code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
__author__ = 'Paul Landes' import logging from typing import List, Callable from abc import abstractmethod, ABC, ABCMeta import sys import re import itertools as it import parse from copy import copy import pickle import time as tm from pathlib import Path import shelve as sh import zensols.actioncli.time as time logger = logging.getLogger(__name__) # class level persistance class PersistedWork(object): """This class automatically caches work that's serialized to the disk. In order, it first looks for the data in ``owner``, then in globals (if ``cache_global`` is True), then it looks for the data on the file system. If it can't find it after all of this it invokes function ``worker`` to create the data and then pickles it to the disk. This class is a callable itself, which is invoked to get or create the work. There are two ways to implement the data/work creation: pass a ``worker`` to the ``__init__`` method or extend this class and override ``__do_work__``. """ def __init__(self, path, owner, cache_global=False, transient=False): """Create an instance of the class. :param path: if type of ``pathlib.Path`` then use disk storage to cache of the pickeled data, otherwise a string used to store in the owner :type path: pathlib.Path or str :param owner: an owning class to get and retrieve as an attribute :param cache_global: cache the data globals; this shares data across instances but not classes """ if logger.isEnabledFor(logging.DEBUG): logger.debug('pw inst: path={}, global={}'.format(path, cache_global)) self.owner = owner self.cache_global = cache_global self.transient = transient self.worker = None if isinstance(path, Path): self.path = path self.use_disk = True fname = re.sub(r'[ /\\.]', '_', str(self.path.absolute())) else: self.path = Path(path) self.use_disk = False fname = str(path) cstr = owner.__module__ + '.' + owner.__class__.__name__ self.varname = f'_{cstr}_{fname}_pwvinst' def _info(self, msg, *args): if logger.isEnabledFor(logging.DEBUG): logger.debug(self.varname + ': ' + msg, *args) def clear_global(self): """Clear only any cached global data. """ vname = self.varname if logger.isEnabledFor(logging.DEBUG): logger.debug(f'global clearning {vname}') if vname in globals(): if logger.isEnabledFor(logging.DEBUG): logger.debug('removing global instance var: {}'.format(vname)) del globals()[vname] def clear(self): """Clear the data, and thus, force it to be created on the next fetch. This is done by removing the attribute from ``owner``, deleting it from globals and removing the file from the disk. """ vname = self.varname if self.path.exists(): if logger.isEnabledFor(logging.DEBUG): logger.debug('deleting cached work: {}'.format(self.path)) self.path.unlink() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'owner exists: {self.owner is not None} ' + f'has {vname}: {hasattr(self.owner, vname)}') if self.owner is not None and hasattr(self.owner, vname): if logger.isEnabledFor(logging.DEBUG): logger.debug('removing instance var: {}'.format(vname)) delattr(self.owner, vname) self.clear_global() def _do_work(self, *argv, **kwargs): t0 = tm.time() obj = self.__do_work__(*argv, **kwargs) if logger.isEnabledFor(logging.INFO): self._info('created work in {:2f}s, saving to {}'.format( (tm.time() - t0), self.path)) return obj def _load_or_create(self, *argv, **kwargs): """Invoke the file system operations to get the data, or create work. If the file does not exist, calling ``__do_work__`` and save it. """ if self.path.exists(): self._info('loading work from {}'.format(self.path)) with open(self.path, 'rb') as f: obj = pickle.load(f) else: self._info('saving work to {}'.format(self.path)) with open(self.path, 'wb') as f: obj = self._do_work(*argv, **kwargs) pickle.dump(obj, f) return obj def set(self, obj): """Set the contents of the object on the owner as if it were persisted from the source. If this is a global cached instance, then add it to global memory. """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'saving in memory value {type(obj)}') vname = self.varname setattr(self.owner, vname, obj) if self.cache_global: if vname not in globals(): globals()[vname] = obj def __getstate__(self): """We must null out the owner and worker as they are not pickelable. :seealso: PersistableContainer """ d = copy(self.__dict__) d['owner'] = None d['worker'] = None return d def __call__(self, *argv, **kwargs): """Return the cached data if it doesn't yet exist. If it doesn't exist, create it and cache it on the file system, optionally ``owner`` and optionally the globals. """ vname = self.varname obj = None if logger.isEnabledFor(logging.DEBUG): logger.debug('call with vname: {}'.format(vname)) if self.owner is not None and hasattr(self.owner, vname): if logger.isEnabledFor(logging.DEBUG): logger.debug('found in instance') obj = getattr(self.owner, vname) if obj is None and self.cache_global: if vname in globals(): if logger.isEnabledFor(logging.DEBUG): logger.debug('found in globals') obj = globals()[vname] if obj is None: if self.use_disk: obj = self._load_or_create(*argv, **kwargs) else: self._info('invoking worker') obj = self._do_work(*argv, **kwargs) self.set(obj) return obj def __do_work__(self, *argv, **kwargs): """You can extend this class and overriding this method. This method will invoke the worker to do the work. """ return self.worker(*argv, **kwargs) def pprint(self, writer=sys.stdout, indent=0, include_content=False): sp = ' ' * indent writer.write(f'{sp}{self}:\n') sp = ' ' * (indent + 1) writer.write(f'{sp}global: {self.cache_global}\n') writer.write(f'{sp}transient: {self.transient}\n') writer.write(f'{sp}type: {type(self())}\n') if include_content: writer.write(f'{sp}content: {self()}\n') def __str__(self): return self.varname class PersistableContainerMetadata(object): def __init__(self, container): self.container = container @property def persisted(self): """Return all ``PersistedWork`` instances on this object as a ``dict``. """ pws = {} for k, v in self.container.__dict__.items(): if isinstance(v, PersistedWork): pws[k] = v return pws def pprint(self, writer=sys.stdout, indent=0, include_content=False, recursive=False): sp = ' ' * indent spe = ' ' * (indent + 1) for k, v in self.container.__dict__.items(): if isinstance(v, PersistedWork): v.pprint(writer, indent, include_content) else: writer.write(f'{sp}{k}:\n') writer.write(f'{spe}type: {type(v)}\n') if include_content: writer.write(f'{spe}content: {v}\n') if recursive and isinstance(v, PersistableContainer): cmeta = v._get_persistable_metadata() cmeta.write(writer, indent + 2, include_content, True) def clear(self): """Clear all ``PersistedWork`` instances on this object. """ for pw in self.persisted.values(): pw.clear() class PersistableContainer(object): """Classes can extend this that want to persist ``PersistableWork`` instances, which otherwise are not persistable. """ def __getstate__(self): state = copy(self.__dict__) removes = [] for k, v in state.items(): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'container get state: {k} => {type(v)}') if isinstance(v, PersistedWork): if v.transient: removes.append(v.varname) for k in removes: state[k] = None return state def __setstate__(self, state): """Set the owner to containing instance and the worker function to the owner's function by name. """ self.__dict__.update(state) for k, v in state.items(): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'container set state: {k} => {type(v)}') if isinstance(v, PersistedWork): setattr(v, 'owner', self) def _get_persistable_metadata(self) -> PersistableContainerMetadata: """Return the metadata for this container. """ return PersistableContainerMetadata(self) class persisted(object): """Class level annotation to further simplify usage with PersistedWork. For example: class SomeClass(object): @property @persisted('counter', 'tmp.dat') def someprop(self): return tuple(range(5)) """ def __init__(self, attr_name, path=None, cache_global=False, transient=False): logger.debug('persisted decorator on attr: {}, global={}'.format( attr_name, cache_global)) self.attr_name = attr_name self.path = path self.cache_global = cache_global self.transient = transient def __call__(self, fn): logger.debug(f'call: {fn}:{self.attr_name}:{self.path}:' + f'{self.cache_global}') def wrapped(*argv, **kwargs): inst = argv[0] logger.debug(f'wrap: {fn}:{self.attr_name}:{self.path}:' + f'{self.cache_global}') if hasattr(inst, self.attr_name): pwork = getattr(inst, self.attr_name) else: if self.path is None: path = self.attr_name else: path = Path(self.path) pwork = PersistedWork( path, owner=inst, cache_global=self.cache_global, transient=self.transient) setattr(inst, self.attr_name, pwork) pwork.worker = fn return pwork(*argv, **kwargs) return wrapped # resource/sql class resource(object): """This annotation uses a template pattern to (de)allocate resources. For example, you can declare class methods to create database connections and then close them. This example looks like this: class CrudManager(object): def _create_connection(self): return sqlite3.connect(':memory:') def _dispose_connection(self, conn): conn.close() @resource('_create_connection', '_dispose_connection') def commit_work(self, conn, obj): conn.execute(...) """ def __init__(self, create_method_name, destroy_method_name): """Create the instance based annotation. :param create_method_name: the name of the method that allocates :param destroy_method_name: the name of the method that deallocates """ logger.debug(f'connection decorator {create_method_name} ' + f'destructor method name: {destroy_method_name}') self.create_method_name = create_method_name self.destroy_method_name = destroy_method_name def __call__(self, fn): logger.debug(f'connection call with fn: {fn}') def wrapped(*argv, **kwargs): logger.debug(f'in wrapped {self.create_method_name}') inst = argv[0] resource = getattr(inst, self.create_method_name)() try: result = fn(inst, resource, *argv[1:], **kwargs) finally: getattr(inst, self.destroy_method_name)(resource) return result return wrapped class chunks(object): """An iterable that chunks any other iterable in to chunks. Each element returned is a list of elemnets of the given size or smaller. That element that might be smaller is the remainer of the iterable once it is exhausted. """ def __init__(self, iterable: iter, size: int, enum: bool = False): """Initialize the chunker. :param iterable: any iterable object :param size: the size of each chunk """ self.iterable = iterable self.size = size self.enum = enum def __iter__(self): self.iterable_session = iter(self.iterable) return self def __next__(self): ds = [] for e in range(self.size): try: obj = next(self.iterable_session) except StopIteration: break if self.enum: obj = (e, obj) ds.append(obj) if len(ds) == 0: raise StopIteration() return ds # collections class Stash(ABC): """Pure virtual classes that represents CRUDing data that uses ``dict`` semantics. The data is usually CRUDed to the file system but need not be. Instance can be used as iterables or dicsts. If the former, each item is returned as a key/value tuple. Note that while the functionality might appear similar to a dict when used as such, there are subtle differences. For example, when indexing obtaining the value is sometimes *forced* by using some mechanism to create the item. When using ``get`` it relaxes this creation mechanism for some implementations. """ @abstractmethod def load(self, name: str): """Load a data value from the pickled data with key ``name``. """ pass def get(self, name: str, default=None): """Load an object or a default if key ``name`` doesn't exist. """ ret = self.load(name) if ret is None: return default else: return ret @abstractmethod def exists(self, name: str) -> bool: """Return ``True`` if data with key ``name`` exists. """ pass @abstractmethod def dump(self, name: str, inst): "Persist data value ``inst`` with key ``name``." pass @abstractmethod def delete(self, name=None): """Delete the resource for data pointed to by ``name`` or the entire resource if ``name`` is not given. """ pass def clear(self): """Delete all data from the from the stash. *Important*: Exercise caution with this method, of course. """ for k in self.keys(): self.delete(k) @abstractmethod def keys(self) -> List[str]: """Return an iterable of keys in the collection. """ pass def key_groups(self, n): "Return an iterable of groups of keys, each of size at least ``n``." return chunks(self.keys(), n) def values(self): """Return the values in the hash. """ return map(lambda k: self.__getitem__(k), self.keys()) def items(self): """Return an iterable of all stash items.""" return map(lambda k: (k, self.__getitem__(k)), self.keys()) def __getitem__(self, key): exists = self.exists(key) item = self.load(key) if item is None: raise KeyError(key) if not exists: self.dump(key, item) return item def __setitem__(self, key, value): self.dump(key, value) def __delitem__(self, key): self.delete(key) def __contains__(self, key): return self.exists(key) def __iter__(self): return map(lambda x: (x, self.__getitem__(x),), self.keys()) def __len__(self): return len(tuple(self.keys())) class CloseableStash(Stash): """Any stash that has a resource that needs to be closed. """ @abstractmethod def close(self): "Close all resources created by the stash." pass class DelegateStash(CloseableStash, metaclass=ABCMeta): """Delegate pattern. It can also be used as a no-op if no delegate is given. A minimum functioning implementation needs the ``load`` and ``keys`` methods overriden. Inheriting and implementing a ``Stash`` such as this is usually used as the ``factory`` in a ``FactoryStash``. """ def __init__(self, delegate: Stash = None): if delegate is not None and not isinstance(delegate, Stash): raise ValueError(f'not a stash: {delegate}') self.delegate = delegate def __getattr__(self, attr, default=None): try: delegate = super(DelegateStash, self).__getattribute__('delegate') except AttributeError: raise AttributeError( f"'{self.__class__.__name__}' object has no attribute '{attr}'; delegate not set'") if delegate is not None: return delegate.__getattribute__(attr) raise AttributeError( f"'{self.__class__.__name__}' object has no attribute '{attr}''") def load(self, name: str): if self.delegate is not None: return self.delegate.load(name) def get(self, name: str, default=None): if self.delegate is None: return super(DelegateStash, self).get(name, default) else: return self.delegate.get(name, default) def exists(self, name: str): if self.delegate is not None: return self.delegate.exists(name) else: return False def dump(self, name: str, inst): if self.delegate is not None: return self.delegate.dump(name, inst) def delete(self, name=None): if self.delegate is not None: self.delegate.delete(name) def keys(self): if self.delegate is not None: return self.delegate.keys() return () def clear(self): super(DelegateStash, self).clear() if self.delegate is not None: self.delegate.clear() def close(self): if self.delegate is not None: return self.delegate.close() class KeyLimitStash(DelegateStash): """A stash that limits the number of generated keys useful for debugging. For most stashes, this also limits the iteration output since that is based on key mapping. """ def __init__(self, delegate: Stash, n_limit=10): super(KeyLimitStash, self).__init__(delegate) self.n_limit = n_limit def keys(self): ks = super(KeyLimitStash, self).keys() return it.islice(ks, self.n_limit) class PreemptiveStash(DelegateStash): """Provide support for preemptively creating data in a stash. """ @property def has_data(self): """Return whether or not the stash has any data available or not. """ return self._calculate_has_data() def _calculate_has_data(self): """Return ``True`` if the delegate has keys. """ if not hasattr(self, '_has_data'): try: next(iter(self.delegate.keys())) self._has_data = True except StopIteration: self._has_data = False return self._has_data def _reset_has_data(self): """Reset the state of whether the stash has data or not. """ if hasattr(self, '_has_data'): delattr(self, '_has_data') def _set_has_data(self, has_data=True): """Set the state of whether the stash has data or not. """ self._has_data = has_data def clear(self): if self._calculate_has_data(): super(PreemptiveStash, self).clear() self._reset_has_data() class FactoryStash(PreemptiveStash): """A stash that defers to creation of new items to another ``factory`` stash. """ def __init__(self, delegate, factory, enable_preemptive=True): """Initialize. :param delegate: the stash used for persistence :type delegate: Stash :param factory: the stash used to create using ``load`` and ``keys`` :type factory: Stash """ super(FactoryStash, self).__init__(delegate) self.factory = factory self.enable_preemptive = enable_preemptive def _calculate_has_data(self) -> bool: if self.enable_preemptive: return super(FactoryStash, self)._calculate_has_data() else: return False def load(self, name: str): item = super(FactoryStash, self).load(name) if item is None: self._reset_has_data() item = self.factory.load(name) return item def keys(self) -> List[str]: if self.has_data: ks = super(FactoryStash, self).keys() else: ks = self.factory.keys() return ks class OneShotFactoryStash(PreemptiveStash, metaclass=ABCMeta): """A stash that is populated by a callable or an iterable 'worker'. The data is generated by the worker and dumped to the delegate. """ def __init__(self, worker, *args, **kwargs): """Initialize the stash. :param worker: either a callable (i.e. function) or an interable that return tuples or lists of (key, object) """ super(OneShotFactoryStash, self).__init__(*args, **kwargs) self.worker = worker def _process_work(self): """Invoke the worker to generate the data and dump it to the delegate. """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'processing with {type(self.worker)}') if callable(self.worker): itr = self.worker() else: itr = self.worker for id, obj in itr: self.delegate.dump(id, obj) def prime(self): has_data = self.has_data if logger.isEnabledFor(logging.DEBUG): logger.debug(f'asserting data: {has_data}') if not has_data: with time(f'processing work in {self}'): self._process_work() self._reset_has_data() def get(self, name: str, default=None): self.prime() return super(OneShotFactoryStash, self).get(name, default) def load(self, name: str): self.prime() return super(OneShotFactoryStash, self).load(name) def keys(self): self.prime() return super(OneShotFactoryStash, self).keys() class OrderedKeyStash(DelegateStash): """Specify an ordering to how keys in a stash are returned. This usually also has an impact on the order in which values are iterated since a call to get the keys determins it. """ def __init__(self, delegate: Stash, order_function: Callable = int): super(OrderedKeyStash, self).__init__(delegate) self.order_function = order_function def keys(self) -> List[str]: keys = super(OrderedKeyStash, self).keys() if self.order_function: keys = sorted(keys, key=self.order_function) else: keys = sorted(keys) return keys class DictionaryStash(DelegateStash): """Use a dictionary as a backing store to the stash. If one is not provided in the initializer a new ``dict`` is created. """ def __init__(self, data: dict = None): super(DictionaryStash, self).__init__() if data is None: self._data = {} else: self._data = data @property def data(self): return self._data def load(self, name: str): return self.data.get(name) def get(self, name: str, default=None): return self.data.get(name, default) def exists(self, name: str): return name in self.data def dump(self, name: str, inst): self.data[name] = inst def delete(self, name=None): del self.data[name] def keys(self): return self.data.keys() def clear(self): self.data.clear() super(DictionaryStash, self).clear() def __getitem__(self, key): return self.data[key] class CacheStash(DelegateStash): """Provide a dictionary based caching based stash. """ def __init__(self, delegate, cache_stash=None, read_only=False): """Initialize. :param delegate: the underlying persistence stash :param cache_stash: a stash used for caching (defaults to ``DictionaryStash``) :param read_only: if ``True``, make no changes to ``delegate`` """ super(CacheStash, self).__init__(delegate) if cache_stash is None: self.cache_stash = DictionaryStash() else: self.cache_stash = cache_stash self.read_only = read_only def load(self, name: str): if self.cache_stash.exists(name): return self.cache_stash.load(name) else: obj = self.delegate.load(name) self.cache_stash.dump(name, obj) return obj def exists(self, name: str): return self.cache_stash.exists(name) or self.delegate.exists(name) def delete(self, name=None): if self.cache_stash.exists(name): self.cache_stash.delete(name) if not self.read_only: self.delegate.delete(name) def clear(self): if not self.read_only: super(CacheStash, self).clear() self.cache_stash.clear() class DirectoryStash(Stash): """Creates a pickeled data file with a file name in a directory with a given pattern across all instances. """ def __init__(self, create_path: Path, pattern='{name}.dat'): """Create a stash. :param create_path: the directory of where to store the files :param pattern: the file name portion with ``name`` populating to the key of the data value """ self.pattern = pattern self.create_path = create_path def _create_path_dir(self): self.create_path.mkdir(parents=True, exist_ok=True) def _get_instance_path(self, name): "Return a path to the pickled data with key ``name``." fname = self.pattern.format(**{'name': name}) logger.debug(f'path {self.create_path}: {self.create_path.exists()}') self._create_path_dir() return Path(self.create_path, fname) def load(self, name): path = self._get_instance_path(name) inst = None if path.exists(): logger.info(f'loading instance from {path}') with open(path, 'rb') as f: inst = pickle.load(f) logger.debug(f'loaded instance: {inst}') return inst def exists(self, name): path = self._get_instance_path(name) return path.exists() def keys(self): def path_to_key(path): p = parse.parse(self.pattern, path.name).named if 'name' in p: return p['name'] if not self.create_path.is_dir(): keys = () else: keys = filter(lambda x: x is not None, map(path_to_key, self.create_path.iterdir())) return keys def dump(self, name, inst): logger.info(f'saving instance: {inst}') path = self._get_instance_path(name) with open(path, 'wb') as f: pickle.dump(inst, f) def delete(self, name): logger.info(f'deleting instance: {name}') path = self._get_instance_path(name) if path.exists(): path.unlink() def close(self): pass class ShelveStash(CloseableStash): """Stash that uses Python's shelve library to store key/value pairs in dbm (like) databases. """ def __init__(self, create_path: Path, writeback=False): """Initialize. :param create_path: a file to be created to store and/or load for the data storage :param writeback: the writeback parameter given to ``shelve`` """ self.create_path = create_path self.writeback = writeback self.is_open = False @property @persisted('_shelve') def shelve(self): """Return an opened shelve object. """ logger.info('creating shelve data') fname = str(self.create_path.absolute()) inst = sh.open(fname, writeback=self.writeback) self.is_open = True return inst def load(self, name): if self.exists(name): return self.shelve[name] def dump(self, name, inst): self.shelve[name] = inst def exists(self, name): return name in self.shelve def keys(self): return self.shelve.keys() def delete(self, name=None): "Delete the shelve data file." logger.info('clearing shelve data') self.close() for path in Path(self.create_path.parent, self.create_path.name), \ Path(self.create_path.parent, self.create_path.name + '.db'): logger.debug(f'clearing {path} if exists: {path.exists()}') if path.exists(): path.unlink() break def close(self): "Close the shelve object, which is needed for data consistency." if self.is_open: logger.info('closing shelve data') try: self.shelve.close() self._shelve.clear() except Exception: self.is_open = False def clear(self): if self.create_path.exists(): self.create_path.unlink() # utility functions class shelve(object): """Object used with a ``with`` scope that creates the closes a shelve object. For example, the following opens a file ``path``, sets a temporary variable ``stash``, prints all the data from the shelve, and then closes it. with shelve(path) as stash: for id, val in stash, 30: print(f'{id}: {val}') """ def __init__(self, *args, **kwargs): self.shelve = ShelveStash(*args, **kwargs) def __enter__(self): return self.shelve def __exit__(self, type, value, traceback): self.shelve.close()
zensols.actioncli
/zensols.actioncli-1.1.5-py3-none-any.whl/zensols/actioncli/persist.py
persist.py
from abc import ABCMeta, abstractmethod from dataclasses import dataclass import logging import math from multiprocessing import Pool from zensols.actioncli.time import time from zensols.actioncli import ( Stash, Configurable, PreemptiveStash, StashFactory, chunks, ) logger = logging.getLogger(__name__) class StashMapReducer(object): def __init__(self, stash: Stash, n_workers: int = 10): self.stash = stash self.n_workers = n_workers @property def key_group_size(self): n_items = len(self.stash) return math.ceil(n_items / self.n_workers) def _map(self, id: str, val): return (id, val) def _reduce(self, vals): return vals def _reduce_final(self, reduced_vals): return reduced_vals def _map_ids(self, id_sets): return tuple(map(lambda id: self._map(id, self.stash[id]), id_sets)) def map(self): id_sets = self.stash.key_groups(self.key_group_size) pool = Pool(self.n_workers) return pool.map(self._map_ids, id_sets) def __call__(self): mapval = self.map() reduced = map(self._reduce, mapval) return self._reduce_final(reduced) class FunctionStashMapReducer(StashMapReducer): def __init__(self, stash: Stash, func, n_workers: int = 10): super(FunctionStashMapReducer, self).__init__(stash, n_workers) self.func = func def _map(self, id: str, val): return self.func(id, val) @staticmethod def map_func(*args, **kwargs): mr = FunctionStashMapReducer(*args, **kwargs) return mr.map() @dataclass class ChunkProcessor(object): """Represents a chunk of work created by the parent and processed on the child. :param config: the application context configuration used to create the parent stash :param name: the name of the parent stash used to create the chunk, and subsequently process this chunk :param chunk_id: the nth chunk :param data: the data created by the parent to be processed """ config: Configurable name: str chunk_id: int data: object def _create_stash(self): return StashFactory(self.config).instance(self.name) def process(self): """Create the stash used to process the data, then persisted in the stash. """ stash = self._create_stash() cnt = 0 for id, inst in stash._process(self.data): stash.delegate.dump(id, inst) cnt += 1 return cnt def __str__(self): return f'{self.name}: data: {type(self.data)}' class MultiProcessStash(PreemptiveStash, metaclass=ABCMeta): """A stash that forks processes to process data in a distributed fashion. The stash is typically created by a ``StashFactory`` in the child process. Work is chunked (grouped) and then sent to child processes. In each, a new instance of this same stash is created using the ``StashFactory`` and then an abstract method is called to dump the data. To implement, the ``_create_chunks`` and ``_process`` methods must be implemented. """ def __init__(self, config: Configurable, name: str, delegate: Stash, chunk_size: int, workers: int): """Initialize the stash from a ``StashFactory``. This class is abstract and subclasses is are usually be created by a ``StashFactory`` since it needs to be able to be created by the factory in the child process. :param config: the application context configuration used to create the parent stash :param delegate: the stash in charge of the actual persistance :param name: the name of the stash in the configuration, which is created by a ``StashFactory`` :param chunk_size: the size of each group of data sent to the child process to be handled; in some cases the child process will get a chunk of data smaller than this (the last) but never more """ super(MultiProcessStash, self).__init__(delegate) self.config = config self.name = name self.chunk_size = chunk_size self.workers = workers @abstractmethod def _create_data(self) -> list: """Create data in the parent process to be processed in the child process(es) in chunks. """ pass @abstractmethod def _process(self, chunks: list) -> (iter (str, object)): """Process a chunk of data, each created by ``_create_data`` and then grouped. """ pass @staticmethod def _process_work(chunk: ChunkProcessor) -> int: """Process a chunk of data in the child process that was created by the parent process. """ return chunk.process() def _create_chunk_processor(self, chunk_id: int, data: object): """Factory method to create the ``ChunkProcessor`` instance. """ return ChunkProcessor(self.config, self.name, chunk_id, data) def _spawn_work(self) -> int: """Chunks and invokes a multiprocessing pool to invokes processing on the children. """ data = map(lambda x: self._create_chunk_processor(*x), enumerate(chunks(self._create_data(), self.chunk_size))) logger.debug(f'spawning {self.chunk_size} chunks across ' + f'{self.workers} workers') with Pool(self.workers) as p: with time('processed chunks'): cnt = sum(p.map(self.__class__._process_work, data)) return cnt def prime(self): """If the delegate stash data does not exist, use this implementation to generate the data and process in children processes. """ has_data = self.has_data logger.debug(f'asserting data: {has_data}') if not has_data: with time('spawining work in {self}'): self._spawn_work() self._reset_has_data() def get(self, name: str, default=None): self.prime() return super(MultiProcessStash, self).get(name, default) def load(self, name: str): self.prime() return super(MultiProcessStash, self).load(name) def keys(self): self.prime() return super(MultiProcessStash, self).keys()
zensols.actioncli
/zensols.actioncli-1.1.5-py3-none-any.whl/zensols/actioncli/multi.py
multi.py
import logging import sys import threading from io import StringIO class LoggerStream(object): """ Each line of standard out/error becomes a logged line """ def __init__(self, logger, log_level=logging.INFO): self.logger = logger self.log_level = log_level self.linebuf = '' def write(self, c): if c == '\n': self.logger.log(self.log_level, self.linebuf.rstrip()) self.linebuf = '' else: self.linebuf += c def flush(self): if len(self.linebuf) > 0: self.write('\n') class LogLevelSetFilter(object): def __init__(self, levels): self.levels = levels def filter(self, record): return record.levelno in self.levels class StreamLogDumper(threading.Thread): "Redirect stream output to a logger in a running thread." def __init__(self, stream, logger, level): super(StreamLogDumper, self).__init__() self.stream = stream self.logger = logger self.level = level def run(self): with self.stream as s: for line in iter(s.readline, b''): line = line.decode('utf-8') line = line.rstrip() self.logger.log(self.level, line) @classmethod def dump(clz, stdout, stderr, logger): StreamLogDumper(stdout, logger, logging.INFO).start() StreamLogDumper(stderr, logger, logging.ERROR).start() class LogConfigurer(object): """ Configure logging to go to a file or Graylog. """ def __init__(self, logger=logging.getLogger(None), log_format='%(asctime)s %(levelname)s %(message)s', level=None): self.log_format = log_format self.logger = logger if level is not None: self.logger.setLevel(level) self.level = level def config_handler(self, handler): if self.log_format is not None: formatter = logging.Formatter(self.log_format) handler.setFormatter(formatter) self.logger.addHandler(handler) return handler def config_stream(self, stdout_stream, stderr_stream=None): out = logging.StreamHandler(stdout_stream) if stderr_stream is not None: err = logging.StreamHandler(stderr_stream) #err.setLevel(logging.DEBUG) #out.setLevel(logging.DEBUG) err.addFilter(LogLevelSetFilter({logging.ERROR})) out.addFilter(LogLevelSetFilter( {logging.WARNING, logging.INFO, logging.DEBUG})) self.config_handler(err) self.config_handler(out) def config_buffer(self): log_stream = StringIO() self.config_stream(log_stream) return log_stream def config_file(self, file_name): return self.config_handler(logging.FileHandler(file_name)) def config_basic(self): logging.basicConfig(format=self.log_format, level=self.level) def capture(self, stdout_logger=logging.getLogger('STDOUT'), stderr_logger=logging.getLogger('STDERR')): if stdout_logger is not None: sys.stdout = LoggerStream(stdout_logger, logging.INFO) if stderr_logger is not None: sys.stderr = LoggerStream(stderr_logger, logging.INFO)
zensols.actioncli
/zensols.actioncli-1.1.5-py3-none-any.whl/zensols/actioncli/log.py
log.py
import logging from abc import ABC from typing import Dict import inspect import importlib import re from functools import reduce from time import time from zensols.actioncli import ( Configurable, Stash, ) logger = logging.getLogger(__name__) class ClassResolver(ABC): """Used to resolve a class from a string. """ def find_class(self, class_name: str) -> type: """Return a class given the name of the class. :param class_name: represents the class name, which might or might not have the module as part of that name """ pass class DictionaryClassResolver(ClassResolver): """Resolve a class name from a list of registered class names without the module part. This is used with the ``register`` method on ``ConfigFactory``. :see: ConfigFactory.register """ def __init__(self, instance_classes: Dict[str, type]): self.instance_classes = instance_classes def find_class(self, class_name): classes = {} classes.update(globals()) classes.update(self.instance_classes) logger.debug(f'looking up class: {class_name}') if class_name not in classes: raise ValueError( f'class {class_name} is not registered in factory {self}') cls = classes[class_name] logger.debug(f'found class: {cls}') return cls class ClassImporter(object): """Utility class that reloads a module and instantiates a class from a string class name. This is handy for prototyping code in a Python REPL. """ CLASS_REGEX = re.compile(r'^(.+)\.(.+?)$') def __init__(self, class_name: str, reload: bool = True): """Initialize with the class name. :param class_name: the fully qualifed name of the class (including the module portion of the class name) :param reload: if ``True`` then reload the module before returning the class """ self.class_name = class_name self.reload = reload def parse_module_class(self): """Parse the module and class name part of the fully qualifed class name. """ cname = self.class_name match = re.match(self.CLASS_REGEX, cname) if not match: raise ValueError(f'not a fully qualified class name: {cname}') return match.groups() def get_module_class(self): """Return the module and class as a tuple of the given class in the initializer. :param reload: if ``True`` then reload the module before returning the class """ pkg, cname = self.parse_module_class() logger.debug(f'pkg: {pkg}, class: {cname}') pkg = pkg.split('.') mod = reduce(lambda m, n: getattr(m, n), pkg[1:], __import__(pkg[0])) logger.debug(f'mod: {mod}, reloading: {self.reload}') if self.reload: importlib.reload(mod) cls = getattr(mod, cname) logger.debug(f'class: {cls}') return mod, cls def instance(self, *args, **kwargs): """Create an instance of the specified class in the initializer. :param args: the arguments given to the initializer of the new class :param kwargs: the keyword arguments given to the initializer of the new class """ mod, cls = self.get_module_class() try: inst = cls(*args, **kwargs) except Exception as e: msg = f'could not instantiate {cls}({args}, {kwargs})' logger.error(msg, e) raise e if logger.isEnabledFor(logging.DEBUG): logger.debug(f'inst: {inst}') return inst def set_log_level(self, level=logging.INFO): """Convenciene method to set the log level of the module given in the initializer of this class. :param level: and instance of ``logging.<level>`` """ mod, cls = self.parse_module_class() logging.getLogger(mod).setLevel(level) class ImportClassResolver(ClassResolver): """Resolve a class name from a list of registered class names without the module part. This is used with the ``register`` method on ``ConfigFactory``. :see: ConfigFactory.register """ def __init__(self, reload: bool = False): self.reload = reload def find_class(self, class_name): class_importer = ClassImporter(class_name, reload=self.reload) return class_importer.get_module_class()[1] class ConfigFactory(object): """Creates new instances of classes and configures them given data in a configuration ``Configurable`` instance. """ def __init__(self, config: Configurable, pattern: str = '{name}', config_param_name: str = 'config', name_param_name: str = 'name', default_name: str = 'default', class_importer: ClassImporter = None): """Initialize a new factory instance. :param config: the configuration used to create the instance; all data from the corresponding section is given to the ``__init__`` method :param pattern: section pattern used to find the values given to the ``__init__`` method :param config_param_name: the ``__init__`` parameter name used for the configuration object given to the factory's ``instance`` method; defaults to ``config`` :param config_param_name: the ``__init__`` parameter name used for the instance name given to the factory's ``instance`` method; defaults to ``name`` """ self.config = config self.pattern = pattern self.config_param_name = config_param_name self.name_param_name = name_param_name self.default_name = default_name if class_importer is None: self.class_importer = DictionaryClassResolver(self.INSTANCE_CLASSES) else: self.class_importer = class_importer @classmethod def register(cls, instance_class, name=None): """Register a class with the factory. This method assumes the factory instance was created with a (default) ``DictionaryClassResolver``. :param instance_class: the class to register with the factory (not a string) :param name: the name to use as the key for instance class lookups; defaults to the name of the class """ if name is None: name = instance_class.__name__ logger.debug(f'registering: {instance_class} for {cls} -> {name}') cls.INSTANCE_CLASSES[name] = instance_class def _find_class(self, class_name): "Resolve the class from the name." return self.class_importer.find_class(class_name) def _class_name_params(self, name): "Get the class name and parameters to use for ``__init__``." sec = self.pattern.format(**{'name': name}) logger.debug(f'section: {sec}') params = {} params.update(self.config.populate({}, section=sec)) class_name = params['class_name'] del params['class_name'] return class_name, params def _has_init_config(self, cls): """Return whether the class has a ``config`` parameter in the ``__init__`` method. """ args = inspect.signature(cls.__init__) return self.config_param_name in args.parameters def _has_init_name(self, cls): """Return whether the class has a ``name`` parameter in the ``__init__`` method. """ args = inspect.signature(cls.__init__) return self.name_param_name in args.parameters def _instance(self, cls, *args, **kwargs): """Return the instance. :param cls: the class to create the instance from :param args: given to the ``__init__`` method :param kwargs: given to the ``__init__`` method """ logger.debug(f'args: {args}, kwargs: {kwargs}') try: return cls(*args, **kwargs) except Exception as e: logger.error(f'couldnt not create class {cls}({args})({kwargs}): {e}') raise e def instance(self, name=None, *args, **kwargs): """Create a new instance using key ``name``. :param name: the name of the class (by default) or the key name of the class used to find the class :param args: given to the ``__init__`` method :param kwargs: given to the ``__init__`` method """ logger.info(f'new instance of {name}') t0 = time() name = self.default_name if name is None else name logger.debug(f'creating instance of {name}') class_name, params = self._class_name_params(name) cls = self._find_class(class_name) params.update(kwargs) if self._has_init_config(cls): logger.debug(f'found config parameter') params['config'] = self.config if self._has_init_name(cls): logger.debug(f'found name parameter') params['name'] = name if logger.level >= logging.DEBUG: for k, v in params.items(): logger.debug(f'populating {k} -> {v} ({type(v)})') inst = self._instance(cls, *args, **params) logger.info(f'created {name} instance of {cls.__name__} ' + f'in {(time() - t0):.2f}s') return inst class ImportConfigFactory(ConfigFactory): """Import a class by the fully qualified class name (includes the module). This is a convenience class for setting the parent class ``class_importer`` parameter. """ CHILD_REGEXP = re.compile(r'^instance:\s*(.+)$') def __init__(self, *args, reload: bool = False, **kwargs): """Initialize the configuration factory. :param reload: whether or not to reload the module when resolving the class, which is useful for debugging in a REPL """ logger.debug(f'creating import config factory with reload: {reload}') class_importer = ImportClassResolver(reload=reload) super(ImportConfigFactory, self).__init__( *args, **kwargs, class_importer=class_importer) def _class_name_params(self, name): class_name, params = super(ImportConfigFactory, self).\ _class_name_params(name) insts = {} for k, v in params.items(): if isinstance(v, str): m = self.CHILD_REGEXP.match(v) if m: section = m.group(1) insts[k] = self.instance(section) params.update(insts) return class_name, params class ConfigChildrenFactory(ConfigFactory): """Like ``ConfigFactory``, but create children defined with the configuration key ``CREATE_CHILDREN_KEY``. For each of these defined in the comma separated property child property is set and then passed on to the initializer of the object created. In addition, any parameters passed to the initializer of the instance method are passed on the comma separate list ``<name>_pass_param`` where ``name`` is the name of the next object to instantiate per the configuraiton. """ CREATE_CHILDREN_KEY = 'create_children' def _process_pass_params(self, name, kwargs): passkw = {} kname = f'{name}_pass_param' if kname in kwargs: for k in kwargs[kname].split(','): logger.debug(f'passing parameter {k}') passkw[k] = kwargs[k] del kwargs[kname] return passkw def _instance_children(self, kwargs): if self.CREATE_CHILDREN_KEY in kwargs: for k in kwargs[self.CREATE_CHILDREN_KEY].split(','): passkw = self._process_pass_params(k, kwargs) logger.debug(f'create {k}: {kwargs}') if k in kwargs: kwargs[k] = self.instance(kwargs[k], **passkw) for pk in passkw.keys(): del kwargs[pk] del kwargs[self.CREATE_CHILDREN_KEY] def _instance(self, cls, *args, **kwargs): logger.debug(f'stash create: {cls}({args})({kwargs})') self._instance_children(kwargs) return super(ConfigChildrenFactory, self)._instance( cls, *args, **kwargs) class ConfigManager(ConfigFactory): """Like ``ConfigFactory`` base saves off instances (really CRUDs). """ def __init__(self, config: Configurable, stash: Stash, *args, **kwargs): """Initialize. :param config: the configuration object used to configure the new instance :param stash: the stash object used to persist instances """ super(ConfigManager, self).__init__(config, *args, **kwargs) self.stash = stash def load(self, name=None, *args, **kwargs): "Load the instance of the object from the stash." inst = self.stash.load(name) if inst is None: inst = self.instance(name, *args, **kwargs) logger.debug(f'loaded (conf mng) instance: {inst}') return inst def exists(self, name: str): "Return ``True`` if data with key ``name`` exists." return self.stash.exists(name) def keys(self): """Return an iterable of keys in the collection.""" return self.stash.keys() def dump(self, name: str, inst): "Save the object instance to the stash." self.stash.dump(name, inst) def delete(self, name=None): "Delete the object instance from the backing store." self.stash.delete(name) class SingleClassConfigManager(ConfigManager): """A configuration manager that specifies a single class. This is useful when you don't want to specify the class in the configuration. """ def __init__(self, config: Configurable, cls, *args, **kwargs): """Initialize. :param config: the configuration object :param cls: the class used to create each instance """ super(SingleClassConfigManager, self).__init__(config, *args, **kwargs) self.cls = cls def _find_class(self, class_name): return self.cls def _class_name_params(self, name): sec = self.pattern.format(**{'name': name}) logger.debug(f'section: {sec}') params = {} params.update(self.config.populate({}, section=sec)) return None, params class CachingConfigFactory(object): """Just like ``ConfigFactory`` but caches instances in memory by name. """ def __init__(self, delegate: ConfigFactory): """Initialize. :param delegate: the delegate factory to use for the actual instance creation """ self.delegate = delegate self.insts = {} def instance(self, name=None, *args, **kwargs): logger.debug(f'cache config instance for {name}') if name in self.insts: logger.debug(f'reusing cached instance of {name}') return self.insts[name] else: logger.debug(f'creating new instance of {name}') inst = self.delegate.instance(name, *args, **kwargs) self.insts[name] = inst return inst def load(self, name=None, *args, **kwargs): if name in self.insts: logger.debug(f'reusing (load) cached instance of {name}') return self.insts[name] else: logger.debug(f'load new instance of {name}') inst = self.delegate.load(name, *args, **kwargs) self.insts[name] = inst return inst def exists(self, name: str): return self.delegate.exists(name) def dump(self, name: str, inst): self.delegate.dump(name, inst) def delete(self, name): self.delegate.delete(name) self.evict(name) def evict(self, name): if name in self.insts: del self.insts[name] def evict_all(self): self.insts.clear()
zensols.actioncli
/zensols.actioncli-1.1.5-py3-none-any.whl/zensols/actioncli/factory.py
factory.py
__author__ = 'Paul Landes' from typing import Dict, List, Tuple, Optional from dataclasses import dataclass, field from datetime import datetime import logging import re import dateparser from zensols.config import ConfigFactory from zensols.persist import persisted from . import BibstractError, Converter, ConverterLibrary, DestructiveConverter logger = logging.getLogger(__name__) @dataclass class DateToYearConverter(DestructiveConverter): """Converts the year part of a date field to a year. This is useful when using Zotero's Better Biblatex extension that produces BibLatex formats, but you need BibTex entries. """ NAME = 'date_year' """The name of the converter.""" source_field: str = field(default='date') update_fields: Tuple[str] = field(default=('year',)) """The fields to update using the new date format.""" format: str = field(default='%Y') """The :meth:`datetime.datetime.strftime` formatted time, which defaults to a four digit year. """ def __post_init__(self): import warnings m = 'The localize method is no longer necessary, as this time zone' warnings.filterwarnings("ignore", message=m) def _convert(self, entry: Dict[str, str]): if self.source_field in entry: dt_str = entry[self.source_field] dt: datetime = dateparser.parse(dt_str) if dt is None: raise BibstractError( f"Could not parse date: {dt_str} for entry {entry['ID']}") dtfmt = dt.strftime(self.format) if logger.isEnabledFor(logging.DEBUG): logger.debug(f"{entry['date']} -> {dt} -> {dtfmt}") for update_field in self.update_fields: entry[update_field] = dtfmt if self.destructive: del entry['date'] @dataclass class CopyOrMoveKeyConverter(DestructiveConverter): """Copy or move one or more fields in the entry. This is useful when your bibliography style expects one key, but the output (i.e.BibLatex) outputs a different named field). When :obj:``destructive`` is set to ``True``, this copy operation becomes a move. """ NAME = 'copy' """The name of the converter.""" fields: Dict[str, str] = field(default_factory=dict) """The source to target list of fields specifying which keys to keys get copied or moved. """ def _convert(self, entry: Dict[str, str]): for src, dst in self.fields.items(): if src in entry: entry[dst] = entry[src] if self.destructive: del entry[src] @dataclass class RemoveConverter(DestructiveConverter): """Remove entries that match a regular expression. """ NAME = 'remove' """The name of the converter.""" keys: Tuple[str] = field(default=()) """A list of regular expressions, that if match the entry key, will remove the entry. """ def __post_init__(self): self.keys = tuple(map(lambda r: re.compile(r), self.keys)) def _convert(self, entry: Dict[str, str]): entry_keys_to_del = set() for kreg in self.keys: for k, v in entry.items(): km: Optional[re.Match] = kreg.match(k) if km is not None: entry_keys_to_del.add(k) for k in entry_keys_to_del: del entry[k] @dataclass class UpdateOrAddValue(Converter): """Update (clobber) or add a new mapping in an entry. """ NAME = 'update' fields: List[Tuple[str, str]] = field(default_factory=list) """A list of tuples, each tuple having the key to add and the value to update or add using Python interpolation syntax from existing entry keys. """ def _convert(self, entry: Dict[str, str]): for src, dst in self.fields: if src is None: src = self.ENTRY_TYPE try: val = dst.format(**entry) except KeyError as e: msg = f'Can not execute update/add converter for {entry["ID"]}' raise BibstractError(msg) from e if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{src} -> {val}') entry[src] = val @dataclass class ReplaceValue(Converter): """Replace values of entries by regular expression. """ NAME = 'replace' fields: List[Tuple[str, str, str]] = field(default_factory=list) """A list of tuples, each tuple having the key of the entry to modify, a string regular expression of what to change, and the replacement string. """ def _convert(self, entry: Dict[str, str]): for src, regex, repl in self.fields: if src is None: src = self.ENTRY_TYPE try: old = entry[src] new = re.sub(regex, repl, old) if old != new: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{src} -> {new}') entry[src] = new except KeyError as e: msg = f'Can not execute update/add converter for {entry["ID"]}' raise BibstractError(msg) from e @dataclass class ConditionalConverter(Converter): """A converter that invokes a list of other converters if a certain entry key/value pair matches. """ NAME = 'conditional_converter' config_factory: ConfigFactory = field() """The configuration factory used to create this converter and used to get referenced converters. """ converters: List[str] = field(default_factory=list) """The list of converters to inovke if the predicate condition is satisfied. """ includes: Dict[str, str] = field(default_factory=dict) """The key/values that must match in the entry to invoke the converters referenced by :obj:`converters`. """ excludes: Dict[str, str] = field(default_factory=dict) """The key/values that can *not* match in the entry to invoke the converters referenced by :obj:`converters`. """ @persisted('_converter_insts') def _get_converters(self): lib: ConverterLibrary = self.config_factory('converter_library') return tuple(map(lambda n: lib[n], self.converters)) def _matches(self, entry: Dict[str, str], crit: Dict[str, str], negate: bool) -> bool: matches = True for k, v in crit.items(): k = self.ENTRY_TYPE if k is None else k val = entry.get(k) if val is None: if negate: matches = False break else: is_match = re.match(v, val) if negate: is_match = not is_match if is_match: matches = False break if logger.isEnabledFor(logging.DEBUG): logger.debug(f'matches: {matches}: {crit} ' + f'{"!=" if negate else "=="} {entry}') return matches def _convert(self, entry: Dict[str, str]): if self._matches(entry, self.includes, True) and \ self._matches(entry, self.excludes, False): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'matches on {entry["ID"]}: {self.includes}') for conv in self._get_converters(): entry.update(conv.convert(entry))
zensols.bibstract
/zensols.bibstract-1.1.0-py3-none-any.whl/zensols/bibstract/converter.py
converter.py
__author__ = 'Paul Landes' from typing import Dict, Set from dataclasses import dataclass, field import logging from pathlib import Path from zensols.config import ConfigFactory from . import Extractor, ConverterLibrary, PackageFinder logger = logging.getLogger(__name__) @dataclass class Exporter(object): """This utility extracts Bib(La)Tex references from a (La)Tex. """ CLI_META = {'mnemonic_overrides': {'print_bibtex_ids': 'showbib', 'print_texfile_refs': 'showtex', 'print_extracted_ids': 'showextract', 'print_entry': 'entry'}, 'option_includes': {'libpath', 'output', 'inverse', 'package_regex', 'no_extension'}, 'option_overrides': {'output': {'long_name': 'output', 'short_name': 'o'}, 'package_regex': {'long_name': 'filter', 'short_name': 'f'}, 'no_extension': {'long_name': 'noext', 'short_name': None}}} config_factory: ConfigFactory = field() """The configuration factory used to create this instance.""" converter_library: ConverterLibrary = field() """The converter library used to print what's available.""" log_name: str = field() """The name of the package logger.""" def _get_extractor(self, texpath: str) -> Extractor: return self.config_factory.new_instance('extractor', texpaths=texpath) def _get_package_finder(self, texpath: str, package_regex: str, library_dir: str, inverse: bool = False) -> \ PackageFinder: return self.config_factory.new_instance( 'package_finder', texpaths=texpath, package_regex=package_regex, library_dirs=library_dir, inverse=inverse, ) def converters(self): """List converters and their information.""" self.converter_library.write() def print_bibtex_ids(self): """Print BibTex citation keys.""" extractor = self._get_extractor() extractor.print_bibtex_ids() def print_texfile_refs(self, texpath: Path): """Print citation references. :param texpath: either a file or directory to recursively scan for files with LaTex citation references """ extractor = self.get_extractor(texpath) extractor.print_texfile_refs() def print_extracted_ids(self, texpath: Path): """Print BibTex export citation keys. :param texpath: either a file or directory to recursively scan for files with LaTex citation references """ extractor = self.get_extractor(texpath) extractor.print_extracted_ids() def print_entry(self, citation_key: str): """Print a single BibTex entry as it would be given in the output. :param citation_key: the citation key of entry to print out """ extractor = self._get_extractor() entry: Dict[str, Dict[str, str]] = extractor.get_entry(citation_key) extractor.write_entry(entry) def export(self, texpath: str, output: Path = None): """Export the derived BibTex file. :param texpath: a path separated (':' on Linux) list of files or directories to export :param output: the output path name, or standard out if not given """ extractor = self._get_extractor(texpath) if output is None: extractor.extract() else: with open(output, 'w') as f: extractor.extract(writer=f) def package(self, texpath: str, libpath: str = None, package_regex: str = None, no_extension: bool = False, inverse: bool = False): """Return a list of all packages. :param texpath: a path separated (':' on Linux) list of files or directories to export :param libpath: a path separated (':' on Linux) list of files or directories of libraries to not include in results :param package_regex: the regular expression used to filter packages :param no_extension: do not add the .sty extension """ pkg_finder: PackageFinder = self._get_package_finder( texpath, package_regex, inverse=inverse) pkgs: Set[str] = pkg_finder.get_packages() pkgs = sorted(pkgs) if not no_extension: pkgs = tuple(map(lambda s: f'{s}.sty', pkgs)) print('\n'.join(pkgs))
zensols.bibstract
/zensols.bibstract-1.1.0-py3-none-any.whl/zensols/bibstract/app.py
app.py
__author__ = 'Paul Landes' from typing import Set, Union, Iterable, Sequence from dataclasses import dataclass, field import logging import re from pathlib import Path from . import TexPathIterator, RegexFileParser logger = logging.getLogger(__name__) @dataclass class PackageFinder(TexPathIterator): """Find packages used in the tex path. """ package_regex: Union[str, re.Pattern] = field(default=re.compile(r'.*')) """The regular expression used to filter what to return.""" library_dirs: Union[str, Path, Sequence[Path]] = field(default=None) """The list of library paths. Each path is not traversed to find packages. """ inverse: bool = field(default=False) """Whether to invert the packages with all those packages found in :obj:`library_dirs`. """ def __post_init__(self): super().__post_init__() self.library_dirs = set(self._to_path_seq(self.library_dirs)) if isinstance(self.package_regex, str): self.package_regex = re.compile(self.package_regex) def _get_tex_paths(self) -> Iterable[Path]: paths = super()._get_tex_paths() paths = filter(lambda p: p.parent not in self.library_dirs, paths) return paths def _get_use_packages(self) -> Set[str]: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'finding packages in {self.texpaths}') pattern: re.Pattern = re.compile(r'\\usepackage{([a-zA-Z0-9,-]+?)\}') parser = RegexFileParser(pattern=pattern) path: Path for path in self._get_tex_paths(): with open(path) as f: parser.find(f) return parser.collector def get_packages(self) -> Set[str]: pks: Set[str] = self._get_use_packages() if self.package_regex is not None: pks = set(filter( lambda s: self.package_regex.match(s) is not None, pks)) if self.inverse: lps = super()._get_tex_paths(self.library_dirs) lps = set(map(lambda p: p.stem, lps)) pks = lps - pks return pks
zensols.bibstract
/zensols.bibstract-1.1.0-py3-none-any.whl/zensols/bibstract/pkg.py
pkg.py
__author__ = 'Paul Landes' from typing import Set, Dict, List, Tuple, Sequence, Union, Iterable from dataclasses import dataclass, field import os import logging import sys import itertools as it from pathlib import Path from io import TextIOBase import re from zensols.persist import persisted from zensols.config import Writable, ConfigFactory from zensols.introspect import ClassImporter, ClassInspector, Class from zensols.cli import ApplicationError logger = logging.getLogger(__name__) class BibstractError(ApplicationError): """Application level error.""" pass @dataclass class TexPathIterator(object): """Base class that finds LaTeX files (``.tex``, ``.sty``, etc). """ TEX_FILE_REGEX = re.compile(r'.+\.(?:tex|sty|cls)$') texpaths: Union[str, Path, Sequence[Path]] = field() """Either a file or directory to recursively scan for files with LaTex citation references. """ def __post_init__(self): self.texpaths = self._to_path_seq(self.texpaths) def _to_path_seq(self, path_thing: Union[str, Path, Sequence[Path]]) -> \ Sequence[Path]: """Create a path sequence from a string, path or sequence of paths.""" if path_thing is None: path_thing = () if isinstance(path_thing, Path): path_thing = (path_thing,) elif isinstance(path_thing, str): path_thing = tuple(map(Path, path_thing.split(os.pathsep))) return path_thing def _iterate_path(self, par: Path) -> Iterable[Path]: """Recursively find LaTeX files.""" childs: Iterable[Path] if par.is_file(): childs = (par,) elif par.is_dir(): childs = it.chain.from_iterable( map(self._iterate_path, par.iterdir())) else: childs = () logger.warning(f'unknown file type: {par}--skipping') return childs def _get_tex_paths(self, paths: Sequence[Path] = None) -> Iterable[Path]: """Recursively find LaTeX files in all directories/files in ``paths``. """ paths = self.texpaths if paths is None else paths files = it.chain.from_iterable(map(self._iterate_path, paths)) return filter(self._is_tex_file, files) def _is_tex_file(self, path: Path) -> bool: """Return whether or not path is a file that might contain citation references. """ return path.is_file() and \ self.TEX_FILE_REGEX.match(path.name) is not None @dataclass class RegexFileParser(object): """Finds all instances of the citation references in a file. """ REF_REGEX = re.compile(r'\\cite\{(.+?)\}|\{([a-zA-Z0-9,-]+?)\}') """The default regular expression used to find citation references in sty and tex files (i.e. ``\\cite`` commands). """ MULTI_REF_REGEX = re.compile(r'[^,\s]+') """The regular expression used to find comma separated lists of citations commands (i.e. ``\\cite``). """ pattern: re.Pattern = field(default=REF_REGEX) """The regular expression pattern used to find the references.""" collector: Set[str] = field(default_factory=set) """The set to add found references.""" def find(self, fileobj: TextIOBase): def map_match(t: Union[str, Tuple[str, str]]) -> Iterable[str]: if not isinstance(t, str): t = t[0] if len(t[0]) > 0 else t[1] return filter(lambda s: not s.startswith('\\'), re.findall(self.MULTI_REF_REGEX, t)) for line in fileobj.readlines(): refs: List[Tuple[str, str]] = self.pattern.findall(line) refs = it.chain.from_iterable(map(map_match, refs)) self.collector.update(refs) @dataclass class Converter(object): """A base class to convert fields of a BibTex entry (which is of type ``dict``) to another field. Subclasses should override :meth:`_convert`. """ ENTRY_TYPE = 'ENTRYTYPE' name: str = field() """The name of the converter.""" def convert(self, entry: Dict[str, str]) -> Dict[str, str]: """Convert and return a new entry. :param entry: the source data to transform :return: a new instance of a ``dict`` with the transformed data """ entry = dict(entry) self._convert(entry) return entry def _convert(self, entry: Dict[str, str]): """The templated method subclasses should extend. The default base class implementation is to return what's given as an identity mapping. """ return entry def __str__(self) -> str: return f'converter: {self.name}' @dataclass class DestructiveConverter(Converter): """A converter that can optionally remove or modify entries. """ destructive: bool = field(default=False) """If true, remove the original field if converting from one key to another in the Bibtex entry. """ @dataclass class ConverterLibrary(Writable): config_factory: ConfigFactory = field() """The configuration factory used to create the converters.""" converter_class_names: List[str] = field() """The list of converter class names currently available.""" converter_names: List[str] = field(default=None) """A list of converter names used to convert to BibTex entries.""" def __post_init__(self): self.converter_names = list(filter( lambda x: x != 'identity', self.converter_names)) self._unregistered = {} def _create_converter(self, name: str) -> Converter: conv = self.config_factory(f'{name}_converter') conv.name = name return conv @property @persisted('_converters') def converters(self) -> Tuple[Converter]: return tuple(map(self._create_converter, self.converter_names)) @property @persisted('_by_name') def converters_by_name(self) -> Dict[str, Converter]: convs = self.converters return {c.name: c for c in convs} def __getitem__(self, key: str): conv = self.converters_by_name.get(key) if conv is None: conv = self._unregistered.get(key) if conv is None: conv = self._create_converter(key) self._unregistered[key] = conv if conv is None: raise BibstractError(f'No such converter: {key}') return conv def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, markdown_depth: int = 1): for cname in self.converter_class_names: cls = ClassImporter(cname).get_class() inspector = ClassInspector(cls) mcls: Class = inspector.get_class() header = '#' * markdown_depth self._write_line(f'{header} Converter {cls.NAME}', depth, writer) writer.write('\n') self._write_line(mcls.doc.text, depth, writer) writer.write('\n\n')
zensols.bibstract
/zensols.bibstract-1.1.0-py3-none-any.whl/zensols/bibstract/domain.py
domain.py
__author__ = 'plandes' from typing import Dict, Tuple, Iterable from dataclasses import dataclass, field import sys import logging from pathlib import Path from io import TextIOWrapper import bibtexparser from bibtexparser.bibdatabase import BibDatabase from bibtexparser.bwriter import BibTexWriter from bibtexparser.bparser import BibTexParser from zensols.persist import persisted from . import ( TexPathIterator, RegexFileParser, Converter, ConverterLibrary ) logger = logging.getLogger(__name__) @dataclass class Extractor(TexPathIterator): """Extracts references, parses the BibTex master source file, and extracts matching references from the LaTex file. """ converter_library: ConverterLibrary = field() """The converter library used to print what's available.""" master_bib: Path = field() """The path to the master BibTex file.""" @property def converters(self) -> Tuple[Converter]: return self.converter_library.converters @property @persisted('_database') def database(self) -> BibDatabase: """Return the BibTex Python object representation of master file. """ if logger.isEnabledFor(logging.INFO): logger.info(f'parsing master bibtex file: {self.master_bib}') parser = BibTexParser() parser.ignore_nonstandard_types = False with open(self.master_bib) as f: db = bibtexparser.load(f, parser) return db @property def bibtex_ids(self) -> iter: """Return all BibTex string IDs. These could be BetterBibtex citation references. """ return map(lambda e: e['ID'], self.database.entries) @property @persisted('_tex_refs') def tex_refs(self) -> set: """Return the set of parsed citation references. """ parser = RegexFileParser() for path in self._get_tex_paths(): with open(path) as f: parser.find(f) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'parsed refs: {", ".join(parser.collector)}') return parser.collector @property def extract_ids(self) -> set: """Return the set of BibTex references to be extracted. """ bib = set(self.bibtex_ids) trefs = self.tex_refs if logger.isEnabledFor(logging.DEBUG): logger.debug(f'extracted: {trefs}') return bib & trefs def print_bibtex_ids(self): logging.getLogger('bibtexparser').setLevel(logging.ERROR) for id in self.bibtex_ids: print(id) def print_texfile_refs(self): for ref in self.tex_refs: print(ref) def print_extracted_ids(self): for id in self.extract_ids: print(id) def _convert_dict(self, db: Dict[str, Dict[str, str]], keys: Iterable[str]) -> Dict[str, str]: entries = {} for did in sorted(keys): entry = db[did] for conv in self.converters: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'applying {conv}') entry = conv.convert(entry) entries[did] = entry return entries @property @persisted('_entries', cache_global=True) def entries(self) -> Dict[str, Dict[str, str]]: """The BibTex entries parsed from the master bib file.""" db = self.database.get_entry_dict() return self._convert_dict(db, db.keys()) def _get_all_entries(self) -> Dict[str, Dict[str, str]]: return {} def get_entry(self, citation_key: str) -> Dict[str, Dict[str, str]]: entries = self._get_all_entries() entry: Dict[str, str] = entries.get(citation_key) if entry is None: db = self.database.get_entry_dict() entry = db[citation_key] converted = self._convert_dict( {citation_key: entry}, [citation_key]) entry = converted[citation_key] entries[citation_key] = entry return entry @property @persisted('_extracted_entries') def extracted_entries(self) -> Dict[str, Dict[str, str]]: """The BibTex entries parsed from the master bib file.""" db = self.database.get_entry_dict() return self._convert_dict(db, self.extract_ids) def extract(self, writer: TextIOWrapper = sys.stdout, extracted_entries: Dict[str, Dict[str, str]] = None): """Extract the master source BibTex matching citation references from the LaTex file(s) and write them to ``writer``. :param writer: the BibTex entry data sink """ bwriter = BibTexWriter() if extracted_entries is None: extracted_entries = self.extracted_entries for bid, entry in extracted_entries.items(): if logger.isEnabledFor(logging.DEBUG): estr = str(entry)[:80] logger.debug(f'extracting: {bid}: <{estr}>') if logger.isEnabledFor(logging.INFO): logger.info(f'writing entry {bid}') self.write_entry(entry, bwriter, writer) writer.flush() def write_entry(self, entry: Dict[str, str], bwriter: BibTexWriter = None, writer: TextIOWrapper = sys.stdout): bwriter = BibTexWriter() if bwriter is None else bwriter writer.write(bwriter._entry_to_bibtex(entry))
zensols.bibstract
/zensols.bibstract-1.1.0-py3-none-any.whl/zensols/bibstract/extractor.py
extractor.py
# Python to Clojure Bridge [![Travis CI Build Status][travis-badge]][travis-link] Python to Clojure Bridge using a Py4J Gateway. This simple library aims to make it easy and trivial to invoke [Clojure] from [Python] using the [py4j] gateway server and API. If you think this sounds convoluted, it is. However it also solves a lot of issues using a JVM API and proxying in the same process. This method separates the JVM and python in separate processes so they don't step on eachother's feet (think memory and resource allocation issues). On the downside the setup is more complex. The end to end request looks like: 1. Invoke the [clojure Python library](python/clojure/api.py). 2. Marshall the RPC request via the py4j python library 3. Request is sent via the network 4. Request received py4j Java Gateway server 5. `zensols.py4j.gateway` (this library) invokes the actual Clojure request 6. Return the result back all the way up the chain. <!-- markdown-toc start - Don't edit this section. Run M-x markdown-toc-refresh-toc --> ## Table of Contents - [Usage](#usage) - [NLP Complex Example](#nlp-complex-example) - [Installing and Running](#installing-and-running) - [Obtaining](#obtaining) - [Documentation](#documentation) - [Binaries](#binaries) - [Building](#building) - [Changelog](#changelog) - [License](#license) <!-- markdown-toc end --> ## Usage First [download, install and run the server](#installing-and-running) ```python from zensols.clojure import Clojure def test(): cw = Clojure('taoensso.nippy') try: cw.add_depenedency('com.taoensso', 'nippy', '2.13.0') dat = cw.invoke('freeze', [123, 'strarg', 1.2]) thawed = cw.invoke('thaw', dat) for i in thawed: print('thawed item: %s' % i) finally: cw.close() >>> test() >>> thawed item: 123 thawed item: strarg thawed item: 1.2 ``` See the [test cases](test/python/tests.py) for more examples. ### NLP Complex Example This example uses the [NLP Clojure Project] parse function. The `py4jgw` (gateway) needs the [models installed](https://github.com/plandes/clj-nlp-parse#setup) and the following system property set by adding it to the environment setup script: ```bash $ echo 'JAVA_OPTS="-Dzensols.model=${HOME}/opt/nlp/model"' > py4jgw/bin/setupenv $ /bin/bash py4jgw/bin/py4jgw ``` The following example parses an utterance and prints out what could be used as features in a [machine learning](https://github.com/plandes/clj-ml-model) model: ```python import json from zensols.clojure import Clojure def test(): parse = Clojure('zensols.nlparse.parse') cjson = Clojure('clojure.data.json') try: parse.add_depenedency('com.zensols.nlp', 'parse', '0.1.4') cjson.add_depenedency('org.clojure', 'data.json', '0.2.6') panon = parse.invoke('parse', """I LOVE Bill Joy and he's the smartest guy in the world!""") jstr = cjson.invoke('write-str', panon) parsed = json.loads(jstr) print('sentiment: %s' % parsed['sentiment']) ment = parsed['mentions'][0] print("'%s' is a %s" % (ment['text'], ment['ner-tag'])) #print(json.dumps(parsed, indent=2, sort_keys=True)) finally: parse.close() cjson.close() >>> test() >>> sentiment: 1 'Bill Joy' is a PERSON { "mentions": [ { "char-range": [ 7, 15 ], ... ``` ### Installing and Running 1. Download the binary: `$ wget https://github.com/plandes/clj-py4j/releases/download/v0.0.1/py4jgw.zip` 2. Extract: `$ unzip py4jgw.zip` 3. Run the server: `$ /bin/bash ./py4jgw/bin/py4jgw` (or `py4jgw\bin\py4jgw.bat`) 4. Install the Python library: `$ pip install zensols.clojure` 5. [Hack!](#usage) ## Obtaining In your `project.clj` file, add: [![Clojars Project](https://clojars.org/com.zensols.py4j/gateway/latest-version.svg)](https://clojars.org/com.zensols.py4j/gateway/) ### Binaries The latest release binaries are available [here](https://github.com/plandes/clj-py4j/releases/latest). ## Documentation * [Clojure](https://plandes.github.io/clj-py4j/codox/index.html) * [Java](https://plandes.github.io/clj-py4j/apidocs/index.html) ## Building To build from source, do the folling: - Install [Leiningen](http://leiningen.org) (this is just a script) - Install [GNU make](https://www.gnu.org/software/make/) - Install [Git](https://git-scm.com) - Download the source: `git clone https://github.com/plandes/clj-py4j && cd clj-py4j` - Download the make include files: ```bash mkdir ../clj-zenbuild && wget -O - https://api.github.com/repos/plandes/clj-zenbuild/tarball | tar zxfv - -C ../clj-zenbuild --strip-components 1 ``` - Build the software: `make jar` - Build the distribution binaries: `make dist` - Build the Python egg/wheel distribution libraries: `make pydist` Note that you can also build a single jar file with all the dependencies with: `make uber` ## Changelog An extensive changelog is available [here](CHANGELOG.md). ## License Copyright © 2017 Paul Landes Apache License version 2.0 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at [http://www.apache.org/licenses/LICENSE-2.0](http://www.apache.org/licenses/LICENSE-2.0) Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. <!-- links--> [NLP Clojure Project]: https://github.com/plandes/clj-nlp-parse [py4j]: https://www.py4j.org [Clojure]: https://clojure.org [Python]: https://www.python.org [travis-link]: https://travis-ci.org/plandes/clj-py4j [travis-badge]: https://travis-ci.org/plandes/clj-py4j.svg?branch=master
zensols.clojure
/zensols.clojure-0.5.tar.gz/zensols.clojure-0.5/README.md
README.md
import py4j from py4j.java_gateway import JavaGateway, GatewayParameters import logging logger = logging.getLogger('py4j.clojure') class Clojure(object): """ Invoke Clojure call via a py4j gateway. usage: Clojure.call("clojure.string", "join", "||", ["test", "one", 2234]) """ def __init__(self, namespace=None, address='127.0.0.1', port=25333, gateway=None): self.ns_name = namespace self.ns_obj = None self.params = GatewayParameters(address=address, port=port) self.gateway = gateway def _java_object(self, o): """Convert **o** to a Java object usable by the gateway.""" if isinstance(o, list) or isinstance(o, tuple): return self._java_array(o) elif isinstance(o, dict): return self._java_map(o) return o def _java_array(self, args): """Convert args from a python list to a Java array.""" alen = len(args) jargs = self._gw.new_array(self._jvm.Object, alen) for i in range(alen): jargs[i] = self._java_object(args[i]) return jargs def _java_map(self, odict): m = self._jvm.java.util.HashMap() for k, v in odict.items(): m.put(k, v) return m def _python_array(self, arr): size = len(arr) pa = size * [None] for i in range(size): pa[i] = self.python_object(arr[i]) return pa def _python_dict(self, m): pm = self.eval("""(->> m (map (fn [[k v]] {(name k) v})) (apply merge))""", {'m': m}) pd = {} for e in pm.entrySet(): pd[e.getKey()] = self.python_object(e.getValue()) return pd def python_object(self, o): if isinstance(o, py4j.java_collections.JavaList): return self._python_array(o) elif isinstance(o, py4j.java_collections.JavaMap): return self._python_dict(o) elif isinstance(o, py4j.java_gateway.JavaObject) and \ o.getClass().getName() == 'clojure.lang.Keyword': return o.toString() else: return o; @property def _gw(self): """Return the gateway""" if self.gateway == None: logger.info('connecting to %s' % self.params) self.gateway = JavaGateway(gateway_parameters=self.params) return self.gateway @property def _jvm(self): """Return the gateway's JVM""" return self._gw.jvm def set_namespace(self, namespace): """Set the Clojure namespace""" self.ns_name = namespace self.ns_obj = None def _new_namespace(self, namespace): """Create a new `com.zensols.py4j.InvokableNamespace` instance.""" logger.debug('creating namespace: %s' % namespace) return self._jvm.com.zensols.py4j.InvokableNamespace.instance(namespace) def get_namespace(self): """Return a `com.zensols.py4j.InvokableNamespace` instance.""" if self.ns_obj == None: self.ns_obj = self._new_namespace(self.ns_name) return self.ns_obj def invoke(self, function_name, *args): """Invoke a function in the namespace.""" jargs = self._java_array(args) return self.get_namespace().invoke(function_name, jargs) def eval(self, code, context=None): context = self._java_object(context) return self.get_namespace().eval(code, context) def close(self): """Close the gateway.""" logger.info('shutting down') if self.gateway != None: self.gateway.close() self.gateway = None def shutdown(self): """Shutdown the py4j gateway server (careful!).""" self._gw.shutdown() self.close() def add_depenedency(self, group_id, artifact_id, version): """Download and classload a maven coordinate.""" self._jvm.com.zensols.py4j.InvokableNamespace.addDependency(group_id, artifact_id, version) @property def entry_point(self): """Return the gateway entry point.""" return self._gw.entry_point @classmethod def call(cls, namespace, function_name, *args): """One shot convenience method to that invokes a function.""" inst = Clojure(namespace) try: return inst.invoke(function_name, *args) finally: inst.close() @classmethod def eval_default(cls, code, context=None): """One shot convenience method to evaulate in the default namespace.""" inst = Clojure() try: return inst.eval(code, context) finally: inst.close() @classmethod def kill_server(cls): """Stop the Clojure p4j gateway server (careful!).""" Clojure.eval_default('(zensols.py4j.gateway/shutdown)')
zensols.clojure
/zensols.clojure-0.5.tar.gz/zensols.clojure-0.5/zensols/clojure.py
clojure.py
__author__ = 'Paul Landes' from typing import List, ClassVar, Set from dataclasses import dataclass, field import sys import logging from itertools import chain import re import yaml from datetime import datetime from pathlib import Path from io import TextIOWrapper from zensols.persist import persisted from zensols.config import Writable from zensols.introspect import ClassImporter from . import LatexTableError, Table logger = logging.getLogger(__name__) @dataclass class CsvToLatexTable(Writable): """Generate a Latex table from a CSV file. """ tables: List[Table] = field() """A list of table instances to create Latex table definitions.""" package_name: str = field() """The name Latex .sty package.""" def _write_header(self, depth: int, writer: TextIOWrapper): date = datetime.now().strftime('%Y/%m/%d') writer.write("""\\NeedsTeXFormat{LaTeX2e} \\ProvidesPackage{%(package_name)s}[%(date)s Tables] """ % {'date': date, 'package_name': self.package_name}) uses: Set[str] = set(chain.from_iterable( map(lambda t: t.uses, self.tables))) for use in sorted(uses): writer.write(f'\\usepackage{{{use}}}\n') def write(self, depth: int = 0, writer: TextIOWrapper = sys.stdout): """Write the Latex table to the writer given in the initializer. """ self._write_header(depth, writer) for table in self.tables: table.write(depth, writer) @dataclass class TableFileManager(object): """Reads the table definitions file and writes a Latex .sty file of the generated tables from the CSV data. """ _FILE_NAME_REGEX: ClassVar[re.Pattern] = re.compile(r'(.+)\.yml') _PACKAGE_FORMAT: ClassVar[str] = '{name}' table_path: Path = field() """The path to the table YAML defintiions file.""" @property @persisted('_package_name') def package_name(self) -> str: fname = self.table_path.name m = self._FILE_NAME_REGEX.match(fname) if m is None: raise LatexTableError(f'does not appear to be a YAML file: {fname}') return self._PACKAGE_FORMAT.format(**{'name': m.group(1)}) @property def tables(self) -> List[Table]: logger.info(f'reading table definitions file {self.table_path}') tables: List[Table] = [] with open(self.table_path) as f: content = f.read() tdefs = yaml.load(content, yaml.FullLoader) for name, td in tdefs.items(): class_name: str if 'type' in td: cls_name = td['type'].capitalize() + 'Table' del td['type'] else: cls_name = 'Table' cls_name = f'zensols.datdesc.{cls_name}' td['name'] = name inst: Table = ClassImporter(cls_name, reload=False).instance(**td) tables.append(inst) return tables
zensols.datdesc
/zensols.datdesc-0.1.0-py3-none-any.whl/zensols/datdesc/mng.py
mng.py
__author__ = 'Paul Landes' from typing import Tuple, Iterable, Any, Dict from dataclasses import dataclass, field from enum import Enum, auto import logging import re from pathlib import Path from zensols.util import stdout from zensols.cli import ApplicationError from zensols.config import Settings from . import TableFileManager, CsvToLatexTable, Table, DataFrameDescriber from .hyperparam import HyperparamModel, HyperparamSet, HyperparamSetLoader logger = logging.getLogger(__name__) class _OutputFormat(Enum): """The output format for hyperparameter data. """ short = auto() full = auto() json = auto() yaml = auto() sphinx = auto() table = auto() @dataclass class Application(object): """Generate LaTeX tables files from CSV files and hyperparameter .sty files. """ data_file_regex: re.Pattern = field(default=re.compile(r'^.+-table\.yml$')) """Matches file names of tables process in the LaTeX output.""" hyperparam_file_regex: re.Pattern = field( default=re.compile(r'^.+-hyperparam\.yml$')) """Matches file names of tables process in the LaTeX output.""" hyperparam_table_default: Settings = field(default=None) """Default settings for hyperparameter :class:`.Table` instances.""" def _process_data_file(self, data_file: Path, output_file: Path): mng = TableFileManager(Path(data_file)) logger.info(f'{data_file} -> {output_file}, pkg={mng.package_name}') with stdout(output_file, 'w') as f: tab = CsvToLatexTable(mng.tables, mng.package_name) tab.write(writer=f) logger.info(f'wrote {output_file}') def _write_hyper_table(self, hset: HyperparamSet, table_file: Path): def map_table(dd: DataFrameDescriber, hp: HyperparamModel) -> Table: hmtab: Dict[str, Any] = hp.table params: Dict[str, Any] = dict(**table_defs, **hmtab) \ if hmtab is not None else table_defs return dd.create_table(**params) table_defs: Dict[str, Any] = self.hyperparam_table_default.asdict() tables: Tuple[Table] = tuple( map(lambda x: map_table(*x), zip(hset.create_describer().describers, hset.models.values()))) with open(table_file, 'w') as f: tab = CsvToLatexTable(tables, table_file.stem) tab.write(writer=f) logger.info(f'wrote: {table_file}') def _process_hyper_file(self, hyper_file: Path, output_file: Path, output_format: _OutputFormat): loader = HyperparamSetLoader(hyper_file) hset: HyperparamSet = loader.load() with stdout(output_file, 'w') as f: {_OutputFormat.short: lambda: hset.write( writer=f, include_full=False), _OutputFormat.full: lambda: hset.write( writer=f, include_full=True), _OutputFormat.json: lambda: hset.asjson( writer=f, indent=4), _OutputFormat.yaml: lambda: hset.asyaml(writer=f), _OutputFormat.sphinx: lambda: hset.write_sphinx(writer=f), _OutputFormat.table: lambda: self._write_hyper_table( hset, output_file) }[output_format]() def _process_file(self, input_file: Path, output_file: Path, file_type: str): try: if file_type == 'd': return self._process_data_file(input_file, output_file) else: return self._process_hyper_file( input_file, output_file, _OutputFormat.table) except FileNotFoundError as e: raise ApplicationError(str(e)) from e def _get_paths(self, input_path: Path, output_path: Path) -> \ Iterable[Tuple[str, Path]]: if input_path.is_dir() and not output_path.exists(): output_path.mkdir(parents=True) if output_path is not None and \ ((input_path.is_dir() and not output_path.is_dir()) or (not input_path.is_dir() and output_path.is_dir())): raise ApplicationError( 'Both parameters must both be either files or directories, ' + f"got: '{input_path}', and '{output_path}'") def _map_file_type(path: Path) -> Tuple[str, Path]: t: str = None if self.data_file_regex.match(path.name) is not None: t = 'd' elif self.hyperparam_file_regex.match(path.name) is not None: t = 'h' return (t, path) paths: Iterable[str, Path] if input_path.is_dir(): paths = filter(lambda t: t[0] is not None, map(_map_file_type, input_path.iterdir())) elif input_path.exists(): paths = (_map_file_type(input_path),) else: raise ApplicationError(f'No such file for directory: {input_path}') return paths def generate_tables(self, input_path: Path, output_path: Path): """Create LaTeX tables. :param input_path: definitions YAML path location or directory :param output_path: output file or directory """ paths: Iterable[str, Path] = self._get_paths(input_path, output_path) file_type: str path: Path for file_type, path in paths: if input_path.is_dir(): ofile: Path = output_path / f'{path.stem}.sty' self._process_file(path, ofile, file_type) else: self._process_file(input_path, output_path, file_type) def generate_hyperparam(self, input_path: Path, output_path: Path = None, output_format: _OutputFormat = _OutputFormat.short): """Write hyperparameter formatted data :param input_path: definitions YAML path location or directory :param output_path: output file or directory :param output_format: output format of the hyperparameter metadata """ paths: Iterable[str, Path] = self._get_paths(input_path, output_path) path: Path for _, path in filter(lambda x: x[0] == 'h', paths): self._process_hyper_file(path, output_path, output_format)
zensols.datdesc
/zensols.datdesc-0.1.0-py3-none-any.whl/zensols/datdesc/app.py
app.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import Tuple, Dict, Any, ClassVar, Type, List, Iterable from dataclasses import dataclass, field from abc import abstractmethod, ABCMeta import logging import sys import itertools as it import json from json import JSONDecodeError from pathlib import Path from io import TextIOBase import shutil import pandas as pd import hyperopt as ho from hyperopt import hp from zensols.persist import persisted, PersistedWork from zensols.config import ConfigFactory, Dictable from . import HyperparamModel, HyperparamSet, HyperparamSetLoader from .hyperparam import HyperparamError, Hyperparam logger = logging.getLogger(__name__) @dataclass class HyperparamResult(Dictable): """Results of an optimization and optionally the best fit. """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True name: str = field() """The name of the of :class:`.HyperparameterOptimizer`, which is the directory name. """ hyp: HyperparamModel = field() """The updated hyperparameters.""" scores: pd.DataFrame = field() """The last score results computed during the optimization.""" loss: float = field() """The last loss.""" eval_ix: int = field() """The index of the optimiation.""" @classmethod def from_file(cls: Type, path: Path) -> HyperparamResult: """Restore a result from a file name. :param path: the path from which to restore """ with open(path) as f: data: Dict[str, Any] = json.load(f) model_name: str = data['hyp']['name'] hyp_set: HyperparamSet = HyperparamSetLoader( {model_name: data['hyp']}).load() hyp_model: HyperparamModel = hyp_set[model_name] return cls( name=model_name, hyp=hyp_model, scores=pd.read_json(json.dumps(data['scores'])), loss=data['loss'], eval_ix=data['eval_ix']) def _from_dictable(self, *args, **kwargs) -> Dict[str, Any]: dct: Dict[str, Any] = super()._from_dictable(*args, **kwargs) dct['scores'] = self.scores.to_dict() return dct def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): dct: Dict[str, Any] = self.asdict() del dct['scores'] del dct['hyp'] self._write_dict(dct, depth, writer) self._write_line('hyp:', depth, writer) self._write_object(self.hyp, depth + 1, writer) self._write_line('scores:', depth, writer) df = self.scores if len(df) == 1: df = df.T with pd.option_context('display.max_colwidth', self.WRITABLE_MAX_COL): self._write_block(repr(df), depth + 1, writer) @dataclass class HyperparamRun(Dictable): """A container for the entire optimization run. The best run contains the best fit (:obj:`.HyperparamResult`) as predicted by the hyperparameter optimization algorithm. """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True _DICTABLE_ATTRIBUTES: ClassVar[List[str]] = [ 'initial_loss', 'loss_stats', 'best'] runs: Tuple[Tuple[Path, HyperparamResult]] = field(repr=False) """The results from previous runs.""" @property def final_path(self) -> Path: """The path of the final run.""" return self.runs[-1][0] @property def final(self) -> HyperparamResult: """The results of the final run, which as the best fit (see class docs). """ return self.runs[-1][1] @property def initial_loss(self) -> float: """The loss from the first run.""" return self.runs[0][1].loss @property def losses(self) -> Tuple[float]: """The loss value for all runs""" return tuple(map(lambda r: r[1].loss, self.runs)) @property def loss_stats(self) -> Dict[str, float]: """The loss statistics (min, max, ave, etc).""" df = pd.DataFrame(self.losses, columns=['loss']) # skip initial row df = df.iloc[1:] stats = df.describe().to_dict() return stats['loss'] @property def best_result(self) -> HyperparamResult: """The result that had the lowest loss.""" runs: List[HyperparamRun] = list(map(lambda r: r[1], self.runs)) runs.sort(key=lambda r: r.loss) return runs[0] @classmethod def from_dir(cls: Type, path: Path) -> HyperparamRun: """Return an instance with the runs stored in directory ``path``. """ def read_result(path: Path): try: return HyperparamResult.from_file(path) except JSONDecodeError as e: raise HyperparamError(f'Could not parse {path}: {e}') from e files: List[Path] = sorted(path.iterdir(), key=lambda p: p.stem) return cls(runs=tuple(map(lambda p: (p, read_result(p)), files))) @dataclass class CompareResult(Dictable): """Contains the loss and scores of an initial run and a run found on the optimal hyperparameters. """ initial_param: Dict[str, Any] = field() """The initial hyperparameters.""" initial_loss: float = field() """The initial loss.""" initial_scores: pd.DataFrame = field() """The initial scores.""" best_eval_ix: int = field() """The optimized hyperparameters.""" best_param: Dict[str, Any] = field() """The optimized hyperparameters.""" best_loss: float = field() """The optimized loss.""" best_scores: pd.DataFrame = field() """The optimized scores.""" def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line('initial:', depth, writer) self._write_line('parameters:', depth + 1, writer) self._write_dict(self.initial_param, depth + 2, writer) self._write_line(f'loss: {self.initial_loss}', depth + 1, writer) self._write_line('scores:', depth + 1, writer) df = self.initial_scores if len(df) == 1: df = df.T self._write_block(df.to_string(), depth + 2, writer) self._write_line('best:', depth, writer) self._write_line(f'eval_ix: {self.best_eval_ix}', depth + 1, writer) self._write_line('parameters:', depth + 1, writer) self._write_dict(self.best_param, depth + 2, writer) self._write_line(f'loss: {self.best_loss}', depth + 1, writer) self._write_line('scores:', depth + 1, writer) df = self.best_scores if len(df) == 1: df = df.T self._write_block(df.to_string(), depth + 2, writer) @dataclass class HyperparameterOptimizer(object, metaclass=ABCMeta): """Creates the files used to score optimizer output. """ name: str = field(default='default') """The name of the optimization experiment set. This has a bearing on where files are stored (see :obj:`opt_intermediate_dir`). """ hyperparam_names: Tuple[str, ...] = field(default=()) """The name of the hyperparameters to use to create the space. :see: :meth:`_create_space` """ max_evals: int = field(default=1) """The maximum number of evaluations of the hyperparmater optimization algorithm to execute. """ show_progressbar: bool = field(default=True) """Whether or not to show the progress bar while running the optimization. """ intermediate_dir: Path = field(default=Path('opthyper')) """The directory where the intermediate results are saved while the algorithm works. """ baseline_path: Path = field(default=None) """A JSON file with hyperparameter settings to set on start. This file contains the output portion of the ``final.json`` results, (which are the results parsed and set in :obj:`HyperparamResult`). """ def __post_init__(self): self._last_result: HyperparamResult = None self._eval_ix = 0 self._config_factory = PersistedWork( '_config_factory', self, cache_global=True) @abstractmethod def _create_config_factory(self) -> ConfigFactory: """Create the harness for the Zensols application.""" pass @abstractmethod def _get_hyperparams(self) -> HyperparamModel: """Return the hyperparameter instance for the application.""" pass @abstractmethod def _objective(self) -> Tuple[float, pd.DataFrame]: """The objective implementation used by this class. :return: a tuple of the (``loss``, ``scores``), where the scores are any dataframe of the scores of the evaulation """ pass def _create_space(self) -> Dict[str, float]: """Create the hyperparamter spacy used by the :mod:`hyperopt` optimizer. :see: :obj:`hyperparam_names` """ if len(self.hyperparam_names) == 0: raise HyperparamError( 'No given hyperparamter names to optimizer create space') model: HyperparamModel = self.hyperparams space: Dict[str, Any] = {} name: str for name in self.hyperparam_names: param: Hyperparam = model[name] if param.type == 'float': if param.interval is None: raise HyperparamError(f'No interval for parameter {param}') space[name] = hp.uniform(name, *param.interval) elif param.type == 'int': if param.interval is None: raise HyperparamError(f'No interval for parameter {param}') space[name] = hp.uniformint(name, *param.interval) elif param.type == 'choice': space[name] = hp.choice(name, param.choices) else: raise HyperparamError( f'Unsupported parameter type: {param.type}') return space def _compare(self) -> Tuple[float, pd.DataFrame]: """Like :meth:`_objective` but used when comparing the initial hyperparameters with the optimized. """ return self._objective() def _get_score_iterations(self) -> int: """Return the number of scored items (times to call :meth:`_optimize`) called by :meth:`get_score_dataframe`. """ return 1 def _get_result_file_name(self, name: str = None) -> str: """Return a file name based ``name`` used for storing results.""" if name is None: name = f'{self._eval_ix}.json' if name is None else f'{name}.json' else: name = f'{name}.json' return name @property @persisted('_config_factory') def config_factory(self) -> ConfigFactory: """The app config factory.""" return self._create_config_factory() @property def hyperparams(self) -> HyperparamModel: """The model hyperparameters to be updated by the optimizer.""" return self._get_hyperparams() @property def results_intermediate_dir(self) -> Path: """The directory that has all intermediate results by subdirectory name. """ return self.intermediate_dir / 'tmp' @property def opt_intermediate_dir(self) -> Path: """The optimization result directory for the config/parser. """ return self.results_intermediate_dir / self.name def remove_result(self): """Remove an entire run's previous optimization results.""" to_del: Path = self.opt_intermediate_dir if to_del.is_dir(): logger.warning(f'deleting: {to_del}') shutil.rmtree(to_del) def _persist_result(self, name: str = None): """Write the last result to the file system in JSON format.""" name: str = self._get_result_file_name(name) res_path: Path = self.opt_intermediate_dir / name res_path.parent.mkdir(parents=True, exist_ok=True) with open(res_path, 'w') as f: self._last_result.asjson(writer=f, indent=4) def _run_objective(self, space: Dict[str, Any] = None) -> float: hp: HyperparamModel = self.hyperparams if space is not None: hp.update(space) loss: float scores: pd.DataFrame loss, scores = self._objective() self._last_result = HyperparamResult( name=self.name, hyp=hp, scores=scores, loss=loss, eval_ix=self._eval_ix) self._persist_result() self._eval_ix += 1 return loss def _create_uniform_space(self, params: Tuple[str, float, float], integer: bool = False) -> \ Dict[str, float]: """Create a uniform space used by the optimizer. :param params: a tuple of tuples with the form ``(<param name>, <start range>, <end range>)`` :param integer: whether the uniform range are of type integer """ def map_param(name: str, start: float, end: float) -> Tuple[Any, ...]: if integer: return (name, hp.uniformint(name, start, end)) else: return (name, hp.uniform(name, start, end)) return dict(map(lambda x: map_param(*x), params)) def _create_choice(self, params: Tuple[str, Tuple[str, ...]]): """Create a choice space. :param params: a tuple of tuples with the form ``(<param name>, (<choice 1>, <choice 2>...))`` """ def map_param(name: str, choices: Tuple[Any, ...]) -> Tuple[Any, ...]: return (name, hp.choice(name, choices)) return dict(map(lambda x: map_param(*x), params)) def _minimize_objective(self) -> Dict[str, float]: """Run the hyperparameter optimization process and return the results as a dict of the optimized parameters. """ search_space: Dict[str, float] = self._create_space() if logger.isEnabledFor(logging.INFO): logger.info('starting hyperparameter minimization objective') return ho.fmin( fn=self._run_objective, show_progressbar=self.show_progressbar, space=search_space, algo=ho.tpe.suggest, max_evals=self.max_evals) def _finish_optimize(self, best: Dict[str, float]): """Called by :meth:`optimize` when complete. Command line programs will probably want to report the hyperparameters and last score values computed during the hyperparameter optimization using :meth:`write_best_result`. """ pass def optimize(self): """Run the optimization algorithm. """ self.remove_result() self._objective() if logger.isEnabledFor(logging.DEBUG): logger.info(f'initial loss: {self._last_result.loss}') best: Dict[str, float] = self._minimize_objective() self._finish_optimize(best) def get_run(self, result_dir: Path = None) -> HyperparamRun: """Get the best run from the file system. :param result_dir: the result directory, which defaults to :obj:`opt_intermediate_dir` """ if result_dir is None: result_dir = self.opt_intermediate_dir return HyperparamRun.from_dir(result_dir) def get_best_result(self) -> HyperparamResult: return self.get_run().best_result def get_best_results(self) -> Dict[str, HyperparamResult]: """Return the best results across all hyperparameter optimization runs with keys as run names. """ res_dirs: Iterable[Path] = self.results_intermediate_dir.iterdir() res_dirs = filter(lambda p: p.is_dir(), res_dirs) best_results: Dict[str, HyperparamResult] = {} res_dir: Path for res_dir in res_dirs: run: HyperparamRun = self.get_run(res_dir) res: HyperparamResult = run.best_result best_results[res_dir.name] = res return best_results def _get_baseline(self, set_hyp: bool = True) -> HyperparamResult: """Get the baseline hyperparamters from a file if specified in :obj:`baseline_path` if set, otherwise get it from the file system. """ res: HyperparamResult if self.baseline_path is None: logger.info('restoring from best run') res: HyperparamResult = self.get_run().best_result else: logger.info(f'restoring from {self.baseline_path}') if self.baseline_path.is_dir(): # assume a previous run when a directorty run = HyperparamRun.from_dir(self.baseline_path) res = run.best_result else: try: res = HyperparamResult.from_file(self.baseline_path) except KeyError: # when a flat parameter file, there will be no `hyp` key logger.info( f'baseline file {self.baseline_path} does not ' + 'look like previous results--trying as parameter file') with open(self.baseline_path) as f: params: Dict[str, Any] = json.load(f) hyp = self.hyperparams.clone() hyp.update(params) # return a bogus result, which is alright since used # only to copy parameters res = HyperparamResult( hyp=hyp, scores=None, loss=-1, eval_ix=-1) if set_hyp: self.hyperparams.update(res.hyp) return res def get_comparison(self) -> CompareResult: """Compare the scores of the default parameters with those predicted by the optimizer of the best run. """ hyp: HyperparamModel = self.hyperparams prev: Dict[str, Any] = hyp.flatten() cmp_res: CompareResult = None try: initial_loss: float initial_scores: pd.DataFrame initial_loss, initial_scores = self._compare() best_res: HyperparamResult = self._get_baseline() best: Dict[str, Any] = best_res.hyp.flatten() best_loss: float best_scores: pd.DataFrame hyp.update(best) best_loss, best_scores = self._compare() cmp_res = CompareResult( initial_param=prev, initial_loss=initial_loss, initial_scores=initial_scores, best_eval_ix=best_res.eval_ix, best_param=best, best_loss=best_loss, best_scores=best_scores) finally: hyp.update(prev) return cmp_res def _write_result(self, res: HyperparamResult, writer: TextIOBase): print(f'{self.name}:', file=writer) res.write(writer=writer) def write_best_result(self, writer: TextIOBase = sys.stdout, include_param_json: bool = False): """Print the results from the best run. :param include_param_json: whether to output the JSON formatted hyperparameters """ best_res: HyperparamResult = self.get_best_result() self._write_result(best_res, writer) if include_param_json: print('parameters:', file=writer) print(json.dumps(best_res.hyp.flatten(), indent=4), file=writer) def write_compare(self, writer: TextIOBase = sys.stdout): """Write the results of a compare of the initial hyperparameters against the optimized. """ cmp_res: CompareResult = self.get_comparison() if cmp_res is None: print('no results or error', file=writer) else: cmp_res.write(writer=writer) def get_score_dataframe(self, iterations: int = None) -> pd.DataFrame: """Create a dataframe from the results scored from the best hyperparameters. :param iterations: the number times the objective is called to produce the results (the objective space is not altered) """ hyp: HyperparamModel = self.hyperparams prev: Dict[str, Any] = hyp.flatten() dfs: List[pd.DataFrame] = [] if iterations is None: iterations = self._get_score_iterations() logger.info(f'scoring {iterations} iterations using best settings') try: self._get_baseline() for i in range(iterations): self._run_objective(None) df: pd.DataFrame = self._last_result.scores df.insert(0, 'iteration', tuple(it.islice(it.repeat(i), len(df)))) dfs.append(df) finally: hyp.update(prev) return pd.concat(dfs) def write_score(self, writer: TextIOBase = sys.stdout) -> HyperparamResult: """Restore the hyperparameter state, score the data and print the results. Use the :obj:`baseline` parameters if available, otherwise use the parameters from the best best run. """ hyp: HyperparamModel = self.hyperparams prev: Dict[str, Any] = hyp.flatten() try: self._get_baseline() print('using hyperparameters:') self.hyperparams.write(1) self._run_objective(None) self._write_result(self._last_result, writer) return self._last_result finally: hyp.update(prev) def write_scores(self, output_file: Path = None, iterations: int = None): """Write a file of the results scored from the best hyperparameters. :param output_file: where to write the CSV file; defaults to a file in :obj:`opt_intermediate_dir` :param iterations: the number times the objective is called to produce the results (the objective space is not altered) """ if output_file is None: output_file = self.intermediate_dir / 'scores' / f'{self.name}.csv' df: pd.DataFrame = self.get_score_dataframe(iterations) output_file.parent.mkdir(parents=True, exist_ok=True) df.to_csv(output_file) logger.info(f'wrote scores to {output_file}') @property def aggregate_score_dir(self) -> Path: """The output directory containing runs with the best parameters of the top N results (see :meth:`aggregate_scores`). """ return self.intermediate_dir / 'agg' def aggregate_scores(self): """Aggregate best score results as a separate CSV file for each data point with :meth:`get_score_dataframe`. This is saved as a separate file for each optmiziation run since this method can take a long time as it will re-score the dataset. These results are then "stiched" together with :meth:`gather_aggregate_scores`. """ results: Dict[str, HyperparamResult] = self.get_best_results() res_tups: Tuple[str, HyperparamResult] = sorted( results.items(), key=lambda t: t[1].loss) logger.info('scoring top best results') self.aggregate_score_dir.mkdir(parents=True, exist_ok=True) logger.setLevel(logging.INFO) name: str best: HyperparamResult for name, best in res_tups: output_file: Path = self.aggregate_score_dir / f'{name}.csv' self.name = name logger.info(f'scoring {name} on {self.match_sample_size} ' + f'samples with loss {best.loss}') df: pd.DataFrame = self.get_score_dataframe(1) df.insert(0, 'name', name) df.to_csv(output_file, index=False) logger.info(f'wrote: {output_file}') def gather_aggregate_scores(self) -> pd.DataFrame: """Return a dataframe of all the aggregate scores written by :meth:`aggregate_scores`. """ dfs: List[pd.DataFrame] = [] agg_score_file: Path for agg_score_file in self.aggregate_score_dir.iterdir(): dfs.append(pd.read_csv(agg_score_file)) return pd.concat(dfs)
