pc", sum(bm."quantity-generic" + bm."quantity-ethical") as "quantity-rx", case when sum(bm."total-quantity") in (0, null) then -1 else round(100.0 * sum(bm."quantity-generic" + bm."quantity-ethical")/ sum(bm."total-quantity"), 4) end as "quantity-rx-pc", count(distinct bm.id) as "number-of-bills", count(distinct (case when bm."hd-flag" is true then bm.id else null end)) as "hd-bills", case when count(distinct bm.id) in (0, null) then -1 else round(100.0 * count(distinct (case when bm."hd-flag" is true then bm.id else null end))/ count(distinct bm.id), 4) end as "hd-bills-pc", bool_or(bm."is-repeatable") as "is-repeatable", bool_or(bm."is-generic") as "is-generic", bool_or(bm."is-chronic") as "is-chronic", bool_or(bm."is-goodaid") as "is-goodaid", bool_or(bm."is-ethical") as "is-ethical", bool_or(bm."is-rx") as "is-rx", bool_or(bm."is-others-type") as "is-others-type", bool_or(bm."hd-flag") as "hd-flag", bool_or(bm."ecom-flag") as "ecom-flag", bool_or(bm."crm-flag") as "crm-flag", bool_or(bm."pr-flag") as "pr-flag", bool_or(bm."digital-payment-flag") as "digital-payment-flag", sum(bm."total-spend") as "total-spend", sum(bm."spend-generic") as "spend-generic", case when sum(bm."total-spend") in (0, null) then -1 else round(100.0 * sum(bm."spend-generic")/ sum(bm."total-spend")) end as "spend-generic-pc", min(case when bm."promo-code-id" is not null then bm."created-at" else null end) as "promo-min-bill-date", min(case when bm."hd-flag" is true then bm."created-at" else null end) as "hd-min-bill-date", min(case when bm."ecom-flag" is true then bm."created-at" else null end) as "ecom-min-bill-date", min(case when bm."crm-flag" is true then bm."created-at" else null end) as "crm-min-bill-date", min(case when bm."pr-flag" is true then bm."created-at" else null end) as "pr-min-bill-date", min(case when bm."is-generic" is true then bm."created-at" else null end) as "generic-min-bill-date", min(case when bm."is-goodaid" is true then bm."created-at" else null end) as "goodaid-min-bill-date", min(case when bm."is-ethical" is true then bm."created-at" else null end) as "ethical-min-bill-date", min(case when bm."is-chronic" is true then bm."created-at" else null end) as "chronic-min-bill-date", min(case when bm."is-repeatable" is true then bm."created-at" else null end) as "repeatable-min-bill-date", min(case when bm."is-others-type" is true then bm."created-at" else null end) as "others-type-min-bill-date", min(case when bm."digital-payment-flag" is true then bm."created-at" else null end) as "digital-payment-min-bill-date", min(case when bm."is-rx" is true then bm."created-at" else null end) as "rx-min-bill-date", sum(bm."total-mrp-value") as "total-mrp-value", case when max(bm."created-at") = '0101-01-01' then null else datediff(day, max(bm."created-at"), current_date) end as "recency-customer-days", case when min(bm."created-at") = '0101-01-01' then null else datediff(day, min(bm."created-at"), current_date) end as "system-age-days" from "{schema}"."{patients_metadata_table}" pm inner join "{schema}"."{bill_metadata_table}" bm on pm.id = bm."patient-id" where pm."etl-status" = '{status['updating']}' group by pm.id ) s where t.id = s.id; """ db.execute(query, params=None) def update_diagnostic_customer(db): query = f""" update "{schema}"."{patients_metadata_table}" t set "is-diagnostic-customer" = 1 from ( select r."patient-id" from "{schema}"."{patients_metadata_table}" pm inner join "{schema}"."redemption" r on pm.id = r."patient-id" where r.status in ('REDEMPTION', 'COMPLETED') and pm."etl-status" = '{status['updating']}' and (pm."is-diagnostic-customer" != 1 or pm."is-diagnostic-customer" is NULL) group by r."patient-id" ) s where t.id = s."patient-id"; """ db.execute(query, params=None) def get_customer_feedback(db): # get customer feedback data (nps) query = f""" select p.id, f.rating, f.suggestion, f."store-id", s."name" as "store-name", f."created-at" from "{schema}"."{patients_metadata_table}" pm inner join "{schema}".patients p on p.id = pm.id inner join "{schema}".feedback f on f.phone = p.phone inner join "{schema}".stores s on f."store-id" = s."id" where pm."etl-status" = '{status['updating']}' """ db.execute(query, params=None) nps: pd.DataFrame = db.cursor.fetch_dataframe() if not isinstance(nps, type(None)) and len(nps): nps.head(2) nps['created-at'] = pd.to_datetime(nps['created-at']) nps['nps-rating-date'] = nps['created-at'].dt.strftime("%Y-%m-%d") nps['is-nps'] = True nps = nps.sort_values(by=['id', 'created-at'], ascending=[True, False]) # Keep only latest entry nps['rank'] = nps.groupby(['id']).cumcount() + 1 nps = nps[nps['rank'] == 1] nps.drop('rank', axis='columns', inplace=True) nps = nps.rename( columns={ 'rating': 'latest-nps-rating', 'suggestion': 'latest-nps-rating-comment', 'nps-rating-date': 'latest-nps-rating-date', 'store-id': 'latest-nps-rating-store-id', 'store-name': 'latest-nps-rating-store-name' } ) else: nps = pd.DataFrame( columns=['id', 'created-at', 'nps-rating-date', 'is-nps', 'latest-nps-rating', 'latest-nps-rating-comment', 'latest-nps-rating-date', 'latest-nps-rating-store-id', 'latest-nps-rating-store-name']) return nps def get_referral_count(db): # Referral count query = f""" select a."patient-id" as id, SUM(b."total-used") as "referred-count" from "{schema}"."{patients_metadata_table}" pm left join "{schema}"."patients-promo-codes" a on pm.id = a."patient-id" left join "{schema}"."promo-codes" b on a."promo-code-id" = b."id" where b."code-type" = 'referral' and pm."etl-status" = '{status['updating']}' group by a."patient-id" """ db.execute(query=query) _referral: pd.DataFrame = db.cursor.fetch_dataframe() return _referral def get_patient_bills(db): # ## Primary Store, System Age Days and Recency Customer Days query = f""" select pm.id, bm."store-id", bm.id as "bill-id", bm."bill-year", bm."bill-month", bm."bill-date", bm."created-at", bm."total-spend" from "{schema}"."{patients_metadata_table}" pm inner join "{schema}"."{bill_metadata_table}" bm on pm.id = bm."patient-id" where pm."etl-status" = '{status['updating']}' """ db.execute(query=query) _patient_bills: pd.DataFrame = db.cursor.fetch_dataframe() return _patient_bills def get_patient_drugs(db): # ## Number of drug and primary disease query = f""" select b."patient-id" , b.id as "bill-id", bi."inventory-id", i."drug-id" from "{schema}"."{patients_metadata_table}" pm inner join "{schema}"."bills-1" b on pm.id = b."patient-id" inner join "{schema}"."bill-items-1" bi on b.id = bi."bill-id" inner join "{schema}"."inventory-1" i on bi."inventory-id" = i.id inner join "{schema}".drugs d on i."drug-id" = d.id where pm."etl-status" = '{status['updating']}'; """ db.execute(query=query) _patient_drugs: pd.DataFrame = db.cursor.fetch_dataframe() return _patient_drugs def get_drug_subgroup(db): # primary disease calculation query = f""" select a."id" as "drug-id", c."subgroup" from "{schema}".drugs a inner join "{schema}"."composition-master-molecules-master-mapping" b on a."composition-master-id" = b."composition-master-id" inner join "{schema}"."molecule-master" c on b."molecule-master-id" = c."id" group by a."id", c."subgroup" """ db.execute(query=query) _drug_subgroup: pd.DataFrame = db.cursor.fetch_dataframe() return _drug_subgroup def get_referral_code(db): # Get referral code for patient query = f""" SELECT "patient-id" as "id", "promo-code" as "referral-code" FROM ( SELECT ppc."patient-id", row_number() over (partition by ppc."patient-id" order by ppc."id" ASC) as rank_entry, pc."promo-code" FROM "{schema}"."patients-promo-codes" ppc INNER JOIN "{schema}"."promo-codes" pc ON ppc."promo-code-id" = pc."id" WHERE pc."code-type" = 'referral') sub left join "{schema}"."{patients_metadata_table}" pm on pm.id = sub."patient-id" where sub.rank_entry = 1 and pm."etl-status" = '{status['updating']}'""" db.execute(query=query) referral_code: pd.DataFrame = db.cursor.fetch_dataframe() return referral_code def get_value_segment_anytime(db): q1 = f""" select value."patient-id" as "patient-id", value."value-segment" as "value-segment" from "{schema}"."customer-value-segment" value left join "{schema}"."{patients_metadata_table}" pm on pm.id = value."patient-id" where pm."etl-status" = '{status['updating']}' group by value."patient-id", value."value-segment" """ data_vs = db.get_df(q1) data_vs.columns = [c.replace('-', '_') for c in data_vs.columns] data_vs['value_segment_rank'] = data_vs['value_segment'].map( {'platinum': 3, 'gold': 2, 'silver': 1, 'others': 0}) data_vs = data_vs.sort_values(by=['patient_id', 'value_segment_rank'], ascending=[True, False]) data_vs['rank'] = data_vs.groupby(['patient_id']).cumcount() + 1 data_vs_r1 = data_vs[data_vs['rank'] == 1] data_vs_f = data_vs_r1[['patient_id', 'value_segment']] data_vs_f.columns = ['id', 'value-segment-anytime'] return data_vs_f def get_behaviour_segment_anytime(db): q1 = f""" select behaviour."patient-id" as "patient-id", behaviour."behaviour-segment" as "behaviour-segment" from "{schema}"."customer-behaviour-segment" behaviour left join "{schema}"."{patients_metadata_table}" pm on pm.id = behaviour."patient-id" where pm."etl-status" = '{status['updating']}' group by behaviour."patient-id", behaviour."behaviour-segment" """ data_bs = db.get_df(q1) data_bs.columns = [c.replace('-', '_') for c in data_bs.columns] data_bs['behaviour_segment_rank'] = data_bs['behaviour_segment'].map({'super': 7, 'regular': 6, 'generic_heavy': 5, 'ethical_heavy': 4, 'other_type': 3, 'singletripper': 2, 'newcomer_repeat': 1, 'newcomer_singletripper': 0 }) data_bs = data_bs.sort_values(by=['patient_id', 'behaviour_segment_rank'], ascending=[True, False]) data_bs['rank'] = data_bs.groupby(['patient_id']).cumcount() + 1 data_bs_r1 = data_bs[data_bs['rank'] == 1] data_bs_f = data_bs_r1[['patient_id', 'behaviour_segment']] data_bs_f.columns = ['id', 'behaviour-segment-anytime'] return data_bs_f def update_data_in_patients_metadata_table(db, s3, patient_data): # ## Create temp table and update (nps and other) from that patient_temp_table = patients_metadata_table.replace("-", "_") + "_temp" db.execute(query=f"DROP table IF EXISTS {patient_temp_table};") query = f""" CREATE TEMP TABLE {patient_temp_table} ( id INTEGER ENCODE az64 ,"is-nps" bool ,"latest-nps-rating" INTEGER ENCODE az64 ,"latest-nps-rating-comment" VARCHAR(1500) ENCODE lzo ,"latest-nps-rating-store-id" INTEGER ENCODE az64 ,"latest-nps-rating-store-name" VARCHAR(765) ENCODE lzo ,"latest-nps-rating-date" date ENCODE az64 ,"referred-count" int ENCODE az64 ,"primary-store-id" INTEGER ENCODE az64 ,"num-drugs" INTEGER ENCODE az64 ,"primary-disease" VARCHAR(100) ENCODE lzo ,"avg-purchase-interval" numeric ,"std-purchase-interval" numeric -- ,"value-segment-calculation-date" date -- ,"value-segment" VARCHAR(50) ,"previous-bill-date" DATE ENCODE az64 ,"previous-store-id" INTEGER ENCODE az64 -- ,"min-bill-date-in-month" DATE ENCODE az64 -- ,"store-id-month" INTEGER ENCODE az64 ,"referral-code" VARCHAR(765) ENCODE lzo ,"value-segment-anytime" varchar(255) ENCODE lzo ,"behaviour-segment-anytime" varchar(255) ENCODE lzo ,"first-bill-date" timestamp ENCODE az64 ,"first-bill-id" INTEGER ENCODE az64 ,PRIMARY KEY (id) ); """ db.execute(query=query) patient_temp_table_info = helper.get_table_info(db=db, table_name=patient_temp_table, schema=None) # ### Fixing the data types patient_data['latest-nps-rating'] = patient_data['latest-nps-rating'].fillna(-1).astype('int64') patient_data['latest-nps-rating-store-id'] = patient_data['latest-nps-rating-store-id'].fillna( -1).astype('int64') patient_data['referred-count'] = patient_data['referred-count'].fillna(-1).astype('int64') patient_data['num-drugs'] = patient_data['num-drugs'].fillna(-1).astype('int64') patient_data['previous-store-id'] = patient_data['previous-store-id'].fillna(-1).astype('int64') s3.write_df_to_db( df=patient_data[list(dict.fromkeys(patient_temp_table_info['column_name']))], db=db, table_name=patient_temp_table, schema=None ) # ## Updating the data in patient-metadata-2 table query = f""" update "{schema}"."{patients_metadata_table}" t set "is-nps" = s."is-nps", "latest-nps-rating" = s."latest-nps-rating", "latest-nps-rating-comment" = s."latest-nps-rating-comment", "latest-nps-rating-store-id" = s."latest-nps-rating-store-id", "latest-nps-rating-store-name" = s."latest-nps-rating-store-name", "latest-nps-rating-date" = s."latest-nps-rating-date", "referred-count" = s."referred-count", "primary-store-id" = s."primary-store-id", "num-drugs" = s."num-drugs", "primary-disease" = s."primary-disease", "avg-purchase-interval" = s."avg-purchase-interval", "std-purchase-interval" = s."std-purchase-interval", -- "value-segment-calculation-date" = s."value-segment-calculation-date", -- "value-segment" = s."value-segment", "previous-bill-date" = s."previous-bill-date", "previous-store-id" = s."previous-store-id", -- "min-bill-date-in-month" = s."min-bill-date-in-month", -- "store-id-month" = s."store-id-month", "referral-code" = s."referral-code", "value-segment-anytime" = s."value-segment-anytime", "behaviour-segment-anytime" = s."behaviour-segment-anytime", "first-bill-date" = s."first-bill-date", "first-bill-id" = s."first-bill-id", "etl-status" = 'updated' from {patient_temp_table} s where t.id = s.id; """ db.execute(query=query) # @profile def process_batch(changed_patients, db, s3, pg_db): """ updating some fields directly from bills-1-metadata table """ update_bill_agg_fields(db=db) update_diagnostic_customer(db=db) nps = get_customer_feedback(db=db) referral = get_referral_count(db=db) patient_bills = get_patient_bills(db=db) referral_code = get_referral_code(db=db) value_segment_anytime = get_value_segment_anytime(db=db) behaviour_segment_anytime = get_behaviour_segment_anytime(db=db) # purchase interval calculation patient_bills_2 = patient_bills.sort_values( by=["id", "created-at"]) # soring on patient id and bill-created-at patient_bills_2['bill-date'] = patient_bills_2['bill-date'].apply( lambda x: x.strftime("%Y-%m-%d")) # Fetch previous bill date, against every bill patient_bills_2['previous-bill-date'] = patient_bills_2.groupby("id")['bill-date'].shift(1) patient_bills_2['purchase-interval'] = ( pd.to_datetime(patient_bills_2['bill-date']) - pd.to_datetime( patient_bills_2['previous-bill-date'])).dt.days patient_bills_avg_std = patient_bills_2.groupby(['id']).agg( {'purchase-interval': ['mean', 'std']}) patient_bills_avg_std = patient_bills_avg_std.reset_index(col_level=1) patient_bills_avg_std.columns = patient_bills_avg_std.columns.droplevel(0) patient_bills_avg_std.columns = ['id', 'avg-purchase-interval', 'std-purchase-interval'] # ### Primary Store # Patient store wise, NOB and Total spend patient_store_agg = patient_bills.groupby( ['id', 'store-id']).agg({'bill-id': 'nunique', 'total-spend': 'sum'}).reset_index() patient_store_agg = patient_store_agg.rename( columns={'bill-id': 'store-bills', 'total-spend': 'store-spend'}) patient_store_agg['rank'] = patient_store_agg.sort_values( ['store-bills', 'store-spend'], ascending=[False, False]).groupby(['id']).cumcount() + 1 # Shortlist 1 store per patient patient_primary_store = patient_store_agg[patient_store_agg['rank'] == 1] patient_primary_store = patient_primary_store.rename(columns={'store-id': 'primary-store-id'}) # ### Previous Bill Date and Store id previous_store_bill = patient_bills_2.sort_values( by=["id", "created-at"], ascending=[True, False]).drop_duplicates(subset='id') previous_store_bill = previous_store_bill.rename(columns={'store-id': 'previous-store-id'}) # First bill date and first bill id calculation patient_first_bill = patient_bills_2.groupby('id').head(1)[['id', "bill-id", "created-at"]] patient_first_bill.rename(columns={"bill-id": "first-bill-id", "created-at": "first-bill-date"}, inplace=True) # # last bill date and last bill id calculation # patient_last_bill = patient_bills_2.groupby('id').tail(1)[['id', "bill-id", "created-at"]] # patient_last_bill.rename(columns={"bill-id": "last-bill-id", "created-at": "last-bill-date"}, inplace=True) # # Number of drug calculation patient_drugs = get_patient_drugs(db=db) patient_drug_agg = patient_drugs.groupby(['patient-id']).agg( {'drug-id': "nunique"}).reset_index().rename( columns={'drug-id': 'num-drugs', 'patient-id': 'id'}) drug_subgroup = get_drug_subgroup(db=db) # Merge subgroups, take only relevant columns patient_drugs_count = patient_drugs.groupby( ['patient-id', 'drug-id'])['inventory-id'].count().reset_index().rename( columns={'inventory-id': 'count'}) patient_drugs_subgroup_count = patient_drugs_count.merge(drug_subgroup, how='left', on=['drug-id']) # Sub subgroup instances in each patient patient_subgroup = patient_drugs_subgroup_count.groupby( ['patient-id', 'subgroup'])['count'].sum().reset_index().rename( columns={'count': 'drug-count'}) # Rank on use patient_subgroup = patient_subgroup.sort_values(by=['patient-id', 'drug-count'], ascending=[True, False]) patient_subgroup['rank'] = patient_subgroup.groupby(['patient-id']).cumcount() + 1 # keep top2 subgroups patient_subgroup_top_2 = patient_subgroup[patient_subgroup['rank'] <= 2] # Make 2 columns, first for rank1, other for rank2 patient_subgroup_top_2_pivot = patient_subgroup_top_2.pivot(index='patient-id', columns='rank', values='subgroup').reset_index() patient_subgroup_top_2_pivot = patient_subgroup_top_2_pivot.reset_index(drop=True) patient_subgroup_top_2_pivot.columns = ['patient-id', 'disease-rank1', 'disease-rank2'] # Assignment of primary disease # If rank1 is not others, then rank1 as it is # If rank1 is others, and rank2 is null, then rank1 as it is # If rank1 is others, and rank2 is something, then rank2 patient_subgroup_top_2_pivot['primary-disease'] = np.where( ( (patient_subgroup_top_2_pivot['disease-rank1'] == 'others') & (patient_subgroup_top_2_pivot['disease-rank2'].isnull() is False) ), patient_subgroup_top_2_pivot['disease-rank2'], patient_subgroup_top_2_pivot['disease-rank1'] ) patient_subgroup_top_2_pivot.head(2) patient_primary_disease = patient_subgroup_top_2_pivot[ ['patient-id', 'primary-disease']].rename( columns={'patient-id': 'id'}) # patient_value_segment = get_patient_value_segment(db=db) # patient_behaviour_segment = get_patient_behaviour_segment(changed_patients=changed_patients, pg_db=pg_db) # Merging all data points patient_data = changed_patients[['id']] # ### Feedback (nps) patient_data = patient_data.merge(nps, how='left', on=['id']) # ### Referral patient_data = patient_data.merge(referral, how='left', on=['id']) # ### Referral Primary Store patient_data = patient_data.merge(patient_primary_store[['id', 'primary-store-id']], how='left', on='id') # ### Primary Disease patient_data = patient_data.merge(patient_primary_disease, how='left', on='id') # ### Drug count patient_data = patient_data.merge(patient_drug_agg, how='left', on='id') # ### Average and Standard Purchase Interval patient_data = patient_data.merge(patient_bills_avg_std, how='left', on='id') # ### Previous store id patient_data = patient_data.merge( previous_store_bill[['id', 'previous-bill-date', 'previous-store-id']], how='left', on='id') # first bill id and date patient_data = patient_data.merge(patient_first_bill, how='left', on='id') patient_data = patient_data.merge(referral_code, how='left', on='id') patient_data = patient_data.merge(value_segment_anytime, how='left', on='id') patient_data = patient_data.merge(behaviour_segment_anytime, how='left', on='id') patient_data['is-nps'] = patient_data['is-nps'].fillna(False) """ Finally updating the batch data in table """ update_data_in_patients_metadata_table(db, s3, patient_data) def update_value_segment(): # Extracting max date from patients metadata for value_seg patient_val = f''' select max("value-segment-calculation-date") as max_date from "{schema}"."patients-metadata-2" ''' rs_db.execute(query=patient_val, params=None) c_data: pd.DataFrame = rs_db.cursor.fetch_dataframe() # Extracting max date from customer value segment cust_val = f''' select max("segment-calculation-date") as max_date from "{schema}"."customer-value-segment" ''' rs_db.execute(query=cust_val, params=None) d_data: pd.DataFrame = rs_db.cursor.fetch_dataframe() value_max_date = c_data['max_date'][0] # max value segment date in patients metadata patient_val_max_dt = d_data['max_date'][0] # max value segment date in patients metadata cur_nmz_date = (datetime.datetime.today()).replace(day=1).strftime('%Y-%m-%d') # current date if str(value_max_date) == str(cur_nmz_date): if str(cur_nmz_date) != str(patient_val_max_dt): logger.info('Condition passed for update: value-segment') rs_db.execute('Begin;') update_q1 = f''' update "{schema}"."patients-metadata-2" set "value-segment"=cbs."value-segment", "value-segment-calculation-date"=cbs."segment-calculation-date" from "{schema}"."patients-metadata-2" pm2 inner join "{schema}"."customer-value-segment" cbs on pm2."id"=cbs."patient-id" where cbs."segment-calculation-date" = DATE_TRUNC('month',CURRENT_DATE); ''' update_q2 = f''' update "{schema}"."patients-metadata-2" set "value-segment"=null, "value-segment-calculation-date"=null from "{schema}"."patients-metadata-2" pm2 where pm2."value-segment-calculation-date" != DATE_TRUNC('month',CURRENT_DATE); ''' rs_db.execute(query=update_q1, params=None) rs_db.execute(query=update_q2, params=None) rs_db.execute('commit;') logger.info('value-segment Update Successful') def update_behaviour_segment(): # Extracting max date from customer behaviour segment query = f''' select max("segment-calculation-date") as max_date from "{schema}"."customer-behaviour-segment" ''' rs_db.execute(query=query, params=None) f_data: pd.DataFrame = rs_db.cursor.fetch_dataframe() # Extracting max date from patients metadata for behaviour_seg patient_beh = f''' select max("behaviour-segment-calculation-date") as max_date from "{schema}"."patients-metadata-2" ''' rs_db.execute(query=patient_beh, params=None) b_data: pd.DataFrame = rs_db.cursor.fetch_dataframe() beh_max_date = f_data['max_date'][0] # max date from customer value segment patient_beh_max_date = b_data['max_date'][0] # max behaviour segment date in patients metadata cur_nmz_date = (datetime.datetime.today()).replace(day=1).strftime('%Y-%m-%d') # current date if str(beh_max_date) == str(cur_nmz_date): if str(cur_nmz_date) != str(patient_beh_max_date): logger.info('Condition passed for update: behaviour-segment') rs_db.execute('Begin;') update_q1 = f''' update "{schema}"."patients-metadata-2" set "behaviour-segment"=cbs."behaviour-segment", "behaviour-segment-calculation-date"=cbs."segment-calculation-date" from "{schema}"."patients-metadata-2" pm2 inner join "{schema}"."customer-behaviour-segment" cbs on pm2."id"=cbs."patient-id" where cbs."segment-calculation-date" = DATE_TRUNC('month',CURRENT_DATE); ''' update_q2 = f''' update "{schema}"."patients-metadata-2" set "behaviour-segment"= null, "behaviour-segment-calculation-date"= null from "{schema}"."patients-metadata-2" pm2 where pm2."behaviour-segment-calculation-date" != DATE_TRUNC('month',CURRENT_DATE); ''' rs_db.execute(query=update_q1, params=None) rs_db.execute(query=update_q2, params=None) rs_db.execute('commit;') logger.info('behaviour-segment update successful') # @profile def main(db, s3, pg_db): insert_new_patients(db) mark_old_patients_pending(db) is_still_pending = True count = 1 while is_still_pending: mark_pending_patients_updating(db=db) logger.info(f"batch: {count}, mark_pending_patients_updating done.") changed_patients = get_to_be_updated_patients(db=db) if isinstance(changed_patients, type(None)) or changed_patients.empty: is_still_pending = False logger.info("Completed all batches.") else: process_batch(changed_patients=changed_patients, db=db, s3=s3, pg_db=pg_db) logger.info(f"batch: {count}, process_batch done.") count += 1 """ Updating the value and behaviour-segment """ update_value_segment() update_behaviour_segment() if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-b', '--batch_size', default=100, type=int, required=False, help="batch size") parser.add_argument('-l', '--limit', default=None, type=int, required=False, help="Total patients to process") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info("I am in the right code.") batch_size = args.batch_size limit = args.limit logger.info(f"env: {env}, limit: {limit}, batch_size: {batch_size}") rs_db = DB(read_only=False) rs_db.open_connection() pg_db = None _s3 = S3() """ calling the main function """ main(db=rs_db, s3=_s3, pg_db=pg_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patients-metadata/patients_metadata.py
patients_metadata.py
# Warnings from warnings import filterwarnings as fw import pandas as pd fw('ignore') import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.email.email import Email parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-scm', '--email_to_sc', default="[email protected]", type=str, required=False) parser.add_argument('-odc', '--oos_day_count', default=5, type=str, required=False) parser.add_argument('-iud', '--inv_update_day', default=2, type=str, required=False) parser.add_argument('-debug', '--debug_mode', default='N', type=str, required=False) parser.add_argument('-as', '--active_stores', default="all", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env # parameters email_to = args.email_to email_to = email_to.split(',') email_to_sc = args.email_to_sc odc = args.oos_day_count iud = args.inv_update_day debug = args.debug_mode active_stores = args.active_stores logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() read_schema = "prod2-generico" email = Email() if active_stores == 'all': stores_q = """select id from "prod2-generico".stores s where "is-active" = 1 and category = 'retail';""" all_stores = rs_db.get_df(stores_q) active_stores = all_stores['id'].unique() active_stores = tuple(map(int, active_stores)) else: active_stores = active_stores.split(',') + ['0'] active_stores = tuple(map(int, active_stores)) ################################################################ ###################### Helper Functions ######################## ################################################################ def store_info_func(store_id): """ This basic function return store name and emails """ rs_db_h = DB(read_only=True) rs_db_h.open_connection() store_q = f"""select sm.id, sm.store as "store-name", sm."store-email", sm."line-manager", sm."line-manager-email", sm.abo, sm."abo-email", sm."store-manager", sm."store-manager-email", s."franchisee-email" from "{read_schema}"."stores-master" sm left join "{read_schema}".stores s on sm.id = s.id where sm.id = {store_id}; """ store_info = rs_db.get_df(store_q) try: store_info = store_info.iloc[0] store_name = store_info["store-name"] store_mails = [] for col in ["store-email", "line-manager-email", "abo-email", "store-manager-email", "franchisee-email"]: if '@' in str(store_info[col]): store_mails.append(store_info[col]) except: store_name = "store not exist" store_mails = ["[email protected]"] return store_name, store_mails logger.info(f"script running for stores_ids : {active_stores}") for store_id in active_stores: logger.info(f"store name : {store_info_func(store_id)[0]}") logger.info(f"store emails : {store_info_func(store_id)[1]}") ################################################################# ###################### OOS and Inventory ######################## ################################################################# logger.info("OOS and Inventory Issue Started") oos_q = f""" select t_final.*, d."drug-name" as "drug-name" from ( select t."store-id", t."drug-id", min(t."closing-date") "from-date", max(t."closing-date") "to-date", datediff('days', min(t."closing-date"), max(t."closing-date")) + 1 as "days-count" from ( select * , row_number() over (partition by "store-id", "drug-id" order by "closing-date" desc) as "rn", dateadd('days', "rn", "closing-date") "plus-date" from "{read_schema}"."out-of-shelf-drug-level" oosdl where "oos-count" = 1 and "max-set" = 'Y' and "mature-flag" = 'Y') t where date("plus-date") = current_date and t."store-id" in {active_stores} group by t."store-id", t."drug-id" having "days-count" > {odc}) t_final left join "{read_schema}".stores s on t_final."store-id" = s.id left join "{read_schema}".drugs d on t_final."drug-id" = d.id left join "{read_schema}"."drug-substitution-mapping" dsm1 on t_final."drug-id" = dsm1."drug-id" left join ( select i."store-id", dsm2."group", sum(quantity) "total-quantity" from "{read_schema}"."inventory-1" i left join "{read_schema}"."drug-substitution-mapping" dsm2 on i."drug-id" = dsm2."drug-id" group by i."store-id", dsm2."group") t_dsm on t_dsm."group" = dsm1."group" and t_final."store-id" = t_dsm."store-id" where t_dsm."total-quantity" = 0; """ sales_loss_q = f""" select tw."store-id", tw."drug-id", min(tw."closing-date") "from-date", max(tw."closing-date") "to-date", datediff('days', min(tw."closing-date"), max(tw."closing-date")) + 1 as "days-count", sum(s."revenue-value") as "total-sales" from ( select *, rank() over (partition by "store-id", "drug-id" order by "plus-date" desc) as "latest-rank" from ( select * , row_number() over (partition by "store-id", "drug-id" order by "closing-date" desc) as "rn", dateadd('days', "rn", "closing-date") "plus-date" from "{read_schema}"."out-of-shelf-drug-level" oosdl where "oos-count" = 0) t ) tw left join "{read_schema}".sales s on date(s."created-at") = tw."closing-date" and s."drug-id" = tw."drug-id" and s."store-id" = tw."store-id" where "latest-rank" = 1 and "plus-date" != current_date group by tw."store-id", tw."drug-id"; """ oos = rs_db.get_df(oos_q) sales_loss = rs_db.get_df(sales_loss_q) sales_loss['avg-per-day-sales'] = sales_loss['total-sales'] / sales_loss['days-count'] sales_loss = sales_loss[['store-id', 'drug-id', 'avg-per-day-sales']] oos = pd.merge(oos, sales_loss, how='left', on=['store-id', 'drug-id']) oos = oos.dropna(subset=['avg-per-day-sales']) oos['avg-per-day-sales'] = oos['avg-per-day-sales'].astype(float).round(2) oos['sales-loss'] = oos['avg-per-day-sales'] * oos['days-count'] # Let's solve issues for top 20 only for a day oos = oos.sort_values('sales-loss', ascending=False).head(20) store_ids = oos['store-id'].unique() oos_mail_body = """ Hey {store_name}, There are some drugs which are out of stock on your store for very long time Plus these are the drugs which don't have any alternative available on store Possible issues are as listed : 1. Auto Short not triggered 2. Short in market 3. Quantity in locked state (Store inventory) Because of these specific drugs OOS of your store is high Your daily task for today is resolve these issues : Step 1. Copy-Paste drug name from the sheet into compare tab Step 2. Check its best alternative - 1 Generic, 1 Ethical Step 3a). Create a manual short of the best alternative in 1 quantity ( 1 Ethical, 1 Generic) Step 3b) If an Alternate is not available just raise MS for the same drug which is mentioned. """ logger.info(f"OOS mail sending to following stores {store_ids}") if debug == 'N': for store_id in store_ids: store_name, store_emails = store_info_func(store_id) for other_email in email_to: store_emails.append(other_email) if store_name != "store not exist": store_emails.append(email_to_sc) file_name = 'OOS_Drugs.xlsx' file_path = s3.write_df_to_excel(data={'Drugs': oos[oos['store-id'] == store_id]}, file_name=file_name) email.send_email_file(subject="Store Daily Insight 1 : Unavailability Issue", mail_body=oos_mail_body.format(store_name=store_name), to_emails=store_emails, file_uris=[], file_paths=[file_path]) logger.info(f"OOS issue mail sent to {store_name} store on following emails : {store_emails}") if debug == 'Y': store_name, store_emails = 'Debugger', ['[email protected]'] file_name = 'OOS_Drugs.xlsx' file_path = s3.write_df_to_excel(data={'Drugs': oos}, file_name=file_name) email.send_email_file(subject="Store Daily Insight 1 : Unavailability Issue", mail_body=oos_mail_body.format(store_name=store_name), to_emails=store_emails, file_uris=[], file_paths=[file_path]) inv_q = f""" select i."store-id", s."name" as "store-name", i."drug-id", d."drug-name", sum(i.quantity) as "quantity", sum(i."locked-quantity") as "locked-quantity", sum(i."locked-for-check") as "locked-for-check", sum(i."locked-for-audit") as "locked-for-audit", sum(i."locked-for-return") as "locked-for-return", sum(i."locked-for-transfer") as "locked-for-transfer", sum(i."extra-quantity") as "extra-quantity", max(i."updated-at") as "updated-at" from "{read_schema}"."inventory-1" i left join "{read_schema}".stores s on s.id = i."store-id" left join "{read_schema}".drugs d on d.id = i."drug-id" where i."store-id" in {active_stores} group by i."store-id", s."name", i."drug-id", d."drug-name" having sum(i."quantity") = 0 and sum(i."locked-quantity" + i."locked-for-check" + i."locked-for-audit" + i."locked-for-return" + i."locked-for-transfer" + i."extra-quantity") > 0 and max(i."updated-at") <= current_date - {iud} order by "updated-at" limit 20; """ inv = rs_db.get_df(inv_q) # Taking out all stores store_ids = inv['store-id'].unique() inv_mail_body = """ Hey {store_name}, There are some drugs in your store where system available quantity is shown as 0, so not available for sale, but their quantity is stuck in locked state since long time which cause trouble in triggering Auto Short Your daily task for today is resolve these issues : Please reach out to ABO or tech-support for any doubts. > Unlock mentioned drugs """ logger.info(f"Inventory mail sending to following stores {store_ids}") if debug == 'N': for store_id in store_ids: store_name, store_emails = store_info_func(store_id) for other_email in email_to: store_emails.append(other_email) file_name = 'Locked State Drugs.xlsx' file_path = s3.write_df_to_excel(data={'Drugs': inv[inv['store-id'] == store_id]}, file_name=file_name) email.send_email_file(subject="Store Daily Insight 2 : Inventory locked Issue", mail_body=inv_mail_body.format(store_name=store_name), to_emails=store_emails, file_uris=[], file_paths=[file_path]) logger.info(f"Inventory issue mail sent to {store_name} store on following emails : {store_emails}") if debug == 'Y': store_name, store_emails = 'Debugger', ['[email protected]'] file_name = 'Locked State Drugs.xlsx' file_path = s3.write_df_to_excel(data={'Drugs': inv}, file_name=file_name) email.send_email_file(subject="Store Daily Insight 2 : Inventory locked Issue", mail_body=inv_mail_body.format(store_name=store_name), to_emails=store_emails, file_uris=[], file_paths=[file_path]) logger.info("OOS and Inventory Issue Finished") ################################################################# ###################### Substitution ############################ ################################################################# logger.info("Generic Issue Started") gen_shift_q = """ select "primary-store-id" as "store-id", (case when "post-generic-quantity" > 0 then 'generic-shift' when "post-generic-quantity" = 0 and "post-ethical-quantity" > 0 then 'still-ethical' else 'bought others' end ) "behaviour-shift", count(distinct t1."patient-id") "patient-count" from ( select "patient-id", sum("quantity-ethical") "pre-ethical-quantity", sum("quantity-generic") "pre-generic-quantity" from "prod2-generico"."retention-master" rm where "created-at" < date_trunc('month', current_date) and "created-at" >= dateadd('month', -3, date_trunc('month', current_date)) group by "patient-id" having "pre-ethical-quantity" > 0 and "pre-generic-quantity" = 0 ) t1 inner join ( select "patient-id", "primary-store-id", sum("quantity-ethical") "post-ethical-quantity", sum("quantity-generic") "post-generic-quantity" from "prod2-generico"."retention-master" rm where "created-at" >= date_trunc('month', current_date) group by "primary-store-id", "patient-id") t2 on t1."patient-id" = t2."patient-id" group by "primary-store-id", "behaviour-shift" """ gen_shift = rs_db.get_df(gen_shift_q) gen_shift_dist = pd.crosstab(index=gen_shift['store-id'], columns=gen_shift['behaviour-shift'], values=gen_shift['patient-count'], aggfunc='sum', normalize='index') # i = issue gen_shift_dist_i = gen_shift_dist[gen_shift_dist['generic-shift'] < gen_shift_dist['generic-shift'].quantile(0.05)] store_ids = gen_shift_dist_i.index store_ids = list(set.intersection(set(store_ids), set(active_stores))) logger.info(f"Active generic subs mail sending to following stores {store_ids}") for store_id in store_ids: store_name, store_emails = store_info_func(store_id) if debug == 'Y': store_emails = ['[email protected]'] else: for other_email in email_to: store_emails.append(other_email) gen_mail_body = f""" Hey {store_name} Store, Your store is in Top stores where generic substitution is lower for active consumer System average for active customer generic shift is : {gen_shift_dist['generic-shift'].quantile(0.5).round(4) * 100} % Your store performance : {gen_shift_dist_i.loc[store_id]['generic-shift'].round(4) * 100} % Your Daily task to resolve this issues : > Focus on substitution for active customers > Pitch Generic to customer whose generic affinity is lower (Visible on billing panel) """ file_name = 'Substitution active consumer.xlsx' file_path = s3.write_df_to_excel(data={'Drugs': gen_shift_dist_i.loc[store_id]}, file_name=file_name) email.send_email_file(subject="Store Daily Insight 3 : Active Consumer substitution Issue", mail_body=gen_mail_body, to_emails=store_emails, file_uris=[], file_paths=[file_path]) logger.info(f"Active generic subs issue mail sent to {store_name} store on following emails : {store_emails}") logger.info("Generic Issue Finished") ################################################################# ############################ Sales ############################# ################################################################# logger.info("Sales De-growth Issue Started") sale_tq = """select s."store-id", sum(case when s."created-at" >= date_trunc('month', current_date) and s."created-at" <= current_date then s."revenue-value" else 0 end) "MTD-Sales", sum(case when s."created-at" >= dateadd('month', -1, date_trunc('month', current_date)) and s."created-at" <= dateadd('month', -1, current_date) then s."revenue-value" else 0 end) "LMTD-Sales", "MTD-Sales" - "LMTD-Sales" as "sales-diff", ("MTD-Sales" - "LMTD-Sales") / "LMTD-Sales" as "perc diff" from "prod2-generico".sales s left join "prod2-generico".stores s2 on s."store-id" = s2.id where s2."is-active" = 1 and s2."franchisee-id" = 1 group by s."store-id" having "sales-diff" < 0 and "LMTD-Sales" != 0 and min(s."created-at") < dateadd('month', -1, date_trunc('month', current_date)) order by 5 limit 10""" sale_t = rs_db.get_df(sale_tq) store_ids = sale_t["store-id"].unique() store_ids = list(set.intersection(set(store_ids), set(active_stores))) for store_id in store_ids: store_name, store_emails = store_info_func(store_id) if debug == 'Y': store_emails = ['[email protected]'] else: for other_email in email_to: store_emails.append(other_email) target = sale_t[sale_t["store-id"] == store_id]["sales-diff"].values[0] sales_mail_body = f""" Hey {store_name} Store, Your store is in Top stores in terms of sales de-growth To exit from this phase you need to complete this sales target for today : {abs(target)} """ email.send_email_file(subject="Store Daily Insight 4 : Sales target for de-growing stores", mail_body=sales_mail_body, to_emails=store_emails, file_uris=[], file_paths=[]) logger.info("Sales De-growth Issue Finished") ################################################################# ############################ Substitution ###################### ################################################################# logger.info("Substitution Issue Started") sub_q = """ select "store-id", "store-name", composition, sum(case when "substitution-status" = 'substituted' then 1.0 * quantity end)/ sum(case when "substitution-status" in ('substituted', 'not-substituted') then quantity end) as "substitution" from "prod2-generico".sales s where date("created-at") between current_date - 90 and current_date group by "store-id", "store-name", composition having "substitution" is not null; """ sub = rs_db.get_df(sub_q) sub['substitution'] = sub['substitution'].astype(float) sub05 = sub.groupby('composition', as_index=False).agg({'substitution': lambda x: x.quantile(0.05)}) sub05.rename(columns={'substitution': 'sub_05'}, inplace=True) sub_system = sub.groupby('composition', as_index=False).agg({'substitution': lambda x: x.quantile(0.5)}) sub_system.rename(columns={'substitution': 'System Average'}, inplace=True) sub = pd.merge(sub, sub05, on=['composition'], how='inner') sub = pd.merge(sub, sub_system, on=['composition'], how='inner') sub = sub[sub['substitution'] < sub['sub_05']] sub.drop(columns=['sub_05'], inplace=True) sub = sub.sort_values('substitution', ascending=True).head(50) sub['substitution'] = sub['substitution'].apply(lambda x: str(x * 100) + '%') sub['System Average'] = sub['System Average'].apply(lambda x: str(x * 100) + '%') store_ids = sub['store-id'].unique() store_ids = list(set.intersection(set(store_ids), set(active_stores))) for store_id in store_ids: store_name, store_emails = store_info_func(store_id) if debug == 'Y': store_emails = ['[email protected]'] else: for other_email in email_to: store_emails.append(other_email) sub_mail_body = f""" Hey {store_name} Store, There are some composition where your store is not performing well in terms of substitution, compare to other stores Please download the list and try to do active substitution for mentioned composition """ file_name = 'Substitution Composition.xlsx' file_path = s3.write_df_to_excel(data={'Drugs': sub[sub['store-id'] == store_id]}, file_name=file_name) email.send_email_file(subject="Store Daily Insight 5 : Composition substitution", mail_body=sub_mail_body, to_emails=store_emails, file_uris=[], file_paths=[file_path]) logger.info("Substitution Issue Finished") ################################################################# ######################### SKUs short in Market ################## ################################################################# ## Adding query for now - Create module after feedback from Soumya and Saniya # select # sm.store, # t1.*, # d.id as "best-substitute-drug-id", # d."drug-name" as "best-substitute-drug-name" # from # ( # select # sbx."store-id", # sbx."drug-id", # sbx."drug-name", # max(sbx."created-at") "last-failed" # from # ( # select # *, # (case # when status in ('lost', 'failed', 'declined') then 1.0 # else 0.0 # end) "status-code", # rank() over( partition by "store-id", # "drug-id" # order by # "created-at" desc) as "ORank" # from # "short-book-1" sb # where # date("created-at") between current_date-30 and current_date # ) sbx # where # sbx."orank" <= 3 # and sbx."drug-id" is not null # group by # sbx."store-id", # sbx."drug-id", # sbx."drug-name" # having # avg(sbx."status-code")= 1 # and max(sbx."orank") >= 3 # ) t1 # left join "drug-substitution-mapping" dsm1 on # t1."drug-id" = dsm1."drug-id" # left join ( # select # i."store-id", # dsm2."group", # dsm2."drug-id", # sum(i.quantity) as "total-quantity", # dense_rank() over( partition by i."store-id", # dsm2."group" # order by # "total-quantity" desc) as "gRank" # from # "drug-substitution-mapping" dsm2 # left join "inventory-1" i on # dsm2."drug-id" = i."drug-id" # group by # i."store-id", # dsm2."group", # dsm2."drug-id" # having # sum(i.quantity) > 0) t2 on # t2."group" = dsm1."group" # and t2."store-id" = t1."store-id" # left join drugs d on # t2."drug-id" = d.id # left join "drug-order-info" doi on # t1."drug-id" = doi."drug-id" # and t1."store-id" = doi."store-id" # left join "stores-master" sm on # sm.id = t1."store-id" # where # t2."gRank" = 1 # and t1."drug-id" != t2."drug-id" # and doi."as-active" = 1 # and doi."max" > 0 # order by # 5 desc # limit 20;
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store-intelligence/store-intelligence.py
store-intelligence.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "promo" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "promo-code", "promo-code-type", "promo-eligibility", "promo-discount-type", "promo-min-purchase", "campaign-id", "campaign-name" ) select pc.id , pc."created-by", pc."created-at", pc."updated-by", pc."updated-at" , pc."promo-code" as "promo-code" , pc."code-type" as "promo-code-type", pc."type" as "promo-eligibility", pc."discount-type" as "promo-discount-type", pc."min-purchase" as "promo-min-purchase", pc."campaign-id" as "campaign-id", c."campaign" as "campaign-name" from "prod2-generico"."promo-codes" pc left join "prod2-generico".campaigns c on pc."campaign-id" = c.id """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/promo/promo.py
promo.py
# !/usr/bin/env python # coding: utf-8 import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rd', '--runtime_date_exp', default="0101-01-01", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env runtime_date_exp = args.runtime_date_exp email_to = args.email_to # env = 'stage' # limit = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() # Run date if runtime_date_exp != '0101-01-01': run_date = runtime_date_exp else: # run_date = datetime.today().strftime('%Y-%m-%d') # Timezone aware run_date = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d") # runtime_date = '2021-09-01' logger.info("Running for {}".format(run_date)) # Period end date # Paramatrize it period_end_d_ts = datetime.strptime(run_date, '%Y-%m-%d') - timedelta(days=1) period_end_d = period_end_d_ts.strftime('%Y-%m-%d') # data to be fetched read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params=None) sales_q = """ SELECT "patient-id", "drug-id", "created-date" as "bill-date" FROM "sales" WHERE "created-date" <= '{0}' """.format(period_end_d) # AND "store-id" = 2 sales_q = sales_q.replace('`', '"') logger.info(sales_q) data_s = rs_db.get_df(query=sales_q) data_s.columns = [c.replace('-', '_') for c in data_s.columns] logger.info(len(data_s)) logger.info("Data length is : {}".format(len(data_s))) data_s['bill_date'] = pd.to_datetime(data_s['bill_date']) # Drop duplicates data_s = data_s.drop_duplicates() logger.info("Data length after dropping duplicates is : {}".format(len(data_s))) # Sort data data_s = data_s.sort_values(by=['patient_id', 'drug_id', 'bill_date']) # Previous bill date data_s['prev_bill_date'] = data_s.groupby(['patient_id', 'drug_id'])['bill_date'].shift(1) data_s['purchase_interval'] = (data_s['bill_date'] - data_s['prev_bill_date']).dt.days # Group at patient_id, drug_id data_s_grp = data_s.groupby(['patient_id', 'drug_id']).agg({'purchase_interval': ['count', 'mean', 'std']} ).reset_index() data_s_grp.columns = ['patient_id', 'drug_id', 'count_interval', 'mean_interval', 'std_interval'] data_s_grp['cov'] = np.round(data_s_grp['std_interval'] / data_s_grp['mean_interval'], 2) data_s_grp = data_s_grp.round(2) logger.info("Length of data grp is {}".format(len(data_s_grp))) # Remove cases where cov is NULL data_s_grp = data_s_grp[~data_s_grp['cov'].isnull()] logger.info("Length of data grp - after removing null cases, is {}".format(len(data_s_grp))) # DB upload columns final_cols = ['patient_id', 'drug_id', 'count_interval', 'mean_interval', 'std_interval', 'cov'] data_export = data_s_grp[final_cols] # For redshift specific # Convert int columns to int for i in ['patient_id', 'drug_id']: data_export[i] = data_export[i].fillna(0).astype(int) logger.info(data_export.columns) ################################ # DB WRITE ############################### write_schema = 'prod2-generico' write_table_name = 'patient-drug-interval' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) # table_info_clean = table_info[~table_info['column_name'].isin(['id', 'created-at', 'updated-at'])] data_export.columns = [c.replace('_', '-') for c in data_export.columns] # Mandatory lines data_export['created-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['created-by'] = 'etl-automation' data_export['updated-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['updated-by'] = 'etl-automation' # Truncate and append rs_db_write.execute(f"set search_path to '{write_schema}'", params=None) truncate_q = f""" DELETE FROM "{write_table_name}" """ rs_db_write.execute(truncate_q) # Write to DB s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patient-drug-interval/patient-drug-interval.py
patient-drug-interval.py
import argparse import datetime import os import sys from functools import reduce import pandas as pd from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB(read_only=False) rs_db.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' table_name = 'lnd-ma-stl' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # Read from gsheet gs = GoogleSheet() ma_stl_data = gs.download(data={ "spreadsheet_id": "1Csw_FvpGxPNdUMmRXr1k26J0YEY-QKaElxu_jTTksQE", "sheet_name": "Form Responses 1", "listedFields": [] }) df = pd.DataFrame(ma_stl_data) # Correct data types df[['timestamp', 'start date', 'date of verification checklist']] = df[ ['timestamp', 'start date', 'date of verification checklist']] \ .apply(pd.to_datetime, errors='coerce') df['enter score '] = df['enter score '].apply(pd.to_numeric, errors='coerce') df['select result'] = df['select result'].str.lower() # separate out training calender training_calender = df[(df['type of form'] == 'Training Calendar')] # combine multiple course columns into one column training_calender['course0_1_2_3_4'] = training_calender[['courses','courses.1','courses.2','courses.3']].apply( lambda x: ''.join(x.dropna().astype(str)), axis=1) training_calender = training_calender[ ['timestamp', 'type of form', 'store name', 'employee code', 'designation', 'start date', 'course0_1_2_3_4']] training_calender.rename(columns={'course0_1_2_3_4': 'course'}, inplace=True) training_calender = training_calender.groupby(['type of form', 'store name', 'employee code', 'course']) \ .agg({'timestamp': 'max', 'start date': 'max'}).reset_index() # announced verification attempt 1 verif_check_announced1 = df[(df['type of form'] == 'Verification Checklist') & ( df['verification checklist type'] == 'Announced - Attempt 1 (By STL)')] verif_check_announced1 = verif_check_announced1[ ['date of verification checklist', 'employee code.1', 'date of joining', 'select role', 'select verification checklist', 'enter score ', 'select result']] verif_check_announced1 = verif_check_announced1.groupby(['employee code.1', 'select verification checklist']) \ .agg({'date of verification checklist': 'max', 'enter score ': 'max', 'select result': 'max'}) \ .reset_index() verif_check_announced1 = verif_check_announced1.rename( columns={'employee code.1': 'employee code', 'select verification checklist': 'course', 'enter score ': 'an1_score', 'select result': 'an1_result', 'date of verification checklist': 'an1_date_of_verification'}) # announced verification attempt 2 verif_check_announced2 = df[(df['type of form'] == 'Verification Checklist') & ( df['verification checklist type'] == 'Announced - Attempt 2 (By STL)')] verif_check_announced2 = verif_check_announced2[ ['date of verification checklist', 'employee code.1', 'date of joining', 'select role', 'select verification checklist', 'enter score ', 'select result']] verif_check_announced2 = verif_check_announced2.groupby(['employee code.1', 'select verification checklist']).agg( {'date of verification checklist': 'max', 'enter score ': 'max', 'select result': 'max'}).reset_index() verif_check_announced2 = verif_check_announced2.rename( columns={'employee code.1': 'employee code', 'select verification checklist': 'course', 'enter score ': 'an2_score', 'select result': 'an2_result', 'date of verification checklist': 'an2_date_of_verification'}) # announced verification attempt 3 verif_check_announced3 = df[(df['type of form'] == 'Verification Checklist') & ( df['verification checklist type'] == 'Announced - Attempt 3 (By STL)')] verif_check_announced3 = verif_check_announced3[ ['date of verification checklist', 'employee code.1', 'date of joining', 'select role', 'select verification checklist', 'enter score ', 'select result']] verif_check_announced3 = verif_check_announced3.groupby(['employee code.1', 'select verification checklist']).agg( {'date of verification checklist': 'max', 'enter score ': 'max', 'select result': 'max'}).reset_index() verif_check_announced3 = verif_check_announced3.rename( columns={'employee code.1': 'employee code', 'select verification checklist': 'course', 'enter score ': 'an3_score', 'select result': 'an3_result', 'date of verification checklist': 'an3_date_of_verification'}) # Unannounced verification attempt 1 verif_check_unannounced1 = df[(df['type of form'] == 'Verification Checklist') & ( df['verification checklist type'] == 'Unannounced - Attempt 1 (By SBO)')] verif_check_unannounced1 = verif_check_unannounced1[ ['date of verification checklist', 'employee code.1', 'date of joining', 'select role', 'select verification checklist', 'enter score ', 'select result']] verif_check_unannounced1 = verif_check_unannounced1.groupby( ['employee code.1', 'select verification checklist']).agg( {'date of verification checklist': 'max', 'enter score ': 'max', 'select result': 'max'}).reset_index() verif_check_unannounced1 = verif_check_unannounced1.rename( columns={'employee code.1': 'employee code', 'select verification checklist': 'course', 'enter score ': 'un1_score', 'select result': 'un1_result', 'date of verification checklist': 'un1_date_of_verification'}) # Unannounced verification attempt 2 verif_check_unannounced2 = df[(df['type of form'] == 'Verification Checklist') & ( df['verification checklist type'] == 'Unannounced - Attempt 2 (By SBO)')] verif_check_unannounced2 = verif_check_unannounced2[ ['date of verification checklist', 'employee code.1', 'date of joining', 'select role', 'select verification checklist', 'enter score ', 'select result']] verif_check_unannounced2 = verif_check_unannounced2.groupby( ['employee code.1', 'select verification checklist']).agg( {'date of verification checklist': 'max', 'enter score ': 'max', 'select result': 'max'}).reset_index() verif_check_unannounced2 = verif_check_unannounced2.rename( columns={'employee code.1': 'employee code', 'select verification checklist': 'course', 'enter score ': 'un2_score', 'select result': 'un2_result', 'date of verification checklist': 'un2_date_of_verification'}) # Unannounced verification attempt 3 verif_check_unannounced3 = df[(df['type of form'] == 'Verification Checklist') & ( df['verification checklist type'] == 'Unannounced - Attempt 3 (By SBO)')] verif_check_unannounced3 = verif_check_unannounced3[ ['date of verification checklist', 'employee code.1', 'date of joining', 'select role', 'select verification checklist', 'enter score ', 'select result']] verif_check_unannounced3 = verif_check_unannounced3.groupby( ['employee code.1', 'select verification checklist']).agg( {'date of verification checklist': 'max', 'enter score ': 'max', 'select result': 'max'}).reset_index() verif_check_unannounced3 = verif_check_unannounced3.rename( columns={'employee code.1': 'employee code', 'select verification checklist': 'course', 'enter score ': 'un3_score', 'select result': 'un3_result', 'date of verification checklist': 'un3_date_of_verification'}) # Joining all data frames to training calender dfs = [training_calender, verif_check_announced1, verif_check_announced2, verif_check_announced3, verif_check_unannounced1, verif_check_unannounced2, verif_check_unannounced3] lnd_ma_stl = reduce(lambda left, right: pd.merge(left, right, on=["employee code", "course"], how='left'), dfs) lnd_ma_stl.columns = [c.replace(' ', '_') for c in lnd_ma_stl.columns] lnd_ma_stl.columns = [c.lower() for c in lnd_ma_stl.columns] # etl lnd_ma_stl['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') lnd_ma_stl['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') lnd_ma_stl['created-by'] = 'etl-automation' lnd_ma_stl['updated-by'] = 'etl-automation' lnd_ma_stl.columns = [c.replace('_', '-') for c in lnd_ma_stl.columns] if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=lnd_ma_stl[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/lnd_ma_stl/lnd_ma_stl.py
lnd_ma_stl.py
#!/usr/bin/env python # coding: utf-8 import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") status1 = False try: current_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() -datetime.timedelta(days=1) customer_return_query = f""" select a."billed-at", a."returned-at", b."patient-id", b."store-id", f."name" as "store-name", c."drug-id", d."drug-name", d.type, d.category, e."drug-grade", a."return-id", a."inventory-id", a."bill-id", a."returned-quantity", a."return-reason", (a."rate" * a."returned-quantity") as "return-value" from "prod2-generico"."customer-return-items-1" a left join "prod2-generico"."customer-returns-1" b on a."return-id" = b."id" left join "prod2-generico"."inventory-1" c on c."id" = a."inventory-id" left join "prod2-generico"."drugs" d on d."id" = c."drug-id" left join "prod2-generico"."drug-order-info" e on e."store-id" = b."store-id" and e."drug-id" = c."drug-id" left join "prod2-generico"."stores" f on f."id" = b."store-id" where a."returned-at" = {current_date} """.format(current_date= current_date) customer_return = rs_db.get_df(customer_return_query) logger.info('Customer return data loaded') if len(customer_return)!= 0: customer_return['billed-date'] = customer_return['billed-at'].dt.date customer_return['returned-date'] = customer_return['returned-at'].dt.date customer_return['return-time-hrs'] = (customer_return['returned-at'] - customer_return['billed-at'])/pd.Timedelta('1s')/60/60 else: customer_return['billed-date'] = current_date customer_return['returned-date'] = current_date customer_return['return-time-hrs'] = 0 customer_return = customer_return[[ 'billed-date', 'returned-date', 'patient-id', 'store-id', 'store-name', 'drug-id', 'drug-name', 'type', 'category', 'drug-grade', 'return-id', 'inventory-id', 'bill-id', 'returned-quantity', 'return-reason', 'return-value', 'return-time-hrs' ]] truncate_query = ''' delete from "prod2-generico"."glue-customer-return" where date("returned-date") = {current_date} '''.format(current_date= current_date ) rs_db_write.execute(truncate_query) logger.info('glue-customer-return data deleted for yesterday to avoid duplication in case of multiple runs') customer_return['uploaded-at']=datetime.datetime.now(tz=gettz('Asia/Kolkata')) schema = 'prod2-generico' table_name = 'glue-customer-return' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) s3.write_df_to_db(df=customer_return[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info('Customer return data written to redshift') status1 = True except: status1 = False if status1: status = 'Success' else: status = 'Failed' end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f'{env} - {status} - {table_name} updated', mail_body=f" {table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/glue-customer-returns/glue-customer-returns.py
glue-customer-returns.py
import argparse import sys import re sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import dateutil from dateutil.tz import gettz from zeno_etl_libs.helper.email.email import Email import numpy as np from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.tokenize import word_tokenize, RegexpTokenizer, sent_tokenize from nltk.corpus import stopwords import time import datetime import os import nltk nltk.download('stopwords') nltk.download('punkt') # divides a whole text data into sentences nltk.download('vader_lexicon') import tweepy parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-d', '--full_run', default=0, type=int, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() email_to = args.email_to env = args.env full_run = args.full_run os.environ['env'] = env logger = get_logger() logger.info(f"full_run: {full_run}") rs_db = DB(read_only=False) rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'zeno-tweets' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # max of data table_q = """ select max("tweet-created-at") max_exp from "prod2-generico"."zeno-tweets" """ max_exp_date = rs_db.get_df(table_q) max_exp_date['max_exp'].fillna(np.nan, inplace=True) print(max_exp_date.info()) max_exp_date = max_exp_date['max_exp'].to_string(index=False) print(max_exp_date) # params if full_run or max_exp_date == 'NaN': start = '2017-05-13' else: start = max_exp_date start = dateutil.parser.parse(start) print(start) # defining keys and tokens consumer_key = 'c57SU7sulViKSmjsOTi4kTO3W' consumer_secret = 'cNT3yk5ibQ315AWNCJHgE9ipCGlM1XnenHZu9cBWaVL3q7fPew' access_token = '796747210159517701-DhOBQgwzeb6q4eXlI4WjwPRJH1CuEIT' access_token_secret = 'sMrnPZ4ExI8um43wquUvFEUCTyY61HYRf7z3jv00ltXlt' # making api connection # authentication def auth(consumer_key, consumer_secret, access_token, access_token_secret): auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) return api api = auth(consumer_key, consumer_secret, access_token, access_token_secret) # remove url def remove_url(txt): """Replace URLs found in a text string with nothing (i.e. it will remove the URL from the string). Parameters ---------- txt : string A text string that you want to parse and remove urls. Returns ------- The same txt string with url's removed. """ return " ".join(re.sub("([^0-9A-Za-z \t])|(\w+:\/\/\S+)", "", txt).split()) # searching for the keyword in tweeter and tokenizing it def tweet(search_term, count=100000): # Create a custom search term and define the number of tweets tweets = api.search_tweets(search_term, count=count) # Remove URLs tweets_no_urls = [remove_url(tweet.text) for tweet in tweets] # lowercase tweet_data = [sent_tokenize(x.lower()) for x in tweets_no_urls] tweet_data = pd.DataFrame(data=tweet_data, columns=['tweetext']) tweet_att = [[search_term, x.lang, x.user.location, x.created_at, x.id, x.user.name, x.user.followers_count, x.user.friends_count, x.text, x.place, x.user.time_zone] for x in tweets] tweet_att = pd.DataFrame(data=tweet_att, columns=['search_term', 'lang', 'loc', 'created-at', 'id', 'username', 'followers', 'friends', 'og tweet', 'place', 'Tz']) final_data = pd.concat([tweet_data, tweet_att], axis=1) return final_data # removing stopwords def remove_sw(sent, corpus): stop_words = set(stopwords.words(corpus)) word_tokens = word_tokenize(sent) filtered_sentence = [w for w in word_tokens if not w.lower() in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) filtered_sentence = ' '.join(filtered_sentence) return [filtered_sentence] # finding sentiment intensity analyzer def sentiment_analyser(lst): sid = SentimentIntensityAnalyzer() sentiment = [sid.polarity_scores(x) for x in lst] neg = [sid.polarity_scores(x)['neg'] for x in lst] neu = [sid.polarity_scores(x)['neu'] for x in lst] pos = [sid.polarity_scores(x)['pos'] for x in lst] comp = [sid.polarity_scores(x)['compound'] for x in lst] return neg[0], neu[0], pos[0], comp[0] # running all above functions def run_all(search_term, count=1000000): print("API handshake successful") print("Searching for term ", search_term) tweet_data = tweet(search_term, count=count) print(tweet_data) # print(tweet_data) print("Removing stopwords") sw = 'english' if tweet_data.empty: return tweet_data else: tweet_data['tweetext_filter'] = tweet_data['tweetext'].apply(lambda x: remove_sw(x, sw), 1) print(tweet_data) print("Analysing sentiment for ", search_term) print(tweet_data) tweet_data['neg', 'neu', 'pos', 'comp'] = tweet_data['tweetext_filter'].apply(lambda x: sentiment_analyser(x), 1) tweet_data[['neg', 'neu', 'pos', 'comp']] = tweet_data['neg', 'neu', 'pos', 'comp'].apply(pd.Series) tweet_data.drop(columns=('neg', 'neu', 'pos', 'comp'), inplace=True) # sentiment, neg, neu, pos, comp = sentiment_analyser(tweets) # df = build_df(pos,neg,neu,comp, tweets) print('Done \n') return tweet_data search_terms = ['#zeno_health','@zeno_health'] tws = pd.DataFrame() try: for search_term in search_terms: tw = run_all(search_term, count=1000000) tws = pd.concat([tws, tw], axis=0) print('Done') tws = tws[((tws['lang'].isin(['en', 'hi']) & (~tws['tweetext'].str.startswith('rt'))))] except BaseException as e: print('failed on_status,', str(e)) time.sleep(3) tws if tws.empty: print('DataFrame is empty!') exit() tws = tws[ ['og tweet', 'id', 'created-at', 'search_term', 'lang', 'loc', 'username', 'followers', 'friends', 'neg', 'neu', 'pos', 'comp']] dict = {'id': 'tweet-id', 'og tweet': 'tweet', 'search_term': 'search-term', 'lang': 'language', 'loc': 'location', 'created-at': 'tweet-created-at', 'pos': 'positive-sentiment', 'neu': 'neutral-sentiment', 'neg': 'negative-sentiment', 'comp': 'compound-sentiment'} tws.rename(columns=dict, inplace=True) tws['tweet-created-at'] = pd.to_datetime(tws['tweet-created-at']). \ dt.tz_convert('Asia/Kolkata').dt.tz_localize(None) # etl tws['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') tws['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') tws['created-by'] = 'etl-automation' tws['updated-by'] = 'etl-automation' tws['tweet-type'] = np.where(tws['negative-sentiment'] >= tws['positive-sentiment'], 'Detractor', 'Promoter') tws_mail = tws[['tweet-id', 'tweet', 'tweet-created-at', 'search-term', 'language', 'location', 'username', 'followers', 'friends', 'tweet-type']] tws_mail = tws_mail.sort_values(by=['tweet-type'], ascending=True) print(tws_mail) tws_mail = tws_mail[(tws_mail['tweet-created-at'] > start)] tws = tws[(tws['tweet-created-at'] > start)] if tws.empty: print('DataFrame is empty!') exit() tws.columns = [c.replace('_', '-') for c in tws.columns] if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") print(start) truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "tweet-created-at" >'{start}' ''' print(truncate_query) rs_db.execute(truncate_query) s3.write_df_to_db(df=tws[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) file_name = 'Zeno_Tweets.xlsx' file_path = s3.write_df_to_excel(data={'Zeno Tweets': tws_mail}, file_name=file_name) email = Email() # file_path ='/Users/Lenovo/Downloads/utter.csv' email.send_email_file(subject="Zeno Tweets", mail_body='Zeno Tweets', to_emails=email_to, file_uris=[], file_paths=[file_path]) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/zeno-tweets/zeno-tweets.py
zeno-tweets.py
import sys import os sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper import argparse import pandas as pd import datetime import numpy as np import json import os import re from datetime import date from datetime import datetime import dateutil.relativedelta import numpy as np from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") logger.info('Script Manager Initialized') rs_db = DB() s3 = S3() rs_db.open_connection() snapshot_date = datetime.now().date() inv_query=''' select a."store-id" , a."franchisee-id", a."store-name" as "store-name", a."type" , a.category , a."drug-grade" , sum(case when a."inventory-oh" <> 0 then 1 else 0 end) as "drug-count", SUM(a."inventory-oh") as "inventory-oh" , SUM(a."inventory-value-oh") as "inventory-value-oh", SUM(a."min-inv-value") as "min-inv-value", SUM(a."ss-inv-value") as "ss-inv-value", SUM(a."max-inv-value") as "max-inv-value" FROM (select inv."store-id" , str."franchisee-id" , str."name" as "store-name", d."type" , d.category , di."drug-grade" , inv."drug-id", (CASE WHEN str."franchisee-id"=1 then sum(inv.quantity + inv."locked-for-return" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" + inv."locked-quantity") WHEN str."franchisee-id"!=1 then SUM(inv."locked-quantity") END) as "inventory-oh", (CASE WHEN str."franchisee-id"=1 then sum(inv.ptr * (inv.quantity + inv."locked-for-return" + inv."locked-for-audit" + inv."locked-for-check" + inv."locked-for-transfer" + inv."locked-quantity")) WHEN str."franchisee-id"!=1 then sum(inv.ptr * ( inv."locked-quantity")) END) as "inventory-value-oh", coalesce(avg(di."min") * avg(inv.ptr), 0) as "min-inv-value", coalesce(avg(di."safe-stock") * avg(inv.ptr), 0) as "ss-inv-value", coalesce(avg(di."max") * avg(inv.ptr), 0) as "max-inv-value" from "prod2-generico"."prod2-generico"."inventory-1" inv left join "prod2-generico"."prod2-generico"."invoice-items-1" ii on inv."invoice-item-id" = ii.id left join "prod2-generico".drugs d on inv."drug-id" = d.id left join "prod2-generico"."prod2-generico"."drug-order-info" di on inv."drug-id" = di."drug-id" and inv."store-id" = di."store-id" left join "prod2-generico".stores str on inv."store-id" = str.id group by inv."store-id" , str."name" , str."franchisee-id" , d."type" , d.category , di."drug-grade",inv."drug-id") a group by a."store-id" , a."store-name" , a."franchisee-id", a."type" , a.category , a."drug-grade" ''' stores=rs_db.get_df(query=inv_query) stores[['inventory-value-oh', 'min-inv-value', 'ss-inv-value', 'max-inv-value']]=stores[['inventory-value-oh', 'min-inv-value', 'ss-inv-value', 'max-inv-value']].astype(np.float64) stores['snapshot-date'] = snapshot_date created_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") stores['created-at']=datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") updated_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") stores['updated-at']=datetime.strptime(updated_at,"%Y-%m-%d %H:%M:%S") stores['created-by'] = 'etl-automation' stores['updated-by'] = 'etl-automation' #Truncate the Query logger.info('Delete for current date ') truncate_query = ''' delete from "prod2-generico"."store-inventory-sns" where date("snapshot-date") = '{snapshot_date}' '''.format(snapshot_date=snapshot_date) rs_db.execute(truncate_query) stores.columns = [c.replace('_', '-') for c in stores.columns] schema = "prod2-generico" table_name = "store-inventory-sns" table_info = helper.get_table_info(db=rs_db , table_name=table_name, schema=schema) logger.info('Writing to table') s3.write_df_to_db(df=stores[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) status=True if status==True: script_status="Success" else: script_status="Failed" email = Email() email.send_email_file(subject=f"store_inventory {snapshot_date} {script_status}", mail_body=f"store inventory job status: {script_status} ", to_emails=email_to) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store_inventory/store-inventory-sns.py
store-inventory-sns.py
import argparse import os import sys from datetime import datetime as dt from datetime import timedelta import numpy as np import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper.parameter.job_parameter import parameter parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default=["[email protected]"], type=str, required=False) parser.add_argument('-fr', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to logger = get_logger() logger.info(f"env: {env}") read_schema = "prod2-generico" rs_db = DB() rs_db.open_connection() s3 = S3() ###################################################################### ########################## Gross Sales ################################ ###################################################################### gross_q = f""" select b."store-id", s."name" as "store-name", s."franchisee-id", sum(bi.rate * bi.quantity) as "sales_e", sum(case when (pc."created-by" != '[email protected]' and pc."code-type" != 'referral' ) then bi."promo-discount" else 0 end) as "cat-promo", "sales_e" - "cat-promo" as "actual-sales" from "{read_schema}"."bills-1" b left join "{read_schema}"."bill-items-1" bi on b.id = bi."bill-id" left join "{read_schema}"."promo-codes" pc on b."promo-code-id" = pc.id left join "{read_schema}".stores s on b."store-id" = s.id where date(b."created-at") = current_date - 1 group by b."store-id", s."name", s."franchisee-id"; """ gross_sales = rs_db.get_df(query=gross_q) return_q = f""" select b."store-id", s."name" as "store-name", s."franchisee-id", sum(case when (pc."created-by" != '[email protected]' and pc."code-type" != 'referral' ) then cri."return-value" else (rate * "returned-quantity") end ) "actutal-return" from "{read_schema}"."customer-return-items-1" cri left join "{read_schema}"."bills-1" b on cri."bill-id" = b.id left join "{read_schema}"."promo-codes" pc on b."promo-code-id" = pc.id left join "{read_schema}".stores s on b."store-id" = s.id where date(cri."returned-at") = current_date - 1 group by b."store-id", s."name", s."franchisee-id"; """ return_sales = rs_db.get_df(query=return_q) sales = pd.merge(gross_sales, return_sales, on=['store-id', 'store-name', 'franchisee-id'], how='left') sales.drop(columns=['sales_e', 'cat-promo'], inplace=True) sales['net-sales'] = sales['actual-sales'] - sales['actutal-return'] file_name = 'Sales_Report.xlsx' file_path = s3.write_df_to_excel(data={'Store_Level_Sales': sales }, file_name=file_name) sales_body = f""" Hey, Here is the Daily Sales Report Overall Sales : {sales['net-sales'].sum()} COCO Sales : {sales[sales["franchisee-id"]==1]['net-sales'].sum()} FOFO Sales : {sales[sales["franchisee-id"]!=1]['net-sales'].sum()} File can be downloaded for Store_Level Sales Thanks """ email = Email() email.send_email_file(subject=f"Sales Report Data : {dt.today().date() - timedelta(days=1)}", mail_body=sales_body, to_emails=email_to, file_uris=[], file_paths=[file_path])
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/daily-metric-automailer/daily-metric-automailer.py
daily-metric-automailer.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger, send_logs_via_email from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback from dateutil.relativedelta import relativedelta from zeno_etl_libs.queries.dead_stock import dead_stock_queries from zeno_etl_libs.queries.dead_stock.dead_stock_categorisation import dead_stock_categorization, dead_data_prep, dead_value_bucket from zeno_etl_libs.utils.doid_write import doid_custom_write parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--days', default=90, type=int, required=False) parser.add_argument('-ed', '--expiry_days', default=150, type=int, required=False) parser.add_argument('-fed', '--fofo_expiry_days', default=270, type=int, required=False) parser.add_argument('-ned', '--npi_expiry_days', default=180, type=int, required=False) parser.add_argument('-emc', '--expiry_month_cutoff', default=1, type=int, required=False) parser.add_argument('-jn', '--job_name', default=None, type=str, required=False) parser.add_argument('-lem', '--log_email_to', default="[email protected]", type=str, required=False) parser.add_argument('-gif', '--goodaid_inclusion_flag', default=1, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to days = args.days expiry_days = args.expiry_days fofo_expiry_days = args.fofo_expiry_days npi_expiry_days = args.npi_expiry_days expiry_month_cutoff = args.expiry_month_cutoff job_name = args.job_name log_email_to = args.log_email_to.split(",") goodaid_inclusion_flag = args.goodaid_inclusion_flag os.environ['env'] = env logger = get_logger(level = 'INFO') logger.info(f"env: {env}") #secrets = config.secrets rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("days - " + str(days)) logger.info("expiry_days - " + str(expiry_days)) logger.info("fofo_expiry_days - " + str(fofo_expiry_days)) logger.info("npi_expiry_days - " + str(npi_expiry_days)) logger.info("expiry_month_cutoff - " + str(expiry_month_cutoff)) logger.info("job_name - " + str(job_name)) logger.info("log_email_to - " + str(log_email_to)) logger.info("goodaid_inclusion_flag - " + str(goodaid_inclusion_flag)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") status = 'Failed' doid_missed_entries = pd.DataFrame() try : # get stores open date stores_date_query = ''' select s.id as "store-id", s."franchisee-id" , date(s."opened-at") as "opened-date", case when s."franchisee-id" = 1 and DATEDIFF(d, s."opened-at", current_date)>= 182 then 'old' when s."franchisee-id" != 1 and DATEDIFF(d, s."opened-at", current_date)>= 90 then 'old' else 'new' end as "store-age-flag" from "prod2-generico".stores s where s."opened-at" != '0101-01-01 00:00:00.000' ''' stores_date = rs_db.get_df(stores_date_query) stores_list = stores_date.loc[ stores_date['store-age-flag'] == 'old', 'store-id'] trucate_inv_query = ''' DELETE FROM "prod2-generico"."dead-stock-inventory" ''' truncate_sns_query = ''' delete from "prod2-generico"."dead-stock-inventory-sns" where "snapshot-date" = CURRENT_DATE + 1 ''' insert_sns_query = ''' insert into "prod2-generico"."dead-stock-inventory-sns" select CURRENT_DATE + 1 as "snapshot-date", "inventory-type", "store-id", "store-name", "drug-type", "drug-grade", sum(quantity) as quantity, sum(value) as value, sum("locked-quantity") as "locked-quantity", sum("locked-value") as "locked-value" from "prod2-generico"."dead-stock-inventory" group by "inventory-type", "store-id", "store-name", "drug-type", "drug-grade" ''' sales = pd.DataFrame() inventory = pd.DataFrame() store_inventory_sales = pd.DataFrame() '''Getting sales and inventory data by store ''' for store_id in sorted(stores_date['store-id'].unique()): logger.info('Loading data for store ' + str(store_id)) sales_store, inventory_store, store_inventory_sales_store = dead_data_prep( store_id, days, logger, connection = rs_db) sales = sales.append(sales_store) inventory = inventory.append(inventory_store) store_inventory_sales = store_inventory_sales.append( store_inventory_sales_store) # GA drugs inclusion flag if int(goodaid_inclusion_flag)==0: logger.info('removing GA drugs from categorisation') goodaid_drug_query = ''' select d.id as "drug-id" from "prod2-generico".drugs d where d."company-id" = 6984 ''' goodaid_drugs = rs_db.get_df(goodaid_drug_query) goodaid_drug_id = tuple(map(int,goodaid_drugs['drug-id'].unique())) sales = sales[~sales['drug-id'].isin(goodaid_drug_id)] inventory = inventory[~inventory['drug-id'].isin(goodaid_drug_id)] store_inventory_sales = store_inventory_sales[~store_inventory_sales['drug-id'].isin(goodaid_drug_id)] logger.info('removed GA drugs from categorisation') else: logger.info('not removing GA drugs from categorisation') '''Inventory categorisation into different buckets''' zippin_inventory, store_drug_no_sale, store_drug_with_sale,expiry_barcodes, return_barcodes, rotation_barcodes, fifo_barcodes = dead_stock_categorization( sales, inventory, store_inventory_sales, stores_list, logger, days, expiry_days, fofo_expiry_days,connection = rs_db) rs_db_write.execute(trucate_inv_query) schema = 'prod2-generico' table_name = 'dead-stock-inventory' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) expiry_barcodes['uploaded-at']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') expiry_barcodes['created-date']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d') expiry_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']] = expiry_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') s3.write_df_to_db(df=expiry_barcodes[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) return_barcodes['uploaded-at']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') return_barcodes['created-date']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d') return_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']] = return_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') s3.write_df_to_db(df=return_barcodes[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) rotation_barcodes['uploaded-at']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') rotation_barcodes['created-date']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d') rotation_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']] = rotation_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') s3.write_df_to_db(df=rotation_barcodes[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) fifo_barcodes['uploaded-at']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') fifo_barcodes['created-date']= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d') fifo_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']] = fifo_barcodes[['invoice-item-id','invoice-id','distributor-id','short-book-id']].apply(pd.to_numeric, errors='ignore').astype('Int64') s3.write_df_to_db(df=fifo_barcodes[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) rs_db_write.execute(truncate_sns_query) rs_db_write.execute(insert_sns_query) # Rotation drugs to be appended in omit_ss_reset table omit_drug_store = rotation_barcodes[["drug-id", "store-id"]].drop_duplicates() omit_drug_store["updated-at"] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') omit_drug_store["created-at"] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') omit_drug_store["created-by"] = '[email protected]' omit_drug_store["updated-by"] = '[email protected]' omit_drug_store["start-date"] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d') omit_drug_store["end-date"] = (datetime.datetime.now(tz=gettz('Asia/Kolkata')) + datetime.timedelta( days=npi_expiry_days)).strftime('%Y-%m-%d') omit_drug_store["is-active"] = 1 omit_drug_store["reason"] = 'NPI' schema = 'prod2-generico' table_name = 'omit-ss-reset' # Uncomment following part once omit-ss-reset table is transferred to DSS table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) s3.write_df_to_db(df=omit_drug_store[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) # set max=0 for npi drugs in DOID npi_store_drugs = omit_drug_store[["store-id", "drug-id"]] npi_store_drugs.columns = [c.replace('-', '_') for c in npi_store_drugs.columns] doid_missed_entries = doid_custom_write(npi_store_drugs, logger) # save email attachements to s3 curr_date = str(datetime.date.today()) doid_missed_entries_uri = s3.save_df_to_s3(doid_missed_entries, file_name=f"doid_missed_entries_{curr_date}.csv") # Commenting Value Bucketing because relevant tables were not getting updated in DSS also # '''Value bucketing done once a week: Monday morning''' # if datetime.datetime.now().date().weekday() == 0: # # store_line_query= """ # select # sm.id as "store-id", # sm.line # from # "prod2-generico"."stores-master" sm # """ # store_line = rs_db.get_df(store_line_query) # # rotation_barcodes = rotation_barcodes.merge( # store_line, on='store-id', how='inner') # # rotation_barcodes['type-flag'] = np.select( # [rotation_barcodes['drug-type'] == 'ethical', # rotation_barcodes['drug-type'] == 'generic'], # ['ethical', 'generic'], default='others' # ) # rotation_value_bucket = rotation_barcodes.groupby( # ['line']).apply(dead_value_bucket).reset_index() # if 'level_1' in rotation_value_bucket.columns: # rotation_value_bucket.drop('level_1', axis=1, inplace=True) # if 'level-1' in rotation_value_bucket.columns: # rotation_value_bucket.drop('level-1', axis=1, inplace=True) # week_date = str(datetime.datetime.now().date()) # rotation_value_bucket['week-date'] = week_date # engine.execute( # '''delete from rotation_value_bucket where week_date = '{}' # '''.format(week_date)) # rotation_value_bucket.to_sql( # name='rotation_value_bucket', con=engine, if_exists='append', # chunksize=500, method='multi', index=False) # Commenting expiry_monthly_ss because this part was commented in DSS also # '''Expired/Near Expiry barcode shapshot for first of the month''' # # commenting out expiry snapshot as it is manual now # ''' # current_date = datetime.datetime.now().date() # if current_date.day == 1: # logger.info('Month beginning snapshot for expired/near expiry') # expiry_date_limit = ( # current_date + relativedelta( # months=expiry_month_cutoff, days=-current_date.day)) # expiry_monthly_ss = expiry_barcodes[ # expiry_barcodes.expiry <= expiry_date_limit] # expiry_monthly_ss['snapshot_date'] = str(current_date) # expiry_monthly_ss.to_sql( # name='expiry_monthly_ss', con=engine, if_exists='append', # chunksize=500, method='multi', index=False) status = 'Success' except: status = 'Failed' logger.info('table load failed') doid_missed_entries_uri = None table_name = None end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() if status == 'Success': email.send_email_file(subject=f"{env}-{status} : {table_name}", mail_body=f"{table_name} update {status}, Time for job completion - {min_to_complete} mins," f"DOID missed entries: {doid_missed_entries.shape[0]} ", to_emails=email_to, file_uris=[doid_missed_entries_uri]) elif status=='Failed': email.send_email_file(subject=f"{env}-{status} : {table_name}", mail_body=f"{table_name} update {status}, Time for job completion - {min_to_complete} mins,", to_emails=email_to, file_uris=[]) # send_logs_via_email(job_name=job_name, email_to=log_email_to) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/dead-stock/dead-stock-main.py