zensols.datdesc
/zensols.datdesc-0.1.0-py3-none-any.whl/zensols/datdesc/opt.py
opt.py
__author__ = 'Paul Landes' from typing import ( Tuple, Any, Dict, List, Set, ClassVar, Optional, Iterable, Union ) from dataclasses import dataclass, field import logging import sys from frozendict import frozendict from collections import OrderedDict from io import TextIOBase from pathlib import Path import yaml import pandas as pd from zensols.config import Dictable from zensols.persist import PersistableContainer, persisted, FileTextUtil from . import Table logger = logging.getLogger(__name__) @dataclass class DataFrameDescriber(PersistableContainer, Dictable): """A class that contains a Pandas dataframe, a description of the data, and descriptions of all the columns in that dataframe. """ _PERSITABLE_PROPERTIES: ClassVar[Set[str]] = {'_metadata_val'} name: str = field() """The description of the data this describer holds.""" df: pd.DataFrame = field() """The dataframe to describe.""" desc: str = field() """The description of the data frame.""" meta_path: Optional[Path] = field(default=None) """A path to use to create :obj:`meta` metadata. :see: :obj:`meta` """ meta: pd.DataFrame = field(default=None) """The column metadata for :obj:`dataframe`, which needs columns ``name`` and ``description``. If this is not provided, it is read from file :obj:`meta_path`. If this is set to a tuple of tuples, a dataframe is generated from the form:: ((<column name 1>, <column description 1>), (<column name 2>, <column description 2>) ... If both this and :obj:`meta_path` are not provided, the following is used:: (('description', 'Description'), ('value', 'Value'))) """ table_kwargs: Dict[str, Any] = field(default_factory=dict) """Additional key word arguments given when creating a table in :meth:`create_table`. """ def __post_init__(self): super().__init__() def _meta_dict_to_dataframe(self, meta: Tuple[Tuple[str, str]]): return pd.DataFrame(data=map(lambda t: t[1], meta), index=map(lambda t: t[0], meta), columns=['description']) @property def _meta(self) -> pd.DataFrame: if self._meta_val is None: self._meta_val = pd.read_csv(self.meta_path, index_col='name') return self._meta_val @_meta.setter def _meta(self, meta: Union[pd.DataFrame, Tuple[Tuple[str, str], ...]]): if meta is None: meta = (('description', 'Description'), ('value', 'Value')) if isinstance(meta, (list, tuple)): self._meta_val = self._meta_dict_to_dataframe(meta) else: self._meta_val = meta @property @persisted('_csv_path', transient=True) def csv_path(self) -> Path: """The CVS file that contains the data this instance describes.""" fname: str = FileTextUtil.normalize_text(self.name) + '.csv' return Path(fname) @property @persisted('_tab_name', transient=True) def tab_name(self) -> str: """The table derived from :obj:`name`.""" return self.csv_path.stem.replace('-', '') def create_table(self, **kwargs) -> Table: """Create a table from the metadata using: * :obj:`csv_path` as :obj:`.Table.path` * :obj:`df` as :obj:`.Table.dataframe` * :obj:`desc` as :obj:`.Table.caption` * :meth:`~zensols.config.dictable.Dictable.asdict` as :obj:`.Table.column_renames` :param kwargs: key word arguments that override the default parameterized data passed to :class:`.Table` """ params: Dict[str, Any] = dict( path=self.csv_path, name=f'{self.tab_name}tab', caption=self.desc, column_renames=dict(filter(lambda x: x[1] is not None, self.asdict().items()))) params.update(kwargs) table = Table(**params) table.dataframe = self.df return table def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, df_params: Dict[str, Any] = None): """ :param df_params: the formatting pandas options, which defaults to ``max_colwidth=80`` """ if df_params is None: df_params = dict(max_colwidth=self.WRITABLE_MAX_COL) self._write_line(f'name: {self.name}', depth, writer, max_len=True) self._write_line(f'desc: {self.desc}', depth, writer, max_len=True) self._write_line('dataframe:', depth, writer) dfs: str = self.df.to_string(**df_params) self._write_block(dfs, depth + 1, writer) self._write_line('columns:', depth, writer) self._write_dict(self.asdict(), depth + 1, writer) def _from_dictable(self, *args, **kwargs) -> Dict[str, str]: dfm: pd.DataFrame = self.meta descs: Dict[str, str] = OrderedDict() col: str for col in self.df.columns: if col in dfm.index: descs[col] = dfm.loc[col]['description'] else: descs[col] = None return descs DataFrameDescriber.meta = DataFrameDescriber._meta @dataclass class DataDescriber(PersistableContainer, Dictable): """Container class for :class:`.DataFrameDescriber` instances. It also saves their instances as CSV data files and YAML configuration files. """ describers: Tuple[DataFrameDescriber] = field() """The contained dataframe and metadata. """ name: str = field(default='default') """The name of the dataset.""" output_dir: Path = field(default=Path('results')) """The directory where to write the results.""" csv_dir: Path = field(default=Path('csv')) """The directory where to write the CSV files.""" yaml_dir: Path = field(default=Path('config')) """The directory where to write the CSV files.""" mangle_sheet_name: bool = field(default=False) """Whether to normalize the Excel sheet names when :class:`xlsxwriter.exceptions.InvalidWorksheetName` is raised. """ def _create_path(self, fname: Union[Path, str]) -> Path: return self.output_dir / fname @property def describers_by_name(self) -> Dict[str, DataFrameDescriber]: """Data frame describers keyed by the describer name.""" return frozendict(dict(map(lambda t: (t.name, t), self.describers))) @staticmethod def _get_col_widths(df: pd.DataFrame, min_col: int = 100): # we concatenate this to the max of the lengths of column name and # its values for each column, left to right return [max([min(min_col, len(str(s))) for s in df[col].values] + [len(col)]) for col in df.columns] def save_excel(self, output_file: Path = None) -> Path: """Save all provided dataframe describers to an Excel file. :param output_file: the Excel file to write, which needs an ``.xlsx`` extension; this defaults to a path created from :obj:`output_dir` and :obj:`name` """ from xlsxwriter.worksheet import Worksheet if output_file is None: fname: str = FileTextUtil.normalize_text(self.name) output_file = self._create_path(f'{fname}.xlsx') # create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter(output_file, engine='xlsxwriter') for desc in self.describers: sheet_name: str = desc.name if self.mangle_sheet_name: sheet_name = FileTextUtil.normalize_text(sheet_name) # convert the dataframe to an XlsxWriter Excel object. desc.df.to_excel(writer, sheet_name=sheet_name, index=False) # set comments of header cells to descriptions worksheet: Worksheet = writer.sheets[sheet_name] cdesc: Dict[str, str] = desc.asdict() col: str for cix, col in enumerate(desc.df.columns): comment: str = cdesc[col] if comment is None: logger.warning(f'missing column {col} in {desc.name}') continue worksheet.write_comment(0, cix, comment) # simulate column auto-fit for i, width in enumerate(self._get_col_widths(desc.df)): worksheet.set_column(i, i, width) writer.save() logger.info(f'wrote {output_file}') return output_file def save_csv(self, output_dir: Path = None) -> List[Path]: """Save all provided dataframe describers to an CSV files. :param output_dir: the directory of where to save the data """ if output_dir is None: output_dir = self._create_path(self.csv_dir) paths: List[Path] = [] desc: DataFrameDescriber for desc in self.describers: out_file: Path = output_dir / desc.csv_path out_file.parent.mkdir(parents=True, exist_ok=True) desc.df.to_csv(out_file, index=False) logger.info(f'saved csv file to: {out_file}') paths.append(out_file) logger.info(f'saved csv files to directory: {output_dir}') return paths def save_yaml(self, output_dir: Path = None, yaml_dir: Path = None) -> List[Path]: """Save all provided dataframe describers YAML files used by the ``datdesc`` command. :param output_dir: the directory of where to save the data """ if output_dir is None: output_dir = self._create_path(self.csv_dir) if yaml_dir is None: yaml_dir = self._create_path(self.yaml_dir) paths: List[Path] = [] desc: DataFrameDescriber for desc in self.describers: csv_file: Path = output_dir / desc.csv_path out_file: Path = yaml_dir / f'{desc.tab_name}-table.yml' tab: Table = desc.create_table() tab.path = csv_file tab_def: Dict[str, Any] = tab.serialize() out_file.parent.mkdir(parents=True, exist_ok=True) with open(out_file, 'w') as f: yaml.dump(tab_def, f) logger.info(f'saved yml file to: {out_file}') paths.append(out_file) return paths def save(self, output_dir: Path = None, yaml_dir: Path = None, include_excel: bool = False) -> List[Path]: """Save both the CSV and YAML configuration file. :param include_excel: whether to also write the Excel file to its default output file name :see: :meth:`save_csv` :see :meth:`save_yaml` """ paths: List[Path] = self.save_csv(output_dir) paths = paths + self.save_yaml(output_dir, yaml_dir) if include_excel: paths.append(self.save_excel()) return paths def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, df_params: Dict[str, Any] = None): """ :param df_params: the formatting pandas options, which defaults to ``max_colwidth=80`` """ desc: DataFrameDescriber for desc in self.describers: self._write_line(f'{desc.name}:', depth, writer) desc.write(depth + 1, writer, df_params=df_params) def __len__(self) -> int: return len(self.describers) def __iter__(self) -> Iterable[DataFrameDescriber]: return iter(self.describers) def __getitem__(self, name: str) -> DataFrameDescriber: return self.describers_by_name[name]
zensols.datdesc
/zensols.datdesc-0.1.0-py3-none-any.whl/zensols/datdesc/desc.py
desc.py
__author__ = 'Paul Landes' from typing import ( Dict, List, Sequence, Tuple, Any, ClassVar, Optional, Callable ) from dataclasses import dataclass, field import sys import re import string from io import TextIOWrapper, StringIO from tabulate import tabulate import itertools as it import pandas as pd from zensols.persist import persisted, PersistedWork, PersistableContainer from zensols.config import Dictable from . import VariableParam @dataclass class Table(PersistableContainer, Dictable): """Generates a Zensols styled Latex table from a CSV file. """ _VARIABLE: ClassVar[str] = 'VAR' _VARIABLE_ATTRIBUTES: ClassVar[Tuple[VariableParam]] = ( VariableParam('placement', value_format='{val}'), VariableParam('size')) path: str = field() """The path to the CSV file to make a latex table.""" name: str = field() """The name of the table, also used as the label.""" caption: str = field() """The human readable string used to the caption in the table.""" head: str = field(default=None) """The header to use for the table, which is used as the text in the list of tables and made bold in the table.""" placement: str = field(default=None) """The placement of the table.""" size: str = field(default='normalsize') """The size of the table, and one of: * Huge * huge * LARGE * Large * large * normalsize (default) * small * footnotesize * scriptsize * tiny """ uses: Sequence[str] = field(default=('zentable',)) """Comma separated list of packages to use.""" single_column: bool = field(default=True) """Makes the table one column wide in a two column. Setting this to false generates a ``table*`` two column table, which won't work in beamer (slides) document types. """ hlines: Sequence[int] = field(default_factory=set) """Indexes of rows to put horizontal line breaks.""" double_hlines: Sequence[int] = field(default_factory=set) """Indexes of rows to put double horizontal line breaks.""" column_keeps: Optional[List[str]] = field(default=None) """If provided, only keep the columns in the list""" column_removes: List[str] = field(default_factory=list) """The name of the columns to remove from the table, if any.""" column_renames: Dict[str, str] = field(default_factory=dict) """Columns to rename, if any.""" column_aligns: str = field(default=None) """The alignment/justification (i.e. ``|l|l|`` for two columns). If not provided, they are automatically generated based on the columns of the table. """ percent_column_names: Sequence[str] = field(default=()) """Column names that have a percent sign to be escaped.""" make_percent_column_names: Dict[str, int] = field(default_factory=dict) """Each columnn in the map will get rounded to the value * 100 of the name. For example, ``{'ann_per': 3}`` will round column ``ann_per`` to 3 decimal places. """ format_thousands_column_names: Dict[str, Optional[Dict[str, Any]]] = \ field(default_factory=dict) """Columns to format using thousands. The keys are the column names of the table and the values are either ``None`` or the keyword arguments to :meth:`format_thousand`. """ column_evals: Dict[str, str] = field(default_factory=dict) """Keys are column names with values as functions (i.e. lambda expressions) evaluated with a single column value parameter. The return value replaces the column identified by the key. """ read_kwargs: Dict[str, str] = field(default_factory=dict) """Keyword arguments used in the :meth:`~pandas.read_csv` call when reading the CSV file. """ write_kwargs: Dict[str, str] = field( default_factory=lambda: {'disable_numparse': True}) """Keyword arguments used in the :meth:`~tabulate.tabulate` call when writing the table. The default tells :mod:`tabulate` to not parse/format numerical data. """ replace_nan: str = field(default=None) """Replace NaN values with a the value of this field as :meth:`tabulate` is not using the missing value due to some bug I assume. """ blank_columns: List[int] = field(default_factory=list) """A list of column indexes to set to the empty string (i.e. 0th to fixed the ``Unnamed: 0`` issues). """ bold_cells: List[Tuple[int, int]] = field(default_factory=list) """A list of row/column cells to bold.""" bold_max_columns: List[str] = field(default_factory=list) """A list of column names that will have its max value bolded.""" capitalize_columns: Dict[str, bool] = field(default_factory=dict) """Capitalize either sentences (``False`` values) or every word (``True`` values). The keys are column names. """ index_col_name: str = field(default=None) """If set, add an index column with the given name.""" df_code: str = field(default=None) """Python code executed that manipulates the table's dataframe. The code has a local ``df`` variable and the returned value is used as the replacement. This is usually a one-liner used to subset the data etc. The code is evaluated with :func:`eval`. """ df_code_pre: str = field(default=None) """Like :obj:`df_code` but right after the source data is read and before any modifications. The code is evaluated with :func:`eval`. """ df_code_exec: str = field(default=None) """Like :obj:`df_code` but invoke with :func:`exec` instead of :func:`eval`. """ df_code_exec_pre: str = field(default=None) """Like :obj:`df_code_pre` but invoke with :func:`exec` instead of :func:`eval`. """ def __post_init__(self): super().__init__() if isinstance(self.uses, str): self.uses = re.split(r'\s*,\s*', self.uses) if isinstance(self.hlines, (tuple, list)): self.hlines = set(self.hlines) if isinstance(self.double_hlines, (tuple, list)): self.double_hlines = set(self.double_hlines) self._formatted_dataframe = PersistedWork( '_formatted_dataframe', self, transient=True) @property def latex_environment(self) -> str: """Return the latex environment for the table. """ tab: str if self.single_column: tab = 'zztable' else: if self.placement is None: tab = 'zztabletcol' else: tab = 'zztabletcolplace' if self.head is not None: tab += 'head' return tab @property def columns(self) -> str: """Return the columns field in the Latex environment header. """ cols: str = self.column_aligns if cols is None: df = self.formatted_dataframe cols = 'l' * df.shape[1] cols = '|' + '|'.join(cols) + '|' return cols def get_cmd_args(self, add_brackets: bool) -> Dict[str, str]: args = {} var: VariableParam for i, var in enumerate(self._VARIABLE_ATTRIBUTES): attr: str = var.name val = getattr(self, attr) if val is None: val = '' elif val == self._VARIABLE: val = var.index_format.format(index=(i + 1), val=val, var=var) else: val = var.value_format.format(index=(i + 1), val=val, var=var) if add_brackets and len(val) > 0: val = f'[{val}]' args[attr] = val return args @property @persisted('_var_args') def var_args(self) -> Tuple[str]: var = tuple(map(lambda a: (a, getattr(self, a.name)), self._VARIABLE_ATTRIBUTES)) return tuple(map(lambda x: x[0], filter(lambda x: x[1] == self._VARIABLE, var))) def get_params(self, add_brackets: bool) -> Dict[str, str]: """Return the parameters used for creating the table. """ params = {'tabname': self.name, 'latex_environment': self.latex_environment, 'caption': self.caption, 'columns': self.columns} params.update(self.get_cmd_args(add_brackets)) return params @staticmethod def format_thousand(x: int, apply_k: bool = True, add_comma: bool = True) -> str: """Format a number as a string with comma separating thousands. :param x: the number to format :param apply_k: add a ``K`` to the end of large numbers :param add_comma: whether to add a comma """ add_k = False if x > 10000: if apply_k: x = round(x / 1000) add_k = True if add_comma: x = f'{x:,}' else: x = str(x) if add_k: x += 'K' return x @property def header(self) -> str: """The Latex environment header. """ head: str = self._get_header() if self.head is not None: head += f'{{{self.head}}}' return head def _get_header(self) -> str: """Return the Latex environment header. """ params = self.get_params(False) if len(params['placement']) == 0: params['placement'] = 'h!' return """\\begin{%(latex_environment)s}[%(placement)s]{%(tabname)s}%% {%(caption)s}{%(size)s}{%(columns)s}""" % params def _apply_df_eval_pre(self, df: pd.DataFrame) -> pd.DataFrame: if self.df_code_exec_pre is not None: _locs = locals() exec(self.df_code_exec_pre) df = _locs['df'] if self.df_code_pre is not None: df = eval(self.df_code_pre) return df def _apply_df_number_format(self, df: pd.DataFrame) -> pd.DataFrame: col: str for col in self.percent_column_names: df[col] = df[col].apply(lambda s: s.replace('%', '\\%')) kwargs: Optional[Dict[str, Any]] for col, kwargs in self.format_thousands_column_names.items(): kwargs = {} if kwargs is None else kwargs df[col] = df[col].apply(lambda x: self.format_thousand(x, **kwargs)) for col, rnd in self.make_percent_column_names.items(): fmt = f'{{v:.{rnd}f}}\\%' df[col] = df[col].apply( lambda v: fmt.format(v=round(v * 100, rnd), rnd=rnd)) return df def _apply_df_eval_post(self, df: pd.DataFrame) -> pd.DataFrame: if self.df_code_exec is not None: exec(self.df_code_exec) for col, code, in self.column_evals.items(): func = eval(code) df[col] = df[col].apply(func) if self.df_code is not None: df = eval(self.df_code) return df def _apply_df_add_indexes(self, df: pd.DataFrame) -> pd.DataFrame: if self.index_col_name is not None: df[self.index_col_name] = range(1, len(df) + 1) cols = df.columns.to_list() cols = [cols[-1]] + cols[:-1] df = df[cols] return df def _apply_df_column_modifies(self, df: pd.DataFrame) -> pd.DataFrame: df = df.drop(columns=self.column_removes) if self.column_keeps is not None: df = df[self.column_keeps] df = df.rename(columns=self.column_renames) return df def _apply_df_font_format(self, df: pd.DataFrame) -> pd.DataFrame: if self.replace_nan is not None: df = df.fillna(self.replace_nan) if len(self.blank_columns) > 0: cols = df.columns.to_list() for i in self.blank_columns: cols[i] = '' df.columns = cols if len(self.bold_cells) > 0: df = self._apply_df_bold_cells(df, self.bold_cells) return df def _apply_df_bold_cells(self, df: pd.DataFrame, cells: Sequence[Tuple[int, int]]): str_cols: bool = len(cells) > 0 and isinstance(cells[0][1], str) cixs: Dict[str, int] = dict(zip(df.columns, it.count())) r: int c: int for r, c in cells: val: Any = df[c].iloc[r] if str_cols else df.iloc[r, c] fmt: str = '\\textbf{' + str(val) + '}' if str_cols: c = cixs[c] df.iloc[r, c] = fmt return df def _apply_df_capitalize(self, df: pd.DataFrame): for col, capwords in self.capitalize_columns.items(): fn: Callable = string.capwords if capwords else str.capitalize df[col] = df[col].apply(fn) return df def _get_bold_columns(self, df: pd.DataFrame) -> Tuple[Tuple[int, int]]: if len(self.bold_max_columns) > 0: cixs: List[str] = self.bold_max_columns return tuple(zip(df[cixs].idxmax(), cixs)) else: return () @property def dataframe(self) -> pd.DataFrame: """The Pandas dataframe that holds the CSV data.""" if not hasattr(self, '_dataframe_val'): self._dataframe_val = pd.read_csv(self.path, **self.read_kwargs) return self._dataframe_val @dataframe.setter def dataframe(self, dataframe: pd.DataFrame): """The Pandas dataframe that holds the CSV data.""" self._dataframe_val = dataframe self._formatted_dataframe.clear() @property @persisted('_formatted_dataframe') def formatted_dataframe(self) -> pd.DataFrame: """The :obj:`dataframe` with the formatting applied to it used to create the Latex table. Modifications such as string replacements for adding percents is done. """ df: pd.DataFrame = self.dataframe df = self._apply_df_eval_pre(df) bold_cols: Tuple[Tuple[int, int]] = self._get_bold_columns(df) df = self._apply_df_number_format(df) df = self._apply_df_eval_post(df) df = self._apply_df_bold_cells(df, bold_cols) df = self._apply_df_capitalize(df) df = self._apply_df_add_indexes(df) df = self._apply_df_column_modifies(df) df = self._apply_df_font_format(df) return df def _get_header_rows(self, df: pd.DataFrame) -> List[List[Any]]: cols = [tuple(map(lambda c: f'\\textbf{{{c}}}', df.columns))] return it.chain(cols, map(lambda x: x[1].tolist(), df.iterrows())) def _get_tabulate_params(self) -> Dict[str, Any]: params = dict(tablefmt='latex_raw', headers='firstrow') params.update(self.write_kwargs) return params def write(self, depth: int = 0, writer: TextIOWrapper = sys.stdout): df: pd.DataFrame = self.formatted_dataframe data = self._get_header_rows(df) params: Dict[str, Any] = self._get_tabulate_params() lines = tabulate(data, **params).split('\n') params = dict(self.get_params(True)) params['cvars'] = '' n_var_args = len(self.var_args) if n_var_args > 0: params['cvars'] = f'[{n_var_args}]' writer.write('\n\\newcommand{\\%(tabname)s}%(cvars)s{%%\n' % params) writer.write(self.header) writer.write('\n') for lix, ln in enumerate(lines[1:-1]): writer.write(ln + '\n') if (lix - 2) in self.hlines: writer.write('\\hline \n') if (lix - 2) in self.double_hlines: writer.write('\\hline \\hline \n') writer.write('\\end{%s}}\n' % self.latex_environment) def _from_dictable(self, *args, **kwargs) -> Dict[str, Any]: dct = super()._from_dictable(*args, **kwargs) dct['type'] = re.sub(r'Table$', '', self.__class__.__name__).lower() def_inst = self.__class__(name=None, path=None, caption=None) dels: List[str] = [] for k, v in dct.items(): if (not hasattr(def_inst, k) or v == getattr(def_inst, k)) or \ (isinstance(v, (list, set, tuple, dict)) and len(v) == 0): dels.append(k) for k in dels: del dct[k] return dct def serialize(self) -> Dict[str, Any]: """Return a data structure usable for YAML or JSON output by flattening Python objects. """ tab_name: str = self.name # using json to recursively convert OrderedDict to dicts tab_def: Dict[str, Any] = self.asflatdict() del tab_def['name'] return {tab_name: tab_def} def __str__(self): return f'{self.name}: env={self.latex_environment}, size={self.size}' @dataclass class SlackTable(Table): """An instance of the table that fills up space based on the widest column. """ slack_col: int = field(default=0) """Which column elastically grows or shrinks to make the table fit.""" @property def latex_environment(self): return 'zzvarcoltable' if self.single_column else 'zzvarcoltabletcol' def _get_header(self) -> str: params = self.get_params(False) width = '\\columnwidth' if self.single_column else '\\textwidth' params['width'] = width return """\\begin{%(latex_environment)s}[%(width)s]{%(placement)s}{%(tabname)s}{%(caption)s}%% {%(size)s}{%(columns)s}""" % params @property def columns(self) -> str: cols: str = self.column_aligns if cols is None: df = self.formatted_dataframe i = self.slack_col cols = ('l' * (df.shape[1] - 1)) cols = cols[:i] + 'X' + cols[i:] cols = '|' + '|'.join(cols) + '|' return cols @dataclass class LongTable(SlackTable): @property def latex_environment(self): return 'zzvarcoltabletcollong' def _get_header(self) -> str: df = self.formatted_dataframe hcols = ' & '.join(map(lambda c: f'\\textbf{{{c}}}', df.columns)) return f'{super()._get_header()}{{{hcols}}}{{{df.shape[1]}}}' def _get_header_rows(self, df: pd.DataFrame) -> List[List[Any]]: return map(lambda x: x[1].tolist(), df.iterrows()) def _get_tabulate_params(self) -> Dict[str, Any]: params = super()._get_tabulate_params() del params['headers'] return params def write(self, depth: int = 0, writer: TextIOWrapper = sys.stdout): sio = StringIO() super().write(depth, writer) sio.seek(0) hlremove = 1 for line in map(str.strip, sio.readlines()): if line == '\\hline' and hlremove > 0: hlremove += 1 continue writer.write(line + '\n')
zensols.datdesc
/zensols.datdesc-0.1.0-py3-none-any.whl/zensols/datdesc/table.py
table.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import ( Union, Dict, Any, List, Tuple, ClassVar, Optional, Type, Set, Sequence, Iterable ) from dataclasses import dataclass, field from abc import ABCMeta, abstractmethod import sys import re import textwrap as tw import copy from itertools import chain from pathlib import Path from io import TextIOBase from frozendict import frozendict import yaml import pandas as pd from zensols.util import APIError from zensols.config import Dictable, Configurable from zensols.persist import persisted from . import DataDescriptionError, DataFrameDescriber, DataDescriber class HyperparamError(DataDescriptionError): """Raised for any error related hyperparameter access. """ pass class HyperparamValueError(HyperparamError): """Raised for bad values set on a hyperparameter. """ pass @dataclass(eq=True) class Hyperparam(Dictable): """A hyperparameter's metadata, documentation and value. The value is accessed (retrieval and setting) at runtime. Do not use this class explicitly. Instead use :class:`.HyperparamModel`. The index access only applies when :obj:`type` is ``list`` or ``dict``. Otherwise, the :obj:`value` member has the value of the hyperparameter. """ _DICTABLE_WRITE_EXCLUDES: ClassVar[Set[str]] = {'name'} _NAME_REGEX = re.compile(r'^[a-zA-Z0-9_]+$') _NODE: ClassVar[str] = 'node()' CLASS_MAP: ClassVar[Dict[str, Type]] = frozendict({ 'str': str, 'choice': str, 'float': float, 'int': int, 'bool': bool, 'list': list, 'dict': dict}) """A mapping for values set in :obj:`type` to their Python class equivalents. """ VALID_TYPES: ClassVar[str] = frozenset(CLASS_MAP.keys()) """Valid settings for :obj:`type`.""" name: str = field() """The name of the hyperparameter (i.e. ``C`` or ``learning_rate``).""" type: str = field() """The type of :obj:`value` (i.e. ``float``, or ``int``).""" doc: str = field() """The human readable documentation for the hyperparameter. This is used in documentation generation tasks. """ choices: Tuple[str, ...] = field(default=None) """When :obj:`type` is ``choice``, the value strings used in :obj:`value`. """ value: Optional[Union[str, float, int, bool, list, dict]] = \ field(default=None) """The value of the hyperparamer used in the application.""" interval: Union[Tuple[float, float], Tuple[int, int]] = field(default=None) """Valid intervals for :obj:`value` as an inclusive interval.""" def __post_init__(self): if self.doc is None: raise HyperparamError(f'Missing doc in {self}') if self._NAME_REGEX.match(self.name) is None: raise HyperparamError( ('Illegal name (only letters, numbers and underscores ' + f'allowed): {self.name}')) if self.type not in self.VALID_TYPES: raise HyperparamError( f'Unknown hyperparameter type: {self.type} in {self}') if self.choices is None: if self.type == 'choice': raise HyperparamError( f'No choice values given for choice: {self}') @property def _value(self) -> Optional[Union[str, float, int, bool, list, dict]]: return self._value_val @_value.setter def _value(self, val: Optional[Union[str, float, int, bool, list, dict]]): cls: Type = type(val) tcls: Type = self.cls if val is not None: if cls != tcls: raise HyperparamValueError( f"Wrong type '{cls.__name__}', expecting " + f"'{tcls.__name__}' for hyperparameter '{self.name}'") if self.type == 'choice' and val not in self.choices: choices: str = ', '.join(map(lambda s: f"'{s}'", self.choices)) raise HyperparamValueError( f"Unknown choice '{val}', expecting one of: {choices}") if self.interval is not None: if val > self.interval[1] or val < self.interval[0]: raise HyperparamValueError( f"Out of range value '{val}' not in " + f'[{self.interval[0]}, {self.interval[1]}]') self._value_val = val def _resolve(self, path: List[str], val: Any, set_val: bool = False) -> Any: if len(path) == 0: if set_val: self.value = val return self.value if len(path) != 1: raise HyperparamError(f'Wrong parameter path length: {path}') path_item: str = path[0] if path_item == self._NODE: if set_val: self.value = val return self if self.type == 'list': try: idx: int = int(path_item) if set_val: self.value[idx] = val return self.value[idx] except ValueError as e: raise HyperparamError( f"List indices must be integers, not '{path_item}'") from e elif self.type == 'dict': if set_val: self.value[path_item] = val return self.value[path_item] else: raise HyperparamError( f"Trying to index '{self.type}' with path: {path}") def write_sphinx(self, depth: int = 0, writer: TextIOBase = sys.stdout): phead: str = f':param {self.name}: ' pdoc: str = self.doc.lower() type_str: str = f':type {self.name}: {self.get_type_str(short=False)}' if pdoc[-1] == '.': pdoc = pdoc[:-1] if self.interval is not None: pdoc = f'{pdoc}, must be in the interval {self.interval_str}' text_wrapper = tw.TextWrapper( initial_indent=self._sp(depth), subsequent_indent=(self._sp(depth) + self._get_str_space(len(phead)))) self._write_block(text_wrapper.wrap(phead + pdoc), 0, writer) self._write_block(type_str, depth, writer) def __getitem__(self, index) -> Any: if self.type == 'list': return self.value[index] elif self.type == 'dict': return self.value[index] else: raise HyperparamError(f"'{self}' is not subscriptable") @property def cls(self) -> Type: """The Python equivalent class of :obj:`type`.""" return self.CLASS_MAP[self.type] def get_type_str(self, short: bool = True) -> str: if self.type == 'choice': if short: return 'str <' + '|'.join(self.choices) + '>' else: return 'str; one of: ' + ', '.join(self.choices) else: return self.type @property def interval_str(self) -> str: return f'[{self.interval[0]}, {self.interval[1]}]' def __str__(self) -> str: s = f'({self.get_type_str()})' if self.value is not None: s = f'{self.value} {s}' if self.interval is not None: s = f'{s} in {self.interval_str}' return self.name + ': ' + s Hyperparam.value = Hyperparam._value @dataclass class HyperparamContainer(Dictable, metaclass=ABCMeta): """A container class for :class:`.Hyperparam` instances. """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True @abstractmethod def _resolve(self, path: List[str], val: Any, set_val: bool) -> Any: """Drill down to the hyperparameter navigating through :class:`.HyperparamModel` and :class:`.HyperparamSet` using the dotted path notation (see module docs). """ pass @abstractmethod def flatten(self, deep: bool = False) -> Dict[str, Any]: """Return a flattened directory with the dotted path notation (see module docs). :param deep: if ``True`` recurse in to :class:`dict` and :class:`list` hyperparameter values """ pass @abstractmethod def write_sphinx(self, depth: int = 0, writer: TextIOBase = sys.stdout): """Write Sphinx autodoc used in a class as :class:`dataclasses.dataclass` field. """ pass def __call__(self, path: str) -> Any: """Return the value of the parameter. :param path: a dotted path notation (see module docs) """ return self._resolve(path.split('.'), None, False) def update(self, params: Union[Dict[str, Any], HyperparamContainer]): """Update parameter values. :param params: a dict of dotted path notation keys """ if isinstance(params, HyperparamContainer): self.update(params.flatten()) else: for k, v in params.items(): self._resolve(k.split('.'), v, True) @dataclass(eq=True) class HyperparamModel(HyperparamContainer): """The model level class that contains the parameters. This class represents a machine learning model such as a SVM with hyperparameters such as ``C`` and ``maximum iterations``. """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True name: str = field() """The name of the model (i.e. ``svm``). This name can have only alpha-numeric and underscore charaters. """ doc: str = field() """The human readable documentation for the model.""" desc: str = field(default=None) """The description the model used in the documentation when obj:`name` is not sufficient. Since :obj:`name` has naming constraints, this can be used as in place during documentation generation. """ params: Dict[str, Hyperparam] = field(default_factory=dict) """The hyperparameters keyed by their names.""" table: Optional[Dict[str, Any]] = field(default=None, repr=False) """Overriding data used when creating a :class:`.Table` from :meth:`.DataFrameDescriber.create_table`. """ def __post_init__(self): if self.doc is None: raise HyperparamError(f'Missing doc in {self}') if self.desc is None: self.desc = self.name def _resolve(self, path: List[str], val: Any, set_val: bool) -> Any: if len(path) == 0: return self if len(path) == 1 and path[0] == Hyperparam._NODE: return self param: Hyperparam = self.params[path[0]] return param._resolve(path[1:], val, set_val) @classmethod def _flatten(cls, n: Any, p: Tuple[str], col: Dict[str, Any]): if isinstance(n, Hyperparam): np = n.name if p is None else f'{p}.{n.name}' cls._flatten(n.value, n.name, col) elif isinstance(n, Dict): for k, v in n.items(): np = k if p is None else f'{p}.{k}' cls._flatten(v, np, col) elif isinstance(n, (tuple, list)): for i, v in enumerate(n): np = str(i) if p is None else f'{p}.{i}' col[np] = v else: col[p] = n def flatten(self, deep: bool = False) -> Dict[str, Any]: def map_param(p: Hyperparam) -> Dict[str, Any]: val: Any = p.value if p.type == 'dict' or p.type == 'list': val = copy.deepcopy(val) return (p.name, val) if deep: col: Dict[str, Any] = {} self._flatten(self.params, None, col) return col else: return dict(map(map_param, self.params.values())) @property def values_dataframe(self) -> pd.DataFrame: """A dataframe with parameter data. This includes the name, type, value and documentation. """ def map_row(p: Hyperparam) -> Dict[str, Any]: dct: Dict[str, Any] = p.asdict() dct['type'] = p.get_type_str() del dct['choices'] del dct['interval'] return dct return pd.DataFrame(tuple(map(map_row, self.params.values()))) @property def metadata_dataframe(self) -> pd.DataFrame: """A dataframe describing the :obj:`values_dataframe`.""" df = pd.DataFrame( ['name', 'data type', 'documentation', 'settings'], index='name type doc value'.split(), columns='description'.split()) df.index.name = 'name' return df def clone(self) -> HyperparamModel: """Make a copy of this instance.""" params = copy.deepcopy(self.__dict__) return self.__class__(**params) def create_dataframe_describer(self) -> DataFrameDescriber: """Return an object with metadata fully describing the hyperparameters of this model. """ return DataFrameDescriber( name=self.desc, df=self.values_dataframe, desc=self.doc, meta=self.metadata_dataframe) def write_sphinx(self, depth: int = 0, writer: TextIOBase = sys.stdout): doc: str = self.doc doc = '"""' + self.doc[0].capitalize() + self.doc[1:] if doc[-1] != '.': doc += '.' self._write_line(f'{self.name}: {self.__class__.__name__} = field()', depth, writer) self._write_wrap(doc, depth, writer) self._write_empty(writer) self._write_line('Hyperparameters::', depth, writer) self._write_empty(writer) param: Hyperparam for i, param in enumerate(self.params.values()): if i > 0: self._write_empty(writer) param.write_sphinx(depth + 1, writer) self._write_line('"""', depth, writer) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_doc: bool = False): self._write_line(f'{self.desc}:', depth, writer) if include_doc: self._write_line(f'doc: {self.doc}', depth + 1, writer) self._write_line('params:', depth + 1, writer) for name, param in sorted(self.params.items(), key=lambda x: x[0]): if include_doc: self._write_line(f'{name}:', depth + 2, writer) self._write_object(param, depth + 3, writer) else: if isinstance(param.value, dict): self._write_line(param.name, depth + 1, writer) self._write_object(param.value, depth + 2, writer) else: self._write_line(str(param), depth + 1, writer) def __getitem__(self, name: str): return self.params[name] def get(self, name: str) -> HyperparamModel: return self.params.get(name) def __contains__(self, name: str) -> bool: return name in self.params def __getattr__(self, attr: str, default: Any = None) -> Any: val: Optional[Hyperparam] = self.params.get(attr) if val is not None: return val.value return super().__getattribute__(attr) def __setattr__(self, attr: str, value: Any = None): if attr in {'params', 'name', 'doc', 'desc', 'table'}: super().__setattr__(attr, value) else: val: Optional[Hyperparam] = self.params.get(attr) if val is not None: val.value = value else: super().__setattr__(attr, value) def __len__(self) -> int: return len(self.params) def __str__(self) -> str: s: str = self.name if s != self.desc: s += f' ({self.desc})' return s @dataclass(eq=True) class HyperparamSet(HyperparamContainer): """The top level in the object graph hierarchy (see module docs). This contains a set of models and typically where calls by packages such as :mod:`hyperopt` are used to update the hyperparameters of the model(s). """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True models: Dict[str, HyperparamModel] = field(default_factory=dict) """The models containing hyperparameters for this set.""" name: Optional[str] = field(default=None) """The name fo the hyperparameter set.""" def _resolve(self, path: List[str], val: Any, set_val: bool) -> Any: if len(path) == 0: raise HyperparamError(f'Missing model in path: {path}') model: HyperparamModel = self.models[path[0]] return model._resolve(path[1:], val, set_val) def flatten(self, deep: bool = False) -> Dict[str, Any]: def map_model(m: HyperparamModel): return map(lambda mt: (f'{m.name}.{mt[0]}', mt[1]), m.flatten(deep).items()) return dict(chain.from_iterable(map(map_model, self.models.values()))) def create_describer(self, meta_path: Path = None) -> DataDescriber: """Return an object with metadata fully describing the hyperparameters of this model. :param meta_path: if provided, set the path on the returned instance """ def map_model(m: HyperparamModel) -> DataFrameDescriber: dd = m.create_dataframe_describer() if meta_path is not None: dd.meta_path = meta_path / f'{self.name}.csv' return dd return DataDescriber( describers=tuple(map(map_model, self.models.values()))) def write_sphinx(self, depth: int = 0, writer: TextIOBase = sys.stdout): if self.name is not None: cname: str = self.name.capitalize() + 'Hyperparams' models: str = ', '.join( map(lambda m: f'``{m.desc}``', self.models.values())) doc: str = f'"""Hyperparaeters for models {models}.' mod: str = re.sub(r'^(.+)\..+$', '\\1', __name__) self._write_line('from dataclasses import dataclass, field', depth, writer) self._write_line(f'from {mod} import HyperparamModel', depth, writer) self._write_empty(writer, 2) self._write_line('@dataclass', depth, writer) self._write_line(f'class {cname}(object):', depth, writer) self._write_line(doc, depth + 1, writer) self._write_empty(writer) self._write_line('"""', depth + 1, writer) model: HyperparamModel for i, model in enumerate(self.models.values()): if i > 0: self._write_empty(writer) model.write_sphinx(depth + 1, writer) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_doc: bool = False): self._write_line('models:', depth, writer) for name, model in self.models.items(): model.write(depth + 1, writer, include_doc=include_doc) def __getitem__(self, name: str): return self.models[name] def get(self, name: str) -> HyperparamModel: return self.models.get(name) def __contains__(self, name: str) -> bool: return name in self.models def __getattr__(self, attr: str, default: Any = None) -> Any: val: Any = self.get(attr) if val is not None: return val return super().__getattribute__(attr) def __len__(self) -> int: return len(self.models) @dataclass class HyperparamSetLoader(object): """Loads a set of hyperparameters from a YAML :class:`pathlib.Path`, :class:`dict` or stream :class:`io.TextIOBase`. """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True _FILE_NAME_REGEX: ClassVar[re.Match] = re.compile(r'^(.+)-hyperparam$') """The regular expression used to match hyperparameter YAML definition files. """ data: Union[Dict[str, Any], Path, TextIOBase] = field() """The source of data to load, which is a YAML :class:`pathlib.Path`, :class:`dict` or stream :class:`io.TextIOBase`. :see: :obj:`updates` """ config: Configurable = field(default=None) """The application configuration used to update the hyperparameters from other sections. """ updates: Sequence[Dict[str, Any]] = field(default=()) """A sequence of dictionaries with keys as :class:`.HyperparamModel` names and values as sections with values to set after loading using :obj:`data`. """ def _from_param(self, name: str, param: Dict[str, Any]): if 'name' not in param: param['name'] = name return Hyperparam(**param) def _from_model(self, name: str, model: Dict[str, Any]): params: Dict[str, Any] = model['params'] return HyperparamModel( name=name, desc=model.get('desc'), doc=model.get('doc'), params=dict(map(lambda p: (p[0], self._from_param(*p)), params.items())), table=model.get('table')) def _from_dict(self, data: Dict[str, Any], name: str = None) -> HyperparamSet: return HyperparamSet( name=name, models=dict(map(lambda m: (m[0], self._from_model(*m)), data.items()))) def _from_stream(self, stream: TextIOBase, name: str = None) -> HyperparamSet: return self._from_dict(yaml.load(stream, yaml.FullLoader), name=name) def _from_path(self, path: Path) -> HyperparamSet: name: str = path.stem m: re.Match = self._FILE_NAME_REGEX.match(name) if m is not None: name = m.group(1) with open(path) as f: return self._from_stream(f, name=name) def _get_updates(self) -> Iterable[Dict[str, Any]]: param_update: Dict[str, Any] for param_update in self.updates: for k, v in param_update.items(): settings: Dict[str, Any] = dict(self.config[v]) yield dict(map(lambda t: (f'{k}.{t[0]}', t[1]), settings.items())) @persisted('_load') def load(self) -> HyperparamSet: """Load and return the hyperparameter object graph from :obj:`data`. """ hs: HyperparamSet if isinstance(self.data, Path): hs = self._from_path(self.data) elif isinstance(self.data, Dict): hs = self._from_dict(self.data) elif isinstance(self.data, TextIOBase): hs = self._from_stream(self.data) else: raise APIError(f'Unknown input type: {type(self.data)}') if self.config is not None: update: Dict[str, Any] for update in self._get_updates(): hs.update(update) return hs def __call__(self, path: str = None) -> \ Union[HyperparamSet, HyperparamSet, Hyperparam]: """Calls "meth:`load`. :param path: if provided, use as the dot separated path in to :class:`.HyperparamSet`; the first level will be an instance of :class:`.HyperparmModel` """ hset: HyperparamSet = self.load() if path is not None: return hset(path) else: return hset def __getitem__(self, path: str) -> \ Union[HyperparamSet, HyperparamSet, Hyperparam]: return self(path)
zensols.datdesc
/zensols.datdesc-0.1.0-py3-none-any.whl/zensols/datdesc/hyperparam.py
hyperparam.py
__author__ = 'Paul Landes' from typing import Tuple, Dict, List, Iterable, ClassVar import logging import re import itertools as it from pathlib import Path from zensols.persist import persisted logger = logging.getLogger(__name__) class DynamicDataParser(object): """Parse a DDL/DML file meant also for prototyping. For example the file:: -- meta=init_sections=create_tables,create_idx -- name=create_idx create index person_name on person(name); -- name=create_tables create table person (id int, name text, age int); Would have ``create_idx`` and ``create_tables`` as sections and meta data:: {'init_sections': 'create_tables,create_idx'} """ COMMENT_PAT: ClassVar[re.Pattern] = re.compile(r'^--.*') SEC_START_PAT: ClassVar[re.Pattern] = re.compile( r'^-- name=([a-zA-Z0-9_]+)') META_PAT: ClassVar[re.Pattern] = re.compile( r'^-- meta=([a-zA-Z0-9_]+)=(.+)$') def __init__(self, dd_path: Path): """Initialize. :param dd_path: the path of the file to parse """ self.dd_path = dd_path def _map_section_content(self, lines: List[str]) -> str: return '\n'.join(lines) @persisted('__parse') def _parse(self) -> Tuple[Dict[str, str], Dict[str, str]]: if logger.isEnabledFor(logging.INFO): logger.info(f'parsing {self.dd_path}') secs: List[str, Tuple[str, List[str]]] = [] sec_content: List[str] = [] meta: Dict[str, str] = {} with open(self.dd_path) as f: line: str for line in f.readlines(): line = line.rstrip() if len(line) == 0: continue if re.match(self.COMMENT_PAT, line): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'matched comment: {line}') sec_start = re.match(self.SEC_START_PAT, line) meta_match = re.match(self.META_PAT, line) sec_content = [] if sec_start is not None: name = sec_start.group(1) secs.append((name, sec_content)) elif meta_match is not None: meta[meta_match.group(1)] = meta_match.group(2) else: sec_content.append(line) sections = {x[0]: self._map_section_content(x[1]) for x in secs} return sections, meta @property def sections(self) -> Dict[str, str]: """Return the sections of the file. """ return self._parse()[0] @property def metadata(self) -> Dict[str, str]: """Return the meta data found int he parse object. """ return self._parse()[1] def get_init_db_sqls(self) -> Iterable[str]: """Return the set of statements that create all DB objects needed to fully CRUD. """ init_secs = self.metadata['init_sections'] secs = init_secs.split(',') entries = map(lambda x: self.sections[x], secs) sts = map(lambda x: re.split(';[ \t\n]*', x, flags=re.MULTILINE), entries) return filter(lambda x: len(x) > 0, it.chain(*sts))
zensols.db
/zensols.db-1.1.0-py3-none-any.whl/zensols/db/parse.py
parse.py
__author__ = 'Paul Landes' from typing import Any, Iterable, Tuple, Optional from dataclasses import dataclass, field from zensols.persist import Stash from . import DBError, BeanDbPersister @dataclass class BeanStash(Stash): """A stash that uses a backing DB-API backed :class:`BeanDbPersister`. """ persister: BeanDbPersister = field() """The delegate bean persister.""" def load(self, name: str) -> Any: return self.persister.get_by_id(int(name)) def exists(self, name: str) -> bool: try: name = int(name) except ValueError: # assume only number IDs return False return self.persister.exists(name) def dump(self, name: str, inst: Any): """Since this implementation can let the database auto-increment the unique/primary key, beware of "changing" keys. :raises DBError: if the key changes after inserted it will raise a ``DBError``; for this reason, it's best to pass ``None`` as ``name`` """ if name is not None: id = int(name) inst.id = id else: id = inst.id if id is not None and self.exists(id): self.persister.update(inst) else: self.persister.insert(inst) if id is not None and inst.id != id: raise DBError(f'unexpected key change: {inst.id} != {id}') return inst def delete(self, name: str): self.persister.delete(int(name)) def keys(self) -> Iterable[str]: return map(str, self.persister.get_keys()) def __len__(self) -> int: return self.persister.get_count() @dataclass class AlternateKeyBeanStash(BeanStash): """A stash that uses another key rather than some unique primary key (i.e. rowid for SQLite). It does this by looking up the alternate key in some other column and resolves to the unique primary key. The domain and range of the function (:meth:`_key_to_id`) that maps alternate keys to unique primary keys ate strings. .. document private functions .. automethod:: _key_to_id """ key_to_id_name: str = field() """The select method SQL name that selects the unique priamry to the alterante key. """ keys_name: str = field() """The select method SQL name that selects the alternate in :meth:`keys`.""" def _key_to_id(self, name: str) -> Optional[str]: """Maps alternate keys to unique primary keys. :param name: the alternate key, which is usually a more client friendly string :return: the unique primary key in the database (usually an :class:`int`) """ row: Tuple = self.persister.execute_singleton_by_name( self.key_to_id_name, params=(name,), row_factory='identity') if row is not None: return str(row[0]) def load(self, name: str) -> Any: return super().load(self._key_to_id(name)) def exists(self, name: str) -> bool: id: Optional[Any] = self._key_to_id(name) return id is not None def dump(self, name: str, inst: Any): return super().dump(self._key_to_id(name), inst) def delete(self, name: str): return super().delete(self._key_to_id(name)) def keys(self) -> Iterable[str]: return set(self.persister.execute_by_name( self.keys_name, row_factory='identity', map_fn=lambda r: r[0]))
zensols.db
/zensols.db-1.1.0-py3-none-any.whl/zensols/db/stash.py
stash.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import Dict, Any, Tuple, Union, Callable, Iterable, Type, Optional from dataclasses import dataclass, field, fields from abc import abstractmethod, ABC import logging import traceback from pathlib import Path import pandas as pd from zensols.persist import resource from zensols.db import DynamicDataParser logger = logging.getLogger(__name__) class DBError(Exception): """"Raised for all :mod:`zensols.db`` related errors. """ pass class connection(resource): """Annotation used to create and dispose of DB-API connections. """ def __init__(self): super().__init__('_create_connection', '_dispose_connection') class _CursorIterator(object): """Iterates throw the rows of the database using a cursor. """ def __init__(self, mng: ConnectionManager, conn: Any, cursor: Any): """ :param mng: the connection manager to regulate database resources :param conn: the connection to the database :param cursor: the cursor to the database """ self._mng = mng self._conn = conn self._cursor = cursor def __iter__(self) -> _CursorIterator: return self def __next__(self): if self._cursor is None: raise StopIteration try: return next(self._cursor) except StopIteration: try: self.dispose() finally: raise StopIteration def dispose(self): if self._mng is not None: if logger.isEnabledFor(logging.DEBUG): logger.debug('closing cursor iterable') self._mng._do_dispose_connection = True self._cursor.close() self._mng.dispose(self._conn) self._mng = None self._conn = None self._cursor = None class cursor(object): """Iterate through rows of a database. The connection is automatically closed once out of scope. Example:: config_factory: ConfigFactory = ... persister: DbPersister = config_factory.instance('person_db_persister') with cursor(persister, name='select_people') as c: for row in c: print(row) """ def __init__(self, persister: DbPersister, sql: str = None, name: str = None, params: Tuple[Any, ...] = ()): """Initialize with either ``name`` or ``sql`` (only one should be ``None``). :param persister: used to execute the SQL and obtain the cursor :param sql: the string SQL to execute :param name: the named SQL query in the :obj:`.DbPersister.sql_file` :param params: the parameters given to the SQL statement (populated with ``?``) in the statement """ self._curiter = persister._execute_iterate( sql=sql, name=name, params=params) def __enter__(self) -> Iterable[Any]: return self._curiter def __exit__(self, cls: Type[Exception], value: Optional[Exception], trace: traceback): self._curiter.dispose() @dataclass class ConnectionManager(ABC): """Instance DB-API connection lifecycle. """ def __post_init__(self): self._do_dispose_connection = True def register_persister(self, persister: DbPersister): """Register the persister used for this connection manager. :param persister: the persister used for connection management """ self.persister = persister @abstractmethod def create(self) -> Any: """Create a connection to the database. """ pass def dispose(self, conn): """Close the connection to the database. """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'connection manager: closing {conn}') if self._do_dispose_connection: conn.close() @abstractmethod def drop(self): """Remove all objects from the database or the database itself. For SQLite, this deletes the file. In database implementations, this might drop all objects from the database. Regardless, it is expected that ``create`` is able to recreate the database after this action. """ pass def _to_dataframe(self, res: Iterable[Any], cursor: Any) -> pd.DataFrame: """Return a Pandas dataframe from the results given by the database. :param res: the database results row by row :param cursor: the database cursor object, which has a ``description`` attribute """ cols = tuple(map(lambda d: d[0], cursor.description)) return pd.DataFrame(res, columns=cols) def execute(self, conn: Any, sql: str, params: Tuple[Any, ...], row_factory: Union[str, Callable], map_fn: Callable) -> Tuple[Union[dict, tuple, pd.DataFrame]]: """Execute SQL on a database connection. The ``row_factory`` tells the method how to interpret the row data in to an object that's returned. It can be one of: * ``tuple``: tuples (the default) * ``identity``: return the unmodified form from the database * ``dict``: for dictionaries * ``pandas``: for a :class:`pandas.DataFrame` * otherwise: a function or class Compare this with ``map_fn``, which transforms the data that's given to the ``row_factory``. :param conn: the connection object with the database :param sql: the string SQL to execute :param params: the parameters given to the SQL statement (populated with ``?``) in the statement :param row_factory: ``tuple``, ``dict``, ``pandas`` or a function :param map_fn: a function that transforms row data given to the ``row_factory`` :see: :meth:`.DbPersister.execute`. """ def dict_row_factory(cursor: Any, row: Tuple[Any, ...]): return dict(map(lambda x: (x[1][0], row[x[0]]), enumerate(cursor.description))) conn.row_factory = { 'dict': dict_row_factory, 'tuple': lambda cursor, row: row, 'identity': lambda cursor, row: row, 'pandas': None, }.get( row_factory, lambda cursor, row: row_factory(*row) ) cur: Any = conn.cursor() try: res = cur.execute(sql, params) if map_fn is not None: res = map(map_fn, res) if row_factory == 'pandas': res = self._to_dataframe(res, cur) if conn.row_factory is not None: res = tuple(res) return res finally: cur.close() def _create_cursor(self, conn: Any, sql: str, params: Tuple[Any, ...]) -> Any: """Create a cursor object from connection ``conn``.""" cur: Any = conn.cursor() cur.execute(sql, params) return cur def execute_no_read(self, conn: Any, sql: str, params: Tuple[Any, ...]) -> int: """Return database level information such as row IDs rather than the results of a query. Use this when inserting data to get a row ID. :param conn: the connection object with the database :param sql: the SQL statement used on the connection's cursor :param params: the parameters given to the SQL statement (populated with ``?``) in the statement :see: :meth:`.DbPersister.execute_no_read`. """ cur = conn.cursor() try: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'sql: {sql}, params: {params}') cur.execute(sql, params) conn.commit() return cur.lastrowid finally: cur.close() def insert_rows(self, conn: Any, sql: str, rows: Iterable[Any], errors: str, set_id_fn: Callable, map_fn: Callable) -> int: """Insert a tuple of rows in the database and return the current row ID. :param rows: a sequence of tuples of data (or an object to be transformed, see ``map_fn`` in column order of the SQL provided by the entry :obj:`insert_name` :param errors: if this is the string ``raise`` then raise an error on any exception when invoking the database execute :param map_fn: if not ``None``, used to transform the given row in to a tuple that is used for the insertion See :meth:`.InsertableBeanDbPersister.insert_rows`. """ cur = conn.cursor() try: for row in rows: if map_fn is not None: org_row = row row = map_fn(row) if errors == 'raise': cur.execute(sql, row) elif errors == 'ignore': try: cur.execute(sql, row) except Exception as e: logger.error(f'could not insert row ({len(row)})', e) else: raise DBError(f'unknown errors value: {errors}') if set_id_fn is not None: set_id_fn(org_row, cur.lastrowid) finally: conn.commit() cur.close() return cur.lastrowid @dataclass class DbPersister(object): """CRUDs data to/from a DB-API connection. """ conn_manager: ConnectionManager = field() """Used to create DB-API connections.""" sql_file: Path = field(default=None) """The text file containing the SQL statements (see :class:`DynamicDataParser`). """ row_factory: Union[str, Type] = field(default='tuple') """The default method by which data is returned from ``execute_*`` methods. :see: :meth:`execute`. """ def __post_init__(self): self.parser = self._create_parser(self.sql_file) self.conn_manager.register_persister(self) def _create_parser(self, sql_file: Path) -> DynamicDataParser: return DynamicDataParser(sql_file) @property def sql_entries(self) -> Dict[str, str]: """Return a dictionary of names -> SQL statements from the SQL file. """ return self.parser.sections @property def metadata(self) -> Dict[str, str]: """Return the metadata associated with the SQL file. """ return self.parser.metadata def _create_connection(self): """Create a connection to the database. """ if logger.isEnabledFor(logging.DEBUG): logger.debug('creating connection') return self.conn_manager.create() def _dispose_connection(self, conn: Any): """Close the connection to the database. :param conn: the connection to release """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'closing connection {conn}') self.conn_manager.dispose(conn) def _check_entry(self, name: str): if name is None: raise DBError('no defined SQL entry for persist function') if len(name) == 0: raise DBError('non-optional entry not provided') if name not in self.sql_entries: raise DBError(f"no entry '{name}' found in SQL configuration") @connection() def execute(self, conn: Any, sql: str, params: Tuple[Any, ...] = (), row_factory: Union[str, Callable] = None, map_fn: Callable = None) -> \ Tuple[Union[dict, tuple, pd.DataFrame]]: """Execute SQL on a database connection. The ``row_factory`` tells the method how to interpret the row data in to an object that's returned. It can be one of: * ``tuple``: tuples (the default) * ``dict``: for dictionaries * ``pandas``: for a :class:`pandas.DataFrame` * otherwise: a function or class Compare this with ``map_fn``, which transforms the data that's given to the ``row_factory``. :param sql: the string SQL to execute :param params: the parameters given to the SQL statement (populated with ``?``) in the statement :param row_factory: ``tuple``, ``dict``, ``pandas`` or a function :param map_fn: a function that transforms row data given to the ``row_factory`` """ row_factory = self.row_factory if row_factory is None else row_factory return self.conn_manager.execute( conn, sql, params, row_factory, map_fn) def execute_by_name(self, name: str, params: Tuple[Any] = (), row_factory: Union[str, Callable] = None, map_fn: Callable = None): """Just like :meth:`execute` but look up the SQL statement to execute on the database connection. The ``row_factory`` tells the method how to interpret the row data in to an object that's returned. It can be one of: * ``tuple``: tuples (the default) * ``dict``: for dictionaries * ``pandas``: for a :class:`pandas.DataFrame` * otherwise: a function or class Compare this with ``map_fn``, which transforms the data that's given to the ``row_factory``. :param name: the named SQL query in the :obj:`sql_file` :param params: the parameters given to the SQL statement (populated with ``?``) in the statement :param row_factory: ``tuple``, ``dict``, ``pandas`` or a function :param map_fn: a function that transforms row data given to the ``row_factory`` :see: :meth:`execute` """ self._check_entry(name) sql = self.sql_entries[name] return self.execute(sql, params, row_factory, map_fn) @connection() def _execute_iterate(self, conn: Any, sql: str, name: str, params: Tuple[Any, ...]): if sql is None and name is None: raise DBError('Both sql string and name can not be None') if sql is None: self._check_entry(name) sql = self.sql_entries[name] cur = self.conn_manager._create_cursor(conn, sql, params) self.conn_manager._do_dispose_connection = False return _CursorIterator(self.conn_manager, conn, cur) def execute_singleton_by_name(self, *args, **kwargs): """Just like :meth:`execute_by_name` except return only the first item or ``None`` if no results. """ res = self.execute_by_name(*args, **kwargs) if len(res) > 0: return res[0] @connection() def execute_sql_no_read(self, conn: Any, sql: str, params: Tuple[Any] = ()) -> int: """Execute SQL and return the database level information such as row IDs rather than the results of a query. Use this when inserting data to get a row ID. """ return self.conn_manager.execute_no_read(conn, sql, params) @connection() def execute_no_read(self, conn: Any, entry_name: str, params: Tuple[Any] = ()) -> int: """Just like :meth:`execute_by_name`, but return database level information such as row IDs rather than the results of a query. Use this when inserting data to get a row ID. :param entry_name: the key in the SQL file whose value is used as the statement :param capture_rowid: if ``True``, return the last row ID from the cursor :see: :meth:`execute_sql_no_read` """ self._check_entry(entry_name) sql = self.sql_entries[entry_name] return self.conn_manager.execute_no_read(conn, sql, params) @dataclass class Bean(ABC): """A container class like a Java *bean*. """ def get_attr_names(self) -> Tuple[str]: """Return a list of string attribute names. """ return tuple(map(lambda f: f.name, fields(self))) def get_attrs(self) -> Dict[str, Any]: """Return a dict of attributes that are meant to be persisted. """ return {n: getattr(self, n) for n in self.get_attr_names()} def get_row(self) -> Tuple[Any]: """Return a row of data meant to be printed. This includes the unique ID of the bean (see :meth:`get_insert_row`). """ return tuple(map(lambda x: getattr(self, x), self.get_attr_names())) def get_insert_row(self) -> Tuple[Any]: """Return a row of data meant to be inserted into the database. This method implementation leaves off the first attriubte assuming it contains a unique (i.e. row ID) of the object. See :meth:`get_row`. """ names = self.get_attr_names() return tuple(map(lambda x: getattr(self, x), names[1:])) def __eq__(self, other): if other is None: return False if self is other: return True if self.__class__ != other.__class__: return False for n in self.get_attr_names(): if getattr(self, n) != getattr(other, n): return False return True def __hash__(self): vals = tuple(map(lambda n: getattr(self, n), self.get_attr_names())) return hash(vals) def __str__(self): return ', '.join(map(lambda x: f'{x}: {getattr(self, x)}', self.get_attr_names())) def __repr__(self): return self.__str__() @dataclass class ReadOnlyBeanDbPersister(DbPersister): """A read-only persister that CRUDs data based on predefined SQL given in the configuration. The class optionally works with instances of :class:`.Bean` when :obj:`row_factory` is set to the target bean class. """ select_name: str = field(default=None) """The name of the SQL entry used to select data/class.""" select_by_id_name: str = field(default=None) """The name of the SQL entry used to select a single row by unique ID.""" select_exists_name: str = field(default=None) """The name of the SQL entry used to determine if a row exists by unique ID. """ def get(self) -> list: """Return using the SQL provided by the entry identified by :obj:`select_name`. """ return self.execute_by_name( self.select_name, row_factory=self.row_factory) def get_by_id(self, id: int): """Return an object using it's unique ID, which is could be the row ID in SQLite. """ rows = self.execute_by_name( self.select_by_id_name, params=(id,), row_factory=self.row_factory) if len(rows) > 0: return rows[0] def exists(self, id: int) -> bool: """Return ``True`` if there is a object with unique ID (or row ID) in the database. Otherwise return ``False``. """ if self.select_exists_name is None: return self.get_by_id(id) is not None else: cnt = self.execute_by_name( self.select_exists_name, params=(id,), row_factory='tuple') return cnt[0][0] == 1 @dataclass class InsertableBeanDbPersister(ReadOnlyBeanDbPersister): """A class that contains insert funtionality. """ insert_name: str = field(default=None) """The name of the SQL entry used to insert data/class instance.""" def insert_row(self, *row) -> int: """Insert a row in the database and return the current row ID. :param row: a sequence of data in column order of the SQL provided by the entry :obj:`insert_name` """ return self.execute_no_read(self.insert_name, params=row) @connection() def insert_rows(self, conn: Any, rows: Iterable[Any], errors='raise', set_id_fn: Callable = None, map_fn: Callable = None) -> int: """Insert a tuple of rows in the database and return the current row ID. :param rows: a sequence of tuples of data (or an object to be transformed, see ``map_fn`` in column order of the SQL provided by the entry :obj:`insert_name` :param errors: if this is the string ``raise`` then raise an error on any exception when invoking the database execute :param map_fn: if not ``None``, used to transform the given row in to a tuple that is used for the insertion """ entry_name = self.insert_name self._check_entry(entry_name) sql = self.sql_entries[entry_name] return self.conn_manager.insert_rows( conn, sql, rows, errors, set_id_fn, map_fn) def _get_insert_row(self, bean: Bean) -> Tuple[Any]: """Factory method to return the bean's insert row parameters.""" return bean.get_insert_row() def insert(self, bean: Bean) -> int: """Insert a bean using the order of the values given in :meth:`Bean.get_insert_row` as that of the SQL defined with entry :obj:`insert_name` given in the initializer. """ row = self._get_insert_row(bean) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'inserting row: {row}') curid = self.insert_row(*row) bean.id = curid return curid def insert_beans(self, beans: Iterable[Any], errors: str = 'raise') -> int: """Insert a bean using the order of the values given in :meth:`Bean.get_insert_row` as that of the SQL defined with entry :obj:`insert_name` given in the initializer. """ def map_fn(bean): return self._get_insert_row(bean) def set_id_fn(bean, id): pass return self.insert_rows(beans, errors, set_id_fn, map_fn) @dataclass class UpdatableBeanDbPersister(InsertableBeanDbPersister): """A class that contains the remaining CRUD funtionality the super class doesn't have. """ update_name: str = field(default=None) """The name of the SQL entry used to update data/class instance(s).""" delete_name: str = field(default=None) """The name of the SQL entry used to delete data/class instance(s).""" def update_row(self, *row: Tuple[Any]) -> int: """Update a row using the values of the row with the current unique ID as the first element in ``*rows``. """ where_row = (*row[1:], row[0]) return self.execute_no_read(self.update_name, params=where_row) def update(self, bean: Bean) -> int: """Update a a bean that using the ``id`` attribute and its attributes as values. """ return self.update_row(*bean.get_row()) def delete(self, id) -> int: """Delete a row by ID. """ return self.execute_no_read(self.delete_name, params=(id,)) @dataclass class BeanDbPersister(UpdatableBeanDbPersister): """A class that contains the remaining CRUD funtionality the super class doesn't have. """ keys_name: str = field(default=None) """The name of the SQL entry used to fetch all keys.""" count_name: str = field(default=None) """The name of the SQL entry used to get a row count.""" def get_keys(self) -> Iterable[Any]: """Return the unique keys from the bean table. """ keys = self.execute_by_name(self.keys_name, row_factory='tuple') return map(lambda x: x[0], keys) def get_count(self) -> int: """Return the number of rows in the bean table. """ if self.count_name is not None: cnt = self.execute_by_name(self.count_name, row_factory='tuple') return cnt[0][0] else: # SQLite has a bug that returns one row with all null values return sum(1 for _ in self.get_keys())
zensols.db
/zensols.db-1.1.0-py3-none-any.whl/zensols/db/bean.py
bean.py
__author__ = 'Paul Landes' from typing import Type, List, Tuple, Any, ClassVar from dataclasses import dataclass, field, fields import dataclasses import logging from string import Template from pathlib import Path from . import DynamicDataParser, BeanDbPersister, Bean logger = logging.getLogger(__name__) class DataClassDynamicDataParser(DynamicDataParser): """An SQL data parser that replaces ``${cols}`` in the SQL file with the :class:`dataclasses.dataclass` fields. :see: :class:`.DataClassDbPersister` """ ID_FIELD: ClassVar[str] = 'id' """The name of the column that has the unique identifier of the row/object. """ def __init__(self, dd_path: Path, bean_class: Type): super().__init__(dd_path) if not dataclasses.is_dataclass(bean_class): raise ValueError(f'not a dataclass: {bean_class}') cols = map(lambda f: f.name, dataclasses.fields(bean_class)) cols = ', '.join(filter(lambda c: c != self.ID_FIELD, cols)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'cols: {cols}') self.context = {'cols': cols} def _map_section_content(self, lines: List[str]) -> str: content: str = super()._map_section_content(lines) templ = Template(content) return templ.substitute(self.context) @dataclass class DataClassDbPersister(BeanDbPersister): """Persists instances of :class:`dataclasses.dataclass` by narrowing the columns from select statements. Instead of ``select *``, use ``select ${cols}`` in the SQL resource file. :see: :class:`.DataClassDynamicDataParser` """ bean_class: Type[dataclass] = field(default=None) """The data class that is CRUD'd for DB operations.""" def __post_init__(self): self.row_factory = self.bean_class super().__post_init__() def _create_parser(self, sql_file: Path) -> DynamicDataParser: return DataClassDynamicDataParser(sql_file, self.bean_class) def _get_insert_row(self, bean: Bean) -> Tuple[Any]: idf = DataClassDynamicDataParser.ID_FIELD return tuple(map(lambda f: getattr(bean, f.name), filter(lambda f: f.name != idf, fields(bean))))
zensols.db
/zensols.db-1.1.0-py3-none-any.whl/zensols/db/dataclass.py
dataclass.py
__author__ = 'Paul Landes' import logging from dataclasses import dataclass, field from pathlib import Path import sqlite3 from zensols.db import DBError, ConnectionManager logger = logging.getLogger(__name__) @dataclass class SqliteConnectionManager(ConnectionManager): """An SQLite connection factory. """ db_file: Path = field() """The SQLite database file to read or create.""" create_db: bool = field(default=True) """If ``True``, create the database if it does not already exist. Otherwise, :class:`.DBError` is raised (see :meth:`create`). """ def create(self) -> sqlite3.Connection: """Create a connection by accessing the SQLite file. :raise DBError: if the SQLite file does not exist (caveat see :`obj:create_db`) """ db_file = self.db_file if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating connection to {db_file}') created = False if not db_file.exists(): if not self.create_db: raise DBError(f'database file {db_file} does not exist') if not db_file.parent.exists(): if logger.isEnabledFor(logging.INFO): logger.info(f'creating sql db directory {db_file.parent}') db_file.parent.mkdir(parents=True) if logger.isEnabledFor(logging.INFO): logger.info(f'creating sqlite db file: {db_file}') created = True types = sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES conn = sqlite3.connect(str(db_file.absolute()), detect_types=types) if created: logger.info('initializing database...') for sql in self.persister.parser.get_init_db_sqls(): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'invoking sql: {sql}') conn.execute(sql) conn.commit() return conn def drop(self): """Delete the SQLite database file from the file system. """ logger.info(f'deleting: {self.db_file}') if self.db_file.exists(): self.db_file.unlink() return True return False
zensols.db
/zensols.db-1.1.0-py3-none-any.whl/zensols/db/sqlite.py
sqlite.py
__author__ = 'Paul Landes' from typing import Any, Tuple, Union, Callable from dataclasses import dataclass, field import logging import psycopg2 from psycopg2.extras import RealDictCursor from psycopg2 import ProgrammingError import pandas as pd from zensols.db import DBError, ConnectionManager logger = logging.getLogger(__name__) @dataclass class PostgresConnectionManager(ConnectionManager): """An Postgres connection factory. """ EXISTS_SQL = 'select count(*) from information_schema.tables where table_schema = \'public\'' DROP_SQL = 'drop owned by {user}' db_name: str = field() """Database name on the server.""" host: str = field() """The host name of the database.""" port: str = field() """The host port of the database.""" user: str = field() """The user (if any) to log in with.""" password: str = field() """The login password.""" create_db: bool = field(default=True) """If ``True`` create the database if it does not already exist.""" capture_lastrowid: bool = field(default=False) """If ``True``, select the last row for each query.""" fast_insert: bool = field(default=False) """If ``True`` use `insertmany` on the cursor for fast insert in to the database. """ def _init_db(self, conn, cur): if logger.isEnabledFor(logging.DEBUG): logger.info('initializing database...') for sql in self.persister.parser.get_init_db_sqls(): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'invoking sql: {sql}') cur.execute(sql) conn.commit() def create(self): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating connection to {self.host}:{self.port} ' + f'with {self.user} on database: {self.db_name}') conn = psycopg2.connect( host=self.host, database=self.db_name, port=self.port, user=self.user, password=self.password) try: cur = conn.cursor() cur.execute(self.EXISTS_SQL, ()) if cur.fetchone()[0] == 0: self._init_db(conn, cur) finally: cur.close() return conn def drop(self): conn = self.create() cur = conn.cursor() try: cur.execute(self.DROP_SQL.format(**self.__dict__)) conn.commit() finally: cur.close() conn.close() def execute(self, conn: Any, sql: str, params: Tuple[Any], row_factory: Union[str, Callable], map_fn: Callable) -> Tuple[Union[dict, tuple, pd.DataFrame]]: """See :meth:`~zensols.db.bean.ConnectionManager.execute`. """ def other_rf_fn(row): return row_factory(*row) def identity_rf_fn(row): return row create_fn = None if row_factory == 'dict': cur = conn.cursor(cursor_factory=RealDictCursor) elif row_factory == 'tuple' or row_factory == 'pandas': cur = conn.cursor() elif row_factory == 'identity': create_fn = identity_rf_fn cur = conn.cursor() else: create_fn = other_rf_fn cur = conn.cursor() try: tupify = True if logger.isEnabledFor(logging.DEBUG): logger.debug(f'pg exec sql=<{sql}>, params=<{params}>') cur.execute(sql, params) res = cur.fetchall() if create_fn is not None: res = map(create_fn, res) if map_fn is not None: res = map(map_fn, res) if row_factory == 'pandas': res = self._to_dataframe(res, cur) tupify = False if tupify: res = tuple(res) return res finally: cur.close() def execute_no_read(self, conn, sql, params=()) -> int: cur = conn.cursor() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'execute no read: {sql}') try: cur.execute(sql, params) conn.commit() if self.capture_lastrowid is not None: try: return cur.fetchone()[0] except ProgrammingError: # actions like dropping a table will not return a rowid pass finally: cur.close() def _insert_row(self, conn, cur, sql, row): cur.execute(sql, row) conn.commit() if self.capture_lastrowid: return cur.fetchall()[0][0] def _insert_rows_slow(self, conn, sql, rows: list, errors: str, set_id_fn, map_fn) -> int: rowid = None cur = conn.cursor() try: for row in rows: if map_fn is not None: org_row = row row = map_fn(row) if errors == 'raise': rowid = self._insert_row(conn, cur, sql, row) elif errors == 'ignore': try: rowid = self._insert_row(conn, cur, sql, row) except Exception as e: logger.error(f'could not insert row ({len(row)})', e) else: raise DBError(f'Unknown errors value: {errors}') if set_id_fn is not None: set_id_fn(org_row, cur.lastrowid) finally: cur.close() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'inserted with rowid: {rowid}') return rowid def _insert_rows_fast(self, conn, sql, rows: list, map_fn) -> int: cur = conn.cursor() if logger.isEnabledFor(logging.DEBUG): logger.debug('inserting rows fast') try: if map_fn is not None: rows = map(map_fn, rows) cur.executemany(sql, rows) conn.commit() finally: cur.close() def insert_rows(self, conn, sql, rows: list, errors: str, set_id_fn, map_fn) -> int: if self.fast_insert: return self._insert_rows_fast(conn, sql, rows, map_fn) else: return self._insert_rows_slow( conn, sql, rows, errors, set_id_fn, map_fn)
zensols.dbpg
/zensols.dbpg-1.1.0-py3-none-any.whl/zensols/dbpg/postgres.py
postgres.py
__author__ = 'Paul Landes' from typing import Dict, List, Tuple, Union, Any from dataclasses import dataclass, field import logging import numpy as np from sklearn.preprocessing import normalize, StandardScaler from sklearn.decomposition import PCA, TruncatedSVD from sklearn.manifold import TSNE from zensols.util import APIError from zensols.config import Dictable from zensols.persist import persisted logger = logging.getLogger(__name__) @dataclass class DimensionReducer(Dictable): """Reduce the dimensionality of a dataset. """ _DICTABLE_ATTRIBUTES = {'n_points'} data: np.ndarray = field(repr=False) """The data that will be dimensionally reduced.""" dim: int = field() """The lowered dimension spaace.""" reduction_meth: str = field(default='pca') """One of ``pca``, ``svd``, or ``tsne``.""" normalize: str = field(default='unit') """One of: * ``unit``: normalize to unit vectors * ``standardize``: standardize by removing the mean and scaling to unit variance * ``None``: make no modifications to the data """ model_args: Dict[str, Any] = field(default_factory=dict) """Additional kwargs to pass to the model initializer.""" def _normalize(self, data: np.ndarray) -> np.ndarray: if self.normalize == 'standarize': x = StandardScaler().fit_transform(data) elif self.normalize == 'unit': x = normalize(data) return x @persisted('_dim_reduced') def _dim_reduce(self) -> np.ndarray: model = None data = self.data if logger.isEnabledFor(logging.DEBUG): logger.debug(f'using {self.reduction_meth} ({self.dim}) ' + f'on {data.shape}') if self.normalize: if self.normalize == 'standardize': data = StandardScaler().fit_transform(data) elif self.normalize == 'unit': data = normalize(data) else: raise APIError( f'Unknown normalization method: {self.normalize}') if self.reduction_meth == 'pca': model = PCA(self.dim, **self.model_args) data = model.fit_transform(data) elif self.reduction_meth == 'svd': model = TruncatedSVD(self.dim, **self.model_args) data = model.fit_transform(data) elif self.reduction_meth == 'tsne': if data.shape[-1] > 50: data = PCA(50).fit_transform(data) params = dict(init='pca', learning_rate='auto') params.update(self.model_args) model = TSNE(self.dim, **params) data = model.fit_transform(data) else: raise APIError('Unknown dimension reduction method: ' + self.reduction_meth) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'reduced shape: {data.shape}') return data, model @property def n_points(self) -> Tuple[int]: return self.data.shape[0] @property @persisted('_reduced') def reduced(self) -> np.ndarray: return self._dim_reduce()[0] @property def model(self) -> Union[PCA, TruncatedSVD, TSNE]: return self._dim_reduce()[1] def _get_reduced_data(self, data: np.ndarray) -> np.ndarray: data: np.ndarray = self.reduced if data is None else data if data.shape[-1] != self.data.shape[-1]: X = self.model.inverse_transform(data) else: X: np.ndarray = data return X @dataclass class DecomposeDimensionReducer(DimensionReducer): """A dimensionality reducer that uses eigenvector decomposition such as PCA or SVD. """ _DICTABLE_ATTRIBUTES = DimensionReducer._DICTABLE_ATTRIBUTES | \ {'description'} def __post_init__(self): assert self.is_decompose_method(self.reduction_meth) @staticmethod def is_decompose_method(reduction_meth: str) -> bool: """Return whether the reduction is a decomposition method. :see: :obj:`reduction_meth` """ return reduction_meth == 'pca' or reduction_meth == 'svd' def get_components(self, data: np.ndarray = None, one_dir: bool = True) -> Tuple[np.ndarray, np.ndarray]: """Create a start and end points that make the PCA component, which is useful for rendering lines for visualization. :param: use in place of the :obj:`data` for component calculation using the (already) trained model :param one_dir: whether or not to create components one way from the mean, or two way (forward and backward) from the mean :return: a tuple of numpy arrays, each as a start and end stacked for each component """ comps: List[np.ndarray] = [] X = self._get_reduced_data(data) # fit a covariance matrix on the data cov_matrix: np.ndarray = np.cov(X.T) # find the center from where the PCA component starts trans_mean: np.ndarray = data.mean(axis=0) # the components of the model are the eigenvectors of the covarience # matrix evecs: np.ndarray = self.model.components_ # the eigenvalues of the covariance matrix evs: np.ndarray = self.model.explained_variance_ for n_comp, (eigenvector, eigenvalue) in enumerate(zip(evecs, evs)): # map a data point as a component back to the original data space end: np.ndarray = np.dot(cov_matrix, eigenvector) / eigenvalue # map to the reduced dimensional space end = self.model.transform([end])[0] start = trans_mean if not one_dir: # make the component "double sided" start = start - end comps.append(np.stack((start, end))) return comps @property def description(self) -> Dict[str, Any]: """A object graph of data that describes the results of the model.""" tot_ev = 0 model = self.model evs = [] for i, ev in enumerate(model.explained_variance_ratio_): evs.append(ev) tot_ev += ev noise: float = None if hasattr(model, 'noise_variance_'): noise = model.noise_variance_ return {'components': len(model.components_), 'noise': noise, 'total_variance': tot_ev, 'explained_varainces': evs}
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataset/dimreduce.py
dimreduce.py
__author__ = 'Paul Landes' import sys import logging from typing import Iterable, Dict, Set, Callable, Tuple, Any, List from dataclasses import dataclass, field from itertools import chain from collections import OrderedDict from io import TextIOBase from zensols.util import time from zensols.config import Writable from zensols.persist import ( PersistedWork, PersistableContainer, persisted, Stash, DelegateStash, PreemptiveStash, ) from zensols.dataset import SplitStashContainer, SplitKeyContainer from . import DatasetError logger = logging.getLogger(__name__) @dataclass class DatasetSplitStash(DelegateStash, SplitStashContainer, PersistableContainer, Writable): """A default implementation of :class:`.SplitStashContainer`. However, it needs an instance of a :class:`.SplitKeyContainer`. This implementation generates a separate stash instance for each data set split (i.e. ``train`` vs ``test``). Each split instance holds the data (keys and values) for each split. Stash instances by split are obtained with ``splits``, and will have a ``split`` attribute that give the name of the split. To maintain reproducibility, key ordering must be considered (see :class:`.SortedDatasetSplitStash`). :see: :meth:`.SplitStashContainer.splits` """ split_container: SplitKeyContainer = field() """The instance that provides the splits in the dataset.""" def __post_init__(self): super().__post_init__() PersistableContainer.__init__(self) if not isinstance(self.split_container, SplitKeyContainer): raise DatasetError('Expecting type SplitKeyContainer but ' + f'got: {type(self.split_container)}') self._inst_split_name = None self._keys_by_split = PersistedWork('_keys_by_split', self) self._splits = PersistedWork('_splits', self) def _add_keys(self, split_name: str, to_populate: Dict[str, str], keys: List[str]): to_populate[split_name] = tuple(keys) @persisted('_keys_by_split') def _get_keys_by_split(self) -> Dict[str, Tuple[str]]: """Return keys by split type (i.e. ``train`` vs ``test``) for only those keys available by the delegate backing stash. """ if logger.isEnabledFor(logging.DEBUG): logger.debug('creating in memory available keys data structure') with time('created key data structures', logging.DEBUG): delegate_keys = set(self.delegate.keys()) avail_kbs = OrderedDict() for split, keys in self.split_container.keys_by_split.items(): ks = list() for k in keys: if k in delegate_keys: ks.append(k) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{split} has {len(ks)} keys') self._add_keys(split, avail_kbs, ks) return avail_kbs def _get_counts_by_key(self) -> Dict[str, int]: return dict(map(lambda i: (i[0], len(i[1])), self.keys_by_split.items())) def check_key_consistent(self) -> bool: """Return if the :obj:`split_container` have the same key count divisiion as this stash's split counts. """ return self.counts_by_key == self.split_container.counts_by_key def keys(self) -> Iterable[str]: self.prime() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'keys for {self.split_name}') kbs = self.keys_by_split if logger.isEnabledFor(logging.DEBUG): logger.debug(f'obtained keys for {self.split_name}') if self.split_name is None: return chain.from_iterable(kbs.values()) else: return kbs[self.split_name] def exists(self, name: str) -> bool: if self.split_name is None: return super().exists(name) else: return name in self.keys_by_split[self.split_name] def load(self, name: str) -> Any: if self.split_name is None or \ name in self.keys_by_split[self.split_name]: return super().load(name) def get(self, name: str, default: Any = None) -> Any: if self.split_name is None or \ name in self.keys_by_split[self.split_name]: return super().get(name) return default def prime(self): if logger.isEnabledFor(logging.DEBUG): logger.debug('priming ds split stash') super().prime() self.keys_by_split def _delegate_has_data(self): return not isinstance(self.delegate, PreemptiveStash) or \ self.delegate.has_data def deallocate(self): if id(self.delegate) != id(self.split_container): self._try_deallocate(self.delegate) self._try_deallocate(self.split_container) self._keys_by_split.deallocate() if self._splits.is_set(): splits = tuple(self._splits().values()) self._splits.clear() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'deallocating: {len(splits)} stash data splits') for v in splits: self._try_deallocate(v, recursive=True) self._splits.deallocate() super().deallocate() def clear_keys(self): """Clear any cache state for keys, and keys by split. It does this by clearing the key state for stash, and then the :meth:`clear` of the :obj:`split_container`. """ self.split_container.clear() self._keys_by_split.clear() def clear(self): """Clear and destory key and delegate data. """ del_has_data = self._delegate_has_data() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'clearing: {del_has_data}') if del_has_data: if logger.isEnabledFor(logging.DEBUG): logger.debug('clearing delegate and split container') super().clear() self.clear_keys() def _get_split_names(self) -> Set[str]: return self.split_container.split_names def _get_split_name(self) -> str: return self._inst_split_name @persisted('_splits') def _get_splits(self) -> Dict[str, Stash]: """Return an instance of ta stash that contains only the data for a split. :param split: the name of the split of the instance to get (i.e. ``train``, ``test``). """ self.prime() stashes = OrderedDict() for split_name in self.split_names: clone = self.__class__( delegate=self.delegate, split_container=self.split_container) clone._keys_by_split.deallocate() clone._splits.deallocate() clone.__dict__.update(self.__dict__) clone._inst_split_name = split_name stashes[split_name] = clone return stashes def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_delegate: bool = False): self._write_line('split stash splits:', depth, writer) t = 0 for ks in self.split_container.keys_by_split.values(): t += len(ks) for k, ks in self.split_container.keys_by_split.items(): ln = len(ks) self._write_line(f'{k}: {ln} ({ln/t*100:.1f}%)', depth + 1, writer) self._write_line(f'total: {t}', depth + 1, writer) ckc = self.check_key_consistent() self._write_line(f'total this instance: {len(self)}', depth, writer) self._write_line(f'keys consistent: {ckc}', depth, writer) if include_delegate and isinstance(self.delegate, Writable): self._write_line('delegate:', depth, writer) self.delegate.write(depth + 1, writer) @dataclass class SortedDatasetSplitStash(DatasetSplitStash): """A sorted version of a :class:`DatasetSplitStash`, where keys, values, items and iterations are sorted by key. This is important for reproducibility of results. An alternative is to use :class:`.DatasetSplitStash` with an instance of :class:`.StashSplitKeyContainer` set as the :obj:`delegate` since the key container keeps key ordering consistent. Any shuffling of the dataset, for the sake of training on non-uniform data, needs to come *before* using this class. This class also sorts the keys in each split given in :obj:`splits`. """ ATTR_EXP_META = ('sort_function',) sort_function: Callable = field(default=None) """A function, such as ``int``, used to sort keys per data set split.""" def __iter__(self): return map(lambda x: (x, self.__getitem__(x),), self.keys()) def values(self) -> Iterable[Any]: return map(lambda k: self.__getitem__(k), self.keys()) def items(self) -> Tuple[str, Any]: return map(lambda k: (k, self.__getitem__(k)), self.keys()) def _add_keys(self, split_name: str, to_populate: Dict[str, str], keys: List[str]): to_populate[split_name] = tuple(sorted(keys, key=self.sort_function)) def keys(self) -> Iterable[str]: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'sort function: {self.sort_function} ' + f'({self.sort_function})') keys = super().keys() if self.sort_function is None: keys = sorted(keys) else: keys = sorted(keys, key=self.sort_function) return keys
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataset/stash.py
stash.py
__author__ = 'Paul Landes' from typing import List, Union, Iterable from dataclasses import dataclass, field import itertools as it import pandas as pd import numpy as np from sklearn.covariance import MinCovDet from scipy import stats from zensols.persist import persisted from . import DatasetError @dataclass class OutlierDetector(object): """Simple outlier detection utility that provides a few differnt methods of calculation. These include :meth:`z-score`, :meth:`mahalanobis` and :meth:`robust_mahalanobis`. This class removes either using a method specific :obj:`threshold` or by a :obj:`proportion` of the data set. """ DETECTION_METHODS = frozenset({ 'z_score', 'mahalanobis', 'robust_mahalanobis'}) data: Union[np.ndarray, pd.DataFrame] = field() """The dataframe on which to find outliers given the data. Data points are rows and the feature vectors are columns. """ default_method: str = field(default='mahalanobis') """The method used when invoking as a :class:`.Callable` with the :meth:`__call__` method. This must be one of :obj:`DETECTION_METHODS`. """ threshold: float = field(default=None) """The outlier threshold, which is method dependent. This is ignored if :obj:`proportion` is set. """ proportion: float = field(default=None) """The proportion of the dataset to use for outliers. The higher the number the more outliers. :see: :obj:`threshold` """ return_indicators: bool = field(default=None) """Whether to return a list of ``False`` (not outlier) or ``True`` (outlier) instead of indexes in to the input matrix/dataframe (:obj:`data`). """ def __post_init__(self): if self.default_method not in self.DETECTION_METHODS: raise DatasetError( f'No such detection method: {self.default_method}') @property @persisted('_numpy') def numpy(self) -> np.ndarray: """The numpy form of :obj:`data`. If :obj:`data` is a dataframe, it is converted to a numpy array. """ return self._get_arr() def _get_arr(self) -> np.ndarray: data = self.data if isinstance(data, pd.DataFrame): data = self.data.to_numpy() return data def _to_indicators(self, indicies: np.ndarray) -> np.ndarray: """Convert row indexes in to a mask usable in :meth:`numpy.where`. :param indicies: row indexes in to :obj:`numpy` """ # shape: (R, C) arr: np.ndarray = self.numpy mask: np.ndarray = np.repeat(False, arr.shape[0]) for oix in indicies: mask[oix] = True return mask def _select_indicies(self, dists: Iterable[Union[int, float]], threshold: Union[int, float]) -> np.ndarray: """Find outliers.""" if self.proportion is None: threshold = threshold if self.threshold is None else self.threshold outliers: List[int] = [] for i, v in enumerate(dists): if v > threshold: outliers.append(i) else: drs = sorted(zip(dists, it.count()), key=lambda x: x[0]) take = 1 - int(self.proportion * len(drs)) outliers = sorted(map(lambda x: x[1], drs[take:])) if self.return_indicators: outliers = self._to_indicators(outliers) return outliers def z_score(self, column: Union[int, str]) -> np.ndarray: """Use a Z-score to detect anomolies. :param column: the column to use for the z-score analysis. :param threshold: the threshold above which a data point is considered an outlier :return: indexes in to :obj:`data` rows (indexes of a dataframe) of the outliers """ if isinstance(column, str): if not isinstance(self.data, pd.DataFrame): raise DatasetError( 'Can not index numpy arrays as string column: {column}') column = self.data.columns.get_loc(column) # shape: (R, C) arr: np.ndarray = self.numpy z = np.abs(stats.zscore(arr[:, column])) return self._select_indicies(z, 3.) def _set_chi_threshold(self, sig: float) -> float: # shape: (R, C) arr: np.ndarray = self.numpy # degrees of freedom (df parameter) are number of variables C = np.sqrt(stats.chi2.ppf((1. - sig), df=arr.shape[1])) return C def mahalanobis(self, significance: float = 0.001) -> np.ndarray: """Detect outliers using the Mahalanbis distince in high dimension. Assuming a multivariate normal distribution of the data with K variables, the Mahalanobis distance follows a chi-squared distribution with K degrees of freedom. For this reason, the cut-off is defined by the square root of the Chi^2 percent pointwise function. :param significance: 1 - the Chi^2 percent point function (inverse of cdf / percentiles) outlier threshold; reasonable values include 2.5%, 1%, 0.01%); if `None` use :obj:`threshold` or :obj:`proportion` :return: indexes in to :obj:`data` rows (indexes of a dataframe) of the outliers """ # shape: (R, C) arr: np.ndarray = self.numpy # M-Distance, shape: (R,) x_minus_mu: pd.DataFrame = arr - np.mean(arr, axis=0) # covariance, shape: (C, C) cov: np.ndarray = np.cov(arr.T) # inverse covariance, shape: (C, C) inv_cov: np.ndarray = np.linalg.inv(cov) # shape: (R, C) left_term: np.ndarray = np.dot(x_minus_mu, inv_cov) # shape: (R, R) dist: np.ndarray = np.dot(left_term, x_minus_mu.T) # shape (R,) md: np.ndarray = np.sqrt(dist.diagonal()) C = self._set_chi_threshold(significance) return self._select_indicies(md, C) def robust_mahalanobis(self, significance: float = 0.001, random_state: int = 0) -> np.ndarray: """Like :meth:`mahalanobis` but use a robust mean and covarance matrix by sampling the dataset. :param significance: 1 - the Chi^2 percent point function (inverse of cdf / percentiles) outlier threshold; reasonable values include 2.5%, 1%, 0.01%); if `None` use :obj:`threshold` or :obj:`proportion` :return: indexes in to :obj:`data` rows (indexes of a dataframe) of the outliers """ arr: np.ndarray = self.numpy # minimum covariance determinant rng = np.random.RandomState(random_state) # random sample of data, shape: (R, C) X: np.ndarray = rng.multivariate_normal( mean=np.mean(arr, axis=0), cov=np.cov(arr.T), size=arr.shape[0]) # get robust estimates for the mean and covariance cov = MinCovDet(random_state=random_state).fit(X) # robust covariance metric; shape: (C, C) mcd: np.ndarray = cov.covariance_ # robust mean, shape: (C,) rmean: np.ndarray = cov.location_ # inverse covariance metric, shape: (C, C) inv_cov: np.ndarray = np.linalg.inv(mcd) # robust M-Distance, shape: (R, C) x_minus_mu: np.ndarray = arr - rmean # shape: (R, C) left_term: np.ndarray = np.dot(x_minus_mu, inv_cov) # m distance: shape: (R, R) dist: np.ndarray = np.dot(left_term, x_minus_mu.T) # distances: shape: (R,) md: np.ndarray = np.sqrt(dist.diagonal()) C = self._set_chi_threshold(significance) return self._select_indicies(md, C) def __call__(self, *args, **kwargs) -> np.ndarray: """Return the output of the method provided by :obj:`default_method`. All (keyword) arguments are passed on to the respective method. :return: indexes in to :obj:`data` rows (indexes of a dataframe) of the outliers """ meth = getattr(self, self.default_method) return meth(*args, **kwargs)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataset/outlier.py
outlier.py