dead-stock-main.py
import sys from awsglue.transforms import * from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from awsglue.context import GlueContext from awsglue.job import Job import json import os import time import datetime as dt import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.helper.run_notebook import run_notebook from zeno_etl_libs.helper.parameter.job_parameter import parameter from zeno_etl_libs.db.db import PostGre from zeno_etl_libs.logger import get_logger ## @params: [JOB_NAME] args = getResolvedOptions(sys.argv, ['JOB_NAME', 'env', 'in_vpc', 'instance_type', 'timeout_in_sec', 'parameters', 'script_name', 'script_location', 'job_param_id', 'batch_size']) sc = SparkContext() glueContext = GlueContext(sc) spark = glueContext.spark_session job = Job(glueContext) env = args['env'] os.environ['env'] = env logger = get_logger() in_vpc = args['in_vpc'] instance_type = args['instance_type'] timeout_in_sec = args['timeout_in_sec'] parameters = args['parameters'] parameters = json.loads(parameters) logger.info(type(parameters)) parameters['env'] = env script_name = args['script_name'] script_location = args['script_location'] # check job params job_params = parameter.get_params(job_id=int(args['job_param_id'])) reset_stores = job_params["reset_stores"] batch_size = int(args['batch_size']) # batch_size cannot be 0 if batch_size <= 0: batch_size = 1 if reset_stores == [0]: # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE reset_date = dt.date.today().strftime("%Y-%m-%d") pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE ) """.format(reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() # get scheduled stores and create batch split reset_stores = reset_store_ops['store_id'].unique().tolist() store_batch_split = [reset_stores[i:i+batch_size] for i in range(0, len(reset_stores), batch_size)] else: store_batch_split = [reset_stores[i:i+batch_size] for i in range(0, len(reset_stores), batch_size)] # spawn sagemaker instances for each batch for batch_stores in store_batch_split: run_batch = store_batch_split.index(batch_stores) + 1 tot_batch = len(store_batch_split) # add to parameters parameters["run_batch"] = run_batch parameters["tot_batch"] = tot_batch parameters["batch_stores"] = batch_stores run_notebook.execute_notebook( image=env + "-notebook-runner", input_path=f"s3://aws-{env}-glue-assets-921939243643-ap-south-1/artifact/sagemaker-jobs/scripts/" + script_location + "/" + script_name, output_prefix=run_notebook.get_output_prefix(), notebook=script_location + '/' + script_name, parameters=parameters, role="arn:aws:iam::921939243643:role/service-role/AmazonSageMaker-ExecutionRole-20220412T145187", env=env, instance_type=instance_type, session=None, in_vpc=in_vpc, timeout_in_sec=int(timeout_in_sec) ) # to have a time difference for preventing same sagemaker job name time.sleep(1) job.init(args['JOB_NAME'], args) job.commit()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sagemaker-trigger/sagemaker-trigger-ipc.py
sagemaker-trigger-ipc.py
import argparse import datetime import json import os import sys from datetime import datetime as dt from datetime import timedelta import dateutil import pandas as pd from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, MongoDB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger # connections parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-d', '--data', default=None, type=str, required=False) # data = {"end": "2021-12-31", "start": "2021-12-01", "full_run": 1, "alternate_range": 0} args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() data = args.data logger.info(f"data: {data}") data = json.loads(data) if data else {} logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") s3 = S3() # table info schema = 'prod2-generico' table_name = 'ecomm-outbound-connected-log' date_field = 'call-created-at' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # params job_data_params = data if job_data_params['full_run']: start = '2017-05-13' elif job_data_params['alternate_range']: start = job_data_params['start'] else: start = str(dt.today().date() - timedelta(days=1)) # convert date to pymongo format start = dateutil.parser.parse(start) # Read Generico crm table db = mg_client['generico-crm'] collection = db["exotelOutgoingCallLogs"].find( {"CallType": {"$in": ["zeno-order-list", "zeno-order-details"]}, "status": "connected", "createdAt": {"$gte": start}}) callog_outbound = pd.DataFrame(list(collection)) callog_outbound['call_attempt'] = callog_outbound.sort_values(['createdAt'], ascending=[True]) \ .groupby(['order_id']) \ .cumcount() + 1 callog_outbound = callog_outbound[(callog_outbound['call_attempt'] <= 3)] callog_outbound['order_id'] = callog_outbound['order_id'].astype(int) callog_outbound = callog_outbound[['order_id', 'order_number', 'createdAt', 'updatedAt', 'CallFrom', 'call_attempt']] dict = {'createdAt': 'call-created-at', 'updatedAt': 'call-updated-at', 'CallFrom': 'call-from'} callog_outbound.rename(columns=dict, inplace=True) # order id to patient id zo_q = """ select id as "order_id", "patient-id" from "prod2-generico"."zeno-order" zo where date("created-at")>= '2020-12-25' """ zo = rs_db.get_df(zo_q) call_outbound_log = pd.merge(callog_outbound, zo, how='left', on=["order_id"]) call_outbound_log = call_outbound_log.drop_duplicates() call_outbound_log.columns = call_outbound_log.columns.str.lower() call_outbound_log['patient-id'] = call_outbound_log['patient-id'].astype('Int64') call_outbound_log['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') call_outbound_log['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') call_outbound_log['created-by'] = 'etl-automation' call_outbound_log['updated-by'] = 'etl-automation' call_outbound_log.columns = [c.replace('_', '-') for c in call_outbound_log.columns] if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "{date_field}">'{start}' ''' logger.info(truncate_query) rs_db.execute(truncate_query) """ seek the data """ logger.info(call_outbound_log.head(1)) file_s3_uri_save = s3.save_df_to_s3(df=call_outbound_log[table_info['column_name']], file_name="call_outbound_log.csv") # s3.write_to_db_from_s3_csv(table_name=table_name, # file_s3_uri=file_s3_uri_save, # db=rs_db, schema=schema) s3.write_df_to_db(df=call_outbound_log[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ecomm_outbound_connected_log/ecomm_outbound_connected_log.py
ecomm_outbound_connected_log.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "substitutable-compositions" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "composition", "generic-flag" ) select d."composition-master-id" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", cm.composition as "composition", count(distinct(case when (d."type" = 'generic') then c."drug-id" end)) as "generic-flag" from "prod2-generico"."drugs" d inner join "prod2-generico"."prod2-generico"."composition-master" cm on cm.id = d."composition-master-id" inner join "prod2-generico"."inventory-1" c on c."drug-id" = d."id" inner join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" where d."composition-master-id" is not null and d."type" = 'generic' group by d."composition-master-id", cm."composition"; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."substitutable-compositions"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/substitutable-compositions/substitutable-compositions.py
substitutable-compositions.py
import argparse # this is to include zeno_etl_libs in the python search path on the run time import sys sys.path.append('../../../..') import pandas as pd import numpy as np import time import os from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger # ## Take the new records from bills and insert them into bills-metadata table bill_metadata_table = "bills-1-metadata" patients_metadata_table = "patients-metadata-2" status = { "updated": "updated", "pending": "pending", "updating": "updating", } def insert_new_bills(db, limit, start_date, end_date): limit_str = f"limit {limit}" if limit else "" if start_date and end_date: date_filter = f""" and date(b."created-at") between '{start_date}' and '{end_date}' """ else: date_filter = "" query = f''' insert into "prod2-generico"."{bill_metadata_table}" ( id, "patient-id", "zippin-serial", "store-id", "doctor-id", "promo-code-id", "promo-flag", "promo-discount", "payment-method", "redeemed-points", "total-cashback", "zenocare-amount", "created-by", "created-at", "updated-at", "bill-date", "bill-year", "bill-month", "bill-day", "etl-status" ) select b.id, b."patient-id", b."zippin-serial", b."store-id", b."doctor-id", b."promo-code-id", case when b."promo-code-id" is null then false else true end , b."promo-discount", b."payment-method", b."redeemed-points", b."total-cashback", b."zenocare-amount", b."created-by", b."created-at", convert_timezone('Asia/Calcutta', GETDATE()), trunc(b."created-at"), extract(year from b."created-at"), extract(month from b."created-at"), extract(day from b."created-at"), '{status['pending']}' from "prod2-generico"."bills-1" b left join "prod2-generico"."{bill_metadata_table}" bm on bm.id = b.id where bm.id is null {date_filter} and (bm."etl-status" != '{status['updated']}' or bm."etl-status" is null) order by b.id asc {limit_str} ''' db.execute(query, params=None) def mark_old_affected_bills_also_pending(db, start_date, end_date): # # Take the effect of below tables # - "bills-1" # - "patients-store-orders" # - "bills-items-1" # - "inventory-1" # - "drugs" if start_date and end_date: date_filter = f""" and date(bm."created-at") between '{start_date}' and '{end_date}' """ else: date_filter = "" query = f""" update "prod2-generico"."{bill_metadata_table}" bm2 set "etl-status" = '{status['pending']}', "updated-at" = convert_timezone('Asia/Calcutta', GETDATE()) from ( select f.id from "prod2-generico"."{bill_metadata_table}" bm inner join "prod2-generico"."bills-1" f on bm.id = f.id inner join "prod2-generico"."bill-items-1" a on bm."id" = a."bill-id" inner join "prod2-generico"."inventory-1" b on a."inventory-id" = b."id" inner join "prod2-generico".drugs d on b."drug-id" = d.id left join "prod2-generico"."patients-store-orders" pso on bm.id = NVL(pso."bill-id" , 0) where ((bm."updated-at" < f."updated-at") or (bm."updated-at" < a."updated-at") or (bm."updated-at" < b."updated-at") or (bm."updated-at" < d."updated-at") or (bm."updated-at" < pso."updated-at"))) ab where bm2.id = ab.id; """ db.execute(query, params=None) """ Sometimes jobs fails and updating count keeps increasing and we always get memory error, so to fix this mark all updating status to pending """ query = f""" update "prod2-generico"."{bill_metadata_table}" set "etl-status" = 'pending' where "etl-status" = 'updating' """ db.execute(query, params=None) def mark_pending_bills_updating(db, batch_size): query = f""" update "prod2-generico"."{bill_metadata_table}" bm2 set "etl-status" = '{status['updating']}' from ( select bm.id from "prod2-generico"."{bill_metadata_table}" bm where "etl-status" = '{status['pending']}' limit {batch_size} ) ab where bm2.id = ab.id; """ db.execute(query, params=None) def get_changed_bills(db): # ## Considering only updating bills query = f''' select id, "patient-id", "zippin-serial", "store-id", "doctor-id", "promo-code-id", "promo-discount", "total-cashback", "zenocare-amount", "payment-method", "redeemed-points", "created-by", "created-at", "updated-at", "bill-date", "bill-year", "bill-month", "bill-day", "promo-flag", "digital-payment-flag", "etl-status" from "prod2-generico"."{bill_metadata_table}" bm3 where "etl-status" = '{status['updating']}' order by bm3.id asc ''' db.execute(query, params=None) _changed_bills: pd.DataFrame = db.cursor.fetch_dataframe() return _changed_bills def get_numbered_bills(db): # ## Min bill date logic to get month difference and month rank query = f''' select bm.id, bm."patient-id", bm."created-at" , row_number () over (partition by bm."patient-id" order by "created-at" asc) as row_num, bm."bill-year", bm."bill-month", bm."bill-date", bm."store-id" from "prod2-generico"."{bill_metadata_table}" bm inner join ( select "patient-id" from "prod2-generico"."{bill_metadata_table}" where "etl-status" = '{status['updating']}' group by "patient-id") p on bm."patient-id" = p."patient-id" ''' db.execute(query, params=None) _numbered_bills: pd.DataFrame = db.cursor.fetch_dataframe() return _numbered_bills def get_pr_hd_ecom_flags(db): # PR, HD, Ecom flags query = f""" select bm.id, bool_or(case when pso."patient-request-id" is null then false else true end) as "pr-flag", bool_or(case when pso."order-type" = 'delivery' then true else false end) as "hd-flag", bool_or(case when pso."order-source" = 'zeno' then true else false end) as "ecom-flag", bool_or(case when pso."order-source" = 'crm' then true else false end) as "crm-flag" from "prod2-generico"."{bill_metadata_table}" bm left join "prod2-generico"."patients-store-orders" pso on pso."bill-id" = bm.id where bm."etl-status" = '{status['updating']}' group by bm.id """ db.execute(query, params=None) _pr_hd_ecom_bills: pd.DataFrame = db.cursor.fetch_dataframe() return _pr_hd_ecom_bills def get_doctor_data(db): query = f""" select bm.id , d."name" as "doctor-name" from "prod2-generico"."{bill_metadata_table}" bm left join "prod2-generico".doctors d on bm."doctor-id" = d.id where bm."etl-status" = '{status['updating']}' """ db.execute(query, params=None) _doctors: pd.DataFrame = db.cursor.fetch_dataframe() return _doctors def get_item_drug_inv(db): # ## bill item, drug, inventory data query = f""" select bm.id , bi."inventory-id", bi."quantity", bi."rate", i."drug-id" , i."purchase-rate" , i.mrp , i.ptr , i.expiry , d."drug-name" , d."type" , d."drug-name", d."type" as "drug-type", d.category as "drug-category", (case when d."type" ='generic' and d.category ='chronic' then 1 else 0 end) as "is-generic-chronic", d."repeatability-index" , d.composition , d.schedule , d."company-id" , d.company , d.pack from "prod2-generico"."{bill_metadata_table}" bm inner join "prod2-generico"."bill-items-1" bi on bm.id = bi."bill-id" inner join "prod2-generico"."inventory-1" i on bi."inventory-id" = i.id inner join "prod2-generico".drugs d on i."drug-id" = d.id where bm."etl-status" = '{status['updating']}'; """ db.execute(query=query) _item_drug_inv: pd.DataFrame = db.cursor.fetch_dataframe() return _item_drug_inv def update_target_table(db, bills1_temp): # Updating the Destination table using temp table target = bill_metadata_table source = bills1_temp query = f""" update "prod2-generico"."{target}" t set "month-diff" = s."month-diff", "pr-flag" = s."pr-flag", "hd-flag" = s."hd-flag", "ecom-flag" = s."ecom-flag", "crm-flag" = s."crm-flag", "doctor-name" = s."doctor-name", "total-spend" = s."total-spend", "spend-generic" = s."spend-generic", "spend-goodaid" = s."spend-goodaid", "spend-ethical" = s."spend-ethical", "spend-others-type" = s."spend-others-type", "num-drugs" = s."num-drugs", "quantity-generic" = s."quantity-generic", "quantity-goodaid" = s."quantity-goodaid", "quantity-ethical" = s."quantity-ethical", "quantity-chronic" = s."quantity-chronic", "quantity-repeatable" = s."quantity-repeatable", "quantity-others-type" = s."quantity-others-type", "is-generic" = s."is-generic", "is-goodaid" = s."is-goodaid", "is-ethical" = s."is-ethical", "is-chronic" = s."is-chronic", "is-generic-chronic" = s."is-generic-chronic", "is-repeatable" = s."is-repeatable", "is-others-type" = s."is-others-type", "is-rx" = s."is-rx", "total-quantity" = s."total-quantity", "total-mrp-value" = s."total-mrp-value", "total-purchase-rate-value" = s."total-purchase-rate-value", "total-ptr-value" = s."total-ptr-value", -- "promo-flag" = s."promo-flag", "digital-payment-flag" = s."digital-payment-flag", "zippin-serial" = s."zippin-serial", "month-bill-rank" = s."month-bill-rank", "min-bill-date-in-month" = s."min-bill-date-in-month", "store-id-month" = s."store-id-month", "normalized-date" = s."normalized-date", "etl-status" = '{status['updated']}' from "{source}" s where t.id = s.id; """ db.execute(query=query) def mark_affected_patients_pending(db, bills1_temp): # ## Update the patients-metadata etl-status query = f""" update "prod2-generico"."{patients_metadata_table}" t set "etl-status" = '{status['pending']}' from {bills1_temp} s where t.id = s."patient-id" and s."etl-status" = '{status['updating']}'; """ db.execute(query=query) def process_batch(changed_bills, db, s3): changed_bills['digital-payment-flag'] = np.where( changed_bills['payment-method'].isin(['', ' ', 'cash', 'cheque']), False, True) # print(changed_bills.head(1).transpose()) numbered_bills = get_numbered_bills(db) first_bill = numbered_bills[numbered_bills['row_num'] == 1].rename( columns={"created-at": "min-created-at"})[['patient-id', 'min-created-at']] # first_bill.head(2) # Month bill rank bill_rank_month = numbered_bills.sort_values(by=['patient-id', 'bill-year', 'bill-month', 'bill-date']).copy() bill_rank_month['month-bill-rank'] = bill_rank_month.groupby( ['patient-id', 'bill-year', 'bill-month']).cumcount() + 1 # bill_rank_month.head(2) bill_rank_month_min = bill_rank_month[bill_rank_month['month-bill-rank'] == 1][ ['patient-id', 'bill-year', 'bill-month', 'bill-date', 'store-id']].rename( columns={'bill-date': 'min-bill-date-in-month', 'store-id': 'store-id-month'}) # bill_rank_month_min.head(2) pr_hd_ecom_bills = get_pr_hd_ecom_flags(db) # pr_hd_ecom_bills.head(1) doctors = get_doctor_data(db) item_drug_inv = get_item_drug_inv(db) # Measured fields item_drug_inv['total-spend'] = item_drug_inv['rate'].astype('float') * item_drug_inv['quantity'].astype('float') item_drug_inv['total-mrp-value'] = item_drug_inv['mrp'].astype('float') * item_drug_inv['quantity'].astype( 'float') item_drug_inv['total-purchase-rate-value'] = item_drug_inv['purchase-rate'].astype('float') * item_drug_inv[ 'quantity'].astype('float') item_drug_inv['total-ptr-value'] = item_drug_inv['ptr'].astype('float') * item_drug_inv[ 'quantity'].astype( 'float') # Quantity fields item_drug_inv['quantity-generic'] = np.where(item_drug_inv['drug-type'] == 'generic', item_drug_inv['quantity'], 0) item_drug_inv['quantity-goodaid'] = np.where(item_drug_inv['company'] == 'GOODAID', item_drug_inv['quantity'], 0) item_drug_inv['quantity-ethical'] = np.where(item_drug_inv['drug-type'] == 'ethical', item_drug_inv['quantity'], 0) item_drug_inv['quantity-others-type'] = np.where( ~item_drug_inv['drug-type'].isin(['generic', 'ethical']), item_drug_inv['quantity'], 0) item_drug_inv['quantity-chronic'] = np.where(item_drug_inv['drug-category'] == 'chronic', item_drug_inv['quantity'], 0) item_drug_inv['quantity-generic-chronic'] = np.where(item_drug_inv['is-generic-chronic'] == 1, item_drug_inv['quantity'], 0) item_drug_inv['quantity-repeatable'] = np.where( ((item_drug_inv['repeatability-index'] >= 80) | ( (item_drug_inv['drug-category'] == 'chronic') & ( item_drug_inv['repeatability-index'] >= 40))), item_drug_inv['quantity'], 0) # Spend columns item_drug_inv['spend-generic'] = np.where(item_drug_inv['drug-type'] == 'generic', item_drug_inv['total-spend'], 0) item_drug_inv['spend-goodaid'] = np.where(item_drug_inv['company'] == 'GOODAID', item_drug_inv['total-spend'], 0) item_drug_inv['spend-ethical'] = np.where(item_drug_inv['drug-type'] == 'ethical', item_drug_inv['total-spend'], 0) item_drug_inv['spend-others-type'] = np.where(~item_drug_inv['drug-type'].isin(['generic', 'ethical']), item_drug_inv['total-spend'], 0) # aggregation at bill level bills_level_data = item_drug_inv.groupby(['id']).agg( {'total-spend': 'sum', 'total-mrp-value': 'sum', 'total-purchase-rate-value': 'sum', 'total-ptr-value': 'sum', 'spend-generic': 'sum', 'spend-goodaid': 'sum', 'spend-ethical': 'sum', 'spend-others-type': 'sum', 'drug-id': 'nunique', 'quantity': 'sum', 'quantity-generic': 'sum', 'quantity-generic-chronic': 'sum', 'quantity-goodaid': 'sum', 'quantity-ethical': 'sum', 'quantity-others-type': 'sum', 'quantity-chronic': 'sum', 'quantity-repeatable': 'sum'}).reset_index() bills_level_data = bills_level_data.rename(columns={'drug-id': 'num-drugs', 'quantity': 'total-quantity'}) # bill is generic or not bills_level_data['is-generic'] = np.where(bills_level_data['quantity-generic'] > 0, 1, 0) # Patient is GOODAID or not bills_level_data['is-goodaid'] = np.where(bills_level_data['quantity-goodaid'] > 0, 1, 0) # Patient is ethical or not bills_level_data['is-ethical'] = np.where(bills_level_data['quantity-ethical'] > 0, 1, 0) # Patient is Others type or not bills_level_data['is-others-type'] = np.where(bills_level_data['quantity-others-type'] > 0, 1, 0) # Patient is RX or not bills_level_data['is-rx'] = np.where( (bills_level_data['quantity-generic'] + bills_level_data['quantity-ethical']) > 0, 1, 0) # Patient is chronic or not bills_level_data['is-chronic'] = np.where(bills_level_data['quantity-chronic'] > 0, 1, 0) # Patient is repeatable or not bills_level_data['is-repeatable'] = np.where(bills_level_data['quantity-repeatable'] > 0, 1, 0) bills_level_data['is-generic-chronic'] = np.where( bills_level_data['quantity-generic-chronic'] > 0, 1, 0) # ## Merging data # ### month difference data # transformed_bills = pd.DataFrame() transformed_bills = changed_bills.merge(first_bill, how='inner', on=['patient-id']) # print(transformed_bills.head(1).transpose()) transformed_bills['month-diff'] = helper.month_diff( transformed_bills['created-at'], transformed_bills['min-created-at']) transformed_bills = transformed_bills.drop(columns=['min-created-at']) # ### PR, HD flags Data transformed_bills = transformed_bills.merge(pr_hd_ecom_bills, how="left", left_on='id', right_on='id') transformed_bills.head(2) # ### Doctor Data transformed_bills = transformed_bills.merge(doctors, how="left", left_on='id', right_on='id') transformed_bills.head(2) # ### Drug and inventory data transformed_bills = transformed_bills.merge(bills_level_data, how="left", left_on='id', right_on='id') # transformed_bills.columns # ### Month bill rank transformed_bills = transformed_bills.merge(bill_rank_month[['id', 'month-bill-rank']], how='left', on=['id']) # ### Month bill rank min date transformed_bills = transformed_bills.merge( bill_rank_month_min[['patient-id', 'bill-year', 'bill-month', 'min-bill-date-in-month', 'store-id-month']], how='left', on=['patient-id', 'bill-year', 'bill-month'] ) # ### Normalise date transformed_bills['normalized-date'] = transformed_bills['created-at'].dt.date.values.astype( 'datetime64[M]').astype('datetime64[D]') transformed_bills['normalized-date'] = transformed_bills['normalized-date'].dt.date # ### Final column selection table_info = helper.get_table_info(db=db, table_name=bill_metadata_table, schema='prod2-generico') """correcting the column order""" transformed_bills = transformed_bills[table_info['column_name']] # ## Updating the data in the target table using temp table helper.drop_table(db=db, table_name=bill_metadata_table.replace('-', '_') + "_temp") """ Creating temp table """ bills1_temp = helper.create_temp_table(db=db, table=bill_metadata_table) # fillna(-1) for col in [ 'num-drugs', 'promo-code-id', 'total-quantity', 'quantity-generic', 'quantity-goodaid', "quantity-ethical", "quantity-chronic", "quantity-repeatable", "quantity-others-type" ]: transformed_bills[col] = transformed_bills[col].fillna(-1).astype('int64') # transformed_bills['num-drugs'] = transformed_bills['num-drugs'].fillna(-1).astype('int64') # transformed_bills['promo-code-id'] = transformed_bills['promo-code-id'].fillna(-1).astype('int64') # transformed_bills['total-quantity'] = transformed_bills['total-quantity'].fillna(-1).astype('int64') # transformed_bills['quantity-generic'] = transformed_bills['quantity-generic'].fillna(-1).astype('int64') # transformed_bills['quantity-goodaid'] = transformed_bills['quantity-goodaid'].fillna(-1).astype('int64') # transformed_bills["quantity-ethical"] = transformed_bills["quantity-ethical"].fillna(-1).astype('int64') # transformed_bills["quantity-chronic"] = transformed_bills["quantity-chronic"].fillna(-1).astype('int64') # transformed_bills["quantity-repeatable"] = transformed_bills["quantity-repeatable"].fillna(-1).astype('int64') # transformed_bills["quantity-others-type"] = transformed_bills["quantity-others-type"].fillna(-1).astype('int64') # fillna(0) for col in [ 'is-generic', 'is-goodaid', 'is-ethical', 'is-chronic', 'is-repeatable', 'is-others-type', 'is-rx', 'is-generic-chronic' ]: transformed_bills[col] = transformed_bills[col].fillna(0).astype('int64') # transformed_bills['is-generic'] = transformed_bills['is-generic'].fillna(0).astype('int64') # transformed_bills['is-goodaid'] = transformed_bills['is-goodaid'].fillna(0).astype('int64') # transformed_bills['is-ethical'] = transformed_bills['is-ethical'].fillna(0).astype('int64') # transformed_bills['is-chronic'] = transformed_bills['is-chronic'].fillna(0).astype('int64') # transformed_bills['is-repeatable'] = transformed_bills['is-repeatable'].fillna(0).astype('int64') # transformed_bills['is-others-type'] = transformed_bills['is-others-type'].fillna(0).astype('int64') # transformed_bills['is-rx'] = transformed_bills['is-rx'].fillna(0).astype('int64') ts = time.time() s3.write_df_to_db(df=transformed_bills, table_name=bills1_temp, db=db) print(f"total time: {time.time() - ts}") """ updating the bill metadata table """ update_target_table(db, bills1_temp) # """ mark affected patients pending """ # mark_affected_patients_pending(db, bills1_temp) def get_pending_count(db): query = f""" select count(id) from "prod2-generico"."{bill_metadata_table}" where "etl-status" = '{status['pending']}' """ db.execute(query, params=None) _pending: pd.DataFrame = db.cursor.fetch_dataframe() return _pending def main(db, s3, limit, batch_size, start_date, end_date): still_pending = True insert_new_bills(db, limit, start_date, end_date) print("insert_new_bills, done.") # get_pending_count(db) mark_old_affected_bills_also_pending(db, start_date, end_date) print("mark_old_affected_bills_also_pending done.") # get_pending_count(db) count = 1 while still_pending: mark_pending_bills_updating(db, batch_size) print("mark_pending_bills_updating done.") changed_bills = get_changed_bills(db) print("get_changed_bills done.") if isinstance(changed_bills, type(None)) or changed_bills.empty: still_pending = False print("Completed all batches.") else: process_batch(changed_bills=changed_bills, db=db, s3=s3) print(f"process_batch done: {count}.") count += 1 if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-b', '--batch_size', default=500000, type=int, required=False, help="batch size") parser.add_argument('-l', '--limit', default=None, type=int, required=False, help="Total bills to process") parser.add_argument('-sd', '--start_date', default=None, type=str, required=False) parser.add_argument('-ed', '--end_date', default=None, type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() batch_size = args.batch_size limit = args.limit # This is for new bills start_date = args.start_date end_date = args.end_date logger.info(f"env: {env}, limit: {limit}, batch_size: {batch_size}") rs_db = DB() rs_db.open_connection() _s3 = S3() """ calling the main function """ main(db=rs_db, s3=_s3, limit=limit, batch_size=batch_size, start_date=start_date, end_date=end_date) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/bills-metadata/bill_metadata.py
bill_metadata.py
import os import sys import argparse import pandas as pd import datetime as dt import numpy as np from dateutil.tz import gettz from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet from zeno_etl_libs.helper import helper def main(): s3 = S3() # Read from GSheet gs = GoogleSheet() spreadsheet_id = "1AymJanamWzBk8zZ7UrHGerVpXXaVBt-bpplyghJTD5A" ast_data = gs.download(data={ "spreadsheet_id": spreadsheet_id, "sheet_name": "Sheet1", "listedFields": []}) df_sheet = pd.DataFrame(ast_data) df_sheet.columns = [c.replace('_', '-') for c in df_sheet.columns] df_sheet['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_sheet['created-by'] = '[email protected]' df_sheet['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_sheet['updated-by'] = '[email protected]' table_info = helper.get_table_info(db=rs_db_write, table_name='dc-distributor-mapping', schema=write_schema) columns = list(table_info['column_name']) df_sheet = df_sheet[columns] # required column order s3.write_df_to_db(df=df_sheet, table_name='dc-distributor-mapping', db=rs_db_write, schema=write_schema) return None if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env read_schema = 'prod2-generico' write_schema = 'prod2-generico' rs_db = DB() rs_db_write = DB(read_only=False) # open RS connection rs_db.open_connection() rs_db_write.open_connection() """ calling the main function """ main() # close RS connection rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/distributor_ranking2/upload_gsheet_to_rs_table.py
upload_gsheet_to_rs_table.py
import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz from ast import literal_eval from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.distributor_ranking2.distributor_ranking_calc import \ ranking_calc_dc, ranking_calc_franchisee from zeno_etl_libs.utils.distributor_ranking2.tech_processing import \ process_tech_df def main(debug_mode, reset_date, time_interval_dc, time_interval_franchisee, volume_fraction, franchisee_ranking_active, franchisee_stores, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, s3, rs_db_read, rs_db_write, read_schema, write_schema): mysql_write = MySQL(read_only=False) logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' # define empty variables to return in case of fail final_ranks_franchisee = pd.DataFrame() ranked_features_franchisee = pd.DataFrame() dc_evaluated = [] franchisee_stores_evaluated = [] # ensure all weights adds upto 1 sum_all_wts = sum(list(as_ms_weights_dc_drug_lvl.values())) + \ sum(list(as_ms_weights_dc_type_lvl.values())) + \ sum(list(pr_weights_dc_drug_lvl.values())) + \ sum(list(pr_weights_dc_type_lvl.values())) + \ sum(list(weights_franchisee_drug_lvl.values())) + \ sum(list(weights_franchisee_type_lvl.values())) if sum_all_wts == 6: logger.info("All input weights add upto 1 | Continue Execution") else: logger.info("Input weights does not add upto 1 | Stop Execution") return status, reset_date, dc_evaluated, franchisee_stores_evaluated try: # calculate ranks logger.info("Calculating Zippin DC-level Ranking") ranked_features_dc, final_ranks_dc = ranking_calc_dc( reset_date, time_interval_dc, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, logger, db=rs_db_read, schema=read_schema) if franchisee_ranking_active == 'Y': logger.info("Calculating Franchisee-level Ranking") ranked_features_franchisee, \ final_ranks_franchisee = ranking_calc_franchisee( reset_date, time_interval_franchisee, franchisee_stores, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, logger, db=rs_db_read, schema=read_schema) else: logger.info("Skipping Franchisee-level Ranking") # process ranked dfs to tech required format distributor_ranking_rules, \ distributor_ranking_rule_values = process_tech_df( final_ranks_dc, final_ranks_franchisee, volume_fraction) # combine rank df and feature df (dc & franchisee) final_ranks = pd.concat([final_ranks_dc, final_ranks_franchisee], axis=0) ranked_features = pd.concat([ranked_features_dc, ranked_features_franchisee], axis=0) ranked_features.rename( {"partial_dc_id": "dc_id", "partial_distributor_id": "distributor_id", "partial_distributor_credit_period": "distributor_credit_period", "partial_distributor_name": "distributor_name"}, axis=1, inplace=True) final_ranks.rename( {"partial_dc_id": "dc_id"}, axis=1, inplace=True) # for email info dc_evaluated = distributor_ranking_rules["dc_id"].unique().tolist() franchisee_stores_evaluated = distributor_ranking_rules[ "store_id"].unique().tolist() # adding required fields in tech df distributor_ranking_rules['rule_start_date'] = reset_date distributor_ranking_rules['is_active'] = 1 distributor_ranking_rules['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') distributor_ranking_rules['created_by'] = 'etl-automation' # adding required fields in ds-internal df final_ranks.loc[:, 'reset_date'] = reset_date final_ranks['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') final_ranks['created_by'] = 'etl-automation' final_ranks['updated_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') final_ranks['updated_by'] = 'etl-automation' ranked_features.loc[:, 'reset_date'] = reset_date ranked_features['created_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ranked_features['created_by'] = 'etl-automation' ranked_features['updated_at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ranked_features['updated_by'] = 'etl-automation' # formatting column names distributor_ranking_rule_values.columns = [c.replace('_', '-') for c in distributor_ranking_rule_values.columns] distributor_ranking_rules.columns = [c.replace('_', '-') for c in distributor_ranking_rules.columns] final_ranks.columns = [c.replace('_', '-') for c in final_ranks.columns] ranked_features.columns = [c.replace('_', '-') for c in ranked_features.columns] if debug_mode == 'N': logger.info("Writing table to RS-DB") logger.info("Writing to table: distributor-ranking2-features") table_info = helper.get_table_info(db=rs_db_write, table_name='distributor-ranking2-features', schema=write_schema) columns = list(table_info['column_name']) ranked_features = ranked_features[columns] # required column order s3.write_df_to_db(df=ranked_features, table_name='distributor-ranking2-features', db=rs_db_write, schema=write_schema) logger.info("Writing to table: distributor-ranking2-final-ranks") table_info = helper.get_table_info(db=rs_db_write, table_name='distributor-ranking2-final-ranks', schema=write_schema) columns = list(table_info['column_name']) final_ranks = final_ranks[columns] # required column order s3.write_df_to_db(df=final_ranks, table_name='distributor-ranking2-final-ranks', db=rs_db_write, schema=write_schema) logger.info("Writing table to RS-DB completed!") mysql_write.open_connection() logger.info("Updating table to MySQL") try: index_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rules`', con=mysql_write.connection).values[0]) + 1 redundant_increment = int( pd.read_sql( 'select max(id) from `distributor-ranking-rule-values`', con=mysql_write.connection).values[0]) + 1 except: index_increment = 1 redundant_increment = 1 logger.info(f"Incremented distributor-ranking-rules by {index_increment}") logger.info(f"Incremented distributor-ranking-rule-values by {redundant_increment}") distributor_ranking_rules['id'] = distributor_ranking_rules['id'] + index_increment distributor_ranking_rule_values['distributor-ranking-rule-id'] = distributor_ranking_rule_values[ 'distributor-ranking-rule-id'] + index_increment distributor_ranking_rule_values['id'] = distributor_ranking_rule_values['id'] + redundant_increment logger.info("Setting existing rules to inactive") mysql_write.engine.execute("UPDATE `distributor-ranking-rules` SET `is-active` = 0") # mysql_write.engine.execute("SET FOREIGN_KEY_CHECKS=0") # use only in staging logger.info("Writing to table: distributor-ranking-rules") distributor_ranking_rules.to_sql( name='distributor-ranking-rules', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) logger.info("Writing to table: distributor-ranking-rule-values") distributor_ranking_rule_values.to_sql( name='distributor-ranking-rule-values', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=10000) # mysql_write.engine.execute("SET FOREIGN_KEY_CHECKS=1") # use only in staging logger.info("Updating table to MySQL completed!") mysql_write.close() else: logger.info("Writing to RS-DB & MySQL skipped") status = 'Success' logger.info(f"Distributor Ranking code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"Distributor Ranking code execution status: {status}") return status, reset_date, dc_evaluated, franchisee_stores_evaluated if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="N", type=str, required=False) parser.add_argument('-rd', '--reset_date', default="YYYY-MM-DD", type=str, required=False) parser.add_argument('-ti', '--time_interval_dc', default=90, type=int, required=False) parser.add_argument('-tif', '--time_interval_franchisee', default=180, type=int, required=False) parser.add_argument('-vf', '--volume_fraction', default="0.5-0.3-0.2", type=str, required=False) parser.add_argument('-fra', '--franchisee_ranking_active', default="Y", type=str, required=False) parser.add_argument('-fs', '--franchisee_stores', default=[319, 320], nargs='+', type=int, required=False) parser.add_argument('-amwdcdl', '--as_ms_weights_dc_drug_lvl', default="{'margin':0.5,'ff':0.5}", type=str, required=False) parser.add_argument('-amwdctl', '--as_ms_weights_dc_type_lvl', default="{'margin':0.3,'ff':0.3, 'portfolio_size':0.4}", type=str, required=False) parser.add_argument('-prwdcdl', '--pr_weights_dc_drug_lvl', default="{'margin':0.4,'ff':0.6}", type=str, required=False) parser.add_argument('-prwdctl', '--pr_weights_dc_type_lvl', default="{'margin':0.2,'ff':0.4, 'portfolio_size':0.4}", type=str, required=False) parser.add_argument('-wfdl', '--weights_franchisee_drug_lvl', default="{'margin':0.5,'ff':0.5}", type=str, required=False) parser.add_argument('-wftl', '--weights_franchisee_type_lvl', default="{'margin':0.3,'ff':0.3, 'portfolio_size':0.4}", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to # JOB EXCLUSIVE PARAMS debug_mode = args.debug_mode reset_date = args.reset_date time_interval_dc = args.time_interval_dc time_interval_franchisee = args.time_interval_franchisee volume_fraction = args.volume_fraction franchisee_ranking_active = args.franchisee_ranking_active franchisee_stores = args.franchisee_stores as_ms_weights_dc_drug_lvl = args.as_ms_weights_dc_drug_lvl as_ms_weights_dc_type_lvl = args.as_ms_weights_dc_type_lvl pr_weights_dc_drug_lvl = args.pr_weights_dc_drug_lvl pr_weights_dc_type_lvl = args.pr_weights_dc_type_lvl weights_franchisee_drug_lvl = args.weights_franchisee_drug_lvl weights_franchisee_type_lvl = args.weights_franchisee_type_lvl # EVALUATE REQUIRED JSON PARAMS as_ms_weights_dc_drug_lvl = literal_eval(as_ms_weights_dc_drug_lvl) as_ms_weights_dc_type_lvl = literal_eval(as_ms_weights_dc_type_lvl) pr_weights_dc_drug_lvl = literal_eval(pr_weights_dc_drug_lvl) pr_weights_dc_type_lvl = literal_eval(pr_weights_dc_type_lvl) weights_franchisee_drug_lvl = literal_eval(weights_franchisee_drug_lvl) weights_franchisee_type_lvl = literal_eval(weights_franchisee_type_lvl) if reset_date == 'YYYY-MM-DD': reset_date = dt.date.today() else: reset_date = dt.datetime.strptime(reset_date, "%Y-%m-%d").date() logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() """ calling the main function """ status, reset_date, dc_evaluated, \ franchisee_stores_evaluated = main( debug_mode, reset_date, time_interval_dc, time_interval_franchisee, volume_fraction, franchisee_ranking_active, franchisee_stores, as_ms_weights_dc_drug_lvl, as_ms_weights_dc_type_lvl, pr_weights_dc_drug_lvl, pr_weights_dc_type_lvl, weights_franchisee_drug_lvl, weights_franchisee_type_lvl, s3, rs_db_read, rs_db_write, read_schema, write_schema) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"Distributor Ranking 2.0 Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} DC's Evaluated: {dc_evaluated} Franchisee Stores Evaluated: {franchisee_stores_evaluated} Job Params: {args} """, to_emails=email_to) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/distributor_ranking2/distributor_ranking2_main.py
distributor_ranking2_main.py
import argparse import sys sys.path.append('../../../..') import os from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "group-activation" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "created-by", "created-at", "updated-by", "updated-at", "store-id", "group", "system-first-inv-date", "system-first-bill-date", "store-first-inv-date", "store-first-bill-date") select 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", c."store-id" as "store-id", d1."group" as "group", max(y.system_first_inv_date) as "system-first-inv-date", max(y.system_first_bill_date) as "system-first-bill-date", MIN(c."created-at") as "store-first-inv-date", MIN(b."created-at") as "store-first-bill-date" from "prod2-generico"."inventory-1" c left join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" left join "prod2-generico"."bills-1" b on b."id" = a."bill-id" left join "prod2-generico"."drugs" d on d."id" = c."drug-id" left join "prod2-generico"."drug-unique-composition-mapping" d1 on c."drug-id" = d1."drug-id" left join ( select d1."group", MIN(b."created-at") as "system_first_bill_date", MIN(c."created-at") as "system_first_inv_date" from "prod2-generico"."inventory-1" c left join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" left join "prod2-generico"."bills-1" b on b."id" = a."bill-id" left join "prod2-generico"."drugs" d on d."id" = c."drug-id" left join "prod2-generico"."drug-unique-composition-mapping" d1 on c."drug-id" = d1."drug-id" where d1."group" is not null and d."company-id" = 6984 group by d1."group" ) as y on d1."group" = y."group" where d1."group" is not null and d."company-id" = 6984 group by c."store-id", d1."group"; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."composition-activation"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/group-activation/group-activation.py
group-activation.py
import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email def main(debug_mode, db_read, db_write, read_schema, write_schema, s3, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' try: # previous day taken to remove the day on which code is run. # start_date is the date from which analysis begins. start_date is previous day - 28*4 days # store cutoff date put as same as that of start_date # period between (previous_day) & (previous_day - 28*4days) previous_day = (dt.date.today() - pd.DateOffset(days=1)) # start analysis from the previous day. start_date = pd.to_datetime( (previous_day - pd.DateOffset(days=4 * 28)).strftime('%Y-%m-%d')) store_date_cutoff = pd.to_datetime( (previous_day - pd.DateOffset(days=4 * 28)).strftime('%Y-%m-%d')) logger.info("Corrections ran for dates {0} to {1}".format( start_date.strftime('%Y-%m-%d'), previous_day.strftime('%Y-%m-%d'))) # remove stores opened before start_date (i.e. four months from previous_day). Q_STORE = """ select id as "store-id", "opened-at" from "{read_schema}".stores where "opened-at" <= '{store_date_cutoff}' and "opened-at" != '0101-01-01 00:00:00' """.format(read_schema=read_schema, store_date_cutoff=store_date_cutoff) df_stores = pull_data(Q_STORE, db_read) store_filter = tuple(df_stores['store_id'].to_list()) logger.info("Total stores considered for corrections: {0} ".format(len(store_filter))) # pull sales data with store filter between start_date and previous day. Q_REF = """ select "store-id" , "drug-id" from "{read_schema}".sales where date("created-at") >= date('{start_date}') and date("created-at") <= date('{end_date}') and "store-id" in {store_filter} group by "store-id" , "drug-id" """.format(read_schema=read_schema, start_date=start_date, end_date=previous_day, store_filter=store_filter) df_ref = pull_data(Q_REF, db_read) logger.info("Calculating probability matrix for store-drugs") # matrix_111 contains list of 111 drugs in current bucket matrix, matrix_111, probability_matrix_1, probability_matrix_2 = calculate_probabilities(df_ref, db_read, read_schema) probability_matrix_1['historical_flag_ma_less_than_2'] = 1 probability_matrix_2['historical_flag_ma_less_than_2'] = 0 probability_matrix = pd.concat([probability_matrix_1, probability_matrix_2]) # ensure dtypes to prevent write errors matrix = matrix.dropna(subset=['store_id', 'drug_id']) matrix_111 = matrix_111.dropna(subset=['store_id', 'drug_id']) matrix['store_id'] = matrix['store_id'].astype(int) matrix['drug_id'] = matrix['drug_id'].astype(int) matrix_111['store_id'] = matrix_111['store_id'].astype(int) matrix_111['drug_id'] = matrix_111['drug_id'].astype(int) # formatting and adding required fields for RS-DB write matrix.columns = [c.replace('_', '-') for c in matrix.columns] matrix_111.columns = [c.replace('_', '-') for c in matrix_111.columns] probability_matrix.columns = [c.replace('_', '-') for c in probability_matrix.columns] logger.info("Formatting table for RS-DB write") matrix['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') matrix['created-by'] = 'etl-automation' matrix['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') matrix['updated-by'] = 'etl-automation' matrix_111['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') matrix_111['created-by'] = 'etl-automation' matrix_111['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') matrix_111['updated-by'] = 'etl-automation' probability_matrix['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') probability_matrix['created-by'] = 'etl-automation' probability_matrix['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') probability_matrix['updated-by'] = 'etl-automation' if debug_mode == 'N': logger.info(f"Truncating ipc-corrections-rest-cases in {write_schema}") truncate_query = f""" truncate table "{write_schema}"."ipc-corrections-rest-cases" """ db_write.execute(truncate_query) logger.info(f"Truncating ipc-corrections-111-cases in {write_schema}") truncate_query = f""" truncate table "{write_schema}"."ipc-corrections-111-cases" """ db_write.execute(truncate_query) logger.info(f"Truncating ipc-corrections-probability-matrix in {write_schema}") truncate_query = f""" truncate table "{write_schema}"."ipc-corrections-probability-matrix" """ db_write.execute(truncate_query) logger.info("Writing table to RS-DB") logger.info("Writing to table: ipc-corrections-rest-cases") s3.write_df_to_db(df=matrix, table_name='ipc-corrections-rest-cases', db=db_write, schema=write_schema) logger.info("Writing to table: ipc-corrections-111-cases") s3.write_df_to_db(df=matrix_111, table_name='ipc-corrections-111-cases', db=db_write, schema=write_schema) logger.info("Writing to table: ipc-corrections-probability-matrix") s3.write_df_to_db(df=probability_matrix, table_name='ipc-corrections-probability-matrix', db=db_write, schema=write_schema) logger.info("Writing table to RS-DB completed!") else: logger.info("Writing to RS-DB skipped") status = 'Success' except Exception as error: logger.exception(error) return status # ======================= SQL QUERIES ======================= Q_REPEATABLE = """ SELECT id AS "drug-id", CASE WHEN (category ='chronic' AND "repeatability-index">=40) OR ("repeatability-index">=80) THEN 1 ELSE 0 END AS "is-repeatable" FROM "{schema}".drugs """ Q_CURRENT_INV_AND_PTR = """ SELECT "drug-id", "store-id", avg(ptr) AS "avg-ptr", SUM("locked-quantity"+quantity+"locked-for-audit"+"locked-for-transfer" +"locked-for-check"+"locked-for-return") AS "current-inventory" FROM "{schema}"."inventory-1" GROUP BY "store-id", "drug-id" """ Q_SOLD_QUANTITY = """ select "store-id", "drug-id", date("created-at") as "created-at", sum(quantity) as "total-sales-quantity" from "{schema}".sales where quantity > 0 and date("created-at") >= date('{start_date}') and date("created-at") <= date('{end_date}') group by "store-id", "drug-id", "created-at" """ Q_MAX = """ SELECT "store-id", "drug-id", "max" FROM "{schema}"."drug-order-info" """ Q_COMPOSITION = """ SELECT id AS "drug-id", composition FROM "{schema}".drugs """ # ======================= HELPER FUNCTIONS ======================= def pull_data(query, db): df = db.get_df(query) df.columns = [c.replace('-', '_') for c in df.columns] return df def divide_time(df, start_date, end_date): ''' Adds 28 days bucket label to df for later pivot table division. quantity0 for last month, quantity3 for the oldest month.''' df['created_at'] = pd.to_datetime(df['created_at']) df = df[df['created_at'] >= start_date] df['divide_time'] = 999 # a proxy for removing possible errors for i in range(4): date1 = end_date - pd.DateOffset(days=i * 28) date2 = end_date - pd.DateOffset(days=(i + 1) * 28) df['divide_time'] = np.where(((df['created_at'] <= date1) & (df['created_at'] > date2)), 'quantity' + str(i), df['divide_time']) df = df[df['divide_time'] != '999'] #possible errors removed. return df def make_flags(df, db, schema, metric): ''' Add quantity0, quantity1, quantity2, quantity3 flags. ''' end_date = dt.date.today() - pd.DateOffset(days=1) start_date = (end_date - pd.DateOffset(days=(4 * 28))).strftime('%Y-%m-%d') end_date = pd.to_datetime(end_date) start_date = pd.to_datetime(start_date) q = Q_SOLD_QUANTITY.format(schema=schema, start_date=start_date, end_date=end_date) df_flags = pull_data(q, db) flags = divide_time(df_flags, start_date=start_date, end_date=end_date) flags = flags.pivot_table(metric, index=['store_id', 'drug_id'], columns='divide_time', aggfunc=np.sum).fillna(0) flags = flags.reset_index() df = pd.merge(df, flags, how='left', on=['store_id', 'drug_id'], validate='one_to_one').fillna(0) return df def append_binary_tags(df, buckets): ''' convert quantity sold/comp sold into binary tags''' for x in buckets: df[x + '_b'] = np.where(df[x] > 0, 1, 0) return df def output_comps(df, comp_buckets, i): '''Looks at number of times substitute composition is sold in the four buckets -1 is appended for drugs for which composition that don't exist.''' df_comp = df.copy() df_comp['total_months_comp_sold_'+str(i)] = 0 for x in comp_buckets: df_comp['total_months_comp_sold_'+str(i)] = df_comp['total_months_comp_sold_'+str(i)] + df_comp[x] print('columns used to create total_comp_sold are:', comp_buckets) df_comp = df_comp[['store_id', 'composition', 'total_months_comp_sold_'+str(i)]] df_comp.loc[((df_comp['composition'] == 'Doesnt exist') | (df_comp['composition'] == '') | ( df_comp['composition'] == '(mg)')), 'total_months_comp_sold_'+str(i)] = -1 df_comp['total_months_comp_sold_'+str(i)] = df_comp['total_months_comp_sold_'+str(i)].astype(int) return df_comp def add_features(df, db, schema): ''' add features like repeatable(1 or 0), composition sold (-1,0,1,2,3), current_inv and ptr, max values ''' # merge all features here # add max values here df_max = pull_data(Q_MAX.format(schema=schema), db)[['store_id', 'drug_id', 'max']] df = pd.merge(df, df_max, on=['store_id', 'drug_id'], how='left', validate='one_to_one') df = df.dropna() # removing drugs with no entry for max values. # add average ptr and current inventory here df_current_inv_ptr = pull_data(Q_CURRENT_INV_AND_PTR.format(schema=schema), db)[['store_id', 'drug_id', 'avg_ptr', 'current_inventory']] df_current_inv_ptr['avg_ptr'] = df_current_inv_ptr['avg_ptr'].astype(float) df = pd.merge(df, df_current_inv_ptr, on=['store_id', 'drug_id'], how='left', validate='one_to_one') df = df.fillna(0) #fixing na values for ptr and current inventory # merge repeatability here df_repeatable = pull_data(Q_REPEATABLE.format(schema=schema), db) df = pd.merge(df, df_repeatable, on=['drug_id'], how='left', validate='many_to_one') # merge composition here. two entries for compostion are made. # 1 is for total historical composition sold. 2 is for total current composition sold. df_composition = pull_data(Q_COMPOSITION.format(schema=schema), db) df_composition['composition'] = df_composition['composition'].fillna('Doesnt exist') df_composition.loc[((df_composition['composition'] == '') | ( df_composition['composition'] == '(mg)')), 'composition'] = 'Doesnt exist' df = pd.merge(df, df_composition, on=['drug_id'], how='left', validate='many_to_one') df_comp = df.groupby(['store_id', 'composition']).sum().reset_index()[['store_id', 'composition', 'quantity0', 'quantity1', 'quantity2', 'quantity3']].rename(columns={'quantity0':'comp_quantity0', 'quantity1':'comp_quantity1', 'quantity2':'comp_quantity2', 'quantity3':'comp_quantity3'}) df_comp = append_binary_tags(df_comp, buckets=['comp_quantity0', 'comp_quantity1', 'comp_quantity2', 'comp_quantity3']) df_comp_1 = output_comps(df_comp.copy(), comp_buckets=['comp_quantity1_b', 'comp_quantity2_b', 'comp_quantity3_b'], i=1) df = pd.merge(df, df_comp_1, on=['store_id', 'composition'], how='left', validate='many_to_one') df_comp_2 = output_comps(df_comp.copy(), comp_buckets=['comp_quantity0_b', 'comp_quantity1_b', 'comp_quantity2_b'], i=2) df = pd.merge(df, df_comp_2, on=['store_id', 'composition'], how='left', validate='many_to_one') return df def add_filters(df): ''' remove 000 and 111 before passing to probability matrix for drugs bucketwise''' df = df[~(df['historical_bucket'].str.endswith('000'))] df = df[~(df['historical_bucket'].str.endswith('111'))] return df def add_bucket(df, buckets, name): ''' make buckets is_repeatable + total_comp_sold + quantity0 + quantity1+quantity2''' df_bucket = df.copy() print('columns to create final buckets are:', buckets) df_bucket[name] = '' # only _b wale are considered. Is_repeatable etc. are all for x in buckets: df_bucket[x] = df_bucket[x].map(int) df_bucket[name] = df_bucket[name] + df_bucket[x].map(str) df[name] = df_bucket[name] return df_bucket def build_probability_matrix(dfi): ''' build cumulative probability matrix. quantity0 means last month quantity sold''' df = dfi.copy() df['sold_analysis_month_flag'] = np.where(df['quantity0'] > 0, 1, 0) df = df.groupby(['historical_bucket'], as_index=False).agg({'sold_analysis_month_flag': 'mean', 'drug_id': 'count'}) df.rename({'sold_analysis_month_flag': 'selling_probability', 'drug_id': 'total_drugs_in_bucket'}, axis=1, inplace=True) df = df.sort_values(by=['selling_probability'], ascending=False) df['sold_cumm'] = (df['selling_probability'] * df['total_drugs_in_bucket']).cumsum() df['total_cumm'] = (df['total_drugs_in_bucket']).cumsum() #cumulative number of total drugs df['cumm_prob'] = df['sold_cumm'] / df['total_cumm'] #cummulative probability = sold_cumm/total cummulative drugs df = df.drop(columns=['total_drugs_in_bucket', 'sold_cumm', 'total_cumm'], axis=1) return df def calculate_probabilities(df, db, schema): ''' calculate probabilties for buckets in order as follows 1. is_repeatable. 2. total_months composition sold (i.e. -1,1,2,3).-1 means composition doesn't exist 3. quantity0 is previous month. quantity4 is oldest month: 3.1 previous month - 0 3.2 two months ago - 1 3.3 three months ago - 2 3.4 four months ago - 3 -- 3,2,1 are historical months -- 2,1,0 are current months --make flags: adds quantity sold for each month. --append_binary_tags converts quantity sold into binary tags (1 or 0) -- add features: appends repeatability, total number of times composition is sold, current inv and ptr, original max values -- add bucket: appends bucket in the order of features it is supplied with. -- add filters removes drugs which aren't used while building the probability matrix (removed 000 and 111 cases from historical) -- build probability matrix calculates the final probabilities ''' df = make_flags(df.copy(), db, schema, metric='total_sales_quantity') df = append_binary_tags(df, buckets=['quantity0', 'quantity1', 'quantity2', 'quantity3']) df = add_features(df.copy(), db, schema) df = add_bucket(df.copy(), buckets=['is_repeatable', 'total_months_comp_sold_1', 'quantity3_b', 'quantity2_b', 'quantity1_b'], name='historical_bucket') df = add_bucket(df.copy(), buckets=['is_repeatable', 'total_months_comp_sold_2', 'quantity2_b', 'quantity1_b', 'quantity0_b'], name='current_bucket') #add moving average for last 3 months and current 3 months df['current_ma_3_months'] = (df['quantity0'] + df['quantity1'] + df['quantity2']) / 3 df['historical_ma_3_months'] = (df['quantity1'] + df['quantity2'] + df['quantity3']) / 3 #make separation between moving average less than 2 and greater than 2 based on moving average of historical months. (month3, month2,month1) df['historical_flag_ma_less_than_2'] = np.where(df['historical_ma_3_months'] < 2, 1, 0) df['historical_flag_ma_greater_than_5'] = np.where(df['historical_ma_3_months'] > 5, 1, 0) df['current_flag_ma_less_than_2'] = np.where(df['current_ma_3_months'] < 2, 1, 0) #1 is for ma less than 2. #2 is for ma greater than 2 hist_df1 = df[df['historical_flag_ma_less_than_2'] == 1] hist_df2 = df[((df['historical_flag_ma_less_than_2'] == 0) & (df['historical_flag_ma_greater_than_5'] == 0))] # this would remove 000 and 111 drugs before removing historical buckets. # Done separately because some buckets in historical might be 111 which are not 111 in current bucket hist_df1 = add_filters(hist_df1) hist_df2 = add_filters(hist_df2) probability_matrix_1 = build_probability_matrix(hist_df1) probability_matrix_2 = build_probability_matrix(hist_df2) #drugs which are 111 and 000 in current buckets are removed.' df_eligible = df[~((df['current_bucket'].str.endswith('000')) | (df['current_bucket'].str.endswith('111')))] df_eligible_1 = df_eligible[(df_eligible['current_flag_ma_less_than_2'] == 1)] df_eligible_2 = df_eligible[(df_eligible['current_flag_ma_less_than_2'] == 0)] df_eligible_1 = df_eligible_1.drop(['historical_bucket'], axis=1) df_eligible_2 = df_eligible_2.drop(['historical_bucket'], axis=1) #mapping historical bucket probabilites onto current buckets df_eligible_1 = pd.merge(df_eligible_1, probability_matrix_1, how='left', left_on=['current_bucket'], right_on=['historical_bucket'], validate='many_to_one') df_eligible_2 = pd.merge(df_eligible_2, probability_matrix_2, how='left', left_on=['current_bucket'], right_on=['historical_bucket'], validate='many_to_one') matrix = pd.concat([df_eligible_1, df_eligible_2]) # add relevant variables matrix['corrected_max'] = np.where(matrix['max'] != 0, matrix['max'], np.round(matrix['current_ma_3_months'])) matrix['corrected_max'] = np.where(matrix['current_flag_ma_less_than_2'] == 1, 1, # put default value of MA<2 as 1. matrix['corrected_max']) matrix['inv_impact'] = np.where(matrix['current_inventory'] >= matrix['corrected_max'], 0, (matrix['corrected_max'] - matrix['current_inventory']) * matrix['avg_ptr']) matrix['max_impact'] = matrix['corrected_max'] * matrix['avg_ptr'] matrix['cumm_prob'] = np.round(matrix['cumm_prob'], 2) matrix['selling_probability'] = np.round(matrix['selling_probability'], 2) matrix = matrix[['store_id', 'drug_id', 'composition', 'max', 'avg_ptr', 'current_inventory', 'current_ma_3_months', 'is_repeatable', 'total_months_comp_sold_2', 'quantity2', 'quantity1', 'quantity0', 'current_bucket', 'current_flag_ma_less_than_2', 'selling_probability', 'cumm_prob', 'corrected_max', 'inv_impact', 'max_impact']] #separating 111 for further analysis. matrix_111 = df[df['current_bucket'].str.endswith('111')][['store_id', 'drug_id','composition','avg_ptr', 'current_inventory', 'quantity0', 'quantity1', 'quantity2', 'max', 'current_ma_3_months']] matrix_111['corrected_max'] = np.where(matrix_111['max'] == 0, np.round(matrix_111['current_ma_3_months']), matrix_111['max']) matrix_111['inv_impact'] = np.where(matrix_111['current_inventory'] >= matrix_111['corrected_max'], 0, (matrix_111['corrected_max'] - matrix_111['current_inventory']) * matrix_111['avg_ptr']) matrix_111['max_impact'] = matrix_111['corrected_max'] * matrix_111['avg_ptr'] # quantity0 is prev month. quantity1 is two months ago and so on. matrix = matrix.rename(columns={"quantity0": "quantity_sold_0", "quantity1": "quantity_sold_1", "quantity2": "quantity_sold_2", "quantity3": "quantity_sold_3", 'max': 'original_max', 'is_repeatable': 'bucket_flag_is_repeatable', 'total_months_comp_sold_2': 'bucket_flag_total_months_comp_sold', 'quantity0_b': 'bucket_flag_quantity0_b', 'quantity1_b': 'bucket_flag_quantity1_b', 'quantity2_b': 'bucket_flag_quantity2_b', 'quantity3_b': 'bucket_flag_quantity3_b' }) matrix_111 = matrix_111.rename(columns={"quantity0": "quantity_sold_0", "quantity1": "quantity_sold_1", "quantity2": "quantity_sold_2", 'current_ma_3_months':"ma_3_months", "max":"original_max"}) return matrix, matrix_111, probability_matrix_1, probability_matrix_2 if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="Y", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() """ calling the main function """ status = main(debug_mode, rs_db_read, rs_db_write, read_schema, write_schema, s3, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() reset_date = dt.date.today().strftime("%Y-%m-%d") email.send_email_file( subject=f"IPC V3 Corrections Matrix (GLUE-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Job Params: {args} """, to_emails=email_to) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ipc_correction_matrix/probability_matrix_main.py
probability_matrix_main.py
import argparse import sys import os import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, MySQL parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-mtp', '--main_table_prefix', default="NA", type=str, required=False) parser.add_argument('-ttp', '--temp_table_prefix', default="pre", type=str, required=False) parser.add_argument('-bs', '--batch_size', default=25000, type=int, required=False) parser.add_argument('-td', '--total_drugs', default=125000, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env batch_size = args.batch_size total_drugs = args.total_drugs main_table_prefix = args.main_table_prefix temp_table_prefix = f"-{args.temp_table_prefix}" main_table_prefix = "" if main_table_prefix == "NA" else main_table_prefix os.environ['env'] = env logger = get_logger() table_name = "drug-unique-composition-mapping" """ Setting the schema name as per the env """ if env == "dev": ms_source_schema = "test-generico" elif env == "stage": ms_source_schema = "test-generico" elif env == "prod": ms_source_schema = "prod2-generico" else: raise Exception("Set the env first!") # rs_source_schema = "test-generico" if env == "stage" else "prod2-generico" # ms_source_schema = "test-generico" if env == "stage" else "prod2-generico" ms_target_schema = ms_source_schema temp_table_name = f"`{ms_target_schema}`.`{table_name}{temp_table_prefix}`" main_table_name = f"`{ms_target_schema}`.`{table_name}{main_table_prefix}`" logger.info(f"temp_table_name: {temp_table_name}") logger.info(f"main_table_name: {main_table_name}") def get_drug_groups_mysql(mysql_read_db, discard_na_mol_drugs=False, batch=1, batch_size=10000): """ if discard_na_mol_drugs = False --> Considers the strengths as 0(zero) for unit-type 'NA' molecules if discard_na_mol_drugs = True --> Discards the drugs from substitution logic all together where unit-type of one or many molecule is 'NA' """ # this filter to discard drugs, which have one or many molecule unit-type as 'NA' filter_na_mol_drugs = "" if discard_na_mol_drugs: filter_na_mol_drugs = f""" where d.`composition-master-id` not in ( select DISTINCT `composition-master-id` from `{ms_source_schema}`.`composition-master-molecules-master-mapping` where (`unit-type-value` = '' or `unit-type` = 'NA')) """ query = f""" SELECT `drug-id`, GROUP_CONCAT(DISTINCT `molecule-combination` ORDER BY `molecule-combination`) as combination, md5(GROUP_CONCAT(DISTINCT `molecule-combination` ORDER BY `molecule-combination`)) as `group` from ( SELECT `drug-id`, CONCAT(' name_or_group:' , dm.`molecule-group-or-name` , ' strength:' , dm.`unit-type-value` , dm.`unit-type`) as "molecule-combination" from ( select d.id as `drug-id`, case when (mm.`molecule-group` = '' or mm.`molecule-group` is null) then mm.id else mm.`molecule-group` end as `molecule-group-or-name`, case when cmmmm.`unit-type-value` = '' then 0 else cmmmm.`unit-type-value` end as `unit-type-value`, cmmmm.`unit-type` from `{ms_source_schema}`.drugs d inner join `{ms_source_schema}`.`composition-master-molecules-master-mapping` cmmmm on d.`composition-master-id` = cmmmm.`composition-master-id` inner join `{ms_source_schema}`.`molecule-master` mm on mm.id = cmmmm.`molecule-master-id` {filter_na_mol_drugs} ) dm ) a group by a.`drug-id` order by a.`drug-id` LIMIT {batch_size} OFFSET {(batch - 1) * batch_size}; """ logger.info(f"query to get the data: {query}") df = pd.read_sql_query(con=mysql_read_db.connection, sql=query) return df mysql_write_db = MySQL(read_only=False) mysql_write_db.open_connection() # Truncate the temp table before starting query = f""" delete from {temp_table_name};""" mysql_write_db.engine.execute(query) logger.info(f"deleted from temp table, query: {query}") # drug_group_df = get_drug_groups_redshift() # drug_group_df = get_drug_groups_mysql(discard_na_mol_drugs=False) # to discard NA moles drugs drug_group_df = pd.DataFrame() mysql_read_db = MySQL() mysql_read_db.open_connection() # query = "SELECT count(id) as `drug-count` FROM `{ms_source_schema}`.drugs " # c_df = pd.read_sql_query(con=mysql_read_db.connection, sql=query) # total_drugs = 125000 for i in range(1, round(total_drugs / batch_size) + 1): temp_df = get_drug_groups_mysql(mysql_read_db=mysql_read_db, discard_na_mol_drugs=False, batch=i, batch_size=batch_size) # to consider NA moles drugs drug_group_df = pd.concat([drug_group_df, temp_df]) logger.info(f"fetched batch: {i}") mysql_read_db.close() total_count = len(drug_group_df) logger.info(f"Total drug count: {total_count}") # store the data in the temp table drug_group_df.to_sql( con=mysql_write_db.engine, name=f"{table_name}{temp_table_prefix}", schema=ms_target_schema, if_exists="append", chunksize=500, index=False) # # Delete the data from temp table which is already present in main table # query = f""" DELETE FROM t1 USING {temp_table_name} t1 INNER JOIN {main_table_name} t2 ON # ( t1.`drug-id` = t2.`drug-id` and t1.group = t2.group); """ # # response = mysql_write_db.engine.execute(query) # present_correct_count = response.rowcount # logger.info(f"Correct drug-ids count: {present_correct_count}") # # # Delete the incorrect substitutes from main table # query = f""" DELETE FROM t1 USING {main_table_name} t1 INNER JOIN {temp_table_name} t2 ON # ( t1.`drug-id` = t2.`drug-id` );""" # # response = mysql_write_db.engine.execute(query) # present_incorrect_count = response.rowcount # logger.info(f"Incorrect drug-ids count: {present_incorrect_count}") logger.info("Delete main table: start") # Method 2: delete all the records from main and refill # query = f""" delete from {main_table_name};""" mysql_write_db.engine.execute(query) # Now Insert the records in main table query = f""" INSERT INTO {main_table_name} (`drug-id`, `combination`, `group`) SELECT `drug-id`, `combination`, `group` FROM {temp_table_name} """ response = mysql_write_db.engine.execute(query) new_insert_count = response.rowcount logger.info(f"Insert/Update drug-ids count: {new_insert_count}") mysql_write_db.close() # if total_count == present_correct_count + new_insert_count: # logger.info("Drug substitute data updated successfully") # else: # raise Exception("Data count mismatch")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/drug-substitution-mapping/drug-unique-composition-mapping.py
drug-unique-composition-mapping.py
import argparse import datetime import os import sys import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import MySQL from zeno_etl_libs.helper.aws.s3 import S3 parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-mtp', '--main_table_prefix', default="NA", type=str, required=False) parser.add_argument('-ttp', '--temp_table_prefix', default="pre", type=str, required=False) parser.add_argument('-bs', '--batch_size', default=10000, type=int, required=False) parser.add_argument('-td', '--total_drugs', default=100000, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env batch_size = args.batch_size total_drugs = args.total_drugs main_table_prefix = args.main_table_prefix temp_table_prefix = f"-{args.temp_table_prefix}" main_table_prefix = "" if main_table_prefix == "NA" else main_table_prefix os.environ['env'] = env logger = get_logger() table_name = "drug-substitution-mapping" """ Setting the schema name as per the env """ if env == "dev": ms_source_schema = "test-generico" elif env == "stage": ms_source_schema = "test-generico" elif env == "prod": ms_source_schema = "prod2-generico" else: raise Exception("Set the env first!") # rs_source_schema = "test-generico" if env == "stage" else "prod2-generico" # ms_source_schema = "test-generico" if env == "stage" else "prod2-generico" ms_target_schema = ms_source_schema temp_table_name = f"`{ms_target_schema}`.`{table_name}{temp_table_prefix}`" main_table_name = f"`{ms_target_schema}`.`{table_name}{main_table_prefix}`" logger.info(f"temp_table_name: {temp_table_name}") logger.info(f"main_table_name: {main_table_name}") def get_drug_groups_mysql(mysql_read_db, discard_na_mol_drugs=False, batch=1, batch_size=10000): """ if discard_na_mol_drugs = False --> Considers the strengths as 0(zero) for unit-type 'NA' molecules if discard_na_mol_drugs = True --> Discards the drugs from substitution logic all together where unit-type of one or many molecule is 'NA' """ # this filter to discard drugs, which have one or many molecule unit-type as 'NA' filter_na_mol_drugs = "" if discard_na_mol_drugs: filter_na_mol_drugs = f""" where d.`composition-master-id` not in ( select DISTINCT `composition-master-id` from `{ms_source_schema}`.`composition-master-molecules-master-mapping` where (`unit-type-value` = '' or `unit-type` = 'NA') ) """ query = f""" SELECT `drug-id`, GROUP_CONCAT(DISTINCT `molecule-combination` ORDER BY `molecule-combination`) as combination, md5(GROUP_CONCAT(DISTINCT `molecule-combination`)) as `group` from ( SELECT `drug-id`, CONCAT(' name_or_group:' , dm.`molecule-group-or-name` , ' strength:' , dm.`strength-in-smallest-unit` , dm.`smallest-unit` , ' release-pattern:' , `release-pattern-group` , ' available-in:' , `available-in-group`) as "molecule-combination" from ( select d.id as `drug-id`, case when (mm.`molecule-group` = '' or mm.`molecule-group` is null) then mm.id else mm.`molecule-group` end as `molecule-group-or-name`, case when cmmmm.`unit-type-value` = '' then 0 else cmmmm.`unit-type-value` * uomm.`smallest-unit-value` end as `strength-in-smallest-unit`, uomm.`smallest-unit` as `smallest-unit`, rpm.`group` as `release-pattern-group`, aidfm.`available-group` as `available-in-group` from `{ms_source_schema}`.drugs d inner join `{ms_source_schema}`.`composition-master-molecules-master-mapping` cmmmm on d.`composition-master-id` = cmmmm.`composition-master-id` inner join `{ms_source_schema}`.`molecule-master` mm on mm.id = cmmmm.`molecule-master-id` inner join `{ms_source_schema}`.`drug-molecule-release` dmr on d.id = dmr.`drug-id` and cmmmm.`molecule-master-id` = dmr.`molecule-master-id` inner join `{ms_source_schema}`.`available-in-group-mapping` aidfm on d.`available-in` = aidfm.`available-in` inner join `{ms_source_schema}`.`release-pattern-master` rpm on dmr.`release` = rpm.name inner join `{ms_source_schema}`.`unit-of-measurement-master` uomm on cmmmm.`unit-type` = uomm.unit {filter_na_mol_drugs} ) dm ) a group by a.`drug-id` order by a.`drug-id` LIMIT {batch_size} OFFSET {(batch - 1) * batch_size}; """ logger.info(f"query to get the data: {query}") df = pd.read_sql_query(con=mysql_read_db.connection, sql=query) return df mysql_write_db = MySQL(read_only=False) mysql_write_db.open_connection() # Truncate the temp table before starting query = f""" delete from {temp_table_name};""" mysql_write_db.engine.execute(query) logger.info(f"deleted from temp table, query: {query}") # drug_group_df = get_drug_groups_redshift() # drug_group_df = get_drug_groups_mysql(discard_na_mol_drugs=False) # to discard NA moles drugs drug_group_df = pd.DataFrame() mysql_read_db = MySQL() mysql_read_db.open_connection() # query = "SELECT count(id) as `drug-count` FROM `{ms_source_schema}`.drugs " # c_df = pd.read_sql_query(con=mysql_read_db.connection, sql=query) s3 = S3(bucket_name=f"{env}-zeno-s3-db") # total_drugs = 125000 for i in range(1, round(total_drugs / batch_size) + 1): temp_df = get_drug_groups_mysql(mysql_read_db=mysql_read_db, discard_na_mol_drugs=True, batch=i, batch_size=batch_size) # to consider NA moles drugs drug_group_df = pd.concat([drug_group_df, temp_df]) logger.info(f"fetched batch: {i}") mysql_read_db.close() total_count = len(drug_group_df) logger.info(f"Total drug count: {total_count}") # store the data in the temp table drug_group_df.to_sql( con=mysql_write_db.engine, name=f"{table_name}{temp_table_prefix}", schema=ms_target_schema, if_exists="append", chunksize=500, index=False) # # This is correct query but lock the transaction. # query = f""" DELETE FROM t1 USING {main_table_name} t1 LEFT JOIN {temp_table_name} t2 ON # t1.`drug-id` = t2.`drug-id` where t2.`drug-id` is null ;""" # # Delete the drugs which are NOT in the temp table. # query = f""" DELETE FROM t1 USING {main_table_name} t1 JOIN {temp_table_name} t2 ON # ( t1.`drug-id` = t2.`drug-id` and t2.`drug-id` is null );""" # response = mysql_write_db.engine.execute(query) # logger.info( # f"Delete the records from main table, which are absent in temp table: {response.rowcount}") # # # Delete the data from temp table which is already present in main table # query = f""" DELETE FROM t1 USING {temp_table_name} t1 INNER JOIN {main_table_name} t2 ON # ( t1.`drug-id` = t2.`drug-id` and t1.group = t2.group); """ # # response = mysql_write_db.engine.execute(query) # present_correct_count = response.rowcount # logger.info(f"Correct drug-ids count: {present_correct_count}") # # # Delete the incorrect substitutes from main table # query = f""" DELETE FROM t1 USING {main_table_name} t1 INNER JOIN {temp_table_name} t2 ON # ( t1.`drug-id` = t2.`drug-id` );""" # # response = mysql_write_db.engine.execute(query) # present_incorrect_count = response.rowcount # logger.info(f"Incorrect drug-ids count: {present_incorrect_count}") logger.info("Delete main table: start") # Method 2: delete all the records from main and refill # query = f""" delete from {main_table_name};""" mysql_write_db.engine.execute(query) # Now Insert the records in main table query = f""" INSERT INTO {main_table_name} (`drug-id`, `combination`, `group`) SELECT `drug-id`, `combination`, `group` FROM {temp_table_name} """ response = mysql_write_db.engine.execute(query) new_insert_count = response.rowcount logger.info(f"Insert/Update drug-ids count: {new_insert_count}") # log the changes query = f""" SELECT `drug-id`, `combination`, `group` FROM {temp_table_name}; """ df = pd.read_sql_query(con=mysql_write_db.connection, sql=query) if not df.empty: start_ts = datetime.datetime.now() + datetime.timedelta(days=-1) start_ts = start_ts.strftime("%Y-%m-%d-%H-%M-%S") f_name = 'drug-substitution-mapping-change-log/{}/data.csv'.format( start_ts[:16].replace("-", "/")) uri = s3.save_df_to_s3(df=df, file_name=f_name) print(f"changes have been logged at uri: {uri}") else: print("No change detected!") mysql_write_db.close() # if total_count == present_correct_count + new_insert_count: # logger.info("Drug substitute data updated successfully") # else: # raise Exception("Data count mismatch")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/drug-substitution-mapping/drug-substitution-mapping.py