__author__ = 'Paul Landes' from typing import Dict, Tuple, Sequence, Set, List from dataclasses import dataclass, field from abc import abstractmethod, ABCMeta import sys import logging import collections from functools import reduce import math from io import TextIOBase from pathlib import Path import shutil import parse import random import pandas as pd from zensols.config import Writable from zensols.persist import ( Primeable, persisted, PersistedWork, Stash, PersistableContainer ) from zensols.dataset import SplitKeyContainer from . import DatasetError logger = logging.getLogger(__name__) @dataclass class AbstractSplitKeyContainer(PersistableContainer, SplitKeyContainer, Primeable, Writable, metaclass=ABCMeta): """A default implementation of a :class:`.SplitKeyContainer`. This implementation keeps the order of the keys consistent as well, which is stored at the path given in :obj:`key_path`. Once the keys are generated for the first time, they will persist on the file system. This abstract class requires an implementation of :meth:`_create_splits`. .. document private functions .. automethod:: _create_splits """ key_path: Path = field() """The directory to store the split keys.""" pattern: str = field() """The file name pattern to use for the keys file :obj:`key_path` on the file system, each file is named after the key split. For example, if ``{name}.dat`` is used, ``train.dat`` will be a file with the ordered keys. """ def __post_init__(self): super().__init__() def prime(self): self._get_keys_by_split() @abstractmethod def _create_splits(self) -> Dict[str, Tuple[str]]: """Create the key splits using keys as the split name (i.e. ``train``) and the values as a list of the keys for the corresponding split. """ pass def _create_splits_and_write(self): """Write the keys in order to the file system. """ self.key_path.mkdir(parents=True, exist_ok=True) for name, keys in self._create_splits().items(): fname = self.pattern.format(**{'name': name}) key_path = self.key_path / fname with open(key_path, 'w') as f: for k in keys: f.write(k + '\n') def _read_splits(self): """Read the keys in order from the file system. """ by_name = {} for path in self.key_path.iterdir(): p = parse.parse(self.pattern, path.name) if p is not None: p = p.named if 'name' in p: with open(path) as f: by_name[p['name']] = tuple( map(lambda ln: ln.strip(), f.readlines())) return by_name @persisted('_get_keys_by_split_pw') def _get_keys_by_split(self) -> Dict[str, Tuple[str]]: if not self.key_path.exists(): if logger.isEnabledFor(logging.INFO): logger.info(f'creating key splits in {self.key_path}') self._create_splits_and_write() return self._read_splits() def clear(self): logger.debug('clearing split stash') if self.key_path.is_dir(): logger.debug('removing key path: {self.key_path}') shutil.rmtree(self.key_path) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): by_name = self.counts_by_key total = sum(by_name.values()) self._write_line('key splits:', depth, writer) for name, cnt in by_name.items(): self._write_line(f'{name}: {cnt} ({cnt/total*100:.1f}%)', depth + 1, writer) self._write_line(f'total: {total}', depth, writer) @dataclass class StashSplitKeyContainer(AbstractSplitKeyContainer): """A default implementation of :class:`.AbstractSplitKeyContainer` that uses a delegate stash for source of the keys. """ stash: Stash = field() """The delegate stash from where to get the keys to store.""" distribution: Dict[str, float] = field( default_factory=lambda: {'train': 0.8, 'validate': 0.1, 'test': 0.1}) """The distribution as a percent across all key splits. The distribution values must add to 1. """ shuffle: bool = field(default=True) """If ``True``, shuffle the keys when creating the key splits. """ def __post_init__(self): super().__post_init__() sm = float(sum(self.distribution.values())) err, errm = (1. - sm), 1e-1 if sm < 0 or sm > 1 or err > errm: raise DatasetError('Distriubtion must add to 1: ' + f'{self.distribution} (err={err} > errm)') def prime(self): super().prime() if isinstance(self.stash, Primeable): self.stash.prime() @persisted('_split_names_pw') def _get_split_names(self) -> Tuple[str]: return frozenset(self.distribution.keys()) def _create_splits(self) -> Dict[str, Tuple[str]]: if self.distribution is None: raise DatasetError('Must either provide `distribution` or ' + 'implement `_create_splits`') by_name = {} keys = list(self.stash.keys()) if self.shuffle: random.shuffle(keys) klen = len(keys) dists = tuple(self.distribution.items()) if len(dists) > 1: dists, last = dists[:-1], dists[-1] else: dists, last = (), dists[0] start = 0 end = len(dists) for name, dist in dists: end = start + int((klen * dist)) by_name[name] = tuple(keys[start:end]) start = end by_name[last[0]] = keys[start:] for k, v in by_name.items(): print(k, len(v), len(v)/klen) assert sum(map(len, by_name.values())) == klen return by_name @dataclass class StratifiedStashSplitKeyContainer(StashSplitKeyContainer): """Like :class:`.StashSplitKeyContainer` but data is stratified by a label (:obj:`partition_attr`) across each split. """ partition_attr: str = field(default=None) """The label used to partition the strata across each split""" stratified_write: bool = field(default=True) """Whether or not to include the stratified counts when writing with :meth:`write`. """ split_labels_path: Path = field(default=None) """If provided, the path is a pickled cache of :obj:`stratified_count_dataframe`. """ def __post_init__(self): super().__post_init__() if self.partition_attr is None: raise DatasetError("Missing 'partition_attr' field") dfpath = self.split_labels_path if dfpath is None: dfpath = '_strat_split_labels' self._strat_split_labels = PersistedWork(dfpath, self, mkdir=True) def _create_splits(self) -> Dict[str, Tuple[str]]: dist_keys: Sequence[str] = self.distribution.keys() dist_last: str = next(iter(dist_keys)) dists: Set[str] = set(dist_keys) - {dist_last} rows = [] for k, v in self.stash.items(): rows.append((k, getattr(v, self.partition_attr))) df = pd.DataFrame(rows, columns=['key', self.partition_attr]) lab_splits: Dict[str, Set[str]] = collections.defaultdict(set) for lab, dfg in df.groupby(self.partition_attr): splits = {} keys: List[str] = dfg['key'].to_list() if self.shuffle: random.shuffle(keys) count = len(keys) for dist in dists: prop = self.distribution[dist] n_samples = math.ceil(float(count) * prop) samp = set(keys[:n_samples]) splits[dist] = samp lab_splits[dist].update(samp) keys = keys[n_samples:] samp = set(keys) splits[dist_last] = samp lab_splits[dist_last].update(samp) assert sum(map(len, lab_splits.values())) == len(df) assert reduce(lambda a, b: a | b, lab_splits.values()) == \ set(df['key'].tolist()) shuf_splits = {} for lab, keys in lab_splits.items(): if self.shuffle: keys = list(keys) random.shuffle(keys) shuf_splits[lab] = tuple(keys) return shuf_splits def _count_proportions_by_split(self) -> Dict[str, Dict[str, str]]: lab_counts = {} kbs = self.keys_by_split for split_name in sorted(kbs.keys()): keys = kbs[split_name] counts = collections.defaultdict(lambda: 0) for k in keys: item = self.stash[k] lab = getattr(item, self.partition_attr) counts[lab] += 1 lab_counts[split_name] = counts return lab_counts @property @persisted('_strat_split_labels') def stratified_split_labels(self) -> pd.DataFrame: """A dataframe with all keys, their respective labels and split. """ kbs = self.keys_by_split rows = [] for split_name in sorted(kbs.keys()): keys = kbs[split_name] for k in keys: item = self.stash[k] lab = getattr(item, self.partition_attr) rows.append((split_name, k, lab)) return pd.DataFrame(rows, columns='split_name id label'.split()) def clear(self): super().clear() self._strat_split_labels.clear() @property def stratified_count_dataframe(self) -> pd.DataFrame: """A count summarization of :obj:`stratified_split_labels`. """ df = self.stratified_split_labels df = df.groupby('split_name label'.split()).size().\ reset_index(name='count') df['proportion'] = df['count'] / df['count'].sum() df = df.sort_values('split_name label'.split()).reset_index(drop=True) return df def _fmt_prop_by_split(self) -> Dict[str, Dict[str, str]]: df = self.stratified_count_dataframe tot = df['count'].sum() dsets: Dict[str, Dict[str, str]] = collections.OrderedDict() for split_name, dfg in df.groupby('split_name'): dfg['fmt'] = df['count'].apply(lambda x: f'{x/tot*100:.2f}%') dsets[split_name] = dict(dfg[['label', 'fmt']].values) return dsets def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): if self.stratified_write: lab_counts: Dict[str, Dict[str, str]] = self._fmt_prop_by_split() self._write_dict(lab_counts, depth, writer) self._write_line(f'Total: {len(self.stash)}', depth, writer) else: super().write(depth, writer)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataset/split.py
split.py
__author__ = 'Paul Landes' from typing import Dict, Tuple, Set from dataclasses import dataclass, field import sys import random as rand import itertools as it from collections import deque from pathlib import Path from zensols.persist import persisted, PersistedWork, Stash from . import DatasetError, SplitKeyContainer @dataclass class LeaveNOutSplitKeyContainer(SplitKeyContainer): """A split key container that leaves one out of the dataset. By default, this creates a dataset that has one data point for validation, another for test, and the rest of the data for training. """ delegate: Stash = field() """The source for keys to generate the splits.""" distribution: Dict[str, int] = field( default_factory=lambda: {'train': -1, 'validation': 1, 'test': 1}) """The number of data points by each split type. If the value is an integer, that number of data points are used. Otherwise, if it is a float, then that percentage of the entire key set is used. """ shuffle: bool = field(default=True) """If ``True``, shuffle the keys obtained from :obj:`delegate` before creating the splits. """ path: Path = field(default=None) """If not ``None``, persist the keys after shuffling (if enabled) to the path specified, for reproducibility of key partitions. """ def __post_init__(self): path = '_key_queue' if self.path is None else self.path self._key_queue = PersistedWork(path, self, mkdir=True) self._iter = 0 @persisted('_key_queue') def _get_key_queue(self) -> deque: keys = list(self.delegate.keys()) if self.shuffle: rand.shuffle(keys) return deque(keys) def next_split(self) -> bool: """Create the next split so that the next access to properties such as :obj:`keys_by_split` provide the next key split permutation. """ key_queue = self._get_key_queue() key_queue.rotate(-1) self._iter += 1 return (self._iter % len(key_queue)) == 0 @persisted('_split_names') def _get_split_names(self) -> Set[str]: return frozenset(self.distribution.keys()) def _get_keys_by_split(self) -> Dict[str, Tuple[str]]: kq = self._get_key_queue() keys = iter(kq) klen = len(kq) ds = self.distribution.items() filled = False by_split = {} for name, n in sorted(ds, key=lambda x: x[1], reverse=True): if n < 0: if filled: raise DatasetError("Distribution has more than one " + f"'fill' (-1) value: {ds}") filled = True n = sys.maxsize elif isinstance(n, float): n = int(n * klen) by_split[name] = tuple(it.islice(keys, n)) total = sum(map(lambda x: len(x), by_split.values())) if total != klen: raise DatasetError( f'Number of allocated keys to the distribution ({total}) ' + f'does not equal total keys ({klen})') return by_split
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataset/leaveout.py
leaveout.py
__author__ = 'Paul Landes' from typing import Dict, Set, Tuple from dataclasses import dataclass from abc import abstractmethod, ABCMeta import logging import sys from io import TextIOBase from zensols.util import APIError from zensols.config import Writable from zensols.persist import Stash, PrimeableStash logger = logging.getLogger(__name__) class DatasetError(APIError): """Thrown when any dataset related is raised.""" @dataclass class SplitKeyContainer(Writable, metaclass=ABCMeta): """An interface defining a container that partitions data sets (i.e. ``train`` vs ``test``). For instances of this class, that data are the unique keys that point at the data. """ def _get_split_names(self) -> Set[str]: return self._get_keys_by_split().keys() def _get_counts_by_key(self) -> Dict[str, int]: ks = self._get_keys_by_split() return {k: len(ks[k]) for k in ks.keys()} @abstractmethod def _get_keys_by_split(self) -> Dict[str, Tuple[str]]: pass @property def split_names(self) -> Set[str]: """Return the names of each split in the dataset. """ return self._get_split_names() @property def counts_by_key(self) -> Dict[str, int]: """Return data set splits name to count for that respective split. """ return self._get_counts_by_key() @property def keys_by_split(self) -> Dict[str, Tuple[str]]: """Generate a dictionary of split name to keys for that split. It is expected this method will be very expensive. """ return self._get_keys_by_split() def clear(self): """Clear any cached state.""" def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_delegate: bool = False): self._write_line('split stash splits:', depth, writer) t = 0 for ks in self.keys_by_split.values(): t += len(ks) for k, ks in self.keys_by_split.items(): ln = len(ks) self._write_line(f'{k}: {ln} ({ln/t*100:.1f}%)', depth + 1, writer) self._write_line(f'total: {t}', depth + 1, writer) @dataclass class SplitStashContainer(PrimeableStash, SplitKeyContainer, metaclass=ABCMeta): """An interface like ``SplitKeyContainer``, but whose implementations are of ``Stash`` containing the instance data. For a default implemetnation, see :class:`.DatasetSplitStash`. """ @abstractmethod def _get_split_name(self) -> str: pass @abstractmethod def _get_splits(self) -> Dict[str, Stash]: pass @property def split_name(self) -> str: """Return the name of the split this stash contains. Thus, all data/items returned by this stash are in the data set given by this name (i.e. ``train``). """ return self._get_split_name() @property def splits(self) -> Dict[str, Stash]: """Return a dictionary with keys as split names and values as the stashes represented by that split. :see: :meth:`split_name` """ return self._get_splits()
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataset/interface.py
interface.py
__author__ = 'Paul Landes' from typing import Dict, Any from pathlib import Path import pandas as pd from zensols.config import DictionaryConfig class DataframeConfig(DictionaryConfig): """A :class:`~zensols.config.Configurable` that dataframes as sources. This is useful for providing labels to nominial label vectorizers. """ def __init__(self, csv_path: Path, default_section: str, columns: Dict[str, str] = None, column_eval: str = None, counts: Dict[str, str] = None): """Initialize the configuration from a dataframe (see parameters). :param csv_path: the path to the CSV file to create the dataframe :param default_section: the singleton section name, which has as options a list of the columns of the dataframe :param columns: the columns to add to the configuration from the dataframe with ``key, values`` as ``column names, option names`` :param column_eval: Python code to evaluate and apply to each column if provided :param counts: additional option entries in the section to add as counts of respective columns with ``key, values`` as ``column option names, new entry option names; where the ``column option names`` are those given as values from the ``columns`` :class:`dict` """ df: pd.DataFrame = pd.read_csv(csv_path) sec: Dict[str, Any] = {} if columns is None: columns = dict(map(lambda x: (x, x), df.columns)) col_name: str for df_col, sec_name in columns.items(): col: pd.Series = df[df_col] if column_eval is not None: col = eval(column_eval) if isinstance(col, pd.Series): col = col.tolist() sec[sec_name] = col if counts is not None: for col_name, sec_name in counts.items(): sec[sec_name] = len(sec[col_name]) super().__init__(config={default_section: sec}, default_section=default_section)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataframe/config.py
config.py
__author__ = 'Paul Landes' from typing import Iterable, Dict, Set, Tuple from dataclasses import dataclass, field import logging import sys from io import TextIOBase from abc import abstractmethod, ABCMeta from collections import OrderedDict from pathlib import Path import pandas as pd from sklearn.model_selection import train_test_split from zensols.util import APIError from zensols.config import Writable from zensols.persist import ( Deallocatable, PersistedWork, persisted, ReadOnlyStash, PrimeableStash, ) from zensols.install import Installer, Resource from zensols.dataset import SplitKeyContainer logger = logging.getLogger(__name__) class DataframeError(APIError): """Thrown for dataframe stash issues.""" @dataclass class DataframeStash(ReadOnlyStash, Deallocatable, Writable, PrimeableStash, metaclass=ABCMeta): """A factory stash that uses a Pandas data frame from which to load. It uses the data frame index as the keys and :class:`pandas.Series` as values. The dataframe is usually constructed by reading a file (i.e.CSV) and doing some transformation before using it in an implementation of this stash. The dataframe created by :meth:`_get_dataframe` must have a string or integer index since keys for all stashes are of type :class:`str`. The index will be mapped to a string if it is an int automatically. """ dataframe_path: Path = field() """The path to store the pickeled version of the generated dataframe created with :meth:`_get_dataframe`. """ def __post_init__(self): super().__post_init__() Deallocatable.__init__(self) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'split stash post init: {self.dataframe_path}') self._dataframe = PersistedWork(self.dataframe_path, self, mkdir=True) def deallocate(self): super().deallocate() self._dataframe.deallocate() @abstractmethod def _get_dataframe(self) -> pd.DataFrame: """Get or create the dataframe """ pass def _prepare_dataframe(self, df: pd.DataFrame) -> pd.DataFrame: dt = df.index.dtype if dt != object: if dt != int: s = f'Data frame index must be a string or int, but got: {dt}' raise DataframeError(s) else: df.index = df.index.map(str) return df @property @persisted('_dataframe') def dataframe(self): df = self._get_dataframe() df = self._prepare_dataframe(df) return df def prime(self): super().prime() self.dataframe def clear(self): if logger.isEnabledFor(logging.DEBUG): logger.debug('clearing dataframe stash') self._dataframe.clear() def load(self, name: str) -> pd.Series: return self.dataframe.loc[name] def exists(self, name: str) -> bool: return name in self.dataframe.index def keys(self) -> Iterable[str]: return map(str, self.dataframe.index) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): df = self.dataframe self._write_line(f'rows: {df.shape[0]}', depth, writer) self._write_line(f'cols: {", ".join(df.columns)}', depth, writer) @dataclass class SplitKeyDataframeStash(DataframeStash, SplitKeyContainer): """A stash and split key container that reads from a dataframe. """ key_path: Path = field() """The path where the key splits (as a ``dict``) is pickled.""" split_col: str = field() """The column name in the dataframe used to indicate the split (i.e. ``train`` vs ``test``). """ def __post_init__(self): super().__post_init__() self._keys_by_split = PersistedWork(self.key_path, self, mkdir=True) def deallocate(self): super().deallocate() self._keys_by_split.deallocate() def _create_keys_for_split(self, split_name: str, df: pd.DataFrame) -> \ Iterable[str]: """Generate an iterable of string keys. It is expected this method to be potentially very expensive, so the results are cached to disk. This implementation returns the dataframe index. :param split_name: the name of the split (i.e. ``train`` vs ``test``) :param df: the data frame for the grouping of keys from CSV of data """ return df.index def _get_counts_by_key(self) -> Dict[str, int]: sc = self.split_col return dict(self.dataframe.groupby([sc])[sc].count().items()) @persisted('_split_names') def _get_split_names(self) -> Set[str]: return set(self.dataframe[self.split_col].unique()) @persisted('_keys_by_split') def _get_keys_by_split(self) -> Dict[str, Tuple[str]]: keys_by_split = OrderedDict() split_col = self.split_col for split, df in self.dataframe.groupby([split_col]): logger.info(f'parsing keys for {split}') keys = self._create_keys_for_split(split, df) keys_by_split[split] = tuple(keys) return keys_by_split def clear(self): super().clear() self.clear_keys() def clear_keys(self): """Clear only the cache of keys generated from the group by. """ self._keys_by_split.clear() def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): total = self.dataframe.shape[0] self._write_line('data frame splits:', depth, writer) for split, cnt in self.counts_by_key.items(): self._write_line(f'{split}: {cnt} ({cnt/total*100:.1f}%)', depth, writer) self._write_line(f'total: {total}', depth, writer) @dataclass class AutoSplitDataframeStash(SplitKeyDataframeStash): """Automatically a dataframe in to train, test and validation datasets by adding a :obj:`split_col` with the split name. """ distribution: Dict[str, float] = field() """The distribution as a percent across all key splits. The distribution values must add to 1. The keys must have ``train``, ``test`` and ``validate``. """ def __post_init__(self): super().__post_init__() sm = float(sum(self.distribution.values())) err_low, err_high, errm = (1. - sm), (1. + sm), 1e-1 if err_low > errm: raise APIError('distriubtion must add to 1: ' + f'{self.distribution} (err={err_low} > errm)') if err_high < errm: raise APIError('distriubtion must add to 1: ' + f'{self.distribution} (err={err_low} > errm)') def _prepare_dataframe(self, df: pd.DataFrame) -> pd.DataFrame: n_train = self.distribution['train'] n_test = self.distribution['test'] n_val = self.distribution['validate'] n_test_val = n_test + n_val n_test = n_test / n_test_val train, test_val = train_test_split(df, test_size=1-n_train) test, val = train_test_split(test_val, test_size=n_test) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'split dataframe: train: {train.size}, ' + f'test: {test.size}, validation: {val.size}') # pandas complains about modifying a slice train = train.copy() test = test.copy() val = val.copy() train[self.split_col] = 'train' test[self.split_col] = 'test' val[self.split_col] = 'validation' df = pd.concat([train, test, val], ignore_index=False) df = super()._prepare_dataframe(df) return df @dataclass class DefaultDataframeStash(SplitKeyDataframeStash): """A default implementation of :class:`.DataframeSplitStash` that creates the Pandas dataframe by simply reading it from a specificed CSV file. The index is a string type appropriate for a stash. """ input_csv_path: Path = field() """A path to the CSV of the source data.""" def _get_dataframe(self) -> pd.DataFrame: return pd.read_csv(self.input_csv_path) @dataclass class ResourceFeatureDataframeStash(DataframeStash): """Create the dataframe by reading the newline delimited set of clickbate headlines from the corpus files. """ installer: Installer = field() """The installer used to download and uncompress dataset.""" resource: Resource = field() """Use to resolve the corpus file.""" def _get_dataframe(self) -> pd.DataFrame: self.installer() path: Path = self.installer[self.resource] if logger.isEnabledFor(logging.DEBUG): logger.debug(f'loading CSV from resource path: {path}') df = pd.read_csv(path) df = df.rename(columns=dict( zip(df.columns, map(str.lower, df.columns)))) return df
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/dataframe/stash.py
stash.py
__author__ = 'Paul Landes' from typing import Dict, Iterable, Any, Tuple, Union, Type, List import sys import logging import gc from io import TextIOBase import random import torch import torch.cuda as cuda from torch import Tensor from torch import nn import torch.multiprocessing as mp import numpy as np from zensols.config import Writable from zensols.persist import persisted, PersistableContainer, PersistedWork from . import TorchTypes logger = logging.getLogger(__name__) class CudaInfo(Writable): """A utility class that provides information about the CUDA configuration for the current (hardware) environment. """ @property @persisted('_gpu_available', cache_global=True) def gpu_available(self) -> bool: return cuda.is_available() @property @persisted('_num_devices', cache_global=True) def num_devices(self) -> int: """Return number of devices connected. """ return cuda.device_count() def get_devices(self, format: bool = False) -> Dict[int, Dict[str, Any]]: devs = {} for i in range(self.num_devices): memory = dict( reserved=cuda.memory_reserved(i), allocated=cuda.memory_allocated(i), total=cuda.get_device_properties(i).total_memory, ) if format: for k, v in memory.items(): memory[k] = f'{memory[k]/1e9:.2f} GB' devs[i] = dict(name=cuda.get_device_name(i), memory=memory) return devs def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): """Class representation as number of devices connected and about them. :see: cuda """ num = self.num_devices self._write_line(f'GPU available: {self.gpu_available}', depth, writer) if self.gpu_available: self._write_line(f'devices: ({num})', depth, writer) self._write_object(self.get_devices(True), depth + 1, writer) def __str__(self): return f'CUDA devices: {self.num_devices}' class TorchConfig(PersistableContainer, Writable): """A utility class that provides access to CUDA APIs. It provides information on the current CUDA configuration and convenience methods to create, copy and modify tensors. These are handy for any given CUDA configuration and can back off to the CPU when CUDA isn't available. """ _CPU_DEVICE: str = 'cpu' _RANDOM_SEED: dict = None _CPU_WARN: bool = False def __init__(self, use_gpu: bool = True, data_type: type = torch.float32, cuda_device_index: int = None, device_name: str = None): """Initialize this configuration. :param use_gpu: whether or not to use CUDA/GPU :param data_type: the default data type to use when creating new tensors in this configuration :param cuda_device_index: the CUDA device to use, which defaults to 0 if CUDA if ``use_gpu`` is ``True`` :param device_name: the string name of the device to use (i.e. ``cpu`` or ``mps``); if provided, overrides ``cuda_device_index`` """ super().__init__() logger.debug(f'use_gpu: {use_gpu}') self.use_gpu = use_gpu self.data_type = data_type if device_name is not None: self._device = torch.device(device_name) # we can't globally cache this in case there are multiple instances of # this class for which have different values of `use_gpu` self._init_device_pw = PersistedWork('_init_device_pw', self) self._cpu_device_pw = PersistedWork( '_cpu_device_pw', self, cache_global=True) self._cpu_device_pw._mark_deallocated() self._cuda_device_index = cuda_device_index @persisted('_init_device_pw') def _init_device(self) -> torch.device: """Attempt to initialize CUDA, and if successful, return the CUDA device. """ is_avail = torch.cuda.is_available() use_gpu = self.use_gpu and is_avail logger.debug(f'use cuda: {self.use_gpu}, is avail: {is_avail}') if use_gpu: if logger.isEnabledFor(logging.DEBUG): logger.info('successfully initialized CUDA') cuda_dev = torch.cuda.current_device() device = torch.device('cuda', cuda_dev) self.cuda_device_index = cuda_dev else: device = torch.device(self._CPU_DEVICE) if self.use_gpu and not is_avail: if not self.__class__._CPU_WARN: logger.info('requested GPU but not available--using CPU') self.__class__._CPU_WARN = True self.use_gpu = False self._cuda_device_index = None return device @property @persisted('_cpu_device_pw') def cpu_device(self) -> torch.device: """Return the CPU CUDA device, which is the device type configured to utilize the CPU (rather than the GPU). """ return torch.device(self._CPU_DEVICE) @classmethod def cpu_device_name(cls) -> str: """The string name of the torch CPU device.""" return cls._CPU_DEVICE @property def device(self) -> torch.device: """Return the torch device configured. """ if not hasattr(self, '_device'): if self.use_gpu: self._device = self._init_device() if self._cuda_device_index is not None: self._device = torch.device( 'cuda', self._cuda_device_index) else: self._device = self.cpu_device return self._device @device.setter def device(self, device: torch.device): """Set (force) the device to be used in this configuration.""" self._device = device torch.cuda.set_device(device) logger.info(f'using device: {device}') @property def using_cpu(self) -> bool: """Return ``True`` if this configuration is using the CPU device.""" return self.device.type == self._CPU_DEVICE @classmethod def is_on_cpu(cls, arr: Tensor) -> bool: """Return ``True`` if the passed tensor is on the CPU.""" return arr.device.type == cls._CPU_DEVICE @property def gpu_available(self) -> bool: """Return whether or not CUDA GPU access is available.""" return self._init_device().type != self._CPU_DEVICE @property def cuda_devices(self) -> Tuple[torch.device]: """Return all cuda devices. """ return tuple(map(lambda n: torch.device('cuda', n), range(torch.cuda.device_count()))) @property def cuda_device_index(self) -> Union[int, None]: """Return the CUDA device index if CUDA is being used for this configuration. Otherwise return ``None``. """ device = self.device if device.type == 'cuda': return device.index @cuda_device_index.setter def cuda_device_index(self, device: int): """Set the CUDA device index for this configuration.""" self.device = torch.device('cuda', device) def same_device(self, tensor_or_model) -> bool: """Return whether or not a tensor or model is in the same memory space as this configuration instance. """ device = self.device return hasattr(tensor_or_model, 'device') and \ tensor_or_model.device == device @staticmethod def in_memory_tensors() -> List[Tensor]: """Returns all in-memory tensors and parameters. :see: :meth:`~zensols.deeplearn.cli.app.show_leaks` """ arrs: List[Tensor] = [] for obj in gc.get_objects(): try: if torch.is_tensor(obj) or \ (hasattr(obj, 'data') and torch.is_tensor(obj.data)): arrs.append(obj) except Exception: pass return arrs @classmethod def write_in_memory_tensors(cls: Type, writer: TextIOBase = sys.stdout, filter_device: torch.device = None): """Prints in-memory tensors and parameters. :param filter_device: if given, write only tensors matching this device :see: :class:`~zensols.deeplearn.torchconfig.TorchConfig` """ objs: List[Tensor] = cls.in_memory_tensors() for obj in objs: if filter_device is None or filter_device == obj.device: writer.write( f'{type(obj)}: {tuple(obj.shape)} on {obj.device}\n') def write_device_tensors(self, writer: TextIOBase = sys.stdout): """Like :meth:`write_in_memory_tensors`, but filter on this instance's device. :param filter_device: if given, write only tensors matching this device :see: :class:`~zensols.deeplearn.torchconfig.TorchConfig` """ self.write_in_memory_tensors(writer=writer, filter_device=self.device) @staticmethod def empty_cache(): """Empty the CUDA torch cache. This releases memory in the GPU and should not be necessary to call for normal use cases. """ torch.cuda.empty_cache() @property def info(self) -> CudaInfo: """Return the CUDA information, which include specs of the device. """ self._init_device() return CudaInfo() @property def tensor_class(self) -> Type[torch.dtype]: """Return the class type based on the current configuration of this instance. For example, if using ``torch.float32`` on the GPU, ``torch.cuda.FloatTensor`` is returned. """ return TorchTypes.get_tensor_class(self.data_type, self.using_cpu) @property def numpy_data_type(self) -> Type[torch.dtype]: """Return the numpy type that corresponds to this instance's configured ``data_type``. """ return TorchTypes.get_numpy_type(self.data_type) def to(self, tensor_or_model: Union[nn.Module, Tensor]) -> \ Union[nn.Module, Tensor]: """Copy the tensor or model to the device this to that of this configuration. """ if not self.same_device(tensor_or_model): tensor_or_model = tensor_or_model.to(self.device) if isinstance(tensor_or_model, nn.Module) and \ hasattr(tensor_or_model, 'dtype') and \ tensor_or_model.dtype != self.data_type: tensor_or_model.type(self.data_type) return tensor_or_model @classmethod def to_cpu_deallocate(cls, *arrs: Tuple[Tensor]) -> \ Union[Tuple[Tensor], Tensor]: """Safely copy detached memory to the CPU and delete local instance (possibly GPU) memory to speed up resource deallocation. If the tensor is already on the CPU, it's simply passed back. Otherwise the tensor is deleted. This method is robust with ``None``, which are skipped and substituted as ``None`` in the output. :param arrs: the tensors the copy to the CPU (if not already) :return: the singleton tensor if only one ``arrs`` is passed; otherwise, the CPU copied tensors from the input """ cpus = [] for arr in arrs: if arr is None or (cls.is_on_cpu(arr) and not arr.requires_grad): cpu_arr = arr else: cpu_arr = arr.detach().clone().cpu() # suggest to interpreter to mark for garbage collection # immediately del arr cpus.append(cpu_arr) return cpus[0] if len(cpus) == 1 else tuple(cpus) def clone(self, tensor: Tensor, requires_grad: bool = True) -> Tensor: """Clone a tensor. """ return tensor.detach().clone().requires_grad_(requires_grad) def _populate_defaults(self, kwargs): """Add keyword arguments to typical torch tensor creation functions. """ if 'dtype' not in kwargs: kwargs['dtype'] = self.data_type kwargs['device'] = self.device def from_iterable(self, array: Iterable[Any]) -> Tensor: """Return a one dimenstional tensor created from ``array`` using the type and device in the current instance configuration. """ cls = self.tensor_class if not isinstance(array, tuple) and not isinstance(array, list): array = tuple(array) return cls(array) def singleton(self, *args, **kwargs) -> Tensor: """Return a new tensor using ``torch.tensor``. """ self._populate_defaults(kwargs) return torch.tensor(*args, **kwargs) def float(self, *args, **kwargs) -> Tensor: """Return a new tensor using ``torch.tensor`` as a float type. """ kwargs['dtype'] = self.float_type self._populate_defaults(kwargs) return torch.tensor(*args, **kwargs) def int(self, *args, **kwargs) -> Tensor: """Return a new tensor using ``torch.tensor`` as a int type. """ kwargs['dtype'] = self.int_type self._populate_defaults(kwargs) return torch.tensor(*args, **kwargs) def sparse(self, indicies: Tuple[int], values: Tuple[float], shape: Tuple[int, int]): """Create a sparce tensor from indexes and values. """ i = torch.LongTensor(indicies) v = torch.FloatTensor(values) cls = TorchTypes.get_sparse_class(self.data_type) return cls(i, v, shape, device=self.device) def is_sparse(self, arr: Tensor) -> bool: """Return whether or not a tensor a sparse. """ return arr.layout == torch.sparse_coo def empty(self, *args, **kwargs) -> Tensor: """Return a new tesor using ``torch.empty``. """ self._populate_defaults(kwargs) return torch.empty(*args, **kwargs) def zeros(self, *args, **kwargs) -> Tensor: """Return a new tensor of zeros using ``torch.zeros``. """ self._populate_defaults(kwargs) return torch.zeros(*args, **kwargs) def ones(self, *args, **kwargs) -> Tensor: """Return a new tensor of zeros using ``torch.ones``. """ self._populate_defaults(kwargs) return torch.ones(*args, **kwargs) def from_numpy(self, arr: np.ndarray) -> Tensor: """Return a new tensor generated from a numpy aray using ``torch.from_numpy``. The array type is converted if necessary. """ tarr = torch.from_numpy(arr) if arr.dtype != self.numpy_data_type: tarr = tarr.type(self.data_type) return self.to(tarr) def cat(self, *args, **kwargs) -> Tensor: """Concatenate tensors in to one tensor using ``torch.cat``. """ return self.to(torch.cat(*args, **kwargs)) def to_type(self, arr: Tensor) -> Tensor: """Convert the type of the given array to the type of this instance. """ if self.data_type != arr.dtype: arr = arr.type(self.data_type) return arr @property def float_type(self) -> Type: """Return the float type that represents this configuration, converting to the corresponding precision from integer if necessary. :return: the float that represents this data, or ``None`` if neither float nor int """ dtype = self.data_type if TorchTypes.is_int(dtype): return TorchTypes.int_to_float(dtype) elif TorchTypes.is_float(dtype): return dtype @property def int_type(self) -> Type: """Return the int type that represents this configuration, converting to the corresponding precision from integer if necessary. :return: the int that represents this data, or ``None`` if neither int nor float """ dtype = self.data_type if TorchTypes.is_float(dtype): return TorchTypes.float_to_int(dtype) elif TorchTypes.is_int(dtype): return dtype @staticmethod def equal(a: Tensor, b: Tensor) -> bool: """Return whether or not two tensors are equal. This does an exact cell comparison. """ return torch.all(a.eq(b)).item() @staticmethod def close(a: Tensor, b: Tensor) -> bool: """Return whether or not two tensors are equal. This does an exact cell comparison. """ return torch.allclose(a, b) @persisted('_cross_entropy_pad_pw') def _cross_entropy_pad(self) -> Tensor: ix = nn.CrossEntropyLoss().ignore_index return torch.tensor([ix], device=self.device, dtype=self.data_type) def cross_entropy_pad(self, size: Tuple[int]) -> Tensor: """Create a padded tensor of size ``size`` using the repeated pad :obj:`~torch.nn.CrossEntropyLoss.ignore_index`. """ pad = self._cross_entropy_pad() return pad.repeat(size) @classmethod def get_random_seed(cls: Type) -> int: """Get the cross system random seed, meaning the seed applied to CUDA and the Python *random* library. """ if cls._RANDOM_SEED is not None: return cls._RANDOM_SEED['seed'] @classmethod def get_random_seed_context(cls: Type) -> Dict[str, Any]: """Return the random seed context given to :py:meth:`set_random_seed` to restore across models for consistent results. """ return cls._RANDOM_SEED @classmethod def set_random_seed(cls: Type, seed: int = 0, disable_cudnn: bool = True, rng_state: bool = True): """Set the random number generator for PyTorch. :param seed: the random seed to be set :param disable_cudnn: if ``True`` disable NVidia's backend cuDNN hardware acceleration, which might have non-deterministic features :param rng_state: set the CUDA random state array to zeros :see: `Torch Random Seed <https://discuss.pytorch.org/t/random-seed-initialization/7854>`_ :see: `Reproducibility <https://discuss.pytorch.org/t/non-reproducible-result-with-gpu/1831>`_ """ cls._RANDOM_SEED = {'seed': seed, 'disable_cudnn': disable_cudnn, 'rng_state': rng_state} random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): if rng_state: new_states = [] for state in torch.cuda.get_rng_state_all(): zeros = torch.zeros(state.shape, dtype=state.dtype) new_states.append(zeros) torch.cuda.set_rng_state_all(new_states) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(0) if disable_cudnn: torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True @classmethod def init(cls: Type, spawn_multiproc: str = 'spawn', seed_kwargs: Dict[str, Any] = {}): """Initialize the PyTorch framework. This includes: * Configuration of PyTorch multiprocessing so subprocesses can access the GPU, and * Setting the random seed state. The needs to be initialized at the very beginning of your program. Example:: def main(): from zensols.deeplearn import TorchConfig TorchConfig.init() **Note**: this method is separate from :meth:`set_random_seed` because that method is called by the framework to reset the seed after a model is unpickled. :see: :mod:`torch.multiprocessing` :see: :meth:`set_random_seed` """ if cls._RANDOM_SEED is None: cls.set_random_seed(**seed_kwargs) try: cur = mp.get_sharing_strategy() if logger.isEnabledFor(logging.INFO): logger.info('invoking pool with torch spawn ' + f'method: {spawn_multiproc}, current: {cur}') if spawn_multiproc: mp.set_start_method('spawn') else: mp.set_start_method('forkserver', force=True) except RuntimeError as e: msg = str(e) if msg != 'context has already been set': logger.warning(f'could not invoke spawn on pool: {e}') def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): if self.gpu_available: self.info.write(depth, writer) else: self._write_line('CUDA is not available', depth, writer) self._write_line(f'selected device: {self.device}', depth, writer) def __str__(self): return f'use cuda: {self.use_gpu}, device: {self.device}' def __repr__(self): return self.__str__() class printopts(object): """Object used with a ``with`` scope that sets options, then sets them back. Example:: with printopts(profile='full', linewidth=120): print(tensor) :see: `PyTorch Documentation <https://pytorch.org/docs/master/generated/torch.set_printoptions.html>`_ """ DEFAULTS = {'precision': 4, 'threshold': 1000, 'edgeitems': 3, 'linewidth': 80, 'profile': 'default', 'sci_mode': None} def __init__(self, **kwargs): if len(kwargs) > 0: torch.set_printoptions(**kwargs) def __enter__(self): pass def __exit__(self, type, value, traceback): torch.set_printoptions(**self.DEFAULTS)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/torchconfig.py
torchconfig.py
__author__ = 'Paul Landes' from typing import List, Any, Set, Tuple, Dict, Union, Type from dataclasses import dataclass, field from abc import ABC, abstractmethod import logging from pathlib import Path from datetime import datetime import pandas as pd from zensols.introspect import ClassImporter from zensols.config import ConfigurationError mod_logger = logging.getLogger(__name__ + '.status') """Logger for this module.""" event_logger = logging.getLogger(__name__ + '.event') """Event logger for the :class:`.LogModelObserver.""" class ModelObserver(ABC): """Recipient of notifications by the model framework. """ @abstractmethod def notify(self, event: str, caller: Any, context: Any = None): """Notify all registered observers of an event. :param event: the unique identifier of the event using underscore spacing and prefixed by a unique identifier per caller :param caller: the object calling this method :param context: any object specific to the call and understood by the client on a per client basis """ pass @dataclass class FilterModelObserver(ModelObserver): """Filters messages from the client to a delegate observer. """ delegate: ModelObserver = field() """The delegate observer to notify on notifications from this observer.""" include_events: Set[str] = field(default_factory=set) """A set of events used to indicate to notify :obj:`delegate`.""" def notify(self, event: str, caller: Any, context: Any = None): if event in self.include_events: self.delegate(event, caller, context) @dataclass class LogModelObserver(ModelObserver): """Logs notifications to :mod:`logging` system. """ logger: logging.Logger = field(default=event_logger) """The logger that receives notifications.""" level: int = field(default=logging.INFO) """The level used for logging.""" add_context_format: str = field(default='{event}: {context}') """If not ``None``, use the string to format the log message.""" def notify(self, event: str, caller: Any, context: Any = None): if self.logger.isEnabledFor(self.level): if self.add_context_format is not None and context is not None: event = self.add_context_format.format( **{'event': event, 'context': context}) self.logger.log(self.level, event) @dataclass class RecorderObserver(ModelObserver): """Records notifications and provides them as output. """ events: List[Tuple[datetime, str, Any, Any]] = field(default_factory=list) """All events received by this observer thus far.""" flatten: bool = field(default=True) """Whether or not make the caller and context in to a strings before storing them in :obj:`events`. """ flatten_short_classes: bool = field(default=True) """If ``True``, then only use the class name sans module. Otherwise, use the fully qualified class name. """ def _flatten(self, event: str, caller: Any, context: Any = None): if self.flatten: if self.flatten_short_classes: caller = caller.__class__.__name__ else: caller = ClassImporter.full_classname(caller.__class__) if not isinstance(context, (str, bool, int, float)): context = str(context) return event, caller, context def notify(self, event: str, caller: Any, context: Any = None): now = datetime.now() event, caller, context = self._flatten(event, caller, context) self.events.append((now, event, caller, context)) def events_as_df(self) -> pd.DataFrame: return pd.DataFrame( self.events, columns='time event caller context'.split()) @dataclass class DumperObserver(RecorderObserver): """A class that dumps all data when certain events are received as a CSV to the file sytsem. """ _EVENT_IX_COL = 'index' output_file: Path = field(default=Path('dumper-observer.csv')) """The path to where the (flattened data) is written.""" file_mode: str = field(default='append') """If ``append``, then append data to the output .CSV file. Otherwise, if ``overwrite`` then overwrite the data. """ trigger_events: Set[str] = field(default_factory=set) """A set of all events received that trigger a dump.""" trigger_callers: Set[Union[str, Type]] = field(default=None) """A set of all callers' *fully qualified* class names. If set to ``None`` the caller is not a constraint that precludes the dump. """ mkdir: bool = field(default=True) """If ``True`` then create the parent directories if they don't exist.""" add_columns: Dict[str, Any] = field(default=None) """Additional columns to add to the data frame across all rows if given.""" def __post_init__(self): fms = {'append', 'overwrite'} if self.file_mode not in fms: raise ConfigurationError( f'Expecting one of {fms}, but got: {self.file_mode}') if self.trigger_callers is not None: self.trigger_callers = set( map(lambda t: ClassImporter(t).get_class(), self.trigger_callers)) if mod_logger.isEnabledFor(logging.DEBUG): mod_logger.debug(f'trigger callers: {self.trigger_callers}') def _tc_inst_of(self, caller: Any) -> bool: for tc in self.trigger_callers: if isinstance(caller, tc): if mod_logger.isEnabledFor(logging.DEBUG): mod_logger.debug(f'triggered callers {caller.__class__} type of {tc}') return True return False def _should_dump(self, event: str, caller: Any, context: Any) -> bool: if event in self.trigger_events: dump = True if self.trigger_callers is not None: if mod_logger.isEnabledFor(logging.DEBUG): mod_logger.debug(f'filtering on {self.trigger_callers}') dump = False ctype = caller.__class__ if ctype in self.trigger_callers or self._tc_inst_of(caller): if mod_logger.isEnabledFor(logging.DEBUG): mod_logger.debug(f'triggered callers: {caller}') dump = True else: dump = False return dump def _dump(self, event, caller, context): df: pd.DataFrame = self.events_as_df() if self.mkdir: self.output_file.parent.mkdir(parents=True, exist_ok=True) if self.add_columns is not None: for k in sorted(self.add_columns.keys()): df[k] = self.add_columns[k] if self.file_mode == 'overwrite' and self.output_file.exists(): df_old = pd.read_csv( self.output_file, index_col=self._EVENT_IX_COL) df = pd.concat((df_old, df)) df.to_csv(self.output_file, index_label=self._EVENT_IX_COL) if mod_logger.isEnabledFor(logging.INFO): mod_logger.info(f'wrote events: {self.output_file}') def notify(self, event: str, caller: Any, context: Any = None): super().notify(event, caller) if self._should_dump(event, caller, context): self._dump(event, caller, context) @dataclass class ModelObserverManager(object): observers: List[ModelObserver] = field(default_factory=list) """A list of observers that get notified of all model lifecycle and process events. """ def add(self, observer: ModelObserver): """Add an observer to be notified of event changes. """ self.observers.append(observer) def notify(self, event: str, caller: Any, context: Any = None): """Notify all registered observers of an event. :param event: the unique identifier of the event using underscore spacing and prefixed by a unique identifier per caller :param caller: the object calling this method :param context: any object specific to the call and understood by the client on a per client basis """ for obs in self.observers: obs.notify(event, caller, context)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/observer.py
observer.py
__author__ = 'Paul Landes' from typing import Any, Dict, Union, Callable from dataclasses import dataclass, field, InitVar from abc import ABCMeta, abstractmethod from enum import Enum, auto import sys import logging from pathlib import Path import torch.nn.functional as F from torch import nn from zensols.util import APIError from zensols.config import Writeback, ConfigFactory from zensols.persist import persisted, PersistableContainer, FileTextUtil from . import ModelObserverManager logger = logging.getLogger(__name__) class DeepLearnError(APIError): """Raised for any frame originated error.""" pass class ModelError(DeepLearnError): """Raised for any model related error.""" pass class EarlyBailError(DeepLearnError): """Convenience used for helping debug the network. """ def __init__(self): super().__init__('early bail to debug the network') class DatasetSplitType(Enum): """Indicates an action on the model, which is first trained, validated, then tested. *Implementation note:* for now :obj:`test` is used for both testing the model and ad-hoc prediction """ train = auto() validation = auto() test = auto() @dataclass class NetworkSettings(Writeback, PersistableContainer, metaclass=ABCMeta): """A container settings class for network models. This abstract class must return the fully qualified (with module name) PyTorch `model (`torch.nn.Module``) that goes along with these settings. An instance of this class is saved in the model file and given back to it when later restored. **Note**: Instances of this class are pickled as parts of the results in :class:`zensols.deeplearn.result.domain.ModelResult`, so they must be able to serialize. However, they are not used to restore the executor or model, which are instead, recreated from the configuration for each (re)load (see the package documentation for more information). :see: :class:`.ModelSettings` """ config_factory: ConfigFactory = field() """The configuration factory used to create the module.""" def __post_init__(self): PersistableContainer.__init__(self) def _allow_config_adds(self) -> bool: return True def create_module(self, *args, **kwargs) -> nn.Module: """Create a new instance of the network model. """ cls_name = self.get_module_class_name() resolver = self.config_factory.class_resolver cls = resolver.find_class(cls_name) model = cls(self, *args, **kwargs) # force the model on the CPU to let the executor manage, otherwise, the # model could be on the GPU but only certain parameters on the CPU # after load in `load_model_optim_weights' model = model.cpu() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created model {cls} on device: {model.device}') return model @abstractmethod def get_module_class_name(self) -> str: """Returns the fully qualified class name of the module to create by :class:`~zensols.deeplearn.model.ModelManager`. This module takes as the first parameter an instance of this class. **Important**: This method is not used for nested modules. You must declare specific class names in the configuration for those nested class naems. """ pass @dataclass class ActivationNetworkSettings(NetworkSettings): """A network settings that contains a activation setting and creates a activation layer. """ activation: Union[Callable, nn.Module, str] = field() """The function between all layers, or ``None`` for no activation. """ def _set_option(self, name: str, value: Any): super()._set_option(name, value) if name == 'activation' and hasattr(self, '_activation_function'): self._activation_function.clear() @property @persisted('_activation_function', transient=True) def activation_function(self) -> Callable: if isinstance(self.activation, str): return self.get_activation_function(self.activation) else: return self.activation @staticmethod def get_activation_function(activation: str): if activation == 'relu': activation = F.relu elif activation == 'leaky_relu': activation = F.leaky_relu elif activation == 'softmax': activation = F.softmax elif activation == 'sigmoid': activation = nn.Sigmoid() elif activation is None: activation = None else: raise ModelError(f'Known activation function: {activation}') return activation def __str__(self): return f'{super().__str__()}, activation={self.activation}' @dataclass class DropoutNetworkSettings(NetworkSettings): """A network settings that contains a dropout setting and creates a dropout layer. """ dropout: float = field() """The droput used in all layers or ``None`` to disable.""" def _set_option(self, name: str, value: Any): super()._set_option(name, value) if name == 'dropout' and hasattr(self, '_dropout_layer'): self._dropout_layer().p = value @property @persisted('_dropout_layer', transient=True) def dropout_layer(self): if self.dropout is not None: return nn.Dropout(self.dropout) @dataclass class BatchNormNetworkSettings(NetworkSettings): """A network settings that contains a batchnorm setting and creates a batchnorm layer. """ batch_norm_d: int = field() """The dimension of the batch norm or ``None`` to disable. Based on this one of the following is used as a layer: * :class:`torch.nn.BatchNorm1d` * :class:`torch.nn.BatchNorm2d` * :class:`torch.nn.BatchNorm3d` """ batch_norm_features: int = field() """The number of features to use in the batch norm layer.""" @staticmethod def create_batch_norm_layer(batch_norm_d: int, batch_norm_features: int): cls = {None: None, 1: nn.BatchNorm1d, 2: nn.BatchNorm2d, 3: nn.BatchNorm3d}[batch_norm_d] if cls is not None: if batch_norm_features is None: raise ModelError('Missing batch norm features') return cls(batch_norm_features) def create_new_batch_norm_layer(self, batch_norm_d: int = None, batch_norm_features: int = None): if batch_norm_d is None: batch_norm_d = self.batch_norm_d if batch_norm_features is None: batch_norm_features = self.batch_norm_features return self.create_batch_norm_layer(batch_norm_d, batch_norm_features) @property @persisted('_batch_norm_layer', transient=True) def batch_norm_layer(self): return self.create_new_batch_norm_layer() @dataclass class ModelSettings(Writeback, PersistableContainer): """This configures and instance of :class:`.ModelExecutor`. This differes from :class:`.NetworkSettings` in that it configures the model parameters, and not the neural network parameters. Another reason for these two separate classes is data in this class is not needed to rehydrate an instance of :class:`torch.nn.Module`. The loss function strategy across parameters ``nominal_labels``, ``criterion_class`` and ``optimizer_class``, must be consistent. The defaults uses nominal labels, which means a single integer, rather than one hot encoding, is used for the labels. Most loss function, including the default :class:`torch.nn.CrossEntropyLoss`` uses nominal labels. The optimizer defaults to :class:`torch.optim.Adam`. However, if ``nominal_labels`` is set to ``False``, it is expected that the label output is a ``Long`` one hot encoding of the class label that must be decoded with :meth:`.BatchIterator._decode_outcomes` and uses a loss function such as :class:`torch.nn.BCEWithLogitsLoss`, which applies a softmax over the output to narow to a nominal. If the ``criterion_class`` is left as the default, the class the corresponding class across these two is selected based on ``nominal_labels``. **Note**: Instances of this class are pickled as parts of the results in :class:`zensols.deeplearn.result.domain.ModelResult`, so they must be able to serialize. However, they are not used to restore the executor or model, which are instead, recreated from the configuration for each (re)load (see the package documentation for more information). :see: :class:`.NetworkSettings` """ model_name: str = field() """A human readable name for the model.""" path: Path = field() """The path to save and load the model.""" learning_rate: float = field() """Learning_rate used for the gradient descent step (done in the optimzer). """ epochs: int = field() """The number of epochs to train the network.""" append_model_path: str = field(default=None) """Whether and how to append the model's name to the end of :obj:`path`. If this value is ``verbatim``, append the model name as provided with :obj:`model_name`, if ``normalize`` use :meth:`normalize_name` to normalize it, and if ``None`` do not append anything. """ max_consecutive_increased_count: int = field(default=sys.maxsize) """The maximum number of times the validation loss can increase per epoch before the executor "gives up" and early stops training. """ nominal_labels: bool = field(default=True) """``True`` if using numbers to identify the class as an enumeration rather than a one hot encoded array. """ batch_iteration_class_name: InitVar[str] = field(default=None) """A string fully qualified class name of type :class:`.BatchIterator`. This must be set to a class such as :class:`.ScoredBatchIterator` to handle descrete states in the output layer such as terminating CRF states. The default is :class:`.BatchIterator`, which expects continuous output layers. """ criterion_class_name: InitVar[str] = field(default=None) """The loss function class name (see class doc).""" optimizer_class_name: InitVar[str] = field(default=None) """The optimization algorithm class name (see class doc).""" optimizer_params: Dict[str, Any] = field(default=None) """The parameters given as ``**kwargs`` when creating the optimizer. Do **not** add the learning rate, instead see :obj:`learning_rate`.""" clip_gradient_threshold: float = field(default=None) """Parameters passed to :func:`torch.nn.utils.clip_grad_value_` to clip gradients above this threshold. """ scale_gradient_params: Dict[str, Union[float, bool]] = field(default=None) """Parameters passed to :func:`torch.nn.utils.clip_grad_norm_` to scale the gradient norm. """ scheduler_class_name: str = field(default=None) """The fully qualified class name of the learning rate scheduler used for the optimizer (if not ``None``) such as: * :class:`torch.optim.lr_scheduler.StepLR` or, * :class:`torch.optim.lr_scheduler.ReduceLROnPlateau`. :see: :obj:`scheduler_params` """ scheduler_params: Dict[str, Any] = field(default=None) """The parameters given as ``**kwargs`` when creating the scheduler (if any). :see: :obj:`scheduler_class_name` """ reduce_outcomes: str = field(default='argmax') """The method by which the labels and output is reduced. The output is optionally reduced, which is one of the following: * ``argmax``: uses the index of the largest value, which is used for classification models and the default * ``softmax``: just like ``argmax`` but applies a softmax * ``none``: return the identity. """ shuffle_training: bool = field(default=False) """If ``True`` shuffle the training data set split before the training process starts. The shuffling only happens once for all epocs. """ batch_limit: Union[int, float] = field(default=sys.maxsize) """The max number of batches to train, validate and test on, which is useful for limiting while debuging; defaults to `sys.maxsize`. If this value is a float, it is assumed to be a number between [0, 1] and the number of batches is multiplied by the value. """ batch_iteration: str = field(default='cpu') """How the batches are buffered, which is one of: * ``gpu``, buffers all data in the GPU * ``cpu``, which means keep all batches in CPU memory (the default) * ``buffered`` which means to buffer only one batch at a time (only for *very* large data). """ prediction_mapper_name: str = field(default=None) """Creates data points from a client for the purposes of prediction. This value is the string class name of an instance of :class:`.PredictionMapper` used to create predictions. While optional, if not set, ad-hoc predictions (i.e. from the command line) can not be created. Instances of :class:`.PredictionMapper` are created and managed in the :class:`~zensols.deeplearn.model.ModelFacade`. """ cache_batches: bool = field(default=True) """If ``True`` cache unthawed/processed batches when possible.""" gc_level: int = field(default=0) """The frequency by with the garbage collector is invoked. The *higher* the value, the more often it will be run during training, testing and validation. """ observer_manager: ModelObserverManager = field( default_factory=ModelObserverManager) """The model observer used by the entire train, test, validation process. """ def __post_init__(self, batch_iteration_class_name: str, criterion_class_name: str, optimizer_class_name: str): if batch_iteration_class_name is None: self.batch_iteration_class_name = 'zensols.deeplearn.model.BatchIterator' else: self.batch_iteration_class_name = batch_iteration_class_name if criterion_class_name is None: if self.nominal_labels: self.criterion_class_name = 'torch.nn.CrossEntropyLoss' else: self.criterion_class_name = 'torch.nn.BCEWithLogitsLoss' else: self.criterion_class_name = criterion_class_name if optimizer_class_name is None: self.optimizer_class_name = 'torch.optim.Adam' else: self.optimizer_class_name = optimizer_class_name if self.append_model_path is not None: if self.append_model_path == 'verbatim': self.path = self.path / self.model_name elif self.append_model_path == 'normalize': self.path = self.path / self.normalize_name(self.model_name) else: raise ModelError("Unknown 'append_model_path' " + f"value: '{self.append_model_path}'") @staticmethod def normalize_name(name: str) -> str: """Normalize the name in to a string that is more file system friendly. This is used for the :obj:`model_name` by API components that write data to the file system about the model this class configures such as :class:`~zensols.deeplearn.result.ModelResultManager`. :return: the normalized name """ return FileTextUtil.normalize_text(name) @property def normal_model_name(self) -> str: """Return the normalized :obj:`model_name` using :meth:`normalize_name`. """ return self.normalize_name(self.model_name) def _allow_config_adds(self) -> bool: return True
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/domain.py
domain.py
__author__ = 'Paul Landes' from typing import List, Dict, Type import torch import numpy as np class TorchTypes(object): """A utility class to convert betwen numpy and torch classes. It also provides metadata for types that make other conversions, such as same precision cross types (i.e. int64 -> float64). """ TYPES = [{'desc': '32-bit floating point', 'name': 'float32', 'types': set([torch.float32, torch.float]), 'numpy': np.float32, 'sparse': torch.sparse.FloatTensor, 'cpu': torch.FloatTensor, 'gpu': torch.cuda.FloatTensor}, {'desc': '64-bit floating point', 'name': 'float64', 'types': set([torch.float64, torch.double]), 'numpy': np.float64, 'sparse': torch.sparse.DoubleTensor, 'cpu': torch.DoubleTensor, 'gpu': torch.cuda.DoubleTensor}, {'desc': '16-bit floating point', 'name': 'float16', 'types': set([torch.float16, torch.half]), 'numpy': np.float16, 'sparse': torch.sparse.HalfTensor, 'cpu': torch.HalfTensor, 'gpu': torch.cuda.HalfTensor}, {'desc': '8-bit integer (unsigned)', 'name': 'uint8', 'types': set([torch.uint8]), 'numpy': np.uint8, 'sparse': torch.sparse.ByteTensor, 'cpu': torch.ByteTensor, 'gpu': torch.cuda.ByteTensor}, {'desc': '8-bit integer (signed)', 'name': 'int8', 'types': set([torch.int8]), 'numpy': np.int8, 'sparse': torch.sparse.CharTensor, 'cpu': torch.CharTensor, 'gpu': torch.cuda.CharTensor}, {'desc': '16-bit integer (signed)', 'name': 'int16', 'types': set([torch.int16, torch.short]), 'numpy': np.int16, 'sparse': torch.sparse.ShortTensor, 'cpu': torch.ShortTensor, 'gpu': torch.cuda.ShortTensor}, {'desc': '32-bit integer (signed)', 'name': 'int32', 'types': set([torch.int32, torch.int]), 'numpy': np.int32, 'sparse': torch.sparse.IntTensor, 'cpu': torch.IntTensor, 'gpu': torch.cuda.IntTensor}, {'desc': '64-bit integer (signed)', 'name': 'int64', 'types': set([torch.int64, torch.long]), 'numpy': np.int64, 'sparse': torch.sparse.LongTensor, 'cpu': torch.LongTensor, 'gpu': torch.cuda.LongTensor}, {'desc': 'Boolean', 'name': 'bool', 'types': set([torch.bool]), 'numpy': bool, 'cpu': torch.BoolTensor, 'gpu': torch.cuda.BoolTensor}] """A list of dicts containig conversions between types.""" NAME_TO_TYPE = {t['name']: t for t in TYPES} """A map of type to metadata.""" FLOAT_TO_INT = {torch.float16: torch.int16, torch.float32: torch.int32, torch.float64: torch.int64} INT_TO_FLOAT = {torch.int16: torch.float16, torch.int32: torch.float32, torch.int64: torch.float64} FLOAT_TYPES = frozenset(FLOAT_TO_INT.keys()) INT_TYPES = frozenset(INT_TO_FLOAT.keys()) @classmethod def all_types(self) -> List[dict]: return self.TYPES @classmethod def types(self) -> Dict[str, List[dict]]: if not hasattr(self, '_types'): types = {} for d in self.all_types(): for t in d['types']: types[t] = d self._types = types return self._types @classmethod def type_from_string(self, type_name: str) -> torch.dtype: types = self.NAME_TO_TYPE[type_name]['types'] return next(iter(types)) @classmethod def get_tensor_class(self, torch_type: torch.dtype, cpu_type: bool) -> Type: types = self.types() entry = types[torch_type] key = 'cpu' if cpu_type else 'gpu' return entry[key] @classmethod def get_sparse_class(self, torch_type: torch.dtype) -> Type: types = self.types() entry = types[torch_type] return entry['sparse'] @classmethod def get_numpy_type(self, torch_type: torch.dtype) -> Type: types = self.types() entry = types[torch_type] return entry['numpy'] @classmethod def float_to_int(self, torch_type: torch.dtype) -> Type: return self.FLOAT_TO_INT[torch_type] @classmethod def int_to_float(self, torch_type: torch.dtype) -> Type: return self.INT_TO_FLOAT[torch_type] @classmethod def is_float(self, torch_type: torch.dtype) -> bool: return torch_type in self.FLOAT_TYPES @classmethod def is_int(self, torch_type: Type) -> bool: return torch_type in self.INT_TYPES
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/torchtype.py
torchtype.py
__author__ = 'plandes' from typing import Dict, Any, List, Type, Union from dataclasses import dataclass, field from enum import Enum, auto import logging import gc import sys import itertools as it import copy as cp from io import TextIOBase from pathlib import Path import pandas as pd from zensols.persist import dealloc, Deallocatable, PersistedWork, persisted from zensols.config import ( Writable, Configurable, ImportConfigFactory, DictionaryConfig ) from zensols.cli import ( ApplicationError, Application, ApplicationFactory, ActionCliManager, Invokable, CliHarness, ) from zensols.datdesc import DataDescriber from zensols.dataset import ( SplitStashContainer, StratifiedStashSplitKeyContainer ) from zensols.deeplearn import DeepLearnError, TorchConfig, ModelSettings from zensols.deeplearn.model import ModelFacade, ModelError, ModelPacker from zensols.deeplearn.result import ( ModelResultManager, ModelResultReporter, PredictionsDataFrameFactory, ModelResultComparer ) logger = logging.getLogger(__name__) class InfoItem(Enum): """Indicates what information to dump in :meth:`.FacadeInfoApplication.print_information`. """ meta = auto() param = auto() model = auto() config = auto() batch = auto() class ClearType(Enum): """Indicates what type of data to delete (clear). """ none = auto() batch = auto() source = auto() @dataclass class FacadeApplication(Deallocatable): """Base class for applications that use :class:`.ModelFacade`. """ CLI_META = {'mnemonic_excludes': {'get_cached_facade', 'create_facade', 'deallocate', 'clear_cached_facade'}, 'option_overrides': {'model_path': {'long_name': 'model', 'short_name': None}}} """Tell the command line app API to igonore subclass and client specific use case methods. """ config: Configurable = field() """The config used to create facade instances.""" facade_name: str = field(default='facade') """The client facade.""" # simply copy this field and documentation to the implementation class to # add model path location (for those subclasses that don't have the # ``CLASS_INSPECTOR`` class level attribute set (see # :obj:`~zensols.util.introspect.inspect.ClassInspector.INSPECT_META`); # this can also be set as a parameter such as with # :methd:`.FacadeModelApplication.test` model_path: Path = field(default=None) """The path to the model or use the last trained model if not provided. """ config_factory_args: Dict[str, Any] = field(default_factory=dict) """The arguments given to the :class:`~zensols.config.ImportConfigFactory`, which could be useful for reloading all classes while debugingg. """ config_overwrites: Configurable = field(default=None) """A configurable that clobbers any configuration in :obj:`config` for those sections/options set. """ cache_global_facade: bool = field(default=True) """Whether to globally cache the facade returned by :meth:`get_cached_facade`. """ model_config_overwrites: Configurable = field(default=None) """Configuration that is injected into the model loaded by the :class:`..model.ModelManager`. """ def __post_init__(self): self.dealloc_resources = [] self._cached_facade = PersistedWork( '_cached_facade', self, cache_global=self.cache_global_facade) def _enable_cli_logging(self, facade: ModelFacade = None): if facade is None: with dealloc(self.create_facade()) as facade: self._enable_cli_logging(facade) else: facade.progress_bar = False facade.configure_cli_logging() def _get_model_path(self) -> Path: """Return the path to the model, which defaults to :obj:`model_path`.""" return self.model_path def create_facade(self) -> ModelFacade: """Create a new instance of the facade.""" # we must create a new (non-shared) instance of the facade since it # will get deallcated after complete. config = self.config model_path = self._get_model_path() if self.config_overwrites is not None: config = cp.deepcopy(config) config.merge(self.config_overwrites) if model_path is None: cf = ImportConfigFactory(config, **self.config_factory_args) facade: ModelFacade = cf.instance(self.facade_name) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created facade: {facade}') self.dealloc_resources.extend((cf, facade)) else: if logger.isEnabledFor(logging.INFO): logger.info(f'loading model from {model_path}') mconf = ImportConfigFactory(config, **self.config_factory_args) with dealloc(mconf) as cf: cls: Type[ModelFacade] = cf.get_class(self.facade_name) facade: ModelFacade = cls.load_from_path( path=model_path, model_config_overwrites=self.model_config_overwrites) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created facade: {type(facade)} ' + f'from path: {model_path}') self.dealloc_resources.append(facade) return facade @persisted('_cached_facade') def get_cached_facade(self) -> ModelFacade: """Return a created facade that is cached in this application instance. """ return self.create_facade() def clear_cached_facade(self): """Clear any cached facade this application instance. """ if self._cached_facade.is_set(): self._cached_facade().deallocate() self._cached_facade.clear() def deallocate(self): super().deallocate() self._try_deallocate(self.dealloc_resources, recursive=True) self._cached_facade.deallocate() @dataclass class FacadeInfoApplication(FacadeApplication): """Contains methods that provide information about the model via the facade. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'mnemonic_overrides': {'print_information': 'info'}, 'option_overrides': {'info_item': {'long_name': 'item', 'short_name': 'i'}, 'debug_value': {'long_name': 'execlevel', 'short_name': None}}}) def print_information(self, info_item: InfoItem = None, model_path: Path = None): """Output facade data set, vectorizer and other configuration information. :param info_item: what to print :param model_path: the path to the model or use the last trained model if not provided """ # see :class:`.FacadeApplicationFactory' def write_batch(): for batch in it.islice(facade.batch_stash.values(), 2): batch.write() def write_model_config(): if self.model_path is not None: # if the model path is given, we a facade model was created facade.model_config.write() else: # otherwise, use whatever configuration was used in this app facade.config.write() # inspect a model specified by a path self.model_path = model_path if not hasattr(self, '_no_op'): with dealloc(self.create_facade()) as facade: print(f'{facade.model_settings.model_name}:') fn_map = \ {None: facade.write, InfoItem.meta: facade.batch_metadata.write, InfoItem.param: facade.executor.write_settings, InfoItem.model: facade.executor.write_model, InfoItem.config: write_model_config, InfoItem.batch: write_batch} fn = fn_map.get(info_item) if fn is None: raise DeepLearnError(f'No such info item: {info_item}') fn() def debug(self, debug_value: int = None): """Debug the model. :param debug_value: the executor debugging level """ debug_value = True if debug_value is None else debug_value with dealloc(self.create_facade()) as facade: facade.debug(debug_value) @dataclass class FacadeResultApplication(FacadeApplication): """Contains methods that dump previous results. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'mnemonic_overrides': {'result_summary': 'summary', 'result_ids': 'resids', 'metrics': 'results', #'save_results': 'save', 'majority_label_metrics': 'majlab', 'compare_results': 'cmpres'}, 'option_overrides': {'include_validation': {'long_name': 'validation', 'short_name': None}, 'describe': {'short_name': None}, 'out_file': {'long_name': 'outfile', 'short_name': 'o'}}}) def result_summary(self, out_file: Path = None, include_validation: bool = False): """Create a summary of all archived results. :param out_file: the output path :param include_validation: whether to include validation results """ if out_file is None: out_file = Path('result-summary.csv') with dealloc(self.create_facade()) as facade: rm: ModelResultManager = facade.result_manager self._enable_cli_logging(facade) reporter = ModelResultReporter(rm) reporter.include_validation = include_validation return reporter.dump(out_file) def metrics(self, sort: str = 'wF1', res_id: str = None, out_file: Path = None, describe: bool = False): """Write a spreadhseet of label performance metrics for a previously trained and tested model. :param sort_col: the column to sort results :param res_id: the result ID or use the last if not given :param out_file: the output path :param describe: whether to create Zensols LaTeX ready results """ if describe: if out_file is None: out_file = Path('model-results') with dealloc(self.create_facade()) as facade: dd: DataDescriber = facade.get_described_results(res_id) dd.output_dir = out_file dd.save(include_excel=True) else: if out_file is None: out_file = Path('metrics.csv') with dealloc(self.create_facade()) as facade: df: pd.DataFrame = facade.get_predictions_factory(name=res_id).\ metrics_dataframe.sort_values(sort, ascending=False).\ reset_index(drop=True) df.to_csv(out_file) self._enable_cli_logging(facade) logger.info(f'wrote: {out_file}') def result_ids(self): """Show all archived result IDs.""" with dealloc(self.create_facade()) as facade: rm: ModelResultManager = facade.result_manager print('\n'.join(rm.results_stash.keys())) def result(self, res_id: str = None): """Show the last results. :param res_id: the result ID or use the last if not given """ with dealloc(self.create_facade()) as facade: df_fac: PredictionsDataFrameFactory = \ facade.get_predictions_factory(name=res_id) df_fac.result.write() def majority_label_metrics(self, res_id: str = None): """Show majority label metrics of the test dataset using a previous result set. :param res_id: the result ID or use the last if not given """ with dealloc(self.create_facade()) as facade: pred_factory: PredictionsDataFrameFactory = \ facade.get_predictions_factory(name=res_id) pred_factory.majority_label_metrics.write() def compare_results(self, res_id_a: str, res_id_b: str): """Compare two previous archived result sets. :param res_id_a: the first result ID to compare :param res_id_b: the second result ID to compare """ with dealloc(self.create_facade()) as facade: rm: ModelResultComparer = facade.result_manager diff = ModelResultComparer(rm, res_id_a, res_id_b) diff.write() @dataclass class FacadePackageApplication(FacadeApplication): """Contains methods that package models. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'mnemonic_overrides': {'pack_model': 'pack'}, 'option_overrides': {'output_model_dir': {'long_name': 'modeldir'}}, 'option_excludes': {'packer'}}) packer: ModelPacker = field(default=None) """The model packer used to create the model distributions from this app.""" def pack_model(self, res_id: str = None, output_model_dir: Path = Path('.')): """Package a distribution model. :param res_id: the result ID or use the last if not given :param output_model_dir: the directory where the packaged model is written """ if res_id is None: with dealloc(self.create_facade()) as facade: self._enable_cli_logging(facade) res_id: str = facade.result_manager.get_last_id() self._enable_cli_logging() self.packer.pack(res_id, output_model_dir) @dataclass class FacadeBatchApplication(FacadeApplication): """Test, train and validate models. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'option_overrides': {'clear_type': {'long_name': 'ctype', 'short_name': None}, 'clear': {'short_name': None}, 'split': {'short_name': None}, 'limit': {'short_name': None}}, 'mnemonic_overrides': {'batch': {'option_includes': {'limit', 'clear_type', 'split'}}}}) def _write_batch_splits(self, facade: ModelFacade): scont: SplitStashContainer = facade.batch_stash.split_stash_container if hasattr(scont, 'split_container') and \ isinstance(scont.split_container, StratifiedStashSplitKeyContainer): stash: StratifiedStashSplitKeyContainer = scont.split_container stash.stratified_write = True stash.write() def batch(self, limit: int = None, clear_type: ClearType = ClearType.none, split: bool = False): """Create batches if not already, print statistics on the dataset. :param clear_type: what to delete to force recreate :param limit: the number of batches to create :param split: also write the stratified splits if available """ with dealloc(self.create_facade()) as facade: self._enable_cli_logging(facade) if clear_type == ClearType.batch: logger.info('clearing batches') facade.batch_stash.clear() elif clear_type == ClearType.source: facade.batch_stash.clear_all() facade.batch_stash.clear() facade.dataset_stash.write() if split: self._write_batch_splits(facade) @dataclass class FacadeModelApplication(FacadeApplication): """Test, train and validate models. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'option_overrides': {'use_progress_bar': {'long_name': 'progress', 'short_name': 'p'}}, 'mnemonic_overrides': {'train_production': 'trainprod', 'early_stop': {'option_includes': {}, 'name': 'stop'}}}) use_progress_bar: bool = field(default=False) """Display the progress bar.""" def create_facade(self) -> ModelFacade: """Create a new instance of the facade.""" facade = super().create_facade() facade.progress_bar = self.use_progress_bar facade.configure_cli_logging() return facade def train(self): """Train the model and dump the results, including a graph of the train/validation loss. """ with dealloc(self.create_facade()) as facade: facade.train() facade.persist_result() def test(self, model_path: Path = None): """Test an existing model the model and dump the results of the test. :param model_path: the path to the model or use the last trained model if not provided """ self.model_path = self._get_model_path() with dealloc(self.create_facade()) as facade: facade.test() def train_test(self): """Train, test the model, then dump the results with a graph. """ with dealloc(self.create_facade()) as facade: facade.train() facade.test() facade.persist_result() def train_production(self): """Train, test the model on train and test datasets, then dump the results with a graph. """ with dealloc(self.create_facade()) as facade: facade.train_production() facade.test() facade.persist_result() def early_stop(self): """Stops the execution of training the model. """ with dealloc(self.create_facade()) as facade: facade.stop_training() class FacadePredictApplication(FacadeApplication): """An applicaiton that provides prediction funtionality. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'mnemonic_overrides': {'predictions': {'name': 'preds'}}}) def predictions(self, res_id: str = None, out_file: Path = None): """Write predictions to a CSV file. :param res_id: the result ID or use the last if not given :param out_file: the output path """ with dealloc(self.create_facade()) as facade: if out_file is None: model_settings: ModelSettings = facade.executor.model_settings model_name = model_settings.normal_model_name out_file = Path(f'{model_name}.csv') try: df = facade.get_predictions(name=res_id) except ModelError as e: raise ApplicationError( 'Could not predict, probably need to train a model ' + f'first: {e}') from e df.to_csv(out_file) self._enable_cli_logging(facade) if logger.isEnabledFor(logging.INFO): logger.info(f'wrote predictions: {out_file}') @dataclass class FacadeApplicationFactory(ApplicationFactory): """This is a utility class that creates instances of :class:`.FacadeApplication`. It's only needed if you need to create a facade without wanting invoke the command line attached to the applications. It does this by only invoking the first pass applications so all the correct initialization happens before returning factory artifacts. There mst be a :obj:`.FacadeApplication.facade_name` entry in the configuration tied to an instance of :class:`.FacadeApplication`. :see: :meth:`create_facade` """ def create_facade(self, args: List[str] = None, app_args: Dict[str, Any] = None) -> ModelFacade: """Create the facade tied to the application without invoking the command line. :param args: the (would be) command line arguments used to create the application :param app_args: the arguments to set on the the facade application after it is created and before it creates the facade """ create_args = ['info'] if args is not None: create_args.extend(args) app: Application = self.create(create_args) inv: Invokable = app.invoke_but_second_pass()[1] fac_app: FacadeApplication = inv.instance if app_args is not None: for k, v in app_args.items(): setattr(fac_app, k, v) return fac_app.create_facade() @dataclass class FacadeApplicationManager(Writable): """A very high level client interface making it easy to configure and run models from an interactive environment such as a Python REPL or a Jupyter notebook (see :class:`.JupyterManager`) """ cli_harness: CliHarness = field() """The CLI harness used to create the facade application.""" cli_args_fn: List[str] = field(default=lambda: []) """Creates the arguments used to create the facade from the application factory. """ reset_torch: bool = field(default=True) """Reset random state for consistency for each new created facade.""" allocation_tracking: Union[bool, str] = field(default=False) """Whether or not to track resource/memory leaks. If set to ``stack``, the stack traces of the unallocated objects will be printed. If set to ``counts`` only the counts will be printed. If set to ``True`` only the unallocated objects without the stack will be printed. """ logger_name: str = field(default='notebook') """The name of the logger to use for logging in the notebook itself.""" default_logging_level: str = field(default='WARNING') """If set, then initialize the logging system using this as the default logging level. This is the upper case logging name such as ``WARNING``. """ progress_bar_cols: int = field(default=120) """The number of columns to use for the progress bar.""" config_overwrites: Dict[str, Dict[str, str]] = field(default_factory=dict) """Clobbers any configuration set by :meth:`config` for those sections/options set. """ def __post_init__(self): if self.allocation_tracking: Deallocatable.ALLOCATION_TRACKING = True if self.logger_name is not None: self.logger = logging.getLogger(self.logger_name) else: self.logger = logger self._facade = None def _create_facade(self, args: List[str] = None, app_args: Dict[str, Any] = None) -> ModelFacade: """Create the facade tied to the application without invoking the command line. :param args: the (would be) command line arguments used to create the application :param app_args: the arguments to set on the the facade application after it is created and before it creates the facade """ create_args = ['info'] if args is not None: create_args.extend(args) fac_app: FacadeApplication = self.cli_harness.get_instance(create_args) assert isinstance(fac_app, FacadeApplication) if app_args is not None: for k, v in app_args.items(): setattr(fac_app, k, v) return fac_app.create_facade() def cleanup(self, include_cuda: bool = True, quiet: bool = False): """Report memory leaks, run the Python garbage collector and optionally empty the CUDA cache. :param include_cuda: if ``True`` clear the GPU cache :param quiet: do not report unallocated objects, regardless of the setting of :obj:`allocation_tracking` """ if self.allocation_tracking and not quiet: include_stack, only_counts = False, False if self.allocation_tracking == 'stack': include_stack, only_counts = True, False elif self.allocation_tracking == 'counts': include_stack, only_counts = False, True include_stack = (self.allocation_tracking == 'stack') Deallocatable._print_undeallocated(include_stack, only_counts) self.deallocate() Deallocatable._deallocate_all() gc.collect() if include_cuda: # free up memory in the GPU TorchConfig.empty_cache() def deallocate(self): """Deallocate all resources in the CLI factory if it exists.""" if self._facade is not None: if self.logger.isEnabledFor(logging.INFO): self.logger.info('deallocating old factory') self._facade.deallocate() self._facade = None def config(self, section: str, **kwargs): """Add overwriting configuration used when creating the facade. :param section: the section to be overwritten (or added) :param kwargs: the key/value pairs used as the section data to overwrite :see: :meth:`create_facade` """ if section not in self.config_overwrites: self.config_overwrites[section] = {} self.config_overwrites[section].update(kwargs) def clear(self): """Clear all post create configuration set with :meth:`config`.""" self.config_overwrites.clear() def create_facade(self, *args, **kwargs) -> ModelFacade: """Create and return a facade. This deallocates and cleans up state from any previous facade creation as a side effect. :param args: given to the :obj:`cli_args_fn` function to create arguments passed to the CLI """ if len(self.config_overwrites) > 0: dconf = DictionaryConfig(self.config_overwrites) app_args = {'config_overwrites': dconf} else: app_args = None self.deallocate() # reclaim memory running GC and GPU cache clear self.cleanup() try: # reset random state for consistency of each new test if self.reset_torch: TorchConfig.init() # create a factory that instantiates Python objects cli_args_fn = self.cli_args_fn(*args, **kwargs) # create the facade used for this instance self._facade: ModelFacade = self._create_facade( cli_args_fn, app_args) return self._facade except Exception as e: try: # recover the best we can self.cleanup(quiet=True) self._facade = None except Exception: pass raise DeepLearnError(f'Could not create facade: {e}') from e @property def facade(self) -> ModelFacade: """The current facade for this notebook instance. :return: the existing facade, or that created by :meth:`create_facade` if it doesn't already exist """ if self._facade is None: self.create_facade() self._facade.writer = None return self._facade def run(self, display_results: bool = True): """Train, test and optionally show results. :param display_results: if ``True``, write and plot the results """ try: facade = self.facade facade.train() facade.test() if display_results: facade.write_result() facade.plot_result() except Exception as e: try: facade = None # recover the best we can self.cleanup(quiet=True) except Exception: pass raise DeepLearnError('Could not run the model') from e def show_leaks(self, output: str = 'counts', fail: bool = True): """Show all resources/memory leaks in the current facade. First, this deallocates the facade, then prints any lingering objects using :class:`~zensols.persist.Deallocatable`. **Important**: :obj:`allocation_tracking` must be set to ``True`` for this to work. :param output: one of ``stack``, ``counts``, or ``tensors`` :param fail: if ``True``, raise an exception if there are any unallocated references found """ if self._facade is None: raise DeepLearnError('No facade created yet') if self.allocation_tracking: self._facade.deallocate() if output == 'counts': Deallocatable._print_undeallocated(only_counts=True, fail=fail) elif output == 'stack': Deallocatable._print_undeallocated(include_stack=True, fail=fail) elif output == 'tensors': TorchConfig.write_in_memory_tensors() else: raise DeepLearnError(f'Unknown output type: {output}') self._facade = None def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_model=False, include_metadata=False, include_settings=False, **kwargs): self.facade.write( depth, writer, include_model=include_model, include_metadata=include_metadata, include_settings=include_settings, **kwargs) @dataclass class JupyterManager(FacadeApplicationManager): """A facade application manager that provides additional convenience functionality. """ reduce_logging: bool = field(default=False) """Whether to disable most information logging so the progress bar is more prevalent. """ browser_width: int = field(default=95) """The width of the browser windows as a percentage.""" def __post_init__(self): super().__post_init__() if self.browser_width is not None: self.set_browser_width(self.browser_width) @staticmethod def set_browser_width(width: int = 95): """Use the entire width of the browser to create more real estate. :param width: the width as a percent (``[0, 100]``) to use as the width in the notebook """ from IPython.core.display import display, HTML html = f'<style>.container {{ width:{width}% !important; }}</style>' display(HTML(html)) def _init_jupyter(self): """Initialize the a Jupyter notebook by configuring the logging system and setting the progress bar. """ if self.reduce_logging: logging.getLogger('zensols.deeplearn.model.executor.status').\ setLevel(logging.WARNING) else: log_level = None if self.default_logging_level is not None: log_level = getattr(logging, self.default_logging_level) # set console based logging self.facade.configure_jupyter( log_level=log_level, progress_bar_cols=self.progress_bar_cols) def create_facade(self, *args, **kwargs) -> ModelFacade: facade = super().create_facade(*args, **kwargs) # initialize jupyter self._init_jupyter() return facade
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/cli/app.py
app.py
__author__ = 'Paul Landes' import logging from typing import Tuple from dataclasses import dataclass, InitVar import pandas as pd import torch from zensols.deeplearn.batch import ( BatchError, BatchFeatureMapping, BatchStash, DataPoint, Batch, ) from zensols.deeplearn.dataframe import DataframeFeatureVectorizerManager logger = logging.getLogger(__name__) @dataclass class DataframeBatchStash(BatchStash): """A stash used for batches of data using :class:`.DataframeBatch` instances. This stash uses an instance of :class:`.DataframeFeatureVectorizerManager` to vectorize the data in the batches. """ @property def feature_vectorizer_manager(self) -> DataframeFeatureVectorizerManager: managers = tuple(self.vectorizer_manager_set.values()) if len(managers) != 1: raise BatchError('Exected only one vector manager but got: ' + tuple(self.vectorizer_manager_set.keys())) vec_mng = managers[0] if not isinstance(vec_mng, DataframeFeatureVectorizerManager): raise BatchError( 'Expected class of type DataframeFeatureVectorizerManager ' + f'but got {vec_mng.__class__}') return vec_mng @property def label_shape(self) -> Tuple[int]: return self.feature_vectorizer_manager.label_shape @property def flattened_features_shape(self) -> Tuple[int]: vec_mng = self.feature_vectorizer_manager return vec_mng.get_flattened_features_shape(self.decoded_attributes) @dataclass class DataframeDataPoint(DataPoint): """A data point used in a batch, which contains a single row of data in the Pandas dataframe. When created, column is saved as an attribute in the instance. """ row: InitVar[pd.Series] def __post_init__(self, row: pd.Series): for name, val in row.iteritems(): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'setting attrib: {name}={val}') setattr(self, name, val) @dataclass class DataframeBatch(Batch): """A batch of data that contains instances of :class:`.DataframeDataPoint`, each of which has the row data from the dataframe. """ def _get_batch_feature_mappings(self) -> BatchFeatureMapping: """Use the dataframe based vectorizer manager """ df_vec_mng: DataframeFeatureVectorizerManager = \ self.batch_stash.feature_vectorizer_manager return df_vec_mng.batch_feature_mapping def get_features(self) -> torch.Tensor: """A utility method to a tensor of all features of all columns in the datapoints. :return: a tensor of shape (batch size, feature size), where the *feaure size* is the number of all features vectorized; that is, a data instance for each row in the batch, is a flattened set of features that represent the respective row from the dataframe """ def magic_shape(name: str) -> torch.Tensor: """Return a tensor that has two dimenions of the data (the first always with size 1 since it is a row of data). """ arr = attrs[name] if len(arr.shape) == 1: arr = arr.unsqueeze(dim=1) return arr attrs = self.attributes label_attr = self._get_batch_feature_mappings().label_attribute_name attr_names = filter(lambda k: k != label_attr, attrs.keys()) feats = tuple(map(magic_shape, attr_names)) return torch.cat(feats, dim=1)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/dataframe/batch.py
batch.py
__author__ = 'Paul Landes' import logging from typing import Tuple, Dict, List, Iterable, Set from dataclasses import dataclass, field import sys from io import TextIOBase from itertools import chain from functools import reduce import operator import numpy as np from zensols.persist import persisted from zensols.config import Writable from zensols.deeplearn.vectorize import ( VectorizerError, OneHotEncodedEncodableFeatureVectorizer, AttributeEncodableFeatureVectorizer, FeatureVectorizer, FeatureVectorizerManager, ) from zensols.deeplearn.batch import ( BatchFeatureMapping, ManagerFeatureMapping, FieldFeatureMapping, ) from zensols.dataframe import DataframeStash logger = logging.getLogger(__name__) @dataclass class DataframeMetadata(Writable): """Metadata for a Pandas dataframe. """ prefix: str = field() """The prefix to use for all vectorizers in the dataframe (i.e. ``adl_`` for the Adult dataset test case example). """ label_col: str = field() """The column that contains the label/class.""" label_values: Tuple[str] = field() """All classes (unique across ``label_col``).""" continuous: Tuple[str] = field() """The list of data columns that are continuous.""" descrete: Dict[str, Tuple[str]] = field() """A mapping of label to nominals the column takes for descrete mappings. """ def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): sp = self._sp(depth) sp2 = self._sp(depth + 1) sp3 = self._sp(depth + 2) writer.write(f'{sp}label: {self.label_col} => ' + f'{", ".join(self.label_values)}\n') writer.write(f'{sp}continuous:\n') for c in self.continuous: writer.write(f'{sp2}{c}\n') writer.write(f'{sp}discrete:\n') for name, labels in self.descrete.items(): writer.write(f'{sp2}{name}:\n') for label in labels: writer.write(f'{sp3}{label}\n') @dataclass class DataframeFeatureVectorizerManager(FeatureVectorizerManager, Writable): """A pure instance based feature vectorizer manager for a Pandas dataframe. All vectorizers used in this vectorizer manager are dynamically allocated and attached. This class not only acts as the feature manager itself to be used in a :class:`~zensols.deeplearn.vectorize.FeatureVectorizerManager`, but also provides a batch mapping to be used in a :class:`~zensols.deeplearn.batch.BatchStash`. """ prefix: str = field() """The prefix to use for all vectorizers in the dataframe (i.e. ``adl_`` for the Adult dataset test case example). """ label_col: str = field() """The column that contains the label/class.""" stash: DataframeStash = field() """The stash that contains the dataframe.""" include_columns: Tuple[str] = field(default=None) """The columns to be included, or if ``None`` (the default), all columns are used as features. """ exclude_columns: Tuple[str] = field(default=None) """The columns to be excluded, or if ``None`` (the default), no columns are excluded as features. """ @property @persisted('_dataset_metadata') def dataset_metadata(self) -> DataframeMetadata: """Create a metadata from the data in the dataframe. """ logger.debug('constructing metadata') df = self.stash.dataframe skip = set([self.stash.split_col, self.label_col]) labels = tuple(df[self.label_col].unique()) cont = set() desc = {} for name, dtype in df.dtypes.iteritems(): if name in skip: continue if dtype == np.object: desc[name] = tuple(df[name].unique()) else: cont.add(name) return DataframeMetadata( self.prefix, self.label_col, labels, cont, desc) @property def label_attribute_name(self) -> str: """Return the label attribute. """ return f'{self.prefix}label' def column_to_feature_id(self, col: str) -> str: """Generate a feature id from the column name. This just attaches the prefix to the column name. """ return f'{self.prefix}{col}' def _filter_columns(self, cols: Tuple[str]) -> Iterable[str]: """Return an interable of the columns to use as features based on ``include_columns`` and ``exclude_columns``. """ def inc_vec(col: str): inc = incs is None or col in incs exc = excs is not None and col in excs return inc and not exc incs = self.include_columns excs = self.exclude_columns return filter(inc_vec, cols) def _create_label_vectorizer(self) -> FeatureVectorizer: """Create a vectorizer for the label/class of the dataframe. """ label_col = self.label_attribute_name label_values = self.dataset_metadata.label_values logger.debug(f'creating label {label_col} => {label_values}') return OneHotEncodedEncodableFeatureVectorizer( name=str(self.__class__), config_factory=self.config_factory, manager=self, feature_id=label_col, categories=label_values, optimize_bools=False) def _create_feature_vectorizers(self) -> List[FeatureVectorizer]: """Create a vectorizer, one for each column/feature, included as a feature type based on :meth:`_filter_columns`. """ vecs = [] meta = self.dataset_metadata for col in meta.continuous: vec = AttributeEncodableFeatureVectorizer( manager=self, name=str(self.__class__), config_factory=self.config_factory, feature_id=self.column_to_feature_id(col)) vecs.append(vec) for col in meta.descrete.keys(): vec = OneHotEncodedEncodableFeatureVectorizer( manager=self, name=str(self.__class__), config_factory=self.config_factory, feature_id=self.column_to_feature_id(col), categories=meta.descrete[col], optimize_bools=True) vecs.append(vec) return vecs def _create_vectorizers(self) -> Dict[str, FeatureVectorizer]: """Create a mapping of feature id to vectorizer used across all dataframe columsn. """ logger.debug('create vectorizers') vectorizers = super()._create_vectorizers() vecs = [self._create_label_vectorizer()] vecs.extend(self._create_feature_vectorizers()) for vec in vecs: logger.debug(f'adding vectorizer: {vec.feature_id}') vectorizers[vec.feature_id] = vec return vectorizers @property @persisted('_batch_feature_mapping') def batch_feature_mapping(self) -> BatchFeatureMapping: """Return the mapping for :class:`zensols.deeplearn.batch.Batch` instances. """ def create_fileld_mapping(col: str) -> FieldFeatureMapping: feature_id = self.column_to_feature_id(col) return FieldFeatureMapping(col, feature_id, True) meta = self.dataset_metadata cols = (meta.continuous, meta.descrete.keys()) fields = list(map(create_fileld_mapping, chain.from_iterable( map(self._filter_columns, cols)))) fields.append(FieldFeatureMapping( self.label_col, self.label_attribute_name, True)) return BatchFeatureMapping( self.label_col, [ManagerFeatureMapping(self.name, fields)]) @property def label_shape(self) -> Tuple[int]: """Return the shape if all vectorizers were used. """ label_attr = self.batch_feature_mapping.label_feature_id for k, v in self.items(): if k == label_attr: return (sum(filter(lambda n: n > 0, v.shape)),) def get_flattened_features_shape(self, attribs: Set[str]) -> Tuple[int]: """Return the shape if all vectorizers were used. """ bmapping = self.batch_feature_mapping label_feature_id = bmapping.label_feature_id n_flat_neurons = 0 for feature_id, v in self.items(): _, field_map = bmapping.get_field_map_by_feature_id(feature_id) if field_map is None: s = f'no feature: {feature_id} in vectorizer {self.name}' raise VectorizerError(s) attr = field_map.attr if feature_id != label_feature_id and \ (attribs is None or attr in attribs): n = reduce(operator.mul, filter(lambda n: n > 0, v.shape)) n_flat_neurons += n return (n_flat_neurons,) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): sp = self._sp(depth) sp2 = self._sp(depth + 1) writer.write(f'{sp}{self.name}:\n') writer.write(f'{sp2}included: {self.include_columns}\n') writer.write(f'{sp2}excluded: {self.exclude_columns}\n') writer.write(f'{sp2}batch feature metadata:\n') self.batch_feature_mapping.write(depth + 2, writer)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/dataframe/vectorize.py
vectorize.py
__author__ = 'Paul Landes' from typing import List, Tuple from dataclasses import dataclass, field import logging from pathlib import Path import math import matplotlib.pyplot as plt import numpy as np from zensols.deeplearn import DatasetSplitType from . import ModelResult logger = logging.getLogger(__name__) @dataclass class ModelResultGrapher(object): """Graphs the an instance of ``ModelResult``. This creates subfigures, one for each of the results given as input to ``plot``. :param name: the name that goes in the title of the graph :param figsize: the size of the top level figure (not the panes) :param split_types: the splits to graph (list of size 2); defaults to ``[DatasetSplitType.train, DatasetSplitType.validation]`` :param title: the title format used to create each sub pane graph. :see: plot """ name: str = field(default=None) figsize: Tuple[int, int] = (15, 5) split_types: List[DatasetSplitType] = None title: str = None save_path: Path = field(default=None) def __post_init__(self): if self.split_types is None: self.split_types = [DatasetSplitType.train, DatasetSplitType.validation] if self.title is None: self.title = ('Figure {r.name} ' + '(lr={learning_rate:e}, ' + '{r.last_test.converged_epoch.metrics})') def _render_title(self, cont: ModelResult) -> str: lr = cont.model_settings['learning_rate'] return self.title.format(**{'r': cont, 'learning_rate': lr}) def plot(self, containers: List[ModelResult]): name = containers[0].name if self.name is None else self.name ncols = min(2, len(containers)) nrows = math.ceil(len(containers) / ncols) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'plot grid: {nrows} X {ncols}') fig, axs = plt.subplots( ncols=ncols, nrows=nrows, sharex=True, figsize=self.figsize) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'ax type: {type(axs)}') if not isinstance(axs, np.ndarray): if logger.isEnabledFor(logging.DEBUG): logger.debug('adding axs dim') axs = np.array([[axs]]) if axs.shape == (ncols,): axs = np.expand_dims(axs, axis=0) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'ax shape: {axs.shape}') fig.suptitle(f'Training and Validation Learning Rates: {name}') handles = [] row = 0 col = 0 for i, cont in enumerate(containers): logger.debug(f'plotting {cont}') es = tuple( map(lambda n: (n.name.capitalize(), cont.dataset_result[n]), self.split_types)) x = range(len(es[0][1].losses)) ax = axs[row][col] ax.plot(x, es[0][1].losses, color='r', label=es[0][0]) ax.plot(x, es[1][1].losses, color='b', label=es[1][0]) ax.set_title(self._render_title(cont)) handles.append(ax) ax.set(xlabel='Epochs', ylabel='Loss') col += 1 if col == ncols: col = 0 row += 1 plt.legend(tuple(map(lambda e: e[0], es))) def show(self): plt.show() def save(self): if logger.isEnabledFor(logging.INFO): logger.info(f'saving results graph to {self.save_path}') plt.savefig(self.save_path) plt.close()
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/result/plot.py
plot.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import ( List, Dict, Set, Iterable, Any, Type, Tuple, Callable, ClassVar ) from dataclasses import dataclass, field, InitVar from enum import Enum from abc import ABCMeta, abstractmethod import logging import sys import copy as cp from collections import OrderedDict from itertools import chain from datetime import datetime from io import TextIOBase import math import sklearn.metrics as mt import numpy as np from torch import Tensor from zensols.config import Configurable, Dictable from zensols.deeplearn import ( DeepLearnError, DatasetSplitType, ModelSettings, NetworkSettings ) from zensols.deeplearn.batch import Batch logger = logging.getLogger(__name__) class ModelResultError(DeepLearnError): """"Thrown when results can not be compiled or computed.""" pass class NoResultError(ModelResultError): """Convenience used for helping debug the network. """ def __init__(self, cls: Type): super().__init__(f'{cls}: no results available') class ModelType(Enum): """The type of model give by the type of its output. """ PREDICTION = 0 CLASSIFICTION = 1 RANKING = 2 @dataclass class Metrics(Dictable): """A container class that provides results for data stored in a :class:`.ResultsContainer`. """ labels: np.ndarray = field(repr=False) """The labels or ``None`` if none were provided (i.e. during test/evaluation). """ predictions: np.ndarray = field(repr=False) """The predictions from the model. This also flattens the predictions in to a 1D array for the purpose of computing metrics. """ @property def contains_results(self) -> bool: """Return ``True`` if this container has results. """ return len(self) > 0 def _protect(self, fn: Callable): if self.contains_results: return fn() else: return math.nan def __len__(self) -> int: shape = self.predictions.shape assert len(shape) == 1 return shape[0] @dataclass class PredictionMetrics(Metrics): """Real valued prediction results for :obj:`.ModelType.PREDICTION` result. """ @property def root_mean_squared_error(self) -> float: """Return the root mean squared error metric. """ return self._protect(lambda: math.sqrt( mt.mean_squared_error(self.labels, self.predictions))) @property def mean_absolute_error(self) -> float: """Return the mean absolute error metric. """ return self._protect( lambda: mt.mean_absolute_error(self.labels, self.predictions)) @property def r2_score(self) -> float: """Return the R^2 score metric. """ return self._protect( lambda: mt.r2_score(self.labels, self.predictions)) @property def correlation(self) -> float: """Return the correlation metric. """ return self._protect( lambda: np.corrcoef(self.labels, self.predictions)[0][1]) def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return (('rmse', 'root_mean_squared_error'), ('mae', 'mean_absolute_error'), ('r2', 'r2_score'), ('correlation', 'correlation')) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(f'RMSE: {self.root_mean_squared_error:.3f}', depth, writer) self._write_line(f'MAE: {self.mean_absolute_error:.3f}', depth, writer) self._write_line(f'R^2: {self.r2_score:.3f}', depth, writer) self._write_line(f"correlation: {self.correlation:.3f}", depth, writer) def __str__(self): return (f'rmse: {self.root_mean_squared_error:.3f}, ' + f'mae: {self.mean_absolute_error:.3f}, ' + f'r2: {self.r2_score:.3f}, ' + f'corr: {self.correlation:.3f}') @dataclass class ScoreMetrics(Metrics): """Classification metrics having an f1, precision and recall for a configured weighted, micro or macro :obj:`average`. """ average: str = field() """The type of average to apply to metrics produced by this class, which is one of ``macro`` or ``micro``. """ @property def f1(self) -> float: """Return the F1 metric as either the micro or macro based on the :obj:`average` attribute. """ return self._protect(lambda: mt.f1_score( self.labels, self.predictions, average=self.average)) @property def precision(self) -> float: """Return the precision metric as either the micro or macro based on the :obj:`average` attribute. """ return self._protect( lambda: mt.precision_score( self.labels, self.predictions, average=self.average, # clean up warning for tests: sklearn complains with # UndefinedMetricWarning even though the data looks good zero_division=0)) @property def recall(self) -> float: """Return the recall metric as either the micro or macro based on the :obj:`average` attribute. """ return self._protect(lambda: mt.recall_score( self.labels, self.predictions, average=self.average)) @property def long_f1_name(self) -> str: return f'{self.average}-F1' @property def short_f1_name(self) -> str: name = 'm' if self.average == 'micro' else 'M' return f'{name}F1' def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return self._split_str_to_attributes('f1 precision recall') def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(f'{self.average}: ' + f'F1: {self.f1:.3f}, ' + f'precision: {self.precision:.3f}, ' + f'recall: {self.recall:.3f}', depth, writer) def __str__(self): return f'{self.short_f1_name}: {self.f1:.3f}' @dataclass class ClassificationMetrics(Metrics): """Real valued prediction results for :obj:`.ModelType.CLASSIFICATION` result. """ n_outcomes: int = field() """The number of outcomes given for this metrics set.""" def _predictions_empty(self): if self.__len__() == 0: return np.NaN @property def accuracy(self) -> float: """Return the accuracy metric (num correct / total). """ return self._protect( lambda: mt.accuracy_score(self.labels, self.predictions)) @property def n_correct(self) -> int: """The number or correct predictions for the classification. """ is_eq = np.equal(self.labels, self.predictions) return self._protect(lambda: np.count_nonzero(is_eq == True)) def create_metrics(self, average: str) -> ScoreMetrics: """Create a score metrics with the given average. """ return ScoreMetrics(self.labels, self.predictions, average) @property def micro(self) -> ScoreMetrics: """Compute micro F1, precision and recall. """ return self.create_metrics('micro') @property def macro(self) -> ScoreMetrics: """Compute macro F1, precision and recall. """ return self.create_metrics('macro') @property def weighted(self) -> ScoreMetrics: """Compute weighted F1, precision and recall. """ return self.create_metrics('weighted') def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return self._split_str_to_attributes( 'accuracy n_correct micro macro') def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): if self.n_outcomes == 0: self._write_line('no results', depth, writer) else: self._write_line(f'accuracy: {self.accuracy:.3f} ' + f'({self.n_correct}/{self.n_outcomes})', depth, writer) self.micro.write(depth, writer) self.macro.write(depth, writer) self.weighted.write(depth, writer) def __str__(self): return str(self.micro) @dataclass class ResultsContainer(Dictable, metaclass=ABCMeta): """The base class for all metrics containers. It helps in calculating loss, finding labels, predictions and other utility helpers. Every container has a start and stop time, which demarcates the duration the for which the populated metrics were being calculated. """ FLOAT_TYPES = [np.float32, np.float64, float] """Used to determin the :obj:`model_type`.""" def __post_init__(self): super().__init__() self.start_time = None self.end_time = None @property def is_started(self) -> bool: """The time at which processing started for the metrics populated in this container. :see: meth:`start` """ return self.start_time is not None @property def is_ended(self) -> bool: """The time at which processing ended for the metrics populated in this container. :see: meth:`end` """ return self.end_time is not None def start(self) -> datetime: """Record the time at which processing started for the metrics populated in this container. :see: obj:`is_started` """ if self.start_time is not None: raise ModelResultError( f'Container has already tarted: {self}') if self.contains_results: raise ModelResultError(f'Container {self} already has results') self.start_time = datetime.now() return self.start_time def end(self) -> datetime: """Record the time at which processing started for the metrics populated in this container. :see: obj:`is_ended` """ if self.start_time is None: raise ModelResultError(f'Container has not yet started: {self}') self._assert_finished(False) self.end_time = datetime.now() return self.end_time def _assert_finished(self, should_be: bool): """Make sure we've either finished or not based on ``should_be``.""" if should_be: if not self.is_ended: raise ModelResultError(f'Container is not finished: {self}') else: if self.is_ended: raise ModelResultError( f'Container has finished: {self}') def clone(self) -> ResultsContainer: """Return a clone of the current container. Sub containers (lists) are deep copied in sub classes, but everything is shallow copied. This is needed to create a temporary container to persist whose :meth:`end` gets called by the :class:`~zensols.deeplearn.model.ModelExecutor`. """ return cp.copy(self) @property def contains_results(self): """``True`` if this container has results. """ return len(self) > 0 @property def min_loss(self) -> float: """The lowest loss recorded in this container. """ self._assert_finished(True) return min(self.losses) @property def max_loss(self) -> float: """The highest loss recorded in this container. """ self._assert_finished(True) return max(self.losses) @property def ave_loss(self) -> float: """The average loss of this result set. """ self._assert_finished(True) losses = self.losses d = len(losses) return (sum(losses) / d) if d > 0 else 0 @property def n_outcomes(self) -> int: """The number of outcomes. """ return self.predictions.shape[0] @property def n_iterations(self) -> int: """The number of iterations, which is different from the :obj:`n_outcomes` since a single (say training) iteration can produce multiple outcomes (for example sequence classification). """ return self._get_iterations() @property def model_type(self) -> ModelType: """The type of the model based on what whether the outcome data is a float or integer. """ arr = self.predictions if logger.isEnabledFor(logging.DEBUG): logger.debug(f'outcomes type: {arr.dtype}') if arr.dtype in self.FLOAT_TYPES: return ModelType.PREDICTION else: return ModelType.CLASSIFICTION @abstractmethod def _get_labels(self) -> np.ndarray: pass @abstractmethod def _get_predictions(self) -> np.ndarray: pass @abstractmethod def _get_iterations(self) -> int: pass @property def labels(self) -> np.ndarray: """The labels or ``None`` if none were provided (i.e. during test/evaluation). """ self._assert_finished(True) return self._get_labels() @property def predictions(self) -> np.ndarray: """The predictions from the model. This also flattens the predictions in to a 1D array for the purpose of computing metrics. :return: the flattened predictions """ self._assert_finished(True) return self._get_predictions() @property def prediction_metrics(self) -> PredictionMetrics: """Return prediction based metrics. """ return PredictionMetrics(self.labels, self.predictions) @property def classification_metrics(self) -> ClassificationMetrics: """Return classification based metrics. """ return ClassificationMetrics( self.labels, self.predictions, self.n_outcomes) @property def metrics(self) -> Metrics: """Return the metrics based on the :obj:`model_type`. """ mtype = self.model_type if mtype == ModelType.CLASSIFICTION: metrics = self.classification_metrics elif mtype == ModelType.PREDICTION: metrics = self.prediction_metrics else: raise ModelResultError(f'Unknown or unsupported tupe: {mtype}') return metrics def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return self._split_str_to_attributes('n_outcomes metrics') def __str__(self): return (f'{self.__class__.__name__}: ' + f'start: {self.start_time}, end: {self.end_time}') def __repr__(self): return self.__str__() @dataclass class EpochResult(ResultsContainer): """Contains results recorded from an epoch of a neural network model. This is during a training/validation or test cycle. Note that there is a terminology difference between what the model and the result set call outcomes. For the model, outcomes are the mapped/refined results, which are usually the argmax of the softmax of the logits. For results, these are the predictions of the given data to be compared against the gold labels. """ _RES_ARR_NAMES = 'label pred'.split() index: int = field() """The Nth epoch of the run (across training, validation, test).""" split_type: DatasetSplitType = field() """The name of the split type (i.e. ``train`` vs ``test``).""" batch_losses: List[float] = field(default_factory=list) """The losses generated from each iteration of the epoch.""" batch_ids: List[int] = field(default_factory=list) """The ID of the batch from each iteration of the epoch.""" n_data_points: List[int] = field(default_factory=list) """The number of data points for each batch for the epoch.""" def __post_init__(self): super().__post_init__() self._predictions = [] self._labels = [] self._outputs = [] def update(self, batch: Batch, loss: Tensor, labels: Tensor, preds: Tensor, outputs: Tensor): """Add another set of statistics, predictions and gold labels to :obj:`prediction_updates`. :param batch: the batch on which the stats/data where trained, tested or validated; used to update the loss as a multiplier on its size :param loss: the loss returned by the loss function :param labels: the gold labels, or ``None`` if this is a prediction run :param preds: the predictions, or ``None`` for scored models (see :obj:`prediction_updates`) """ self._assert_finished(False) shape = preds.shape if labels is None else labels.shape assert shape is not None if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{self.index}:{self.split_type}: ' + f'update batch: {batch.id}, ' + f'label_shape: {shape}') # object function loss; 'mean' is the default 'reduction' parameter for # loss functions; we can either muliply it back out or use 'sum' in the # criterion initialize if loss is None: self.batch_losses.append(-1) else: self.batch_losses.append(loss.item() * float(batch.size())) # batches are always the first dimension self.n_data_points.append(shape[0]) # add predictions that exist if preds is not None: self._predictions.append(preds.numpy()) # see end() comments: without predictions, labels are useless if labels is not None: self._labels.append(labels.numpy()) if outputs is not None: self._outputs.append(outputs.numpy()) self.batch_ids.append(batch.id) def end(self): super().end() labs = preds = None # if there are no predictions (the case from the training phase), don't # include any data since labels by themselves are useless for all use # cases (metrics, scoring, certainty assessment, and any analysis etc) if len(self._predictions) > 0: if len(self._labels) > 0: labs = tuple(map(lambda arr: arr.flatten(), self._labels)) labs = np.concatenate(labs, axis=0) preds = tuple(map(lambda arr: arr.flatten(), self._predictions)) preds = np.concatenate(preds, axis=0) if labs is None: labs = np.array([], dtype=np.int64) if preds is None: preds = np.array([], dtype=np.int64) self._all_labels = labs self._all_predictions = preds def clone(self) -> ResultsContainer: cl = cp.copy(self) for attr in 'batch_losses batch_ids n_data_points'.split(): setattr(cl, attr, list(getattr(self, attr))) return cl @property def batch_predictions(self) -> List[np.ndarray]: """The batch predictions given in the shape as output from the model. """ return self._predictions @property def batch_labels(self) -> List[np.ndarray]: """The batch labels given in the shape as output from the model. """ return self._labels @property def batch_outputs(self) -> List[np.ndarray]: return self._outputs def _get_labels(self) -> np.ndarray: return self._all_labels def _get_predictions(self) -> np.ndarray: return self._all_predictions def _get_iterations(self) -> int: return int(self.batch_losses) @property def losses(self) -> List[float]: """Return the loss for each epoch of the run. If used on a ``EpocResult`` it is the Nth iteration. """ return self.batch_losses def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return chain.from_iterable( (super()._get_dictable_attributes(), self._split_str_to_attributes('index'))) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_metrics: bool = False): bids = ','.join(self.batch_ids) dps = ','.join(map(str, self.n_data_points)) self._write_line(f'index: {self.index}', depth, writer) self._write_line(f'batch IDs: {bids}', depth, writer, True) self._write_line(f'data point count per batch: {dps}', depth, writer, True) if include_metrics: self._write_line('metrics:', depth, writer) self._write_dict(self.asdict()['metrics'], depth + 1, writer) def __len__(self): return len(self.batch_ids) def __str__(self): s = super().__str__() return f'{s}, type: {self.split_type}' @dataclass class DatasetResult(ResultsContainer): """Contains results for a dataset, such as training, validating and test. """ def __post_init__(self): super().__post_init__() self._results: List[EpochResult] = [] def append(self, epoch_result: EpochResult): self._assert_finished(False) self._results.append(epoch_result) @property def results(self) -> List[EpochResult]: return self._results @property def contains_results(self): return any(map(lambda r: r.contains_results, self.results)) def end(self): super().end() if self.contains_results: self.start_time = self.results[0].start_time self.end_time = self.results[-1].end_time def clone(self) -> ResultsContainer: cl = cp.copy(self) cl._results = [] for er in self.results: cl._results.append(er.clone()) return cl @property def losses(self) -> List[float]: """Return the loss for each epoch of the run. If used on a ``EpocResult`` it is the Nth iteration. """ return tuple(map(lambda r: r.ave_loss, self.results)) def _cat_arrs(self, attr: str) -> np.ndarray: arrs = tuple(map(lambda r: getattr(r, attr), self.results)) return np.concatenate(arrs, axis=0) def _get_labels(self) -> np.ndarray: arrs = tuple(map(lambda r: r.labels, self.results)) return np.concatenate(arrs, axis=0) def _get_predictions(self) -> np.ndarray: arrs = tuple(map(lambda r: r.predictions, self.results)) return np.concatenate(arrs, axis=0) def _get_iterations(self) -> int: return sum(map(lambda er: len(er.losses), self._results)) @property def convergence(self) -> int: """Return the Nth epoch index this result set convergened. If used on a ``EpocResult`` it is the Nth iteration. """ losses = self.losses lowest = min(losses) return losses.index(lowest) @property def converged_epoch(self) -> EpochResult: """Return the last epoch that arrived at the lowest loss. """ idx = self.convergence return self.results[idx] def _format_time(self, attr: str): if hasattr(self, attr): val: datetime = getattr(self, attr) if val is not None: return val.strftime("%m/%d/%Y %H:%M:%S:%f") def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return chain.from_iterable( (super()._get_dictable_attributes(), self._split_str_to_attributes( ('start_time end_time ave_loss min_loss converged_epoch ' + 'statistics')))) @property def statistics(self) -> Dict[str, Any]: """Return the statistics of the data set result. :return: a dictionary with the following: * ``n_epochs``: the number of epoch results * ``n_epoch_converged``: the 0 based index for which epoch converged (lowest validation loss before it went back up) * ``n_batches``: the number of batches on which were trained, tested or validated * ``ave_data_points``: the average number of data pointes on which were trained, tested or validated per batch * ``n_total_data_points``: the number of data pointes on which were trained, tested or validated """ epochs = self.results n_data_points = 0 n_batches = 0 if len(epochs) > 0: epoch: EpochResult = epochs[0] n_data_points = epoch.n_data_points n_batches = len(epoch.batch_ids) for epoch in epochs: assert n_data_points == epoch.n_data_points n_total_points = sum(n_data_points) ave_data_points = n_total_points / len(n_data_points) return {'n_epochs': len(epochs), 'n_epoch_converged': self.converged_epoch.index + 1, 'n_batches': n_batches, 'ave_data_points': ave_data_points, 'n_total_data_points': n_total_points} def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_details: bool = False, converged_epoch: bool = True, include_metrics: bool = True, include_all_metrics: bool = False): """Write the results data. :param depth: the number of indentation levels :param writer: the data sink :param include_settings: whether or not to include model and network settings in the output :param include_config: whether or not to include the configuration in the output """ er: EpochResult = self.converged_epoch res = er if converged_epoch else self self._write_line( f'min/ave/max loss: {res.min_loss:.5f}/{res.ave_loss:.5f}/' + f'{er.max_loss:.5f}', depth, writer) if include_all_metrics: self._write_line('classification:', depth, writer) res.classification_metrics.write(depth + 1, writer) self._write_line('prediction:', depth, writer) res.prediction_metrics.write(depth + 1, writer) elif include_metrics: res.metrics.write(depth, writer) if include_details: self._write_line('epoch details:', depth, writer) self.results[0].write(depth + 1, writer) @dataclass class ModelResult(Dictable): """A container class used to capture the training, validation and test results. The data captured is used to report and plot curves. """ RUNS: ClassVar[int] = 1 config: Configurable = field() """Useful for retrieving hyperparameter settings later after unpersisting from disk. """ name: str = field() """The name of this result set.""" model_settings: InitVar[Dict[str, Any]] = field() """The setttings used to configure the model.""" net_settings: InitVar[Dict[str, Any]] = field() """The network settings used by the model for this result set.""" decoded_attributes: Set[str] = field() """The attributes that were coded and used in this model.""" dataset_result: Dict[DatasetSplitType, DatasetResult] = \ field(default_factory=dict) """The dataset (i.e. ``validation``, ``test``) level results.""" def __post_init__(self, model_settings: ModelSettings, net_settings: NetworkSettings): self.RUNS += 1 self.index = self.RUNS splits = tuple(DatasetSplitType) self.dataset_result = {k: DatasetResult() for k in splits} self.model_settings = model_settings.asdict('class_name') self.net_settings = net_settings.asdict('class_name') self.net_settings['module_class_name'] = \ net_settings.get_module_class_name() @classmethod def reset_runs(self): """Reset the run counter. """ self.RUNS = 1 @classmethod def get_num_runs(self): return self.RUNS def clone(self) -> ModelResult: cl = cp.copy(self) cl.dataset_result = {} for k, v in self.dataset_result.items(): cl.dataset_result[k] = v.clone() return cl def get_intermediate(self) -> ModelResult: cl = self.clone() for ds in cl.dataset_result.values(): if not ds.is_started: ds.start() if not ds.is_ended: ds.end() return cl @property def train(self) -> DatasetResult: """Return the training run results. """ return self.dataset_result[DatasetSplitType.train] @property def validation(self) -> DatasetResult: """Return the validation run results. """ return self.dataset_result[DatasetSplitType.validation] @property def test(self) -> DatasetResult: """Return the testing run results. """ return self.dataset_result[DatasetSplitType.test] def reset(self, name: DatasetSplitType): """Clear all results for data set ``name``. """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'restting dataset result \'{name}\'') self.dataset_result[name] = DatasetResult() @property def contains_results(self) -> bool: return len(self.test) > 0 or len(self.validation) > 0 @property def non_empty_dataset_result(self) -> Dict[str, DatasetResult]: dct = OrderedDict() for split_name in 'train validation test'.split(): ds = getattr(self, split_name) if ds.contains_results: dct[split_name] = ds return dct @property def last_test_name(self) -> str: """Return the anem of the dataset that exists in the container, and thus, the last to be populated. In order, this is test and then validation. """ if self.test.contains_results: return DatasetSplitType.test if self.validation.contains_results: return DatasetSplitType.validation raise NoResultError(self.__class__) @property def last_test(self) -> DatasetResult: """Return either the test or validation results depending on what is available. """ return self.dataset_result[self.last_test_name] def write_result_statistics(self, split_type: DatasetSplitType, depth: int = 0, writer=sys.stdout): ds: DatasetResult = self.dataset_result[split_type] stats = ds.statistics ave_dps = stats['ave_data_points'] n_dps = stats['n_total_data_points'] self._write_line(f"batches: {stats['n_batches']}", depth, writer) self._write_line(f"ave data points per batch/total: {ave_dps:.1f}/" + f'{n_dps}', depth, writer) if split_type == DatasetSplitType.validation: self._write_line('converged/epochs: ' + f"{stats['n_epoch_converged']}/" + f"{stats['n_epochs']}", depth, writer) def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return chain.from_iterable( (self._split_str_to_attributes( 'name index model_settings net_settings'), (('dataset_result', 'non_empty_dataset_result'),))) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_settings: bool = False, include_converged: bool = False, include_config: bool = False, include_all_metrics: bool = False): """Generate a human readable format of the results. """ lr = self.model_settings["learning_rate"] self._write_line(f'Name: {self.name}', depth, writer) self._write_line(f'Run index: {self.index}', depth, writer) self._write_line(f'Learning rate: {lr}', depth, writer) ds_res: DatasetResult for split_type, ds_res in self.dataset_result.items(): self._write_line(f'{split_type.name}:', depth + 1, writer) if ds_res.contains_results: start_time = ds_res._format_time('start_time') end_time = ds_res._format_time('end_time') if start_time is not None: self._write_line(f'started: {start_time}', depth + 2, writer) self._write_line(f'ended: {end_time}', depth + 2, writer) self.write_result_statistics(split_type, depth + 2, writer) multi_epic = len(self.dataset_result[split_type].results) > 1 if include_converged and multi_epic: self._write_line('average over epoch:', depth + 2, writer) ds_res.write(depth + 3, writer, include_details=True, converged_epoch=False) self._write_line('converged epoch:', depth + 2, writer) ds_res.write(depth + 3, writer, include_details=False, converged_epoch=True) else: all_metrics = (include_all_metrics and split_type == DatasetSplitType.test) # don't write useless training metrics since training # doesn't produce predictions metrics = (split_type != DatasetSplitType.train) ds_res.write( depth + 2, writer, include_metrics=metrics, include_all_metrics=all_metrics) else: self._write_line('no results', depth + 2, writer) if include_settings: if self.decoded_attributes is None: dattribs = None else: dattribs = sorted(self.decoded_attributes) self._write_line('settings:', depth, writer) self._write_line(f'attributes: {dattribs}', depth + 1, writer) self._write_line('model:', depth + 1, writer) self._write_dict(self.model_settings, depth + 2, writer) self._write_line('network:', depth + 1, writer) self._write_dict(self.net_settings, depth + 2, writer) if include_config: self._write_line('configuration:', depth, writer) self.config.write(depth + 1, writer) def __str__(self): model_name = self.net_settings['module_class_name'] return f'{model_name} ({self.index})' def __repr__(self): return self.__str__()
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/result/domain.py
domain.py
__author__ = 'Paul Landes' from typing import Dict, Tuple, ClassVar from dataclasses import dataclass, field from pathlib import Path import logging import pandas as pd from zensols.util.time import time from zensols.datdesc import DataFrameDescriber from zensols.deeplearn import DatasetSplitType from . import ( ModelResult, EpochResult, DatasetResult, ModelResultManager, ArchivedResult, Metrics, PredictionsDataFrameFactory, ) logger = logging.getLogger(__name__) @dataclass class ModelResultReporter(object): """Summarize all results in a directory from the output of model execution from :class:`~zensols.deeplearn.model.ModelExectuor`. The class iterates through the pickled binary output files from the run and summarizes in a Pandas dataframe, which is handy for reporting in papers. """ METRIC_DESCRIPTIONS: ClassVar[Dict[str, str]] = \ PredictionsDataFrameFactory.METRIC_DESCRIPTIONS """Dictionary of performance metrics column names to human readable descriptions. """ result_manager: ModelResultManager = field() """Contains the results to report on--and specifically the path to directory where the results were persisted. """ include_validation: bool = field(default=True) """Whether or not to include validation performance metrics.""" @property def dataframe(self) -> pd.DataFrame: """Return the summarized results (see class docs). :return: the Pandas dataframe of the results """ rows = [] cols = 'name file start train_duration converged features'.split() cols.extend('wF1t wPt wRt mF1t mPt mRt MF1t MPt MRt acct'.split()) if self.include_validation: cols.extend('wF1v wPv wRv mF1v mPv mRv MF1v MPv MRv accv'.split()) cols.extend('train_occurs validation_occurs test_occurs'.split()) dpt_key = 'n_total_data_points' arch_res: ArchivedResult for fname, arch_res in self.result_manager.results_stash.items(): res: ModelResult = arch_res.model_result train: DatasetResult = res.dataset_result.get(DatasetSplitType.train) validate: DatasetResult = res.dataset_result.get(DatasetSplitType.validation) test: DatasetResult = res.dataset_result.get(DatasetSplitType.test) if train is not None: dur = train.end_time - train.start_time hours, remainder = divmod(dur.seconds, 3600) minutes, seconds = divmod(remainder, 60) dur = f'{hours:02}:{minutes:02}:{seconds:02}' if validate is not None: conv_epoch: int = validate.statistics['n_epoch_converged'] ver: EpochResult = validate.converged_epoch else: conv_epoch = None ver: EpochResult = None if test is not None: vm: Metrics = ver.metrics tm: Metrics = test.metrics features = ', '.join(res.decoded_attributes) row = [res.name, fname, train.start_time, dur, conv_epoch, features] row.extend([ tm.weighted.f1, tm.weighted.precision, tm.weighted.recall, tm.micro.f1, tm.micro.precision, tm.micro.recall, tm.macro.f1, tm.macro.precision, tm.macro.recall, tm.accuracy]) if self.include_validation: row.extend([ vm.weighted.f1, vm.weighted.precision, vm.weighted.recall, vm.micro.f1, vm.micro.precision, vm.micro.recall, vm.macro.f1, vm.macro.precision, vm.macro.recall, vm.accuracy]) row.extend([ train.statistics[dpt_key], validate.statistics[dpt_key], test.statistics[dpt_key]]) rows.append(row) if logger.isEnabledFor(logging.INFO): logger.info('result calculation complete for ' + f'{res.name} ({fname})') return pd.DataFrame(rows, columns=cols) @property def dataframe_describer(self) -> DataFrameDescriber: """Get a dataframe describer of metrics (see :obj:`metrics_dataframe`). """ df: pd.DataFrame = self.dataframe meta: Tuple[Tuple[str, str], ...] = \ tuple(map(lambda c: (c, self.METRIC_DESCRIPTIONS[c]), df.columns)) name: str = (self.result_manager.name.capitalize() + ' Summarized Model Results') return DataFrameDescriber( name='Summarized Model Results', df=df, desc=name, meta=meta) def dump(self, path: Path) -> pd.DataFrame: """Create the summarized results and write them to the file system. """ with time(f'wrote results summary: {path}'): df: pd.DataFrame = self.dataframe df.to_csv(path) return df
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/result/report.py
report.py
from __future__ import annotations """A class that persists results in various formats. """ __author__ = 'Paul Landes' from typing import Tuple, Iterable, Set from dataclasses import dataclass, field import logging import re import pickle import shutil from pathlib import Path from tkinter import TclError from zensols.persist import ( persisted, DirectoryStash, Stash, ReadOnlyStash, IncrementKeyDirectoryStash, ) from zensols.config import Dictable from .. import ModelError, ModelSettings from . import ModelResult, ModelResultGrapher logger = logging.getLogger(__name__) @dataclass class ArchivedResult(Dictable): """An archived result that provides access to the outcomes the training, validation and optionally test phases of a model execution :see: :class:`.ModelResultManager` """ _DICTABLE_ATTRIBUTES = {'model_result'} _DICTABLE_WRITE_EXCLUDES = _DICTABLE_ATTRIBUTES _EXTENSIONS = frozenset('txt model png json'.split()) id: int = field() """The result incremented identitifer.""" name: str = field() """The result's unique name, which includes :obj:`id`.""" txt_path: Path = field() """The path results as a text file.""" result_path: Path = field() """The path to pickled results file.""" model_path: Path = field() """The path to the directory with the PyTorch model and state files.""" png_path: Path = field() """The path to the training/validation loss results.""" json_path: Path = field() """The path to the results as a parsable JSON file.""" @property @persisted('_result') def model_result(self) -> ModelResult: """The results container of the run.""" with open(self.result_path, 'rb') as f: return pickle.load(f) def get_paths(self, excludes: Set[str] = frozenset()) -> Iterable[Path]: """Get all paths in the result as an iterable. :param excludes: the extensions to exclude from the returned paths """ exts: Set[str] = set(self._EXTENSIONS) - excludes return map(lambda at: getattr(self, f'{at}_path'), exts) @dataclass class _ArchivedResultStash(ReadOnlyStash): """Creates instances of :class:`.ArchivedResult` using a delegate :class:`~zensols.persist.stash.DirectoryStash` for getting path values. """ manager: ModelResultManager = field() """The manager containing the results.""" stash: DirectoryStash = field() """The stash that reads the results persisted by :class:`.ModelResultManager`. """ def load(self, name: str) -> ArchivedResult: path: Path = self.stash.key_to_path(name) m: re.Match = self.manager.file_regex.match(path.name) if m is None: raise ModelError(f'Unknown model results name: {name}') name, id, ext = m.groups() params = dict(id=int(id), name=name, result_path=path) for ext in self.manager._EXTENSIONS: k = f'{ext}_path' params[k] = self.manager._get_next_path(ext=ext, key=id) return ArchivedResult(**params) def exists(self, name: str) -> bool: return self.stash.exists(name) def keys(self) -> Iterable[str]: return self.stash.keys() @dataclass class ModelResultManager(IncrementKeyDirectoryStash): """Saves and loads results from runs (:class:`.ModelResult`) of the :class:`~zensols.deeplearn.model.executor.ModelExecutor`. Keys incrementing integers, one for each save, which usually corresponds to the run of the model executor. The stash's :obj:`path` points to where results are persisted with all file format versions. """ _EXTENSIONS = ArchivedResult._EXTENSIONS name: str = field(default=None) """The name of the manager in the configuration.""" model_path: Path = field(default=True) """The path to where the results are stored.""" save_text: bool = field(default=True) """If ``True`` save the results as a text file.""" save_plot: bool = field(default=True) """If ``True`` save the plot to the file system.""" save_json: bool = field(default=True) """If ``True`` save the results as a JSON file.""" file_pattern: str = field(default='{prefix}-{key}.{ext}') """The pattern used to store the model and results files.""" file_regex: re.Pattern = field( default=re.compile(r'^(.+)-(.+?)\.([^.]+)$')) """An regular expression analogue to :obj:`file_pattern`.""" def __post_init__(self): self.prefix = self.to_file_name(self.name) super().__post_init__(self.prefix) @property @persisted('_read_stash') def results_stash(self) -> Stash: """Return a stash that provides access to previous results (not just the last results). The stash iterates over the model results directory with :class:`.ArchivedResult` values. """ return _ArchivedResultStash(self, DirectoryStash(path=self.path)) @staticmethod def to_file_name(name: str) -> str: """Return a file name string from human readable ``name``.""" return ModelSettings.normalize_name(name) def _get_next_path(self, ext: str, key: str = None) -> Path: if key is None: key = self.get_last_key(False) params = {'prefix': self.prefix, 'key': key, 'ext': ext} fname = self.file_pattern.format(**params) path = self.path / fname return path def get_last_id(self) -> str: """Get the last result ID.""" key: str = self.get_last_key(False) return self.key_to_path(key).stem def get_next_text_path(self) -> Path: """Return a path to the available text file to be written.""" return self._get_next_path('txt') def get_next_model_path(self) -> Path: """Return a path to the available model file to be written.""" return self._get_next_path('model') def get_next_graph_path(self) -> Path: """Return a path to the available graph file to be written.""" return self._get_next_path('png') def get_next_json_path(self) -> Path: """Return a path to the available JSON file to be written.""" return self._get_next_path('json') def dump(self, result: ModelResult): super().dump(result) if self.model_path is not None: src = self.model_path dst = self.get_next_model_path() if logger.isEnabledFor(logging.INFO): logger.info(f'copying model {src} -> {dst}') if dst.exists(): logger.warning(f'already exists--deleting: {dst}') shutil.rmtree(dst) if not src.is_dir(): raise ModelError( f'No such directory: {src}--' + 'possibly because the model never learned') shutil.copytree(src, dst) if self.save_text: self.save_text_result(result) if self.save_json: self.save_json_result(result) if self.save_plot: self.save_plot_result(result) def get_grapher(self, figsize: Tuple[int, int] = (15, 5), title: str = None) -> ModelResultGrapher: """Return an instance of a model grapher. This class can plot results of ``res`` using ``matplotlib``. :see: :class:`.ModelResultGrapher` """ title = self.name if title is None else title path = self.get_next_graph_path() return ModelResultGrapher(title, figsize, save_path=path) def save_plot_result(self, result: ModelResult): """Plot and save results of the validation and training loss. """ try: grapher = self.get_grapher() grapher.plot([result]) grapher.save() except TclError as e: # _tkinter.TclError: couldn't connect to display <IP> logger.warning('could not render plot, probably because ' + f'disconnected from display: {e}') def save_text_result(self, result: ModelResult): """Save the text results of the model. """ path = self.get_next_text_path() if logger.isEnabledFor(logging.INFO): logger.info(f'saving text results to {path}') path.parent.mkdir(parents=True, exist_ok=True) with open(path, 'w') as f: result.write(writer=f, include_settings=True, include_config=True, include_converged=True) def save_json_result(self, result: ModelResult): """Save the results of the model in JSON format. """ path = self.get_next_json_path() if logger.isEnabledFor(logging.INFO): logger.info(f'saving json results to {path}') path.parent.mkdir(parents=True, exist_ok=True) with open(path, 'w') as f: result.asjson(writer=f, indent=4)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/result/manager.py
manager.py
__author__ = 'Paul Landes' from typing import Callable, List, Iterable, Any, ClassVar, Dict, Tuple from dataclasses import dataclass, field import logging import sys import itertools as it from pathlib import Path from frozendict import frozendict import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from zensols.persist import persisted from zensols.datdesc import DataFrameDescriber from zensols.deeplearn.vectorize import ( CategoryEncodableFeatureVectorizer, FeatureVectorizerManagerSet, ) from zensols.deeplearn.batch import Batch, BatchStash, DataPoint from . import ( ModelResultError, ModelResult, EpochResult, ClassificationMetrics ) logger = logging.getLogger(__name__) @dataclass class PredictionsDataFrameFactory(object): """Create a Pandas data frame containing results from a result as output from a ``ModelExecutor``. The data frame contains the feature IDs, labels, predictions mapped back to their original value from the feature data item. Currently only classification models are supported. """ METRIC_DESCRIPTIONS: ClassVar[Dict[str, str]] = frozendict({ 'wF1': 'weighted F1', 'wP': 'weighted precision', 'wR': 'weighted recall', 'mF1': 'micro F1', 'mP': 'micro precision', 'mR': 'micro recall', 'MF1': 'macro F1', 'MP': 'macro precision', 'MR': 'macro recall', 'correct': 'the number of correct classifications', 'count': 'the number of data points in the test set', 'acc': 'accuracy', 'wF1t': 'weighted F1 on the test set', 'wPt': 'weighted precision on the test set', 'wRt': 'weighted recall on the test set', 'mF1t': 'micro F1 on the test set', 'mPt': 'micro precision on the test set', 'mRt': 'micro recall on the test set', 'MF1t': 'macro F1 on the test set', 'MPt': 'macro precision on the test set', 'MRt': 'macro recall on the test set', 'acct': 'accuracy on the test set', 'wF1v': 'weighted F1 on the validation set', 'wPv': 'weighted precision on the validation set', 'wRv': 'weighted recall on the validation set', 'mF1v': 'micro F1 on the validation set', 'mPv': 'micro precision on the validation set', 'mRv': 'micro recall on the validation set', 'MF1v': 'macro F1 on the validation set', 'MPv': 'macro precision on the validation set', 'MRv': 'macro recall on the validation set', 'accv': 'accuracy on the validation set', 'train_occurs': 'the number of data points used to train the model', 'test_occurs': 'the number of data points used to test the model', 'validation_occurs': 'the number of data points used to validate the model', 'label': 'the model class', 'name': 'the model or result set name', 'file': 'the directory name of the results', 'start': 'when the test started', 'train_duration': 'the time it took to train the model in HH:MM:SS', 'converged': 'the last epoch with the lowest loss', 'features': 'the features used in the model'}) """Dictionary of performance metrics column names to human readable descriptions. """ ID_COL: ClassVar[str] = 'id' """The data point ID in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ LABEL_COL: ClassVar[str] = 'label' """The gold label column in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ PREDICTION_COL: ClassVar[str] = 'pred' """The prediction column in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ CORRECT_COL: ClassVar[str] = 'correct' """The correct/incorrect indication column in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ METRICS_DF_WEIGHTED_COLUMNS: ClassVar[Tuple[str, ...]] = tuple( 'wF1 wP wR'.split()) """Weighed performance metrics columns.""" METRICS_DF_MICRO_COLUMNS: ClassVar[Tuple[str, ...]] = tuple( 'mF1 mP mR'.split()) """Micro performance metrics columns.""" METRICS_DF_MACRO_COLUMNS: ClassVar[Tuple[str, ...]] = tuple( 'MF1 MP MR'.split()) """Macro performance metrics columns.""" METRICS_DF_COLUMNS: ClassVar[Tuple[str, ...]] = tuple( 'label wF1 wP wR mF1 mP mR MF1 MP MR correct acc count'.split()) """ :see: :obj:`metrics_dataframe` """ source: Path = field() """The source file from where the results were unpickled.""" result: ModelResult = field() """The epoch containing the results.""" stash: BatchStash = field() """The batch stash used to generate the results from the :class:`~zensols.deeplearn.model.ModelExecutor`. This is used to get the vectorizer to reverse map the labels. """ column_names: List[str] = field(default=None) """The list of string column names for each data item the list returned from ``data_point_transform`` to be added to the results for each label/prediction """ data_point_transform: Callable[[DataPoint], tuple] = field(default=None) """A function that returns a tuple, each with an element respective of ``column_names`` to be added to the results for each label/prediction; if ``None`` (the default), ``str`` used (see the `Iris Jupyter Notebook <https://github.com/plandes/deeplearn/blob/master/notebook/iris.ipynb>`_ example) """ batch_limit: int = sys.maxsize """The max number of batche of results to output.""" epoch_result: EpochResult = field(default=None) """The epoch containing the results. If none given, take it from the test results.. """ label_vectorizer_name: str = field(default=None) """The name of the vectorizer that encodes the labels, which is used to reverse map from integers to their original string nominal values. """ def __post_init__(self): if self.column_names is None: self.column_names = ('data',) if self.data_point_transform is None: self.data_point_transform = lambda dp: (str(dp),) if self.epoch_result is None: self.epoch_result = self.result.test.results[0] @property def name(self) -> str: """The name of the results taken from :class:`.ModelResult`.""" return self.result.name def _transform_dataframe(self, batch: Batch, labs: List[str], preds: List[str]): transform: Callable = self.data_point_transform rows = [] for dp, lab, pred in zip(batch.data_points, labs, preds): row = [dp.id, lab, pred, lab == pred] row.extend(transform(dp)) rows.append(row) cols = [self.ID_COL, self.LABEL_COL, self.PREDICTION_COL, self.CORRECT_COL] cols = cols + list(self.column_names) return pd.DataFrame(rows, columns=cols) def _calc_len(self, batch: Batch) -> int: return len(batch) def _narrow_encoder(self, batch: Batch) -> LabelEncoder: vec: CategoryEncodableFeatureVectorizer = None if self.label_vectorizer_name is None: vec = batch.get_label_feature_vectorizer() while True: if not isinstance(vec, CategoryEncodableFeatureVectorizer) \ and hasattr(vec, 'delegate'): vec = vec.delegate else: break else: vms: FeatureVectorizerManagerSet = \ batch.batch_stash.vectorizer_manager_set vec = vms.get_vectorizer(self.label_vectorizer_name) if not isinstance(vec, CategoryEncodableFeatureVectorizer): raise ModelResultError( 'Expecting a category feature vectorizer but got: ' + f'{vec} ({vec.name if vec else "none"})') return vec.label_encoder def _batch_dataframe(self, inv_trans: bool) -> Iterable[pd.DataFrame]: """Return a data from for each batch. """ epoch_labs: List[np.ndarray] = self.epoch_result.labels epoch_preds: List[np.ndarray] = self.epoch_result.predictions start = 0 for bid in it.islice(self.epoch_result.batch_ids, self.batch_limit): batch: Batch = self.stash[bid] end = start + self._calc_len(batch) preds: List[int] = epoch_preds[start:end] labs: List[int] = epoch_labs[start:end] if inv_trans: le: LabelEncoder = self._narrow_encoder(batch) inv_trans: Callable = le.inverse_transform preds: List[str] = inv_trans(preds) labs: List[str] = inv_trans(labs) df = self._transform_dataframe(batch, labs, preds) df['batch_id'] = bid assert len(df) == len(labs) start = end yield df def _create_dataframe(self, inv_trans: bool) -> pd.DataFrame: return pd.concat(self._batch_dataframe(inv_trans), ignore_index=True) @property @persisted('_dataframe') def dataframe(self) -> pd.DataFrame: """The predictions and labels as a dataframe. The first columns are generated from ``data_point_tranform``, and the remaining columns are: - id: the ID of the feature (not batch) data item - label: the label given by the feature data item - pred: the prediction - correct: whether or not the prediction was correct """ return self._create_dataframe(True) def _to_metric_row(self, lab: str, mets: ClassificationMetrics) -> \ List[Any]: return [lab, mets.weighted.f1, mets.weighted.precision, mets.weighted.recall, mets.micro.f1, mets.micro.precision, mets.micro.recall, mets.macro.f1, mets.macro.precision, mets.macro.recall, mets.n_correct, mets.accuracy, mets.n_outcomes] def _add_metric_row(self, le: LabelEncoder, df: pd.DataFrame, ann_id: str, rows: List[Any]): lab: str = le.inverse_transform([ann_id])[0] data = df[self.LABEL_COL], df[self.PREDICTION_COL] mets = ClassificationMetrics(*data, len(data[0])) row = self._to_metric_row(lab, mets) rows.append(row) def metrics_to_series(self, lab: str, mets: ClassificationMetrics) -> \ pd.Series: """Create a single row dataframe from classification metrics.""" row = self._to_metric_row(lab, mets) return pd.Series(row, index=self.METRICS_DF_COLUMNS) @property def metrics_dataframe(self) -> pd.DataFrame: """Performance metrics by comparing the gold label to the predictions. """ rows: List[Any] = [] df = self._create_dataframe(False) dfg = df.groupby(self.LABEL_COL).agg({self.LABEL_COL: 'count'}).\ rename(columns={self.LABEL_COL: 'count'}) bids = self.epoch_result.batch_ids batch: Batch = self.stash[bids[0]] le: LabelEncoder = self._narrow_encoder(batch) for ann_id, dfg in df.groupby(self.LABEL_COL): try: self._add_metric_row(le, dfg, ann_id, rows) except ValueError as e: logger.error(f'Could not create metrics for {ann_id}: {e}') dfr = pd.DataFrame(rows, columns=self.METRICS_DF_COLUMNS) dfr = dfr.sort_values(self.LABEL_COL).reset_index(drop=True) return dfr @property def majority_label_metrics(self) -> ClassificationMetrics: """Compute metrics of the majority label of the test dataset. """ df: pd.DataFrame = self.dataframe le = LabelEncoder() gold: np.ndarray = le.fit_transform(df[self.ID_COL].to_list()) max_id: str = df.groupby(self.ID_COL)[self.ID_COL].agg('count').idxmax() majlab: np.ndarray = np.repeat(le.transform([max_id])[0], gold.shape[0]) return ClassificationMetrics(gold, majlab, gold.shape[0]) @property def metrics_dataframe_describer(self) -> DataFrameDescriber: """Get a dataframe describer of metrics (see :obj:`metrics_dataframe`). """ df: pd.DataFrame = self.metrics_dataframe meta: Tuple[Tuple[str, str], ...] = \ tuple(map(lambda c: (c, self.METRIC_DESCRIPTIONS[c]), df.columns)) return DataFrameDescriber( name=self.name, df=df, desc=f'{self.name.capitalize()} Model Results', meta=meta) @dataclass class SequencePredictionsDataFrameFactory(PredictionsDataFrameFactory): """Like the super class but create predictions for sequence based models. :see: :class:`~zensols.deeplearn.model.sequence.SequenceNetworkModule` """ def _calc_len(self, batch: Batch) -> int: return sum(map(len, batch.data_points)) def _transform_dataframe(self, batch: Batch, labs: List[str], preds: List[str]): dfs: List[pd.DataFrame] = [] start: int = 0 transform: Callable = self.data_point_transform for dp, lab, pred in zip(batch.data_points, labs, preds): end = start + len(dp) df = pd.DataFrame({ self.ID_COL: dp.id, self.LABEL_COL: labs[start:end], self.PREDICTION_COL: preds[start:end]}) df[list(self.column_names)] = transform(dp) dfs.append(df) start = end return pd.concat(dfs)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/result/pred.py
pred.py
__author__ = 'Paul Landes' from typing import Tuple, List, Sequence from dataclasses import dataclass from itertools import chain from functools import reduce import torch from torch import Tensor from . import TorchConfig @dataclass class NonUniformDimensionEncoder(object): """Encode a sequence of tensors, each of arbitrary dimensionality, as a 1-D array. Then decode the 1-D array back to the original. """ torch_config: TorchConfig def encode(self, arrs: Sequence[Tensor]) -> Tensor: """Encode a sequence of tensors, each of arbitrary dimensionality, as a 1-D array. """ def map_tensor_meta(arr: Tensor) -> Tuple[int]: sz = arr.shape tm = [len(sz)] tm.extend(sz) return tm tmeta = [len(arrs)] tmeta.extend(chain.from_iterable(map(map_tensor_meta, arrs))) tmeta = self.torch_config.singleton(tmeta, dtype=arrs[0].dtype) arrs = [tmeta] + list(map(lambda t: t.flatten(), arrs)) enc = torch.cat(arrs) return enc def decode(self, arr: Tensor) -> Tuple[Tensor]: """Decode the 1-D array back to the original. """ ix_type = torch.long shapes_len = arr[0].type(ix_type) one = torch.tensor([1], dtype=ix_type, device=arr.device) one.autograd = False start = one.clone() shapes: List[int] = [] for i in range(shapes_len): sz_len = arr[start].type(ix_type) start += one end = (start + sz_len).type(ix_type) sz = arr[start:end] shapes.append(sz) start = end arrs = [] for shape in shapes: ln = reduce(lambda x, y: x.type(ix_type) * y.type(ix_type), shape) end = (start + ln).type(ix_type) shape = tuple(map(int, shape)) x = arr[start:end] x = x.view(shape) arrs.append(x) start = end return tuple(arrs)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/vectorize/util.py
util.py
__author__ = 'Paul Landes' from typing import Set, List, Iterable, Union, Any, Tuple, Dict from dataclasses import dataclass, field import logging import pandas as pd import numpy as np import itertools as it from sklearn.preprocessing import LabelEncoder import torch from torch import Tensor from torch import nn from zensols.persist import persisted from zensols.deeplearn import TorchTypes, TorchConfig from . import ( VectorizerError, FeatureVectorizer, EncodableFeatureVectorizer, TensorFeatureContext, FeatureContext, MultiFeatureContext, ) logger = logging.getLogger(__name__) @dataclass class IdentityEncodableFeatureVectorizer(EncodableFeatureVectorizer): """An identity vectorizer, which encodes tensors verbatim, or concatenates a list of tensors in to one tensor of the same dimension. """ DESCRIPTION = 'identity function encoder' def _get_shape(self) -> Tuple[int]: return -1, def _encode(self, obj: Union[list, Tensor]) -> Tensor: if isinstance(obj, Tensor): arr = obj else: tc = self.torch_config if len(obj[0].shape) == 0: arr = tc.singleton(obj, dtype=obj[0].dtype) else: arr = torch.cat(obj) return TensorFeatureContext(self.feature_id, arr) @dataclass class CategoryEncodableFeatureVectorizer(EncodableFeatureVectorizer): """A base class that vectorizies nominal categories in to integer indexes. """ categories: Set[str] = field() """A list of string enumerated values.""" def __post_init__(self): super().__post_init__() if len(self.categories) == 0: raise VectorizerError(f'No categories given: <{self.categories}>') self.label_encoder = LabelEncoder() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding categories: <{self.categories}>') self.label_encoder.fit(self.categories) @property @persisted('_by_label') def by_label(self) -> Dict[str, int]: le = self.label_encoder return dict(zip(le.classes_, le.transform(le.classes_))) def get_classes(self, nominals: Iterable[int]) -> List[str]: """Return the label string values for indexes ``nominals``. :param nominals: the integers that map to the respective string class """ return self.label_encoder.inverse_transform(nominals) @dataclass class NominalEncodedEncodableFeatureVectorizer(CategoryEncodableFeatureVectorizer): """Map each label to a nominal, which is useful for class labels. :shape: (1, 1) """ DESCRIPTION = 'nominal encoder' data_type: Union[str, None, torch.dtype] = field(default=None) """The type to use for encoding, which if a string, must be a key in of :obj:`.TorchTypes.NAME_TO_TYPE`. """ decode_one_hot: bool = field(default=False) """If ``True``, during decoding create a one-hot encoded tensor of shape ``(N, |labels|)``. """ def __post_init__(self): super().__post_init__() self.data_type = self._str_to_dtype(self.data_type, self.torch_config) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'init categories: {self.categories}') def _get_shape(self) -> Tuple[int]: return (1, 1) def _str_to_dtype(self, data_type: str, torch_config: TorchConfig) -> torch.dtype: if data_type is None: data_type = torch.int64 else: data_type = TorchTypes.type_from_string(data_type) return data_type def _encode(self, category_instances: List[str]) -> FeatureContext: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encode categories: {category_instances} ' + f'(one of {self.categories})') if not isinstance(category_instances, (tuple, list)): raise VectorizerError( f'expecting list but got: {type(category_instances)}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'instances: {category_instances}') indicies = self.label_encoder.transform(category_instances) singleton = self.torch_config.singleton arr = singleton(indicies, dtype=self.data_type) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding cat arr: {arr.dtype}') return TensorFeatureContext(self.feature_id, arr) def _decode(self, context: FeatureContext) -> Tensor: arr = super()._decode(context) if self.decode_one_hot: batches = arr.shape[0] he = self.torch_config.zeros((batches, len(self.categories)), dtype=torch.long) for row in range(batches): idx = arr[row] he[row][idx] = 1 del arr arr = he return arr @dataclass class OneHotEncodedEncodableFeatureVectorizer(CategoryEncodableFeatureVectorizer): """Vectorize from a list of nominals. This is useful for encoding labels for the categorization machine learning task. :shape: (1,) when optimizing bools and classes = 2, else (1, |categories|) """ DESCRIPTION = 'category encoder' optimize_bools: bool = field() """If ``True``, more efficiently represent boolean encodings.""" def __post_init__(self): super().__post_init__() le = self.label_encoder llen = len(le.classes_) if not self.optimize_bools or llen != 2: arr = self.torch_config.zeros((llen, llen)) for i in range(llen): arr[i][i] = 1 self.identity = arr def _get_shape(self) -> Tuple[int]: n_classes = len(self.label_encoder.classes_) if self.optimize_bools and n_classes == 2: return (1,) else: return (-1, n_classes) def _encode_cats(self, category_instances: List[str], arr: Tensor) -> \ Tuple[int, FeatureContext]: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding: {self.category_instances}') tc = self.torch_config indicies = self.label_encoder.transform(category_instances) is_one_row = self.shape[0] == 1 if is_one_row: if arr is None: arr = tc.singleton(indicies) else: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating: {self.identity.shape}') if arr is None: arr = tc.empty( (len(category_instances), self.identity.shape[0])) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created: {arr.dtype}') for i, idx in enumerate(it.islice(indicies, arr.size(0))): arr[i] = self.identity[idx] return is_one_row, arr def _encode(self, category_instances: List[str]) -> FeatureContext: is_one_row, arr = self._encode_cats(category_instances, None) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding cat arr: {arr.dtype}') return TensorFeatureContext(self.feature_id, arr) @dataclass class AggregateEncodableFeatureVectorizer(EncodableFeatureVectorizer): """Use another vectorizer to vectorize each instance in an iterable. Each iterable is then concatenated in to a single tensor on decode. **Important**: you must add the delegate vectorizer to the same vectorizer manager set as this instance since it uses the manager to find it. :shape: (-1, delegate.shape[1] * (2 ^ add_mask)) """ DESCRIPTION = 'aggregate vectorizer' DEFAULT_PAD_LABEL = nn.CrossEntropyLoss().ignore_index """The default value used for :obj:`pad_label`, which is used since this vectorizer is most often used to encode labels. """ delegate_feature_id: str = field() """The feature ID of the delegate vectorizer to use (configured in same vectorizer manager). """ size: int = field(default=-1) """The second dimension size of the tensor to create when decoding.""" pad_label: int = field(default=DEFAULT_PAD_LABEL) """The numeric label to use for padded elements. This defaults to :obj:`~torch.nn.CrossEntry.ignore_index`.""" def _get_shape(self): return -1, *self.delegate.shape[1:] @property def delegate(self) -> EncodableFeatureVectorizer: return self.manager[self.delegate_feature_id] def _encode(self, datas: Iterable[Iterable[Any]]) -> MultiFeatureContext: vec = self.delegate ctxs = tuple(map(lambda d: vec.encode(d), datas)) return MultiFeatureContext(self.feature_id, ctxs) @persisted('_pad_tensor_pw') def _pad_tensor(self, data_type: torch.dtype, device: torch.device) -> Tensor: return torch.tensor([self.pad_label], device=device, dtype=data_type) def create_padded_tensor(self, size: torch.Size, data_type: torch.dtype = None, device: torch.device = None): """Create a tensor with all elements set to :obj:`pad_label`. :param size: the dimensions of the created tensor :param data_type: the data type of the new tensor """ data_type = self.delegate.data_type if data_type is None else data_type device = self.torch_config.device if device is None else device pad = self._pad_tensor(data_type, device) if pad.dtype != data_type or pad.device != device: pad = torch.tensor( [self.pad_label], device=device, dtype=data_type) return pad.repeat(size) def _decode(self, context: MultiFeatureContext) -> Tensor: vec: FeatureVectorizer = self.delegate srcs: Tuple[Tensor] = tuple( map(lambda c: vec.decode(c), context.contexts)) clen: int = len(srcs) first: Tensor = srcs[0] dtype: torch.dtype = first.dtype mid_dims: int = first.shape[1:] sz: int if self.size > 0: sz = self.size else: sz = max(map(lambda t: t.size(0), srcs)) arr = self.create_padded_tensor((clen, sz, *mid_dims), dtype) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'num contexts: {clen}, dtype={dtype}, ' + f'src={first.shape}, dst={arr.shape}, ' + f'mid_dims={mid_dims}') rowix = 0 ctx: TensorFeatureContext for carr in srcs: lsz = min(carr.size(0), sz) if carr.dim() == 1: arr[rowix, :lsz] = carr[:lsz] elif carr.dim() == 2: arr[rowix, :lsz, :] = carr[:lsz, :] elif carr.dim() == 3: arr[rowix, :lsz, :, :] = carr[:lsz, :, :] rowix += 1 return arr @dataclass class MaskFeatureContext(FeatureContext): """A feature context used for the :class:`.MaskFeatureVectorizer` vectorizer. :param sequence_lengths: the lengths of all each row to mask """ sequence_lengths: Tuple[int] @dataclass class MaskFeatureVectorizer(EncodableFeatureVectorizer): """Creates masks where the first N elements of a vector are 1's with the rest 0's. :shape: (-1, size) """ DESCRIPTION = 'mask' size: int = field(default=-1) """The length of all mask vectors or ``-1`` make the length the max size of the sequence in the batch. """ data_type: Union[str, None, torch.dtype] = field(default='bool') """The mask tensor type. To use the int type that matches the resolution of the manager's :obj:`torch_config`, use ``DEFAULT_INT``. """ def __post_init__(self): super().__post_init__() self.data_type = self.str_to_dtype(self.data_type, self.torch_config) if self.size > 0: tc = self.torch_config self.ones = tc.ones((self.size,), dtype=self.data_type) else: self.ones = None @staticmethod def str_to_dtype(data_type: str, torch_config: TorchConfig) -> torch.dtype: if data_type == 'DEFAULT_INT': data_type = torch_config.int_type else: data_type = TorchTypes.type_from_string(data_type) return data_type def _get_shape(self): return -1, self.size, def _encode(self, datas: Iterable[Iterable[Any]]) -> FeatureContext: lens = tuple(map(lambda d: sum(1 for _ in d), datas)) return MaskFeatureContext(self.feature_id, lens) def _decode(self, context: MaskFeatureContext) -> Tensor: tc = self.torch_config batch_size = len(context.sequence_lengths) lens = context.sequence_lengths if self.ones is None: # when no configured size is given, recreate for each batch sz = max(lens) ones = self.torch_config.ones((sz,), dtype=self.data_type) else: # otherwise, the mask was already created in the initializer sz = self.size ones = self.ones arr = tc.zeros((batch_size, sz), dtype=self.data_type) for bix, slen in enumerate(lens): arr[bix, :slen] = ones[:slen] return arr @dataclass class SeriesEncodableFeatureVectorizer(EncodableFeatureVectorizer): """Vectorize a Pandas series, such as a list of rows. This vectorizer has an undefined shape since both the number of columns and rows are not specified at runtime. :shape: (-1, 1) """ DESCRIPTION = 'pandas series' def _get_shape(self): return -1, -1 def _encode(self, rows: Iterable[pd.Series]) -> FeatureContext: narrs = [] tc = self.torch_config nptype = tc.numpy_data_type for row in rows: narrs.append(row.to_numpy(dtype=nptype)) arr = np.stack(narrs) arr = tc.from_numpy(arr) return TensorFeatureContext(self.feature_id, arr) @dataclass class AttributeEncodableFeatureVectorizer(EncodableFeatureVectorizer): """Vectorize a iterable of floats. This vectorizer has an undefined shape since both the number of columns and rows are not specified at runtime. :shape: (1,) """ DESCRIPTION = 'single attribute' def _get_shape(self): return 1, def _encode(self, data: Iterable[float]) -> FeatureContext: arr = self.torch_config.from_iterable(data) return TensorFeatureContext(self.feature_id, arr)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/vectorize/vectorizers.py
vectorizers.py
__author__ = 'Paul Landes' from typing import Tuple, Any, Union from dataclasses import dataclass, field from abc import abstractmethod, ABCMeta import logging import sys from io import TextIOBase from scipy import sparse from scipy.sparse import csr_matrix import torch from torch import Tensor from zensols.persist import PersistableContainer from zensols.config import ConfigFactory, Writable from zensols.deeplearn import DeepLearnError, TorchConfig logger = logging.getLogger(__name__) class VectorizerError(DeepLearnError): """Thrown by instances of :class:`.FeatureVectorizer` during encoding or decoding operations. """ pass @dataclass class ConfigurableVectorization(PersistableContainer, Writable): name: str = field() """The name of the section given in the configuration. """ config_factory: ConfigFactory = field(repr=False) """The configuration factory that created this instance and used for serialization functions. """ def __post_init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @dataclass class FeatureVectorizer(ConfigurableVectorization, metaclass=ABCMeta): """An asbstrct base class that transforms a Python object in to a PyTorch tensor. """ feature_id: str = field() """Uniquely identifies this vectorizer.""" def _allow_config_adds(self) -> bool: return True @abstractmethod def _get_shape(self) -> Tuple[int, int]: pass @abstractmethod def transform(self, data: Any) -> Tensor: """Transform ``data`` to a tensor data format. """ pass @property def shape(self) -> Tuple[int, int]: """Return the shape of the tensor created by ``transform``. """ return self._get_shape() @property def description(self) -> str: """A short human readable name. :see: obj:`feature_id` """ return self.DESCRIPTION def __str__(self): return (f'{self.feature_id} ({type(self)}), ' + f'desc={self.description}, shape: {self.shape}') def __repr__(self): return f'{self.__class__}: {self.__str__()}' def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(str(self), depth, writer) @dataclass class FeatureContext(PersistableContainer): """Data created by coding and meant to be pickled on the file system. :see EncodableFeatureVectorizer.encode: """ feature_id: str = field() """The feature id of the :class:`.FeatureVectorizer` that created this context. """ def __str__(self): return f'{self.__class__.__name__} ({self.feature_id})' @dataclass class NullFeatureContext(FeatureContext): """A no-op feature context used for cases such as prediction batches with data points that have no labels. :see: :meth:`~zensols.deeplearn.batch.BatchStash.create_prediction` :see: :class:`~zensols.deeplearn.batch.Batch` """ pass @dataclass class TensorFeatureContext(FeatureContext): """A context that encodes data directly to a tensor. This tensor could be a sparse matrix becomes dense during the decoding process. """ tensor: Tensor = field() """The output tensor of the encoding phase.""" def deallocate(self): super().deallocate() if hasattr(self, 'tensor'): del self.tensor def __str__(self): tstr = f'{self.tensor.shape}' if self.tensor is not None else '<none>' return f'{super().__str__()}: {tstr}' def __repr__(self): return self.__str__() @dataclass class SparseTensorFeatureContext(FeatureContext): """Contains data that was encded from a dense matrix as a sparse matrix and back. Using torch sparse matrices currently lead to deadlocking in child proceesses, so use scipy :class:``csr_matrix`` is used instead. """ USE_SPARSE = True sparse_data: Union[Tuple[Tuple[csr_matrix, int]], Tensor] = field() """The sparse array data.""" @property def sparse_arr(self) -> Tuple[csr_matrix]: assert isinstance(self.sparse_data[0], tuple) return self.sparse_data[0] @classmethod def to_sparse(cls, arr: Tensor) -> Tuple[csr_matrix]: narr = arr.numpy() tdim = len(arr.shape) if tdim == 3: narrs = tuple(map(lambda i: narr[i], range(narr.shape[0]))) elif tdim == 2 or tdim == 1: narrs = (narr,) else: raise VectorizerError('Tensors of dimensions higher than ' + f'3 not supported: {arr.shape}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating sparse matrix: {arr.shape}') mats = tuple(map(lambda m: sparse.csr_matrix(m), narrs)) return (mats, tdim) @classmethod def instance(cls, feature_id: str, arr: Tensor, torch_config: TorchConfig): arr = arr.cpu() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding in to sparse tensor: {arr.shape}') if cls.USE_SPARSE: sarr = cls.to_sparse(arr) else: sarr = arr return cls(feature_id, sarr) def to_tensor(self, torch_config: TorchConfig) -> Tensor: if isinstance(self.sparse_arr, Tensor): tarr = self.sparse_arr else: narr, tdim = self.sparse_data narrs = tuple(map(lambda sm: torch.from_numpy(sm.todense()), narr)) if len(narrs) == 1: tarr = narrs[0] else: tarr = torch.stack(narrs) dim_diff = len(tarr.shape) - tdim if dim_diff > 0: for _ in range(dim_diff): tarr = tarr.squeeze(0) elif dim_diff < 0: for _ in range(-dim_diff): tarr = tarr.unsqueeze(0) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded sparce matrix to: {tarr.shape}') return tarr @dataclass class MultiFeatureContext(FeatureContext): """A composite context that contains a tuple of other contexts. """ contexts: Tuple[FeatureContext] = field() """The subordinate contexts.""" @property def is_empty(self) -> bool: cnt = sum(1 for _ in filter( lambda c: not isinstance(c, NullFeatureContext), self.contexts)) return cnt == 0 def deallocate(self): super().deallocate() if hasattr(self, 'contexts'): self._try_deallocate(self.contexts) del self.contexts
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/vectorize/domain.py
domain.py
from __future__ import annotations """Vectorization base classes and basic functionality. """ __author__ = 'Paul Landes' from typing import Tuple, Any, Set, Dict, List, Iterable from dataclasses import dataclass, field from abc import abstractmethod, ABCMeta import logging import sys from itertools import chain import collections from io import TextIOBase from torch import Tensor from zensols.persist import persisted, PersistedWork from zensols.deeplearn import TorchConfig from . import ( VectorizerError, ConfigurableVectorization, FeatureVectorizer, FeatureContext, TensorFeatureContext, SparseTensorFeatureContext, NullFeatureContext, MultiFeatureContext, ) logger = logging.getLogger(__name__) @dataclass class EncodableFeatureVectorizer(FeatureVectorizer, metaclass=ABCMeta): """This vectorizer splits transformation up in to encoding and decoding. The encoded state as a ``FeatureContext``, in cases where encoding is prohibitively expensive, is computed once and pickled to the file system. It is then loaded and finally decoded into a tensor. Examples include computing an encoding as indexes of a word embedding during the encoding phase. Then generating the full embedding layer during decoding. Note that this decoding is done with a ``TorchConfig`` so the output tensor goes directly to the GPU. This abstract base class only needs the ``_encode`` method overridden. The ``_decode`` must be overridden if the context is not of type ``TensorFeatureContext``. """ manager: FeatureVectorizerManager = field() """The manager used to create this vectorizer that has resources needed to encode and decode. """ def transform(self, data: Any) -> Tensor: """Use the output of the encoding as input to the decoding to directly produce the output tensor ready to be used in testing, training, validation etc. """ context = self.encode(data) return self.decode(context) def encode(self, data: Any) -> FeatureContext: """Encode data to a context ready to (potentially) be pickled. """ return self._encode(data) def decode(self, context: FeatureContext) -> Tensor: """Decode a (potentially) unpickled context and return a tensor using the manager's :obj:`torch_config`. """ arr: Tensor = None self._validate_context(context) if isinstance(context, NullFeatureContext): pass elif isinstance(context, MultiFeatureContext) and context.is_empty: arr = NullFeatureContext(context.feature_id) else: arr = self._decode(context) return arr @property def torch_config(self) -> TorchConfig: """The torch configuration used to create encoded/decoded tensors. """ return self.manager.torch_config @abstractmethod def _encode(self, data: Any) -> FeatureContext: pass def _decode(self, context: FeatureContext) -> Tensor: arr: Tensor if isinstance(context, NullFeatureContext): arr = None elif isinstance(context, TensorFeatureContext): arr = context.tensor elif isinstance(context, SparseTensorFeatureContext): arr = context.to_tensor(self.manager.torch_config) else: cstr = str(context) if context is None else context.__class__ raise VectorizerError(f'Unknown context: {cstr}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded {type(context)} to {arr.shape}') return arr def _validate_context(self, context: FeatureContext): if context.feature_id != self.feature_id: raise VectorizerError(f'Context meant for {context.feature_id} ' + f'routed to {self.feature_id}') @dataclass class TransformableFeatureVectorizer(EncodableFeatureVectorizer, metaclass=ABCMeta): """Instances of this class use the output of :meth:`.EncodableFeatureVectorizer.transform` (chain encode and decode) as the output of :meth:`EncodableFeatureVectorizer.encode`, then passes through the decode. This is useful if the decoding phase is very expensive and you'd rather take that hit when creating batches written to the file system. """ encode_transformed: bool = field() """If ``True``, enable the transformed output of the encoding step as the decode step (see class docs). """ def encode(self, data: Any) -> FeatureContext: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding {type(data)}, also decode after encode' + f'{self.encode_transformed}') if self.encode_transformed: ctx: FeatureContext = self._encode(data) arr: Tensor = self._decode(ctx) ctx = TensorFeatureContext(ctx.feature_id, arr) else: ctx = super().encode(data) return ctx def decode(self, context: FeatureContext) -> Tensor: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoding {type(context)}, already decoded: ' + f'{self.encode_transformed}') if self.encode_transformed: ctx: TensorFeatureContext = context arr = ctx.tensor if logger.isEnabledFor(logging.DEBUG): logger.debug(f'already decoded: {arr.shape}') else: arr = super().decode(context) return arr # manager @dataclass class FeatureVectorizerManager(ConfigurableVectorization): """Creates and manages instances of :class:`.EncodableFeatureVectorizer` and parses text in to feature based document. This handles encoding data into a context, which is data ready to be pickled on the file system with the idea this intermediate state is expensive to create. At training time, the context is brought back in to memory and efficiently decoded in to a tensor. This class keeps track of two kinds of vectorizers: * module: registered with ``register_vectorizer`` in Python modules * configured: registered at instance create time in ``configured_vectorizers`` Instances of this class act like a :class:`dict` of all registered vectorizers. This includes both module and configured vectorizers. The keys are the ``feature_id``s and values are the contained vectorizers. :see: :class:`.EncodableFeatureVectorizer` """ ATTR_EXP_META = ('torch_config', 'configured_vectorizers') MANAGER_SEP = '.' torch_config: TorchConfig = field() """The torch configuration used to encode and decode tensors.""" configured_vectorizers: Set[str] = field() """Configuration names of vectorizors to use by this manager.""" def __post_init__(self): super().__post_init__() self.manager_set = None self._vectorizers_pw = PersistedWork('_vectorizers_pw', self) def transform(self, data: Any) -> \ Tuple[Tensor, EncodableFeatureVectorizer]: """Return a tuple of duples with the output tensor of a vectorizer and the vectorizer that created the output. Every vectorizer listed in ``feature_ids`` is used. """ return tuple(map(lambda vec: (vec.transform(data), vec), self._vectorizers.values())) @property @persisted('_vectorizers_pw') def _vectorizers(self) -> Dict[str, FeatureVectorizer]: """Return a dictionary of all registered vectorizers. This includes both module and configured vectorizers. The keys are the ``feature_id``s and values are the contained vectorizers. """ return self._create_vectorizers() def _create_vectorizers(self) -> Dict[str, FeatureVectorizer]: vectorizers = collections.OrderedDict() feature_ids = set() conf_instances = {} if self.configured_vectorizers is not None: for sec in self.configured_vectorizers: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating vectorizer {sec}') if sec.find(self.MANAGER_SEP) >= 0: raise VectorizerError( f'Separator {self.MANAGER_SEP} not ' + f'allowed in names: {sec}') vec = self.config_factory(sec, manager=self) conf_instances[vec.feature_id] = vec feature_ids.add(vec.feature_id) for feature_id in sorted(feature_ids): inst = conf_instances.get(feature_id) vectorizers[feature_id] = inst return vectorizers @property @persisted('_feature_ids') def feature_ids(self) -> Set[str]: """Get the feature ids supported by this manager, which are the keys of the vectorizer. :see: :class:`.FeatureVectorizerManager` """ return frozenset(self._vectorizers.keys()) def get(self, name: str) -> FeatureVectorizer: """Return the feature vectorizer named ``name``.""" fv = self._vectorizers.get(name) # if we can't find the vectorizer, try using dot syntax to find it in # the parent manager set if name is not None and fv is None: idx = name.find(self.MANAGER_SEP) if self.manager_set is not None and idx > 0: mng_name, vec = name[:idx], name[idx+1:] if logger.isEnabledFor(logging.DEBUG): logger.debug(f'looking up {mng_name}:{vec}') mng = self.manager_set.get(mng_name) if mng is not None: fv = mng._vectorizers.get(vec) return fv def keys(self) -> Iterable[str]: return self._vectorizers.keys() def values(self) -> Iterable[FeatureVectorizer]: return self._vectorizers.values() def items(self) -> Iterable[Tuple[str, FeatureVectorizer]]: return self._vectorizers.items() def __len__(self) -> int: return len(self._vectorizers) def __getitem__(self, name: str) -> FeatureVectorizer: fv = self.get(name) if fv is None: raise VectorizerError( f"Manager '{self.name}' has no vectorizer: '{name}'") return fv def deallocate(self): if self._vectorizers_pw.is_set(): vecs = self._vectorizers for vec in vecs.values(): vec.deallocate() vecs.clear() super().deallocate() def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(str(self), depth, writer) for vec in self._vectorizers.values(): vec.write(depth + 1, writer) @dataclass class FeatureVectorizerManagerSet(ConfigurableVectorization): """A set of managers used collectively to encode and decode a series of features across many different kinds of data (i.e. labels, language features, numeric). In the same way a :class:`.FeatureVectorizerManager` acts like a :class:`dict`, this class is a ``dict`` for :class:`.FeatureVectorizerManager` instances. """ ATTR_EXP_META = ('_managers',) names: List[str] = field() """The sections defining :class:`.FeatureVectorizerManager` instances.""" def __post_init__(self): super().__post_init__() self._managers_pw = PersistedWork('_managers_pw', self) @property @persisted('_managers_pw') def _managers(self) -> Dict[str, FeatureVectorizerManager]: """All registered vectorizer managers of the manager.""" mngs = {} for n in self.names: f: FeatureVectorizerManager = self.config_factory(n) if not isinstance(f, FeatureVectorizerManager): raise VectorizerError( f"Config section '{n}' does not define a " + f'FeatureVectoizerManager: {f}') f.manager_set = self mngs[n] = f return mngs def get_vectorizer_names(self) -> Iterable[str]: """Return the names of vectorizers across all vectorizer managers.""" return map(lambda vec: vec.name, chain.from_iterable( map(lambda vm: vm.values(), self.values()))) def get_vectorizer(self, name: str) -> FeatureVectorizer: """Find vectorizer with ``name`` in all vectorizer managers. """ for vm in self.values(): for vec in vm.values(): if name == vec.name: return vec @property @persisted('_feature_ids') def feature_ids(self) -> Set[str]: """Return all feature IDs supported across all manager registered with the manager set. """ return set(chain.from_iterable( map(lambda m: m.feature_ids, self.values()))) def __getitem__(self, name: str) -> FeatureVectorizerManager: mng = self._managers.get(name) if mng is None: raise VectorizerError( f"No such manager '{name}' in manager set '{self.name}'") return mng def get(self, name: str) -> FeatureVectorizerManager: return self._managers.get(name) def values(self) -> List[FeatureVectorizerManager]: return self._managers.values() def keys(self) -> Set[str]: return set(self._managers.keys()) def deallocate(self): if self._managers_pw.is_set(): mngs = self._managers for mng in mngs.values(): mng.deallocate() mngs.clear() super().deallocate() def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(f'{self.name}', depth, writer) for mng in self._managers.values(): mng.write(depth + 1, writer)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/vectorize/manager.py
manager.py
__author__ = 'Paul Landes' from typing import Tuple, Any from dataclasses import dataclass, field from abc import abstractmethod, ABCMeta import logging import copy as cp from functools import reduce import math from torch import nn from . import LayerError logger = logging.getLogger(__name__) class Flattenable(object): """A class with a :obj:`flatten_dim` and :obj:`out_shape` properties. """ @property def out_shape(self) -> Tuple[int]: """Return the shape of the layer after flattened in to one dimension. """ pass @property def flatten_dim(self) -> int: """Return the number or neurons of the layer after flattening in to one dimension. """ return reduce(lambda x, y: x * y, self.out_shape) def __str__(self): sup = super().__str__() return f'{sup}, out: {self.out_shape}' class Im2DimCalculator(Flattenable): """Convolution matrix dimension calculation utility. Implementation as Matrix Multiplication section. Example (im2col):: W_in = H_in = 227 Ch_in = D_in = 3 Ch_out = D_out = 3 K = 96 F = (11, 11) S = 4 P = 0 W_out = H_out = 227 - 11 + (2 * 0) / 4 = 55 output locations X_col = Fw^2 * D_out x W_out * H_out = 11^2 * 3 x 55 * 55 = 363 x 3025 Example (im2row):: W_row = 96 filters of size 11 x 11 x 3 => K x 11 * 11 * 3 = 96 x 363 Result of convolution: transpose(W_row) dot X_col. Must reshape back to 55 x 55 x 96 :see: `Stanford <http://cs231n.github.io/convolutional-networks/#conv>`_ """ def __init__(self, W: int, H: int, D: int = 1, K: int = 1, F: Tuple[int, int] = (2, 2), S: int = 1, P: int = 0): """Initialize. :param W: width :param H: height :param D: depth [of volume] (usually same as K) :param K: number of filters :param F: tuple of kernel/filter (width, height) :param S: stride :param P: padding """ self.W = W self.H = H self.D = D self.K = K self.F = F self.S = S self.P = P def validate(self): W, H, F, P, S = self.W, self.H, self.F, self.P, self.S if ((W - F[0] + (2 * P)) % S): raise LayerError('Incongruous convolution width layer parameters') if ((H - F[1] + (2 * P)) % S): raise LayerError('Incongruous convolution height layer parameters') if (F[0] > (W + (2 * P))): raise LayerError(f'Kernel/filter {F} must be <= width {W} + 2 * padding {P}') if (F[1] > (H + (2 * P))): raise LayerError(f'Kernel/filter {F} must be <= height {H} + 2 * padding {P}') if self.W_row[1] != self.X_col[0]: raise LayerError(f'Columns of W_row {self.W_row} do not match ' + f'rows of X_col {self.X_col}') @property def W_out(self): return int(((self.W - self.F[0] + (2 * self.P)) / self.S) + 1) @property def H_out(self): return int(((self.H - self.F[1] + (2 * self.P)) / self.S) + 1) @property def X_col(self): # TODO: not supported for non-square filters return (self.F[0] ** 2 * self.D, self.W_out * self.H_out) @property def W_row(self): # TODO: not supported for non-square filters return (self.K, (self.F[0] ** 2) * self.D) @property def out_shape(self): return (self.K, self.W_out, self.H_out) def flatten(self, axis: int = 1): fd = self.flatten_dim W, H = (1, fd) if axis else (fd, 1) return self.__class__(W, H, F=(1, 1), D=1, K=1) def __str__(self): attrs = 'W H D K F S P W_out H_out W_row X_col out_shape'.split() return ', '.join(map(lambda x: f'{x}={getattr(self, x)}', attrs)) def __repr__(self): return self.__str__() @dataclass class ConvolutionLayerFactory(object): """Create convolution layers. Each attribute maps a corresponding attribuate variable in :class:`.Im2DimCalculator`, which documented in the parenthesis in the parameter documentation below. :param width: the width of the image/data (``W``) :param height: the height of the image/data (``H``) :param depth: the volume, which is usually same as ``n_filters`` (``D``) :param n_filters: the number of filters, aka the filter depth/volume (``K``) :param kernel_filter: the kernel filter dimension in width X height (``F``) :param stride: the stride, which is the number of cells to skip for each convolution (``S``) :param padding: the zero'd number of cells on the ends of the image/data (``P``) :see: `Stanford <http://cs231n.github.io/convolutional-networks/#conv>`_ """ width: int = field(default=1) height: int = field(default=1) depth: int = field(default=1) n_filters: int = field(default=1) kernel_filter: Tuple[int, int] = field(default=(2, 2)) stride: int = field(default=1) padding: int = field(default=0) @property def calc(self) -> Im2DimCalculator: return Im2DimCalculator(**{ 'W': self.width, 'H': self.height, 'D': self.depth, 'K': self.n_filters, 'F': self.kernel_filter, 'S': self.stride, 'P': self.padding}) def copy_calc(self, calc: Im2DimCalculator): self.width = calc.W self.height = calc.H self.depth = calc.D self.n_filters = calc.K self.kernel_filter = calc.F self.stride = calc.S self.padding = calc.P def flatten(self) -> Any: """Return a new flattened instance of this class. """ clone = self.clone() calc = clone.calc.flatten() clone.copy_calc(calc) return clone @property def flatten_dim(self) -> int: """Return the dimension of a flattened array of the convolution layer represented by this instance. """ return self.calc.flatten_dim def clone(self, **kwargs) -> Any: """Return a clone of this factory instance. """ clone = cp.deepcopy(self) clone.__dict__.update(kwargs) return clone def conv1d(self) -> nn.Conv1d: """Return a convolution layer in one dimension. """ c = self.calc return nn.Conv1d(c.D, c.K, c.F, padding=c.P, stride=c.S) def conv2d(self) -> nn.Conv2d: """Return a convolution layer in two dimensions. """ c = self.calc return nn.Conv2d(c.D, c.K, c.F, padding=c.P, stride=c.S) def batch_norm2d(self) -> nn.BatchNorm2d: """Return a 2D batch normalization layer. """ return nn.BatchNorm2d(self.calc.K) def __str__(self): return str(self.calc) @dataclass class PoolFactory(Flattenable, metaclass=ABCMeta): """Create a 2D max pool and output it's shape. :see: `Stanford <https://cs231n.github.io/convolutional-networks/#pool>`_ """ layer_factory: ConvolutionLayerFactory = field(repr=False, default=None) stride: int = field(default=1) padding: int = field(default=0) @abstractmethod def _calc_out_shape(self) -> Tuple[int]: pass @abstractmethod def create_pool(self) -> nn.Module: pass @property def out_shape(self) -> Tuple[int]: """Calculates the dimensions for a max pooling filter and creates a layer. :param F: the spacial extent (kernel filter) :param S: the stride """ return self._calc_out_shape() def __call__(self) -> nn.Module: """Return the pooling layer. """ return self.create_pool() @dataclass class MaxPool1dFactory(PoolFactory): """Create a 1D max pool and output it's shape. """ kernel_filter: Tuple[int] = field(default=2) """The filter used for max pooling.""" def _calc_out_shape(self) -> Tuple[int]: calc = self.layer_factory.calc L = calc.flatten_dim F = self.kernel_filter S = self.stride P = self.padding Lo = math.floor((((L + (2 * P) - (F - 1) - 1)) / S) + 1) return (1, Lo) def create_pool(self) -> nn.Module: return nn.MaxPool1d( self.kernel_filter, stride=self.stride, padding=self.padding) @dataclass class MaxPool2dFactory(PoolFactory): """Create a 2D max pool and output it's shape. """ kernel_filter: Tuple[int, int] = field(default=(2, 2)) """The filter used for max pooling.""" def _calc_out_shape(self) -> Tuple[int]: calc = self.layer_factory.calc K, W, H = calc.out_shape F = self.kernel_filter S = self.stride P = self.padding W_2 = ((W - F[0] + (2 * P)) / S) + 1 H_2 = ((H - F[1] + (2 * P)) / S) + 1 return (K, int(W_2), int(H_2)) def create_pool(self) -> nn.Module: return nn.MaxPool2d( self.kernel_filter, stride=self.stride, padding=self.padding)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/layer/conv.py
conv.py
__author__ = 'Paul Landes' from typing import Tuple, Union from dataclasses import dataclass, field import logging import torch from torch import nn from torch import Tensor from zensols.persist import Deallocatable from zensols.deeplearn import ( ActivationNetworkSettings, DropoutNetworkSettings, BatchNormNetworkSettings, ) from zensols.deeplearn.model import BaseNetworkModule from . import ( RecurrentAggregation, RecurrentAggregationNetworkSettings, DeepLinearNetworkSettings, ) from . import CRF, DeepLinear logger = logging.getLogger(__name__) @dataclass class RecurrentCRFNetworkSettings(ActivationNetworkSettings, DropoutNetworkSettings, BatchNormNetworkSettings): """Settings for a recurrent neural network using :class:`.RecurrentCRF`. """ network_type: str = field() """One of ``rnn``, ``lstm`` or ``gru`` (usually ``lstm``).""" bidirectional: bool = field() """Whether or not the network is bidirectional (usually ``True``).""" input_size: int = field() """The input size to the layer.""" hidden_size: int = field() """The size of the hidden states of the network.""" num_layers: int = field() """The number of *"stacked"* layers.""" num_labels: int = field() """The number of output labels from the CRF.""" decoder_settings: DeepLinearNetworkSettings = field() """The decoder feed forward network.""" score_reduction: str = field() """Reduces how the score output over batches. :see: :class:`.CRF` """ def to_recurrent_aggregation(self) -> RecurrentAggregationNetworkSettings: attrs = ('name config_factory dropout network_type bidirectional ' + 'input_size hidden_size num_layers') params = {k: getattr(self, k) for k in attrs.split()} params['aggregation'] = 'none' return RecurrentAggregationNetworkSettings(**params) def get_module_class_name(self) -> str: return __name__ + '.RecurrentCRF' class RecurrentCRF(BaseNetworkModule): """Adapt the :class:`.CRF` module using the framework based :class:`.BaseNetworkModule` class. This provides methods :meth:`forward_recur_decode` and :meth:`decode`, which decodes the input. This adds a recurrent neural network and a fully connected feed forward decoder layer before the CRF layer. """ MODULE_NAME = 'recur crf' def __init__(self, net_settings: RecurrentCRFNetworkSettings, sub_logger: logging.Logger = None, use_crf: bool = True): """Initialize the reccurent CRF layer. :param net_settings: the recurrent layer configuration :param sub_logger: the logger to use for the forward process in this layer """ super().__init__(net_settings, sub_logger) ns = self.net_settings self.recur_settings = rs = ns.to_recurrent_aggregation() if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'recur settings: {rs}') self.hidden_dim: int = rs.hidden_size self.recur: RecurrentAggregation = self._create_recurrent_aggregation() self.decoder: DeepLinear = self._create_decoder() self.crf: CRF if use_crf: self.crf = self._create_crf() self.crf.reset_parameters() else: self.crf = None self.hidden = None self._zero = None def _create_recurrent_aggregation(self): rs = self.recur_settings return RecurrentAggregation(rs, self.logger) def _create_decoder(self) -> Union[nn.Linear, DeepLinear]: ns = self.net_settings rs = self.recur_settings if ns.decoder_settings is None: layer = nn.Linear(rs.hidden_size, ns.num_labels) else: ln: DeepLinearNetworkSettings = ns.decoder_settings ln.in_features = rs.hidden_size ln.out_features = ns.num_labels if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'linear: {ln}') layer: DeepLinear = ln.create_module() return layer def _create_crf(self) -> CRF: ns = self.net_settings return CRF(ns.num_labels, batch_first=True, score_reduction=ns.score_reduction) def deallocate(self): super().deallocate() Deallocatable._try_deallocate(self.decoder) self.recur.deallocate() self.recur_settings.deallocate() def _forward_decoder(self, x: Tensor) -> Tensor: return self.decoder(x) def forward_recur_decode(self, x: Tensor) -> Tensor: """Forward the input through the recurrent network (i.e. LSTM), batch normalization and activation (if confgiured), and decoder output. **Note**: this layer forwards batch normalization, activation and drop out (for those configured) after the recurrent layer is forwarded. However, the subordinate recurrent layer can also be configured with a dropout when having more than one stacked layer. :param x: the network input :return: the fully connected linear feed forward decoded output """ self._shape_debug('recur in', x) x = self.recur(x)[0] # need to droput even after the RNN/LSTM/GRU since dropout isn't # applied for single (stacked) layers; see method docs x = self._forward_batch_act_drop(x) self._shape_debug('batch, act, drop', x) x = self._forward_decoder(x) self._shape_debug('decode', x) return x def to(self, *args, **kwargs): self._zero = None return super().to(*args, **kwargs) def _forward(self, x: Tensor, mask: Tensor, labels: Tensor) -> Tensor: self._shape_debug('mask', mask) self._shape_debug('labels', labels) if self._zero is None: self._zero = torch.tensor( [0], dtype=labels.dtype, device=labels.device) x = self.forward_recur_decode(x) # zero out negative values, since otherwise invalid transitions are # indexed with negative values, which come from the default cross # entropy loss functions `ignore_index` labels = torch.max(labels, self._zero) x = -self.crf(x, labels, mask=mask) if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'training loss: {x}') return x def decode(self, x: Tensor, mask: Tensor) -> Tuple[Tensor, Tensor]: """Forward the input though the recurrent network, decoder, and then the CRF. :param x: the input :param mask: the mask used to block the last N states not provided :return: the CRF sequence output and the score provided by the CRF's veterbi algorithm as a tuple """ self._shape_debug('mask', mask) x = self.forward_recur_decode(x) seq, score = self.crf.decode(x, mask=mask) if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'decoded: {len(seq)} seqs, score: {score}') return seq, score
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/layer/recurcrf.py