drug-substitution-mapping.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet import pandas as pd import dateutil import datetime from dateutil.tz import gettz import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-d', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run os.environ['env'] = env logger = get_logger() logger.info(f"full_run: {full_run}") rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'happay-expenses' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # max of data happay_q = """ select date(max("expense-created-at")) max_exp from "prod2-generico"."happay-expenses" """ max_exp_date = rs_db.get_df(happay_q) max_exp_date['max_exp'].fillna(np.nan ,inplace=True) logger.info(max_exp_date.info()) max_exp_date = max_exp_date['max_exp'].to_string(index=False) logger.info(max_exp_date) # Read from gsheet gs = GoogleSheet() happay_data = gs.download(data={ "spreadsheet_id": "1XTTsiGEJgX7lpgnVLgkEs0SQojz-F06dICAuqWZKLtg", "sheet_name": "Happay Data", "listedFields": [] }) happay_expenses = pd.DataFrame(happay_data) happay_expenses[['expense_created_at', 'report_created_at']] = happay_expenses[ ['expense_created_at', 'report_created_at']] \ .apply(pd.to_datetime, errors='coerce') # params if full_run or max_exp_date == 'NaN': start = '2017-05-13' else: start = max_exp_date start = dateutil.parser.parse(start) happay_expenses = happay_expenses[(happay_expenses['expense_created_at'] >= start)] # etl happay_expenses['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') happay_expenses['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') happay_expenses['created-by'] = 'etl-automation' happay_expenses['updated-by'] = 'etl-automation' happay_expenses.columns = [c.replace('_', '-') for c in happay_expenses.columns] if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=happay_expenses[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/happay_expenses/happay_expenses.py
happay_expenses.py
import os import sys sys.path.append('../../../..') import numpy as np import pandas as pd import datetime as dt import argparse from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from dateutil.tz import gettz from zeno_etl_libs.helper import helper parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() # def main(rs_db, s3): schema = 'prod2-generico' # composition wise data for the last 30 days query = ''' select x1.composition, x1."overall_qty", round((x1."gen_quantity"/(x1."gen_quantity"+x1."eth_quantity"))*100,2) as "gen_share", round((x1."stores_comp_sold"/x1."live_stores")*100,2) as "stores_share_comp_sold", round((x1."gen_stores"/x1."stores_comp_sold")*100,2) as "%_stores_gen_sold" , round((x1."sub_qty"/x1."sub_base")*100,2) as "substitution_percentage", -- round((x1."not_inv_base"/x1."overall_qty")*100,2) as "not_in_inv_%", round(((x1."gen_mrp"-x1."gen_sp")/x1."gen_mrp")*100,2) as "%_gen_discount", round(((x1."eth_mrp"-x1."eth_sp")/x1."eth_mrp")*100,2) as "%_eth_discount", x1."gen_mrp", x1."eth_mrp", x1."gen_sp", x1."eth_sp", x1."no_gen_drug", x1."no_eth_drug", x1."GA_flag" from (select s.composition , sum(s."net-quantity") as "overall_qty", sum(case when s."type" = 'generic' then convert(float,s."net-quantity") end) as "gen_quantity", sum(case when s."type" = 'ethical' then convert(float,s."net-quantity") end) as "eth_quantity", convert(float, count(distinct "store-id")) as "stores_comp_sold", convert(float, count(distinct(case when s."type" = 'generic' then s."store-id" end))) as "gen_stores", convert(float, count(distinct(case when s."type" = 'ethical' then s."store-id" end))) as "eth_stores", convert(float, count(distinct(case when s."substitution-status"= 'not-in-inventory' then s."store-id" end))) as "not_inv_stores", convert(float, (select count(distinct "store-id") from "prod2-generico"."prod2-generico".sales s where "created-date" >= dateadd(day, -30, current_date))) as "live_stores", sum(case when s."substitution-status" in ('substituted', 'not-substituted') then convert(float,"net-quantity") end) as "sub_base", sum(case when s."substitution-status" in ('substituted') then convert(float,"net-quantity") end) as "sub_qty", sum(case when s."substitution-status" in ('not-in-inventory', 'generic-unavailable') then convert(float,"net-quantity") end) as "not_inv_base", avg(case when s."type" = 'generic' then mrp end) as "gen_mrp", avg(case when s."type" = 'ethical' then mrp end) as "eth_mrp", avg(case when s."type" = 'ethical' then "net-rate" end) as "eth_sp", avg(case when s."type" = 'generic' then "net-rate" end) as "gen_sp", count(distinct (case when s."type" = 'generic' then s."drug-id" end)) as "no_gen_drug", count(distinct (case when s."type" = 'ethical' then s."drug-id" end)) as "no_eth_drug", max(case when s."company-id"=6984 then 1 else 0 end) as "GA_flag" from "prod2-generico"."prod2-generico".sales s where s."created-date" >= dateadd(day, -30, current_date) and s.composition in (select composition from "prod2-generico"."prod2-generico".drugs d where d."type"= 'generic') and s."net-quantity">0 group by 1)x1 ''' comp_wise_data = rs_db.get_df(query) comp_wise_data.fillna(0, inplace=True) # Not in inv data store store store wise query = ''' select x1.composition, (sum(case when x1."gen_flag" =0 then convert(float,x1."not_inv_tot_qty") end)/sum(case when x1."gen_flag" =0 then convert(float, x1."tot_qty") end))*100 as "not_inv_per_gen_not_sold", (sum(case when x1."gen_flag" =1 then convert(float,x1."not_inv_tot_qty") end)/sum(case when x1."gen_flag" =1 then convert(float, x1."tot_qty") end))*100 as "not_inv_per_gen_sold", (sum(case when x1."gen_flag" =1 then convert(float,x1."sub_qty") end)/sum(case when x1."gen_flag" =1 then convert(float, x1."sub_qty_base") end))*100 as "sub_per_str_whr_gen_sold", avg(case when x1."gen_flag" = 1 then "opportunity" end)*100 as "opp_gen_sold" from (select s."store-id" , s.composition , nvl(sum(case when s."substitution-status" in ('substituted') then convert(float,s."net-quantity") end ),0) as "sub_qty", nvl(sum(case when s."substitution-status" in ('not-substituted') then s."net-quantity" end ),0) as "not_sub_qty", nvl(sum(case when s."substitution-status" in ('not-in-inventory') then s."net-quantity" end ),0) as "not_inv_qty", nvl(sum(case when s."substitution-status" in ('not-in-inventory','generic-unavailable') then s."net-quantity" end ),0) as "not_inv_tot_qty", nvl(sum(case when s."substitution-status" in ('substituted','not-substituted') then s."net-quantity" end ),0) as "sub_qty_base", nvl(sum(case when s."substitution-status" in ('substituted','not-substituted','not-in-inventory','generic-unavailable') then s."net-quantity" end),0) as "tot_qty", (case when "sub_qty">0 then 1 else 0 end) as "gen_flag", nvl(round(convert(float,"sub_qty")/nullif(convert(float,"sub_qty_base"),0),2),0) as "sub_%", ceil ((convert(float,"not_inv_qty")*"sub_%")+convert(float,"sub_qty")) as "sub_sim", ceil ((convert(float,"not_inv_qty")*"sub_%")+convert(float,"not_sub_qty")) as "not_sub_sim", nvl(round(convert(float, "sub_sim")/nullif(convert(float, "tot_qty"),0),2),0) as "opportunity" from "prod2-generico"."prod2-generico".sales s left join "prod2-generico"."prod2-generico".drugs d2 on s."drug-id"= d2.id where s.composition in (select composition from "prod2-generico"."prod2-generico".drugs d where d."type" = 'generic') and s."created-date" >= dateadd(day, -30, current_date) group by s."store-id",s.composition )x1 where x1."tot_qty">0 group by x1.composition''' not_inv_data = rs_db.get_df(query) not_inv_data.fillna(0, inplace=True) comp_wise_data = pd.merge(left=comp_wise_data, right=not_inv_data, how='left', on='composition') # gen comp max set query = ''' select d.composition , case when sum(doi.max) >0 then 'Yes' else 'No' end as "max_set" from "prod2-generico"."prod2-generico"."drug-order-info" doi left join "prod2-generico"."prod2-generico".drugs d on doi."drug-id" = d.id where d."type" = 'generic' group by d.composition ''' gen_max_set = rs_db.get_df(query) comp_wise_data = pd.merge(left = comp_wise_data, right = gen_max_set, how = 'left', on = 'composition') # gettin the comp from the above table comp = comp_wise_data.composition.unique() comp = tuple(comp) # getting rank 1 drug ids of both ethical and generic of the above compositions query = f''' select "drug-id" as "drug_id", egr.composition, "type", egr.company from "prod2-generico"."prod2-generico"."ethical-generic-rank" egr where composition in {comp} and "rank" = 1 and "type" in ('generic', 'ethical') ''' drug_rank = rs_db.get_df(query) # top 20 companies check query = f''' select * from ( select s.company , rank() over(order by sum(s."net-quantity") desc) as "row" from "prod2-generico"."prod2-generico".sales s where s."year-created-at" > extract(year from current_date)-4 and s."type"= 'generic' group by 1)x1 where "row"<= 20''' top_20 = rs_db.get_df(query) condition = [drug_rank['company'].isin(top_20['company'].unique()), ~drug_rank['company'].isin(top_20['company'].unique())] choice = [1, 0] drug_rank['in-top-20'] = np.select(condition, choice, default=0) top_20_company = drug_rank[drug_rank['type'] == 'generic'] comp_wise_data = comp_wise_data.merge(top_20_company[['composition', 'in-top-20']]) id_list = drug_rank.drug_id.unique() id_list = tuple(id_list) # best selling generic drug of the above and ethical drug Margin, mrp, and selling price. query = f''' select x1.composition, round((x1."eth1_mrp"-x1."eth1_sp")/(x1."eth1_mrp")*100,2) as "%_eth1_discount", round((x1."gen1_mrp"-x1."gen1_sp")/(x1."gen1_mrp")*100,2) as "%_gen1_discount", round((x1."gen1_sp"-x1."gen1_pur")/(x1."gen1_sp")*100,2) as "%_gen1_margin", round((x1."eth1_sp"-x1."eth1_pur")/(x1."eth1_sp")*100,2) as "%_eth1_margin", x1.gen1_sp, x1.eth1_sp from (select composition , round(avg(case when "type" = 'generic' then mrp end),2) as "gen1_mrp", round(avg(case when "type" = 'generic' then "net-rate" end),2) as "gen1_sp", round(avg(case when "type" = 'generic' then "purchase-rate" end),2) as "gen1_pur", round(avg(case when "type" = 'ethical' then mrp end), 2) as "eth1_mrp", round(avg(case when "type" = 'ethical' then "net-rate" end),2) as "eth1_sp", round(avg(case when "type" = 'ethical' then "purchase-rate" end),2) as "eth1_pur" from "prod2-generico"."prod2-generico".sales s where "drug-id" in {id_list} group by 1 having "gen1_sp"> 0 and "eth1_sp">0)x1 ''' comp1_price = rs_db.get_df(query) merged_df = pd.merge(left=comp_wise_data, right=comp1_price, on='composition') # Drug exists in WH query = ''' select d.composition , w."add-wh" from "prod2-generico"."prod2-generico"."wh-sku-subs-master" w inner join "prod2-generico"."prod2-generico".drugs d on w."drug-id" = d.id where w."add-wh" = 'Yes' and d."type"= 'generic' group by d.composition, w."add-wh" ''' avail_at_wh = rs_db.get_df(query) condition = [merged_df['composition'].isin(avail_at_wh['composition'].unique()), ~merged_df['composition'].isin(avail_at_wh['composition'].unique())] choice = ['Yes', 'No'] merged_df['add-wh'] = np.select(condition, choice, default=0) # Schedule H1 drug or not query = ''' select b."composition" from "prod2-generico"."composition-master-molecules-master-mapping" a inner join "prod2-generico"."composition-master" b on a."composition-master-id" = b."id" inner join "prod2-generico"."molecule-master" c on a."molecule-master-id" = c."id" where c."schedule" = 'h1' group by b."composition" ''' schedule = rs_db.get_df(query) condition = [merged_df['composition'].isin(schedule['composition'].unique()), ~merged_df['composition'].isin(schedule['composition'].unique())] choice = ['Yes', 'No'] merged_df['schedule-h1'] = np.select(condition, choice, default=0) merged_df.columns = [c.replace('_', '-') for c in merged_df.columns] merged_df['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') merged_df['created-by'] = 'etl-automation' merged_df['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') merged_df['updated-by'] = 'etl-automation' # writing the table table_name = 'actionable-compositions' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=merged_df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # finding how many days the gen 1 compositions was oos and at how many stores, gen1_id = drug_rank[drug_rank['type'] == 'generic'] gen1_id_list = gen1_id.drug_id.unique() gen1_id_list = tuple(gen1_id_list) # finding OOS for the above drgu-ids query = f''' select o."store-id" as "store_id", o."store-name", o."drug-id" as "drug_id", d."drug-name" as "drug_name", d.composition , sum(o."oos-count") as "oos_days", o."as-active" as "as_active", o."max-set" from "prod2-generico"."prod2-generico"."out-of-shelf-drug-level" o left join "prod2-generico"."prod2-generico".drugs d on o."drug-id" = d.id where o."drug-id" in {gen1_id_list} and "max-set" = 'Y' and date(o."closing-date") >= dateadd(day, -30, current_date) group by 1,2,3,4,5,7,8; ''' oos_data = rs_db.get_df(query) oos_data.columns = [c.replace('_', '-') for c in oos_data.columns] df = merged_df[['composition', 'gen-share']] oos_data = oos_data.merge(df[['composition', 'gen-share']]) oos_data['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') oos_data['created-by'] = 'etl-automation' oos_data['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') oos_data['updated-by'] = 'etl-automation' # writing the table table_name = 'actionable-gen1-oos' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=oos_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # store wise substitution query = f''' select x1."store-id", x1."store-name", x1.composition, x1."created-by", x1."overall_qty", round((x1."gen_quantity"/(x1."gen_quantity"+x1."eth_quantity"))*100,2) as "gen_share", round((x1."sub_qty"/x1."sub_base")*100,2) as "substitution_percentage", round((x1."not_inv_base"/x1."tot_qty")*100,2) as "not_inv_percentage" from (select "store-id" , "store-name" , composition , s."created-by" , sum(s."net-quantity") as "overall_qty", sum(case when s."type" = 'generic' then convert(float,s."net-quantity") end) as "gen_quantity", sum(case when s."type" = 'ethical' then convert(float,s."net-quantity") end) as "eth_quantity", sum(case when s."substitution-status" in ('substituted') then convert(float,"net-quantity") end) as "sub_qty", sum(case when s."substitution-status" in ('substituted', 'not-substituted') then convert(float,"net-quantity") end) as "sub_base", sum(case when s."substitution-status" in ('substituted','not-substituted','not-in-inventory', 'generic-not-available') then convert(float,"net-quantity") end) as "tot_qty", sum(case when s."substitution-status" in ('not-in-inventory', 'generic-not-available') then convert(float,"net-quantity") end) as "not_inv_base" from "prod2-generico"."prod2-generico".sales s where s.composition in (select composition from "prod2-generico"."prod2-generico".drugs d where d."type"= 'generic') and s."created-date" >= dateadd(day, -30, current_date) group by 1,2,3,4 having "gen_quantity">0 and "eth_quantity" >0 )x1 ''' store_wise_sub = rs_db.get_df(query) store_wise_sub.columns = [c.replace('_', '-') for c in store_wise_sub.columns] store_wise_sub['created-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') store_wise_sub['updated-at'] = dt.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') store_wise_sub['updated-by'] = 'etl-automation' # writing table table_name = 'actionable-store-sub' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # ========================================================================= # Writing table in Redshift # ========================================================================= if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: print(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(f"Table:{table_name} table truncated") s3.write_df_to_db(df=store_wise_sub[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(f"Table:{table_name} table uploaded") # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/substitution/actionable-substitution.py
actionable-substitution.py
import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback import calendar parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() sla_input = pd.read_csv(s3.download_file_from_s3(file_name="SLA/SLA_Format.csv")) sla_input["order_time"] = pd.to_datetime(sla_input["order_time"], format='%I:%M:%S %p').dt.time sla_input['invoice_time'] = pd.to_datetime(sla_input['invoice_time'], format='%I:%M:%S %p').dt.time sla_input['dispatch_time'] = pd.to_datetime(sla_input['dispatch_time'], format='%I:%M:%S %p').dt.time sla_input['delivery_time'] = pd.to_datetime(sla_input['delivery_time'], format='%I:%M:%S %p').dt.time sla_input['reorder_time'] = pd.to_datetime(sla_input['reorder_time'], format='%I:%M:%S %p').dt.time sla_input['store_id'] = sla_input['store_id'].astype(str) sla_input['city_id'] = sla_input['city_id'].astype(str) sla_input['city_id'] = sla_input['city_id'].str.split('-') sla_input = sla_input.explode('city_id') sla_input['store_id'] = sla_input['store_id'].str.split('-') sla_input = sla_input.explode('store_id') sla_input['store_id'] = sla_input['store_id'].astype(int) sla_input['city_id'] = sla_input['city_id'].astype(int) as_ms_query = ''' select a.id as "short-book-id", a."patient-id", getdate() as "refreshed_at", a."store-name" as "store-name", sm."franchisee-name" as "franchisee-name", a."drug-name" as "drug-name", a."as-ms" as "AS/MS", a."status" as "sb-status", a."requested-quantity" as "requested-quantity", a."quantity" as "quantity", a."required-quantity" as "required-quantity", a."created-at", Date(a."ordered-time") as "ordered-at", Date(a."invoiced-at") as "invoiced-at", Date(a."dispatched-at") as "Dispatched-at", Date(a."store-delivered-at") as "received-at", Date(a."completed-at") as "completed-at", Date(a."delivered-at") as "delivered-at", a."created-at" as "created-time", a."ordered-time" as "ordered-time", a."invoiced-at" as "invoiced-time", a."dispatched-at" as "dispatch-time", a."delivered-at" as "delivered-time", a."completed-at" as "completed-time", a."decline-reason" as "decline reason", a."re-ordered-at" as "re-ordered-at", a."type", a."store-id", a."drug-id", a."company", a."preferred-distributor-name" as "preferred dist", a."drug-grade", '' as "distributor type", a."preferred-distributor-id" as "preferred-distributor-id", a."received-distributor-name" as "received distributor", a."recieved-distributor-id", sm."old-new-static" as "store-type", a."forward-dc-id", a."dc-name" as "dc_name", a."store-delivered-at" as "store_received_at", a."purchase-rate" as "purchase-rate", sm."line-manager" as "line_manager", sm.abo, sm.city as "city-store-master", zc."name" as "city", s."city-id", sm."store-b2b" as "store_b2b", s."franchisee-id" as "franchise_id", case when s."franchisee-id"=1 then 'COCO' when s."franchisee-id"!= 1 then 'FOFO' else 'default' end as "franchisee_flag", sm."franchisee-name" as "franchise_name", sm."opened-at", a."franchisee-short-book" , bl."buyer-name" as "Buyer", sbol."status-log", case when sbol."status-log" in ('presaved,lost') then 'FOFO-partner-rejected' else a.status end as "status", fofo_approved_at."presaved_approved_at" from "prod2-generico"."as-ms" a left join "prod2-generico"."stores-master" sm on sm.id = a."store-id" left join "prod2-generico"."buyer-store-mapping" bsm on bsm."store-id" = a."store-id" left join "prod2-generico"."buyers-list" bl on bl.id = bsm."buyer-id" left join "prod2-generico".stores s on s.id = a."store-id" left join "prod2-generico"."zeno-city" zc on zc.id = s."city-id" left join( select sbol."short-book-id" , listagg(distinct sbol.status, ',') within group ( order by sbol.id) as "status-log" from "prod2-generico"."short-book-order-logs" sbol left join "prod2-generico"."prod2-generico"."short-book-1" sb on sbol."short-book-id" = sb.id where Date(sb."created-at") >= date(date_trunc('month', current_date) - interval '2 month') group by sbol."short-book-id") sbol on a.id = sbol."short-book-id" left join ( select sbol."short-book-id" , min(sbol."created-at") as "presaved_approved_at" from "prod2-generico"."prod2-generico"."short-book-order-logs" sbol left join "prod2-generico"."prod2-generico"."short-book-1" sb2 on sb2.id = sbol."short-book-id" left join "prod2-generico"."prod2-generico".stores s2 on s2.id = sb2."store-id" where s2."franchisee-id" != 1 and sbol.status not in ('presaved', 'lost', 'failed', 'declined', 'deleted') group by sbol."short-book-id" )fofo_approved_at on fofo_approved_at."short-book-id" = a.id where Date(a."created-at") >= date(date_trunc('month', current_date) - interval '1 day') ''' data = rs_db.get_df(as_ms_query) logger.info('fetched data') class As_ms_tat: def __init__(self,sla_input_main): self.sla_input_main = sla_input_main def weekday_calender(self,day): if day == 0 : return 'Monday' elif day == 1: return 'Tuesday' elif day ==2: return 'Wednesday' elif day == 3: return 'Thursday' elif day==4: return 'Friday' elif day == 5: return 'Saturday' elif day == 6: return 'Sunday' def timecheck(self, start_time_sla, end_time_sla, check_time): if str(start_time_sla) == '0' or str(end_time_sla) == '0': return 'default_time' start_time_sla = datetime.datetime.strptime(start_time_sla, '%I:%M:%S %p').time() end_time_sla = datetime.datetime.strptime(end_time_sla, '%I:%M:%S %p').time() if check_time >= start_time_sla and check_time <= end_time_sla: return 'time_found' else: return 'time_not_found' def tat_sla_calculator(self,created_time, pre_saved_approved_at_time,store_id, franchisee, city_id, distributor_id, drug_type): print(1) # print(1) np.where, CFR_PR, Np.select if franchisee == 'COCO': start_time = created_time else: start_time = pre_saved_approved_at_time if pd.isnull(start_time) or start_time is pd.NaT: return pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, None else: start_time = pd.to_datetime(start_time) sla_input = self.sla_input_main.copy(deep = True) store_parameter = False # start_time = datetime.datetime.strptime(start_time , '%Y-%m-%d %H:%M:%S') day_in_number = start_time.weekday() day = self.weekday_calender(day_in_number) if franchisee in sla_input['franchisee_flag'].unique(): franchisee = franchisee else: franchisee = 'default' sla_input = sla_input[((sla_input['franchisee_flag'] == franchisee) & (sla_input['day'] == day))] if city_id in sla_input['city_id'].unique(): city = city_id else: city = 0 # city = 0 # for city_ids in sla_input['city_id'].unique(): # if str(city_id) in (str(city_ids).split('-')): # city = city_ids # city_parameter = True # break if store_id in sla_input['store_id'].unique(): store = 0 else: store = 0 # store = 0 # for store_ids in sla_input['store_id'].unique(): # if str(store_id) in (str(store_ids).split('-')): # store = store_ids # store_parameter = True # break if store_parameter: city = 0 sla_input = sla_input[((sla_input['store_id'] == (store)) & (sla_input['city_id'] == (city)))] if drug_type in sla_input['drug_type'].unique(): drug_type = drug_type else: drug_type = 'default' sla_input = sla_input[((sla_input['drug_type'] == (drug_type)))] if int(distributor_id) == 8105: distributor = 'WH' else: distributor = 'DC' if distributor in sla_input['distributor_name'].unique(): distributor = distributor else: distributor = 'default' sla_input = sla_input[((sla_input['distributor_name'] == (distributor)))] # print(2) if len(sla_input)>1: sla_input['timecheck'] = np.vectorize(self.timecheck)(sla_input['start_time'], sla_input['end_time'], start_time.time()) if 'time_found' in sla_input['timecheck'].unique(): sla_input = sla_input[sla_input['timecheck']=='time_found'] else: sla_input = sla_input[sla_input['timecheck']=='default_time'] sla_input = sla_input.reset_index(drop=True) order_date = sla_input.loc[0, 'order_date'] order_time = sla_input.loc[0, 'order_time'] order_sla = start_time + datetime.timedelta(days=int(order_date)) order_sla = order_sla.replace(hour=order_time.hour, minute=order_time.minute, second=order_time.second) invoice_date = sla_input.loc[0, 'invoice_date'] invoice_time = sla_input.loc[0, 'invoice_time'] invoice_sla = start_time + datetime.timedelta(days=int(invoice_date)) invoice_sla = invoice_sla.replace(hour=invoice_time.hour, minute=invoice_time.minute, second=invoice_time.second) dispatch_date = sla_input.loc[0, 'dispatch_date'] dispatch_time = sla_input.loc[0, 'dispatch_time'] dispatch_sla = start_time + datetime.timedelta(days=int(dispatch_date)) dispatch_sla = dispatch_sla.replace(hour=dispatch_time.hour, minute=dispatch_time.minute, second=dispatch_time.second) delivery_date = sla_input.loc[0, 'delivery_date'] delivery_time = sla_input.loc[0, 'delivery_time'] delivery_sla = start_time + datetime.timedelta(days=int(delivery_date)) delivery_sla = delivery_sla.replace(hour=delivery_time.hour, minute=delivery_time.minute, second=delivery_time.second) reorder_date = sla_input.loc[0, 'reorder_date'] reorder_time = sla_input.loc[0, 'reorder_time'] reorder_sla = start_time + datetime.timedelta(days=int(reorder_date)) reorder_sla = reorder_sla.replace(hour=reorder_time.hour, minute=reorder_time.minute, second=reorder_time.second) # print(4) return order_sla, invoice_sla, dispatch_sla, delivery_sla, reorder_sla,sla_input.loc[0, 'id'] def tat_checker(self,ordered_at,order_sla): if pd.isnull('ordered_at') or ordered_at is pd.NaT or ordered_at is None: return 'Pending' elif order_sla<=ordered_at: return 'ontime' else: return 'delayed' as_ms_tat= As_ms_tat(sla_input) data['recieved-distributor-id'] = data['recieved-distributor-id'].fillna(0) # # logger.info('apply') # # data['order_sla'],data['invoice_sla'],data['dispatch_sla'],data['delivery_sla'],data['reorder_sla'],data['sla_id'] = data.apply(lambda x: as_ms_tat.tat_sla_calculator(x['created-at'], x['presaved_approved_at'], x['store-id'], x['franchisee_flag'], x['city-id'],x['recieved-distributor-id'],x['type']), axis=1) logger.info('vectorise') data['order_sla'],data['invoice_sla'],data['dispatch_sla'],data['delivery_sla'],data['reorder_sla'],data['sla_id'] = np.vectorize(as_ms_tat.tat_sla_calculator)(data['created-at'], data['presaved_approved_at'], data['store-id'], data['franchisee_flag'], data['city-id'],data['recieved-distributor-id'],data['type']) logger.info('fetched SLA Timelines') data['ordered timing'] = np.vectorize(as_ms_tat.tat_checker)(data['ordered-time'], data['order_sla']) data['fullfilment on invoice'] = np.vectorize(as_ms_tat.tat_checker)(data['invoiced-time'], data['invoice_sla']) data['fullfilment on dispatch'] = np.vectorize(as_ms_tat.tat_checker)(data['dispatch-time'], data['dispatch_sla']) data['fullfilment on delivery'] = np.vectorize(as_ms_tat.tat_checker)(data['store_received_at'], data['delivery_sla']) data['re-order timing'] = np.vectorize(as_ms_tat.tat_checker)(data['re-ordered-at'], data['reorder_sla']) logger.info('fetched SLA ') # ============================================================================= # writing to Redshift # ============================================================================= schema = 'prod2-generico' table_name = 'as-ms-tat' table_info = helper.get_table_info(db=rs_db_write, table_name=table_name, schema=schema) status2 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' delete from "{schema}"."{table_name}" ''' rs_db_write.execute(truncate_query) logger.info(str(table_name) + ' table deleted') s3.write_df_to_db(df=data[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) logger.info(str(table_name) + ' table uploaded') status2 = True if status2 is True: status = 'Success' else: status = 'Failed' #logger.close() end_time = datetime.datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds()/60 , 2) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/as-ms/as_ms_tat.py
as_ms_tat.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger def main(db): table_name = "as-ms" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}" where date("created-at")>=date(date_trunc('month', current_date) - interval '6 month'); """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "etl-created-by", "updated-by", "updated-at", "patient-id", "store-name", "drug-name", "as-ms", "created-to-invoice-days", "created-to-invoice-hour", "created-to-dispatch-days", "created-to-dispatch-hour", "created-to-delivery-days", "created-to-delivery-hour", "created-to-re-order-days", "created-to-re-order-hour", "created-to-order-days", "created-to-order-hour", "status", "requested-quantity", "quantity", "required-quantity", "inventory-at-creation", "inventory-at-ordering", "created-at", "year-created-at", "month-created-at", "ordered-time", "invoiced-at", "dispatched-at", "delivered-at", "completed-at", "re-ordered-at", "store-delivered-at", "decline-reason", "type", "store-id", "drug-id", "company", "company-id", "composition", "composition-master-id", "category", "schedule", "sub-type", "preferred-distributor-id", "preferred-distributor-name", "drug-grade", "purchase-rate", "ptr", "distributor-type", "recieved-distributor-id", "received-distributor-name", "forward-dc-id", "dc-name", "abo", "line-manager", "store-manager", "city", "store-b2b", "franchisee-short-book" ) select a.id, 'etl-automation' as "etl-created-by", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", a."patient-id" as "patient-id", b."name" as "store-name", a."drug-name" as "drug-name", case when a."auto-short" = 1 and a."created-by" = 'AUTO SHORT' and a."patient-id" = 4480 then 'AS' when a."auto-short" = 1 and a."patient-id" != 4480 then 'MS' else 'NA' end as "as-ms", --Fulfillment on Invoice (case when (a."invoiced-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."invoiced-at") end) as "created-to-invoice-days", (case when (a."invoiced-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."invoiced-at") end) as "created-to-invoice-hour", --Fulfillment on dispatch (case when (a."dispatched-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."dispatched-at") end) as "created-to-dispatch-days", (case when (a."dispatched-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."dispatched-at") end) as "created-to-dispatch-hour", --Fulfillment on delivery (case when (msda."store-delivered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", msda."store-delivered-at") end) as "created-to-delivery-days", (case when (msda."store-delivered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", msda."store-delivered-at") end) as "created-to-delivery-hour", -- Re-order Timing -- (case when (a."re-ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."re-ordered-at") end) as "created-to-re-order-days", (case when (a."re-ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."re-ordered-at") end) as "created-to-re-order-hour", --order Timing-- (case when (a."ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(day, a."created-at", a."ordered-at") end) as "created-to-order-days", (case when (a."ordered-at" = '0101-01-01' or a."created-at" = '0101-01-01') then null else datediff(hours, a."created-at", a."ordered-at") end) as "created-to-order-hour", a."status" as "status", a."requested-quantity" as "requested-quantity", a."quantity" as "quantity", a."required-quantity" as "required-quantity", a."inventory-at-creation" as "inventory-at-creation" , a."inventory-at-ordering" as "inventory-at-ordering", case when a."created-at" = '0101-01-01' then null else a."created-at" end as "created-at", extract(year from a."created-at") as "year-created-at", extract(month from a."created-at") as "month-created-at", case when a."ordered-at" = '0101-01-01' then null else a."ordered-at" end as "ordered-time", case when a."invoiced-at" = '0101-01-01' then null else a."invoiced-at" end as "invoiced-at", case when a."dispatched-at" = '0101-01-01' then null else a."dispatched-at" end as "dispatched-at", case when a."delivered-at" = '0101-01-01' then null else a."delivered-at" end as "delivered-at", case when a."completed-at" = '0101-01-01' then null else a."completed-at" end as "completed-at", case when a."re-ordered-at" = '0101-01-01' then null else a."re-ordered-at" end as "re-ordered-at", case when msda."store-delivered-at" = '0101-01-01' then null else msda."store-delivered-at" end as "store-delivered-at", a."decline-reason" as "decline-reason", c."type", a."store-id" as "store-id", a."drug-id" as "drug-id", c."company", c."company-id" as "company-id" , c."composition" , c."composition-master-id" as "composition-master-id" , c."category" , c."schedule" , c."sub-type" as "sub-type" , f."id" as "preferred-distributor-id", f."name" as "preferred-distributor-name", e."drug-grade" as "drug-grade", dp."purchase-rate" as "purchase-rate", dp."ptr", d."type" as "distributor-type", d."id" as "recieved-distributor-id", d."name" as "received-distributor-name", j."forward-dc-id" as "forward-dc-id", ss."name" as "dc-name", msm."abo" , msm."line-manager" , msm."store-manager" , msm."city", msm."store-b2b", a."franchisee-short-book" as "franchisee-short-book" from "prod2-generico"."short-book-1" a left join "prod2-generico"."stores" b on b."id" = a."store-id" left join "prod2-generico"."drugs" c on c."id" = a."drug-id" left join ( select "drug-id", AVG("purchase-rate") as "purchase-rate", AVG(ptr) as "ptr" from "prod2-generico"."inventory-1" i where "created-at" >= dateadd(day, -360, CURRENT_DATE) group by "drug-id") as dp on a."drug-id" = dp."drug-id" left join "prod2-generico"."distributors" d on d."id" = a."distributor-id" left join "prod2-generico"."drug-order-info" e on e."store-id" = a."store-id" and e."drug-id" = a."drug-id" left join "prod2-generico"."distributors" f on a."preferred-distributor" = f."id" left join ( select * from "prod2-generico"."store-dc-mapping" where "drug-type" = 'ethical') j on j."store-id" = a."store-id" left join "prod2-generico"."stores" ss on ss."id" = j."forward-dc-id" left join "prod2-generico"."store-delivered" msda on a."id" = msda."id" left join "prod2-generico"."stores-master" msm on a."store-id" = msm.id where a."auto-short" = 1 and a."status" not in ('deleted') and date(a."created-at")>=date(date_trunc('month', current_date) - interval '6 month'); """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/as-ms/as_ms.py
as_ms.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "substitutable-groups" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "group", "generic-flag" ) select d."group" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", d."group" as "group", count(distinct(case when (d1."type" = 'generic') then c."drug-id" end)) as "generic-flag" from "prod2-generico"."drug-unique-composition-mapping" d inner join "prod2-generico"."drugs" d1 on d1.id = d."drug-id" inner join "prod2-generico"."inventory-1" c on c."drug-id" = d."drug-id" inner join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" where d."group" is not null and d1."type" = 'generic' group by d."group" ; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."substitutable-compositions"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/substitutable-groups/substitutable-groups.py
substitutable-groups.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from datetime import datetime as dt from datetime import timedelta import pandas as pd from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-fr', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to full_run = args.full_run logger = get_logger() logger.info(f"env: {env}") logger.info(f"print the env again: {env}") # params if full_run: start = dt.strptime('2017-05-13', '%Y-%m-%d') end = dt.today().date() - timedelta(days=1) else: start = dt.today().date() - timedelta(days=91) end = dt.today().date() - timedelta(days=1) interval = (end - start).days schema = 'prod2-generico' table_name = "campaign-prepost" rs_db = DB() rs_db.open_connection() s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) read_schema = 'prod2-generico' if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f""" DELETE FROM "{read_schema}"."{table_name}" WHERE "bill-date" BETWEEN '{start}' AND '{end}'; """ logger.info(truncate_query) rs_db.execute(truncate_query) # Fetching all patient who used promo df_q = f"""select b.*, r1."previous-3trips-abv", r1."previous-90days-trips", r1."pre3trips-promo", r2."next-3trips-abv", r2."next-90days-trips", r2."post3trips-promo" from ( select rm.id as "bill-id", rm."patient-id", rm."promo-code", rm."promo-code-type" as "code-type", rm."store-id", rm."bill-date", rm."prev-cum-nob" as "previous-total-trips", rm.store, rm.abo, rm."store-manager", rm."line-manager", rm."store-opened-at", rm."is-chronic", rm."hd-flag", rm."is-generic", rm."pr-flag", rm."is-repeatable", rm."behaviour-segment", rm."value-segment", rm."total-spend" as "bill-value", rm."promo-discount", rm."recency-customer-days" as "last-visit-in-days", pc."type", pc."discount-type", pc."discount-level", pc."flat-discount", pc."percent-discount", pc."max-discount", pc."min-purchase", pc."max-time", pc."max-per-patient", pc."start", pc.expiry, pc."campaign-id", c.campaign from "{read_schema}"."retention-master" rm left join "{read_schema}"."promo-codes" pc on rm."promo-code-id" = pc.id left join "{read_schema}".campaigns c on pc."campaign-id" = c.id where rm."promo-code-id" is not null and datediff('days', rm."created-at", current_date) <= {interval} ) b left join ( select "bill-id", avg("total-spend") as "previous-3trips-abv", max("bill-rank-2") as "previous-90days-trips", sum("promo-bill") as "pre3trips-promo" from ( select rm1.id as "bill-id", rm1."bill-date" as "bill-date-1", rm2."bill-date" as "bill-date-2", rm2."total-spend", datediff('days', "bill-date-1", "bill-date-2") as "datediff", rank() over (partition by rm1."id" order by "datediff" desc) as "bill-rank-1", rank() over (partition by rm1."id" order by "datediff" asc) as "bill-rank-2", datediff('days', "bill-date-1", current_date) as "datediff-filter", (case when rm2."promo-code-id" is not null then 1 else 0 end) "promo-bill" from "{read_schema}"."retention-master" rm1 left join "{read_schema}"."retention-master" rm2 on rm1."patient-id" = rm2."patient-id" where "datediff" between -90 and 0 and rm1.id != rm2.id and "datediff-filter" between 0 and {interval} and rm1."promo-code-id" is not null ) where "bill-rank-1" <= 3 group by "bill-id") r1 on b."bill-id" = r1."bill-id" left join ( select "bill-id", avg("total-spend") as "next-3trips-abv", max("bill-rank-2") as "next-90days-trips", sum("promo-bill") as "post3trips-promo" from ( select rm1.id as "bill-id", rm1."bill-date" as "bill-date-1", rm2."bill-date" as "bill-date-2", rm2."total-spend", datediff('days', "bill-date-1", "bill-date-2") as "datediff", rank() over (partition by rm1."id" order by "datediff" asc) as "bill-rank-1", rank() over (partition by rm1."id" order by "datediff" desc) as "bill-rank-2", datediff('days', "bill-date-1", current_date) as "datediff-filter", (case when rm2."promo-code-id" is not null then 1 else 0 end) "promo-bill" from "{read_schema}"."retention-master" rm1 left join "{read_schema}"."retention-master" rm2 on rm1."patient-id" = rm2."patient-id" where "datediff" between 0 and 90 and rm1.id != rm2.id and "datediff-filter" between 0 and {interval} and rm1."promo-code-id" is not null ) where "bill-rank-1" <= 3 group by "bill-id") r2 on b."bill-id" = r2."bill-id"; """ patient_data = rs_db.get_df(query=df_q) logger.info(f'Patient promo data query : {df_q}') logger.info(f'Patient promo data query size : {len(patient_data)}') logger.info(patient_data.info()) # data type correction patient_data['bill-value'] = patient_data['bill-value'].astype(float) patient_data['promo-discount'] = patient_data['promo-discount'].astype(float) patient_data['flat-discount'] = patient_data['flat-discount'].fillna(0).astype(int) patient_data['percent-discount'] = patient_data['percent-discount'].fillna(0).astype(int) patient_data['max-discount'] = patient_data['max-discount'].fillna(0).astype(int) patient_data['min-purchase'] = patient_data['min-purchase'].fillna(0).astype(int) patient_data['max-time'] = patient_data['max-time'].fillna(0).astype(int) patient_data['max-per-patient'] = patient_data['max-per-patient'].fillna(0).astype(int) patient_data['campaign-id'] = patient_data['campaign-id'].fillna(0).astype(int) patient_data['hd-flag'] = patient_data['hd-flag'].astype(int) patient_data['pr-flag'] = patient_data['pr-flag'].astype(int) patient_data['is-generic'] = patient_data['is-generic'].astype(int) patient_data['is-chronic'] = patient_data['is-chronic'].astype(int) patient_data['is-repeatable'] = patient_data['is-repeatable'].astype(int) patient_data['previous-total-trips'] = patient_data['previous-total-trips'].fillna(0).astype(int) patient_data['previous-90days-trips'] = patient_data['previous-90days-trips'].fillna(0).astype(int) patient_data['pre3trips-promo'] = patient_data['pre3trips-promo'].fillna(0).astype(int) patient_data['next-90days-trips'] = patient_data['next-90days-trips'].fillna(0).astype(int) patient_data['post3trips-promo'] = patient_data['post3trips-promo'].fillna(0).astype(int) patient_data['last-visit-in-days'] = patient_data['last-visit-in-days'].fillna(-1).astype(int) patient_data['bill-date'] = pd.to_datetime(patient_data['bill-date']).dt.date # etl patient_data['created-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') patient_data['created-by'] = 'etl-automation' patient_data['updated-at'] = dt.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') patient_data['updated-by'] = 'etl-automation' # Write to csv s3.save_df_to_s3(df=patient_data[table_info['column_name']], file_name='Shubham_G/43/campaign_prepost.csv') s3.write_df_to_db(df=patient_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # remove blanks value_q = f"""update "{schema}"."{table_name}" set "value-segment" = null where "value-segment" = ''; """ rs_db.execute(value_q) # remove blanks behaviour_q = f"""update "{schema}"."{table_name}" set "behaviour-segment" = null where "behaviour-segment" = ''; """ rs_db.execute(behaviour_q) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/campaign_prepost/campaign-prepost.py
campaign-prepost.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper.parameter.job_parameter import parameter parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env job_params = parameter.get_params(job_id=48) os.environ['env'] = env email_to = job_params['email_to'] skus = tuple(map(int, job_params['skus_tracked'].split(','))) logger = get_logger() logger.info(skus) logger.info(f"env: {env}") logger.info(f"print the env again: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() read_schema = 'prod2-generico' # Fetching earn and burn data for past one week penetration_q = f""" select date("created-at") as date, rm.store as Store_Name, rm."store-city" as City_Name, SUM(case when rm."promo-code" = 'BOGO' then 1 else 0 end) BOGO_Bills, COUNT(distinct rm.id) Total_Bills, SUM(case when rm."promo-code" = 'BOGO' then 1.0 else 0.0 end) / COUNT(distinct rm.id) Penetration from "{read_schema}"."retention-master" rm where date(rm."created-at") >= '2022-02-21' and DATE(rm."created-at") < current_date and extract (day from DATE(rm."created-at")) >= 1 and extract (month from DATE(rm."created-at")) = extract (month from current_date ) group by date("created-at"), rm.store, rm."store-city";""" penetration_city_q = f""" select date("created-at") as date, rm."store-city" as City_Name, SUM(case when rm."promo-code" = 'BOGO' then 1 else 0 end) BOGO_Bills, COUNT(distinct rm.id) Total_Bills, SUM(case when rm."promo-code" = 'BOGO' then 1.0 else 0.0 end) / COUNT(distinct rm.id) Penetration from "{read_schema}"."retention-master" rm where date(rm."created-at") >= '2022-02-21' and DATE(rm."created-at") < current_date and extract (day from DATE(rm."created-at")) >= 1 and extract (month from DATE(rm."created-at")) = extract (month from current_date ) group by date("created-at"), rm."store-city";""" sku_q = f""" select date(s."created-at") date_, s."store-name", s."drug-name", s."drug-id", s."bill-flag", (case when s."promo-code" = 'BOGO' then 'BOGO' when s."promo-code" is null then 'Organic' when s."code-type" = 'referral' then 'referral' else s."promo-code" end) Promo_Code, sum(s.quantity) quantity_ from "{read_schema}"."sales" s where s."drug-id" in {skus} and date(s."created-at") >= '2022-02-21' and date(s."created-at") < current_date and extract(day from s."created-at") >= 1 and extract(month from s."created-at") = extract(month from current_date) group by date(s."created-at"), s."store-name", s."drug-name", s."drug-id", s."bill-flag", (case when s."promo-code" = 'BOGO' then 'BOGO' when s."promo-code" is null then 'Organic' when s."code-type" = 'referral' then 'referral' else s."promo-code" end); """ avg_sku_q = f""" select T.date_, T."store-name", AVG(T.number_of_sku) from ( select date(s."created-at") date_, s."bill-id", s."store-name", COUNT(distinct s."drug-id") number_of_sku from "{read_schema}"."sales" s where s."promo-code" = 'BOGO' and date(s."created-at") >= '2022-02-21' and date(s."created-at") < current_date and extract(day from date(s."created-at")) >= 1 and extract(month from date(s."created-at")) = extract(month from current_date) group by date(s."created-at"), s."bill-id", s."store-name") T group by T.date_, T."store-name";""" penetration = rs_db.get_df(penetration_q) penetration_city = rs_db.get_df(penetration_city_q) sku = rs_db.get_df(sku_q) avg_sku = rs_db.get_df(avg_sku_q) # MTD Report penetration_mtd = penetration.groupby(['store_name', 'city_name'], as_index=False).agg({'bogo_bills': 'sum', 'total_bills': 'sum'}) penetration_mtd['penetration'] = penetration_mtd['bogo_bills'] / penetration_mtd['total_bills'] penetration_city_mtd = penetration_city.groupby(['city_name'], as_index=False).agg({'bogo_bills': 'sum', 'total_bills': 'sum'}) penetration_city_mtd['penetration'] = penetration_city_mtd['bogo_bills'] / penetration_city_mtd['total_bills'] # file_name penetration_file_name = 'penetration.csv' penetration_mtd_file_name = 'penetration_mtd.csv' penetration_city_file_name = 'penetration_city.csv' penetration_city_mtd_file_name = 'penetration_city_mtd.csv' sku_file_name = 'sku_sold.csv' avg_sku_file_name = 'avg_sku_in_bill.csv' # Uploading the file to s3 penetration = s3.save_df_to_s3(df=penetration, file_name=penetration_file_name) penetration_mtd = s3.save_df_to_s3(df=penetration_mtd, file_name=penetration_mtd_file_name) penetration_city = s3.save_df_to_s3(df=penetration_city, file_name=penetration_city_file_name) penetration_city_mtd = s3.save_df_to_s3(df=penetration_city_mtd, file_name=penetration_city_mtd_file_name) sku = s3.save_df_to_s3(df=sku, file_name=sku_file_name) avg_sku = s3.save_df_to_s3(df=avg_sku, file_name=avg_sku_file_name) # Sending email subject = 'Campaign Tracker (BOGO)' mail_body = "Reports are attached" file_uris = [penetration, penetration_mtd, penetration_city, penetration_city_mtd, sku, avg_sku] email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=file_uris) # closing the connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/bogo_tracking/bogo_campaign_tracking.py
bogo_campaign_tracking.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import numpy as np import datetime from datetime import timedelta from zeno_etl_libs.django.api import Sql import typing from functools import reduce from sklearn.preprocessing import StandardScaler parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-sd', '--datem', default='NA', type=str, required=False) parser.add_argument('-my', '--sqlwrite', default='yes', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env datem = args.datem sqlwrite = args.sqlwrite os.environ['env'] = env logger = get_logger(level="INFO") rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() """ for data verification after update """ mysql_write = MySQL(read_only=False) mysql_write.open_connection() schema = 'prod2-generico' table_name = 'drug-grades' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if datem == 'NA': date1 = datetime.date.today().strftime('%Y-%m-%d') logger.info('Entry taken from params:{}'.format(str(date1))) else: date1 = datem logger.info('Selecting the default date as the job run date: {}'.format(str(date1))) q_aa = f""" select "bill-id", "patient-id" , "store-id" , "store-name" as "name", "drug-id" , "drug-name" , "type" , "created-date" as "created-at" , NVL(sum(case when "bill-flag" = 'gross' then quantity end), 0) as "sold-quantity", NVL(sum(case when "bill-flag" = 'return' then quantity end), 0) as "returned-quantity", sum("net-quantity") as "quantity", sum(rate) as "rate" from "prod2-generico"."sales" where datediff('day','{date1}', "created-date") between -180 and -1 group by "bill-id", "patient-id" , "store-id" , "store-name", "drug-id" , "drug-name" , "type" , "created-date" having sum("net-quantity")>0 """ df_aa = rs_db.get_df(q_aa) df_aa.columns = [c.replace('-', '_') for c in df_aa.columns] logger.info('Shape of data: {}'.format(str(df_aa.shape))) df_aa['quantity'].fillna(0, inplace=True) df_aa['rate'].fillna(0, inplace=True) df_aa['value'] = df_aa['rate'] * df_aa['quantity'] # ============================================================================= # Store opened at # ============================================================================= q_bb = f""" SELECT "id", datediff('day' , "opened-at", '{date1}') as "age" FROM "prod2-generico"."stores" WHERE datediff('day' , "opened-at", '{date1}' ) < 180 """ df_bb = rs_db.get_df(q_bb) df_bb.columns = [c.replace('-', '_') for c in df_bb.columns] logger.info('Shape of stores data: {}'.format(str(df_bb.shape))) def store_age(df_bb): if df_bb['age'] >= 90: return '3-6 month' else: return '1-3 month' df_bb['age1'] = df_bb.apply(lambda x: store_age(x), axis=1) # ============================================================================= # quantity sold # ============================================================================= df_qty = df_aa.groupby(['drug_id', 'store_id'])[['quantity']].sum().reset_index() df_qty1 = df_aa.groupby(['drug_id'])[['quantity']].sum().reset_index() # ============================================================================= # revenue # ============================================================================= df_revenue = df_aa.groupby(['drug_id', 'store_id'])[['value']].sum().reset_index() df_revenue1 = df_aa.groupby(['drug_id'])[['value']].sum().reset_index() # ============================================================================= # no. of bills # ============================================================================= df_bills = df_aa.groupby(['drug_id', 'store_id'])[['bill_id']].nunique().reset_index() df_bills1 = df_aa.groupby(['drug_id'])[['bill_id']].nunique().reset_index() # ============================================================================= # no. of consumers # ============================================================================= df_consumers = df_aa.groupby(['drug_id', 'store_id'])[['patient_id']].nunique().reset_index() df_consumers1 = df_aa.groupby(['drug_id'])[['patient_id']].nunique().reset_index() df_aa['created_at'] = pd.to_datetime(df_aa['created_at']) # ============================================================================= # no. of days sold # ============================================================================= df_aa['days'] = df_aa['created_at'].dt.date df_days = df_aa.groupby(['drug_id', 'store_id'])[['days']].nunique().reset_index() df_days1 = df_aa.groupby(['drug_id'])[['days']].nunique().reset_index() # ============================================================================= # recency (last sold) # ============================================================================= days = timedelta(1) period_end_d = pd.to_datetime(date1) - days df_recency = df_aa.groupby(['drug_id', 'store_id'])[['created_at']].max().reset_index() df_recency1 = df_aa.groupby(['drug_id'])[['created_at']].max().reset_index() df_recency['recency'] = (pd.to_datetime(period_end_d) - df_recency['created_at']).dt.days df_recency1['recency'] = (pd.to_datetime(period_end_d) - df_recency1['created_at']).dt.days # ============================================================================= # merge all features # ============================================================================= meg = [df_qty, df_revenue, df_bills, df_consumers, df_days, df_recency] df_features = reduce(lambda left, right: pd.merge(left, right, on=[ 'drug_id', 'store_id'], how='outer'), meg) del (df_features['created_at']) meg1 = [df_qty1, df_revenue1, df_bills1, df_consumers1, df_days1, df_recency1] df_features1 = reduce(lambda left, right: pd.merge(left, right, on=[ 'drug_id'], how='outer'), meg1) del (df_features1['created_at']) df_features = df_features1.append(df_features) df_features['store_id'] = df_features['store_id'].fillna(999) df_features = df_features.reset_index().drop('index', axis=1) # ============================================================================= # creating standard scaler store wise # ============================================================================= temp_normalise = df_features[['store_id', 'quantity', 'value', 'bill_id', 'patient_id', 'days', 'recency']] class SklearnWrapper: def __init__(self, transform: typing.Callable): self.transform = transform def __call__(self, df): transformed = self.transform.fit_transform(df.values) return pd.DataFrame(transformed, columns=df.columns, index=df.index) # This one will apply any sklearn transform you pass into it to a group. df_rescaled = ( temp_normalise.groupby('store_id') .apply(SklearnWrapper(StandardScaler())) .drop('store_id', axis=1) ) temp2_normalise = df_rescaled # ============================================================================= # importing pca_components and appling to scaled data set. # ============================================================================= pca_file_name = 'drug_grades/pca_components.csv' pca_file_path = s3.download_file_from_s3(file_name=pca_file_name) pca_components = pd.read_csv(pca_file_path, delimiter=',') # ============================================================================= # creating Euclidean Distance Caculator and applyin to nearest cluster # ============================================================================= cluster_file_name = 'drug_grades/cluster_centers_1.csv' pca_file_path = s3.download_file_from_s3(file_name=cluster_file_name) cluster_centers_set = pd.read_csv(pca_file_path, delimiter=',') cluster_centers_set = np.array(cluster_centers_set) # Euclidean Distance Caculator def dist(a, b, ax=1): return np.linalg.norm(a - b, axis=ax) clusters = [] test = np.dot(np.array(temp2_normalise), (np.array(pca_components).T)) for i in range(len(test)): distances = dist(np.array(test[i]), (cluster_centers_set)) cluster = np.argmin(distances) clusters.append(cluster) cluster_df = pd.DataFrame(clusters) cluster_df.columns = ['final_cluster'] # ============================================================================= # Summary pivot 1 # ============================================================================= test_df = pd.DataFrame(test) cluster_lvl_1 = pd.merge(test_df, cluster_df, right_index=True, left_index=True) cluster_lvl1_output = pd.merge(cluster_lvl_1, df_features, how='inner', left_index=True, right_index=True) cluster_lvl1_output_pivot = cluster_lvl1_output.groupby(['final_cluster', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index( drop=True) cluster_lvl1_output_pivot.columns = ['_'.join(x) for x in cluster_lvl1_output_pivot.columns.ravel()] cluster_lvl1_output_pivot_name = 'drug_grades/cluster_lv1_output.csv' # Uploading File to S3 s3.save_df_to_s3(df=cluster_lvl1_output_pivot, file_name=cluster_lvl1_output_pivot_name) # ============================================================================= # # 2nd level # ============================================================================= # ============================================================================= # Further split of large cluster # ============================================================================= further_split_lvl2 = cluster_lvl1_output[cluster_lvl1_output['final_cluster'] == 0] # change features here if needed further_split_lvl2 = pd.DataFrame(further_split_lvl2[[0, 1, 2, 3]]) further_split_lvl2_mat = np.array(further_split_lvl2) cluster2_file_name = 'drug_grades/cluster_centers_2.csv' pca_file_path = s3.download_file_from_s3(file_name=cluster2_file_name) cluster_centers_set2 = pd.read_csv(pca_file_path, delimiter=',') cluster_centers_set2 = np.array(cluster_centers_set2) clusters_lvl2 = [] for i in range(len(further_split_lvl2)): distances = dist((further_split_lvl2_mat[i]), (cluster_centers_set2)) clusterlvl2 = np.argmin(distances) clusters_lvl2.append(clusterlvl2) further_split_lvl2_df = pd.DataFrame(further_split_lvl2) further_split_lvl2_df['final_cluster_lvl2'] = clusters_lvl2 # ============================================================================= # Summary pivot 2 # ============================================================================= cluster_lvl2_output = pd.merge(cluster_lvl1_output, further_split_lvl2_df[['final_cluster_lvl2']], how='inner', left_index=True, right_index=True) cluster_lvl2_output_pivot = cluster_lvl2_output.groupby(['final_cluster_lvl2', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index( drop=True) cluster_lvl2_output_pivot.columns = ['_'.join(x) for x in cluster_lvl2_output_pivot.columns.ravel()] cluster_lvl2_output_pivot_name = 'drug_grades/cluster_lvl2_output.csv' # Uploading File to S3 s3.save_df_to_s3(df=cluster_lvl2_output_pivot, file_name=cluster_lvl2_output_pivot_name) # ============================================================================= # Final cluster # ============================================================================= cluster_file = cluster_lvl1_output[cluster_lvl1_output['final_cluster'] != 0] final_cluster_file = cluster_file.append(cluster_lvl2_output) final_cluster_file['cluster'] = final_cluster_file['final_cluster' ].astype(str) + '_' + final_cluster_file['final_cluster_lvl2'].astype(str) final_output_pivot = final_cluster_file.groupby(['cluster', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index(drop=True) final_output_pivot.columns = ['_'.join(x) for x in final_output_pivot.columns.ravel()] final_output_pivot['drug%'] = final_output_pivot['drug_id_count' ] / final_output_pivot['drug_id_count'].sum() final_output_pivot['spend%'] = final_output_pivot['value_sum' ] / final_output_pivot['value_sum'].sum() final_output_pivot['drug%'] = final_output_pivot['drug%'].astype('float64') final_output_pivot['spend%'] = final_output_pivot['spend%'].astype('float64') final_output_pivot['factor'] = final_output_pivot['spend%'] / final_output_pivot['drug%'] # ============================================================================= # cluster allocation # ============================================================================= new_store = df_bb['id'].values new_store1 = df_bb['id'][df_bb['age1'] == '3-6 month'].values new_store2 = df_bb['id'][df_bb['age1'] == '1-3 month'].values new_store1_cluster = final_cluster_file[final_cluster_file.store_id.isin(new_store1)] new_store2_cluster = final_cluster_file[final_cluster_file.store_id.isin(new_store2)] Enterprise_cluster = final_cluster_file[final_cluster_file.store_id == 999] old_stores_cluster = final_cluster_file[(~final_cluster_file.store_id.isin(new_store)) & (final_cluster_file.store_id != 999)] new_store1_cluster.drop(['cluster'], axis=1, inplace=True) new_store2_cluster.drop(['cluster'], axis=1, inplace=True) new_store1_predict = pd.merge(new_store1_cluster, Enterprise_cluster[['drug_id', 'cluster']], how='left', left_on='drug_id', right_on='drug_id') for i in range(len(new_store2)): Enterprise_temp = Enterprise_cluster.copy() Enterprise_temp['new_store_id'] = new_store2[i] if i == 0: new_store2_predict_data = Enterprise_temp else: new_store2_predict_data = new_store2_predict_data.append(Enterprise_temp) new_store2_predict = new_store2_predict_data del new_store2_predict['store_id'] new_store2_predict = new_store2_predict.rename({'new_store_id': 'store_id'}, axis=1) cluster_all = new_store1_predict.append(new_store2_predict) cluster_all = cluster_all.append(Enterprise_cluster) cluster_all = cluster_all.append(old_stores_cluster) # ============================================================================= # Summary report # ============================================================================= cluster_all_pivote = cluster_all.groupby(['cluster', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index(drop=True) cluster_all_pivote.columns = ['_'.join(x) for x in cluster_all_pivote.columns.ravel()] cluster_all_pivote['drug%'] = cluster_all_pivote['drug_id_count' ] / cluster_all_pivote['drug_id_count'].sum() cluster_all_pivote['spend%'] = cluster_all_pivote['value_sum' ] / cluster_all_pivote['value_sum'].sum() cluster_all_pivote['drug%'] = cluster_all_pivote['drug%'].astype('float64') cluster_all_pivote['spend%'] = cluster_all_pivote['spend%'].astype('float64') cluster_all_pivote['factor'] = cluster_all_pivote['spend%' ] / cluster_all_pivote['drug%'] cluster_all_pivote_name = 'drug_grades/cluster_all_pivot.csv' # Uploading File to S3 s3.save_df_to_s3(df=cluster_all_pivote, file_name=cluster_all_pivote_name) # ============================================================================= # Assigning Cluster # ============================================================================= def assign_cluster(cluster_all): if cluster_all['cluster'] == '1_nan': return 'A1' elif cluster_all['cluster'] == '2_nan': return 'A1' elif cluster_all['cluster'] == '4_nan': return 'A2' elif cluster_all['cluster'] == '0_2.0': return 'B' elif cluster_all['cluster'] == '3_nan': return 'D' elif cluster_all['cluster'] == '0_0.0': return 'C' elif cluster_all['cluster'] == '0_1.0': return 'C' else: return cluster_all['cluster'] cluster_all['grade'] = cluster_all.apply(lambda row: assign_cluster(row), axis=1) cluster_all_name = 'drug_grades/cluster_all.csv' # Uploading File to S3 s3.save_df_to_s3(df=cluster_all, file_name=cluster_all_name) cluster_all_pivote1 = cluster_all.groupby(['grade', 'store_id'], as_index=False).agg({'drug_id': ['count'], 'value': ['sum'], 'bill_id': ['mean'], 'patient_id': ['mean'], 'days': ['mean'], 'recency': ['mean']}).reset_index(drop=True) cluster_all_pivote1.columns = ['_'.join(x) for x in cluster_all_pivote1.columns.ravel()] cluster_all_pivote1['drug%'] = cluster_all_pivote1['drug_id_count' ] / cluster_all_pivote1['drug_id_count'].sum() cluster_all_pivote1['spend%'] = cluster_all_pivote1['value_sum' ] / cluster_all_pivote1['value_sum'].sum() cluster_all_pivote1['drug%'] = cluster_all_pivote1['drug%'].astype('float64') cluster_all_pivote1['spend%'] = cluster_all_pivote1['spend%'].astype('float64') cluster_all_pivote1['factor'] = cluster_all_pivote1['spend%' ] / cluster_all_pivote1['drug%'] cluster_all_pivote1_name = 'drug_grades/cluster_all_pivot1.csv' # Uploading File to S3 s3.save_df_to_s3(df=cluster_all_pivote1, file_name=cluster_all_pivote1_name) final_data = cluster_all[['store_id', 'drug_id', 'grade']] final_data['calculation_date'] = date1 final_data.columns = [c.replace('_', '-') for c in final_data.columns] final_data['created-at'] = datetime.datetime.now() final_data['store-id'] = final_data['store-id'].astype(int) final_data['drug-id'] = final_data['drug-id'].astype(int) s3.write_df_to_db(df=final_data[table_info['column_name']], table_name=table_name, db=rs_db_write, schema=schema) '''getting current grades and replacing them with new if changed''' new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() for store_id in final_data['store-id'].unique(): if sqlwrite == 'yes': if store_id != 999: logger.info(f"SQL update starts !!!") current_grade_query = f''' SELECT id, "store-id", "drug-id", "drug-grade" FROM "prod2-generico"."drug-order-info-data" WHERE "store-id" = {store_id} ''' current_grade = rs_db.get_df(current_grade_query) current_grade.columns = [c.replace('-', '_') for c in current_grade.columns] current_grade.columns = list(map( lambda s: str.replace(s, '-', '_'), list(current_grade.columns.values) )) final_data_store = final_data.loc[ final_data['store-id'] == store_id, ['store-id', 'drug-id', 'grade']] final_data_store.columns = [c.replace('-', '_') for c in final_data_store.columns] grade_joined = current_grade.merge( final_data_store, on=['store_id', 'drug_id'], how='outer') grade_joined.loc[grade_joined['grade'].isna(), 'grade'] = 'NA' new_drug_entries = new_drug_entries.append( grade_joined[grade_joined['id'].isna()]) grade_joined = grade_joined[~grade_joined['id'].isna()] grade_joined['change_flag'] = np.where( grade_joined['drug_grade'] == grade_joined['grade'], 'same', 'changed') logger.info('Store ' + str(store_id)) logger.info('Total grades calculated' + str(final_data_store.shape[0])) logger.info('Grades changed' + str(grade_joined[ grade_joined['change_flag'] == 'changed'].shape[0])) grades_to_change = grade_joined.loc[ grade_joined['change_flag'] == 'changed', ['id', 'store_id', 'drug_id', 'grade']] grades_to_change.columns = ['id', 'store_id', 'drug_id', 'drug_grade'] data_to_be_updated_list = list( grades_to_change[['id', 'drug_grade']].apply(dict, axis=1)) sql = Sql() """ update using api """ status, text = sql.update( {'table': 'DrugOrderInfoData', 'data_to_be_updated': data_to_be_updated_list}, logger ) update_test_query = ''' SELECT `store-id`, `drug-id`, `drug-grade` FROM `drug-order-info-data` WHERE `store-id` = {store_id} and `grade-updated-at` >= CURRENT_TIMESTAMP() - INTERVAL 10 MINUTE and `grade-updated-at` < CURRENT_TIMESTAMP() '''.format(store_id=store_id) update_test = pd.read_sql_query(update_test_query, mysql_write.connection) update_test.columns = [c.replace('-', '_') for c in update_test.columns] update_test.columns = list(map( lambda s: str.replace(s, '-', '_'), list(update_test.columns.values) )) update_test = grades_to_change.merge( update_test, how='left', on=['store_id', 'drug_id'], suffixes=('', '_updated')) mismatch = update_test[ update_test['drug_grade'] != update_test['drug_grade_updated']] missed_entries = missed_entries.append(mismatch) logger.info('For store ' + str(store_id) + 'update mismatch count' + str(mismatch.shape[0])) new_drug_entries_name = 'drug_grades/new_drug_entries.csv' # Uploading File to S3 s3.save_df_to_s3(df=new_drug_entries, file_name=new_drug_entries_name) missed_entries_name = 'drug_grades/missed_entries.csv' # Uploading File to S3 s3.save_df_to_s3(df=missed_entries, file_name=missed_entries_name) rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/drug-grades/drug-grades.py
drug-grades.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "ecomm" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."ecomm" ( "etl-created-at", "etl-created-by", "updated-at", "updated-by", "zeno-order-id", "patient-id", "promo-code-id", "preferred-store-id", "order-type", "zeno-created-at", "zeno-created-by", "is-prescription-required", "order-number", "status", "comments", "zeno-drug-id", "patient-store-order-id", "zeno-qty", "overall-min-bill-date", "type", "category", "composition", "company-id", "composition-master-id", "zeno-drug-name", "zeno-drug-type", "source-pincode", "order-cancellation-reason-id", "cancel-comment", "cancelled-at", "cancelled-by", "cancel-reason", "cancel-type", "pso-requested-quantity", "patient-request-id", "pso-created-at", "pso-created-by", "pso-inventory-quantity", "pso-status", "store-id", "bill-id", "slot-id", "turnaround-time", "delivered-at", "assigned-to", "slot-type", "per-slot-capacity", "vendor-bill-number", "prescription-needed", "prescreptions-created", "completed-at", "mrp", "selling-rate", "gross-quantity", "sale-flag", "gross-revenue-value", "returned-quantity", "returned-revenue-value", "promo-code", "promo-code-type", "promo-eligibility", "campaign-name", "store-name", "store-city", "store-b2b", "abo", "line-manager", "order-origin", "zeno-drug-created-by", "billed-at", "delivery-type", "order-lead") select convert_timezone('Asia/Calcutta', GETDATE()) as "etl-created-at", 'etl-automation' as "etl-created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", 'etl-automation' as "updated-by", zo.id as "zeno-order-id", zo."patient-id" as "patient-id" , zo."promo-code-id" as "promo-code-id", zo."preferred-store-id" as "preferred-store-id", zo."order-type" as "order-type" , zo."created-at" as "zeno-created-at", zo."created-by" as "zeno-created-by", zo."is-prescription-required" as "is-prescription-required", zo."order-number" as "order-number", zo."status", zo."comments", zos."drug-id" as "zeno-drug-id", pso."id" as "patient-store-order-id" , zos."quantity" as "zeno-qty", pm."first-bill-date" as "overall-min-bill-date", d2."type", d2."category", d2."composition", d2."company-id" as "company-id", d2."composition-master-id" as "composition-master-id", d2."drug-name" as "zeno-drug-name", d2."type" as "zeno-drug-type", zpa."pincode" as "source-pincode", zocrm."order-cancellation-reason-id" as "order-cancellation-reason-id" , zocrm."comments" as "cancel-comment", zocrm."created-at" as "cancelled-at", zocrm."created-by" as "cancelled-by", zer."reason-name" as "cancel-reason", zer."type" as "cancel-type", mpr."pso-requested-quantity" , mpr."patient-request-id" , mpr."created-at" as "pso-created-at", mpr."created-by" as "pso-created-by", mpr."pso-inventory-quantity" , mpr."pso-status" , mpr."store-id" , mpr."bill-id", mhd."slot-id" , mhd."turnaround-time", mhd."delivered-at", mhd."assigned-to" , mhd."slot-type", mhd."per-slot-capacity", mhd."vendor-bill-number", mzol."prescription-needed", mzol."prescreptions-created", mzol."completed-at", case when zos."mrp" is null and d2."type" = 'generic' then 35 when zos."mrp" is null and d2."type" != 'generic' then 100 else zos."mrp" end as "mrp", case when zos."selling-rate" is null and d2."type" = 'generic' then 35 when zos."selling-rate" is null and d2."type" != 'generic' then 100 else zos."selling-rate" end as "selling-rate", msa."gross-quantity" , case when msa."gross-quantity" is null then false else true end as "sale-flag", msa."gross-revenue-value" , msa."returned-quantity" , msa."returned-revenue-value", mp."promo-code" , mp."promo-code-type" , mp."promo-eligibility" , mp."campaign-name" , msm.store as "store-name", msm.city as "store-city", msm."store-b2b", msm.abo, msm."line-manager" , zc."name" as "order-origin", zos."created-by" as "zeno-drug-created-by", msa."created-at" as "billed-at", mhd."delivery-type", zo."order-lead" from "prod2-generico"."zeno-order" as zo left join "prod2-generico"."zeno-order-sku" zos on zos."zeno-order-id" = zo."id" left join "prod2-generico"."patients-store-orders" pso on pso."zeno-order-id" = zos."zeno-order-id" and zos."drug-id" = pso."drug-id" left join "prod2-generico"."patient-requests-metadata" mpr on pso."id" = mpr."id" left join "prod2-generico"."home-delivery-metadata" mhd on pso."id" = mhd."id" left join "prod2-generico"."zeno-order-logs" mzol on zo."id" = mzol."id" left join "prod2-generico".stores s2 on s2."id" = pso."store-id" left join "prod2-generico"."zeno-patient-address" zpa on zo."patient-address-id" = zpa."id" left join "prod2-generico"."store-groups" zc on zc."id" = zo."store-group-id" left join "prod2-generico".drugs d2 on d2."id" = zos."drug-id" left join "prod2-generico"."patients-metadata-2" pm on zo."patient-id" = pm."id" left join "prod2-generico"."zeno-order-cancellation-reason-mapping" zocrm on zocrm."zeno-order-id" = zo."id" left join "prod2-generico"."zeno-escalation-reason" zer on zer."id" = zocrm."order-cancellation-reason-id" left join "prod2-generico"."sales-agg" msa on NVL(pso."bill-id", 0) = msa."bill-id" and pso."drug-id" = msa."drug-id" left join "prod2-generico"."promo" mp on pso."promo-id" = mp."id" left join "prod2-generico"."stores-master" msm on pso."store-id" = msm."id" ; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."ecomm"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ecomm/ecomm.py
ecomm.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from datetime import datetime from datetime import timedelta from dateutil.tz import gettz import pandas as pd parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-rd', '--full_run', default="no", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run email_to = args.email_to # env = 'stage' # limit = 10 os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") # Connections rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() # Run date run_date = datetime.today().strftime('%Y-%m-%d') # runtime_date = '2021-09-01' logger.info("Running for {}".format(run_date)) # Period start-date if full_run == 'yes': period_start_d = '2021-01-01' else: # Run only for last 30days, because for earlier, status woult not change # It can as well be, run only for last 15days, but 30 is a good buffer period_start_d = (pd.to_datetime(run_date) - timedelta(days=30)).strftime('%Y-%m-%d') logger.info("Running from {} to {}".format(period_start_d, run_date)) # Remaining data to be fetched read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params = None) data_q = """ SELECT c.`patient-id`, c.`store-id`, c.`call-date` call_date, max( (case when ((d.`call-recording-url` is not null and d.`call-recording-url` !='') or (d.`connected` =1)) then 1 else 0 end)) as connected FROM `calling-dashboard` c INNER JOIN `calling-history` d on c.`id` = d.`calling-dashboard-id` WHERE c.`status`='closed' and c.`call-date` >= '{0}' GROUP BY c.`patient-id`, c.`store-id`, c.`call-date` """.format(period_start_d) data_q = data_q.replace('`','"') logger.info(data_q) rs_db.execute(data_q, params=None) calling_dashboard_data: pd.DataFrame = rs_db.cursor.fetch_dataframe() if calling_dashboard_data is None: calling_dashboard_data = pd.DataFrame(columns = ['patient_id', 'store_id', 'call_date']) calling_dashboard_data.columns = [c.replace('-', '_') for c in calling_dashboard_data.columns] logger.info(len(calling_dashboard_data)) calling_dashboard_data.head() calling_dashboard_data['call_date'] = pd.to_datetime(calling_dashboard_data['call_date']) calling_dashboard_data['call_year'] = calling_dashboard_data['call_date'].dt.year calling_dashboard_data['call_month'] = calling_dashboard_data['call_date'].dt.month # For maximum call date in month # Order on connected desc, then can take drop duplicates calling_dashboard_data = calling_dashboard_data.sort_values(by = ['patient_id', 'store_id', 'call_year', 'call_month', 'connected'], ascending = [True, True, True, True, False]) logger.info(len(calling_dashboard_data)) calling_dashboard_data = calling_dashboard_data.drop_duplicates(subset = ['patient_id', 'store_id', 'call_year', 'call_month']) logger.info(len(calling_dashboard_data)) # Find window date that is 20 days after the calling date calling_dashboard_data['window_date'] = calling_dashboard_data['call_date'] + timedelta(days=20) # Make a tuple of those unique patient ids unique_patient_ids_tuple = tuple(calling_dashboard_data['patient_id'].drop_duplicates().to_list()) logger.info("Look up for {} patients".format(len(unique_patient_ids_tuple))) read_schema = 'prod2-generico' rs_db.execute(f"set search_path to '{read_schema}'", params = None) data_q = """ SELECT `patient-id`, date(`created-at`) bill_date, sum("revenue-value") spend FROM sales WHERE `patient-id` in {0} AND "bill-flag" = 'gross' GROUP BY `patient-id`, date(`created-at`) """.format(unique_patient_ids_tuple) data_q = data_q.replace('`','"') #logger.info(data_q) rs_db.execute(data_q, params=None) patient_data: pd.DataFrame = rs_db.cursor.fetch_dataframe() if patient_data is None: patient_data = pd.DataFrame(columns = ['patient_id', 'bill_date', 'spend']) patient_data.columns = [c.replace('-', '_') for c in patient_data.columns] logger.info(len(patient_data)) patient_data.head() patient_data['bill_date'] = pd.to_datetime(patient_data['bill_date']) # Round the spend values patient_data['spend'] = patient_data['spend'].astype(float).round(2) # Merge patient bill data and calling dashboard data conversion_data = pd.merge(patient_data, calling_dashboard_data, how='left', on='patient_id') # Keep only those records from merged dataframe # where calling date falls within the window date (converted customners) conversion_data = conversion_data[((conversion_data['bill_date'] >= conversion_data['call_date']) & ( conversion_data['bill_date'] <= conversion_data['window_date']))] conversion_data.sort_values('patient_id', inplace=True) # Find out the minimum bill date of converted customer min_bill_date_after_conversion = conversion_data.groupby(['patient_id', 'call_date'])['bill_date'].min().to_frame( name='min_bill_date_after_conversion').reset_index() # Merge minimum bill date of converted customer with conversion data from above conversion_data = pd.merge(conversion_data, min_bill_date_after_conversion, left_on=['patient_id', 'call_date', 'bill_date'], right_on=['patient_id', 'call_date', 'min_bill_date_after_conversion']) conversion_data.drop(['call_month', 'call_year', 'window_date', 'min_bill_date_after_conversion'], axis=1,inplace=True) # Take latest call-date, for any bill-date, to avoid bondary cases conversion_data = conversion_data.sort_values(by=['patient_id', 'bill_date', 'call_date'], ascending=[True, False, False]) conversion_data = conversion_data.drop_duplicates(subset=['patient_id', 'bill_date']) # Sort again to ascending conversion_data = conversion_data.sort_values(by=['patient_id', 'call_date']) conversion_data = conversion_data[['patient_id', 'store_id', 'call_date', 'bill_date', 'spend', 'connected']] ################################################# # Write to dB ################################################ # Truncate table data and reset index write_schema = 'prod2-generico' write_table_name = 'crm-conversion-overall' table_info = helper.get_table_info(db=rs_db_write, table_name=write_table_name, schema=write_schema) # table_info_clean = table_info[~table_info['column_name'].isin(['id','created-at','updated-at'])] rs_db_write.execute(f"set search_path to '{write_schema}'", params = None) truncate_q = f""" DELETE FROM "{write_table_name}" WHERE "call-date" >= '{period_start_d}' """ truncate_q = truncate_q.replace('`','"') logger.info(truncate_q) rs_db_write.execute(truncate_q, params=None) data_export = conversion_data.copy() data_export.columns = [c.replace('_', '-') for c in data_export.columns] # Mandatory lines data_export['created-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['created-by'] = 'etl-automation' data_export['updated-at'] = datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data_export['updated-by'] = 'etl-automation' # Upload data to dB, sensitive s3.write_df_to_db(df=data_export[table_info['column_name']], table_name=write_table_name, db=rs_db_write, schema=write_schema) logger.info("Uploading successful with length: {}".format(len(data_export))) # Closing the DB Connection rs_db.close_connection() rs_db_write.close_connection() logger.info("File ends")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/crm-conversion-overall/crm-conversion-overall.py