recurcrf.py
__author__ = 'Paul Landes' from typing import Union, Tuple from dataclasses import dataclass, field import logging import torch from torch import nn from torch import Tensor from zensols.config import ClassImporter from zensols.deeplearn import DropoutNetworkSettings from zensols.deeplearn.model import BaseNetworkModule from . import LayerError logger = logging.getLogger(__name__) @dataclass class RecurrentAggregationNetworkSettings(DropoutNetworkSettings): """Settings for a recurrent neural network. This configures a :class:`.RecurrentAggregation` layer. """ network_type: str = field() """One of ``rnn``, ``lstm`` or ``gru``.""" aggregation: str = field() """A convenience operation to aggregate the parameters; this is one of: ``max``: return the max of the output states ``ave``: return the average of the output states ``last``: return the last output state ``none``: do not apply an aggregation function. """ bidirectional: bool = field() """Whether or not the network is bidirectional.""" input_size: int = field() """The input size to the network.""" hidden_size: int = field() """The size of the hidden states of the network.""" num_layers: int = field() """The number of *"stacked"* layers.""" def get_module_class_name(self) -> str: return __name__ + '.RecurrentAggregation' class RecurrentAggregation(BaseNetworkModule): """A recurrent neural network model with an output aggregation. This includes RNNs, LSTMs and GRUs. """ MODULE_NAME = 'recur' def __init__(self, net_settings: RecurrentAggregationNetworkSettings, sub_logger: logging.Logger = None): """Initialize the recurrent layer. :param net_settings: the reccurent layer configuration :param sub_logger: the logger to use for the forward process in this layer """ super().__init__(net_settings, sub_logger) ns = net_settings if self.logger.isEnabledFor(logging.INFO): self.logger.info(f'creating {ns.network_type} network') class_name = f'torch.nn.{ns.network_type.upper()}' ci = ClassImporter(class_name, reload=False) hidden_size = ns.hidden_size // (2 if ns.bidirectional else 1) param = {'input_size': ns.input_size, 'hidden_size': hidden_size, 'num_layers': ns.num_layers, 'bidirectional': ns.bidirectional, 'batch_first': True} if ns.num_layers > 1 and ns.dropout is not None: # UserWarning: dropout option adds dropout after all but last # recurrent layer, so non-zero dropout expects num_layers greater # than 1 param['dropout'] = ns.dropout self.rnn: nn.RNNBase = ci.instance(**param) if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'created {type(self.rnn)} with {param}') def deallocate(self): super().deallocate() if hasattr(self, 'rnn'): del self.rnn @property def out_features(self) -> int: """The number of features output from all layers of this module. """ ns = self.net_settings return ns.hidden_size def _forward(self, x: Tensor, x_init: Tensor = None) -> \ Union[Tensor, Tuple[Tensor, Tensor, Tensor]]: self._shape_debug('input', x) if x_init is None: x, hidden = self.rnn(x) else: x, hidden = self.rnn(x, x_init) self._shape_debug('recur', x) agg = self.net_settings.aggregation if agg == 'max': x = torch.max(x, dim=1)[0] self._shape_debug('max out shape', x) elif agg == 'ave': x = torch.mean(x, dim=1) self._shape_debug('ave out shape', x) elif agg == 'last': x = x[:, -1, :] self._shape_debug('last out shape', x) elif agg == 'none': pass else: raise LayerError(f'Unknown aggregate function: {agg}') self._shape_debug('aggregation', x) return x, hidden
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/layer/recur.py
recur.py
__author__ = 'Kemal Kurniawan, Paul Landes' __version__ = '0.7.5' from typing import List, Optional, Union, Tuple import torch import torch.nn as nn from . import LayerError class CRF(nn.Module): """Conditional random field. This module implements a conditional random field [LMP01]_. The forward computation of this class computes the log likelihood of the given sequence of tags and emission score tensor. This class also has `~CRF.decode` method which finds the best tag sequence given an emission score tensor using `Viterbi algorithm`_. Args: num_tags: Number of tags. batch_first: Whether the first dimension corresponds to the size of a minibatch. score_reduction: reduces how the score output over batches, and then tags, and has shape ``(batch size, number of tags)`` with the exception of ``tags``, which has shape ``(batch_size, sequence length, number of tags)``; how output is returned in :meth:`decode` by: - **skip**: do not return scores, only the decoded output (default) - **none**: return the scores unaltered, then divide by the batch count - **tags**: all scores - **sum**: sum the max over batches, then divide by the batch count - **max**: max over each batch max, then divide by the batch count - **min**: min over each batch max, then divide by the batch count - **mean**: average the max over batchs, then divide by the batch count Attributes: start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size ``(num_tags,)``. end_transitions (`~torch.nn.Parameter`): End transition score tensor of size ``(num_tags,)``. transitions (`~torch.nn.Parameter`): Transition score tensor of size ``(num_tags, num_tags)``. .. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001). "Conditional random fields: Probabilistic models for segmenting and labeling sequence data". *Proc. 18th International Conf. on Machine Learning*. Morgan Kaufmann. pp. 282–289. .. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm """ def __init__(self, num_tags: int, batch_first: bool = False, score_reduction: str = 'skip') -> None: if num_tags <= 0: raise LayerError(f'Invalid number of tags: {num_tags}') super().__init__() self.num_tags = num_tags self.batch_first = batch_first self.score_reduction = score_reduction self.start_transitions = nn.Parameter(torch.empty(num_tags)) self.end_transitions = nn.Parameter(torch.empty(num_tags)) self.transitions = nn.Parameter(torch.empty(num_tags, num_tags)) self.reset_parameters() def reset_parameters(self) -> None: """Initialize the transition parameters. The parameters will be initialized randomly from a uniform distribution between -0.1 and 0.1. """ nn.init.uniform_(self.start_transitions, -0.1, 0.1) nn.init.uniform_(self.end_transitions, -0.1, 0.1) nn.init.uniform_(self.transitions, -0.1, 0.1) def __repr__(self) -> str: return f'{self.__class__.__name__}(num_tags={self.num_tags})' def forward( self, emissions: torch.Tensor, tags: torch.LongTensor, mask: Optional[torch.ByteTensor] = None, reduction: str = 'sum', ) -> torch.Tensor: """Compute the conditional log likelihood of a sequence of tags given emission scores. Args: emissions (`~torch.Tensor`): Emission score tensor of size ``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``, ``(batch_size, seq_length, num_tags)`` otherwise. tags (`~torch.LongTensor`): Sequence of tags tensor of size ``(seq_length, batch_size)`` if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise. mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)`` if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise. reduction: Specifies the reduction to apply to the output: ``none|sum|mean|token_mean``. ``none``: no reduction will be applied. ``sum``: the output will be summed over batches. ``mean``: the output will be averaged over batches. ``token_mean``: the output will be averaged over tokens. Returns: `~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if reduction is ``none``, ``()`` otherwise. """ self._validate(emissions, tags=tags, mask=mask) if reduction not in ('none', 'sum', 'mean', 'token_mean'): raise LayerError(f'Invalid reduction: {reduction}') if mask is None: mask = torch.ones_like(tags, dtype=torch.uint8) if self.batch_first: emissions = emissions.transpose(0, 1) tags = tags.transpose(0, 1) mask = mask.transpose(0, 1) # shape: (batch_size,) numerator = self._compute_score(emissions, tags, mask) # shape: (batch_size,) denominator = self._compute_normalizer(emissions, mask) # shape: (batch_size,) llh = numerator - denominator if reduction == 'none': return llh if reduction == 'sum': return llh.sum() if reduction == 'mean': return llh.mean() assert reduction == 'token_mean' return llh.sum() / mask.type_as(emissions).sum() def decode(self, emissions: torch.Tensor, mask: Optional[torch.ByteTensor] = None) -> \ Union[List[List[int]], Tuple[List[List[int]], torch.Tensor]]: """Find the most likely tag sequence using Viterbi algorithm. Args: emissions (`~torch.Tensor`): Emission score tensor of size ``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``, ``(batch_size, seq_length, num_tags)`` otherwise. mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)`` if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise. Returns: List of list containing the best tag sequence for each batch and optionally the scores based on the (~`score_reduction`) parameter in :meth:`__init__`. """ self._validate(emissions, mask=mask) if mask is None: mask = emissions.new_ones(emissions.shape[:2], dtype=torch.uint8) if self.batch_first: emissions = emissions.transpose(0, 1) mask = mask.transpose(0, 1) return self._viterbi_decode(emissions, mask) def _validate( self, emissions: torch.Tensor, tags: Optional[torch.LongTensor] = None, mask: Optional[torch.ByteTensor] = None) -> None: if emissions.dim() != 3: raise LayerError(f'Emissions must have dimension of 3, got {emissions.dim()}') if emissions.size(2) != self.num_tags: raise LayerError( f'Expected last dimension of emissions is {self.num_tags}, ' f'got {emissions.size(2)}') if tags is not None: if emissions.shape[:2] != tags.shape: raise LayerError( 'The first two dimensions of emissions and tags must match, ' f'got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}') if mask is not None: if emissions.shape[:2] != mask.shape: raise LayerError( 'The first two dimensions of emissions and mask must match, ' f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}') no_empty_seq = not self.batch_first and mask[0].all() no_empty_seq_bf = self.batch_first and mask[:, 0].all() if not no_empty_seq and not no_empty_seq_bf: raise LayerError('mask of the first timestep must all be on') def _compute_score( self, emissions: torch.Tensor, tags: torch.LongTensor, mask: torch.ByteTensor) -> torch.Tensor: # emissions: (seq_length, batch_size, num_tags) # tags: (seq_length, batch_size) # mask: (seq_length, batch_size) assert emissions.dim() == 3 and tags.dim() == 2 assert emissions.shape[:2] == tags.shape assert emissions.size(2) == self.num_tags assert mask.shape == tags.shape assert mask[0].all() seq_length, batch_size = tags.shape mask = mask.type_as(emissions) # Start transition score and first emission # shape: (batch_size,) score = self.start_transitions[tags[0]] score += emissions[0, torch.arange(batch_size), tags[0]] for i in range(1, seq_length): # Transition score to next tag, only added if next timestep is valid (mask == 1) # shape: (batch_size,) score += self.transitions[tags[i - 1], tags[i]] * mask[i] # Emission score for next tag, only added if next timestep is valid (mask == 1) # shape: (batch_size,) score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i] # End transition score # shape: (batch_size,) seq_ends = mask.long().sum(dim=0) - 1 # shape: (batch_size,) last_tags = tags[seq_ends, torch.arange(batch_size)] # shape: (batch_size,) score += self.end_transitions[last_tags] return score def _compute_normalizer( self, emissions: torch.Tensor, mask: torch.ByteTensor) -> torch.Tensor: # emissions: (seq_length, batch_size, num_tags) # mask: (seq_length, batch_size) assert emissions.dim() == 3 and mask.dim() == 2 assert emissions.shape[:2] == mask.shape assert emissions.size(2) == self.num_tags assert mask[0].all() seq_length = emissions.size(0) # Start transition score and first emission; score has size of # (batch_size, num_tags) where for each batch, the j-th column stores # the score that the first timestep has tag j # shape: (batch_size, num_tags) score = self.start_transitions + emissions[0] for i in range(1, seq_length): # Broadcast score for every possible next tag # shape: (batch_size, num_tags, 1) broadcast_score = score.unsqueeze(2) # Broadcast emission score for every possible current tag # shape: (batch_size, 1, num_tags) broadcast_emissions = emissions[i].unsqueeze(1) # Compute the score tensor of size (batch_size, num_tags, num_tags) where # for each sample, entry at row i and column j stores the sum of scores of all # possible tag sequences so far that end with transitioning from tag i to tag j # and emitting # shape: (batch_size, num_tags, num_tags) next_score = broadcast_score + self.transitions + broadcast_emissions # Sum over all possible current tags, but we're in score space, so a sum # becomes a log-sum-exp: for each sample, entry i stores the sum of scores of # all possible tag sequences so far, that end in tag i # shape: (batch_size, num_tags) next_score = torch.logsumexp(next_score, dim=1) # Set score to the next score if this timestep is valid (mask == 1) # shape: (batch_size, num_tags) score = torch.where(mask[i].unsqueeze(1), next_score, score) # End transition score # shape: (batch_size, num_tags) score += self.end_transitions # Sum (log-sum-exp) over all possible tags # shape: (batch_size,) return torch.logsumexp(score, dim=1) def _viterbi_decode(self, emissions: torch.FloatTensor, mask: torch.ByteTensor) -> List[List[int]]: # emissions: (seq_length, batch_size, num_tags) # mask: (seq_length, batch_size) assert emissions.dim() == 3 and mask.dim() == 2 assert emissions.shape[:2] == mask.shape assert emissions.size(2) == self.num_tags assert mask[0].all() seq_length, batch_size = mask.shape # Start transition and first emission # shape: (batch_size, num_tags) score = self.start_transitions + emissions[0] history = [] # Keep the scores to later return if the user wants them them based on # the score reduction, which will have shape: # (batch_size, seq_len, num_tags) if self.score_reduction == 'tags': tag_scores = [] else: tag_scores = None # score is a tensor of size (batch_size, num_tags) where for every batch, # value at column j stores the score of the best tag sequence so far that ends # with tag j # history saves where the best tags candidate transitioned from; this is used # when we trace back the best tag sequence # Viterbi algorithm recursive case: we compute the score of the best tag sequence # for every possible next tag for i in range(1, seq_length): # Broadcast viterbi score for every possible next tag # shape: (batch_size, num_tags, 1) broadcast_score = score.unsqueeze(2) # Broadcast emission score for every possible current tag # shape: (batch_size, 1, num_tags) broadcast_emission = emissions[i].unsqueeze(1) # Compute the score tensor of size (batch_size, num_tags, num_tags) where # for each sample, entry at row i and column j stores the score of the best # tag sequence so far that ends with transitioning from tag i to tag j and emitting # shape: (batch_size, num_tags, num_tags) next_score = broadcast_score + self.transitions + broadcast_emission # Find the maximum score over all possible current tag # shape: (batch_size, num_tags) next_score, indices = next_score.max(dim=1) # Set score to the next score if this timestep is valid (mask == 1) # and save the index that produces the next score # shape: (batch_size, num_tags) score = torch.where(mask[i].unsqueeze(1), next_score, score) # Add scores to cat them later based on the score reduction # shape: (batch_size, num_tags) if tag_scores is not None: tag_scores.append(score.detach().unsqueeze(1)) history.append(indices) # End transition score # shape: (batch_size, num_tags) score += self.end_transitions # Add the final transition score to our returned scores # shape: (batch_size, num_tags) if tag_scores is not None: tag_scores.append(score.detach().unsqueeze(1)) # Now, compute the best path for each sample # shape: (batch_size,) seq_ends = mask.long().sum(dim=0) - 1 best_tags_list = [] for idx in range(batch_size): # Find the tag which maximizes the score at the last timestep; this is our best tag # for the last timestep _, best_last_tag = score[idx].max(dim=0) best_tags = [best_last_tag.item()] # We trace back where the best last tag comes from, append that to our best tag # sequence, and trace it back again, and so on for hist in reversed(history[:seq_ends[idx]]): best_last_tag = hist[idx][best_tags[-1]] best_tags.append(best_last_tag.item()) # Reverse the order because we start from the last timestep best_tags.reverse() best_tags_list.append(best_tags) # If the user wants scores, return them in the desired format if self.score_reduction == 'skip': return best_tags_list else: if self.score_reduction == 'tags': # shape: (batch_size, seq_length, num_tags) score = torch.cat(tag_scores, 1) elif self.score_reduction != 'none': score = score.max(dim=1)[0] score = {'sum': score.sum(), 'max': score.max(), 'min': score.min(), 'mean': score.mean()}[self.score_reduction] score = score / batch_size return best_tags_list, score
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/layer/crf.py
crf.py
__author__ = 'Paul Landes' from typing import Any, Tuple from dataclasses import dataclass, field import logging import sys import torch from torch import nn from zensols.deeplearn import ( ActivationNetworkSettings, DropoutNetworkSettings, BatchNormNetworkSettings, ) from zensols.deeplearn.model import BaseNetworkModule from . import LayerError logger = logging.getLogger(__name__) @dataclass class DeepLinearNetworkSettings(ActivationNetworkSettings, DropoutNetworkSettings, BatchNormNetworkSettings): """Settings for a deep fully connected network using :class:`.DeepLinear`. """ ## TODO: centralize on either in_features or input_size: # embedding_output_size, RecurrentCRFNetworkSettings.input_size in_features: int = field() """The number of features to the first layer.""" out_features: int = field() """The number of features as output from the last layer.""" middle_features: Tuple[Any] = field() """The number of features in the middle layers; if ``proportions`` is ``True``, then each number is how much to grow or shrink as a percetage of the last layer, otherwise, it's the number of features. """ proportions: bool = field() """Whether or not to interpret ``middle_features`` as a proportion of the previous layer or use directly as the size of the middle layer. """ repeats: int = field() """The number of repeats of the :obj:`middle_features` configuration.""" def get_module_class_name(self) -> str: return __name__ + '.DeepLinear' class DeepLinear(BaseNetworkModule): """A layer that has contains one more nested layers, including batch normalization and activation. The input and output layer shapes are given and an optional 0 or more middle layers are given as percent changes in size or exact numbers. If the network settings are configured to have batch normalization, batch normalization layers are added after each linear layer. The drop out and activation function (if any) are applied in between each layer allowing other drop outs and activation functions to be applied before and after. Note that the activation is implemented as a function, and not a layer. For example, if batch normalization and an activation function is configured and two layers are configured, the network is configured as: 1. linear 2. batch normalization 3. activation 5. dropout 6. linear 7. batch normalization 8. activation 9. dropout The module also provides the output features of each layer with :py:meth:`n_features_after_layer` and ability to forward though only the first given set of layers with :meth:`forward_n_layers`. """ MODULE_NAME = 'linear' def __init__(self, net_settings: DeepLinearNetworkSettings, sub_logger: logging.Logger = None): """Initialize the deep linear layer. :param net_settings: the deep linear layer configuration :param sub_logger: the logger to use for the forward process in this layer """ super().__init__(net_settings, sub_logger) ns = net_settings last_feat = ns.in_features lin_layers = [] bnorm_layers = [] if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'in: {ns.in_features}, ' + f'middle: {ns.middle_features}, ' + f'out: {ns.out_features}') for mf in ns.middle_features: for i in range(ns.repeats): if ns.proportions: next_feat = int(last_feat * mf) else: next_feat = int(mf) self._add_layer(last_feat, next_feat, ns.dropout, lin_layers, bnorm_layers) last_feat = next_feat if ns.out_features is not None: self._add_layer(last_feat, ns.out_features, ns.dropout, lin_layers, bnorm_layers) self.lin_layers = nn.Sequential(*lin_layers) if len(bnorm_layers) > 0: self.bnorm_layers = nn.Sequential(*bnorm_layers) else: self.bnorm_layers = None def deallocate(self): super().deallocate() if hasattr(self, 'lin_layers'): del self.lin_layers def _add_layer(self, in_features: int, out_features: int, dropout: float, lin_layers: list, bnorm_layers): ns = self.net_settings n_layer = len(lin_layers) if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'add {n_layer}: in={in_features} out={out_features}') lin_layer = nn.Linear(in_features, out_features) lin_layers.append(lin_layer) if ns.batch_norm_d is not None: if out_features is None: raise LayerError('Bad out features') if ns.batch_norm_features is None: bn_features = out_features else: bn_features = ns.batch_norm_features layer = ns.create_batch_norm_layer(ns.batch_norm_d, bn_features) if layer is None: raise LayerError(f'Bad layer params: D={ns.batch_norm_d}, ' + f'features={out_features}') bnorm_layers.append(layer) def get_linear_layers(self) -> Tuple[nn.Module]: """Return all linear layers. """ return tuple(self.lin_layers) def get_batch_norm_layers(self) -> Tuple[nn.Module]: """Return all batch normalize layers. """ if self.bnorm_layers is not None: return tuple(self.bnorm_layers) @property def out_features(self) -> int: """The number of features output from all layers of this module. """ n_layers = len(self.get_linear_layers()) return self.n_features_after_layer(n_layers - 1) def n_features_after_layer(self, nth_layer) -> int: """Get the output features of the Nth (0 index based) layer. :param nth_layer: the layer to use for getting the output features """ return self.get_linear_layers()[nth_layer].out_features def forward_n_layers(self, x: torch.Tensor, n_layers: int, full_forward: bool = False) -> torch.Tensor: """Forward throught the first 0 index based N layers. :param n_layers: the number of layers to forward through (0-based index) :param full_forward: if ``True``, also return the full forward as a second parameter :return: the tensor output of all layers or a tuple of ``(N-th layer, all layers)`` """ return self._forward(x, n_layers, full_forward) def _forward(self, x: torch.Tensor, n_layers: int = sys.maxsize, full_forward: bool = False) -> torch.Tensor: lin_layers = self.get_linear_layers() bnorm_layers = self.get_batch_norm_layers() n_layers = min(len(lin_layers) - 1, n_layers) x_ret = None if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'linear: num layers: {len(lin_layers)}') self._shape_debug('input', x) for i, layer in enumerate(lin_layers): x = layer(x) self._shape_debug('linear', x) if bnorm_layers is not None: blayer = bnorm_layers[i] if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'batch norm: {blayer}') x = blayer(x) x = self._forward_activation(x) x = self._forward_dropout(x) if i == n_layers: x_ret = x if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'reached {i}th layer = n_layers') self._shape_debug('x_ret', x_ret) if not full_forward: self._debug('breaking') break if full_forward: return x_ret, x else: return x
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/layer/linear.py
linear.py
from __future__ import annotations """This file contains a stash used to load an embedding layer. """ __author__ = 'Paul Landes' from typing import Tuple, List, Any, Dict, Set, Iterable, Type from dataclasses import dataclass, InitVar, field from abc import ABCMeta import sys import logging import collections from functools import reduce import itertools as it from itertools import chain from pathlib import Path from zensols.util import time from zensols.config import Writeback from zensols.persist import ( chunks, Deallocatable, persisted, PersistedWork, Primeable, Stash, ) from zensols.dataset import ( SplitKeyContainer, SplitStashContainer, ) from zensols.deeplearn import TorchConfig, DeepLearnError from zensols.deeplearn.vectorize import ( FeatureVectorizerManagerSet, FeatureVectorizerManager, ) from . import ( BatchDirectoryCompositeStash, BatchFeatureMapping, DataPointIDSet, DataPoint, Batch, BatchMetadata, BatchFieldMetadata, ManagerFeatureMapping, FieldFeatureMapping, TorchMultiProcessStash, ) logger = logging.getLogger(__name__) @dataclass class BatchStash(TorchMultiProcessStash, SplitKeyContainer, Writeback, Deallocatable, metaclass=ABCMeta): """A stash that vectorizes features in to easily consumable tensors for training and testing. This stash produces instances of :class:`.Batch`, which is a batch in the machine learning sense, and the first dimension of what will become the tensor used in PyTorch. Each of these batches has a logical one to many relationship to that batche's respective set of data points, which is encapsulated in the :class:`.DataPoint` class. The stash creates subprocesses to vectorize features in to tensors in chunks of IDs (data point IDs) from the subordinate stash using ``DataPointIDSet`` instances. To speed up experiements, all available features configured in ``vectorizer_manager_set`` are encoded on disk. However, only the ``decoded_attributes`` (see attribute below) are avilable to the model regardless of what was created during encoding time. The lifecycle of the data follows: 1. Feature data created by the client, which could be language features, row data etc. 2. Vectorize the feature data using the vectorizers in ``vectorizer_manager_set``. This creates the feature contexts (``FeatureContext``) specifically meant to be pickeled. 3. Pickle the feature contexts when dumping to disk, which is invoked in the child processes of this class. 4. At train time, load the feature contexts from disk. 5. Decode the feature contexts in to PyTorch tensors. 6. The model manager uses the ``to`` method to copy the CPU tensors to the GPU (where GPUs are available). :see _process: for details on the pickling of the batch instances """ _DICTABLE_WRITE_EXCLUDES = {'batch_feature_mappings'} data_point_type: Type[DataPoint] = field() """A subclass type of :class:`.DataPoint` implemented for the specific feature. """ batch_type: Type[Batch] = field() """The batch class to be instantiated when created batchs. """ split_stash_container: SplitStashContainer = field() """The source data stash that has both the data and data set keys for each split (i.e. ``train`` vs ``test``). """ vectorizer_manager_set: FeatureVectorizerManagerSet = field() """Used to vectorize features in to tensors.""" batch_size: int = field() """The number of data points in each batch, except the last (unless the data point cardinality divides the batch size). """ model_torch_config: TorchConfig = field() """The PyTorch configuration used to (optionally) copy CPU to GPU memory. """ data_point_id_sets_path: Path = field() """The path of where to store key data for the splits; note that the container might store it's key splits in some other location. """ decoded_attributes: InitVar[Set[str]] = field() """The attributes to decode; only these are avilable to the model regardless of what was created during encoding time; if None, all are available. """ batch_feature_mappings: BatchFeatureMapping = field(default=None) """The meta data used to encode and decode each feature in to tensors. """ batch_limit: int = field(default=sys.maxsize) """The max number of batches to process, which is useful for debugging.""" def __post_init__(self, decoded_attributes): super().__post_init__() Deallocatable.__init__(self) # TODO: this class conflates key split and delegate stash functionality # in the `split_stash_container`. An instance of this type serves the # purpose, but it need not be. Instead it just needs to be both a # SplitKeyContainer and a Stash. This probably should be split out in # to two different fields. cont = self.split_stash_container if not isinstance(cont, SplitStashContainer) \ and (not isinstance(cont, SplitKeyContainer) or not isinstance(cont, Stash)): raise DeepLearnError('Expecting SplitStashContainer but got ' + f'{self.split_stash_container.__class__}') self._batch_data_point_sets = PersistedWork( self.data_point_id_sets_path, self, mkdir=True) self.priming = False self.decoded_attributes = decoded_attributes self._update_comp_stash_attribs() @property def decoded_attributes(self) -> Set[str]: """The attributes to decode. Only these are avilable to the model regardless of what was created during encoding time; if None, all are available """ return self._decoded_attributes @decoded_attributes.setter def decoded_attributes(self, attribs: Set[str]): """The attributes to decode. Only these are avilable to the model regardless of what was created during encoding time; if None, all are available """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'setting decoded attributes: {attribs}') self._decoded_attributes = attribs if isinstance(self.delegate, BatchDirectoryCompositeStash): self.delegate.load_keys = attribs @property @persisted('_batch_metadata') def batch_metadata(self) -> BatchMetadata: mapping: BatchFeatureMapping if self.batch_feature_mappings is not None: mapping = self.batch_feature_mappings else: batch: Batch = self.batch_type(None, None, None, None) batch.batch_stash = self mapping = batch._get_batch_feature_mappings() batch.deallocate() vec_mng_set: FeatureVectorizerManagerSet = self.vectorizer_manager_set attrib_keeps = self.decoded_attributes vec_mng_names = set(vec_mng_set.keys()) by_attrib = {} mmng: ManagerFeatureMapping for mmng in mapping.manager_mappings: vec_mng_name: str = mmng.vectorizer_manager_name if vec_mng_name in vec_mng_names: vec_mng: FeatureVectorizerManager = vec_mng_set[vec_mng_name] field: FieldFeatureMapping for field in mmng.fields: if field.attr in attrib_keeps: vec = vec_mng[field.feature_id] by_attrib[field.attr] = BatchFieldMetadata(field, vec) return BatchMetadata(self.data_point_type, self.batch_type, mapping, by_attrib) def _update_comp_stash_attribs(self): """Update the composite stash grouping if we're using one and if this class is already configured. """ if isinstance(self.delegate, BatchDirectoryCompositeStash): meta: BatchMetadata = self.batch_metadata meta_attribs: Set[str] = set( map(lambda f: f.attr, meta.mapping.get_attributes())) groups: Tuple[Set[str]] = self.delegate.groups gattribs = reduce(lambda x, y: x | y, groups) to_remove = gattribs - meta_attribs new_groups = [] if len(to_remove) > 0: group: Set[str] for group in groups: ng: Set[str] = meta_attribs & group if len(ng) > 0: new_groups.append(ng) self.delegate.groups = tuple(new_groups) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'meta attribs: {meta_attribs}, groups: {groups}') @property @persisted('_batch_data_point_sets') def batch_data_point_sets(self) -> List[DataPointIDSet]: """Create the data point ID sets. Each instance returned will correlate to a batch and each set of keys point to a feature :class:`.DataPoint`. """ psets = [] batch_id = 0 cont = self.split_stash_container tc_seed = TorchConfig.get_random_seed_context() if logger.isEnabledFor(logging.INFO): logger.info(f'{self.name}: creating keys with ({type(cont)}) ' + f'using batch size of {self.batch_size}') for split, keys in cont.keys_by_split.items(): if logger.isEnabledFor(logging.INFO): logger.info(f'keys for split {split}: {len(keys)}') # keys are ordered and needed to be as such for consistency # keys = sorted(keys, key=int) cslice = it.islice(chunks(keys, self.batch_size), self.batch_limit) for chunk in cslice: chunk = tuple(chunk) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'chunked size: {len(chunk)}') dp_set = DataPointIDSet(str(batch_id), chunk, split, tc_seed) psets.append(dp_set) batch_id += 1 logger.info(f'created {len(psets)} each set limited with ' + f'{self.batch_limit} with batch_limit={self.batch_limit}') return psets def _get_keys_by_split(self) -> Dict[str, Tuple[str]]: by_batch = collections.defaultdict(lambda: []) for dps in self.batch_data_point_sets: by_batch[dps.split_name].append(dps.batch_id) return {k: tuple(by_batch[k]) for k in by_batch.keys()} def _create_data(self) -> List[DataPointIDSet]: """Data created for the sub proceesses are the first N data point ID sets. """ return self.batch_data_point_sets def populate_batch_feature_mapping(self, batch: Batch): """Add batch feature mappings to a batch instance.""" if self.batch_feature_mappings is not None: batch.batch_feature_mappings = self.batch_feature_mappings def create_batch(self, points: Tuple[DataPoint], split_name: str = None, batch_id: str = None): """Create a new batch instance with data points, which happens when primed. """ bcls: Type[Batch] = self.batch_type batch: Batch = bcls(self, batch_id, split_name, points) self.populate_batch_feature_mapping(batch) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created batch: {batch}') return batch def _process(self, chunk: List[DataPointIDSet]) -> \ Iterable[Tuple[str, Any]]: """Create the batches by creating the set of data points for each :class:`.DataPointIDSet` instance. When the subordinate stash dumps the batch (specifically a subclass of :class:`.Batch`), the overrided pickle logic is used to *detatch* the batch by encoded all data in to :class:`.FeatureContext` instances. """ if logger.isEnabledFor(logging.INFO): logger.info(f'{self.name}: processing: {len(chunk)} data points') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'chunk data points: {chunk}') tseed = chunk[0].torch_seed_context dpcls: Type[DataPoint] = self.data_point_type cont = self.split_stash_container if tseed is not None: TorchConfig.set_random_seed( tseed['seed'], tseed['disable_cudnn'], False) dset: DataPointIDSet for dset in chunk: batch_id: str = dset.batch_id points: Tuple[DataPoint] = tuple( map(lambda dpid: dpcls(dpid, self, cont[dpid]), dset.data_point_ids)) batch: Batch = self.create_batch(points, dset.split_name, batch_id) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created batch: {batch}') yield (batch_id, batch) def _get_data_points_for_batch(self, batch: Any) -> Tuple[Any]: """Return the data points that were used to create ``batch``. """ dpcls = self.data_point_type cont = self.split_stash_container return tuple(map(lambda dpid: dpcls(dpid, self, cont[dpid]), batch.data_point_ids)) def load(self, name: str): with time('loaded batch {name} ({obj.split_name})'): obj = super().load(name) # add back the container of the batch to reconstitute the original # features and use the CUDA for tensor device transforms if obj is not None: if not hasattr(obj, 'batch_stash'): obj.batch_stash = self if (not hasattr(obj, 'batch_feature_mappings') or obj.batch_feature_mappings is None): self.populate_batch_feature_mapping(obj) return obj def _prime_vectorizers(self): vec_mng_set: FeatureVectorizerManagerSet = self.vectorizer_manager_set vecs = map(lambda v: v.values(), vec_mng_set.values()) for vec in chain.from_iterable(vecs): if isinstance(vec, Primeable): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'priming {vec}') vec.prime() def prime(self): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'priming {self.__class__}, is child: ' + f'{self.is_child}, currently priming: {self.priming}') if self.priming: raise DeepLearnError('Already priming') self.priming = True try: self.batch_data_point_sets self._prime_vectorizers() super().prime() finally: self.priming = False def deallocate(self): self._batch_data_point_sets.deallocate() if id(self.delegate) != id(self.split_stash_container): self._try_deallocate(self.delegate) self._try_deallocate(self.split_stash_container) self.vectorizer_manager_set.deallocate() super().deallocate() def _from_dictable(self, *args, **kwargs): # avoid long Wriable.write output dct = super()._from_dictable(*args, **kwargs) rms = tuple(filter(lambda k: k.startswith('_'), dct.keys())) for k in rms: del dct[k] return dct def clear(self): """Clear the batch, batch data point sets.""" logger.debug('clearing') super().clear() self._batch_data_point_sets.clear() def clear_all(self): """Clear the batch, batch data point sets, and the source data (:obj:`split_stash_container`). """ self.clear() self.split_stash_container.clear()
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/batch/stash.py
stash.py
from __future__ import annotations """This file contains a stash used to load an embedding layer. It creates features in batches of matrices and persists matrix only (sans features) for efficient retrival. """ __author__ = 'Paul Landes' from typing import Tuple, List, Any, Dict, Union, Set from dataclasses import dataclass, field from abc import ABCMeta, abstractmethod import sys import logging from io import TextIOBase import torch from torch import Tensor import collections from zensols.util import time from zensols.config import Writable from zensols.persist import ( persisted, PersistedWork, PersistableContainer, Deallocatable, ) from zensols.deeplearn import DeepLearnError, TorchConfig from zensols.deeplearn.vectorize import ( FeatureContext, NullFeatureContext, FeatureVectorizer, FeatureVectorizerManager, FeatureVectorizerManagerSet, CategoryEncodableFeatureVectorizer, ) from . import ( BatchError, FieldFeatureMapping, ManagerFeatureMapping, BatchFeatureMapping, ) logger = logging.getLogger(__name__) @dataclass class DataPoint(Writable, metaclass=ABCMeta): """Abstract class that makes up a container class for features created from sentences. """ id: int = field() """The ID of this data point, which maps back to the ``BatchStash`` instance's subordinate stash. """ batch_stash: BatchStash = field(repr=False) """Ephemeral instance of the stash used during encoding only.""" def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(f'id: {self.id}', depth, writer) def __getstate__(self): raise DeepLearnError('Data points should not be pickeled') @dataclass class Batch(PersistableContainer, Writable, metaclass=ABCMeta): """Contains a batch of data used in the first layer of a net. This class holds the labels, but is otherwise useless without at least one embedding layer matrix defined. The user must subclass, add mapping meta data, and optionally (suggested) add getters and/or properties for the specific data so the model can by more *Pythonic* in the PyTorch :class:`torch.nn.Module`. """ STATES = {'n': 'nascent', 'e': 'encoded', 'd': 'decoded', 't': 'memory copied', 'k': 'deallocated'} """A human friendly mapping of the encoded states.""" _PERSITABLE_TRANSIENT_ATTRIBUTES = {'_data_points'} batch_stash: BatchStash = field(repr=False) """Ephemeral instance of the stash used during encoding and decoding.""" id: int = field() """The ID of this batch instance, which is the sequence number of the batch given during child processing of the chunked data point ID setes. """ split_name: str = field() """The name of the split for this batch (i.e. ``train`` vs ``test``).""" data_points: Tuple[DataPoint] = field(repr=False) """The list of the data points given on creation for encoding, and ``None``'d out after encoding/pickinglin. """ def __post_init__(self): super().__init__() if hasattr(self, '_data_points') and self._data_points is not None: self.data_point_ids = tuple(map(lambda d: d.id, self.data_points)) self._decoded_state = PersistedWork( '_decoded_state', self, transient=True) self.state = 'n' @property def data_points(self) -> Tuple[DataPoint]: """The data points used to create this batch. If the batch does not contain the data points, which is the case when it has been decoded, then they are retrieved from the :obj:`batch_stash` instance's feature stash. """ if not hasattr(self, '_data_points') or self._data_points is None: stash: BatchStash = self.batch_stash self._data_points = stash._get_data_points_for_batch(self) return self._data_points @data_points.setter def data_points(self, data_points: Tuple[DataPoint]): self._data_points = data_points @abstractmethod def _get_batch_feature_mappings(self) -> BatchFeatureMapping: """Return the feature mapping meta data for this batch and it's data points. It is best to define a class level instance of the mapping and return it here to avoid instancing for each batch. :see: :class:`.BatchFeatureMapping` """ pass def get_labels(self) -> torch.Tensor: """Return the label tensor for this batch. """ bmap: BatchFeatureMapping = self._get_batch_feature_mappings() if bmap is None: raise DeepLearnError('No batch feature mapping set') label_attr = bmap.label_attribute_name return self.attributes[label_attr] @property @persisted('_has_labels', transient=True) def has_labels(self) -> bool: """Return whether or not this batch has labels. If it doesn't, it is a batch used for prediction. """ return self.get_labels() is not None def get_label_classes(self) -> List[str]: """Return the labels in this batch in their string form. This assumes the label vectorizer is instance of :class:`~zensols.deeplearn.vectorize.CategoryEncodableFeatureVectorizer`. :return: the reverse mapped, from nominal values, labels """ vec: FeatureVectorizer = self.get_label_feature_vectorizer() if not isinstance(vec, CategoryEncodableFeatureVectorizer): raise BatchError( 'Reverse label decoding is only supported with type of ' + 'CategoryEncodableFeatureVectorizer, but got: ' + f'{vec} ({(type(vec))})') return vec.get_classes(self.get_labels().cpu()) def get_label_feature_vectorizer(self) -> FeatureVectorizer: """Return the label vectorizer used in the batch. This assumes there's only one vectorizer found in the vectorizer manager. :param batch: used to access the vectorizer set via the batch stash """ mapping: BatchFeatureMapping = self._get_batch_feature_mappings() field_name: str = mapping.label_attribute_name mng, f = mapping.get_field_map_by_attribute(field_name) vec_name: str = mng.vectorizer_manager_name vec_mng_set = self.batch_stash.vectorizer_manager_set vec: FeatureVectorizerManager = vec_mng_set[vec_name] return vec[f.feature_id] def size(self) -> int: """Return the size of this batch, which is the number of data points. """ return len(self.data_point_ids) @property def attributes(self) -> Dict[str, torch.Tensor]: """Return the attribute batched tensors as a dictionary using the attribute names as the keys. """ return self._get_decoded_state() def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_data_points: bool = False): self._write_line(self.__class__.__name__, depth, writer) self._write_line(f'size: {self.size()}', depth + 1, writer) for k, v in self.attributes.items(): shape = None if v is None else v.shape self._write_line(f'{k}: {shape}', depth + 2, writer) if include_data_points: self._write_line('data points:', depth + 1, writer) for dp in self.get_data_points(): dp.write(depth + 2, writer) @property def _feature_contexts(self) -> \ Dict[str, Dict[str, Union[FeatureContext, Tuple[FeatureContext]]]]: has_ctx = hasattr(self, '_feature_context_inst') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'has feature contexts: {has_ctx}') if has_ctx: if self._feature_context_inst is None: raise BatchError('Bad state transition, null contexts') else: with time(f'encoded batch {self.id}'): self._feature_context_inst = self._encode() if logger.isEnabledFor(logging.INFO): logger.info(f'access context: (state={self.state}), num keys=' + f'{len(self._feature_context_inst.keys())}') return self._feature_context_inst @_feature_contexts.setter def _feature_contexts(self, contexts: Dict[str, Dict[ str, Union[FeatureContext, Tuple[FeatureContext]]]]): if logger.isEnabledFor(logging.DEBUG): obj = 'None' if contexts is None else contexts.keys() logger.debug(f'setting context: {obj}') self._feature_context_inst = contexts def __getstate__(self): if logger.isEnabledFor(logging.INFO): logger.info(f'create batch state {self.id} (state={self.state})') assert self.state == 'n' if not hasattr(self, '_feature_context_inst'): self._feature_contexts self.state = 'e' state = super().__getstate__() state.pop('batch_stash', None) state.pop('data_points', None) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'state keys: {state.keys()}') return state def __setstate__(self, state): super().__setstate__(state) if logger.isEnabledFor(logging.INFO): logger.info(f'unpickling batch: {self.id}') @persisted('_decoded_state') def _get_decoded_state(self): """Decode the pickeled attriubtes after loaded by containing ``BatchStash`` and remove the context information to save memory. """ assert self.state == 'e' if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoding ctxs: {self._feature_context_inst.keys()}') assert self._feature_context_inst is not None with time(f'decoded batch {self.id}'): attribs = self._decode(self._feature_contexts) self._feature_contexts = None assert self._feature_context_inst is None self.state = 'd' if logger.isEnabledFor(logging.DEBUG): logger.debug(f'return decoded attributes: {attribs.keys()}') return attribs @property def torch_config(self) -> TorchConfig: """The torch config used to copy from CPU to GPU memory.""" return self.batch_stash.model_torch_config def _clone(self) -> Batch: def to(arr: Tensor) -> Tensor: if arr is not None: arr = torch_config.to(arr) return arr torch_config = self.torch_config attribs = self._get_decoded_state() attribs = {k: to(attribs[k]) for k in attribs.keys()} inst = self.__class__(self.batch_stash, self.id, self.split_name, None) inst.data_point_ids = self.data_point_ids inst._decoded_state.set(attribs) inst.state = 't' return inst def to(self) -> Batch: """Clone this instance and copy data to the CUDA device configured in the batch stash. :return: a clone of this instance with all attribute tensors copied to the given torch configuration device """ if self.state == 't': inst = self else: inst = self._clone() return inst def deallocate(self): with time('deallocated attribute', logging.DEBUG): if self.state == 'd' or self.state == 't': attrs = self.attributes for arr in tuple(attrs.values()): del arr attrs.clear() del attrs self._decoded_state.deallocate() if hasattr(self, 'batch_stash'): del self.batch_stash if hasattr(self, 'data_point_ids'): del self.data_point_ids if hasattr(self, '_data_points'): Deallocatable._try_deallocate(self._data_points) del self._data_points with time('deallocated feature context', logging.DEBUG): if hasattr(self, '_feature_context_inst') and \ self._feature_context_inst is not None: for ctx in self._feature_context_inst.values(): self._try_deallocate(ctx) self._feature_context_inst.clear() del self._feature_context_inst self.state = 'k' super().deallocate() logger.debug(f'deallocated batch: {self.id}') def _encode_field(self, vec: FeatureVectorizer, fm: FieldFeatureMapping, vals: List[Any]) -> FeatureContext: """Encode a set of features in to feature contexts: :param vec: the feature vectorizer to use to create the context :param fm: the field metadata for the feature values :param vals: a list of feature input values used to create the context :see: :class:`.BatchFeatureMapping` """ if fm.is_agg: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding aggregate with {vec}') ctx = vec.encode(vals) else: ctx = tuple(map(lambda v: vec.encode(v), vals)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoded: {ctx.__class__}') return ctx def _decode_context(self, vec: FeatureVectorizer, ctx: FeatureContext, fm: FieldFeatureMapping) -> torch.Tensor: """Decode ``ctx`` in to a tensor using vectorizer ``vec``. """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decode with {fm}') if isinstance(ctx, tuple): arrs = tuple(map(vec.decode, ctx)) try: arr = torch.cat(arrs) except Exception as e: raise BatchError( 'Batch has inconsistent data point length, eg magic ' + f'bedding or using combine_sentences for NLP for: {vec}') \ from e if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decodeed shape for {fm}: {arr.shape}') else: arr = vec.decode(ctx) return arr def _is_missing(self, aval: Union[Any, Tuple[Any]]): return (aval is None) or \ (isinstance(aval, (tuple, list)) and all(v is None for v in aval)) def _encode(self) -> Dict[str, Dict[str, Union[FeatureContext, Tuple[FeatureContext]]]]: """Called to create all matrices/arrays needed for the layer. After this is called, features in this instance are removed for so pickling is fast. The returned data structure has the following form: - feature vector manager name - attribute name -> feature context where feature context can be either a single context or a tuple of context. If it is a tuple, then each is decoded in turn and the resulting matrices will be concatenated together at decode time with ``_decode_context``. Note that the feature id is an attribute of the feature context. :see: meth:`_decode_context` """ vms = self.batch_stash.vectorizer_manager_set attrib_to_ctx = collections.OrderedDict() bmap: BatchFeatureMapping = self._get_batch_feature_mappings() label_attr: str = bmap.label_attribute_name if logger.isEnabledFor(logging.DEBUG): logger.debug(f"encoding with label: '{label_attr}' using {vms}") mmap: ManagerFeatureMapping for mmap in bmap.manager_mappings: vm: FeatureVectorizerManager = vms[mmap.vectorizer_manager_name] fm: FieldFeatureMapping for fm in mmap.fields: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'field: {fm}') if fm.feature_id in attrib_to_ctx: raise BatchError(f'Duplicate feature: {fm.feature_id}') vec: FeatureVectorizer = vm[fm.feature_id] avals: List[Any] = [] ctx: FeatureContext = None dp: DataPoint for dp in self.data_points: aval = getattr(dp, fm.attribute_accessor) avals.append(aval) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'attr: {fm.attr} => {aval.__class__}') try: is_label = fm.is_label or (label_attr == fm.attr) if is_label and self._is_missing(aval): # assume prediction if logger.isEnabledFor(logging.DEBUG): logger.debug('skipping missing label') ctx = NullFeatureContext(fm.feature_id) else: ctx = self._encode_field(vec, fm, avals) except Exception as e: raise BatchError( f'Could not vectorize {fm} using {vec}: {e}') from e if ctx is not None: attrib_to_ctx[fm.attr] = ctx return attrib_to_ctx def _decode(self, ctx: Dict[str, Dict[str, Union[FeatureContext, Tuple[FeatureContext]]]]): """Called to create all matrices/arrays needed for the layer. After this is called, features in this instance are removed for so pickling is fast. :param ctx: the context to decode """ attribs = collections.OrderedDict() attrib_keeps: Set[str] = self.batch_stash.decoded_attributes if attrib_keeps is not None: attrib_keeps = set(attrib_keeps) bmap: BatchFeatureMapping = self._get_batch_feature_mappings() label_attr: str = bmap.label_attribute_name vms: FeatureVectorizerManagerSet = \ self.batch_stash.vectorizer_manager_set mmap: ManagerFeatureMapping for attrib, ctx in ctx.items(): mng_fmap = bmap.get_field_map_by_attribute(attrib) if mng_fmap is None: raise BatchError( f'Missing mapped attribute \'{attrib}\' on decode') mng, fmap = mng_fmap mmap_name = mng.vectorizer_manager_name feature_id = fmap.feature_id vm: FeatureVectorizerManager = vms[mmap_name] if logger.isEnabledFor(logging.DEBUG): logger.debug(f'vec manager: {mmap_name} -> {vm}') # keep only the desired feature subset for speed up if attrib_keeps is not None and attrib not in attrib_keeps: continue if attrib_keeps is not None: attrib_keeps.remove(attrib) if isinstance(ctx, tuple): feature_id = ctx[0].feature_id elif ctx is None: feature_id = None else: feature_id = ctx.feature_id vec: FeatureVectorizer = vm.get(feature_id) if vec is None: raise BatchError( f'No such vectorizer for feature ID: {feature_id}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoding {ctx} with {vec}') arr: Tensor = self._decode_context(vec, ctx, fmap) if arr is None and fmap.attr != label_attr: raise BatchError( f'No decoded value for {fmap}, which is not ' + f"the label attribute '{label_attr}'") if logger.isEnabledFor(logging.DEBUG): shape = '<none>' if arr is None else arr.shape logger.debug(f'decoded: {attrib} -> {shape}') if attrib in attribs: raise BatchError( f'Attribute collision on decode: {attrib}') attribs[attrib] = arr if attrib_keeps is not None and len(attrib_keeps) > 0: raise BatchError(f'Unknown attriubtes: {attrib_keeps}') return attribs @property def state_name(self): return self.STATES.get(self.state, 'unknown: ' + self.state) def __len__(self): return len(self.data_point_ids) def keys(self) -> Tuple[str]: return tuple(self.attributes.keys()) def __getitem__(self, key: str) -> torch.Tensor: return self.attributes[key] def __str__(self): # the data_points property overrides the @dataclass field, so we must # eclipse it with our own to stringt return (f'{self.__class__.__name__}: id={self.id}, ' + f'split={self.split_name}, size={self.size()}, ' + f'state={self.state}') def __repr__(self): return self.__str__() @dataclass class DefaultBatch(Batch): """A concrete implementation that uses a :obj:`batch_feature_mapping` usually configured with :class:`.ConfigBatchFeatureMapping` and provided by :class:`.BatchStash`. """ _PERSITABLE_REMOVE_ATTRIBUTES = {'batch_feature_mappings'} batch_feature_mappings: BatchFeatureMapping = field(default=None) """The mappings used by this instance.""" def _get_batch_feature_mappings(self) -> BatchFeatureMapping: assert self.batch_feature_mappings is not None return self.batch_feature_mappings def _clone(self) -> Batch: copy = super()._clone() copy.batch_feature_mappings = self.batch_feature_mappings return copy
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/batch/domain.py
domain.py
__author__ = 'Paul Landes' from typing import Tuple, List, Union, Iterable, Set from dataclasses import dataclass, field import sys import logging from itertools import chain from io import TextIOBase from zensols.config import Dictable from zensols.deeplearn.vectorize import FeatureVectorizerManager logger = logging.getLogger(__name__) @dataclass class FieldFeatureMapping(Dictable): """Meta data describing an attribute of the data point. """ attr: str = field() """The (human readable/used) name for the mapping.""" feature_id: str = field() """Indicates which vectorizer to use.""" is_agg: bool = field(default=False) """If ``True``, tuplize across all data points and encode as one tuple of data to create the batched tensor on decode; otherwise, each data point feature is encoded and concatenated on decode. """ attr_access: str = field(default=None) """The attribute on the source :class:`DataPoint` instance (see :obj:`~attribute_accessor`). """ is_label: bool = field(default=False) """Whether or not this field is a label. The is ``True`` in cases where there is more than one label. In these cases, usually which label to use changes based on the model (i.e. word embedding vs. BERT word piece token IDs). This is used in :class:`.Batch` to skip label vectorization while encoding of prediction based batches. """ @property def attribute_accessor(self): """Return the attribute name on the :class:`DataPoint` instance. This uses :obj:`~attr_access` if it is not ``None``, otherwise, use :obj:`~attr`. """ return self.attr if self.attr_access is None else self.attr_access def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(str(self), depth, writer) @dataclass class ManagerFeatureMapping(Dictable): """Meta data for a vectorizer manager with fields describing attributes to be vectorized from features in to feature contests. """ vectorizer_manager_name: str = field() """The configuration name that identifiees an instance of ``FeatureVectorizerManager``. """ fields: Tuple[FieldFeatureMapping] = field() """The fields of the data point to be vectorized.""" def remove_field(self, attr: str) -> bool: """Remove a field by attribute if it exists. :param attr: the name of the field's attribute to remove :return: ``True`` if the field was removed, ``False`` otherwise """ plen = len(self.fields) self.fields = tuple(filter(lambda f: f.attr != attr, self.fields)) return plen != len(self.fields) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(self.vectorizer_manager_name, depth, writer) for f in self.fields: f.write(depth + 1, writer) @dataclass class BatchFeatureMapping(Dictable): """The meta data used to encode and decode each feature in to tensors. It is best to define a class level instance of this in the ``Batch`` class and return it with ``_get_batch_feature_mappings``. An example from the iris data set test:: MAPPINGS = BatchFeatureMapping( 'label', [ManagerFeatureMapping( 'iris_vectorizer_manager', (FieldFeatureMapping('label', 'ilabel', True), FieldFeatureMapping('flower_dims', 'iseries')))]) """ label_attribute_name: str = field(default='label') """The name of the attribute used for labels.""" manager_mappings: List[ManagerFeatureMapping] = field(default_factory=list) """The manager level attribute mapping meta data.""" def __post_init__(self): attrs = tuple(map(lambda f: f.attr, self.get_attributes())) attr_set = set(attrs) if len(attrs) != len(attr_set): raise ValueError(f'attribute names must be unique: {attrs}') def get_attributes(self) -> Iterable[FieldFeatureMapping]: return chain.from_iterable( map(lambda m: m.fields, self.manager_mappings)) @property def label_feature_id(self) -> Union[None, str]: """Return the feature id of the label. This is the vectorizer used to transform the label data. """ mng, f = self.get_field_map_by_attribute(self.label_attribute_name) if f is not None: return f.feature_id @property def label_vectorizer_manager(self) -> \ Union[FeatureVectorizerManager, None]: """Return the feature id of the label. This is the vectorizer used to transform the label data. """ mng, f = self.get_field_map_by_attribute(self.label_attribute_name) if mng is not None: return mng def get_field_map_by_feature_id(self, feature_id: str) -> \ Union[None, Tuple[ManagerFeatureMapping, FieldFeatureMapping]]: for mng in self.manager_mappings: for f in mng.fields: if feature_id == f.feature_id: return mng, f def get_field_map_by_attribute(self, attribute_name: str) -> \ Union[None, Tuple[ManagerFeatureMapping, FieldFeatureMapping]]: for mng in self.manager_mappings: for f in mng.fields: if attribute_name == f.attr: return mng, f def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(f'label: {self.label_attribute_name}', depth, writer) for m in self.manager_mappings: m.write(depth + 1, writer) @dataclass class ConfigBatchFeatureMapping(BatchFeatureMapping): """A utility class that allows a easy configuration driven way of refining :obj:`manager_mappings` by adding and deleting them both at the mapping and field levels. These edits happen during the classes ``__init__``. """ batch_feature_mapping_adds: List[BatchFeatureMapping] = field( default_factory=list, repr=False) """Mappings to add.""" field_remove: Set[str] = field(default_factory=set, repr=False) """Field removed from all batch mappings.""" field_keep: Set[str] = field(default=None, repr=False) """Only these field remain from all batch mappings.""" def __post_init__(self): super().__post_init__() self.manager_mappings.extend( chain.from_iterable(map(lambda m: m.manager_mappings, self.batch_feature_mapping_adds))) mng: BatchFeatureMapping for mng in self.manager_mappings: keeps = set(map(lambda f: f.attr, mng.fields)) if self.field_keep is not None: keeps = keeps & self.field_keep keeps = keeps - self.field_remove mng.fields = tuple(filter(lambda f: f.attr in keeps, mng.fields)) if self.label_attribute_name is None: for mng in self.manager_mappings: if mng.label_attribute_name is not None: self.label = mng.label_attribute_name
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/batch/mapping.py
mapping.py
__author__ = 'Paul Landes' from typing import Dict, Type from dataclasses import dataclass from dataclasses import field as dc_field import sys from io import TextIOBase from zensols.config import Dictable from zensols.deeplearn import NetworkSettings from zensols.deeplearn.vectorize import FeatureVectorizer from . import DataPoint, Batch, BatchFeatureMapping, FieldFeatureMapping @dataclass class BatchFieldMetadata(Dictable): """Data that describes a field mapping in a batch object. """ field: FieldFeatureMapping = dc_field() """The field mapping.""" vectorizer: FeatureVectorizer = dc_field(repr=False) """The vectorizer used to map the field.""" @property def shape(self): return self.vectorizer.shape def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(self.field.attr, depth, writer) self._write_line('field:', depth + 1, writer) self.field.write(depth + 2, writer) self._write_line('vectorizer:', depth + 1, writer) self.vectorizer.write(depth + 2, writer) @dataclass class BatchMetadata(Dictable): """Describes metadata about a :class:`.Batch` instance. """ data_point_class: Type[DataPoint] = dc_field() """The :class:`.DataPoint` class, which are created at encoding time.""" batch_class: Type[Batch] = dc_field() """The :class:`.Batch` class, which are created at encoding time.""" mapping: BatchFeatureMapping = dc_field() """The mapping used for encoding and decoding the batch.""" fields_by_attribute: Dict[str, BatchFieldMetadata] = dc_field(repr=False) """Mapping by field name to attribute.""" def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(f'data point: {self.data_point_class}', depth, writer) self._write_line(f'batch: {self.batch_class}', depth, writer) self._write_line('mapping:', depth, writer) self.mapping.write(depth + 1, writer) self._write_line('attributes:', depth, writer) for attr, field in self.fields_by_attribute.items(): field.write(depth + 1, writer) @dataclass class MetadataNetworkSettings(NetworkSettings): """A network settings container that has metadata about batches it recieves for its model. """ _PERSITABLE_TRANSIENT_ATTRIBUTES = {'batch_stash'} batch_stash: 'BatchStash' = dc_field(repr=False) """The batch stash that created the batches and has the batch metdata. """ @property def batch_metadata(self) -> BatchMetadata: """Return the batch metadata used by this model. """ return self.batch_stash.batch_metadata def _from_dictable(self, *args, **kwargs): dct = super()._from_dictable(*args, **kwargs) del dct['batch_stash'] return dct
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/batch/meta.py
meta.py
__author__ = 'Paul Landes' from typing import Any, Tuple from dataclasses import dataclass, field from enum import Enum import sys import logging from logging import Logger import json from pathlib import Path from tqdm import tqdm import numpy as np import torch from torch import nn from torch.optim.lr_scheduler import LambdaLR from zensols.deeplearn import ModelError from zensols.deeplearn.result import EpochResult class UpdateAction(Enum): """An action type to invoke on the :class:`.ModelExecutor` during training. """ ITERATE_EPOCH = 0 SET_EPOCH = 1 STOP = 2 @dataclass class TrainStatus(object): """Indicates what to do in the next epoch of the training cycle. """ action: UpdateAction epoch: int = field(default=None) reason: str = field(default=None) @dataclass class TrainManager(object): """The class is used to assist in the training of the :class:`.ModelExecutor`. It updates validation loss and helps with early stopping decisions. It also watches for a file on the file system to provide instructions on what to do in the next epoch. """ status_logger: Logger = field() """The logger to record status updates during training.""" progress_logger: Logger = field() """The logger to record progress updates during training. This is used only when the progress bar is turned off (see :meth:`.ModelFacade._configure_cli_logging`). """ update_path: Path = field() """See :obj:`.ModelExecutor.update_path`. """ max_consecutive_increased_count: int = field() """See :obj:`.Domain.max_consecutive_increased_count`. """ progress_bar_number_width: int = field(default=6) """The string width of the train/validation loss metrics in the progress bar, which needs to be greater than 4. """ def start(self, optimizer: nn.L1Loss, scheduler: Any, n_epochs: int, pbar: tqdm): # clear any early stop state if self.update_path is not None and self.update_path.is_file(): self.progress_logger.info( f'cleaning update file: {self.update_path}') self.update_path.unlink() self.optimizer = optimizer self.scheduler = scheduler self.n_epochs = n_epochs self.current_epoch = 0 self.consecutive_increased_count = 0 # set initial "min" to infinity self.valid_loss_min = np.Inf self.pbar = pbar if self.progress_logger.isEnabledFor(logging.INFO): self.progress_logger.info(f'watching update file {self.update_path}') self.validation_loss_decreases = 0 def _get_optimizer_lr(self, optimizer: torch.optim.Optimizer) -> float: """Return the current optimizer learning rate, which can be modified by a scheduler if one is configured. """ param_group = next(iter(optimizer.param_groups)) return float(param_group['lr']) def _fixed_sci_format(self, v: str) -> str: """Format a number to a width resorting to scientific notation where necessary. The returned string is left padded with space in cases where scientific notation is too wide for ``v > 0``. The mantissa is cut off also for ``v > 0`` when the string version of the number is too wide. """ length: int = self.progress_bar_number_width n: int = length ln: int = None pad: int = None while n > 0: i = len('%#.*g' % (n, v)) s = '%.*g' % (n + n - i, v) ln = len(s) pad = length - ln if pad >= 0: break n -= 1 if pad > 0: s = (' ' * pad) + s return s def update_loss(self, valid_epoch_result: EpochResult, train_epoch_result: EpochResult, ave_valid_loss: float) -> Tuple[float, bool]: """Update the training and validation loss. :return: a tuple of the latest minimum validation loss and whether or not the last validation loss has decreased """ logger = self.status_logger progress_logger = self.progress_logger optimizer = self.optimizer valid_loss = valid_epoch_result.ave_loss sfmt = self._fixed_sci_format # adjust the learning rate if a scheduler is configured if self.scheduler is not None: # the LambdaLR scheduler creates warnings when it gets the # validation loss if isinstance(self.scheduler, LambdaLR): self.scheduler.step() else: self.scheduler.step(ave_valid_loss) if logger.isEnabledFor(logging.DEBUG): logger.debug('epoch ave valid loss/results averaged valid_loss ' + f'{ave_valid_loss}/{valid_loss}, ' + f'losses: {len(valid_epoch_result.losses)}') decreased = valid_loss < self.valid_loss_min dec_str = '\\/' if decreased else '/\\' if abs(ave_valid_loss - valid_loss) > 1e-10: logger.warning('validation loss and result are not close: ' + f'{ave_valid_loss} - {valid_loss} > 1e-10') if train_epoch_result.contains_results: train_loss = train_epoch_result.ave_loss else: train_loss = -1 msg = (f'tr:{sfmt(train_loss)}|' + f'va min:{sfmt(self.valid_loss_min)}|' + f'va:{sfmt(valid_loss)}') if self.scheduler is not None: lr = self._get_optimizer_lr(optimizer) msg += f'|lr:{sfmt(lr)}' msg += f' {dec_str}' if self.pbar is not None: if logger.isEnabledFor(logging.DEBUG): logger.debug(msg) self.pbar.set_description(msg) else: if logger.isEnabledFor(logging.INFO): logger.info(f'epoch {self.current_epoch}/' + f'{self.n_epochs}: {msg}') # save model if validation loss has decreased if decreased: if progress_logger.isEnabledFor(logging.DEBUG): progress_logger.debug('validation loss decreased min/iter' + f'({self.valid_loss_min:.6f}' + f'/{valid_loss:.6f}); saving model') self.valid_loss_min = valid_loss self.consecutive_increased_count = 0 self.validation_loss_decreases += 1 else: if progress_logger.isEnabledFor(logging.DEBUG): progress_logger.debug('validation loss increased min/iter' + f'({self.valid_loss_min:.6f}' + f'/{valid_loss:.6f})') self.consecutive_increased_count += 1 return self.valid_loss_min, decreased def _read_status(self) -> TrainStatus: """Read the early stop/update file and return a value to update the current epoch number (if any). """ update = TrainStatus(UpdateAction.ITERATE_EPOCH) update_path = self.update_path if update_path is not None: if self.status_logger.isEnabledFor(logging.DEBUG): self.status_logger.debug(f'update check at {update_path}') if update_path.exists(): data = None try: with open(update_path) as f: data = json.load(f) if 'epoch' in data: epoch = int(data['epoch']) update.epoch = epoch update.action = UpdateAction.SET_EPOCH update.reason = (f'update from {update_path}: ' + f'setting epoch to: {epoch}') except Exception as e: reason = f'bad format in {update_path}--assume exit: {e}' update.action = UpdateAction.STOP update.reason = reason update_path.unlink() return update def _get_stop_reason(self) -> str: reason = None if self.current_epoch >= self.n_epochs: reason = f'epoch threshold reached at {self.n_epochs}' elif (self.consecutive_increased_count > self.max_consecutive_increased_count): reason = ('reached max consecutive increased count: ' + f'{self.max_consecutive_increased_count}') return reason def get_status(self) -> TrainStatus: """Return the epoch to set in the training loop of the :class:`.ModelExecutor`. """ status = self._read_status() if status.action == UpdateAction.STOP: # setting to the max value fails the executors train outter loop # causing a robust non-error exit status.epoch = sys.maxsize elif status.action == UpdateAction.SET_EPOCH: self.current_epoch = status.epoch if self.pbar is not None: self.pbar.reset() self.pbar.update(self.current_epoch) elif status.action == UpdateAction.ITERATE_EPOCH: self.current_epoch += 1 status.epoch = self.current_epoch stop_reason = self._get_stop_reason() if self.pbar is not None: self.pbar.update() if stop_reason is not None: status.action = UpdateAction.STOP status.reason = stop_reason else: raise ModelError(f'Unknownn status: {status}') if status.reason and self.status_logger.isEnabledFor(logging.INFO): self.status_logger.info(status.reason) return status def stop(self) -> bool: """Stops the execution of training the model. Currently this is done by creating a file the executor monitors. :return: ``True`` if the application is configured to early stop and the signal has not already been given """ update_path = self.update_path if update_path is not None and not update_path.is_file(): update_path.parent.mkdir(parents=True, exist_ok=True) update_path.touch() self.status_logger.info(f'created early stop file: {update_path}') return True return False
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/trainmng.py
trainmng.py
__author__ = 'Paul Landes' from typing import Dict, Any from dataclasses import dataclass, field, InitVar import logging import collections from pathlib import Path import torch from zensols.util import time from zensols.persist import persisted, PersistedWork from . import ModelExecutor logger = logging.getLogger(__name__) @dataclass class WeightedModelExecutor(ModelExecutor): """A class that weighs labels non-uniformly. This class uses invert class sampling counts to help the minority label. """ weighted_split_name: str = field(default='train') """The split name used to re-weight labels.""" weighted_split_path: InitVar[Path] = field(default=None) """The path to the cached weithed labels.""" use_weighted_criterion: bool = field(default=True) """If ``True``, use the class weights in the initializer of the criterion. Setting this to ``False`` effectively disables this class. """ def __post_init__(self, weighted_split_path: Path): super().__post_init__() if weighted_split_path is None: path = '_label_counts' else: file_name = f'weighted-labels-{self.weighted_split_name}.dat' path = weighted_split_path / file_name self._label_counts = PersistedWork(path, self) def clear(self): super().clear() self._label_counts.clear() @persisted('_label_counts') def get_label_counts(self) -> Dict[int, int]: stash = self.dataset_stash.splits[self.weighted_split_name] label_counts = collections.defaultdict(lambda: 0) batches = tuple(stash.values()) for batch in batches: for label in batch.get_labels(): label_counts[label.item()] += 1 for batch in batches: batch.deallocate() return dict(label_counts) @persisted('_class_weighs') def get_class_weights(self) -> torch.Tensor: """Compute invert class sampling counts to return the weighted class. """ counts = self.get_label_counts().items() counts = map(lambda x: x[1], sorted(counts, key=lambda x: x[0])) counts = self.torch_config.from_iterable(counts) return counts.mean() / counts def get_label_statistics(self) -> Dict[str, Dict[str, Any]]: """Return a dictionary whose keys are the labels and values are dictionaries containing statistics on that label. """ counts = self.get_label_counts() weights = self.get_class_weights().cpu().numpy() batch = next(iter(self.dataset_stash.values())) vec = batch.batch_stash.get_label_feature_vectorizer(batch) classes = vec.get_classes(range(weights.shape[0])) return {c[0]: {'index': c[1], 'count': counts[c[1]], 'weight': weights[c[1]]} for c in zip(classes, range(weights.shape[0]))} def _create_criterion(self) -> torch.optim.Optimizer: resolver = self.config_factory.class_resolver criterion_class_name = self.model_settings.criterion_class_name if logger.isEnabledFor(logging.DEBUG): logger.debug(f'criterion: {criterion_class_name}') criterion_class = resolver.find_class(criterion_class_name) with time('weighted classes'): class_weights = self.get_class_weights() if logger.isEnabledFor(logging.INFO): logger.info(f'using class weights: {class_weights}') if self.use_weighted_criterion: inst = criterion_class(weight=class_weights) else: inst = criterion_class() return inst
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/wgtexecutor.py
wgtexecutor.py
__author__ = 'Paul Landes' from typing import Tuple, Dict, Iterable, Any, Union from dataclasses import dataclass, field import logging import sys import re from io import TextIOBase from pathlib import Path import yaml import pandas as pd from zensols.config import Writable from zensols.deeplearn.model import ModelFacade from zensols.deeplearn.result import ( ClassificationMetrics, PredictionsDataFrameFactory, ModelResultError, ModelResultManager, ModelResultReporter, ) logger = logging.getLogger(__name__) @dataclass class PerformanceMetricsDumper(Writable): """Formats performance metrics, which can be used in papers. :see: :class:`.LatexPerformanceMetricsDumper` """ facade: ModelFacade = field() """The facade used to fetch previously written results.""" summary_columns: Tuple[str] = field( default=tuple('mF1t mPt mRt MF1t MPt MRt'.split())) """The columns used in the summary report.""" by_label_columns: Tuple[str] = field( default=tuple('mF1 mP mR MF1 MP MR acc count'.split())) """The columns used in the by-label report.""" name_replace: Tuple[str, str] = field(default=None) """If provided, a tuple of ``(regular expression, replacement)`` string given to :func:`re.sub` in the name column of generated tables. """ sort_column: str = field(default='mF1') """The column to sort, with the exception of the majority label, which is always first. """ majority_label_res_id: Union[str, bool] = field(default=True) """Indicates how to create (if any) the majority label performance metrics. If a string, use as the result id (``res_id``) of previous result set used to compute the majority label statitics to include in the summary. If ``True`` use the results from the last tested model. If ``None`` the majority label is not added. """ precision: int = field(default=3) """The number of signification digits to format results.""" @staticmethod def format_thousand(x: int, apply_k: bool = True, add_comma: bool = True) -> str: add_k = False if x > 10000: if apply_k: x = round(x / 1000) add_k = True if add_comma: x = f'{x:,}' else: x = str(x) if add_k: x += 'K' return x @staticmethod def capitalize(name: str) -> str: return ' '.join(map(lambda s: s.capitalize(), re.split(r'[ _-]', name))) @staticmethod def _map_col(col: str) -> str: desc = ModelResultReporter.METRIC_DESCRIPTIONS.get(col) if desc is not None: return f'{col} is the {desc}' def _map_name(self, name: str) -> str: m: re.Match = re.match(r'^(.+): (\d+)$', name) if m is None: raise ModelResultError(f'Unknown model name format: {name}') run_idx = int(m.group(2)) if run_idx != 1: raise ModelResultError( f'Multiple runs not supported: {name} ({run_idx})') name = m.group(1) if self.name_replace is not None: name = re.sub(*self.name_replace, name) return name @property def summary_dataframe(self) -> pd.DataFrame: pcols = list(self.summary_columns) rcols = list(map(lambda x: x[:-1], pcols)) rm: ModelResultManager = self.facade.result_manager reporter = ModelResultReporter(rm) reporter.include_validation = False df: pd.DataFrame = reporter.dataframe df = df[['name'] + pcols] df = df.rename(columns=dict(zip(pcols, rcols))) if self.sort_column is not None: df = df.sort_values(self.sort_column) df['name'] = df['name'].apply(self._map_name) if self.majority_label_res_id is not None: params = {} if isinstance(self.majority_label_res_id, str): params['name'] = self.majority_label_res_id pred_factory: PredictionsDataFrameFactory = \ self.facade.get_predictions_factory(**params) mets: ClassificationMetrics = pred_factory.majority_label_metrics majlab = pred_factory.metrics_to_series('Majority Label', mets) majlab = majlab.rename({ PredictionsDataFrameFactory.LABEL_COL: 'name'}) dfm = pd.DataFrame([majlab[['name'] + rcols]]) df = pd.concat((dfm, df), ignore_index=True) fmt = '{x:.%sf}' % self.precision for c in rcols: df[c] = df[c].apply(lambda x: fmt.format(x=x)) df = df.rename(columns={'name': 'Name'}) return df def _get_best_results(self) -> pd.DataFrame: rm: ModelResultManager = self.facade.result_manager reporter = ModelResultReporter(rm) reporter.include_validation = False df: pd.DataFrame = reporter.dataframe ix = df['wF1t'].idxmax() name, file_name = df.loc[ix, ['name', 'file']] df = self.facade.get_predictions_factory( name=file_name).metrics_dataframe return df @property def by_label_dataframe(self) -> pd.DataFrame: cols = list(self.by_label_columns) df: pd.DataFrame = self._get_best_results().copy() df = df[['label'] + cols] fmt = '{x:.%sf}' % self.precision for c in cols: if c == 'count': continue df[c] = df[c].apply(lambda x: fmt.format(x=x)) crenames = dict(map(lambda c: (c, self.capitalize(c)), 'label correct acc count'.split())) df = df.rename(columns=crenames) if self.sort_column is not None: col = self.sort_column if self.sort_column == 'name': col = 'label' df = df.sort_values(col) return df def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, indent: int = 0): from tabulate import tabulate self._write_line('summary:', depth, writer) df = self.summary_dataframe content = tabulate(df, headers=df.columns, disable_numparse=True) self._write_block(content, depth + indent, writer) self._write_empty(writer) self._write_line('label:', depth, writer) df = self.by_label_dataframe content = tabulate(df, headers=df.columns, disable_numparse=True) self._write_block(content, depth + indent, writer) def __call__(self): self.write() @dataclass class LatexPerformanceMetricsDumper(PerformanceMetricsDumper): """Writes model performance metrics in data formats then used to import to the LaTeX typesetting system used by the Zensols build framework. The class writes a YAML configuration used by `mklatextbl.py` script in the Zensols Build repo, which generates a LaTeX table. The output is a ``.sty` style file with the table, which is included with ``usepackage`` and then added with a command. :see: `Zensols Build <https://github.com/plandes/zenbuild>`_ :see: `mklatextbl.py <https://github.com/plandes/zenbuild/blob/master/bin/mklatextbl.py>`_ """ results_dir: Path = field(default=Path('results/perf')) """The path to the output CSV files with performance metrics.""" config_dir: Path = field(default=Path('../config')) """The path to the YAML configuration files used by the ``mklatextbl.py`` Zensols LaTeX table generator. """ def _create_table(self, name: str, output_csv: Path, caption: str, cols: Iterable[str]) -> Dict[str, Any]: desc = ', '.join(filter(lambda x: x is not None, map(self._map_col, cols))) return { f'metrics{name}tab': {'path': f'../model/{output_csv}', # 'type': 'slack', # 'slack_col': 0, 'caption': caption.format(**dict(desc=desc)), 'placement': 'VAR', 'size': 'small', 'single_column': False, 'uses': 'zentable'}} def dump_summary(self) -> Tuple[Path, Path]: """Dump summary of metrics to a LaTeX mktable YAML and CSV files. :return: a tuple of the output CSV and YAML files """ output_csv: Path = self.results_dir / 'metrics-summary.csv' output_yml: Path = self.config_dir / 'metrics-summary-table.yml' df = self.summary_dataframe caption = 'Summarization of performance metrics where {desc}.' rcols = df.columns.to_list()[1:] table_def = self._create_table('summary', output_csv, caption, rcols) for path in (output_csv, output_yml): path.parent.mkdir(parents=True, exist_ok=True) with open(output_yml, 'w') as f: yaml.dump(table_def, f) logger.info(f'wrote: {output_yml}') df.to_csv(output_csv, index=False) logger.info(f'wrote: {output_csv}') return (output_csv, output_yml) def dump_by_label(self) -> Tuple[Path, Path]: """Dump per label of metrics of the highest performing model to a LaTeX mktable YAML and CSV files. """ output_csv: Path = self.results_dir / 'metrics-by-label.csv' output_yml: Path = self.config_dir / 'metrics-by-label-table.yml' df = self.by_label_dataframe caption = 'By label performance metrics where {desc}.' cols = self.by_label_columns table_def = self._create_table('label', output_csv, caption, cols) for path in (output_csv, output_yml): path.parent.mkdir(parents=True, exist_ok=True) with open(output_yml, 'w') as f: yaml.dump(table_def, f) logger.info(f'wrote: {output_yml}') df.to_csv(output_csv, index=False) logger.info(f'wrote: {output_csv}') return (output_csv, output_yml) def __call__(self): self.dump_summary() self.dump_by_label()
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/format.py
format.py
__author__ = 'Paul Landes' from typing import Any, Tuple, Dict from dataclasses import dataclass, InitVar, field import logging from logging import Logger from torch import Tensor from torch import nn from torch.optim import Optimizer from zensols.deeplearn import ModelError, EarlyBailError, DatasetSplitType from zensols.deeplearn.result import EpochResult from zensols.deeplearn.batch import Batch, MetadataNetworkSettings from . import BaseNetworkModule @dataclass class BatchIterator(object): """This class assists in the batch loop during training, validation and testing. Any special handling of a model related to its loss function can be overridden in this class. .. document private functions .. automethod:: _decode_outcomes """ executor: InitVar[Any] = field() """The owning executor.""" logger: Logger = field() """The status logger from the executor.""" def __post_init__(self, executor: Any): self.model_settings = executor.model_settings self.net_settings = executor.net_settings self.torch_config = executor.torch_config def _decode_outcomes(self, outcomes: Tensor) -> Tensor: """Transform the model output (and optionally the labels) that will be added to the ``EpochResult``, which composes a ``ModelResult``. This implementation returns :py:meth:~`Tensor.argmax`, which are the indexes of the max value across columns. """ logger = self.logger reduce_outcomes = self.model_settings.reduce_outcomes # get the indexes of the max value across labels and outcomes (for the # descrete classification case) if reduce_outcomes == 'argmax': res = outcomes.argmax(dim=-1) # softmax over each outcome elif reduce_outcomes == 'softmax': res = outcomes.softmax(dim=-1) elif reduce_outcomes == 'none': # leave when nothing, prediction/regression measure is used res = outcomes if logger.isEnabledFor(logging.DEBUG): logger.debug(f'argmax outcomes: {outcomes.shape} -> {res.shape}') return res def _encode_labels(self, labels: Tensor) -> Tensor: """Encode labels to be in the same form and on the same CUDA device as the batch data. This base class implementation only copies to the GPU. :param labels: labels paired with the training and validation datasets :return: labels to be used in the loss function """ logger = self.logger if not self.model_settings.nominal_labels: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'labels type: {labels.dtype}') labels = self.torch_config.to_type(labels) return labels def _debug_output(self, msg: str, labels: Tensor, output: Tensor): logger = self.logger if isinstance(self.debug, int) and self.debug > 1 and \ logger.isEnabledFor(logging.DEBUG): logger.debug(f'{msg}:') shape = None if labels is None else labels.shape dtype = None if labels is None else labels.dtype logger.debug(f'labels: {shape} ({dtype})') if isinstance(self.debug, int) and self.debug > 1: logger.debug(f'label values:\n{labels}') if output is None: logger.debug('output: <none>') else: logger.debug(f'output: {output.shape} ({output.dtype})') if isinstance(self.debug, int) and self.debug > 1: logger.debug(f'\n{output}') def iterate(self, model: BaseNetworkModule, optimizer: Optimizer, criterion, batch: Batch, epoch_result: EpochResult, split_type: DatasetSplitType) -> Tensor: """Train, validate or test on a batch. This uses the back propogation algorithm on training and does a simple feed forward on validation and testing. One call of this method represents a single batch iteration :param model: the model to excercise :param optimizer: the optimization algorithm (i.e. adam) to iterate :param criterion: the loss function (i.e. cross entropy loss) used for the backward propogation step :param batch: contains the data to test, predict, and optionally the labels for training and validation :param epoch_result: to be populated with the results of this epoch's run :param split_type: indicates if we're training, validating or testing :return: the singleton tensor containing the loss """ logger = self.logger if logger.isEnabledFor(logging.DEBUG): logger.debug(f'train/validate on {split_type}: ' + f'batch={batch} ({id(batch)})') logger.debug(f'model on device: {model.device}') # copy batch to GPU if configured to do so batch: Batch = batch.to() outcomes: Tensor = None output: Tensor = None try: if self.debug: # write a batch sample when debugging; maybe make this a hook if isinstance(self.net_settings, MetadataNetworkSettings): meta = self.net_settings.batch_metadata meta.write() batch.write() # when training, reset gradients for the next epoch if split_type == DatasetSplitType.train: optimizer.zero_grad() # execute an the epoch loss, labels, outcomes, output = self._execute( model, optimizer, criterion, batch, split_type) self._debug_output('decode', labels, outcomes) # if debugging the model, raise the exception to interrupt the # flow, which is caught in ModelExecutor._execute if self.debug: raise EarlyBailError() if logger.isEnabledFor(logging.DEBUG): logger.debug('outcomes shape: {outcomes.shape}') # add results for performance metrics, predictions output, etc epoch_result.update(batch, loss, labels, outcomes, output) return loss finally: # clean up and GPU memeory deallocation biter = self.model_settings.batch_iteration cb = self.model_settings.cache_batches if (biter == 'cpu' and not cb) or biter == 'buffered': if logger.isEnabledFor(logging.DEBUG): logger.debug(f'deallocating batch: {batch}') batch.deallocate() def _step(self, loss: Tensor, split_type: DatasetSplitType, optimizer, model: BaseNetworkModule): """Iterate over the error surface.""" # when training, backpropogate and step if split_type == DatasetSplitType.train: clip_thresh: float = self.model_settings.clip_gradient_threshold clip_params: Dict[str, Any] = \ self.model_settings.scale_gradient_params # invoke back propogation on the network loss.backward() # clip the gradient if clip_thresh is not None: nn.utils.clip_grad_value_(model.parameters(), clip_thresh) # scale the gradient if clip_params is not None: nn.utils.clip_grad_norm_(model.parameters(), **clip_params) # take an update step and update the new weights optimizer.step() def _execute(self, model: BaseNetworkModule, optimizer: Optimizer, criterion, batch: Batch, split_type: DatasetSplitType) -> \ Tuple[Tensor]: """Execute one epoch of training, testing, validation or prediction. :param model: the model to excercise :param optimizer: the optimization algorithm (i.e. adam) to iterate :param criterion: the loss function (i.e. cross entropy loss) used for the backward propogation step :param batch: contains the data to test, predict, and optionally the labels for training and validation :param split_type: indicates if we're training, validating or testing :return: a tuple of the loss, labels, outcomes, and the output (i.e. logits); the outcomes are the decoded (:meth:`_decode_outcomes`) output and represent some ready to use data, like argmax'd classification nominal label integers """ logger = self.logger labels: Tensor = batch.get_labels() # forward pass, get our output, which are usually the logits output: Tensor = model(batch) # sanity check if output is None: raise ModelError('Null model output') # check for sane state with labels, and munge if necessary if labels is None: # sanity check if split_type != DatasetSplitType.test: raise ModelError('Expecting no split type on prediction, ' + f'but got: {split_type}') if logger.isEnabledFor(logging.DEBUG): logger.debug('skipping loss calculation on prediction execute') loss = None else: # put labels in a form to be used by the loss function labels = self._encode_labels(labels) self._debug_output('input', labels, output) # calculate the loss with the logps and the labels loss = criterion(output, labels) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'split: {split_type}, loss: {loss}') # iterate over the error surface self._step(loss, split_type, optimizer, model) self._debug_output('output', labels, output) # apply the same decoding on the labels as the output if necessary if labels is not None and not self.model_settings.nominal_labels: labels = self._decode_outcomes(labels) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'label nom decoded: {labels.shape}') outcomes = self._decode_outcomes(output) loss, labels, outcomes, output = self.torch_config.to_cpu_deallocate( loss, labels, outcomes, output) return loss, labels, outcomes, output
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/batchiter.py
batchiter.py