crm-conversion-overall.py
import argparse import sys import os import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.helper.aws.s3 import S3 parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-ss', '--source_schema_name', default="test-generico", type=str, required=False) parser.add_argument('-ts', '--target_schema_name', default="test-generico", type=str, required=False) parser.add_argument('-lot', '--list_of_tables', default="""drugs""", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") source_schema_name = args.source_schema_name target_schema_name = args.target_schema_name list_of_tables = args.list_of_tables.split(",") """ write connection """ db = DB(read_only=False) db.open_connection() """ read connection """ mysql_db = MySQL(read_only=False) mysql_db.open_connection() s3 = S3() def df_type_change(df: pd.DataFrame): type_map = {"company-id": int, "pack-of": int, "preferred-distributor": int} df_cols = df.columns for key, type_name in type_map.items(): if key in df_cols: df[key] = df[key].fillna(0).astype(type_name) return df for table in list_of_tables: logger.info(f"Select table: {table}") """ read the data from source database """ query = f""" select * from `{source_schema_name}`.`{table}` ; """ df = pd.read_sql(con=mysql_db.connection, sql=query) """ clean the table first """ logger.info(f"Delete started: {table}") query = f""" delete from "{target_schema_name}"."{table}" ; """ db.execute(query=query) logger.info(f"Insert started: {table}") """ insert the data """ df = df_type_change(df) s3.write_df_to_db(df=df, table_name=table, db=db, schema=target_schema_name) logger.info(f"End table: {table}")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/mysql-to-redshift-table-sync/mysql-to-redshift-table-sync.py
mysql-to-redshift-table-sync.py
import json from datetime import date, timedelta # Warnings from warnings import filterwarnings as fw import pandas as pd fw('ignore') import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.helper.email.email import Email parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sd1', '--start_date', default=None, type=str, required=False) parser.add_argument('-ed1', '--end_date', default=None, type=str, required=False) parser.add_argument('-sec', '--section', default='all', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env # parameters email_to = args.email_to start_date = args.start_date end_date = args.end_date section = args.section if end_date is None: end_date = date.today() start_date = end_date - timedelta(days=365) logger = get_logger() logger.info(f"env: {env}") rs_db = DB(read_only=True) rs_db.open_connection() mysql_read_db = MySQL(read_only=True) mysql_read_db.open_connection() s3 = S3() read_schema = 'prod2-generico' file_paths = [] if ('all' in section) or ('tech' in section): ############################################## ############# Tech Section ################### ############################################## # CASE1 # Where total bill value is less than promo-min-purchase condition case1_t_q = f""" select id as "bill-id", "patient-id", "store-id", store as "store-name", "promo-code-id", "promo-code", "promo-discount", "created-by" as "staff", "total-spend" "promo-min-purchase", "created-at", "ecom-flag" from "{read_schema}"."retention-master" rm where "promo-min-purchase" > "total-spend" and date("bill-date") between '{start_date}' and '{end_date}';""" case1_t = rs_db.get_df(case1_t_q) case1_t_agg = case1_t.groupby(['store-name', 'ecom-flag'], as_index=False).agg({'promo-discount' : 'sum'}) # CASE2 # where promo total used is above max-time case2_t_q = f"""select * from ( select rm.id, rm."patient-id", rm."bill-date", rm.store as "store-name", rm."promo-discount", rm."promo-code", pc."max-time", rm."promo-code-type", rm."ecom-flag", rank() over(partition by rm."promo-code-id" order by rm."created-at") Rank_ from "{read_schema}"."retention-master" rm left join "{read_schema}"."promo-codes" pc on rm."promo-code-id" = pc.id) T where T.Rank_>T."max-time" and DATE(T."bill-date") between '{start_date}' and '{end_date}';""" case2_t = rs_db.get_df(case2_t_q) case2_t_agg = case2_t.groupby(['store-name', 'ecom-flag'], as_index=False).agg({'promo-discount' : 'sum'}) # CASE 3 # where promo per-patient-total-used is above max-per-patient case3_t_q = f"""select * from ( select rm.id, rm."patient-id", rm."bill-date", rm.store as "store-name", rm."promo-discount", rm."promo-code", pc."max-per-patient", rm."promo-code-type", rm."ecom-flag", rank() over(partition by rm."patient-id", rm."promo-code-id" order by rm."created-at") Rank_ from "{read_schema}"."retention-master" rm left join "{read_schema}"."promo-codes" pc on rm."promo-code-id" = pc.id) T where T.Rank_>T."max-per-patient" and DATE(T."bill-date") between '{start_date}' and '{end_date}';""" case3_t = rs_db.get_df(case3_t_q) case3_t_agg = case3_t.groupby(['store-name', 'ecom-flag'], as_index=False).agg({'promo-discount' : 'sum'}) # CASE 4 # After expiry bills case4_t_q = f""" select rm.id, rm."patient-id", rm.store as "store-name", rm."bill-date", rm."promo-discount", rm."promo-code", pc."max-time", rm."promo-code-type", rm."ecom-flag", pc.expiry from "{read_schema}"."retention-master" rm left join "{read_schema}"."promo-codes" pc on rm."promo-code-id" = pc.id where DATE(rm."bill-date") between '{start_date}' and '{end_date}' and rm."bill-date" > DATE(pc.expiry);""" case4_t = rs_db.get_df(case4_t_q) case4_t_agg = case4_t.groupby(['store-name', 'ecom-flag'], as_index=False).agg({'promo-discount' : 'sum'}) # Generating Excel File file_name = 'promo_leakage_tech_issues.xlsx' file_path_t = s3.write_df_to_excel(data={'bill-value > promo-min-purchase': case1_t_agg, 'exceeded max limit of usage': case2_t_agg, 'exceeded max-per-patient usage': case3_t_agg, 'bills after promo expiry': case4_t_agg}, file_name=file_name) file_paths.append(file_path_t) if ('all' in section) or ('mdm' in section): ############################################## ############# Category Section ############### ############################################## bills_q = f"""select "created-at", s."patient-id", s."store-id", s."store-name", s."bill-id", s."drug-id", s."type-at-selling", s."type", s."promo-code-id", s."promo-code", s."promo-discount" as "promo-spend", s.mrp * "net-quantity" as "mrp-value" from "prod2-generico".sales s where date(s."created-at") between '{start_date}' and '{end_date}' and s."promo-discount" > 0 and s."code-type" != 'referral' and "bill-flag" = 'gross';""" bills = rs_db.get_df(bills_q) promo_q = f""" SELECT * FROM `promo-codes` pc where rules is not null and date(`start`)<= '{end_date}' and date(expiry)>= '{start_date}' and `code-type` != 'referral';""" promo = pd.read_sql_query(promo_q, mysql_read_db.connection) def drug(x): try: return json.loads(x.decode("utf-8")) except: return [] def burn(x): try: if x['type'] not in x['rules_drugs'][0]: return 'MDM_Burn' else: return 'Correct' except: return 0 promo['rules_json'] = promo['rules'].apply(lambda x: drug(x)) promo['rules_drugs'] = promo['rules_json'].apply( lambda x: [i['match-values'] for i in x if i['level'] == 'drug-type']) promo['rules_drugs'] = promo['rules_drugs'].apply(lambda x: [[]] if len(x) == 0 else x) promo.rename(columns={'id': 'promo-code-id'}, inplace=True) promo['rules_drugs_type'] = promo['rules_drugs'].apply(lambda x: type(x[0])) mdm_issue = pd.merge(bills, promo, on='promo-code-id', how='inner') mdm_issue['Burn'] = mdm_issue.apply(lambda x: burn(x), 1) mdm_issue['Burn'] = mdm_issue.apply(lambda x: 'Correct' if x['rules_drugs'] == [[]] else x['Burn'], 1) mdm_issue = mdm_issue[(mdm_issue['Burn'] == 'MDM_Burn')] # Generating excel file for mdm issues file_name = 'promo_leakage_mdm_issue.xlsx' file_path_mdm = s3.write_df_to_excel(data={'category changed later': mdm_issue}, file_name=file_name) file_paths.append(file_path_mdm) if ('all' in section) or ('marketing' in section): ############################################## ############# Marketing Section ############## ############################################## # CASE 1 # Marketing perspective # Assuming the latest code is the correct one, where min purchase in increased # So cases where min purchase was set low is promo leakage case1_m_q = f""" select * from ( select rm.id, rm."promo-code-id" as "old-promo-code-id", rm."promo-code" as "old-promo-code", rm."total-spend", rm.store as "store-name", rm."ecom-flag", rm."promo-discount", pc."min-purchase" as "old-min-purchase condition" from "prod2-generico"."retention-master" rm left join "prod2-generico"."promo-codes" pc on rm."promo-code-id" = pc.id where date(rm."created-at") between '{start_date}' and '{end_date}' and rm."promo-code-id" is not null and rm."promo-code-type" != 'referral') t1 inner join ( select * from ( select pc.id as "new-promo-code-id", pc."promo-code" as "new-promo-code", pc."min-purchase" as "new-min-purchase", rank() over(partition by pc."promo-code" order by pc."created-at" desc) as "promo-rank" from "prod2-generico"."promo-codes" pc where "code-type" != 'referral') t2 where t2."promo-rank" = 1) t2_2 on t1."old-promo-code" = t2_2."new-promo-code" and t1."old-promo-code-id" != t2_2."new-promo-code-id" and t1."old-min-purchase condition" < t2_2."new-min-purchase";""" case1_m = rs_db.get_df(case1_m_q) case1_m_agg = case1_m.groupby(['store-name', 'ecom-flag'], as_index=False).agg({'promo-discount' : 'sum'}) # CASE 2 # Promo created again user got benefited more than how much is supposed to cas2_m_q = f""" select * from ( select rm.id as "bill-id", rm."patient-id", rm."created-at", rm."promo-code", rm."promo-discount", rm.store as "store-name", rm."ecom-flag", rank() over(partition by rm."patient-id", rm."promo-code" order by rm."created-at") "promo-used-rank" from "prod2-generico"."retention-master" rm where rm."promo-code" is not null and date("created-at") between '{start_date}' and '{end_date}' and rm."promo-code-type" != 'referral') t1 left join ( select * from ( select pc.id as "new-promo-code-id", pc."promo-code" as "new-promo-code", pc."max-per-patient" as "new-max-per-patient", rank() over(partition by pc."promo-code" order by pc."created-at" desc) as "promo-rank" from "prod2-generico"."promo-codes" pc where "code-type" != 'referral') t2 where t2."promo-rank" = 1) t2_2 on t1."promo-code" = t2_2."new-promo-code" where t1."promo-used-rank" > t2_2."new-max-per-patient"; """ case2_m = rs_db.get_df(cas2_m_q) case2_m_agg = case2_m.groupby(['store-name', 'ecom-flag'], as_index=False).agg({'promo-discount' : 'sum'}) # Generating Excel for Marketing issues file_name = 'promo_leakage_marketing_issue.xlsx' file_path_m = s3.write_df_to_excel(data={'Lower min purchase limit': case1_m_agg, 'Max-per-patient limit exceeded': case2_m_agg, }, file_name=file_name) file_paths.append(file_path_m) if ('all' in section) or ('referral' in section): ############################################## ############# Referral Section ############## ############################################## ref_q = """ select t1.*, rm_d."patient-id" "abuser-patient-id", rm_d."id" "abused-bill-id", rm_d."created-at", rm_d."created-by" "abuser", rm_d."total-spend", rm_d."redeemed-points" from ( select rm.store, rm."created-by", rm."promo-code-id", count(distinct rm.id) "bill-count", max(rm."created-at") "last-promo-use" from "prod2-generico"."retention-master" rm where rm."promo-code-id" is not null and rm."promo-code-type" = 'referral' group by rm.store, rm."created-by", rm."promo-code-id" having "bill-count" = 11 and DATE("last-promo-use") between '2022-08-01' and '2022-08-31') t1 left join "prod2-generico"."patients-promo-codes" ppc on t1."promo-code-id" = ppc."promo-code-id" left join "prod2-generico"."retention-master" rm_d on ppc."patient-id" = rm_d."patient-id" where rm_d."created-at" >= t1."last-promo-use" and t1."created-by" = rm_d."created-by" and rm_d."redeemed-points" > 0 """ ref = rs_db.get_df(ref_q) ref_user = ref[['store', 'created-by', 'promo-code-id', 'bill-count']].drop_duplicates() ref_user['abused-amount'] = 51 ref_user = ref_user.groupby(['store', 'created-by'], as_index=False).agg({'bill-count': 'sum', 'abused-amount': 'sum'}) ref_owner = ref[['store', 'abuser', 'abused-bill-id', 'redeemed-points']].drop_duplicates() ref_owner = ref_owner.groupby(['store', 'abuser'], as_index=False).agg({'abused-bill-id': 'nunique', 'redeemed-points': 'sum'}) # Generating Excel for referral issues file_name = 'promo_leakage_referral_issue.xlsx' file_path_r = s3.write_df_to_excel(data={'ref user': ref_user, 'ref_owner': ref_owner, }, file_name=file_name) file_paths.append(file_path_r) mail_body = f""" Hi, This report contains a summary of promo leakage that happened during {start_date} and {end_date} There are three types of promo - leakage 1. Tech issues ( Leakage happened due to code logic/failure of logic ) 2. Category issue ( Promo discount supposed to be available on some selected categories but category got changed after availing the offer; previous set category was not correct ) 3. Marketing issue ( Issue where multiple times new code got introduced with some minor correction; we assumed the latest code is correct ) For each leakage, there could be obvious explanations, please provide explanations and I will iterate the logic accordingly 1. Tech Issue Min-Purchase (Min-Purchase logic is failing ): Ecomm - {case1_t_agg[case1_t_agg['ecom-flag'] == True]['promo-discount'].sum()} Store - {case1_t_agg[case1_t_agg['ecom-flag'] == False]['promo-discount'].sum()} Max-time ( Max-time code use logic failure ) : Ecomm - {case2_t_agg[case2_t_agg['ecom-flag'] == True]['promo-discount'].sum()} Store - {case2_t_agg[case2_t_agg['ecom-flag'] == False]['promo-discount'].sum()} Max-per-patient (Max-per-patient logic failure) : Ecomm - {case3_t_agg[case3_t_agg['ecom-flag'] == True]['promo-discount'].sum()} Store - {case3_t_agg[case3_t_agg['ecom-flag'] == False]['promo-discount'].sum()} bill-after expiry ( expiry logic failed ) Ecomm - {case4_t_agg[case4_t_agg['ecom-flag'] == True]['promo-discount'].sum()} Store - {case4_t_agg[case4_t_agg['ecom-flag'] == False]['promo-discount'].sum()} For all ecomm cases: Tech has given the explanation that the agent has overwritten access for promo codes (in multiple scenarios they can use it ) but that will still come under leakage and can be discussed. 2. Category issue: {mdm_issue['Burn'].sum()} 3. Marketing Issue : Min-Purchase (Min-Purchase logic changed in latest code ): {case1_m_agg['promo-discount'].sum()} Max-per-patient (Max-per-patient logic failure because of multiple code creation) : {case2_m_agg['promo-discount'].sum()} **This report will be generated monthly** Thanks & regards""" email = Email() email.send_email_file(subject="Promo Leakage", mail_body=mail_body, to_emails=email_to, file_uris=[], file_paths=file_paths)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/promo-leakage/promo-leakage.py
promo-leakage.py
# Version 2 plan # For providing front end - few changes can be done to make it more user friedly input (Groups can be identified, User can add store infront of group) # Drop whole table is risky - Provide option of update and new entry while providing UI import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback import calendar parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") # SLA Provided via Retool as_ms_sla = pd.read_csv(s3.download_file_from_s3(file_name="SLA/sla_tat/AS_MS_SLA.csv")) pr_sla = pd.read_csv(s3.download_file_from_s3(file_name="SLA/sla_tat/PR_SLA.csv")) # as_ms_sla = pd.read_csv(r'D:\Dashboards TAT\SLA Automations\AS_MS_SLA.csv') # pr_sla = pd.read_csv(r'D:\Dashboards TAT\SLA Automations\PR_sla.csv') sla = pd.concat([as_ms_sla,pr_sla],sort=True) logger.info('fetched SLA sheet provided by planning team') # Fetching Active stores store_query = ''' select s.id as "store-id", case when s."franchisee-id" = 1 then 'coco' else 'fofo' end as "franchisee-flag", s."franchisee-id" , s."city-id", s."is-active" , s.category from "prod2-generico".stores s ''' stores_data = rs_db.get_df(store_query) stores_data.columns = [c.replace('-', '_') for c in stores_data.columns] # Fetching only active, retail stores stores_data = stores_data[stores_data['category']=='retail'] stores_data = stores_data[stores_data['is_active']==1] del stores_data['category'] logger.info('fetched current active store list') # Creating SLA table sla_db = pd.DataFrame() for as_ms_pr_flag in sla['as_ms_pr_flag'].unique(): if as_ms_pr_flag == 'as_ms': auto_short = 1 elif as_ms_pr_flag == 'pr': auto_short = 0 for franchisee_flag in sla['franchisee_flag'].unique(): for distributor_type in sla['distributor_type'].unique(): for round in sla['round'].unique(): for day in sla['day'].unique(): sla_temp = sla[(sla['as_ms_pr_flag']==as_ms_pr_flag)& (sla['franchisee_flag']==franchisee_flag)& (sla['distributor_type']==distributor_type)& (sla['round']==round)& (sla['day']==day)] sla_temp['store_id'] = sla_temp['store_ids'].str.split('|') sla_temp = sla_temp.explode('store_id') sla_temp['store_id'] = sla_temp['store_id'].astype(int) store_temp = sla_temp['store_id'].unique() stores_data_temp = stores_data[stores_data['franchisee_flag']==franchisee_flag] sla_temp = sla_temp.merge(stores_data_temp ,on = ['franchisee_flag','store_id'],how = 'outer') for col in sla_temp.columns: fillna_number = sla_temp[sla_temp['store_id'] == 0][col].squeeze() sla_temp[col] = sla_temp[col].fillna(fillna_number) sla_temp['auto_short'] = auto_short sla_temp = sla_temp[sla_temp['store_id']!=0] sla_temp = sla_temp[sla_temp['is_active']==1] sla_db = pd.concat([sla_temp,sla_db],sort=True) del sla_db['store_ids'] del sla_db['is_active'] logger.info('table created at same granularity that is required in DB') # Checking If any duplicate entry dup_col_check_cols = ['as_ms_pr_flag', 'day','round','store_id','distributor_type'] boolean = sla_db[dup_col_check_cols ].duplicated().any() if boolean: logger.info(f'duplicated entry found - {boolean}') duplicateRowsDF = sla_db[sla_db.duplicated(subset=dup_col_check_cols,keep=False)] sla_db.drop_duplicates(subset=dup_col_check_cols, keep='first', inplace=True) else: logger.info(f'duplicated entry found - {boolean}') duplicateRowsDF = pd.DataFrame() # formatting sla_db to upload sla_db.columns = [c.replace('_', '-') for c in sla_db.columns] cols_to_convert_to_int = ['auto-short', 'city-id', 'day', 'delivery-date', 'delivery-time', 'dispatch-date', 'dispatch-time', 'franchisee-id', 'invoice-date', 'invoice-time', 'order-date', 'order-time', 'reorder-date', 'reorder-time', 'round', 'store-id'] sla_db[cols_to_convert_to_int] = sla_db[cols_to_convert_to_int].astype(int) # Uploading to RS schema = 'prod2-generico' table_name = 'tat-sla' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) status2 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' delete from "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(str(table_name) + ' table deleted') s3.write_df_to_db(df=sla_db[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(str(table_name) + ' table uploaded') status2 = True if status2 is True: status = 'Success' else: status = 'Failed' # Email cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() duplicate_entry_uri = s3.save_df_to_s3(df=duplicateRowsDF, file_name=f'sla_duplicate_entries_{cur_date}.csv') sla_db_uri = s3.save_df_to_s3(df=sla_db, file_name=f'tat_sla_final_{cur_date}.csv') email = Email() email.send_email_file(subject=f"{env}-{status} : SLA update", mail_body=f"duplicated entry found - {boolean}", to_emails=email_to, file_uris=[duplicate_entry_uri,sla_db_uri]) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/tat_sla/as_ms_sla.py
as_ms_sla.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import numpy as np import datetime import dateutil from dateutil.tz import gettz from datetime import timedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-d', '--full_run', default=0, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env full_run = args.full_run os.environ['env'] = env logger = get_logger() logger.info(f"full_run: {full_run}") rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'ecomm-pso-substitution' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # max of data eco_q = """ select date(max("zeno-created-at")) max_exp from "prod2-generico"."ecomm-pso-substitution" """ max_exp_date = rs_db.get_df(eco_q) max_exp_date['max_exp'].fillna(np.nan, inplace=True) logger.info(max_exp_date.info()) max_exp_date = max_exp_date['max_exp'].to_string(index=False) logger.info(max_exp_date) # params if full_run or max_exp_date == 'NaN': start = '2021-01-01' else: start = (pd.to_datetime(max_exp_date) - timedelta(days=15)).strftime('%Y-%m-%d') start = dateutil.parser.parse(start) logger.info(start) # ethical generic leads base_q = f""" select e."zeno-order-id", e."patient-id" , e."order-type" , e."zeno-created-at" , e."zeno-drug-created-by" , e."order-number" , e."preferred-store-id" , e."type", e.category , e."composition-master-id", e.composition , e.status, e."zeno-drug-id", e."zeno-drug-name" from "prod2-generico".ecomm e where e."zeno-created-at" >= '{start}' and e."type" in ('generic', 'ethical') and e."zeno-drug-created-by" = '[email protected]' """ base = rs_db.get_df(base_q) base['gen-cnt'] = np.where(base['type'] == 'generic', 1, 0) base['eth-cnt'] = np.where(base['type'] == 'ethical', 1, 0) fixed_gen_eth_cnt = base.groupby(['zeno-order-id', 'composition']).agg( {'gen-cnt': "sum", 'eth-cnt': "sum"}).reset_index() # to exclude case where lead contains same composition both ethical and generic drug exclusion = fixed_gen_eth_cnt[(fixed_gen_eth_cnt['gen-cnt'] > 0) & (fixed_gen_eth_cnt['eth-cnt'] > 0)] # take only ethical as left table base_eth = base[(base['type'] == 'ethical')] base_eth.drop(['gen-cnt', 'eth-cnt'], axis='columns', inplace=True) # base_eth['zeno-order-id'] = base_eth['zeno-order-id'].astype(str) # exclusion['zeno-order-id'] = exclusion['zeno-order-id'].astype(str) # base_eth['composition'] = base_eth['composition'].astype(str) # exclusion['composition'] = exclusion['composition'].astype(str) base_eth[['zeno-order-id', 'composition']] = base_eth[['zeno-order-id', 'composition']].astype(str) exclusion[['zeno-order-id', 'composition']] = exclusion[['zeno-order-id', 'composition']].astype(str) datamerge = pd.merge(base_eth, exclusion, how='left', on=['zeno-order-id', 'composition']) # exclude leads with both eth gen same composition final_eth = datamerge[datamerge['gen-cnt'].isna()] final_eth.drop(['gen-cnt', 'eth-cnt'], axis='columns', inplace=True) # join pso to check whether ethical was substituted to gen by CRM pso_q = f""" select pso."zeno-order-id", pso."drug-id" as "pso-drug-id", pso."drug-name" as "pso-drug-name", pso."store-id", d.composition, d."type" as "pso-drug-type", pso."created-by" as "pso-created-by" from (select * ,ROW_NUMBER () over (partition by pso."zeno-order-id" order by pso."created-at" desc) rk from "prod2-generico"."patients-store-orders" pso where "order-source" = 'zeno' and "created-at" >= '{start}' ) pso left join "prod2-generico"."drugs" d on d.id = pso."drug-id" where rk = 1 """ pso = rs_db.get_df(pso_q) # pso['zeno-order-id'] = pso['zeno-order-id'].astype(str) # pso['composition'] = pso['composition'].astype(str) pso[['zeno-order-id', 'composition']] = pso[['zeno-order-id', 'composition']].astype(str) datamerge = pd.merge(final_eth, pso, how='left', on=['zeno-order-id', 'composition']) joined = datamerge.copy() # substitutables substitutable_q = """ select distinct id as "composition-master-id" , "composition" as "substitutable-composition" from "prod2-generico"."substitutable-compositions" """ substitutable = rs_db.get_df(substitutable_q) joined['composition-master-id'] = joined['composition-master-id'].astype(int, errors='ignore') substitutable['composition-master-id'] = substitutable['composition-master-id'].astype(int, errors='ignore') datamerge = pd.merge(joined, substitutable, how='left', on=['composition-master-id']) datamerge['substitutable-composition-flag'] = np.where(pd.isnull(datamerge['substitutable-composition']) == False, 1, 0) datamerge.drop(['substitutable-composition'], axis='columns', inplace=True) ecomm_pso_sub = datamerge.copy() # only consider leads for which pso was made ecomm_pso_sub = ecomm_pso_sub[(pd.isnull(ecomm_pso_sub['pso-drug-id']) == False)] # ecomm_pso_sub['preferred-store-id'] = ecomm_pso_sub['preferred-store-id'].astype(int, errors='ignore') ecomm_pso_sub[['store-id', 'preferred-store-id']] = ecomm_pso_sub[['store-id', 'preferred-store-id']]\ .astype(int, errors='ignore') # etl ecomm_pso_sub['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ecomm_pso_sub['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') ecomm_pso_sub['created-by'] = 'etl-automation' ecomm_pso_sub['updated-by'] = 'etl-automation' if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "zeno-created-at" >='{start}' ''' logger.info(truncate_query) rs_db.execute(truncate_query) logger.info(ecomm_pso_sub.head()) s3.write_df_to_db(df=ecomm_pso_sub[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ecomm_pso_substitution/ecomm_pso_substitution.py
ecomm_pso_substitution.py
``` import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.clervertap.clevertap import CleverTap parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env print(f"env: {env}") # ct = CleverTap(api_name="profiles.json", event_name="App Launched", batch_size=100, query={"event_name": "App Launched", "from": 20220601, "to": 20220601}) # ct.get_profile_data_all_records() # print(f"All records count: {len(ct.all_records)}") ct = CleverTap(api_name="profiles.json", event_name="App Launched", batch_size=100, query={"event_name": "App Launched", "from": 20220921, "to": 20220921}) ct.get_profile_data_all_records() df = ct.all_records print(len(df)) import pandas as pd df1=pd.DataFrame(df) df1.head() df2 = pd.json_normalize(df) df2.head() df2[['identity','profileData.patientid']] ```
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/clevertap/clevertap-rs.ipynb
clevertap-rs.ipynb
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "drug-primary-disease" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "created-by", "created-at", "updated-by", "updated-at", "drug-id", "drug-primary-disease" ) select 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", "drug-id", "subgroup" as "drug-primary-disease" from ( select ab."drug-id", ab."subgroup", ab."molecules_count", row_number() over (partition by ab."drug-id" order by ab."molecules_count" desc, ab."subgroup" asc) as "rank" from ( select a."id" as "drug-id", c."subgroup", count(c."id") as molecules_count from "prod2-generico".drugs a inner join "prod2-generico"."composition-master-molecules-master-mapping" b on a."composition-master-id" = b."composition-master-id" inner join "prod2-generico"."molecule-master" c on b."molecule-master-id" = c."id" where c.subgroup != 'others' group by a."id", c."subgroup") ab ) sub where "rank" = 1 """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/drug-primary-disease/drug_primary_disease.py
drug_primary_disease.py
import os import sys import argparse import pandas as pd import datetime import numpy as np sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, MSSql from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from dateutil.tz import gettz if __name__ == '__main__': parser = argparse.ArgumentParser( description="Populates table purchase_margin") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]", type=str, required=False) parser.add_argument('-sd', '--start_date', default='NA', type=str, required=False) parser.add_argument('-ed', '--end_date', default='NA', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to start_date = args.start_date end_date = args.end_date err_msg = '' logger = get_logger() logger.info("Script begins") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() d = datetime.timedelta(days=15) start_dt = cur_date - d end_dt = cur_date - datetime.timedelta(1) status = False if start_date == 'NA' and end_date == 'NA': start_date = start_dt end_date = end_dt try: # MSSql connection mssql = MSSql(connect_via_tunnel=False) mssql_connection = mssql.open_connection() # RS Connection rs_db = DB() rs_db.open_connection() q1 = """ select 'bhiwandi-warehouse' as source, cast(b.Barcode as int) as drug_id, cast(a.Vdt as date) as purchase_date, c.Altercode as distributor_id, a.Qty as quantity, f.mrp as mrp, (a.NetAmt + a.Taxamt)/ qty as purchase_rate, cast(a.Vno as varchar) + cast('-' as varchar) + cast(a.Itemc as varchar) + cast('-' as varchar) + cast(a.Psrlno as varchar) as id, 199 as store_id from SalePurchase2 a left join Item b on b.code = a.Itemc left join acm c on c.code = a.Acno left join Master m on m.code = b.ItemCat left join FIFO f on (f.Pbillno = a.Pbillno and f.Psrlno = a.Psrlno and f.Itemc = a.Itemc and f.Vdt = a.Vdt) where b.Barcode not like '%[^0-9]%' and c.Altercode not like '%[^0-9]%' and a.Vtype in (N'PB') and a.Qty > 0 and a.vdt >= '{}' and a.vdt <= '{}' """.format(start_date,end_date) logger.info("getting data from WMS tables") bhiwandi_wh_purchase = pd.read_sql(q1, mssql_connection) logger.info("Data pulled from WMS tables") mssql = MSSql(connect_via_tunnel=False, db='Esdata_WS_2') cnxn = mssql.open_connection() cursor = cnxn.cursor() q_2=''' select 'goodaid-warehouse' as source, cast(b.Barcode as int) as drug_id, cast(a.Vdt as date) as purchase_date, c.Altercode as distributor_id, a.Qty as quantity, f.mrp as mrp, (a.NetAmt + a.Taxamt)/ qty as purchase_rate, cast(a.Vno as varchar) + cast('-' as varchar) + cast(a.Itemc as varchar) + cast('-' as varchar) + cast(a.Psrlno as varchar) as id, 343 as store_id from SalePurchase2 a left join Item b on b.code = a.Itemc left join acm c on c.code = a.Acno left join Master m on m.code = b.ItemCat left join FIFO f on (f.Pbillno = a.Pbillno and f.Psrlno = a.Psrlno and f.Itemc = a.Itemc and f.Vdt = a.Vdt) where b.Barcode not like '%[^0-9]%' and c.Altercode not like '%[^0-9]%' and a.Vtype in (N'PB') and a.Qty > 0 and a.vdt >= '{}' and a.vdt <= '{}' '''.format(start_date,end_date) goodaid_warehouse_purchase = pd.read_sql(q_2, cnxn) q3 = """ select 'dc' as source, ii."drug-id" as drug_id, date(i."approved-at") as purchase_date, cast(i."distributor-id" as varchar) as distributor_id, ii."actual-quantity" as quantity, ii.mrp, (ii."net-value" / ii."actual-quantity") as purchase_rate, cast(ii.id as varchar) as id, i."store-id" as store_id from "prod2-generico".invoices i left join "prod2-generico"."invoice-items" ii on ii."invoice-id" = i.id where "distributor-id" <> 8105 and ii."drug-id" is not null and date(i."approved-at") >='{}' and date(i."approved-at") <='{}' """.format(start_date,end_date) logger.info("Getting data from RS") dc = rs_db.get_df(q3) logger.info("Data pulled from RS") drugs = rs_db.get_df(""" select drg.id as drug_id, drg."drug-name" as drug_name, drg."type", drg.company, drg.category, drg."available-in" as available_in, drg."sub-type" as sub_type, drg."category-drug-type" as category_drug_type from "prod2-generico".drugs drg """) stores = rs_db.get_df(""" select sm.id as store_id, sm.store as store_name, sm.city as city_name, sm."franchisee-name" as franchisee_name, sm."opened-at" as store_opened_at from "prod2-generico"."stores-master" sm """) distributors = rs_db.get_df(""" select id as distributor_id, d."name" as distributor_name from "prod2-generico".distributors d """) df = pd.concat([dc, bhiwandi_wh_purchase,goodaid_warehouse_purchase]) df = df.merge(drugs, on='drug_id', how='left') df = df.merge(stores, on='store_id', how='left') df['distributor_id'] = np.where(df['distributor_id'] == '', 0, df['distributor_id']) df['distributor_id'] = df['distributor_id'].astype(int) df = df.merge(distributors, on='distributor_id', how='left') created_at = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") df['created-at'] = created_at df['created-by'] = 'etl-automation' df['updated-at'] = created_at df['updated-by'] = 'etl-automation' df['quantity'] = df['quantity'].astype(int) #writing to RS delete_q = """ DELETE FROM "prod2-generico"."purchase-margin" WHERE date("created_at") >= '{start_date_n}' and date("created_at") <= '{end_date_n}' """.format(start_date_n=start_date, end_date_n=end_date) rs_db.execute(delete_q) s3 = S3() delete_one_year=''' DELETE FROM "prod2-generico"."purchase-margin" WHERE date("created_at") < date_trunc('month', current_date) - INTERVAL '1 year' ''' s3.write_df_to_db(df=df, table_name='purchase-margin', db=rs_db, schema='prod2-generico') rs_db.execute(delete_one_year) status = True except Exception as e: err_msg = str(e) logger.info('purchase_margin job failed') logger.exception(e) # Sending email email = Email() if status: result = 'Success' email.send_email_file(subject=f"purchase_margin ({env}): {result}", mail_body=f"Run time: {cur_date}", to_emails=email_to, file_uris=[]) else: result = 'Failed' email.send_email_file(subject=f"purchase_margin ({env}): {result}", mail_body=f"Run time: {cur_date} {err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended") #DDL for table """ create table "prod2-generico"."purchase-margin" ( "source" text, "drug_id" int, "created_at" date, "distributor_id" int, "quantity" int, "mrp" float, "purchase_rate" float, "id" text, "store_id" int, "drug_name" text, "type" text, "company" text, "category" text, "available_in" text, "sub_type" text, "category_drug_type" text, "store_name" text, "city_name" text, "franchisee_name" text, "store_opened_at" date, "distributor_name" text, "created-at" TIMESTAMP without TIME zone default getdate(), "created-by" VARCHAR default 'etl-automation', "updated-at" TIMESTAMP without TIME zone default getdate(), "updated-by" VARCHAR default 'etl-automation' ); alter table "prod2-generico"."purchase-margin" owner to admin; """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/purchase_margin/purchase_margin.py
purchase_margin.py
import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper import argparse import pandas as pd import datetime import os import re from datetime import date from datetime import datetime import numpy as np from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env currentMonth = datetime.now(tz=gettz('Asia/Kolkata')).month currentYear = datetime.now(tz=gettz('Asia/Kolkata')).year run_date = str(datetime.now(tz=gettz('Asia/Kolkata')).date()) rs_db = DB() rs_db.open_connection() s3=S3() warehouse_drug_query = ''' select wssm."drug-id" as "drug-id-dss", 'Yes' as "add-wh" from "prod2-generico"."wh-sku-subs-master" wssm where wssm."add-wh" ='Yes' ''' warehouse_drug = rs_db.get_df(query=warehouse_drug_query) wh_prate_query = """ select i.barcode as "drug-id-wh" , i.prate as "fixed-purchase-rate" from "prod2-generico".item i where i.prate > 0 and REGEXP_COUNT(i.barcode , '^[0-9]+$')= 1 """ wh_prate=rs_db.get_df(query=wh_prate_query) wh_prate["drug-id-wh"] = pd.to_numeric(wh_prate["drug-id-wh"]) q_aa=''' select "year-created-at" as "year", "month-created-at" as "month" , s."bill-flag" as "sales-type", s."drug-id" , s."drug-name" , s."type" , s.category , s.company , d."available-in" , d.pack , d."pack-form" , d."release" , d."is-repeatable" , d."repeatability-index", s."ecom-flag" , s.city , COUNT(distinct s."bill-id") as "bill-count", COUNT(distinct s."patient-id") as "patient-count", SUM(s.mrp*s."net-quantity") as "net-mrp", SUM(s.rate* s."net-quantity") as "net-revenue", SUM(s.ptr*s."net-quantity") as "net-cogs-zp", SUM(s."purchase-rate"*s."net-quantity") as "net-cogs-wc" from "prod2-generico".sales s left join "prod2-generico".drugs d on s."drug-id" =d.id where "year-created-at" ={currentYear} and "month-created-at" ={currentMonth} group by "year-created-at" , "month-created-at" , s."bill-flag", s."drug-id" , s."drug-name" , s."type" , s.category , s.company , d."available-in" , d.pack , d."pack-form" , d."release" , d."is-repeatable" , d."repeatability-index", s."ecom-flag" , s.city '''.format(currentYear=currentYear,currentMonth=currentMonth) gross_and_returns = rs_db.get_df(query=q_aa) conditions = [(gross_and_returns['repeatability-index'] >= 80 ), (gross_and_returns['repeatability-index'] >= 40) & (gross_and_returns['category'] =='chronic'), (gross_and_returns['repeatability-index']<80) ] choices = ['repeatable','repeatable', 'non-repeatable'] gross_and_returns['repeatable_flag'] = np.select(conditions, choices) q_inventory=''' select i."drug-id", SUM(i.quantity + i."locked-for-check" + i."locked-for-audit" + i."locked-for-return" + i."locked-for-transfer") as "current-inventory-qty", SUM((i.quantity + i."locked-for-check" + i."locked-for-audit" + i."locked-for-return" + i."locked-for-transfer")* i.ptr) as "current-inventory-value", avg(srs."selling-rate") as "avg-fixed-selling-rate" from "prod2-generico"."inventory-1" i left join "prod2-generico"."selling-rate-settings" srs on i."drug-id" = srs."drug-id" group by i."drug-id"; ''' df_inventory = rs_db.get_df(query=q_inventory) gross_and_returns_inventory = pd.merge(left=gross_and_returns, right=df_inventory, how='left', on=['drug-id']) gross_and_returns_inventory['run_date'] = run_date gross_and_returns_inventory = pd.merge(gross_and_returns_inventory, wh_prate, how='left', left_on='drug-id', right_on='drug-id-wh') del gross_and_returns_inventory["drug-id-wh"] gross_and_returns_inventory = pd.merge(gross_and_returns_inventory, warehouse_drug, how='left', left_on='drug-id', right_on='drug-id-dss') gross_and_returns_inventory['add-wh'].fillna('No', inplace=True) del gross_and_returns_inventory["drug-id-dss"] consumer_dump = gross_and_returns_inventory #Supply Dump #Purchase data q_invoices=''' SELECT date_part(year,i."received-at") AS "year", date_part(month,i."received-at") AS "month", ii."drug-id" , d."drug-name" , d."type" , d.category , d.composition , d.company , d."available-in" , d.pack , d."pack-form" , d."release" , i."distributor-id" , di."name" as "distributor-name", cty.name as "city-name", COUNT(DISTINCT si."short-book-id") AS "order-count", SUM(si."po-quantity") AS "po-quantity", SUM(ii."actual-quantity") AS "purchase-quantity", SUM(ii."net-value") AS "puchase-value", AVG(ii."net-value" /ii."actual-quantity") AS "avg-purchase-rate", AVG(n."selling-rate") AS "avg-selling-rate", AVG(ii.mrp) AS "avg-mrp", AVG(srs."selling-rate") as "avg-fixed-selling-rate" FROM "prod2-generico"."invoice-items" ii left JOIN "prod2-generico".invoices i on i.id =ii."invoice-id" left JOIN "prod2-generico".distributors di on di.id = i."distributor-id" left JOIN "prod2-generico"."short-book-invoice-items" si ON si."invoice-item-id" = ii.id left JOIN "prod2-generico".drugs d ON d.id = ii."drug-id" left JOIN "prod2-generico"."invoice-items-1" it ON it."invoice-item-reference" = ii.id left JOIN "prod2-generico"."inventory-1" n ON n."invoice-item-id" = it.id LEFT JOIN "prod2-generico"."selling-rate-settings" srs on ii."drug-id" =srs."drug-id" LEFT JOIN ( select s.id, zc.name from "prod2-generico".stores s left join "prod2-generico"."zeno-city" zc on zc.id =s."city-id" ) as cty on cty.id = i."store-id" WHERE date_part(year,i."received-at") ={currentYear} and date_part(month ,i."received-at")= {currentMonth} GROUP BY date_part(year,i."received-at") , date_part(month,i."received-at") , ii."drug-id" , d."drug-name" , d."type" , d.category , d.composition , d.company , d."available-in" , d.pack , d."pack-form" , d."release" , i."distributor-id" , di."name" , cty.name '''.format(currentYear=currentYear,currentMonth=currentMonth) df_invoices = rs_db.get_df(query=q_invoices) df_invoices['run-date'] = run_date df_invoices = pd.merge(df_invoices, wh_prate, how='left', left_on='drug-id', right_on='drug-id-wh') del df_invoices["drug-id-wh"] # adding add_wh column df_invoices = pd.merge(df_invoices, warehouse_drug, how='left', left_on='drug-id', right_on='drug-id-dss') df_invoices['add-wh'].fillna('No', inplace=True) del df_invoices["drug-id-dss"] supply_dump = df_invoices consumer_data_dump = 'cat_data_dump/consumer_data_dump_{}.csv'.format(run_date) supply_data_dump = 'cat_data_dump/supply_data_dump_{}.csv'.format(run_date) # Uploading File to S3 consumer_dump_uri = s3.save_df_to_s3(df=consumer_dump, file_name=consumer_data_dump) supply_dump_uri= s3.save_df_to_s3(df=supply_dump, file_name=supply_data_dump) #Sending the email #email = Email() #email.send_email_file(subject=f"Category Data Dump {run_date}", #mail_body="category supply data ", #to_emails=email_to, file_uris=[supply_dump_uri]) #email.send_email_file(subject=f"Category Data Dump {run_date}", #mail_body="category consumer data ", #git to_emails=email_to, file_uris=[consumer_dump_uri]) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/category_data_dump/category-data-dump.py
category-data-dump.py
# ============================================================================= # purpose: MIS Automation # Author: Saurav Maskar # ============================================================================= import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from dateutil.tz import gettz from zeno_etl_libs.queries.mis.mis_class import Mis from zeno_etl_libs.queries.mis import mis_queries import datetime import argparse import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-met', '--mis_email_to', default="[email protected]", type=str, required=False) parser.add_argument('-dt', '--mis_db_date', default="NA", type=str, required=False) parser.add_argument('-sc', '--schema_to_select', default="public", type=str, required=False) parser.add_argument('-cy', '--choose_year', default="NA", type=str, required=False) parser.add_argument('-cm', '--choose_month', default="NA", type=str, required=False) parser.add_argument('-pc', '--power_consumer_value', default=2000, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to mis_email_to = args.mis_email_to mis_db_date = args.mis_db_date schema_to_select = args.schema_to_select choose_year = args.choose_year choose_month = args.choose_month power_consumer_value = args.power_consumer_value if choose_month=='NA': choose_month = datetime.datetime.now(tz=gettz('Asia/Kolkata')).month if choose_month == 1: choose_month = 12 else: choose_month = choose_month-1 if choose_year=='NA': choose_year = datetime.datetime.now(tz=gettz('Asia/Kolkata')).year if choose_month==1: choose_year = choose_year-1 else: choose_year = choose_year analysis_start_time = datetime.datetime(int(choose_year),int(choose_month),1,0,0,0).strftime('%Y-%m-%d %H:%M:%S') if int(choose_month)== 12: analysis_end_time = (datetime.datetime((int(choose_year)+1),1,1,23,59,59)-datetime.timedelta(days=1)).strftime('%Y-%m-%d %H:%M:%S') else: analysis_end_time = (datetime.datetime(int(choose_year), (int(choose_month) + 1), 1, 23, 59, 59) - datetime.timedelta(days=1)).strftime('%Y-%m-%d %H:%M:%S') if mis_db_date == 'NA': if int(choose_month)==12: mis_db_date = (datetime.datetime((int(choose_year)+1),1,1,23,59,59)-datetime.timedelta(days=1)).strftime('%Y-%m-%d') else: mis_db_date = (datetime.datetime(int(choose_year), (int(choose_month) + 1), 1, 23, 59, 59) - datetime.timedelta(days=1)).strftime('%Y-%m-%d') suffix_to_table = '-mis-' + str(mis_db_date) os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) today_date = start_time.strftime('%Y-%m-%d') logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("mis_email_to - " + mis_email_to) logger.info("mis_db_date - " + str(mis_db_date)) logger.info("schema_to_select - " + str(schema_to_select)) logger.info("choose_year - " + str(choose_year)) logger.info("choose_month - " + str(choose_month)) logger.info("analysis_start_time - " + str(analysis_start_time)) logger.info("analysis_end_time - " + str(analysis_end_time)) logger.info("suffix_to_table - " + str(suffix_to_table)) logger.info("power_consumer_value - " + str(power_consumer_value)) # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) mis = Mis(analysis_start_time,analysis_end_time,suffix_to_table,schema_to_select,choose_year,choose_month,rs_db,logger,mis_queries) # order_source and stores are used in almost all jobs, please run them beforehand order_source = mis.order_source() stores = mis.store_list() stores_fofo = stores[stores['franchisee_id'] != 1] del stores['franchisee_id'] # ============================================================================= # MIS - Breakup/Unified # two versions of MIS are provided to Accounts team, Breakup - Counts Goodaid as seperate entity # Table name with no suffix will be used for Breakup # For unified suffix _unified will be added # ============================================================================= breakup_master = pd.DataFrame() unified_master = pd.DataFrame() status = False try: # ============================================================================= # prerequisite tables # ============================================================================= # sales sales = mis.sales() sales['fofo_distributor'] = np.vectorize(mis.fofo_final_distributor)(sales['franchisee_id'],sales['franchisee_invoice']) sales_unified = sales.copy(deep=True) sales['order_source'] = np.where(sales.bill_id.isin(order_source.zeno_bill_id), "ecomm", "store") sales_unified['order_source'] = 'all' sales['type1'] = np.vectorize(mis.order_type_tag)(sales['company'],sales['type'],'breakup') sales_unified['type1'] = np.vectorize(mis.order_type_tag)(sales_unified['company'],sales_unified['type'],'unified') logger.info('fetched sales for selected period') # customer returns customer_returns = mis.customer_returns() customer_returns['fofo_distributor'] = np.vectorize(mis.fofo_final_distributor)(customer_returns['franchisee_id'], customer_returns['franchisee_invoice']) customer_returns_unified = customer_returns.copy(deep = True) customer_returns['order_source'] = np.where(customer_returns.bill_id.isin(order_source.zeno_bill_id), "ecomm", "store") customer_returns_unified['order_source'] = 'all' customer_returns['type1'] = np.vectorize(mis.order_type_tag)(customer_returns['company'],customer_returns['type'],'breakup') customer_returns_unified['type1'] = np.vectorize(mis.order_type_tag)(customer_returns_unified['company'],customer_returns_unified['type'],'unified') logger.info('fetched customer returns data for selected period') # inventory inventory = mis.inventory() inventory['fofo_distributor'] = np.vectorize(mis.fofo_final_distributor)(inventory['franchisee_id'],inventory['franchisee_invoice']) inventory_unified = inventory.copy(deep = True) inventory['type1'] = np.vectorize(mis.order_type_tag)(inventory['company'],inventory['type'],'breakup') inventory_unified['type1'] = np.vectorize(mis.order_type_tag)(inventory_unified['company'],inventory_unified['type'],'unified') logger.info('fetched inventory data') # cumulative_consumer_data cumulative_consumers_data = mis.cumulative_consumers_data() cumulative_consumers_data = pd.merge(left=cumulative_consumers_data, right=stores, how='left', on=['store_id']) logger.info('fetched cumulative consumers data') # cumulative_consumer_fofo_data workcell_cumulative_consumers_fofo_data,others_cumulative_consumers_fofo_data = mis.cumulative_consumers_fofo_data() workcell_cumulative_consumers_fofo_data = pd.merge(left=workcell_cumulative_consumers_fofo_data, right=stores, how='left', on=['store_id']) others_cumulative_consumers_fofo_data = pd.merge(left=others_cumulative_consumers_fofo_data, right=stores, how='left', on=['store_id']) logger.info('fetched cumulative consumers data') # all_cons_initial_bill_date all_cons_initial_bill_date = mis.cons_initial_bill_date() logger.info('fetched customers_initial_bill_date data') # home delivery data home_delivery_data = mis.home_delivery_data() home_delivery_data_unified = home_delivery_data.copy(deep = True) logger.info('fetched home delivery data') home_delivery_data['order_source'] = np.where(home_delivery_data.bill_id.isin(order_source.zeno_bill_id), "ecomm", "store") home_delivery_data_unified['order_source'] = 'all' delivery_bill_ids = mis.delivery_bill_ids() logger.info('fetched delivery bill ids') # purchase_from_wc_data purchase_from_wc_data = mis.purchase_from_wc_data() purchase_from_wc_data['fofo_distributor'] = np.vectorize(mis.fofo_final_distributor)(purchase_from_wc_data['franchisee_id'], purchase_from_wc_data['franchisee_invoice']) purchase_from_wc_data_unified = purchase_from_wc_data.copy(deep=True) purchase_from_wc_data['type1'] = np.vectorize(mis.order_type_tag)(purchase_from_wc_data['company'],purchase_from_wc_data['type'],'breakup') purchase_from_wc_data_unified['type1'] = np.vectorize(mis.order_type_tag)(purchase_from_wc_data_unified['company'],purchase_from_wc_data_unified['type'],'unified') logger.info('fetched purchase from wc data for selected period') # zippin_return_data zippin_return_data = mis.zippin_return_data() zippin_return_data['fofo_distributor'] = np.vectorize(mis.fofo_final_distributor)(zippin_return_data['franchisee_id'], zippin_return_data['franchisee_invoice']) zippin_return_data_unified = zippin_return_data.copy(deep=True) zippin_return_data['type1'] = np.vectorize(mis.order_type_tag)(zippin_return_data['company'],zippin_return_data['type'],'breakup') zippin_return_data_unified['type1'] = np.vectorize(mis.order_type_tag)(zippin_return_data_unified['company'],zippin_return_data_unified['type'],'unified') logger.info('fetched zippin return data for selected period') # workcell_return_data workcell_return_data = mis.workcell_return_data() workcell_return_data['fofo_distributor'] = np.vectorize(mis.fofo_final_distributor)(workcell_return_data['franchisee_id'], workcell_return_data['franchisee_invoice']) workcell_return_data_unified = workcell_return_data.copy(deep=True) workcell_return_data['type1'] = np.vectorize(mis.order_type_tag)(workcell_return_data['company'],workcell_return_data['type'],'breakup') workcell_return_data_unified['type1'] = np.vectorize(mis.order_type_tag)(workcell_return_data_unified['company'],workcell_return_data_unified['type'],'unified') logger.info('fetched workcell return data for selected period') # local_purchase_data local_purchase_data = mis.local_purchase_data() local_purchase_data['fofo_distributor'] = np.vectorize(mis.fofo_final_distributor)(local_purchase_data['franchisee_id'],local_purchase_data['franchisee_invoice']) local_purchase_data_unified = local_purchase_data.copy(deep=True) local_purchase_data['type1'] = np.vectorize(mis.order_type_tag)(local_purchase_data['company'],local_purchase_data['type'],'breakup') local_purchase_data_unified['type1'] = np.vectorize(mis.order_type_tag)(local_purchase_data['company'],local_purchase_data['type'],'unified') logger.info('fetched local purchase data for selected period') # ============================================================================= # 1. GMV_gross_payment # ============================================================================= # prerequisite = sales breakup_gmv_gross_payment = mis.gmv_gross_payment(sales,stores) unified_gmv_gross_payment = mis.gmv_gross_payment(sales_unified,stores) logger.info('1. - GMV, Gross, Payment ran successfully') # ============================================================================= # 2. netsale_tax_cogs # ============================================================================= # prerequisite = sales, customer_returns breakup_netsale_tax_cogs = mis.netsale_tax_cogs(sales,customer_returns,stores) unified_netsale_tax_cogs = mis.netsale_tax_cogs(sales_unified,customer_returns_unified,stores) logger.info('2. - Net sale, Taxes, COGS ran successfully') breakup_master = pd.concat([breakup_gmv_gross_payment,breakup_netsale_tax_cogs],sort=True) unified_master = pd.concat([unified_gmv_gross_payment,unified_netsale_tax_cogs], sort=True) # ============================================================================= # 3. inventoryageing_nearexpiry # ============================================================================= # prerequisite = inventory near_expiry = mis.near_expiry(inventory,stores,'breakup') near_expiry_unified = mis.near_expiry(inventory_unified,stores,'unified') inventory_ageing = mis.inventory_ageing(inventory,stores,'breakup') inventory_ageing_unified = mis.inventory_ageing(inventory_unified,stores,'unified') logger.info('3. - Inventory ageing, Near expiry ran successfully') breakup_master = pd.concat([breakup_master, inventory_ageing, near_expiry], sort=True) unified_master = pd.concat([unified_master, inventory_ageing_unified, near_expiry_unified], sort=True) # ============================================================================= # 4. Sales by volume # ============================================================================= # prerequisite = sales sale_by_volume = mis.sales_by_volume(sales,stores) sale_by_volume_unified = mis.sales_by_volume(sales_unified,stores) logger.info('4. - Sales by volume ran successfully') breakup_master = pd.concat([breakup_master, sale_by_volume], sort=True) unified_master = pd.concat([unified_master, sale_by_volume_unified], sort=True) # ============================================================================= # 5. Gross revenue - Chronic and Acute # ============================================================================= # prerequisite = sales, customer_returns gross_rev_chronic_sale_vol, gross_rev_acute_sale_vol = mis.gross_rev_chronic_acute(sales,customer_returns,stores) gross_rev_chronic_sale_vol_unified, gross_rev_acute_sale_vol_unified = mis.gross_rev_chronic_acute(sales_unified,customer_returns_unified,stores) logger.info('5. - Gross revenue - Chronic and Acute ran successfully') breakup_master = pd.concat([breakup_master, gross_rev_chronic_sale_vol, gross_rev_acute_sale_vol], sort=True) unified_master = pd.concat([unified_master, gross_rev_chronic_sale_vol_unified, gross_rev_acute_sale_vol_unified], sort=True) # ============================================================================= # 6. Cummulative consumers # ============================================================================= # prerequisite = cumulative_consumers_data cummulative_cons = mis.cummulative_cons(cumulative_consumers_data,'breakup') cummulative_cons_unified = mis.cummulative_cons(cumulative_consumers_data,'unified') logger.info('6. - Cummulative consumers ran successfully') breakup_master = pd.concat([breakup_master, cummulative_cons], sort=True) unified_master = pd.concat([unified_master, cummulative_cons_unified], sort=True) # ============================================================================= # 7. Total customers (in MIS month) # ============================================================================= # prerequisite = sales total_cons_mis_month = mis.total_cons_mis_month(sales,stores) total_cons_mis_month_unified = mis.total_cons_mis_month(sales_unified,stores) logger.info('7. - Total customers (in MIS month) ran successfully') breakup_master = pd.concat([breakup_master, total_cons_mis_month], sort=True) unified_master = pd.concat([unified_master, total_cons_mis_month_unified], sort=True) # ============================================================================= # 8. Customer type Category Wise Count # ============================================================================= # prerequisite = sales category_wise_customer_type_count = mis.category_wise_customer_type_count(sales,stores) category_wise_customer_type_count_unified = mis.category_wise_customer_type_count(sales_unified,stores) logger.info('8. - Customer type Category Wise Count ran successfully') breakup_master = pd.concat([breakup_master, category_wise_customer_type_count], sort=True) unified_master = pd.concat([unified_master, category_wise_customer_type_count_unified], sort=True) # ============================================================================= # 9. New customers # ============================================================================= # prerequisite = sales, cons_initial_bill_date new_customers = mis.new_customers(sales,all_cons_initial_bill_date,stores) new_customers_unified = mis.new_customers(sales_unified,all_cons_initial_bill_date,stores) logger.info('9. - New Customers ran successfully') breakup_master = pd.concat([breakup_master, new_customers], sort=True) unified_master = pd.concat([unified_master, new_customers_unified], sort=True) # ============================================================================= # 10. Total repeat consumers # ============================================================================= # prerequisite = sales, cons_initial_bill_date tot_repeat_consumers = mis.tot_repeat_consumers(sales,all_cons_initial_bill_date,stores) tot_repeat_consumers_unified = mis.tot_repeat_consumers(sales_unified,all_cons_initial_bill_date,stores) logger.info('10. - total repeat customers ran successfully') breakup_master = pd.concat([breakup_master, tot_repeat_consumers], sort=True) unified_master = pd.concat([unified_master, tot_repeat_consumers_unified], sort=True) # ============================================================================= # 11. New consumers - value and volume # ============================================================================= # prerequisite = sales, cons_initial_bill_date new_cons_vol_qty = mis.new_cons_vol_qty(sales,all_cons_initial_bill_date,stores) new_cons_vol_qty_unified = mis.new_cons_vol_qty(sales_unified,all_cons_initial_bill_date,stores) logger.info('11. - New consumers - value and volume ran successfully') breakup_master = pd.concat([breakup_master, new_cons_vol_qty], sort=True) unified_master = pd.concat([unified_master, new_cons_vol_qty_unified], sort=True) # ============================================================================= # 12. Total bills - new and repeat # ============================================================================= # prerequisite = sales, cons_initial_bill_date total_bills_new_repeat = mis.total_bills_new_repeat(sales,all_cons_initial_bill_date,stores,choose_year,choose_month) total_bills_new_repeat_unified = mis.total_bills_new_repeat(sales_unified,all_cons_initial_bill_date,stores,choose_year,choose_month) logger.info('12. - Total bills - new and repeat ran successfully') breakup_master = pd.concat([breakup_master, total_bills_new_repeat], sort=True) unified_master = pd.concat([unified_master, total_bills_new_repeat_unified], sort=True) # ============================================================================= # 13. Total bills - chronic and acute # ============================================================================= # prerequisite = sales, customer_returns total_bills_chronic_acute = mis.total_bills_chronic_acute(sales,customer_returns,stores) total_bills_chronic_acute_unified = mis.total_bills_chronic_acute(sales_unified,customer_returns_unified,stores) logger.info('13. - Total bills - chronic and acute ran successfully') breakup_master = pd.concat([breakup_master, total_bills_chronic_acute], sort=True) unified_master = pd.concat([unified_master, total_bills_chronic_acute_unified], sort=True) # ============================================================================= # 14. Bills per consumer - new and repeat # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date bills_per_cons_new_repeat = mis.bills_per_cons_new_repeat(sales,all_cons_initial_bill_date,stores,choose_year,choose_month) bills_per_cons_new_repeat_unified = mis.bills_per_cons_new_repeat(sales_unified,all_cons_initial_bill_date,stores,choose_year,choose_month) logger.info('14. - Bills per consumer - new and repeat ran successfully') breakup_master = pd.concat([breakup_master, bills_per_cons_new_repeat], sort=True) unified_master = pd.concat([unified_master, bills_per_cons_new_repeat_unified], sort=True) # ============================================================================= # 15. ABV - new, repeat and chronic # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date abv_new_repeat_chronic = mis.abv_new_repeat_chronic(sales,all_cons_initial_bill_date,stores,choose_year,choose_month) abv_new_repeat_chronic_unified = mis.abv_new_repeat_chronic(sales_unified,all_cons_initial_bill_date,stores,choose_year,choose_month) logger.info('15. - ABV - new, repeat and chronic - new and repeat ran successfully') breakup_master = pd.concat([breakup_master, abv_new_repeat_chronic], sort=True) unified_master = pd.concat([unified_master, abv_new_repeat_chronic_unified], sort=True) # ============================================================================= # 16. Items per consumer # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date items_per_cons_new_repeat = mis.items_per_cons_new_repeat(sales,all_cons_initial_bill_date,stores,choose_year,choose_month) items_per_cons_new_repeat_unified = mis.items_per_cons_new_repeat(sales_unified,all_cons_initial_bill_date,stores,choose_year,choose_month) logger.info('16. - Items per consumer - new and repeat ran successfully') breakup_master = pd.concat([breakup_master, items_per_cons_new_repeat], sort=True) unified_master = pd.concat([unified_master, items_per_cons_new_repeat_unified], sort=True) # ============================================================================= # 17. Total items sold- new and repeat # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date tot_items_sold_new_repeat = mis.tot_items_sold_new_repeat(sales,all_cons_initial_bill_date,stores,choose_year,choose_month) tot_items_sold_new_repeat_unified = mis.tot_items_sold_new_repeat(sales_unified,all_cons_initial_bill_date,stores,choose_year,choose_month) logger.info('17. - Total items sold - new and repeat ran successfully') breakup_master = pd.concat([breakup_master, tot_items_sold_new_repeat], sort=True) unified_master = pd.concat([unified_master, tot_items_sold_new_repeat_unified], sort=True) # ============================================================================= # 18. Generic customers # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date generic_cons_overall_new = mis.generic_cons_overall_new(sales,all_cons_initial_bill_date,stores) generic_cons_overall_new_unified = mis.generic_cons_overall_new(sales_unified,all_cons_initial_bill_date,stores) logger.info('18. - Generic customers ran successfully') breakup_master = pd.concat([breakup_master, generic_cons_overall_new], sort=True) unified_master = pd.concat([unified_master, generic_cons_overall_new_unified], sort=True) # ============================================================================= # 19. Power consumers - Count # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date power_cons_overall_new = mis.power_cons_overall_new(sales,all_cons_initial_bill_date,stores,power_consumer_value) power_cons_overall_new_unified = mis.power_cons_overall_new(sales_unified,all_cons_initial_bill_date,stores,power_consumer_value) logger.info('19. - Power consumers - Count ran successfully') breakup_master = pd.concat([breakup_master, power_cons_overall_new], sort=True) unified_master = pd.concat([unified_master, power_cons_overall_new_unified], sort=True) # ============================================================================= # 20. Power consumers - Sales ran successfully # ============================================================================= # prerequisite = sales power_consumers_sale = mis.power_consumers_sale(sales,stores,power_consumer_value,'breakup') power_consumers_sale_unified = mis.power_consumers_sale(sales_unified,stores,power_consumer_value,'unified') logger.info('20. - Power consumers - Sales ran successfully') breakup_master = pd.concat([breakup_master, power_consumers_sale], sort=True) unified_master = pd.concat([unified_master, power_consumers_sale_unified], sort=True) # ============================================================================= # 21. Power consumer - Bills # ============================================================================= # prerequisite = sales power_cons_bills = mis.power_cons_bills(sales,stores,power_consumer_value) power_cons_bills_unified = mis.power_cons_bills(sales_unified,stores,power_consumer_value) logger.info('21. - Power consumers - Bills ran successfully') breakup_master = pd.concat([breakup_master, power_cons_bills], sort=True) unified_master = pd.concat([unified_master, power_cons_bills_unified], sort=True) # ============================================================================= # 22. Home delivery # ============================================================================= # prerequisite = sales, customer_returns, home_delivery_data home_delivery = mis.home_delivery(sales,customer_returns,home_delivery_data,stores,delivery_bill_ids,'breakup') home_delivery_unified = mis.home_delivery(sales_unified,customer_returns_unified,home_delivery_data_unified,stores,delivery_bill_ids,'unified') logger.info('22. - Home delivery ran successfully') breakup_master = pd.concat([breakup_master, home_delivery], sort=True) unified_master = pd.concat([unified_master, home_delivery_unified], sort=True) # ============================================================================= # 23. Purchase from Workcell # ============================================================================= # prerequisite = purchase_from_wc_data purchase_from_worckell = mis.purchase_from_worckell(purchase_from_wc_data,stores,'breakup') purchase_from_worckell_unified = mis.purchase_from_worckell(purchase_from_wc_data_unified,stores,'unified') logger.info('23. - Purchase from Workcell ran successfully') breakup_master = pd.concat([breakup_master, purchase_from_worckell], sort=True) unified_master = pd.concat([unified_master, purchase_from_worckell_unified], sort=True) # ============================================================================= # 23b. Launch_stock Purchase from Workcell # ============================================================================= # prerequisite = purchase_from_wc_data launch_stock_purchase_from_worckell = mis.purchase_from_worckell(purchase_from_wc_data, stores, 'breakup',launch_flag='launch_stock') launch_stock_purchase_from_worckell_unified = mis.purchase_from_worckell(purchase_from_wc_data_unified, stores, 'unified', launch_flag='launch_stock') logger.info('23b. - Launch_stock Purchase from Workcell ran successfully') breakup_master = pd.concat([breakup_master, launch_stock_purchase_from_worckell], sort=True) unified_master = pd.concat([unified_master, launch_stock_purchase_from_worckell_unified], sort=True) # ============================================================================= # 23c. Purchase from Workcell (including tax) # ============================================================================= # prerequisite = purchase_from_wc_data purchase_from_worckell_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data, stores, 'breakup') purchase_from_worckell_unified_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data_unified, stores, 'unified') logger.info('23. - Purchase from Workcell ran successfully') breakup_master = pd.concat([breakup_master, purchase_from_worckell_including_tax], sort=True) unified_master = pd.concat([unified_master, purchase_from_worckell_unified_including_tax], sort=True) # ============================================================================= # 23b. Launch_stock Purchase from Workcell (including tax) # ============================================================================= # prerequisite = purchase_from_wc_data launch_stock_purchase_from_worckell_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data, stores, 'breakup', launch_flag='launch_stock') launch_stock_purchase_from_worckell_unified_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data_unified, stores, 'unified', launch_flag='launch_stock') logger.info('23b. - Launch_stock Purchase from Workcell ran successfully') breakup_master = pd.concat([breakup_master, launch_stock_purchase_from_worckell_including_tax], sort=True) unified_master = pd.concat([unified_master, launch_stock_purchase_from_worckell_unified_including_tax], sort=True) # ============================================================================= # 24. COGS for Workcell # ============================================================================= # prerequisite = purchase_from_wc_data cogs_for_wc = mis.cogs_for_wc(purchase_from_wc_data,stores,'breakup') cogs_for_wc_unified = mis.cogs_for_wc(purchase_from_wc_data_unified,stores,'unified') logger.info('24. - COGS from Workcell ran successfully') breakup_master = pd.concat([breakup_master, cogs_for_wc], sort=True) unified_master = pd.concat([unified_master, cogs_for_wc_unified], sort=True) # ============================================================================= # 25. Return from Zippin # ============================================================================= # prerequisite = zippin_return_data return_from_zippin = mis.return_from_zippin(zippin_return_data,'breakup') return_from_zippin_unified = mis.return_from_zippin(zippin_return_data_unified,'unified') logger.info('25. - Return from Zippin ran successfully') breakup_master = pd.concat([breakup_master, return_from_zippin], sort=True) unified_master = pd.concat([unified_master, return_from_zippin_unified], sort=True) # ============================================================================= # 26. Return from Workcell # ============================================================================= # prerequisite = workcell_return_data return_from_workcell = mis.return_from_workcell(workcell_return_data,'breakup') return_from_workcell_unified = mis.return_from_workcell(workcell_return_data_unified,'unified') logger.info('26. - Return from Workcell ran successfully') breakup_master = pd.concat([breakup_master, return_from_workcell], sort=True) unified_master = pd.concat([unified_master, return_from_workcell_unified], sort=True) # ============================================================================= # 27. Total SKUs in stock # ============================================================================= # prerequisite = inventory total_sku_instock = mis.total_sku_instock(inventory, 'breakup') total_sku_instock_unified = mis.total_sku_instock(inventory_unified, 'unified') logger.info('27. - Total SKUs in stock ran successfully') breakup_master = pd.concat([breakup_master, total_sku_instock], sort=True) unified_master = pd.concat([unified_master, total_sku_instock_unified], sort=True) # ============================================================================= # 28. Chronic Acute quantity # ============================================================================= # prerequisite = inventory chronic_acute_qty = mis.chronic_acute_qty(inventory,stores) chronic_acute_qty_unified = mis.chronic_acute_qty(inventory_unified ,stores) logger.info('28. - Chronic Acute quantity ran successfully') breakup_master = pd.concat([breakup_master, chronic_acute_qty], sort=True) unified_master = pd.concat([unified_master, chronic_acute_qty_unified], sort=True) # ============================================================================= # 29. Local purchase # ============================================================================= # prerequisite = local_purchase_data, sales lp_chronic_acute = mis.lp_chronic_acute(local_purchase_data,sales) lp_chronic_acute_unified = mis.lp_chronic_acute(local_purchase_data_unified ,sales_unified) logger.info('29. - Local purchase ran successfully') breakup_master = pd.concat([breakup_master, lp_chronic_acute], sort=True) unified_master = pd.concat([unified_master, lp_chronic_acute_unified], sort=True) # ============================================================================= # 30. Repeat consumer sales # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date repeat_consumer_chronic_acute = mis.repeat_consumer_chronic_acute(sales,all_cons_initial_bill_date,stores,choose_year,choose_month) repeat_consumer_chronic_acute_unified = mis.repeat_consumer_chronic_acute(sales_unified,all_cons_initial_bill_date,stores,choose_year,choose_month) logger.info('30. - Repeat consumer sales ran successfully') breakup_master = pd.concat([breakup_master, repeat_consumer_chronic_acute], sort=True) unified_master = pd.concat([unified_master, repeat_consumer_chronic_acute_unified], sort=True) # ============================================================================= # 31. Inventory 6 to 12 months # ============================================================================= # prerequisite = inventory inventory_6to12months = mis.inventory_6to12months(inventory,stores,'breakup') inventory_6to12months_unified = mis.inventory_6to12months(inventory_unified,stores,'unified') logger.info('31. - Inventory 6 to 12 months ran successfully') breakup_master = pd.concat([breakup_master, inventory_6to12months], sort=True) unified_master = pd.concat([unified_master, inventory_6to12months_unified], sort=True) # ============================================================================= # 32. Zippin P &L COGS # ============================================================================= # prerequisite = sales, customer_returns zippin_pl_cogs = mis.zippin_pl_cogs(sales,customer_returns,stores) zippin_pl_cogs_unified = mis.zippin_pl_cogs(sales_unified,customer_returns_unified,stores) logger.info('32. - Zippin P &L COGS ran successfully') breakup_master = pd.concat([breakup_master, zippin_pl_cogs], sort=True) unified_master = pd.concat([unified_master, zippin_pl_cogs_unified], sort=True) # ============================================================================= # 33. Repeat consumer other definition # ============================================================================= # # prerequisite = None # from datetime import date, timedelta # from dateutil.relativedelta import relativedelta # # # last_day_of_prev_month = date.today().replace(day=1) - timedelta(days=1) # # six_months_first_date = (date.today() + relativedelta(months=-6)).replace(day=1) # # last_day_of_prev_month = datetime.datetime.combine(last_day_of_prev_month, datetime.time(23,59,59)).strftime('%Y-%m-%d %H:%M:%S') # # six_months_first_date = datetime.datetime.combine(six_months_first_date, datetime.time(0,0,0)).strftime('%Y-%m-%d %H:%M:%S') # # # last_day_of_prev_month = '2021-02-28 23:59:59' # # six_months_first_date = '2020-09-01 00:00:00' # # sales_data_for_repeat_customer = mis.sales_data_for_repeat_customer(six_months_first_date,last_day_of_prev_month) # # logger.info('fetched data for sales of last 6 months, for repeat customer other definition') # # repeat_cons_other_def_curr_month = mis.repeat_cons_other_def_curr_month(sales_data_for_repeat_customer,stores,choose_month) # # three_month_last_date = ((date.today() +relativedelta(months=-3)).replace(day=1) -timedelta(days=1)) # # five_months_first_date = (three_month_last_date + relativedelta(months=-5)).replace(day=1) # # three_month_last_date = datetime.datetime.combine(three_month_last_date, datetime.time(23,59,59)).strftime('%Y-%m-%d %H:%M:%S') # # five_months_first_date = datetime.datetime.combine(five_months_first_date, datetime.time(0,0,0)).strftime('%Y-%m-%d %H:%M:%S') # # # three_month_last_date = '2020-11-30 23:59:59' # # five_months_first_date = '2020-06-01 00:00:00' # # sales_data_for_repeat_customer2 = mis.sales_data_for_repeat_customer(five_months_first_date,three_month_last_date) # logger.info('fetched data for sales of last n-3 to n-8 months, for repeat customer other definition') # # repeat_cons_other_def_past3_month = mis.repeat_cons_other_def_past3_month(sales_data_for_repeat_customer2,stores,choose_month) # # repeat_cons_other_def = pd.concat([repeat_cons_other_def_curr_month, # repeat_cons_other_def_past3_month]) # # logger.info('33. - Repeat consumer other definition ran successfully') # # breakup_master = pd.concat([breakup_master, repeat_cons_other_def], sort=True) # unified_master = pd.concat([unified_master, repeat_cons_other_def], sort=True) # ============================================================================= # 34. Drug count by type # ============================================================================= # prerequisite = inventory composition_count = mis.comp_count(inventory,'breakup') composition_count_unified = mis.comp_count(inventory_unified,'unified') logger.info('34. - Drug count by type ran successfully') breakup_master = pd.concat([breakup_master, composition_count], sort=True) unified_master = pd.concat([unified_master, composition_count_unified], sort=True) # ============================================================================= # 35. Generic composition type # ============================================================================= # prerequisite = None generic_composition_count = mis.generic_composition_count() generic_composition_count_unified = generic_composition_count.copy(deep = True) logger.info('35. - Generic composition type ran successfully') breakup_master = pd.concat([breakup_master, generic_composition_count], sort=True) unified_master = pd.concat([unified_master, generic_composition_count_unified], sort=True) # ============================================================================= # 36. Ethical margin # ============================================================================= # prerequisite = None ethical_margin = mis.ethical_margin() ethical_margin_unified = ethical_margin.copy(deep = True) logger.info('36. - Ethical margin ran successfully') breakup_master = pd.concat([breakup_master, ethical_margin], sort=True) unified_master = pd.concat([unified_master, ethical_margin_unified], sort=True) # ============================================================================= # 37. Chronic customers buying generics # ============================================================================= # prerequisite = Sales chronic_generic_count = mis.chronic_generic_count(sales) chronic_generic_count_unified = mis.chronic_generic_count(sales_unified) logger.info('37. - Chronic customers buying generics ran successfully') breakup_master = pd.concat([breakup_master, chronic_generic_count], sort=True) unified_master = pd.concat([unified_master, chronic_generic_count_unified], sort=True) cols_to_move = ['tag_flag', 'type1', 'category', 'age_bracket_', 'payment', 'count', 'margin'] breakup_master = breakup_master[ cols_to_move + [col for col in breakup_master.columns if col not in cols_to_move]] del unified_master['order_source'] unified_master = unified_master[ cols_to_move + [col for col in unified_master.columns if col not in cols_to_move]] # breakup_master.to_csv(r'D:\MIS Automation\data validation unified\37_breakup.csv') # unified_master.to_csv(r'D:\MIS Automation\data validation