__author__ = 'Paul Landes' from typing import Tuple, Iterable from dataclasses import dataclass, field import logging import sys from io import TextIOBase, StringIO import pandas as pd from zensols.config import Dictable from zensols.persist import PersistedWork, persisted from zensols.deeplearn import ModelError from zensols.deeplearn.result import ModelResult, ModelResultManager from . import ModelExecutor logger = logging.getLogger(__name__) @dataclass class DataComparison(Dictable): """Contains the results from two runs used to compare. The data in this object is used to compare the validation loss from a previous run to a run that's currently in progress. This is provided along with the performance metrics of the runs when written with :meth:`write`. """ key: str = field() """The results key used with a :class:`.ModelResultManager`.""" previous: ModelResult = field() """The previous resuls of the model from a previous run.""" current: ModelResult = field() """The current results, which is probably a model currently running.""" compare_df: pd.DataFrame = field() """A dataframe with the validation loss from the previous and current results and that difference. """ def _get_dictable_attributes(self) -> Iterable[str]: return self._split_str_to_attributes('key previous current') def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): converge_idx = self.previous.validation.converged_epoch.index sio = StringIO() self._write_line(f'result: {self.key}', depth, writer) self._write_line('loss:', depth, writer) with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(self.compare_df, file=sio) self._write_block(sio.getvalue().strip(), depth + 1, writer) self._write_line('previous:', depth, writer) self.previous.validation.write(depth + 1, writer) self._write_line(f'converged: {converge_idx}', depth + 1, writer) self._write_line('current:', depth, writer) self.current.validation.write(depth + 1, writer) @dataclass class ResultAnalyzer(object): """Load results from a previous run of the :class:`ModelExecutor` and a more recent run. This run is usually a currently running model to compare the results during training. This might provide meaningful information such as whether to early stop training. """ executor: ModelExecutor = field() """The executor (not the running executor necessary) that will load the results if not already loadded. """ previous_results_key: str = field() """The key given to retreive the previous results with :class:`ModelResultManager`. """ cache_previous_results: bool = field() """If ``True``, globally cache the previous results to avoid having to reload each time. """ def __post_init__(self): self._previous_results = PersistedWork( '_previous_results', self, cache_global=self.cache_previous_results) def clear(self): """Clear the previous results, if cached. """ self._previous_results.clear() @property @persisted('_previous_results') def previous_results(self) -> ModelResult: """Return the previous results (see class docs). """ rm: ModelResultManager = self.executor.result_manager if rm is None: rm = ModelError('No result manager available') return rm[self.previous_results_key] @property def current_results(self) -> Tuple[ModelResult, ModelResult]: """Return the current results (see class docs). """ if self.executor.model_result is None: self.executor.load() return self.executor.model_result @property def comparison(self) -> DataComparison: """Load the results data and create a comparison instance read to write or jsonify. """ prev, cur = self.previous_results, self.current_results prev_losses = prev.validation.losses cur_losses = cur.validation.losses cur_len = len(cur_losses) df = pd.DataFrame({'epoch': range(cur_len), 'previous': prev_losses[:cur_len], 'current': cur_losses}) df['improvement'] = df['previous'] - df['current'] return DataComparison(self.previous_results_key, prev, cur, df)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/analyze.py
analyze.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import ( Any, Callable, List, Union, Iterable, Type, Dict, Optional, ClassVar ) from dataclasses import dataclass, field, InitVar import sys import os import logging import pandas as pd from io import TextIOBase from pathlib import Path from zensols.util import time from zensols.config import ( Configurable, ConfigFactory, Writable, ImportConfigFactory, ) from zensols.persist import ( persisted, PersistableContainer, PersistedWork, Deallocatable, Stash, ) from zensols.datdesc import DataDescriber, DataFrameDescriber from zensols.dataset import DatasetSplitStash from zensols.deeplearn import ModelError, NetworkSettings, ModelSettings from zensols.deeplearn.vectorize import ( SparseTensorFeatureContext, FeatureVectorizerManagerSet, ) from zensols.deeplearn.batch import ( Batch, DataPoint, BatchStash, BatchMetadata, BatchFeatureMapping ) from zensols.deeplearn.result import ( EpochResult, ModelResult, ModelResultManager, PredictionsDataFrameFactory, ModelResultReporter, ) from . import ( ModelManager, ModelExecutor, PredictionMapper, FacadeClassExplorer, ResultAnalyzer, ModelPacker ) logger = logging.getLogger(__name__) @dataclass class ModelFacade(PersistableContainer, Writable): """This class provides easy to use client entry points to the model executor, which trains, validates, tests, saves and loads the model. More common attributes, such as the learning rate and number of epochs, are properties that dispatch to :py:obj:`executor`. For the others, go directly to the property. :see: :class:`zensols.deeplearn.domain.ModelSettings` """ _SINGLETONS: ClassVar[Dict[str, ModelFacade]] = {} config: Configurable = field() """The configuraiton used to create the facade, and used to create a new configuration factory to load models. """ config_factory: InitVar[ConfigFactory] = field(default=None) """The configuration factory used to create this facade, or ``None`` if no factory was used. """ progress_bar: bool = field(default=True) """Create text/ASCII based progress bar if ``True``.""" progress_bar_cols: Union[str, int] = field(default='term') """The number of console columns to use for the text/ASCII based progress bar. If the value is ``term``, then use the terminal width. """ executor_name: str = field(default='executor') """The configuration entry name for the executor, which defaults to ``executor``. """ writer: TextIOBase = field(default=sys.stdout) """The writer to this in methods like :meth:`train`, and :meth:`test` for writing performance metrics results and predictions or ``None`` to not output them. """ predictions_dataframe_factory_class: Type[PredictionsDataFrameFactory] = \ field(default=PredictionsDataFrameFactory) """The factory class used to create predictions. :see: :meth:`get_predictions_factory` """ def __post_init__(self, config_factory: ConfigFactory): super().__init__() self._init_config_factory(config_factory) self._config_factory = PersistedWork('_config_factory', self) self._executor = PersistedWork('_executor', self) self.debuged = False if self.progress_bar_cols == 'term': try: term_width = os.get_terminal_size()[0] # make space for embedded validation loss messages self.progress_bar_cols = term_width - 5 except OSError: logger.debug('unable to automatically determine ' + 'terminal width--skipping') self.progress_bar_cols = None @classmethod def get_singleton(cls, *args, **kwargs) -> ModelFacade: """Return the singleton application using ``args`` and ``kwargs`` as initializer arguments. """ key: str = str(cls) inst: ModelFacade = cls._SINGLETONS.get(key) if inst is None: inst = cls(*args, **kwargs) cls._SINGLETONS[key] = inst return inst def _init_config_factory(self, config_factory: ConfigFactory): if isinstance(config_factory, ImportConfigFactory): params = config_factory.__dict__ keeps = set('reload shared reload_pattern'.split()) params = {k: params[k] for k in set(params.keys()) & keeps} if logger.isEnabledFor(logging.DEBUG): logger.debug(f'import config factory params: {params}') self._config_factory_params = params else: self._config_factory_params = {} def _create_executor(self) -> ModelExecutor: """Create a new instance of an executor. Used by :obj:`executor`. """ logger.info('creating new executor') executor = self.config_factory( self.executor_name, progress_bar=self.progress_bar, progress_bar_cols=self.progress_bar_cols) return executor @property @persisted('_config_factory') def config_factory(self): """The configuration factory used to create facades. """ return ImportConfigFactory(self.config, **self._config_factory_params) @property @persisted('_executor') def executor(self) -> ModelExecutor: """A cached instance of the executor tied to the instance of this class. """ return self._create_executor() @property def net_settings(self) -> NetworkSettings: """Return the executor's network settings. """ return self.executor.net_settings @property def model_settings(self) -> ModelSettings: """Return the executor's model settings. """ return self.executor.model_settings @property def result_manager(self) -> ModelResultManager: """Return the executor's result manager. """ rm: ModelResultManager = self.executor.result_manager if rm is None: rm = ModelError('No result manager available') return rm @property def feature_stash(self) -> Stash: """The stash used to generate the feature, which is not to be confused with the batch source stash ``batch_stash``. """ return self.executor.feature_stash @property def batch_stash(self) -> BatchStash: """The stash used to encode and decode batches by the executor. """ return self.executor.batch_stash @property def dataset_stash(self) -> DatasetSplitStash: """The stash used to encode and decode batches split by dataset. """ return self.executor.dataset_stash @property def vectorizer_manager_set(self) -> FeatureVectorizerManagerSet: """Return the vectorizer manager set used for the facade. This is taken from the executor's batch stash. """ return self.batch_stash.vectorizer_manager_set @property def batch_metadata(self) -> BatchMetadata: """Return the batch metadata used on the executor. :see: :class:`zensols.deepnlp.model.module.EmbeddingNetworkSettings` """ return self.batch_stash.batch_metadata @property def label_attribute_name(self): """Get the label attribute name. """ bmeta = self.batch_metadata if bmeta is not None: return bmeta.mapping.label_attribute_name def _notify(self, event: str, context: Any = None): """Notify observers of events from this class. """ self.model_settings.observer_manager.notify(event, self, context) def remove_metadata_mapping_field(self, attr: str) -> bool: """Remove a field by attribute if it exists across all metadata mappings. This is useful when a very expensive vectorizer slows down tasks, such as prediction, on a single run of a program. For this use case, override :meth:`predict` to call this method before calling the super ``predict`` method. :param attr: the name of the field's attribute to remove :return: ``True`` if the field was removed, ``False`` otherwise """ removed = False meta: BatchMetadata = self.batch_metadata mapping: BatchFeatureMapping for mapping in meta.mapping.manager_mappings: removed = removed or mapping.remove_field(attr) return removed @property def dropout(self) -> float: """The dropout for the entire network. """ return self.net_settings.dropout @dropout.setter def dropout(self, dropout: float): """The dropout for the entire network. """ self.net_settings.dropout = dropout @property def epochs(self) -> int: """The number of epochs for training and validation. """ return self.model_settings.epochs @epochs.setter def epochs(self, n_epochs: int): """The number of epochs for training and validation. """ self.model_settings.epochs = n_epochs @property def learning_rate(self) -> float: """The learning rate to set on the optimizer. """ return self.model_settings.learning_rate @learning_rate.setter def learning_rate(self, learning_rate: float): """The learning rate to set on the optimizer. """ self.executor.model_settings.learning_rate = learning_rate @property def cache_batches(self) -> bool: """The cache_batches for the entire network. """ return self.model_settings.cache_batches @cache_batches.setter def cache_batches(self, cache_batches: bool): """The cache_batches for the entire network. """ # if the caching strategy changed, be safe and deallocate and purge to # lazy recreate everything if self.model_settings.cache_batches != cache_batches: self.clear() self.model_settings.cache_batches = cache_batches def clear(self): """Clear out any cached executor. """ if logger.isEnabledFor(logging.INFO): logger.info('clearing') executor = self.executor config_factory = self.config_factory executor.deallocate() config_factory.deallocate() self._executor.clear() self._config_factory.clear() def reload(self): """Clears all state and reloads the configuration. """ self.clear() self.config.reload() def deallocate(self): super().deallocate() self._SINGLETONS.pop(str(self.__class__), None) @classmethod def load_from_path(cls, path: Path, *args, **kwargs) -> ModelFacade: """Construct a new facade from the data saved in a persisted model file. This uses the :py:meth:`.ModelManager.load_from_path` to reconstruct the returned facade, which means some attributes are taken from default if not taken from ``*args`` or ``**kwargs``. :param path: the path of the model file on the file system :param model_config_overwrites: a :class:`~zensols.config.Configurable` used to overrwrite configuration in the model package config :param args: passed through to the initializer of invoking class ``cls`` :param kwargs: passed through to the initializer of invoking class ``cls`` :return: a new instance of a :class:`.ModelFacade` :see: :meth:`.ModelManager.load_from_path` """ if logger.isEnabledFor(logging.INFO): logger.info(f'loading from facade from {path}') # load the model from disk mm: ModelManager = ModelManager.load_from_path(path) # the configuration section name of the executor if 'executor_name' not in kwargs: kwargs['executor_name'] = mm.model_executor_name # merge in external configuration into the model config before the # configuration factory begins to instantiate src_conf: Optional[Configurable] = kwargs.pop( 'model_config_overwrites', None) # instantiate the executor executor: ModelExecutor = mm.load_executor(src_conf) # set the path of the model executor.model_settings.path = path # cleanup any CUDA memory mm.config_factory.deallocate() # create a new facade and configure with the loaded model facade: ModelFacade = cls(executor.config, *args, **kwargs) facade._config_factory.set(executor.config_factory) facade._executor.set(executor) facade._model_config = mm.config_factory.config return facade @property def model_config(self) -> Configurable: """The configurable packaged with the model if this facade was created with :mth:`load_from_path`. """ if hasattr(self, '_model_config'): return self._model_config def debug(self, debug_value: Union[bool, int] = True): """Debug the model by setting the configuration to debug mode and invoking a single forward pass. Logging must be configured properly to get the output, which is typically just invoking :py:meth:`logging.basicConfig`. :param debug_value: ``True`` turns on executor debugging; if an ``int``, the higher the value, the more the logging """ executor = self.executor self._configure_debug_logging() executor.debug = debug_value executor.progress_bar = False executor.model_settings.batch_limit = 1 self.debuged = True executor.train() def persist_result(self): """Save the last recorded result during an :py:meth:`.Executor.train` or :py:meth:`.Executor.test` invocation to disk. Optionally also save a plotted graphics file to disk as well when :obj:`persist_plot_result` is set to ``True``. Note that in Jupyter notebooks, this method has the side effect of plotting the results in the cell when ``persist_plot_result`` is ``True``. :param persist_plot_result: if ``True``, plot and save the graph as a PNG file to the results directory """ executor = self.executor rmng: ModelResultManager = self.result_manager if executor.result_manager is not None: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'dumping model result: {executor.model_result}') rmng.dump(executor.model_result) def train(self, description: str = None) -> ModelResult: """Train and test or just debug the model depending on the configuration. :param description: a description used in the results, which is useful when making incremental hyperparameter changes to the model """ executor = self.executor executor.reset() logger.info('training...') self._notify('train_start', description) with time('trained'): res = executor.train(description) self._notify('train_end', description) return res def test(self, description: str = None) -> ModelResult: """Load the model from disk and test it. """ if self.debuged: raise ModelError('Testing is not allowed in debug mode') executor = self.executor executor.load() logger.info('testing...') self._notify('test_start', description) with time('tested'): res = executor.test(description) if self.writer is not None: res.write(writer=self.writer) self._notify('test_end', description) return res def train_production(self, description: str = None) -> ModelResult: """Train on the training and test data sets, then test :param description: a description used in the results, which is useful when making incremental hyperparameter changes to the model """ executor = self.executor executor.reset() if self.writer is not None: executor.write(writer=self.writer) logger.info('training...') self._notify('train_production_start', description) with time('trained'): res = executor.train_production(description) self._notify('train_production_end', description) return res def predict(self, datas: Iterable[Any]) -> Any: """Make ad-hoc predictions on batches without labels, and return the results. :param datas: the data predict on, each as a separate element as a data point in a batch """ executor: ModelExecutor = self.executor ms: ModelSettings = self.model_settings if ms.prediction_mapper_name is None: raise ModelError( f'The model settings ({ms.name}) is not configured to create ' + "prediction batches: no set 'prediction_mapper'") pm: PredictionMapper = self.config_factory.new_instance( ms.prediction_mapper_name, datas, self.batch_stash) self._notify('predict_start') try: batches: List[Batch] = pm.batches if not executor.model_exists: executor.load() logger.info('predicting...') with time('predicted'): res: ModelResult = executor.predict(batches) eres: EpochResult = res.results[0] ret: Any = pm.map_results(eres) finally: self._notify('predict_end') pm.deallocate() return ret def stop_training(self): """Early stop training if the model is currently training. This invokes the :meth:`.TrainManager.stop`, communicates to the training process to stop on the next check. :return: ``True`` if the application is configured to early stop and the signal has not already been given """ self._notify('stop_training') return self.executor.train_manager.stop() @property def last_result(self) -> ModelResult: """The last recorded result during an :meth:`.ModelExecutor.train` or :meth:`.ModelExecutor.test` invocation is used. """ res = self.executor.model_result if res is None: rm: ModelResultManager = self.result_manager res = rm.load() if res is None: raise ModelError('No results found') return res def write_result(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_settings: bool = False, include_converged: bool = False, include_config: bool = False): """Load the last set of results from the file system and print them out. The result to print is taken from :obj:`last_result` :param depth: the number of indentation levels :param writer: the data sink :param include_settings: whether or not to include model and network settings in the output :param include_config: whether or not to include the configuration in the output """ if logger.isEnabledFor(logging.INFO): logger.info('load previous results') res = self.last_result res.write(depth, writer, include_settings=include_settings, include_converged=include_converged, include_config=include_config) def plot_result(self, result: ModelResult = None, save: bool = False, show: bool = False) -> ModelResult: """Plot results and optionally save and show them. If this is called in a Jupyter notebook, the plot will be rendered in a cell. :param result: the result to plot, or if ``None``, use :py:meth:`last_result` :param save: if ``True``, save the plot to the results directory with the same naming as the last data results :param show: if ``True``, invoke ``matplotlib``'s ``show`` function to visualize in a non-Jupyter environment :return: the result used to graph, which comes from the executor when none is given to the invocation """ result = self.last_result if result is None else result grapher = self.executor.result_manager.get_grapher() grapher.plot([result]) if save: grapher.save() if show: grapher.show() return result def get_predictions_factory(self, column_names: List[str] = None, transform: Callable[[DataPoint], tuple] = None, batch_limit: int = sys.maxsize, name: str = None) \ -> PredictionsDataFrameFactory: """Generate a predictions factoty from the test data set. :param column_names: the list of string column names for each data item the list returned from ``data_point_transform`` to be added to the results for each label/prediction :param transform: a function that returns a tuple, each with an element respective of ``column_names`` to be added to the results for each label/prediction; if ``None`` (the default), ``str`` used (see the `Iris Jupyter Notebook <https://github.com/plandes/deeplearn/blob/master/notebook/iris.ipynb>`_ example) :param batch_limit: the max number of batche of results to output :param name: the name/ID (name of the file sans extension in the results directory) of the previously archived saved results to fetch or ``None`` to get the last result """ rm: ModelResultManager = self.result_manager res: ModelResult if name is None: res = self.last_result key: str = rm.get_last_key(False) else: res = rm.results_stash[name].model_result key: str = name if res is None: raise ModelError(f'No test results found: {name}') if not res.test.contains_results: raise ModelError('No test results found') path: Path = rm.key_to_path(key) return self.predictions_dataframe_factory_class( path, res, self.batch_stash, column_names, transform, batch_limit) def get_predictions(self, *args, **kwargs) -> pd.DataFrame: """Generate a Pandas dataframe containing all predictions from the test data set. This method is meant to be overridden by application specific facades to customize prediction output. :see: :meth:`get_predictions_factory` :param args: arguments passed to :meth:`get_predictions_factory` :param kwargs: arguments passed to :meth:`get_predictions_factory` """ df_fac = self.get_predictions_factory(*args, **kwargs) return df_fac.dataframe def write_predictions(self, lines: int = 10): """Print the predictions made during the test phase of the model execution. :param lines: the number of lines of the predictions data frame to be printed :param writer: the data sink """ preds = self.get_predictions() print(preds.head(lines), file=self.writer) def get_result_analyzer(self, key: str = None, cache_previous_results: bool = False) \ -> ResultAnalyzer: """Return a results analyzer for comparing in flight training progress. """ rm: ModelResultManager = self.result_manager if key is None: key = rm.get_last_key() return ResultAnalyzer(self.executor, key, cache_previous_results) def get_described_results(self, res_id: str = None) -> DataDescriber: """Create Zensols LaTeX ready results. This includes a summary from the :class:`.ModelResultReporter` and detailed results using ``res_id``. :param res_id: the result ID or use the last if not given """ rm: ModelResultManager = self.result_manager pfac: PredictionsDataFrameFactory = \ self.get_predictions_factory(name=res_id) reporter = ModelResultReporter(rm, include_validation=True) summary: DataFrameDescriber = reporter.dataframe_describer res: DataFrameDescriber = pfac.metrics_dataframe_describer summary.name = 'Summary' res.name = f'Run {pfac.result.index}' return DataDescriber( name=f'{self.model_settings.model_name} Model Results', describers=(summary, res)) @property def class_explorer(self) -> FacadeClassExplorer: return self._create_facade_explorer() def _create_facade_explorer(self) -> FacadeClassExplorer: """Return a facade explorer used to print the facade's object graph. """ return FacadeClassExplorer() def get_modeL_packer(self, version: str = '0.0.1') -> ModelPacker: """Return a new a distribution model packager instance. :param version: the version used to encode the package """ return ModelPacker(result_manager=self.result_manager, version=version) def write(self, depth: int = 0, writer: TextIOBase = None, include_executor: bool = True, include_metadata: bool = True, include_settings: bool = True, include_model: bool = True, include_config: bool = False, include_object_graph: bool = False): writer = self.writer if writer is None else writer writer = sys.stdout if writer is None else writer bmeta = None try: bmeta = self.batch_metadata except AttributeError: pass if include_executor: self._write_line(f'{self.executor.name}:', depth, writer) self.executor.write(depth + 1, writer, include_settings=include_settings, include_model=include_model) if include_metadata and bmeta is not None: self._write_line('metadata:', depth, writer) bmeta.write(depth + 1, writer) if include_object_graph: self._write_line('graph:', depth, writer) ce = self._create_facade_explorer() ce.write(self, depth=depth + 1, writer=writer) if include_config: self._write_line('config:', depth, writer) self.config.write(depth + 1, writer) def _deallocate_config_instance(self, inst: Any): if isinstance(self.config_factory, ImportConfigFactory): inst = self.config_factory.clear_instance(inst) dealloc = isinstance(inst, Deallocatable) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'deallocate {inst}: {type(inst)}: {dealloc}') if dealloc: inst.deallocate() def _configure_debug_logging(self): """When debuging the model, configure the logging system for output. The correct loggers need to be set to debug mode to print the model debugging information such as matrix shapes. """ for name in ['zensols.deeplearn.model', __name__]: logging.getLogger(name).setLevel(logging.DEBUG) def _configure_cli_logging(self, info_loggers: List[str], debug_loggers: List[str]): info_loggers.extend([ # multi-process (i.e. batch creation) 'zensols.multi.stash', 'zensols.deeplearn.batch.multi', # validation/training loss messages 'zensols.deeplearn.model.executor.status', __name__]) if not self.progress_bar: info_loggers.extend([ # load messages 'zensols.deeplearn.batch.stash', # save results messages 'zensols.deeplearn.result', # validation/training loss messages 'zensols.deeplearn.model.executor.progress', # model save/load 'zensols.deeplearn.model.manager', # early stop messages 'zensols.deeplearn.model.trainmng', # performance metrics formatting 'zensols.deeplearn.model.format', # model packaging 'zensols.deeplearn.model.pack', # model save messages 'zensols.deeplearn.result.manager', # observer module API messages 'zensols.deeplearn.observer.status', # CLI interface 'zensols.deeplearn.cli.app']) @staticmethod def configure_default_cli_logging(log_level: int = logging.WARNING): """Configure the logging system with the defaults. """ fmt = '%(asctime)s[%(levelname)s]%(name)s: %(message)s' logging.basicConfig(format=fmt, level=log_level) def configure_cli_logging(self, log_level: int = None): """"Configure command line (or Python REPL) debugging. Each facade can turn on name spaces that make sense as useful information output for long running training/testing iterations. This calls "meth:`_configure_cli_logging` to collect the names of loggers at various levels. """ info = [] debug = [] if log_level is not None: self.configure_default_cli_logging(log_level) self._configure_cli_logging(info, debug) for name in info: logging.getLogger(name).setLevel(logging.INFO) for name in debug: logging.getLogger(name).setLevel(logging.DEBUG) def configure_jupyter(self, log_level: int = logging.WARNING, progress_bar_cols: int = 120): """Configures logging and other configuration related to a Jupyter notebook. This is just like :py:meth:`configure_cli_logging`, but adjusts logging for what is conducive for reporting in Jupyter cells. ;param log_level: the default logging level for the logging system :param progress_bar_cols: the number of columns to use for the progress bar """ self.configure_cli_logging(log_level) for name in [ # turn off loading messages 'zensols.deeplearn.batch.stash', # turn off model save messages 'zensols.deeplearn.result.manager']: logging.getLogger(name).setLevel(logging.WARNING) # number of columns for the progress bar self.executor.progress_bar_cols = progress_bar_cols # turn off console output (non-logging) self.writer = None @staticmethod def get_encode_sparse_matrices() -> bool: """Return whether or not sparse matricies are encoded. :see: :meth:`set_sparse` """ return SparseTensorFeatureContext.USE_SPARSE @staticmethod def set_encode_sparse_matrices(use_sparse: bool = False): """If called before batches are created, encode all tensors the would be encoded as dense rather than sparse when ``use_sparse`` is ``False``. Oherwise, tensors will be encoded as sparse where it makes sense on a per vectorizer basis. """ SparseTensorFeatureContext.USE_SPARSE = use_sparse
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/facade.py
facade.py
__author__ = 'Paul Landes' from typing import Tuple, Optional, ClassVar from dataclasses import dataclass, field import logging from pathlib import Path from zipfile import ZipFile from zensols.persist import Stash from zensols.install import Installer from zensols.config import ( ConfigurableError, Configurable, DictionaryConfig, ConfigFactory ) from ..result import ArchivedResult from . import ModelError, ModelResultManager, ModelExecutor logger = logging.getLogger(__name__) @dataclass class ModelPacker(object): """Creates distribution model packages by creating a zip file of everything needed to by a client to use the model. """ _PT_MODEL_DIR: ClassVar[str] = 'ptmodel' executor: ModelExecutor = field() """The result manager used to obtain the results and model to package.""" version: str = field() """The version used to encode the package.""" installer: Optional[Installer] = field(default=None) """If set, used to create a path to the model file.""" def pack(self, res_id: str, output_dir: Path) -> Path: """Create a distribution model package on the file system. :param res_id: the result ID or use the last if not given (if optional) :return: the path to the generated distribution model package """ verpath: str = 'v' + self.version.replace('.', '_') result_manager: ModelResultManager = self.executor.result_manager res_stash: Stash = result_manager.results_stash result: ArchivedResult = res_stash.get(res_id) if result is None: raise ModelError(f'No such result ID: {res_id}') output_file: Path = output_dir / f'{result.name}-{verpath}.zip' arch_suffix: str = 'model' arch_prefix: str = f'{result.name}-{verpath}' if logger.isEnabledFor(logging.INFO): logger.info(f'packing {res_id}') result.write_to_log(logger, depth=1) with ZipFile(output_file, 'w') as zf: if result is None: raise ModelError(f'No such result: {res_id}') else: for path in result.get_paths(): arch_name: str = f'{arch_prefix}/{arch_suffix}{path.suffix}' if logger.isEnabledFor(logging.INFO): logger.info(f'adding file: {path} -> {arch_name}') if path.is_dir(): for subpath in path.iterdir(): m_prefix = f'{self._PT_MODEL_DIR}/{subpath.name}' zf.write(subpath, f'{arch_prefix}/{m_prefix}') else: zf.write(path, arch_name) zf.writestr(f'{arch_prefix}/{arch_suffix}.version', self.version) if logger.isEnabledFor(logging.INFO): logger.info(f'wrote: {output_file}') return output_file @property def installed_model_path(self) -> Path: """Return the path to the model to be PyTorch loaded.""" if self.installer is not None: res_path: Path = self.installer.get_singleton_path() path: Path = res_path / self._PT_MODEL_DIR if logger.isEnabledFor(logging.INFO): logger.info(f'loading model {path}') return path def install_model(self) -> Path: """Install the model if it isn't already and return a path to it.""" model_path: Path = self.installed_model_path if model_path is not None: self.installer.install() return model_path class SubsetConfig(DictionaryConfig): """A :class:`~zensols.config.Configurable` that takes a subset of the application configuration. This is useful to pass to :meth:`.ModelFacade.load_from_path` to merge application into the packed model's configuration. """ def __init__(self, config_factory: ConfigFactory, sections: Tuple[str, ...], options: Tuple[str, ...], option_delim: str = ':'): """Initialize the instance. :param config_factory: the application config and factory :param sections: a list of sections to subset :param options: a list of ``<section>:<option>``, each of which is added to the subset :param option_delim: the string used to delimit sections and options in ``options`` """ super().__init__() src: Configurable = config_factory.config src.copy_sections(self, sections=sections) option: str for option in options: sec_name: Tuple[str, str] = option.split(option_delim) if len(sec_name) != 2: raise ConfigurableError('Wrong format: expecting delim ' + f'{option_delim} but got: {option}') sec, name = sec_name val: str = src.get_option(name, sec) self.set_option(name, val, sec)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/pack.py
pack.py
__author__ = 'Paul Landes' from types import ModuleType from typing import Union, Type, ClassVar from abc import abstractmethod, ABCMeta import logging import torch from torch import nn from torch import Tensor from zensols.introspect import ClassImporter from zensols.persist import PersistableContainer from zensols.deeplearn import ( ModelError, NetworkSettings, ActivationNetworkSettings, DropoutNetworkSettings, BatchNormNetworkSettings, EarlyBailError, ) from zensols.deeplearn.batch import Batch logger = logging.getLogger(__name__) class DebugModule(nn.Module): """A utility base class that makes logging more understandable. """ DEBUG_DEVICE: ClassVar[bool] = False """If ``True``, add tensor devices to log messages.""" DEBUG_TYPE: ClassVar[bool] = False """If ``True``, add tensor shapes to log messages.""" DEBUG_CLASS: ClassVar[bool] = True """If ``True``, add the logging class to log messages.""" MODULE_NAME: ClassVar[str] = None """The module name used in the logging message. This is set in each inherited class. """ _DEBUG_MESSAGE_MAX_LEN: ClassVar[int] = 100 def __init__(self, sub_logger: logging.Logger = None): """Initialize. :param sub_logger: used to log activity in this module so they logged module comes from some parent model """ super().__init__() if sub_logger is None: self.logger = self._resolve_class_logger() else: self.logger = sub_logger def _resolve_class_logger(self) -> logging.Logger: cls: Type = self.__class__ mod: ModuleType = ClassImporter.get_module(cls.__module__, False) lg: logging.Logger = logger if hasattr(mod, 'logger'): lg_mod = getattr(mod, 'logger') if isinstance(lg_mod, logging.Logger): lg = lg_mod return lg def _debug(self, msg: str): """Debug a message using the module name in the description. """ if self.logger.isEnabledFor(logging.DEBUG): if msg is not None: if len(msg) > self._DEBUG_MESSAGE_MAX_LEN: msg = msg[:self._DEBUG_MESSAGE_MAX_LEN - 3] + '...' mname = self.MODULE_NAME cls = self.__class__.__name__ mname = '' if mname is None else f'[{mname}]' if self.DEBUG_CLASS: prefix = f'{cls}{mname}' else: prefix = mname if len(mname) > 0 else f'[{cls}]' self.logger.debug(f'{prefix} {msg}') def _shape_debug(self, msg: str, x: Tensor): """Debug a message using the module name in the description and include the shape. """ if self.logger.isEnabledFor(logging.DEBUG): if x is None: shape, device, dtype = [None] * 3 else: shape, device, dtype = x.shape, x.device, x.dtype msg = f'{msg} shape: {shape}' if self.DEBUG_DEVICE: msg += f', device: {device}' if self.DEBUG_TYPE: msg += f', type: {dtype}' self._debug(msg) def _bail(self): """A convenience method to assist in debugging. This is useful when the output isn't in the correct form for the :class:`.ModelExecutor`. """ self.logger.debug('-' * 60) raise EarlyBailError() class BaseNetworkModule(DebugModule, PersistableContainer, metaclass=ABCMeta): """A utility base network module that contains ubiquitous, but optional layers, such as dropout and batch layeres, activation, etc. .. document private functions .. automethod:: _forward """ def __init__(self, net_settings: NetworkSettings, sub_logger: logging.Logger = None): """Initialize. :param net_settings: contains common layers such as droput and batch normalization :param sub_logger: used to log activity in this module so they logged module comes from some parent model """ super().__init__(sub_logger) self.net_settings = ns = net_settings if isinstance(ns, DropoutNetworkSettings): self.dropout = ns.dropout_layer else: self.dropout = None if isinstance(ns, BatchNormNetworkSettings) and \ (ns.batch_norm_d is not None or ns.batch_norm_features is not None): if ns.batch_norm_d is None or ns.batch_norm_features is None: raise ModelError('Both the dimension and features must be ' + f'set if one is set: {ns}') self.batch_norm = ns.batch_norm_layer else: self.batch_norm = None if isinstance(ns, ActivationNetworkSettings): self.activation_function = ns.activation_function else: self.activation_function = None def _deallocate_children_modules(self): for layer in self.children(): self._try_deallocate(layer) def __getstate__(self): raise ModelError(f'Layers should not be pickeled: {self}') @abstractmethod def _forward(self, x: Union[Batch, Tensor], *args, **kwargs) -> Tensor: """The model's forward implementation. Normal backward semantics are no different. :param x: the batch or tensor to train, validate or test on; the type depends on the needs of the model :param args: additional model specific arguments needed by classes that need more context :param kwargs: additional model specific arguments needed by classes that need more context """ pass @staticmethod def device_from_module(module: nn.Module) -> torch.device: """Return the device on which the model is configured. :param module: the module containing the parameters used to get the device """ return next(module.parameters()).device @property def device(self) -> torch.device: """Return the device on which the model is configured.""" return self.device_from_module(self) def _forward_dropout(self, x: Tensor) -> Tensor: """Forward the dropout if there is one configured. """ if self.dropout is None: self._debug('skipping unset dropout') else: if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'dropout: {self.dropout}') x = self.dropout(x) return x def _forward_batch_norm(self, x: Tensor) -> Tensor: """Forward the batch normalization if there is one configured. """ if self.batch_norm is None: self._debug('skipping unset batch norm') else: if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'batch norm: {self.batch_norm}') x = self.batch_norm(x) return x def _forward_activation(self, x: Tensor) -> Tensor: """Transform using the activation function if there is one configured. """ if self.activation_function is None: self._debug('skipping unset forward') else: if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'activation: {self.activation_function}') x = self.activation_function(x) return x def _forward_batch_act_drop(self, x: Tensor) -> Tensor: """Forward convolution, batch normalization, pool, activation and dropout for those layers that are configured. :see: `Sunghean et al. <http://mipal.snu.ac.kr/images/1/16/Dropout_ACCV2016.pdf>`_ :see: `Ioffe et al. <https://arxiv.org/pdf/1502.03167.pdf>`_ """ x = self._forward_batch_norm(x) x = self._forward_activation(x) x = self._forward_dropout(x) return x def forward(self, x: Union[Batch, Tensor], *args, **kwargs) -> Tensor: """Main forward takes a batch for top level modules, or a tensor for framework based layers. Return the transformed tensor. """ if self.logger.isEnabledFor(logging.DEBUG) and isinstance(x, Batch): self._debug(f'input batch: {x}') return self._forward(x, *args, **kwargs)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/module.py
module.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import Any, Dict, Tuple from dataclasses import dataclass, field import logging from pathlib import Path import torch from zensols.util import time from zensols.config import ConfigFactory, Configurable from .. import ModelError, TorchConfig, NetworkSettings from . import BaseNetworkModule logger = logging.getLogger(__name__) @dataclass class ModelManager(object): """This class manages the lifecycle of an instance of a ``ModelExecutor``. This class is mostly used by the executor to control it's lifecycle. However, a client can also use an instance of this to revive a model that's been saved to disk with the ``ModelResultManager`` :see ModelExecutor: """ path: Path = field() """The path of where the model results saved to disk by :class:`.zensols.deeplearn.results.ModelResultManager`. """ config_factory: ConfigFactory = field() """The configuration factory to be used to create the ``ModelExecutor``.""" model_executor_name: str = field(default=None) """The configuration entry and name of the ``ModelExecutor`` instance.""" persist_random_seed_context: bool = field(default=True) """If ``True`` persist the current random seed state, which helps in creating consistent results across train/test/validate. """ keep_last_state_dict: bool = field(default=False) """Whether or not to store the PyTorch module state in attribute ``last_saved_state_dict``. """ @staticmethod def _get_paths(path: Path) -> Tuple[Path, Path]: return (path / 'state.pt', path / 'weight.pt') @classmethod def load_from_path(cls, path: Path) -> ModelManager: """Load and return an instance of this class from a previously saved model. This method exists to recreate a :class:`.ModelManager` from a saved file from scratch. The returned model manager can be used to create the executor or :class:`ModelFacade` using :obj:``config_factory``. :param path: points to the model file persisted with :py:meth:`_save_executor` :return: an instance of :class:`.ModelManager` that was used to save the executor pointed by ``path`` """ checkpoint = cls._load_checkpoint(*cls._get_paths(path)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'keys: {checkpoint.keys()}') config_factory = checkpoint['config_factory'] model_executor_name = checkpoint['model_executor_name'] persist_random = checkpoint['random_seed_context'] is not None return cls(path, config_factory, model_executor_name, persist_random) def load_executor(self, config_overwrites: Configurable = None) -> \ 'ModelExecutor': """Load the model the last saved model from the disk. This is used load an instance of a ``ModelExecutor`` with all previous state completely in tact. It does this by using an instance of :class:`zensols.config.factory.Configurable` and a :class:`zensols.config.factory.ImportConfigFactory` to reconstruct the executor and it's state by recreating all instances. After the executor has been recreated with the factory, the previous model results and model weights are restored. :param load_factory: whether to load the configuration factory from the check point; which you probably don't want when loading from :meth:`load_from_path` :return: an instance of :class:`.ModelExecutor` :see: :class:`zensols.deeplearn.model.ModelExecutor` """ checkpoint: Dict[str, Any] = self._get_checkpoint(True) # reload the config factory even if loaded from `load_from_path` since, # in that case, this instance will be deallcated in the facade config_factory: ConfigFactory = checkpoint['config_factory'] self._set_random_seed(checkpoint) # overwrite model configuration before the executor is instantiated if config_overwrites is not None: config_overwrites.copy_sections(config_factory.config) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'loading config factory: {config_factory}') # create the executor from the executor section executor: 'Executor' = config_factory.instance( checkpoint['model_executor_name']) # create the PyTorch model model: BaseNetworkModule = self._create_module(executor.net_settings) # load and set the state self._load_optimizer_state(executor, model, checkpoint) return executor def _load_optimizer_state(self, executor: Any, model: BaseNetworkModule, checkpoint: Dict[str, Any]): model.load_state_dict(checkpoint['model_state_dict']) executor._set_model(model, True, False) executor.model_result = checkpoint['model_result'] criterion, optimizer, scheduler = executor.criterion_optimizer_scheduler if 'model_scheduler_state_dict' in checkpoint: scheduler_state = checkpoint['model_scheduler_state_dict'] else: scheduler_state = None optimizer.load_state_dict(checkpoint['model_optim_state_dict']) if scheduler is not None and scheduler_state is not None: scheduler.load_state_dict(scheduler_state) if logger.isEnabledFor(logging.INFO): logger.info(f'loaded model from {executor.model_settings.path} ' + f'on device {model.device}') def _load_model_optim_weights(self, executor): """Load the model and optimizer weights from the last check point. A side effect is that the optimizer is recreated. """ model = executor._get_or_create_model() checkpoint = self._get_checkpoint(True) self._load_optimizer_state(executor, model, checkpoint) def _save_executor(self, executor: Any): """Save a ``ModelExecutor`` instance. :param executor: the executor to persost to disk """ logger.debug('saving model state') if self.persist_random_seed_context: random_seed_context = TorchConfig.get_random_seed_context() else: random_seed_context = None criterion, optimizer, scheduler = executor.criterion_optimizer_scheduler if scheduler is None: scheduler_state = None else: scheduler_state = scheduler.state_dict() state_dict = executor.model.state_dict() if self.keep_last_state_dict: self.last_saved_state_dict = self._copy_state_dict(state_dict) checkpoint = {'config_factory': self.config_factory, 'random_seed_context': random_seed_context, 'model_executor_name': self.model_executor_name, 'net_settings_name': executor.net_settings.name, 'model_result': executor.model_result, 'model_optim_state_dict': optimizer.state_dict(), 'model_scheduler_state_dict': scheduler_state, 'model_state_dict': state_dict} self._save_checkpoint(checkpoint, True) def _create_module(self, net_settings: NetworkSettings, reload: bool = False) -> BaseNetworkModule: """Create a new instance of the network model. """ resolver = self.config_factory.class_resolver initial_reload = resolver.reload try: resolver.reload = reload return net_settings.create_module() finally: resolver.reload = initial_reload @staticmethod def _copy_state_dict(state_dict): """Copy the PyTorch module state (weights) and return them as a dict. """ return {k: state_dict[k].clone() for k in state_dict.keys()} def _set_random_seed(self, checkpoint: Dict[str, Any]): random_seed_context = checkpoint['random_seed_context'] if random_seed_context is not None: TorchConfig.set_random_seed(**random_seed_context) def _save_final_trained_results(self, executor): """Save the results of the :class:`.ModelResult`, which is typically called when the validation loss decreases. Note this does not save the model weights since doing so might clobber with an overtrained model (assuming the last converved with the lowest validation loss was saved). :param executor: the executor with the model results to save """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'updating results: {self.path}') checkpoint = self._get_checkpoint(False) checkpoint['model_result'] = executor.model_result self._save_checkpoint(checkpoint, False) def _save_checkpoint(self, checkpoint: Dict[str, Any], save_weights: bool): """Save the check point to disk. :param checkpoint: all model state (results, random seed, weights etc) :param save_weights: if ``True`` then save the weights to the weight file (in addition to the state to the state file) """ state_path, weight_path = self._get_paths(self.path) weights = {} for k in 'model_optim_state_dict model_state_dict'.split(): wval = checkpoint.pop(k, None) if save_weights and wval is None: raise ModelError( f'Missing checkpoint key while saving weights: {k}') weights[k] = wval self.path.mkdir(parents=True, exist_ok=True) if save_weights: with time(f'saved model weights to {weight_path}'): torch.save(weights, str(weight_path)) with time(f'saved model state to {state_path}'): torch.save(checkpoint, str(state_path)) def _get_checkpoint(self, load_weights: bool) -> Dict[str, Any]: """The check point from loaded by the PyTorch framework. This contains the executor, model results, and model weights. :param load_weights: if ``True`` load the weights from the weights file and add it to the checkpoint state """ state_path, weight_path = self._get_paths(self.path) if not load_weights: weight_path = None return self._load_checkpoint(state_path, weight_path) @staticmethod def _load_checkpoint(state_path: Path, weight_path: Path) -> \ Dict[str, Any]: if not state_path.exists(): raise ModelError(f'No such state file: {state_path}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'loading check point from: {state_path}') with time(f'loaded check point from {state_path}'): cp = torch.load(str(state_path)) if weight_path is not None: params = {} if not torch.cuda.is_available(): params['map_location'] = torch.device('cpu') weights = torch.load(str(weight_path), **params) cp.update(weights) return cp
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/manager.py
manager.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import Tuple, List, Any, Type from abc import ABCMeta, abstractmethod from dataclasses import dataclass, field from zensols.persist import PersistableContainer, persisted from zensols.deeplearn.batch import DataPoint, Batch, BatchStash from zensols.deeplearn.result import ResultsContainer from .. import ModelError @dataclass class PredictionMapper(PersistableContainer, metaclass=ABCMeta): """Used by a top level client to create features used to create instances of :class:`.DataPoint` and map label classes from nominal IDs to their string representations. .. document private functions .. automethod:: _create_data_point .. automethod:: _create_features """ datas: Tuple[Any] = field() """The input data to create ad-hoc predictions.""" batch_stash: BatchStash = field() """"The batch stash used to own batches and data points created by this instance. """ def __post_init__(self): super().__init__() @abstractmethod def _create_features(self, data: Any) -> Tuple[Any]: """Create an instance of a feature from ``data``. :param data: data used to create data points :return: the data used in the initializer of the respective (in list) :class:`.DataPoint` """ pass @abstractmethod def map_results(self, result: ResultsContainer) -> Any: """Map ad-hoc prediction results from the :class:`.ModelExecutor` to an instance that makes sense to the client. :param result: contains the predictions produced by the model as :obj:`~zensols.deeplear.result.ResultsContainer.predictions_raw` :return: a first class instance suitable for easy client consumption """ pass def _create_prediction_batch(self, data: Any) -> Batch: dpcls: Type[DataPoint] = self.batch_stash.data_point_type features: Tuple[Any] = self._create_features(data) dps: Tuple[DataPoint] = tuple( map(lambda f: self._create_data_point(dpcls, f), features)) return self.batch_stash.create_batch(dps) @property @persisted('_batches') def batches(self) -> List[Batch]: """Create a prediction batch that is detached from any stash resources, except this instance that created it. This creates a tuple of features, each of which is used to create a :class:`.DataPoint`. """ return self._create_batches() def _create_batches(self) -> List[Batch]: bcls: Type[Batch] = self.batch_stash.batch_type batches = [] for data in self.datas: batch: Batch = self._create_prediction_batch(data) state = batch.__getstate__() dec_batch = object.__new__(bcls) dec_batch.__setstate__(state) dec_batch.batch_stash = self.batch_stash dec_batch.data_points = batch.data_points batches.append(dec_batch) return batches def _create_data_point(self, cls: Type[DataPoint], feature: Any) -> DataPoint: """Create a data point. This base implementation creates it with the passed parameters. :param cls: the data point class of which to make an instance :param stash: to be set as the batch stash on the data point and the caller :param feature: to be set as the third argument and generate from :meth:`_create_features` """ return cls(None, self.batch_stash, feature) def __getstate__(self): raise ModelError('Iinstances are not pickleable')
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/pred.py
pred.py
from __future__ import annotations """Sequence modules for sequence models. """ __author__ = 'Paul Landes' from typing import List, Union, Tuple from dataclasses import dataclass, field from abc import abstractmethod import logging import torch from torch import Tensor from torch import nn from torch.optim import Optimizer from zensols.persist import Deallocatable from zensols.deeplearn import DatasetSplitType, ModelError from zensols.deeplearn.batch import Batch from . import BaseNetworkModule, BatchIterator logger = logging.getLogger(__name__) @dataclass class SequenceNetworkContext(object): """The forward context for the :class:`.SequenceNetworkModule`. This is used in :meth:`.SequenceNetworkModule._forward` to provide the module additional information needed to score the model and produce the loss. """ split_type: DatasetSplitType = field() """The split type, which informs the module when decoding to produce outputs or using the forward pass to prod. :see: :meth:`.SequenceNetworkModule._forward` """ criterion: nn.Module = field() """The criterion used to create the loss. This is provided for modules that produce the loss in the forward phase with the `:meth:`torch.nn.module.forward`` method. """ class SequenceNetworkOutput(Deallocatable): """The output from :clas:`.SequenceNetworkModule` modules. """ def __init__(self, predictions: Union[List[List[int]], Tensor], loss: Tensor = None, score: Tensor = None, labels: Union[List[List[int]], Tensor] = None, outputs: Tensor = None): """Initialize the output of a sequence NN. :param predictions: list of list predictions to convert in to a 1-D tensor if given and not already a tensor; if a tensor, the shape must also be 1-D :param loss: the loss tensor :param score: the score given by the CRF's Verterbi algorithm :param labels: list of list gold labels to convert in to a 1-D tensor if given and not already a tensor :param outputs: the logits from the model """ if predictions is not None and not isinstance(predictions, Tensor): # shape: 1D self.predictions = self._to_tensor(predictions) else: self.predictions = predictions if labels is not None and not isinstance(labels, Tensor): self.labels = self._to_tensor(labels) else: self.labels = labels self.loss = loss self.score = score self.outputs = outputs def _to_tensor(self, lists: List[List[int]]) -> Tensor: """Flatten a list of lists. :return: a 1-D tensor by flattening of the ``lists`` data """ outs = [] for lst in lists: outs.append(torch.tensor(lst, dtype=torch.int64)) arr: Tensor = torch.cat(outs, dim=0) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'output shape: {arr.shape}') return arr def righsize_labels(self, preds: List[List[int]]): """Convert the :obj:`labels` tensor as a 1-D tensor. This removes the padded values by iterating over ``preds`` using each sub list's for copying the gold label tensor to the new tensor. """ labs = [] labels = self.labels for rix, bout in enumerate(preds): blen = len(bout) labs.append(labels[rix, :blen].cpu()) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'row: {rix}, len: {blen}, out/lab') self.labels = torch.cat(labs, 0) def deallocate(self): for i in 'predictions loss score': if hasattr(self, i): delattr(self, i) class SequenceNetworkModule(BaseNetworkModule): """A module that has a forward training pass and a separate *scoring* phase. Examples include layers with an ending linear CRF layer, such as a BiLSTM CRF. This module has a ``decode`` method that returns a 2D list of integer label indexes of a nominal class. The context provides additional information needed to train, test and use the module. :see: :class:`zensols.deeplearn.layer.RecurrentCRFNetwork` .. document private functions .. automethod:: _forward """ @abstractmethod def _forward(self, batch: Batch, context: SequenceNetworkContext) -> \ SequenceNetworkOutput: """The forward pass, which either trains the model and creates the loss and/or decodes the output for testing and evaluation. :param batch: the batch to train, validate or test on :param context: contains the additional information needed for scoring and decoding the sequence """ pass @dataclass class SequenceBatchIterator(BatchIterator): """Expects outputs as a list of lists of labels of indexes. Examples of use cases include CRFs (e.g. BiLSTM/CRFs). """ def _execute(self, model: BaseNetworkModule, optimizer: Optimizer, criterion, batch: Batch, split_type: DatasetSplitType) -> \ Tuple[Tensor]: logger = self.logger cctx = SequenceNetworkContext(split_type, criterion) seq_out: SequenceNetworkOutput = model(batch, cctx) outcomes: Tensor = seq_out.predictions loss: Tensor = seq_out.loss if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{batch.id}: output: {seq_out}') if seq_out.labels is not None: labels = seq_out.labels else: labels: Tensor = batch.get_labels() labels = self._encode_labels(labels) if logger.isEnabledFor(logging.DEBUG): if labels is not None: logger.debug(f'label shape: {labels.shape}') self._debug_output('after forward', labels, outcomes) # iterate over the error surface self._step(loss, split_type, optimizer, model) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'split: {split_type}, loss: {loss}') # transform the labels in the same manner as the predictions so tensor # shapes match if not self.model_settings.nominal_labels: labels = self._decode_outcomes(labels) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'label nom decoded: {labels.shape}') if outcomes is None and split_type != DatasetSplitType.train: raise ModelError('Expecting predictions for all splits except ' + f'{DatasetSplitType.train} on {split_type}') if logger.isEnabledFor(logging.DEBUG): if outcomes is not None: logger.debug(f'outcomes: {outcomes.shape}') if labels is not None: logger.debug(f'labels: {labels.shape}') loss, labels, outcomes, outputs = self.torch_config.to_cpu_deallocate( loss, labels, outcomes, seq_out.outputs) return loss, labels, outcomes, outputs
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/sequence.py
sequence.py
__author__ = 'Paul Landes' from dataclasses import dataclass, field from typing import List, Callable, Tuple, Any, Union import sys import gc import logging import itertools as it from itertools import chain from io import TextIOBase, StringIO import random as rand from pathlib import Path import torch from torch import nn from tqdm import tqdm from zensols.util import time from zensols.config import Configurable, ConfigFactory, Writable from zensols.persist import ( Deallocatable, persisted, PersistedWork, PersistableContainer, Stash, UnionStash, ) from zensols.dataset import SplitStashContainer, DatasetSplitStash from zensols.deeplearn import ( ModelError, EarlyBailError, TorchConfig, DatasetSplitType, NetworkSettings ) from zensols.deeplearn.result import ( EpochResult, ModelResult, ModelSettings, ModelResultManager, ) from zensols.deeplearn.batch import BatchStash, Batch from . import ( ModelResourceFactory, BaseNetworkModule, ModelManager, UpdateAction, BatchIterator, TrainManager, ) # default message logger logger = logging.getLogger(__name__ + '.status') # logger for messages, which is active when the progress bar is not progress_logger = logging.getLogger(__name__ + '.progress') @dataclass class ModelExecutor(PersistableContainer, Deallocatable, Writable): """This class creates and uses a network to train, validate and test the model. This class is either configured using a :class:`~zensols.config.factory.ConfigFactory` or is unpickled with :class:`.ModelManager`. If the later, it's from a previously trained (and possibly tested) state. Typically, after creating a nascent instance, :meth:`train` is called to train the model. This returns the results, but the results are also available via the :class:`ResultManager` using the :obj:`model_manager` property. To load previous results, use ``executor.result_manager.load()``. During training, the training set is used to train the weights of the model provided by the executor in the :obj:`model_settings`, then validated using the validation set. When the validation loss is minimized, the following is saved to disk: * Settings: :obj:`net_settings`, :obj:`model_settings`, * the model weights, * the results of the training and validation thus far, * the entire configuration (which is later used to restore the executor), * random seed information, which includes Python, Torch and GPU random state. After the model is trained, you can immediately test the model with :meth:`test`. To be more certain of being able to reproduce the same results, it is recommended to load the model with ``model_manager.load_executor()``, which loads the last instance of the model that produced a minimum validation loss. :see: :class:`.ModelExecutor` :see: :class:`.NetworkSettings` :see: :class:`zensols.deeplearn.model.ModelSettings` """ ATTR_EXP_META = ('model_settings',) config_factory: ConfigFactory = field() """The configuration factory that created this instance.""" config: Configurable = field() """The configuration used in the configuration factory to create this instance. """ name: str = field() """The name given in the configuration.""" model_settings: ModelSettings = field() """The configuration of the model.""" net_settings: NetworkSettings = field() """The settings used to configure the network.""" dataset_stash: DatasetSplitStash = field() """The split data set stash that contains the ``BatchStash``, which contains the batches on which to train and test. """ dataset_split_names: List[str] = field() """The list of split names in the ``dataset_stash`` in the order: train, validation, test (see :meth:`_get_dataset_splits`) """ result_path: Path = field(default=None) """If not ``None``, a path to a directory where the results are to be dumped; the directory will be created if it doesn't exist when the results are generated. """ update_path: Path = field(default=None) """The path to check for commands/updates to make while training. If this is set, and the file exists, then it is parsed as a JSON file. If the file cannot be parsed, or 0 size etc., then the training is (early) stopped. If the file can be parsed, and there is a single ``epoch`` dict entry, then the current epoch is set to that value. """ intermediate_results_path: Path = field(default=None) """If this is set, then save the model and results to this path after validation for each training epoch. """ progress_bar: bool = field(default=False) """Create text/ASCII based progress bar if ``True``.""" progress_bar_cols: int = field(default=None) """The number of console columns to use for the text/ASCII based progress bar. """ def __post_init__(self): super().__init__() if not isinstance(self.dataset_stash, DatasetSplitStash) and False: raise ModelError('Expecting type DatasetSplitStash but ' + f'got {self.dataset_stash.__class__}') self._model = None self._dealloc_model = False self.model_result: ModelResult = None self.batch_stash.delegate_attr: bool = True self._criterion_optimizer_scheduler = PersistedWork( '_criterion_optimizer_scheduler', self) self._result_manager = PersistedWork('_result_manager', self) self._train_manager = PersistedWork('_train_manager', self) self.cached_batches = {} self.debug = False @property def batch_stash(self) -> DatasetSplitStash: """The stash used to obtain the data for training and testing. This stash should have a training, validation and test splits. The names of these splits are given in the ``dataset_split_names``. """ return self.dataset_stash.split_container @property def feature_stash(self) -> Stash: """The stash used to generate the feature, which is not to be confused with the batch source stash``batch_stash``. """ return self.batch_stash.split_stash_container @property def torch_config(self) -> TorchConfig: """Return the PyTorch configuration used to convert models and data (usually GPU) during training and test. """ return self.batch_stash.model_torch_config @property @persisted('_result_manager') def result_manager(self) -> ModelResultManager: """Return the manager used for controlling the life cycle of the results generated by this executor. """ if self.result_path is not None: return self._create_result_manager(self.result_path) def _create_result_manager(self, path: Path) -> ModelResultManager: return ModelResultManager( name=self.model_settings.model_name, path=path, model_path=self.model_settings.path) @property @persisted('_model_manager') def model_manager(self) -> ModelManager: """Return the manager used for controlling the train of the model. """ model_path = self.model_settings.path return ModelManager(model_path, self.config_factory, self.name) @property @persisted('_batch_iterator') def batch_iterator(self) -> BatchIterator: """The train manager that assists with the training process. """ resolver = self.config_factory.class_resolver batch_iter_class_name = self.model_settings.batch_iteration_class_name if logger.isEnabledFor(logging.DEBUG): logger.debug(f'batch_iteration: {batch_iter_class_name}') batch_iter_class = resolver.find_class(batch_iter_class_name) batch_iter = batch_iter_class(self, logger) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'batch_iter={batch_iter}') return batch_iter @property def debug(self) -> Union[bool, int]: return self._debug @debug.setter def debug(self, debug: Union[bool, int]): self._debug = debug self.batch_iterator.debug = debug @property @persisted('_train_manager') def train_manager(self) -> TrainManager: """Return the train manager that assists with the training process. """ return TrainManager( logger, progress_logger, self.update_path, self.model_settings.max_consecutive_increased_count) def _weight_reset(self, m): if hasattr(m, 'reset_parameters') and callable(m.reset_parameters): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'resetting parameters on {m}') m.reset_parameters() def reset(self): """Reset the executor's to it's nascent state. """ if logger.isEnabledFor(logging.INFO): logger.info('resetting executor') self._criterion_optimizer_scheduler.clear() self._deallocate_model() def load(self) -> nn.Module: """Clear all results and trained state and reload the last trained model from the file system. :return: the model that was loaded and registered in this instance of the executor """ if logger.isEnabledFor(logging.INFO): logger.info('reloading model weights') self._deallocate_model() self.model_manager._load_model_optim_weights(self) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'copied model to {self.model.device}') return self.model def deallocate(self): super().deallocate() self._deallocate_model() self.deallocate_batches() self._try_deallocate(self.dataset_stash) self._deallocate_settings() self._criterion_optimizer_scheduler.deallocate() self._result_manager.deallocate() self.model_result = None def _deallocate_model(self): if logger.isEnabledFor(logging.DEBUG): logger.debug('dealloc model: model exists/dealloc: ' + f'{self._model is not None}/{self._dealloc_model}') if self._model is not None and self._dealloc_model: self._try_deallocate(self._model) self._model = None def _deallocate_settings(self): self.model_settings.deallocate() self.net_settings.deallocate() def deallocate_batches(self): set_of_ds_sets = self.cached_batches.values() ds_sets = chain.from_iterable(set_of_ds_sets) batches = chain.from_iterable(ds_sets) for batch in batches: batch.deallocate() self.cached_batches.clear() @property def model_exists(self) -> bool: """Return whether the executor has a model. :return: ``True`` if the model has been trained or loaded """ return self._model is not None @property def model(self) -> BaseNetworkModule: """Get the PyTorch module that is used for training and test. """ if self._model is None: raise ModelError('No model, is populated; use \'load\'') return self._model @model.setter def model(self, model: BaseNetworkModule): """Set the PyTorch module that is used for training and test. """ self._set_model(model, False, True) def _set_model(self, model: BaseNetworkModule, take_owner: bool, deallocate: bool): if logger.isEnabledFor(level=logging.DEBUG): logger.debug(f'setting model: {type(model)}') if deallocate: self._deallocate_model() self._model = model self._dealloc_model = take_owner if logger.isEnabledFor(logging.DEBUG): logger.debug(f'setting dealloc model: {self._dealloc_model}') self._criterion_optimizer_scheduler.clear() def _get_or_create_model(self) -> BaseNetworkModule: if self._model is None: self._dealloc_model = True model = self._create_model() self._model = model else: model = self._model if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created model as dealloc: {self._dealloc_model}') return model def _create_model(self) -> BaseNetworkModule: """Create the network model instance. """ mng: ModelManager = self.model_manager model = mng._create_module(self.net_settings, self.debug) if logger.isEnabledFor(logging.INFO): logger.info(f'created model on {model.device} ' + f'with {self.torch_config}') return model def _create_model_result(self) -> ModelResult: res = ModelResult( self.config, f'{self.model_settings.model_name}: {ModelResult.get_num_runs()}', self.model_settings, self.net_settings, self.batch_stash.decoded_attributes) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating model result ({id(res)}): ' + self.model_settings.model_name) return res @property @persisted('_criterion_optimizer_scheduler') def criterion_optimizer_scheduler(self) -> \ Tuple[nn.L1Loss, torch.optim.Optimizer, Any]: """Return the loss function and descent optimizer. """ criterion = self._create_criterion() optimizer, scheduler = self._create_optimizer_scheduler() return criterion, optimizer, scheduler def _create_criterion(self) -> torch.optim.Optimizer: """Factory method to create the loss function and optimizer. """ resolver = self.config_factory.class_resolver criterion_class_name = self.model_settings.criterion_class_name if logger.isEnabledFor(logging.DEBUG): logger.debug(f'criterion: {criterion_class_name}') criterion_class = resolver.find_class(criterion_class_name) criterion = criterion_class() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'criterion={criterion}') return criterion def _create_optimizer_scheduler(self) -> Tuple[nn.L1Loss, Any]: """Factory method to create the optimizer and the learning rate scheduler (is any). """ model = self.model resolver = self.config_factory.class_resolver optimizer_class_name = self.model_settings.optimizer_class_name if logger.isEnabledFor(logging.DEBUG): logger.debug(f'optimizer: {optimizer_class_name}') optimizer_class = resolver.find_class(optimizer_class_name) if self.model_settings.optimizer_params is None: optimizer_params = {} else: optimizer_params = dict(self.model_settings.optimizer_params) optimizer_params['lr'] = self.model_settings.learning_rate if issubclass(optimizer_class, ModelResourceFactory): opt_call = optimizer_class() optimizer_params['model'] = model optimizer_params['executor'] = self else: opt_call = optimizer_class optimizer = opt_call(model.parameters(), **optimizer_params) scheduler_class_name = self.model_settings.scheduler_class_name if scheduler_class_name is not None: scheduler_class = resolver.find_class(scheduler_class_name) scheduler_params = self.model_settings.scheduler_params if scheduler_params is None: scheduler_params = {} else: scheduler_params = dict(scheduler_params) scheduler_params['optimizer'] = optimizer if issubclass(scheduler_class, ModelResourceFactory): # model resource factories are callable sch_call = scheduler_class() scheduler_params['executor'] = self else: sch_call = scheduler_class scheduler = sch_call(**scheduler_params) else: scheduler = None if logger.isEnabledFor(logging.DEBUG): logger.debug(f'optimizer={optimizer}') return optimizer, scheduler def get_model_parameter(self, name: str): """Return a parameter of the model, found in ``model_settings``. """ return getattr(self.model_settings, name) def set_model_parameter(self, name: str, value: Any): """Safely set a parameter of the model, found in ``model_settings``. This makes the corresponding update in the configuration, so that when it is restored (i.e for test) the parameters are consistent with the trained model. The value is converted to a string as the configuration representation stores all data values as strings. *Important*: ``eval`` syntaxes are not supported, and probably not the kind of values you want to set a parameters with this interface anyway. :param name: the name of the value to set, which is the key in the configuration file :param value: the value to set on the model and the configuration """ self.config.set_option( name, str(value), section=self.model_settings.name) setattr(self.model_settings, name, value) def get_network_parameter(self, name: str): """Return a parameter of the network, found in ``network_settings``. """ return getattr(self.net_settings, name) def set_network_parameter(self, name: str, value: Any): """Safely set a parameter of the network, found in ``network_settings``. This makes the corresponding update in the configuration, so that when it is restored (i.e for test) the parameters are consistent with the trained network. The value is converted to a string as the configuration representation stores all data values as strings. *Important*: ``eval`` syntaxes are not supported, and probably not the kind of values you want to set a parameters with this interface anyway. :param name: the name of the value to set, which is the key in the configuration file :param value: the value to set on the network and the configuration """ self.config.set_option( name, str(value), section=self.net_settings.name) setattr(self.net_settings, name, value) def _to_iter(self, ds): ds_iter = ds if isinstance(ds_iter, Stash): ds_iter = ds_iter.values() return ds_iter def _gc(self, level: int): """Invoke the Python garbage collector if ``level`` is high enough. The *lower* the value of ``level``, the more often it will be run during training, testing and validation. :param level: if priority of the need to collect--the lower the more its needed """ if level <= self.model_settings.gc_level: if logger.isEnabledFor(logging.DEBUG): logger.debug('garbage collecting') self._notify('gc_start') with time('garbage collected', logging.DEBUG): gc.collect() self._notify('gc_end') def _notify(self, event: str, context: Any = None): """Notify observers of events from this class. """ self.model_settings.observer_manager.notify(event, self, context) def _train(self, train: List[Batch], valid: List[Batch]): """Train the network model and record validation and training losses. Every time the validation loss shrinks, the model is saved to disk. """ n_epochs = self.model_settings.epochs # create network model, loss and optimization functions model = self._get_or_create_model() model = self.torch_config.to(model) self._model = model if logger.isEnabledFor(logging.INFO): logger.info(f'training model {type(model)} on {model.device} ' + f'for {n_epochs} epochs using ' + f'learning rate {self.model_settings.learning_rate}') criterion, optimizer, scheduler = self.criterion_optimizer_scheduler # create a second module manager for after epoch results if self.intermediate_results_path is not None: model_path = self.intermediate_results_path intermediate_manager = self._create_result_manager(model_path) intermediate_manager.file_pattern = '{prefix}.{ext}' else: intermediate_manager = None train_manager = self.train_manager action = UpdateAction.ITERATE_EPOCH # set up graphical progress bar exec_logger = logging.getLogger(__name__) if self.progress_bar and \ (exec_logger.level == 0 or exec_logger.level > logging.INFO) and \ (progress_logger.level == 0 or progress_logger.level > logging.INFO): pbar = tqdm(total=n_epochs, ncols=self.progress_bar_cols) else: pbar = None train_manager.start(optimizer, scheduler, n_epochs, pbar) self.model_result.train.start() self.model_result.validation.start() # epochs loop while action != UpdateAction.STOP: epoch: int = train_manager.current_epoch train_epoch_result = EpochResult(epoch, DatasetSplitType.train) valid_epoch_result = EpochResult(epoch, DatasetSplitType.validation) if progress_logger.isEnabledFor(logging.INFO): progress_logger.debug(f'training on epoch: {epoch}') self.model_result.train.append(train_epoch_result) self.model_result.validation.append(valid_epoch_result) # train ---- # prep model for training and train model.train() train_epoch_result.start() self._notify('train_start', {'epoch': epoch}) for batch in self._to_iter(train): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'training on batch: {batch.id}') with time('trained batch', level=logging.DEBUG): self.batch_iterator.iterate( model, optimizer, criterion, batch, train_epoch_result, DatasetSplitType.train) self._gc(3) self._notify('train_end', {'epoch': epoch}) train_epoch_result.end() self._gc(2) # validate ---- # prep model for evaluation and evaluate ave_valid_loss = 0 model.eval() valid_epoch_result.start() self._notify('validation_start', {'epoch': epoch}) for batch in self._to_iter(valid): # forward pass: compute predicted outputs by passing inputs # to the model with torch.no_grad(): loss = self.batch_iterator.iterate( model, optimizer, criterion, batch, valid_epoch_result, DatasetSplitType.validation) ave_valid_loss += (loss.item() * batch.size()) self._gc(3) self._notify('validation_end', {'epoch': epoch}) valid_epoch_result.end() ave_valid_loss = ave_valid_loss / len(valid) self._gc(2) valid_loss_min, decreased = train_manager.update_loss( valid_epoch_result, train_epoch_result, ave_valid_loss) if decreased: self.model_manager._save_executor(self) if intermediate_manager is not None: inter_res = self.model_result.get_intermediate() intermediate_manager.save_text_result(inter_res) intermediate_manager.save_plot_result(inter_res) # look for indication of update or early stopping status = train_manager.get_status() action = status.action val_losses = train_manager.validation_loss_decreases if logger.isEnabledFor(logging.INFO): logger.info('final minimum validation ' + f'loss: {train_manager.valid_loss_min}, ' + f'{val_losses} decreases') if val_losses == 0: logger.warn('no validation loss decreases encountered, ' + 'so there was no model saved; model can not be tested') self.model_result.train.end() self.model_result.validation.end() self.model_manager._save_final_trained_results(self) def _test(self, batches: List[Batch]): """Test the model on the test set. If a model is not given, it is unpersisted from the file system. """ # create the loss and optimization functions criterion, optimizer, scheduler = self.criterion_optimizer_scheduler model = self.torch_config.to(self.model) # track epoch progress test_epoch_result = EpochResult(0, DatasetSplitType.test) if logger.isEnabledFor(logging.INFO): logger.info(f'testing model {type(model)} on {model.device}') # in for some reason the model was trained but not tested, we'll load # from the model file, which will have no train results (bad idea) if self.model_result is None: self.model_result = self._create_model_result() self.model_result.reset(DatasetSplitType.test) self.model_result.test.start() self.model_result.test.append(test_epoch_result) # prep model for evaluation model.eval() # run the model on test data test_epoch_result.start() for batch in self._to_iter(batches): # forward pass: compute predicted outputs by passing inputs # to the model with torch.no_grad(): self.batch_iterator.iterate( model, optimizer, criterion, batch, test_epoch_result, DatasetSplitType.test) self._gc(3) test_epoch_result.end() self._gc(2) self.model_result.test.end() def _preproces_training(self, ds_train: Tuple[Batch]): """Preprocess the training set, which for this method implementation, includes a shuffle if configured in the model settings. """ self._notify('preprocess_training_start') if self.model_settings.shuffle_training: if logger.isEnabledFor(logging.DEBUG): logger.debug('shuffling training dataset') # data sets are ordered with training as the first rand.shuffle(ds_train) self._notify('preprocess_training_end') def _calc_batch_limit(self, src: Stash, batch_limit: Union[int, float]) -> int: if batch_limit <= 0: raise ModelError(f'Batch limit must be positive: {batch_limit}') if isinstance(batch_limit, float): if batch_limit > 1.0: raise ModelError('Batch limit must be less than 1 ' + f'when a float: {batch_limit}') vlim = round(len(src) * batch_limit) if logger.isEnabledFor(logging.DEBUG): logger.debug('batch limit calculated as a percentage: ' + f'{vlim} = {len(src)} * {batch_limit}') else: vlim = batch_limit if isinstance(src, SplitStashContainer): desc = f' for {src.split_name}' else: desc = '' if logger.isEnabledFor(logging.INFO): logger.info(f'using batch limit: {vlim}{desc}') return vlim def _prepare_datasets(self, batch_limit: Union[int, float], to_deallocate: List[Batch], ds_src: List[Stash]) -> List[List[Batch]]: """Return batches for each data set. The batches are returned per dataset as given in :meth:`_get_dataset_splits`. Return: [(training batch 1..N), (validation batch 1..N), (test batch 1..N)] """ biter = self.model_settings.batch_iteration cnt = 0 if logger.isEnabledFor(logging.INFO): logger.info(f'preparing datasets using iteration: {biter}') self._notify('prepare_datasets_start', biter) if biter == 'gpu': ds_dst = [] for src in ds_src: vlim = self._calc_batch_limit(src, batch_limit) cpu_batches = tuple(it.islice(src.values(), vlim)) gpu_batches = list(map(lambda b: b.to(), cpu_batches)) cnt += len(gpu_batches) # the `to` call returns the same instance if the tensor is # already on the GPU, so only deallocate batches copied over for cpu_batch, gpu_batch in zip(cpu_batches, gpu_batches): if cpu_batch is not gpu_batch: to_deallocate.append(cpu_batch) if not self.model_settings.cache_batches: to_deallocate.extend(gpu_batches) ds_dst.append(gpu_batches) elif biter == 'cpu': ds_dst = [] for src in ds_src: vlim = self._calc_batch_limit(src, batch_limit) batches = list(it.islice(src.values(), vlim)) cnt += len(batches) if not self.model_settings.cache_batches: to_deallocate.extend(batches) ds_dst.append(batches) elif biter == 'buffered': ds_dst = ds_src cnt = '?' else: raise ModelError(f'No such batch iteration method: {biter}') self._notify('prepare_datasets_end', biter) self._preproces_training(ds_dst[0]) return cnt, ds_dst def _execute(self, sets_name: str, description: str, func: Callable, ds_src: tuple) -> bool: """Either train or test the model based on method ``func``. :param sets_name: the name of the data sets, which ``train`` or ``test`` :param func: the method to call to do the training or testing :param ds_src: a tuple of datasets in a form such as ``(train, validation, test)`` (see :meth:`_get_dataset_splits`) :return: ``True`` if training/testing was successful, otherwise `the an exception occured or early bail """ to_deallocate: List[Batch] = [] ds_dst: List[List[Batch]] = None batch_limit = self.model_settings.batch_limit biter = self.model_settings.batch_iteration if self.model_settings.cache_batches and biter == 'buffered': raise ModelError('Can not cache batches for batch ' + 'iteration setting \'buffered\'') if logger.isEnabledFor(logging.INFO): logger.info(f'batch iteration: {biter}, limit: {batch_limit}' + f', caching: {self.model_settings.cache_batches}' f', cached: {len(self.cached_batches)}') self._notify('execute_start', sets_name) self._gc(1) ds_dst = self.cached_batches.get(sets_name) if ds_dst is None: cnt = 0 with time('loaded {cnt} batches'): cnt, ds_dst = self._prepare_datasets( batch_limit, to_deallocate, ds_src) if self.model_settings.cache_batches: self.cached_batches[sets_name] = ds_dst if logger.isEnabledFor(logging.INFO): logger.info('train/validation sets: ' + f'{" ".join(map(lambda l: str(len(l)), ds_dst))}') try: with time(f'executed {sets_name}'): func(*ds_dst) if description is not None: res_name = f'{self.model_result.index}: {description}' self.model_result.name = res_name return True except EarlyBailError as e: logger.warning(f'<{e}>') self.reset() return False finally: self._notify('execute_end', sets_name) self._train_manager.clear() if logger.isEnabledFor(logging.INFO): logger.info(f'deallocating {len(to_deallocate)} batches') for batch in to_deallocate: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'deallocating: {batch}') batch.deallocate() self._gc(1) self.torch_config.empty_cache() def _get_dataset_splits(self) -> Tuple[BatchStash]: """Return a stash, one for each respective data set tracked by this executor. """ def map_split(n: str) -> DatasetSplitStash: s = splits.get(n) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'split: {n}={len(s)}') if s is None: raise ModelError( f"No split '{n}' in {self.dataset_stash.split_names}, " + f'executor splits: {self.dataset_split_names}') return s splits = self.dataset_stash.splits return tuple(map(map_split, self.dataset_split_names)) def train(self, description: str = None) -> ModelResult: """Train the model. """ self.model_result = self._create_model_result() train, valid, _ = self._get_dataset_splits() self._execute('train', description, self._train, (train, valid)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'trained model result: {self.model_result}') return self.model_result def test(self, description: str = None) -> ModelResult: """Test the model. """ train, valid, test = self._get_dataset_splits() if self.model_result is None: logger.warning('no results found--loading') self.model_result = self.result_manager.load() self._execute('test', description, self._test, (test,)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'tested model result: {self.model_result}') return self.model_result def train_production(self, description: str = None) -> ModelResult: """Train and test the model on the training and test datasets. This is used for a "production" model that is used for some purpose other than evaluation. """ self.model_result = self._create_model_result() train, valid, test = self._get_dataset_splits() train = UnionStash((train, test)) self._execute('train production', description, self._train, (train, valid)) return self.model_result def predict(self, batches: List[Batch]) -> ModelResult: """Create predictions on ad-hoc data. :param batches: contains the data (X) on which to predict :return: the results of the predictions """ for batch in batches: self.batch_stash.populate_batch_feature_mapping(batch) self._test(batches) return self.model_result.test def write_model(self, depth: int = 0, writer: TextIOBase = sys.stdout): model = self._get_or_create_model() sio = StringIO() sp = self._sp(depth + 1) nl = '\n' print(model, file=sio) self._write_line('model:', depth, writer) writer.write(nl.join(map(lambda s: sp + s, sio.getvalue().split(nl)))) def write_settings(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line('network settings:', depth, writer) self._write_dict(self.net_settings.asdict(), depth + 1, writer) self._write_line('model settings:', depth, writer) self._write_dict(self.model_settings.asdict(), depth + 1, writer) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_settings: bool = False, include_model: bool = False): sp = self._sp(depth) writer.write(f'{sp}model: {self.model_settings.model_name}\n') writer.write(f'{sp}feature splits:\n') self.feature_stash.write(depth + 1, writer) writer.write(f'{sp}batch splits:\n') self.dataset_stash.write(depth + 1, writer) if include_settings: self.write_settings(depth, writer) if include_model: self.write_model(depth, writer)
zensols.deeplearn
/zensols.deeplearn-1.8.1-py3-none-any.whl/zensols/deeplearn/model/executor.py
executor.py
__author__ = 'Paul Landes' from typing import List, Dict, Tuple from dataclasses import dataclass, field import logging import itertools as it import torch from torch import Tensor from torch import nn from zensols.deeplearn import DropoutNetworkSettings from zensols.deeplearn.batch import Batch from zensols.deeplearn.model import ( SequenceNetworkModule, SequenceNetworkContext, SequenceNetworkOutput ) from zensols.deeplearn.layer import DeepLinearNetworkSettings, DeepLinear from zensols.deepnlp.layer import ( EmbeddingNetworkSettings, EmbeddingNetworkModule, EmbeddingLayer, ) from . import ( TokenizedDocument, TransformerEmbedding, TransformerNominalFeatureVectorizer ) logger = logging.getLogger(__name__) class TransformerEmbeddingLayer(EmbeddingLayer): """A transformer (i.e. BERT) embedding layer. This class generates embeddings on a per sentence basis. See the initializer documentation for configuration requirements. """ MODULE_NAME = 'transformer embedding' def __init__(self, *args, embed_model: TransformerEmbedding, **kwargs): """Initialize with an embedding model. This embedding model must configured with :obj:`.TransformerEmbedding.output` to ``last_hidden_state``. :param embed_model: used to generate the transformer (i.e. BERT) embeddings """ super().__init__( *args, embedding_dim=embed_model.vector_dimension, **kwargs) self.embed_model = embed_model if self.embed_model.trainable: self.emb = embed_model.model def deallocate(self): if not self.embed_model.cache: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'deallocate: {self.__class__}') super().deallocate() def _forward_trainable(self, doc: Tensor) -> Tensor: tok_doc: TokenizedDocument = TokenizedDocument.from_tensor(doc) x = self.embed_model.transform(tok_doc) tok_doc.deallocate() if logger.isEnabledFor(logging.DEBUG): self._shape_debug('embedding', x) return x def forward(self, x: Tensor) -> Tensor: self._shape_debug('transformer input', x) if self.embed_model.trainable: x = self._forward_trainable(x) self._shape_debug('transform', x) return x @dataclass class TransformerSequenceNetworkSettings(EmbeddingNetworkSettings, DropoutNetworkSettings): """Settings configuration for :class:`.TransformerSequence`. """ decoder_settings: DeepLinearNetworkSettings = field() """The decoder feed forward network.""" def get_module_class_name(self) -> str: return __name__ + '.TransformerSequence' class TransformerSequence(EmbeddingNetworkModule, SequenceNetworkModule): """A sequence based model for token classification use HuggingFace transformers. """ MODULE_NAME = 'transformer sequence' def __init__(self, net_settings: TransformerSequenceNetworkSettings, sub_logger: logging.Logger = None): super().__init__(net_settings, sub_logger or logger) ns = self.net_settings ds = ns.decoder_settings ds.in_features = self.embedding_output_size self._n_labels = ds.out_features if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'linear settings: {ds}') self.decoder = DeepLinear(ds, self.logger) self._init_range = 0.02 self.decoder.apply(self._init_weights) def _init_weights(self, module: nn.Module): """Initialize the weights.""" # taken directly from HuggingFace if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self._init_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self._init_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def deallocate(self): super().deallocate() self.decoder.deallocate() def _to_lists(self, tdoc: TokenizedDocument, sents: Tensor) -> \ Tuple[List[List[int]]]: """Convert a document of sentences from a tensor to list of lists of nominial labels. :param tdoc: the tokenzied document representing this batch :param sents: the sentences to convert to the list of lists, with rows as sentences and columns as word piece label :return: of list of lists with each sublist represents a sentence """ offsets: Tensor = tdoc.offsets preds: List[List[int]] = [] n_sents: int = sents.size(1) labels: List[List[int]] = [] if sents.size(0) > 1 else None if logger.isEnabledFor(logging.DEBUG): logger.debug(f'to collapse: {sents.shape}, ' + f'offsets: {offsets.shape}') for six in range(n_sents): last = None tixes = [] for wix, tix in enumerate(offsets[six]): if tix >= 0 and last != tix: last = tix tixes.append(wix) sl = sents[:, six, tixes] preds.append(sl[0].tolist()) if labels is not None: labels.append(sl[1].tolist()) return preds, labels def _debug_preds(self, labels: Tensor, preds: List[List[str]], tdoc: TokenizedDocument, batch: Batch, limit: int = 5): vocab: Dict[str, int] = self.embedding.embed_model.resource.tokenizer.vocab vocab = {vocab[k]: k for k in vocab.keys()} input_ids = tdoc.input_ids fsents = tuple(map(lambda d: d.doc.sents[0], batch.data_points)) for six, pred in enumerate(it.islice(preds, limit)): print(fsents[six]) print('sent', ', '.join( map(lambda ix: vocab[ix.item()], input_ids[six]))) print('predictions:', pred) print('labels:', labels[six]) print('-' * 10) def _forward(self, batch: Batch, context: SequenceNetworkContext) -> \ SequenceNetworkOutput: DEBUG = False if DEBUG and self.logger.isEnabledFor(logging.DEBUG): for dp in batch.data_points: self.logger.debug(f'data point: {dp}') emb: Tensor = super()._forward(batch) vec: TransformerNominalFeatureVectorizer = \ batch.get_label_feature_vectorizer() pad_label: int = vec.pad_label labels: Tensor = batch.get_labels() tdoc: Tensor = self.get_embedding_tensors(batch)[0] tdoc = TokenizedDocument.from_tensor(tdoc) attention_mask: Tensor = tdoc.attention_mask try: self._shape_debug('labels', labels) self._shape_debug('attention mask', attention_mask) self._shape_debug('embedding', emb) if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'tokenized doc: {tdoc}, len: {len(tdoc)}') emb = self._forward_dropout(emb) self._shape_debug('dropout', emb) logits = self.decoder(emb) self._shape_debug('logits', logits) preds = logits.argmax(dim=-1) # labels are missing when predicting if labels is None: loss = batch.torch_config.singleton([0], dtype=torch.float32) else: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self._n_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(pad_label).type_as(labels) ) self._shape_debug('active_logits', active_logits) self._shape_debug('active_labels', active_labels) loss = context.criterion(active_logits, active_labels) labels = labels.squeeze(-1) if DEBUG: sz = 5 print('active labels', active_labels.tolist()[:sz]) print(active_labels.shape) print('active logits', active_logits.tolist()[:sz]) print(active_logits.shape) if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'loss: {loss}') self._shape_debug('predictions', preds) if labels is None: to_collapse = preds.unsqueeze(0) else: to_collapse = torch.stack((preds, labels)) preds, mapped_labels = self._to_lists(tdoc, to_collapse) out = SequenceNetworkOutput( preds, loss, labels=mapped_labels, outputs=logits) if DEBUG: self._debug_preds(labels, preds, tdoc, batch) finally: tdoc.deallocate() return out
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/layer.py
layer.py
__author__ = 'Paul Landes' from typing import Dict, Any, Type, Tuple from dataclasses import dataclass, field, InitVar import logging import collections from io import TextIOBase from functools import reduce from pathlib import Path from torch import Tensor from transformers import PreTrainedTokenizer, PreTrainedModel from zensols.util.time import time from zensols.introspect import ClassImporter from zensols.config import Dictable from zensols.persist import persisted, PersistedWork, PersistableContainer from zensols.deeplearn import TorchConfig, DeepLearnError logger = logging.getLogger(__name__) class TransformerError(DeepLearnError): """Raised for any transformer specific errors in this and child modules of the parent. """ pass @dataclass class TransformerResource(PersistableContainer, Dictable): """A container base class that allows configuration and creates various huggingface models. """ name: str = field() """The name of the model given by the configuration. Used for debugging. """ torch_config: TorchConfig = field() """The config device used to copy the embedding data.""" model_id: str = field() """The ID of the model (i.e. ``bert-base-uncased``). If this is not set, is derived from the ``model_name`` and ``case``. Token embeding using :class:`.TransformerEmbedding` as been tested with: * ``bert-base-cased`` * ``bert-large-cased`` * ``roberta-base`` * ``distilbert-base-cased`` :see: `Pretrained Models <https://huggingface.co/transformers/pretrained_models.html>`_ """ cased: bool = field(default=None) """``True`` for case sensitive models, ``False`` (default) otherwise. The negated value of it is also used as the ``do_lower_case`` parameter in the ``*.from_pretrained`` calls to huggingface transformers. """ trainable: bool = field(default=False) """If ``False`` the weights on the transformer model are frozen and the use of the model (including in subclasses) turn off autograd when executing.. """ args: Dict[str, Any] = field(default_factory=dict) """Additional arguments to pass to the `from_pretrained` method for the tokenizer and the model. """ tokenizer_args: Dict[str, Any] = field(default_factory=dict) """Additional arguments to pass to the `from_pretrained` method for the tokenizer. """ model_args: Dict[str, Any] = field(default_factory=dict) """Additional arguments to pass to the `from_pretrained` method for the model. """ model_class: str = field(default='transformers.AutoModel') """The model fully qualified class used to create models with the ``from_pretrained`` static method. """ tokenizer_class: str = field(default='transformers.AutoTokenizer') """The model fully qualified class used to create tokenizers with the ``from_pretrained`` static method. """ cache: InitVar[bool] = field(default=False) """When set to ``True`` cache a global space model using the parameters from the first instance creation. """ cache_dir: Path = field(default=None) """The directory that is contains the BERT model(s).""" def __post_init__(self, cache: bool): super().__init__() if self.cache_dir is not None and not self.cache_dir.exists(): if logger.isEnabledFor(logging.DEBUG): logger.info(f'creating cache directory: {self.cache_dir}') self.cache_dir.mkdir(parents=True, exist_ok=True) if self.cased is None: if self.model_id.find('uncased') >= 0: self.cased = False else: logger.info("'cased' not given--assuming a cased model") self.cased = True self._tokenizer = PersistedWork('_tokenzier', self, cache) self._model = PersistedWork('_model', self, cache) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'id: {self.model_id}, cased: {self.cased}, ' + f'cached: {self.cache}') @property def cached(self) -> bool: """If the model is cached. :see: :obj:`cache` """ return self._tokenizer.cache_global @cached.setter def cached(self, cached: bool): """If the model is cached. :see: :obj:`cache` """ self._tokenizer.cache_global = cached self._model.cache_global = cached def _is_roberta(self): return self.model_id.find('roberta') > -1 def _create_tokenizer_class(self) -> Type[PreTrainedTokenizer]: """Create the huggingface class used for tokenizer.""" ci = ClassImporter(self.tokenizer_class) return ci.get_class() @property @persisted('_tokenizer') def tokenizer(self) -> PreTrainedTokenizer: params = {'do_lower_case': not self.cased} if self.cache_dir is not None: params['cache_dir'] = str(self.cache_dir.absolute()) params.update(self.args) params.update(self.tokenizer_args) if self._is_roberta(): if not self.cased: raise TransformerError('RoBERTa only supports cased models') params['add_prefix_space'] = True cls = self._create_tokenizer_class() return cls.from_pretrained(self.model_id, **params) def _create_model_class(self) -> Type[PreTrainedModel]: ci = ClassImporter(self.model_class) return ci.get_class() @property @persisted('_model') def model(self) -> PreTrainedModel: # load pre-trained model (weights) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'loading model: {self.model_id}') params = {} if self.cache_dir is not None: params['cache_dir'] = str(self.cache_dir.absolute()) params.update(self.args) params.update(self.model_args) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating model using: {params}') with time(f'loaded model from pretrained {self.model_id}'): cls = self._create_model_class() model = cls.from_pretrained(self.model_id, **params) # put the model in `evaluation` mode, meaning feed-forward operation. if self.trainable: logger.debug('model is trainable') else: logger.debug('turning off grad for non-trainable transformer') model.eval() for param in model.base_model.parameters(): param.requires_grad = False model = self.torch_config.to(model) return model def _from_dictable(self, *args, **kwargs) -> Dict[str, Any]: dct = super()._from_dictable(*args, **kwargs) secs = collections.OrderedDict() name: str param: Tensor n_total_params = 0 for name, param in self.model.named_parameters(): prefix = name[:name.find('.')] layer: Dict[str, Tuple[int, int]] = secs.get(prefix) if layer is None: layer = collections.OrderedDict() secs[prefix] = layer shape: Tuple[int, int] = tuple(param.shape) n_total_params += reduce(lambda x, y: x * y, shape) layer[name] = shape dct['model'] = {'sections': secs, 'params': n_total_params} return dct def _write_dict(self, data: dict, depth: int, writer: TextIOBase): is_param = False if len(data) > 0: val = next(iter(data.values())) is_param = (isinstance(val, tuple) and len(val) == 2) super()._write_dict(data, depth, writer, is_param) def clear(self): self._tokenizer.clear() self._model.clear() def __str__(self) -> str: return f'{self.name}: id: {self.model_id}, cased: {self.cased}'
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/resource.py
resource.py
__author__ = 'Paul Landes' from typing import Optional, Iterable from torch import nn from torch.nn.parameter import Parameter import logging from torch.optim import AdamW, Optimizer from transformers import get_scheduler from zensols.deeplearn.model import ModelResourceFactory, ModelExecutor logger = logging.getLogger(__name__) class TransformerAdamFactory(ModelResourceFactory): def __call__(self, params: Iterable[Parameter], model: nn.Module, executor: ModelExecutor, *args, weight_decay: float = 0.0, **kwargs): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'using weight decay: {weight_decay}') # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] return AdamW(optimizer_grouped_parameters, *args, **kwargs) class TransformerSchedulerFactory(ModelResourceFactory): """Unified API to get any scheduler from its name. This simply calls :func:`transformers.get_scheduler` and calculates ``num_training_steps`` as ``epochs * batch_size``. Documentation taken directly from ``get_scheduler`` function in the `PyTorch source tree <https://github.com/huggingface/transformers/blob/4ba203d9d3ab5f6ae8def490cbea44b61798fc54/src/transformers/optimization.py#L229>`_. """ def __call__(self, name: str, optimizer: Optimizer, executor: ModelExecutor, num_warmup_steps: Optional[int] = None, num_training_steps: Optional[int] = None, split_name: Optional[str] = 'train'): """ Args: name (:obj:`str` or `:obj:`SchedulerType`): The name of the scheduler to use. optimizer (:obj:`torch.optim.Optimizer`): The optimizer that will be used during training. num_warmup_steps (:obj:`int`, `optional`): The number of warmup steps to do. This is not required by all schedulers (hence the argument being optional), the function will raise an error if it's unset and the scheduler type requires it. num_training_steps (:obj:`int`, `optional`): The number of training steps to do. This is not required by all schedulers (hence the argument being optional), the function will raise an error if it's unset and the scheduler type requires it. split_name (:obj:`str`, `optional`): The name of the split to use to count training data points for the calculation of ``num_training_steps`` when ``None``. """ n_epochs = executor.model_settings.epochs n_train_batches = len(executor.dataset_stash.splits[split_name]) if num_training_steps is None: num_training_steps = n_epochs * n_train_batches if isinstance(num_warmup_steps, float): num_warmup_steps = int(num_warmup_steps * num_training_steps) if logger.isEnabledFor(logging.INFO): logger.info(f'epochs: {n_epochs}, batches: {n_train_batches}, ' + f'training steps: {num_training_steps}, ' + f'warm up steps: {num_warmup_steps}') return get_scheduler(name, optimizer, num_warmup_steps, num_training_steps)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/optimizer.py
optimizer.py
from __future__ import annotations """Contains classes that are used to vectorize documents in to transformer embeddings. """ __author__ = 'Paul Landes' from typing import Tuple, List, Dict, Union, Sequence, Any from dataclasses import dataclass, field from abc import ABCMeta import logging from itertools import chain import torch from torch import Tensor from zensols.persist import persisted, Deallocatable from zensols.deeplearn.vectorize import ( VectorizerError, TensorFeatureContext, EncodableFeatureVectorizer, FeatureContext, AggregateEncodableFeatureVectorizer, NominalEncodedEncodableFeatureVectorizer, MaskFeatureVectorizer, ) from zensols.nlp import FeatureDocument, FeatureSentence from zensols.deepnlp.vectorize import ( EmbeddingFeatureVectorizer, TextFeatureType, FeatureDocumentVectorizer ) from . import ( TransformerEmbedding, TransformerResource, TransformerDocumentTokenizer, TokenizedDocument, TokenizedFeatureDocument, ) logger = logging.getLogger(__name__) class TransformerFeatureContext(FeatureContext, Deallocatable): """A vectorizer feature contex used with :class:`.TransformerEmbeddingFeatureVectorizer`. """ def __init__(self, feature_id: str, document: Union[TokenizedDocument, FeatureDocument]): """ :params feature_id: the feature ID used to identify this context :params document: document used to create the transformer embeddings """ super().__init__(feature_id) Deallocatable.__init__(self) self._document = document def get_document(self, vectorizer: TransformerFeatureVectorizer) -> \ TokenizedDocument: document = self._document if isinstance(document, FeatureDocument): document = vectorizer.tokenize(document) return document def get_feature_document(self) -> FeatureDocument: if not isinstance(self._document, FeatureDocument): raise VectorizerError( f'Expecting FeatureDocument but got: {type(self._document)}') return self._document def deallocate(self): super().deallocate() self._try_deallocate(self._document) del self._document @dataclass class TransformerFeatureVectorizer(EmbeddingFeatureVectorizer, FeatureDocumentVectorizer): """Base class for classes that vectorize transformer models. This class also tokenizes documents. """ is_labeler: bool = field(default=False) """If ``True``, make this a labeling specific vectorizer. Otherwise, certain layers will use the output of the vectorizer as features rather than the labels. """ encode_tokenized: bool = field(default=False) """Whether to tokenize the document on encoding. Set this to ``True`` only if the huggingface model ID (i.e. ``bert-base-cased``) will not change after vectorization/batching. Setting this to ``True`` tells the vectorizer to tokenize during encoding, and thus will speed experimentation by providing the tokenized tensors to the model directly. """ def __post_init__(self): if self.encode_transformed and not self.encode_tokenized: raise VectorizerError("""\ Can not transform while not tokenizing on the encoding side. Either set encode_transformed to False or encode_tokenized to True.""") def _assert_token_output(self, expected: str = 'last_hidden_state'): if self.embed_model.output != expected: raise VectorizerError(f"""\ Expanders only work at the token level, so output such as \ `{expected}`, which provides an output for each token in the \ transformer embedding, is required, got: {self.embed_model.output}""") @property def feature_type(self) -> TextFeatureType: if self.is_labeler: return TextFeatureType.NONE else: return self.FEATURE_TYPE @property def word_piece_token_length(self) -> int: return self.embed_model.tokenizer.word_piece_token_length def _get_shape(self) -> Tuple[int, int]: return self.word_piece_token_length, self.embed_model.vector_dimension def _get_tokenizer(self) -> TransformerDocumentTokenizer: emb: TransformerEmbedding = self.embed_model return emb.tokenizer def _get_resource(self) -> TransformerResource: return self._get_tokenizer().resource def _create_context(self, doc: FeatureDocument) -> \ TransformerFeatureContext: if self.encode_tokenized: doc = self.tokenize(doc).detach() return TransformerFeatureContext(self.feature_id, doc) def _context_to_document(self, ctx: TransformerFeatureContext) -> \ TokenizedDocument: return ctx.get_document(self) def tokenize(self, doc: FeatureDocument) -> TokenizedFeatureDocument: """Tokenize the document in to a token document used by the encoding phase. :param doc: the document to be tokenized """ emb: TransformerEmbedding = self.embed_model if logger.isEnabledFor(logging.DEBUG): logger.debug(f'synthesized document: {doc}') return emb.tokenize(doc) @dataclass class TransformerEmbeddingFeatureVectorizer(TransformerFeatureVectorizer): """A feature vectorizer used to create transformer (i.e. BERT) embeddings. The class uses the :obj:`.embed_model`, which is of type :class:`.TransformerEmbedding`. Note the encoding input ideally are sentences shorter than 512 tokens. However, this vectorizer can accommodate both :class:`.FeatureSentence` and :class:`.FeatureDocument` instances. """ DESCRIPTION = 'transformer document embedding' FEATURE_TYPE = TextFeatureType.EMBEDDING def __post_init__(self): super().__post_init__() if self.encode_transformed and self.embed_model.trainable: # once the transformer last hidden state is dumped during encode # the parameters are lost, which are needed to train the model # properly raise VectorizerError('a trainable model can not encode ' + 'transformed vectorized features') def _encode(self, doc: FeatureDocument) -> FeatureContext: return self._create_context(doc) def _decode(self, context: TransformerFeatureContext) -> Tensor: emb: TransformerEmbedding = self.embed_model if logger.isEnabledFor(logging.INFO): logger.info(f'decoding {context} with trainable: {emb.trainable}') tok_doc: TokenizedDocument arr: Tensor if emb.trainable: doc: TokenizedDocument = self._context_to_document(context) arr = doc.tensor if logger.isEnabledFor(logging.DEBUG): logger.debug(f'passing through tensor: {arr.shape}') else: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'transforming doc: {context}') doc: TokenizedDocument = self._context_to_document(context) arr = emb.transform(doc) if logger.isEnabledFor(logging.INFO): logger.info(f'decoded trans layer {arr.shape} on {arr.device}') return arr class TransformerExpanderFeatureContext(TransformerFeatureContext): """A vectorizer feature context used with :class:`.TransformerExpanderFeatureVectorizer`. """ contexts: Tuple[FeatureContext] = field() """The subordinate contexts.""" def __init__(self, feature_id: str, contexts: Tuple[FeatureContext], document: Union[TokenizedDocument, FeatureDocument]): """ :params feature_id: the feature ID used to identify this context :params contexts: subordinate contexts given to :class:`.MultiFeatureContext` :params document: document used to create the transformer embeddings """ super().__init__(feature_id, document) self.contexts = contexts def deallocate(self): super().deallocate() if hasattr(self, 'contexts'): self._try_deallocate(self.contexts) del self.contexts @dataclass class TransformerExpanderFeatureVectorizer(TransformerFeatureVectorizer): """A vectorizer that expands lingustic feature vectors to their respective locations as word piece token vectors. This is used to concatenate lingustic features with Bert (and other transformer) embeddings. Each lingustic token is copied in the word piece token location across all vectorizers and sentences. :shape: (-1, token length, X), where X is the sum of all the delegate shapes across all three dimensions """ DESCRIPTION = 'transformer expander' FEATURE_TYPE = TextFeatureType.TOKEN delegate_feature_ids: Tuple[str] = field(default=None) """A list of feature IDs of vectorizers whose output will be expanded.""" def __post_init__(self): super().__post_init__() if self.delegate_feature_ids is None: raise VectorizerError('expected attribute: delegate_feature_ids') self._assert_token_output() self._validated = False def _validate(self): if not self._validated: for vec in self.delegates: if hasattr(vec, 'feature_tye') and \ vec.feature_type != TextFeatureType.TOKEN: raise VectorizerError('Only token level vectorizers are ' + f'supported, but got {vec}') self._validated = True def _get_shape(self) -> Tuple[int, int]: shape = [-1, self.word_piece_token_length, 0] vec: FeatureDocumentVectorizer for vec in self.delegates: shape[2] += vec.shape[-1] return tuple(shape) @property @persisted('_delegates', allocation_track=False) def delegates(self) -> EncodableFeatureVectorizer: """The delegates used for encoding and decoding the lingustic features. """ return tuple(map(lambda f: self.manager[f], self.delegate_feature_ids)) def _encode(self, doc: FeatureDocument) -> FeatureContext: udoc: Union[TokenizedDocument, FeatureDocument] = doc self._validate() if self.encode_tokenized: udoc: TokenizedDocument = self.tokenize(doc).detach() cxs = tuple(map(lambda vec: vec.encode(doc), self.delegates)) return TransformerExpanderFeatureContext(self.feature_id, cxs, udoc) def _decode(self, context: TransformerExpanderFeatureContext) -> Tensor: doc: TokenizedDocument = self._context_to_document(context) arrs: List[Tensor] = [] # decode subordinate contexts vec: FeatureDocumentVectorizer ctx: FeatureContext for vec, ctx in zip(self.delegates, context.contexts): src = vec.decode(ctx) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded shape ({vec.feature_id}): {src.shape}') arrs.append(src) # get the mapping per sentence wps_sents = tuple(map(lambda s: doc.map_word_pieces(s), doc.offsets)) tlen = self.word_piece_token_length # use variable length tokens if tlen <= 0: tlen = max(chain.from_iterable( chain.from_iterable( map(lambda s: map(lambda t: t[1], s), wps_sents)))) # max findes the largest index, so add 1 for size tlen += 1 # add another (to be zero) for the ending sentence boudary tlen += 1 if doc.boundary_tokens else 0 # number of sentences n_sents = len(wps_sents) # feature dimension (last dimension) dim = sum(map(lambda x: x.size(-1), arrs)) # tensor to populate marr = self.torch_config.zeros((n_sents, tlen, dim)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'sents: {n_sents}, token length: {tlen}, dim: {dim}') sent: Tensor arr: Tensor wps: Tuple[Tuple[Tensor, List[int]]] marrix = 0 # iterate feature vectors for arr in arrs: ln = arr.size(-1) meix = marrix + ln if logger.isEnabledFor(logging.DEBUG): logger.debug(f'feature range: [{marrix}:{meix}]') # iterate sentences for six, (sent, wps) in enumerate(zip(doc.offsets, wps_sents)): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'expanding for {arr.shape} in ' + f'[{six},:,{marrix}:{meix}]') # iterate lingustic / word piece tokens for tix, wpixs in wps: # for each word piece mapping, copy the source feature # vector to the target, thereby expanding and increasing # the size of the last dimsion for wix in wpixs: if False and logger.isEnabledFor(logging.DEBUG): logger.debug(f'[{six}, {wix}, {marrix}:{meix}] ' + f'= [{six}, {tix}]') marr[six, wix, marrix:meix] = arr[six, tix] marrix += ln return marr @dataclass class LabelTransformerFeatureVectorizer(TransformerFeatureVectorizer, metaclass=ABCMeta): """A base class for vectorizing by mapping tokens to transformer consumable word piece tokens. This includes creating labels and masks. :shape: (|sentences|, |max word piece length|) """ is_labeler: bool = field(default=True) """If ``True``, make this a labeling specific vectorizer. Otherwise, certain layers will use the output of the vectorizer as features rather than the labels. """ FEATURE_TYPE = TextFeatureType.TOKEN def _get_shape(self) -> Tuple[int, int]: return (-1, self.word_piece_token_length) def _decode_sentence(self, sent_ctx: FeatureContext) -> Tensor: arr: Tensor = super()._decode_sentence(sent_ctx) return arr.unsqueeze(2) @dataclass class TransformerNominalFeatureVectorizer(AggregateEncodableFeatureVectorizer, LabelTransformerFeatureVectorizer): """This creates word piece (maps to tokens) labels. This class uses a :class:`~zensols.deeplearn.vectorize.NominalEncodedEncodableFeatureVectorizer`` to map from string labels to their nominal long values. This allows a single instance and centralized location where the label mapping happens in case other (non-transformer) components need to vectorize labels. :shape: (|sentences|, |max word piece length|) """ DESCRIPTION = 'transformer seq labeler' delegate_feature_id: str = field(default=None) """The feature ID for the aggregate encodeable feature vectorizer.""" label_all_tokens: bool = field(default=False) """If ``True``, label all word piece tokens with the corresponding linguistic token label. Otherwise, the default padded value is used, and thus, ignored by the loss function when calculating loss. """ annotations_attribute: str = field(default='annotations') """The attribute used to get the features from the :class:`~zensols.nlp.FeatureSentence`. For example, :class:`~zensols.nlp.TokenAnnotatedFeatureSentence` has an ``annotations`` attribute. """ def __post_init__(self): super().__post_init__() if self.delegate_feature_id is None: raise VectorizerError('Expected attribute: delegate_feature_id') self._assert_token_output() def _get_attributes(self, sent: FeatureSentence) -> Sequence[Any]: return getattr(sent, self.annotations_attribute) def _create_decoded_pad(self, shape: Tuple[int]) -> Tensor: return self.create_padded_tensor(shape, self.delegate.data_type) def _encode_nominals(self, doc: FeatureDocument) -> Tensor: delegate: NominalEncodedEncodableFeatureVectorizer = self.delegate tdoc: TokenizedDocument = self.tokenize(doc) by_label: Dict[str, int] = delegate.by_label dtype: torch.dtype = delegate.data_type lab_all: bool = self.label_all_tokens n_sents: int = len(doc) if self.word_piece_token_length > 0: n_toks = self.word_piece_token_length else: n_toks = len(tdoc) if logger.isEnabledFor(logging.DEBUG): logger.debug('encoding using {n_toks} tokens with wp len: ' + f'{self.word_piece_token_length}') arr = self.create_padded_tensor((n_sents, n_toks), dtype) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'output shape: {arr.shape}/{self.shape}') sent: FeatureSentence for six, sent in enumerate(doc): sent_labels: Sequence[Any] = self._get_attributes(sent) word_ids: Tensor = tdoc.offsets[six] previous_word_idx: int = None tix: int word_idx: int for tix, word_idx in enumerate(word_ids): # special tokens have a word id that is None. We set the label # to -100 so they are automatically ignored in the loss # function. if word_idx == -1: pass # we set the label for the first token of each word. elif word_idx != previous_word_idx: lab: str = sent_labels[word_idx] arr[six][tix] = by_label[lab] # for the other tokens in a word, we set the label to either # the current label or -100, depending on the label_all_tokens # flag elif lab_all: arr[six][tix] = by_label[sent_labels[word_idx]] previous_word_idx = word_idx return arr def _encode(self, doc: FeatureDocument) -> FeatureContext: ctx: FeatureContext if self.encode_tokenized: arr: Tensor = self._encode_nominals(doc) ctx = TensorFeatureContext(self.feature_id, arr) else: ctx = self._create_context(doc) return ctx def _decode(self, context: FeatureContext) -> Tensor: if isinstance(context, TransformerFeatureContext): doc: FeatureDocument = context.get_feature_document() arr: Tensor = self._encode_nominals(doc) context = TensorFeatureContext(self.feature_id, arr) return LabelTransformerFeatureVectorizer._decode(self, context) @dataclass class TransformerMaskFeatureVectorizer(LabelTransformerFeatureVectorizer): """Creates a mask of word piece tokens to ``True`` and special tokens and padding to ``False``. This maps tokens to word piece tokens like :class:`.TransformerNominalFeatureVectorizer`. :shape: (|sentences|, |max word piece length|) """ DESCRIPTION = 'transformer mask' data_type: Union[str, None, torch.dtype] = field(default='bool') """The mask tensor type. To use the int type that matches the resolution of the manager's :obj:`torch_config`, use ``DEFAULT_INT``. """ def __post_init__(self): super().__post_init__() self.data_type = MaskFeatureVectorizer.str_to_dtype( self.data_type, self.manager.torch_config) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'init mask data type: {self.data_type}') def _create_decoded_pad(self, shape: Tuple[int]) -> Tensor: return self.torch_config.zeros(shape, dtype=self.data_type) def _encode_mask(self, doc: FeatureDocument) -> Tensor: tdoc: TokenizedDocument = self.tokenize(doc) arr: Tensor = tdoc.attention_mask.type(dtype=self.data_type) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'mask type: {arr.dtype}') return arr def _encode(self, doc: FeatureDocument) -> FeatureContext: ctx: FeatureContext if self.encode_tokenized: arr: Tensor = self._encode_mask(doc) ctx = TensorFeatureContext(self.feature_id, arr) else: ctx = self._create_context(doc) return ctx def _decode(self, context: FeatureContext) -> Tensor: if isinstance(context, TransformerFeatureContext): doc: FeatureDocument = context.get_feature_document() arr: Tensor = self._encode_mask(doc) context = TensorFeatureContext(self.feature_id, arr) return super()._decode(context)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/vectorizers.py
vectorizers.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import Tuple, List, Dict, Any, Union, Iterable, ClassVar from dataclasses import dataclass, field from abc import ABCMeta import logging import sys from itertools import chain from io import TextIOBase import torch from torch import Tensor from zensols.util import Hasher from zensols.persist import PersistableContainer, Stash from zensols.config import Dictable from zensols.nlp import ( TokenContainer, FeatureToken, FeatureSentence, FeatureDocument, FeatureDocumentDecorator, ) from . import ( TransformerError, TokenizedFeatureDocument, TransformerDocumentTokenizer, TransformerEmbedding, ) logger = logging.getLogger(__name__) @dataclass(repr=False) class WordPiece(PersistableContainer, Dictable): """The word piece data. """ UNKNOWN_TOKEN: ClassVar[str] = '[UNK]' """The string used for out of vocabulary word piece tokens.""" word: str = field() """The string representation of the word piece.""" vocab_index: int = field() """The vocabulary index.""" index: int = field() """The index of the word piece subword in the tokenization tensor, which will have the same index in the output embeddings for :obj:`.TransformerEmbedding.output` = ``last_hidden_state``. """ @property def is_unknown(self) -> bool: """Whether this token is out of vocabulary.""" return self.word == self.UNKNOWN_TOKEN def __str__(self): s: str = self.word if s.startswith('##'): s = s[2:] return s class WordPieceTokenContainer(TokenContainer, metaclass=ABCMeta): """Like :class:`~zensols.nlp.container.TokenContainer` but contains word pieces. """ def word_iter(self) -> Iterable[WordPiece]: """Return an iterable over the word pieces.""" return chain.from_iterable( map(lambda wp: wp.word_iter(), self.token_iter())) @property def unknown_count(self) -> int: """Return the number of out of vocabulary tokens in the container.""" return sum(map(lambda t: t.is_unknown, self.token_iter())) @dataclass(repr=False) class WordPieceFeatureToken(FeatureToken): """The token and the word pieces that repesent it. """ words: Tuple[WordPiece] = field() """The word pieces that make up this token.""" embedding: Tensor = field(default=None) """The embedding for :obj:`words` after using the transformer. :shape: (|words|, <embedding dimension>) """ @property def indexes(self) -> Tuple[int]: """The indexes of the word piece subwords (see :obj:`.WordPiece.index`). """ return tuple(map(lambda wp: wp.index, self.words)) @property def token_embedding(self) -> Tensor: """The embedding of this token, which is the sum of the word piece embeddings. """ return self.embedding.sum(dim=0) def word_iter(self) -> Iterable[WordPiece]: """Return an iterable over the word pieces.""" return iter(self.words) @property def is_unknown(self) -> bool: """Whether this token is out of vocabulary.""" return all(map(lambda wp: wp.is_unknown, self.word_iter())) def copy_embedding(self, target: FeatureToken): """Copy embedding (and children) from this instance to ``target``.""" target.embedding = self.embedding def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(f'{self.norm}:', depth, writer) for w in self.words: self._write_line(f'{w}: i={w.index}, v={w.vocab_index}', depth + 1, writer) if self.embedding is not None: self._write_line(f'embedding: {tuple(self.embedding.size())}', depth + 1, writer) def __str__(self) -> str: return ''.join(map(str, self.words)) def __eq__(self, other: WordPieceFeatureToken) -> bool: return self.i == other.i and \ self.idx == other.idx and \ self.norm == other.norm @dataclass(repr=False) class WordPieceFeatureSpan(FeatureSentence, WordPieceTokenContainer): """A sentence made up of word pieces. """ embedding: Tensor = field(default=None) """The sentence embedding level (i.e. ``[CLS]``) embedding from the transformer. :shape: (<embedding dimension>,) """ def copy_embedding(self, target: FeatureSentence): """Copy embeddings (and children) from this instance to ``target``.""" target.embedding = self.embedding targ_tok: FeatureToken org_tok: FeatureToken for org_tok, targ_tok in zip(self.token_iter(), target.token_iter()): org_tok.copy_embedding(targ_tok) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(super().__str__(), depth, writer) self._write_line('word pieces:', depth, writer) self._write_line(self, depth + 1, writer) if self.embedding is not None: self._write_line(f'embedding: {tuple(self.embedding.size())}', depth + 1, writer) def __str__(self) -> str: return ' '.join(map(str, self.tokens)) @dataclass(repr=False) class WordPieceFeatureSentence(WordPieceFeatureSpan, FeatureSentence): pass @dataclass(repr=False) class WordPieceFeatureDocument(FeatureDocument, WordPieceTokenContainer): """A document made up of word piece sentences. """ tokenized: TokenizedFeatureDocument = field(default=None) """The tokenized feature document.""" @property def embedding(self) -> Tensor: """The document embedding (see :obj:`.WordPieceFeatureSpan.embedding`). :shape: (|sentences|, <embedding dimension>) """ return torch.stack(tuple(map(lambda s: s.embedding, self.sents)), dim=0) def copy_embedding(self, target: FeatureDocument): """Copy embeddings (and children) from this instance to ``target``.""" targ_sent: FeatureSentence org_sent: WordPieceFeatureSentence for org_sent, targ_sent in zip(self.sents, target.sents): org_sent.copy_embedding(targ_sent) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line(self, depth, writer) sent: WordPieceFeatureSentence for sent in self.sents: self._write_object(sent, depth + 1, writer) def __str__(self) -> str: return '. '.join(map(str, self.sents)) class _WordPieceDocKey(object): """A key class for caching in :class:`.WordPieceFeatureDocumentFactory` needed to avoid token level equal compares with embeddings. These token level compares raise a Pytorch error. """ def __init__(self, doc: FeatureDocument, tdoc: TokenizedFeatureDocument): self._hash = hash(doc) self._doc = doc def __eq__(self, other: FeatureDocument) -> bool: return self._doc.norm == other._doc.norm def __hash__(self) -> int: return self._hash @dataclass class WordPieceFeatureDocumentFactory(object): """Create instances of :class:`.WordPieceFeatureDocument` from :class:`~zensols.nlp.container.FeatureDocument` instances. It does this by iterating through a feature document data structure and adding ``WordPiece*`` object data and optionally adding the corresponding sentence and/or token level embeddings. The embeddings can also be added with :meth:`add_token_embeddings` and :meth:`add_sent_embeddings` individually. If all you want are the sentence level embeddings, you can use :meth:`add_sent_embeddings` on a :class:`~zensols.nlp.container.FeatureSentence` instance. """ tokenizer: TransformerDocumentTokenizer = field() """Used to tokenize documents that aren't already in :meth:`__call__`.""" embed_model: TransformerEmbedding = field() """Used to populate the embeddings in ``WordPiece*`` classes.""" token_embeddings: bool = field(default=True) """Whether to add :class:`.WordPieceFeatureToken.embeddings`. """ sent_embeddings: bool = field(default=True) """Whether to add class:`.WordPieceFeatureSentence.embeddings`. """ def __post_init__(self): FeatureToken.SKIP_COMPARE_FEATURE_IDS.add('embedding') def add_token_embeddings(self, doc: WordPieceFeatureDocument, arr: Tensor): """Add token embeddings to the sentences of ``doc``. This assumes tokens are of type :class:`.WordPieceFeatureToken` since the token indices are needed. :param doc: sentences of this doc have ``embeddings`` set to the correpsonding sentence tensor with shape (1, <embedding dimension>). """ six: int sent: FeatureSentence for six, sent in enumerate(doc.sents): tok: WordPieceFeatureToken for tok in sent.tokens: tok.embedding = arr[six, tok.indexes] def add_sent_embeddings( self, doc: Union[WordPieceFeatureDocument, FeatureDocument], arr: Tensor): """Add sentence embeddings to the sentences of ``doc``. :param doc: sentences of this doc have ``embeddings`` set to the correpsonding sentence tensor with shape ``(1, <embedding dimension>)``. """ six: int sent: FeatureSentence for six, sent in enumerate(doc.sents): sent.embedding = arr[six] def create(self, fdoc: FeatureDocument, tdoc: TokenizedFeatureDocument = None) -> \ WordPieceFeatureDocument: """Create a document in to an object graph that relates word pieces to feature tokens. Note that if ``tdoc`` is provided, it must have been tokenized from ``fdoc``. :param fdoc: the feature document used to create `tdoc` :param tdoc: a tokenized feature document generated by :meth:`tokenize` :return: a data structure with the word piece information """ def map_tok(ftok: FeatureToken, wps: Tuple[str, int, int]) -> \ WordPieceFeatureToken: words = tuple(map(lambda t: WordPiece(*t), wps)) return ftok.clone(cls=WordPieceFeatureToken, words=words) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating embeddings for: {fdoc}') tdoc = self.tokenizer.tokenize(fdoc) if tdoc is None else tdoc sents: List[WordPieceFeatureSentence] = [] wps: List[Dict[str, Any]] = tdoc.map_to_word_pieces( sentences=fdoc, map_wp=self.tokenizer.id2tok, add_indices=True) wp: Dict[str, Any] for six, wp in enumerate(wps): fsent: FeatureSentence = wp['sent'] tokens: Tuple[WordPieceFeatureToken] = tuple( map(lambda t: map_tok(*t), wp['map'])) sents.append(fsent.clone( cls=WordPieceFeatureSentence, tokens=tokens)) doc = fdoc.clone( cls=WordPieceFeatureDocument, sents=tuple(sents), tokenized=tdoc) if self.add_token_embeddings or self.add_sent_embeddings: arrs: Dict[str, Tensor] = self.embed_model.transform( tdoc, TransformerEmbedding.ALL_OUTPUT) if self.token_embeddings: arr: Tensor = arrs[ TransformerEmbedding.LAST_HIDDEN_STATE_OUTPUT] self.add_token_embeddings(doc, arr) if self.sent_embeddings: arr: Tensor = arrs[TransformerEmbedding.POOLER_OUTPUT] self.add_sent_embeddings(doc, arr) return doc def __call__(self, fdoc: FeatureDocument, tdoc: TokenizedFeatureDocument = None) -> \ WordPieceFeatureDocument: return self.create(fdoc, tdoc) @dataclass class CachingWordPieceFeatureDocumentFactory(WordPieceFeatureDocumentFactory): """Caches the documents and their embeddings in a :class:`~zensols.persist.stash.Stash`. For those that are cached, the embeddings are copied over to the passed document in :meth:`create`. """ stash: Stash = field(default=None) """The stash that persists the feature document instances. If this is not provided, no caching will happen. """ hasher: Hasher = field(default_factory=Hasher) """Used to hash the natural langauge text in to string keys.""" def _hash_text(self, text: str) -> str: self.hasher.reset() self.hasher.update(text) return self.hasher() def create(self, fdoc: FeatureDocument, tdoc: TokenizedFeatureDocument = None) -> \ WordPieceFeatureDocument: key: str = self._hash_text(fdoc.text) wdoc: WordPieceFeatureDocument = self.stash.load(key) if wdoc is None: wdoc = super().create(fdoc, tdoc) if self.stash is not None: self.stash.dump(key, wdoc) else: if wdoc.text != fdoc.text: raise TransformerError('Document text does not match: ' + f'<{wdoc.text}> != >{fdoc.text}>') return wdoc def clear(self): """Clear the caching stash.""" self.stash.clear() @dataclass class WordPieceDocumentDecorator(FeatureDocumentDecorator): """Populates sentence and token embeddings in the documents. :see: :class:`.WordPieceFeatureDocumentFactory` """ word_piece_doc_factory: WordPieceFeatureDocumentFactory = field() """The feature document factory that populates embeddings.""" def decorate(self, doc: FeatureDocument): wpdoc: WordPieceFeatureDocument = self.word_piece_doc_factory(doc) wpdoc.copy_embedding(doc)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/wordpiece.py
wordpiece.py
__author__ = 'Paul Landes' from typing import List, Dict, Any from dataclasses import dataclass, field import logging import torch from transformers import PreTrainedTokenizer from transformers.tokenization_utils_base import BatchEncoding from zensols.nlp import FeatureDocument from zensols.persist import persisted, PersistableContainer from zensols.deeplearn import TorchConfig from zensols.deepnlp.transformer import TransformerResource from . import TransformerError, TokenizedFeatureDocument logger = logging.getLogger(__name__) @dataclass class TransformerDocumentTokenizer(PersistableContainer): resource: TransformerResource = field() """Contains the model used to create the tokenizer.""" word_piece_token_length: int = field(default=None) """The max number of word piece tokens. The word piece length is always the same or greater in count than linguistic tokens because the word piece algorithm tokenizes on characters. If this value is less than 0, than do not fix sentence lengths. """ def __post_init__(self): super().__init__() if self.word_piece_token_length is None: self.word_piece_token_length = \ self.resource.tokenizer.model_max_length @property @persisted('_id2tok') def id2tok(self) -> Dict[int, str]: vocab = self.resource.tokenizer.vocab return {vocab[k]: k for k in vocab.keys()} def tokenize(self, doc: FeatureDocument, tokenizer_kwargs: Dict[str, Any] = None) -> \ TokenizedFeatureDocument: """Tokenize a feature document in a form that's easy to inspect and provide to :class:`.TransformerEmbedding` to transform. :param doc: the document to tokenize """ if not self.resource.tokenizer.is_fast: raise TransformerError( 'only fast tokenizers are supported for needed offset mapping') sents = list(map(lambda sent: list( map(lambda tok: tok.text, sent)), doc)) return self._from_tokens(sents, doc, tokenizer_kwargs) def _from_tokens(self, sents: List[List[str]], doc: FeatureDocument, tokenizer_kwargs: Dict[str, Any] = None) -> \ TokenizedFeatureDocument: torch_config: TorchConfig = self.resource.torch_config tlen: int = self.word_piece_token_length tokenizer: PreTrainedTokenizer = self.resource.tokenizer params: Dict[str, bool] = { 'return_offsets_mapping': True, 'is_split_into_words': True, 'return_special_tokens_mask': True, 'padding': 'longest'} for i, sent in enumerate(sents): if len(sent) == 0: raise TransformerError( f'Sentence {i} is empty: can not tokenize') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'parsing {sents} with token length: {tlen}') if tlen > 0: params.update({'truncation': True, 'max_length': tlen}) else: params.update({'truncation': False}) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'using tokenizer parameters: {params}') if tokenizer_kwargs is not None: params.update(tokenizer_kwargs) tok_dat: BatchEncoding = tokenizer(sents, **params) if logger.isEnabledFor(logging.DEBUG): logger.debug(f"lengths: {[len(i) for i in tok_dat['input_ids']]}") logger.debug(f"inputs: {tok_dat['input_ids']}") input_ids = tok_dat.input_ids char_offsets = tok_dat.offset_mapping boundary_tokens = (tok_dat.special_tokens_mask[0][0]) == 1 sent_offsets = tuple( map(lambda s: tuple(map(lambda x: -1 if x is None else x, s)), map(lambda si: tok_dat.word_ids(batch_index=si), range(len(input_ids))))) if logger.isEnabledFor(logging.DEBUG): for six, tids in enumerate(sent_offsets): logger.debug(f'tok ids: {tids}') for stix, tix in enumerate(tids): bid = tok_dat['input_ids'][six][stix] wtok = self.id2tok[bid] if tix >= 0: stok = sents[six][tix] else: stok = '-' logger.debug( f'sent={six}, idx={tix}, id={bid}: {wtok} -> {stok}') tok_data = [input_ids, tok_dat.attention_mask, sent_offsets] if hasattr(tok_dat, 'token_type_ids'): tok_data.append(tok_dat.token_type_ids) arr = torch_config.singleton(tok_data, dtype=torch.long) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'tok doc mat: shape={arr.shape}, dtype={arr.dtype}') return TokenizedFeatureDocument( tensor=arr, # needed by expander vectorizer boundary_tokens=boundary_tokens, char_offsets=char_offsets, feature=doc, id2tok=self.id2tok) def __call__(self, doc: FeatureDocument, tokenizer_kwargs: Dict[str, Any] = None) -> \ TokenizedFeatureDocument: return self.tokenize(doc, tokenizer_kwargs)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/tokenizer.py
tokenizer.py
from __future__ import annotations __author__ = 'Paul Landes' from typing import List, Tuple, Dict, Any, Union, Iterable, Callable from dataclasses import dataclass, field import sys import logging import itertools as it from io import TextIOBase import numpy as np import torch from torch import Tensor from zensols.nlp import FeatureDocument from zensols.persist import PersistableContainer from zensols.config import Writable from zensols.nlp import FeatureToken, FeatureSentence logger = logging.getLogger(__name__) @dataclass class TokenizedDocument(PersistableContainer, Writable): """This is the tokenized document output of :class:`.TransformerDocumentTokenizer`. Instances of this class are pickelable, in a feature context. Then give to the in the decoding phase to create a tensor with a transformer model such as :class:`.TransformerEmbedding`. """ tensor: Tensor = field() """Encodes the input IDs, attention mask, and word piece offset map.""" boundary_tokens: bool = field() """If the token document has sentence boundary tokens, such as ``[CLS]`` for Bert. """ def __post_init__(self): super().__init__() @classmethod def from_tensor(cls, tensor: Tensor) -> TokenizedDocument: """Create an instance of the class using a tensor. This is useful for re-creating documents for mapping with :meth:`.map_word_pieces` after unpickling from a document created with :class:`.TransformerDocumentTokenizer.tokenize`. :param tensor: the tensor to set in :obj:`.tensor` """ return cls(tensor, None) @property def input_ids(self) -> Tensor: """The token IDs as the output from the tokenizer.""" return self.tensor[0] @property def attention_mask(self) -> Tensor: """The attention mask (0/1s).""" return self.tensor[1] @property def offsets(self) -> Tensor: """The offsets from word piece (transformer's tokenizer) to feature document index mapping. """ return self.tensor[2] @property def token_type_ids(self) -> Tensor: """The token type IDs (0/1s).""" if self.tensor.size(0) > 3: return self.tensor[3] @property def shape(self) -> torch.Size: """Return the shape of the vectorized document.""" return self.tensor.shape def __len__(self) -> int: """Return the size of the document in number of word pieces.""" return self.tensor.size(-1) def detach(self) -> TokenizedDocument: """Return a version of the document that is pickleable.""" return self def truncate(self, size: int) -> TokenizedDocument: """Truncate the the last (token) dimension to ``size``. :return: a new instance of this class truncated to size """ cls = self.__class__ return cls(self.tensor[:, :, 0:size], self.boundary_tokens) def params(self) -> Dict[str, Any]: dct = {} atts = 'input_ids attention_mask token_type_ids' for att in atts.split(): val = getattr(self, att) if val is not None: dct[att] = val return dct @staticmethod def map_word_pieces(token_offsets: List[int]) -> \ List[Tuple[FeatureToken, List[int]]]: """Map word piece tokens to linguistic tokens. :return: a list of tuples in the form: ``(<linguistic token|token index>, <list of word piece indexes>)`` if detatched, the linguistic token is an index as a tensor scalar """ ftoks = [] n_ftok = -1 for wix, tix in enumerate(token_offsets): if tix >= 0: if tix > n_ftok: wptoks = [] ftoks.append((tix, wptoks)) n_ftok += 1 wptoks.append(wix) return ftoks def map_to_word_pieces(self, sentences: Iterable[List[Any]] = None, map_wp: Union[Callable, Dict[int, str]] = None, add_indices: bool = False) -> \ List[Dict[str, Union[List[Any], Tuple[FeatureToken, Tuple[str]]]]]: """Map word piece tokens to linguistic tokens. :param sentences: an iteration of sentences, which is returned in the output (i.e. :class:`~zensols.nlp.FeatureSentence`) :param map_wp: either a function that takes the token index, sentence ID and input IDs, or the mapping from word piece ID to string token; return output is the string token (or numerical output if no mapping is provided) :param add_indices: whether to add the token ID and index after the token string when ``id2tok`` is provided for ``map_wp`` :return: a list sentence maps, each with: * ``sent`` -> the ``i``th list in ``sentences`` * ``map`` -> list of ``(sentence 'token', word pieces)`` """ def map_wp_by_id(x: int, six: int, input_ids: List[int]): tix = input_ids[x] tok = id2tok[tix] return (tok, tix, x) if add_indices else tok id2tok = None input_ids = self.input_ids.cpu().numpy() sent_offsets = self.offsets sents_map = [] if map_wp is None: def map_str(x, *args, **kwargs): return str(x) map_wp = map_str elif isinstance(map_wp, dict): id2tok = map_wp map_wp = map_wp_by_id if sentences is None: sentences = self.input_ids.cpu().numpy() sents = enumerate(zip(sentences, sent_offsets)) for six, (sent, tok_offsets) in sents: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'sent idx: {six}, sent: {sent}, ' + f'offsets: {tok_offsets}') input_sent = input_ids[six] wps = self.map_word_pieces(tok_offsets) sent_map = [] sents_map.append({'sent': sent, 'map': sent_map}) for tix, ixs in wps: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{ixs} -> {tix}') tok = sent[tix] ttoks = tuple(map(lambda i: map_wp(i[0], six, input_sent), zip(ixs, it.count()))) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{tok} -> {ttoks}') sent_map.append((tok, ttoks)) return sents_map def deallocate(self): super().deallocate() del self.tensor def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_tokens: bool = True, id2tok: Dict[int, str] = None): def maptok(tup: int) -> str: s = id2tok[tup[0]] if s.startswith('##'): s = s[2:] return s for sent_map in self.map_to_word_pieces(): sent: np.ndarray = sent_map['sent'] tmap: Tuple[int, Tuple[str]] = sent_map['map'] self._write_line(f'sentence len: {sent.shape[0]}', depth, writer) if include_tokens: self._write_line('tokens:', depth, writer) if id2tok is not None: toks = ' '.join(map(maptok, tmap)) else: toks = ' '.join(map(lambda t: str(t[0]), tmap)) self._write_line(toks, depth + 1, writer) else: self._write_line(f'tokens: {len(tmap)}', depth + 1, writer) def __str__(self) -> str: return f'doc: {self.tensor.shape}' def __repr__(self) -> str: return self.__str__() @dataclass class TokenizedFeatureDocument(TokenizedDocument): """Instance of this class are created, then a picklable version returned with :meth:`detach` as an instance of the super class. """ feature: FeatureDocument = field() """The document to tokenize.""" id2tok: Dict[int, str] = field() """If provided, a mapping of indexes to transformer tokens. This attribute is always nulled out after being persisted. """ char_offsets: Tuple[Tuple[int, int]] = field() """The valid character offsets for each word piece token.""" def detach(self) -> TokenizedDocument: return TokenizedDocument(self.tensor, self.boundary_tokens) def map_word_pieces_to_tokens(self) -> \ List[Dict[str, Union[FeatureSentence, Tuple[FeatureToken, Tuple[str]]]]]: """Map word piece tokens to linguistic tokens. :return: a list sentence maps, each with: * ``sent`` -> :class:`.FeatureSentence` * ``map`` -> list of ``(token, word pieces)`` """ def id2tok(x: int, six: int, input_ids: List[int]): tix = input_ids[x] tok = self.id2tok[tix] off = self.char_offsets[six][x] olen = off[1] - off[0] if len(tok) > olen: # bert if tok.startswith('##'): start = 2 # roberta else: start = 1 else: start = 0 end = (off[1] - off[0]) + (start * 2) tok = tok[start:end] return tok return super().map_to_word_pieces(self.feature, id2tok) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_tokens: bool = True, id2tok: Dict[int, str] = None): id2tok = self.id2tok if id2tok is None else id2tok sent_map: Dict[str, Union[FeatureSentence, Tuple[FeatureToken, Tuple[str]]]] for sent_map in self.map_word_pieces_to_tokens(): sent: FeatureSentence = sent_map['sent'] tmap: Tuple[FeatureToken, Tuple[str]] = sent_map['map'] self._write_line(f'sentence: {sent}', depth, writer) if include_tokens: self._write_line('tokens:', depth, writer) tok: FeatureToken ttoks: Tuple[str] for tok, ttoks in tmap: stext = tok.text.replace('\n', '\\n') stext = f'<{stext}>' self._write_line(f'{stext} -> {ttoks}', depth + 1, writer)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/domain.py
domain.py
__author__ = 'Paul Landes' from typing import Dict, Iterable, Tuple, ClassVar, Union from dataclasses import dataclass, field import logging from itertools import chain import torch from torch import Tensor from torch import nn from transformers import PreTrainedModel from transformers.modeling_outputs import \ BaseModelOutput, BaseModelOutputWithPoolingAndCrossAttentions from zensols.config import Dictable from zensols.nlp import FeatureDocument from zensols.deeplearn import TorchTypes from zensols.deepnlp.transformer import TransformerResource from zensols.persist import persisted, PersistedWork, PersistableContainer from . import ( TransformerError, TokenizedDocument, TokenizedFeatureDocument, TransformerDocumentTokenizer ) logger = logging.getLogger(__name__) @dataclass class TransformerEmbedding(PersistableContainer, Dictable): """An model for transformer embeddings (such as BERT) that wraps the HuggingFace transformms API. """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True LAST_HIDDEN_STATE_OUTPUT: ClassVar[str] = 'last_hidden_state' POOLER_OUTPUT: ClassVar[str] = 'pooler_output' ALL_OUTPUT: ClassVar[str] = 'all_output' name: str = field() """The name of the embedding as given in the configuration.""" tokenizer: TransformerDocumentTokenizer = field() """The tokenizer used for creating the input for the model.""" output: str = field(default=POOLER_OUTPUT) """The output from the huggingface transformer API to return. This is set to one of: * :obj:`LAST_HIDDEN_STATE_OUTPUT`: with the output embeddings of the last layer with shape: ``(batch, N sentences, hidden layer dimension)`` * :obj:`POOLER_OUTPUT`: the last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function with shape: ``(batch, hidden layer dimension)`` * :obj:`ALL_OUTPUT`: includes both as a dictionary with correpsonding keys """ output_attentions: bool = field(default=False) """Whether or not to output the attention layer.""" def __post_init__(self): super().__init__() self._vec_dim = PersistedWork('_vec_dim', self, self.resource.cache) @property def resource(self) -> TransformerResource: """The transformer resource containing the model.""" return self.tokenizer.resource @property def cache(self): """When set to ``True`` cache a global space model using the parameters from the first instance creation. """ return self.resource.cache @property def model(self) -> PreTrainedModel: return self.resource.model @property @persisted('_vec_dim') def vector_dimension(self) -> int: """Return the output embedding dimension of the final layer. """ toker: TransformerDocumentTokenizer = self.tokenizer doc: TokenizedFeatureDocument = toker._from_tokens([['the']], None) emb = self.transform(doc, self.POOLER_OUTPUT) size = emb.size(-1) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'embedding dimension {size} for ' + f'model {self.resource}') doc.deallocate() return size @property def trainable(self) -> bool: """Whether or not the model is trainable or frozen.""" return self.resource.trainable def tokenize(self, doc: FeatureDocument) -> TokenizedFeatureDocument: """Tokenize the feature document, which is used as the input to :meth:`transform`. :doc: the document to tokenize :return: the tokenization of ``doc`` """ return self.tokenizer.tokenize(doc) def _get_model(self, params: Dict[str, Tensor]) -> nn.Module: """Prepare the model and parameters used for inference on it. :param params: the tokenization output later used on the model's ``__call__`` method :return: the model that is ready for inferencing """ model: nn.Module = self.resource.model if self.output_attentions: params['output_attentions'] = True # a bug in transformers 4.4.2 requires this; 4.12.5 still does # https://github.com/huggingface/transformers/issues/2952 for attr in 'position_ids token_type_ids'.split(): if hasattr(model.embeddings, attr): arr: Tensor = getattr(model.embeddings, attr) if TorchTypes.is_float(arr.dtype): setattr(model.embeddings, attr, arr.long()) return model def _infer_pooler(self, output: BaseModelOutput) -> Tensor: """Create a pooler output if one is not available, such as with Distilbert (and sounds like RoBERTa in the future). This assumes the output has a hidden state at index 0. :param output: the output from the model :return: the pooler output tensor taken from ``output`` """ hidden_state = output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) return pooled_output def _narrow_tensor(self, output_res: BaseModelOutput, output: str) -> Tensor: """Resolve an embedding from the HuggingFace output instance.""" arr: Tensor if output == 'pooler_output' and \ not hasattr(output_res, output): arr = self._infer_pooler(output_res) else: if not hasattr(output_res, output): raise TransformerError( f'No such output attribte {output} for ' + f'output {type(output_res)}') arr = getattr(output_res, output) return arr def transform(self, doc: TokenizedDocument, output: str = None) -> \ Union[Tensor, Dict[str, Tensor]]: """Transform the documents in to the transformer output. :param docs: the batch of documents to return :param output: the output from the huggingface transformer API to return (see class docs) :return: a container object instance with the output, which contains (among other data) ``last_hidden_state`` with the output embeddings of the last layer with shape: ``(batch, N sentences, hidden layer dimension)`` """ output: str = self.output if output is None else output output_res: BaseModelOutputWithPoolingAndCrossAttentions output_data: Union[Tensor, Dict[str, Tensor]] params: Dict[str, Tensor] = doc.params() model: nn.Module = self._get_model(params) if logger.isEnabledFor(logging.DEBUG): for k, v in params.items(): if isinstance(v, Tensor): logger.debug(f"{k}: dtype={v.dtype}, shape={v.shape}") else: logger.debug(f'{k}: {v}') # predict hidden states features for each layer if self.resource.trainable: if logger.isEnabledFor(logging.DEBUG): logger.debug('model is trainable') output_res = model(**params) else: if logger.isEnabledFor(logging.DEBUG): logger.debug('turning off gradients since model not trainable') model.eval() with torch.no_grad(): output_res = model(**params) if output == self.ALL_OUTPUT: output_data = { self.POOLER_OUTPUT: self._narrow_tensor( output_res, self.POOLER_OUTPUT), self.LAST_HIDDEN_STATE_OUTPUT: self._narrow_tensor( output_res, self.LAST_HIDDEN_STATE_OUTPUT)} elif output in {self.POOLER_OUTPUT, self.LAST_HIDDEN_STATE_OUTPUT}: output_data = self._narrow_tensor(output_res, output) else: raise TransformerError(f'Unknown output type: {output}') if isinstance(output, Tensor) and logger.isEnabledFor(logging.DEBUG): logger.debug(f'embedding dim: {output_data.size()}') return output_data def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return chain.from_iterable( [super()._get_dictable_attributes(), [('resource', 'resource')]])
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/embed.py
embed.py
__author__ = 'Paul Landes' from typing import Tuple, List, Iterable, Dict, Any from dataclasses import dataclass, field import logging import sys from collections import OrderedDict from io import TextIOBase import pandas as pd import torch from torch import Tensor from torch.return_types import topk from transformers import PreTrainedTokenizer, PreTrainedModel from zensols.config import Dictable from zensols.nlp import FeatureToken, TokenContainer from zensols.deeplearn import TorchConfig from zensols.deepnlp.transformer import TransformerResource from . import TransformerError logger = logging.getLogger(__name__) @dataclass class TokenPrediction(Dictable): """Couples a masked model prediction token to which it belongs and its score. """ token: FeatureToken = field() prediction: str = field() score: float = field() def __str__(self) -> str: return f"{self.token} -> {self.prediction} ({self.score:.4f})" @dataclass class Prediction(Dictable): """A container class for masked token predictions produced by :class:`.MaskFiller`. """ cont: TokenContainer = field() """The document, sentence or span to predict masked tokens.""" masked_tokens: Tuple[FeatureToken] = field() """The masked tokens matched.""" df: pd.DataFrame = field() """The predictions with dataframe columns: * ``k``: the *k* in the top-*k* highest scored masked token match * ``mask_id``: the N-th masked token in the source ordered by position * ``token``: the predicted token * ``score``: the score of the prediction (``[0, 1]``, higher the better) """ def get_container(self, k: int = 0) -> TokenContainer: """Get the *k*-th top scored sentence. This method should be called only once for each instance since it modifies the tokens of the container for each invocation. A client may call this method as many times as necessary (i.e. for multiple values of ``k``) since :obj:``cont`` tokens are modified while retaining the original masked tokens :obj:`masked_tokens`. :param k: as *k* increases the less likely the mask substitutions, and thus sentence; *k* = 0 is the most likely given the sentence and masks """ cont: TokenContainer = self.cont if len(self.df) == 0: raise TransformerError(f'No predictions found for <{cont.text}>') n_top_k: int = len(self) - 1 if k > n_top_k: raise IndexError(f'Only {n_top_k} predictions but asked for {k}') df: pd.DataFrame = self.df df = df[df['k'] == k].sort_values('mask_id') # iterate over the masked tokens, then for each, populate the prediction tok: FeatureToken repl: str for tok, repl in zip(self.masked_tokens, df['token']): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{repl} -> {tok.norm}') # modify the previously matched token clobbering the norm for each # iteration tok.norm = repl # clear to force a container level norm to be generated cont.clear() return cont def get_tokens(self) -> Iterable[TokenPrediction]: """Return an iterable of the prediction coupled with the token it belongs to and its score. """ preds: Iterable[Tuple[str, float]] = self.df.\ sort_values('mask_id')['token score'.split()].\ itertuples(name=None, index=False) return map(lambda t: TokenPrediction(t[0], t[1][0], t[1][1]), zip(self.masked_tokens, preds)) @property def masked_token_dicts(self) -> Tuple[Dict[str, Any]]: """A tuple of :class:`.builtins.dict` each having token index, norm and text data. """ feats: Tuple[str] = ('i', 'idx', 'i_sent', 'norm', 'text') return tuple(map(lambda t: t.get_features(feats), self.masked_tokens)) def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_masked_tokens: bool = True, include_predicted_tokens: bool = True, include_predicted_sentences: bool = True): self._write_line(f'source: {self.cont.text}', depth, writer) if include_masked_tokens: self._write_line('masked:', depth, writer) for mt in self.masked_token_dicts: self._write_dict(mt, depth + 1, writer, one_line=True) if include_predicted_tokens: self._write_line('predicted:', depth, writer) for k, df in self.df.groupby('k')['mask_id token score'.split()]: scs: List[str] = [] for mid, r in df.groupby('mask_id'): s = f"{r['token'].item()} ({r['score'].item():.4f})" scs.append(s) self._write_line(f'k={k}: ' + ', '.join(scs), depth + 1, writer) if include_predicted_sentences: self._write_line('sentences:', depth, writer) self._write_iterable(tuple(map(lambda t: t.norm, self)), depth + 1, writer) def _from_dictable(self, *args, **kwargs): return OrderedDict( [['source', self.cont.text], ['masked_tokens', self.masked_token_dicts], ['pred_tokens', self.df.to_dict('records')], ['pred_sentences', tuple(map(lambda t: t.norm, self))]]) def __iter__(self) -> Iterable[TokenContainer]: return map(self.get_container, range(len(self))) def __getitem__(self, i: int) -> TokenContainer: return self.get_container(i) def __len__(self) -> int: return len(self.df['k'].drop_duplicates()) def __str__(self) -> str: return self.get_container().norm @dataclass class MaskFiller(object): """The class fills masked tokens with the prediction of the underlying maked model. Masked tokens with attribute :obj:`feature_id` having value :obj:`feature_value` (:obj:`~zensols.nlp.tok.FeatureToken.norm` and ``MASK`` by default respectively) are substituted with model values. To use this class, parse a sentence with a :class:`~zensols.nlp.parser.FeatureDocumentParser` with masked tokens using the string :obj:`feature_value`. For example (with class defaults), the sentence:: Paris is the MASK of France. becomes:: Parise is the <mask> of France. The ``<mask>`` string becomes the :obj:`~transformers.PreTrainedTokenizer.mask_token` for the model's tokenzier. """ resource: TransformerResource = field() """A container class with the Huggingface tokenizer and model.""" k: int = field(default=1) """The number of top K predicted masked words per mask. The total number of predictions will be <number of masks> X ``k`` in the source document. """ feature_id: str = field(default='norm') """The :class:`~zensols.nlp.FeatureToken` feature ID to match on masked tokens. :see: :obj:`feature_value` """ feature_value: str = field(default='MASK') """The value of feature ID :obj:`feature_id` to match on masked tokens.""" def _predict(self, text: str) -> pd.DataFrame: tc: TorchConfig = self.resource.torch_config # models are created in the resource tokenizer: PreTrainedTokenizer = self.resource.tokenizer model: PreTrainedModel = self.resource.model # rows of the dataframe are the k, nth mask tok, token str, score/proba rows: List[Tuple[int, int, str, float]] = [] # tokenization produces the vocabulary wordpiece ids input_ids: Tensor = tc.to(tokenizer.encode(text, return_tensors='pt')) # get the wordpiece IDs of the masks mask_token_index: Tensor = torch.where( input_ids == tokenizer.mask_token_id)[1] # predict and get the masked wordpiece token logits token_logits: Tensor = model(input_ids)[0] mask_token_logits: Tensor = token_logits[0, mask_token_index, :] mask_token_logits = torch.softmax(mask_token_logits, dim=1) # get the top K matches based on the masked token logits top: topk = torch.topk(mask_token_logits, k=self.k, dim=1) # iterate over masks top_ix: Tensor = top.indices mix: int for mix in range(top_ix.shape[0]): top_tokens = zip(top_ix[mix].tolist(), top.values[mix].tolist()) token_id: int score: float # iterate over the top K tokens for k, (token_id, score) in enumerate(top_tokens): token: str = tokenizer.decode([token_id]).strip() rows.append((k, mix, token, score)) return pd.DataFrame(rows, columns='k mask_id token score'.split()) def predict(self, source: TokenContainer) -> Prediction: """Predict subtitution values for token masks. **Important:** ``source`` is modified as a side-effect of this method. Use :meth:`~zensols.nlp.TokenContainer.clone` on the ``source`` document passed to this method to preserve the original if necessary. :param source: the source document, sentence, or span for which to substitute values """ mask_tok: PreTrainedTokenizer = self.resource.tokenizer.mask_token fid: str = self.feature_id fval: str = self.feature_value # identify the masked tokens masked_tokens: Tuple[FeatureToken] = tuple(filter( lambda t: getattr(t, fid) == fval, source.token_iter())) # substitute the tokenizer's token mask needed for prediction tok: FeatureToken for tok in masked_tokens: tok.norm = mask_tok # clear to force a new norm with the tokenzier mask pattern source.clear() df: pd.DataFrame = self._predict(source.norm) return Prediction(source, masked_tokens, df)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/transformer/mask.py
mask.py
__author__ = 'Paul Landes' from typing import Tuple, Any, List from dataclasses import dataclass, field import sys from io import TextIOBase import logging from pathlib import Path import pandas as pd from zensols.persist import dealloc, Stash from zensols.config import Settings from zensols.cli import ActionCliManager, ApplicationError from zensols.nlp import FeatureDocument from zensols.deeplearn import ModelError from zensols.deeplearn.batch import Batch, DataPoint from zensols.deeplearn.model import ModelFacade from zensols.deeplearn.cli import FacadeApplication from zensols.deepnlp.classify import ( LabeledFeatureDocumentDataPoint, LabeledFeatureDocument ) logger = logging.getLogger(__name__) @dataclass class NLPFacadeBatchApplication(FacadeApplication): """A facade application for creating mini-batches for training. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'mnemonic_overrides': {'dump_batches': 'dumpbatch'}}) def _add_row(self, split_name: str, batch: Batch, dp: DataPoint): label: str = None text: str = None if isinstance(dp, LabeledFeatureDocumentDataPoint): label = dp.label if hasattr(dp, 'doc') and isinstance(dp.doc, FeatureDocument): doc: FeatureDocument = dp.doc text = doc.text if label is None and \ (isinstance(LabeledFeatureDocument) or hasattr(doc, 'label')): label = doc.label if label is None and hasattr(dp, 'label'): label = dp.label if text is None: text = str(dp) return (batch.id, dp.id, split_name, label, text) def dump_batches(self): """Dump the batch dataset with IDs, splits, labels and text. """ rows: List[Any] = [] with dealloc(self.create_facade()) as facade: self._enable_cli_logging(facade) out_csv = Path(f'{facade.model_settings.normal_model_name}.csv') split_name: str ss: Stash for split_name, ss in facade.dataset_stash.splits.items(): batch: Batch for batch in ss.values(): dp: DataPoint for dp in batch.data_points: rows.append(self._add_row(split_name, batch, dp)) df = pd.DataFrame( rows, columns='batch_id data_point_id split label text'.split()) df.to_csv(out_csv) if logger.isEnabledFor(logging.INFO): logger.info(f'wrote {out_csv}') @dataclass class NLPFacadeModelApplication(FacadeApplication): """A base class facade application for predicting tokens or text. """ CLI_META = ActionCliManager.combine_meta( FacadeApplication, {'mnemonic_overrides': {'predict_text': 'predtext'}, 'option_overrides': {'verbose': {'long_name': 'verbose', 'short_name': None}}}) def _get_sentences(self, text_input: str) -> Tuple[str]: def map_sents(din: TextIOBase): return map(lambda ln: ln.strip(), sys.stdin.readlines()) if text_input == '-': return tuple(map_sents(sys.stdin)) else: return [text_input] def _predict(self, facade: ModelFacade, data: Any) -> Any: try: return facade.predict(data) except ModelError as e: raise ApplicationError( 'Could not predict, probably need to train a model ' + f'first: {e}') from e class NLPClassifyFacadeModelApplication(NLPFacadeModelApplication): """A facade application for predicting text (for example sentiment classification tasks). """ def predict_text(self, text_input: str, verbose: bool = False): """Classify ad-hoc text and output the results. :param text_input: the sentence to classify or standard in a dash (-) :param verbose: if given, print the long format version of the document """ sents = self._get_sentences(text_input) with dealloc(self.create_facade()) as facade: docs: Tuple[FeatureDocument] = self._predict(facade, sents) for doc in docs: if verbose: doc.write() else: print(doc) @dataclass class NLPSequenceClassifyFacadeModelApplication(NLPFacadeModelApplication): """A facade application for predicting tokens (for example NER tasks). """ model_path: Path = field(default=None) """The path to the model or use the last trained model if not provided. """ def predict_text(self, text_input: str, verbose: bool = False): """Classify ad-hoc text and output the results. :param text_input: the sentence to classify or standard in a dash (-) :param verbose: if given, print the long format version of the document """ sents = self._get_sentences(text_input) with dealloc(self.create_facade()) as facade: pred: Settings = self._predict(facade, sents) docs: Tuple[FeatureDocument] = pred.docs classes: Tuple[str] = pred.classes for labels, doc in zip(classes, docs): for label, tok in zip(labels, doc.token_iter()): print(label, tok)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/cli/app.py
app.py
__author__ = 'Paul Landes' from dataclasses import dataclass, field import sys from io import TextIOBase from zensols.nlp import FeatureDocument from zensols.deeplearn.batch import ( Batch, BatchFeatureMapping, ManagerFeatureMapping, FieldFeatureMapping, ) from zensols.deepnlp.batch import FeatureDocumentDataPoint @dataclass class LabeledFeatureDocument(FeatureDocument): """A feature document with a label, used for text classification. """ label: str = field(default=None) """The document level classification gold label.""" pred: str = field(default=None) """The document level prediction label. :see: :obj:`.ClassificationPredictionMapper.pred_attribute` """ softmax_logit: float = field(default=None) """The document level softmax of the logits. :see: :obj:`.ClassificationSoftmax_LogitictionMapper.softmax_logit_attribute` """ def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): super().write(depth, writer) sl = self.softmax_logit sm = sl[self.pred] if sl is not None else '' self._write_line(f'label: {self.label}', depth + 1, writer) self._write_line(f'prediction: {self.pred}', depth + 1, writer) self._write_line(f'softmax logits: {sm}', depth + 1, writer) def __str__(self) -> str: lab = '' if self.label is None else f'label: {self.label}' pred = '' if self.pred is not None: pred = f'pred={self.pred}, logit={self.softmax_logit[self.pred]}' mid = ', ' if len(lab) > 0 and len(pred) > 0 else '' return (f'{lab}{mid}{pred}: {self.text}') @dataclass class LabeledFeatureDocumentDataPoint(FeatureDocumentDataPoint): """A representation of a data for a reivew document containing the sentiment polarity as the label. """ @property def label(self) -> str: """The label for the textual data point.""" return self.doc.label @dataclass class LabeledBatch(Batch): """A batch used for labeled text, usually used for text classification. This batch class serves as a way for very basic funcationly, but also provides an example and template from which to desigh your own batch implementation for your custom application. """ LANGUAGE_FEATURE_MANAGER_NAME = 'language_vectorizer_manager' """The configuration section of the definition of the :class:`~zensols.deepnlp.vectorize.FeatureDocumentVectorizerManager`. """ GLOVE_50_EMBEDDING = 'glove_50_embedding' """The configuration section name of the glove embedding :class:`~zensols.deepnlp.embed.GloveWordEmbedModel` class. """ GLOVE_300_EMBEDDING = 'glove_300_embedding' """The configuration section name of the glove embedding :class:`~zensols.deepnlp.embed.GloveWordEmbedModel` class. """ WORD2VEC_300_EMBEDDING = 'word2vec_300_embedding' """The configuration section name of the the Google word2vec embedding :class:`~zensols.deepnlp.embed.Word2VecModel` class. """ FASTTEXT_NEWS_300_EMBEDDING = 'fasttext_news_300_embedding' """The configuration section name of the fasttext news embedding :class:`~zensols.deepnlp.embed.FastTextEmbedModel` class. """ FASTTEXT_CRAWL_300_EMBEDDING = 'fasttext_crawl_300_embedding' """The configuration section name of the fasttext crawl embedding :class:`~zensols.deepnlp.embed.FastTextEmbedModel` class. """ TRANSFORMER_TRAINBLE_EMBEDDING = 'transformer_trainable_embedding' """The configuration section name of the BERT transformer contextual embedding :class:`~zensols.deepnlp.transformer.TransformerEmbedding` class. """ TRANSFORMER_FIXED_EMBEDDING = 'transformer_fixed_embedding' """Like :obj:`TRANSFORMER_TRAINBLE_EMBEDDING`, but all layers of the tranformer are frozen and only the static embeddings are used. """ EMBEDDING_ATTRIBUTES = {GLOVE_50_EMBEDDING, GLOVE_300_EMBEDDING, GLOVE_300_EMBEDDING, WORD2VEC_300_EMBEDDING, FASTTEXT_NEWS_300_EMBEDDING, FASTTEXT_CRAWL_300_EMBEDDING, TRANSFORMER_TRAINBLE_EMBEDDING, TRANSFORMER_FIXED_EMBEDDING} """All embedding feature section names.""" STATS_ATTRIBUTE = 'stats' """The statistics feature attribute name.""" ENUMS_ATTRIBUTE = 'enums' """The enumeration feature attribute name.""" COUNTS_ATTRIBUTE = 'counts' """The feature counts attribute name.""" DEPENDENCIES_ATTRIBUTE = 'dependencies' """The dependency feature attribute name.""" ENUM_EXPANDER_ATTRIBUTE = 'transformer_enum_expander' """Expands enumerated spaCy features to transformer wordpiece alignment.""" DEPENDENCY_EXPANDER_ATTRIBTE = 'transformer_dep_expander' """Expands dependency tree spaCy features to transformer wordpiece alignment. """ LANGUAGE_ATTRIBUTES = { STATS_ATTRIBUTE, ENUMS_ATTRIBUTE, COUNTS_ATTRIBUTE, DEPENDENCIES_ATTRIBUTE, ENUM_EXPANDER_ATTRIBUTE, DEPENDENCY_EXPANDER_ATTRIBTE} """All linguistic feature attribute names.""" MAPPINGS = BatchFeatureMapping( 'label', [ManagerFeatureMapping( 'classify_label_vectorizer_manager', (FieldFeatureMapping('label', 'lblabel', True),)), ManagerFeatureMapping( LANGUAGE_FEATURE_MANAGER_NAME, (FieldFeatureMapping(GLOVE_50_EMBEDDING, 'wvglove50', True, 'doc'), FieldFeatureMapping(GLOVE_300_EMBEDDING, 'wvglove300', True, 'doc'), FieldFeatureMapping(WORD2VEC_300_EMBEDDING, 'w2v300', True, 'doc'), FieldFeatureMapping(FASTTEXT_NEWS_300_EMBEDDING, 'wvftnews300', True, 'doc'), FieldFeatureMapping(FASTTEXT_CRAWL_300_EMBEDDING, 'wvftcrawl300', True, 'doc'), FieldFeatureMapping(TRANSFORMER_TRAINBLE_EMBEDDING, 'transformer_trainable', True, 'doc'), FieldFeatureMapping(TRANSFORMER_FIXED_EMBEDDING, 'transformer_fixed', True, 'doc'), FieldFeatureMapping(STATS_ATTRIBUTE, 'stats', False, 'doc'), FieldFeatureMapping(ENUMS_ATTRIBUTE, 'enum', True, 'doc'), FieldFeatureMapping(COUNTS_ATTRIBUTE, 'count', True, 'doc'), FieldFeatureMapping(DEPENDENCIES_ATTRIBUTE, 'dep', True, 'doc'), FieldFeatureMapping(ENUM_EXPANDER_ATTRIBUTE, 'tran_enum_expander', True, 'doc'), FieldFeatureMapping(DEPENDENCY_EXPANDER_ATTRIBTE, 'tran_dep_expander', True, 'doc')))]) """The mapping from the labeled data's feature attribute to feature ID and accessor information. """ def _get_batch_feature_mappings(self) -> BatchFeatureMapping: return self.MAPPINGS
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/classify/domain.py
domain.py
__author__ = 'Paul Landes' from typing import Iterable, Any, Type from dataclasses import dataclass, field import logging import pandas as pd from zensols.persist import Stash from zensols.deeplearn import NetworkSettings from zensols.deeplearn.result import ( PredictionsDataFrameFactory, SequencePredictionsDataFrameFactory, ) from zensols.deepnlp.model import ( LanguageModelFacade, LanguageModelFacadeConfig, ) from . import LabeledBatch logger = logging.getLogger(__name__) @dataclass class ClassifyModelFacade(LanguageModelFacade): """A facade for the text classification. See super classes for more information on the purprose of this class. All the ``set_*`` methods set parameters in the model. """ LANGUAGE_MODEL_CONFIG = LanguageModelFacadeConfig( manager_name=LabeledBatch.LANGUAGE_FEATURE_MANAGER_NAME, attribs=LabeledBatch.LANGUAGE_ATTRIBUTES, embedding_attribs=LabeledBatch.EMBEDDING_ATTRIBUTES) """The label model configuration constructed from the batch metadata. :see: :class:`.LabeledBatch` """ def __post_init__(self, *args, **kwargs): super().__post_init__(*args, **kwargs) settings: NetworkSettings = self.executor.net_settings if hasattr(settings, 'dropout'): # set to trigger writeback through to sub settings (linear, recur) self.dropout = self.executor.net_settings.dropout def _configure_debug_logging(self): super()._configure_debug_logging() for i in ['zensols.deeplearn.layer', 'zensols.deepnlp.transformer.layer', 'zensols.deepnlp.layer', 'zensols.deepnlp.classify']: logging.getLogger(i).setLevel(logging.DEBUG) def _get_language_model_config(self) -> LanguageModelFacadeConfig: return self.LANGUAGE_MODEL_CONFIG @property def feature_stash(self) -> Stash: """The stash containing feature instances.""" return super().feature_stash.delegate def get_predictions(self, *args, **kwargs) -> pd.DataFrame: """Return a Pandas dataframe of the predictions with columns that include the correct label, the prediction, the text and the length of the text of the text. """ return super().get_predictions( ('text', 'len'), lambda dp: (dp.doc.text, len(dp.doc.text)), *args, **kwargs) def predict(self, datas: Iterable[Any]) -> Any: # remove expensive to load vectorizers for prediction only when we're # not using those models if self.config.has_option('embedding', 'deeplearn_default'): emb_conf = self.config.get_option('embedding', 'deeplearn_default') attrs = ('glove_300_embedding fasttext_news_300 ' + 'fasttext_crawl_300 word2vec_300_embedding').split() for feature_attr in attrs: if emb_conf != feature_attr: self.remove_metadata_mapping_field(feature_attr) return super().predict(datas) @dataclass class TokenClassifyModelFacade(ClassifyModelFacade): """A token level classification model facade. """ predictions_datafrmae_factory_class: Type[PredictionsDataFrameFactory] = \ field(default=SequencePredictionsDataFrameFactory) def get_predictions(self, *args, **kwargs) -> pd.DataFrame: """Return a Pandas dataframe of the predictions with columns that include the correct label, the prediction, the text and the length of the text of the text. This uses the token norms of the document. :see: :meth:`get_predictions_factory` :param args: arguments passed to :meth:`get_predictions_factory` :param kwargs: arguments passed to :meth:`get_predictions_factory` """ return LanguageModelFacade.get_predictions( self, ('text',), lambda dp: tuple(map(lambda t: (t.norm,), dp.doc.token_iter())), *args, **kwargs)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/classify/facade.py
facade.py
__author__ = 'Paul Landes' from typing import Tuple, List, Iterable from dataclasses import dataclass, field from itertools import chain as ch import numpy as np from zensols.config import Settings from zensols.nlp import FeatureSentence, FeatureDocument from zensols.deeplearn.vectorize import CategoryEncodableFeatureVectorizer from zensols.deeplearn.model import PredictionMapper from zensols.deeplearn.result import ResultsContainer from zensols.deepnlp.vectorize import FeatureDocumentVectorizerManager from . import LabeledFeatureDocument @dataclass class ClassificationPredictionMapper(PredictionMapper): """A prediction mapper for text classification. This mapper works at any level (document, sentence, token). """ vec_manager: FeatureDocumentVectorizerManager = field() """The vectorizer manager used to parse and get the label vectorizer.""" label_feature_id: str = field() """The feature ID for the label vectorizer.""" pred_attribute: str = field(default='pred') """The prediction attribute to set on the :class:`.FeatureDocument` returned from :meth:`map_results`. """ softmax_logit_attribute: str = field(default='softmax_logit') """The softmax of the logits attribute to set on the :class:`.FeatureDocument` returned from :meth:`map_results`. :see: `On Calibration of Modern Neural Networks <https://arxiv.org/abs/1706.04599>`_ """ def __post_init__(self): super().__post_init__() self._docs: List[FeatureDocument] = [] @property def label_vectorizer(self) -> CategoryEncodableFeatureVectorizer: """The label vectorizer used to map classes in :meth:`get_classes`.""" return self.vec_manager[self.label_feature_id] def _create_features(self, sent_text: str) -> Tuple[FeatureDocument]: doc: FeatureDocument = self.vec_manager.parse(sent_text) self._docs.append(doc) return [doc] def _map_classes(self, result: ResultsContainer) -> List[List[str]]: """Return the label string values for indexes ``nominals``. :param nominals: the integers that map to the respective string class; each tuple is a batch, and each item in the iterable is a data point :return: a list for every tuple in ``nominals`` """ vec: CategoryEncodableFeatureVectorizer = self.label_vectorizer nominals: List[np.ndarray] = result.batch_predictions return list(map(lambda cl: vec.get_classes(cl).tolist(), nominals)) def map_results(self, result: ResultsContainer) -> \ Tuple[LabeledFeatureDocument]: """Map class predictions, logits, and documents generated during use of this instance. Each data point is aggregated across batches. :return: a :class:`.Settings` instance with ``classess``, ``logits`` and ``docs`` attributes """ class_groups: List[List[str]] = self._map_classes(result) classes: Iterable[str] = ch.from_iterable(class_groups) logits: Iterable[np.ndarray] = ch.from_iterable(result.batch_outputs) docs: List[FeatureDocument] = self._docs labels: List[str] = self.label_vectorizer.label_encoder.classes_ for cl, doc, logits in zip(classes, docs, logits): conf = np.exp(logits) / sum(np.exp(logits)) sms = dict(zip(labels, conf)) setattr(doc, self.pred_attribute, cl) setattr(doc, self.softmax_logit_attribute, sms) return tuple(docs) @dataclass class SequencePredictionMapper(ClassificationPredictionMapper): """Predicts sequences as a :class:`~zensols.config.serial.Settings` with keys `classes` as the token level predictions and `docs` containing the parsed documents from the sentence text. """ def _create_features(self, sent_text: str) -> Tuple[FeatureSentence]: doc: FeatureDocument = self.vec_manager.parse(sent_text) self._docs.append(doc) return doc.sents def map_results(self, result: ResultsContainer) -> Settings: classes = self._map_classes(result) return Settings(classes=tuple(classes), docs=tuple(self._docs))
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/classify/pred.py
pred.py
__author__ = 'Paul Landes' from typing import Any from dataclasses import dataclass, field import logging import torch from zensols.deeplearn import DropoutNetworkSettings from zensols.deeplearn.batch import Batch from zensols.deeplearn.layer import ( DeepLinear, DeepLinearNetworkSettings, RecurrentAggregation, RecurrentAggregationNetworkSettings, ) from zensols.deepnlp.layer import ( EmbeddingNetworkSettings, EmbeddingNetworkModule, ) logger = logging.getLogger(__name__) @dataclass class ClassifyNetworkSettings(DropoutNetworkSettings, EmbeddingNetworkSettings): """A utility container settings class for convulsion network models. This class also updates the recurrent network's drop out settings when changed. """ recurrent_settings: RecurrentAggregationNetworkSettings = field() """Contains the confgiuration for the models RNN.""" linear_settings: DeepLinearNetworkSettings = field() """Contains the configuration for the model's FF *decoder*.""" def _set_option(self, name: str, value: Any): super()._set_option(name, value) # propogate dropout to recurrent network if name == 'dropout' and hasattr(self, 'recurrent_settings'): if self.recurrent_settings is not None: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'setting dropout: {value}') self.recurrent_settings.dropout = value self.linear_settings.dropout = value def get_module_class_name(self) -> str: return __name__ + '.ClassifyNetwork' class ClassifyNetwork(EmbeddingNetworkModule): """A model that either allows for an RNN or a BERT transforemr to classify text. """ MODULE_NAME = 'classify' def __init__(self, net_settings: ClassifyNetworkSettings): super().__init__(net_settings, logger) ns = self.net_settings rs = ns.recurrent_settings ls = ns.linear_settings if logger.isEnabledFor(logging.DEBUG): self._debug(f'embedding output size: {self.embedding_output_size}') if rs is None: ln_in_features = self.embedding_output_size + self.join_size self.recur = None else: rs.input_size = self.embedding_output_size self._debug(f'recur settings: {rs}') self.recur = RecurrentAggregation(rs) self._debug(f'embedding join size: {self.join_size}') self.join_size += self.recur.out_features self._debug(f'after lstm join size: {self.join_size}') ln_in_features = self.join_size if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'linear in size: {ln_in_features}') ls.in_features = ln_in_features if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'linear input settings: {ls}') self.fc_deep = DeepLinear(ls, self.logger) def _forward(self, batch: Batch) -> torch.Tensor: if self.logger.isEnabledFor(logging.DEBUG): self._debug('review batch:') batch.write() x = self.forward_embedding_features(batch) self._shape_debug('embedding', x) x = self.forward_token_features(batch, x) self._shape_debug('token', x) if self.recur is not None: x = self.recur(x)[0] self._shape_debug('lstm', x) x = self.forward_document_features(batch, x) x = self.fc_deep(x) self._shape_debug('deep linear', x) return x
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/classify/model.py
model.py
__author__ = 'Paul Landes' from typing import List, Tuple, Set, Union, Dict, Iterable from dataclasses import dataclass, field import logging import sys from functools import reduce import torch import numpy as np from torch import Tensor from zensols.deeplearn.vectorize import ( VectorizerError, FeatureContext, TensorFeatureContext, SparseTensorFeatureContext, MultiFeatureContext, EncodableFeatureVectorizer, OneHotEncodedEncodableFeatureVectorizer, AggregateEncodableFeatureVectorizer, TransformableFeatureVectorizer, ) from zensols.nlp import ( FeatureToken, FeatureSentence, FeatureDocument, TokenContainer, ) from ..embed import WordEmbedModel from . import ( SpacyFeatureVectorizer, FeatureDocumentVectorizer, TextFeatureType, MultiDocumentVectorizer, ) logger = logging.getLogger(__name__) @dataclass class EnumContainerFeatureVectorizer(FeatureDocumentVectorizer): """Encode tokens found in the container by aggregating the spaCy vectorizers output. The result is a concatenated binary representation of all configured token level features for each token. This adds only token vectorizer features generated by the spaCy vectorizers (subclasses of :class:`.SpacyFeatureVectorizer`), and not the features themselves (such as ``is_stop`` etc). All spaCy features are encoded given by :obj:`~.FeatureDocumentVectorizerManager.spacy_vectorizers`. However, only those given in :obj:`decoded_feature_ids` are produced in the output tensor after decoding. The motivation for encoding all, but decoding a subset of features is for feature selection during training. This is because encoding the features (in a sparse matrix) takes comparatively less time and space over having to re-encode all batches. Rows are tokens, columns intervals of features. The encoded matrix is sparse, and decoded as a dense matrix. :shape: (|sentences|, |sentinel tokens|, |decoded features|) :see: :class:`.SpacyFeatureVectorizer` """ ATTR_EXP_META = ('decoded_feature_ids',) DESCRIPTION = 'spacy feature vectorizer' FEATURE_TYPE = TextFeatureType.TOKEN decoded_feature_ids: Set[str] = field(default=None) """The spaCy generated features used during *only* decoding (see class docs). Examples include ``norm``, ``ent``, ``dep``, ``tag``. When set to ``None``, use all those given in the :obj:`~.FeatureDocumentVectorizerManager.spacy_vectorizers`. """ def _get_shape_with_feature_ids(self, feature_ids: Set[str]): """Compute the shape based on what spacy feature ids are given. :param feature_ids: the spacy feature ids used to filter the result """ flen = 0 for fvec in self.manager.spacy_vectorizers.values(): if feature_ids is None or fvec.feature_id in feature_ids: flen += fvec.shape[1] return -1, self.token_length, flen def _get_shape_decode(self) -> Tuple[int, int]: """Return the shape needed for the tensor when encoding.""" return self._get_shape_with_feature_ids(None) def _get_shape_for_document(self, doc: FeatureDocument): """Return the shape of the vectorized output for the given document.""" return (len(doc.sents), self.manager.get_token_length(doc), self._get_shape_decode()[-1]) def _get_shape(self) -> Tuple[int, int]: """Compute the shape based on what spacy feature ids are given.""" return self._get_shape_with_feature_ids(self.decoded_feature_ids) def _populate_feature_vectors(self, sent: FeatureSentence, six: int, fvec: SpacyFeatureVectorizer, arr: Tensor, col_start: int, col_end: int): """Populate ``arr`` with every feature available from the vectorizer set defined in the manager. This fills in the corresponding vectors from the spacy vectorizer ``fvec`` across all tokens for a column range. """ attr_name = fvec.feature_id col_end = col_start + fvec.shape[1] toks = sent.tokens[:arr.shape[1]] for tix, tok in enumerate(toks): val = getattr(tok, attr_name) vec = fvec.from_spacy(val) if vec is not None: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'adding vec {fvec} for {tok}: {vec.shape}') arr[six, tix, col_start:col_end] = vec def _encode(self, doc: FeatureDocument) -> FeatureContext: """Encode tokens found in the container by aggregating the spaCy vectorizers output. """ arr = self.torch_config.zeros(self._get_shape_for_document(doc)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'type array shape: {arr.shape}') sent: FeatureSentence for six, sent in enumerate(doc.sents): col_start = 0 for fvec in self.manager.spacy_vectorizers.values(): col_end = col_start + fvec.shape[1] self._populate_feature_vectors( sent, six, fvec, arr, col_start, col_end) col_start = col_end if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoded array shape: {arr.shape}') return SparseTensorFeatureContext.instance( self.feature_id, arr, self.torch_config) def _slice_by_attributes(self, arr: Tensor) -> Tensor: """Create a new tensor from column based slices of the encoded tensor for each specified feature id given in :obj:`decoded_feature_ids`. """ keeps = set(self.decoded_feature_ids) col_start = 0 tensors = [] for fvec in self.manager.spacy_vectorizers.values(): col_end = col_start + fvec.shape[1] fid = fvec.feature_id if logger.isEnabledFor(logging.DEBUG): logger.debug(f'type={fid}, to keep={keeps}') if fid in keeps: tensors.append(arr[:, :, col_start:col_end]) keeps.remove(fid) col_start = col_end if len(keeps) > 0: raise VectorizerError(f'Unknown feature type IDs: {keeps}') sarr = torch.cat(tensors, dim=2) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'slice dim: {sarr.shape}') return sarr def to_symbols(self, tensor: Tensor) -> List[List[Dict[str, float]]]: """Reverse map the tensor to spaCy features. :return: a list of sentences, each with a list of tokens, each having a map of name/count pairs """ sents = [] for six in range(tensor.size(0)): toks = [] sents.append(toks) for tix in range(tensor.size(1)): col_start = 0 by_fid = {} toks.append(by_fid) for fvec in self.manager.spacy_vectorizers.values(): col_end = col_start + fvec.shape[1] fid = fvec.feature_id vec = tensor[six, tix, col_start:col_end] cnts = dict(filter(lambda x: x[1] > 0, zip(fvec.as_list, vec.tolist()))) by_fid[fid] = cnts col_start = col_end return sents def _decode(self, context: FeatureContext) -> Tensor: arr = super()._decode(context) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded features: {self.decoded_feature_ids}, ' + f'shape: {arr.shape}') self._assert_decoded_doc_dim(arr, 3) if self.decoded_feature_ids is not None: arr = self._slice_by_attributes(arr) return arr @dataclass class CountEnumContainerFeatureVectorizer(FeatureDocumentVectorizer): """Vectorize the counts of parsed spaCy features. This generates the count of tokens as a S X M * N tensor where S is the number of sentences, M is the number of token feature ids and N is the number of columns of the output of the :class:`.SpacyFeatureVectorizer` vectorizer. Each column position's count represents the number of counts for that spacy symol for that index position in the output of :class:`.SpacyFeatureVectorizer`. This class uses the same efficiency in decoding features given in :class:`.EnumContainerFeatureVectorizer`. :shape: (|sentences|, |decoded features|) """ ATTR_EXP_META = ('decoded_feature_ids',) DESCRIPTION = 'token level feature counts' FEATURE_TYPE = TextFeatureType.DOCUMENT decoded_feature_ids: Set[str] = field(default=None) def _get_shape(self) -> Tuple[int, int]: """Compute the shape based on what spacy feature ids are given. """ feature_ids = self.decoded_feature_ids flen = 0 for fvec in self.manager.spacy_vectorizers.values(): if feature_ids is None or fvec.feature_id in feature_ids: flen += fvec.shape[1] return -1, flen def get_feature_counts(self, sent: FeatureSentence, fvec: SpacyFeatureVectorizer) -> Tensor: """Return the count of all tokens as a S X N tensor where S is the number of sentences, N is the columns of the ``fvec`` vectorizer. Each column position's count represents the number of counts for that spacy symol for that index position in the ``fvec``. """ fid = fvec.feature_id fcounts = self.torch_config.zeros(fvec.shape[1]) for tok in sent.tokens: val = getattr(tok, fid) fnid = fvec.id_from_spacy(val, -1) if fnid > -1: fcounts[fnid] += 1 return fcounts def _encode(self, doc: FeatureDocument) -> FeatureContext: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding doc: {doc}') sent_arrs = [] for sent in doc.sents: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding sentence: {sent}') tok_arrs = [] for fvec in self.manager.spacy_vectorizers.values(): cnts: Tensor = self.get_feature_counts(sent, fvec) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding with {fvec}') tok_arrs.append(cnts) sent_arrs.append(torch.cat(tok_arrs)) arr = torch.stack(sent_arrs) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoded shape: {arr.shape}') return SparseTensorFeatureContext.instance( self.feature_id, arr, self.torch_config) def _slice_by_attributes(self, arr: Tensor) -> Tensor: """Create a new tensor from column based slices of the encoded tensor for each specified feature id given in :obj:`decoded_feature_ids`. """ keeps = set(self.decoded_feature_ids) col_start = 0 tensors = [] for fvec in self.manager.spacy_vectorizers.values(): col_end = col_start + fvec.shape[1] fid = fvec.feature_id if logger.isEnabledFor(logging.DEBUG): logger.debug(f'type={fid}, to keep={keeps}') if fid in keeps: keep_vec = arr[:, col_start:col_end] tensors.append(keep_vec) keeps.remove(fid) col_start = col_end if len(keeps) > 0: raise VectorizerError(f'Unknown feature type IDs: {keeps}') sarr = torch.cat(tensors, dim=1) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'slice dim: {sarr.shape}') return sarr def to_symbols(self, tensor: Tensor) -> List[Dict[str, float]]: """Reverse map the tensor to spaCy features. :return: a list of sentences, each a map of name/count pairs. """ sents = [] for six in range(tensor.size(0)): col_start = 0 by_fid = {} sents.append(by_fid) arr = tensor[six] for fvec in self.manager.spacy_vectorizers.values(): col_end = col_start + fvec.shape[1] fid = fvec.feature_id vec = arr[col_start:col_end] cnts = dict(filter(lambda x: x[1] > 0, zip(fvec.as_list, vec.tolist()))) by_fid[fid] = cnts col_start = col_end return sents def _decode(self, context: FeatureContext) -> Tensor: arr = super()._decode(context) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded features: {self.decoded_feature_ids}, ' + f'shape: {arr.shape}') if self.decoded_feature_ids is not None: arr = self._slice_by_attributes(arr) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded shape: {arr.shape}') return arr @dataclass class DepthFeatureDocumentVectorizer(FeatureDocumentVectorizer): """Generate the depths of tokens based on how deep they are in a head dependency tree. Even though this is a document level vectorizer and is usually added in a join layer rather than stacked on to the embedded layer, it still assumes congruence with the token length, which is used in its shape. **Important**: do not combine sentences in to a single document with :meth:`~zensols.nlp.container.FeatureDocument.combine_sentences` since features are created as a dependency parse tree at the sentence level. Otherwise, the dependency relations are broken and results in a zeored tensor. :shape: (|sentences|, |sentinel tokens|, 1) """ DESCRIPTION = 'head depth' FEATURE_TYPE = TextFeatureType.TOKEN def _get_shape(self) -> Tuple[int, int]: return -1, self.token_length, 1 def encode(self, doc: Union[Tuple[FeatureDocument], FeatureDocument]) -> \ FeatureContext: ctx: TensorFeatureContext if isinstance(doc, (tuple, list)): self._assert_doc(doc) docs = doc comb_doc = FeatureDocument.combine_documents(docs) n_toks = self.manager.get_token_length(comb_doc) arrs = tuple(map(lambda d: self._encode_doc(d.combine_sentences(), n_toks), docs)) arr = torch.cat(arrs, dim=0) arr = arr.unsqueeze(-1) ctx = SparseTensorFeatureContext.instance( self.feature_id, arr, self.torch_config) else: ctx = super().encode(doc) return ctx def _encode(self, doc: FeatureDocument) -> FeatureContext: n_toks = self.manager.get_token_length(doc) arr = self._encode_doc(doc, n_toks) arr = arr.unsqueeze(-1) return SparseTensorFeatureContext.instance( self.feature_id, arr, self.torch_config) def _encode_doc(self, doc: FeatureDocument, n_toks: int) -> Tensor: n_sents = len(doc.sents) arr = self.torch_config.zeros((n_sents, n_toks)) u_doc = doc.uncombine_sentences() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding doc: {len(doc)}/{len(u_doc)}: {doc}') # if the doc is combined as several sentences concatenated in one, un # pack and write all features in one row if len(doc) != len(u_doc): soff = 0 for sent in u_doc.sents: self._transform_sent(sent, arr, 0, soff, n_toks) soff += len(sent) else: # otherwise, each row is a separate sentence for six, sent in enumerate(doc.sents): self._transform_sent(sent, arr, six, 0, n_toks) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoded shape: {arr.shape}') return arr def _transform_sent(self, sent: FeatureSentence, arr: Tensor, six: int, soff: int, slen: int): head_depths = self._get_head_depth(sent) for tix, tok, depth in head_depths: off = tix + soff val = 1. / depth in_range = (off < slen) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'setting ({six}, {off}) = {val}: set={in_range}') if in_range: arr[six, off] = val def _dep_branch(self, node: FeatureToken, toks: Tuple[FeatureToken], tid_to_idx: Dict[int, int], depth: int, depths: Dict[int, int]) -> \ Dict[FeatureToken, List[FeatureToken]]: idx = tid_to_idx.get(node.i) if idx is not None: depths[idx] = depth for c in node.children: cix = tid_to_idx.get(c) if cix is not None: child = toks[cix] self._dep_branch(child, toks, tid_to_idx, depth + 1, depths) def _get_head_depth(self, sent: FeatureSentence) -> \ Tuple[Tuple[int, FeatureToken, int]]: """Calculate the depth of tokens in a sentence. :param sent: the sentence that has the tokens to get depts :return: a tuple of (sentence token index, token, depth) """ tid_to_idx: Dict[int, int] = {} toks = sent.tokens for i, tok in enumerate(toks): tid_to_idx[tok.i] = i if logger.isEnabledFor(logging.DEBUG): logger.debug('|'.join( map(lambda t: f'{tid_to_idx[t.i]}:{t.i}:{t.text}({t.dep_})', sent.token_iter()))) logger.debug(f'tree: {sent.dependency_tree}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'tokens: {toks}') root = tuple( filter(lambda t: t.dep_ == 'ROOT' and not t.is_punctuation, toks)) if len(root) == 1: root = root[0] tree = {tid_to_idx[root.i]: 0} self._dep_branch(root, toks, tid_to_idx, 1, tree) return map(lambda x: (x[0], toks[x[0]], x[1]), tree.items()) else: return () @dataclass class OneHotEncodedFeatureDocumentVectorizer( FeatureDocumentVectorizer, OneHotEncodedEncodableFeatureVectorizer): """Vectorize nominal enumerated features in to a one-hot encoded vectors. The feature is taken from a :class:`~zensols.nlp.FeatureToken`. If :obj:`level` is ``token`` then the features are token attributes identified by :obj:`feature_attribute`. If the :obj:`level` is ``document`` feature is taken from the document. :shape: * level = document: (1, |categories|) * level = token: (|<sentences>|, |<sentinel tokens>|, |categories|) """ DESCRIPTION = 'encoded feature document vectorizer' feature_attribute: Tuple[str] = field(default=None) """The feature attributes to vectorize.""" level: str = field(default='token') """The level at which to take the attribute value, which is ``document``, ``sentence`` or ``token``. """ def __post_init__(self): super().__post_init__() self.optimize_bools = False @property def feature_type(self) -> TextFeatureType: return {'document': TextFeatureType.DOCUMENT, 'token': TextFeatureType.TOKEN, }[self.level] def _get_shape(self) -> Tuple[int, int]: if self.level == 'document': return -1, super()._get_shape()[1] else: return -1, self.token_length, super()._get_shape()[1] def _encode(self, doc: FeatureDocument) -> FeatureContext: attr = self.feature_attribute if self.level == 'document': arr = self.torch_config.zeros((1, self.shape[1])) feats = [getattr(doc, attr)] self._encode_cats(feats, arr) elif self.level == 'token': # not tested tlen = self.manager.get_token_length(doc) arr = self.torch_config.zeros((len(doc), tlen, self.shape[2])) for six, sent in enumerate(doc.sents): feats = tuple(map(lambda s: getattr(s, attr), sent)) self._encode_cats(feats, arr[six]) else: raise VectorizerError(f'Unknown doc level: {self.level}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'vectorized: {len(doc)} sents in to {arr.shape}') return SparseTensorFeatureContext.instance( self.feature_id, arr, self.torch_config) @dataclass class TokenEmbeddingFeatureVectorizer( AggregateEncodableFeatureVectorizer, FeatureDocumentVectorizer): """A :class:`~zensols.deepnlp.vectorize.AggregateEncodableFeatureVectorizer` that is useful for token level classification (i.e. NER). It uses a delegate to first vectorizer the features, then concatenates in to one aggregate. In shape terms, this takes the single sentence position. The additional unsqueezed dimensions set with :obj:`n_unsqueeze` is useful when the delegate vectorizer encodes booleans or any other value that does not take an additional dimension. :shape: (1, |tokens|, <delegate vectorizer shape>[, <unsqueeze dimensions]) """ DESCRIPTION = 'token aggregate vectorizer' level: TextFeatureType = field(default=TextFeatureType.TOKEN) """The level at which to take the attribute value, which is ``document``, ``sentence`` or ``token``. """ add_dims: int = field(default=0) """The number of dimensions to add (see class docs).""" def _get_shape(self): dim = [1] dim.extend(super()._get_shape()) dim.extend([1] * self.add_dims) return tuple(dim) @property def feature_type(self) -> TextFeatureType: return self.level def encode(self, doc: Union[Tuple[FeatureDocument], FeatureDocument]) -> \ FeatureContext: return TransformableFeatureVectorizer.encode(self, doc) def _decode(self, context: MultiFeatureContext) -> Tensor: tensor: Tensor = super()._decode(context) for _ in range(self.add_dims): return tensor.unsqueeze(-1) return tensor @dataclass class StatisticsFeatureDocumentVectorizer(FeatureDocumentVectorizer): """Vectorizes basic surface language statics which include: * character count * token count * min token length in characters * max token length in characters * average token length in characters (|characters| / |tokens|) * sentence count (for FeatureDocuments) * average sentence length (|tokens| / |sentences|) * min sentence length * max sentence length :shape: (1, 9,) """ DESCRIPTION = 'statistics' FEATURE_TYPE = TextFeatureType.DOCUMENT def _get_shape(self) -> Tuple[int, int]: return -1, 9 def _encode(self, doc: FeatureDocument) -> FeatureContext: n_toks = len(doc.tokens) n_sents = 1 min_tlen = sys.maxsize max_tlen = 0 ave_tlen = 1 min_slen = sys.maxsize max_slen = 0 ave_slen = 1 n_char = 0 for t in doc.tokens: tlen = len(t.norm) n_char += tlen min_tlen = min(min_tlen, tlen) max_tlen = max(max_tlen, tlen) ave_tlen = n_char / n_toks if isinstance(doc, FeatureDocument): n_sents = len(doc.sents) ave_slen = n_toks / n_sents for s in doc.sents: slen = len(s.tokens) min_slen = min(min_slen, slen) max_slen = max(max_slen, slen) stats = (n_char, n_toks, min_tlen, max_tlen, ave_tlen, n_sents, ave_slen, min_slen, max_slen) arr = self.torch_config.from_iterable(stats).unsqueeze(0) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'array shape: {arr.shape}') return TensorFeatureContext(self.feature_id, arr) @dataclass class OverlappingFeatureDocumentVectorizer(MultiDocumentVectorizer): """Vectorize the number of normalized and lemmatized tokens (in this order) across multiple documents. The input to this feature vectorizer are a tuple N of :class:`.FeatureDocument` instances. :shape: (2,) """ DESCRIPTION = 'overlapping token counts' def _get_shape(self) -> Tuple[int, int]: return 2, @staticmethod def _norms(ac: TokenContainer, bc: TokenContainer) -> Tuple[int]: a = set(map(lambda s: s.norm.lower(), ac.token_iter())) b = set(map(lambda s: s.norm.lower(), bc.token_iter())) return a & b @staticmethod def _lemmas(ac: TokenContainer, bc: TokenContainer) -> Tuple[int]: a = set(map(lambda s: s.lemma_.lower(), ac.token_iter())) b = set(map(lambda s: s.lemma_.lower(), bc.token_iter())) return a & b def _encode(self, docs: Tuple[FeatureDocument]) -> FeatureContext: norms = reduce(self._norms, docs) lemmas = reduce(self._lemmas, docs) arr = self.torch_config.from_iterable((len(norms), len(lemmas))) return TensorFeatureContext(self.feature_id, arr) @dataclass class MutualFeaturesContainerFeatureVectorizer(MultiDocumentVectorizer): """Vectorize the shared count of all tokens as a S X M * N tensor, where S is the number of sentences, M is the number of token feature ids and N is the columns of the output of the :class:`.SpacyFeatureVectorizer` vectorizer. This uses an instance of :class:`CountEnumContainerFeatureVectorizer` to compute across each spacy feature and then sums them up for only those features shared. If at least one shared document has a zero count, the features is zeroed. The input to this feature vectorizer are a tuple of N :class:`.TokenContainer` instances. :shape: (|sentences|, |decoded features|,) from the referenced :class:`CountEnumContainerFeatureVectorizer` given by :obj:`count_vectorizer_feature_id` """ DESCRIPTION = 'mutual feature counts' count_vectorizer_feature_id: str = field() """The string feature ID configured in the :class:`.FeatureDocumentVectorizerManager` of the :class:`CountEnumContainerFeatureVectorizer` to use for the count features. """ @property def count_vectorizer(self) -> CountEnumContainerFeatureVectorizer: """Return the count vectorizer used for the count features. :see: :obj:`count_vectorizer_feature_id` """ return self.manager[self.count_vectorizer_feature_id] @property def ones(self) -> Tensor: """Return a tensor of ones for the shape of this instance. """ return self.torch_config.ones((1, self.shape[1])) def _get_shape(self) -> Tuple[int, int]: return -1, self.count_vectorizer.shape[1] def _encode(self, docs: Tuple[FeatureDocument]) -> FeatureContext: ctxs = tuple(map(self.count_vectorizer.encode, map(lambda doc: doc.combine_sentences(), docs))) return MultiFeatureContext(self.feature_id, ctxs) def _decode(self, context: MultiFeatureContext) -> Tensor: def decode_context(ctx): sents = self.count_vectorizer.decode(ctx) return torch.sum(sents, axis=0) ones = self.ones arrs = tuple(map(decode_context, context.contexts)) if len(arrs) == 1: # return the single document as a mutual count against itself return arrs[0] else: arrs = torch.stack(arrs, axis=0).squeeze(1) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'combined counts (doc/row): {arrs.shape}') # clone so the operations of this vectorizer do not effect the # tensors from the delegate count vectorizer cnts = self.torch_config.clone(arrs) # multiple counts of all docs so any 0 count feature will be 0 in # the mask prod = cnts.prod(axis=0).unsqueeze(0) # create 2 X N with count product with ones cat_ones = torch.cat((prod, ones)) # keep 0s for no count features or 1 if there is at least one for # the mask mask = torch.min(cat_ones, axis=0)[0] if logger.isEnabledFor(logging.DEBUG): logger.debug(f'counts mask: {cat_ones.shape}') # use the mask to zero out counts that aren't mutual across all # documents, then sum the counts across docuemnts return (cnts * mask).sum(axis=0).unsqueeze(0) @dataclass class WordEmbeddingFeatureVectorizer(EncodableFeatureVectorizer): """Vectorizes string tokens in to word embedded vectors. This class works directly with the string tokens rather than :class:`~zensols.nlp.FeatureDocument` instances. It can be useful when there's a need to vectorize tokens outside of a feature document (i.e. ``cui2vec``). """ FEATURE_TYPE = TextFeatureType.EMBEDDING DESCRIPTION = 'word embedding encoder' embed_model: WordEmbedModel = field() """The word embedding model that has the string tokens to vector mapping.""" def _get_shape(self): return (-1, self.embed_model.vector_dimension) def _encode(self, keys: Iterable[str]) -> FeatureContext: em: WordEmbedModel = self.embed_model vecs: np.ndarray = tuple(map(lambda k: em.get(k), keys)) arr: np.ndarray = np.stack(vecs) return TensorFeatureContext(self.feature_id, torch.from_numpy(arr))
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/vectorize/vectorizers.py
vectorizers.py
__author__ = 'Paul Landes' from typing import Tuple, Iterable, List, Union from dataclasses import dataclass, field import logging from itertools import chain import torch from torch import Tensor from zensols.config import Dictable from zensols.persist import persisted, Primeable from zensols.deeplearn.vectorize import FeatureContext, TensorFeatureContext from zensols.nlp import FeatureToken, FeatureDocument, FeatureSentence from zensols.deepnlp.embed import WordEmbedModel from zensols.deepnlp.vectorize import TextFeatureType from . import FoldingDocumentVectorizer logger = logging.getLogger(__name__) @dataclass class EmbeddingFeatureVectorizer(FoldingDocumentVectorizer, Primeable, Dictable): """Vectorize a :class:`~zensols.nlp.container.FeatureDocument` as a vector of embedding indexes. Later, these indexes are used in a :class:`~zensols.deepnlp.layer.embed.EmbeddingLayer` to create the input word embedding during execution of the model. """ embed_model: Union[WordEmbedModel, 'TransformerEmbedding'] = field() """The word vector model. Types for this value include: * :class:`~znesols.deepnlp.embed.domain.WordEmbedModel` * :class:`~zensols.deepnlp.transformer.embed.TransformerEmbedding` """ decode_embedding: bool = field(default=False) """Whether or not to decode the embedding during the decode phase, which is helpful when caching batches; otherwise, the data is decoded from indexes to embeddings each epoch. Note that this option and functionality can not be obviated by that implemented with the :obj:`encode_transformed` attribute. The difference is over whether or not more work is done on during decoding rather than encoding. An example of when this is useful is for large word embeddings (i.e. Google 300D pretrained) where the the index to tensor embedding transform is done while decoding rather than in the `forward` so it's not done for every epoch. """ def _get_shape(self) -> Tuple[int, int]: return self.manager.token_length, self.embed_model.vector_dimension def prime(self): if isinstance(self.embed_model, Primeable): self.embed_model.prime() def _get_dictable_attributes(self) -> Iterable[Tuple[str, str]]: return chain.from_iterable( [super()._get_dictable_attributes(), [('model', 'embed_model')]]) @dataclass class WordVectorEmbeddingFeatureVectorizer(EmbeddingFeatureVectorizer): """Vectorize sentences using an embedding model (:obj:`embed_model`) of type :class:`.WordEmbedModel`. The encoder returns the indicies of the word embedding for each token in the input :class:`.FeatureDocument`. The decoder returns the corresponding word embedding vectors if :obj:`decode_embedding` is ``True``. Otherwise it returns the same indicies, which later used by the embedding layer (usually :class:`~zensols.deepnlp.layer.EmbeddingLayer`). """ DESCRIPTION = 'word vector document embedding' FEATURE_TYPE = TextFeatureType.EMBEDDING token_feature_id: str = field(default='norm') """The :class:`~zensols.nlp.FeatureToken` attribute used to index the embedding vectors. """ def _encode(self, doc: FeatureDocument) -> FeatureContext: emodel = self.embed_model tw: int = self.manager.get_token_length(doc) sents: Tuple[FeatureSentence] = doc.sents shape: Tuple[int, int] = (len(sents), tw) tfid: str = self.token_feature_id if logger.isEnabledFor(logging.DEBUG): logger.debug(f'using token length: {tw} with shape: {shape}, ' + f'sents: {len(sents)}') arr = self.torch_config.empty(shape, dtype=torch.long) row: int sent: FeatureSentence for row, sent in enumerate(sents): tokens: List[FeatureToken] = sent.tokens[0:tw] slen: int = len(tokens) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'row: {row}, ' + 'toks: ' + ' '.join(map(lambda x: x.norm, tokens))) tokens = list(map(lambda t: getattr(t, tfid), tokens)) if slen < tw: tokens += [WordEmbedModel.ZERO] * (tw - slen) for i, tok in enumerate(tokens): arr[row][i] = emodel.word2idx_or_unk(tok) return TensorFeatureContext(self.feature_id, arr) @property @persisted('_vectors') def vectors(self) -> Tensor: embed_model: WordEmbedModel = self.embed_model return embed_model.to_matrix(self.torch_config) def _decode(self, context: FeatureContext) -> Tensor: x: Tensor = super()._decode(context) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'indexes: {x.shape} ({x.dtype}), ' + f'will decode in vectorizer: {self.decode_embedding}') if self.decode_embedding: if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoding using: {self.decode_embedding}') src_vecs: Tensor = self.vectors batches: List[Tensor] = [] vecs = [] for batch_idx in x: for idxt in batch_idx: vecs.append(src_vecs[idxt]) batches.append(torch.stack(vecs)) vecs.clear() x = torch.stack(batches) return x
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/vectorize/embed.py