unified\37_unified.csv') logger.info('Successfully ran MIS breakup & unified snippet, Now compiling other files') # ============================================================================= # fetching other files that we sent with MIS # ============================================================================= other_files_ethical_margin = mis.other_files_ethical_margin() logger.info('fetched other_files_ethical_margin') other_files_distributor_margin = mis.other_files_distributor_margin() logger.info('fetched other_files_distributor_margin') other_files_inventory_at_dc_near_expiry = mis.other_files_inventory_at_dc_near_expiry() logger.info('fetched other_files_inventory_at_dc_near_expiry') goodaid_gross_return = mis.goodaid_gross_return() logger.info("fetched goodaid_gross_return") goodaid_zippin_inventory = mis.goodaid_zippin_inventory() logger.info("fetched goodaid_zippin_inventory") goodaid_dc_inventory = mis.goodaid_dc_inventory() logger.info("fetched goodaid_dc_inventory") goodaid_wh_inventory = mis.goodaid_wh_inventory() logger.info("fetched goodaid_wh_inventory") store_info = mis.store_info() logger.info('fetched store info') logger.info('MIS - other files complete') # ============================================================================= # fetching FOFO MIS # ============================================================================= logger.info('FOFO MIS - start') breakup_master_fofo = pd.DataFrame() unified_master_fofo = pd.DataFrame() # ============================================================================= # 1. GMV_gross_payment # ============================================================================= # prerequisite = sales breakup_gmv_gross_payment = mis.gmv_gross_payment(sales,stores_fofo,fofo_tag='yes') unified_gmv_gross_payment = mis.gmv_gross_payment(sales_unified,stores_fofo,fofo_tag='yes') logger.info('1. - GMV, Gross, Payment ran successfully') # ============================================================================= # 2. netsale_tax_cogs # ============================================================================= # prerequisite = sales, customer_returns breakup_netsale_tax_cogs = mis.netsale_tax_cogs(sales, customer_returns, stores,fofo_tag='yes') unified_netsale_tax_cogs = mis.netsale_tax_cogs(sales_unified, customer_returns_unified, stores,fofo_tag='yes') logger.info('2. - Net sale, Taxes, COGS ran successfully') breakup_master_fofo = pd.concat([breakup_gmv_gross_payment,breakup_netsale_tax_cogs],sort=True) unified_master_fofo = pd.concat([unified_gmv_gross_payment,unified_netsale_tax_cogs], sort=True) # ============================================================================= # 3. inventoryageing_nearexpiry # ============================================================================= # prerequisite = inventory near_expiry = mis.near_expiry(inventory,stores,'breakup',fofo_tag='yes') near_expiry_unified = mis.near_expiry(inventory_unified,stores,'unified',fofo_tag='yes') inventory_ageing = mis.inventory_ageing(inventory,stores,'breakup',fofo_tag='yes') inventory_ageing_unified = mis.inventory_ageing(inventory_unified,stores,'unified',fofo_tag='yes') logger.info('3. - Inventory ageing, Near expiry ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, inventory_ageing, near_expiry], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, inventory_ageing_unified, near_expiry_unified], sort=True) # ============================================================================= # 6. Cummulative consumers # ============================================================================= # prerequisite = cumulative_consumers_fofo_data, Main file block 6 cummulative_cons_fofo = mis.cummulative_cons_fofo(workcell_cumulative_consumers_fofo_data,others_cumulative_consumers_fofo_data,'breakup') cummulative_cons_unified_fofo = mis.cummulative_cons_fofo(workcell_cumulative_consumers_fofo_data,others_cumulative_consumers_fofo_data,'unified') cummulative_cons_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(cummulative_cons,cummulative_cons_fofo,['tag_flag']) cummulative_cons_unified_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(cummulative_cons_unified,cummulative_cons_unified_fofo, ['tag_flag']) # To Deal With - Now Acute consumers are defined as Total-chronic, If same consumer buys acute from workcell dist and chronic from other dist, we are getting some negative values cummulative_cons_fofo = cummulative_cons_fofo.reset_index() cummulative_cons_fofo['index']= cummulative_cons_fofo['index'] + 1 cummulative_cons_fofo_tags = cummulative_cons_fofo[['index','tag_flag','fofo_distributor']] cummulative_cons_unified_fofo = cummulative_cons_unified_fofo.reset_index() cummulative_cons_unified_fofo['index']= cummulative_cons_unified_fofo['index'] + 1 cummulative_cons_unified_fofo_tags = cummulative_cons_unified_fofo[['index','tag_flag','fofo_distributor']] cols_to_check = [x for x in cummulative_cons_fofo.columns if x not in ['tag_flag','fofo_distributor']] cummulative_cons_fofo = cummulative_cons_fofo[cummulative_cons_fofo[cols_to_check]>0].fillna(0) cummulative_cons_fofo.replace(0, np.nan, inplace=True) del cummulative_cons_fofo['index'] cummulative_cons_fofo = cummulative_cons_fofo.reset_index() cummulative_cons_fofo['index'] = cummulative_cons_fofo['index']+1 cummulative_cons_fofo = cummulative_cons_fofo[cols_to_check].merge(cummulative_cons_fofo_tags,how = 'left', on = 'index') del cummulative_cons_fofo['index'] cummulative_cons_unified_fofo = cummulative_cons_unified_fofo[cummulative_cons_unified_fofo[cols_to_check]>0].fillna(0) cummulative_cons_fofo.replace(0, np.nan, inplace=True) del cummulative_cons_unified_fofo['index'] cummulative_cons_unified_fofo = cummulative_cons_unified_fofo.reset_index() cummulative_cons_unified_fofo['index'] = cummulative_cons_unified_fofo['index']+1 cummulative_cons_unified_fofo = cummulative_cons_unified_fofo[cols_to_check].merge(cummulative_cons_unified_fofo_tags,how = 'left', on = 'index') del cummulative_cons_unified_fofo['index'] logger.info('6. - Cummulative consumers ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, cummulative_cons_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, cummulative_cons_unified_fofo], sort=True) # ============================================================================= # 7. Total customers (in MIS month) # ============================================================================= # prerequisite = sales total_cons_mis_month_fofo = mis.total_cons_mis_month(sales,stores,fofo_tag='yes') total_cons_mis_month_unified_fofo = mis.total_cons_mis_month(sales_unified,stores, fofo_tag='yes') total_cons_mis_month_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(total_cons_mis_month,total_cons_mis_month_fofo,['tag_flag', 'order_source']) total_cons_mis_month_unified_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(total_cons_mis_month_unified,total_cons_mis_month_unified_fofo,['tag_flag', 'order_source']) logger.info('7. - Total customers (in MIS month) ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, total_cons_mis_month_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, total_cons_mis_month_unified_fofo], sort=True) # ============================================================================= # 12. Total bills - new and repeat # ============================================================================= # prerequisite = sales, cons_initial_bill_date, Main file block 12 total_bills_new_repeat_fofo = mis.total_bills_new_repeat(sales, all_cons_initial_bill_date, stores, choose_year, choose_month,fofo_tag='yes') total_bills_new_repeat_unified_fofo = mis.total_bills_new_repeat(sales_unified, all_cons_initial_bill_date, stores, choose_year, choose_month,fofo_tag='yes') total_bills_new_repeat_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(total_bills_new_repeat,total_bills_new_repeat_fofo,['tag_flag', 'order_source']) total_bills_new_repeat_unified_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(total_bills_new_repeat_unified,total_bills_new_repeat_unified_fofo,['tag_flag', 'order_source']) logger.info('12. - Total bills - new and repeat ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, total_bills_new_repeat_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, total_bills_new_repeat_unified_fofo], sort=True) # ============================================================================= # 13. Total bills - chronic and acute # ============================================================================= # prerequisite = sales, customer_returns, Main file block 13 total_bills_chronic_acute_fofo = mis.total_bills_chronic_acute(sales,customer_returns,stores,fofo_tag='yes') total_bills_chronic_acute_unified_fofo = mis.total_bills_chronic_acute(sales_unified,customer_returns_unified,stores,fofo_tag='yes') total_bills_chronic_acute_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(total_bills_chronic_acute,total_bills_chronic_acute_fofo,['tag_flag', 'order_source','type1','category']) total_bills_chronic_acute_unified_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(total_bills_chronic_acute_unified,total_bills_chronic_acute_unified_fofo,['tag_flag', 'order_source','type1','category']) logger.info('13. - Total bills - chronic and acute ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, total_bills_chronic_acute_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, total_bills_chronic_acute_unified_fofo], sort=True) # ============================================================================= # 18. Generic customers # ============================================================================= # prerequisite = sales, all_cons_initial_bill_date, Main file block 18 generic_cons_overall_new_fofo = mis.generic_cons_overall_new(sales, all_cons_initial_bill_date, stores, fofo_tag='yes') generic_cons_overall_new_unified_fofo = mis.generic_cons_overall_new(sales_unified, all_cons_initial_bill_date, stores, fofo_tag='yes') generic_cons_overall_new_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(generic_cons_overall_new, generic_cons_overall_new_fofo, ['tag_flag', 'order_source']) generic_cons_overall_new_unified_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps( generic_cons_overall_new_unified, generic_cons_overall_new_unified_fofo,['tag_flag', 'order_source']) logger.info('18. - Generic customers ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, generic_cons_overall_new_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, generic_cons_overall_new_unified_fofo], sort=True) # ============================================================================= # 20. Power consumers - Sales ran successfully # ============================================================================= # prerequisite = sales power_consumers_sale = mis.power_consumers_sale(sales,stores,power_consumer_value,'breakup',fofo_tag='yes') power_consumers_sale_unified = mis.power_consumers_sale(sales_unified,stores,power_consumer_value,'unified',fofo_tag='yes') logger.info('20. - Power consumers - Sales ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, power_consumers_sale], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, power_consumers_sale_unified], sort=True) # ============================================================================= # 21. Power consumer - Bills # ============================================================================= # prerequisite = sales power_cons_bills_fofo = mis.power_cons_bills(sales,stores,power_consumer_value,fofo_tag='yes') power_cons_bills_unified_fofo = mis.power_cons_bills(sales_unified,stores,power_consumer_value,fofo_tag='yes') power_cons_bills_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps(power_cons_bills, power_cons_bills_fofo, ['tag_flag', 'order_source']) power_cons_bills_unified_fofo = mis.fofo_distributor_bifurcation_next_calculation_steps( power_cons_bills_unified, power_cons_bills_unified_fofo, ['tag_flag', 'order_source']) logger.info('21. - Power consumers - Bills ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, power_cons_bills_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, power_cons_bills_unified_fofo], sort=True) # ============================================================================= # 22. Home delivery # ============================================================================= # prerequisite = sales, customer_returns, home_delivery_data home_delivery_fofo = mis.home_delivery(sales, customer_returns, home_delivery_data, stores, delivery_bill_ids, 'breakup',fofo_tag='yes') home_delivery_unified_fofo = mis.home_delivery(sales_unified, customer_returns_unified, home_delivery_data_unified, stores, delivery_bill_ids, 'unified',fofo_tag='yes') logger.info('22. - Home delivery ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, home_delivery_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, home_delivery_unified_fofo], sort=True) # ============================================================================= # 23. Purchase from Workcell # ============================================================================= # prerequisite = purchase_from_wc_data purchase_from_worckell = mis.purchase_from_worckell(purchase_from_wc_data, stores, 'breakup',fofo_tag='yes') purchase_from_worckell_unified = mis.purchase_from_worckell(purchase_from_wc_data_unified, stores, 'unified',fofo_tag='yes') logger.info('23. - Purchase from Workcell ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, purchase_from_worckell], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, purchase_from_worckell_unified], sort=True) # ============================================================================= # 23b. Launch Stock Purchase from Workcell # ============================================================================= # prerequisite = purchase_from_wc_data launch_stock_purchase_from_worckell = mis.purchase_from_worckell(purchase_from_wc_data, stores, 'breakup',fofo_tag='yes',launch_flag='launch_stock') launch_stock_purchase_from_worckell_unified = mis.purchase_from_worckell(purchase_from_wc_data_unified, stores, 'unified',fofo_tag='yes',launch_flag='launch_stock') logger.info('23b. - launch_stock Purchase from Workcell ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, launch_stock_purchase_from_worckell], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, launch_stock_purchase_from_worckell_unified], sort=True) # ============================================================================= # 23c. Purchase from Workcell (Including Workcell) # ============================================================================= # prerequisite = purchase_from_wc_data purchase_from_worckell_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data, stores, 'breakup',fofo_tag='yes') purchase_from_worckell_unified_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data_unified, stores, 'unified',fofo_tag='yes') logger.info('23c. - Purchase from Workcell (Including Workcell) ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, purchase_from_worckell_including_tax], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, purchase_from_worckell_unified_including_tax], sort=True) # ============================================================================= # 23d. Launch Stock Purchase from Workcell (Including Tax) # ============================================================================= # prerequisite = purchase_from_wc_data if len(launch_stock_purchase_from_worckell)>= 1: launch_stock_purchase_from_worckell_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data, stores, 'breakup',fofo_tag='yes',launch_flag='launch_stock') launch_stock_purchase_from_worckell_unified_including_tax = mis.purchase_from_worckell_including_tax(purchase_from_wc_data_unified, stores, 'unified',fofo_tag='yes',launch_flag='launch_stock') logger.info('23d. - launch_stock Purchase from Workcell(Including Tax) ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo,launch_stock_purchase_from_worckell_including_tax], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, launch_stock_purchase_from_worckell_unified_including_tax], sort=True) # ============================================================================= # 24. COGS for Workcell # ============================================================================= # prerequisite = purchase_from_wc_data cogs_for_wc = mis.cogs_for_wc(purchase_from_wc_data, stores, 'breakup',fofo_tag='yes') cogs_for_wc_unified = mis.cogs_for_wc(purchase_from_wc_data_unified, stores, 'unified',fofo_tag='yes') logger.info('24. - COGS from Workcell ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, cogs_for_wc], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, cogs_for_wc_unified], sort=True) # ============================================================================= # 25. Return from Zippin # ============================================================================= # prerequisite = zippin_return_data return_from_zippin = mis.return_from_zippin(zippin_return_data, 'breakup',fofo_tag='yes') return_from_zippin_unified = mis.return_from_zippin(zippin_return_data_unified, 'unified',fofo_tag='yes') logger.info('25. - Return from Zippin ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, return_from_zippin], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, return_from_zippin_unified], sort=True) # ============================================================================= # 26. Return from Workcell # ============================================================================= # prerequisite = workcell_return_data return_from_workcell = mis.return_from_workcell(workcell_return_data, 'breakup',fofo_tag='yes') return_from_workcell_unified = mis.return_from_workcell(workcell_return_data_unified, 'unified',fofo_tag='yes') logger.info('26. - Return from Workcell ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, return_from_workcell], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, return_from_workcell_unified], sort=True) # ============================================================================= # 27. Total SKUs in stock # ============================================================================= # prerequisite = inventory total_sku_instock_fofo = mis.total_sku_instock(inventory, 'breakup',fofo_tag='yes') total_sku_instock_unified_fofo = mis.total_sku_instock(inventory_unified, 'unified', fofo_tag='yes') logger.info('27. - Total SKUs in stock ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, total_sku_instock_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, total_sku_instock_unified_fofo], sort=True) # ============================================================================= # 29. Local purchase # ============================================================================= # prerequisite = local_purchase_data, sales lp_chronic_acute_fofo = mis.lp_chronic_acute(local_purchase_data, sales,fofo_tag='yes') lp_chronic_acute_unified_fofo = mis.lp_chronic_acute(local_purchase_data_unified, sales_unified,fofo_tag='yes') logger.info('29. - Local purchase ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, lp_chronic_acute_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, lp_chronic_acute_unified_fofo], sort=True) # ============================================================================= # 32. Zippin P &L COGS # ============================================================================= # prerequisite = sales, customer_returns zippin_pl_cogs = mis.zippin_pl_cogs(sales, customer_returns, stores,fofo_tag='yes') zippin_pl_cogs_unified = mis.zippin_pl_cogs(sales_unified, customer_returns_unified, stores,fofo_tag='yes') logger.info('32. - Zippin P &L COGS ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, zippin_pl_cogs], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, zippin_pl_cogs_unified], sort=True) # ============================================================================= # 35. Generic composition type # ============================================================================= # prerequisite = None generic_composition_count_fofo = mis.generic_composition_count() generic_composition_count_unified_fofo = generic_composition_count_fofo.copy(deep=True) logger.info('35. - Generic composition type ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, generic_composition_count_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, generic_composition_count_unified_fofo], sort=True) # ============================================================================= # 36. Ethical margin # ============================================================================= # prerequisite = None ethical_margin_fofo = mis.ethical_margin_fofo() ethical_margin_unified_fofo = ethical_margin_fofo.copy(deep=True) logger.info('36. - Ethical margin ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, ethical_margin_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, ethical_margin_unified_fofo], sort=True) # ============================================================================= # 37. Chronic customers buying generics # ============================================================================= # prerequisite = Sales chronic_generic_count_fofo = mis.chronic_generic_count(sales,fofo_tag='yes') chronic_generic_count_unified_fofo = mis.chronic_generic_count(sales_unified,fofo_tag='yes') logger.info('37. - Chronic customers buying generics ran successfully') breakup_master_fofo = pd.concat([breakup_master_fofo, chronic_generic_count_fofo], sort=True) unified_master_fofo = pd.concat([unified_master_fofo, chronic_generic_count_unified_fofo], sort=True) # ============================================================================= # Uniform Format Even if data is not present # ============================================================================= breakup_master_fofo1 = breakup_master_fofo unified_master_fofo1 = unified_master_fofo breakup_master_fofo = breakup_master_fofo1 unified_master_fofo = unified_master_fofo1 fofo_breakup_format = pd.read_csv(s3.download_file_from_s3(file_name="mis_format/fofo_breakup_format.csv")) fofo_unified_format = pd.read_csv(s3.download_file_from_s3(file_name="mis_format/fofo_unified_format.csv")) breakup_master_fofo = fofo_breakup_format.merge(breakup_master_fofo,on = ['tag_flag','type1','category','age_bracket_','payment','order_source','fofo_distributor'],how = 'outer') unified_master_fofo= fofo_unified_format.merge(unified_master_fofo,on = ['tag_flag','type1','category','age_bracket_','payment','order_source','fofo_distributor'],how = 'outer') cols_to_move = ['tag_flag', 'type1', 'category', 'age_bracket_', 'payment', 'count', 'margin','fofo_distributor','order_source'] breakup_master_fofo = breakup_master_fofo[ cols_to_move + [col for col in breakup_master_fofo.columns if col not in cols_to_move]] cols_to_move = ['tag_flag', 'type1', 'category', 'age_bracket_', 'payment', 'count', 'margin','order_source'] unified_master_fofo = unified_master_fofo[ cols_to_move + [col for col in unified_master_fofo.columns if col not in cols_to_move]] # breakup_master_fofo.to_csv('breakup_master_fofo.csv') # unified_master_fofo.to_csv('unified_master_fofo.csv') logger.info('FOFO MIS fetch complete') status = True logger.info('MIS - all data fetch complete') except Exception as error: logger.info('MIS - MIS breakup & unified snippet run failed, with error - {}'.format(error)) status = False finally: if status: status_final = 'Success' else: status_final = 'Failed' email = Email() if status: breakup_uri = s3.save_df_to_s3(df=breakup_master, file_name='mis-main/final_breakup.csv') unified_uri = s3.save_df_to_s3(df=unified_master, file_name='mis-main/final_unified.csv') other_files_ethical_margin_uri = s3.save_df_to_s3(df=other_files_ethical_margin, file_name='mis-main/ethical_margin.csv') other_files_inventory_at_dc_near_expiry_uri = s3.save_df_to_s3(df=other_files_inventory_at_dc_near_expiry, file_name='mis-main/inventory_at_dc_near_expiry.csv') other_files_distributor_margin_uri = s3.save_df_to_s3(df=other_files_distributor_margin, file_name='mis-main/distributor_margin.csv') goodaid_gross_return_uri = s3.save_df_to_s3(df=goodaid_gross_return, file_name='mis-main/goodaid_gross_return.csv') goodaid_wh_inventory_uri = s3.save_df_to_s3(df=goodaid_wh_inventory, file_name='mis-main/goodaid_wh_inventory.csv') goodaid_zippin_inventory_uri = s3.save_df_to_s3(df=goodaid_zippin_inventory, file_name='mis-main/goodaid_zippin_inventory.csv') goodaid_dc_inventory_uri = s3.save_df_to_s3(df=goodaid_dc_inventory, file_name='mis-main/goodaid_dc_inventory.csv') store_info_uri = s3.save_df_to_s3(df=store_info, file_name='mis-main/store_info.csv') breakup_fofo_uri = s3.save_df_to_s3(df=breakup_master_fofo, file_name='mis-main/fofo_breakup.csv') unified_fofo_uri = s3.save_df_to_s3(df=unified_master_fofo, file_name='mis-main/fofo_unified.csv') email.send_email_file(subject='{} - MIS- {}/{}'.format(env,choose_month,choose_year), mail_body= f"Dear MIS Team,\n" f"\n" f"Please find attached MIS for year - {choose_year}, month - {choose_month}\n" f"Please review it at earliest\n" f"\n" f"Regards,\n" f"Data Team\n", to_emails=mis_email_to, file_uris=[breakup_uri,unified_uri,other_files_ethical_margin_uri,other_files_inventory_at_dc_near_expiry_uri,other_files_distributor_margin_uri,goodaid_gross_return_uri,goodaid_wh_inventory_uri,goodaid_zippin_inventory_uri, goodaid_dc_inventory_uri,store_info_uri,breakup_fofo_uri,unified_fofo_uri]) else: email.send_email_file(subject='{}-{}-MIS-{}-{}'.format(env,status_final,choose_year,choose_month), mail_body=f"MIS job failed, Please review it\n", to_emails=email_to, file_uris=[]) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/mis/mis_main.py
mis_main.py
import os import sys import argparse import pandas as pd import datetime import numpy as np sys.path.append('../../../..') from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.helper import helper def short_book_data(rs_db=None, logger=None, cur_date=None, last_date=None, stores=None): # AR/MS/PR data load short_book_query = ''' select case when "auto-short" = 1 and "home-delivery" = 0 and "patient-id" = 4480 then 'Auto Short' when "auto-short" = 1 and "home-delivery" = 0 and "patient-id" != 4480 then 'Manual Short' when "auto-short" = 0 and "auto-generated" = 0 and "home-delivery" = 0 then 'Patient Request' when "auto-short" = 0 and "auto-generated" = 0 and "home-delivery" = 1 then 'Patient Request with HD' else 'Invalid' end as request_type, a.id, a."store-id", s.name as store_name, a."ordered-distributor-id", f.name as distributor_name, a."drug-id", a."drug-name", b."type" as drug_type, b."category", c."drug-grade", "inventory-at-creation", "inventory-at-ordering", "quantity", "status", a."created-at" as "sb-created-at", a."invoiced-at", a."dispatched-at", a."received-at", a."completed-at", a."delivered-at", date(a."created-at") as "created-date", a."decline-reason" from "prod2-generico"."short-book-1" a left join "prod2-generico".drugs b on a."drug-id" = b.id left join "prod2-generico"."drug-order-info" c on a."drug-id" = c."drug-id" and a."store-id" = c."store-id" left join "prod2-generico"."stores" s on a."store-id" = s.id left join "prod2-generico"."distributors" f on f."id" = a."ordered-distributor-id" where (("auto-short" = 1 and "home-delivery" = 0) or ("auto-short" = 0 and "auto-generated" = 0)) and quantity > 0 and date(a."created-at") >= '{last_date}' and date(a."created-at") <= '{cur_date}' and a."store-id" in {stores} '''.format(last_date=str(last_date), cur_date=str(cur_date), stores=stores) short_book = rs_db.get_df(short_book_query) short_book[['invoiced-at', 'dispatched-at', 'received-at', 'completed-at', 'delivered-at']] = \ short_book[['invoiced-at', 'dispatched-at', 'received-at', 'completed-at', 'delivered-at']]\ .astype(str).replace('0101-01-01 00:00:00','0000-00-00 00:00:00') short_book.columns = list(map( lambda st: str.replace(st, '-', '_'), list(short_book.columns.values))) short_book['week_day'] = pd.to_datetime(short_book['sb_created_at']).dt.weekday short_book['ops_ff_date'] = str(cur_date) short_book['store_ff_date'] = str(cur_date) logger.info('# of rows ' + str(short_book.shape[0])) return short_book def as_ms_fulfilment_calc(short_book=None, logger=None): '''Auto Short Calculations''' # filter auto short for fulfilment calculation as_ms = short_book[short_book['request_type'].isin(['Auto Short', 'Manual Short'])] # ops fulfilment calculation as_ms['ops_ff_days'] = -1 # ops store days calculation as_ms['ops_ff_days'] = np.where( as_ms['invoiced_at'] == '0000-00-00 00:00:00', -1, (pd.to_datetime( as_ms.loc[as_ms['invoiced_at'] != '0000-00-00 00:00:00', 'invoiced_at'], format='%Y-%m-%d', errors='ignore').dt.date - pd.to_datetime(as_ms['sb_created_at']).dt.date) / np.timedelta64(1, 'D') ) as_ms.loc[(as_ms['invoiced_at'] != '0000-00-00 00:00:00'), 'ops_ff_date'] = pd.to_datetime( as_ms.loc[(as_ms['invoiced_at'] != '0000-00-00 00:00:00'), 'invoiced_at'], format='%Y-%m-%d', errors='ignore').dt.date # correcting for order days when AS created on friday(4) and saturday (5) as_ms.loc[(as_ms['week_day'] == 5) & (as_ms['ops_ff_days'] > 0), 'ops_ff_days'] -= 1 as_ms.loc[(as_ms['week_day'] == 4) & (as_ms['drug_type'].isin(['generic']) & (as_ms['ops_ff_days'] > 0)), 'ops_ff_days'] -= 1 # setting ops status as_ms['ops_status'] = '' as_ms.loc[as_ms['status'].isin(['declined']), 'ops_status'] = 'Declined' as_ms.loc[as_ms['status'].isin(['lost', 'failed', 're-ordered']), 'ops_status'] = 'Lost' as_ms.loc[as_ms['ops_status'].isin(['Declined']), 'ops_ff_date'] = as_ms.loc[ as_ms['ops_status'].isin(['Declined']), 'created_date'] as_ms.loc[as_ms['ops_status'].isin(['Lost']), 'ops_ff_date'] = as_ms.loc[ as_ms['ops_status'].isin(['Lost']), 'created_date'] as_ms.loc[as_ms['status'].isin(['saved', 'ordered']), 'ops_status'] = 'Pending' as_ms.loc[(as_ms['status'].isin(['invoiced', 'dispatched', 'received'])) & (as_ms['ops_ff_days'] <= 1), 'ops_status'] = '24 hours' as_ms.loc[(as_ms['status'].isin(['invoiced', 'dispatched', 'received'])) & (as_ms['ops_ff_days'] == 2), 'ops_status'] = '48 hours' as_ms.loc[(as_ms['status'].isin(['invoiced', 'dispatched', 'received'])) & (as_ms['ops_ff_days'] == 3), 'ops_status'] = '72 hours' as_ms.loc[(as_ms['status'].isin(['invoiced', 'dispatched', 'received'])) & (as_ms['ops_ff_days'] > 3), 'ops_status'] = 'Delayed' as_ms.loc[as_ms['ops_status'] == '', 'ops_status'] = 'None' logger.info( '# of entries in Short book with no ops status' + str(as_ms[as_ms['ops_status'] == 'None'].shape[0])) # store fulfilment calculation as_ms['store_ff_days'] = -1 # store store days calculation as_ms['store_ff_days'] = np.where( as_ms['received_at'] == '0000-00-00 00:00:00', -1, (pd.to_datetime( as_ms.loc[as_ms['received_at'] != '0000-00-00 00:00:00', 'received_at'], format='%Y-%m-%d', errors='ignore').dt.date - pd.to_datetime(as_ms['sb_created_at']).dt.date).fillna(pd.to_timedelta('NaT')) / np.timedelta64(1, 'D') ) as_ms.loc[(as_ms['received_at'] != '0000-00-00 00:00:00'), 'store_ff_date'] = pd.to_datetime( as_ms.loc[(as_ms['received_at'] != '0000-00-00 00:00:00'), 'received_at'], format='%Y-%m-%d', errors='ignore').dt.date # correcting for order days when AS created on friday(4) and saturday (5) as_ms.loc[(as_ms['week_day'] == 5) & (as_ms['store_ff_days'] > 0), 'store_ff_days'] -= 1 as_ms.loc[(as_ms['week_day'] == 4) & (as_ms['drug_type'].isin(['generic'])) & (as_ms['store_ff_days'] > 0), 'store_ff_days'] -= 1 # setting store status as_ms['store_status'] = '' as_ms.loc[as_ms['status'].isin(['declined']), 'store_status'] = 'Declined' as_ms.loc[as_ms['status'].isin(['lost', 'failed', 're-ordered']), 'store_status'] = 'Lost' as_ms.loc[as_ms['store_status'].isin(['Declined']), 'store_ff_date'] = as_ms.loc[ as_ms['store_status'].isin(['Declined']), 'created_date'] as_ms.loc[as_ms['store_status'].isin(['Lost']), 'store_ff_date'] = as_ms.loc[ as_ms['store_status'].isin(['Lost']), 'created_date'] as_ms.loc[as_ms['status'].isin(['saved', 'ordered', 'invoiced', 'dispatched']), 'store_status'] = 'Pending' as_ms.loc[(as_ms['status'].isin(['received'])) & (as_ms['store_ff_days'] <= 1), 'store_status'] = '24 hours' as_ms.loc[(as_ms['status'].isin(['received'])) & (as_ms['store_ff_days'] == 2), 'store_status'] = '48 hours' as_ms.loc[(as_ms['status'].isin(['received'])) & (as_ms['store_ff_days'] == 3), 'store_status'] = '72 hours' as_ms.loc[(as_ms['status'].isin(['received'])) & (as_ms['store_ff_days'] > 3), 'store_status'] = 'Delayed' as_ms.loc[as_ms['store_status'] == '', 'store_status'] = 'None' logger.info('# of entries in Short book with no ops status' + str(as_ms[as_ms['store_status'] == 'None'].shape[0])) return as_ms def pr_fulfilment_calc(short_book=None, logger=None): '''Patient Request Calculations''' # filter auto short for fulfilment calculation pr = short_book[~short_book['request_type'].isin(['Auto Short', 'Manual Short'])] # ops fulfilment calculation pr['ops_ff_days'] = -1 # ops store days calculation pr.loc[(pr['invoiced_at'] != '0000-00-00 00:00:00'), 'ops_ff_days'] = (pd.to_datetime( pr.loc[(pr['invoiced_at'] != '0000-00-00 00:00:00'), 'invoiced_at'], format='%Y-%m-%d', errors='ignore').dt.date - pd.to_datetime( pr.loc[(pr[ 'invoiced_at'] != '0000-00-00 00:00:00'), 'sb_created_at'] ).dt.date) / np.timedelta64(1, 'D') pr.loc[(pr['invoiced_at'] != '0000-00-00 00:00:00'), 'ops_ff_date'] = pd.to_datetime( pr.loc[(pr['invoiced_at'] != '0000-00-00 00:00:00'), 'invoiced_at'], format='%Y-%m-%d', errors='ignore').dt.date pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'ops_ff_days'] = (pd.to_datetime( pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'completed_at'], format='%Y-%m-%d', errors='ignore').dt.date - pd.to_datetime( pr.loc[(pr[ 'completed_at'] != '0000-00-00 00:00:00'), 'sb_created_at'] ).dt.date) / np.timedelta64(1, 'D') pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'ops_ff_date'] = pd.to_datetime( pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'completed_at'], format='%Y-%m-%d', errors='ignore').dt.date # correcting for order days when AS created on friday(4) and saturday (5) pr.loc[(pr['week_day'] == 5) & (pr['ops_ff_days'] > 0), 'ops_ff_days'] -= 1 pr.loc[(pr['week_day'] == 4) & (pr['drug_type'].isin(['generic']) & (pr['ops_ff_days'] > 0)), 'ops_ff_days'] -= 1 # setting ops status pr['ops_status'] = '' pr.loc[pr['status'].isin(['declined']), 'ops_status'] = 'Declined' pr.loc[pr['status'].isin(['lost', 'failed', 're-ordered']), 'ops_status'] = 'Lost' pr.loc[pr['ops_status'].isin(['Declined']), 'ops_ff_date'] = pr.loc[ pr['ops_status'].isin(['Declined']), 'created_date'] pr.loc[pr['ops_status'].isin(['Lost']), 'ops_ff_date'] = pr.loc[pr['ops_status'].isin(['Lost']), 'created_date'] pr.loc[pr['status'].isin(['saved', 'ordered']), 'ops_status'] = 'Pending' pr.loc[(pr['status'].isin(['invoiced', 'dispatched', 'received', 'completed'])) & (pr['ops_ff_days'] <= 1), 'ops_status'] = '24 hours' pr.loc[(pr['status'].isin(['invoiced', 'dispatched', 'received', 'completed'])) & (pr['ops_ff_days'] == 2), 'ops_status'] = '48 hours' pr.loc[(pr['status'].isin(['invoiced', 'dispatched', 'received', 'completed'])) & (pr['ops_ff_days'] == 3), 'ops_status'] = '72 hours' pr.loc[(pr['status'].isin(['invoiced', 'dispatched', 'received', 'completed'])) & (pr['ops_ff_days'] > 3), 'ops_status'] = 'Delayed' pr.loc[pr['ops_status'] == '', 'ops_status'] = 'None' logger.info( '# of entries in Short book with no ops status' + str(pr[pr['ops_status'] == 'None'].shape[0])) # store fulfilment calculation pr['store_ff_days'] = -1 # store store days calculation pr.loc[(pr['received_at'] != '0000-00-00 00:00:00'), 'store_ff_days'] = (pd.to_datetime( pr.loc[(pr['received_at'] != '0000-00-00 00:00:00'), 'received_at'], format='%Y-%m-%d', errors='ignore').dt.date - pd.to_datetime( pr.loc[(pr[ 'received_at'] != '0000-00-00 00:00:00'), 'sb_created_at'] ).dt.date) / np.timedelta64(1, 'D') pr.loc[(pr['received_at'] != '0000-00-00 00:00:00'), 'store_ff_date'] = pd.to_datetime( pr.loc[(pr['received_at'] != '0000-00-00 00:00:00'), 'received_at'], format='%Y-%m-%d', errors='ignore').dt.date pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'store_ff_days'] = (pd.to_datetime( pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'completed_at'], format='%Y-%m-%d', errors='ignore').dt.date - pd.to_datetime( pr.loc[(pr[ 'completed_at'] != '0000-00-00 00:00:00'), 'sb_created_at'] ).dt.date) / np.timedelta64(1, 'D') pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'store_ff_date'] = pd.to_datetime( pr.loc[(pr['completed_at'] != '0000-00-00 00:00:00'), 'completed_at'], format='%Y-%m-%d', errors='ignore').dt.date # correcting for order days when AS created on friday(4) and saturday (5) pr.loc[(pr['week_day'] == 5) & (pr['store_ff_days'] > 0), 'store_ff_days'] -= 1 pr.loc[(pr['week_day'] == 4) & (pr['drug_type'].isin(['generic'])) & (pr['store_ff_days'] > 0), 'store_ff_days'] -= 1 # setting store status pr['store_status'] = '' pr.loc[pr['status'].isin(['declined']), 'store_status'] = 'Declined' pr.loc[pr['status'].isin(['lost', 'failed', 're-ordered']), 'store_status'] = 'Lost' pr.loc[pr['ops_status'].isin(['Declined']), 'store_ff_date'] = pr.loc[ pr['store_status'].isin(['Declined']), 'created_date'] pr.loc[pr['ops_status'].isin(['Lost']), 'store_ff_date'] = pr.loc[pr['store_status'].isin(['Lost']), 'created_date'] pr.loc[pr['status'].isin(['saved', 'ordered', 'invoiced', 'dispatched']) & (pr['request_type'] == 'Patient Request'), 'store_status'] = 'Pending' pr.loc[pr['status'].isin(['saved', 'ordered', 'invoiced', 'dispatched', 'received']) & (pr['request_type'] == 'Patient Request with HD'), 'store_status'] = 'Pending' pr.loc[(pr['status'].isin(['received', 'completed'])) & (pr['store_ff_days'] <= 1) & (pr['request_type'] == 'Patient Request'), 'store_status'] = '24 hours' pr.loc[(pr['status'].isin(['received', 'completed'])) & (pr['store_ff_days'] == 2) & (pr['request_type'] == 'Patient Request'), 'store_status'] = '48 hours' pr.loc[(pr['status'].isin(['received', 'completed'])) & (pr['store_ff_days'] == 3) & (pr['request_type'] == 'Patient Request'), 'store_status'] = '72 hours' pr.loc[(pr['status'].isin(['received', 'completed'])) & (pr['store_ff_days'] > 3) & (pr['request_type'] == 'Patient Request'), 'store_status'] = 'Delayed' pr.loc[(pr['status'].isin(['completed'])) & (pr['store_ff_days'] <= 1) & (pr['request_type'] == 'Patient Request with HD'), 'store_status'] = '24 hours' pr.loc[(pr['status'].isin(['completed'])) & (pr['store_ff_days'] == 2) & (pr['request_type'] == 'Patient Request with HD'), 'store_status'] = '48 hours' pr.loc[(pr['status'].isin(['completed'])) & (pr['store_ff_days'] == 3) & (pr['request_type'] == 'Patient Request with HD'), 'store_status'] = '72 hours' pr.loc[(pr['status'].isin(['completed'])) & (pr['store_ff_days'] > 3) & (pr['request_type'] == 'Patient Request with HD'), 'store_status'] = 'Delayed' pr.loc[pr['store_status'] == '', 'store_status'] = 'None' logger.info('# of entries in Short book with no ops status' + str(pr[pr['store_status'] == 'None'].shape[0])) return pr if __name__ == '__main__': parser = argparse.ArgumentParser( description="auto short fulfilment percentages.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to logger = get_logger() s3 = S3() # pg_write = PostGreWrite() # pg_write.open_connection() rs_db = DB() rs_db.open_connection() logger.info("Scripts begins") status = False err_msg = '' table_name = 'ops-fulfillment' schema = 'prod2-generico' # getting dates for refreshing the fulfilment percentages cur_date = datetime.datetime.now().date() last_date = cur_date - datetime.timedelta(days=8) # running as fulfilment func logger.info('Latest date to pull' + str(cur_date)) logger.info('Last date to pull' + str(last_date)) try: # getting store list store_list_query = ''' select distinct "store-id" from "prod2-generico"."short-book-1" where (("auto-short" = 1 and "home-delivery" = 0) or ("auto-short" = 0 and "auto-generated" = 0)) and quantity > 0 and date("created-at") >= '{last_date}' and date("created-at") <= '{cur_date}' '''.format(last_date=last_date, cur_date=cur_date) stores = rs_db.get_df(store_list_query) stores = str(stores['store-id'].to_list()).replace('[', '(').replace(']', ')') fptr_query = ''' select "drug-id", avg("final-ptr") as fptr from "prod2-generico"."inventory-1" i2 group by "drug-id" ''' fptr = rs_db.get_df(fptr_query) fptr.columns = list(map( lambda st: str.replace(st, '-', '_'), list(fptr.columns))) rs_db.execute(""" delete from "prod2-generico"."ops-fulfillment" """) as_ms_fulfilment_all = pd.DataFrame() pr_fulfilment_all = pd.DataFrame() logger.info('getting data for store: ' + str(stores)) # getting short book info for last 8 days short_book = short_book_data( rs_db=rs_db, logger=logger, cur_date=cur_date, last_date=last_date, stores=stores) '''Auto short Manual short calculation''' as_ms_fulfilment = as_ms_fulfilment_calc( short_book=short_book, logger=logger) as_ms_fulfilment = as_ms_fulfilment.merge(fptr, on='drug_id', how='left') logger.info('AS/MS size ' + str(as_ms_fulfilment.shape[0])) as_ms_fulfilment_all = as_ms_fulfilment_all.append(as_ms_fulfilment) '''Patient request calculation''' pr_fulfilment = pr_fulfilment_calc( short_book=short_book, logger=logger) pr_fulfilment = pr_fulfilment.merge(fptr, on='drug_id', how='left') logger.info('PR size ' + str(pr_fulfilment.shape[0])) pr_fulfilment_all = pr_fulfilment_all.append(pr_fulfilment) fdf = pd.concat([as_ms_fulfilment_all, pr_fulfilment_all], ignore_index=True) fdf['created-at'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") fdf['created-by'] = 'etl-automation' fdf['updated-at'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") fdf['updated-by'] = 'etl-automation' fdf['short-book-id'] = fdf['id'] table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) fdf.columns = [c.replace('_', '-') for c in fdf.columns] logger.info("writing to rs") s3.write_df_to_db(df=fdf[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info("written to rs") # logger.info("writing to postgres") # pg_write.engine.execute(""" delete from ops_fulfillment """) # fdf = fdf[['request-type', 'short-book-id', 'store-id', 'store-name', # 'ordered-distributor-id', 'distributor-name', 'drug-id', 'drug-name', # 'drug-type', 'category', 'drug-grade', 'inventory-at-creation', # 'inventory-at-ordering', 'quantity', 'fptr', 'status', 'sb-created-at', # 'invoiced-at', 'dispatched-at', 'received-at', 'completed-at', # 'delivered-at', 'created-date', 'decline-reason', 'ops-ff-days', # 'store-ff-days', 'week-day', 'ops-status', 'ops-ff-date', # 'store-status', 'store-ff-date']] # fdf.columns = [c.replace('-', '_') for c in fdf.columns] # fdf.rename(columns={'sb_created_at': 'created_at'}, inplace=True) # fdf['fptr'] = fdf['fptr'].astype(float) # fdf['ops_ff_date'] = pd.to_datetime(fdf['ops_ff_date']) # fdf['store_ff_date'] = pd.to_datetime(fdf['store_ff_date']) # fdf.to_sql( # name='ops_fulfillment', con=pg_write.engine, if_exists='append', # chunksize=500, method='multi', index=False) # logger.info("written to postgres") status = True except Exception as error: status = False logger.info("exception incurred") err_msg = str(error) logger.info(str(error)) finally: rs_db.close_connection() # pg_write.close_connection() # Sending email logger.info("sending email") email = Email() if status: result = 'Success' email.send_email_file(subject=f"ops_fulfillment ({env}): {result}", mail_body=f"Run time: {datetime.datetime.now()} {err_msg}", to_emails=email_to, file_uris=[]) else: result = 'Failed' email.send_email_file(subject=f"ops_fulfillment ({env}): {result}", mail_body=f"{err_msg}", to_emails=email_to, file_uris=[]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ops_fulfillment/ops_fulfillment.py
ops_fulfillment.py
# In[70]: #!/usr/bin/env python # coding: utf-8 import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper import argparse import pandas as pd from datetime import date from datetime import datetime import dateutil.relativedelta import numpy as np # In[71]: parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to # In[72]: env = args.env os.environ['env'] = env # In[73]: rs_db = DB() s3=S3() # In[74]: rs_db.open_connection() # In[75]: q_aa=''' select a.id as "inventory-id", a."invoice-item-id" , b.id as "invoice-item-id-1", a."batch-number" , a.expiry , b.vat , c."invoice-date" , d."type" , d."drug-name" , s."name" as "store-name", a."created-at" as "inventory-created-at" , "barcode-reference" , d.hsncode , a."drug-id" , c."invoice-number", AVG(a.quantity) as "quantity" , AVG(a."locked-for-check") as "locked-for-check" , AVG(a."transferred-out-quantity") as "transferred-out-quantity", AVG(a."transferred-in-quantity") as "transferred-in-quantity", AVG(a."locked-for-audit") as "locked-for-audit", AVG(a."locked-for-return") as "locked-for-return" , AVG(a."locked-for-transfer") as "locked-for-transfer", AVG(a.ptr )as "actual-fptr", AVG(b."actual-quantity") as "actual-quantity" , AVG(b."net-value") as "net-value" , SUM(s2."net-quantity") as "net-quantity" , AVG(s2.rate) as "selling-rate", AVG(s2."cgst-rate" +s2."sgst-rate" +s2."igst-rate") as "GST" from "prod2-generico"."inventory-1" a left join "prod2-generico"."invoices-1" c on a."franchisee-invoice-id" = c.id left join "prod2-generico"."invoice-items-1" b on a."invoice-item-id" = b.id left join "prod2-generico".drugs d on b."drug-id" = d.id left join "prod2-generico".stores s on a."store-id" = s.id left join "prod2-generico".sales s2 on a.id =s2."inventory-id" where c."invoice-reference" is null group by a.id , a."invoice-item-id" , b.id , a."batch-number" , a.expiry , b.vat , c."invoice-date" , d."type" , d."drug-name" , s."name", a."created-at" , "barcode-reference" , d.hsncode , a."drug-id" , c."invoice-number" ''' # In[95]: local_purchase_loss=rs_db.get_df(query=q_aa) # In[96]: # In[97]: local_purchase_loss[['actual-fptr','vat','net-value','selling-rate','gst']]=local_purchase_loss[['actual-fptr','vat','net-value','selling-rate','gst']].apply(pd.to_numeric, errors='ignore').astype('float64') # In[98]: # In[99]: # In[101]: created_at = datetime.now().strftime("%Y-%m-%d %H:%M:%S") local_purchase_loss['created-at']=datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") updated_at = datetime.now().strftime("%Y-%m-%d %H:%M:%S") local_purchase_loss['updated-at']=datetime.strptime(updated_at,"%Y-%m-%d %H:%M:%S") local_purchase_loss['created-by'] = 'etl-automation' local_purchase_loss['updated-by'] = 'etl-automation' # In[102]: # In[103]: local_purchase_loss['barcode-reference']=local_purchase_loss['barcode-reference'].fillna(0) local_purchase_loss['barcode-reference']=local_purchase_loss['barcode-reference'].astype(str) local_purchase_loss['barcode-reference'].replace(['0', '0.0'], '', inplace=True) # In[104]: local_purchase_loss[['invoice-item-id','invoice-item-id-1','actual-quantity','net-quantity']]=local_purchase_loss[['invoice-item-id','invoice-item-id-1','actual-quantity','net-quantity']].apply(pd.to_numeric, errors='ignore').astype('Int64') # In[105]: local_purchase_loss['invoice-date'] = pd.to_datetime(local_purchase_loss['invoice-date'], infer_datetime_format=True,errors = 'coerce') # In[ ]: schema = "prod2-generico" table_name = "purchase-loss-accounts" table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) # In[ ]: # In[90]: #Writing to table s3.write_df_to_db(df=local_purchase_loss[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # In[ ]: rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/local_purchase_loss/local_pur_loss.py
local_pur_loss.py
"" import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.sheet.sheet import GoogleSheet import pandas as pd import dateutil import datetime from dateutil.tz import gettz import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-et', '--email_to', default="[email protected],[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() mysql_write = MySQL(read_only=False) mysql_write.open_connection() s3 = S3() status = 'Failed' try: # Read from gsheet gs = GoogleSheet() spreadsheet_id = "1-WRZbBTVX1ANeKPmc2I1kyj2XkG5hu2L-Tau9Fb6lWw" schema = 'test-generico' if env == 'prod': spreadsheet_id = "1tFHCTr3CHdb0UOFseK_ntjAUJSHQHcjLmysPPCWRM04" schema = 'prod2-generico' ast_data = gs.download(data={ "spreadsheet_id": spreadsheet_id, "sheet_name": "Sheet1", "listedFields": [] }) df = pd.DataFrame(ast_data) df['store-id'] = 4 df['is-active'] = 1 df['created-by'] = 'data team' df['updated-by'] = 'data team' df['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') today= datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df.columns = [c.replace('_', '-') for c in df.columns] df['drug-id'] = df['drug-id'].astype(str) df = df[['store-id', 'drug-id', 'is-active', 'created-at', 'created-by', 'updated-at', 'updated-by']] df.drop_duplicates(subset=["store-id", "drug-id"], keep=False, inplace=True) # existing data ast_q = f""" select id, `drug-id`, `store-id`, `is-active` from `{schema}`.`store-drug-assortment` """ ast_table = pd.read_sql_query(ast_q, mysql_write.connection) ast_table['drug-id'] = ast_table['drug-id'].astype(str) # set active to zero for below records mysql_write.engine.execute(f"UPDATE `{schema}`.`store-drug-assortment` SET `is-active` = 0, `updated-at`='{today}'") left_data = df.merge(ast_table, on=["drug-id"], how='left') # set active to one for common records keep_left_data = left_data.loc[left_data['id'].notnull()] # append below new records append_left_data = left_data.loc[left_data['id'].isnull()] tuple_id = tuple(keep_left_data['id'].unique().tolist()) if not tuple_id: tuple_id = str('(0)') # update mysql_write.engine.execute(f"UPDATE `{schema}`.`store-drug-assortment` SET `is-active` = 1,`updated-at`='{today}' where `id` in {tuple_id}") print(f"UPDATE `{schema}`.`store-drug-assortment` SET `is-active` = 1 and `updated-at`='{today}' where `id` in {tuple_id}") print(tuple_id) # append append_left_data.drop(['id', 'store-id_y', 'is-active_y'], axis=1, inplace=True) append_left_data = append_left_data.reset_index() append_left_data.rename({'store-id_x': 'store-id', 'is-active_x': 'is-active', 'index': 'id'}, axis=1, inplace=True) ast_table_max_id = ast_table['id'].max() if np.isnan(ast_table_max_id): ast_table_max_id = 0 append_left_data['id'] = append_left_data['id'] + ast_table_max_id + 1 append_left_data['drug-id'] = append_left_data['drug-id'].astype('int') append_left_data['created-at'] = pd.to_datetime(append_left_data['created-at']) append_left_data['updated-at'] = pd.to_datetime(append_left_data['updated-at']) append_left_data.drop_duplicates(subset=["store-id", "drug-id"], keep=False, inplace=True) append_left_data.to_sql( name='store-drug-assortment', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=1000) status = 'Success' except: status = 'Failed' email = Email() email.send_email_file(subject=f"{env}-{status} : store-drug-assortment table update", mail_body=f"table update status - {status}", to_emails=email_to, file_uris=[]) rs_db.close_connection() mysql_write.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store-drug-assortment-mw/store-drug-assortment-mw.py
store-drug-assortment-mw.py
"" import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import dateutil import datetime from dateutil.tz import gettz import numpy as np from datetime import timedelta parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'store-drug-assortment-count' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) try: # count of drugs in assortment df_q = """ select sda."store-id","type", count(distinct sda."drug-id")"drug-id-count", count(distinct case when d."is-validated" ='Yes' then sda."drug-id" end) "verified-drug-count", count(distinct case when (quantity)>0 then sda."drug-id" end) "available-count" from "prod2-generico"."store-drug-assortment" sda left join "prod2-generico".drugs d on sda."drug-id" = d.id left join (select "drug-id",sum(quantity + "locked-quantity") quantity from "prod2-generico"."inventory-1" i where i."store-id" =4 group by 1) i on sda."drug-id" = i."drug-id" and quantity >0 where sda."is-active"=1 and sda."store-id" =4 group by 1,2 """ df = rs_db.get_df(df_q) # etl df['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df['created-by'] = 'etl-automation' df['updated-by'] = 'etl-automation' if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where date("created-at")=current_date''' rs_db.execute(truncate_query) s3.write_df_to_db(df=df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) except : raise Exception("error") finally: rs_db.close_connection() rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/store-drug-assortment-mw/store-drug-assortment-count.py
store-drug-assortment-count.py
import argparse import sys sys.path.append('../../../..') import os from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "group-activation-system-level" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "created-by", "created-at", "updated-by", "updated-at", "group", "system-first-inv-date", "system-first-bill-date") select 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", y."group", max(y.system_first_inv_date) as "system-first-inv-date", max(y.system_first_bill_date) as "system-first-bill-date" from ( select d1."group", MIN(b."created-at") as "system_first_bill_date", MIN(c."created-at") as "system_first_inv_date" from "prod2-generico"."inventory-1" c left join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" left join "prod2-generico"."bills-1" b on b."id" = a."bill-id" left join "prod2-generico"."drugs" d on d."id" = c."drug-id" left join "prod2-generico"."drug-unique-composition-mapping" d1 on c."drug-id" = d1."drug-id" where d1."group" is not null and d."company-id" = 6984 group by d1."group" ) as y group by y."group" """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") ##Vacuum Clean # clean = f""" # VACUUM full "prod2-generico"."composition-activation-system-level"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/group-activation-system-level/group-activation-system-level.py
group-activation-system-level.py
import argparse import sys sys.path.append('../../../..') import os from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "composition-activation-system-level" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "created-by", "created-at", "updated-by", "updated-at", "composition-master-id", "system-first-inv-date", "system-first-bill-date") select 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", y."composition-master-id", max(y.system_first_inv_date) as "system-first-inv-date", max(y.system_first_bill_date) as "system-first-bill-date" from ( select d."composition-master-id", MIN(b."created-at") as "system_first_bill_date", MIN(c."created-at") as "system_first_inv_date" from "prod2-generico"."inventory-1" c left join "prod2-generico"."bill-items-1" a on c."id" = a."inventory-id" left join "prod2-generico"."bills-1" b on b."id" = a."bill-id" left join "prod2-generico"."drugs" d on d."id" = c."drug-id" where d."composition-master-id" is not null and d."company-id" = 6984 group by d."composition-master-id" ) as y group by y."composition-master-id" """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") ##Vacuum Clean # clean = f""" # VACUUM full "prod2-generico"."composition-activation-system-level"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/composition-activation-system-level/composition-activation-system-level.py
composition-activation-system-level.py
import argparse import os import sys import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import MySQL, DB parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-mtp', '--main_table_prefix', default="NA", type=str, required=False) parser.add_argument('-ttp', '--temp_table_prefix', default="pre", type=str, required=False) parser.add_argument('-bs', '--batch_size', default=10, type=int, required=False) parser.add_argument('-td', '--total_drugs', default=30, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env batch_size = args.batch_size total_drugs = args.total_drugs main_table_prefix = args.main_table_prefix temp_table_prefix = f"-{args.temp_table_prefix}" main_table_prefix = "" if main_table_prefix == "NA" else main_table_prefix os.environ['env'] = env logger = get_logger() table_name = "drug-sold-summary" """ Setting the schema name as per the env """ if env == "dev": ms_source_schema = "test-generico" rs_source_schema = "test-generico" elif env == "stage": ms_source_schema = "test-generico" rs_source_schema = "test-generico" elif env == "prod": ms_source_schema = "prod2-generico" rs_source_schema = "prod2-generico" else: raise Exception("Set the env first!") ms_target_schema = ms_source_schema temp_table_name = f"`{ms_target_schema}`.`{table_name}{temp_table_prefix}`" main_table_name = f"`{ms_target_schema}`.`{table_name}{main_table_prefix}`" logger.info(f"temp_table_name: {temp_table_name}") logger.info(f"main_table_name: {main_table_name}") def get_drug_summary_mysql(mysql_read_db, batch=1, batch_size=10000): query = f""" select i.`drug-id` , COUNT(distinct b2.`patient-id`) as `sold-count` from `{ms_source_schema}`.`inventory-1` i inner join `{ms_source_schema}`.`bill-items-1` bi on i.id = bi.`inventory-id` inner join `{ms_source_schema}`.`bills-1` b2 on bi.`bill-id` = b2.id group by i.`drug-id` order by i.`drug-id` LIMIT {batch_size} OFFSET {(batch - 1) * batch_size}; """ logger.info(f"query to get the data: {query}") df = pd.read_sql_query(con=mysql_read_db.connection, sql=query) return df def get_drug_summary_redshift(redshift_read_db, batch=1, batch_size=10000): query = f""" select i."drug-id" , COUNT(distinct b2."patient-id") as "sold-count" from "{rs_source_schema}"."inventory-1" i inner join "{rs_source_schema}"."bill-items-1" bi on i.id = bi."inventory-id" inner join "{rs_source_schema}"."bills-1" b2 on bi."bill-id" = b2.id group by i."drug-id" order by i."drug-id" """ logger.info(f"query to get the data: {query}") df = redshift_read_db.get_df(query=query) return df def get_drug_summary_doctor_redshift(redshift_read_db, batch=1, batch_size=10000): query = f""" select i."drug-id", COUNT(distinct b2."patient-id") as "sold-to-doctors-count" from "{rs_source_schema}"."inventory-1" i inner join "{rs_source_schema}"."bill-items-1" bi on i.id = bi."inventory-id" inner join "{rs_source_schema}"."bills-1" b2 on bi."bill-id" = b2.id inner join "{rs_source_schema}".patients p on b2."patient-id" = p.id where lower(p."name") like 'dr %' group by i."drug-id" order by i."drug-id" """ logger.info(f"query to get the data: {query}") df = redshift_read_db.get_df(query=query) return df mysql_write_db = MySQL(read_only=False) mysql_write_db.open_connection() # Truncate the temp table before starting query = f""" delete from {temp_table_name};""" mysql_write_db.engine.execute(query) logger.info(f"deleted from temp table, query: {query}") # # mysql_read_db = MySQL() # mysql_read_db.open_connection() redshift_read_db = DB() redshift_read_db.open_connection() # query = "SELECT count(id) as `drug-count` FROM `{ms_source_schema}`.drugs " # c_df = pd.read_sql_query(con=mysql_read_db.connection, sql=query) # drug_summary_df = pd.DataFrame() # total_drugs = 125000 # for i in range(1, round(total_drugs / batch_size) + 1): # temp_df = get_drug_summary_mysql(mysql_read_db=mysql_read_db, batch=i, # batch_size=batch_size) # to consider NA moles drugs # drug_summary_df = pd.concat([drug_summary_df, temp_df]) # logger.info(f"fetched batch: {i}") # mysql_read_db.close() drug_summary_df = get_drug_summary_redshift(redshift_read_db=redshift_read_db) drug_doctor_summary_df = get_drug_summary_doctor_redshift(redshift_read_db=redshift_read_db) drug_summary_df = drug_summary_df.merge(drug_doctor_summary_df, how="left", on="drug-id") drug_summary_df.fillna(0, inplace=True) drug_summary_df['sold-to-doctors-count'] = drug_summary_df['sold-to-doctors-count'].astype(int) redshift_read_db.close_connection() total_count = len(drug_summary_df) logger.info(f"Total drug count: {total_count}") # store the data in the temp table drug_summary_df[['drug-id', 'sold-count', 'sold-to-doctors-count']].to_sql( con=mysql_write_db.engine, name=f"{table_name}{temp_table_prefix}", schema=ms_target_schema, if_exists="append", chunksize=500, index=False) # Delete the drugs from main table which are NOT in the temp table. query = f""" DELETE FROM t1 USING {main_table_name} t1 LEFT JOIN {temp_table_name} t2 ON t1.`drug-id` = t2.`drug-id` where t2.`drug-id` is null ;""" response = mysql_write_db.engine.execute(query) logger.info( f"Deleted the records from main table, which are absent in temp table: {response.rowcount}") # Delete the data from temp table which is already present in main table query = f""" DELETE FROM t1 USING {temp_table_name} t1 INNER JOIN {main_table_name} t2 ON t1.`drug-id` = t2.`drug-id` where t1.`sold-count` = t2.`sold-count` and t1.`sold-to-doctors-count` = t2.`sold-to-doctors-count`; """ response = mysql_write_db.engine.execute(query) present_correct_count = response.rowcount logger.info(f"Correct drug-ids count: {present_correct_count}") # Delete the incorrect substitutes from main table query = f""" DELETE FROM t1 USING {main_table_name} t1 INNER JOIN {temp_table_name} t2 ON t1.`drug-id` = t2.`drug-id`;""" response = mysql_write_db.engine.execute(query) present_incorrect_count = response.rowcount logger.info(f"Incorrect drug-ids count: {present_incorrect_count}") # Now Insert the records in main table query = f""" INSERT INTO {main_table_name} (`drug-id`, `sold-count`, `sold-to-doctors-count`) SELECT `drug-id`, `sold-count`, `sold-to-doctors-count` FROM {temp_table_name} """ response = mysql_write_db.engine.execute(query) new_insert_count = response.rowcount logger.info(f"Insert/Update drug-ids count: {new_insert_count}") mysql_write_db.close() if total_count == present_correct_count + new_insert_count: logger.info("Drug sold-count data updated successfully") else: raise Exception("Data count mismatch")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/drug-sold-summary/drug_sold_summary.py
drug_sold_summary.py
import os import sys import numpy as np sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger import argparse import pandas as pd from datetime import datetime from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-ns', '--new_store_id_list', default="", type=str, required=False) parser.add_argument('-pr', '--proxy_store_list', default="", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() new_store_id_list = args.new_store_id_list proxy_store_list = args.proxy_store_list email_to = args.email_to email = Email() if new_store_id_list and type(new_store_id_list) == str: new_store_id_list = int(new_store_id_list) else: email.send_email_file(subject="nso_launch_stock_failed", mail_body="please insert the new_store_id", to_emails=email_to) mssg = "wrong input parameters passed as store id list is {} and type of list " \ "is {}".format(new_store_id_list, type(new_store_id_list)) raise Exception(mssg) if proxy_store_list and type(proxy_store_list) == str: proxy_store_list = tuple([int(x) for x in proxy_store_list.split(",")]) else: email.send_email_file(subject="nso_launch_stock_failed", mail_body="please insert at-least two proxy_stores", to_emails=email_to) mssg = "wrong input parameters passed as proxy store list is {} and type of list " \ "is {}".format(proxy_store_list, type(proxy_store_list)) raise Exception(mssg) rs_db = DB() rs_db.open_connection() s3 = S3() # Current Date run_date = str(datetime.now(tz=gettz('Asia/Kolkata')).now()) # Proxy stores sales history available in last 90 days proxy = ''' select sa."store-id", (max(date(sa."created-at"))-min(date(sa."created-at"))) as days from "prod2-generico".sales as sa where sa."store-id" In {store_id} and date(sa."created-at") between date(trunc(GETDATE()) -interval '91 days') and date(trunc(GETDATE()) -interval '1 days') group by sa."store-id" '''.format(store_id=proxy_store_list) proxy=rs_db.get_df(query=proxy) # Base Logic # Sales data in last 90 days q_sales_data = '''select "drug-id","store-id" ,SUM("net-quantity") as "net-quantity" from "prod2-generico".sales sa where sa."store-id" In {store_id} and date(sa."created-at") between date(trunc(GETDATE()) -interval '91 days') and date(trunc(GETDATE()) -interval '1 days') group by "drug-id","store-id" '''.format(store_id=proxy_store_list) sales_data=rs_db.get_df(query=q_sales_data) # PR Loss in last 90 days pr_loss_query = ''' select cpr."drug-id", cpr."store-id" , sum(cpr."loss-quantity") as "loss-quantity" from "prod2-generico"."cfr-patient-request" cpr where cpr."store-id" in {store_id} and date(cpr."shortbook-date") between date(current_date -interval '91 days') and date(current_date -interval '1 days') and cpr."drug-id" <> -1 and cpr."loss-quantity" > 0 group by cpr."drug-id", cpr."store-id" '''.format(store_id=proxy_store_list) pr_loss=rs_db.get_df(query=pr_loss_query) pr_loss.columns = [c.replace('_', '-') for c in pr_loss.columns] merge_demand = pd.merge(sales_data, pr_loss, on=['store-id', 'drug-id'], how='outer') merge_demand['net-quantity'].fillna(0, inplace=True) merge_demand['loss-quantity'].fillna(0, inplace=True) merge_demand['loss-quantity']=merge_demand['loss-quantity'].astype(np.float64) merge_demand['total_demand'] = (merge_demand['net-quantity'] + merge_demand['loss-quantity']) merge_demand = merge_demand.drop(["net-quantity", "loss-quantity"], axis=1) merge_demand.columns = [c.replace('_', '-') for c in merge_demand.columns] base_logic = pd.merge(merge_demand, proxy, how='left', on='store-id') base_logic['avg_per_month'] = (base_logic['total-demand'] / base_logic['days']) * 30 base_logic = base_logic.groupby(['drug-id']).sum() base_logic = base_logic.drop(['store-id', 'total-demand', 'days'], axis=1) avg_net_quan = base_logic[['avg_per_month']] / (len(proxy_store_list)) avg_net_quan = avg_net_quan[avg_net_quan['avg_per_month'] > 0.8] base_logic = pd.merge(base_logic, avg_net_quan, left_index=True, right_index=True) # Other Category # Top 80 % other category drugs by quantity sold in last 90 days across the network q_other_cat = ''' select "drug-id" , "drug-name" , "type" , composition , SUM("net-quantity") as "net-quantity" from "prod2-generico".sales sa where sa."type" not in ('ethical', 'generic') and date(sa."created-at") between date(trunc(GETDATE()) -interval '91 days') and date(trunc(GETDATE()) -interval '1 days') group by "drug-id", "drug-name", "type", composition order by SUM("net-quantity") desc ''' other_cat=rs_db.get_df(query=q_other_cat) a = other_cat['net-quantity'].sum() * 0.8 other_cat = other_cat[other_cat['net-quantity'].cumsum() < a] # Generic Adjustment # Warehouse generic Portfolio q_generic_wh_portfolio = ''' select composition, "drug-id" as "drug-id" from ( select d.composition, wssm."drug-id", d."drug-name" , SUM(sh."net-quantity"), rank() over (partition by d.composition order by SUM(sh."net-quantity") desc) as rn from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on wssm."drug-id" =d.id left join "prod2-generico".sales sh on wssm."drug-id" =sh."drug-id" where wssm."add-wh" = 'Yes' and d."type" ='generic' group by d.composition , wssm."drug-id" , d."drug-name") a where a.rn = 1; ''' # All the drugs in warehouse generic portfolio q_all_generic_portfolio = ''' select distinct d.composition, wssm."drug-id" as "drug-id" from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on wssm."drug-id" =d.id where d."type" ='generic' and wssm."add-wh" = 'Yes' ''' generic_wh_portfolio =rs_db.get_df(query=q_generic_wh_portfolio) generic_wh_all_portfolio=rs_db.get_df(query=q_all_generic_portfolio) # common_drug_adjustment # Drug sold in 80 % of stores t_1 = ''' select COUNT(a."store-id") from (select sa."store-id", (max(date(sa."created-at"))-min(date(sa."created-at"))) as days from "prod2-generico".sales as sa where date(sa."created-at") between date(trunc(GETDATE()) -interval '91 days') and date(trunc(GETDATE()) -interval '1 days') group by sa."store-id" ) a where a.days >= 90; ''' sales_90_days=rs_db.get_df(query=t_1) total_stores = int(sales_90_days.iloc[0]) # 80 % of stores total_stores_perc = round(0.8 * total_stores) q_common_drug = ''' select * from ( select sa."drug-id", COUNT(distinct sa."store-id") as "store-count" from "prod2-generico".sales as sa where date(sa."created-at") between date(trunc(GETDATE()) -interval '91 days') and date(trunc(GETDATE()) -interval '1 days') and sa."store-id" in ( select a."store-id" from (select sa."store-id", (max(date(sa."created-at"))-min(date(sa."created-at"))) as days from "prod2-generico".sales as sa where date(sa."created-at") between date(trunc(GETDATE()) -interval '91 days') and date(trunc(GETDATE()) -interval '1 days') group by sa."store-id" ) a where a.days >= 90) group by sa."drug-id" ) b ''' rs_db.execute(query=q_common_drug, params=None) common_drug: pd.DataFrame = rs_db.cursor.fetch_dataframe() common_drug = common_drug[common_drug['store-count'] > total_stores_perc] q_goodaid = '''select composition, "drug-id" as "drug-id" from ( select d.composition, wssm."drug-id", d."drug-name" from "prod2-generico"."wh-sku-subs-master" wssm left join "prod2-generico".drugs d on wssm."drug-id"=d.id where wssm."add-wh" = 'Yes' and d."company-id" = 6984 group by d.composition , wssm."drug-id", d."drug-name") a''' goodaid_wh_portfolio=rs_db.get_df(query=q_goodaid) # CFR-1 part-1 # Drug Search repeated in last four month in proxy stores q_cfr_1 = ''' select "drug-id" as "drug-id" from ( select "drug-id", "drug-name-y" , Count(distinct month_year) as m_y from ( select to_char(cs."search-date", 'YYYY-MM') as month_year , cs."drug-id" , cs."drug-name-y" from "prod2-generico"."cfr-searches-v2" cs where date(cs."search-date") between date(date_trunc('month', current_date -interval '4 month')) and date(date_trunc('month', current_date)- interval '1 day') and cs."store-id" in {store_id} and cs."final-lost-sales" >0 group by month_year , cs."drug-id", cs."drug-name-y") a group by a."drug-id", a."drug-name-y" having Count(distinct month_year)= 4) a '''.format(store_id=proxy_store_list) cfr_search_1 = rs_db.execute(query=q_cfr_1, params=None) cfr_search_1: pd.DataFrame = rs_db.cursor.fetch_dataframe() #cfr_search_1=rs_db.get_df(query=q_cfr_1) # CFR Logic-1 part-2 # Drug search repeated in 3-month (Rolling) (last four months CFR history considered) q_cfr_2 = '''select "drug-id" as "drug-id" from ( select a."drug-id", MONTHS_BETWEEN (date(date_trunc('month', max("search-date"))) , date(date_trunc('month', min("search-date")))) as diff, date(date_trunc('month', max("search-date"))),date(date_trunc('month', min("search-date"))), Count(distinct month_year) as m_y from ( select cs."search-date", to_char(cs."search-date", 'YYYY-MM') as month_year , cs."drug-id" , cs."drug-name-y" from "prod2-generico"."prod2-generico"."cfr-searches-v2" cs where date(cs."search-date") between date(date_trunc('month', current_date -interval '4 month')) and date(date_trunc('month', current_date)- interval '1 day') and cs."store-id" in {store_id} and cs."final-lost-sales" >0 group by cs."search-date", month_year , cs."drug-id", cs."drug-name-y") a group by a."drug-id" having Count(distinct month_year)= 3) b where b.diff = 2 '''.format(store_id=proxy_store_list) #cfr_search_2=rs_db.get_df(query=q_cfr_2) cfr_search_2 = rs_db.execute(query=q_cfr_2, params=None) cfr_search_2: pd.DataFrame = rs_db.cursor.fetch_dataframe() # CFR Logic-2 # Drug search repeated in last two month throughout the proxy stores. q_cfr_3 = '''select "drug-id" as "drug-id" from ( select "drug-id", "drug-name-y" , Count(distinct month_year) as m_y, Count(distinct "store-id") as stores from ( select to_char(cs."search-date", 'YYYY-MM') as month_year, cs."store-id" , cs."drug-id" , cs."drug-name-y" from "prod2-generico"."cfr-searches-v2" cs where date(cs."search-date") between date(date_trunc('month', current_date -interval '2 month')) and date(date_trunc('month', current_date)- interval '1 day') and cs."store-id" in {store_id} and cs."final-lost-sales" >0 group by month_year , cs."store-id", cs."drug-id", cs."drug-name-y") a group by a."drug-id", a."drug-name-y" having Count(distinct month_year)= 2 and Count(distinct "store-id")= {proxy_store}) b '''.format(store_id=proxy_store_list,proxy_store=len(proxy_store_list)) #cfr_search_3=rs_db.get_df(query=q_cfr_3) cfr_search_3 = rs_db.execute(query=q_cfr_3, params=None) cfr_search_3: pd.DataFrame = rs_db.cursor.fetch_dataframe() if cfr_search_1 is None: cfr_search_1=pd.DataFrame() cfr_search_1['drug-id']='drug-id' cfr_search_1.to_csv(r"D:\NSO\cfr.csv") else: cfr_search_1=cfr_search_1 if cfr_search_2 is None: cfr_search_2=pd.DataFrame() cfr_search_2['drug-id']='drug-id' else: cfr_search_2=cfr_search_2 if cfr_search_3 is None: cfr_search_3=pd.DataFrame() cfr_search_3['drug-id']='drug-id' else: cfr_search_3=cfr_search_3 drug_info = ''' select d.id as "drug-id" , d."drug-name" as "drug-name", d."type" as "drug-type" , d."company-id" as "company-id", d.company as company, d.category as "drug-category", d.composition as composition from "prod2-generico".drugs d ''' drug_info=rs_db.get_df(drug_info) # ptr-info ptr_info = ''' select i2."drug-id" ,avg(ptr) as "avg-ptr" from "prod2-generico"."inventory-1" i2 where date(i2."created-at") between date(trunc(GETDATE()) -interval '366 days') and date(trunc(GETDATE()) -interval '1 days') group by i2."drug-id" ''' avg_ptr=rs_db.get_df(query=ptr_info) base_logic = base_logic.drop(["avg_per_month_x", "avg_per_month_y"], axis=1) other_cat = other_cat.drop(["drug-name", "type", "composition", "net-quantity"], axis=1) generic_wh_portfolio = generic_wh_portfolio.drop(['composition'], axis=1) common_drug = common_drug.drop(['store-count'], axis=1) goodaid_wh_portfolio = goodaid_wh_portfolio.drop(['composition'], axis=1) # Merging with drug info base_logic_new = pd.merge(base_logic, drug_info, how='left', on=['drug-id']) other_cat_new = pd.merge(other_cat, drug_info, how='left', on=['drug-id']) generic_wh_portfolio_new = pd.merge(generic_wh_portfolio, drug_info, how='left', on=['drug-id']) common_drug_new = pd.merge(common_drug, drug_info, how='left', on=['drug-id']) goodaid_wh_portfolio_new = pd.merge(goodaid_wh_portfolio, drug_info, how='left', on=['drug-id']) cfr_search_1_new = pd.merge(cfr_search_1, drug_info, how='left', on=['drug-id']) cfr_search_2_new = pd.merge(cfr_search_2, drug_info, how='left', on=['drug-id']) cfr_search_3_new = pd.merge(cfr_search_3, drug_info, how='left', on=['drug-id']) rs_db.close_connection() # Dropping the duplicated (if any) base_logic_new = base_logic_new.drop_duplicates() other_cat_new = other_cat_new.drop_duplicates() generic_wh_portfolio_new = generic_wh_portfolio_new.drop_duplicates() common_drug_new = common_drug_new.drop_duplicates() goodaid_wh_portfolio_new = goodaid_wh_portfolio_new.drop_duplicates() cfr_search_1_new = cfr_search_1_new.drop_duplicates() cfr_search_2_new = cfr_search_2_new.drop_duplicates() cfr_search_3_new = cfr_search_3_new.drop_duplicates() base_logic_new['source'] = 'proxy_stores_base_logic' other_cat_new['source'] = 'network_other_category' generic_wh_portfolio_new['source'] = 'wh_generic' common_drug_new['source'] = 'network_common_drugs' goodaid_wh_portfolio_new['source'] = 'wh_goodaid' cfr_search_1_new['source'] = 'CFR-1' cfr_search_2_new['source'] = 'CFR-1' cfr_search_3_new['source'] = 'CFR-2' # merging base logic and other category Adjustment-1 merge_1 = pd.merge(base_logic_new, other_cat_new, how='outer', left_on=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition'], right_on=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) merge_1['source_x'] = merge_1['source_x'].fillna('network_other_category') merge_1 = merge_1.drop(['source_y'], axis=1) merge_1 = merge_1.rename(columns={"source_x": "source"}) # Dropping Duplicates merge_1 = merge_1.drop_duplicates(subset=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) # Generic Adjustment generic = merge_1[merge_1['drug-type'] == 'generic'] non_generic = merge_1[merge_1['drug-type'] != 'generic'] # Generic Composition generic_composition = generic[["composition"]] # Unique Generic Composition generic_composition_unique = generic_composition.drop_duplicates() # Warehouse Generic Portfolio generic_portfolio = generic_wh_portfolio_new[["composition"]] # Compoistions not part of base logic portfolio_extra = generic_portfolio[ ~generic_portfolio['composition'].isin(generic_composition_unique['composition'])] generic_1 = pd.merge(generic_composition, generic, how='left', on=['composition']) generic_1 = generic_1.drop_duplicates() portfolio_extra_1 = pd.merge(portfolio_extra, generic_wh_portfolio_new, how='left', on=['composition']) portfolio_extra_1 = portfolio_extra_1.drop_duplicates() # Merging portfolio extra drugs and base logic generics merge_2 = pd.concat([generic_1, portfolio_extra_1]) # Generic Adjustment-2 generic = merge_2[merge_2['drug-type'] == 'generic'] generic_drugs = generic[['drug-id']] generic_drugs_composition = generic[['drug-id', 'composition']] # All generic drugs in warehouse portfolio generic_wh_all_portfolio_drug = generic_wh_all_portfolio[['drug-id']] # Generic drugs not in the portfolio generic_drug_not_in_portfolio = generic_drugs[~generic_drugs['drug-id'].isin(generic_wh_all_portfolio['drug-id'])] # Generic drugs in the portfolio generic_drug_in_portfolio = generic_drugs[generic_drugs['drug-id'].isin(generic_wh_all_portfolio['drug-id'])] # Merging the generic drug in portfolio generic_drug_in_portfolio = pd.merge(generic_drug_in_portfolio, generic, how='left', on='drug-id') generic_drug_not_in_portfolio_composition = pd.merge(generic_drug_not_in_portfolio, generic_drugs_composition, how='left', on='drug-id') # replaced the drugs with highest selling drugs in that composition from warehouse portfolio generic_adjustment_2 = pd.merge(generic_drug_not_in_portfolio_composition['composition'], generic_wh_portfolio_new, how='inner', on='composition') # dropping duplicates generic_adjustment_2 = generic_adjustment_2.drop_duplicates() generic_adjustment_2 = generic_adjustment_2[ ['drug-id', 'composition', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'source']] generic_composition_not_in_generic_portfolio = generic_drug_not_in_portfolio_composition[ ~generic_drug_not_in_portfolio_composition['composition'].isin(generic_wh_portfolio_new['composition'])] generic_composition_not_in_generic_portfolio = pd.merge(generic_composition_not_in_generic_portfolio, generic, how='left', on=['drug-id', 'composition']) merge_2 = pd.concat( [generic_composition_not_in_generic_portfolio, generic_adjustment_2, generic_drug_in_portfolio]) merge_2 = merge_2.drop_duplicates(subset=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) merge_2 = merge_2[ ['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition', 'source']] # merging the non-generic and generic drug after generic adjustment-2 merge_3 = pd.concat([non_generic, merge_2]) # Common Drug Adjustment # Merging the with common drug adjustment merge_4 = pd.merge(merge_3, common_drug_new, how='outer', left_on=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition'], right_on=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) merge_4['source_x'] = merge_4['source_x'].fillna('network_common_drugs') merge_4 = merge_4.drop(['source_y'], axis=1) merge_4 = merge_4.rename(columns={"source_x": "source"}) merge_4 = merge_4.drop_duplicates(subset=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) # Goodaid Adjustment generic_2 = merge_4[merge_4['drug-type'] == 'generic'] non_generic_2 = merge_4[merge_4['drug-type'] != 'generic'] generic_composition_2 = generic_2[["composition"]] # Goodaid composition goodaid_composition = goodaid_wh_portfolio_new[['composition']] # Composition which is part of goodaid portfolio generic_removal = generic_composition_2[generic_composition_2['composition'].isin(goodaid_composition['composition'])] # Composition not part of goodaid portfolio generic_without_GA = generic_2[~generic_2['composition'].isin(generic_removal['composition'])] df_goodaid = pd.merge(generic_removal, goodaid_wh_portfolio_new, how='left', on=['composition']) df_goodaid = df_goodaid.drop_duplicates() df_goodaid['source'] = 'wh_goodaid' df_goodaid = df_goodaid[ ['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition', 'source']] merge_5 = pd.concat([generic_without_GA, df_goodaid]) merge_5 = pd.concat([non_generic_2, merge_5]) # CFR-Search merge_6 = pd.merge(merge_5, cfr_search_1_new, how='outer', on=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) merge_6['source_x'] = merge_6['source_x'].fillna('CFR-1') merge_6 = merge_6.drop(['source_y'], axis=1) merge_6 = merge_6.rename(columns={"source_x": "source"}) merge_7 = pd.merge(merge_6, cfr_search_2_new, how='outer', on=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) merge_7['source_x'] = merge_7['source_x'].fillna('CFR-1') merge_7 = merge_7.drop(['source_y'], axis=1) merge_7 = merge_7.rename(columns={"source_x": "source"}) merge_8 = pd.merge(merge_7, cfr_search_3_new, how='outer', on=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) merge_8['source_x'] = merge_8['source_x'].fillna('CFR-2') merge_8 = merge_8.drop(['source_y'], axis=1) merge_8 = merge_8.rename(columns={"source_x": "source"}) merge_8 = merge_8.drop_duplicates(subset=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) # CFR Adjustment-1 (Generic) generic_wh_all_portfolio_drug = generic_wh_all_portfolio[['drug-id']] generic_3 = merge_8[merge_8['drug-type'] == 'generic'] generic_drugs_3 = generic_3[['drug-id']] non_generic_3 = merge_8[merge_8['drug-type'] != 'generic'] generic_drug_in_portfolio_3 = generic_drugs_3[generic_drugs_3['drug-id'].isin(generic_wh_all_portfolio_drug['drug-id'])] generic_drug_not_in_portfolio_3 = generic_drugs_3[ ~generic_drugs_3['drug-id'].isin(generic_wh_all_portfolio_drug['drug-id'])] df_generic_drugs_in_portfolio = pd.merge(generic_drug_in_portfolio_3, generic_3, how='left', on='drug-id') merge_9 = pd.concat([non_generic_3, df_generic_drugs_in_portfolio]) # CFR Adjustment-2 (Goodaid) goodaid_composition = goodaid_wh_portfolio_new[['composition']] generic_4 = merge_9[merge_9['drug-type'] == 'generic'] non_generic_4 = merge_9[merge_9['drug-type'] != 'generic'] generic_4_composition = generic_4[['composition']] generic_composition_goodaid = generic_4_composition[ generic_4_composition['composition'].isin(goodaid_composition['composition'])] generic_composition_non_goodaid = generic_4_composition[ ~generic_4_composition['composition'].isin(goodaid_composition['composition'])] generic_composition_goodaid = pd.merge(generic_composition_goodaid, generic_4, how='left', left_index=True, right_index=True, on='composition') generic_composition_goodaid = generic_composition_goodaid[ generic_composition_goodaid['company'] == 'GOODAID'] non_goodaid = pd.merge(generic_composition_non_goodaid, generic_4, how='left', left_index=True, right_index=True, on='composition') non_goodaid = non_goodaid[ ['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition', 'source']] goodaid = generic_composition_goodaid[ ['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition', 'source']] merge_10 = pd.concat([non_generic_4, non_goodaid, goodaid]) # Removing the banned products merge_10 = merge_10[merge_10['drug-type'] != 'banned'] # removing the discontinued products merge_10 = merge_10[merge_10['drug-type'] != 'discontinued-products'] merge_10 = merge_10.drop_duplicates(subset=['drug-id', 'drug-name', 'drug-type', 'company-id', 'company', 'drug-category', 'composition']) merge_10 = pd.merge(merge_10, avg_net_quan, how='left', on='drug-id') merge_10 = pd.merge(merge_10, avg_ptr, how='left', on='drug-id') merge_10['avg_per_month'] = merge_10['avg_per_month'].fillna(1) merge_10['avg_per_month'] = merge_10['avg_per_month'].round(0).astype(int) merge_10 = merge_10.rename(columns={'avg_per_month': 'monthly_avg_quantity'}) merge_10['active'] = 1 merge_10['proxy_stores'] = str(proxy_store_list) merge_10['new_store_id'] = new_store_id_list merge_10['run_date'] = run_date merge_10.columns = [c.replace('_', '-') for c in merge_10.columns] nso_assortment_file_name = 'nso_assortment/nso_launch_stock_store_id_{}.csv'.format(new_store_id_list) # Uploading File to S3 nso_assortment_uri = s3.save_df_to_s3(df=merge_10, file_name=nso_assortment_file_name) email.send_email_file(subject=f"nso assortment for new_store_id {new_store_id_list}", mail_body=f"nso assortment for new_store_id {new_store_id_list} proxy store list is {proxy_store_list}", to_emails=email_to, file_uris=[nso_assortment_uri]) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/nso_launch_stock/nso_launch_stock.py
nso_launch_stock.py
import argparse # this is to include zeno_etl_libs in the python search path on the run time import sys import os sys.path.append('../../../..') import pandas as pd from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 source_pg_table = "customer_value_segment" target_rs_table = "customer-value-segment" def main(rs_db, pg_db, s3, limit, batch_size): table_info = helper.get_table_info(db=rs_db, table_name=target_rs_table, schema='prod2-generico') columns = list(table_info['column_name']) # columns.remove('id') rs_db.execute(query=f""" delete from "prod2-generico"."{target_rs_table}"; """) incomplete = True last_id = None total_pushed = 0 while incomplete: limit_str = f" limit {batch_size} " if batch_size else "" filter_str = f" where id > {last_id} " if last_id else "" query = f""" select id, patient_id as "patient-id", segment_calculation_date as "segment-calculation-date", value_segment as "value-segment" from {source_pg_table} cvs {filter_str} order by id asc {limit_str} ; """ df = pd.read_sql_query(query, pg_db.connection) if df.empty: incomplete = False else: last_id = int(df['id'].values[-1]) df = df[columns] s3.write_df_to_db(df=df, table_name=target_rs_table, db=rs_db, schema='prod2-generico') total_pushed += batch_size if limit and limit < total_pushed: incomplete = False if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-l', '--limit', default=None, type=int, required=False, help="Total patients to process") parser.add_argument('-b', '--batch_size', default=500000, type=int, required=False, help="batch size") args, unknown = parser.parse_known_args() env = args.env limit = args.limit batch_size = args.batch_size os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() _s3 = S3() pg_db = PostGre() pg_db.open_connection() """ calling the main function """ main(rs_db=rs_db, pg_db=pg_db, s3=_s3, limit=limit, batch_size=batch_size) # Closing the DB Connection rs_db.close_connection() pg_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/value-segnment/value_segment.py
value_segment.py
import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email def main(debug_mode, run_stores, run_date, s3, mysql, rs_db_read, rs_db_write, read_schema, write_schema, logger, online_email, offline_email): status = 'Failed' logger.info("PMF Conversion Code Execution Starts") logger.info(f"Stores: {run_stores}") logger.info(f"Run Date: {run_date}") logger.info(f"Debug Mode: {debug_mode}") logger.info(f"Online Session Login IDs: {online_email}") logger.info(f"Offline Session Login IDs: {offline_email}") online_email = online_email.split(",") offline_email = offline_email.split(",") logins = tuple(online_email + offline_email) try: # ====================================================================== # alternative searches # ====================================================================== q_bb = f""" select ad.`unique-id` as `session-id`, pso.`order-number`, ad.`patients-store-orders-id`, ad.`patient-id` as `ad-patient-id`, pso.`patient-id` as `pso-patient-id`, ad.`store-id`, ad.`requested-drug-id`, ad.`requested-drug-name`, d.`type` as `drug-type`, d.category, ad.`required-drug-quantity`, ad.`suggested-drug-id`, ad.`suggested-drug-name`, ad.`suggested-drug-inventory-quantity`, sda.`is-active` as `assortment_active`, date(ad.`created-at`) as `session-date`, pso.`bill-id`, pso.`order-type`, ad.`created-by` as `session-created-by` from `alternate-drugs` ad left join `patients-store-orders` pso on pso.`id` = ad.`patients-store-orders-id` left join `bills-1` b on b.`id` = pso.`bill-id` left join drugs d on d.id = ad.`requested-drug-id` left join `store-drug-assortment` sda on sda.`store-id` = ad.`store-id` and sda.`drug-id` = ad.`requested-drug-id` where date(ad.`created-at`) = '{run_date}' and ad.`store-id` in {run_stores} and ad.`created-by` in {logins} """ df_bb = pd.read_sql_query(q_bb, mysql.connection) df_bb.columns = [c.replace('-', '_') for c in df_bb.columns] # have a patient across every session df_bb['pid'] = np.where(df_bb['ad_patient_id'].isnull(), df_bb['pso_patient_id'], df_bb['ad_patient_id']) df_bb["patient_id"] = df_bb.groupby("session_id")['pid'].transform( lambda x: x.fillna(x.mean())) df_bb.drop(['ad_patient_id', 'pso_patient_id', 'pid'], axis=1, inplace=True) df_bb['assortment_active'].fillna(0, inplace=True) # add patient name/number. tempp = df_bb[df_bb['patient_id'].notnull()][['patient_id']] tempp['patient_id'] = tempp['patient_id'].apply(np.int64) patients = tuple(map(int, list((tempp['patient_id']).unique()))) pt = """ select `id` as `patient-id`, `name` as `patient-name`, `phone` from `patients` p where id in %s """ pts = pd.read_sql_query(pt, mysql.connection, params=[patients]) pts.columns = [c.replace('-', '_') for c in pts.columns] df_bb = pd.merge(left=df_bb, right=pts, how='left', on=['patient_id']) cols_to_move = ['patient_id', 'patient_name', 'phone'] df_bb = df_bb[cols_to_move + [col for col in df_bb.columns if col not in cols_to_move]] # assortment flag conditions = [( (df_bb.suggested_drug_id.isnull()) & (df_bb['assortment_active'] == 0) ), (df_bb.suggested_drug_id.isnull()) & (df_bb['assortment_active'] == 1), (df_bb.suggested_drug_id.notnull()) ] choices = ['not-in-assortment', 'in-assortment', 'in-assortment'] df_bb['flag_assort'] = np.select(conditions, choices) # availability flag conditions = [ (df_bb['flag_assort'] == 'not-in-assortment'), (df_bb['required_drug_quantity'] > df_bb[ 'suggested_drug_inventory_quantity']), (df_bb['required_drug_quantity'] <= df_bb[ 'suggested_drug_inventory_quantity']) ] choices = ['full', 'short', 'full'] df_bb['flag_availability'] = np.select(conditions, choices) # conversion flag # patients who have billed not in same session & same day, make them converted # billed in whole day flag bil = """ select `patient-id`, 1 AS `billed` from `bills-1` b where `patient-id` in %s and date(`created-at`) = %s group by `patient-id`; """ bills = pd.read_sql_query(bil, mysql.connection, params=[patients, run_date]) bills.columns = [c.replace('-', '_') for c in bills.columns] df_bb = pd.merge(left=df_bb, right=bills[['patient_id', 'billed']], how='left', on=['patient_id']) bt = """ select `id` as `pso_id`, `order-number` as `pso-order-number`, `order-type` as `pso-order-type`, `patient-id`, `drug-id` as `suggested_drug_id`, `bill-id` as `pso-bill-id`, `created-at` as `pso-date` from `patients-store-orders` pso where `patient-id` in %s and date(`created-at`) = %s group by `id`, `order-number`, `order-type`, `patient-id`, `drug-id`, `bill-id`, `created-at`; """ psos = pd.read_sql_query(bt, mysql.connection, params=[patients, run_date]) psos.columns = [c.replace('-', '_') for c in psos.columns] psos.drop_duplicates(['patient_id', 'suggested_drug_id'], keep='last', inplace=True) df_bb = pd.merge(left=df_bb, right=psos, how='left', on=['patient_id', 'suggested_drug_id']) df_bb['patients_store_orders_id'] = np.where( df_bb['patients_store_orders_id'].isnull(), df_bb['pso_id'], df_bb['patients_store_orders_id']) df_bb['order_number'] = np.where( df_bb['order_number'].isnull(), df_bb['pso_order_number'], df_bb['order_number']) df_bb['bill_id'] = np.where( df_bb['bill_id'].isnull(), df_bb['pso_bill_id'], df_bb['bill_id']) df_bb['order_type'] = np.where( df_bb['order_type'].isnull(), df_bb['pso_order_type'], df_bb['order_type']) # conversion logic df_temp = df_bb[(~df_bb.patients_store_orders_id.isnull()) | (df_bb['billed'] == 1)][['session_id']] df_temp1 = df_temp.drop_duplicates(subset=['session_id']) df_temp1['flag_conversion'] = 'converted' df_cc = pd.merge(left=df_bb, right=df_temp1, how='left', on=['session_id']) conditions = [(df_cc.flag_conversion.isnull()), (df_cc.flag_conversion.notnull())] choices = ['not_converted', 'converted'] df_cc['flag_conversion'] = np.select(conditions, choices) # patient metadata2 q_code = """ select "id" as "patient_id", "total-spend", "average-bill-value", "number-of-bills", "system-age-days", "avg-purchase-interval", "previous-bill-date", "is-repeatable", "is-generic", "is-chronic", "is-ethical", "value-segment-anytime", "behaviour-segment-anytime", "primary-disease" from "{schema}"."patients-metadata-2" pm where id in {ptt}; """.format(ptt=patients, schema=read_schema) pmeta = rs_db_read.get_df(q_code) pmeta.columns = [c.replace('-', '_') for c in pmeta.columns] df_dd = pd.merge(left=df_cc, right=pmeta, how='left', on=['patient_id']) df_to_upload = df_dd df_to_upload.drop(['pso_id', 'pso_order_number', 'pso_order_type', 'pso_bill_id', 'pso_date'], axis=1, inplace=True) # session-channel df_to_upload['session_channel'] = np.where(df_to_upload['session_created_by'].isin(offline_email), 'offline', 'online') # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing to RS table: pmf-conversion") df_to_upload['run-date'] = dt.datetime.strptime(run_date, '%Y-%m-%d').date() df_to_upload['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_to_upload['created-by'] = 'etl-automation' df_to_upload['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') df_to_upload['updated-by'] = 'etl-automation' df_to_upload.columns = [c.replace('_', '-') for c in df_to_upload.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='pmf-conversion', schema=write_schema) # To Avoid Duplication truncate_query = f""" DELETE FROM "{write_schema}"."pmf-conversion" WHERE "run-date" = '{run_date}'; """ logger.info(truncate_query) rs_db_write.execute(truncate_query) columns = list(table_info['column_name']) df_to_upload = df_to_upload[columns] # required column order s3.write_df_to_db(df=df_to_upload, table_name='pmf-conversion', db=rs_db_write, schema=write_schema) except Exception as error: logger.exception(error) logger.info(f"PMF Conversion Code Execution Status: {status}") status = 'Success' return status if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected],[email protected],[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="N", type=str, required=False) parser.add_argument('-rs', '--run_stores', default="4", type=str, required=False) parser.add_argument('-rd', '--run_date', default="YYYY-MM-DD", type=str, required=False) parser.add_argument('-offs', '--offline_session', default='[email protected], [email protected]', type=str, required=False) parser.add_argument('-ons', '--online_session', default='[email protected]', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode online_email = args.online_session offline_email = args.offline_session # JOB EXCLUSIVE PARAMS run_stores = args.run_stores.replace(" ", "").split(",") run_date = args.run_date run_stores = list(map(int, run_stores)) run_stores = str(run_stores).replace('[', '(').replace(']', ')') run_date_list = run_date.split(",") logger = get_logger() # define connections s3 = S3() mysql = MySQL(read_only=True) rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open connections rs_db_read.open_connection() rs_db_write.open_connection() mysql.open_connection() for run_date in run_date_list: if run_date == 'YYYY-MM-DD': # Take current date run_date = dt.date.today().strftime("%Y-%m-%d") """ calling the main function """ status = main(debug_mode, run_stores, run_date, s3, mysql, rs_db_read, rs_db_write, read_schema, write_schema, logger, online_email, offline_email) if email_to: # SEND EMAIL OF EXECUTION STATUS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"PMF Conversion Code (GLUE-{env}) {run_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Run Stores: {run_stores} Run Date: {run_date} Job Params: {args} """, to_emails=email_to, file_uris=[]) # close connections rs_db_read.close_connection() rs_db_write.close_connection() mysql.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/pmf_conversion/pmf_conversion.py
pmf_conversion.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "pso-slot-changes" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "first-slot", "last-slot", "total-slot-changes", "first-slot-date", "last-slot-date" ) select ps."patient-store-order-id" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", max(first_slot) as "first-slot", max(last_slot) as "last-slot", max(total_slot_changes) as "total-slot-changes", max(first_slot_date) as "first-slot-date", max(last_slot_date) as "last-slot-date" from ( select "pso-id" as "patient-store-order-id", first_value("old-slot") over (partition by "pso-id" order by "created-at" asc rows between unbounded preceding and unbounded following) as first_slot, first_value("new-slot") over (partition by "pso-id" order by "created-at" desc rows between unbounded preceding and unbounded following) as last_slot, count(id) over (partition by "pso-id") as "total_slot_changes", first_value("old-slot-date") over (partition by "pso-id" order by "created-at" asc rows between unbounded preceding and unbounded following) as first_slot_date, first_value("new-slot-date") over (partition by "pso-id" order by "created-at" desc rows between unbounded preceding and unbounded following) as last_slot_date from "prod2-generico"."pso-slot-changes-log" pscl ) ps group by "patient-store-order-id"; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."pso-slot-changes"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/pso_slot_change/pso_slot_change.py
pso_slot_change.py
import os import sys from memory_profiler import profile from pyspark.context import SparkContext from pyspark.sql import SQLContext sys.path.append('../../../..') from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 os.environ['env'] = 'dev' sc = SparkContext() sq = SQLContext(sc) logger = get_logger() s3 = S3() @profile def read_data(): logger.info("trying to read data from redshift") query = f"""select * from "prod2-generico".sales limit 10;""" df = rs_db.get_df(query=query) for c in df.columns: df[c] = df[c].astype('str') sparkDF = sq.createDataFrame(df) logger.info("spark dataframe created") return sparkDF def process_data(df): new_df = df.groupBy(["bill-id", "patient-id"]).count() new_df.show() logger.info("processing of data completed") return new_df def write_df_to_redshift_table(df, redshift_table, redshift_schema, load_mode, db_secrets): host = db_secrets['REDSHIFT_HOST'], database = db_secrets['REDSHIFT_DB'], user = db_secrets['REDSHIFT_USER'], password = db_secrets['REDSHIFT_PASSWORD'], port = int(db_secrets['REDSHIFT_PORT']), redshift_url = "jdbc:{}://{}:{}/{}".format( "redshift", host, port, database, ) load_mode = "append" temp_bucket = "s3://{}/{}/".format("aws-glue-temporary-921939243643-ap-south-1", "temp") schema_qualified_table = '"prod2-generico".sales' logger.info("Attempting to write dataframe into:{}".format(schema_qualified_table)) try: df.write.format("com.databricks.spark.redshift").option( "url", redshift_url + "?user=" + user + "&password=" + password, ).option("dbtable", schema_qualified_table).option( "tempdir", temp_bucket ).save( mode=load_mode ) status = True logger.info("Dataframe written successfully into table:{}".format(schema_qualified_table)) except Exception as exception: status = False raise Exception("{}".format(exception)) return status if __name__ == '__main__': try: configObj = Config.get_instance() secrets = configObj.get_secrets() rs_db = DB() rs_db.open_connection() df = read_data() processed_df = process_data(df) processed_df = processed_df.toPandas() # status = write_df_to_redshift_table(processed_df, "spark-example-temp", "prod2-generico", "append", secrets) s3.write_df_to_db(df=processed_df, table_name="spark-example-temp", db=rs_db, schema="prod2-generico") rs_db.close_connection() except Exception as error: raise Exception(error)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/spark_job/spark_example.py
spark_example.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "patient-requests-short-books-map" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "patient-request-id", "created-by", "created-at", "updated-by", "updated-at", "short-book-id" ) select a."patient-request-id" as "patient-request-id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", a."short-book-id" as "short-book-id" from ( select "patient-request-id", "short-book-id", row_number() over (partition by "patient-request-id" order by sb."required-quantity" asc) as row_num from "prod2-generico"."patient-requests-short-books" prsb inner join "prod2-generico"."short-book-1" sb on prsb."short-book-id" = sb.id) a where a.row_num = 1; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."patient-requests-short-books-map"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/patient-requests-short-book/patinet-requests-short-book.py
patinet-requests-short-book.py
import argparse import sys import os import datetime from io import StringIO import dateutil import numpy as np from pandas.io.json import json_normalize import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.google.playstore.playstore import Reviews parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument( '-sd', '--start_datetime', default="NA", type=str, required=False, help="If start date is 'NA' then latest review for the day and month will be added, for full" " run make the start date old") parser.add_argument( '-et', '--email_to', default="[email protected],[email protected],[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to start_datetime = args.start_datetime os.environ['env'] = env logger = get_logger() logger.info(f"start_date: {start_datetime}") # Read using google API r = Reviews() rs_db = DB(read_only=False) rs_db.open_connection() s3 = S3() schema = 'prod2-generico' table_name = 'playstore-reviews' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") logger.info(f"Table:{table_name} exists") def insert_reviews(df): """ Function helps in insert daily and monthly reviews in table, columns which are absent will be filled with default values """ must_present = "RaiseException" # Insert data table_columns = { "review-created-at": must_present, "review-id": np.nan, "star-rating": must_present, "author-name": np.nan, "user-image": np.nan, "review": np.nan, "reviewer-lang": "en", "thumbsup-count": np.nan, "review-link": np.nan, "replied-at": np.nan, "reply-content": np.nan, "year": must_present, "month": must_present, "created-at": datetime.datetime.now(tz=dateutil.tz.gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'), "created-by": "etl-automation", "updated-by": "etl-automation", "updated-at": datetime.datetime.now(tz=dateutil.tz.gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S') } for column in table_columns: if column not in df.columns: if table_columns[column] == must_present: raise Exception(f"{column} column must be present.") df[column] = table_columns[column] s3.write_df_to_db(df=df[table_columns.keys()], table_name=table_name, db=rs_db, schema=schema) def get_month_reviews(year, month): """ return the review of given month and year from s3 CSV file """ uri = f"s3://aws-glue-temporary-921939243643-ap-south-1/playstore-reviews/" \ f"reviews_reviews_com.zenohealth.android_{year}{str(month).zfill(2)}.csv" logger.info(f"uri: {uri}") csv_string = s3.get_file_object(uri=uri, encoding="utf-16") df = pd.read_csv(StringIO(csv_string)) df['month'] = str(month).zfill(2) df['year'] = str(year) return df def get_last_review_date(): """ Gets the last review date in the table :return: last review date """ query = f""" select max("review-created-at") last_review_date from "{schema}"."{table_name}" where "review-id" != '' """ df: pd.DataFrame = rs_db.get_df(query=query) df['last_review_date'].fillna(np.nan, inplace=True) last_review_date = df['last_review_date'].to_string(index=False) logger.info(f"last_review_date: {last_review_date}") return last_review_date def get_last_review_year_month(): """ Get the last review year and month for the CSV reviews without comments :returns: year, month """ query = f""" select "year" last_year, "month" last_month from "{schema}"."{table_name}" where "review-id" = '' order by year desc, month desc limit 1; """ df = rs_db.get_df(query=query) if df.empty: return 0, 0 df['last_year'].fillna(0, inplace=True) df['last_month'].fillna(0, inplace=True) last_year = df['last_year'].astype(int) last_month = df['last_month'].astype(int) logger.info(f"last_year, last_month: {last_year, last_month}") return int(last_year), int(last_month) # set the start and end time start_year = 2021 start_month = 1 if start_datetime == 'NA': # """ for daily review """ last_review_date = get_last_review_date() if last_review_date == 'NaN': # set very old date start_datetime = '2017-01-01 00:00:00' else: start_datetime = last_review_date # """ for monthly review """ table_year, table_month = get_last_review_year_month() if table_year == 0 and table_month == 0: # """ keeping it same 2021, 01 """ pass else: # """ Every day it will refresh the last table month from s3 csv """ start_year = table_year start_month = table_month end_date = datetime.date.today() + dateutil.relativedelta.relativedelta(months=-1) end_year = end_date.year end_month = end_date.month start_datetime = dateutil.parser.parse(start_datetime) logger.info(f"start_datetime: {start_datetime}") day_diff = datetime.datetime.now() - start_datetime # So that we do not fetch all the reviews every time estimated_count = (day_diff.days + 1) * 3 logger.info(f"estimated_count: {estimated_count}") reviews_list = r.get_all_review(count=estimated_count) reviews_df = json_normalize(reviews_list) # Column mapping columns = { 'reviewId': 'review-id', 'userName': 'author-name', 'userImage': 'user-image', 'content': 'review', 'score': 'star-rating', 'thumbsUpCount': 'thumbsup-count', 'at': 'review-created-at', 'replyContent': 'reply-content', 'repliedAt': 'replied-at' } reviews_df = reviews_df[columns.keys()].rename(columns=columns) # Filter the existing reviews reviews_df['review-created-at'] = reviews_df['review-created-at'].apply( pd.to_datetime, errors='coerce') reviews_df = reviews_df[(reviews_df['review-created-at'] > start_datetime)] # Review link calculation reviews_df['review-link'] = reviews_df['review-id'].apply( lambda x: f"http://play.google.com/console/developers/7917307073215847519/app/4974372962404296517/" f"user-feedback/review-details?reviewId={x}&corpus=PUBLIC_REVIEWS") reviews_df['year'] = reviews_df['review-created-at'].apply(lambda x: x.year) reviews_df['month'] = reviews_df['review-created-at'].apply(lambda x: x.month) # Delete the existing reviews if any truncate_query = f''' DELETE FROM "{schema}"."{table_name}" where "review-created-at" > '{start_datetime}' and "review-id" is not null ''' rs_db.execute(truncate_query) logger.info(f"reviews_df: {reviews_df.head(2)}") # Insert if reviews_df.empty: logger.info("No data to insert.") else: insert_reviews(df=reviews_df) logger.info("End of daily reviews.") # """ Monthly Reviews """ print(f"start year, month: {start_year, start_month}") print(f"end year, month: {end_year, end_month}") csv_r_df = pd.DataFrame() for year in range(start_year, end_year + 1): for month in range(1, 12 + 1): if year == start_year and month < start_month: # """ stopping for old month""" continue if year == end_year and month > end_month: # """ stopping for new months""" continue print(f"year, month: {year, month}") df = get_month_reviews(year=year, month=month) csv_r_df = pd.concat([csv_r_df, df], ignore_index=True) # Delete the old reviews data from table query = f"""delete from "{schema}"."{table_name}" where "review-id" = '' and year = {year} and month = {month}; """ rs_db.execute(query=query) logger.info(f"csv_r_df.head(1): {csv_r_df.head(1)}") # Filter only start rating review csv_r_df = csv_r_df[csv_r_df['Review Link'].isna()] columns = { 'Star Rating': 'star-rating', 'Review Submit Date and Time': 'review-created-at', 'year': 'year', 'month': 'month' } # # fetching review-id from review link # csv_r_df['reviewId'] = csv_r_df['Review Link'].apply( # lambda x: re.search('reviewId=(.*)&', str(x)).group(1) if 'reviewId' in str(x) else x) csv_r_df = csv_r_df[columns.keys()].rename(columns=columns) csv_r_df['review-created-at'] = pd.to_datetime(csv_r_df['review-created-at'], format='%Y-%m-%dT%H:%M:%SZ') # Insert if csv_r_df.empty: logger.info(f"No CSV data to insert: {csv_r_df}") else: logger.info(f"Update/Insert CSV data count: {len(csv_r_df)}") insert_reviews(df=csv_r_df) logger.info("End of monthly reviews.") rs_db.close_connection() def last_day_of_month(any_day): """ The day 28 exists in every month. 4 days later, it's always next month :param any_day: datetime object of date :returns: last day of the month """ next_month = any_day.replace(day=28) + datetime.timedelta(days=4) # subtracting the number of the current day brings us back one month return next_month - datetime.timedelta(days=next_month.day) # """ Send monthly reminder of playstore review file(CSV) """ today = datetime.date.today() last_day_of_month = last_day_of_month(any_day=today) if today == last_day_of_month: subject = '''[Reminder] Playstore reviews monthly CSV file ''' mail_body = f'''Hey Hardik, Please send the playstore reviews csv file for the year: {last_day_of_month.year}, month: {last_day_of_month.month}. @Neha: Please upload this file at this location: s3://aws-glue-temporary-921939243643-ap-south-1/playstore-reviews/ Please complete this activity by EOD, otherwise our glue/cron job will fail tomorrow. Thanks, Team Data ''' email = Email() email.send_email_file(subject=subject, mail_body=mail_body, to_emails=email_to, file_uris=[])
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/playstore-reviews/playstore-reviews-store-to-table.py
playstore-reviews-store-to-table.py
#@owner: [email protected] #@Purpose: To find the system inventory import sys import argparse import os from datetime import datetime import pandas as pd import numpy as np sys.path.append('../../../..') from dateutil.tz import gettz from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.db.db import MSSql from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") logger.info('Script Manager Initialized') rs_db = DB() s3 = S3() rs_db.open_connection() snapshot_date = datetime.now().date() # Store Inventory store =''' select i."store-id" as "entity-id", s.name as "entity-name", 'store' as "entity-type", d."type" as "drug-type" , (case when d."company-id" = 6984 then 'true' else 'false' end) as "goodaid-flag", s."franchisee-id" as "franchise-id", 'physical' as "inventory-type", (case when date(i.expiry) <= current_date then 'expired' when (DATEDIFF('days', current_date, date(i.expiry))<= 90 and DATEDIFF('days', current_date, date(i.expiry)) >0) then 'near-expiry' else 'others' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", SUM(i.quantity + i."locked-for-check" + i."locked-for-audit" + i."locked-for-transfer" + i."locked-for-return") as "quantity", SUM((i.ptr / (1 + ii.vat / 100)) * (i.quantity + i."locked-for-check" + i."locked-for-audit" + i."locked-for-transfer" + i."locked-for-return")) as "value-without-tax", SUM(i.ptr * (i.quantity + i."locked-for-check" + i."locked-for-audit" + i."locked-for-transfer" + i."locked-for-return")) as "value-with-tax" from "prod2-generico"."inventory-1" i left join "prod2-generico"."invoice-items-1" ii on i."invoice-item-id" = ii.id left join "prod2-generico".stores s on i."store-id" = s.id left join "prod2-generico".drugs d on i."drug-id" = d.id where (i.quantity>0 or i."locked-for-check">0 or i."locked-for-audit">0 or i."locked-for-return">0 or i."locked-for-transfer" >0) and s.category != 'dc' group by i."store-id", s."name" , d."type", "goodaid-flag" , s."franchisee-id", "inventory-sub-type-1" ; ''' stores=rs_db.get_df(query=store) # DC To be dispatched Inventory to_be_dispatched=''' SELECT s3.id as "entity-id", s3.name as "entity-name", 'dc/warehouse' as "entity-type", d."type" as "drug-type" , (case when d."company-id" =6984 then 'true' else 'false' end) as "goodaid-flag", s."franchisee-id" as "franchise-id", 'to_be_dispatched' as "inventory-type", '' as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", SUM(i."locked-quantity") as "quantity", SUM(i."locked-quantity" * ((i."purchase-rate")/(1+ii.vat/100))) as "value-without-tax", SUM(i."locked-quantity" * ((i."purchase-rate"))) as "value-with-tax" FROM "prod2-generico".inventory i LEFT JOIN "prod2-generico".invoices i2 ON i2.id =i."invoice-id" LEFT JOIN "prod2-generico".stores s ON i2."store-id" =s.id LEFT JOIN "prod2-generico"."invoice-items" ii ON i."invoice-item-id" =ii.id LEFT JOIN "prod2-generico".stores s3 ON s3.id =i2."dc-id" left join "prod2-generico".drugs d on ii."drug-id" =d.id WHERE (i."locked-quantity" >0 and i2."dispatch-status" ='dispatch-status-na') GROUP BY s3.id ,s3."name" ,d."type","goodaid-flag",s."franchisee-id" ; ''' to_be_dispatched=rs_db.get_df(query=to_be_dispatched) # DC/Warehouse Returns return_query=''' SELECT s2.id as "entity-id", s2.name as "entity-name", 'dc/warehouse' as "entity-type", d."type" as "drug-type", (case when d."company-id" =6984 then 'true' else 'false' end) as "goodaid-flag", s2."franchisee-id" as "franchise-id", 'return' as "inventory-type", CASE when ri."return-reason" IN ('reason-not-ordered', 'reason-to-be-returned', 'reason-wrong-product', 'reason-product-short', 'reason-softcopy-excess', 'reason-already-returned', 'reason-short-from-dc', 'reason-customer-refused', 'reason-wrongly-ordered', 'reason-excess-supplied', 'reason-non-moving', 'reason-wrong-mrp', 'reason-wrong-expiry', 'reason-excess-or-not-ordered', 'reason-late-supply', 'reason-wrong-pack-size', 'reason-excess-order') Then 'Saleable' When ri."return-reason" IN ('reason-product-expired', 'reason-over-expiry', 'reason-npi-non-saleable') Then 'Non saleable' WHen ri. "return-reason" IN ('reason-product-damaged', 'reason-near-expiry') AND (DATEDIFF('days',rtd2."created-at" , i2."invoice-date")> 30) THEN 'Non saleable' WHen ri."return-reason" IN ('reason-product-damaged', 'reason-near-expiry') AND (DATEDIFF('days',rtd2."created-at" , i2."invoice-date")<= 30) THEN 'Saleable' Else 'Saleable' end as "inventory-sub-type-1", ri.status as "inventory-sub-type-2", dn.status as "inventory-sub-type-3" , SUM(ri."returned-quantity") as "quantity" , SUM(ri.taxable) as "value-without-tax", SUM(ri.net) as "value-with-tax" FROM "prod2-generico"."return-items" ri LEFT JOIN "prod2-generico"."debit-note-items" dni ON ri.id = dni."item-id" AND dni."is-active" != 0 LEFT JOIN "prod2-generico"."debit-notes" dn ON dni."debit-note-id" = dn.id LEFT JOIN "prod2-generico"."inventory-1" i ON ri."inventory-id" =i.id LEFT JOIN "prod2-generico"."returns-to-dc" rtd3 ON ri."return-id" =rtd3.id LEFT JOIN "prod2-generico"."return-items-1" ri2 ON ri."return-item-reference" =ri2.id LEFT JOIN "prod2-generico"."returns-to-dc-1" rtd2 ON ri2."return-id" =rtd2.id LEFT JOIN "prod2-generico".invoices i2 On (i2.id =i."invoice-id" ) LEFT JOIN "prod2-generico".stores s2 ON (ri."return-dc-id" =s2.id) left join "prod2-generico".drugs d on i."drug-id" =d.id WHERE (ri.status ='saved' OR ri.status ='approved') and ri."returned-quantity" >0 Group By s2.id,s2.name,s2."franchisee-id" ,d."type","goodaid-flag" ,"inventory-sub-type-1", ri.status,dn.status; ''' return_query=rs_db.get_df(query=return_query) # Intransit in_transit=''' select s3.id as "entity-id" , s3.name as "entity-name", 'dc/warehouse' as "entity-type", d."type" as "drug-type", (case when d."company-id" =6984 then 'true' else 'false' end) as "goodaid-flag", s."franchisee-id" as "franchise-id", 'in-transit' as "inventory-type", '' as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", SUM(i."locked-quantity") as "quantity" , SUM(i."locked-quantity" * (i."purchase-rate")/(1 + ii.vat / 100)) as "value-without-tax", SUM(i."locked-quantity" * (i."purchase-rate")) as "value-with-tax" from "prod2-generico"."inventory-1" i left join "prod2-generico".stores s on s.id=i."store-id" left join "prod2-generico".invoices i2 on i."invoice-id" =i2.id left join "prod2-generico"."invoice-items-1" ii on i."invoice-item-id" =ii.id left join "prod2-generico".stores s3 on i2."dc-id" =s3.id left join "prod2-generico".drugs d on i."drug-id" =d.id where (i."locked-quantity" >0) group by s3.id, s3.name, d."type", "goodaid-flag", s."franchisee-id" ; ''' in_transit=rs_db.get_df(query=in_transit) #drug info drug_info=''' select d.id as "drug-id", d."type" as "drug-type" , (case when d."company-id" =6984 then 'true' else 'false' end) as "goodaid-flag" from "prod2-generico".drugs d ''' drug_info=rs_db.get_df(query=drug_info) #Warehouse Barcoded Query mssql = MSSql(connect_via_tunnel=False) cnxn = mssql.open_connection() cursor = cnxn.cursor() barcoded_bhw = ''' select 199 as "entity-id", 'bhiwandi-warehouse' as "entity-name", 'warehouse' as "entity-type", '' as "franchise-id", b.Barcode as "drug-id", 'barcoded' as "inventory-type", (case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' else 'non-goodaid' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", sum(case when a.Vno < 0 then 0 else coalesce(a.bqty, 0) end) as "quantity", sum(case when a.Vno < 0 then 0 else coalesce(a.bqty * a.Cost , 0) end) as "value-without-tax", sum(case when a.vno<0 then 0 else coalesce((a.bqty * a.Cost *(1 + coalesce((sp.CGST + sp.SGST + sp.IGST), 0)/ 100)), 0) end) as "value-with-tax" from fifo a left join item b on a.itemc = b.code left join SalePurchase2 sp on (a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt) where b.code > 0 and a.Vno!=0 and isnumeric(b.Barcode) = 1 and b.Barcode not like '%[^0-9]%' and a.BQty >0 and (a.Psrlno in ( select Psrlno from Esdata.dbo.salepurchase2 s2) or a.Psrlno IN (SELECT sp2.Psrlno from Esdata2122.dbo.SalePurchase2 sp2 )) group by b.Barcode, (case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' else 'non-goodaid' end) ''' barcoded = pd.read_sql(barcoded_bhw,cnxn) # Warehouse Non Barcoded non_barcoded_bhw = ''' select 199 as "entity-id", 'bhiwandi-warehouse' as "entity-name", 'warehouse' as "entity-type", '' as "franchise-id", b.Barcode as "drug-id", 'non-barcoded' as "inventory-type", (Case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' Else 'non-goodaid' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", sum(case when a.Vno > 0 then 0 else coalesce(a.TQty , 0) end) as "quantity", sum(case when a.Vno > 0 then 0 else coalesce(a.TQty * a.Cost , 0) end) as "value-without-tax", sum(case when a.vno > 0 then 0 else coalesce((a.TQty * a.Cost *(1 +COALESCE((sp.CGST + sp.SGST + sp.IGST),0)/ 100)), 0) end) as "value-with-tax" from fifo a left join item b on a.itemc = b.code left join SalePurchase2 sp on (a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt) where b.code > 0 and a.Vno!=0 and isnumeric(b.Barcode) = 1 and b.Barcode not like '%[^0-9]%' and a.TQty >0 and a.vno<0 and (a.Psrlno in ( select Psrlno from Esdata.dbo.salepurchase2 s2) or a.Psrlno IN (SELECT sp2.Psrlno from Esdata2122.dbo.SalePurchase2 sp2 )) group by b.Barcode, (Case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' Else 'non-goodaid' end) ''' non_barcoded = pd.read_sql(non_barcoded_bhw,cnxn) #Wh to distributor wh_dist_return =''' select 199 as "entity-id", 'bhiwandi-warehouse' as "entity-name", 'warehouse' as "entity-type", '' as "franchise-id", item.Barcode as "drug-id", 'wh-to-distributor-return' as "inventory-type", (case when (item.Compcode = 465 or item.Compcode = 459 or item.Compcode=460) then 'goodaid' else 'non-goodaid' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", SUM(s2.qty) as "quantity", SUM(s2.ftrate * (s2.qty + s2.fqty)) as "value-without-tax", SUM((1 + (s2.IGST + s2.CGST + s2.SGST)/ 100) * s2.ftrate * (s2.qty + s2.fqty)) as "value-with-tax" from salepurchase1 s1 inner join salepurchase2 s2 on s2.vtype = s1.vtyp and s2.vno = s1.vno and s2.vdt = s1.vdt and s1.Trntype = s2.Trntype inner join item on item.code = s2.itemc inner join acm on s1.acno = acm.code inner join FIFO f on f.Psrlno = s2.Psrlno left join ( select Pbillno, Vdt, Acno, Psrlno from salePurchase2 sp where Trntype = 'PB') as spx on spx.Acno = s2.Acno and spx.Psrlno = s2.Psrlno left join ( select vno, avtype from Adjstmnt where vtype = 'PR') as sttl on sttl.vno = s1.Vno where (s1.status is null or s1.status <> 'C') and s1.trntype in ('PR') and sttl.avtype is null and s2.Ftrate>0 group by item.Barcode, (case when (item.Compcode = 465 or item.Compcode = 459 or item.Compcode=460) then 'goodaid' else 'non-goodaid' end); ''' wh_returns= pd.read_sql(wh_dist_return,cnxn) #GOODAID Warehouse mssql_ga = MSSql(connect_via_tunnel=False,db='Esdata_WS_2') cnxn = mssql_ga.open_connection() cursor = cnxn.cursor() barcoded_ga =''' select 343 as "entity-id", 'goodaid-warehouse' as "entity-name", 'warehouse' as "entity-type", '' as "franchise-id", b.Barcode as "drug-id", 'barcoded' as "inventory-type", (case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' else 'non-goodaid' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", sum(case when a.Vno < 0 then 0 else coalesce(a.bqty, 0) end) as "quantity", sum(case when a.Vno < 0 then 0 else coalesce(a.bqty * a.Cost , 0) end) as "value-without-tax", sum(case when a.vno<0 then 0 else coalesce((a.bqty * a.Cost *(1 + coalesce((sp.CGST + sp.SGST + sp.IGST), 0)/ 100)), 0) end) as "value-with-tax" from fifo a left join item b on a.itemc = b.code left join SalePurchase2 sp on (a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt) where b.code > 0 and a.Vno!=0 and isnumeric(b.Barcode) = 1 and b.Barcode not like '%[^0-9]%' and a.BQty >0 and a.Psrlno in ( select Psrlno from SalePurchase2 sp) group by b.Barcode, (case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' else 'non-goodaid' end) ''' barcoded_ga = pd.read_sql(barcoded_ga,cnxn) non_barcoded_ga =''' select 343 as "entity-id", 'goodaid-warehouse' as "entity-name", 'warehouse' as "entity-type", '' as "franchise-id", b.Barcode as "drug-id", 'non-barcoded' as "inventory-type", (Case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' Else 'non-goodaid' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", sum(case when a.Vno > 0 then 0 else coalesce(a.TQty , 0) end) as "quantity", sum(case when a.Vno > 0 then 0 else coalesce(a.TQty * a.Cost , 0) end) as "value-without-tax", sum(case when a.vno > 0 then 0 else coalesce((a.TQty * a.Cost *(1 + COALESCE((sp.CGST + sp.SGST + sp.IGST), 0)/ 100)), 0) end) as "value-with-tax" from fifo a left join item b on a.itemc = b.code left join SalePurchase2 sp on (a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt) where b.code > 0 and a.Vno!=0 and isnumeric(b.Barcode) = 1 and b.Barcode not like '%[^0-9]%' and a.TQty >0 and a.vno<0 and a.Psrlno in ( select Psrlno from SalePurchase2 sp) group by b.Barcode, (Case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' Else 'non-goodaid' end) ''' non_barcoded_ga = pd.read_sql(non_barcoded_ga,cnxn) # TEPL Warehouse mssql_tepl = MSSql(connect_via_tunnel=False,db='Esdata_TEPL') cnxn = mssql_tepl.open_connection() cursor = cnxn.cursor() barcoded_tepl =''' select 342 as "entity-id", 'tepl-warehouse' as "entity-name", 'warehouse' as "entity-type", '' as "franchise-id", b.Barcode as "drug-id", 'barcoded' as "inventory-type", (case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' else 'non-goodaid' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", sum(case when a.Vno < 0 then 0 else coalesce(a.bqty, 0) end) as "quantity", sum(case when a.Vno < 0 then 0 else coalesce(a.bqty * a.Cost , 0) end) as "value-without-tax", sum(case when a.vno<0 then 0 else coalesce((a.bqty * a.Cost *(1 + coalesce((sp.CGST + sp.SGST + sp.IGST), 0)/ 100)), 0) end) as "value-with-tax" from fifo a left join item b on a.itemc = b.code left join SalePurchase2 sp on (a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt) where b.code > 0 and a.Vno!=0 and isnumeric(b.Barcode) = 1 and b.Barcode not like '%[^0-9]%' and a.BQty >0 and a.Psrlno in ( select Psrlno from SalePurchase2 sp) group by b.Barcode, (case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' else 'non-goodaid' end) ''' barcoded_tepl = pd.read_sql(barcoded_tepl,cnxn) non_barcoded_tepl =''' select 342 as "entity-id", 'tepl-warehouse' as "entity-name", 'warehouse' as "entity-type", '' as "franchise-id", b.Barcode as "drug-id", 'non-barcoded' as "inventory-type", (Case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' Else 'non-goodaid' end) as "inventory-sub-type-1", '' as "inventory-sub-type-2", '' as "inventory-sub-type-3", sum(case when a.Vno > 0 then 0 else coalesce(a.TQty , 0) end) as "quantity", sum(case when a.Vno > 0 then 0 else coalesce(a.TQty * a.Cost , 0) end) as "value-without-tax", sum(case when a.vno > 0 then 0 else coalesce((a.TQty * a.Cost *(1 + COALESCE((sp.CGST + sp.SGST + sp.IGST), 0)/ 100)), 0) end) as "value-with-tax" from fifo a left join item b on a.itemc = b.code left join SalePurchase2 sp on (a.Pbillno = sp.Pbillno and a.Psrlno = sp.Psrlno and a.Itemc = sp.Itemc and sp.Vdt = a.Vdt) where b.code > 0 and a.Vno!=0 and isnumeric(b.Barcode) = 1 and b.Barcode not like '%[^0-9]%' and a.TQty >0 and a.vno<0 and a.Psrlno in ( select Psrlno from SalePurchase2 sp) group by b.Barcode, (Case when (b.Compcode = 465 or b.Compcode = 459 or b.Compcode=460) and a.Acno != 59353 then 'goodaid' when (a.Acno = 59353) then 'npi' Else 'non-goodaid' end) ''' non_barcoded_tepl = pd.read_sql(non_barcoded_tepl,cnxn) # Concatenating the barcoded, non barcoded and wh_returns warehouse_all=pd.concat([barcoded,non_barcoded,wh_returns,barcoded_ga,non_barcoded_ga,barcoded_tepl, non_barcoded_tepl], sort=False,ignore_index=False) warehouse_all[['entity-id', 'franchise-id', 'drug-id']]= \ warehouse_all[['entity-id','franchise-id','drug-id']].\ apply(pd.to_numeric, errors='ignore').astype('Int64') warehouse_merge=pd.merge(warehouse_all,drug_info,how='left',on='drug-id') warehouse_merge[['drug-type', 'goodaid-flag']]=\ warehouse_merge[['drug-type', 'goodaid-flag']].fillna('NA') warehouse_merge=warehouse_merge.drop(['drug-id'],axis=1) warehouse_merge[['quantity']]=warehouse_merge[['quantity']].astype(np.int64) warehouse_merge=warehouse_merge.\ groupby(['entity-id', 'entity-name', 'entity-type','inventory-type', 'inventory-sub-type-1','inventory-sub-type-2', 'inventory-sub-type-3','drug-type', 'goodaid-flag']).sum() warehouse_merge=warehouse_merge.reset_index() warehouse_merge[['entity-id','franchise-id']]=warehouse_merge[['entity-id','franchise-id']].\ replace(0, np.nan) warehouse_merge=warehouse_merge[['entity-id', 'entity-name', 'entity-type', 'drug-type', 'goodaid-flag', 'franchise-id', 'inventory-type', 'inventory-sub-type-1', 'inventory-sub-type-2', 'inventory-sub-type-3', 'quantity', 'value-without-tax', 'value-with-tax']] system_inv = pd.concat([stores,to_be_dispatched,in_transit,return_query,warehouse_merge], sort=False,ignore_index=True) system_inv[['entity-id', 'franchise-id']]= system_inv[['entity-id','franchise-id']].\ apply(pd.to_numeric, errors='ignore').astype('Int64') system_inv[['quantity','value-without-tax', 'value-with-tax']]=\ system_inv[['quantity','value-without-tax', 'value-with-tax']].fillna(0) system_inv[['quantity']]=system_inv[['quantity']].astype(np.int64) system_inv[['value-without-tax', 'value-with-tax']]=\ system_inv[['value-without-tax', 'value-with-tax']].astype(np.float64) system_inv['snapshot-date'] = snapshot_date created_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") system_inv['created-at']=datetime.strptime(created_at,"%Y-%m-%d %H:%M:%S") updated_at = datetime.now(tz=gettz('Asia/Kolkata')).strftime("%Y-%m-%d %H:%M:%S") system_inv['updated-at']=datetime.strptime(updated_at,"%Y-%m-%d %H:%M:%S") system_inv['created-by'] = 'etl-automation' system_inv['updated-by'] = 'etl-automation' #Truncate the Query truncate_query = ''' delete from "prod2-generico"."system-inventory" where date("snapshot-date") = '{snapshot_date}' '''.format(snapshot_date=snapshot_date) rs_db.execute(truncate_query) system_inv.columns = [c.replace('_', '-') for c in system_inv.columns] schema = "prod2-generico" table_name = "system-inventory" table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) s3.write_df_to_db(df=system_inv[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) status=True if status==True: script_status="Success" else: script_status="Failed" email = Email() email.send_email_file(subject=f"system_inventory {snapshot_date} {script_status}", mail_body=f"system inventory job status: {script_status} ", to_emails=email_to) # closing the DB connection in the end rs_db.close_connection() mssql.close_connection() mssql_ga.close_connection() mssql_tepl.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/system_inventory/system-inventory.py
system-inventory.py
import os import sys sys.path.append('../../../..') # import json import argparse import pandas as pd import numpy as np import datetime import math # import traceback # from datetime import date, timedelta # from dateutil.relativedelta import relativedelta from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-n', '--number_of_stores', default="10", type=str, required=False) parser.add_argument('-cn', '--city_name', default="Nagpur", type=str, required=False) parser.add_argument('-cd', '--city_distance_from_mumbai_in_km', default="836", type=str, required=False) parser.add_argument('-inp', '--increase_in_purchasing_power_compared_to_mumbai', default="86.99", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to number_of_stores = args.number_of_stores city_name = args.city_name city_distance_from_mumbai_in_km = args.city_distance_from_mumbai_in_km increase_in_purchasing_power_compared_to_mumbai = args.increase_in_purchasing_power_compared_to_mumbai number_of_stores = int(number_of_stores) city_distance_from_mumbai_in_km = float(city_distance_from_mumbai_in_km) increase_in_purchasing_power_compared_to_mumbai = float(increase_in_purchasing_power_compared_to_mumbai) os.environ['env'] = env logger = get_logger(level='INFO') rs_db = DB() rs_db.open_connection() rs_db_write = DB(read_only=False) rs_db_write.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) today_date = start_time.strftime('%Y-%m-%d') logger.info('Script Manager Initialized') logger.info(f"env: {env}") logger.info(f"email_to: {email_to}") logger.info(f"number_of_stores: {number_of_stores}") logger.info(f"city_name: {city_name}") logger.info(f"city_distance_from_mumbai_in_km: {city_distance_from_mumbai_in_km}") logger.info(f"increase_in_purchasing_power_compared_to_mumbai: {increase_in_purchasing_power_compared_to_mumbai}") # date parameter logger.info("code started at {}".format(datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime( '%Y-%m-%d %H:%M:%S'))) city_cost_parity = 1/((increase_in_purchasing_power_compared_to_mumbai+100)/100) status = False try: # assumptions = pd.read_csv(r'D:\Distribution Network Model\assumptions.csv') assumptions = pd.read_csv(s3.download_file_from_s3(file_name="dnm-cost-input/dnm-assumption-input.csv")) # assumptions.set_index('variable',inplace=True) # Calculating last 30 days sales figures store_sales_query = f""" select s3."s-type" as "variable", round(avg(s3.value), 0) as values, round(avg(s3.quantity), 0) as quantity, round(avg(s3."purchase-rate"), 0) as "purchase-rate", -- round(avg(s3.ptr), 0) as ptr, 'type wise last 30 days sales per store avg' as "description" from ( select s2."store-id", s2."s-type", sum(s2.value) as "value" , sum(s2.quantity) as "quantity", sum(s2."purchase-rate") as "purchase-rate", sum(s2.ptr) as ptr from ( select s."store-id" , round(sum(s.quantity * s.rate), 0) as "value", sum(quantity) as quantity, sum(s."purchase-rate"*s.quantity) as "purchase-rate" , sum(s.ptr*s.quantity) as "ptr", case when s.company = 'GOODAID' then 'goodaid' when s."type" = 'ethical' then 'ethical' when s."type" = 'generic' then 'generic' else 'others' end as "s-type" from "prod2-generico"."prod2-generico".sales s where date(s."created-at") >= current_date -31 and date(s."created-at") <= current_date - 1 and date(s."store-opened-at") <= current_date - 60 and date(s."first-bill-date") <= current_date - 60 group by s."store-id", s."type" , s.company)s2 group by s2."store-id", s2."s-type")s3 group by s3."s-type" """ store_sales = rs_db.get_df(store_sales_query) logger.info('fetched store_sales') return_ratio_query = f""" select avg(combine.sold_quantity) as "avg_sold_qty_per_store", avg(combine.returned_quantity) as "avg_return_qty_per_store" from (( select s."store-id" , sum(quantity) as sold_quantity from "prod2-generico"."prod2-generico".sales s where date(s."created-at") >= current_date -31 and date(s."created-at") <= current_date - 1 and date(s."store-opened-at") <= current_date - 60 and date(s."first-bill-date") <= current_date - 60 group by s."store-id")s2 left join ( select rtd."store-id" , sum(ri."returned-quantity") as returned_quantity from "prod2-generico"."prod2-generico"."return-items-1" ri left join "prod2-generico"."prod2-generico"."returns-to-dc-1" rtd on ri."return-id" = rtd.id left join "prod2-generico"."prod2-generico".stores s2 on s2.id = rtd."store-id" where date(rtd."created-at") >= current_date -31 and date(rtd."created-at") <= current_date - 1 and date(s2."opened-at") <= current_date - 60 group by rtd."store-id" )ret on ret."store-id" = s2."store-id")combine """ return_ratio = rs_db.get_df(return_ratio_query) logger.info('fetched return_ratio') avg_store_sale = store_sales['values'].sum() avg_quantity = store_sales['quantity'].sum() avg_cogs = store_sales['purchase-rate'].sum() logger.info(f'average sale of current stores - {avg_store_sale}') logger.info(f'quantity per store as per current stores - {avg_quantity}') logger.info(f'cogs per store as per current stores - {avg_cogs}') # fofo_store_factor = float(assumptions.where(assumptions['variable'] == 'fofo_store_sales_as_percentage_of_total',axis=0).dropna()['value']) # # avg_fofo_store_sale = float(avg_store_sale)*float(fofo_store_factor) total_model = [1,2,3,4] summary_final = pd.DataFrame() # total_model = [4] for model in total_model: if model== 1: model_name = 'wh_to_store_direct' elif model==2: model_name = 'wh_to_store_via_dc' elif model==3: model_name = 'wh_to_store_via_dc_more_local_vendors' elif model == 4: model_name = 'wh_to_store_via_dc_plus_dc_storing_items' result = pd.DataFrame(columns=['variable','values']) i = 0 result.loc[i,'variable'] = 'Model Name' result.loc[i,'values'] = model_name result.loc[i,'description'] = 'Model' i = i+1 result.loc[i,'variable'] = 'Number of Stores' result.loc[i,'values'] = number_of_stores result.loc[i,'description'] = 'input' i = i+1 result.loc[i,'variable'] = 'city' result.loc[i,'values'] = city_name result.loc[i,'description'] = 'input' i = i+1 result.loc[i,'variable'] = 'distance from Mumbai in KM' result.loc[i,'values'] = city_distance_from_mumbai_in_km result.loc[i,'description'] = 'input' i = i+1 result.loc[i,'variable'] = 'increase in purcahsing power in the city compared to mumbai' result.loc[i,'values'] = increase_in_purchasing_power_compared_to_mumbai result.loc[i,'description'] = 'input' i = i+1 result.loc[i,'variable'] = 'city cost parity' result.loc[i,'values'] = round(city_cost_parity,2) result.loc[i,'description'] = 'calculation based on purchasing power' result.loc[i,'calculation'] = '1/((increase_in_purchasing_power_compared_to_mumbai+100)/100)' i = i+1 result = pd.concat([result,store_sales[['variable', 'values', 'quantity', 'description']]],sort=True) i = i + 4 result.reset_index(inplace=True,drop=True) result.loc[i,'variable'] = 'revenue' result.loc[i,'values'] = avg_store_sale*number_of_stores result.loc[i,'description'] = f'monthly revenue for {number_of_stores} stores' i = i+1 result.loc[i,'variable'] = 'cogs' result.loc[i,'values'] = avg_cogs*number_of_stores result.loc[i,'description'] = f'monthly cogs for {number_of_stores} stores' i = i+1 result.loc[i,'variable'] = 'quantity' result.loc[i,'values'] = avg_quantity*number_of_stores result.loc[i,'description'] = f'monthly quantity sold in {number_of_stores} stores' i = i+1 if model==1: distribution = {'wh_ethical': 1, 'wh_goodaid':1, 'wh_generic':1, 'wh_others':1} elif model==2: distribution = {'wh_ethical': 0.7, 'wh_goodaid':1, 'wh_generic':0.9, 'wh_others':0.6} elif model==3: distribution = {'wh_ethical': 0.4, 'wh_goodaid':1, 'wh_generic':0.7, 'wh_others':0.3} elif model==4: distribution = {'wh_ethical': 0.4, 'wh_goodaid':1, 'wh_generic':0.7, 'wh_others':0.3} result.loc[i,'variable'] = 'wh others' result.loc[i,'values'] = distribution['wh_others'] result.loc[i,'description'] = f'value - % Quantity Transfer through WH for others per day for {number_of_stores} stores' result.loc[i,'quantity'] =(distribution['wh_others']*float(result.where(result['variable'] == 'others',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i, 'calculation'] = "wh_share_for_wh_others*(others_flow_per_store_per_month/30)*number_of_stores" i = i+1 result.loc[i,'variable'] = 'wh ethical' result.loc[i,'values'] = distribution['wh_ethical'] result.loc[i,'description'] = f'value - % Quantity Transfer through WH for Ethical,quantity transfer per day for {number_of_stores} stores' result.loc[i,'quantity'] =(distribution['wh_ethical']*float(result.where(result['variable'] == 'ethical',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i,'calculation'] = "wh_share_for_wh_ethical*(ethical_flow_per_store_per_month/30)*number_of_stores" i = i+1 result.loc[i,'variable'] = 'wh goodaid' result.loc[i,'values'] = distribution['wh_goodaid'] result.loc[i,'description'] = f'value - % Quantity Transfer through WH for goodaid per day for {number_of_stores} stores' result.loc[i,'quantity'] =(distribution['wh_goodaid']*float(result.where(result['variable'] == 'goodaid',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i, 'calculation'] = "wh_share_for_wh_goodaid*(goodaid_flow_per_store_per_month/30)*number_of_stores" i = i+1 result.loc[i,'variable'] = 'wh generic' result.loc[i,'values'] = distribution['wh_generic'] result.loc[i,'description'] = f'value - % Quantity Transfer through WH for generic per day for {number_of_stores} stores' result.loc[i,'quantity'] =(distribution['wh_generic']*float(result.where(result['variable'] == 'generic',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i, 'calculation'] = "wh_share_for_wh_generic*(generic_flow_per_store_per_month/30)*number_of_stores" i = i+1 wh_throghput = result.where(result['variable'].isin(['wh ethical', 'wh generic', 'wh goodaid', 'wh others']),axis=0)['quantity'].dropna().sum() result.loc[i,'variable'] = 'wh throghput' result.loc[i,'quantity'] = wh_throghput result.loc[i,'description'] = f'quantity flow through wh on daily basis for {number_of_stores} stores' result.loc[i, 'calculation'] = "sum of all types flow" i = i+1 wh_staff = assumptions[assumptions['type']=='wh_staff'][['variable', 'throghput', 'Salary_per_person', 'description']] conditions = [ wh_staff['description'] == 'throughput-qty_per_person_per_day', (wh_staff['description'] == 'per city')] choices = [wh_throghput/wh_staff['throghput'], wh_staff['throghput']] wh_staff['quantity'] = np.select(conditions, choices) wh_staff['values'] = wh_staff['quantity']*wh_staff['Salary_per_person'] wh_staff['type'] = 'wh_variable' result = pd.concat([result,wh_staff],sort=True) i = i + 10 result.reset_index(inplace=True,drop=True) wh_variable = assumptions[assumptions['type']=='wh_variable'][['variable', 'throghput', 'Salary_per_person', 'description']] wh_variable.reset_index(inplace=True,drop=True) wh_variable.loc[0,'values'] = wh_throghput*float(wh_variable.where(wh_variable['variable'] == 'wh_stationary',axis=0)['throghput'].dropna()) wh_variable.loc[1,'values'] = wh_staff['quantity'].sum()*float(wh_variable.where(wh_variable['variable'] == 'wh_staff_welfare',axis=0)['throghput'].dropna()) wh_variable.loc[2,'values'] = float(avg_cogs)*float(number_of_stores)*float(wh_variable.where(wh_variable['variable'] == 'wh_shrinkages',axis=0)['throghput'].dropna()) wh_variable['type'] = 'wh_variable' result = pd.concat([result,wh_variable],sort=True) i = i + 3 result.reset_index(inplace=True,drop=True) wh_fixed = assumptions[assumptions['type']=='wh_fixed'][['variable', 'value' , 'Salary_per_person', 'description']] wh_fixed.rename(columns = { 'value': 'throghput'}, inplace=True) wh_fixed['description'] = 'throghput - total cost per month, value = marginal increase' wh_fixed['values'] = 0 wh_fixed['type'] = 'wh_fixed' result = pd.concat([result,wh_fixed],sort=True) i = i + 5 result.reset_index(inplace=True,drop=True) result.loc[i,'variable'] = 'dc others' result.loc[i,'values'] = 1 - distribution['wh_others'] result.loc[i,'description'] = f'value - % Quantity Transfer directly through dc for others' result.loc[i,'quantity'] =((1- distribution['wh_others'])*float(result.where(result['variable'] == 'others',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i, 'calculation'] = "dc_share_for_dc_others*(others_flow_per_store_per_month/30)*number_of_stores" i = i+1 result.loc[i,'variable'] = 'dc ethical' result.loc[i,'values'] = 1-distribution['wh_ethical'] result.loc[i,'description'] = f'value - % Quantity Transfer directly through dc for Ethical' result.loc[i,'quantity'] =((1 - distribution['wh_ethical'])*float(result.where(result['variable'] == 'ethical',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i, 'calculation'] = "dc_share_for_dc_ethical*(ethical_flow_per_store_per_month/30)*number_of_stores" i = i+1 result.loc[i,'variable'] = 'dc goodaid' result.loc[i,'values'] = 1 - distribution['wh_goodaid'] result.loc[i,'description'] = f'value - % Quantity Transfer directly through dc for goodaid' result.loc[i,'quantity'] =((1 - distribution['wh_goodaid'])*float(result.where(result['variable'] == 'goodaid',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i, 'calculation'] = "dc_share_for_dc_goodaid*(goodaid_flow_per_store_per_month/30)*number_of_stores" i = i+1 result.loc[i,'variable'] = 'dc generic' result.loc[i,'values'] = 1 - distribution['wh_generic'] result.loc[i,'description'] = f'value - % Quantity Transfer directly through dc for generic' result.loc[i,'quantity'] =((1-distribution['wh_generic'])*float(result.where(result['variable'] == 'generic',axis=0)['quantity'].dropna())/30)*number_of_stores result.loc[i, 'calculation'] = "dc_share_for_dc_generic*(generic_flow_per_store_per_month/30)*number_of_stores" i = i+1 dc_throghput = result.where(result['variable'].isin(['dc ethical', 'dc generic', 'dc goodaid', 'dc others']),axis=0)['quantity'].dropna().sum() result.loc[i,'variable'] = 'dc throghput' result.loc[i,'quantity'] = dc_throghput result.loc[i,'description'] = f'quantity flow through dc on daily basis' i = i+1 if model ==4: result.loc[i,'variable'] = 'dc holding inventory flag' result.loc[i,'values'] = 1 result.loc[i,'description'] = 'if 1 then yes, if 0 then no' result.loc[i,'calculation'] = 'model dependent' i = i+1 else: result.loc[i,'variable'] = 'dc holding inventory flag' result.loc[i,'values'] = 0 result.loc[i,'description'] = 'if 1 then yes, if 0 then no' result.loc[i,'calculation'] = 'model dependent' i = i+1 if model ==4: dc_holding_inventory_for_n_days = float(assumptions.where(assumptions['variable'] == 'inventory_holding_for_n_days',axis=0)['value'].dropna()) else: dc_holding_inventory_for_n_days = 0 result.loc[i, 'variable'] = 'dc holding inventory for n days' result.loc[i, 'values'] = dc_holding_inventory_for_n_days result.loc[i, 'description'] = 'value - number of days, Input' result.loc[i, 'calculation'] = 'input' i = i + 1 result.loc[i,'variable'] = 'cogs per quantity' result.loc[i,'values'] = avg_cogs/avg_quantity result.loc[i,'description'] = f'avg cogs per quantity' result.loc[i, 'calculation'] = 'avg_cogs/avg_quantity' i = i+1 result.loc[i, 'variable'] = 'dc inventory holding' result.loc[i, 'quantity'] = dc_holding_inventory_for_n_days*dc_throghput dc_holding_value = float(avg_cogs/avg_quantity)*dc_holding_inventory_for_n_days*dc_throghput result.loc[i, 'values'] = dc_holding_value result.loc[i, 'description'] = 'inventory holding per day' result.loc[i, 'calculation'] = 'cogs per quantity*dc_holding_inventory_for_n_days*dc_throghput' i = i + 1 result.loc[i, 'variable'] = 'inventory carrying cost' result.loc[i, 'Salary_per_person'] = 12 result.loc[i, 'values'] = dc_holding_value*12/1200 result.loc[i, 'description'] = 'value - rs per month, Salary_per_person- interest per annum' result.loc[i, 'calculation'] = 'dc_holding_value * interest per annum/1200' result.loc[i,'type'] = 'dc_variable' i = i + 1 def percentage_increase_in_dc_fixed_cost_due_to_inv_holding(quantity): return (quantity/200000)*100 result.loc[i, 'variable'] = 'dc_fixed_cost_increase_inv_holding' result.loc[i, 'values'] = percentage_increase_in_dc_fixed_cost_due_to_inv_holding(dc_holding_inventory_for_n_days*dc_throghput) result.loc[i, 'description'] = 'percentage increase_in_dc_fixed_cost_due_to_inv_holding' result.loc[i, 'calculation'] = 'Dc holding quantity/200000' i = i + 1 dc_staff = assumptions[assumptions['type']=='dc_staff'][['variable', 'Salary_per_person', 'description', 'throghput']] conditions = [ dc_staff['variable'].isin(['dc_barcoder']), dc_staff['variable'].isin(['dc_purchaser','dc_inward_team']), dc_staff['variable'].isin(['dc_returns_team']), dc_staff['variable'].isin(['dc_manager','dc_inventory_manager'])] choices = [(dc_throghput/dc_staff['throghput']), ((dc_throghput/4)/dc_staff['throghput']), ((dc_throghput/10)/dc_staff['throghput']), dc_staff['throghput']] dc_staff['quantity'] = np.select(conditions, choices) conditions = [dc_staff['quantity']<=1,dc_staff['quantity']>1] choices = [1,dc_staff['quantity'].apply(np.round)] dc_staff['quantity'] = dc_staff['quantity'].apply(np.ceil) dc_staff['values'] = dc_staff['quantity']*dc_staff['Salary_per_person'] dc_staff['type'] = 'dc_variable' dc_staff.reset_index(inplace=True,drop = True) dc_employees = dc_staff['quantity'].sum() dc_staff.loc[5,'quantity'] = dc_employees dc_staff.loc[5,'values'] = dc_employees*dc_staff.loc[5,'throghput']*30 if dc_throghput==0: dc_staff['values']=0 dc_staff['quantity']=0 result = pd.concat([result,dc_staff],sort=True) i = i + 7 result.reset_index(inplace=True,drop=True) dc_fixed = assumptions[assumptions['type']=='dc_fixed'][['variable', 'value' , 'Salary_per_person', 'description']] dc_fixed.rename(columns = { 'value': 'throghput'}, inplace=True) dc_fixed['description'] = f'value = final cost in {city_name},throghput - total cost per month in mumbai,Salary_per_person - according to cities cost parity,quantity - percentage_impact of inventory holding' dc_fixed['Salary_per_person'] = dc_fixed['throghput']*city_cost_parity dc_fixed['quantity'] = percentage_increase_in_dc_fixed_cost_due_to_inv_holding(dc_holding_inventory_for_n_days*dc_throghput) dc_fixed['values'] = dc_fixed['throghput']*city_cost_parity*(100 +percentage_increase_in_dc_fixed_cost_due_to_inv_holding(dc_holding_inventory_for_n_days*dc_throghput) )/100 dc_fixed['type'] = 'dc_fixed' if dc_throghput==0: dc_fixed['values']=0 dc_fixed['quantity']=0 result = pd.concat([result,dc_fixed],sort=True) i = i + 7 result.reset_index(inplace=True,drop=True) if dc_throghput <= 0: number_of_biker = number_of_stores / 5 else: number_of_biker = number_of_stores / 10 result.loc[i, 'variable'] = f'delivery assosiate required for {city_name}' result.loc[i, 'quantity'] = number_of_biker result.loc[i, 'description'] = 'for intercity transport' result.loc[i, 'Salary_per_person'] = 15000 result.loc[i, 'values'] = number_of_biker * 15000 result.loc[i, 'type'] = 'logistics' result.loc[i, 'calculation'] = 'if dc available 1 biker per 10 stores, if no dc 1 biker per 5 stores' i = i + 1 result.loc[i,'variable'] = 'kg_per_quantity' result.loc[i,'values'] = float(assumptions.where(assumptions['variable'] == 'kg_per_quantity',axis=0)['value'].dropna()) result.loc[i,'description'] = 'input' i = i+1 result.loc[i,'variable'] = 'flow_through_wh_in_kg' result.loc[i,'values'] = wh_throghput*float(assumptions.where(assumptions['variable'] == 'kg_per_quantity',axis=0)['value'].dropna()) result.loc[i,'description'] = 'on daily basis' i = i+1 def cost_of_transport(km): if km<=100: return 30 elif km<=200: return 30 elif km<=300: return 30 elif km <= 400: return 30 elif km <= 500: return 35 elif km <= 1000: return 40 elif km<= 2000: return 45 else: return 50 result.loc[i,'variable'] = 'cost per kg' result.loc[i,'values'] = cost_of_transport(city_distance_from_mumbai_in_km) result.loc[i,'description'] = 'cost assumed based on distance' i = i+1 if dc_throghput<= 0: result.loc[i,'variable'] = 'extra cost based on delivery convinience' result.loc[i,'values'] =2 result.loc[i,'description'] = 'If DC available single localtion of delivery otherwise multiple' i = i+1 cost_of_transport_ = cost_of_transport(city_distance_from_mumbai_in_km)+2 else: result.loc[i,'variable'] = 'extra cost based on delivery convinience' result.loc[i,'values'] =0 result.loc[i,'description'] = 'If DC available single localtion of delivery otherwise multiple' i = i+1 cost_of_transport_ = cost_of_transport(city_distance_from_mumbai_in_km) + 0 result.loc[i,'variable'] = 'cost of transport till courier destination' result.loc[i,'values'] = wh_throghput*float(assumptions.where(assumptions['variable'] == 'kg_per_quantity',axis=0)['value'].dropna())*cost_of_transport_*30 result.loc[i,'description'] = 'on monthly basis in Rs' result.loc[i,'type'] = 'logistics_1' i = i+1 result.loc[i,'variable'] = 'sold vs returned quatity' result.loc[i,'quantity'] = return_ratio.loc[0,'avg_sold_qty_per_store'] result.loc[i,'throghput'] = return_ratio.loc[0,'avg_return_qty_per_store'] return_ratio_value = return_ratio.loc[0,'avg_return_qty_per_store']/return_ratio.loc[0,'avg_sold_qty_per_store'] result.loc[i,'values'] = return_ratio_value result.loc[i,'description'] = 'quantity - avg_sold_qty_per_store, throughput - avg_return_qty_per_store ' i = i+1 result.loc[i,'variable'] = 'wh return quantity' result.loc[i,'quantity'] = wh_throghput*return_ratio_value result.loc[i,'description'] = 'quantity received from wh will be returned to wh' result.loc[i,'calculation'] = 'wh_throghput*return_ratio_value' i = i+1 result.loc[i,'variable'] = 'flow_through_store_to_wh_in_kg' result.loc[i,'values'] = wh_throghput*return_ratio_value*float(assumptions.where(assumptions['variable'] == 'kg_per_quantity',axis=0)['value'].dropna()) result.loc[i,'description'] = 'on daily basis' result.loc[i,'calculation'] = 'wh_throghput*return_ratio_value*kg_per_quantity' i = i+1 def additional_cost_while_returning(km): if km<=10: return 150 elif km<=20: return 300 else: return 450 additiona_cost_while_returns = additional_cost_while_returning(float(result.where(result['variable'] == 'flow_through_store_to_wh_in_kg', axis=0)['values'].dropna())) result.loc[i,'variable'] = 'flat additional cost for wh returns' result.loc[i,'values'] = additiona_cost_while_returns result.loc[i,'description'] = 'on daily basis' result.loc[i,'calculation'] = 'if <10 Kg per day 150, 20 - 300, else - 450' i = i+1 result.loc[i, 'variable'] = 'cost of transport of wh returns' result.loc[i, 'values'] = (wh_throghput*return_ratio_value * float( assumptions.where(assumptions['variable'] == 'kg_per_quantity', axis=0)[ 'value'].dropna()) * cost_of_transport_ + additiona_cost_while_returns)* 30 result.loc[i, 'description'] = 'on monthly basis in Rs' result.loc[i, 'type'] = 'logistics_1' result.loc[i,'calculation'] = '(flow_through_store_to_wh_in_kg*cost_of_transport + flat_rate)*30' i = i + 1 tempo_rent = float(assumptions.where(assumptions['variable'] == 'tempo_rent', axis=0)['value'].dropna()) tempo_mileage = float(assumptions.where(assumptions['variable'] == 'tempo_mileage', axis=0)['value'].dropna()) petrol_cost = float(assumptions.where(assumptions['variable'] == 'petrol_cost', axis=0)['value'].dropna()) quantity_per_tempo = float(assumptions.where(assumptions['variable'] == 'quantity_per_tempo', axis=0)['value'].dropna()) result.loc[i,'variable'] = 'tempo travel info' result.loc[i,'Salary_per_person'] =tempo_rent result.loc[i, 'throghput'] = tempo_mileage result.loc[i, 'quantity'] = quantity_per_tempo result.loc[i, 'values'] = petrol_cost result.loc[i,'description'] = 'values-petrol_cost, quantity=quantity_per_tempo, throghput=tempo_mileage, Salary_per_person=tempo_rent' result.loc[i,'calculation'] = 'input' i = i+1 if model==4: tempo_trips_per_day = math.ceil(wh_throghput*dc_holding_inventory_for_n_days/quantity_per_tempo)/dc_holding_inventory_for_n_days else: tempo_trips_per_day = math.ceil(wh_throghput/ quantity_per_tempo) result.loc[i,'variable'] = 'tempo trips per day' result.loc[i,'values'] =tempo_trips_per_day result.loc[i, 'quantity'] = (city_distance_from_mumbai_in_km/tempo_mileage*2) result.loc[i,'description'] = 'values - trips per day, quantity - petrol used per trip' result.loc[i,'calculation'] = 'if no inv holding at dc - ceil(dc_throghput/ quantity_per_tempo), if dc - ceil(dc_throghput*dc_holding_inventory_for_n_days/quantity_per_tempo)/dc_holding_inventory_for_n_days ' i = i+1 result.loc[i,'variable'] = 'tempo trips cost per month' result.loc[i, 'quantity'] = tempo_trips_per_day*30 result.loc[i,'values'] =(tempo_trips_per_day)*30*(tempo_rent+(city_distance_from_mumbai_in_km/tempo_mileage*2)*petrol_cost) result.loc[i, 'throghput'] = (tempo_trips_per_day)*30*(tempo_rent) result.loc[i, 'Salary_per_person'] = (city_distance_from_mumbai_in_km/tempo_mileage*2)*petrol_cost result.loc[i,'description'] = 'per month basis' result.loc[i,'type'] = 'logistics_2' result.loc[i,'calculation'] = 'quantity- trips,throghput = flat charge,Salary_per_person = Petrol charge per trip' i = i+1 logistic_comparison = result[result['type'].isin(['logistics_1','logistics_2'])].groupby(['type']).agg({'values': [np.sum]}).reset_index() logistic_comparison.columns = ["-".join(x) for x in logistic_comparison.columns.ravel()] if logistic_comparison.loc[0,'values-sum']>=logistic_comparison.loc[1,'values-sum']: output_logistic = logistic_comparison.loc[1,'type-'] logistic_value = logistic_comparison.loc[1,'values-sum'] else: output_logistic = logistic_comparison.loc[0,'type-'] logistic_value = logistic_comparison.loc[0,'values-sum'] result.loc[i,'variable'] = 'best-logistic' result.loc[i, 'quantity'] = output_logistic result.loc[i,'values'] =logistic_value result.loc[i, 'throghput'] = f"logistic_1 - {round(logistic_comparison.loc[0,'values-sum'])}" result.loc[i, 'Salary_per_person'] = f"logistic_2 - {round(logistic_comparison.loc[1,'values-sum'])}" result.loc[i,'description'] = 'per month basis' result.loc[i,'type'] = 'logistics' result.loc[i,'calculation'] = 'min of logistics_1 & 2' i = i+1 cols_to_move = ['variable', 'values', 'quantity', 'Salary_per_person', 'throghput', 'type', 'description','calculation'] result = result[cols_to_move + [col for col in result.columns if col not in cols_to_move]] summary = result[(result['type'].notna())&(~result['type'].isin(['logistics_1','logistics_2']))].groupby(['type']).agg({'values': [np.sum]}).reset_index() summary.columns = ["-".join(x) for x in summary.columns.ravel()] summary['model-name'] = model_name summary['model-number'] = model summary['desciption'] = f'logistic_choosed - {output_logistic}' summary.rename(columns = {'type-':'type', 'values-sum':'values'}, inplace = True) cols_to_move = ['model-number','model-name', 'type', 'values'] summary = summary[cols_to_move + [col for col in summary.columns if col not in cols_to_move]] summary_final = summary_final.append(summary) if model==1: model1 = result.copy(deep = True) elif model ==2: model2 = result.copy(deep = True) elif model ==3: model3 = result.copy(deep = True) elif model ==4: model4 = result.copy(deep = True) model_cost=summary_final.groupby(['model-name','model-number']).agg({'values': [np.sum]}).reset_index() model_cost.columns = ["-".join(x) for x in model_cost.columns.ravel()] model_cost.rename(columns={'model-name-': 'model-name', 'model-number-': 'model-number', 'values-sum': 'values'}, inplace=True) model_cost['values'] = round(model_cost['values'],0) model_cost['values'] = model_cost['values'].astype(int) model_cost['revenue'] = int(round(avg_store_sale*number_of_stores,0)) model_cost['revenue-percentage'] = round((model_cost['values'].astype(float)*100)/float(avg_store_sale*number_of_stores),2) cols_to_move = [ 'model-number', 'model-name', 'values'] model_cost = model_cost[cols_to_move + [col for col in model_cost.columns if col not in cols_to_move]] # model_cost.idxmax(axis = 0, skipna = True) # model1.to_csv('model1.csv') # model2.to_csv('model2.csv') # model3.to_csv('model3.csv') # model4.to_csv('model4.csv') # summary_final.to_csv('summary.csv') # model_1 = s3.save_df_to_s3(df=model1, file_name=f'{city_name}_model1.csv') # model_2 = s3.save_df_to_s3(df=model2, file_name=f'{city_name}_model2.csv') # model_3 = s3.save_df_to_s3(df=model3, file_name=f'{city_name}_model3.csv') # model_4 = s3.save_df_to_s3(df=model4, file_name=f'{city_name}_model4.csv') # summary_1 = s3.save_df_to_s3(df=summary_final, file_name=f'{city_name}_summary.csv') # model_cost_ = s3.save_df_to_s3(df=model_cost, file_name=f'{city_name}_total.csv') # Formatting Excel path = "/".join(os.getcwd().split("/")[:-2]) + "/tmp/" if not os.path.exists(path): os.mkdir(path, 0o777) file_name = f"DNM_{city_name}_{number_of_stores}_stores.xlsx" local_file_full_path = path + file_name # writing in a Excel with pd.ExcelWriter(local_file_full_path) as writer: model_cost.to_excel(writer, sheet_name='total', index=False) summary_final.to_excel(writer, sheet_name='model_summay', index=False) model1.to_excel(writer, sheet_name='model_1', index=False) model2.to_excel(writer, sheet_name='model_2', index=False) model3.to_excel(writer, sheet_name='model_3', index=False) model4.to_excel(writer, sheet_name='model_4', index=False) assumptions.to_excel(writer, sheet_name='assumptions', index=False) status = True except Exception as error: logger.exception(error) logger.info(f'code failed in between') status = False if status is True: status = 'Success' else: status = 'Failed' end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() if status=="Success": email.send_email_file(subject=f"Distributor Network Model - Costs Analysis", mail_body=f"Dear User,\n" f"\n" f"Distributor Network Model- Costs Analysis\n" f"city - {city_name}\n" f"number of stores - {number_of_stores}\n" f"expected revenue - {int(round(avg_store_sale*number_of_stores,0))}\n" f"Recommendation - {model_cost.loc[model_cost['values'].idxmin(),'model-name']}\n" f"\n" f"Summary\n" f"{model_cost[['model-number','model-name','values','revenue-percentage']].to_string(col_space=25)}\n" f"\n" f"Regards,\n" f"Data Team\n", to_emails=email_to, file_paths=[local_file_full_path]) else: email.send_email_file(subject=f"{env}-{status}-dnm-cost-analysis", mail_body=f"Dear User,\n" f"Distributor Network Model- Costs Analysis - job is failed, Please connect with Data team to resolve this issue" f"\n" f"Regards,\n" f"Data Team\n", to_emails=email_to, file_uris=[]) rs_db.close_connection() rs_db_write.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/dnm_costs_analysis/dnm-cost-analysis.py