embed.py
__author__ = 'Paul Landes' from typing import List, Union, Set, Dict, Tuple, Sequence from dataclasses import dataclass, field from enum import Enum, auto from abc import abstractmethod, ABCMeta import logging import collections import torch from torch import Tensor from zensols.persist import persisted, PersistedWork from zensols.deeplearn.vectorize import ( FeatureContext, FeatureVectorizerManager, VectorizerError, TransformableFeatureVectorizer, MultiFeatureContext, ) from zensols.nlp import FeatureSentence, FeatureDocument, FeatureDocumentParser from . import SpacyFeatureVectorizer logger = logging.getLogger(__name__) class TextFeatureType(Enum): """The type of :class:`.FeatureDocumentVectorizer`. """ TOKEN = auto() """Token level with a shape congruent with the number of tokens, typically concatenated with the embedding layer. """ DOCUMENT = auto() """Document level, typically added to a join layer.""" MULTI_DOCUMENT = auto() """"Multiple documents for the purposes of aggregating shared features.""" EMBEDDING = auto() """Embedding layer, typically used as the input layer.""" NONE = auto() """Other type, which tells the framework to ignore the vectorized features. :see: :class:`~zensols.deepnlp.layer.embed.EmbeddingNetworkModule` """ @dataclass class FeatureDocumentVectorizer(TransformableFeatureVectorizer, metaclass=ABCMeta): """Creates document or sentence level features using instances of :class:`.TokenContainer`. Subclasses implement specific vectorization on a single document using :meth:`_encode`, and it is up to the subclass to decide how to vectorize the document. Multiple documents as an aggregrate given as a list or tuple of documents is supported. Only the document level vectorization is supported to provide one standard contract across framework components and vectorizers. If more than one document is given during encoding it and will be combined in to one document as described using an :obj:`.FoldingDocumentVectorizer.encoding_level` = ``concat_tokens``. :see: :class:`.FoldingDocumentVectorizer` """ @abstractmethod def _encode(self, doc: FeatureDocument) -> FeatureContext: pass def _is_mult(self, doc: Union[Tuple[FeatureDocument], FeatureDocument]) \ -> bool: """Return ``True`` or not the input is a tuple (multiple) documents.""" return isinstance(doc, (Tuple, List)) def _is_doc(self, doc: Union[Tuple[FeatureDocument], FeatureDocument]): """Return whether ``doc`` is a :class:`.FeatureDocument`.""" if self._is_mult(doc): docs = doc for doc in docs: if not self._is_doc(doc): return False elif not isinstance(doc, FeatureDocument): return False return True def _combine_documents(self, docs: Tuple[FeatureDocument]) -> \ FeatureDocument: return FeatureDocument.combine_documents(docs) def encode(self, doc: Union[Tuple[FeatureDocument], FeatureDocument]) -> \ FeatureContext: """Encode by combining documents in to one monolithic document when a tuple is passed, otherwise default to the super class's encode functionality. """ self._assert_doc(doc) if self._is_mult(doc): doc = self._combine_documents(doc) return super().encode(doc) def _assert_doc(self, doc: Union[Tuple[FeatureDocument], FeatureDocument]): if not self._is_doc(doc): raise VectorizerError( f'Expecting FeatureDocument, but got type: {type(doc)}') def _assert_decoded_doc_dim(self, arr: Tensor, expect: int): """Check the decoded document dimesion and rase an error for those that do not match. """ if len(arr.size()) != expect: raise VectorizerError(f'Expecting {expect} tensor dimensions, ' + f'but got shape: {arr.shape}') @property def feature_type(self) -> TextFeatureType: """The type of feature this vectorizer generates. This is used by classes such as :class:`~zensols.deepnlp.layer.EmbeddingNetworkModule` to determine where to add the features, such as concating to the embedding layer, join layer etc. """ return self.FEATURE_TYPE @property def token_length(self) -> int: """The number of token features (if token level) generated.""" return self.manager.token_length def __str__(self): return (f'{super().__str__()}, ' + f'feature type: {self.feature_type.name} ') @dataclass class FoldingDocumentVectorizer(FeatureDocumentVectorizer, metaclass=ABCMeta): """This class is like :class:`.FeatureDocumentVectorizer`, but provides more options in how to fold multiple documents in a single document for vectorization. Based on the value of :obj:`fold_method`, this class encodes a sequence of :class:`~zensols.nlp.container.FeatureDocument` instances differently. Subclasses must implement :meth:`_encode`. *Note*: this is not to be confused with the :class:`.MultiDocumentVectorizer` vectorizer, which vectorizes multiple documents in to document level features. """ _FOLD_METHODS = frozenset('raise concat_tokens sentence separate'.split()) fold_method: str = field() """How multiple documents are merged in to a single document for vectorization, which is one of: * ``raise``: raise an error allowing only single documents to be vectorized * ``concat_tokens``: concatenate tokens of each document in to singleton sentence documents; uses :meth:`~zensols.nlp.container.FeatureDocument.combine_documents` with ``concat_tokens = True`` * ``sentence``: all sentences of all documents become singleton sentence documents; uses :meth:`~zensols.nlp.container.FeatureDocument.combine_documents` with ``concat_tokens = False`` * ``separate``: every sentence of each document is encoded separately, then the each sentence output is concatenated as the respsective document during decoding; this uses the :meth:`_encode` for each sentence of each document and :meth:`_decode` to decode back in to the same represented document structure as the original """ def __post_init__(self): super().__post_init__() if self.fold_method not in self._FOLD_METHODS: raise VectorizerError(f'No such fold method: {self.fold_method}') def _combine_documents(self, docs: Tuple[FeatureDocument]) -> \ FeatureDocument: if self.fold_method == 'raise' and len(docs) > 1: raise VectorizerError( f'Configured to support single document but got {len(docs)}') concat_tokens = self.fold_method == 'concat_tokens' if logger.isEnabledFor(logging.DEBUG): logger.debug(f'foldl method: {self.fold_method}, ' + f'concat_tokens={concat_tokens}') return FeatureDocument.combine_documents( docs, concat_tokens=concat_tokens) def _encode_sentence(self, sent: FeatureSentence) -> FeatureContext: """Encode a single sentence document. """ sent_doc: FeatureDocument = sent.to_document() return super().encode(sent_doc) def _encode_sentences(self, doc: FeatureDocument) -> FeatureContext: docs: Sequence[FeatureDocument] = doc if self._is_mult(doc) else [doc] doc_ctxs: List[List[FeatureContext]] = [] if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoding {len(docs)} documents') # iterate over each document passed (usually as an aggregate from the # batch framework) doc: FeatureDocument for doc in docs: sent_ctxs: List[FeatureContext] = [] # concatenate each encoded sentence to become the document sent: FeatureSentence for sent in doc.sents: ctx = self._encode_sentence(sent) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'encoded {sent}: {ctx}') sent_ctxs.append(ctx) # add the multi-context of the sentences doc_ctxs.append(MultiFeatureContext( feature_id=None, contexts=tuple(sent_ctxs))) return MultiFeatureContext(self.feature_id, tuple(doc_ctxs)) def encode(self, doc: Union[Tuple[FeatureDocument], FeatureDocument]) -> \ FeatureContext: ctx: FeatureContext if self.fold_method == 'concat_tokens' or \ self.fold_method == 'sentence': ctx = super().encode(doc) elif self.fold_method == 'separate': self._assert_doc(doc) ctx = self._encode_sentences(doc) elif self.fold_method == 'raise': if self._is_mult(doc): raise VectorizerError( f'Expecting single document but got: {len(doc)} documents') ctx = super().encode(doc) return ctx def _create_decoded_pad(self, shape: Tuple[int]) -> Tensor: return self.torch_config.zeros(shape) def _decode_sentence(self, sent_ctx: FeatureContext) -> Tensor: return super().decode(sent_ctx) def _decode_sentences(self, context: MultiFeatureContext, sent_dim: int = 1) -> Tensor: darrs: List[Tensor] = [] # each multi-context represents a document with sentence context # elements doc_ctx: Tuple[MultiFeatureContext] for doc_ctx in context.contexts: sent_arrs: List[Tensor] = [] # decode each sentence and track their decoded tensors for later # concatenation sent_ctx: FeatureContext for sent_ctx in doc_ctx.contexts: arr = self._decode_sentence(sent_ctx) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded sub context: {sent_ctx} ' + f'-> {arr.size()}') sent_arrs.append(arr) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'concat {len(sent_arrs)} along dim {sent_dim}') # concat all sentences for this document in to one long vector with # shape (batch, |tokens|, transformer dim) sent_arr: Tensor = torch.cat(sent_arrs, dim=sent_dim) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'sentence cat: {sent_arr.size()}') darrs.append(sent_arr) # create document array of shape (batch, |tokens|, transformer dim) by # first finding the longest document token count max_sent_len = max(map(lambda t: t.size(sent_dim), darrs)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'max sent len: {max_sent_len}') arr = self._create_decoded_pad(( len(context.contexts), max_sent_len, darrs[0][0].size(-1))) # copy over each document (from sentence concats) to the decoded tensor for dix, doc_arr in enumerate(darrs): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'sent array: {doc_arr.shape}') arr[dix, :doc_arr.size(1), :] = doc_arr n_squeeze = len(arr.shape) - len(self.shape) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'squeezing {n_squeeze}, {arr.shape} -> {self.shape}') for _ in range(n_squeeze): arr = arr.squeeze(dim=-1) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'vectorized shape: {arr.shape}') return arr def decode(self, context: FeatureContext) -> Tensor: arr: Tensor if self.fold_method == 'separate': arr = self._decode_sentences(context) else: arr = super().decode(context) return arr @dataclass class MultiDocumentVectorizer(FeatureDocumentVectorizer, metaclass=ABCMeta): """Vectorizes multiple documents into document level features. Features generated by subclasses are sometimes used in join layers. Examples include :class:`.OverlappingFeatureDocumentVectorizer`. This is not to be confused with :class:`.FoldingDocumentVectorizer`, which merges multiple documents in to a single document for vectorization. """ FEATURE_TYPE = TextFeatureType.DOCUMENT def encode(self, docs: Tuple[FeatureDocument]) -> FeatureContext: return self._encode(docs) @dataclass class FeatureDocumentVectorizerManager(FeatureVectorizerManager): """Creates and manages instances of :class:`.FeatureDocumentVectorizer` and parses text in to feature based document. This is used to manage the relationship of a given set of parsed features keeping in mind that parsing will usually happen as a preprocessing step. A second step is the vectorization of those features, which can be any proper subset of those features parsed in the previous step. However, these checks, of course, are not necessary if pickling isn't used across the parse and vectorization steps. Instances can set a hard fixed token length, but which vectorized tensors have a like fixed width based on the setting of :obj:`token_length`. However, this can also be set to use the longest sentence of the document, which is useful when computing vectorized tensors from the document as a batch, even if the input data are batched as a group of sentences in a document. :see: :class:`.FeatureDocumentVectorizer` :see :meth:`parse` """ doc_parser: FeatureDocumentParser = field() """Used to :meth:`parse` documents.""" token_length: int = field() """The length of tokens used in fixed length features. This is used as a dimension in decoded tensors. If this value is ``-1``, use the longest sentence of the document as the token length, which is usually counted as the batch. :see: :meth:`get_token_length` """ token_feature_ids: Set[str] = field(default=None) """Indicates which spaCy parsed features to generate in the vectorizers held in this instance. Examples include ``norm``, ``ent``, ``dep``, ``tag``. If this is not set, it defaults to the the `token_feature_ids` in :obj:`doc_parser`. :see: :obj:`.SpacyFeatureVectorizer.VECTORIZERS` """ def __post_init__(self): super().__post_init__() if logger.isEnabledFor(logging.DEBUG): logger.debug('creating fd vec manager') if self.token_feature_ids is None: self.token_feature_ids = self.doc_parser.token_feature_ids else: feat_diff = self.token_feature_ids - self.doc_parser.token_feature_ids if len(feat_diff) > 0: fdiffs = ', '.join(feat_diff) raise VectorizerError( 'Parser token features do not exist in vectorizer: ' + f'{self.token_feature_ids} - ' + f'{self.doc_parser.token_feature_ids} = {fdiffs}') self._spacy_vectorizers = PersistedWork('_spacy_vectorizers', self) @property def is_batch_token_length(self) -> bool: """Return whether or not the token length is variable based on the longest token length in the batch. """ return self.token_length < 0 def get_token_length(self, doc: FeatureDocument) -> int: """Get the token length for the document. If :obj:`is_batch_token_length` is ``True``, then the token length is computed based on the longest sentence in the document ``doc``. See the class docs. :param doc: used to compute the longest sentence if :obj:`is_batch_token_length` is ``True`` :return: the (global) token length for the document """ if self.is_batch_token_length: return doc.max_sentence_len else: return self.token_length def parse(self, text: Union[str, List[str]], *args, **kwargs) -> \ FeatureDocument: """Parse text or a text as a list of sentences. **Important**: Parsing documents through this manager instance is better since safe checks are made that features are available from those used when documents are parsed before pickling. :param text: either a string or a list of strings; if the former a document with one sentence will be created, otherwise a document is returned with a sentence for each string in the list """ return self.doc_parser.parse(text, *args, **kwargs) @property @persisted('_spacy_vectorizers') def spacy_vectorizers(self) -> Dict[str, SpacyFeatureVectorizer]: """Return vectorizers based on the :obj:`token_feature_ids` configured on this instance. Keys are token level feature ids found in :obj:`.SpacyFeatureVectorizer.VECTORIZERS`. :return: an :class:`collections.OrderedDict` of vectorizers """ if logger.isEnabledFor(logging.DEBUG): logger.debug('creating spacy vectorizers') token_feature_ids = set(SpacyFeatureVectorizer.VECTORIZERS.keys()) token_feature_ids = token_feature_ids & self.token_feature_ids token_feature_ids = sorted(token_feature_ids) vectorizers = collections.OrderedDict() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'creating token features: {token_feature_ids}') for feature_id in sorted(token_feature_ids): cls = SpacyFeatureVectorizer.VECTORIZERS[feature_id] inst = cls(name=f'spacy vectorizer: {feature_id}', config_factory=self.config_factory, feature_id=feature_id, torch_config=self.torch_config, vocab=self.doc_parser.model.vocab) vectorizers[feature_id] = inst if logger.isEnabledFor(logging.DEBUG): logger.debug(f'created {len(vectorizers)} vectorizers') return vectorizers def deallocate(self): if self._spacy_vectorizers.is_set(): vecs = self.spacy_vectorizers for vec in vecs.values(): vec.deallocate() vecs.clear() super().deallocate()
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/vectorize/manager.py
manager.py
__author__ = 'Paul Landes' from typing import Tuple, Any from dataclasses import dataclass, field import sys import math import itertools as it from spacy.vocab import Vocab from torch import Tensor from zensols.deeplearn import TorchConfig from zensols.deeplearn.vectorize import FeatureVectorizer @dataclass class SpacyFeatureVectorizer(FeatureVectorizer): """This normalizes feature IDs of parsed token features in to a number between [0, 1]. This is useful for normalized feature vectors as input to neural networks. Input to this would be strings like ``token.ent_`` found on a :class:`zensols.nlp.feature.TokenAttributes` instance. The class is also designed to create features using indexes, so there are methods to resolve to a unique ID from an identifier. Instances of this class behave like a ``dict``. All symbols are taken from :obj:`spacy.glossary.GLOSSARY`. :param vocab: the vocabulary used for ``from_spacy`` to compute the normalized feature from the spacy ID (i.e. ``token.ent_``, ``token.tag_`` etc.) :see: :obj:`spacy.glossary.GLOSSARY` :see: :class:`zensols.nlp.feature.TokenAttributes` """ torch_config: TorchConfig = field() """The torch configuration used to create tensors.""" vocab: Vocab = field() """The spaCy vocabulary used to create IDs from strings. :see meth:`id_from_spacy_symbol` """ def __post_init__(self): super().__post_init__() self.as_list = tuple(self.SYMBOLS.split()) syms = dict(zip(self.as_list, it.count())) self.symbol_to_id = syms self.id_to_symbol = dict(map(lambda x: (x[1], x[0]), syms.items())) n = len(syms) q = n - 1 arr = self._to_hot_coded_matrix(n) rows = zip(syms, map(lambda i: arr[i], range(n))) self.symbol_to_vector = dict(rows) self.symbol_to_norm = {k: syms[k] / q for k in syms} def _is_settable(self, name: str, value: Any) -> bool: return False def _to_hot_coded_matrix(self, rows: int): arr = self.torch_config.zeros((rows, rows)) for i in range(rows): arr[i][i] = 1 return arr def _to_binary_matrix(self, rows: int): cols = math.ceil(math.log2(rows)) arr = self.torch_config.empty((rows, rows)) for i in range(rows): sbin = '{0:b}'.format(i).zfill(cols) arr[i] = self.torch_config.from_iterable(map(float, sbin)) return arr def _get_shape(self) -> Tuple[int, int]: return 1, len(self.as_list) def transform(self, symbol: str) -> Tensor: return self.symbol_to_vector[symbol] def dist(self, symbol: str) -> float: """Return a normalized feature float if ``symbol`` is found. :return: a normalized value between [0 - 1] or ``None`` if the symbol isn't found """ return self.symbol_to_norm[symbol] def id_from_spacy_symbol(self, id: int, default: int = -1) -> str: """Return the Spacy text symbol for it's ID (``token.ent`` -> ``token.ent_``). """ strs = self.vocab.strings if id in strs: return strs[id] else: return default def from_spacy(self, id: int) -> Tensor: """Return a binary feature from a Spacy ID or ``None`` if it doesn't have a mapping the ID. """ symbol = self.id_from_spacy_symbol(id) return self.symbol_to_vector.get(symbol, None) def id_from_spacy(self, id: int, default: int = -1) -> int: """Return the ID of this vectorizer for the Spacy ID or -1 if not found. """ symbol = self.id_from_spacy_symbol(id) return self.symbol_to_id.get(symbol, default) def write(self, writer=sys.stdout): """Pretty print a human readable representation of this feature vectorizer. """ syms = self.symbol_to_id writer.write(f'{self.description}:\n') for k in sorted(syms.keys()): writer.write(f' {k} => {syms[k]} ({self.transform(k)})\n') def __str__(self): return f'{self.description} ({self.feature_id})' @dataclass class NamedEntityRecognitionFeatureVectorizer(SpacyFeatureVectorizer): """A feature vectorizor for NER tags. :see: :class:`.SpacyFeatureVectorizer` """ DESCRIPTION = 'named entity recognition' LANG = 'en' FEATURE_ID = 'ent' SYMBOLS = """PERSON NORP FACILITY FAC ORG GPE LOC PRODUCT EVENT WORK_OF_ART LAW LANGUAGE DATE TIME PERCENT MONEY QUANTITY ORDINAL CARDINAL PER MISC""" @dataclass class DependencyFeatureVectorizer(SpacyFeatureVectorizer): """A feature vectorizor for dependency head trees. :see: :class:`.SpacyFeatureVectorizer` """ DESCRIPTION = 'dependency' LANG = 'en' FEATURE_ID = 'dep' SYMBOLS = """acl acomp advcl advmod agent amod appos attr aux auxpass case cc ccomp clf complm compound conj cop csubj csubjpass dative dep det discourse dislocated dobj expl fixed flat goeswith hmod hyph infmod intj iobj list mark meta neg nmod nn npadvmod nsubj nsubjpass nounmod npmod num number nummod oprd obj obl orphan parataxis partmod pcomp pobj poss possessive preconj prep prt punct quantmod rcmod relcl reparandum root vocative xcomp ROOT""" @dataclass class PartOfSpeechFeatureVectorizer(SpacyFeatureVectorizer): """A feature vectorizor for POS tags. :see: :class:`.SpacyFeatureVectorizer` """ DESCRIPTION = 'part of speech' LANG = 'en' FEATURE_ID = 'tag' SYMBOLS = """ADJ ADP ADV AUX CONJ CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X EOL SPACE . , -LRB- -RRB- `` " ' $ # AFX CC CD DT EX FW HYPH IN JJ JJR JJS LS MD NIL NN NNP NNPS NNS PDT POS PRP PRP$ RB RBR RBS RP TO UH VB VBD VBG VBN VBP VBZ WDT WP WP$ WRB SP ADD NFP GW XX BES HVS NP PP VP ADVP ADJP SBAR PRT PNP""" SpacyFeatureVectorizer.VECTORIZERS = \ {cls.FEATURE_ID: cls for cls in (NamedEntityRecognitionFeatureVectorizer, DependencyFeatureVectorizer, PartOfSpeechFeatureVectorizer)} """The default set of spaCy feature vectorizers. """
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/vectorize/spacy.py
spacy.py
__author__ = 'Paul Landes' from typing import List, Tuple from dataclasses import dataclass, field, asdict import logging import sys import copy as cp from io import TextIOBase from zensols.config import Writable import torch from torch import nn from zensols.persist import persisted from zensols.deeplearn import ( ActivationNetworkSettings, DropoutNetworkSettings, BatchNormNetworkSettings, ) from zensols.deeplearn.layer import ( LayerError, ConvolutionLayerFactory, MaxPool1dFactory ) from zensols.deeplearn.model import BaseNetworkModule from . import EmbeddingNetworkModule logger = logging.getLogger(__name__) @dataclass class DeepConvolution1dNetworkSettings(ActivationNetworkSettings, DropoutNetworkSettings, Writable): """Configurable repeated series of 1-dimension convolution, pooling, batch norm and activation layers. This layer is specifically designed for natural language processing task, which is why this configuration includes parameters for token counts. Each layer repeat consists of:: 1. convolution 2. max pool 3. batch (optional) 4. activation This class is used directly after embedding (and in conjuction with) a layer class that extends :class:`.EmbeddingNetworkModule`. The lifecycle of this class starts with being instantiated (usually configured using a :class:`~zensols.config.factory.ImportConfigFactory`), then cloned with :meth:`clone` during the initialization on the layer from which it's used. :param token_length: the number of tokens processed through the layer (used as the width kernel parameter ``W``) :param embedding_dimension: the dimension of the embedding (word vector) layer (height dimension ``H`` and the kernel parameter ``F``) :param token_kernel: the size of the kernel in number of tokens (width dimension of kernel parameter ``F``) :param n_filters: number of filters to use, aka filter depth/volume (``K``) :param stride: the stride, which is the number of cells to skip for each convolution (``S``) :param padding: the zero'd number of cells on the ends of tokens X embedding neurons (``P``) :param pool_token_kernel: like ``token_length`` but in the pooling layer :param pool_stride: like ``stride`` but in the pooling layer :param pool_padding: like ``padding`` but in the pooling layer :param repeats: number of times the convolution, max pool, batch, activation layers are repeated :param batch_norm_d: the dimension of the batch norm (should be ``1``) or ``None`` to disable :see: :class:`.DeepConvolution1d` :see :class:`.EmbeddingNetworkModule` """ token_length: int = field(default=None) embedding_dimension: int = field(default=None) token_kernel: int = field(default=2) stride: int = field(default=1) n_filters: int = field(default=1) padding: int = field(default=1) pool_token_kernel: int = field(default=2) pool_stride: int = field(default=1) pool_padding: int = field(default=0) repeats: int = field(default=1) batch_norm_d: int = field(default=None) def _assert_module(self): """Raise an exception if we don't have an embedding module configured. """ if not hasattr(self, 'module'): raise LayerError('Not created with embedding module') @property @persisted('_layer_factory') def layer_factory(self) -> ConvolutionLayerFactory: """Return the factory used to create convolution layers. """ self._assert_module() return ConvolutionLayerFactory( width=self.token_length, height=self.embedding_dimension, n_filters=self.n_filters, kernel_filter=(self.token_kernel, self.embedding_dimension), stride=self.stride, padding=self.padding) @property @persisted('_pool_factory') def pool_factory(self) -> MaxPool1dFactory: """Return the factory used to create max 1D pool layers. """ self._assert_module() return MaxPool1dFactory( layer_factory=self.layer_factory, kernel_filter=self.pool_token_kernel, stride=self.pool_stride, padding=self.pool_padding) def clone(self, module: EmbeddingNetworkModule, **kwargs): """Clone this network settings configuration with a different embedding settings. :param module: the embedding settings to use in the clone :param kwargs: arguments as attributes on the clone """ if logger.isEnabledFor(logging.DEBUG): logger.debug(f'cloning module from module with {kwargs}') if hasattr(self, 'module'): raise LayerError('Not nascent: module already set') params = { 'token_length': module.embedding.token_length, 'embedding_dimension': module.embedding_output_size, 'module': module, } params.update(kwargs) clone = cp.copy(self) clone.__dict__.update(params) return clone def write(self, depth: int = 0, writer: TextIOBase = sys.stdout): self._write_line('embedding layer factory:', depth, writer) self._write_dict(asdict(self), depth + 1, writer) self._write_line('convolution layer factory:', depth, writer) self._write_dict(asdict(self.create_layer_factory()), depth + 1, writer) def get_module_class_name(self) -> str: return __name__ + '.DeepConvolution1d' class DeepConvolution1d(BaseNetworkModule): """Configurable repeated series of 1-dimension convolution, pooling, batch norm and activation layers. See :meth:`get_layers`. :see: :class:`.DeepConvolution1dNetworkSettings` """ MODULE_NAME = 'conv' def __init__(self, net_settings: DeepConvolution1dNetworkSettings, logger: logging.Logger): """Initialize the deep convolution layer. *Implementation note*: all layers are stored sequentially using a :class:`torch.nn.Sequential` to get normal weight persistance on torch save/loads. :param net_settings: the deep convolution layer configuration :param logger: the logger to use for the forward process in this layer """ super().__init__(net_settings, logger) layers = [] self.layer_sets = [] self._create_layers(layers, self.layer_sets) self.seq_layers = nn.Sequential(*layers) def _create_layers(self, layers: List[nn.Module], layer_sets: List[Tuple[nn.Module, nn.Module, nn.Module]]): """Create the convolution, max pool and batch norm layers used to forward through. :param layers: the layers to populate used in an :class:`torch.nn.Sequential` :param layer_sets: tuples of (conv, pool, batch_norm) layers """ pool_factory: MaxPool1dFactory = self.net_settings.pool_factory conv_factory: ConvolutionLayerFactory = pool_factory.layer_factory repeats = self.net_settings.repeats for n_set in range(repeats): if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'conv_factory: {conv_factory}') self._debug(f'pool factory: {pool_factory}') pool = pool_factory.create_pool() if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'pool: {pool}') conv = conv_factory.conv1d() if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'conv: {conv}') if self.net_settings.batch_norm_d is not None: batch_norm = BatchNormNetworkSettings.create_batch_norm_layer( self.net_settings.batch_norm_d, pool_factory.out_shape[0]) else: batch_norm = None if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'batch_norm: {batch_norm}') layer_set = (conv, pool, batch_norm) layer_sets.append(layer_set) layers.extend(layer_set) pool_out = pool_factory.flatten_dim if n_set < repeats: conv_factory.width = pool_out conv_factory.height = 1 conv_factory.kernel_filter = (conv_factory.kernel_filter[0], 1) if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'pool out: {pool_out}') self.out_features = pool_out if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'out features: {self.out_features}') def deallocate(self): super().deallocate() self._deallocate_attribute('seq_layers') def get_layers(self) -> Tuple[Tuple[nn.Module, nn.Module, nn.Module]]: """Return a tuple of layer sets, with each having the form: ``(convolution, max pool, batch_norm)``. The ``batch_norm`` norm is ``None`` if not configured. """ return tuple(self.seq_layers) def _forward(self, x: torch.Tensor) -> torch.Tensor: """Forward convolution, batch normalization, pool, activation and dropout for those layers that are configured. :see: `Sunghean et al <http://mipal.snu.ac.kr/images/1/16/Dropout_ACCV2016.pdf>`_ :see: `Ioffe et al <https://arxiv.org/pdf/1502.03167.pdf>`_ """ layer_sets = self.layer_sets ls_len = len(layer_sets) for i, (conv, pool, batch_norm) in enumerate(layer_sets): if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'layer set iter: {i}') x = conv(x) self._shape_debug('conv', x) if batch_norm is not None: if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'batch norm: {batch_norm}') x = batch_norm(x) x = x.view(x.shape[0], 1, -1) self._shape_debug('flatten', x) x = pool(x) self._shape_debug('pool', x) self._forward_activation(x) self._forward_dropout(x) if i < ls_len - 1: x = x.unsqueeze(3) self._shape_debug('unsqueeze', x) return x
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/layer/conv.py
conv.py
__author__ = 'Paul Landes' from typing import Tuple, List, Optional, Union from dataclasses import dataclass, field import logging import torch from torch import Tensor from zensols.deeplearn import ModelError, DatasetSplitType from zensols.deeplearn.model import ( SequenceNetworkModule, SequenceNetworkContext, SequenceNetworkOutput ) from zensols.deeplearn.batch import Batch from zensols.deeplearn.layer import ( RecurrentCRFNetworkSettings, RecurrentCRF, ) from zensols.deepnlp.layer import ( EmbeddingNetworkSettings, EmbeddingNetworkModule, ) logger = logging.getLogger(__name__) @dataclass class EmbeddedRecurrentCRFSettings(EmbeddingNetworkSettings): """A utility container settings class for convulsion network models. """ recurrent_crf_settings: RecurrentCRFNetworkSettings = field() """The RNN settings (configure this with an LSTM for (Bi)LSTM CRFs).""" mask_attribute: str = field() """The vectorizer attribute name for the mask feature.""" tensor_predictions: bool = field(default=False) """Whether or not to return predictions as tensors. There are currently no identified use cases to do this as setting this to ``True`` will inflate performance metrics. This is because the batch iterator will create a tensor with the entire batch adding a lot of default padded value that will be counted as results. """ use_crf: bool = field(default=True) def get_module_class_name(self) -> str: return __name__ + '.EmbeddedRecurrentCRF' class EmbeddedRecurrentCRF(EmbeddingNetworkModule, SequenceNetworkModule): """A recurrent neural network composed of an embedding input, an recurrent network, and a linear conditional random field output layer. When configured with an LSTM, this becomes a (Bi)LSTM-CRF. More specifically, this network has the following: 1. Input embeddings mapped from tokens. 2. Recurrent network (i.e. LSTM). 3. Fully connected feed forward deep linear layer(s) as the decoder. 4. Linear chain conditional random field (CRF) layer. 5. Output the labels. """ MODULE_NAME = 'emb-recur-crf' def __init__(self, net_settings: EmbeddedRecurrentCRFSettings, sub_logger: logging.Logger = None): super().__init__(net_settings, sub_logger) ns = self.net_settings rc = ns.recurrent_crf_settings rc.input_size = self.embedding_output_size self.mask_attribute = ns.mask_attribute if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'recur emb settings: {rc}') self.recurcrf: RecurrentCRF = rc.create_module( sub_logger=sub_logger, use_crf=ns.use_crf) def deallocate(self): super().deallocate() self.recurcrf.deallocate() def _get_mask(self, batch: Batch) -> Tensor: mask = batch[self.mask_attribute] self._shape_debug('mask', mask) return mask def _forward_train_with_crf(self, batch: Batch) -> Tensor: labels = batch.get_labels() self._shape_debug('labels', labels) mask = self._get_mask(batch) self._shape_debug('mask', mask) x = super()._forward(batch) self._shape_debug('super emb', x) x = self.recurcrf.forward(x, mask, labels) self._shape_debug('recur', x) return x def _forward_train_no_crf(self, batch: Batch, context: SequenceNetworkContext) -> \ List[List[int]]: recur_crf: RecurrentCRF = self.recurcrf # no implementation yet for prediction sans-training labels: Optional[Tensor] = batch.get_labels() pred_lists: List[List[int]] emb: Tensor = EmbeddingNetworkModule._forward(self, batch) self._shape_debug('embedding', emb) logits: Tensor = recur_crf.forward_recur_decode(emb) self._shape_debug('logits', logits) logits_flat: Tensor = logits.flatten(0, 1) labels_flat: Tensor = labels.flatten(0, 1) self._shape_debug('flat logits', logits_flat) self._shape_debug('flat labels', labels_flat) loss: Tensor = context.criterion(logits_flat, labels_flat) if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'loss: {loss}') pred_labels: Tensor = logits.argmax(dim=2) self._shape_debug('predictions (agg)', pred_labels) mask: Tensor = self._get_mask(batch) assert len(mask.size()) == 2 pred_lsts: List[List[int]] = [] for bix in range(mask.size(0)): bmask = mask[bix] plst = torch.masked_select(pred_labels[bix], bmask) pred_lsts.append(plst.tolist()) return pred_lsts, loss def _decode(self, batch: Batch, add_loss: bool) -> Tuple[Tensor, Tensor]: loss: Tensor = None mask: Tensor = self._get_mask(batch) self._shape_debug('mask', mask) x: Tensor = super()._forward(batch) self._shape_debug('super emb', x) if add_loss: labels = batch.get_labels() loss = self.recurcrf.forward(x, mask, labels) x, score = self.recurcrf.decode(x, mask) self._debug(f'recur {len(x)}') self._shape_debug('score', score) return x, loss, score def _map_labels(self, batch: Batch, context: SequenceNetworkContext, labels: Union[List[List[int]], Tensor]) -> List[List[int]]: return labels def _shape_or_list_debug(self, msg: str, data: Union[List[List[int]], Tensor], full: bool = False): if self.logger.isEnabledFor(logging.DEBUG) or True: if data is None: self.logger.debug(f'{msg}: None') else: if isinstance(data, Tensor): self._shape_debug(msg, data) else: dtype = 'none' if len(data) > 0: dtype = type(data[0]) if dtype == list: dtype = f'{dtype} ({len(data)})' self.logger.debug( f'{msg}: length={len(data)}, type={dtype}') if full: from zensols.deeplearn import printopts with printopts(profile='full'): self.logger.debug('full data:\n' + str(data)) def _forward(self, batch: Batch, context: SequenceNetworkContext) -> \ SequenceNetworkOutput: use_crf = self.net_settings.use_crf split_type: DatasetSplitType = context.split_type preds: List[List[int]] = None labels: Optional[Tensor] = batch.get_labels() loss: Tensor = None score: Tensor = None if self.logger.isEnabledFor(logging.DEBUG): self.logger.debug(f'forward on splt: {context.split_type}') if context.split_type != DatasetSplitType.train and self.training: raise ModelError( f'Attempting to use split {split_type} while training') if context.split_type == DatasetSplitType.train: if use_crf: loss = self._forward_train_with_crf(batch) else: preds, loss = self._forward_train_no_crf(batch, context) elif context.split_type == DatasetSplitType.validation: if use_crf: preds, loss, score = self._decode(batch, True) else: preds, loss = self._forward_train_no_crf(batch, context) elif context.split_type == DatasetSplitType.test: if use_crf: preds, _, score = self._decode(batch, False) loss = batch.torch_config.singleton([0], dtype=torch.float32) else: preds, loss = self._forward_train_no_crf(batch, context) else: raise ModelError(f'Unknown data split type: {split_type}') # list of lists of the predictions, which are the CRF output when # enabled if preds is not None: preds = self._map_labels(batch, context, preds) # padded tensor of shape (batch, data i.e. token length) if labels is not None: labels = self._map_labels(batch, context, labels) self._shape_or_list_debug('output preds', preds) self._shape_or_list_debug('output labels', labels) out = SequenceNetworkOutput(preds, loss, score, labels) if preds is not None and labels is not None and len(labels.size()) > 1: out.righsize_labels(preds) return out
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/layer/embrecurcrf.py
embrecurcrf.py
__author__ = 'Paul Landes' from typing import Dict, List, Tuple from dataclasses import dataclass, field from typing import Callable import logging import torch from torch import nn from torch import Tensor from zensols.persist import Deallocatable from zensols.deeplearn import ModelError from zensols.deeplearn.vectorize import FeatureVectorizer from zensols.deeplearn.model import BaseNetworkModule, DebugModule from zensols.deeplearn.layer import LayerError from zensols.deeplearn.batch import ( Batch, BatchMetadata, BatchFieldMetadata, MetadataNetworkSettings, ) from zensols.deepnlp.vectorize import FeatureDocumentVectorizerManager from zensols.deepnlp.embed import WordEmbedModel from zensols.deepnlp.vectorize import ( TextFeatureType, FeatureDocumentVectorizer, EmbeddingFeatureVectorizer, ) logger = logging.getLogger(__name__) class EmbeddingLayer(DebugModule, Deallocatable): """A class used as an input layer to provide word embeddings to a deep neural network. **Important**: you must always check for attributes in :meth:`~zensols.persist.dealloc.Deallocatable.deallocate` since it might be called more than once (i.e. from directly deallocating and then from the factory). **Implementation note**: No datacasses are usable since pytorch is picky about initialization order. """ def __init__(self, feature_vectorizer_manager: FeatureDocumentVectorizerManager, embedding_dim: int, sub_logger: logging.Logger = None, trainable: bool = False): """Initialize. :param feature_vectorizer_manager: the feature vectorizer manager that manages this instance :param embedding_dim: the vector dimension of the embedding :param trainable: ``True`` if the embedding layer is to be trained """ super().__init__(sub_logger) self.feature_vectorizer_manager = feature_vectorizer_manager self.embedding_dim = embedding_dim self.trainable = trainable @property def token_length(self): return self.feature_vectorizer_manager.token_length @property def torch_config(self): return self.feature_vectorizer_manager.torch_config def deallocate(self): super().deallocate() if hasattr(self, 'emb'): if logger.isEnabledFor(logging.DEBUG): em = '<deallocated>' if hasattr(self, 'embed_model'): em = self.embed_model.name self._debug(f'deallocating: {em} and {type(self.emb)}') self._try_deallocate(self.emb) del self.emb if hasattr(self, 'embed_model'): del self.embed_model class TrainableEmbeddingLayer(EmbeddingLayer): """A non-frozen embedding layer that has grad on parameters. """ def reset_parameters(self): if self.trainable: self.emb.load_state_dict({'weight': self.vecs}) def _get_emb_key(self, prefix: str): return f'{prefix}emb.weight' def state_dict(self, *args, destination=None, prefix='', keep_vars=False): state = super().state_dict( *args, destination=destination, prefix=prefix, keep_vars=keep_vars) if logger.isEnabledFor(logging.DEBUG): self._debug(f'state_dict: trainable: {self.trainable}') if not self.trainable: emb_key = self._get_emb_key(prefix) if logger.isEnabledFor(logging.DEBUG): self._debug(f'state_dict: embedding key: {emb_key}') if emb_key is not None: if emb_key not in state: raise ModelError(f'No key {emb_key} in {state.keys()}') arr = state[emb_key] if arr is not None: if logger.isEnabledFor(logging.DEBUG): self._debug(f'state_dict: emb state: {arr.shape}') assert arr.shape == self.embed_model.matrix.shape state[emb_key] = None return state def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs): if not self.trainable: emb_key = self._get_emb_key(prefix) if logger.isEnabledFor(logging.DEBUG): self._debug(f'load_state_dict: {emb_key}') if emb_key is not None: state_dict[emb_key] = self.vecs super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) @dataclass class EmbeddingNetworkSettings(MetadataNetworkSettings): """A utility container settings class for models that use an embedding input layer that inherit from :class:`.EmbeddingNetworkModule`. """ embedding_layer: EmbeddingLayer = field() """The word embedding layer used to vectorize.""" def get_module_class_name(self) -> str: return __name__ + '.EmbeddingNetworkModule' @dataclass class _EmbeddingContainer(object): """Contains the mathcing of vectorizer, embedding_layer and field mapping. """ field_meta: BatchFieldMetadata = field() """The mapping that has the batch attribute name for the embedding.""" vectorizer: FeatureDocumentVectorizer = field() """The vectorizer used to encode the batch data.""" embedding_layer: EmbeddingLayer = field() """The word embedding layer used to vectorize.""" @property def dim(self) -> int: """The embedding's dimension.""" return self.embedding_layer.embedding_dim @property def attr(self) -> str: """The attribute name of the layer's mapping.""" return self.field_meta.field.attr def get_embedding_tensor(self, batch: Batch) -> Tensor: """Get the embedding (or indexes depending on how it was vectorize).""" return batch[self.attr] def __str__(self) -> str: return self.attr def __repr__(self) -> str: return self.__str__() class EmbeddingNetworkModule(BaseNetworkModule): """An module that uses an embedding as the input layer. This class uses an instance of :class:`.EmbeddingLayer` provided by the network settings configuration for resolving the embedding during the *forward* phase. The following attributes are created and/or set during initialization: * ``embedding`` the :class:`.EmbeddingLayer` instance used get the input embedding tensors * ``embedding_attribute_names`` the name of the word embedding vectorized feature attribute names (usually one, but possible to have more) * ``embedding_output_size`` the outpu size of the embedding layer, note this includes any features layered/concated given in all token level vectorizer's configuration * ``join_size`` if a join layer is to be used, this has the size of the part of the join layer that will have the document level features * ``token_attribs`` the token level feature names (see :meth:`forward_token_features`) * ``doc_attribs`` the doc level feature names (see :meth:`forward_document_features`) The initializer adds additional attributes conditional on the :class:`.EmbeddingNetworkSettings` instance's :obj:`~zensols.deeplearn.batch.meta.MetadataNetworkSettings.batch_metadata` property (type :class:`~zensols.deeplearn.batch.meta.BatchMetadata`). For each meta data field's vectorizer that extends class :class:`.FeatureDocumentVectorizer` the following is set on this instance based on the value of ``feature_type`` (of type :class:`.TextFeatureType`): * :obj:`~.TextFeatureType.TOKEN`: ``embedding_output_size`` is increased by the vectorizer's shape * :obj:`~.TextFeatureType.DOCUMENT`: ``join_size`` is increased by the vectorizer's shape Fields can be filtered by passing a filter function to the initializer. See :meth:`__init__` for more information. """ MODULE_NAME = 'embed' def __init__(self, net_settings: EmbeddingNetworkSettings, module_logger: logging.Logger = None, filter_attrib_fn: Callable[[BatchFieldMetadata], bool] = None): """Initialize the embedding layer. :param net_settings: the embedding layer configuration :param logger: the logger to use for the forward process in this layer :param filter_attrib_fn: if provided, called with a :class:`.BatchFieldMetadata` for each field returning ``True`` if the batch field should be retained and used in the embedding layer (see class docs); if ``None`` all fields are considered """ super().__init__(net_settings, module_logger) self.embedding_output_size: int = 0 self.join_size: int = 0 self.token_attribs: List[str] = [] self.doc_attribs: List[str] = [] self._embedding_containers: List[_EmbeddingContainer] = [] self._embedding_layers = self._map_embedding_layers() self._embedding_sequence = nn.Sequential( *tuple(self._embedding_layers.values())) field: BatchFieldMetadata meta: BatchMetadata = self.net_settings.batch_metadata fba: Dict[str, BatchFieldMetadata] = meta.fields_by_attribute if logger.isEnabledFor(logging.DEBUG): self._debug(f'batch field metadata: {fba}') for name in sorted(fba.keys()): field_meta: BatchFieldMetadata = fba[name] if filter_attrib_fn is not None and \ not filter_attrib_fn(field_meta): if logger.isEnabledFor(logging.DEBUG): self._debug(f'skipping: {name}') continue vec: FeatureVectorizer = field_meta.vectorizer if logger.isEnabledFor(logging.DEBUG): self._debug(f'{name} -> {field_meta}') if isinstance(vec, FeatureDocumentVectorizer): try: self._add_field(vec, field_meta) except Exception as e: raise ModelError( f'Could not create field {field_meta}: {e}') from e if len(self._embedding_containers) == 0: raise LayerError('No embedding vectorizer feature type found') def _map_embedding_layers(self) -> Dict[int, EmbeddingLayer]: """Return a mapping of embedding layers configured using their in memory location as keys. """ els: Tuple[EmbeddingLayer] els = self.net_settings.embedding_layer if not isinstance(els, (tuple, list)): els = [els] return {id(el.embed_model): el for el in els} def _add_field(self, vec: FeatureDocumentVectorizer, field_meta: BatchFieldMetadata): """Add a batch metadata field and it's respective vectorizer to class member datastructures. """ attr = field_meta.field.attr if vec.feature_type == TextFeatureType.TOKEN: if logger.isEnabledFor(logging.DEBUG): self._debug(f'adding tok type {attr}: {vec.shape[2]}') self.embedding_output_size += vec.shape[2] self.token_attribs.append(attr) elif vec.feature_type == TextFeatureType.DOCUMENT: if logger.isEnabledFor(logging.DEBUG): self._debug(f'adding doc type {attr} ' + f'({field_meta.shape}/{vec.shape})') self.join_size += field_meta.shape[1] self.doc_attribs.append(attr) elif vec.feature_type == TextFeatureType.EMBEDDING: if logger.isEnabledFor(logging.DEBUG): self._debug(f'adding embedding: {attr}') embedding_layer: EmbeddingLayer = \ self._embedding_layers.get(id(vec.embed_model)) if embedding_layer is None: raise ModelError(f'No embedding layer found for {attr}') if self.logger.isEnabledFor(logging.INFO): we_model: WordEmbedModel = embedding_layer.embed_model self.logger.info(f'embeddings: {we_model.name}') ec = _EmbeddingContainer(field_meta, vec, embedding_layer) self._embedding_containers.append(ec) self.embedding_output_size += ec.dim def get_embedding_tensors(self, batch: Batch) -> Tuple[Tensor]: """Get the embedding tensors (or indexes depending on how it was vectorize) from a batch. :param batch: contains the vectorized embeddings :return: the vectorized embedding as tensors, one for each embedding """ return tuple(map(lambda ec: batch[ec.attr], self._embedding_containers)) @property def embedding_dimension(self) -> int: """Return the dimension of the embeddings, which doesn't include any additional token or document features potentially added. """ return sum(map(lambda ec: ec.dim, self._embedding_containers)) def vectorizer_by_name(self, name: str) -> FeatureVectorizer: """Utility method to get a vectorizer by name. :param name: the name of the vectorizer as given in the vectorizer manager """ meta: BatchMetadata = self.net_settings.batch_metadata field_meta: BatchFieldMetadata = meta.fields_by_attribute[name] vec: FeatureVectorizer = field_meta.vectorizer return vec def _forward(self, batch: Batch) -> Tensor: if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'batch: {batch}') x = self.forward_embedding_features(batch) x = self.forward_token_features(batch, x) x = self.forward_document_features(batch, x) return x def _forward_embedding_layer(self, ec: _EmbeddingContainer, batch: Batch) -> Tensor: decoded: bool = False is_tok_vec: bool = isinstance(ec.vectorizer, EmbeddingFeatureVectorizer) x: Tensor = ec.get_embedding_tensor(batch) self._shape_debug('input', x) if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'vectorizer type: {type(ec.vectorizer)}') if is_tok_vec: decoded = ec.vectorizer.decode_embedding if self.logger.isEnabledFor(logging.DEBUG): self._debug(f'is embedding already decoded: {decoded}') if not decoded: x = ec.embedding_layer(x) return x def forward_embedding_features(self, batch: Batch) -> Tensor: """Use the embedding layer return the word embedding tensors. """ arr: Tensor arrs: List[Tensor] = [] ec: _EmbeddingContainer for ec in self._embedding_containers: x: Tensor = self._forward_embedding_layer(ec, batch) self._shape_debug(f'decoded sub embedding ({ec}):', x) arrs.append(x) if len(arrs) == 1: arr = arrs[0] else: arr = torch.concat(arrs, dim=-1) self._shape_debug(f'decoded concat embedding ({ec}):', arr) return arr def forward_token_features(self, batch: Batch, x: Tensor = None) -> Tensor: """Concatenate any token features given by the vectorizer configuration. :param batch: contains token level attributes to concatenate to ``x`` :param x: if given, the first tensor to be concatenated """ self._shape_debug('forward token features', x) arrs = [] if x is not None: self._shape_debug('adding passed token features', x) arrs.append(x) for attrib in self.token_attribs: feats = batch.attributes[attrib] self._shape_debug(f"token attrib '{attrib}'", feats) arrs.append(feats) if len(arrs) == 1: x = arrs[0] elif len(arrs) > 1: self._debug(f'concating {len(arrs)} token features') x = torch.cat(arrs, 2) self._shape_debug('token concat', x) return x def forward_document_features(self, batch: Batch, x: Tensor = None, include_fn: Callable = None) -> Tensor: """Concatenate any document features given by the vectorizer configuration. """ self._shape_debug('forward document features', x) arrs = [] if x is not None: arrs.append(x) for attrib in self.doc_attribs: if include_fn is not None and not include_fn(attrib): continue st = batch.attributes[attrib] self._shape_debug(f'doc attrib {attrib}', st) arrs.append(st) if len(arrs) > 0: x = torch.cat(arrs, 1) self._shape_debug('doc concat', x) return x
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/layer/embed.py
embed.py
__author__ = 'Paul Landes' import logging import torch from torch import Tensor from torch import nn from zensols.deeplearn.model import BaseNetworkModule from zensols.deepnlp.embed import WordEmbedModel from . import TrainableEmbeddingLayer logger = logging.getLogger(__name__) class WordVectorEmbeddingLayer(TrainableEmbeddingLayer): """An input embedding layer. This uses an instance of :class:`~zensols.deepnlp.embed.WordEmbedModel` to compose the word embeddings from indexes. Each index is that of word vector, which is stacked to create the embedding. This happens in the PyTorch framework, and is fast. This class overrides PyTorch methods that disable persistance of the embedding weights when configured to be frozen (not trainable). Otherwise, the entire embedding model is saved *every* time the model is saved for each epoch, which is both unecessary, but costs in terms of time and memory. """ def __init__(self, embed_model: WordEmbedModel, *args, **kwargs): """Initialize :param embed_model: contains the word embedding model, such as ``glove``, and ``word2vec`` """ super().__init__(*args, embedding_dim=embed_model.matrix.shape[1], **kwargs) self.embed_model = embed_model self.num_embeddings = embed_model.matrix.shape[0] self.vecs = embed_model.to_matrix(self.torch_config) if self.trainable: self.logger.info('cloning embedding for trainability') self.vecs = torch.clone(self.vecs) else: self.logger.info('layer is not trainable') self.requires_grad = not self.trainable if self.logger.isEnabledFor(logging.INFO): self.logger.info(f'setting embedding matrix: {self.vecs.shape}, ' + f'device={self.vecs.device}, ' + f'trainble: {self.trainable}') self.emb = nn.Embedding.from_pretrained( self.vecs, freeze=not self.trainable) def forward(self, x: Tensor) -> Tensor: if logger.isEnabledFor(logging.DEBUG): self._debug(f'forward: {x.shape}, device: {x.device} = ' + f'{BaseNetworkModule.device_from_module(self.emb)}') return self.emb.forward(x)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/layer/wordvec.py
wordvec.py
__author__ = 'Paul Landes' from dataclasses import dataclass, field import logging from pathlib import Path import numpy as np import gensim from gensim.models import KeyedVectors, Word2Vec from zensols.util import time from zensols.install import Installer, Resource from zensols.deepnlp.embed import WordVectorModel, WordEmbedModel logger = logging.getLogger(__name__) @dataclass class Word2VecModel(WordEmbedModel): """Load keyed or non-keyed Gensim models. """ installer: Installer = field(default=None) """The installer used to for the text vector zip file.""" resource: Resource = field(default=None) """The zip resource used to find the path to the model files.""" dimension: int = field(default=300) """The dimension of the word embedding.""" model_type: str = field(default='keyed') """The type of the embeddings, which is either ``keyed`` or ``gensim``.""" @property def path(self) -> Path: self.installer() return self.installer[self.resource] def _get_model_id(self) -> str: return f'word2vec: type={self.model_type}, dim={self.dimension}' def _get_model(self) -> KeyedVectors: """The word2vec model. """ with time('loaded word2vec model'): if self.model_type == 'keyed': model = self._get_keyed_model() else: model = self._get_trained_model().wv return model def _get_keyed_model(self) -> KeyedVectors: """Load a model from a pretrained word2vec model. """ if logger.isEnabledFor(logging.INFO): logger.info(f'loading keyed file: {self.path}') fname = str(self.path.absolute()) with time(f'loaded key model from {fname}'): return KeyedVectors.load_word2vec_format(fname, binary=True) def _get_trained_model(self) -> Word2Vec: """Load a model trained with gensim. """ path = self.path if path.exists(): if logger.isEnabledFor(logging.INFO): logger.info('loading trained file: {}'.format(path)) model = Word2Vec.load(str(path.absolute())) else: model = self._train() if logger.isEnabledFor(logging.INFO): logger.info('saving trained vectors to: {}'.format(path)) model.save(str(path.absolute())) return model def _create_data(self) -> WordVectorModel: logger.info('reading binary vector file') # https://github.com/RaRe-Technologies/gensim/wiki/Migrating-from-Gensim-3.x-to-4 if gensim.__version__[0] >= '4': logger.debug('using version 4') wv = self._get_model() words = wv.index_to_key else: logger.debug('using version 3') wv = self._get_model().wv words = wv.index2entity word2vec = {} word2idx = {} vectors = [] with time('created data structures'): for i, word in enumerate(words): word2idx[word] = i vec = wv[word] vectors.append(vec) word2vec[word] = vec vectors = np.array(vectors) unknown_vec = np.expand_dims(np.zeros(self.dimension), axis=0) vectors = np.concatenate((vectors, unknown_vec)) word2idx[self.UNKNOWN] = len(words) words.append(self.UNKNOWN) word2vec[self.UNKNOWN] = unknown_vec return WordVectorModel(vectors, word2vec, words, word2idx) def _create_keyed_vectors(self) -> KeyedVectors: return self._get_model()
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/embed/word2vec.py
word2vec.py
__author__ = 'Paul Landes' from typing import List, Dict, Tuple, Iterable, ClassVar, Optional from dataclasses import dataclass, field from abc import ABCMeta, abstractmethod import logging import numpy as np import torch from torch import Tensor import gensim from gensim.models.keyedvectors import Word2VecKeyedVectors, KeyedVectors from zensols.persist import persisted, PersistableContainer, PersistedWork from zensols.deeplearn import TorchConfig, DeepLearnError logger = logging.getLogger(__name__) class WordEmbedError(DeepLearnError): """Raised for any errors pertaining to word vectors. """ pass @dataclass class WordVectorModel(object): """Vector data from the model """ vectors: np.ndarray = field() """The word vectors.""" word2vec: Dict[str, np.ndarray] = field() """The word to word vector mapping.""" words: List[str] = field() """The vocabulary.""" word2idx: Dict[str, int] = field() """The word to word vector index mapping.""" def __post_init__(self): self.tensors = {} def to_matrix(self, torch_config: TorchConfig) -> torch.Tensor: dev = torch_config.device if dev in self.tensors: if logger.isEnabledFor(logging.INFO): logger.info(f'reusing already cached from {torch_config}') vecs = self.tensors[dev] else: if logger.isEnabledFor(logging.INFO): logger.info(f'created tensor vectory matrix on {torch_config}') vecs = torch_config.from_numpy(self.vectors) self.tensors[dev] = vecs return vecs @dataclass class _WordEmbedVocabAdapter(object): """Adapts a :class:`.WordEmbedModel` to a gensim :class:`.KeyedVectors`, which is used in :meth:`.WordEmbedModel._create_keyed_vectors`. """ model: WordVectorModel = field() def __post_init__(self): self._index = -1 @property def index(self): return self._index def __iter__(self): words: List[str] = self.model.words return iter(words) def get(self, word: int, default: str): self._index = self.model.word2idx.get(word, default) def __getitem__(self, word: str): self._index = self.model.word2idx[word] return self @dataclass class WordEmbedModel(PersistableContainer, metaclass=ABCMeta): """This is an abstract base class that represents a set of word vectors (i.e. GloVe). """ UNKNOWN: ClassVar[str] = '<unk>' """The unknown symbol used for out of vocabulary words.""" ZERO: ClassVar[str] = UNKNOWN """The zero vector symbol used for padding vectors.""" _CACHE: ClassVar[Dict[str, WordVectorModel]] = {} """Contains cached embedding model that point to the same source.""" name: str = field() """The name of the model given by the configuration and must be unique across word vector type and dimension. """ cache: bool = field(default=True) """If ``True`` globally cache all data strucures, which should be ``False`` if more than one embedding across a model type is used. """ lowercase: bool = field(default=False) """If ``True``, downcase each word for all methods that take a word as input. Use this for embeddings that are only lower case in order to find more hits when querying for words that have uppercase characters. """ def __post_init__(self): super().__init__() self._data_inst = PersistedWork('_data_inst', self, transient=True) @abstractmethod def _get_model_id(self) -> str: """Return a string that uniquely identifies this instance of the embedding model. This should have the type, size and dimension of the embedding. :see: :obj:`model_id` """ pass @abstractmethod def _create_data(self) -> WordVectorModel: """Return the vector data from the model in the form: (vectors, word2vec, words, word2idx) where: """ pass def clear_cache(self): for model in self._CACHE.values(): self._try_deallocate(model) self._CACHE.clear() def deallocate(self): self.clear_cache() super().deallocate() @property def model_id(self) -> str: """Return a string that uniquely identifies this instance of the embedding model. This should have the type, size and dimension of the embedding. This string is used to cache models in both CPU and GPU memory so the layers can have the benefit of reusing the same in memeory word embedding matrix. """ return self._get_model_id() @persisted('_data_inst', transient=True) def _data(self) -> WordVectorModel: model_id = self.model_id wv_model: WordVectorModel = self._CACHE.get(model_id) if wv_model is None: wv_model = self._create_data() if self.cache: self._CACHE[model_id] = wv_model return wv_model @property def matrix(self) -> np.ndarray: """The word vector matrix.""" return self._data().vectors @property def shape(self) -> Tuple[int, int]: """The shape of the word vector :obj"`matrix`.""" return self.matrix.shape def to_matrix(self, torch_config: TorchConfig) -> Tensor: """Return a matrix the represents the entire vector embedding as a tensor. :param torch_config: indicates where to load the new tensor """ return self._data().to_matrix(torch_config) @property def vectors(self) -> Dict[str, np.ndarray]: """Return all word vectors with the string words as keys. """ return self._data().word2vec @property def vector_dimension(self) -> int: """Return the dimension of the word vectors. """ return self.matrix.shape[1] def keys(self) -> Iterable[str]: """Return the keys, which are the word2vec words. """ return self.vectors.keys() @property @persisted('_unk_idx') def unk_idx(self) -> int: """The ID to the out-of-vocabulary index""" model: WordVectorModel = self._data() word2idx: Dict[str, int] = model.word2idx return word2idx.get(self.UNKNOWN) def word2idx(self, word: str, default: int = None) -> Optional[int]: """Return the index of ``word`` or :obj:`UNKONWN` if not indexed. """ if self.lowercase: word = word.lower() model: WordVectorModel = self._data() word2idx: Dict[str, int] = model.word2idx idx: int = word2idx.get(word) if idx is None: idx = default return idx def word2idx_or_unk(self, word: str) -> int: """Return the index of ``word`` or :obj:`UNKONWN` if not indexed. """ return self.word2idx(word, self.unk_idx) def prime(self): pass def get(self, key: str, default: np.ndarray = None) -> np.ndarray: """Just like a ``dict.get()``, but but return the vector for a word. :param key: the word to get the vector :param default: what to return if ``key`` doesn't exist in the dict :return: the word vector """ if self.lowercase: key = key.lower() return self.vectors.get(key, default) @property @persisted('_keyed_vectors', transient=True) def keyed_vectors(self) -> KeyedVectors: """Adapt instances of this class to a gensim keyed vector instance.""" return self._create_keyed_vectors() def _create_keyed_vectors(self) -> KeyedVectors: kv = Word2VecKeyedVectors(vector_size=self.vector_dimension) if gensim.__version__[0] >= '4': kv.key_to_index = self._data().word2idx else: kv.vocab = _WordEmbedVocabAdapter(self._data()) kv.vectors = self.matrix kv.index2entity = list(self._data().words) return kv def __getitem__(self, key: str): if self.lowercase: key = key.lower() return self.vectors[key] def __contains__(self, key: str): if self.lowercase: key = key.lower() return key in self.vectors def __len__(self): return self.matrix.shape[0] def __str__(self): s = f'{self.__class__.__name__} ({self.name}): id={self.model_id}' if self._data_inst.is_set(): s += f', num words={len(self)}, dim={self.vector_dimension}' return s
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/embed/domain.py
domain.py
__author__ = 'Paul Landes' from typing import List, Dict from dataclasses import dataclass, field, InitVar from abc import abstractmethod, ABCMeta import logging from pathlib import Path import pickle import numpy as np import h5py from h5py import Dataset from zensols.util import time from zensols.config import Dictable from zensols.persist import Primeable from zensols.install import Installer, Resource from zensols.deepnlp.embed import WordVectorModel, WordEmbedModel from . import WordEmbedError logger = logging.getLogger(__name__) @dataclass class TextWordModelMetadata(Dictable): """Describes a text based :class:`.WordEmbedModel`. This information in this class is used to construct paths both text source vector file and all generated binary files """ name: str = field() """The name of the word vector set (i.e. glove).""" desc: str = field() """A descriptor about this particular word vector set (i.e. 6B).""" dimension: int = field() """The dimension of the word vectors.""" n_vocab: int = field() """The number of words in the vocabulary.""" source_path: Path = field() """The path to the text file.""" sub_directory: InitVar[Path] = field(default=None) """The subdirectory to be appended to :obj:`self.bin_dir`, which defaults to the directory ``bin/<description>.<dimension>``. """ def __post_init__(self, sub_directory: Path): if sub_directory is None: fname: str = f'{self.name}.{self.desc}.{self.dimension}' sub_directory = Path('bin', fname) self.bin_dir = self.source_path.parent / sub_directory self.bin_file = self.bin_dir / 'vec.dat' self.words_file = self.bin_dir / 'words.dat' self.idx_file = self.bin_dir / 'idx.dat' @dataclass class TextWordEmbedModel(WordEmbedModel, Primeable, metaclass=ABCMeta): """Extensions of this class read a text vectors file and compile, then write a binary representation for fast loading. """ DATASET_NAME = 'vec' """Name of the dataset in the HD5F file.""" path: Path = field(default=None) """The path to the model file(s).""" installer: Installer = field(default=None) """The installer used to for the text vector zip file.""" resource: Resource = field(default=None) """The zip resource used to find the path to the model files.""" @abstractmethod def _get_metadata(self) -> TextWordModelMetadata: """Create the metadata used to construct paths both text source vector file and all generated binary files. """ pass def _install(self) -> Path: """Install any missing word vector models.""" if logger.isEnabledFor(logging.DEBUG): logger.debug(f'install resource for {self.name}: {self.resource}') self.installer() return self.installer[self.resource] @property def metadata(self): """Return the metadata used to construct paths both text source vector file and all generated binary files. """ if not hasattr(self, '_metadata'): if self.path is None and self.installer is None: raise WordEmbedError('No path is not set') if self.installer is not None and self.resource is None: raise WordEmbedError("Installer given but not 'resource''") if self.installer is not None: self.path = self._install() self._metadata = self._get_metadata() return self._metadata def _get_model_id(self) -> str: """Return a string used to uniquely identify this model. """ meta = self.metadata return f'{meta.name}: description={meta.desc}, dim={meta.dimension}' def _populate_vec_lines(self, words: List[str], word2idx: Dict[str, int], ds: Dataset): """Add word vectors to the h5py dataset, vocab and vocab index. :param words: the list of vocabulary words :param word2idx: dictionary of word to word vector index (row) :param ds: the h5py data structure to add the word vectors """ meta = self.metadata idx = 0 lc = 0 with open(meta.source_path, 'rb') as f: for rix, ln in enumerate(f): lc += 1 line = ln.decode().strip().split(' ') word = line[0] words.append(word) word2idx[word] = idx idx += 1 try: ds[rix, :] = line[1:] except Exception as e: raise WordEmbedError( f'Could not parse line {lc} (word: {word}): ' + f'{e}; line: {ln}') from e def _write_vecs(self) -> np.ndarray: """Write the h5py binary files. Only when they do not exist on the files system already are they calculated and written. """ meta = self.metadata meta.bin_dir.mkdir(parents=True, exist_ok=True) words = [] word2idx = {} if logger.isEnabledFor(logging.INFO): logger.info(f'writing binary vectors {meta.source_path} ' + f'-> {meta.bin_dir}') shape = (meta.n_vocab, meta.dimension) if logger.isEnabledFor(logging.INFO): logger.info(f'creating h5py binary vec files with shape {shape}:') meta.write_to_log(logger, logging.INFO, 1) with time(f'wrote h5py to {meta.bin_file}'): with h5py.File(meta.bin_file, 'w') as f: dset: Dataset = f.create_dataset( self.DATASET_NAME, shape, dtype='float64') self._populate_vec_lines(words, word2idx, dset) with open(meta.words_file, 'wb') as f: pickle.dump(words[:], f) with open(meta.idx_file, 'wb') as f: pickle.dump(word2idx, f) def _assert_binary_vecs(self): meta = self.metadata if logger.isEnabledFor(logging.DEBUG): logger.debug(f'{meta.bin_file} exists: {meta.bin_file.exists()}') if not meta.bin_file.exists(): if logger.isEnabledFor(logging.INFO): logger.info(f'writing binary vectors to: {meta.bin_file}') self._write_vecs() def prime(self): self._assert_binary_vecs() def _create_data(self) -> WordVectorModel: """Read the binary bcolz, vocabulary and index files from disk. """ self._assert_binary_vecs() meta = self.metadata if logger.isEnabledFor(logging.INFO): logger.info(f'reading binary vector file: {meta.bin_file}') with time('loaded {cnt} vectors'): with h5py.File(meta.bin_file, 'r') as f: ds: Dataset = f[self.DATASET_NAME] vectors: np.ndarray = ds[:] if logger.isEnabledFor(logging.DEBUG): logger.debug(f'word embedding type: {vectors.dtype}') with open(meta.words_file, 'rb') as f: words = pickle.load(f) with open(meta.idx_file, 'rb') as f: word2idx = pickle.load(f) cnt = len(word2idx) with time('prepared vectors'): unknown_vec: np.ndarray = np.expand_dims( np.zeros(self.dimension), axis=0) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'unknown type: {unknown_vec.dtype}') vectors: np.ndarray = np.concatenate((vectors, unknown_vec)) word2idx[self.UNKNOWN] = len(words) words.append(self.UNKNOWN) word2vec = {w: vectors[word2idx[w]] for w in words} return WordVectorModel(vectors, word2vec, words, word2idx) @dataclass class DefaultTextWordEmbedModel(TextWordEmbedModel): """This class uses the Stanford pretrained GloVE embeddings as a ``dict`` like Python object. It loads the glove vectors from a text file and then creates a binary file that's quick to load on subsequent uses. An example configuration would be:: [glove_embedding] class_name = zensols.deepnlp.embed.GloveWordEmbedModel path = path: ${default:corpus_dir}/glove desc = 6B dimension = 50 """ name: str = field(default='unknown_name') """The name of the word vector set (i.e. glove).""" desc: str = field(default='unknown_desc') """The size description (i.e. 6B for the six billion word trained vectors). """ dimension: int = field(default=50) """The word vector dimension.""" vocab_size: int = field(default=0) """Vocabulary size.""" file_name_pattern: str = field(default='{name}.{desc}.{dimension}d.txt') """The format of the file to create.""" @property def file_name(self) -> str: return self.file_name_pattern.format( name=self.name, desc=self.desc, dimension=self.dimension) def _get_metadata(self) -> TextWordModelMetadata: name: str = self.name dim: int = self.dimension desc: str = self.desc path: Path = self.path / self.file_name return TextWordModelMetadata(name, desc, dim, self.vocab_size, path)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/embed/wordtext.py
wordtext.py
___author__ = 'Paul Landes' from typing import List, Dict from dataclasses import dataclass, field import logging from h5py import Dataset from zensols.deepnlp.embed import TextWordEmbedModel, TextWordModelMetadata logger = logging.getLogger(__name__) @dataclass class FastTextEmbedModel(TextWordEmbedModel): """This class reads the FastText word vector text data format and provides an instances of a :class:`.WordEmbedModel`. Files that have the format that look like ``crawl-300d-2M.vec`` can be downloaded with the link below. :see: `English word vectors <https://fasttext.cc/docs/en/english-vectors.html>`_ """ desc: str = field(default='2M') """The size description (i.e. 6B for the six billion word trained vectors). """ dimension: str = field(default=300) """The word vector dimension.""" corpus: str = field(default='crawl') """The corpus the embeddings were trained on, such as ``crawl`` and ``web``. """ def _get_metadata(self) -> TextWordModelMetadata: name = 'fasttext' # crawl-300d-2M.vec path = self.path desc = f'{self.corpus}-{self.desc}' with open(path, encoding='utf-8', newline='\n', errors='ignore') as f: vocab_size, dim = map(int, f.readline().split()) return TextWordModelMetadata(name, desc, dim, vocab_size, path) def _populate_vec_lines(self, words: List[str], word2idx: Dict[str, int], ds: Dataset): meta = self.metadata idx = 0 lc = 0 with open(meta.source_path, encoding='utf-8', newline='\n', errors='ignore') as f: n_vocab, dim = map(int, f.readline().split()) for rix, ln in enumerate(f): lc += 1 line = ln.rstrip().split(' ') word = line[0] words.append(word) word2idx[word] = idx idx += 1 try: ds[rix, :] = line[1:] except Exception as e: logger.error(f'could not parse line {lc} ' + f'(word: {word}): {e}; line: {ln}') raise e
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/embed/fasttext.py
fasttext.py
__author__ = 'Paul Landes' from typing import Optional, Union, List from dataclasses import dataclass, field import numpy as np import torch from torch import Tensor from zensols.deeplearn import TorchConfig from zensols.nlp import ( FeatureToken, FeatureSentence, FeatureDocument, FeatureDocumentDecorator ) from . import WordEmbedModel @dataclass class WordEmbedDocumentDecorator(FeatureDocumentDecorator): """Populates sentence and token embeddings in the documents. Token's have shape ``(1, d)`` where ``d`` is the embeddingn dimsion, and the first is always 1 to be compatible with word piece embeddings populated by :class:`..transformer.WordPieceDocumentDecorator`. :see: :class:`.WordEmbedModel` """ model: WordEmbedModel = field() """The word embedding model for populating tokens and sentences.""" torch_config: Optional[TorchConfig] = field(default=None) """The Torch configuration to allocate the embeddings from either the GPU or the CPU. If ``None``, then Numpy :class:`numpy.ndarray` arrays are used instead of :class:`torch.Tensor`. """ token_embeddings: bool = field(default=True) """Whether to add :class:`.WordPieceFeatureToken.embeddings`. """ sent_embeddings: bool = field(default=True) """Whether to add class:`.WordPieceFeatureSentence.embeddings`. """ skip_oov: bool = field(default=False) """Whether to skip out-of-vocabulary tokens that have no embeddings.""" def _add_sent_embedding(self, sent: FeatureSentence): use_np: bool = self.torch_config is None add_tok_emb: bool = self.token_embeddings model: WordEmbedModel = self.model # our embedding will be a numpy array when no torch config is provided emb: Union[np.ndarray, Tensor] sembs: List[Union[np.ndarray, Tensor]] = [] if use_np: # already a numpy array emb = model.matrix else: # convert to a torch tensor based on our configuration (i.e. device) emb = model.to_matrix(self.torch_config) tok: FeatureToken for tok in sent.token_iter(): norm: str = tok.norm idx: int = model.word2idx(norm) if not self.skip_oov or idx is not None: if idx is None: idx = model.unk_idx vec: Union[np.ndarray, Tensor] = emb[idx] sembs.append(vec) if add_tok_emb: if use_np: vec = np.expand_dims(vec, axis=0) else: vec = vec.unsqueeze(axis=0) tok.embedding = vec # sentinel embeddings are the centroid for non-contextual embeddings if len(sembs) > 0 and self.sent_embeddings: if use_np: sent.embedding = np.stack(sembs).mean(axis=0) else: sent.embedding = torch.stack(sembs).mean(axis=0) def decorate(self, doc: FeatureDocument): assert isinstance(self.model, WordEmbedModel) if self.token_embeddings or self.sent_embeddings: sent: FeatureSentence for sent in doc.sents: self._add_sent_embedding(sent)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/embed/doc.py
doc.py
__author__ = 'Paul Landes' from typing import Tuple, Iterable, Any, Dict from dataclasses import dataclass, field import logging import numpy as np from sklearn.decomposition import TruncatedSVD from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import Normalizer from sklearn.feature_extraction.text import TfidfVectorizer from scipy.sparse import csr_matrix from zensols.util import time from zensols.nlp import FeatureDocument, TokenContainer from zensols.deeplearn import DeepLearnError from zensols.deeplearn.vectorize import FeatureContext, TensorFeatureContext from zensols.deepnlp.vectorize import TextFeatureType from . import DocumentIndexVectorizer logger = logging.getLogger(__name__) @dataclass class LatentSemanticDocumentIndexerVectorizer(DocumentIndexVectorizer): """Train a latent semantic indexing (LSI, aka LSA) model from:: Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., and Harshman, R. 1990. Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science; New York, N.Y. 41, 6, 391–407. This class can be used only to index TF/IDF. To skip the LSI training, set :obj:`iterations` to zero. :shape: ``(1,)`` :see: :class:`sklearn.decomposition.TruncatedSVD` """ DESCRIPTION = 'latent semantic indexing' FEATURE_TYPE = TextFeatureType.DOCUMENT components: int = field(default=100) """The number of components for the output.""" iterations: int = field(default=10) """Number of iterations for randomized SVD solver if greater than 0 (see class docs). """ vectorizer_params: Dict[str, Any] = field(default_factory=dict) """Additional parameters passed to :class:`~sklearn.feature_extraction.text.TfidfVectorizer` when vectorizing TF/IDF features. """ def _get_shape(self) -> Tuple[int, int]: return 1, def _create_model(self, docs: Iterable[FeatureDocument]) -> Dict[str, Any]: """Train using a singular value decomposition, then truncate to get the most salient terms in a document/term matrics. """ vectorizer = TfidfVectorizer( lowercase=False, tokenizer=self.feat_to_tokens, **self.vectorizer_params, ) model: Dict[str, Any] = {'vectorizer': vectorizer} with time('TF/IDF vectorized {X_train_tfidf.shape[0]} documents'): X_train_tfidf = vectorizer.fit_transform(docs) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'tfidf shape: {X_train_tfidf.shape}') svd = TruncatedSVD(self.components, n_iter=self.iterations) if self.iterations > 0: lsa: Pipeline = make_pipeline(svd, Normalizer(copy=False)) with time('SVD complete'): X_train_lsa = lsa.fit_transform(X_train_tfidf) if logger.isEnabledFor(logging.INFO): logger.info(f'created model w/{self.components} components, ' + f'over {self.iterations} iterations with ' + f'TF/IDF matrix shape: {X_train_tfidf.shape}, ' + f'SVD matrix shape: {X_train_lsa.shape}') model['lsa'] = lsa return model @property def vectorizer(self) -> TfidfVectorizer: """The vectorizer trained on the document set.""" return self.model['vectorizer'] @property def lsa(self) -> Pipeline: """The LSA pipeline trained on the document set.""" if 'lsa' not in self.model: raise DeepLearnError('SVD model was not trained') return self.model['lsa'] def _transform_doc(self, doc: FeatureDocument, vectorizer: TfidfVectorizer, lsa: Pipeline) -> np.ndarray: X_test_tfidf: csr_matrix = vectorizer.transform([doc]) X_test_lsa: csr_matrix = lsa.transform(X_test_tfidf) return X_test_lsa def similarity(self, a: FeatureDocument, b: FeatureDocument) -> float: """Return the semantic similarity between two documents. """ vectorizer: TfidfVectorizer = self.vectorizer lsa: Pipeline = self.lsa emb_a = self._transform_doc(a, vectorizer, lsa) emb_b = self._transform_doc(b, vectorizer, lsa) return np.dot(emb_a, emb_b.T)[0][0] def _encode(self, containers: Tuple[TokenContainer]) -> FeatureContext: measure = self.similarity(*containers) arr = self.torch_config.singleton([measure]) return TensorFeatureContext(self.feature_id, arr)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/index/lsi.py
lsi.py
from typing import Tuple, Iterable, Any from dataclasses import dataclass, field import logging import torch import gensim.corpora as corpora from gensim.models.ldamodel import LdaModel from zensols.util import time from zensols.nlp import TokenContainer, FeatureDocument from zensols.deeplearn import TorchConfig from zensols.deeplearn.vectorize import FeatureContext, TensorFeatureContext from zensols.deepnlp.vectorize import TextFeatureType from . import DocumentIndexVectorizer logger = logging.getLogger(__name__) @dataclass class TopicModelDocumentIndexerVectorizer(DocumentIndexVectorizer): """Train a model using LDA for topic modeling. Citation: Hoffman, M., Bach, F., and Blei, D. 2010. Online Learning for Latent Dirichlet Allocation. Advances in Neural Information Processing Systems 23. :shape: ``(topics, )`` when ``decode_as_flat`` is ``True, otherwise, ``(, topics)`` :see: :class:`gensim.models.ldamodel.LdaModel` """ DESCRIPTION = 'latent semantic indexing' FEATURE_TYPE = TextFeatureType.DOCUMENT topics: int = field(default=20) """The number of topics (usually denoted ``K``).""" decode_as_flat: bool = field(default=True) """If ``True``, flatten the tensor after decoding.""" def _get_shape(self) -> Tuple[int, int]: if self.decode_as_flat: return self.topics, else: return 1, self.topics def _create_model(self, docs: Iterable[FeatureDocument]) -> Any: if logger.isEnabledFor(logging.INFO): logger.info(f'creating {self.topics} topics') docs = tuple(map(lambda doc: self.feat_to_tokens(doc), docs)) id2word = corpora.Dictionary(docs) corpus = tuple(map(lambda doc: id2word.doc2bow(doc), docs)) rand_state = TorchConfig.get_random_seed() if rand_state is None: rand_state = 0 params = { 'corpus': corpus, 'id2word': id2word, 'num_topics': self.topics, 'random_state': rand_state, 'update_every': 1, 'chunksize': 100, 'passes': 10, 'alpha': 'auto', 'per_word_topics': True } with time(f'modeled {self.topics} acros {len(docs)} documents'): lda = LdaModel(**params) return {'lda': lda, 'corpus': corpus, 'id2word': id2word} def query(self, tokens: Tuple[str]) -> Tuple[float]: """Return a distribution over the topics for a query set of tokens. :param tokens: the string list of tokens to use for inferencing in the model :return: a list of tuples in the form ``(topic_id, probability)`` """ lda = self.model['lda'] id2word = self.model['id2word'] docs_q = [tokens] corpus_q = tuple(map(lambda doc: id2word.doc2bow(doc), docs_q)) return lda.get_document_topics(corpus_q, minimum_probability=0)[0] def _encode(self, containers: Tuple[TokenContainer]) -> FeatureContext: arrs = [] for container in containers: terms = tuple(map(lambda t: t.lemma, container.tokens)) arr = self.torch_config.from_iterable( map(lambda x: x[1], self.query(terms))) arrs.append(arr) arrs = torch.stack(arrs) return TensorFeatureContext(self.feature_id, arrs) def _decode(self, context: FeatureContext) -> torch.Tensor: arr = super()._decode(context) if self.decode_as_flat: shape = arr.shape arr = arr.flatten() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decode shape {shape} -> {arr.shape}') return arr
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/index/lda.py
lda.py
__author__ = 'Paul Landes' from typing import Tuple, Iterable, Any from abc import ABC, ABCMeta, abstractmethod from dataclasses import dataclass, field import logging from itertools import chain from pathlib import Path from zensols.util import time from zensols.persist import ( persisted, PersistedWork, PersistableContainer, Primeable ) from zensols.nlp import FeatureToken, FeatureDocument from zensols.deepnlp.vectorize import FeatureDocumentVectorizer logger = logging.getLogger(__name__) @dataclass class IndexedDocumentFactory(ABC): """Creates training documents used to generate indexed features (i.e. latent dirichlet allocation, latent semantic indexing etc). :see: :class:`.DocumentIndexVectorizer` """ @abstractmethod def create_training_docs(self) -> Iterable[FeatureDocument]: """Create the documents used to index in the model during training. """ pass @dataclass class DocumentIndexVectorizer(FeatureDocumentVectorizer, PersistableContainer, Primeable, metaclass=ABCMeta): """A vectorizer that generates vectorized features based on the index documents of the training set. For example, latent dirichlet allocation maybe be used to generated a distrubiton of likelihood a document belongs to a topic. Subclasses of this abstract class are both vectorizers and models. The model created once, and then cached. To clear the cache and force it to be retrained, use :meth:`clear`. The method :meth:`_create_model` must be implemented. :see: :class:`.TopicModelDocumentIndexerVectorizer` .. document private functions .. automethod:: _create_model """ doc_factory: IndexedDocumentFactory = field() """The document factor used to create training documents for the model vectorizer. """ index_path: Path = field() """The path to the pickeled cache file of the trained model. """ def __post_init__(self): PersistableContainer.__init__(self) self.index_path.parent.mkdir(parents=True, exist_ok=True) self._model = PersistedWork(self.index_path, self) @staticmethod def feat_to_tokens(docs: Tuple[FeatureDocument, ...]) -> Tuple[str, ...]: """Create a tuple of string tokens from a set of documents suitable for document indexing. The strings are the lemmas of the tokens. **Important**: this method must remain static since the LSI instance of this class uses it as a factory function in the a vectorizer. """ def filter_tok(t: FeatureToken) -> bool: return not t.is_space and not t.is_stop and not t.is_punctuation toks = map(lambda d: d.lemma_.lower(), filter(filter_tok, chain.from_iterable( map(lambda d: d.tokens, docs)))) return tuple(toks) @abstractmethod def _create_model(self, docs: Iterable[FeatureDocument]) -> Any: """Create the model for this indexer. The model is implementation specific. The model must be pickelabel and is cached in as :obj:`model`. """ pass @property @persisted('_model') def model(self): """Return the trained model for this vectorizer. See the class docs on how it is cached and cleared. """ docs: Iterable[FeatureDocument] = \ self.doc_factory.create_training_docs() with time('trained model'): if logger.isEnabledFor(logging.INFO): logger.info(f'creating model at {self.index_path}') return self._create_model(docs) def __getstate__(self): return self.__dict__ def prime(self): if logger.isEnabledFor(logging.DEBUG): logger.debug(f'priming {self}') self.model def clear(self): self._model.clear()
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/index/domain.py
domain.py
from typing import Iterable, List, Tuple, Any from dataclasses import dataclass, field import logging import sys from abc import abstractmethod, ABCMeta import itertools as it import pandas as pd from zensols.persist import Stash, PrimeableStash from zensols.multi import MultiProcessStash from zensols.nlp import FeatureDocument from zensols.deepnlp.vectorize import FeatureDocumentVectorizerManager logger = logging.getLogger(__name__) @dataclass class DocumentFeatureStash(MultiProcessStash, metaclass=ABCMeta): """This class parses natural language text in to :class:`.FeatureDocument` instances in multiple sub processes. .. document private functions .. automethod:: _parse_document """ ATTR_EXP_META = ('document_limit',) factory: Stash = field() """The stash that creates the ``factory_data`` given to :meth:`_parse_document`. """ vec_manager: FeatureDocumentVectorizerManager = field() """Used to parse text in to :class:`.FeatureDocument` instances. """ document_limit: int = field(default=sys.maxsize) """The maximum number of documents to process.""" def prime(self): if isinstance(self.factory, PrimeableStash): self.factory.prime() super().prime() @abstractmethod def _parse_document(self, id: int, factory_data: Any) -> FeatureDocument: pass def _create_data(self) -> List[str]: return it.islice(self.factory.keys(), self.document_limit) def _process(self, chunk: List[str]) -> \ Iterable[Tuple[str, FeatureDocument]]: logger.info(f'processing chunk with {len(chunk)} ids') for id, factory_data in map(lambda id: (id, self.factory[id]), chunk): data = self._parse_document(id, factory_data) yield (id, data) @dataclass class DataframeDocumentFeatureStash(DocumentFeatureStash): """Creates :class:`.FeatureDocument` instances from :class:`pandas.Series` rows from the :class:`pandas.DataFrame` stash values. """ text_column: str = field(default='text') """The column name for the text to be parsed by the document parser.""" additional_columns: Tuple[str] = field(default=None) """A tuple of column names to add as position argument to the instance.""" def _parse_document(self, id: int, row: pd.Series) -> FeatureDocument: # text to parse with SpaCy text = row[self.text_column] if self.additional_columns is None: return self.vec_manager.parse(text) else: vals = dict(map(lambda c: (c, row[c]), self.additional_columns)) return self.vec_manager.parse(text, **vals)
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/feature/stash.py
stash.py
__author__ = 'Paul Landes' from typing import Set, List from dataclasses import dataclass, field from abc import ABCMeta, abstractmethod import logging from zensols.persist import Stash from zensols.deeplearn import NetworkSettings, ModelSettings from zensols.deeplearn.batch import BatchMetadata, ManagerFeatureMapping from zensols.deeplearn.model import ModelError, ModelFacade from zensols.deeplearn.vectorize import ( FeatureVectorizerManagerSet, FeatureVectorizerManager, FeatureVectorizer, ) from zensols.nlp import FeatureDocumentParser, FeatureDocument from zensols.deepnlp.transformer import suppress_warnings from zensols.deepnlp.transformer.vectorizers import \ TransformerEmbeddingFeatureVectorizer from zensols.deepnlp.transformer import ( TransformerResource, TransformerDocumentTokenizer, ) logger = logging.getLogger(__name__) @dataclass class LanguageModelFacadeConfig(object): """Configuration that defines how and what to access language configuration data. Note that this data reflects how you have the model configured per the configuration file. Parameter examples are given per the Movie Review example. """ manager_name: str = field() """The name of the language based feature vectorizer, such as ``language_vectorizer_manager``. """ attribs: Set[str] = field() """The language attributes (all levels: token, document etc), such as ``enum``, ``count``, ``dep`` etc. """ embedding_attribs: Set[str] = field() """All embedding attributes using in the configuration, such as ``glove_50_embedding``, ``word2vec_300``, ``bert_embedding``, etc. """ @dataclass class LanguageModelFacade(ModelFacade, metaclass=ABCMeta): """A facade that supports natural language model feature updating through a facade. This facade also provides logging configuration for NLP domains for this package. This class makes assumptions on the naming of the embedding layer vectorizer naming. See :obj:`embedding`. """ suppress_transformer_warnings: bool = field(default=True) """If ``True``, suppress the ```Some weights of the model checkpoint...``` warnings from huggingface transformers library. """ def __post_init__(self, *args, **kwargs): super().__post_init__(*args, **kwargs) if self.suppress_transformer_warnings: suppress_warnings() @abstractmethod def _get_language_model_config(self) -> LanguageModelFacadeConfig: """Get the langauge model configuration. """ pass def _create_facade_explorer(self): from zensols.deepnlp.vectorize import FeatureDocumentVectorizer ce = super()._create_facade_explorer() ce.include_classes.update({NetworkSettings, ModelSettings}) ce.exclude_classes.update({FeatureDocumentVectorizer}) ce.dictify_dataclasses = True return ce @property def enum_feature_ids(self) -> Set[str]: """Spacy enumeration encodings used to token wise to widen the input embeddings. """ return self._get_vectorizer_feature_ids('enum') @enum_feature_ids.setter def enum_feature_ids(self, feature_ids: Set[str]): """Spacy enumeration encodings used to token wise to widen the input embeddings. """ self._set_vectorizer_feature_ids('enum', feature_ids) @property def count_feature_ids(self) -> Set[str]: """The spacy token features are used in the join layer. """ return self._get_vectorizer_feature_ids('count') @count_feature_ids.setter def count_feature_ids(self, feature_ids: Set[str]): """The spacy token features are used in the join layer. """ self._set_vectorizer_feature_ids('count', feature_ids) @property def language_attributes(self) -> Set[str]: """The language attributes to be used. """ lc = self._get_language_model_config() stash = self.batch_stash return stash.decoded_attributes & lc.attribs @language_attributes.setter def language_attributes(self, attributes: Set[str]): """The language attributes to be used. :param attributes: the set of attributes to use, which are and (sub)set of the :class:`~zensols.deeplearn.batch.BatchStash`'s ``decoded_attributes`` """ stash = self.batch_stash lc = self._get_language_model_config() if logger.isEnabledFor(logging.DEBUG): logger.debug(f'all language attributes: {lc.attribs}') non_existant = attributes - lc.attribs if len(non_existant) > 0: raise ModelError(f'No such langauge attributes: {non_existant}') cur_attribs = self.batch_stash.decoded_attributes to_set = (cur_attribs - lc.attribs) | attributes if logger.isEnabledFor(logging.DEBUG): logger.debug(f'settings decoded batch stash attribs: {to_set}') if cur_attribs == to_set: logger.info('no attribute changes--skipping') else: stash.decoded_attributes = to_set self.clear() def _get_default_token_length(self, embedding: str) -> int: lvm: FeatureVectorizerManager = self.language_vectorizer_manager #return self.config.get_option_int('token_length', 'language_defaults') return lvm.token_length @property def embedding(self) -> str: """The embedding layer. **Important**: the naming of the ``embedding`` parameter is that which is given in the configuration without the ``_layer`` postfix. For example, ``embedding`` is ``glove_50_embedding`` for: * ``glove_50_embedding`` is the name of the :class:`~zensols.deepnlp.embed.GloveWordEmbedModel` * ``glove_50_feature_vectorizer`` is the name of the :class:`~zensols.deepnlp.vectorize.WordVectorEmbeddingFeatureVectorizer` * ``glove_50_embedding_layer`` is the name of the :class: `~zensols.deepnlp.vectorize.WordVectorEmbeddingLayer` :param embedding: the kind of embedding, i.e. ``glove_50_embedding`` """ stash = self.batch_stash cur_attribs = stash.decoded_attributes lang_attribs = self._get_language_model_config() emb = lang_attribs.embedding_attribs & cur_attribs assert len(emb) == 1 return next(iter(emb)) @embedding.setter def embedding(self, embedding: str): """The embedding layer. **Important**: the naming of the ``embedding`` parameter is that which is given in the configuration without the ``_layer`` postfix. For example, ``embedding`` is ``glove_50_embedding`` for: * ``glove_50_embedding`` is the name of the :class:`~zensols.deepnlp.embed.GloveWordEmbedModel` * ``glove_50_feature_vectorizer`` is the name of the :class:`~zensols.deepnlp.vectorize.WordVectorEmbeddingFeatureVectorizer` * ``glove_50_embedding_layer`` is the name of the :class: `~zensols.deepnlp.vectorize.WordVectorEmbeddingLayer` :param embedding: the kind of embedding, i.e. ``glove_50_embedding`` """ self._set_embedding(embedding) def _set_embedding(self, embedding: str): lang_attribs = self._get_language_model_config() emb_sec = embedding if emb_sec not in lang_attribs.embedding_attribs: raise ModelError(f'No such embedding attribute: {embedding}') stash = self.batch_stash cur_attribs = stash.decoded_attributes attribs = (cur_attribs - lang_attribs.embedding_attribs) | {emb_sec} needs_change = cur_attribs == attribs if logger.isEnabledFor(logging.DEBUG): logger.debug(f'decoded batch stash attribs: {attribs}') logger.debug(f'embedding layer: {emb_sec}') if needs_change: logger.info('no attribute changes--skipping') else: vec_mng = self.language_vectorizer_manager old_emb = self.embedding self._deallocate_config_instance(f'{old_emb}_layer') stash.decoded_attributes = attribs elayer = f'instance: {emb_sec}_layer' self.executor.net_settings.embedding_layer = elayer vec_mng.token_length = self._get_default_token_length(embedding) self.clear() return needs_change @property def language_vectorizer_manager(self) -> FeatureVectorizerManager: """Return the language vectorizer manager for the class. """ lc = self._get_language_model_config() return self.vectorizer_manager_set[lc.manager_name] def get_transformer_vectorizer(self) -> \ TransformerEmbeddingFeatureVectorizer: """Return the first found tranformer token vectorizer. """ mng_set: FeatureVectorizerManagerSet = self.vectorizer_manager_set mng: FeatureVectorizerManager for mng in mng_set.values(): vec: FeatureVectorizer for vc in mng.values(): if isinstance(vc, TransformerEmbeddingFeatureVectorizer): return vc def get_max_word_piece_len(self) -> int: """Get the longest word piece length for the first found configured transformer embedding feature vectorizer. """ vec: TransformerEmbeddingFeatureVectorizer = \ self.get_transformer_vectorizer() if vec is None: raise ModelError('No transformer vectorizer found') tres: TransformerResource = vec.embed_model tokenizer: TransformerDocumentTokenizer = tres.tokenizer meta: BatchMetadata = self.batch_metadata field: ManagerFeatureMapping = \ meta.mapping.get_field_map_by_feature_id(vec.feature_id)[1] attr_name: str = field.attr_access batch_stash: Stash = self.batch_stash mlen = 0 params = {'padding': 'longest', 'truncation': False} for bn, batch in enumerate(batch_stash.values()): sents = map(lambda dp: getattr(dp, attr_name).to_sentence(), batch.data_points) doc = FeatureDocument(sents) tok_doc = tokenizer.tokenize(doc, params) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'max word piece tokens for batch {bn}: ' + f'{len(tok_doc)}') mlen = max(mlen, len(tok_doc)) if logger.isEnabledFor(logging.DEBUG): logger.debug(f'max word piece token length: {mlen}') return mlen @property def doc_parser(self) -> FeatureDocumentParser: """Return the document parser assocated with the language vectorizer manager. :see: obj:`language_vectorizer_manager` """ mng: FeatureVectorizerManager = self.language_vectorizer_manager return mng.doc_parser def _get_vectorizer_feature_ids(self, name: str) -> Set[str]: lang_vec = self.language_vectorizer_manager[name] return lang_vec.decoded_feature_ids def _set_vectorizer_feature_ids(self, name: str, feature_ids: Set[str]): lang_vec_mng = self.language_vectorizer_manager lang_vec = lang_vec_mng[name] spacy_feat_ids = set(lang_vec_mng.spacy_vectorizers.keys()) non_existant = feature_ids - spacy_feat_ids if len(non_existant) > 0: raise ModelError(f'No such spacy feature IDs: {non_existant}') if logger.isEnabledFor(logging.DEBUG): logger.debug(f'settings {feature_ids} on {lang_vec}') lang_vec.decoded_feature_ids = feature_ids def _configure_debug_logging(self): super()._configure_debug_logging() for name in ['zensols.deeplearn.layer', 'zensols.deepnlp.layer', 'zensols.deepnlp.transformer.layer', __name__]: logging.getLogger(name).setLevel(logging.DEBUG) for name in ['zensols.deepnlp.vectorize.vectorizers', 'zensols.deepnlp.transformer.vectorizers', 'zensols.deepnlp.model.module']: logging.getLogger(name).setLevel(logging.INFO) def _configure_cli_logging(self, info_loggers: List[str], debug_loggers: List[str]): super()._configure_cli_logging(info_loggers, debug_loggers) info_loggers.extend([ # installed files 'zensols.install', # show (slow) embedding loading 'zensols.deepnlp.embed', # LSI/LDA indexing 'zensols.deepnlp.index', # CLI interface 'zensols.deepnlp.cli.app'])
zensols.deepnlp
/zensols.deepnlp-1.10.1-py3-none-any.whl/zensols/deepnlp/model/facade.py
facade.py