dnm-cost-analysis.py
import argparse import os import sys from datetime import datetime import pandas as pd sys.path.append('../../../..') from zeno_etl_libs.db.db import DB, MongoDB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-bs', '--batch_size', default=1000, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env batch_size = args.batch_size os.environ['env'] = env s3 = S3() rs_db = DB(read_only=False) rs_db.open_connection() mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") schema = 'prod2-generico' if env == 'prod' else 'test-generico' table_name = 'exotelincomingcalllogs' database = mg_client["generico-crm"] collection = database["exotelIncomingCallLogs"] logger = get_logger() def max_last_date(): query = f""" select max(updatedat) as max_date from "{schema}"."{table_name}" """ df = pd.read_sql_query(query, rs_db.connection) if df[b'max_date'][0] is None: return "2020-01-01 00:00:00.000000" else: return str(df[b'max_date'][0]) max_update_date = max_last_date() logger.info(f"max update-at date: {max_update_date}") query = {} # query["CallTo"] = {u"$eq": u"02248900429"} # query["RecordingUrl"] = {u"$ne": u"null"} query["updatedAt"] = {u"$gt": datetime.strptime(f"{max_update_date}", "%Y-%m-%d %H:%M:%S.%f")} sort = [(u"updatedAt", 1)] skip = 0 df = pd.DataFrame() cursor = collection.find(query, sort=sort, skip=0, limit=batch_size) temp_df = pd.DataFrame(data=list(cursor)) df = temp_df.copy() while not temp_df.empty: skip += batch_size logger.info(f"skip: {skip}") cursor = collection.find(query, sort=sort, skip=skip, limit=batch_size) temp_df = pd.DataFrame(data=list(cursor)) df = pd.concat([df, temp_df]) if not df.empty: df.rename(columns={"_id": "oid__id"}, inplace=True) df.is_active = df.is_active.replace({True: 1, False: 0}) df.is_exist_in_db = df.is_exist_in_db.replace({True: 1, False: 0}).fillna(0) df.columns = [c.lower() for c in df.columns] table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) """ Fill the absent columns with default data in the dataframe """ for i, c in table_info.iterrows(): default_value = None if c['data_type'] == 'character varying': default_value = "" if c['data_type'] == 'timestamp without time zone': default_value = datetime.now(tz=None) if c['data_type'] == 'integer': default_value = 0 df[c['column_name']] = df.get(c['column_name'], default_value) df['is_exist_in_db'] = df['is_exist_in_db'].astype(int) logger.info(f"Total {len(df)} new records found.") logger.info(f"df.head: {df.head()}") s3.write_df_to_db(df=df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) else: logger.info("New data NOT found.") mg_db.close() rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/exotel_call_log_sync/exotel_call_log_sync.py
exotel_call_log_sync.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "zeno-order-logs" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "prescription-needed", "prescreptions-created", "completed-at", "pso-created-by", "pso-created-at", "follow-up-by", "follow-up-at", "follow-up-doc-by", "follow-up-doc-at", "presc-created-by", "presc-created-at", "confirm-need-presc-by", "confirm-need-presc-at", "out-del-by", "out-del-at" ) select zoal."zeno-order-id" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", count(case when zoal."target-state" = 'CONFIRM-BUT-NEED-PRESCRIPTION' then zoal.id end) as "prescription-needed", count(case when zoal."target-state" = 'PRESCRIPTION-CREATED' then zoal.id end) as "prescreptions-created", max(case when zoal."target-state" = 'DELIVERED' then zoal."created-at" end) as "completed-at", max(case when "target-state" = 'CREATE-PATIENT-STORE-ORDER' and r = 1 then "action-executed-by" end) as "pso-created-by", max(case when "target-state" = 'CREATE-PATIENT-STORE-ORDER' and r = 1 then "created-at" end) as "pso-created-at", max(case when "target-state" = 'FOLLOW-UP-WITHIN-TAT' and r = 1 then "action-executed-by" end) as "follow-up-by", max(case when "target-state" = 'FOLLOW-UP-WITHIN-TAT' and r = 1 then "created-at" end) as "follow-up-at", max(case when "target-state" = 'FOLLOW-UP-DOCTOR-WITHIN-TAT' and r = 1 then "action-executed-by" end) as "follow-up-doc-by", max(case when "target-state" = 'FOLLOW-UP-DOCTOR-WITHIN-TAT' and r = 1 then "created-at" end) as "follow-up-doc-at", max(case when "target-state" = 'PRESCRIPTION-CREATED' and r = 1 then "action-executed-by" end) as "presc-created-by", max(case when "target-state" = 'PRESCRIPTION-CREATED' and r = 1 then "created-at" end) as "presc-created-at", max(case when "target-state" = 'CONFIRM-BUT-NEED-PRESCRIPTION' and r = 1 then "action-executed-by" end) as "confirm-need-presc-by", max(case when "target-state" = 'CONFIRM-BUT-NEED-PRESCRIPTION' and r = 1 then "created-at" end) as "confirm-need-presc-at", max(case when "target-state" = 'OUT-FOR-DELIVERY' and r = 1 then "action-executed-by" end) as "out-del-by", max(case when "target-state" = 'OUT-FOR-DELIVERY' and r = 1 then "created-at" end) as "out-del-at" from ( select * , rank() over (partition by "zeno-order-id", "target-state" order by "created-at" desc ) r from "prod2-generico"."zeno-order-action-log" zoal where "action-status" = 'SUCCESS') zoal group by zoal."zeno-order-id"; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."zeno-order-logs"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/zeno-order-log/zeno-order-log.py
zeno-order-log.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB def main(db): table_name = "home-delivery-metadata" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "patient-id", "doctor-id", "store-id", "store-name", "store-lat", "store-lon", "drug-id", "drug-name", "type", "category", "composition", "composition-master-id", "company", "company-id", "requested-quantity", "inventory-quantity", "order-number", "bill-id", "billed-at", "order-source", "order-type", "status", "order-mode", "pso-created-at", "year-pso-created-at", "month-pso-created-at", "payment-type", "slot-id", "turnaround-time", "patient-request-id", "pr-flag", "abo", "line-manager", "store-manager", "city", "store-b2b", "delivery-status", "assigned-to", "assigned-to-id", "dispatcher", "receiver", "delivered-at", "completed-at", "no-of-deliveries", "vendor-bill-number", "first-slot", "last-slot", "total-slot-changes", "slot-type", "per-slot-capacity", "scheduled-at", "zeno-order-id", "delivery-type", "first-slot-date", "last-slot-date", "store-patient-distance" , "delivery-cost", "assigned-at" ) select pso."id" as "id", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta', GETDATE()) as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", pso."patient-id" as "patient-id" , pso."doctor-id" as "doctor-id", pso."store-id" as "store-id", s."name" as "store-name", s."lat" as "store-lat", s."lon" as "store-lon", pso."drug-id" as "drug-id", pso."drug-name" as "drug-name", d."type" , d."category" , d."composition" , d."composition-master-id" as "composition-master-id", d."company" , d."company-id" as "company-id", pso."requested-quantity" as "requested-quantity", pso."inventory-quantity" as "inventory-quantity", pso."order-number" as "order-number", pso."bill-id" as "bill-id" , b."created-at" as "billed-at", pso."order-source" as "order-source", pso."order-type" as "order-type" , pso."status", pso."order-mode" as "order-mode", pso."created-at" as "pso-created-at", extract(year from pso."created-at") as "year-pso-created-at", extract(month from pso."created-at") as "month-pso-created-at", pso."payment-type" as "payment-type", pso."slot-id" as "slot-id" , pso."turnaround-time" as "turnaround-time" , pso."patient-request-id" as "patient-request-id", (case when pso."patient-request-id" is null then false else true end) as "pr-flag", sm."abo", sm."line-manager", sm."store-manager", sm."city", sm."store-b2b", dt."delivery-status", dt."assigned-to", dt."assigned-to-id" , dt."dispatcher", dt."receiver", dt."delivered-at", dt."completed-at", dt."no-of-deliveries", dt."vendor-bill-number", sc."first-slot", sc."last-slot", sc."total-slot-changes", ss."slot-type" as "slot-type" , ss."per-slot-capacity" as "per-slot-capacity", dt."scheduled-at", pso."zeno-order-id", ss."type" as "delivery-type", sc."first-slot-date", sc."last-slot-date", pso."store-patient-distance" , pso."delivery-cost" , dt."assigned-at" from "prod2-generico"."patients-store-orders" pso left join "prod2-generico"."bills-1" b on b."id" = pso."bill-id" left join "prod2-generico"."stores" s on s."id" = pso."store-id" left join "prod2-generico".patients p2 on p2."id" = pso."patient-id" left join "prod2-generico"."drugs" d on d."id" = pso."drug-id" left join "prod2-generico"."stores-master" sm on sm."id" = pso."store-id" left join "prod2-generico"."delivery-tracking-metadata" dt on pso.id = dt."id" left join "prod2-generico"."pso-slot-changes" sc on pso.id = sc."id" left join "prod2-generico"."store-slots" ss on pso."slot-id" = ss.id where pso."order-type" = 'delivery'; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") # ##Vacuum Clean # # clean = f""" # VACUUM full "prod2-generico"."home-delivery-metadata"; # """ # db.execute(query=clean) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env print(f"env: {env}") os.environ['env'] = env rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/home-delivery/home-delivery.py
home-delivery.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB def main(db): table_name = "retention-master" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-by", "created-at", "updated-by", "updated-at", "patient-id", "store-id", "doctor-id", "promo-code-id", "promo-discount", "payment-method", "redeemed-points", "bill-date", "bill-year", "bill-month", "bill-day", "bill-month-diff", "doctor-name", "total-spend", "spend-generic", "spend-goodaid", "spend-ethical", "spend-others-type", "num-drugs", "quantity-generic", "quantity-goodaid", "quantity-ethical", "quantity-chronic", "quantity-repeatable", "quantity-others-type", "is-generic", "is-goodaid", "is-ethical", "is-chronic", "is-repeatable", "is-others-type", "is-rx", "total-quantity", "zippin-serial", "total-mrp-value", "pr-flag", "hd-flag", "ecom-flag", "promo-flag", "digital-payment-flag", "total-purchase-rate-value", "total-ptr-value", "month-bill-rank", "min-bill-date-in-month", "store-id-month", "normalized-date", "total-cashback", "zenocare-amount", "p-first-bill-date", "p-last-bill-date", "p-average-bill-value", "p-total-quantity", "p-quantity-generic", "p-quantity-chronic", "p-quantity-ethical", "p-quantity-repeatable", "p-quantity-goodaid", "p-quantity-rx", "p-quantity-others-type", "p-number-of-bills", "p-hd-bills", "p-is-repeatable", "p-is-generic", "p-is-chronic", "p-is-goodaid", "p-is-ethical", "p-is-rx", "p-is-others-type", "p-hd-flag", "p-ecom-flag", "p-pr-flag", "p-total-spend", "p-spend-generic", "p-promo-min-bill-date", "p-hd-min-bill-date", "p-ecom-min-bill-date", "p-pr-min-bill-date", "p-generic-min-bill-date", "p-goodaid-min-bill-date", "p-ethical-min-bill-date", "p-chronic-min-bill-date", "p-repeatable-min-bill-date", "p-others-type-min-bill-date", "p-rx-min-bill-date", "p-digital-payment-min-bill-date", "p-first-bill-id", "p-last-bill-id", "p-digital-payment-flag", "p-total-mrp-value", "is-nps", "latest-nps-rating", "latest-nps-rating-comment", "latest-nps-rating-store-id", "latest-nps-rating-store-name", "latest-nps-rating-date", "referred-count", "primary-store-id", "p-num-drugs", "p-primary-disease", "recency-customer-days", "system-age-days", "avg-purchase-interval", "std-purchase-interval", "quantity-generic-pc", "quantity-chronic-pc", "quantity-ethical-pc", "quantity-repeatable-pc", "quantity-goodaid-pc", "quantity-others-type-pc", "spend-generic-pc", "previous-bill-date", "previous-store-id", "value-segment-calculation-date", "value-segment", "behaviour-segment-calculation-date", "behaviour-segment", "promo-code", "promo-code-type", "promo-eligibility", "promo-discount-type", "promo-min-purchase", "campaign-id", "campaign-name", "store", "line-manager", "abo", "store-manager", "store-type", "store-opened-at", "date-diff", "month-diff", "latitude", "longitude", "store-contact-1", "store-contact-2", "store-address", "store-city", "store-b2b", "line", "landmark", "store-group-id", "franchisee-id", "franchisee-name", "old-new", "bill-quarter", "previous-normalized-date", "cum-spend", "cum-nob", "cum-abv", "prev-cum-spend", "prev-cum-nob", "prev-cum-abv", "acquired" , "old-new-static" , "day-diff-previous-bill" , "resurrected-flag", "crm-flag", "p-crm-flag", "loyal-customer-flag") select bm."id", bm."created-by" , bm."created-at" , 'etl-automation', bm."updated-at" , bm."patient-id", bm."store-id", bm."doctor-id", bm."promo-code-id", bm."promo-discount", bm."payment-method", bm."redeemed-points", bm."bill-date", bm."bill-year", bm."bill-month", bm."bill-day", bm."month-diff" as "bill-month-diff", bm."doctor-name", bm."total-spend", bm."spend-generic", bm."spend-goodaid", bm."spend-ethical", bm."spend-others-type", bm."num-drugs", bm."quantity-generic", bm."quantity-goodaid", bm."quantity-ethical", bm."quantity-chronic", bm."quantity-repeatable", bm."quantity-others-type", bm."is-generic", bm."is-goodaid", bm."is-ethical", bm."is-chronic", bm."is-repeatable", bm."is-others-type", bm."is-rx", bm."total-quantity", bm."zippin-serial", bm."total-mrp-value", bm."pr-flag", bm."hd-flag", bm."ecom-flag", bm."promo-flag", bm."digital-payment-flag", bm."total-purchase-rate-value", bm."total-ptr-value", bm."month-bill-rank", bm."min-bill-date-in-month", bm."store-id-month", bm."normalized-date", bm."total-cashback", bm."zenocare-amount", pm."first-bill-date" as "p-first-bill-date", pm."last-bill-date" as "p-last-bill-date", pm."average-bill-value" as "p-average-bill-value", pm."total-quantity" as "p-total-quantity", pm."quantity-generic" as "p-quantity-generic", pm."quantity-chronic" as "p-quantity-chronic", pm."quantity-ethical" as "p-quantity-ethical", pm."quantity-repeatable" as "p-quantity-repeatable", pm."quantity-goodaid" as "p-quantity-goodaid", pm."quantity-rx" as "p-quantity-rx", pm."quantity-others-type" as "p-quantity-others-type", pm."number-of-bills" as "p-number-of-bills", pm."hd-bills" as "p-hd-bills", pm."is-repeatable" as "p-is-repeatable", pm."is-generic" as "p-is-generic", pm."is-chronic" as "p-is-chronic", pm."is-goodaid" as "p-is-goodaid", pm."is-ethical" as "p-is-ethical", pm."is-rx" as "p-is-rx", pm."is-others-type" as "p-is-others-type", pm."hd-flag" as "p-hd-flag", pm."ecom-flag" as "p-ecom-flag", pm."pr-flag" as "p-pr-flag", pm."total-spend" as "p-total-spend", pm."spend-generic" as "p-spend-generic", pm."promo-min-bill-date" as "p-promo-min-bill-date", pm."hd-min-bill-date" as "p-hd-min-bill-date", pm."ecom-min-bill-date" as "p-ecom-min-bill-date", pm."pr-min-bill-date" as "p-pr-min-bill-date", pm."generic-min-bill-date" as "p-generic-min-bill-date", pm."goodaid-min-bill-date" as "p-goodaid-min-bill-date", pm."ethical-min-bill-date" as "p-ethical-min-bill-date", pm."chronic-min-bill-date" as "p-chronic-min-bill-date", pm."repeatable-min-bill-date" as "p-repeatable-min-bill-date", pm."others-type-min-bill-date" as "p-others-type-min-bill-date", pm."rx-min-bill-date" as "p-rx-min-bill-date", pm."digital-payment-min-bill-date" as "p-digital-payment-min-bill-date", pm."first-bill-id" as "p-first-bill-id", pm."last-bill-id" as "p-last-bill-id", pm."digital-payment-flag" as "p-digital-payment-flag", pm."total-mrp-value" as "p-total-mrp-value", pm."is-nps", pm."latest-nps-rating", pm."latest-nps-rating-comment", pm."latest-nps-rating-store-id", pm."latest-nps-rating-store-name", pm."latest-nps-rating-date", pm."referred-count", pm."primary-store-id", pm."num-drugs" as "p-num-drugs", pm."primary-disease" as "p-primary-disease", pm."recency-customer-days", pm."system-age-days", pm."avg-purchase-interval", pm."std-purchase-interval", pm."quantity-generic-pc", pm."quantity-chronic-pc", pm."quantity-ethical-pc", pm."quantity-repeatable-pc", pm."quantity-goodaid-pc", pm."quantity-others-type-pc", pm."spend-generic-pc", lead(bm."bill-date" , 1) OVER( PARTITION BY bm."patient-id" ORDER BY bm."created-at" desc) AS "previous-bill-date", lead(bm."store-id" , 1) OVER( PARTITION BY bm."patient-id" ORDER BY bm."created-at" desc) AS "previous-store-id", cvs."segment-calculation-date" as "value-segment-calculation-date", cvs."value-segment", cbs."segment-calculation-date" as "behaviour-segment-calculation-date", cbs."behaviour-segment", p."promo-code", p."promo-code-type", p."promo-eligibility", p."promo-discount-type", p."promo-min-purchase", p."campaign-id", p."campaign-name", sm."store", sm."line-manager", sm."abo", sm."store-manager", sm."store-type", sm."opened-at" as "store-opened-at", sm."date-diff", sm."month-diff", sm."latitude", sm."longitude", sm."store-contact-1", sm."store-contact-2", sm."store-address", sm."city" as "store-city", sm."store-b2b", sm."line", sm."landmark", sm."store-group-id", sm."franchisee-id", sm."franchisee-name", case when (12 * (extract (year from bm."created-at") - extract (year from pm."first-bill-date")) + (extract (month from bm."created-at") - extract (month from pm."first-bill-date")))>= 1 then 'old' else 'new' end as "old-new", extract('year' from bm."bill-date")||'Q'||extract('quarter' from bm."bill-date") as "bill-quarter", ppnd."previous-normalized-date", sum(bm."total-spend") over( partition by bm."patient-id" order by bm."created-at" asc rows unbounded preceding) as "cum-spend", count(bm."id") over( partition by bm."patient-id" order by bm."created-at" asc rows unbounded preceding) as "cum-nob", sum(bm."total-spend") over( partition by bm."patient-id" order by bm."created-at" asc rows unbounded preceding)/ count(bm."id") over( partition by bm."patient-id" order by bm."created-at" asc rows unbounded preceding) as "cum-abv", (sum(bm."total-spend") over( partition by bm."patient-id" order by bm."created-at" asc rows unbounded preceding))-bm."total-spend" as "prev-cum-spend", (count(bm."id") over( partition by bm."patient-id" order by bm."created-at" asc rows unbounded preceding))-1 as "prev-cum-nob", sum(bm."total-spend") over( partition by bm."patient-id" order by bm."created-at" asc rows between unbounded preceding and 1 preceding)/ count(bm."id") over( partition by bm."patient-id" order by bm."created-at" asc rows between unbounded preceding and 1 preceding) as "prev-cum-abv", sm."acquired" , sm."old-new-static", datediff('day', lead(bm."bill-date" , 1) OVER( PARTITION BY bm."patient-id" ORDER BY bm."created-at" desc), bm."bill-date" ) as "day-diff-previous-bill", (case when datediff('day', lead(bm."bill-date" , 1) OVER( PARTITION BY bm."patient-id" ORDER BY bm."created-at" desc), bm."bill-date" )>90 then 1 else 0 end) as "resurrected-flag", bm."crm-flag", pm."crm-flag" as "p-crm-flag", (case when (12 *(bm."bill-year"-extract('year' from ppnd."previous-2-normalized-date"))+(bm."bill-month" - extract('month' from ppnd."previous-2-normalized-date")) ) in (90, 2) then 1 when (ppq."bill-quarter"-ppq."previous-quarter") in (97, 1) then 1 else 0 end) as "loyal-customer-flag" from "prod2-generico"."bills-1-metadata" bm left join "prod2-generico"."patients-metadata-2" pm on pm.id = bm."patient-id" left join "prod2-generico"."customer-value-segment" cvs on bm."patient-id" = cvs."patient-id" and bm."normalized-date" = cvs."segment-calculation-date" left join "prod2-generico"."customer-behaviour-segment" cbs on bm."patient-id" = cbs."patient-id" and bm."normalized-date" = cbs."segment-calculation-date" left join "prod2-generico".promo p on bm."promo-code-id" = p.id inner join "prod2-generico"."stores-master" sm on bm."store-id" = sm."id" inner join "prod2-generico"."patient-previous-normalized-date" ppnd on bm."patient-id" = ppnd."patient-id" and bm."normalized-date" = ppnd."normalized-date" inner join "prod2-generico"."patient-previous-quarter" ppq on ppq."patient-id" =bm."patient-id" and extract('year' from bm."bill-date")||0||extract('quarter' from bm."bill-date") = ppq."bill-quarter" """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env print(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/retention-master/retention_master.py
retention_master.py
import os import sys import argparse import pandas as pd import numpy as np import datetime as dt from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.new_stores.new_stores_ipc import new_stores_ss_calc from zeno_etl_libs.utils.new_stores.helper_functions import get_drug_info, order_value_report from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update def main(debug_mode, reset_stores, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, wh_gen_consolidation, type_list, rs_db_read, rs_db_write, read_schema, write_schema, s3, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' reset_date = dt.date.today().strftime("%Y-%m-%d") # define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() try: for store_id in reset_stores: logger.info("New store SS calculation started for store id: " + str(store_id)) # NEW STORES SS CALCULATION ss_stores = new_stores_ss_calc(store_id, reset_date, rs_db_read, read_schema, logger) # EXTRA INFO FETCH data_inv, data_ptr, data_drug_info, data_drug_grade,\ data_stores = get_drug_info(store_id, rs_db_read, read_schema) # MERGE DATA ss_stores_merge = ss_stores.merge( data_inv[['drug_id', 'current_inventory']], how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_ptr, how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_drug_info, how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_drug_grade, how='left', on='drug_id') ss_stores_merge = ss_stores_merge.merge(data_stores, how='left', on='store_id') logger.info("Null values in dataframes, count is {}".format( ss_stores_merge.isnull().sum())) # fill Null values ss_stores_merge['current_inventory'].fillna(0, inplace=True) ss_stores_merge['ptr'].fillna(67, inplace=True) ss_stores_merge['type'].fillna('', inplace=True) ss_stores_merge['category'].fillna('', inplace=True) ss_stores_merge['drug_grade'].fillna('NA', inplace=True) # final data-frame name for update new_stores_ss = ss_stores_merge.copy() logger.info("SS list base algo+triggers length is {}".format( len(new_stores_ss))) logger.info( "Types in list are - {}".format(new_stores_ss['type'].unique())) # remove banned and discontinued drugs new_stores_ss = new_stores_ss[~new_stores_ss['type'].isin( ['banned', 'discontinued-products'])] logger.info( "Types in list are - {}".format(new_stores_ss['type'].unique())) logger.info( "SS list after removing banned and discontinued - length is {}".format( len(new_stores_ss))) # order value report order_value = order_value_report(new_stores_ss) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': new_stores_ss, consolidation_log = stores_ss_consolidation( new_stores_ss, rs_db_read, read_schema, min_column='min', ss_column='safety_stock', max_column='max') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': new_stores_ss, good_aid_ss_log = update_ga_ss( new_stores_ss, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='min', ss_column='safety_stock', max_column='max', logger=logger) # few more columns new_stores_ss['inventory_quantity'] = new_stores_ss['current_inventory'] new_stores_ss['fptr'] = new_stores_ss['ptr'] new_stores_ss['store_id'] = store_id new_stores_ss['daily_sales_1'] = -1 new_stores_ss['daily_sales_2'] = -1 new_stores_ss['daily_sales_3'] = -1 new_stores_ss['ads'] = -1 new_stores_ss['ads_min'] = -1 new_stores_ss['ads_ss'] = -1 new_stores_ss['ads_max'] = -1 new_stores_ss['algo_max_days'] = 30 # adjustment for ethical # same logic as in new_store_ipc_funcs.ss_calc new_stores_ss['algo_max_days'] = np.round( np.where(new_stores_ss['type'].isin( ['ethical', 'high-value-ethical']), new_stores_ss['algo_max_days'] * (1 / 2), new_stores_ss['algo_max_days'] * (2 / 3))) # for min new_stores_ss['algo_min_days'] = np.where(new_stores_ss['max'] > 0, (new_stores_ss['min'] / new_stores_ss['max'] ) * new_stores_ss[ 'algo_max_days'], 0) # for ss new_stores_ss['algo_ss_days'] = np.where(new_stores_ss['max'] > 0, (new_stores_ss[ 'safety_stock'] / new_stores_ss['max'] ) * new_stores_ss[ 'algo_max_days'], 0) new_stores_ss['corr_min'] = new_stores_ss['min'] new_stores_ss['corr_ss'] = new_stores_ss['safety_stock'] new_stores_ss['corr_max'] = new_stores_ss['max'] new_stores_ss['to_order_quantity'] = np.where( new_stores_ss['inventory_quantity'] <= new_stores_ss['corr_ss'], new_stores_ss['corr_max'] - new_stores_ss['inventory_quantity'], 0) new_stores_ss['to_order_value'] = new_stores_ss['fptr'] * \ new_stores_ss['to_order_quantity'] # required columns new_store_ss = new_stores_ss[[ 'store_id', 'store_name', 'drug_id', 'drug_name', 'type', 'category', 'drug_grade', 'inventory_quantity', 'min', 'safety_stock', 'max', 'daily_sales_1', 'daily_sales_2', 'daily_sales_3', 'ads', 'ads_min', 'ads_ss', 'ads_max', 'algo_min_days', 'algo_ss_days', 'algo_max_days', 'corr_min', 'corr_ss', 'corr_max', 'to_order_quantity', 'fptr', 'to_order_value', 'algo_type']] # overall order value order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table non-ipc-safety-stock # new_store_ss['store_id'] = new_store_ss['store_id'].astype(int) new_store_ss['reset-date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() new_store_ss['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') new_store_ss['created-by'] = 'etl-automation' new_store_ss['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') new_store_ss['updated-by'] = 'etl-automation' new_store_ss.columns = [c.replace('_', '-') for c in new_store_ss.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='new-store-safety-stock', schema=write_schema) columns = list(table_info['column_name']) new_store_ss = new_store_ss[columns] # required column order logger.info("Writing to table: new-store-safety-stock") s3.write_df_to_db(df=new_store_ss, table_name='new-store-safety-stock', db=rs_db_write, schema=write_schema) # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") new_store_ss.columns = [c.replace('-', '_') for c in new_store_ss.columns] ss_data_upload = new_store_ss.query('corr_max > 0')[ ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max']] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"New-Stores-SS code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"New-Stores-SS code execution status: {status}") return status, reset_date, new_drug_entries, missed_entries, order_value_all if __name__ == "__main__": parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="N", type=str, required=False) parser.add_argument('-exsto', '--exclude_stores', default=[52, 60, 92, 243, 281], nargs='+', type=int, required=False) parser.add_argument('-gad', '--gaid_flag', default="Y", type=str, required=False) parser.add_argument('-giw', '--gaid_inv_wt', default=0.5, type=float, required=False) parser.add_argument('-riw', '--rest_inv_wt', default=0.0, type=float, required=False) parser.add_argument('-tiw', '--top_inv_wt', default=1, type=float, required=False) parser.add_argument('-wgc', '--wh_gen_consld', default="Y", type=str, required=False) parser.add_argument('-rs', '--reset_stores', default=[0], nargs='+', type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode # JOB EXCLUSIVE PARAMS exclude_stores = args.exclude_stores goodaid_ss_flag = args.gaid_flag ga_inv_weight = args.gaid_inv_wt rest_inv_weight = args.rest_inv_wt top_inv_weight = args.rest_inv_wt wh_gen_consolidation = args.wh_gen_consld reset_stores = args.reset_stores logger = get_logger() s3 = S3() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format(str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # new stores list new_stores = stores.loc[ (dt.datetime.now() - stores['opened_at'] <= dt.timedelta(days=90)) & (dt.datetime.now() - stores['opened_at'] >= dt.timedelta( days=30)), 'id'].values if reset_stores == [0]: # Fetch all new stores reset_stores = new_stores logger.info(f"Algo to run for all new stores: {reset_stores}") else: reset_stores = list(set(reset_stores).intersection(new_stores)) logger.info(f"Algo to run for specified new stores: {reset_stores}") if not reset_stores: logger.info(f"ALERT: None of specified stores is a new store") reset_stores = new_stores logger.info(f"REVERT: Algo to run for all new stores: {reset_stores}") type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" """ calling the main function """ status, reset_date, new_drug_entries, missed_entries, \ order_value_all = main( debug_mode, reset_stores, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, wh_gen_consolidation, type_list, rs_db_read, rs_db_write, read_schema, write_schema, s3, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"New Stores SS Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/new_stores/new_stores_ss_main.py
new_stores_ss_main.py
import json import requests tableau_admin_user_password = '' tableau_baseurl = 'https://tableau.generico.in' site_id = 'd68c13b5-ae9e-4cb2-8824-25c6d4daf7a2' db_to_update = 'postgres' old_read_only_username = '' new_read_only_username = '' new_read_only_user_password = '' # sign in login_data = { "credentials": { "name": 'admin', "password": tableau_admin_user_password, "site": { "contentUrl": "" } } } headers = {'Content-Type': 'application/json', 'Accept': 'application/json'} response = requests.post(f"{tableau_baseurl}/api/3.7/auth/signin", headers=headers, data=json.dumps(login_data)) login_resp = response.json() if response.status_code == 200 and 'credentials' in login_resp: login_resp = login_resp["credentials"] headers['X-Tableau-Auth'] = login_resp["token"] # # data source list workbook_response = requests.get(f'{tableau_baseurl}/api/3.7/sites/{site_id}/workbooks?pageSize=1000', headers=headers) # print(workbook_response.json()) if workbook_response.status_code != 200: raise Exception(f"workbook_response: {workbook_response.text}") workbook_data = workbook_response.json() for workbook in workbook_data['workbooks']['workbook']: if "" in workbook['name'].lower(): print(workbook['name']) connection_response = requests.get( f"{tableau_baseurl}/api/3.7/sites/{site_id}/workbooks/{workbook['id']}/connections?pageSize=1000", headers=headers) if connection_response.status_code != 200: raise Exception(f"workbook_response: {connection_response.text}") connection_data = connection_response.json() for connection in connection_data['connections']['connection']: # print(connection) print(f"connection type: {connection['type']}") if connection['type'] == db_to_update: if connection['userName'] == old_read_only_username: connection_id = connection['id'] request_body = { 'connection': { 'userName': new_read_only_username, 'password': new_read_only_user_password } } print(f"connection to update: {connection}") # update connection data_source_id = connection['datasource']['id'] conn_update_response = requests.put( f'{tableau_baseurl}/api/3.7/sites/{site_id}/datasources/{data_source_id}/connections/{connection_id}', data=json.dumps(request_body), headers=headers) update_status = 'failed' if conn_update_response.status_code == 200: update_status = 'successful' print(f"Connection ID: {connection_id} Data Source Name: {connection['datasource']['name']} " f"update {update_status}") # project_response = requests.get(f'{tableau_baseurl}/api/3.7/sites/{site_id}/projects?pageSize=1000', # headers=headers) # # print(project_response.json()) # project_data = project_response.json() # for project in project_data['projects']['project']: # if project['name'] == 'Marketing': # print(f"project: {project}") # if data_sources_response.status_code == 200: # counter = 0 # data_sources_data = data_sources_response.json() # for data_source in data_sources_data['datasources']['datasource']: # data_source_id = data_source['id'] # # if data_source['project']['name'].lower() != 'test': # continue # print(f"data_source: {data_source}") # # per data source connections list # connections_response = requests.get( # f'{tableau_baseurl}/api/3.7/sites/{site_id}/datasources/{data_source_id}/connections', # headers=headers) # # if connections_response.status_code != 200: # connections_data = connections_response.json() # for connection in connections_data['connections']['connection']: # # print(f"connection type: {connection['type']}") # if connection['type'] == db_to_update: # if connection['userName'] == old_read_only_username: # connection_id = connection['id'] # request_body = { # 'connection': { # 'userName': new_read_only_username, # 'password': new_read_only_user_password # } # } # # print(f"connection to update: {connection}") # # # update connection # # conn_update_response = requests.put( # # f'{tableau_baseurl}/api/3.7/sites/{site_id}/datasources/{data_source_id}/connections/{connection_id}', # # data=json.dumps(request_body), headers=headers) # # # # update_status = 'failed' # # if conn_update_response.status_code == 200: # # update_status = 'successful' # # print( # # f'Connection ID: {connection_id} Data Source Name: {data_source["name"]} update {update_status}') # counter += 1 # print(f"Total connections: {counter}") # # # sign out # sign_out_headers = {'X-Tableau-Auth': headers['X-Tableau-Auth']} # sign_out_response = requests.post(f'{tableau_baseurl}/api/3.7/auth/signout', headers=sign_out_headers) # if sign_out_response.status_code == 204: # print('Successfully Signed Out') # else: # print('Sign Out Failed') """ NOTES: > api_version: 3.7, server_version: v2020.1 > rest-api fundamental concepts https://help.tableau.com/current/api/rest_api/en-us/REST/rest_api_concepts_fundamentals.htm > rest-api-samples https://github.com/tableau/rest-api-samples/tree/master/python https://help.tableau.com/current/api/rest_api/en-us/REST/rest_api_concepts_example_requests.htm (rq_bdy xml to json) > Pagination https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_concepts_paging.htm > List Data Sources https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#query_data_sources > List Data Source Connections https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#query_data_source_connections > Update a Data Source https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#update_data_source_connection > Sign Out https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#sign_out """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/tableau/list-workbooks-and-connections.py
list-workbooks-and-connections.py
import json import requests tableau_admin_user_password = '' tableau_baseurl = 'https://tableau.generico.in' site_id = 'd68c13b5-ae9e-4cb2-8824-25c6d4daf7a2' db_to_update = 'postgres' old_read_only_username = '' new_read_only_username = '' new_read_only_user_password = '' # sign in login_data = { "credentials": { "name": 'admin', "password": tableau_admin_user_password, "site": { "contentUrl": "" } } } headers = {'Content-Type': 'application/json', 'Accept': 'application/json'} response = requests.post(f"{tableau_baseurl}/api/3.7/auth/signin", headers=headers, data=json.dumps(login_data)) login_resp = response.json() if response.status_code == 200 and 'credentials' in login_resp: login_resp = login_resp["credentials"] headers['X-Tableau-Auth'] = login_resp["token"] # data source list data_sources_response = requests.get(f'{tableau_baseurl}/api/3.7/sites/{site_id}/datasources?pageSize=1000', headers=headers) if data_sources_response.status_code == 200: counter = 0 data_sources_data = data_sources_response.json() for data_source in data_sources_data['datasources']['datasource']: data_source_id = data_source['id'] # print(f"data_source: {data_source}") # per data source connections list connections_response = requests.get( f'{tableau_baseurl}/api/3.7/sites/{site_id}/datasources/{data_source_id}/connections', headers=headers) if connections_response.status_code == 200: connections_data = connections_response.json() for connection in connections_data['connections']['connection']: # print(f"connection type: {connection['type']}") if connection['type'] == db_to_update: if connection['userName'] == old_read_only_username: connection_id = connection['id'] request_body = { 'connection': { 'userName': new_read_only_username, 'password': new_read_only_user_password } } print(f"connection to update: {connection}") # update connection conn_update_response = requests.put( f'{tableau_baseurl}/api/3.7/sites/{site_id}/datasources/{data_source_id}/connections/{connection_id}', data=json.dumps(request_body), headers=headers) update_status = 'failed' if conn_update_response.status_code == 200: update_status = 'successful' counter += 1 print( f'Connection ID: {connection_id} Data Source Name: {data_source["name"]} update {update_status}') print(f"Total connections updated: {counter}") # sign out sign_out_headers = {'X-Tableau-Auth': headers['X-Tableau-Auth']} sign_out_response = requests.post(f'{tableau_baseurl}/api/3.7/auth/signout', headers=sign_out_headers) if sign_out_response.status_code == 204: print('Successfully Signed Out') else: print('Sign Out Failed') """ NOTES: > api_version: 3.7, server_version: v2020.1 > rest-api fundamental concepts https://help.tableau.com/current/api/rest_api/en-us/REST/rest_api_concepts_fundamentals.htm > rest-api-samples https://github.com/tableau/rest-api-samples/tree/master/python https://help.tableau.com/current/api/rest_api/en-us/REST/rest_api_concepts_example_requests.htm (rq_bdy xml to json) > Pagination https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_concepts_paging.htm > List Data Sources https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#query_data_sources > List Data Source Connections https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#query_data_source_connections > Update a Data Source https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#update_data_source_connection > Sign Out https://help.tableau.com/v2020.1/api/rest_api/en-us/REST/rest_api_ref.htm#sign_out """
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/tableau/data-source-password-change.py
data-source-password-change.py
import argparse import sys import os sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB def main(db): table_name = "sales-agg" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "created-by", "created-at", "updated-by", "updated-at", "bill-id", "drug-id", "patient-id", "store-id", "year-created-at", "month-created-at", "net-quantity", "net-revenue-value", "gross-quantity", "gross-revenue-value", "returned-quantity", "returned-revenue-value", "created-date" ) select 'etl-automation' as "created-by", b."created-at" as "created-at", 'etl-automation' as "updated-by", convert_timezone('Asia/Calcutta', GETDATE()) as "updated-at", ms."bill-id" , ms."drug-id" , ms."patient-id" , ms."store-id" , extract(year from b."created-at") as "year-created-at", extract(month from b."created-at") as "month-created-at", sum(ms."net-quantity") as "net-quantity", sum(ms."revenue-value") as "net-revenue-value", sum(case when ms."bill-flag" = 'gross' then ms."quantity" else 0 end ) as "gross_quantity", sum(case when ms."bill-flag" = 'gross' then ms."revenue-value" else 0 end ) as "gross_revenue_value", sum(case when ms."bill-flag" = 'return' then ms."quantity" else 0 end ) as "returned-quantity", sum(case when ms."bill-flag" = 'return' then ms."revenue-value" else 0 end ) as "returned-revenue-value", date(b."created-at") as "created-date" from "prod2-generico".sales ms inner join "prod2-generico"."bills-1" b on ms."bill-id" = b.id group by ms."bill-id", ms."drug-id" , ms."patient-id" , ms."store-id", b."created-at" """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/sales-agg/sales_agg.py
sales_agg.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.db.db import DB def main(db): table_name = "ecomm-das" db.execute(query="begin ;") db.execute(query=f""" delete from "prod2-generico"."{table_name}"; """) query = f""" insert into "prod2-generico"."{table_name}" ( "id", "created-at", "created-by", "updated-at", "updated-by", "patient-id", "promo-code-id", "preferred-store-id", "order-type", "zeno-created-at", "zeno-created-by", "is-prescription-required", "order-number", "status", "comments", "zeno-drug-id", "patient-store-order-id", "zeno-qty", "overall-min-bill-date", "type", "category", "composition", "company-id", "composition-master-id", "zeno-drug-name", "zeno-drug-type", "source-pincode", "order-cancellation-reason-id", "cancel-comment", "cancelled-at", "cancelled-by", "cancel-reason", "cancel-type", "pso-requested-quantity", "patient-request-id", "pso-created-at", "pso-created-by", "pso-inventory-quantity", "pso-status", "store-id", "bill-id", "slot-id", "turnaround-time", "delivered-at", "assigned-to", "slot-type", "per-slot-capacity", "vendor-bill-number", "prescription-needed", "prescreptions-created", "completed-at", "mrp", "selling-rate", "gross-quantity", "sale-flag", "gross-revenue-value", "returned-quantity", "returned-revenue-value", "promo-code", "promo-code-type", "promo-eligibility", "campaign-name", "store-name", "store-city", "store-b2b", "abo", "line-manager", "order-city", "min", "max", "safe-stock", "grade-updated-at", "zeno-drug-created-by" ) select me."id", convert_timezone('Asia/Calcutta',GETDATE()) as "created-at", 'etl-automation' as "created-by", convert_timezone('Asia/Calcutta',GETDATE()) as "updated-at", 'etl-automation' as "updated-by", me."patient-id", me."promo-code-id", me."preferred-store-id", me."order-type", me."zeno-created-at", me."zeno-created-by", me."is-prescription-required", me."order-number", me."status", me."comments", me."zeno-drug-id", me."patient-store-order-id", me."zeno-qty", me."overall-min-bill-date", me."type", me."category", me."composition", me."company-id", me."composition-master-id", me."zeno-drug-name", me."zeno-drug-type", me."source-pincode", me."order-cancellation-reason-id", me."cancel-comment", me."cancelled-at", me."cancelled-by", me."cancel-reason", me."cancel-type", me."pso-requested-quantity", me."patient-request-id", me."pso-created-at", me."pso-created-by", me."pso-inventory-quantity", me."pso-status", me."store-id", me."bill-id", me."slot-id", me."turnaround-time", me."delivered-at", me."assigned-to", me."slot-type", me."per-slot-capacity", me."vendor-bill-number", me."prescription-needed", me."prescreptions-created", me."completed-at", me."mrp", me."selling-rate", me."gross-quantity", me."sale-flag", me."gross-revenue-value", me."returned-quantity", me."returned-revenue-value", me."promo-code", me."promo-code-type", me."promo-eligibility", me."campaign-name", me."store-name", me."store-city", me."store-b2b", me."abo", me."line-manager", me."order-origin", doi."min", doi."max", doi."safe-stock" as "safe-stock", doi."grade-updated-at" as "grade-updated-at", me."zeno-drug-created-by" as "zeno-drug-created-by" from "prod2-generico".ecomm me left join "prod2-generico"."drug-order-info" doi on me."store-id" = doi."store-id" and me."zeno-drug-id" = doi."drug-id"; """ db.execute(query=query) """ committing the transaction """ db.execute(query=" end; ") if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env print(f"env: {env}") rs_db = DB() rs_db.open_connection() """ For single transaction """ rs_db.connection.autocommit = False """ calling the main function """ main(db=rs_db) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ecomm-das/ecomm-das.py
ecomm-das.py
import os import sys import argparse import pandas as pd import datetime as dt from dateutil.tz import gettz from ast import literal_eval sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.django.api import Django from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.utils.ipc.forecast_reset import ipc_forecast_reset from zeno_etl_libs.utils.warehouse.wh_intervention.store_portfolio_consolidation import stores_ss_consolidation from zeno_etl_libs.utils.ipc.goodaid_substitution import update_ga_ss from zeno_etl_libs.utils.ipc.npi_exclusion import omit_npi_drugs from zeno_etl_libs.utils.ipc.post_processing import post_processing from zeno_etl_libs.utils.ipc.doid_update_ss import doid_update from zeno_etl_libs.utils.ipc.store_portfolio_additions import generic_portfolio def main(debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger): logger.info(f"Debug Mode: {debug_mode}") status = 'Failed' if v3_active_flag == 'Y': corrections_flag = True else: corrections_flag = False # Define empty DF if required in case of fail order_value_all = pd.DataFrame() new_drug_entries = pd.DataFrame() missed_entries = pd.DataFrame() logger.info("Forecast pipeline starts...") try: for store_id in reset_stores: logger.info("IPC SS calculation started for store id: " + str(store_id)) if not type_list: type_list = str( list(reset_store_ops.loc[reset_store_ops['store_id'] == store_id, 'type'].unique())) type_list = type_list.replace('[', '(').replace(']', ')') # RUNNING FORECAST PIPELINE AND SAFETY STOCK CALC drug_class, weekly_fcst, safety_stock_df, df_corrections, \ df_corrections_111, drugs_max_to_lock_ipcv6, \ drug_rejects_ipcv6 = ipc_forecast_reset( store_id, type_list, reset_date, corrections_flag, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, rs_db_read, read_schema, drug_type_list_v4=drug_type_list_v4, v5_active_flag=v5_active_flag, v6_active_flag=v6_active_flag, v6_type_list=v6_type_list, v6_ptr_cut_off=v6_ptr_cut_off, chronic_max_flag=chronic_max_flag, logger=logger) # WAREHOUSE GENERIC SKU CONSOLIDATION if wh_gen_consolidation == 'Y': safety_stock_df, consolidation_log = stores_ss_consolidation( safety_stock_df, rs_db_read, read_schema, min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point') # GOODAID SAFETY STOCK MODIFICATION if goodaid_ss_flag == 'Y': safety_stock_df, good_aid_ss_log = update_ga_ss( safety_stock_df, store_id, rs_db_read, read_schema, ga_inv_weight, rest_inv_weight, top_inv_weight, substition_type=['generic'], min_column='safety_stock', ss_column='reorder_point', max_column='order_upto_point', logger=logger) # KEEP ALL GENERIC COMPOSITIONS IN STORE if keep_all_generic_comp == 'Y': safety_stock_df = generic_portfolio(safety_stock_df, rs_db_read, read_schema, logger) # OMIT NPI DRUGS if omit_npi == 'Y': safety_stock_df = omit_npi_drugs(safety_stock_df, store_id, reset_date, rs_db_read, read_schema, logger) # POST PROCESSING AND ORDER VALUE CALCULATION drug_class, weekly_fcst, safety_stock_df, \ order_value = post_processing(store_id, drug_class, weekly_fcst, safety_stock_df, rs_db_read, read_schema, logger) order_value_all = order_value_all.append(order_value, ignore_index=True) # WRITING TO RS-DB if debug_mode == 'N': logger.info("Writing table to RS-DB") # writing table ipc-forecast weekly_fcst.rename( columns={'date': 'week_begin_dt', 'fcst': 'point_forecast', 'std': 'forecast_deviation'}, inplace=True) weekly_fcst['store_id'] = weekly_fcst['store_id'].astype(int) weekly_fcst['drug_id'] = weekly_fcst['drug_id'].astype(int) weekly_fcst['forecast_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() weekly_fcst['week_begin_dt'] = weekly_fcst['week_begin_dt'] weekly_fcst['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['created-by'] = 'etl-automation' weekly_fcst['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') weekly_fcst['updated-by'] = 'etl-automation' weekly_fcst.columns = [c.replace('_', '-') for c in weekly_fcst.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-forecast', schema=write_schema) columns = list(table_info['column_name']) weekly_fcst = weekly_fcst[columns] # required column order logger.info("Writing to table: ipc-forecast") s3.write_df_to_db(df=weekly_fcst, table_name='ipc-forecast', db=rs_db_write, schema=write_schema) # writing table ipc-safety-stock safety_stock_df['store_id'] = safety_stock_df['store_id'].astype(int) safety_stock_df['drug_id'] = safety_stock_df['drug_id'].astype(int) safety_stock_df['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() safety_stock_df['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['created-by'] = 'etl-automation' safety_stock_df['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') safety_stock_df['updated-by'] = 'etl-automation' safety_stock_df.columns = [c.replace('_', '-') for c in safety_stock_df.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-safety-stock', schema=write_schema) columns = list(table_info['column_name']) safety_stock_df = safety_stock_df[columns] # required column order logger.info("Writing to table: ipc-safety-stock") s3.write_df_to_db(df=safety_stock_df, table_name='ipc-safety-stock', db=rs_db_write, schema=write_schema) # writing table ipc-abc-xyz-class drug_class['store_id'] = drug_class['store_id'].astype(int) drug_class['drug_id'] = drug_class['drug_id'].astype(int) drug_class['reset_date'] = dt.datetime.strptime(reset_date, '%Y-%m-%d').date() drug_class['created-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['created-by'] = 'etl-automation' drug_class['updated-at'] = dt.datetime.now( tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') drug_class['updated-by'] = 'etl-automation' drug_class.columns = [c.replace('_', '-') for c in drug_class.columns] table_info = helper.get_table_info(db=rs_db_write, table_name='ipc-abc-xyz-class', schema=write_schema) columns = list(table_info['column_name']) drug_class = drug_class[columns] # required column order logger.info("Writing to table: ipc-abc-xyz-class") s3.write_df_to_db(df=drug_class, table_name='ipc-abc-xyz-class', db=rs_db_write, schema=write_schema) # to write ipc v6 tables ... # UPLOADING MIN, SS, MAX in DOI-D logger.info("Updating new SS to DrugOrderInfo-Data") safety_stock_df.columns = [c.replace('-', '_') for c in safety_stock_df.columns] ss_data_upload = safety_stock_df.query('order_upto_point > 0')[ ['store_id', 'drug_id', 'safety_stock', 'reorder_point', 'order_upto_point']] ss_data_upload.columns = ['store_id', 'drug_id', 'corr_min', 'corr_ss', 'corr_max'] new_drug_entries_str, missed_entries_str = doid_update( ss_data_upload, type_list, rs_db_write, write_schema, logger) new_drug_entries = new_drug_entries.append(new_drug_entries_str) missed_entries = missed_entries.append(missed_entries_str) logger.info("All writes to RS-DB completed!") # INTERNAL TABLE SCHEDULE UPDATE - OPS ORACLE logger.info(f"Rescheduling SID:{store_id} in OPS ORACLE") if isinstance(reset_store_ops, pd.DataFrame): content_type = 74 object_id = reset_store_ops.loc[ reset_store_ops['store_id'] == store_id, 'object_id'].unique() for obj in object_id: request_body = {"object_id": int(obj), "content_type": content_type} api_response, _ = django.django_model_execution_log_create_api( request_body) reset_store_ops.loc[ reset_store_ops['object_id'] == obj, 'api_call_response'] = api_response else: logger.info("Writing to RS-DB skipped") status = 'Success' logger.info(f"IPC code execution status: {status}") except Exception as error: logger.exception(error) logger.info(f"IPC code execution status: {status}") return status, order_value_all, new_drug_entries, missed_entries if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-d', '--debug_mode', default="N", type=str, required=False) parser.add_argument('-exsto', '--exclude_stores', default=[52, 60, 92, 243, 281], nargs='+', type=int, required=False) parser.add_argument('-gad', '--gaid_flag', default="Y", type=str, required=False) parser.add_argument('-giw', '--gaid_inv_wt', default=0.5, type=float, required=False) parser.add_argument('-riw', '--rest_inv_wt', default=0.0, type=float, required=False) parser.add_argument('-tiw', '--top_inv_wt', default=1, type=float, required=False) parser.add_argument('-cmf', '--chronic_max_flag', default="N", type=str, required=False) parser.add_argument('-wgc', '--wh_gen_consld', default="Y", type=str, required=False) parser.add_argument('-v5', '--v5_active_flag', default="N", type=str, required=False) parser.add_argument('-v6', '--v6_active_flag', default="N", type=str, required=False) parser.add_argument('-v6lst', '--v6_type_list', default=['ethical', 'generic', 'others'], nargs='+', type=str, required=False) parser.add_argument('-v6ptr', '--v6_ptr_cut_off', default=400, type=int, required=False) parser.add_argument('-rd', '--reset_date', default="YYYY-MM-DD", type=str, required=False) parser.add_argument('-rs', '--reset_stores', default=[0], nargs='+', type=int, required=False) parser.add_argument('-v3', '--v3_active_flag', default="N", type=str, required=False) parser.add_argument('-v3sp', '--corr_selling_prob_cutoff', default="{'ma_less_than_2': 0.40, 'ma_more_than_2' : 0.40}", type=str, required=False) parser.add_argument('-v3cp', '--corr_cumm_prob_cutoff', default="{'ma_less_than_2':0.50,'ma_more_than_2':0.63}", type=str, required=False) parser.add_argument('-v4tl', '--v4_drug_type_list', default="{'generic':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'ethical':'{0:[0,0,0], 1:[0,0,1], 2:[0,1,2],3:[1,2,3]}'," "'others':'{0:[0,0,0], 1:[0,1,2], 2:[0,1,2],3:[1,2,3]}'}", type=str, required=False) parser.add_argument('-npi', '--omit_npi', default='N', type=str, required=False) parser.add_argument('-kagc', '--keep_all_generic_comp', default='N', type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env email_to = args.email_to debug_mode = args.debug_mode # JOB EXCLUSIVE PARAMS exclude_stores = args.exclude_stores goodaid_ss_flag = args.gaid_flag ga_inv_weight = args.gaid_inv_wt rest_inv_weight = args.rest_inv_wt top_inv_weight = args.rest_inv_wt chronic_max_flag = args.chronic_max_flag wh_gen_consolidation = args.wh_gen_consld v5_active_flag = args.v5_active_flag v6_active_flag = args.v6_active_flag v6_type_list = args.v6_type_list v6_ptr_cut_off = args.v6_ptr_cut_off reset_date = args.reset_date reset_stores = args.reset_stores v3_active_flag = args.v3_active_flag corrections_selling_probability_cutoff = args.corr_selling_prob_cutoff corrections_cumulative_probability_cutoff = args.corr_cumm_prob_cutoff drug_type_list_v4 = args.v4_drug_type_list omit_npi = args.omit_npi keep_all_generic_comp = args.keep_all_generic_comp # EVALUATE REQUIRED JSON PARAMS corrections_selling_probability_cutoff = literal_eval( corrections_selling_probability_cutoff) corrections_cumulative_probability_cutoff = literal_eval( corrections_cumulative_probability_cutoff) drug_type_list_v4 = literal_eval(drug_type_list_v4) logger = get_logger() s3 = S3() django = Django() rs_db_read = DB(read_only=True) rs_db_write = DB(read_only=False) read_schema = 'prod2-generico' write_schema = 'prod2-generico' # open RS connection rs_db_read.open_connection() rs_db_write.open_connection() if reset_date == 'YYYY-MM-DD': # Take current date reset_date = dt.date.today().strftime("%Y-%m-%d") if reset_stores == [0]: # Fetch scheduled IPC stores from OPS ORACLE store_query = """ select "id", name, "opened-at" as opened_at from "{read_schema}".stores where name <> 'Zippin Central' and "is-active" = 1 and "opened-at" != '0101-01-01 00:00:00' and id not in {0} """.format(str(exclude_stores).replace('[', '(').replace(']', ')'), read_schema=read_schema) stores = rs_db_read.get_df(store_query) # considering reset of old stores only (age > 1 year) store_id = stores.loc[dt.datetime.now() - stores['opened_at'] > dt.timedelta(days=365), 'id'].values # QUERY TO GET SCHEDULED STORES AND TYPE FROM OPS ORACLE pg_internal = PostGre(is_internal=True) pg_internal.open_connection() reset_store_query = """ SELECT "ssr"."id" as object_id, "s"."bpos_store_id" as store_id, "dc"."slug" as type, "ssr"."drug_grade" FROM "safety_stock_reset_drug_category_mapping" ssr INNER JOIN "ops_store_manifest" osm ON ( "ssr"."ops_store_manifest_id" = "osm"."id" ) INNER JOIN "retail_store" s ON ( "osm"."store_id" = "s"."id" ) INNER JOIN "drug_category" dc ON ( "ssr"."drug_category_id" = "dc"."id") WHERE ( ( "ssr"."should_run_daily" = TRUE OR "ssr"."trigger_dates" && ARRAY[ date('{reset_date}')] ) AND "ssr"."is_auto_generate" = TRUE AND "osm"."is_active" = TRUE AND "osm"."is_generate_safety_stock_reset" = TRUE AND "dc"."is_safety_stock_reset_enabled" = TRUE AND "dc"."is_active" = TRUE AND s.bpos_store_id in {store_list} ) """.format( store_list=str(list(store_id)).replace('[', '(').replace(']', ')'), reset_date=reset_date) reset_store_ops = pd.read_sql_query(reset_store_query, pg_internal.connection) pg_internal.close_connection() reset_store_ops['api_call_response'] = False reset_stores = reset_store_ops['store_id'].unique() type_list = None else: type_list = "('ethical', 'ayurvedic', 'generic', 'discontinued-products', " \ "'banned', 'general', 'high-value-ethical', 'baby-product'," \ " 'surgical', 'otc', 'glucose-test-kit', 'category-2', " \ "'category-1', 'category-4', 'baby-food', '', 'category-3')" reset_store_ops = None """ calling the main function """ status, order_value_all, new_drug_entries, \ missed_entries = main( debug_mode, reset_stores, reset_date, type_list, reset_store_ops, goodaid_ss_flag, ga_inv_weight, rest_inv_weight, top_inv_weight, chronic_max_flag, wh_gen_consolidation, v5_active_flag, v6_active_flag, v6_type_list, v6_ptr_cut_off, v3_active_flag, omit_npi, corrections_selling_probability_cutoff, corrections_cumulative_probability_cutoff, drug_type_list_v4, keep_all_generic_comp, rs_db_read, rs_db_write, read_schema, write_schema, s3, django, logger) # close RS connection rs_db_read.close_connection() rs_db_write.close_connection() # save email attachements to s3 order_value_all_uri = s3.save_df_to_s3(order_value_all, file_name=f"order_value_all_{reset_date}.csv") new_drug_entries_uri = s3.save_df_to_s3(new_drug_entries, file_name=f"new_drug_entries_{reset_date}.csv") missed_entries_uri = s3.save_df_to_s3(missed_entries, file_name=f"missed_entries_{reset_date}.csv") # SEND EMAIL ATTACHMENTS logger.info("Sending email attachments..") email = Email() email.send_email_file( subject=f"IPC SS Reset (SM-{env}) {reset_date}: {status}", mail_body=f""" Debug Mode: {debug_mode} Reset Stores: {reset_stores} Job Params: {args} """, to_emails=email_to, file_uris=[order_value_all_uri, new_drug_entries_uri, missed_entries_uri]) logger.info("Script ended")
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/ipc/ipc_ss_main.py
ipc_ss_main.py
# ============================================================================= # purpose: Excess REMOVAL CODE # Author: Saurav Maskar # ============================================================================= import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import datetime import argparse import pandas as pd import numpy as np parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-sku', '--sku_to_add_daily', default=18, type=int, required=False) parser.add_argument('-fsku', '--fofo_sku_to_add_daily', default=50, type=int, required=False) parser.add_argument('-ccf', '--cold_chain_flag', default=1, type=str, required=False) parser.add_argument('-si', '--stores_to_include_if_blank_all', default="NULL", type=str, required=False) parser.add_argument('-se', '--stores_to_exclude_if_blank_none', default="NULL", type=str, required=False) parser.add_argument('-ci', '--city_id_to_include_if_blank_all', default="NULL", type=str, required=False) parser.add_argument('-ce', '--city_id_to_exclude_if_blank_none', default="NULL", type=str, required=False) parser.add_argument('-dieibn', '--drug_id_exclude_if_blank_none', default="NULL", type=str, required=False) parser.add_argument('-ff', '--fofo_inclusion_flag', default="0", type=str, required=False) parser.add_argument('-gif', '--goodaid_inclusion_flag', default=1, type=int, required=False) parser.add_argument('-qc', '--quantity_cap', default=100, type=int, required=False) parser.add_argument('-fqc', '--fofo_quantity_cap', default=70, type=int, required=False) parser.add_argument('-rfm', '--read_from_mysql', default=1, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to sku_to_add_daily = args.sku_to_add_daily fofo_sku_to_add_daily = args.fofo_sku_to_add_daily # Cold Chain Parameter Logic - If 0 - Don't add cold chain products, IF 2 - Only add cold chain product, If 1 - Don't care if cold chain product is added or not cold_chain_flag = args.cold_chain_flag stores_to_include_if_blank_all = args.stores_to_include_if_blank_all stores_to_exclude_if_blank_none = args.stores_to_exclude_if_blank_none city_id_to_include_if_blank_all = args.city_id_to_include_if_blank_all city_id_to_exclude_if_blank_none = args.city_id_to_exclude_if_blank_none drug_id_exclude_if_blank_none = args.drug_id_exclude_if_blank_none fofo_inclusion_flag = args.fofo_inclusion_flag goodaid_inclusion_flag = args.goodaid_inclusion_flag quantity_cap = args.quantity_cap fofo_quantity_cap = args.fofo_quantity_cap read_from_mysql= args.read_from_mysql os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() mysql_read = MySQL() mysql_read.open_connection() s3 = S3() start_time = datetime.datetime.now() logger.info('Script Manager Initialized') logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("sku_to_add_daily - " + str(sku_to_add_daily)) logger.info("fofo_sku_to_add_daily - " + str(sku_to_add_daily)) logger.info("cold_chain_flag - " + str(cold_chain_flag)) logger.info("stores_to_include_if_blank_all - " + str(stores_to_include_if_blank_all)) logger.info("stores_to_exclude_if_blank_none - " + str(stores_to_exclude_if_blank_none)) logger.info("city_id_to_include_if_blank_all - " + str(city_id_to_include_if_blank_all)) logger.info("city_id_to_exclude_if_blank_none - " + str(city_id_to_exclude_if_blank_none)) logger.info("drug_id_exclude_if_blank_none - " + str(city_id_to_exclude_if_blank_none)) logger.info("fofo_inclusion_flag - " + str(fofo_inclusion_flag)) logger.info("goodaid_inclusion_flag - " + str(goodaid_inclusion_flag)) logger.info("quantity_cap - " + str(quantity_cap)) logger.info("fofo_quantity_cap - " + str(fofo_quantity_cap)) # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() time_period_to_look_back = cur_date.day + 2 # ============================================================================= # set parameters, to adhere to adhoc request of adding/excluding NPI in mentioned stores only # ============================================================================= parameter_input1 = False parameter_input2 = False parameter_input3 = False parameter_input4 = False # Writng this function so that we can get list of stores irrespective of input format in parameter def fetch_number(list): list2 = [] for i in list: try: list2.append(int(i)) except: pass return list2 if stores_to_include_if_blank_all == 'NULL' and stores_to_exclude_if_blank_none == 'NULL': parameter_input1 = False parameter_input2 = False logger.info('Missing parameters, Taking all stores') else: if stores_to_include_if_blank_all != 'NULL': parameter_input1 = True stores_to_include_if_blank_all = stores_to_include_if_blank_all stores_to_include_if_blank_all = fetch_number(stores_to_include_if_blank_all.split(',')) logger.info('read parameters to include stores, taking included stores only - {}'.format( stores_to_include_if_blank_all)) if stores_to_exclude_if_blank_none != 'NULL': parameter_input2 = True stores_to_exclude_if_blank_none = stores_to_exclude_if_blank_none stores_to_exclude_if_blank_none = fetch_number(stores_to_exclude_if_blank_none.split(',')) logger.info('read parameters to exclude stores, not taking excluded stores - {}'.format( stores_to_exclude_if_blank_none)) if city_id_to_include_if_blank_all == 'NULL' and city_id_to_exclude_if_blank_none == 'NULL': parameter_input3 = False parameter_input4 = False logger.info('Missing parameters, Taking all cities') else: if city_id_to_include_if_blank_all != 'NULL': parameter_input3 = True city_id_to_include_if_blank_all = city_id_to_include_if_blank_all city_id_to_include_if_blank_all = fetch_number(city_id_to_include_if_blank_all.split(',')) logger.info('read parameters to include city, taking included cities only - {}'.format( city_id_to_include_if_blank_all)) if city_id_to_exclude_if_blank_none != 'NULL': parameter_input4 = True city_id_to_exclude_if_blank_none = city_id_to_exclude_if_blank_none city_id_to_exclude_if_blank_none = fetch_number(city_id_to_exclude_if_blank_none.split(',')) logger.info('read parameters to exclude city, not taking excluded cities - {}'.format( city_id_to_exclude_if_blank_none)) if drug_id_exclude_if_blank_none == 'NULL': drug_id_exclude_if_blank_none = [0,0] logger.info('Missing parameters, drug_id_exclude_if_blank_none') else: drug_id_exclude_if_blank_none = fetch_number(drug_id_exclude_if_blank_none.split(',')) logger.info('read parameters to exclude drugs, not taking excluded drugs - {}'.format( drug_id_exclude_if_blank_none)) # ============================================================================= # NPI Removal Script # ============================================================================= # Getting prod drug detail prod_drugs_query = ''' select id as "drug-id", "drug-name", type, "pack-form", "cold-chain" from "prod2-generico"."drugs" d WHERE d."type" not in ('banned','discontinued-products') and d."drug-name" not like '%BAILLEY%' and d."drug-name" not like '%Lozenges%' and d."drug-name" not like '%LOZENGE%' ''' prod_drugs = rs_db.get_df(prod_drugs_query) # Getting drugs under Promo codes promo_prod_drugs_query = ''' SELECT DISTINCT i."drug-id" as "drug-id" FROM "prod2-generico"."bill-promo-codes" bpc left join "prod2-generico"."bill-items-1" bi on bpc."bill-item-id" = bi.id left join "prod2-generico"."inventory-1" i on bi."inventory-id" = i.id left join "prod2-generico"."promo-codes" pc on bpc."promo-code-id" = pc.id left join "prod2-generico".drugs d on d.id = i."drug-id" WHERE pc."promo-code" in ('PPI', 'PPI50', 'PPI20', 'FPPI', 'BOGO') and bi."created-at" >= CURRENT_DATE - 45 ''' promo_prod_drugs = rs_db.get_df(promo_prod_drugs_query) promo_drugs = list(map(int,promo_prod_drugs['drug-id'].unique())) final_drugs_to_exclude = promo_drugs + drug_id_exclude_if_blank_none logger.info('Final drugs to exclude - {}'.format(final_drugs_to_exclude)) prod_drugs = prod_drugs[~prod_drugs['drug-id'].isin(final_drugs_to_exclude)] # getting my sql store_drug list if int(read_from_mysql) == 1: store_drug_prod_query = ''' select `store-id` , `drug-id`, 1 as `dummy` from `prod2-generico`.`excess-drugs` nd where status in ('saved', 'in-progress') or (status = 'completed' and date(nd.`created-at`) > date(DATE_ADD(date(now()) , INTERVAL -{time_period_to_look_back} Day))) '''.format(time_period_to_look_back=time_period_to_look_back) store_drug_prod = pd.read_sql_query(store_drug_prod_query, mysql_read.connection) logger.info('Read store_drug_prod - from Mysql') else: store_drug_prod_query = ''' select "store-id" , "drug-id", 1 as "dummy" from "prod2-generico"."excess-drugs" nd where status in ('saved', 'in-progress') or (status = 'completed' and date(nd."created-at") > date(dateadd(d,-{time_period_to_look_back},current_date))) '''.format(time_period_to_look_back=time_period_to_look_back) store_drug_prod = rs_db.get_df(store_drug_prod_query) logger.info('Read store_drug_prod - from RS') # Getting list of drugs in audit at the moment if int(read_from_mysql) == 1: audit_drug_prod_query = ''' SELECT a.`store-id` , a.`drug-id` , 1 as dummy_audit from ( select b.`store-id` , a.`drug-id` , 1 as dummy, ROW_NUMBER() OVER(PARTITION BY b.`store-id` , a.`drug-id` ORDER BY a.id DESC) as 'row' from `inventory-check-items-1` as a join `inventory-check-1` as b on a.`check-id` = b.id where b.`complete` = 0)a WHERE a.`row` = 1 ''' audit_drug_prod = pd.read_sql_query(audit_drug_prod_query, mysql_read.connection) logger.info('Read audit_drug_prod - from Mysql') else: audit_drug_prod_query = ''' SELECT a."store-id" , a."drug-id" , 1 as dummy_audit from ( select b."store-id" , a."drug-id" , 1 as dummy, ROW_NUMBER() OVER(PARTITION BY b."store-id" , a."drug-id" ORDER BY a.id DESC) as "row" from "prod2-generico"."inventory-check-items-1" as a join "prod2-generico"."inventory-check-1" as b on a."check-id" = b.id where b."complete" = 0)a WHERE a."row" = 1 ''' audit_drug_prod = rs_db.get_df(audit_drug_prod_query) logger.info('Read audit_drug_prod - from RS') # getting store_id list # connection = current_config.data_science_postgresql_conn() # store_list_query = ''' # select distinct store_id # from dead_stock_inventory dsi # where inventory_type = 'Rotate' # ''' # store_list = pd.read_sql_query(store_list_query, connection) # connection.close() store_list_query = ''' select distinct "store-id" from "prod2-generico"."excess-inventory-categorisation" eic where "inventory-type" = 'Rotate' ''' store_list = rs_db.get_df(store_list_query) if int(fofo_inclusion_flag) == 1: store_list_query_fofo = ''' select distinct "store-id" from "prod2-generico"."excess-inventory-categorisation" eic where "inventory-type" = 'Rotate_fofo_launch_doh' ''' store_list_fofo = rs_db.get_df(store_list_query_fofo) store_list = pd.concat([store_list,store_list_fofo],sort=True) # getting last day store status store_completed = pd.DataFrame() if int(read_from_mysql)==1: store_last_status_query = """ select * from ( select row_number() over (partition by nd.`store-id` order by nd.`created-at` desc ) as `row`, nd.`store-id`, nd.status , nd.`created-at` from `prod2-generico`.`excess-drugs` nd) nd where nd.`row` = 1 """ store_last_status = pd.read_sql_query(store_last_status_query, mysql_read.connection) logger.info('Read store_last_status - from Mysql') else: store_last_status_query = """ select * from ( select row_number() over (partition by nd."store-id" order by nd."created-at" desc ) as "row", nd."store-id", nd.status , nd."created-at" from "prod2-generico"."excess-drugs" nd) nd where nd."row" = 1 """ store_last_status = rs_db.get_df(store_last_status_query) logger.info('Read store_last_status - from RS') store_completed = store_last_status[store_last_status['status']=='completed']['store-id'] store_completed = pd.DataFrame(store_completed,columns=['store-id']) # Checking If any new store is added nd_stores = store_last_status['store-id'].unique() new_stores = pd.DataFrame() for store in store_list['store-id']: if store not in nd_stores: #print(store) store_new = pd.DataFrame([store], columns=['store-id']) new_stores = new_stores.append(store_new) store_completed = pd.concat([store_completed,new_stores]) # Adding city ids and franchise flag to stores store_info_query = ''' select s.id as "store-id", s."franchisee-id" , s."city-id" from "prod2-generico".stores s where s."is-active" =1 ''' store_info = rs_db.get_df(store_info_query ) # Inner Join - Only selecting active stores store_completed = store_completed.merge(store_info,on='store-id',how='inner') if parameter_input1: store_completed = store_completed[store_completed ['store-id'].isin(stores_to_include_if_blank_all)] if parameter_input2: store_completed = store_completed[~store_completed ['store-id'].isin(stores_to_exclude_if_blank_none)] if parameter_input3: store_completed = store_completed[store_completed['city-id'].isin(city_id_to_include_if_blank_all)] if parameter_input4: store_completed = store_completed[~store_completed['city-id'].isin(city_id_to_exclude_if_blank_none)] if int(fofo_inclusion_flag) == 0: store_completed = store_completed[store_completed['franchisee-id']==1] elif int(fofo_inclusion_flag) == 2: store_completed = store_completed[store_completed['franchisee-id'] != 1] elif int(fofo_inclusion_flag) == 1: store_completed = store_completed del store_completed['city-id'] # for store in store_list['store-id']: # store_completed_query = ''' # select # distinct "store-id" # from # "prod2-generico"."npi-drugs" # where # date("created-at") = # ( # select # Max(date("created-at")) # from # "prod2-generico"."npi-drugs" # where # "store-id"= {store}) # and status = 'completed' # and "store-id"= {store} # '''.format(store=store) # store_completed_1 = rs_db.get_df(store_completed_query) # # if len(store_completed_1)== 0: # new_store = """ # SELECT # DISTINCT nd."store-id" # FROM # "prod2-generico"."npi-drugs" nd # WHERE # nd."store-id" = {store} # """.format(store=store) # new_store = rs_db.get_df(new_store) # # if len(new_store)== 0: # store_completed_1 = pd.DataFrame([store],columns=['store-id']) # # store_completed = store_completed_1.append(store_completed) # getting PG drug list # connection = current_config.data_science_postgresql_conn() # npi_drug_list = """ # select store_id, drug_id, # sum(locked_quantity + quantity) as "total_quantity", # sum(locked_value + value) as "total_value" # from dead_stock_inventory dsi # where inventory_type = 'Rotate' # group by store_id, drug_id # """ # npi_drug_list = pd.read_sql_query(npi_drug_list, connection) # connection.close() npi_drug_list = """ select "store-id", "drug-id", sum("excess-quantity") as "total-quantity", sum("excess-value") as "total-value" from "prod2-generico"."excess-inventory-categorisation" eic where "inventory-type" = 'Rotate' group by "store-id", "drug-id" """ npi_drug_list = rs_db.get_df(npi_drug_list) if int(fofo_inclusion_flag) == 1: logger.info('adding FOFO Launch Stock Excess Inventory as well') npi_drug_list_fofo = """ select "store-id", "drug-id", sum("excess-quantity") as "total-quantity", sum("excess-value") as "total-value" from "prod2-generico"."excess-inventory-categorisation" eic where "inventory-type" = 'Rotate_fofo_launch_doh' group by "store-id", "drug-id" """ npi_drug_list_fofo = rs_db.get_df(npi_drug_list_fofo) npi_drug_list = pd.concat([npi_drug_list,npi_drug_list_fofo],sort = True) # merging npi list with drugs table for packform, also removing any drugs if provided as input in prod_drugs query npi_drug_list = npi_drug_list.merge(prod_drugs, how='inner', on='drug-id') # ============================================================================= # Adding Quantity Sold at System level # ============================================================================= drgs = tuple(map(int,npi_drug_list['drug-id'].unique())) s1 = """ select "drug-id", sum("net-quantity") as "system-sales-qty-last-90-days" from "prod2-generico"."sales" sh where date("created-at") >= date(current_date - 90) and date("created-at") <= date(current_date) and "drug-id" in {drgs} group by "drug-id" """.format( drgs=drgs) quantity_sold = rs_db.get_df(s1) npi_drug_list = npi_drug_list.merge(quantity_sold,on = 'drug-id', how ='left') npi_drug_list['system-sales-qty-last-90-days'] = npi_drug_list['system-sales-qty-last-90-days'].fillna(0) # ============================================================================= # System Searched quantity last 90 days # ============================================================================= s2 = """ select "drug-id", sum("search-count-clean") as "system-searched-qty-last-90-days" from "prod2-generico"."cfr-searches-v2" csv2 where date("search-date") >= date(current_date - 90) and date("search-date") <= date(current_date) and "drug-id" in {drgs} group by "drug-id" """.format( drgs=drgs) drugs_searched = rs_db.get_df(s2) npi_drug_list = npi_drug_list.merge(drugs_searched,on = 'drug-id', how ='left') npi_drug_list['system-searched-qty-last-90-days'] = npi_drug_list['system-searched-qty-last-90-days'].fillna(0) npi_drug_list['liquidation-index'] = npi_drug_list['system-sales-qty-last-90-days']*0.8+npi_drug_list['system-searched-qty-last-90-days']*0.2 npi_drug_list['liquidation-index'] = npi_drug_list['liquidation-index'].fillna(0) npi_drug_list['liquidation-index'] = npi_drug_list['liquidation-index'] - npi_drug_list['liquidation-index'].min() npi_drug_list['liquidation-index'] = npi_drug_list['liquidation-index']/npi_drug_list['liquidation-index'].max() npi_drug_list['liquidation-index'] = npi_drug_list['liquidation-index'].astype(float)*npi_drug_list['total-value'].astype(float) # GA drugs inclusion flag if int(goodaid_inclusion_flag) == 0: logger.info('removing GA drugs') goodaid_drug_query = ''' select d.id as "drug-id" from "prod2-generico".drugs d where d."company-id" = 6984 ''' goodaid_drugs = rs_db.get_df(goodaid_drug_query) goodaid_drug_id = tuple(map(int, goodaid_drugs['drug-id'].unique())) npi_drug_list = npi_drug_list[~npi_drug_list['drug-id'].isin(goodaid_drug_id)] logger.info('removed GA drugs') else: logger.info('not removing GA drugs') if int(cold_chain_flag) == 0: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain']==0] logger.info('removing cold chain products') elif int(cold_chain_flag) == 2: npi_drug_list = npi_drug_list[npi_drug_list['cold-chain'] == 1] logger.info('considering only cold chain products') else: logger.info('Not caring whether cold chain items are added or not') # merging prod and DSS to avoid duplicate entries npi_drug_list = npi_drug_list.merge(store_drug_prod, how='left', on=['store-id', 'drug-id']) # merging with completed stores npi_drug_list = npi_drug_list.merge(store_completed, how='inner', on=['store-id']) # replaceing null with 0 and extracting 35 rows npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy == 0] # merging with audit drugs to avoid audit drugs entry npi_drug_list = npi_drug_list.merge(audit_drug_prod, how='left', on=['store-id', 'drug-id']) # replaceing null with 0 and extracting 35 rows npi_drug_list = npi_drug_list.replace(np.nan, 0) npi_drug_list = npi_drug_list[npi_drug_list.dummy_audit == 0] npi_drug_list=npi_drug_list[~npi_drug_list['type'].isin(['discontinued-products','banned'])] choice = [npi_drug_list['type'] == 'high-value-ethical', npi_drug_list['type'] == 'ethical', npi_drug_list['type'] == 'generic', npi_drug_list['type'] == 'ayurvedic', npi_drug_list['type'] == 'surgical', npi_drug_list['type'] == 'category-4', npi_drug_list['type'] == 'otc', npi_drug_list['type'] == 'general', npi_drug_list['type'] == 'baby-food', npi_drug_list['type'] == 'baby-product', npi_drug_list['type'] == 'glucose-test-kit', npi_drug_list['type'] == 'discontinued-products', npi_drug_list['type'] == 'banned'] select = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] npi_drug_list['sort-type'] = np.select(choice, select, default=999) npi_drug_list.sort_values(['store-id', 'liquidation-index', 'sort-type', 'pack-form', 'drug-name'], ascending=[True, False, True, True, True], inplace=True) # Adding decided SKU (18 - parameter - sku_to_add_daily) per day npi_drug_list_franchisee = npi_drug_list[npi_drug_list['franchisee-id']!=1] npi_drug_list_coco = npi_drug_list[npi_drug_list['franchisee-id']==1] final_list_franchisee = npi_drug_list_franchisee.groupby('store-id').head(fofo_sku_to_add_daily).reset_index(drop=True) final_list_coco = npi_drug_list_coco.groupby('store-id').head(sku_to_add_daily).reset_index(drop=True) final_list = pd.concat([final_list_franchisee,final_list_coco],sort = True).reset_index(drop=True) # Capping quantity to decided number for outside mumbai(70 - Paramenter - quantity_cap) final_list['total-quantity'] = final_list['total-quantity'].astype(float) final_list['cum_sum_quantity_per_store'] = final_list.groupby(['store-id'])['total-quantity'].cumsum() # Atleast one sku should be added final_list['sku_rank'] = final_list.groupby(['store-id']).cumcount()+1 # Adding city ids # Mumbai citi ids - 1 - Mumbai, 3 - Thane, 2 - Navi Mumbai store_ids = tuple(map(int,final_list['store-id'].unique())) additng_city_id_query = """ select s.id as "store-id", s."city-id", zc."name" as "city-name" from "prod2-generico".stores s left join "prod2-generico"."zeno-city" zc on s."city-id" = zc.id where s.id in {store_ids} """.format(store_ids=store_ids + (0,0)) additng_city_id = rs_db.get_df(additng_city_id_query) final_list = final_list.merge(additng_city_id,how = 'left', on = 'store-id') final_list['city-id'] = final_list['city-id'].astype(int) conditions = [final_list['city-id'].isin([1,2,3]),final_list['sku_rank']==1,final_list['franchisee-id']!=1,final_list['sku_rank']!=1] choices = [1,1,1,final_list['cum_sum_quantity_per_store']] final_list['quantity_cap_index'] = np.select(conditions, choices, default = 0) final_list = final_list[((final_list['franchisee-id']==1) & (final_list['quantity_cap_index']<quantity_cap))|((final_list['franchisee-id']!=1) & (final_list['quantity_cap_index']<fofo_quantity_cap))] logger.info(f'for outside mumbai cities quantity is capped to {quantity_cap}') final_list['created-date'] = cur_date final_list['created-by'] = '[email protected]' final_list_npi = final_list[['store-id', 'drug-id','total-quantity']] final_list_npi.rename(columns = {'total-quantity':'quantity'},inplace =True) expected_data_length_insert = len(final_list_npi) logger.info("mySQL - Resulted data length after insert should be is {}".format(expected_data_length_insert)) schema = 'prod2-generico' table_name = 'excess-removal' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) status1 = False status2 = False if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") s3.write_df_to_db(df=final_list[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(str(table_name) + ' table uploaded') status1 = True if status1: mysql_write = MySQL(read_only=False) mysql_write.open_connection() # inserting data into prod logger.info("mySQL - Insert starting") final_list_npi.to_sql(name='excess-drugs', con=mysql_write.engine, if_exists='append', index=False, method='multi', chunksize=500) logger.info("mySQL - Insert ended") status2 = True mysql_write.close() npi_added_uri = s3.save_df_to_s3(df=final_list, file_name='excess_removal_details_{}.csv'.format(cur_date)) if status2 is True: status = 'Success' else: status = 'Failed' end_time = datetime.datetime.now() difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}-{status} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[npi_added_uri]) rs_db.close_connection() mysql_read.close()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/excess_inventory/excess_removal.py
excess_removal.py
"" import os import sys sys.path.append('../../../..') from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper.email.email import Email from zeno_etl_libs.db.db import DB, MySQL from zeno_etl_libs.config.common import Config from zeno_etl_libs.logger import get_logger from zeno_etl_libs.helper import helper from dateutil.tz import gettz import json import datetime import argparse import pandas as pd import numpy as np import traceback parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stage, prod)") parser.add_argument('-et', '--email_to', default="[email protected]", type=str, required=False) parser.add_argument('-dl', '--doh_limit', default=45, type=int, required=False, help="Excess Parameter - DOH limit to qualify as excess") parser.add_argument('-wvl', '--workcell_value_limit', default=100, type=int, required=False, help="Excess Parameter - workcell_value_limit to qualify as excess") parser.add_argument('-qcei', '--quantity_cap_to_qualify_as_excess_inventory', default=2, type=int, required=False, help = "Excess Parameter - Store must have atleast this much quantity to qualify as excess") parser.add_argument('-meqc', '--minimum_excess_quantity_cap', default=2, type=int, required=False, help = "Excess Parameter - excess quantity should be >= minimum_excess_quantity_cap ") parser.add_argument('-mx', '--max_times_x', default=1.2, type=int, required=False, help = "Excess Parameter - Either/or - Cushion over Max to qualify as excess") parser.add_argument('-mpxd', '--max_plux_x_doh', default=10, type=int, required=False, help = "Excess Parameter - Either/or - Cushion over Max to qualify as excess") # parser.add_argument('-md', '--minimum_doh', default=30, type=int, required=False, # help = "less Parameter - DOH below which inventory will be qualified as less") parser.add_argument('-ccof', '--categorise_coco_only_flag', default=1, type=int, required=False, help = "1 = Only COCO store, 0 = All") parser.add_argument('-msa', '--minimum_store_age', default=180, type=int, required=False, help = "Minimum Store age to categorise excess inventory") parser.add_argument('-msda', '--minimum_store_drug_age', default=45, type=int, required=False, help = "Minimum Store_drug_age to categorise excess inventory") parser.add_argument('-nec', '--near_expiry_cap', default=90, type=int, required=False, help = "Inventory above near expiry will only be considered for categorisation") parser.add_argument('-flsa', '--fofo_launch_store_age', default=90, type=int, required=False, help = "fofo store age for excess type launch_stock>fofo_launch_doh_limit") parser.add_argument('-fldl', '--fofo_launch_doh_limit', default=180, type=int, required=False, help = "fofo store reove launch_stock where quantity>fofo_launch_doh_limit") args, unknown = parser.parse_known_args() env = args.env email_to = args.email_to doh_limit = args.doh_limit workcell_value_limit = args.workcell_value_limit quantity_cap_to_qualify_as_excess_inventory = args.quantity_cap_to_qualify_as_excess_inventory minimum_excess_quantity_cap = args.minimum_excess_quantity_cap max_times_x = args.max_times_x max_plux_x_doh = args.max_plux_x_doh # minimum_doh = args.minimum_doh categorise_coco_only_flag = args.categorise_coco_only_flag minimum_store_age = args.minimum_store_age minimum_store_drug_age = args.minimum_store_drug_age near_expiry_cap = args.near_expiry_cap fofo_launch_store_age = args.fofo_launch_store_age fofo_launch_doh_limit = args.fofo_launch_doh_limit os.environ['env'] = env logger = get_logger(level='INFO') logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() start_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) logger.info('Script Manager Initialized') logger.info("") logger.info("parameters reading") logger.info(f"env: {env}") logger.info("email_to - " + email_to) logger.info("doh_limit - " + str(doh_limit)) logger.info("workcell_value_limit - " + str(workcell_value_limit)) logger.info("quantity_cap_to_qualify_as_excess_inventory - " + str(quantity_cap_to_qualify_as_excess_inventory)) logger.info("minimum_excess_quantity_cap - " + str(minimum_excess_quantity_cap)) logger.info("max_times_x - " + str(max_times_x)) logger.info("max_plux_x_doh - " + str(max_plux_x_doh)) # logger.info("minimum_doh - " + str(minimum_doh)) logger.info("categorise_coco_only_flag - " + str(categorise_coco_only_flag)) logger.info("minimum_store_age - " + str(minimum_store_age)) logger.info("minimum_store_drug_age - " + str(minimum_store_drug_age)) logger.info("near_expiry_cap - " + str(near_expiry_cap)) logger.info("fofo_launch_store_age - " + str(fofo_launch_store_age)) logger.info("fofo_launch_doh_limit - " + str(fofo_launch_doh_limit)) logger.info("") # date parameter logger.info("code started at {}".format(datetime.datetime.now().strftime( '%Y-%m-%d %H:%M:%S'))) logger.info("") cur_date = datetime.datetime.now(tz=gettz('Asia/Kolkata')).date() # Fetching Inventory data inventory_query = f""" select i."store-id" , i."drug-id", sum(i.quantity) as "quantity", sum(i.quantity * i."purchase-rate") as "workcell-value" from "prod2-generico"."prod2-generico"."inventory-1" i where i."quantity" > 0 and i."franchisee-inventory" = 0 and i."expiry" > dateadd(day,{near_expiry_cap},getdate()) group by i."store-id" , i."drug-id" """ inventory = rs_db.get_df(inventory_query) logger.info('fetched inventory data') # Fetching Stores data stores_query = """ select s.id as "store-id", s."name" as "store-name", case when s."franchisee-id" = 1 then 'COCO' else 'FOFO' end as "franchise-tag", case when s."opened-at" is null or s."opened-at" = '0101-01-01 00:00:00.000' then 0 else datediff(day, date(s."opened-at"), current_date) end as "store-age", zc."name" as "city-name" from "prod2-generico"."prod2-generico".stores s left join "prod2-generico"."prod2-generico".franchisees f on s."franchisee-id" = f.id left join "prod2-generico"."prod2-generico"."zeno-city" zc on s."city-id" = zc.id left join "prod2-generico"."prod2-generico"."zeno-indian-states" zis on zc."indian-state-id" = zis.id """ stores = rs_db.get_df(stores_query) inventory = inventory.merge(stores, how = 'left', on = 'store-id') logger.info('fetched stores data') # Fetching drugs data drugs_query = """ select d.id as "drug-id", d."drug-name" , d."type" as "drug-type", case when d."company-id" = 6984 then 'Goodaid' else 'non-Goodaid' end as "goodaid-flag" from "prod2-generico"."prod2-generico".drugs d """ drugs = rs_db.get_df(drugs_query) inventory = inventory.merge(drugs, how = 'left', on = 'drug-id') logger.info('fetched drugs data') # Fetching store-drug-age store_drug_age_query = """ select s."store-id" , s."drug-id" , datediff(day,min(s."created-at"),current_date) as "store-drug-age" from "prod2-generico".sales s where s."bill-flag" = 'gross' group by s."store-id" , s."drug-id" """ store_drug_age = rs_db.get_df(store_drug_age_query) inventory = inventory.merge(store_drug_age, how = 'left', on = ['store-id','drug-id']) inventory['store-drug-age'] = inventory['store-drug-age'].fillna(1) logger.info('fetched store_drug_age data') #Fetching sales data sales_query = """ select s."store-id" , s."drug-id" , sum(s.quantity) as "last-90-days-sales-quantity" from "prod2-generico"."prod2-generico".sales s where date(s."created-at") > current_date - 90 group by s."store-id" , s."drug-id" """ sales = rs_db.get_df(sales_query) inventory = inventory.merge(sales, how = 'left', on = ['store-id','drug-id']) inventory['last-90-days-sales-quantity-orignal'] = inventory['last-90-days-sales-quantity'] logger.info('fetched sales data') # Fetching store-drug availibility percentage store_drug_availibility_query = """ select oosdl."store-id" , oosdl."drug-id" , -- sum("oos-count") as "oos-count", -- sum("drug-count") as "drug-count", 1 - (sum("oos-count")/ sum("drug-count")) as "availibility_percentage" from "prod2-generico"."out-of-shelf-drug-level" oosdl where "closing-date" >= current_date - 90 and "max-set" = 'Y' group by oosdl."store-id" , oosdl."drug-id" """ store_drug_availibility = rs_db.get_df(store_drug_availibility_query) inventory = inventory.merge(store_drug_availibility, how = 'left', on = ['store-id','drug-id']) inventory['availibility_percentage'] = inventory['availibility_percentage'].fillna(1) logger.info('fetched store_drug_availibility data') # Calculating sales based doh inventory['last-90-days-sales-quantity'] = inventory['last-90-days-sales-quantity'].fillna(0) inventory['last-90-days-sales-quantity'] = inventory['last-90-days-sales-quantity'] /inventory['availibility_percentage'] inventory['last-90-days-sales-quantity'] = inventory['last-90-days-sales-quantity'].astype(float) inventory['sales-demand-daily'] = inventory['last-90-days-sales-quantity']*1.0/90.0 inventory['doh-based-on-sales'] = inventory['quantity']/inventory['sales-demand-daily'] inventory['store-drug'] = inventory['store-id'].astype(str) + '-' + inventory['drug-id'].astype(str) store_drug_list = tuple(map(str,inventory['store-drug'].unique())) logger.info('calculated sales based doh') # Fetching IPC forecast data ipc_forecast_query = f""" select iss."store-id" , iss."drug-id" , iss.fcst , iss.std from "prod2-generico"."ipc2-safety-stock" iss inner join ( select "store-id" , max("reset-date") as latest_reset from "prod2-generico"."ipc2-safety-stock" iss group by "store-id" ) as sq on iss."store-id" = sq."store-id" and iss."reset-date" = sq.latest_reset and concat(iss."store-id", CONCAT('-', iss."drug-id")) in {store_drug_list} """ ipc_forecast = rs_db.get_df(ipc_forecast_query) inventory = inventory.merge(ipc_forecast, how = 'left', on = ['store-id','drug-id']) logger.info('fetched ipc_forecast data') # calculating fcst based doh inventory['fcst'] = inventory['fcst'].fillna(0) inventory['fcst-demand-daily'] = inventory['fcst']/28 inventory['doh-based-on-fcst'] = inventory['quantity']/inventory['fcst-demand-daily'] logger.info('calculated fcst based doh') # deciding fcst vs sales based doh conditions = [inventory['doh-based-on-fcst']<inventory['doh-based-on-sales'],inventory['doh-based-on-fcst']>=inventory['doh-based-on-sales']] choice = [inventory['doh-based-on-fcst'],inventory['doh-based-on-sales']] choice2 = [inventory['fcst-demand-daily'],inventory['sales-demand-daily']] choice3 = ['fcst-based','sales-history-based'] inventory['doh'] = np.select(conditions,choice, default=0) inventory['demand-daily'] = np.select(conditions,choice2, default=0) inventory['doh-type'] = np.select(conditions,choice3, default=0) logger.info('decided fcst vs sales based doh') # Fetching DOI data doi_query = f""" select doi."store-id" , doi."drug-id" , doi.min, doi.max , doi."safe-stock" from "prod2-generico"."drug-order-info" doi where concat(doi."store-id", CONCAT('-', doi."drug-id")) in {store_drug_list} """ doi = rs_db.get_df(doi_query) inventory = inventory.merge(doi,how='left',on = ['store-id','drug-id']) inventory['max-time-x-original'] = (inventory['max']*max_times_x).apply(np.ceil) inventory['max-plus-x-doh'] = inventory['max']+ (inventory['fcst-demand-daily']*1).apply(np.ceil) # Cushion over Max Eiether x% or x DOH which ever is higher conditions = [inventory['max-time-x-original']>=inventory['max-plus-x-doh'],inventory['max-time-x-original']<inventory['max-plus-x-doh']] choice = [inventory['max-time-x-original'],inventory['max-plus-x-doh']] choice2 = ['percentage over max','DOH over max'] inventory['max-cushion-type'] = np.select(conditions,choice2) inventory['max-time-x'] = np.select(conditions,choice) logger.info('fetched doi data') # Fetching NPI data npi_query = """ select nias."store-id" , nias."drug-id" , '1' as "in-npi" from "prod2-generico"."prod2-generico"."npi-inventory-at-store" nias where nias."inventory-type" = 'Rotate' group by nias."store-id" , nias."drug-id" """ npi = rs_db.get_df(npi_query) inventory = inventory.merge(npi , how = 'left', on = ['store-id','drug-id']) logger.info('fetched npi data') # Categorising inventory based on DOH and MAX conditions = [(inventory['doh']>=doh_limit) & (inventory['quantity']>inventory['max-time-x']) &(inventory['quantity']>quantity_cap_to_qualify_as_excess_inventory)] choice = ['excess'] inventory['excess-flag'] = np.select(conditions,choice, default='ok') # Identifying excess inventory inventory['excess-def1'] = (inventory['doh']-doh_limit)*inventory['demand-daily'] inventory['excess-def2'] = (inventory['quantity']-inventory['max-time-x']) inventory['excess-defmin'] = inventory[['excess-def1','excess-def2']].min(axis=1) # Calculating immediate stock transfer opportunity # inventory['less-def1'] = (minimum_doh - inventory['doh'])*inventory['demand-daily'] # inventory['less-defmin'] = inventory['less-def1'] # Defining excess quantity and value conditions = [(inventory['excess-flag']=='excess')] choice = [inventory['excess-defmin']] inventory['excess-quantity'] = np.select(conditions,choice, default=0) inventory['excess-quantity'] = inventory['excess-quantity'].apply(np.floor) inventory['excess-value'] = (inventory['workcell-value'].astype(float)/inventory['quantity'].astype(float))*inventory['excess-quantity'].astype(float) # Excess value should be greater than workcell value limit conditions = [(inventory['excess-flag']=='excess') & (inventory['excess-value']>= workcell_value_limit), (inventory['excess-flag']=='excess') & (inventory['excess-value']< workcell_value_limit), (inventory['excess-flag']!='excess')] choice = ['excess','ok',inventory['excess-flag']] choice1 =[inventory['excess-quantity'],0,inventory['excess-quantity']] choice2 = [inventory['excess-value'],0,inventory['excess-value']] inventory['excess-flag'] = np.select(conditions,choice, default='ok') inventory['excess-quantity'] = np.select(conditions,choice1, default=0) inventory['excess-value'] = np.select(conditions,choice2, default=0) # Excess quantity should be greater than minimum_excess_quantity_cap conditions = [(inventory['excess-flag']=='excess') & (inventory['excess-quantity']>= minimum_excess_quantity_cap), (inventory['excess-flag']=='excess') & (inventory['excess-quantity']< minimum_excess_quantity_cap), (inventory['excess-flag']!='excess')] choice = ['excess','ok',inventory['excess-flag']] choice1 =[inventory['excess-quantity'],0,inventory['excess-quantity']] choice2 = [inventory['excess-value'],0,inventory['excess-value']] inventory['excess-flag'] = np.select(conditions,choice, default='ok') inventory['excess-quantity'] = np.select(conditions,choice1, default=0) inventory['excess-value'] = np.select(conditions,choice2, default=0) logger.info('categorised inventory with flags - excess/less/ok') # Immediate Stock transfer opportunity # Immediate implies -Void in network stores (Void = (minimum_doh - inventory['doh'])*inventory['demand-daily']) # df4 = pd.pivot_table(inventory, # values=['excess-quantity','excess-value'], # index=['drug-id'], # columns=['excess-flag'], # aggfunc=np.sum).reset_index() # df4.columns = ["-".join(x) for x in df4.columns.ravel()] # # df4 = df4.reset_index(drop = True) # del df4['excess-quantity-ok'] # del df4['excess-value-ok'] # # df4 = df4[(df4['excess-quantity-excess']>0) | (df4['excess-quantity-less']>0)] # df4.reset_index(drop = True, inplace = True) # # df4.loc[df4['excess-quantity-excess']>=df4['excess-quantity-less'] , 'qty-stock-transfer-opportunity-immediate'] = df4['excess-quantity-less'] # df4.loc[df4['excess-quantity-excess']<df4['excess-quantity-less'] , 'qty-stock-transfer-opportunity-immediate'] = df4['excess-quantity-excess'] # # df4.loc[df4['excess-quantity-excess']>=df4['excess-quantity-less'] , 'value-stock-transfer-opportunity-immediate'] = df4['excess-value-less'] # df4.loc[df4['excess-quantity-excess']<df4['excess-quantity-less'] , 'value-stock-transfer-opportunity-immediate'] = df4['excess-value-excess'] # # df4.rename(columns={'drug-id-': 'drug-id'},inplace=True) # df4.columns # inventory = inventory.merge(df4[['drug-id','qty-stock-transfer-opportunity-immediate', # 'value-stock-transfer-opportunity-immediate' ]] , how = 'left', on = ['drug-id']) # # logger.info('calculated immediate stock transfer opportunity') # logger.info("") # logger.info('whole network level data') # logger.info(f"Excess Inventory - {sum(inventory[inventory['excess-flag']=='excess']['excess-value'])}") # logger.info(f"Excess Inventory with NPI - {sum(inventory[(inventory['excess-flag']=='excess') & (inventory['in-npi']=='1')]['excess-value'])}") # logger.info(f"Excess Inventory without NPI - {sum(inventory[(inventory['excess-flag']=='excess') & (inventory['in-npi']!='1')]['excess-value'])}") # logger.info(f"stock-transfer-opportunity - {sum(df4['value-stock-transfer-opportunity-immediate'].fillna(0))}") # logger.info("") # Network level sales network_sales = sales.groupby(['drug-id']).sum().reset_index()[['drug-id','last-90-days-sales-quantity']] network_sales.rename(columns={'last-90-days-sales-quantity': 'network-level-last-90-days-sales-quantity'},inplace=True) network_sales[['drug-id','network-level-last-90-days-sales-quantity']] = network_sales[['drug-id','network-level-last-90-days-sales-quantity']].astype(int) inventory = inventory.merge(network_sales , how = 'left', on = ['drug-id']) logger.info('added network level sales') inventory = inventory[inventory['excess-flag'] == 'excess'] inventory = inventory[inventory['store-age']>minimum_store_age] inventory = inventory[inventory['store-drug-age']>minimum_store_drug_age] if int(categorise_coco_only_flag) == 1: inventory = inventory[inventory['franchise-tag']=='COCO'] inventory = inventory[inventory['in-npi'].isna()] inventory = inventory[inventory['last-90-days-sales-quantity']!= 0] # Potential NPI, so not adding in excess # inventory['qty-stock-transfer-opportunity-immediate'] = inventory['qty-stock-transfer-opportunity-immediate'].fillna(0) # inventory['value-stock-transfer-opportunity-immediate'] = inventory['value-stock-transfer-opportunity-immediate'].fillna(0) inventory['network-level-last-90-days-sales-quantity'] = inventory['network-level-last-90-days-sales-quantity'].fillna(0) # conditions = [inventory['qty-stock-transfer-opportunity-immediate']>0] # choice = [1] # inventory['immediate-stock-transfer-opportunity-flag'] = np.select(conditions,choice, default=0) conditions = [inventory['network-level-last-90-days-sales-quantity']>0,inventory['network-level-last-90-days-sales-quantity']<=0] choice = ['Rotate','Return'] inventory['inventory-type'] = np.select(conditions,choice, default=0) logger.info('End : COCO Excess categorisation') # Adding Launch stock DOH > 180 In FOFO # Fetching fofo Inventory data logger.info('start : Adding Launch stock DOH > 180 In FOFO') fofo_launch_inventory_query = f""" select i."store-id" , i."drug-id", sum(i.quantity) as "quantity", sum(i.quantity * i."purchase-rate") as "workcell-value" from "prod2-generico"."inventory-1" i left join "prod2-generico".invoices inv on i."invoice-id" = inv.id left join "prod2-generico"."invoices-1" i2 on i."franchisee-invoice-id" = i2.id left join "prod2-generico"."stores" s on s."id" = i."store-id" where i."quantity" > 0 and s."franchisee-id" != 1 -- fofo and i."franchisee-inventory" = 0 -- workcell inventory and (inv."invoice-date") < (s."opened-at") -- launch stock and i2."franchisee-invoice" = 0 -- workcell invoice group by i."store-id" , i."drug-id" """ fofo_launch_inventory = rs_db.get_df(fofo_launch_inventory_query) logger.info('fetched fofo_launch_inventory data') fofo_launch_inventory = fofo_launch_inventory.merge(stores, how = 'left', on = 'store-id') fofo_launch_inventory = fofo_launch_inventory.merge(drugs, how = 'left', on = 'drug-id') fofo_launch_inventory = fofo_launch_inventory.merge(store_drug_age, how = 'left', on = ['store-id','drug-id']) fofo_launch_inventory = fofo_launch_inventory.merge(sales, how = 'left', on = ['store-id','drug-id']) fofo_launch_inventory['last-90-days-sales-quantity-orignal'] = fofo_launch_inventory['last-90-days-sales-quantity'] fofo_launch_inventory = fofo_launch_inventory.merge(store_drug_availibility, how = 'left', on = ['store-id','drug-id']) fofo_launch_inventory['availibility_percentage'] = fofo_launch_inventory['availibility_percentage'].fillna(1) fofo_launch_inventory['last-90-days-sales-quantity'] = fofo_launch_inventory['last-90-days-sales-quantity'].fillna(0) fofo_launch_inventory['sales-demand-daily'] = fofo_launch_inventory['last-90-days-sales-quantity']*1.0/90.0 fofo_launch_inventory['doh-based-on-sales'] = fofo_launch_inventory['quantity']/fofo_launch_inventory['sales-demand-daily'] fofo_launch_inventory = fofo_launch_inventory.merge(ipc_forecast, how = 'left', on = ['store-id','drug-id']) fofo_launch_inventory = fofo_launch_inventory.merge(doi,how='left',on = ['store-id','drug-id']) fofo_launch_inventory['max-time-x'] = (fofo_launch_inventory['max']*max_times_x).apply(np.ceil) # fofo_launch_inventory['max-plus-x-doh'] = fofo_launch_inventory['max'] + (fofo_launch_inventory['fcst-demand-daily']*1).apply(np.ceil) # Cushion over Max Eiether x% or x DOH which ever is higher # conditions = [fofo_launch_inventory['max-time-x-original']>=fofo_launch_inventory['max-plus-x-doh'],fofo_launch_inventory['max-time-x-original']<fofo_launch_inventory['max-plus-x-doh']] # choice = [fofo_launch_inventory['max-time-x-original'],fofo_launch_inventory['max-plus-x-doh']] # choice2 = ['percentage over max','DOH over max'] # fofo_launch_inventory['max-cushion-type'] = np.select(conditions,choice2) # fofo_launch_inventory['max-time-x'] = np.select(conditions,choice) fofo_launch_inventory = fofo_launch_inventory.merge(npi , how = 'left', on = ['store-id','drug-id']) fofo_launch_inventory = fofo_launch_inventory.merge(network_sales , how = 'left', on = ['drug-id']) # Changing doh infinity cases to doh 2000 conditions = [fofo_launch_inventory['doh-based-on-sales']==np.inf,fofo_launch_inventory['doh-based-on-sales']!=np.inf] choice = [2000,fofo_launch_inventory['doh-based-on-sales']] fofo_launch_inventory['doh-based-on-sales'] = np.select(conditions,choice) fofo_launch_inventory['excess-def1'] = (fofo_launch_inventory['doh-based-on-sales']-fofo_launch_doh_limit)*fofo_launch_inventory['sales-demand-daily'] fofo_launch_inventory['excess-def2'] = (fofo_launch_inventory['quantity']-fofo_launch_inventory['max']) fofo_launch_inventory['excess-defmin'] = fofo_launch_inventory[['excess-def1','excess-def2']].min(axis=1) fofo_launch_inventory = fofo_launch_inventory[fofo_launch_inventory['store-age']>fofo_launch_store_age] fofo_launch_inventory = fofo_launch_inventory[fofo_launch_inventory['doh-based-on-sales']>fofo_launch_doh_limit] fofo_launch_inventory = fofo_launch_inventory[fofo_launch_inventory['in-npi'].isna()] fofo_launch_inventory = fofo_launch_inventory[fofo_launch_inventory['last-90-days-sales-quantity']!= 0] fofo_launch_inventory['excess-flag'] = 'fofo_launch_doh' # Defining excess quantity and value conditions = [(fofo_launch_inventory['excess-flag']=='fofo_launch_doh')] choice = [fofo_launch_inventory['excess-defmin']] fofo_launch_inventory['excess-quantity'] = np.select(conditions,choice, default=0) fofo_launch_inventory['excess-quantity'] = fofo_launch_inventory['excess-quantity'].apply(np.floor) fofo_launch_inventory['excess-value'] = (fofo_launch_inventory['workcell-value'].astype(float)/fofo_launch_inventory['quantity'].astype(float))*fofo_launch_inventory['excess-quantity'].astype(float) fofo_launch_inventory['inventory-type'] = 'Rotate_fofo_launch_doh' logger.info('end : Adding Launch stock DOH > 180 In FOFO') inventory['max-with-cushion'] = inventory['max-time-x'] fofo_launch_inventory['max-with-cushion'] = fofo_launch_inventory['max-time-x'] categorisation = pd.concat([inventory,fofo_launch_inventory]) categorisation['created-at'] = cur_date categorisation['created-by'] = '[email protected]' categorisation['updated-at'] = cur_date categorisation['updated-by'] = '[email protected]' # ============================================================================= # Snapshot Queries # ============================================================================= truncate_sns_query = ''' delete from "prod2-generico"."excess-inventory-categorisation-sns" where "snapshot-date" = CURRENT_DATE +1 ''' insert_sns_query = ''' insert into "prod2-generico"."excess-inventory-categorisation-sns" select CURRENT_DATE + 1 as "snapshot-date", "inventory-type", "store-id", "store-name", "drug-type", "goodaid-flag" , sum("excess-quantity") as "excess-quantity" , sum("excess-value") as "excess-value" from "prod2-generico"."excess-inventory-categorisation" group by "inventory-type", "store-id", "store-name", "drug-type", "goodaid-flag" ''' # ============================================================================= # Writing table to RS # ============================================================================= try: schema = 'prod2-generico' table_name = 'excess-inventory-categorisation' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") truncate_query = f''' delete from "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) logger.info(str(table_name) + ' table old data deleted') s3.write_df_to_db(df=categorisation[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) logger.info(str(table_name) + ' table uploaded') rs_db.execute(truncate_sns_query) rs_db.execute(insert_sns_query) logger.info(str(table_name) + 'snapshot' + ' table uploaded') status = True except Exception as error: status = False raise Exception(error) if status is True: mssg = 'Success' else: mssg = 'Failed' # ============================================================================= # Sending Email # ============================================================================= end_time = datetime.datetime.now(tz=gettz('Asia/Kolkata')) difference = end_time - start_time min_to_complete = round(difference.total_seconds() / 60, 2) email = Email() email.send_email_file(subject=f"{env}-{mssg} : {table_name} table updated", mail_body=f"{table_name} table updated, Time for job completion - {min_to_complete} mins ", to_emails=email_to, file_uris=[]) rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/excess_inventory/excess_inventory_categorisation.py
excess_inventory_categorisation.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, PostGre from zeno_etl_libs.helper import helper from zeno_etl_libs.helper.aws.s3 import S3 import pandas as pd parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-st', '--source_table', default="", type=str, required=False) parser.add_argument('-tt', '--target_table', default="", type=str, required=False) parser.add_argument('-ss', '--source_schema', default="", type=str, required=False) parser.add_argument('-ts', '--target_schema', default="", type=str, required=False) parser.add_argument('-b', '--batch_size', default=1000, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env source_table = args.source_table target_table = args.target_table source_schema = args.source_schema target_schema = args.target_schema batch_size = args.batch_size logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() tr_query = f""" truncate table "{target_schema}"."{target_table}" """ rs_db.execute(tr_query) pg_obj = PostGre() pg_obj.open_connection() s3 = S3() table_info = helper.get_table_info(db=rs_db, table_name=target_table, schema=target_schema) columns = list(table_info['column_name']) incomplete = True last_id = None total_pushed = 0 total_count = f"""select count(id) from "{source_schema}"."{source_table}" ;""" df_count = pd.read_sql_query(total_count, pg_obj.connection) count = df_count.values[0] counter = 1 while incomplete: logger.info("iteration no: {}".format(counter)) limit_str = f" limit {batch_size} " if batch_size else "" filter_str = f" where id > {last_id} " if last_id else "" query = f""" select * from "{source_schema}"."{source_table}" {filter_str} order by id asc {limit_str} ; """ df = pd.read_sql_query(query, pg_obj.connection) if df.empty: incomplete = False else: last_id = int(df['id'].values[-1]) df.drop(columns=['id'], inplace=True) df.columns = [c.replace('_', '-') for c in df.columns] logger.info("writing batch to target table") s3.write_df_to_db(df=df, table_name=target_table, db=rs_db, schema=target_schema) logger.info("batch successfully written to target table") total_pushed += batch_size if total_pushed >= count: incomplete = False counter = counter + 1 rs_db.close_connection() pg_obj.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/postgres_to_rs_table_migration/postgres-to-rs-table-migration.py
postgres-to-rs-table-migration.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB, PostGreWrite from zeno_etl_libs.helper.aws.s3 import S3 import pandas as pd parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) parser.add_argument('-st', '--source_table', default="", type=str, required=False) parser.add_argument('-tt', '--target_table', default="", type=str, required=False) parser.add_argument('-ss', '--source_schema', default="", type=str, required=False) parser.add_argument('-ts', '--target_schema', default="", type=str, required=False) parser.add_argument('-b', '--batch_size', default=1000, type=int, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env source_table = args.source_table target_table = args.target_table source_schema = args.source_schema target_schema = args.target_schema batch_size = args.batch_size logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() pg_obj = PostGreWrite() pg_obj.open_connection() print(f"{target_schema}.{target_table}") tr_query = f"""delete from {target_table};""" pg_obj.engine.execute(tr_query) s3 = S3() incomplete = True last_id = None total_pushed = 0 total_count = f"""select count(id) from "{source_schema}"."{source_table}" ;""" df_count = pd.read_sql_query(total_count, rs_db.connection) count = df_count.values[0] counter = 1 while incomplete: logger.info("iteration no: {}".format(counter)) limit_str = f" limit {batch_size} " if batch_size else "" filter_str = f" where id > {last_id} " if last_id else "" query = f""" select id, "store-id" as store_id, "drug-type" as "type", NULL as store_name, NULL as dc, "forward-dc-id" as dc_id, "created-at" as uploaded_at from "{source_schema}"."{source_table}" {filter_str} order by id asc {limit_str} ; """ df = rs_db.get_df(query=query) if df.empty: incomplete = False else: last_id = int(df['id'].values[-1]) df.drop(columns=['id'], inplace=True) df.columns = [c.replace('_', '-') for c in df.columns] logger.info("writing batch to target table") df.to_sql( name='store_dc_mapping', con=pg_obj.engine, if_exists='append', chunksize=500, method='multi', index=False) logger.info("batch successfully written to target table") total_pushed += batch_size if total_pushed >= count: incomplete = False counter = counter + 1 rs_db.close_connection() pg_obj.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/postgres_to_rs_table_migration/rs_to_postgre_migration.py
rs_to_postgre_migration.py
import argparse import datetime import json import os import sys from datetime import datetime as dt from datetime import timedelta import dateutil import pandas as pd from dateutil.tz import gettz sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger # connections parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() # table info schema = 'prod2-generico' table_name = 'retention-day-quarter' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) ######################################################## # BILLING data (lengthy data-set) ######################################################## # order id to patient id q1 = """ SELECT "patient-id", "store-id", "id" AS bill_id, "created-at" AS bill_created_at FROM "prod2-generico"."bills-1" """ rs_db.execute(q1, params=None) data_bill: pd.DataFrame = rs_db.cursor.fetch_dataframe() data_bill.columns = [c.replace('-', '_') for c in data_bill.columns] data_bill['bill_created_at'] = pd.to_datetime(data_bill['bill_created_at']) # data_bill['last_bill_created_at'] = pd.to_datetime(data_bill['bill_created_at']) data_bill['bill_date'] = pd.to_datetime(data_bill['bill_created_at'].dt.date) data_bill['year_bill'] = data_bill['bill_date'].dt.year data_bill['month_bill'] = data_bill['bill_date'].dt.month logger.info("Data for bills fetched, with length {}".format(len(data_bill))) # First take only first bill in a month, others don't matter for retention data_a = data_bill.groupby(['patient_id', 'year_bill', 'month_bill', 'store_id'])['bill_date'].min().reset_index() # data_a = data_bill.groupby(['patient_id', 'year_bill', 'month_bill', 'store_id']).agg( # last_bill_created_at=('last_bill_created_at', 'max'), bill_date=('bill_date', 'min')).reset_index() logger.info("Data for bills - after taking first in month, with length {}".format(len(data_a))) # Calculate quarters data_a['cohort_quarter'] = data_a['bill_date'].dt.to_period("Q") data_a['cohort_quarter_number'] = data_a['cohort_quarter'].dt.strftime('%q').astype(int) # Min bill date in quarter data_a = data_a.sort_values(by=['patient_id', 'year_bill', 'month_bill', 'bill_date']) data_a['rank'] = data_a.groupby(['patient_id', 'cohort_quarter']).cumcount() + 1 data_a = data_a[data_a['rank'] == 1].copy() # Self join is needed, to find any retention # drop duplicates should not be needed ideally data_a_left = data_a[ ['patient_id', 'cohort_quarter', 'cohort_quarter_number', 'year_bill', 'month_bill', 'store_id']] data_a_left = data_a_left.rename(columns={'year_bill': 'year_cohort'}) data_a_left = data_a_left.rename(columns={'month_bill': 'month_cohort'}) # drop duplicates should not be needed ideally data_a_right = data_a[ ['patient_id', 'cohort_quarter', 'cohort_quarter_number', 'year_bill', 'bill_date']] data_a_right = data_a_right.rename(columns={'cohort_quarter': 'bill_quarter'}) data_a_right = data_a_right.rename(columns={'cohort_quarter_number': 'bill_quarter_number'}) # Self join data = data_a_left.merge(data_a_right, how='left', on=['patient_id']) # First day in quarter data['day_zero_in_cohort_quarter'] = data['cohort_quarter'].dt.to_timestamp() data['day_zero_in_bill_quarter'] = data['bill_quarter'].dt.to_timestamp() # Convert cohort quarter to string data['cohort_quarter'] = data['cohort_quarter'].astype(str) data['bill_quarter'] = data['bill_quarter'].astype(str) # Day number in quarter data['day_index'] = (data['bill_date'] - data['day_zero_in_bill_quarter']).dt.days + 1 # Remove negative date mappings data = data[data['bill_date'] >= data['day_zero_in_cohort_quarter']].copy() # Official quarter diff data['quarter_diff'] = (data['year_bill'] - data['year_cohort']) * 4 + ( data['bill_quarter_number'] - data['cohort_quarter_number']) # We don't need history of 3+ quarters retention data = data[data['quarter_diff'] <= 2].copy() ############################### # Resurrection ############################### # Now for resurrection specific # Those who came in next quarter, are not resurrection candidates # drop duplicates should not be needed data_r1 = data[data['quarter_diff'] == 1][['patient_id', 'cohort_quarter']] data_r1['resurrection_candidate'] = 0 data = data.merge(data_r1, how='left', on=['patient_id', 'cohort_quarter']) # Rest are resurrection candidates, i.e they didnt come in next quarter, # so we will see their resurrection, later on data['resurrection_candidate'] = data['resurrection_candidate'].fillna(1) logger.info("Data length is {}".format(len(data))) # Summary numbers data_grp = data.groupby(['cohort_quarter'])['patient_id'].apply(pd.Series.nunique).reset_index() data_grp = data_grp.rename(columns={'patient_id': 'cohort_quarter_patients'}) # Merge with main data data = data.merge(data_grp, how='left', on=['cohort_quarter']) logger.info("Data length after merging with cohort base {}".format(len(data))) # Resurrection base too data_grp_res = data[data['resurrection_candidate'] == 1].groupby( ['cohort_quarter'])['patient_id'].apply(pd.Series.nunique).reset_index() data_grp_res = data_grp_res.rename(columns={'patient_id': 'cohort_resurrection_candidates'}) # Merge with main data data = data.merge(data_grp_res, how='left', on=['cohort_quarter']) logger.info("Data length after merging with cohort base {}".format(len(data))) # Final columns final_cols = ['patient_id', 'cohort_quarter', 'cohort_quarter_number', 'year_cohort', 'store_id', 'bill_quarter', 'bill_quarter_number', 'year_bill', 'bill_date', 'day_zero_in_cohort_quarter', 'day_zero_in_bill_quarter', 'day_index', 'quarter_diff', 'resurrection_candidate', 'cohort_quarter_patients', 'cohort_resurrection_candidates'] data.drop_duplicates(keep="first", inplace=True) data = data[final_cols] data['resurrection_candidate'] = data['resurrection_candidate'].astype('Int64') data.columns = [c.replace('_', '-') for c in data.columns] data['created-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data['updated-at'] = datetime.datetime.now(tz=gettz('Asia/Kolkata')).strftime('%Y-%m-%d %H:%M:%S') data['created-by'] = 'etl-automation' data['updated-by'] = 'etl-automation' data['bill-date'] = data['bill-date'].dt.date #logger.info("Existing data fetched with length {}".format(len(data_dss))) print(data.head(1)) if isinstance(table_info, type(None)): logger.info(f"table: {table_name} do not exist") else: truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' logger.info(truncate_query) rs_db.execute(truncate_query) """ seek the data """ print(data.head(1)) print(table_info) file_s3_uri_save = s3.save_df_to_s3(df=data[table_info['column_name']], file_name="retention-day-quarter.csv") s3.write_to_db_from_s3_csv(table_name=table_name, file_s3_uri=file_s3_uri_save, db=rs_db, schema=schema) s3.write_df_to_db(df=data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) # Closing the DB Connection rs_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/retention-day-quarter/retention-day-quarter.py
retention-day-quarter.py
import os import sys import argparse import pandas as pd from pandas.io.json import json_normalize sys.path.append('../../../../../../../..') from zeno_etl_libs.db.db import DB, MongoDB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper from zeno_etl_libs.logger import get_logger parser = argparse.ArgumentParser(description="This is ETL custom script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False) args, unknown = parser.parse_known_args() env = args.env os.environ['env'] = env logger = get_logger() s3 = S3() rs_db = DB(read_only=False) rs_db.open_connection() mg_db = MongoDB() mg_client = mg_db.open_connection("generico-crm") db = mg_client['generico-crm'] schema = 'prod2-generico' table_name = 'zeno-app-delivery' def max_last_date(): """ This function helps in getting the maximum updated-at date from the Redshift table for incremental load """ query = f""" select max("updated-at") as max_date from "{schema}"."{table_name}" """ df = pd.read_sql_query(query, rs_db.connection) if df[b'max_date'][0] is None: return "2020-01-01 00:00:00.000000" return str(df[b'max_date'][0]) try: table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) logger.info(table_info) collection = db['deliveryTaskGroupLog'].find({}) data_raw = pd.DataFrame(list(collection)) data_raw['tasks'] = data_raw['tasks'].apply(pd.Series) app_data = json_normalize(data_raw['tasks']) logger.info(app_data.columns) collection = db['deliveryAgent'].find({}) del_agent_data_raw = pd.DataFrame(list(collection)) del_agent_data_raw.rename(columns={"id": "agent_id", "name": "agent_name"}, inplace=True) del_agent_data = del_agent_data_raw[['agent_id', 'agent_name', 'username']] del_agent_data.drop_duplicates(inplace=True) # merging agent data app_data = app_data.merge(del_agent_data, how='left', on=['agent_id']) app_data.columns = [c.replace('_', '-') for c in app_data.columns] app_data.rename(columns={"createdAt": "created-at", "updated-time": "updated-at"}, inplace=True) app_data['agent-id'] = app_data['agent-id'].astype('Int64') max_update_date = max_last_date() logger.info(f"max update-at date: {max_update_date}") app_data = app_data.loc[app_data['updated-at'] >= max_update_date] s3.write_df_to_db(df=app_data[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) except Exception as error: raise Exception(error) finally: rs_db.close_connection() mg_db.close_connection()
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/zeno-app-delivery/zeno-app-delivery.py
zeno-app-delivery.py
import argparse import os import sys sys.path.append('../../../..') from zeno_etl_libs.logger import get_logger, send_logs_via_email from zeno_etl_libs.db.db import DB from zeno_etl_libs.helper.aws.s3 import S3 from zeno_etl_libs.helper import helper import pandas as pd import datetime from dateutil.relativedelta import relativedelta def seek(rs_db, limit=None): cur_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') start_mtd = (datetime.date.today() + relativedelta(months=-6)).replace(day=1).strftime('%Y-%m-%d') end_mtd = (datetime.date.today() + relativedelta(days=-1)).strftime('%Y-%m-%d') # ============================================================================= # Store master # ============================================================================= query = f""" select id as "store-id", store as "store-name", "store-manager" , "line-manager" , abo from "prod2-generico"."stores-master" sm """ rs_db.execute(query, params=None) stores_master_df: pd.DataFrame = rs_db.cursor.fetch_dataframe() logger.info("Data: stores-master fetched successfully") # ============================================================================= # local purchase instances base data # ============================================================================= limit_str = f" limit {limit} ; " if limit else "" query = f""" select ii.id as "invoice-item-id", date(i."received-at") as "received-date", ii."drug-id" , i."store-id" , ii."invoice-item-reference" , ii."net-value" as "lp-value", ii."actual-quantity" as "lp-qty" from "prod2-generico"."invoice-items-1" ii inner join "prod2-generico"."invoices-1" i on ii."franchisee-invoice-id" = i.id inner join "prod2-generico".stores s on i."store-id" = s.id where date(i."received-at") >= '%s' and date(i."received-at") <= '%s' and i."invoice-reference" is null and s."franchisee-id" = 1 union select ii.id as "invoice-item-id", date(i."received-at") as "received-date", ii."drug-id" , i."store-id" , ii."invoice-item-reference" , ii."net-value" as "lp-value", ii."actual-quantity" as "lp-qty" from "prod2-generico"."invoice-items-1" ii inner join "prod2-generico"."invoices-1" i on ii."franchisee-invoice-id" = i.id inner join "prod2-generico".invoices i2 on ii."invoice-id" = i2.id inner join "prod2-generico".stores s on i."store-id" = s.id where date(i."received-at") >= '%s' and date(i."received-at") <= '%s' and s."franchisee-id" != 1 and i."franchisee-invoice" != 0 and i2."distributor-id" != 10000 {limit_str} """ % (start_mtd, end_mtd,start_mtd,end_mtd) rs_db.execute(query=query, params=None) lp_df: pd.DataFrame = rs_db.cursor.fetch_dataframe() logger.info("Data: lp invoice fetched successfully") lp_2_df = lp_df.groupby(['received-date', 'invoice-item-id', 'store-id', 'drug-id'], as_index=False).agg({'lp-value': ['sum'], 'lp-qty': ['sum']}).reset_index(drop=True) lp_2_df.columns = ["-".join(x).rstrip('-') for x in lp_2_df.columns.ravel()] # ============================================================================= # local purchase liquidation # ============================================================================= query = f""" ( SELECT c."invoice-item-id", b."store-id", c."drug-id", SUM(c."ptr" * a."quantity") AS "lp-sales", SUM(a."quantity") AS "lp-qty-sales" FROM "prod2-generico"."bill-items-1" a LEFT JOIN "prod2-generico"."bills-1" b ON b."id" = a."bill-id" LEFT JOIN "prod2-generico"."inventory-1" c ON c."id" = a."inventory-id" LEFT JOIN "prod2-generico"."invoice-items-1" ii ON ii."id" = c."invoice-item-id" JOIN "prod2-generico"."invoices-1" i1 ON i1."id" = ii."franchisee-invoice-id" join "prod2-generico".stores s on b."store-id" =s.id WHERE DATE(a."created-at") >= '{start_mtd}' AND DATE(a."created-at") <= '{end_mtd}' and s."franchisee-id" =1 and i1."invoice-reference" IS null GROUP BY c."invoice-item-id" , b."store-id" , c."drug-id" UNION ALL SELECT c."invoice-item-id", b."store-id", c."drug-id", (SUM(c."ptr" * a."returned-quantity") * - 1) AS "lp-sales", (SUM(a."returned-quantity") * - 1) AS "lp-qty-sales" FROM "prod2-generico"."customer-return-items-1" a LEFT JOIN "prod2-generico"."customer-returns-1" b ON b."id" = a."return-id" LEFT JOIN "prod2-generico"."inventory-1" c ON c."id" = a."inventory-id" LEFT JOIN "prod2-generico"."invoice-items-1" ii ON ii."id" = c."invoice-item-id" JOIN "prod2-generico"."invoices-1" i1 ON i1."id" = ii."franchisee-invoice-id" JOIN "prod2-generico".stores s on b."store-id" =s.id WHERE DATE(a."returned-at") >= '{start_mtd}' AND DATE(a."returned-at") <= '{end_mtd}' and s."franchisee-id" =1 and i1."invoice-reference" IS null GROUP BY c."invoice-item-id" , b."store-id" , c."drug-id" ) union ( SELECT c."invoice-item-id", b."store-id", c."drug-id", SUM(c."ptr" * a."quantity") AS "lp-sales", SUM(a."quantity") AS "lp-qty-sales" FROM "prod2-generico"."bill-items-1" a LEFT JOIN "prod2-generico"."bills-1" b ON b."id" = a."bill-id" LEFT JOIN "prod2-generico"."inventory-1" c ON c."id" = a."inventory-id" LEFT JOIN "prod2-generico"."invoice-items-1" ii ON ii."id" = c."invoice-item-id" JOIN "prod2-generico"."invoices-1" i1 ON i1."id" = ii."franchisee-invoice-id" join "prod2-generico".invoices i on ii."invoice-id" =i.id join "prod2-generico".stores s on b."store-id" =s.id WHERE DATE(a."created-at") >= '{start_mtd}' AND DATE(a."created-at") <='{end_mtd}' and s."franchisee-id" !=1 and i1."franchisee-invoice" !=0 and i."distributor-id" !=10000 GROUP BY c."invoice-item-id" , b."store-id" , c."drug-id" UNION ALL SELECT c."invoice-item-id", b."store-id", c."drug-id", (SUM(c."ptr" * a."returned-quantity") * - 1) AS "lp-sales", (SUM(a."returned-quantity") * - 1) AS "lp-qty-sales" FROM "prod2-generico"."customer-return-items-1" a LEFT JOIN "prod2-generico"."customer-returns-1" b ON b."id" = a."return-id" LEFT JOIN "prod2-generico"."inventory-1" c ON c."id" = a."inventory-id" LEFT JOIN "prod2-generico"."invoice-items-1" ii ON ii."id" = c."invoice-item-id" JOIN "prod2-generico"."invoices-1" i1 ON i1."id" = ii."franchisee-invoice-id" join "prod2-generico".invoices i on ii."invoice-id" =i.id JOIN "prod2-generico".stores s on b."store-id" =s.id WHERE DATE(a."returned-at") >= '{start_mtd}' AND DATE(a."returned-at") <= '{end_mtd}' and s."franchisee-id" !=1 and i."distributor-id" !=10000 and i1."franchisee-invoice" !=0 GROUP BY c."invoice-item-id" , b."store-id" , c."drug-id") {limit_str} """ rs_db.execute(query=query, params=None) sales_df: pd.DataFrame = rs_db.cursor.fetch_dataframe() logger.info("Data: sales fetched successfully") sales_2_df = sales_df.groupby(['invoice-item-id', 'drug-id'], as_index=False).agg( {'lp-sales': ['sum'], 'lp-qty-sales': ['sum']}).reset_index(drop=True) sales_2_df.columns = ["-".join(x).rstrip('-') for x in sales_2_df.columns.ravel()] # ============================================================================= # Drug details extraction # ============================================================================= query = """ select id as "drug-id", "drug-name", "type", "category", "company", "composition" from "prod2-generico".drugs d """ rs_db.execute(query=query, params=None) drug_df: pd.DataFrame = rs_db.cursor.fetch_dataframe() logger.info("Data: drug fetched successfully") # ============================================================================= # Drug disease extraction # ============================================================================= query = """ select "drug-id", "drug-primary-disease" as "drug-disease" from "prod2-generico"."drug-primary-disease" """ rs_db.execute(query=query, params=None) drug_disease_df: pd.DataFrame = rs_db.cursor.fetch_dataframe() logger.info("Data: drug-disease fetched successfully") # Merge all data points local_purchase_df = pd.merge(left=stores_master_df, right=lp_2_df, on=['store-id'], how='right') local_purchase_df = pd.merge(left=local_purchase_df, right=sales_2_df, on=['invoice-item-id', 'drug-id'], how='left') local_purchase_df = pd.merge(left=local_purchase_df, right=drug_df, on=['drug-id'], how='left') lp_liquidation_df = pd.merge(left=local_purchase_df, right=drug_disease_df, how='left', on=['drug-id']) logger.info("Merging of all data points successful.") lp_liquidation_df['refreshed-at'] = datetime.datetime.now() return lp_liquidation_df def main(rs_db, s3, limit): schema = 'prod2-generico' table_name = 'lp-liquidation' table_info = helper.get_table_info(db=rs_db, table_name=table_name, schema=schema) if isinstance(table_info, type(None)): raise Exception(f"table: {table_name} do not exist, create the table first") else: logger.info(f"Table:{table_name} exists") """ seek the data """ lp_liquidation_df = seek(rs_db=rs_db, limit=limit) truncate_query = f''' DELETE FROM "{schema}"."{table_name}" ''' rs_db.execute(truncate_query) s3.write_df_to_db(df=lp_liquidation_df[table_info['column_name']], table_name=table_name, db=rs_db, schema=schema) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This is ETL script.") parser.add_argument('-e', '--env', default="dev", type=str, required=False, help="This is env(dev, stag, prod)") parser.add_argument('-l', '--limit', default=None, type=int, required=False) parser.add_argument('-jn', '--job_name', default=None, type=str, required=False) parser.add_argument('-lem', '--log_email_to', default=None, type=str, required=False) args, unknown = parser.parse_known_args() env = args.env job_name = args.job_name log_email_to = args.log_email_to.split(",") limit = args.limit os.environ['env'] = env logger = get_logger() logger.info(f"env: {env}") logger.info(f"logger.info the env again: {env}") rs_db = DB() rs_db.open_connection() s3 = S3() """ calling the main function """ main(rs_db=rs_db, s3=s3, limit=limit) # Closing the DB Connection rs_db.close_connection() """ Sending the job logs, 1. But if jobs fails before this step, you will not get the log email, so handle the exception """ send_logs_via_email(job_name=job_name, email_to=log_email_to)
zeno-etl-libs
/zeno_etl_libs-1.0.126.tar.gz/zeno_etl_libs-1.0.126/glue-jobs/src/scripts/lp-liquidation/lp-liquidation.py
lp-liquidation.py
import json import os import sys from contextlib import contextmanager from importlib import util from inspect import getmembers, isfunction from typing import Dict import fire import pandas as pd from pandas import DataFrame from zeno import ( DistillReturn, ModelReturn, ZenoParameters, distill, metric, model, zeno, ) from zeno.api import MetricReturn, ZenoOptions class ZenoEvals: def __init__( self, results_file: str, second_results_file: str = None, functions_file: str = None, ): self.dfs = {} self.results_file = results_file self.second_results_file = second_results_file self.functions_file = functions_file def generate_zeno_config(self) -> ZenoParameters: if not os.path.exists(self.results_file): print("ERROR: file '{}' does not exist.".format(self.results_file)) sys.exit(1) data = [] with open(self.results_file) as f: for line in f: data.append(json.loads(line)) df, metric_names = read_results_file(data) self.dfs[get_model_name(data)] = df models = [get_model_name(data)] if self.second_results_file is not None: data2 = [] with open(self.second_results_file) as f: for line in f: data2.append(json.loads(line)) models.append(get_model_name(data2)) df2, _ = read_results_file(data2) self.dfs[get_model_name(data2)] = df2 functions = [get_model_fn(self.dfs)] if self.functions_file is not None: functions = functions + parse_testing_file(self.functions_file) base_df_columns = ["id", "prompt"] for m in metric_names: functions = functions + [get_metric_function(m)] if "expected" in df.columns: functions = functions + [get_correct_fn(self.dfs), avg_correct] base_df_columns = base_df_columns + ["expected"] zeno_config = ZenoParameters( metadata=df[base_df_columns], models=models, functions=functions, view="openai-chat", data_column="prompt", id_column="id", cache_path="./.zeno_cache_" + data[0]["spec"]["eval_name"], port=8080, batch_size=100, samples=5, ) if "expected" in df.columns: zeno_config.label_column = "expected" return zeno_config def get_model_fn(dfs: Dict[str, DataFrame]): def model_fn(name): model_df = dfs[name] def mod(df, ops: ZenoOptions): return ModelReturn(model_output=model_df["sampled"].loc[df["id"]].tolist()) return mod return model(model_fn) def get_correct_fn(dfs: Dict[str, DataFrame]): def correct(df, ops: ZenoOptions): mod = [mod for mod in list(dfs.keys()) if mod in ops.output_column][0] return DistillReturn(distill_output=dfs[mod]["correct"].loc[df["id"]]) return distill(correct) @contextmanager def add_to_path(p): old_path = sys.path sys.path = sys.path[:] sys.path.insert(0, p) try: yield finally: sys.path = old_path def parse_testing_file(test_file): # To allow relative imports in test files, # add their directory to path temporarily. with add_to_path(os.path.dirname(os.path.abspath(test_file))): spec = util.spec_from_file_location(str(test_file), test_file) test_module = util.module_from_spec(spec) # type: ignore spec.loader.exec_module(test_module) # type: ignore functions = [] for func_name, func in getmembers(test_module): if isfunction(func): if ( hasattr(func, "predict_function") or hasattr(func, "distill_function") or hasattr(func, "metric_function") or hasattr(func, "inference_function") ): functions.append(func) return functions def get_metric_function(metric_name): def metric_function(df, ops: ZenoOptions): if len(df) == 0: return MetricReturn(metric=0.0) if ( df[metric_name].dtype == "object" and df[metric_name].value_counts().shape[0] <= 2 ): return MetricReturn( metric=df[metric_name].eq(df[metric_name][0]).mul(1).mean() ) return MetricReturn(metric=df[metric_name].mean()) metric_function.__name__ = metric_name return metric(metric_function) @metric def avg_correct(df, ops: ZenoOptions): return MetricReturn( metric=df[ops.distill_columns["correct"]].astype(int).mean() * 100 ) def read_results_file(data): data_res = [d for d in data if "event_id" in d] sampling_df = pd.DataFrame( [ { "id": d["sample_id"], "prompt": d["data"]["prompt"], "sampled": d["data"]["sampled"][0], } for d in data_res if "type" in d and d["type"] == "sampling" ] ) match_df = pd.DataFrame( [ { "id": d["sample_id"], "correct": d["data"]["correct"], "expected": d["data"]["expected"], } for d in data_res if "type" in d and d["type"] == "match" ] ) metric_names = [] for d in data_res: if "type" in d and d["type"] == "metrics": metric_names = list(d["data"].keys()) break metrics = [] for d in data_res: if "type" in d and d["type"] == "metrics": met_obj = {"id": d["sample_id"]} for name in metric_names: met_obj[name] = d["data"][name] metrics.append(met_obj) metrics_df = pd.DataFrame(metrics) df = sampling_df if len(match_df) > 0: df = df.join(match_df.set_index("id"), on="id") if len(metrics_df) > 0: df = df.join(metrics_df.set_index("id"), on="id") df.set_index("id", inplace=True, drop=False) return df, metric_names def get_model_name(data): name = data[0]["spec"]["completion_fns"][0] return name.replace(".", "_") def main( results_file: str, second_results_file: str = None, functions_file: str = None ): """Visualize a result from OpenAI evals using Zeno. Args: results_file (path): Result .jsonl file from OpenAI evals. Often stored in the /tmp/evallogs/ directory. second_results_file (path): Second result .jsonl file from OpenAI evals for comparison. Often stored in the /tmp/evallogs/ directory. functions_file (path, optional): Path to a Python file containing additional Zeno processing functions. Defaults to None. """ eval = ZenoEvals(results_file, second_results_file, functions_file) config = eval.generate_zeno_config() zeno(config) def cli(): fire.Fire(main)
zeno-evals
/zeno_evals-0.1.10-py3-none-any.whl/zeno_evals/main.py
main.py
MIT License Copyright (c) 2022 Ángel Alexander Cabrera Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
zeno-evals
/zeno_evals-0.1.10-py3-none-any.whl/zeno_evals-0.1.10.dist-info/LICENSE.md
LICENSE.md
import logging from typing import Tuple, Union import numpy as np from scipy import sparse as sp from scipy.stats import rankdata from sklearn.base import BaseEstimator, TransformerMixin from sklearn.preprocessing import OneHotEncoder from sklearn.utils.validation import check_is_fitted from sliceline.validation import check_array, check_X_e logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) class Slicefinder(BaseEstimator, TransformerMixin): """Slicefinder class. SliceLine is a fast, linear-algebra-based slice finding for ML Model Debugging. Given an input dataset (`X`) and a model error vector (`errors`), SliceLine finds the `k` slices in `X` that identify where the model performs significantly worse. A slice is a subspace of `X` defined by one or more predicates. The maximal dimension of this subspace is controlled by `max_l`. The slice scoring function is the linear combination of two objectives: - Find sufficiently large slices, with more than `min_sup` elements (high impact on the overall model) - With substantial errors (high negative impact on sub-group/model) The importance of each objective is controlled through a single parameter `alpha`. Slice enumeration and pruning techniques are done via sparse linear algebra. Parameters ---------- alpha: float, default=0.6 Weight parameter for the importance of the average slice error. 0 < `alpha` <= 1. k: int, default=1 Maximum number of slices to return. Note: in case of equality between `k`-th slice score and the following ones, all those slices are returned, leading to `_n_features_out` slices returned. (`_n_features_out` >= `k`) max_l: int, default=4 Maximum lattice level. In other words: the maximum number of predicate to define a slice. min_sup: int or float, default=10 Minimum support threshold. Inspired by frequent itemset mining, it ensures statistical significance. If `min_sup` is a float (0 < `min_sup` < 1), it represents the faction of the input dataset (`X`). verbose: bool, default=True Controls the verbosity. Attributes ---------- top_slices_: np.ndarray of shape (_n_features_out, number of columns of the input dataset) The `_n_features_out` slices with the highest score. `None` values in slices represent unused column in the slice. average_error_: float Mean value of the input error. top_slices_statistics_: list of dict of length `len(top_slices_)` The statistics of the slices found sorted by slice's scores. For each slice, the following statistics are stored: - slice_score: the score of the slice (defined in `_score` method) - sum_slice_error: the sum of all the errors in the slice - max_slice_error: the maximum of all errors in the slice - slice_size: the number of elements in the slice - slice_average_error: the average error in the slice (sum_slice_error / slice_size) References ---------- `SliceLine: Fast, Linear-Algebra-based Slice Finding for ML Model Debugging <https://mboehm7.github.io/resources/sigmod2021b_sliceline.pdf>`__, from *Svetlana Sagadeeva* and *Matthias Boehm* of Graz University of Technology. """ def __init__( self, alpha: float = 0.6, k: int = 1, max_l: int = 4, min_sup: Union[int, float] = 10, verbose: bool = True, ): self.alpha = alpha self.k = k self.max_l = max_l self.min_sup = min_sup self.verbose = verbose self._one_hot_encoder = self._top_slices_enc = None self.top_slices_ = self.top_slices_statistics_ = None self.average_error_ = None if self.verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) def _check_params(self): """Check transformer parameters.""" if not 0 < self.alpha <= 1: raise ValueError(f"Invalid 'alpha' parameter: {self.alpha}") if self.k <= 0: raise ValueError(f"Invalid 'k' parameter: {self.k}") if self.max_l <= 0: raise ValueError(f"Invalid 'max_l' parameter: {self.max_l}") if self.min_sup < 0 or ( isinstance(self.min_sup, float) and self.min_sup >= 1 ): raise ValueError(f"Invalid 'min_sup' parameter: {self.min_sup}") def _check_top_slices(self): """Check if slices have been found.""" # Check if fit has been called check_is_fitted(self) # Check if a slice has been found if self.top_slices_.size == 0: raise ValueError("No transform: Sliceline did not find any slice.") def fit(self, X, errors): """Search for slice(s) on `X` based on `errors`. Parameters ---------- X: array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. errors: array-like of shape (n_samples, ) Errors of a machine learning model. Returns ------- self: object Returns the instance itself. """ self._check_params() # Update min_sup for a fraction of the input dataset size if 0 < self.min_sup < 1: self.min_sup = int(self.min_sup * len(X)) # Check that X and e have correct shape X_array, errors = check_X_e(X, errors, y_numeric=True) self._check_feature_names(X, reset=True) self._search_slices(X_array, errors) return self def transform(self, X): """Generate slices masks for `X`. Parameters ---------- X: array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- slices_masks: np.ndarray of shape (n_samples, _n_features_out) `slices_masks[i, j] == 1`: the `i`-th sample of `X` is in the `j`-th `top_slices_`. """ self._check_top_slices() # Input validation X = check_array(X) slices_masks = self._get_slices_masks(X) return slices_masks.T def get_slice(self, X, slice_index: int): """Filter `X` samples according to the `slice_index`-th slice. Parameters ---------- X: array-like of shape (n_samples, n_features) Dataset, where `n_samples` is the number of samples and `n_features` is the number of features. slice_index: int Index of the slice to get from `top_slices_`. Returns ------- X_slice: np.ndarray of shape (n_samples in the `slice_index`-th slice, n_features) Filter `X` samples that are in the `slice_index`-th slice. """ self._check_top_slices() # Input validation X = check_array(X, force_all_finite=False) slices_masks = self._get_slices_masks(X) return X[np.where(slices_masks[slice_index])[0], :] def get_feature_names_out(self): """Get output feature names for transformation. Returns ------- feature_names_out : ndarray of str objects The following output feature names are generated: `["slice_0", "slice_1", ..., "slice_(_n_features_out)"]`. """ check_is_fitted(self) feature_names = [f"slice_{i}" for i in range(self._n_features_out)] return np.array(feature_names, dtype=object) def _get_slices_masks(self, X): """Private utilities function generating slices masks for `X`.""" X_encoded = self._one_hot_encoder.transform(X) # Shape X_encoded: (X.shape[0], total number of modalities in _one_hot_encoder.categories_) # Shape _top_slices_enc: (top_slices_.shape[0], X_encoded[1]) slice_candidates = self._top_slices_enc @ X_encoded.T # self._top_slices_enc.sum(axis=1) is the number of predicate(s) for each top_slices_ slices_masks = ( slice_candidates == self._top_slices_enc.sum(axis=1) ).A.astype(int) return slices_masks @property def _n_features_out(self): """Number of transformed output features.""" return self.top_slices_.shape[0] @staticmethod def _dummify(array: np.ndarray, n_col_x_encoded: int) -> sp.csr_matrix: """Dummify `array` with respect to `n_col_x_encoded`. Assumption: v does not contain any 0.""" assert ( 0 not in array ), "Modality 0 is not expected to be one-hot encoded." one_hot_encoding = sp.lil_matrix( (array.size, n_col_x_encoded), dtype=bool ) one_hot_encoding[np.arange(array.size), array - 1] = True return one_hot_encoding.tocsr() def _maintain_top_k( self, slices: sp.csr_matrix, statistics: np.ndarray, top_k_slices: sp.csr_matrix, top_k_statistics: np.ndarray, ) -> Tuple[sp.csr_matrix, np.ndarray]: """Add new `slices` to `top_k_slices` and update the top-k slices.""" # prune invalid min_sup and scores valid_slices_mask = (statistics[:, 3] >= self.min_sup) & ( statistics[:, 0] > 0 ) if np.sum(valid_slices_mask) != 0: slices, statistics = ( slices[valid_slices_mask], statistics[valid_slices_mask], ) if (slices.shape[1] != top_k_slices.shape[1]) & ( slices.shape[1] == 1 ): slices, statistics = slices.T, statistics.T # evaluated candidates and previous top-k slices = sp.vstack([top_k_slices, slices]) statistics = np.concatenate([top_k_statistics, statistics]) # extract top-k top_slices_bool = ( rankdata(-statistics[:, 0], method="min") <= self.k ) top_k_slices, top_k_statistics = ( slices[top_slices_bool], statistics[top_slices_bool], ) top_slices_indices = np.argsort(-top_k_statistics[:, 0]) top_k_slices, top_k_statistics = ( top_k_slices[top_slices_indices], top_k_statistics[top_slices_indices], ) return top_k_slices, top_k_statistics def _score_ub( self, slice_sizes_ub: np.ndarray, slice_errors_ub: np.ndarray, max_slice_errors_ub: np.ndarray, n_col_x_encoded: int, ) -> np.ndarray: """Compute the upper-bound score for all the slices.""" # Since slice_scores is either monotonically increasing or decreasing, we # probe interesting points of slice_scores in the interval [min_sup, ss], # and compute the maximum to serve as the upper bound potential_solutions = np.column_stack( ( self.min_sup * np.ones(slice_sizes_ub.shape[0]), np.maximum( slice_errors_ub / max_slice_errors_ub, self.min_sup ), slice_sizes_ub, ) ) slice_scores_ub = np.amax( ( self.alpha * ( np.minimum( potential_solutions.T * max_slice_errors_ub, slice_errors_ub, ).T / self.average_error_ - potential_solutions ) - (1 - self.alpha) * (n_col_x_encoded - potential_solutions) ) / potential_solutions, axis=1, ) return slice_scores_ub @staticmethod def _analyse_top_k(top_k_statistics: np.ndarray) -> tuple: """Get the maximum and the minimum slices scores.""" max_slice_scores = min_slice_scores = -np.inf if top_k_statistics.shape[0] > 0: max_slice_scores = top_k_statistics[0, 0] min_slice_scores = top_k_statistics[ top_k_statistics.shape[0] - 1, 0 ] return max_slice_scores, min_slice_scores def _score( self, slice_sizes: np.ndarray, slice_errors: np.ndarray, n_row_x_encoded: int, ) -> np.ndarray: """Compute the score for all the slices.""" slice_scores = self.alpha * ( (slice_errors / slice_sizes) / self.average_error_ - 1 ) - (1 - self.alpha) * (n_row_x_encoded / slice_sizes - 1) return np.nan_to_num(slice_scores, nan=-np.inf) def _eval_slice( self, x_encoded: sp.csr_matrix, errors: np.ndarray, slices: sp.csr_matrix, level: int, ) -> np.ndarray: """Compute several statistics for all the slices.""" slice_candidates = x_encoded @ slices.T == level slice_sizes = slice_candidates.sum(axis=0).A[0] slice_errors = errors @ slice_candidates max_slice_errors = slice_candidates.T.multiply(errors).max(axis=1).A # score of relative error and relative size slice_scores = self._score( slice_sizes, slice_errors, x_encoded.shape[0] ) return np.column_stack( [slice_scores, slice_errors, max_slice_errors, slice_sizes] ) def _create_and_score_basic_slices( self, x_encoded: sp.csr_matrix, n_col_x_encoded: int, errors: np.ndarray, ) -> Tuple[sp.csr_matrix, np.ndarray]: """Initialise 1-slices, i.e. slices with one predicate.""" slice_sizes = x_encoded.sum(axis=0).A[0] slice_errors = errors @ x_encoded max_slice_errors = x_encoded.T.multiply(errors).max(axis=1).A[:, 0] # working set of active slices (#attr x #slices) and top-k valid_slices_mask = (slice_sizes >= self.min_sup) & (slice_errors > 0) attr = np.arange(1, n_col_x_encoded + 1)[valid_slices_mask] slice_sizes = slice_sizes[valid_slices_mask] slice_errors = slice_errors[valid_slices_mask] max_slice_errors = max_slice_errors[valid_slices_mask] slices = self._dummify(attr, n_col_x_encoded) # score 1-slices and create initial top-k slice_scores = self._score( slice_sizes, slice_errors, x_encoded.shape[0] ) statistics = np.column_stack( (slice_scores, slice_errors, max_slice_errors, slice_sizes) ) n_col_dropped = n_col_x_encoded - sum(valid_slices_mask) logger.debug( "Dropping %i/%i features below min_sup = %i." % (n_col_dropped, n_col_x_encoded, self.min_sup) ) return slices, statistics def _get_pruned_s_r( self, slices: sp.csr_matrix, statistics: np.ndarray ) -> Tuple[sp.csr_matrix, np.ndarray]: """Prune invalid slices. Do not affect overall pruning effectiveness due to handling of missing parents.""" valid_slices_mask = (statistics[:, 3] >= self.min_sup) & ( statistics[:, 1] > 0 ) return slices[valid_slices_mask], statistics[valid_slices_mask] @staticmethod def _join_compatible_slices( slices: sp.csr_matrix, level: int ) -> np.ndarray: """Join compatible slices according to `level`.""" slices_int = slices.astype(int) join = (slices_int @ slices_int.T).A == level - 2 return np.triu(join, 1) * join @staticmethod def _combine_slices( slices: sp.csr_matrix, statistics: np.ndarray, compatible_slices: np.ndarray, ) -> Tuple[sp.csr_matrix, np.ndarray, np.ndarray, np.ndarray]: """Combine slices by exploiting parents node statistics.""" parent_1_idx, parent_2_idx = np.where(compatible_slices == 1) pair_candidates = slices[parent_1_idx] + slices[parent_2_idx] slice_errors = np.minimum( statistics[parent_1_idx, 1], statistics[parent_2_idx, 1] ) max_slice_errors = np.minimum( statistics[parent_1_idx, 2], statistics[parent_2_idx, 2] ) slice_sizes = np.minimum( statistics[parent_1_idx, 3], statistics[parent_2_idx, 3] ) return pair_candidates, slice_sizes, slice_errors, max_slice_errors @staticmethod def _prune_invalid_self_joins( feature_offset_start: np.ndarray, feature_offset_end: np.ndarray, pair_candidates: sp.csr_matrix, slice_sizes: np.ndarray, slice_errors: np.ndarray, max_slice_errors: np.ndarray, ) -> Tuple[sp.csr_matrix, np.ndarray, np.ndarray, np.ndarray]: """Prune invalid self joins (>1 bit per feature).""" valid_slices_mask = np.full(pair_candidates.shape[0], True) for start, end in zip(feature_offset_start, feature_offset_end): valid_slices_mask = ( valid_slices_mask * (pair_candidates[:, start:end].sum(axis=1) <= 1).A[:, 0] ) return ( pair_candidates[valid_slices_mask], slice_sizes[valid_slices_mask], slice_errors[valid_slices_mask], max_slice_errors[valid_slices_mask], ) @staticmethod def _prepare_deduplication_and_pruning( feature_offset_start: np.ndarray, feature_offset_end: np.ndarray, feature_domains: np.ndarray, pair_candidates: sp.csr_matrix, ) -> np.ndarray: """Prepare IDs for deduplication and pruning.""" ids = np.zeros(pair_candidates.shape[0]) dom = feature_domains + 1 for j, (start, end) in enumerate( zip(feature_offset_start, feature_offset_end) ): sub_pair_candidates = pair_candidates[:, start:end] # sub_p should not contain multiple True on the same line i = sub_pair_candidates.argmax(axis=1).T + np.any( sub_pair_candidates.A, axis=1 ) ids = ids + i.A * np.prod(dom[(j + 1) : dom.shape[0]]) return ids def _get_pair_candidates( self, slices: sp.csr_matrix, statistics: np.ndarray, top_k_statistics: np.ndarray, level: int, n_col_x_encoded: int, feature_domains: np.ndarray, feature_offset_start: np.ndarray, feature_offset_end: np.ndarray, ) -> sp.csr_matrix: """Compute and prune plausible slices candidates.""" compatible_slices = self._join_compatible_slices(slices, level) if np.sum(compatible_slices) == 0: return sp.csr_matrix(np.empty((0, slices.shape[1]))) ( pair_candidates, slice_sizes, slice_errors, max_slice_errors, ) = self._combine_slices(slices, statistics, compatible_slices) ( pair_candidates, slice_sizes, slice_errors, max_slice_errors, ) = self._prune_invalid_self_joins( feature_offset_start, feature_offset_end, pair_candidates, slice_sizes, slice_errors, max_slice_errors, ) if pair_candidates.shape[0] == 0: return sp.csr_matrix(np.empty((0, slices.shape[1]))) ids = self._prepare_deduplication_and_pruning( feature_offset_start, feature_offset_end, feature_domains, pair_candidates, ) # remove duplicate candidates and select corresponding statistics _, unique_candidate_indices, duplicate_counts = np.unique( ids, return_index=True, return_counts=True ) # Slices at level i normally have i parents (cf. section 3.1 in the paper) # We want to keep only slices whose parents have not been pruned. # If all the parents are present they are going to get combined 2 by 2 in i*(i-1)/2 ways # So, we select only candidates which appear with the correct cardinality. all_parents_mask = duplicate_counts == level * (level - 1) / 2 unique_candidate_indices = unique_candidate_indices[all_parents_mask] pair_candidates = pair_candidates[unique_candidate_indices] slice_sizes = slice_sizes[unique_candidate_indices] slice_errors = slice_errors[unique_candidate_indices] max_slice_errors = max_slice_errors[unique_candidate_indices] slice_scores = self._score_ub( slice_sizes, slice_errors, max_slice_errors, n_col_x_encoded, ) # Seems to be always fully True # Due to maintain_top_k that apply slice_sizes filter pruning_sizes = slice_sizes >= self.min_sup _, min_slice_scores = self._analyse_top_k(top_k_statistics) pruning_scores = (slice_scores > min_slice_scores) & (slice_scores > 0) return pair_candidates[pruning_scores & pruning_sizes] def _search_slices( self, input_x: np.ndarray, errors: np.ndarray, ) -> None: """Main function of the SliceLine algorithm.""" # prepare offset vectors and one-hot encoded input_x self._one_hot_encoder = OneHotEncoder(handle_unknown="ignore") x_encoded = self._one_hot_encoder.fit_transform(input_x) feature_domains: np.ndarray = np.array( [len(sub_array) for sub_array in self._one_hot_encoder.categories_] ) feature_offset_end = np.cumsum(feature_domains) feature_offset_start = feature_offset_end - feature_domains # initialize statistics and basic slices n_col_x_encoded = x_encoded.shape[1] self.average_error_ = float(np.mean(errors)) slices, statistics = self._create_and_score_basic_slices( x_encoded, n_col_x_encoded, errors, ) # initialize top-k top_k_slices, top_k_statistics = self._maintain_top_k( slices, statistics, sp.csr_matrix((0, n_col_x_encoded)), np.zeros((0, 4)), ) max_slice_scores, min_slice_scores = self._analyse_top_k( top_k_statistics ) logger.debug( "Initial top-K: count=%i, max=%f, min=%f" % (top_k_slices.shape[0], max_slice_scores, min_slice_scores) ) # lattice enumeration w/ size/error pruning, one iteration per level # termination condition (max #feature levels) level = 1 min_condition = min(input_x.shape[1], self.max_l) while ( (slices.shape[0] > 0) & (slices.sum() > 0) & (level < min_condition) ): level += 1 # enumerate candidate join pairs, including size/error pruning slices, statistics = self._get_pruned_s_r(slices, statistics) nr_s = slices.shape[0] slices = self._get_pair_candidates( slices, statistics, top_k_statistics, level, n_col_x_encoded, feature_domains, feature_offset_start, feature_offset_end, ) logger.debug("Level %i:" % level) logger.debug( " -- generated paired slice candidates: %i -> %i" % (nr_s, slices.shape[0]) ) # extract and evaluate candidate slices statistics = self._eval_slice(x_encoded, errors, slices, level) # maintain top-k after evaluation top_k_slices, top_k_statistics = self._maintain_top_k( slices, statistics, top_k_slices, top_k_statistics ) max_slice_scores, min_slice_scores = self._analyse_top_k( top_k_statistics ) valid = np.sum( (statistics[:, 3] >= self.min_sup) & (statistics[:, 1] > 0) ) logger.debug( " -- valid slices after eval: %s/%i" % (valid, slices.shape[0]) ) logger.debug( " -- top-K: count=%i, max=%f, min=%f" % (top_k_slices.shape[0], max_slice_scores, min_slice_scores) ) self._top_slices_enc = top_k_slices.copy() if top_k_slices.shape[0] == 0: self.top_slices_ = np.empty((0, input_x.shape[1])) else: self.top_slices_ = self._one_hot_encoder.inverse_transform( top_k_slices ) # compute slices' average errors top_k_statistics = np.column_stack( ( top_k_statistics, np.divide(top_k_statistics[:, 1], top_k_statistics[:, 3]), ) ) # transform statistics to a list of dict statistics_names = [ "slice_score", "sum_slice_error", "max_slice_error", "slice_size", "slice_average_error", ] self.top_slices_statistics_ = [ { stat_name: stat_value for stat_value, stat_name in zip(statistic, statistics_names) } for statistic in top_k_statistics ] logger.debug("Terminated at level %i." % level)
zeno-sliceline
/zeno_sliceline-0.0.1-py3-none-any.whl/sliceline/slicefinder.py
slicefinder.py